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Introduction

Data science is a term that the media has chosen to minimize, obfuscate, and 
sometimes misuse. It involves a lot more than just data and the science of 
working with data. Today, the world uses data science in all sorts of ways 

that you might not know about, which is why you need Data Science Programming 
All-in-One For Dummies.

In the book, you start with both the data and the science of manipulating it, but 
then you go much further. In addition to seeing how to perform a wide range 
of analysis, you also delve into making recommendations, classifying real-world 
objects, analyzing audio, and even creating art.

However, you don’t just learn about amazing new technologies and how to per-
form common tasks. This book also dispels myths created by people who wish 
data science were something different than it really is or who don’t understand it 
at all. A great deal of misinformation swirls around the world today as the media 
seeks to sensationalize, anthropomorphize, and emotionalize technologies that 
are, in fact, quite mundane. It’s hard to know what to believe. You find reports 
that robots are on the cusp of becoming sentient and that the giant tech compa-
nies can discover your innermost thoughts simply by reviewing your record of 
purchases. With this book, you can replace disinformation with solid facts, and 
you can use those facts to create a strategy for performing data science develop-
ment tasks.

About This Book
You might find that this book starts off a little slowly because most people don’t 
have a good grasp on getting a system prepared for data science use. Book 1 helps 
you configure your system. The book uses Jupyter Notebook as an Integrated Devel-
opment Environment (IDE) for both Python and R. That way, if you choose to view 
the examples in both languages, you use the same IDE to do it. Jupyter Notebook 
also relies on the literate programming strategy first proposed by Donald Knuth (see 
http://www.literateprogramming.com/) to make your coding efforts significantly 
easier and more focused on the data. In addition, in contrast to other environments, 
you don’t actually write entire applications before you see something; you write code 
and focus on the results of just that code block as part of a whole application.

http://www.literateprogramming.com/
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After you have a development environment installed and ready to use, you can start 
working with data in all its myriad forms in Book 2. This book covers a great many of 
these forms — everything from in-memory datasets to those found on large websites. 
In addition, you see a number of data formats ranging from flat files to Relational 
Database Management Systems (RDBMSs) and Not Only SQL (NoSQL) databases.

Of course, manipulating data is worthwhile only if you can do something useful 
with it. Book 3 discusses common sorts of analysis, such as linear and logistic 
regression, Bayes’ Theorem, and K-Nearest Neighbors (KNN).

Most data science books stop at this point. In this book, however, you discover AI, 
machine learning, and deep learning techniques to get more out of your data than 
you might have thought possible. This exciting part of the book, Book 4, repre-
sents the cutting edge of analysis. You use huge datasets to discover important 
information about large groups of people that will help you improve their health 
or sell them products.

Performing analysis may be interesting, but analysis is only a step along the path. 
Book 5 shows you how to put your analysis to use in recommender systems, to 
classify objects, work with nontextual data like music and video, and display the 
results of an analysis in a form that everyone can appreciate.

The final minibook, Book 6, offers something you won’t find in many places, not 
even online. You discover how to detect and fix problems with your data, the logic 
used to interpret the data, and the code used to perform tasks such as analysis. By 
the time you complete Book 6, you’ll know much more about how to ensure that 
the results you get are actually the results you need and want.

To make absorbing the concepts easy, this book uses the following conventions:

 » Text that you’re meant to type just as it appears in the book is in bold. The 
exception is when you’re working through a step list: Because each step is 
bold, the text to type is not bold.

 » When you see words in italics as part of a typing sequence, you need to 
replace that value with something that works for you. For example, if you see 
“Type Your Name and press Enter,” you need to replace Your Name with your 
actual name.

 » Web addresses and programming code appear in monofont. If you’re reading a 
digital version of this book on a device connected to the Internet, you can click or 
tap the web address to visit that website, like this: https://www.dummies.com.

 » When you need to type command sequences, you see them separated by a 
special arrow, like this: File ➪ New File. In this example, you go to the File 
menu first and then select the New File entry on that menu.

https://www.dummies.com
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Foolish Assumptions
You might find it difficult to believe that we’ve assumed anything about you — 
after all; we haven’t even met you yet! Although most assumptions are indeed 
foolish, we made these assumptions to provide a starting point for the book.

You need to be familiar with the platform you want to use because the book  
doesn’t offer any guidance in this regard. (Book 1, Chapter 3 does, however, provide 
Anaconda installation instructions for both Python and R, and Book 1,  Chapter 5 
helps you install the TensorFlow and Keras frameworks used for this book.) To 
give you the maximum information about Python concerning how it applies to 
deep learning, this book doesn’t discuss any platform-specific issues. You see the 
R version of the Python coding examples in the downloadable source, along with 
R-specific notes on usage and development. You really do need to know how to 
install applications, use applications, and generally work with your chosen plat-
form before you begin working with this book.

You must know how to work with Python or R. You can find a wealth of Python 
tutorials online (see https://www.w3schools.com/python/ and https://www. 
tutorialspoint.com/python/ as examples). R, likewise, provides a wealth of 
online tutorials (see https://www.tutorialspoint.com/r/index.htm, https://
docs.anaconda.com/anaconda/navigator/tutorials/r-lang/, and https:// 
www.statmethods.net/r-tutorial/index.html as examples).

This book isn’t a math primer. Yes, you see many examples of complex math, but 
the emphasis is on helping you use Python or R to perform data science develop-
ment tasks rather than teaching math theory. We include some examples that also 
discuss the use of technologies such as data management (see Book 2), statistical 
analysis (see Book 3), AI, machine learning, deep learning (see Book 4), practical 
data science application (see Book 5), and troubleshooting both data and code (see 
Book 6). Book 1, Chapters 1 and 2 give you a better understanding of precisely what 
you need to know to use this book successfully. You also use a considerable num-
ber of libraries in writing code for this book. Book 1, Chapter 4 discusses library 
use and suggests other libraries that you might want to try.

This book also assumes that you can access items on the Internet. Sprinkled 
throughout are numerous references to online material that will enhance your 
learning experience. However, these added sources are useful only if you actually 
find and use them.

https://www.w3schools.com/python/
https://www.tutorialspoint.com/python/
https://www.tutorialspoint.com/python/
https://www.tutorialspoint.com/r/index.htm
https://docs.anaconda.com/anaconda/navigator/tutorials/r-lang/
https://docs.anaconda.com/anaconda/navigator/tutorials/r-lang/
https://www.statmethods.net/r-tutorial/index.html
https://www.statmethods.net/r-tutorial/index.html
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Icons Used in This Book
As you read this book, you see icons in the margins that indicate material of inter-
est (or not, as the case may be). This section briefly describes each icon in this 
book.

Tips are nice because they help you save time or perform some task without a 
lot of extra work. The tips in this book are time-saving techniques or pointers 
to resources that you should try so that you can get the maximum benefit from 
Python or R, or from performing deep learning–related tasks. (Note that R devel-
opers will also find copious notes in the source code files for issues that differ 
significantly from Python.)

We don’t want to sound like angry parents or some kind of maniacs, but you 
should avoid doing anything that’s marked with a Warning icon. Otherwise, 
you might find that your application fails to work as expected, you get incorrect 
answers from seemingly bulletproof algorithms, or (in the worst-case scenario) 
you lose data.

Whenever you see this icon, think advanced tip or technique. You might find these 
tidbits of useful information just too boring for words, or they could contain the 
solution you need to get a program running. Skip these bits of information when-
ever you like.

If you don’t get anything else out of a particular chapter or section, remember 
the material marked by this icon. This text usually contains an essential process 
or a bit of information that you must know to work with Python or R, or to per-
form deep learning–related tasks successfully. (Note that the R source code files 
contain a great deal of text that gives essential details for working with R when R 
differs considerably from Python.)

Beyond the Book
This book isn’t the end of your Python or R data science development  experience —  
it’s really just the beginning. We provide online content to make this book more 
flexible and better able to meet your needs. That way, as we receive email from 
you, we can address questions and tell you how updates to Python, R, or their 
associated add-ons affect book content. In fact, you gain access to all these cool 
additions:
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 » Cheat sheet: You remember using crib notes in school to make a better mark 
on a test, don’t you? You do? Well, a cheat sheet is sort of like that. It provides 
you with some special notes about tasks that you can do with Python and R 
with regard to data science development that not every other person knows. 
You can find the cheat sheet by going to www.dummies.com, searching this 
book’s title, and scrolling down the page that appears. The cheat sheet 
contains really neat information, such as the most common data errors that 
cause people problems with working in the data science field.

 » Updates: Sometimes changes happen. For example, we might not have seen 
an upcoming change when we looked into our crystal ball during the writing 
of this book. In the past, this possibility simply meant that the book became 
outdated and less useful, but you can now find updates to the book, if we 
have any, by searching this book’s title at www.dummies.com.

In addition to these updates, check out the blog posts with answers to reader 
questions and demonstrations of useful, book-related techniques at http://
blog.johnmuellerbooks.com/.

 » Companion files: Hey! Who really wants to type all the code in the book and 
reconstruct all those neural networks manually? Most readers prefer to spend 
their time actually working with data and seeing the interesting things they 
can do, rather than typing. Fortunately for you, the examples used in the book 
are available for download, so all you need to do is read the book to learn 
Python or R data science programming techniques. You can find these files at 
www.dummies.com. Search this book’s title, and on the page that appears, 
scroll down to the image of the book cover and click it. Then click the More 
about This Book button and on the page that opens, go to the Downloads tab.

Where to Go from Here
It’s time to start your Python or R for data science programming adventure! 
If you’re completely new to Python or R and its use for data science tasks, you 
should start with Book 1, Chapter 1. Progressing through the book at a pace that 
allows you to absorb as much of the material as possible makes it feasible for you 
to gain insights that you might not otherwise gain if you read the chapters in a 
random order. However, the book is designed to allow you to read the material in 
any order desired.

http://www.dummies.com
http://www.dummies.com
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/
http://www.dummies.com
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If you’re a novice who’s in an absolute rush to get going with Python or R for data 
science programming as quickly as possible, you can skip to Book 1, Chapter 3 with 
the understanding that you may find some topics a bit confusing later. Skipping to 
Book 1, Chapter 5 is okay if you already have Anaconda (the programming prod-
uct used in the book) installed with the appropriate language (Python or R as you 
desire), but be sure to at least skim Chapter 3 so that you know what assumptions 
we made when writing this book.

This book relies on a combination of TensorFlow and Keras to perform deep learn-
ing tasks. Even if you’re an advanced reader who wants to perform deep learning 
tasks, you need to go to Book 1, Chapter 5 to discover how to configure the envi-
ronment used for this book. You must configure the environment according to 
instructions or you’re likely to experience failures when you try to run the code. 
However, this issue applies only to deep learning. This book has a great deal to 
offer in other areas, such as data manipulation and statistical analysis.
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Considering the History 
and Uses of Data Science

The burgeoning uses for data in the world today, along with the explosion of 
data sources, create a demand for people who have special skills to obtain, 
manage, and analyze information for the benefit of everyone. The data sci-

entist develops and hones these special skills to perform such tasks on multiple 
levels, as described in the first two sections of this chapter.

Data needs to be funneled into acceptable forms that allow data scientists to per-
form their tasks. Even though the precise data flow varies, you can generalize it 
to a degree. The third section of the chapter gives you an overview of how data 
flow occurs.

As with anyone engaged in computer work today, a data scientist employs various 
programming languages to express the manipulation of data in a repeatable man-
ner. The languages that a data scientist uses, however, focus on outputs expected 
from given inputs, rather than on low-level control or a precise procedure, as a 
computer scientist would use. Because a data scientist may lack a formal pro-
gramming education, the languages tend to focus on declarative strategies, with 
the data scientist expressing a desired outcome rather than devising a specific 
procedure. The fourth section of the chapter discusses various languages used by 
data scientists, with an emphasis on Python and R.

Chapter 1

IN THIS CHAPTER

 » Understanding data science history 
and uses

 » Considering the flow of data in data 
science

 » Working with various languages in 
data science

 » Performing data science tasks quickly
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The final section of the chapter provides a very quick overview of getting tasks 
done quickly. Optimization without loss of precision is an incredibly difficult task 
and you see it covered a number of times in this book, but this introduction is 
enough to get you started. The overall goal of this first chapter is to describe data 
science and explain how a data scientist uses algorithms, statistics, data extrac-
tion, data manipulation, and a slew of other technologies to employ it as part of 
an analysis.

You don’t have to type the source code for this chapter manually (or, actually at 
all, given that you use it only to obtain an understanding of the data flow pro-
cess). In fact, using the downloadable source is a lot easier. The source code for 
this chapter appears in the DSPD_0101_Quick_Overview.ipynb source code file 
for Python. See the Introduction for details on how to find these source files.

Considering the Elements of Data Science
At one point, the world viewed anyone working with statistics as a sort of accoun-
tant or perhaps a mad scientist. Many people consider statistics and the analysis 
of data boring. However, data science is one of those occupations in which the 
more you learn, the more you want to learn. Answering one question often spawns 
more questions that are even more interesting than the one you just answered. 
However, what makes data science so sexy is that you see it everywhere, used in 
an almost infinite number of ways. The following sections give you more details 
on why data science is such an amazing field of study.

Considering the emergence of data science
Data science is a relatively new term. William S.  Cleveland coined the term in 
2001 as part of a paper entitled “Data Science: An Action Plan for Expanding the 
Technical Areas of the Field of Statistics.” It wasn’t until a year later that the 
International Council for Science actually recognized data science and created a 
committee for it. Columbia University got into the act in 2003 by beginning pub-
lication of the Journal of Data Science.

However, the mathematical basis behind data science is centuries old because data 
science is essentially a method of viewing and analyzing statistics and probabil-
ity. The first essential use of statistics as a term comes in 1749, but statistics are 
certainly much older than that. People have used statistics to recognize patterns 
for thousands of years. For example, the historian Thucydides (in his History of 
the Peloponnesian War) describes how the Athenians calculated the height of the 
wall of Platea in fifth century BC by counting bricks in an unplastered section of 
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the wall. Because the count needed to be accurate, the Athenians took the average 
of the count by several solders.

The process of quantifying and understanding statistics is relatively new, but the 
science itself is quite old. An early attempt to begin documenting the importance 
of statistics appears in the ninth century, when Al-Kindi wrote Manuscript on 
Deciphering Cryptographic Messages. In this paper, Al-Kindi describes how to use a 
combination of statistics and frequency analysis to decipher encrypted messages. 
Even in the beginning, statistics saw use in the practical application of science for 
tasks that seemed virtually impossible to complete. Data science continues this 
process, and to some people it might actually seem like magic.

Outlining the core competencies  
of a data scientist
As is true of anyone performing most complex trades today, the data scientist 
requires knowledge of a broad range of skills to perform the required tasks. In 
fact, so many different skills are required that data scientists often work in teams. 
Someone who is good at gathering data might team up with an analyst and some-
one gifted in presenting information. Finding a single person who possesses all 
the required skills would be hard. With this in mind, the following list describes 
areas in which a data scientist can excel (with more competencies being better):

 » Data capture: It doesn’t matter what sort of math skills you have if you can’t 
obtain data to analyze in the first place. The act of capturing data begins by 
managing a data source using database-management skills. However, raw 
data isn’t particularly useful in many situations; you must also understand the 
data domain so that you can look at the data and begin formulating the sorts 
of questions to ask. Finally, you must have data-modeling skills so that you 
understand how the data is connected and whether the data is structured.

 » Analysis: After you have data to work with and understand the complexities 
of that data, you can begin to perform an analysis on it. You perform some 
analysis using basic statistical tool skills, much like those that just about 
everyone learns in college. However, the use of specialized math tricks and 
algorithms can make patterns in the data more obvious or help you draw 
conclusions that you can’t draw by reviewing the data alone.

 » Presentation: Most people don’t understand numbers well. They can’t see 
the patterns that the data scientist sees. Providing a graphical presentation of 
these patterns is important to help others visualize what the numbers mean 
and how to apply them in a meaningful way. More important, the presenta-
tion must tell a specific story so that the impact of the data isn’t lost.



12      BOOK 1  Defining Data Science

Linking data science, big data, and AI
Interestingly enough, the act of moving data around so that someone can perform 
analysis on it is a specialty called Extract, Transform, and Load (ETL). The ETL 
specialist uses programming languages such as Python to extract the data from 
a number of sources. Corporations tend not to keep data in one easily accessed 
location, so finding the data required to perform analysis takes time. After the 
ETL specialist finds the data, a programming language or other tool transforms 
it into a common format for analysis purposes. The loading process takes many 
forms, but this book relies on Python to perform the task. In a large, real-world 
operation, you might find yourself using tools such as Informatica, MS SSIS, or 
Teradata to perform the task.

Data science isn’t necessarily a means to an end; it may instead be a step along 
the way. As a data scientist works through various datasets and finds interesting 
facts, these facts may act as input for other sorts of analysis and AI applications. 
For example, consider that your shopping habits often suggest what books you 
might like or where you might like to go for a vacation. Shopping or other habits 
can also help others understand other, sometimes less benign, activities as well. 
Machine Learning For Dummies and Artificial Intelligence For Dummies, both by John 
Paul Mueller and Luca Massaron (Wiley), help you understand these other uses of 
data science. For now, consider the fact that what you learn in this book can have 
a definite effect on a career path that will go many other places.

Understanding the role of programming
A data scientist may need to know several programming languages in order to 
achieve specific goals. For example, you may need SQL knowledge to extract data 
from relational databases. Python can help you perform data loading, transforma-
tion, and analysis tasks. However, you might choose a product such as MATLAB 
(which has its own programming language) or PowerPoint (which relies on VBA) 
to present the information to others. (If you’re interested to see how MATLAB 
compares to the use of Python, you can get the book, MATLAB For Dummies, by John 
Paul Mueller [Wiley].) The immense datasets that data scientists rely on often 
require multiple levels of redundant processing to transform into useful processed 
data. Manually performing these tasks is time consuming and error prone, so pro-
gramming presents the best method for achieving the goal of a coherent, usable 
data source.

Given the number of products that most data scientists use, sticking to just one 
programming language may not be possible. Yes, Python can load data, transform 
it, analyze it, and even present it to the end user, but the process works only when 
the language provides the required functionality. You may have to choose other 
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languages to fill out your toolkit. The languages you choose depend on a number 
of criteria. Here are some criteria you should consider:

 » How you intend to use data science in your code (you have a number of tasks 
to consider, such as data analysis, classification, and regression)

 » Your familiarity with the language

 » The need to interact with other languages

 » The availability of tools to enhance the development environment

 » The availability of APIs and libraries to make performing tasks easier

Defining the Role of Data in the World
This section of the chapter is too short. It can’t even begin to describe the ways 
in which data will affect you in the future. Consider the following subsections as 
offering tantalizing tidbits —appetizers that can whet your appetite for exploring 
the world of data and data science further. The applications listed in these sections 
are already common in some settings. You probably used at least one of them today, 
and quite likely more than just one. After reading the following sections, you might 
want to take the time to consider all the ways in which data currently affects your 
life. The use of data to perform amazing feats is really just the beginning. Human-
ity is at the cusp of an event that will rival the Industrial Revolution (see https://
www.history.com/topics/industrial-revolution/industrial-revolution), 
and the use of data (and its associated technologies, such as AI, machine learning, 
and deep learning) is actually quite immature at this point.

Enticing people to buy products
Demographics, those vital or social statistics that group people by certain char-
acteristics, have always been part art and part science. You can find any number 
of articles about getting your computer to generate demographics for clients (or 
potential clients). The use of demographics is wide ranging, but you see them 
used for things like predicting which product a particular group will buy (versus 
that of the competition). Demographics are an important means of categoriz-
ing people and then predicting some action on their part based on their group 

https://www.history.com/topics/industrial-revolution/industrial-revolution
https://www.history.com/topics/industrial-revolution/industrial-revolution


14      BOOK 1  Defining Data Science

associations. Here are the methods that you often see cited for AIs when gathering 
demographics:

 » Historical: Based on previous actions, an AI generalizes which actions you 
might perform in the future.

 » Current activity: Based on the action you perform now and perhaps other 
characteristics, such as gender, a computer predicts your next action.

 » Characteristics: Based on the properties that define you, such as gender, age, 
and area where you live, a computer predicts the choices you are likely to make.

You can find articles about AI’s predictive capabilities that seem almost 
too good to be true. For example, the article at https://medium.com/@
demografy/artificial-intelligence-can-now-predict-demographic-  
characteristics-knowing-only-your-name-6749436a6bd3 says that AI can 
now predict your demographics based solely on your name. The company in 
that article, Demografy (https://demografy.com/), claims to provide gender, 
age, and cultural affinity based solely on name. Even though the site claims that 
it’s 100 percent accurate, this statistic is highly unlikely because some names 
are gender ambiguous, such as Renee, and others are assigned to one gender 
in some countries and another gender in others. Yes, demographic prediction 
can work, but exercise care before believing everything that these sites tell you.

If you want to experiment with demographic prediction, you can find a number 
of APIs online. For example, the DeepAI API at https://deepai.org/machine- 
learning-model/demographic-recognition promises to help you predict age, 
gender, and cultural background based on a person’s appearance in a video. Each 
of the online APIs do specialize, so you need to choose the API with an eye toward 
the kind of input data you can provide.

Keeping people safer
You already have a good idea of how data might affect you in ways that keep you 
safer. For example, statistics help car designers create new designs that provide 
greater safety for the occupant and sometimes other parties as well. Data also 
figures into calculations for things like

 » Medications

 » Medical procedures

 » Safety equipment

 » Safety procedures

 » How long to keep the crosswalk signs lit

https://medium.com/@demografy/artificial-intelligence-can-now-predict-demographic-characteristics-knowing-only-your-name-6749436a6bd3
https://medium.com/@demografy/artificial-intelligence-can-now-predict-demographic-characteristics-knowing-only-your-name-6749436a6bd3
https://medium.com/@demografy/artificial-intelligence-can-now-predict-demographic-characteristics-knowing-only-your-name-6749436a6bd3
https://demografy.com/
https://deepai.org/machine-learning-model/demographic-recognition
https://deepai.org/machine-learning-model/demographic-recognition
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Safety goes much further, though. For example, people have been trying to predict 
natural disasters for as long as there have been people and natural disasters. No 
one wants to be part of an earthquake, tornado, volcanic eruption, or any other 
natural disaster. Being able to get away quickly is the prime consideration in such 
cases, given that humans can’t control their environment well enough yet to pre-
vent any natural disaster.

Data managed by deep learning provides the means to look for extremely sub-
tle patterns that boggle the minds of humans. These patterns can help predict a 
natural catastrophe, according to the article on Google’s solution at http://www.
digitaljournal.com/tech-and-science/technology/google-to-use-ai-to- 
predict-natural-disasters/article/533026. The fact that the software can 
predict any disaster at all is simply amazing. However, the article at http://
theconversation.com/ai-could-help-us-manage-natural-disasters- 
but-only-to-an-extent-90777 warns that relying on such software exclusively 
would be a mistake. Overreliance on technology is a constant theme throughout 
this book, so don’t be surprised that deep learning is less than perfect in predict-
ing natural catastrophes as well.

Creating new technologies
New technologies can cover a very wide range of applications. For example, you 
find new technologies for making factories safer and more efficient all the time. 
Space travel requires an inordinate number of new technologies. Just consider 
how the data collected in the past affects things like smart phone use and the 
manner in which you drive your car.

However, a new technology can take an interesting twist, and you should look 
for these applications as well. You probably have black-and-white videos or pic-
tures of family members or special events that you’d love to see in color. Color 
consists of three elements: hue (the actual color); value (the darkness or light-
ness of the color); and saturation (the intensity of the color). You can read more 
about these elements at http://learn.leighcotnoir.com/artspeak/elements- 
color/hue-value-saturation/. Oddly enough, many artists are color-blind and 
make strong use of color value in their creations (read https://www.nytimes.
com/2017/12/23/books/a-colorblind-artist-illustrator-childrens- 
books.html as one of many examples). So having hue missing (the element that 
black-and-white art lacks) isn’t the end of the world. Quite the contrary: Some 
artists view it as an advantage (see https://www.artsy.net/article/artsy- 
editorial-the-advantages-of-being-a-colorblind-artist for details).

http://www.digitaljournal.com/tech-and-science/technology/google-to-use-ai-to-predict-natural-disasters/article/533026
http://www.digitaljournal.com/tech-and-science/technology/google-to-use-ai-to-predict-natural-disasters/article/533026
http://www.digitaljournal.com/tech-and-science/technology/google-to-use-ai-to-predict-natural-disasters/article/533026
http://theconversation.com/ai-could-help-us-manage-natural-disasters-but-only-to-an-extent-90777
http://theconversation.com/ai-could-help-us-manage-natural-disasters-but-only-to-an-extent-90777
http://theconversation.com/ai-could-help-us-manage-natural-disasters-but-only-to-an-extent-90777
http://learn.leighcotnoir.com/artspeak/elements-color/hue-value-saturation/
http://learn.leighcotnoir.com/artspeak/elements-color/hue-value-saturation/
https://www.nytimes.com/2017/12/23/books/a-colorblind-artist-illustrator-childrens-books.html
https://www.nytimes.com/2017/12/23/books/a-colorblind-artist-illustrator-childrens-books.html
https://www.nytimes.com/2017/12/23/books/a-colorblind-artist-illustrator-childrens-books.html
https://www.artsy.net/article/artsy-editorial-the-advantages-of-being-a-colorblind-artist
https://www.artsy.net/article/artsy-editorial-the-advantages-of-being-a-colorblind-artist
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When viewing something in black and white, you see value and satura-
tion but not hue. Colorization is the process of adding the hue back in. 
Artists generally perform this process using a painstaking selection of indi-
vidual colors, as described at https://fstoppers.com/video/how-amazing-  
colorization-black-and-white-photos-are-done-5384 and https://www.
diyphotography.net/know-colors-add-colorizing-black-white-photos/.  
However, AI has automated this process using Convolutional Neural Net-
works (CNNs), as described at https://emerj.com/ai-future-outlook/ai- 
is-colorizing-and-beautifying-the-world/.

The easiest way to use CNN for colorization is to find a library to help you. The 
Algorithmia site at https://demos.algorithmia.com/colorize-photos/ offers 
such a library and shows some example code. You can also try the application 
by pasting a URL into the supplied field. The article at https://petapixel.
com/2016/07/14/app-magically-turns-bw-photos-color-ones/ describes just 
how well this application works. It’s absolutely amazing!

Performing analysis for research
Most people think that research focuses only on issues like health, consumer-
ism, or improving efficiency. However, research takes a great many other forms 
as well, many of which you’ll never even hear about, such as figuring out how 
people move in order to keep them safer. Think about a manikin for a moment. 
You can pose the manikin in various ways to see how that pose affects an envi-
ronment, such as in car crash research. However, manikins are simply snapshots 
in a process that happens in real time. In order to see how people interact with 
their environment, you must pose the people in a fluid, real time, manner using a 
strategy called person poses.

Person poses don’t tell you who is in a video stream, but rather what elements of 
a person are in the video stream. For example, using a person pose can tell you 
whether the person’s elbow appears in the video and where it appears. The article 
at https://medium.com/tensorflow/real-time-human-pose-estimation-in- 
the-browser-with-tensorflow-js-7dd0bc881cd5 tells you more about how this 
whole visualization technique works. In fact, you can see how the system works 
through a short animation of one person in the first case and three people in the 
second case.

Person poses can have all sorts of useful purposes. For example, you might use 
a person pose to help people improve their form for various kinds of sports — 
everything from golf to bowling. A person pose could also make new sorts of video 
games possible. Imagine being able to track a person’s position for a game with-
out the usual assortment of cumbersome gear. Theoretically, you could use person 
poses to perform crime-scene analysis or to determine the possibility of a person 
committing a crime.

https://fstoppers.com/video/how-amazing-colorization-black-and-white-photos-are-done-5384
https://fstoppers.com/video/how-amazing-colorization-black-and-white-photos-are-done-5384
https://www.diyphotography.net/know-colors-add-colorizing-black-white-photos/
https://www.diyphotography.net/know-colors-add-colorizing-black-white-photos/
https://emerj.com/ai-future-outlook/ai-is-colorizing-and-beautifying-the-world/
https://emerj.com/ai-future-outlook/ai-is-colorizing-and-beautifying-the-world/
https://demos.algorithmia.com/colorize-photos/
https://petapixel.com/2016/07/14/app-magically-turns-bw-photos-color-ones/
https://petapixel.com/2016/07/14/app-magically-turns-bw-photos-color-ones/
https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
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Another interesting application of pose detection is for medical and rehabilita-
tion purposes. Software powered by data managed by deep learning techniques 
could tell you whether you’re doing your exercises correctly and track your 
improvements. An application of this sort could support the work of a profes-
sional rehabilitator by taking care of you when you aren’t in a medical facility (an 
activity called telerehabilitation; see https://matrc.org/telerehabilitation-  
telepractice for details).

Fortunately, you can at least start working with person poses today using the tfjs-
models (PoseNet) library at https://github.com/tensorflow/tfjs-models/ 
tree/master/posenet. You can see it in action with a webcam, complete with 
source code, at https://ml5js.org/docs/posenet-webcam. The example takes a 
while to load, so you need to be patient.

Providing art and entertainment
Book 5, Chapter  4 provides you with some good ideas on how deep learn-
ing can use the content of a real-world picture and an existing master painter 
(live or dead) for style to create a combination of the two. In fact, some pieces 
of art generated using this approach are commanding high prices on the auc-
tion block. You can find all sorts of articles on this particular kind of art 
generation, such as the Wired article at https://www.wired.com/story/we-made- 
artificial-intelligence-art-so-can-you/.

However, even though pictures are nice for hanging on the wall, you might want 
to produce other kinds of art. For example, you can create a 3-D version of your 
picture using products like Smoothie 3-D.  The articles at https://styly.cc/
tips/smoothie-3d/ and https://3dprint.com/38467/smoothie-3d-software/  
describe how this software works. It’s not the same as creating a sculpture; 
rather, you use a 3-D printer to build a 3-D version of your picture. The article at 
https://thenextweb.com/artificial-intelligence/2018/03/08/try-this- 
ai-experiment-that-converts-2d-images-to-3d/ offers an experiment that 
you can perform to see how the process works.

The output of an AI doesn’t need to consist of something visual, either. For exam-
ple, deep learning enables you to create music based on the content of a picture, 
as described at https://www.cnet.com/news/baidu-ai-creates- original- 
music-by-looking-at-pictures-china-google/. This form of art makes the 
method used by AI clearer. The AI transforms content that it doesn’t understand 
from one form to another. As humans, we see and understand the transformation, 
but all the computer sees are numbers to process using clever algorithms created 
by other humans.

https://matrc.org/telerehabilitation-telepractice
https://matrc.org/telerehabilitation-telepractice
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://ml5js.org/docs/posenet-webcam
https://www.wired.com/story/we-made-artificial-intelligence-art-so-can-you/
https://www.wired.com/story/we-made-artificial-intelligence-art-so-can-you/
https://styly.cc/tips/smoothie-3d/
https://styly.cc/tips/smoothie-3d/
https://3dprint.com/38467/smoothie-3d-software/
https://thenextweb.com/artificial-intelligence/2018/03/08/try-this-ai-experiment-that-converts-2d-images-to-3d/
https://thenextweb.com/artificial-intelligence/2018/03/08/try-this-ai-experiment-that-converts-2d-images-to-3d/
https://www.cnet.com/news/baidu-ai-creates-original-music-by-looking-at-pictures-china-google/
https://www.cnet.com/news/baidu-ai-creates-original-music-by-looking-at-pictures-china-google/
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Making life more interesting in other ways
Data is part of your life. You really can’t perform too many activities anymore that 
don’t have data attached to them in some way. For example, consider gardening. 
You might think that digging in the earth, planting seeds, watering, and harvest-
ing fruit has nothing to do with data, yet the seeds you use likely rely on research 
conducted as the result of gathering data. The tools you use to dig are now ergo-
nomically designed based on human research studies. The weather reports you 
use to determine whether to water or not rely on data. The clothes you wear, the 
shoes you employ to work safely, and even the manner in which you work are all 
influenced by data. Now, consider that gardening is a relatively nontechnical task 
that people have performed for thousands of years, and you get a good feel for just 
how much data affects your daily life.

Creating the Data Science Pipeline
Data science is partly art and partly engineering. Recognizing patterns in data, 
considering what questions to ask, and determining which algorithms work best 
are all part of the art side of data science. However, to make the art part of data 
science realizable, the engineering part relies on a specific process to achieve spe-
cific goals. This process is the data science pipeline, which requires the data sci-
entist to follow particular steps in the preparation, analysis, and presentation of 
the data. The following sections help you understand the data science pipeline 
better so that you can understand how the book employs it during the presenta-
tion of examples.

Preparing the data
The data that you access from various sources doesn’t come in an easily packaged 
form, ready for analysis — quite the contrary. The raw data not only may vary 
substantially in format, but you may also need to transform it to make all the data 
sources cohesive and amenable to analysis. Transformation may require changing 
data types, the order in which data appears, and even the creation of data entries 
based on the information provided by existing entries.

Performing exploratory data analysis
The math behind data analysis relies on engineering principles in that the results 
are provable and consistent. However, data science provides access to a wealth of 
statistical methods and algorithms that help you discover patterns in the data. 
A single approach doesn’t ordinarily do the trick. You typically use an iterative 
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process to rework the data from a number of perspectives. The use of trial and 
error is part of the data science art.

Learning from data
As you iterate through various statistical analysis methods and apply algorithms 
to detect patterns, you begin learning from the data. The data might not tell the 
story that you originally thought it would, or it might have many stories to tell. 
Discovery is part of being a data scientist. In fact, it’s the fun part of data science 
because you can’t ever know in advance precisely what the data will reveal to you.

Of course, the imprecise nature of data and the finding of seemingly random pat-
terns in it means keeping an open mind. If you have preconceived ideas of what 
the data contains, you won’t find the information it actually does contain. You 
miss the discovery phase of the process, which translates into lost opportunities 
for both you and the people who depend on you.

Visualizing
Visualization means seeing the patterns in the data and then being able to react to 
those patterns. It also means being able to see when data is not part of the pattern. 
Think of yourself as a data sculptor — removing the data that lies outside the pat-
terns (the outliers) so that others can see the masterpiece of information beneath. 
Yes, you can see the masterpiece, but until others can see it, too, it remains in 
your vision alone.

Obtaining insights and data products
The data scientist may seem to simply be looking for unique methods of viewing 
data. However, the process doesn’t end until you have a clear understanding of 
what the data means. The insights you obtain from manipulating and analyz-
ing the data help you to perform real-world tasks. For example, you can use the 
results of an analysis to make a business decision.

In some cases, the result of an analysis creates an automated response. For exam-
ple, when a robot views a series of pixels obtained from a camera, the pixels that 
form an object have special meaning, and the robot’s programming may dictate 
some sort of interaction with that object. However, until the data scientist builds 
an application that can load, analyze, and visualize the pixels from the camera, 
the robot doesn’t see anything at all.



20      BOOK 1  Defining Data Science

Comparing Different Languages  
Used for Data Science

None of the existing programming languages in the world can do everything. One 
such language endeavor, Ada, has received limited success because the language 
is incredibly difficult to learn (see https://www.nap.edu/read/5463/chapter/3 
and https://news.ycombinator.com/item?id=7824570 for details). The prob-
lem is that if you make a language robust enough to do everything, it’s too com-
plex to do anything. Consequently, as a data scientist, you likely need exposure 
to a number of languages, each of which has a forte in a particular aspect of data 
science development. The following sections help you to better understand the 
languages used for data science, with a special emphasis on Python and R, the 
languages supported by this book.

Obtaining an overview of data  
science languages
Many different programming languages exist, and most were designed to per-
form tasks in a certain way or even make a particular profession’s work easier to 
do. Choosing the correct tool makes your life easier. It’s akin to using a hammer 
instead of a screwdriver to drive a screw. Yes, the hammer works, but the screw-
driver is much easier to use and definitely does a better job. Data scientists usu-
ally use only a few languages because they make working with data easier. With 
this idea in mind, here are the top languages for data science work in order of 
preference:

 » Python (general purpose): Many data scientists prefer to use Python 
because it provides a wealth of libraries, such as NumPy, SciPy, MatPlotLib, 
pandas, and Scikit-learn, to make data science tasks significantly easier. 
Python is also a precise language that makes using multiprocessing on large 
datasets easier, thereby reducing the time required to analyze them. The  
data science community has also stepped up with specialized IDEs, such as 
Anaconda, that implement the Jupyter Notebook concept, which makes 
working with data science calculations significantly easier. (Chapter 3 of this 
minibook demonstrates how to use Jupyter Notebook, so don’t worry about it 
in this chapter.) In addition to all these aspects in Python’s favor, it’s also an 
excellent language for creating glue code (code that is used to connect various 
existing code elements together into a cohesive whole) with languages such 
as C/C++ and Fortran. The Python documentation actually shows how to 
create the required extensions. Most Python users rely on the language to see 
patterns, such as allowing a robot to see a group of pixels as an object. It also 
sees use for all sorts of scientific tasks.

https://www.nap.edu/read/5463/chapter/3
https://news.ycombinator.com/item?id=7824570
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 » R (special purpose statistical): In many respects, Python and R share the 
same sorts of functionality but implement it in different ways. Depending on 
which source you view, Python and R have about the same number of 
proponents, and some people use Python and R interchangeably (or some-
times in tandem). Unlike Python, R provides its own environment, so you don’t 
need a third-party product such as Anaconda. However, Chapter 3 of this 
minibook shows how you can use R in Jupyter Notebook so that you can use a 
single IDE for all your needs. Unfortunately, R doesn’t appear to mix with 
other languages with the ease that Python provides.

 » SQL (database management): The most important thing to remember about 
Structured Query Language (SQL) is that it focuses on data rather than tasks. 
(This distinction makes it a full-fledged language for a data scientist, but only 
part of a solution for a computer scientist.) Businesses can’t operate without 
good data management — the data is the business. Large organizations use 
some sort of relational database, which is normally accessible with SQL, to store 
their data. Most Database Management System (DBMS) products rely on SQL as 
their main language, and DBMS usually has a large number of data analysis and 
other data science features built in. Because you’re accessing the data natively, 
you often experience a significant speed gain in performing data science tasks 
this way. Database Administrators (DBAs) generally use SQL to manage or 
manipulate the data rather than necessarily perform detailed analysis of it. 
However, the data scientist can also use SQL for various data science tasks  
and make the resulting scripts available to the DBAs for their needs.

 » Java (general purpose): Some data scientists perform other kinds of 
programming that require a general-purpose, widely adapted, and popular 
language. In addition to providing access to a large number of libraries (most 
of which aren’t actually all that useful for data science, but do work for other 
needs), Java supports object orientation better than any of the other lan-
guages in this list. In addition, it’s strongly typed and tends to run quite 
quickly. Consequently, some people prefer it for finalized code. Java isn’t a 
good choice for experimentation or ad hoc queries. Oddly enough, an 
implementation of Java exists for Jupyter Notebook, but it isn’t refined and is 
not usable for data science work at this time. (You can find helpful information 
about the Jupyter Java implementation at https://blog.frankel.ch/ 
teaching-java-jupyter-notebooks/, https://github.com/scijava/ 
scijava-jupyter-kernel, and https://github.com/jupyter/jupyter/ 
wiki/Jupyter-kernels.)

 » Scala (general purpose): Because Scala uses the Java Virtual Machine (JVM), it 
does have some of the advantages and disadvantages of Java. However, like 
Python, Scala provides strong support for the functional programming para-
digm, which uses lambda calculus as its basis (see Functional Programmming For 
Dummies, by John Paul Mueller [Wiley] for details). In addition, Apache Spark is 
written in Scala, which means that you have good support for cluster computing 

https://blog.frankel.ch/teaching-java-jupyter-notebooks/
https://blog.frankel.ch/teaching-java-jupyter-notebooks/
https://github.com/scijava/scijava-jupyter-kernel
https://github.com/scijava/scijava-jupyter-kernel
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
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when using this language. Think huge dataset support. Some of the pitfalls of 
using Scala are that it’s hard to set up correctly, it has a steep learning curve, 
and it lacks a comprehensive set of data science–specific libraries.

Defining the pros and cons of using Python
Given the right data sources, analysis requirements, and presentation needs, you 
can use Python for every part of the data science pipeline. In fact, that’s precisely 
what you do in this book. Every example uses Python to help you understand 
another part of the data science equation. Of all the languages you could choose 
for performing data science tasks, Python is the most flexible and capable because 
it supports so many third-party libraries devoted to the task. The following sec-
tions help you better understand why Python is such a good choice for many (if 
not most) data science needs.

Considering the shifting profile of data scientists
Some people view the data scientist as an unapproachable nerd who performs 
miracles on data with math. The data scientist is the person behind the curtain in 
an Oz-like experience. However, this perspective is changing. In many respects, 
the world now views the data scientist as either an adjunct to a developer or as a 
new type of developer. The ascendance of applications of all sorts that can learn is 
the essence of this change. For an application to learn, it has to be able to manip-
ulate large databases and discover new patterns in them. In addition, the applica-
tion must be able to create new data based on the old data — making an informed 
prediction of sorts. The new kinds of applications affect people in ways that would 
have seemed like science fiction just a few years ago. Of course, the most noticea-
ble of these applications define the behaviors of robots that will interact far more 
closely with people tomorrow than they do today.

From a business perspective, the necessity of fusing data science and application 
development is obvious: Businesses must perform various sorts of analysis on the 
huge databases they have collected — to make sense of the information and use it 
to predict the future. In truth, however, the far greater impact of the melding of 
these two branches of science — data science and application development — will 
be felt in terms of creating altogether new kinds of applications, some of which 
aren’t even possible to imagine with clarity today. For example, new applications 
could help students learn with greater precision by analyzing their learning trends 
and creating new instructional methods that work for that particular student. This 
combination of sciences might also solve a host of medical problems that seem 
impossible to solve today — not only in keeping disease at bay, but also by solving 
problems, such as how to create truly usable prosthetic devices that look and act 
like the real thing.
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Working with a multipurpose, simple,  
and efficient language
Many different ways are available for accomplishing data science tasks. This book 
covers only one of the myriad methods at your disposal. However, Python repre-
sents one of the few single-stop solutions that you can use to solve complex data 
science problems. Instead of having to use a number of tools to perform a task, 
you can simply use a single language, Python, to get the job done. The Python 
difference is the large number scientific and math libraries created for it by third 
parties. Plugging in these libraries greatly extends Python and allows it to easily 
perform tasks that other languages could perform, but with great difficulty.

Python’s libraries are its main selling point; however, Python offers more than 
reusable code. The most important thing to consider with Python is that it sup-
ports four different coding styles:

 » Functional: Treats every statement as a mathematical equation and avoids 
any form of state or mutable data. The main advantage of this approach is 
having no side effects to consider. In addition, this coding style lends itself 
better than the others to parallel processing because you have no state to 
consider. Many developers prefer this coding style for recursion and for 
lambda calculus.

 » Imperative: Performs computations as a direct change to program state. This 
style is especially useful when manipulating data structures and produces 
elegant, but simple, code.

 » Object-oriented: Relies on data fields that are treated as objects and manipu-
lated only through prescribed methods. Python doesn’t fully support this 
coding form because it can’t implement features such as data hiding. However, 
this is a useful coding style for complex applications because it supports 
encapsulation and polymorphism. This coding style also favors code reuse.

 » Procedural: Treats tasks as step-by-step iterations in which common tasks 
are placed in functions that are called as needed. This coding style favors 
iteration, sequencing, selection, and modularization.

Defining the pros and cons of using R
The standard download of R is a combination of an environment and a language. 
It’s a form of the S programming language, which John Chambers originally cre-
ated at Bell Laboratories to make working with statistics easier. Rick Becker and 
Allan Wilks eventually added to the S programming language as well. The goal of 
the R language is to turn ideas into software quickly and easily. In other words, 
R is a language designed to help someone who doesn’t have much programming 
experience create code without a huge learning curve.
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This book uses R instead of S because R is a free, downloadable product that can 
run most S code without modification; in contrast, you have to pay for S. Given 
the examples used in the book, R is a great choice. You can read more about R in 
general at https://www.r-project.org/about.html.

You don’t want to make sweeping generalizations about the languages used for 
data science because you must also consider how the languages are used within 
the field (such as performing machine learning or deep learning tasks). Both 
R and Python are popular languages for different reasons. Articles such as “In 
data science, the R language is swallowing Python” (http://www.infoworld.
com/article/2951779/application-development/in-data-science-the-r- 
language-is-swallowing-python.html) initially seem to say that R is becoming 
more popular for some reason, which isn’t clearly articulated. The author wisely 
backs away from this statement by pointing out that R is best used for statistical 
purposes and Python is a better general-purpose language. The best developers 
always have an assortment of programming tools in their tool belts to make per-
forming tasks easier. Languages address developer needs, so you need to use the 
right language for the job. After all, all languages ultimately become machine code 
that a processor understands — an extremely low-level, processor-specific lan-
guage that few developers understand any longer because high-level program-
ming languages make development easier.

You can get a basic copy of R from the Comprehensive R Archive Network (CRAN) 
site at https://cran.r-project.org/. The site provides both source code ver-
sions and compiled versions of the R distribution for various platforms. Unless 
you plan to make your own changes to the basic R support or want to delve into 
how R works, getting the compiled version is always better. If you use RStudio, 
you must also download and install a copy of R.

This book uses a version of R specially designed for use in Jupyter Notebook (as 
described in Chapter 3 of this minibook). Because you can work with Python and 
R using the same IDE, you save time and effort because now you don’t have to 
learn a separate IDE for R. However, you might ultimately choose to work with 
a specialized R environment to obtain language help features that Jupyter Note-
book doesn’t provide. If you use a different IDE, the screenshots in the book won’t 
match what you see onscreen, and the downloadable source code files may not 
load without error (but should still work with minor touchups).

The RStudio Desktop version (https://www.rstudio.com/products/rstudio/ 
#Desktop) can make the task of working with R even easier. This product is a free 
download, and you can get it in Linux (Debian/Ubuntu, RedHat/CentOS, and SUSE 
Linux), Mac, and Windows versions. The book doesn’t use the advanced features 
found in the paid version of the product, nor will you require the RStudio Server 
features for the examples.

https://www.r-project.org/about.html
http://www.infoworld.com/article/2951779/application-development/in-data-science-the-r-language-is-swallowing-python.html
http://www.infoworld.com/article/2951779/application-development/in-data-science-the-r-language-is-swallowing-python.html
http://www.infoworld.com/article/2951779/application-development/in-data-science-the-r-language-is-swallowing-python.html
https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/#Desktop
https://www.rstudio.com/products/rstudio/#Desktop
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You can try other R distributions if you find that you don’t like Jupyter Notebook 
or RStudio. The most common alternative distributions are StatET (http://www. 
walware.de/goto/statet), Red-R (https://decisionstats.com/2010/09/28/ 
red-r-1-8-groovy-gui/ or http://www.red-r.org/), and Rattle (http://  
rattle.togaware.com/). All of them are good products, but RStudio appears to 
have the strongest following and is the simplest product to use outside Jupyter 
Notebook. You can read discussions about the various choices online at places 
such as https://www.quora.com/What-are-the-best-choices-for-an-R-IDE.

Learning to Perform Data  
Science Tasks Fast

It’s time to see the data science pipeline in action. Even though the following sec-
tions use Python to provide a brief overview of the process you explore in detail 
in the rest of the book, they also apply to using R. Throughout the book, you see 
Python used directly in the text for every example, with some R additions. The 
downloadable source contains R versions of the examples that reflect the capabili-
ties that R provides.

You won’t actually perform the tasks in the following sections. In fact, you don’t 
find installation instructions for Python until Chapter 3, so in this chapter, you 
can just follow along in the text. This book uses a specific version of Python and an 
IDE called Jupyter Notebook, so please wait until Chapter 3 to install these features 
(or skip ahead, if you insist, and install them now). Don’t worry about under-
standing every aspect of the process at this point. The purpose of these sections 
is to help you gain an understanding of the flow of using Python to perform data 
science tasks. Many of the details may seem difficult to understand at this point, 
but the rest of the book will help you understand them.

The examples in this book rely on a web-based application named Jupyter Note-
book. The screenshots you see in this and other chapters reflect how Jupyter 
Notebook looks in Firefox on a Windows 7 system. The view you see will contain 
the same data, but the actual interface may differ a little depending on platform 
(such as using a notebook instead of a desktop system), operating system, and 
browser. Don’t worry if you see some slight differences between your display and 
the screenshots in the book.

http://www.walware.de/goto/statet
http://www.walware.de/goto/statet
https://decisionstats.com/2010/09/28/red-r-1-8-groovy-gui/
https://decisionstats.com/2010/09/28/red-r-1-8-groovy-gui/
http://www.red-r.org/
http://rattle.togaware.com/
http://rattle.togaware.com/
https://www.quora.com/What-are-the-best-choices-for-an-R-IDE
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Loading data
Before you can do anything, you need to load some data. The book shows you all 
sorts of methods for performing this task. In this case, Figure 1-1 shows how to 
load a dataset called Boston that contains housing prices and other facts about 
houses in the Boston area. The code places the entire dataset in the boston vari-
able and then places parts of that data in variables named X and y. Think of vari-
ables as you would storage boxes. The variables are important because they enable 
you to work with the data.

Training a model
Now that you have some data to work with, you can do something with it. All sorts 
of algorithms are built into Python. Figure 1-2 shows a linear regression model. 
Again, don’t worry precisely how this works; later chapters discuss linear regres-
sion in detail. The important thing to note in Figure 1-2 is that Python lets you 
perform the linear regression using just two statements and to place the result in 
a variable named hypothesis.

Viewing a result
Performing any sort of analysis doesn’t pay unless you obtain some benefit from 
it in the form of a result. This book shows all sorts of ways to view output, but 
Figure 1-3 starts with something simple. In this case, you see the coefficient out-
put from the linear regression analysis.

FIGURE 1-1:  
Loading data into 

variables so  
that you can 

manipulate it.

FIGURE 1-2:  
Using the variable 
content to train a 
linear regression 

model.
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One of the reasons that this book uses Jupyter Notebook is that the product helps 
you to create nicely formatted output as part of creating the application. Look 
again at Figure 1-3 and you see a report that you could simply print and offer to a 
colleague. The output isn’t suitable for many people, but those experienced with 
Python and data science will find it quite usable and informative.

FIGURE 1-3:  
Outputting 

a result as a 
response to the 

model.
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Placing Data Science 
within the Realm of AI

Some people perceive data science as simply a method of managing data for 
use with an AI discipline, but you can use your data science skills for a great 
many tasks other than AI. You use data science skills for various types of 

statistical analysis that don’t rely on an AI, such as to perform analytics, manage 
data in various ways, and locate information that you use directly rather than as 
an input into anything. However, the data science to AI connection does exist as 
well, so you need to know about it as a data scientist, which is the focus of the first 
part of this chapter.

Many terms used in data science become muddled because people misuse them. 
When you hear the term AI, you might think about all sorts of technologies that 
are either distinct AI subcategories or have nothing to do with AI at all. The second 
part of the chapter defines AI and then clarifies its connection to machine learn-
ing, which is a subcategory of AI, and finally to deep learning, which is actually 
a subcategory of machine learning. Understanding this hierarchy is important in 
understanding the role data science plays in making these technologies work.

The first two sections define the endpoints of a data pipeline. The third section 
describes the pipeline between data science and AI (and its subcategories). This data 
pipeline is a particular implementation of data science skills, so you need to know 
about it. You also need to consider that this data pipeline isn’t the only one you need to 

Chapter 2

IN THIS CHAPTER

 » Understanding how data and data 
science relate

 » Considering the progression into AI 
and beyond

 » Developing a data pipeline to AI
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create and use as a data scientist. For example, you might be involved in a type of data 
mining that doesn’t rely on AI but rather on specific sorts of filtering, sorting, and the 
use of statistical analysis. The articles at https://www.innoarchitech.com/blog/
data-science-big-data-explained-non-data-scientist and https://www. 
northeastern.edu/graduate/blog/what-does-a-data-scientist-do/ give you 
some other ideas about how data scientists create and use data pipelines.

Seeing the Data to Data Science 
Relationship

Obviously, to become a data scientist, you must have data to work with. What 
isn’t obvious is the kind of data, the data sources, and the uses of the data. Data 
is the requirement for analysis, but that analysis can take many forms. For exam-
ple, the article at https://blog.allpsych.com/spending-habits-can-reveal- 
personality-traits/ talks about data used to guess your psychological profile, 
which can then be used for all sorts of purposes — many positive; others not. The 
issue is that these analyses often help others know more about you than you know 
yourself, which is a scary thought when you consider how someone might use the 
information.

The following sections discuss data, not the moral or ethical complications of 
gathering it. In general, you find that some analyses work fine with just a little 
data, but others require huge amounts of it. For example, later sections discuss AI, 
machine learning, and deep learning, which require ascending amounts of data to 
perform well.

Considering the data architecture
A data architecture consists of a number of elements. Although you may not 
always have to deal with these elements as a data scientist, you should know about 
them to create robust solutions:

 » Format

 » Speed of access

 » Cost of access

 » Industry

 » Use

https://www.innoarchitech.com/blog/data-science-big-data-explained-non-data-scientist
https://www.innoarchitech.com/blog/data-science-big-data-explained-non-data-scientist
https://www.northeastern.edu/graduate/blog/what-does-a-data-scientist-do/
https://www.northeastern.edu/graduate/blog/what-does-a-data-scientist-do/
https://blog.allpsych.com/spending-habits-can-reveal-personality-traits/
https://blog.allpsych.com/spending-habits-can-reveal-personality-traits/
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Data comes in many forms. Book 2 discusses all sorts of architectures in detail — 
everything from in-memory databases to those found in huge corporate  databases. 
The form of the data differs as well. A Relational Database Management System 
(RDBMS) provides a highly structured dataset that’s easy to interact with, but it 
places restrictions on the data form. On the other hand, a Not Only SQL (NoSQL) 
database is freeform, so it’s flexible in a way that an RDBMS isn’t. The form of 
the data determines what you need to do to manicure it for your particular need, 
because raw data rarely comes in precisely the format you require.

The data architecture also considers how you access the data. Even though online 
data sources are convenient and accessible from just about everywhere, they come 
with a speed penalty that you must consider when using them. Localized data-
bases are faster, but now you have to deal with data that might be stale or not as 
pertinent to a particular need. You also risk losing the true world view as you focus 
on data that comes from your organization.

Some people are under the assumption that the quality of data is the same no 
matter what the source. Quality does vary, however, and you need to consider how 
the quality of your data affects your analysis. When data appears in the public 
domain, it may not be very high quality because no one has vetted it. This isn’t to 
say that you can’t find high-quality, public-domain data — just that the likeli-
hood is less. Likewise, data you pay to access isn’t always guaranteed to meet your 
specific needs even if it is high quality. The cost of access affects your analysis 
because the tendency is to reduce costs by taking the penalty in quality.

The industry generating or using the data also matters. You can become blindsided 
by the biases of your particular industry. The data you need to perform a financial 
analysis may actually reside in the data generated by the energy industry. Yet, if 
you don’t look in that particular industry’s offerings, you won’t ever find this hid-
den data, and your analysis will fail or at least produce less robust results.

Perhaps the most problematic component of data architecture, however, is how you 
use the data you obtain. Logic errors occur all the time, and having a list of best prac-
tices might seem as though it could provide a solution to the problem, but it can’t. 
Intuition and strong logical analysis often form a part of the most successful data 
usage. This means that if you perform a survey and obtain results that seem ludi-
crous, they probably are, and you need to review the data again, rather than publish 
the sensational results you think you might have obtained from a flawed analysis.

Acquiring data from various sources
A data source need not come in the form of a huge corporate database. Some of 
the more interesting forms of analysis use mundane and tiny datasets derived 
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from sources such as Point-of-Sale (POS) systems. The article at https://blog.
magestore.com/pos-data/ makes a strong case for analyzing POS data for more 
than simply knowing when to reorder certain items and determining sales on a 
given day. Some datasets are public domain and free (often used for testing and 
training a deep learning application) and others require a purchase. Some sites 
actually sell data as a commodity, such as Data World (https://data.world/
datasets/wildlife). The point is that you’re drowning in a sea of data and may 
not even know it.

The source of the data also determines a great many details about what you can 
expect. For example, POS data can prove hard to analyze because the terminals 
lack standardization for the most part, and you can’t be sure precisely what form 
the data will take. If you have terminals from various vendors, each of whom uses 
a different data format, the problem is compounded because you now need custom 
cleaning solutions for each of the data sources.

A data source may be unreliable because it is accessible only during certain hours 
of the day or might experience unexpected down times. For example, consider 
getting data from a rover on Mars. All sorts of issues can occur, as described 
in the article at https://www.theatlantic.com/science/archive/2018/09/ 
curiosity-opportunity-nasa-rover-problems/570769/. Of course, most peo-
ple aren’t working with a rover on Mars, but corporate databases can go offline as 
well. Lest you think that the cloud fixes reliability, check out the article at https://
www.networkworld.com/article/3394341/when-it-comes-to-uptime-not- 
all-cloud-providers-are-created-equal.html. In short, you always need a 
Plan B when it comes to data, and having a Plan C is likely a good idea as well.

Performing data analysis
At some point, every data scientist performs an analysis, which means work-
ing with the data to produce a usable result. The analysis could be anything. You 
might simply want to know the average of sales for March over the last ten years. 
Whatever the reason for the analysis, the results you achieve depend on these 
issues:

 » The reliability of the data

 » The quality of the data

 » The quantity of the data

 » Selection of the right algorithm

 » Presentation of the result in the correct manner

https://blog.magestore.com/pos-data/
https://blog.magestore.com/pos-data/
https://data.world/datasets/wildlife
https://data.world/datasets/wildlife
https://www.theatlantic.com/science/archive/2018/09/curiosity-opportunity-nasa-rover-problems/570769/
https://www.theatlantic.com/science/archive/2018/09/curiosity-opportunity-nasa-rover-problems/570769/
https://www.networkworld.com/article/3394341/when-it-comes-to-uptime-not-all-cloud-providers-are-created-equal.html
https://www.networkworld.com/article/3394341/when-it-comes-to-uptime-not-all-cloud-providers-are-created-equal.html
https://www.networkworld.com/article/3394341/when-it-comes-to-uptime-not-all-cloud-providers-are-created-equal.html
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 » Interpretation of the result

 » Tuning of the result

As you proceed through the book, starting with Book 2, you find that all these 
issues come under discussion for various data sources, algorithms, and analysis 
techniques. However, always keep in mind that automation never trumps human 
insight and intuition. As you go through the book, remember that you must ulti-
mately decide whether a result is correct (at least, correct enough) and useful.

Archiving the data
Archiving data is important for historical reasons. You want to have the data 
available to repeat a particular analysis. A new algorithm might reveal something 
different about the data, or you may have to subject your analysis method to peer 
review. Only when the data becomes outdated do you consider getting rid of it. 
Unlike a shirt that you accidentally send to a resale store but may still be able to 
buy back, you can’t retrieve your data after it’s gone.

Most people will find it easy to argue that static data, the type you collect once 
or at specific intervals, requires archiving. Part of the reason is that static data is 
controllable. You won’t suddenly find all your storage devices cluttered with it.

Some sections of this book deal with live data — the sort that changes minute by 
minute. Archiving such data might seem to be useless. You might argue that no 
one will actually need the data you collected five minutes ago. However, just as 
police use recordings of live camera feeds to find the culprit in a burglary or a car-
jacking, you need to archive live data to locate the source of issues in your orga-
nization. Always archive all your data even if the archive lasts only a short time.

Defining the Levels of AI
AI is a broad term for a set of technologies that use data in a particular way to 
perform specific kinds of analysis. The underlying assumption is that a computer 
will automate the process of performing this analysis through algorithms that 
manipulate the data in distinctive ways. When you look at AI, you see a high-level 
technology that leads to refined technologies such as machine learning. Machine 
learning isn’t AI; instead, it’s a subset of AI, and keeping the distinction clear is 
important. Likewise, one refinement of machine learning is deep learning. Again, 
deep learning isn’t machine learning, and you need to keep them separate. The 
following sections offer definitions for these three terms and help you under-
stand them.
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Beginning with AI
Before you can use a term in any meaningful and useful way, you must have a 
definition for it. After all, if nobody agrees on a meaning, the term has none; it’s 
just a collection of characters. Defining the idiom (which is a term whose meaning 
isn’t clear from the meanings of its constituent elements) is especially important 
with technical terms that have received more than a little press coverage at vari-
ous times and in various ways.

Saying that AI is an artificial intelligence doesn’t really tell you anything mean-
ingful, which is why so many discussions and disagreements arise over this term. 
Yes, you can argue that what occurs is artificial, not having come from a natural 
source. However, the intelligence part is, at best, ambiguous. Even if you don’t 
necessarily agree with the definition of AI as it appears in the sections that follow, 
this book uses AI according to that definition, and knowing it will help you follow 
the rest of the text more easily.

Discerning intelligence
People define intelligence in many different ways. However, you can say that 
intelligence involves certain mental activities composed of the following actions:

 » Learning: Having the ability to obtain and process new information

 » Reasoning: Being able to manipulate information in various ways

 » Understanding: Considering the result of information manipulation

 » Grasping truths: Determining the validity of the manipulated information

 » Seeing relationships: Divining how validated data interacts with other data

 » Considering meanings: Applying truths to particular situations in a manner 
consistent with their relationship

 » Separating fact from belief: Determining whether the data is adequately 
supported by provable sources that can be demonstrated to be consis-
tently valid

The list could easily get quite long, but even this list is relatively prone to inter-
pretation by anyone who accepts it as viable. As you can see from the list, how-
ever, intelligence often follows a process that a computer system can mimic as 
part of a simulation:

1. Set a goal based on needs or wants.

2. Assess the value of any currently known information in support of the goal.
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3. Gather additional information that could support the goal.

4. Manipulate the data such that it achieves a form consistent with existing 
information.

5. Define the relationships and truth values between existing and new 
information.

6. Determine whether the goal is achieved.

7. Modify the goal in light of the new data and its effect on the probability of 
success.

8. Repeat Steps 2 through 7 as needed until the goal is achieved (found true) or 
the possibilities for achieving it are exhausted (found false).

Even though you can create algorithms and provide access to data in support of 
this process within a computer, a computer’s capability to achieve intelligence is 
severely limited. For example, a computer is incapable of understanding anything 
because it relies on machine processes to manipulate data using pure math in a 
strictly mechanical fashion. Likewise, computers can’t easily separate truth from 
mistruth (as described in Book 6, Chapter 2). In fact, no computer can fully imple-
ment any of the mental activities described in the list that describes intelligence.

As part of deciding what intelligence actually involves, categorizing intelligence 
is also helpful. Humans don’t use just one type of intelligence, but rather rely on 
multiple intelligences to perform tasks. Howard Gardner of Harvard has defined 
a number of these types of intelligence (see http://www.pz.harvard.edu/ 
projects/multiple-intelligences for details), and knowing them helps you to 
relate them to the kinds of tasks that a computer can simulate as intelligence. 
Here is a modified version of these intelligences with additional description:

 » Visual-spatial: Physical environment intelligence used by people like sailors 
and architects (among many others). To move at all, humans need to under-
stand their physical environment — that is, its dimensions and characteristics. 
Every robot or portable computer intelligence requires this capability, but the 
capability is often difficult to simulate (as with self-driving cars) or less than 
accurate (as with vacuums that rely as much on bumping as they do on 
moving intelligently).

 » Bodily-kinesthetic: Body movements, such as those used by a surgeon or a 
dancer, require precision and body awareness. Robots commonly use this 
kind of intelligence to perform repetitive tasks, often with higher precision 
than humans, but sometimes with less grace. It’s essential to differentiate 
between human augmentation, such as a surgical device that provides a 
surgeon with enhanced physical ability, and true independent movement.  
The former is simply a demonstration of mathematical ability in that it 
depends on the surgeon for input.

http://www.pz.harvard.edu/projects/multiple-intelligences
http://www.pz.harvard.edu/projects/multiple-intelligences
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 » Creative: Creativity is the act of developing a new pattern of thought that 
results in unique output in the form of art, music, and writing. A truly new kind 
of product is the result of creativity. An AI can simulate existing patterns of 
thought and even combine them to create what appears to be a unique 
presentation but is really just a mathematically based version of an existing 
pattern. In order to create, an AI would need to possess self-awareness, which 
would require intrapersonal intelligence.

 » Interpersonal: Interacting with others occurs at several levels. The goal of this 
form of intelligence is to obtain, exchange, give, and manipulate information 
based on the experiences of others. Computers can answer basic questions 
because of keyword input, not understanding. The intelligence occurs while 
obtaining information, locating suitable keywords, and then giving informa-
tion based on those keywords. Cross-referencing terms in a lookup table and 
then acting upon the instructions provided by the table demonstrates logical 
intelligence, not interpersonal intelligence.

 » Intrapersonal: Looking inward to understand one’s own interests and then 
setting goals based on those interests is currently a human-only kind of 
intelligence. As machines, computers have no desires, interests, wants, or 
creative abilities. An AI processes numeric input using a set of algorithms and 
provides an output — it isn’t aware of anything that it does, nor does it 
understand anything that it does.

 » Linguistic: Working with words is an essential tool for communication 
because spoken and written information exchange is far faster than any other 
form. This form of intelligence includes understanding spoken and written 
input, managing the input to develop an answer, and providing an under-
standable answer as output. In many cases, computers can barely parse input 
into keywords, can’t actually understand the request at all, and output 
responses that may not be understandable at all. In humans, spoken and 
written linguistic intelligence come from different areas of the brain (https://
releases.jhu.edu/2015/05/05/say-what-how-the-brain-separates- 
our-ability-to-talk-and-write/), which means that even with humans, 
someone who has high written linguistic intelligence may not have similarly 
high spoken linguistic intelligence. Computers don’t currently separate written 
and spoken linguistic ability.

 » Logical-mathematical: Calculating a result, performing comparisons, 
exploring patterns, and considering relationships are all areas in which 
computers currently excel. When you see a computer beat a human on a 
game show, this is the only form of intelligence, out of seven, that you’re 
actually seeing. Yes, you might see small bits of other kinds of intelligence, but 
this one is the focus. Basing an assessment of human versus computer 
intelligence on just one area isn’t a good idea.

https://releases.jhu.edu/2015/05/05/say-what-how-the-brain-separates-our-ability-to-talk-and-write/
https://releases.jhu.edu/2015/05/05/say-what-how-the-brain-separates-our-ability-to-talk-and-write/
https://releases.jhu.edu/2015/05/05/say-what-how-the-brain-separates-our-ability-to-talk-and-write/
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Discovering four ways to define AI
As described in the previous section, the first concept that’s important to under-
stand is that AI doesn’t really have anything to do with human intelligence. Yes, 
some AI is modeled to simulate human intelligence, but that’s what it is: a sim-
ulation. When thinking about AI, notice an interplay between goal seeking, data 
processing used to achieve that goal, and data acquisition used to better under-
stand the goal. AI relies on algorithms to achieve a result that may or may not 
have anything to do with human goals or methods of achieving those goals. With 
this understanding in mind, you can categorize AI in four ways:

 » Acting humanly: When a computer acts like a human, it best reflects the 
Turing test, in which the computer succeeds when differentiation between 
the computer and a human isn’t possible (see https://www.turing.org.
uk/scrapbook/test.html for details). This category also reflects what  
the media would have you believe AI is all about. You see it employed for 
technologies such as natural language processing, knowledge representation, 
automated reasoning, and machine learning (all four of which must be 
present to pass the test).

 » Thinking humanly: When a computer thinks as a human, it performs tasks 
that require intelligence (as contrasted with rote procedures) from a human 
to succeed, such as driving a car. To determine whether a program thinks like 
a human, you must have some method of determining how humans think, 
which the cognitive modeling approach defines. This model relies on three 
techniques that are used to create a model, which forms the basis for a 
simulation:

• Introspection: Detecting and documenting the techniques used to achieve 
goals by monitoring one’s own thought processes.

• Psychological testing: Observing a person’s behavior and adding it to a 
database of similar behaviors from other persons given a similar set of 
circumstances, goals, resources, and environmental conditions (among 
other things).

• Brain imaging: Monitoring brain activity directly through various mechani-
cal means, such as Computerized Axial Tomography (CAT), Positron 
Emission Tomography (PET), Magnetic Resonance Imaging (MRI), and 
Magnetoencephalography (MEG).

 » Thinking rationally: Applying some type of standard to studying how 
humans think enables the creation of guidelines that describe typical human 
behaviors. A person is considered rational when following these behaviors 
within certain levels of deviation. A computer that thinks rationally relies on 
the recorded behaviors to create a guide as to how to interact with an 
environment based on the data at hand. The goal of this approach is to solve 

https://www.turing.org.uk/scrapbook/test.html
https://www.turing.org.uk/scrapbook/test.html
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problems logically, when possible. In many cases, this approach would enable 
the creation of a baseline technique for solving a problem, which would then 
be modified to actually solve the problem. In other words, the solving of a 
problem in principle is often different from solving it in practice, but you still 
need a starting point.

 » Acting rationally: Studying how humans act in given situations under specific 
constraints enables you to determine which techniques are both efficient and 
effective. A computer that acts rationally relies on the recorded actions to 
interact with an environment based on conditions, environmental factors, and 
existing data. As with rational thought, rational acts depend on a solution in 
principle, which may not prove useful in practice. However, rational acts do 
provide a baseline upon which a computer can begin negotiating the success-
ful completion of a goal.

Using categories to define kinds of AI
The categories used to define AI offer a way to consider various uses for or ways 
to apply AI. Some of the systems used to classify AI by type are arbitrary and not 
distinct. For example, some groups view AI as either strong (generalized intel-
ligence that can adapt to a variety of situations) or weak (specific intelligence 
designed to perform a particular task well). The problem with strong AI is that 
it doesn’t perform any task well, while weak AI is too specific to perform tasks 
independently. Even so, having just two type classifications won’t do the job even 
in a general sense. The four classification types promoted by Arend Hintze (see 
http://theconversation.com/understanding-the-four-types-of-ai-from- 
reactive-robots-to-self-aware-beings-67616 for details) form a better basis 
for understanding AI:

 » Reactive machines: The machines you see beating humans at chess or 
playing on game shows are examples of reactive machines. A reactive 
machine has no memory or experience upon which to base a decision. 
Instead, it relies on pure computational power and smart algorithms to 
re-create every decision every time. This is an example of a weak AI used  
for a specific purpose.

 » Limited memory: A self-driving car or autonomous robot can’t afford the 
time to make every decision from scratch. These machines rely on a small 
amount of memory to provide experiential knowledge of various situations. 
When the machine sees the same situation, it can rely on experience to 
reduce reaction time and to provide more resources for making new deci-
sions that haven’t yet been made. This is an example of the current level of 
strong AI.

http://theconversation.com/understanding-the-four-types-of-ai-from-reactive-robots-to-self-aware-beings-67616
http://theconversation.com/understanding-the-four-types-of-ai-from-reactive-robots-to-self-aware-beings-67616
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 » Theory of mind: A machine that can assess both its required goals and the 
potential goals of other entities in the same environment has a kind of 
understanding that is feasible to some extent today, but not in any commer-
cial form. However, for self-driving cars to become truly autonomous, this 
level of AI must be fully developed. A self-driving car would not only need to 
know that it must go from one point to another, but also intuit the potentially 
conflicting goals of drivers around it and react accordingly.

 » Self-awareness: This is the sort of AI that you see in movies. However, it 
requires technologies that aren’t even remotely possible now because such a 
machine would have a sense of both self and consciousness. In addition, 
instead of merely intuiting the goals of others based on environment and 
other entity reactions, this type of machine would be able to infer the intent of 
others based on experiential knowledge.

Advancing to machine learning
Machine learning is a specific application of AI used to simulate human learn-
ing through algorithms developed using various techniques, such as matching a 
series of inputs to a desired set of outputs. The following sections explore machine 
learning as it applies to this book.

Exploring what machine learning can do for AI
Machine learning relies on algorithms to analyze huge datasets. Currently, 
machine learning can’t provide the sort of AI that the movies present. Even the 
best algorithms can’t think, feel, present any form of self-awareness, or exercise 
free will. What machine learning can do is perform predictive analytics far faster 
than any human can. As a result, machine learning can help humans work more 
efficiently. The current state of AI, then, is one of performing analysis, but humans 
must still consider the implications of that analysis — making the required moral 
and ethical decisions. The essence of the matter is that machine learning provides 
just the learning part of AI, and that part is nowhere near ready to create an AI of 
the sort you see in films.

The main point of confusion between learning and intelligence is that people 
assume that simply because a machine gets better at its job (learning), it’s also 
aware (intelligence). Nothing supports this view of machine learning. The same 
phenomenon occurs when people assume that a computer is purposely causing 
problems for them. The computer can’t assign emotions and therefore acts only 
upon the input provided and the instruction contained within an application to 
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process that input. A true AI will eventually occur when computers can finally 
emulate the clever combination used by nature:

 » Genetics: Slow learning from one generation to the next

 » Teaching: Fast learning from organized sources

 » Exploration: Spontaneous learning through media and interactions with 
others

Considering the goals of machine learning
At present, AI is based on machine learning, and machine learning is essentially 
different from statistics. Yes, machine learning has a statistical basis, but it makes 
some different assumptions than statistics do because the goals are different. 
Table 2-1 lists some features to consider when comparing AI and machine learn-
ing to statistics.

Defining machine learning limits based  
on hardware
Huge datasets require huge amounts of memory. Unfortunately, the requirements 
don’t end there. When you have huge amounts of data and memory, you must also 
have processors with multiple cores and high speeds. One of the problems that 

TABLE 2-1:	 Comparing Machine Learning to Statistics
Technique Machine Learning Statistics

Data handling Works with big data in the form of networks and graphs; 
raw data from sensors or web text is split into training 
and test data.

Models are used to create 
predictive power on 
small samples.

Data input The data is sampled, randomized, and transformed  
to maximize accuracy scoring in the prediction of  
out-of-sample (or completely new) examples.

Parameters interpret real-
world phenomena and focus 
on magnitude.

Result Probability is taken into account for comparing what 
could be the best guess or decision.

The output captures the 
variability and uncertainty of 
parameters.

Assumptions The scientist learns from the data. The scientist assumes a certain 
output and tries to prove it.

Distribution The distribution is unknown or ignored before learning 
from data.

The scientist assumes a well-
defined distribution.

Fitting The scientist creates a best-fit, but generalizable, model. The result is fit to the present 
data distribution.
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scientists are striving to solve is how to use existing hardware more efficiently. 
In some cases, waiting for days to obtain a result to a machine learning problem 
simply isn’t possible. The scientists who want to know the answer need it quickly, 
even if the result isn’t quite right. In addition, investments in better hardware 
also require investments in better science. This book considers some of the fol-
lowing issues as part of making your machine learning experience better:

 » Obtaining a useful result: As you work through the book, you discover that 
you need to obtain a useful result first, before you can refine it. In addition, 
sometimes tuning an algorithm goes too far and the result becomes quite 
fragile (and possibly useless outside a specific dataset).

 » Asking the right question: Many people get frustrated in trying to obtain an 
answer from machine learning because they keep tuning their algorithm 
without asking a different question. To use hardware efficiently, sometimes 
you must step back and review the question you’re asking. The question 
might be wrong, which means that even the best hardware will never find the 
answer.

 » Relying on intuition too heavily: All machine learning questions begin as a 
hypothesis. A scientist uses intuition to create a starting point for discovering 
the answer to a question. Failure is more common than success when 
working through a machine learning experience. Your intuition adds the art to 
the machine learning experience, but sometimes intuition is wrong, and you 
have to revisit your assumptions.

Considering the true uses of AI and  
machine learning
You find AI and machine learning used in a great many applications today. The 
only problem is that the technology works so well that you don’t know that it even 
exists. In fact, you might be surprised to find that many devices in your home 
already make use of both technologies. Both technologies definitely appear in your 
car and most especially in the workplace. In fact, the uses for both AI and machine 
learning number in the millions — all safely out of sight even when they’re quite 
dramatic in nature. Here are just a few of the ways in which you might see AI and 
machine learning used together:

 » Fraud detection: You get a call from your credit card company asking 
whether you made a particular purchase. The credit card company isn’t being 
nosy; it’s simply alerting you to the fact that someone else could be making a 
purchase using your card. The AI embedded within the credit card company’s 
code detected an unfamiliar spending pattern and alerted someone to it.
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 » Resource scheduling: Many organizations need to schedule the use of 
resources efficiently. For example, a hospital may have to determine where to 
put a patient based on the patient’s needs, availability of skilled experts, and 
the amount of time the doctor expects the patient to be in the hospital.

 » Complex analysis: Humans often need help with complex analysis because 
there are literally too many factors to consider. For example, the same set of 
symptoms could indicate more than one problem. A doctor or other expert 
might need help making a diagnosis in a timely manner to save a patient’s life.

 » Automation: Any form of automation can benefit from the addition of AI to 
handle unexpected changes or events. A problem with some types of 
automation today is that an unexpected event, such as an object in the wrong 
place, can actually cause the automation to stop. Adding AI to the automation 
can allow the automation to handle unexpected events and continue as if 
nothing happened.

 » Customer service: The customer service line you call today may not even 
have a human behind it. The automation is good enough to follow scripts and 
use various resources to handle the vast majority of your questions. With 
good voice inflection (provided by AI as well), you may not even be able to tell 
that you’re talking with a computer.

 » Safety systems: Many of the safety systems found in machines of various 
sorts today rely on AI to take over the vehicle in a time of crisis. For example, 
many automatic braking systems rely on AI to stop the car based on all the 
inputs that a vehicle can provide, such as the direction of a skid.

 » Machine efficiency: AI can help control a machine in such a manner as to 
obtain maximum efficiency. The AI controls the use of resources so that the 
system doesn’t overshoot speed or other goals. Every ounce of power is used 
precisely as needed to provide the desired services.

This list doesn’t even begin to scratch the surface. You can find AI and machine 
learning combined in many other ways. However, it’s also useful to view uses of 
machine learning outside the normal realm that many consider the domain of 
AI. Here are a few uses for machine learning that you might not associate with AI:

 » Access control: In many cases, access control is a yes-or-no proposition. An 
employee smartcard grants access to a resource in much the same way that 
people have used keys for centuries. Some locks do offer the capability to set 
times and dates that access is allowed, but the coarse-grained control doesn’t 
really answer every need. By using machine learning, you can determine 
whether an employee should gain access to a resource based on role and 
need. For example, an employee can gain access to a training room when the 
training reflects an employee role.
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 » Animal protection: The ocean might seem large enough to allow animals 
and ships to cohabitate without problems. Unfortunately, many animals get 
hit by ships each year. A machine learning algorithm could allow ships to 
avoid animals by learning the sounds and characteristics of both the animal 
and the ship.

 » Predicting wait times: Most people don’t like waiting when they have no idea 
of how long the wait will be. Machine learning allows an application to 
determine waiting times based on staffing levels, staffing load, complexity of 
the problems the staff is trying to solve, availability of resources, and so on.

Getting detailed with deep learning
An understanding of deep learning begins with a precise definition of terms. Oth-
erwise, you have a hard time separating the media hype from the realities of what 
deep learning can actually provide. Deep learning is part of both AI and machine 
learning, as shown in Figure 2-1. To understand deep learning, you must begin at 
the outside — that is, you start with AI, and then work your way through machine 
learning, and then finally define deep learning. The following sections help you 
through this process.

FIGURE 2-1:  
Deep learning 
is a subset of 

machine learning 
which is a  

subset of AI.
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Moving from machine learning to deep learning
Deep learning is a subset of machine learning, as previously mentioned. In both 
cases, algorithms appear to learn by analyzing huge amounts of data, although 
learning can occur even with tiny datasets in some cases. However, deep learning 
varies in the depth of its analysis and the kind of automation it provides. You can 
summarize the differences between the two like this:

 » A completely different paradigm: Machine learning consists of a set of 
many different techniques that enable a computer to learn from data and to 
use what it learns to provide an answer, often in the form of a prediction. 
Machine learning relies on different paradigms, such as using statistical 
analysis, finding analogies in data, using logic, and working with symbols. 
Contrast the myriad techniques used by machine learning with the single 
technique used by deep learning, which mimics human brain functionality. It 
processes data using computing units, called neurons, arranged into ordered 
sections, called layers. The technique at the foundation of deep learning is the 
neural network.

 » Flexible architectures: Machine learning solutions offer many knobs 
(adjustments) called hyperparameters that you tune to optimize algorithm 
learning from data. Deep learning solutions use hyperparameters, too, but 
they also use multiple user-configured layers (with the user specifying number 
and type). In fact, depending on the resulting neural network, the number of 
layers can be quite large and form unique neural networks capable of 
specialized learning: Some can learn to recognize images, while others can 
detect and parse voice commands. The point is that the term deep is appropri-
ate; it refers to the large number of layers potentially used for analysis. The 
architecture consists of the ensemble of different neurons and their arrange-
ment in layers in a deep learning solution.

 » Autonomous feature definition: Machine learning solutions require human 
intervention to succeed. To process data correctly, analysts and scientists use 
a lot of their own knowledge to develop working algorithms. For instance, in a 
machine learning solution that determines the value of a house by relying on 
data containing the wall measures of different rooms, the machine learning 
algorithm won’t be able to calculate the surface of the house unless the 
analyst specifies how to calculate it beforehand. Creating the right information 
for a machine learning algorithm is called feature creation, which is a 
time-consuming activity. Deep learning doesn’t require humans to perform 
any feature-creation activity because, thanks to its many layers, it defines its 
own best features. That’s also why deep learning outperforms machine 
learning in otherwise very difficult tasks such as recognizing voice and images, 
understanding text, or beating a human champion at the Go game (the digital 
form of the board game in which you capture your opponent’s territory).
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You need to understand a number of issues with regard to deep learning solutions, 
the most important of which is that the computer still doesn’t understand any-
thing and isn’t aware of the solution it has provided. It simply provides a form of 
feedback loop and automation conjoined to produce desirable outputs in less time 
than a human could manually produce precisely the same result by manipulating 
a machine learning solution.

The second issue is that some benighted people have insisted that the deep learn-
ing layers are hidden and not accessible to analysis. This isn’t the case. Any-
thing a computer can build is ultimately traceable by a human. In fact, the 
General Data Protection Regulation (GDPR) (https://eugdpr.org/) requires that 
humans perform such an analysis (see the article at https://www.pcmag.com/ 
commentary/361258/how-gdpr-will-impact-the-ai-industry for details). The 
requirement to perform this analysis is controversial, but current law says that 
someone must do it.

The third issue is that self-adjustment goes only so far. Deep learning doesn’t always 
ensure a reliable or correct result. In fact, deep learning solutions can go horri-
bly wrong (see the article at https://www.theverge.com/2016/3/24/11297050/ 
tay-microsoft-chatbot-racist for details). Even when the application code 
doesn’t go wrong, the devices used to support the deep learning can (see the  
article at https://www.pcmag.com/commentary/361918/learning-from-alexas- 
mistakes?source=SectionArticles for details). Despite these problems, you 
can see deep learning being used for a number of extremely popular applications, 
as described at https://medium.com/@vratulmittal/top-15-deep-learning- 
applications-that-will-rule-the-world-in-2018-and-beyond-7c6130c43b01.

Performing deep learning tasks
Humans and computers are best at different tasks. Humans are best at reasoning, 
thinking through ethical solutions, and being emotional. A computer is meant to 
process data — lots of data — really fast. You commonly use deep learning to solve 
problems that require looking for patterns in huge amounts of data —  problems 
whose solution is nonintuitive and not immediately noticeable. The article at 
http://www.yaronhadad.com/deep-learning-most-amazing- applications/ 
tells you about 30 different ways in which people are currently using deep learn-
ing to perform tasks. In just about every case, you can sum up the problem and 
its solution as processing huge amounts of data quickly, looking for patterns, and 
then relying on those patterns to discover something new or to create a particular 
kind of output.

https://eugdpr.org/
https://www.pcmag.com/commentary/361258/how-gdpr-will-impact-the-ai-industry
https://www.pcmag.com/commentary/361258/how-gdpr-will-impact-the-ai-industry
https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
https://www.pcmag.com/commentary/361918/learning-from-alexas-mistakes?source=SectionArticles
https://www.pcmag.com/commentary/361918/learning-from-alexas-mistakes?source=SectionArticles
https://medium.com/@vratulmittal/top-15-deep-learning-applications-that-will-rule-the-world-in-2018-and-beyond-7c6130c43b01
https://medium.com/@vratulmittal/top-15-deep-learning-applications-that-will-rule-the-world-in-2018-and-beyond-7c6130c43b01
http://www.yaronhadad.com/deep-learning-most-amazing-applications/
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Employing deep learning in applications
Deep learning can be a stand-alone solution, as illustrated in this book, but it’s 
often used as part of a much larger solution and mixed with other technologies. For 
example, mixing deep learning with expert systems is not uncommon. The article 
at https://www.sciencedirect.com/science/article/pii/0167923694900213 
describes this mixture to some degree. However, real applications are more than 
just numbers generated from some nebulous source. When working in the real 
world, you must also consider various kinds of data sources and understand how 
those data sources work. A camera may require a different sort of deep learning 
solution to obtain information from it, while a thermometer or proximity detector 
may output simple numbers (or analog data that requires some sort of processing 
to use). Real-world solutions are messy, so you need to be prepared with more 
than one solution to problems in your toolkit.

Knowing when not to use deep learning
Deep learning is only one way to perform analysis, and it’s not always the best 
way. For example, even though expert systems are considered old technology, 
you can’t really create a self-driving car without one for the reasons described at 
https://aitrends.com/ai-insider/expert-systems-ai-self-driving-cars- 
crucial-innovative-techniques/. A deep learning solution turns out to be way 
too slow for this particular need. Your car will likely contain a deep learning solu-
tion, but you’re more likely to use it as part of the voice interface.

AI in general and deep learning in particular can make the headlines when the 
technology fails to live up to expectations. For example, the article at https://
www.techrepublic.com/article/top-10-ai-failures-of-2016/ provides a list 
of AI failures, some of which relied on deep learning as well. It’s a mistake to 
think that deep learning can somehow make ethical decisions or that it will choose 
the right course of action based on feelings (which no machine has). Anthropo-
morphizing the use of deep learning will always be a mistake. Some tasks simply 
require a human.

Speed and the capability to think like a human are the top issues for deep learn-
ing, but there are many more. For example, you can’t use deep learning if you 
don’t have sufficient data to train it. In fact, the article at https://www.sas.com/ 
en_us/insights/articles/big-data/5-machine-learning-mistakes.html 
offers a list of five common mistakes that people make when getting into machine 
learning and deep learning environments. If you don’t have the right resources, 
deep learning will never work.

https://www.sciencedirect.com/science/article/pii/0167923694900213
https://aitrends.com/ai-insider/expert-systems-ai-self-driving-cars-crucial-innovative-techniques/
https://aitrends.com/ai-insider/expert-systems-ai-self-driving-cars-crucial-innovative-techniques/
https://www.techrepublic.com/article/top-10-ai-failures-of-2016/
https://www.techrepublic.com/article/top-10-ai-failures-of-2016/
https://www.sas.com/en_us/insights/articles/big-data/5-machine-learning-mistakes.html
https://www.sas.com/en_us/insights/articles/big-data/5-machine-learning-mistakes.html
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Creating a Pipeline from Data to AI
The previous two sections reveal the need for high-quality and reliable data for 
any analysis need, especially when it comes to AI, machine learning, and deep 
learning. In some cases, you need huge quantities of data to make these technolo-
gies work correctly. However, before you can do anything, you need a pipeline 
from the clean source of data you create to the technology used to analyze it. The 
following sections help you understand these requirements.

Considering the desired output
The point of performing any sort of analysis is to obtain a result that reflects 
certain characteristics. For example, you may want a probability in one case and 
a categorization in another. The result might have to be numeric in one case, a 
string in another, a category in another, or a voice output in another. The output 
determines all other characteristics of the analysis.

Book 2 tells you about data and how to condition it in various ways. In Book 3, you 
discover basic analysis techniques that are more machine learning–oriented in 
nature (or are even basic statistics). Book 4 engages you in simple deep learning. 
However, the real-world look at output comes in Book 5, in which you see data 
used in interesting ways, such as working with images and analyzing music and 
video. In other words, most of this book looks at output first and the input and 
algorithms to obtain it second.

Defining a data architecture
The emphasis of an analysis model is the data used to feed it. In Book 4,  Chapter 1, 
you begin combining algorithms to obtain various effects. This sort of analysis 
requires that you supply data in a particular form or else the analysis model you cre-
ate won’t work. So, what you really need is a definition of the data  architecture — 
which is the form in which the data must appear in order to work with the analysis 
model — before you can massage the raw data. The data architecture reflects the 
requirements of the pipe through which the data flows to an output.

Combining various data sources
When working in a real-world environment, you seldom find the data you need 
in one place. The main reason for this issue is that databases store information in 
a form that reflects the needs of its users — those people who rely on the data-
base for informational needs rather than analysis needs. Another reason is that a 
data scientist must often look to the results of surveys, generated data, and other 
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analyses for the particulars needed to provide probabilities or perform categoriza-
tion. Book 2, Chapter 1 helps you understand the need to combine data from vari-
ous sources into a form that you can use to perform a required analysis.

The use of multiple data sources does mean that you spend a great deal more time 
ensuring that the data isn’t only in the required form, but also that it meshes 
correctly. You may find that concatenating the datasets won’t work — you might 
have to perform a join, merge, or a cross-tabulation instead. Unless you can vis-
ualize how the data should mesh to provide a desired output, the analysis will be 
flawed, even if you do choose the correct algorithms.

Checking for errors and fixing them
Data errors may not actually appear as errors when you first look at them. In fact, 
in another situation, the data might not have an error at all. Whether the data is 
erroneous or not depends on how you use the data and what outcome you need 
from it. It’s not the same as locating an error in code or finding a misplaced sym-
bol in an equation — data errors are grayer, meaning less concrete, than other 
errors you experience. The grayness of data errors is why Book 6 spends so much 
time looking at them in multiple ways.

Never assume that the data does contain an error unless you prove there is an 
error. The data may simply not perform as you want it to because of errors in for-
mat or conditioning. Book 6, Chapter 1 gives you some clues geared toward what 
you might call absolute errors — those that you can possibly prove in some way. Of 
course, if you decide that the original data is erroneous, fix the perceived error in 
the original data file, and then later discover that the use or analysis technique is 
flawed instead, you have damaged your data without any sort of gain. Always work 
on a copy of your data and make fixes only when you have proven to yourself that 
the data is truly flawed.

Performing the analysis
Your data pipeline has to remain functional during the analysis if you expect to 
get the right result. At a minimum, this requirement means that the data remains 
accessible. Most of the analyses performed in this book rely on static datasets 
because they’re easier to use for example code. However, when you perform real-
time analysis, your data pipeline must continue to stream data to the algorithm. 
In addition, the data pipeline must deliver the data in a timely manner so that the 
analysis reflects the real-time nature of the application.
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Validating the result
To ensure that you get the correct result, you must actually validate the result 
in some way, which means creating measurable criteria that defines success. Of 
course, most data scientists know that they have to meet this requirement dur-
ing the testing phase. A problem can arise, however, when the data, conditions, 
requirements, or even algorithmic specifications change over time. The changes 
can occur slowly, but generally you find that the results are marginal on one day 
and incorrect on the next. Consequently, the need to validate the result isn’t a 
one-time process, but rather is something you continue to do during the life of 
the application.

Enhancing application performance
When you say that an analysis performs well, the term may mean something dif-
ferent to the listener than it does to you. As with many areas of communication, 
the meaning of performance depends on the biases of the listener and changes in 
society as a whole (among other things). When looking at analysis performance, 
you need to consider these issues:

 » Speed: The analysis is useful only when delivered in a timely manner.

 » Accuracy: How fast you deliver incorrect information doesn’t matter — it’s still 
incorrect.

 » Reliability: The data pipeline, analysis model, and output mechanisms should 
perform correctly every time.

 » Predictability: The result should appear within a defined tolerance unless 
you find a good reason for a change (such as a difference in conditions).
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Creating a Data Science 
Lab of Your Own

This book helps you gain an understanding of data science using two dif-
ferent languages: Python and R. Of course, not everyone will want to learn 
both languages, and you’re not required to do so. Still, you need to choose 

one of them and create a data science lab of your own so that you can follow 
along with the examples. Consequently, this chapter begins by examining various 
options you have for creating your lab — they’re extensive because data science 
has become so popular, and so many people with different skill sets need data 
science to perform tasks. After you choose the options you want, you usually need 
to perform some amount of setup to create your lab. This chapter also helps you 
toward that end.

As part of performing some data science tasks, you also use a framework. In most 
cases, your language will require that you import either libraries or packages con-
taining add-on code that makes performing data science tasks easier. The add-
ons reside within your application and become part of it. A framework is different 
because it controls your application environment, and your application resides 
within it. Frameworks and libraries aren’t mutually exclusive, and you generally 
use them together to perform specific tasks. This chapter provides you with addi-
tional details about frameworks and helps you understand what they can provide.

Chapter 3

IN THIS CHAPTER

 » Determining which platform and 
language options to use

 » Obtaining and installing your 
language of choice

 » Working with frameworks and 
Anaconda

 » Getting the downloadable code



52      BOOK 1  Defining Data Science

An Integrated Development Environment (IDE) also makes the task of performing 
data science tasks easier by providing you with an editor and associated tools to 
write code, compile it as needed, and perform tasks such as testing and debug-
ging. This book relies on Anaconda, which is a suite of various tools used to create 
data science code, including the Jupyter Notebook IDE. This chapter doesn’t pro-
vide you with a complete Anaconda tutorial; that task might require an entire book 
by itself. However, you do gain enough knowledge to perform essential tasks to 
make your learning experience better.

The final part of this chapter discusses the downloadable source code for this 
book. You don’t have to manually type all the source code you see, and in fact 
it can be detrimental to do so because you might have to deal with issues like 
typos. Using the downloadable source makes your job a lot easier and helps you 
spend your time learning about data science rather than debugging faulty code. 
Of course, after you learn a particular topic, it’s a good idea to practice what you 
learn by typing the code manually. You can find instructions for obtaining the 
downloadable source in the book’s Introduction. This chapter helps you work with 
the code after you have it downloaded.

You don’t have to type the source code for this chapter manually. In fact, it’s 
a lot easier if you use the downloadable source. The source code for this  
chapter appears in the DSPD_0103_Sample.ipynb source code file for Python and 
the DSPD_R_0103_Sample.ipynb source code file for R. See the Introduction for 
details on how to find these source files.

Considering the Analysis Platform Options
Your analysis platform defines how you interact with the various tools used 
to perform analysis with data science. It also determines any limitations or 
requirements needed to implement the platform successfully. The two common 
approaches today are to set up a desktop PC with the required tools or to rely on 
an online IDE instead. Both options come with issues that you must consider. For 
example, the PC option provides environmental flexibility and reliability, but at 
a cost. Meanwhile, an online IDE provides locational flexibility, often at a greatly 
reduced cost, if not free.

The chapter also considers the use of the Graphics Processing Unit (GPU), which 
may seem confusing because most people associate a GPU with drawing objects 
onscreen. Using one or more GPUs can greatly speed your analysis. The final sec-
tion helps you understand why a GPU can be so important, especially when per-
forming complex analysis or using techniques such as deep learning.
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Using a desktop system
Desktop systems offer significant flexibility in configuring a data-analysis envi-
ronment specifically suited to your needs. You have control over every aspect of a 
desktop system, which means that if you don’t like how a system performs, you 
can change it so that the performance becomes acceptable. For example, you can 
often make a desktop system fly by adding a GPU, additional memory, a faster 
processor, or even a faster hard drive. However, all this flexibility costs some-
thing. You need to buy the various pieces of hardware you want to make the sys-
tem happen. So, you might have to balance cost against needs and consider how 
much performance you can afford.

Along with system control, you must also consider issues like data control. A 
desktop system can maintain data on the local system, which can help you meet 
privacy, governmental, and other requirements. The consistent access provided 
by a local system can also make a difference. Of course, when using a desktop 
system, you must consider backup and data redundancy needs. You don’t want a 
local lightning storm to wipe out all your hard work.

A desktop system also comes with various human environment benefits. You don’t 
have to deal with using a small screen for seeing output from a complex analy-
sis as you might when working with a tablet. In fact, you can spread the output 
across as many screens as your system will support — two, in most cases, even 
with a low-end system. You also have aspects like better keyboard support and so 
on to consider. These comfort features may not seem important when performing 
analysis, but they can become essential when dealing with a huge amount of data 
over the long hours needed to work with it.

The most important consideration when working with desktop systems is con-
sistency. After you create and set up your environment, you can count on the 
desktop setup to perform in a certain way each time you use it, barring some sort 
of hardware or other error. When you’re in a rush, you don’t want to find that the 
resources you were counting on to get the job done suddenly become unavailable.

Working with an online IDE
Online IDEs have become popular for two reasons: They often cost nothing to use, 
and you can use them just about anywhere you have an Internet connection. This 
chapter discusses the use of Google Colaboratory (often shortened to Colab) later, 
but you need to be aware that online IDEs exist in a lot of places and in many 
forms. Choosing the online IDE that you prefer based on your personal needs can 
require time, but after you’ve determined which one you want, you can load it up 
into any device that supports a browser and has a keyboard (even if that keyboard 
exists only on a screen).
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Even though online IDEs are normally associated with tablets and other smaller 
devices because of their connectivity flexibility, you can also use one with a desk-
top system. Of course, you use it within a browser, so you may not have the level 
of flexibility that you get with a dedicated system. In addition, you likely won’t 
make use of any special features possessed by your desktop system. This said, you 
can also get by with a much less expensive desktop system should you decide to 
go the online IDE route.

Considering the need for a GPU
A CPU is a general-purpose processor that can perform a wide assortment of tasks. 
The designers might not even have a clue about just what sorts of tasks the CPU 
design will perform. However, this general processing orientation takes space, so 
a CPU usually contains just a few cores — each of which can perform a single 
instruction at a time. An 8-core CPU can perform up to eight general tasks at a time.

GPUs perform a significantly more defined and less flexible array of tasks than 
CPUs, but this specialization has an advantage in size. Consequently, a GPU can 
perform a significantly greater number of tasks simultaneously because it typi-
cally has far more cores than a CPU does. The trade-off is that you can’t build a 
complete application using a GPU. A GPU still requires input from a CPU to know 
what to do and when to do it. The following sections discuss GPUs in greater 
detail.

USING A GAMING LAPTOP
Many people see a desktop system as a large, cumbersome box attached to a desk more 
or less permanently because it’s too heavy to move. This perception is correct when you 
want to perform intense analysis tasks using huge datasets that reside in databases. But 
you can’t use a standard laptop to perform heavy-duty analysis unless you choose an 
online IDE to do it. You can, however, use a high-end laptop, such as a gaming system, 
to perform many analysis tasks. For example, the HP Omen X (https://www.amazon.
com/exec/obidos/ASIN/B075LKSJZ7/ datacservip0f-20/) can work well for many 
needs. To get useful processing speed, the laptop system should have an Intel i7 proces-
sor and one of the GPUs listed at https://developer.nvidia.com/cuda-gpus. The 
GeForce GTX 1070 listed for the HP system actually ranks quite high on the compute 
capability listing at 6.1 (high-end GPUs top out at 7.5). Be aware that you need to plug the 
laptop in to AC power because the battery will never last long enough to perform a com-
plex analysis. In addition, heat can become a problem in some situations, especially with 
a long analysis in warmer locations.

https://www.amazon.com/exec/obidos/ASIN/B075LKSJZ7/datacservip0f-20/
https://www.amazon.com/exec/obidos/ASIN/B075LKSJZ7/datacservip0f-20/
https://developer.nvidia.com/cuda-gpus
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Using NVidia products for desktop systems
The reason NVidia appears so often in GPU discussions is that the company is at 
the forefront of making GPUs useful for tasks other than mere graphics display. 
Data science relies heavily on matrix manipulation (see Book 2, Chapter  3 for 
details about matrix manipulation), which is something a GPU does quite well. 
The company created the Compute Unified Device Architecture (CUDA), which 
makes it possible to use GPUs to perform data analysis. You can read a detailed 
discussion of precisely why CUDA is important at https://www.datascience.
com/blog/cpu-gpu-machine-learning. The point is that you can’t use just any 
GPU for data science; you need a GPU with CUDA cores, in most cases.

Don’t think that you get GPU support without a lot of effort. To use a GPU, you 
must install the required libraries and learn new programming techniques. Con-
sequently, even though the processing speed is faster, you partly pay for it with 
greater development and testing time. Plus, applications that require a GPU to 
perform adequately limit the number of platforms on which they’ll run.

A GPU is more than just one order of magnitude more powerful than a CPU when 
it comes to performing specific math operations. Currently, the most powerful 
GPU in the world is the NVidia Titan V (https://www.nvidia.com/en-us/titan/ 
titan-v/), which comes with 5,120 CUDA cores. That’s 640 times the processing 
power of a CPU when you consider just the physical processing capacity. A GPU also 
optimizes math tasks, so the actual impact is significantly larger. The article at 
https://www.anandtech.com/show/12673/titan-v-deep-learning-deep-dive  
provides specifics on just how much more powerful a GPU is. However, to put 
this scenario into easily understood terms, a test application that required more 
than nine hours to run using just a standard PC with eight cores required only five 
minutes to run on a system sporting a Titan V GPU.

Note that adding a large GPU like the Titan V to your system will increase power 
and cooling requirements. You’ll likely need additional cooling fans (which are 
noisy) to keep your system cool. Something that many people don’t consider is 
that the addition could make your office considerably warmer as well. If you don’t 
address these additional requirements, you might find that your system can’t 
complete processing tasks without overheating.

Defining framework needs
A framework, such as TensorFlow, which is used to perform deep learning tasks, 
creates an environment in which to run applications under controlled conditions. 
The “Presenting Frameworks” section, later in this chapter, describes precisely 
what a framework is and why you want to use one. However, the important thing 
to consider about frameworks and GPUs is that most frameworks provide some 
level of built-in GPU support. Consequently, you have all the advantages of using 
a GPU, with far fewer of the disadvantages.

https://www.datascience.com/blog/cpu-gpu-machine-learning
https://www.datascience.com/blog/cpu-gpu-machine-learning
https://www.nvidia.com/en-us/titan/titan-v/
https://www.nvidia.com/en-us/titan/titan-v/
https://www.anandtech.com/show/12673/titan-v-deep-learning-deep-dive
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Understanding the limits of online GPUs
When working with an online IDE, you may see an option to use a GPU with it, 
which is optimal when you can get it. However, you need to be aware that the GPU 
may not always be available, even if you check the option to request one. In addi-
tion, you can’t be sure of what sort of GPU support you get, especially considering 
that the online IDE is likely free. The lack of GPU support is one of the things that 
makes using an online IDE risky if you need to process a lot of data and get the 
results quickly.

Choosing a Development Language
You might be amazed at the number of ways that people use computers and the 
tasks that computers perform without your knowledge. Computers come in all 
sorts of form factors — not just the smart phone, tablet, laptop, or desktop sys-
tem you use. If you have newer appliances in your home, you might find that they 
contain computers. Even thermostats now sport computers that do everything 
from maintain complex operating schedules to report the efficiency of your sys-
tem in an email sent directly to your Inbox. So, it shouldn’t surprise you that no 
single best computer language exists to express the myriad ideas that people have 
for using them in both mundane and interesting ways. In fact, it shouldn’t even 
surprise you that people rely on a number of different languages to perform data 
analysis using data science techniques.

When contemplating the development language you want to use to write your 
data science application, you must consider the needs of your project and your 
personal needs first. A computer speaks only one language: machine code. In fact, 
the computer doesn’t actually understand machine code; the machine code sim-
ply flips switches inside the processor to cause it to perform certain actions. The 
computer language you use always ends up translated into machine code at some 
point, so the language you use should meet your needs. The computer doesn’t 
know or care about which language you use. With the goal of meeting your needs 
in mind, this book uses these two languages to help you perform data science 
tasks with greater ease:

 » Python: Many data scientists choose Python because it’s easy to learn, has 
strong community support, supports multiple programming paradigms, and 
provides access to a long list of useful packages. According to the article at 
https://www.datanami.com/2018/07/19/python-gains-traction-
among-data-scientists/, a whopping 48 percent of younger data scientists 
prefer Python to any other language. These numbers go down for older data 
scientists.

https://www.datanami.com/2018/07/19/python-gains-traction-among-data-scientists/
https://www.datanami.com/2018/07/19/python-gains-traction-among-data-scientists/
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 » R: At one time, data scientists favored R over Python, but Python has caught 
up over the years, enough that you might wonder whether learning R is still a 
good idea. Statisticians originally created R to perform statistical analysis, and 
it’s still the favored language for that purpose today because you can create 
incredibly complex models with it. Some developers also prefer the manner in 
which R helps you create presentations. In fact, the Shiny add-on (http://
shiny.rstudio.com/) lets you create interactive applications directly from 
your R analysis. Yes, you have access to MatPlotLib in Python, but R has 
built-in functionality that tends to work better for certain tasks. Like Python, R 
also supports a strong developer community that continually pumps out 
more packages to help you get work done faster. In some cases, developers 
choose R over Python simply because of the growing pains Python has 
suffered, as expressed by the article at https://www.r-bloggers.com/ 
why-r-for-data-science-and-not-python/.

USING OTHER PROGRAMMING LANGUAGES 
FOR DATA SCIENCE
The reason this book uses these languages is that they represent popular choices 
for common data science and general application development needs, but you must 
remember that other languages support data science, too. One way to help you decide 
which language to choose when you have several in mind and they all seem equally 
good at the task you want to perform is to look at language popularity on sites such as 
Tiobe (https://www.tiobe.com/tiobe-index/). The Tiobe Index is one of the most 
cited language- popularity lists because it proves to be correct so often. (Alternatives 
include paid sites like IEEE Spectrum, where Python currently appears as the most used 
language.) However, make sure that you also consider factors such as your personal 
knowledge, availability of resources, cost, and so on when making a choice.

The article at https://bigdata-madesimple.com/top-8-programming- 
languages-every-data-scientist-should-master-in-2019/ provides you  
with other language choices such as Java, SQL, and Julia. All these languages have bene-
fits and potential problems. Choose your language carefully because many of them cur-
rently come with hidden issues and you may find that you can’t make things work in the 
middle of a project because of a lack of library support. Most especially, make sure you 
look at issues such as plotting your data because some languages are weak in this area.

http://shiny.rstudio.com/
http://shiny.rstudio.com/
https://www.r-bloggers.com/why-r-for-data-science-and-not-python/
https://www.r-bloggers.com/why-r-for-data-science-and-not-python/
https://www.tiobe.com/tiobe-index/
https://bigdata-madesimple.com/top-8-programming-languages-every-data-scientist-should-master-in-2019/
https://bigdata-madesimple.com/top-8-programming-languages-every-data-scientist-should-master-in-2019/
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Obtaining and Using Python
If you choose to use Python to follow the book examples, you need to install a copy 
of Python on your system. The following sections provide detailed information for 
installing Python as part of Anaconda on a Windows system, with an overview for 
both Mac and Linux systems. If you don’t plan to install Python on your system, 
you can skip this section.

Working with Python in this book
The Python environment changes constantly. As the Python community continues 
to improve Python, the language experiences breaking changes — those that create 
new behaviors while reducing backward compatibility. These changes might not 
be major, but they’re a distraction that will reduce your ability to discover data 
science programming techniques. Obviously, you want to discover data science 
with as few distractions as possible, so having the correct environment is essen-
tial. Here is what you need to use Python with this book:

 » Jupyter Notebook version 5.5.0

 » Anaconda 3 environment version 5.2.0

 » Python version 3.7.3

If you don’t have this setup, you may find that the examples don’t work as 
intended. The screenshots will most likely differ and the procedures may not work 
as planned.

As you go through the book, you need to install various Python packages to make 
the code work. Like the Python environment you configure in this chapter, these 
packages have specific version numbers. If you use a different version of a pack-
age, the examples may not execute at all. In addition, you may become frustrated 
trying to work through error messages that have nothing to do with the book’s 
code but instead result from using the wrong version number. Make sure to exer-
cise care when installing Anaconda, Jupyter Notebook, Python, and all the pack-
ages needed to make your deep learning experience as smooth as possible.

USE OF NOTEBOOK IN THE BOOK
This book shortens Jupyter Notebook to just Notebook in the interest of brevity. 
Whenever you see Notebook in a chapter, think of the Jupyter Notebook IDE.
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Obtaining and installing Anaconda  
for Python
Before you can move forward, you need to obtain and install a copy of Anaconda. 
Yes, you can obtain and install Notebook separately, but then you lack various 
other applications that come with Anaconda, such as the Anaconda Prompt, which 
appears in various parts of the book. The best idea is to install Anaconda using 
the instructions that appear in the following sections for your particular platform 
(Linux, MacOS, or Windows).

Getting Continuum Analytics Anaconda
The basic Anaconda package is a free download from https://repo.anaconda.
com/archive/ to obtain the 5.2.0 version used in this book. Simply click one of 
the Python 3.6 Version links to obtain access to the free product. The filename 
you want begins with Anaconda3-5.2.0- followed by the platform and 32-bit or 
64-bit version, such as Anaconda3-5.2.0-Windows-x86_64.exe for the Windows 
64-bit version. Anaconda supports the following platforms:

 » Windows 32-bit and 64-bit (The installer may offer you only the 64-bit or 32-bit 
version, depending on which version of Windows it detects.)

 » Linux 32-bit and 64-bit

 » macOS 64-bit

The free product is all you need for this book. However, when you look on the 
site, you see that many other add-on products are available. These products can  
help you create robust applications. For example, when you add Accelerate to the 
mix, you obtain the capability to perform multicore and GPU-enabled opera-
tions. The use of these add-on products is outside the scope of this book, but the  
Anaconda site provides details on using them.

Installing Anaconda for Windows
Anaconda comes with a graphical installation application for Windows, so getting 
a good install means using a wizard, much as you would for any other installa-
tion. Of course, you need a copy of the installation file before you begin, and you 
can find the required download information in the “Getting Continuum Analytics 
Anaconda” section, earlier in this chapter. The following procedure should work 

https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
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fine on any Windows system, whether you use the 32-bit or the 64-bit version of 
Anaconda:

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-5.2.0- 
Windows-x86.exe for 32-bit systems and Anaconda3-5.2.0-Windows-x86_64. 
exe for 64-bit systems. The version number is embedded as part of the filename. 
In this case, the filename refers to version 5.2.0, which is the version used for this 
book. If you use some other version, you may experience problems with the 
source code and need to make adjustments when working with it.

2. Double-click the installation file.

(You may see an Open File – Security Warning dialog box that asks whether 
you want to run this file. Click Run if you see this dialog box pop up.) You see 
an Anaconda 5.2.0 Setup dialog box similar to the one shown in Figure 3-1.  
The exact dialog box you see depends on which version of the Anaconda 
installation program you download. If you have a 64-bit operating system, 
using the 64-bit version of Anaconda is always best for obtaining the best 
possible performance. This first dialog box tells you when you have the  
64-bit version of the product.

3. Click Next.

The wizard displays a licensing agreement. Be sure to read through the 
licensing agreement so that you know the terms of usage.

FIGURE 3-1:  
The setup 

process begins 
by telling you 

whether you have 
the 64-bit version.
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4. Click I Agree if you agree to the licensing agreement.

You’re asked what sort of installation type to perform, as shown in Figure 3-2. 
In most cases, you want to install the product just for yourself. The exception is 
if you have multiple people using your system and they all need access to 
Anaconda. The selection of Just Me or All Users will affect the installation 
destination folder in the next step.

5. Choose one of the installation types and then click Next.

The wizard asks where to install Anaconda on disk, as shown in Figure 3-3. The 
book assumes that you use the default location, which will generally install the 
product in your C:\Users\<User Name>\Anaconda3 folder. If you choose 
some other location, you may have to modify some procedures later in the 
book to work with your setup. You may be asked whether you want to create 
the destination folder. If so, simply allow the folder creation.

6. Choose an installation location (if necessary) and then click Next.

You see the Advanced Installation Options, shown in Figure 3-4. These options 
are selected by default and you have no good reason to change them in most 
cases. You might need to change them if Anaconda won’t provide your default 
Python 3.6 setup. However, the book assumes that you’ve set up Anaconda 
using the default options.

FIGURE 3-2:  
Tell the wizard 
how to install 
Anaconda on 
your system.
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The Add Anaconda to My PATH Environment Variable option is deselected by 
default, and you should leave it deselected. Adding it to the PATH environment 
variable does offer the ability to locate the Anaconda files when using a 
standard command prompt, but if you have multiple versions of Anaconda 
installed, only the first version that you installed is accessible. Opening an 
Anaconda Prompt instead is far better so that you gain access to the version 
you expect.

7. Change the advanced installation options (if necessary) and then  
click Install.

You see an Installing dialog box with a progress bar. The installation process 
can take a few minutes, so get yourself a cup of coffee and read the comics for 
a while. When the installation process is over, you see a Next button enabled.

FIGURE 3-3:  
Specify an 

 installation 
location.

FIGURE 3-4:  
Configure 

the advanced 
 installation 

options.
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8. Click Next.

The wizard tells you that the installation is complete.

9. Click Next.

Anaconda offers you the chance to integrate Visual Studio code support. You 
don’t need this support for this book, and adding it might change the way that 
the Anaconda tools work. Unless you absolutely need Visual Studio support, 
you want to keep the Anaconda environment pure.

10. Click Skip.

You see a completion screen. This screen contains options to discover more 
about Anaconda Cloud and to obtain information about starting your first 
Anaconda project. Selecting these options (or deselecting them) depends on 
what you want to do next, and the options don’t affect your Anaconda setup.

11. Select any required options. Click Finish.

You’re ready to begin using Anaconda.

Creating an Anaconda for Mac setup
As with the Windows installation, you must download a copy of Anaconda 5.2.0 
for your Mac system. However, you can use a number of methods to perform 
this task based on the precise version of macOS that you own. The instructions 
at https://mas-dse.github.io/startup/anaconda-macosx-install/ provide a 
terminal-based installation where you don’t have to work through extra steps to 
get the task done. This version relies on using curl to perform the download. The 
instructions at https://docs.anaconda.com/anaconda/install/mac-os/ pro-
vide both a graphical installation and a terminal installation that works for other 
users. Choose the installation method that works best for your particular setup.

Creating an Anaconda for Linux setup
As with the Windows installation, you need a copy of Anaconda 5.2.0 to  
make the examples in this book execute properly. However, each version  
of Linux seems to come with slightly different installation instructions.  
Most Linux users will find that the instructions at https://docs.anaconda. 
com/anaconda/install/linux/ or https://docs.anaconda.com/anaconda/ 
install/linux-power8/ work best. However, owners of an Ubuntu setup may 
find that they prefer the instructions at https://www.osetc.com/en/how- 
to-install-anaconda-on-ubuntu-16-04-17-04-18-04.html or https://www. 
digitalocean.com/community/tutorials/how-to-install-anaconda-on- 
ubuntu-18-04-quickstart better.

https://mas-dse.github.io/startup/anaconda-macosx-install/
https://docs.anaconda.com/anaconda/install/mac-os/
https://docs.anaconda.com/anaconda/install/linux/
https://docs.anaconda.com/anaconda/install/linux/
https://docs.anaconda.com/anaconda/install/linux-power8/
https://docs.anaconda.com/anaconda/install/linux-power8/
https://www.osetc.com/en/how-to-install-anaconda-on-ubuntu-16-04-17-04-18-04.html
https://www.osetc.com/en/how-to-install-anaconda-on-ubuntu-16-04-17-04-18-04.html
https://www.digitalocean.com/community/tutorials/how-to-install-anaconda-on-ubuntu-18-04-quickstart
https://www.digitalocean.com/community/tutorials/how-to-install-anaconda-on-ubuntu-18-04-quickstart
https://www.digitalocean.com/community/tutorials/how-to-install-anaconda-on-ubuntu-18-04-quickstart


64      BOOK 1  Defining Data Science

Defining a Python code repository
The code you create and use in this book will reside in a repository on your hard 
drive. Think of a repository as a kind of filing cabinet where you put your code. 
Notebook opens a drawer, takes out the folder, and shows the code to you. You can 
modify it, run individual examples within the folder, add new examples, and simply 
interact with your code in a natural manner. The following sections get you started 
with Notebook so that you can see how this whole repository concept works.

Defining the book’s folder
You use folders to hold your code files for a particular project. The project for this 
book is DSPD (which stands for Data Science Programming All-in-One For Dummies). 
The following steps help you create a new folder for this book:

1. Choose New➪  Folder.

Notebook creates a new folder for you. The name of the folder can vary, but 
for Windows users, it’s simply listed as Untitled Folder. You may have to scroll 
down the list of available folders to find the folder in question.

2. Select the box next to Untitled Folder.

3. Click Rename at the top of the page.

You see the Rename Directory dialog box, shown in Figure 3-5.

4. Type DSPD and press Enter.

Notebook renames the folder for you.

FIGURE 3-5:  
Create a folder to 

use to hold the 
book’s code.
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Creating a new notebook
Every new notebook is like a file folder. You can place individual examples within 
the file folder, just as you would sheets of paper into a physical file folder. Each 
example appears in a cell. You can put other sorts of data in the file folder, too, 
but you see how to perform these tasks as the book progresses. Use these steps to 
create a new notebook:

1. Click the DSPD entry on the home page.

You see the contents of the project folder for this book, which will be blank if 
you’re performing this exercise from scratch.

2. Choose New➪  Python 3.

A new tab opens in the browser with the new notebook, as shown in Figure 3-6.  
Notice that the notebook contains a cell and that Notebook has highlighted the 
cell so that you can begin typing code in it. The title of the notebook is Untitled 
right now. That’s not a particularly helpful title, so you need to change it.

3. Click Untitled on the page.

Notebook asks what you want to use as a new name, as shown in Figure 3-7.

4. Type DSPD_0103_Sample and press Enter.

The new name tells you that this is a file for Data Science Programming  
All-in-One For Dummies, Book 1, Chapter 3, Sample.ipynb. Using this naming 
convention helps you to easily differentiate these files from other files in your 
repository.

FIGURE 3-6:  
Provide a new 
name for your 

notebook.
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After you create a new notebook, you see a cell that is ready to receive code. Sim-
ply type:

myString = "Hello, World!"
print(myString)

After you type the code, you can test it by clicking Run on the toolbar. Here is the 
output you can expect to see below the editing area, but within the same cell:

Hello, World!

Notice that the code cell has a [1] next to it, showing that this is the first executed 
code cell in the Notebook. If you were to execute this cell again, the number would 
change to [2]. You can tell whether a cell is still executing because you see [*] 
instead of a number if it is.

Exporting a notebook
Creating notebooks and keeping them all to yourself isn’t much fun. At some 
point, you want to share them with other people. To perform this task, you must 
export your notebook from the repository to a file. You can then send the file to 
someone else, who will import it into his or her repository.

The previous section, “Creating a new notebook,” shows how to create a note-
book named DSPD_0103_Sample. You can open this notebook by clicking its entry 
in the repository list. The file reopens so that you can see your code again. To 
export this code, choose File ➪   Download As ➪   Notebook (.ipynb). What you see 
next depends on your browser, but you generally see some sort of dialog box for 

FIGURE 3-7:  
A notebook 

contains cells that 
you use to hold 

code.
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saving the notebook as a file. Use the same method for saving the Notebook file as 
you use for any other file you save using your browser.

Saving a notebook
You eventually want to save your notebook so that you can review the code later 
and impress your friends by running it after you ensure that it doesn’t contain any 
errors. Notebook periodically saves your notebook for you automatically. How-
ever, to save it manually, you choose File➪  Save and Checkpoint.

Closing a notebook
You definitely shouldn’t just close the browser window when you finish working 
with your notebook. Doing so will likely cause data loss. You must perform an 
orderly closing of your file, which includes stopping the kernel used to run the 
code in the background. After you save your notebook, you can close it by choosing 
File➪  Close and Halt. You see your notebook entered in the list of notebooks for 
your project folder, as shown in Figure 3-8.

Removing a notebook
Sometimes notebooks get outdated or you simply don’t need to work with them 
any longer. Rather than allow your repository to get clogged with files you don’t 

FIGURE 3-8:  
Your saved  
notebooks 

appear in a list in 
the project folder.
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need, you can remove these unwanted notebooks from the list. Use these steps to 
remove the file:

1. Select the check box next to the DSPD_0103_Sample.ipynb entry.

2. Click the Delete (trash can) icon.

A Delete notebook warning message appears, like the one shown in Figure 3-9.

3. Click Delete.

Notebook removes the notebook file from the list.

Exercise care when deleting notebook files. Notebook lacks any form of Undo 
for files, so trying to recover a deleted file can prove difficult.

Importing a notebook
To use the source code from this book, you must import the downloaded files 
into your repository. The source code comes in an archive file that you extract 
to a location on your hard drive. The archive contains a list of .ipynb (IPython 
Notebook) files containing the source code for this book (see the Introduction for 
details on downloading the source code). The following steps tell how to import 
these files into your repository:

1. Click the Upload on the Notebook DSPD page.

What you see depends on your browser. In most cases, you see some type of 
File Upload dialog box that provides access to the files on your hard drive.

2. Navigate to the directory containing the files that you want to import 
into Notebook.

FIGURE 3-9:  
Notebook warns 

you before 
removing any 
files from the 

repository.
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3. Highlight one or more files to import and then click the Open (or other, 
similar) button to begin the upload process.

You see the file added to an upload list, as shown in Figure 3-10. The file isn’t 
part of the repository yet — you’ve simply selected it for upload.

4. Click Upload.

Notebook places the file in the repository so that you can begin using it.

Working with Python using Google 
Colaboratory
Colaboratory (https://colab.research.google.com/notebooks/welcome.ipynb),  
or Colab for short, is a Google cloud-based service that replicates Notebook in 
the cloud. This is a custom implementation, so you may find Colab and Notebook 
to be out of sync at times — meaning that features in one may not always work 
in the other. You don’t have to install anything on your system to use Colab. In 
most respects, you use Colab as you would a desktop installation of Notebook. The 
main reason to learn more about Colab is if you want to use a device other than 
a standard desktop setup to work through the examples in this book. If you want 
a fuller tutorial of Colab, you can find one in Chapter 4 of Python For Data Science 
For Dummies, 2nd Edition, by John Paul Mueller and Luca Massaron (Wiley). For 
now, this section gives you the basics of using existing files. Figure 3-11 shows the 
opening Colab display.

FIGURE 3-10:  
The files you 

want to add to 
the repository 

appear as part of 
an upload list.

https://colab.research.google.com/notebooks/welcome.ipynb
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You can open existing notebooks found in local storage, on Google Drive, or on 
GitHub. You can also open any of the Colab examples or upload files from sources 
that you can access, such as a network drive on your system. In all cases, you 
begin by choosing File➪  Open Notebook. The default view shows all the files  
you opened recently, regardless of location. The files appear in alphabetical order. 
You can filter the number of items displayed by typing a string into Filter Note-
books. Across the top are other options for opening notebooks.

Even if you’re not logged in, you can still access the Colab example projects. These 
projects help you understand Colab but don’t allow you to do anything with your 
own projects. Even so, you can still experiment with Colab without logging into 
Google first. Here is a quick list of the ways to use files with Colab:

 » Using Drive for existing notebooks: Google Drive is the default location for 
many operations in Colab, and you can always choose it as a destination. 
When working with Drive, you see a listing of files. To open a particular file, 
you click its link in the dialog box. The file opens in the current tab of 
your browser.

 » Using GitHub for existing notebooks: When working with GitHub, you initially 
need to provide the location of the source code online. The location must point 
to a public project; you can’t use Colab to access your private projects. After 
you make the connection to GitHub, you see a list of repositories (which are 
containers for code related to a particular project) and branches (which 

FIGURE 3-11:  
Colab makes 

using your 
Python projects 

on a tablet easy.
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represent particular implementations of the code). Selecting a repository and 
branch displays a list of notebook files that you can load into Colab. Simply click 
the required link and it loads as if you were using Google Drive.

 » Using local storage for existing notebooks: If you want to use the down-
loadable source for this book, or any local source, for that matter, you select 
the Upload tab of the dialog box. In the center, you see a single button called 
Choose File. Clicking this button opens the File Open dialog box for your 
browser. You locate the file you want to upload, just as you normally would 
for any file you want to open. Selecting a file and clicking Open uploads the 
file to Google Drive. If you make changes to the file, those changes appear on 
Google Drive, not on your local drive.

Google is aware that people want to use Colab for their R projects (along with 
other languages; see the “Using other programming languages for data science” 
sidebar, earlier in this chapter, for details). However, Colab doesn’t currently sup-
port these languages and no date set exists for implementing the required sup-
port. Consequently, if you choose to use Colab for the book’s projects, you must 
work with Python.

Defining the limits of using Azure  
Notebooks with Python and R
As with Colab, you can use Azure Notebooks (see Figure  3-12) (https:// 
notebooks.azure.com/) to run your Python code. Fortunately, in this case, an R 
kernel available, as described at https://notebooks.azure.com/help/jupyter- 
notebooks/available-kernels. You can also install R packages and use them 
in your code, as described at https://notebooks.azure.com/help/jupyter- 
notebooks/package-installation/r. One of the most important issues that  
differentiate Colab and Azure Notebooks is that Google released Colab in 2014, so 
it has become a mature product, while Azure Notebooks is still in preview mode. 
Here are some other issues to consider:

 » Colab supports 20GB of memory; Azure Notebooks is limited to 4GB.

 » Azure Notebooks doesn’t provide any GPU support.

 » Azure Notebooks does provide better file support than Colab using the 
Libraries feature.

 » Azure Notebooks provides configuration support using YAML files.

 » Azure Notebooks provides an integrated bash terminal, but you can run bash 
commands directly in your Colab code using the ! command.

https://notebooks.azure.com/
https://notebooks.azure.com/
https://notebooks.azure.com/help/jupyter-notebooks/available-kernels
https://notebooks.azure.com/help/jupyter-notebooks/available-kernels
https://notebooks.azure.com/help/jupyter-notebooks/package-installation/r
https://notebooks.azure.com/help/jupyter-notebooks/package-installation/r
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Obtaining and Using R
This book relies on Anaconda for demonstrating the data science code. You must 
begin by installing Anaconda, as described in the “Obtaining and installing Ana-
conda for Python” section, earlier in this chapter. After you have an Anaconda 
installation in place, you can use the instructions in the following sections to cre-
ate an R environment in which you can execute the book’s R code.

Obtaining and installing Anaconda for R
To install R, you must open the Anaconda Prompt. For Windows users, this means 
choosing Start➪  All Programs➪  Anaconda3➪  Anaconda Prompt. You see the Ana-
conda Prompt, shown in Figure 3-13. Notice the word (base) at the beginning of 
the prompt. This is the current environment — the base environment.

At the Anaconda Prompt, type conda create -n R_env r-essentials r-base and 
press Enter. This command creates a new Anaconda environment called R_env. 
Whenever you want to work with R code, you use the R_env environment. Within 
this environment, conda, the Anaconda command-line utility, installs R essen-
tials and base packages. This set of packages is enough to get you started. How-
ever, you can install other packages later as needed for specific kinds of analysis. 
The installation process displays a series of messages that ends with a listing of 
packages that conda will install, like those shown in Figure 3-14.

FIGURE 3-12:  
Azure Notebooks 
provides another 

means of running 
Python code.
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You can begin the installation process by typing y and pressing Enter. At this 
point, conda begins to download and extract packages. When the downloads com-
plete, conda performs various transactional processes that can include compil-
ing some of the packages it downloaded into executables (or other forms). This 
process can take a while, so you might want to have a good book ready or some 
coffee to drink.

After the installation process completes, you’re still in the (base) environment. 
To work with the (R_env), you must type conda activate R_env at the Anaconda 
Prompt. You can how use whatever directory command your platform supports to 
see a list of the files that conda installed. To leave the (R_env) environment and 
go back to the (base) environment, you type conda deactivate and press Enter.

Starting the R environment
Fortunately, you won’t work at the Anaconda Prompt when you want to work 
with R code. However, you won’t start Notebook directly, either, because doing so 

FIGURE 3-13:  
Open an  

Anaconda Prompt 
to install R.

FIGURE 3-14:  
The conda utility 

tells you which 
packages it will 

install.
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starts the (base) environment and you want the (R_env) environment. Instead, 
you start Anaconda Navigator, which appears in Figure 3-15. Notice that this util-
ity provides you with access to all the GUI tools that Anaconda supports (and if you 
don’t see what you need, you can always install more).

To start R, you must first select R_env in the Applications On drop-down list box, 
as shown in Figure 3-16. The tools you see will change to reflect what you can do 
with this environment. The important tool for this book is Notebook. Note the 
gear icon in the upper-right corner of the square. If you need to change the ver-
sion of Notebook, click the icon and choose Install Specific Version from the list.

FIGURE 3-15:  
Anaconda 
 Navigator  

provides access 
to a number of 

useful tools.

FIGURE 3-16:  
Changing your 

environment will 
often change the 
available tool list.
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Click Launch in the Notebook square to start the application. You see Notebook 
start in a browser, just as you do when working with Python, but now you’re 
working with R instead.

Defining an R code repository
Because you’re using Notebook, everything with R works precisely the same as it 
does for Python, as described in the “Defining a Python code repository” section, 
earlier in this chapter. The name of the R repository for this book is DSPD_R. Use 
the instructions in the “Defining a Python code repository” section to create an R 
repository and experiment with an R file. However, instead of choosing Python 3 
from the New drop-down list, you choose R instead. Otherwise, everything works as  
it would for Python. The test file for this section is DSPD_R_0103_Sample.ipynb.

Something important to note when using R is that you can download your code as 
an .r file, as shown in Figure 3-17. In fact, you have not only the Notebook for-
mats to choose from, but a number of R-specific formats as well. To keep things 
simple, the downloadable source for this book relies on .ipynb files for all source 
code to ensure that you get the required comments with the file.

You can perform a quick test of your R environment using the following code:

myString <- "Hello, World!"
print(myString)

FIGURE 3-17:  
You can save R 
code in .r files, 
but the .r files 
lack Notebook 

comments.
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After you click Run, you see the following output:

[1] "Hello, World!"

Presenting Frameworks
Sometimes you use a framework to work with an application, especially as you 
move from data science–specific analysis into other areas, such as machine learn-
ing and deep learning. Consequently, an overview of frameworks is helpful. You 
may find that you need to move from the environment provided for the majority 
of the examples in this book to something better suited for complex applications.

In a framework environment, your code makes requests of the framework, which 
then fulfills the request for you. Consequently, frameworks provide a kind of 
structure for application development. Because of this structure, frameworks are 
domain specific, answering specific kinds of application development needs. By 
taking care of some of the details for you and controlling the manner in which 
your application executes, a framework reduces the amount of coding you per-
form and makes your application both more reliable and more consistent.

The following sections discuss frameworks both from an overview perspective and 
in more detail as part of a machine learning or deep learning solution. It’s impor-
tant to remember that these sections don’t provide you with complete informa-
tion on frameworks, but they do help you understand deep learning frameworks 
well enough to make good decisions about them.

Defining the differences
The problem domain–specific nature of frameworks makes it necessary to locate 
the right sort of framework for your needs. (A problem domain is a description 
of the expertise and resources required to solve a problem. For example, you 
wouldn’t go to a doctor to solve your plumbing problems — you’d go to a plumber 
instead.) Simply asking for a general framework won’t do you much good. Here 
are some examples of framework types, all of which have specific characteristics 
to meet the needs of their problem domain:

 » Application framework (of the sort used to create end-user applications)

 » Artistic (drawing, music, and other creative forms)

 » Cactus framework (high-performance scientific computing)
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 » Decision support system

 » Earth system modeling

 » Financial modeling

 » Web framework (including language-specific frameworks for languages like 
such as AJAX and JavaScript)

The diversity of software frameworks is amazing, and you’re unlikely to ever 
need them all. They do have two important features in common. In each case, 
the framework defines a series of frozen spots that define the characteristics of 
the application and that the developer can’t change. In addition, the framework 
defines hot spots that a developer does use to define the specifics to the target soft-
ware. For example, a frozen spot in a web application might define the interface 
on which a user relies to make requests, while a hot spot might define how to ful-
fill that request. Someone designing a book search application would focus on the 
specifics of book searches while disregarding the requirements of state manage-
ment and request handling.

Explaining the popularity of frameworks
In thinking about software, you can easily see the progression of tools used to 
create it. At one time, developers had to input their code using keypunch cards, 
which was extremely time consuming and error prone. Editors made the job eas-
ier, allowing you to type what you want to get done. Next came the Integrated 
Development Environment (IDE). Using an IDE allows modeling, compilation, 
and testing of the code in a single environment, along with other things. The 
use of libraries enables you to create large, complex applications quickly. So, a 
 framework — which is an environment in which a developer needs to consider 
only the specifies of a particular application — is simply the next step in making 
developers more productive while also making applications more robust and less 
error prone. Hence the popularity of frameworks with developers.

However, a framework is much more than simply a means of creating code 
faster, with less effort and fewer errors. A framework lets you create a standard-
ized environment in which everyone uses the same libraries, tools, Application 
Programming Interfaces (APIs), and other programs. The use of a standardized 
environment enables you to transfer code between systems without fear of intro-
ducing odd application issues because of environmental inconsistencies. In addi-
tion, team development issues are fewer because the collaboration environment 
is simplified.
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Because a framework handles all the low-level details, you must also consider the 
makeup of an application team. In the past, the team might need people who were 
adept at interacting with the hardware or creating user interface basics. The use of 
a framework means that all these tasks are already completed, so a team is made 
up of subject-matter experts who can communicate effectively with each other, 
making a coherent approach to application development possible.

The most important reason that frameworks are so popular now relates to how 
coding is done today. At one time, developers needed to know how to interact with 
the hardware and software at an extremely low level. Today, frameworks make 
coding easy in an environment in which

 » Most applications consist mainly of API calls strung together to achieve a 
specific purpose.

 » People need to understand how APIs perform, rather than what they do or 
how they do it. A developer needs to consider what data structures the API 
accepts and how well it processes data under pressure.

 » The immense installed base of existing software means keeping that code in 
place and finding fast, efficient methods to interact with it.

 » The focus is on architecture rather than details. Because most new applica-
tions rely heavily on existing code accessed through libraries or APIs, develop-
ers don’t spend as much time learning the idiosyncrasies of a language; it’s 
better to discover which pile of code can do the work without having to write 
any of the code yourself.

 » Getting the algorithm correct is what matters most.

 » Tools have become so smart that they often correct minor coding errors and 
interpret ambiguities in developer code correctly, so the emphasis is on 
getting ideas down rather than writing perfect code.

 » Visual languages, in which you drag and drop objects in a graphical environ-
ment, are becoming more common. At some point, code could actually 
disappear (at least, for most application developers).

 » Knowing a single platform isn’t enough. Most applications today must execute 
flawlessly on Windows, Linux, macOS, Android, most smart phones, and 
myriad other platforms because users want software in a form they 
understand.
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Choosing a particular library
The previous sections in this chapter discuss the appeal of frameworks in general 
and trace how frameworks can create a significantly better work environment for 
developers. Also covered are features that make a framework used for machine 
learning or deep learning special. Of course, the amount of automation that a 
framework supplies and the number of typical features it supports are the starting 
point for finding a framework that meets your needs. You also need to consider 
issues such as learning curve with regard to the ease of using the framework.

One of the more important considerations when choosing a framework is to remem-
ber that frameworks are domain specific, which means that if you need to create an 
application that spans domains, such as a deep learning application that includes a 
web interface, you need multiple frameworks. Getting frameworks that work well 
with each other can be critical. If you also host your application in the cloud, you 
need to consider which frameworks work with the cloud vendor’s offering, too. For 

CONSIDERING FRAMEWORK NEGATIVES
Depending on whom you talk to, a framework solution isn’t always the panacea that 
supporters would make it out to be. One of the bigger issues when using a framework 
is that the framework becomes its own application. A development team needs to 
learn both the framework and all the tools used to write the application. Consequently, 
if most of the team members on a development effort haven’t used the framework 
before, they’ll need additional time to overcome the framework’s learning curve. 
However, after they learn how to use a framework, they’ll easily gain back part of this 
initial investment in time through higher productivity overall.

Another problem with frameworks is their tendency to use resources inefficiently. The 
size of a framework application, framework included, is generally larger than an applica-
tion developed using libraries. Of course, monolithic applications are generally the most 
efficient because they can use only the resources required for that application. All the 
code bloat found in frameworks comes from trying to create a one-size-fits-all solution.

The frameworks discussed in this book are all public offerings. In fact, most of them are 
open source as well. However, some proponents of frameworks feel that every enter-
prise should have its own framework that is developed using the common code from 
applications in that enterprise. With that approach, the resulting framework has a con-
sistent look and feel that matches the pre-framework applications that the enterprise 
has to maintain. However, developing a custom framework for a particular enterprise 
is time consuming. Therefore, many people point out that a framework-based solution 
isn’t as useful or easy to learn as nonframework solutions.
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example, if you choose to use TensorFlow as your framework, you can also rely on 
Amazon Web Services (AWS) to host your application (see https://aws.amazon. 
com/tensorflow/ for details).

As another option when using TensorFlow, you can go directly to Google Cloud 
(see https://cloud.google.com/tpu/ for details), where you can train your 
deep learning solution using GPUs or Tensor Processing Units (TPUs). The TPUs 
were developed by Google specifically for neural network machine learning use 
TensorFlow. TPUs are Application-Specific Integrated Circuits (ASICs) optimized 
for a particular use. In this case, they’re for neural network processing using 
TensorFlow.

Application size and complexity also play a role in deep learning framework choice 
because you often need a higher-end framework to interact properly with large 
applications. The need to deal with applications of various sorts is offset by the 
usual cost and availability concerns. Many of the low-end deep learning frame-
works in this chapter cost you nothing to try and could provide everything needed 
to get started.

Accessing the Downloadable Code
The “Importing a notebook” section of this chapter discusses the mechanics of 
importing an .ipynb file into the Notebook environment. Each of the languages 
used for this book has its own separate folder in the downloadable source: Python 
and R. To access the downloadable code for a particular example, you first locate 
the correct language file. Inside the folder, you find the source code files that you 
can then import into Notebook.

Some of the book examples come with prerequisites. You might have to load a new 
library or perform a configuration change. The downloadable code won’t work 
properly without these changes. As part of performing any setups, you need to 
ensure that you install the correct versions of any libraries or packages. Other-
wise, breaking changes in older or newer versions of these elements will cause the 
code to fail in some extremely odd ways. Trying to figure out just why a particular 
piece of code is failing in this circumstance, especially through email, can prove 
nearly impossible.

Even though this chapter discusses the use of online products to execute the code, 
these options come without any sort of guarantee, and you need to know how to 
upload the downloadable source to the online product you want to use. In some 
cases, all you really need to do is drag and drop the file from where you down-
loaded it to the online product.

https://aws.amazon.com/tensorflow/
https://aws.amazon.com/tensorflow/
https://cloud.google.com/tpu/
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Considering Additional 
Packages and Libraries 
You Might Want

The terms package and library refer to code written not by the original devel-
opers but rather by a third party. Such code doesn’t necessarily appear as 
part of a language’s default installation; in fact, none of the packages and 

libraries in this chapter comes along with a default installation. You must obtain 
and install each one in some way to use it.

Third-party code alleviates the need for you to write something yourself. In most 
cases, you find that such code contains essential features in an easy-to-use and 
consistent manner. The code’s developers perform required updates and ensure 
that the code is as bug free as possible for you. You may find that the code is com-
piled in binary form or provided as source that is interpreted with the rest of your 
application. Some packages and libraries cost money to use, but none of the pack-
ages in this chapter cost anything unless you obtain a special high-end version 
that provides some level of additional support or functionality.

Chapter 4

IN THIS CHAPTER

 » Using packages and libraries to your 
benefit

 » Working with Python packages

 » Working with R libraries



82      BOOK 1  Defining Data Science

The terms package and library prove confusing for many people, which isn’t sur-
prising. Different languages and different developers use the terms in various 
ways. For the purposes of this book, a Python package is equivalent to an R library 
in that it contains a collection of functions you download as a group.

Packages and libraries consist of smaller units to make working with the pack-
age or library easier and to reduce resource usage. For the purposes of this book, 
Python packages contain individual modules of like functionality. You work with 
a module to obtain a specific level of functionality after obtaining a package con-
taining the module. Likewise, R libraries contain packages. The nuances among all 
these various packaging methods won’t matter for this book.

With these naming differences in mind, this chapter begins by discussing how you 
use third-party code in a generic way to perform data science tasks. If you were to 
write a data science application completely from scratch, without the use of third-
party packages or libraries, it would take an incredibly long time. However, you 
need to know that you could do it should you want to do so. Packages and libraries 
aren’t magic — they’re simply code.

The last two parts of the chapter discuss specific packages and libraries for each of 
the book’s languages: Python and R. You use some of these packages and librar-
ies in the book, but others answer specific needs that you won’t have until you 
have spent more time working with data science. In fact, you may not use all the 
packages and libraries listed in this chapter, even if you learn how to perform data 
science tasks using all three languages.

Considering the Uses for Third-Party Code
As with languages, third-party code exists to fulfill the needs of the user. A com-
puter understands only machine language — the essential language used to flip 
the switches within its processor. As with any code, an interpreter or compiler 
serves to translate the third-party code into machine language. Consequently, the 
computer doesn’t care whether you use one scientific package or another. So your 
first concern is to choose a package or library that makes sense to you — one that 
makes tasks easier and reduces the amount of code you must write.

Developers who write third-party code used in packages and libraries are just 
like you: They possess various skill levels and sometimes make mistakes. Conse-
quently, when you do find a package or library that you like, you need to consider 
how the developer wrote its code. You should consider these questions:
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 » Is the code relatively error free? (The bug-free anything is a myth.)

 » Does the code enjoy community support?

 » Will the developer (or development team) continue to support the code?

 » Do independent benchmark tests exist that show that the code executes 
quickly?

 » Has anyone validated the code’s resource usage levels?

 » Have tests shown correct outputs even when working with less than perfect 
inputs?

Even if you happen to find a high-quality package or library that has a superior 
feature set, you must still use it correctly. If you get a science package that spe-
cializes in data analysis, the lesser elements of the package may not perform well 
when attempting a machine learning task. Sometimes you must mix packages and 
libraries together in a smart manner to obtain a desired result for your particular 
application. The package or library developer has no way to know anything about 
your application in advance, so the burden of choosing the correct features falls 
on you, which is where experimentation comes into play.

The smart developer doesn’t rely on just one or two packages or libraries. It’s akin 
to creating a perfume. Using just one flower is nice, but it’s hardly going to pro-
duce a spectacular result. Instead, the perfumer visits the garden and chooses just 
the right flowers with which to create the exquisite oils used in a perfume that 
dazzles. Likewise, a masterful developer will have an entire garden of packages 
and libraries from which to choose, mixing those features that specifically answer 
a particular application’s needs.

Another important consideration is that many packages and libraries provide the 
means for addressing the disparity between language features. For example, you 
find that some Python packages help Python to address the statistical analysis 
disparity between Python and R.  A package or library can address the concern 
where using a particular language almost meets a particular application need, but 
not quite.

Obtaining Useful Python Packages
Many developers use Python as a language of choice for general analysis needs 
in scenarios in which an application needs to perform a wide range of data sci-
ence tasks rather than specialize in a particular area. However, Python isn’t a 
 general-purpose language like Java. You wouldn’t use it to create a user interface 



84      BOOK 1  Defining Data Science

for a refrigerator, even if that refrigerator is smart. Python’s popularity stems 
from having just enough specialization to make it easy for someone who has to 
perform detailed analysis to learn, but it’s not so specialized as to make some 
general tasks undoable. With this level of specialization in mind, the following 
sections discuss various Python packages used for certain kinds of analysis, but 
you should know that Python can do more. You can find a significantly longer list 
of packages at https://wiki.python.org/moin/UsefulModules.

Accessing scientific tools using SciPy
The SciPy stack (http://www.scipy.org/) contains a host of other packages that 
you can also download separately. These packages provide support for mathemat-
ics, science, and engineering. When you obtain SciPy, you get a set of packages 
designed to work together to create applications of various sorts. These pack-
ages are

 » NumPy

 » SciPy

 » matplotlib

 » Jupyter

 » SymPy

 » pandas

Of course, these are just the packages listed on the SciPy main page. If you dig fur-
ther into the details found at https://www.scipy.org/about.html, you discover 
other packages, called the SciPy ecosystem, that are built upon or around SciPy. 
For example, when it comes to data and computation, you find these packages:

 » Scikit-image

 » Scikit-learn

 » h5py

 » PyTables

The SciPy package itself focuses on numerical routines, such as routines for 
numerical integration and optimization. SciPy is a general-purpose package that 
provides functionality for multiple problem domains. It also provides support for 
domain-specific packages, such as Scikit-learn, Scikit-image, and statsmodels.

https://wiki.python.org/moin/UsefulModules
http://www.scipy.org/
https://www.scipy.org/about.html
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R intrinsically provides much of the SciPy functionality as part of the language. You 
can find discussions comparing R to SciPy functionality online. For example, you 
can find a comparison of R optim to SciPy optimize at https:// stackoverflow. 
com/questions/51813317/r-optim-vs-scipy-optimize. Even though the func-
tionality isn’t precisely the same, you find that R and Python with SciPy can pro-
duce equivalent results.

Performing fundamental scientific  
computing using NumPy
The NumPy library (https://numpy.org/) provides the means for performing 
n-dimensional array manipulation, which is critical for data science work. NumPy 
functions also include support for linear algebra, Fourier transform, and random-
number generation (see the listing of functions at https://docs.scipy.org/ 
doc/numpy/reference/routines.html).

Many discussions online talk about how NumPy helps Python developers 
bridge the statistical processing gap with R (see https://stackoverflow.com/  
questions/3545057/numpy-for-r-user as an example). You also find that pan-
das is important in helping bridge this gap. However, when you use a package to 
overcome an apparent language deficiency, the only true way to determine which 
language is better is to perform tests. In addition, it’s important to understand 
that you won’t find a one-for-one correlation between the features that a pack-
age provides and the deficiencies that it helps to overcome. Complicating matters 
further, some R libraries, such as reticulate (see the “Using your Python code in 
R with reticulate” section, later in this chapter, for details), let you load certain 
Python packages within R (see https://cran.r-project.org/web/packages/ 
reticulate/vignettes/python_packages.html for details). Consequently, even 
if a Python package offers advantages over another language, the other language 
may still be able to use the Python package.

Performing data analysis using pandas
The pandas library (http://pandas.pydata.org/) provides support for data 
structures and data analysis tools. The library is optimized to perform data sci-
ence tasks especially fast and efficiently.

The basic principle behind pandas is to provide data analysis and modeling support 
for Python that is similar to other languages, such as R. The focus of this modeling 
is the dataframe. You can find a comparison of pandas and R functionality on the 
site at https://pandas.pydata.org/pandas-docs/stable/getting_started/ 
comparison/comparison_with_r.html (complete with some coding examples).

https://stackoverflow.com/questions/51813317/r-optim-vs-scipy-optimize
https://stackoverflow.com/questions/51813317/r-optim-vs-scipy-optimize
https://numpy.org/
https://docs.scipy.org/doc/numpy/reference/routines.html
https://docs.scipy.org/doc/numpy/reference/routines.html
https://stackoverflow.com/questions/3545057/numpy-for-r-user
https://stackoverflow.com/questions/3545057/numpy-for-r-user
https://cran.r-project.org/web/packages/reticulate/vignettes/python_packages.html
https://cran.r-project.org/web/packages/reticulate/vignettes/python_packages.html
http://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_r.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_r.html
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Implementing machine learning  
using Scikit-learn
The Scikit-learn library (http://scikit-learn.org/stable/) is one of a num-
ber of Scikit libraries that build on the capabilities provided by NumPy and SciPy 
to allow Python developers to perform domain-specific tasks. In this case, the 
library focuses on data mining and data analysis. It provides access to the follow-
ing sorts of functionality:

 » Classification

 » Regression

 » Clustering

 » Dimensionality reduction

 » Model selection

 » Preprocessing

A number of these functions appear as chapter headings in the book. As a result, 
you can assume that Scikit-learn is the most important library for the book (even 
though it relies on other libraries to perform its work).

R doesn’t offer a single library that precisely matches Scikit-learn. However, it 
does provide the caret library, which gives you similar functionality. You can find 
a comparison of the two at https://www.analyticsvidhya.com/blog/2016/12/
cheatsheet-scikit-learn-caret-package-for-python-r-respectively/. The 
“Conducting advanced training using caret” section, later in this chapter, pro-
vides additional information. Another popular R library for machine learning is 
Mlr (https://cran.r-project.org/web/packages/mlr/index.html). Again, it 
offers some of what you find in Scikit-learn, but the two aren’t a complete match 
(see the “Performing machine learning tasks using Mlr” section, later in this 
chapter, for more details).

If you need a single-source solution for machine learning needs and don’t mind 
jumping through a few hoops to get it, H2O (https://www.h2o.ai/products/
h2o/) provides a solution for R, Python, and Scala developers.

Going for deep learning with  
Keras and TensorFlow
Keras (https://keras.io/) is an application programming interface (API) that 
is used to train deep learning models. An API often specifies a model for doing 
something, but it doesn’t provide an implementation. Consequently, you need 

http://scikit-learn.org/stable/
https://www.analyticsvidhya.com/blog/2016/12/cheatsheet-scikit-learn-caret-package-for-python-r-respectively/
https://www.analyticsvidhya.com/blog/2016/12/cheatsheet-scikit-learn-caret-package-for-python-r-respectively/
https://cran.r-project.org/web/packages/mlr/index.html
https://www.h2o.ai/products/h2o/
https://www.h2o.ai/products/h2o/
https://keras.io/
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an implementation of Keras to perform useful work, which is where TensorFlow 
(https://www.tensorflow.org/) comes into play.

You can also use Microsoft’s Cognitive Toolkit, CNTK (https://www.microsoft.
com/en-us/cognitive-toolkit/), or Theano (https://github.com/Theano) to 
implement Keras, but this book focuses on TensorFlow. A good reason to focus 
on TensorFlow is that you can find a version of it for R (https://tensorflow. 
rstudio.com/). Even though you find language differences in the three implemen-
tations, by using a single product, you significantly reduce your learning curve.

When working with an API, you’re looking for ways to simplify your approach to 
tasks. Keras makes things easy in the following ways:

 » Consistent interface: The Keras interface is optimized for common use cases 
with an emphasis on actionable feedback for fixing user errors.

 » Lego approach: Using a black-box approach makes it easy to create models 
by connecting configurable building blocks together with only a few restric-
tions on how you can connect them.

 » Extendable: You can easily add custom building blocks to express new ideas 
for research that include new layers, loss functions, and models.

 » Parallel processing: To run applications fast today, you need good parallel 
processing support. Keras runs on both CPUs and GPUs.

 » Direct Python support: You don’t have to do anything special to make the 
TensorFlow implementation of Keras work with Python, which can be a major 
stumbling block when working with other sorts of APIs.

Plotting the data using matplotlib
The matplotlib library (http://matplotlib.org/) gives you a MATLAB-like 
interface for creating data presentations of the analysis you perform. The library 
is currently limited to 2-D output, but it still provides you with the means to 
express graphically the data patterns you see in the data you analyze. Without this 
library, you couldn’t create output that people outside the data science community 
could easily understand.

R doesn’t provide a matplotlib equivalent. Yes, you can still output plots, but 
Python appears to have a clear advantage in this case. The best libraries to use 
with R for output are ggplot2 (see the “Visualizing data using ggplot2” section of 
the chapter for details) and Esquisse (see the “Enhancing ggplot2 using esquisse” 
section of the chapter for details).

https://www.tensorflow.org/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://github.com/Theano
https://tensorflow.rstudio.com/
https://tensorflow.rstudio.com/
http://matplotlib.org/
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When working with R, you can also use reticulate to import matplotlib into 
your R configuration. The article at https://rstudio.github.io/ reticulate/ 
articles/r_markdown.html shows you how to perform this task. How-
ever, the implementation is less than perfect; you may need to use work-
arounds, as described in the article at https://community.rstudio.com/t/ 
matplotlib-inline-plots-with-reticulate-on-rstudio-server/16357.

Creating graphs with NetworkX
To properly study the relationships between complex data in a networked system 
(such as that used by your GPS setup to discover routes through city streets), 
you need a library to create, manipulate, and study the structure of network data 
in various ways. In addition, the library must provide the means to output the 
resulting analysis in a form that humans understand, such as graphical data. 
NetworkX (https://networkx.github.io/) enables you to perform this sort of 
analysis. The advantage of NetworkX is that nodes can be anything (including 
images) and edges can hold arbitrary data. These features allow you to perform 
a much broader range of analysis with NetworkX than using custom code would 
(and such code would be time consuming to create).

Even though the preferred package for Python is NetworkX, some developers 
use igraph (https://igraph.org/redirect.html) because it supports both R 
and Python (https://igraph.org/python/) directly. If you already have some 
code that relies on NetworkX, the discussion at https://stackoverflow.com/ 
questions/23235964/interface-between-networkx-and-igraph tells you have 
to interface one with the other. The “Creating graphs with igraph” section of the 
chapter discusses the igraph in more detail.

Parsing HTML documents using  
Beautiful Soup
The Beautiful Soup library (http://www.crummy.com/software/BeautifulSoup/) 
download is actually found at https://pypi.python.org/pypi/beautifulsoup4/ 
4.3.2. This library provides the means for parsing HTML or XML data in a manner 
that Python understands. It allows you to work with tree-based data.

Besides giving you a means for working with tree-based data, Beautiful Soup 
takes a lot of the work out of working with HTML documents. For example, it 
automatically converts the encoding (the manner in which characters are stored 
in a document) of HTML documents from UTF-8 to Unicode. A Python devel-
oper would normally need to worry about things like encoding, but with Beautiful 
Soup, you can focus on your code instead.

https://rstudio.github.io/reticulate/articles/r_markdown.html
https://rstudio.github.io/reticulate/articles/r_markdown.html
https://community.rstudio.com/t/matplotlib-inline-plots-with-reticulate-on-rstudio-server/16357
https://community.rstudio.com/t/matplotlib-inline-plots-with-reticulate-on-rstudio-server/16357
https://networkx.github.io/
https://igraph.org/redirect.html
https://igraph.org/python/
https://stackoverflow.com/questions/23235964/interface-between-networkx-and-igraph
https://stackoverflow.com/questions/23235964/interface-between-networkx-and-igraph
http://www.crummy.com/software/BeautifulSoup/
https://pypi.python.org/pypi/beautifulsoup4/4.3.2
https://pypi.python.org/pypi/beautifulsoup4/4.3.2
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R uses the rvest (https://cran.r-project.org/web/packages/rvest/index. 
html) library to obtain similar (but not precisely the same) parsing results as 
Beautiful Soup. The article at https://www.dataquest.io/blog/python-vs-r/ 
gives an objective comparison of R and Python, including a segment on HTML doc-
ument parsing. Even using rvest, R requires more code, which says a lot because 
R is normally quite frugal when it comes to code. The “Parsing HTML documents 
using rvest” section, later in this chapter, provides more insights into using rvest.

Locating Useful R Libraries
R supplies a wealth of built-in functionality for its core proficiency of statistical 
analysis, so you frequently find that you don’t need to use libraries with it as often 
as if you were to use Python. However, you do need libraries at times, especially 
if you have certain goals that fall outside the normal range of R proficiencies. The 
following sections discuss some R libraries that you might want to add to your 
collection to perform data science tasks with greater ease. Be sure to also read 
through the “Obtaining Useful Python Packages” section, earlier in this chapter, 
if you want to understand how R and Python packages compare.

Using your Python code in R with reticulate
If you already work with Python and have a substantial investment in Python 
code, you can continue to use that investment in many cases by adding reticulate 
(https://rstudio.github.io/reticulate/) to your R toolbox. You use reticu-
late to access your Python code from R in a nearly seamless manner. In fact, you 
have access to four techniques for accomplishing this task:

 » R Markdown

 » Sourcing Python scripts

 » Importing Python modules

 » Using Python interactively within an R session

The reticulate library automatically marshals your data between languages. For 
example, it can translate between R and pandas dataframes, among other objects. 
In addition, you gain access to your Python environment, such as the one you 
configure in Chapter 3 of this minibook.

https://cran.r-project.org/web/packages/rvest/index.html
https://cran.r-project.org/web/packages/rvest/index.html
https://www.dataquest.io/blog/python-vs-r/
https://rstudio.github.io/reticulate/
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There are limits to what the reticulate library can do for you. For example, it won’t 
suddenly force R to allow passing of data by reference rather than value. So, you 
can’t use it to solve certain R graphics plotting issues. However, you can find it 
invaluable in overcoming other R deficiencies, such as performing some types 
of data fitting tasks. The downloadable source (as described in the Introduction) 
contains examples of using reticulate to overcome learning issues discussed in 
Book 4, Chapter 3; Book 5, Chapter 2; and Book 5, Chapter 5. In addition, you find 
it called in as a separate library in Book 5, Chapter 3 and Book 6, Chapter 3.

Conducting advanced training using caret
The Classification and Regression Training (CARET) library (normally written 
as caret) (http://topepo.github.io/caret/index.html) originally started as a 
method to provide consistent access to the built-in R functions. It does more than 
simply provide access now; you use this library to perform the following:

 » Visualizations

 » Data splitting

 » Preprocessing

 » Feature selection

 » Model tuning using resampling

 » Variable importance estimation

The documentation provided on the host site is extensive but can be a little hard 
to follow, and it doesn’t always contain the complete code needed for an example 
to work. The Cran site at https://cran.r-project.org/web/packages/caret/ 
vignettes/caret.html provides additional information that makes using this 
library easier.

Performing machine learning  
tasks using mlr
Machine Learning in R (MLR) (https://mlr.mlr-org.com/) standardizes the 
interface provided for the built-in R machine learning functions, making them 
significantly easier to use. In addition, you write less code when you use the mlr 
library because it consolidates some functionality. The site page offers a host of 
features that this library supports, but here is a quick overview of the supervised 
and unsupervised learning functionality:

http://topepo.github.io/caret/index.html
https://cran.r-project.org/web/packages/caret/vignettes/caret.html
https://cran.r-project.org/web/packages/caret/vignettes/caret.html
https://mlr.mlr-org.com/
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 » Classification

 » Regression

 » Survival analysis

 » Evaluation and optimization methods

 » Clustering

Visualizing data using ggplot2
When working declaratively, you tell a library what you want done, but you 
let the library decide how to do it. The ggplot2 library (https://ggplot2. 
tidyverse.org/) relies on the Grammar of Graphics (GG) system to declare how 
to present information onscreen so that others can easily understand it. As with 
matplotlib, you might have to put in some effort to discover precisely how to 
perform every task in ggplot2, which is why the site page tells you about places 
to find tutorials. However, one of the more helpful aids with this library is the 
cheat sheet found at https://github.com/rstudio/cheatsheets/blob/master/ 
data-visualization-2.1.pdf.

Enhancing ggplot2 using esquisse
When working with complex products that help you display data in graphic form, 
trying to get started can prove difficult. The ggplot2 library gives you significant 
flexibility, but the learning curve can be steep. The esquisse add-on (https://
github.com/dreamRs/esquisse), which isn’t a library, reduces the complexity of 
using ggplot2 by helping you create a starting point interactively.

You use a GUI to design the output you want to present, but in a simple manner. 
The add-on doesn’t provide access to advanced ggplot2 features — it focuses on 
making things simple so that you can see what to do at the outset and then add to 
the result you get to obtain the refinements you need.

Creating graphs with igraph
Network graphs help you present complex data in a visual manner. For example, 
you might want to create an application that shows how to get from one place 
in a city to another. To create such a presentation, you need a network graph. 
The igraph library (https://igraph.org/redirect.html) enables you to add 
network graphing functionality directly to both Python and R. (The R-specific 
details appear at https://igraph.org/r/.) This library focuses on efficiency, 

https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://github.com/rstudio/cheatsheets/blob/master/data-visualization-2.1.pdf
https://github.com/rstudio/cheatsheets/blob/master/data-visualization-2.1.pdf
https://github.com/dreamRs/esquisse
https://github.com/dreamRs/esquisse
https://igraph.org/redirect.html
https://igraph.org/r/
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portability, and ease of use, so you might find that it doesn’t contain all the func-
tionality offered by NetworkX (described earlier in the chapter). You use igraph to

 » Generate graphs

 » Compute centrality measures

 » Compute path length based properties

Parsing HTML documents using rvest
HTML documents contain all sorts of formatting in the form of tags that make 
working with the data nearly impossible in any significant way without parsing. 
The rvest library (https://github.com/tidyverse/rvest) focuses on perform-
ing simple forms of parsing for elements such as HTML tables, as described in the 
article at https://blog.rstudio.com/2014/11/24/rvest-easy-web-scraping- 
with-r/. The point is to get the data into a form that you can use to create a 
dataframe for additional processing.

Getting started with rvest may take a little time because of the complexity of for-
matting used by most web pages. The tutorial at https://www.analyticsvidhya.
com/blog/2017/03/beginners-guide-on-web-scraping-in-r-using-rvest- 
with-hands-on-knowledge/ offers a quick hands-on tutorial that makes working 
with rvest easier.

Wrangling dates using lubridate
To obtain correct analysis output in most cases, you need to deal with dates and 
times. However, dates and times come in many forms, so interpreting them can 
prove problematic. For example, you must ask yourself when looking at 02/03/19 
whether the date represents 3 February 2019 or 2 March 2019. In fact, it could 
represent something completely different, such as 19 March 2002. You just don’t 
know unless you have some means for interpreting the date, such as through lub-
ridate (https://lubridate.tidyverse.org/). By knowing the point of origin for 
the date, you can interpret it correctly.

Times can be even harder. Now you must also consider issues other than simply 
format. Two times might be in the same format, but reflect different time zones.

You must also consider the issue of dissection. For example, you might need to 
know what day of the week 3 February 2019 happened on. Unfortunately, the 
information doesn’t appear as part of the date; you must dissect the date and then 

https://github.com/tidyverse/rvest
https://blog.rstudio.com/2014/11/24/rvest-easy-web-scraping-with-r/
https://blog.rstudio.com/2014/11/24/rvest-easy-web-scraping-with-r/
https://www.analyticsvidhya.com/blog/2017/03/beginners-guide-on-web-scraping-in-r-using-rvest-with-hands-on-knowledge/
https://www.analyticsvidhya.com/blog/2017/03/beginners-guide-on-web-scraping-in-r-using-rvest-with-hands-on-knowledge/
https://www.analyticsvidhya.com/blog/2017/03/beginners-guide-on-web-scraping-in-r-using-rvest-with-hands-on-knowledge/
https://lubridate.tidyverse.org/
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use the information to look up the day of the week. You can also use lubridate to 
perform date and time math to determine things like intervals.

Making big data simpler using  
dplyr and purrr
Often, a language comes with functionality that helps you perform a wealth of 
useful tasks, but accessing that functionality can prove difficult. R enables you 
to manage huge datasets in various ways so that you can make hard problems 
simple. However, accessing that functionality can prove difficult, and a library 
like dplyr (https://dplyr.tidyverse.org/) reduces your workload. Using dplyr, 
you can

 » Fit a specific model to subsets of a data frame

 » Calculate summary statistics for each data group

 » Perform group-wise transformations, such scaling or standardizing

The way in which dplyr performs its task is to

 » Make calling conventions more consistent

 » Use the foreach package to make parallelism easier to manage

 » Improve the input and output functionality for dataframes

 » Monitor processes with enhanced error handling

Unfortunately, dplyr works only with dataframes. When working with lists, you 
want to use purrr (https://purrr.tidyverse.org/) instead. When working with 
purrr, you rely on functional programming techniques to map data in various ways, 
such as by splitting large pieces into small ones. The first argument for all purrr 
functions is the data, so this library makes working with pipes incredibly easy.

https://dplyr.tidyverse.org/
https://purrr.tidyverse.org/
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Leveraging a Deep 
Learning Framework

Using a deep learning framework can greatly reduce the time, cost, and 
complexity of developing a deep learning solution. Even though deep 
learning frameworks have many characteristics of frameworks in general, 

they also provide specific functionality. This chapter explores some aspects of that 
functionality.

Not everyone uses the same ideas and concepts for running deep learning appli-
cations. In addition, not every organization wants to invest in a complex deep 
learning framework when a less expensive and simpler framework will do. Con-
sequently, you find a lot of deep learning frameworks that can provide you with 
basic functionality that you can use for experimentation and for simpler applica-
tions. This chapter explores some of these basic frameworks and compares them 
so that you have a better idea of what is available.

To provide the best possible learning environment, this book relies on the Tensor-
Flow framework for the examples. The final sections of the chapter describe Ten-
sorFlow and tell you how to install it. TensorFlow works better for the situations 
presented in this book than the other solutions covered earlier in the chapter, and 
these final sections explain why. The discussion also tells you precisely why Ten-
sorFlow is a good general solution to many deep learning scenarios.

Chapter 5

IN THIS CHAPTER

 » Understanding frameworks

 » Using a basic framework

 » Working with TensorFlow
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Understanding Deep Learning  
Framework Usage

Book 1, Chapter 3 offers a basic overview of frameworks in the “Presenting Frame-
works” section. Some of the examples in this book, most notably those in mini-
books 4 and 5, rely on TensorFlow to achieve their goal. If you want to move on to 
more advanced examples, you need a deep learning framework.

A framework is an abstraction that provides generic functionality, which your 
application code modifies to serve its own purposes. Unlike a library that runs 
within your application, when you’re using a framework, your application runs 
within it. You can’t modify basic framework functionality, which means that you 
have a stable environment in which to work, but most frameworks offer some 
level of extensibility. Frameworks are generally specific to a particular need, such 
as the web frameworks used to create online applications.

When thinking about a deep learning framework, what you’re really considering 
is how the framework manages the frozen spots and the hot spots used by the 
application. In most cases, a deep learning framework provides frozen spots and 
hot spots in these areas:

 » Hardware access (such as using a GPU with ease)

 » Standard neural network layer access

 » Deep learning primitive access

 » Computational graph management

 » Model training

 » Model deployment

 » Model testing

 » Graph building and presentation

 » Inference (forward propagation)

 » Automatic differentiation (backpropagation)

A good deep learning framework also exhibits specific characteristics that you 
may not find in other framework types. These characteristics help create an envi-
ronment in which the deep learning framework enables you to create intelligent 
applications that learn and process data quickly. Here are some of the character-
istics to consider when looking at a deep learning framework:
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 » Optimizes for performance rather than resource usage or some other 
consideration

 » Performs tasks using parallel operations to reduce the time spent creating a 
model and associated neural network

 » Computes gradients automatically

 » Makes coding easy because many of the people using deep learning frame-
works aren’t developers, but rather subject matter experts

 » Interacts well with standard libraries used for plotting, machine learning, and 
statistics

Frameworks address other issues, such as providing good community support for 
specific problem domains, and the focus on specific issues determines the viabil-
ity of a particular framework for a particular purpose. As with many forms of 
software development aid, you need to choose the framework you use carefully.

Working with Low-End Frameworks
Low-end deep learning frameworks often come with a built-in trade-off. You 
must choose between cost and usage complexity, as well as the need to support 
large applications in challenging environments. The trade-offs you’re willing to 
endure will generally reflect what you can use to complete your project. With this 
caveat in mind, the following sections discuss a number of low-end frameworks 
that are incredibly useful and work well with small to medium-size projects, but 
that come with trade-offs for you to consider as well.

Chainer
Chainer (https://chainer.org/) is a library written purely in Python that relies 
on the NumPy (http://www.numpy.org/) and CuPy (https://cupy.chainer.
org/) libraries. Preferred Networks (https://www.preferred-networks.jp/en/) 
leads the development of this library, but IBM, Intel, Microsoft, and NVidia also 
play a role. The main point with this library is that helps you use the CUDA capa-
bilities of your GPU by adding only a few lines of code. In other words, this library 
gives you a simple way to greatly enhance the speed of your code when working 
with huge datasets.

Many deep learning libraries today, such as Theano and TensorFlow (discussed 
later in this chapter), use a static deep learning approach called define and run, 
in which you define the math operations and then perform training based on 

https://chainer.org/
http://www.numpy.org/
https://cupy.chainer.org/
https://cupy.chainer.org/
https://www.preferred-networks.jp/en/
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those operations. Unlike Theano and TensorFlow, Chainer uses a define-by-run 
approach, which relies on a dynamic deep learning approach in which the code 
defines math operations as the training occurs. Here are the two main advantages 
to this approach:

 » Intuitive and flexible approach: A define-by-run approach can rely on a 
language’s native capabilities rather than require you to create special 
operations to perform analysis.

 » Debugging: Because the define-by-run approach defines the operations 
during training, you can rely on the internal debugging features to locate the 
source of errors in a dataset or the application code.

TensorFlow 2.0 can also use define-by-run by relying on Chainer to provide eager 
execution.

PyTorch
PyTorch (https://pytorch.org/) is the successor to Torch (http://torch.ch/) 
written in the Lua (https://www.lua.org/) language. A core one of the Torch 
libraries (the PyTorch autograd library) started as a fork of Chainer, which is 
described in the previous section. Facebook initially developed PyTorch, but many 
other organizations use it today, including Twitter, Salesforce, and the University 
of Oxford. Here are the features that make PyTorch special:

 » Extremely user friendly

 » Efficient memory usage

 » Relatively fast

 » Commonly used for research

Some people like PyTorch because it’s easy to read like Keras, but the scientist 
doesn’t lose the ability to use complicated neural networks. In addition, PyTorch 
supports dynamic computational model graphing directly (see the “Grasping 
why TensorFlow is so good” section, later in the chapter, for more details on 
this issue), which makes it more flexible than TensorFlow without the addition of 
TensorFlow Fold.

MXNet
The biggest reason to use MXNet is speed. It might be hard to figure out whether 
MXNet (https://mxnet.apache.org/) or CNTK (https://www.microsoft.com/ 
en-us/cognitive-toolkit/) is faster, but both products are quite fast and are 

https://pytorch.org/
http://torch.ch/
https://www.lua.org/
https://mxnet.apache.org/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/
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often used as a contrast to the slowness that some people experience when working 
with TensorFlow. (The white paper at https://arxiv.org/pdf/1608.07249v7. 
pdf provides some details on benchmarking of deep learning code.)

MXNet is an Apache product that supports a host of languages, including Python, 
Julia, C++, R, and JavaScript. Numerous large organizations use it, including 
Microsoft, Intel, and Amazon Web Services. Here are the aspects that make MXNet 
special:

 » Features advanced GPU support

 » Can be run on any device

 » Provides a high-performance imperative API

 » Offers easy model serving

 » Provides high scalability

It may sound like the perfect product for your needs, but MXNet does come with at 
least one serious failing: It lacks the level of community support that TensorFlow 
offers. In addition, most researchers don’t look at MXNet favorably because it can 
become complex, and a researcher isn’t dealing with a stable model in most cases.

Microsoft Cognitive Toolkit/CNTK
As mentioned in the previous section, its speed is one of the reasons to use the 
Microsoft Cognitive Toolkit (CNTK). Microsoft uses CNTK for big datasets  — 
really big ones. As a product, it supports the Python, C++, C#, and Java program-
ming languages. Consequently, if you’re a researcher who relies on R, this isn’t 
the product for you. Microsoft has used this product in Skype, Xbox, and Cortana. 
This product’s special features are

 » Great performance

 » High scalability

 » Highly optimized components

 » Apache Spark support

 » Azure Cloud support

As with MXNet, CNTK has a distinct problem in its lack of adequate community 
support. In addition, it tends not to provide much in the way of third-party sup-
port, either, so if the package doesn’t contain the features you need, you might 
not get them at all.

https://arxiv.org/pdf/1608.07249v7.pdf
https://arxiv.org/pdf/1608.07249v7.pdf
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Understanding TensorFlow
At the moment, TensorFlow is at the top of the heap with regard to deep learning 
frameworks (see the chart at https://towardsdatascience.com/deep-learning- 
framework-power-scores-2018-23607ddf297a for details). TensorFlow’s suc-
cess stems from many reasons, but mainly it comes from providing a robust envi-
ronment in a relatively easy-to-use package. The following sections help you 
understand why this book uses TensorFlow. You discover what makes TensorFlow 
so exciting and how add-ons make it even easier to use.

TensorFlow SUPPORT ON COLAB
Many developers today rely on online environments, such as Colab, to perform tasks 
because installing and configuring TensorFlow on a desktop machine can prove difficult, 
and you must have a GPU that TensorFlow supports (https://developer.nvidia.
com/cuda-gpus) if you want accelerated processing. In addition, you have all sorts of 
other issues to consider (https://www.tensorflow.org/install/gpu).

Colab appears to make things easy. To get CPU support, all you do is select a config-
uration box. To ensure that you have the proper support, you simply run a little extra 
Colab-specific code (https://colab.research.google.com/notebooks/gpu. 
ipynb). However, reality seldom works the same as theory. For one thing, you have  
to reinstall everything every time you start a new Colab session because the library 
support isn’t persistent (https://www.kdnuggets.com/2018/02/essential- 
google-colaboratory-tips-tricks.html). Of course, you may not have access to 
a GPU at all (it’s at Google’s discretion) or the GPU support may have limits (https://
stackoverflow.com/questions/48750199/google-colaboratory- 
misleading-information-about-its-gpu-only-5-ram-available).

To ensure that you have the best possible learning experience, this book uses an 
extremely simplified TensorFlow setup that avoids many of the pitfalls that other envi-
ronments experience. This environment will work for the book, any learning experience 
you’re likely to have in school, small experimental projects, and even projects for small 
to medium-sized businesses that use small to medium-sized datasets. You could never 
use this setup to run a Facebook-type project.

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://www.tensorflow.org/install/gpu
https://colab.research.google.com/notebooks/gpu.ipynb
https://colab.research.google.com/notebooks/gpu.ipynb
https://www.kdnuggets.com/2018/02/essential-google-colaboratory-tips-tricks.html
https://www.kdnuggets.com/2018/02/essential-google-colaboratory-tips-tricks.html
https://stackoverflow.com/questions/48750199/google-colaboratory-misleading-information-about-its-gpu-only-5-ram-available
https://stackoverflow.com/questions/48750199/google-colaboratory-misleading-information-about-its-gpu-only-5-ram-available
https://stackoverflow.com/questions/48750199/google-colaboratory-misleading-information-about-its-gpu-only-5-ram-available
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Grasping why TensorFlow is so good
A product has to offer quite a bit in terms of functionality, ease-of-use, and reli-
ability to make much of a dent in the market when people have many choices. 
Part of the reason for TensorFlow’s success is that it supports a number of the 
most popular languages: Python, Java, Go, and JavaScript. In addition, it’s quite 
extensible. Each extension is an op (as in operation), which you can read about at 
https://www.tensorflow.org/guide/extend/op. The point is that when a prod-
uct has great support for multiple languages and allows for significant extensibil-
ity, the product becomes popular because people can perform tasks in a manner 
that best suits them, rather than what the vendor thinks the user needs.

The manner in which TensorFlow evaluates and executes code is important as 
well. Natively, TensorFlow supports only static computational graphs. However, 
the TensorFlow Fold extension (https://github.com/tensorflow/fold) supports 
dynamic graphs as well. A dynamic graph is one in which the structure of the compu-
tational graph varies as a function of the input data structure and changes dynami-
cally as the application runs. Using dynamic batching, TensorFlow Fold can create 
a static graph from the dynamic graphs, which it can then feed into TensorFlow. 
This static graph represents the transformation of one or more dynamic graphs 
modeling uncertain data. Of course, you might not even need to build a computa-
tional graph because TensorFlow also supports eager execution (evaluating opera-
tions immediately without building a computational graph) so that it can evaluate 
Python code immediately (called dynamic execution). The inclusion of this dynamic 
functionality makes TensorFlow extremely flexible in the data it can accommodate.

In addition to various kinds of dynamic support, TensorFlow also enables you to 
use a GPU to speed calculations. You can actually use multiple GPUs and spread 
the computational model over several machines in a cluster. The capability to 
bring so much computing power to solving a problem makes TensorFlow faster 
than much of the competition. Speed is important because answers to questions 
often have a short life expectancy; getting an answer tomorrow for a question you 
have today won’t work in many scenarios. For example, a doctor who relies on the 
services of an AI to provide alternatives during a surgery needs answers immedi-
ately or the patient could die.

Computational features only help you obtain a solution to a problem. TensorFlow 
also helps you visualize the solution in various ways using the TensorBoard exten-
sion (https://www.tensorflow.org/guide/summaries_and_tensorboard). This 
extension helps you to

 » Visualize the computational graph

 » Plot graph execution metrics

 » Show additional data as needed

https://www.tensorflow.org/guide/extend/op
https://github.com/tensorflow/fold
https://www.tensorflow.org/guide/summaries_and_tensorboard
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As with many products that include a lot of functionality, TensorFlow comes with 
a steep learning curve. However, it also enjoys considerable community support, 
provides access to a wealth of hands-on tutorials, has great third-party support 
for online courses, and offers many other aids to reduce the learning curve. You’ll 
want to start with the tutorial at https://www.tensorflow.org/tutorials/ and 
peruse the guide of offerings at https://www.tensorflow.org/guide/.

Making TensorFlow easier by using TFLearn
One of the major complaints people have about using TensorFlow directly is that 
the coding is both low level and difficult at times. The trade-off that you make 
with TensorFlow is that you gain additional flexibility and control by writing more 
code. However, not everyone needs the depth that TensorFlow can provide, which 
is why packages such as TFLearn (http://tflearn.org/), which stands for Ten-
sorFlow Learn, are so important. (You can find a number of packages on the mar-
ket that attempt to reduce the complexity; TFLearn is just one of them.)

TFLearn does make working with TensorFlow easier, but in specific ways:

 » A high-level Application Programming Interface (API) helps you to produce 
results with less code and reduce the amount of standardized (boilerplate) 
code you write.

 » Prototyping is faster, akin to the functionality found in PyTorch (described 
earlier in this chapter).

 » Transparency with TensorFlow means that you can see how the functions 
work and use them directly without relying on TFLearn.

 » The use of helper functions automates many tasks that you normally need to 
perform manually.

 » The use of great visualization helps you see the various aspects of your 
application, including the computational model, with greater ease.

You get all this functionality, and more, without giving up the aspects that make 
TensorFlow such a great product. For example, you still have full access to Ten-
sorFlow’s capability to use CPUs, GPUs, and even multiple systems to bring more 
computing power to task on any problem.

Using Keras as the best simplifier
Keras is less of a framework and more of an API (a set of interface specifications 
that you can use with multiple frameworks as backends). It’s generally lumped 
in as a deep learning framework, though, because that’s how people use it. To 

https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/guide/
http://tflearn.org/
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use Keras, you must also have a deep learning framework, such as TensorFlow, 
Theano, MXNet, or CNTK. Keras is actually bundled with TensorFlow, which also 
makes it the easy solution for reducing TensorFlow complexity.

This book assumes that you use Keras with TensorFlow, but knowing that you 
can use Keras with other deep learning frameworks is an advantage. That’s why 
this book doesn’t use the Keras version incorporated into TensorFlow, but instead 
installs it separately (see https://medium.com/tensorflow/standardizing- 
on-keras-guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a 
for details). You can use the same interface with multiple frameworks, enabling 
you to use the framework that you need without having to deal with yet another 
learning curve. The biggest selling point of Keras is that it puts the process of 
creating applications using a deep learning framework into a paradigm that most 
people can understand well.

You can’t develop an application of any kind that is both easy to use and able 
to handle truly complex situations — all while being flexible as well. So Keras 
doesn’t necessarily handle all situations well. For example, it’s a good product to 
use when your needs are simple, but not a good choice if you plan to develop a new 
kind of neural network.

The strength of Keras is that it lets you perform fast prototyping with little hassle. 
The API doesn’t get in your way while it tries to provide flexibility that you might 
not need in the current project. In addition, because Keras simplifies how you per-
form tasks, you can’t extend it as you can with other products, which limits your 
ability to add functionality to an existing environment.

More than a few people have complained about the sometimes ambiguous error 
reporting provided by Keras. However, Keras partially offsets this issue by pro-
viding strong community support. In addition, many of the people complaining 
about the error messages are also apparently trying to do something complex. 
Keeping the fast prototyping nature of Keras in mind could prevent you from try-
ing projects that might be too much for the product to handle.

Getting your copy of TensorFlow and Keras
Your copy of Python that comes with Anaconda doesn’t include a copy of Tensor-
Flow or Keras; you must install these products separately. To avoid problems with 
integrating TensorFlow with the Anaconda tools, don’t follow the instructions 
found at https://www.tensorflow.org/install/pip for installing the product 
using pip. Likewise, avoid using the Keras installation instructions at https://
keras.io/#installation.

https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a
https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-level-apis-in-tensorflow-2-0-bad2b04c819a
https://www.tensorflow.org/install/pip
https://keras.io/#installation
https://keras.io/#installation
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To ensure that your copies of TensorFlow and Keras are available with Notebook, 
you must open an Anaconda prompt, not a standard command prompt or a termi-
nal window. Otherwise, you can’t ensure that you have the appropriate paths set 
up. The following steps will get you started with your installation.

1. At the Anaconda prompt, type python --version and press Enter.

You see the currently installed Python version, which should be version 3.7.3 
for this book, as shown in Figure 5-1. The path you see in the window is a 
function of your operating system, which is Windows in this case, but you may 
see a different path when using the Anaconda prompt.

REDUCING CONDA AND PIP ERRORS
Before you do too much with your Anaconda installation, it helps to update both Conda 
and Package Installer for Python (PIP) — the two applications you use to install new fea-
tures in the Python environment. Using an outdated version of either package manager 
could cause you considerable pain in trying to get anything to install correctly. In fact, as 
you install various packages, they tell you when your copy of the package manager you 
use is outdated in many cases. To update Conda and PIP, you use these commands:

conda update conda
python -m pip install --upgrade pip

Whenever you’re in doubt about the status of either package manager, perform an 
update before you try to install a new package. The process takes only a few minutes 
and will save you considerable time later.

FIGURE 5-1:  
Be sure to use 
the Anaconda 

prompt for the 
installation and 

check the Python 
version.
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2. Type conda update --all and press Enter.

Before you attempt to install TensorFlow and Keras, make sure that the conda 
environment is up to date. Otherwise, you might find that some dependencies 
are outdated and that your installation won’t work. Conda will perform an 
analysis of your system and then provide a list of steps to take. When asked 
whether you should proceed, type Y and press Enter. This step will take a 
while — time to refill your coffee cup.

The next step is to create an environment in which to execute code that relies 
on TensorFlow and Keras. The advantage of using an environment is that you 
maintain a pristine environment for later use with other libraries. You use 
Conda, rather than another environment product such as virtualenv, to ensure 
that the software integrates with the Anaconda tools. If you use a product such 
as virtualenv, the resulting installation will work, but you’ll have to perform a lot 
of other steps to access it, and these steps don’t appear in the book. The name 
of the environment for this book is TF_env.

3. Type conda create -n TF_env python=3.6 anaconda=2019.03 tensorflow=1.11.0 
keras=2.2.4 nb_conda and press Enter.

You may see a warning message about the availability of a newer version of 
Conda. Ignoring this message generally isn’t safe, especially when working with 
a Windows 10 system. When asked whether you should proceed, exit the 
installation process by typing N and pressing Enter. Update your copy of 
Conda using the information in the “Reducing Conda and PIP errors” sidebar, 
and then restart the installation process. If you don’t see an error message, 
type Y and press Enter when asked to proceed.

Notice that this installation is actually using Python 3.6. The Python 3.7.3 
version used for the other examples in the book is incompatible with the 
current version of TensorFlow.

This step can require some time to execute because your system will have to 
download TensorFlow 1.11.0 and Keras 2.2.4 from an online source. After the 
download is complete, the setup needs to create a complete installation for 
you. You see the Anaconda prompt return after all the required steps are 
complete. In the meantime, reading a good technical article or getting coffee 
can help pass the time.

4. Type conda activate TF_env and press Enter.

The prompt changes to show the TF_env environment rather than the base or 
root environment. Any tasks you perform now will affect the TensorFlow 
environment rather than the original base environment.
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5. Type python -m pip install --upgrade pip and press Enter.

Note that this step upgrades the copy of pip used for TF_env, rather than the 
base environment. This step requires a little time, but not nearly as long as 
creating the environment. The purpose of this step is to ensure that you have 
the most current version of pip installed so that later commands (some of 
which appear in the book’s code) don’t fail.

6. Type conda deactivate and press Enter.

Deactivating an environment returns you to the base environment. You 
perform this step to ensure that you always end a session in the base 
environment.

7. Close the Anaconda Prompt.

Your TensorFlow and Keras installations are now ready for use.

Fixing the C++ build tools error in Windows
Many Python features require C++ build tools for compilation because the devel-
opers wrote the code in C++, rather than Python, to obtain the best speed in per-
forming certain kinds of processing. Fortunately, Linux and macOS both come 
with C++ build tools installed. So, you don’t have to do anything special to make 
Python build commands work.

Windows users, however, need to install a copy of the C++ 14 or higher build tools 
if they don’t already have them installed. In fact, the Notebook environment is 
actually quite picky — you need Visual C++ 14 or higher, rather than just any ver-
sion of C++ (such as GCC, https://www.gnu.org/software/gcc/). If you recently 
installed Visual Studio or another Microsoft development product, you may have 
the build tools installed and won’t need to install a second copy.

This book uses the most current tools available as of this writing, which are found 
in C++ 17. Getting just the build tools won’t cost you anything. The following steps 
show a short and easy method for getting your required build tools if you don’t 
already have C++ 14 or above installed:

1. Download the offline build tools installer from https://aka.ms/vs/15/ 
release/vs_buildtools.exe.

Your download application downloads a copy of vs_buildtools.exe. Trying 
to use the online build tools often comes with too many options, and 
Microsoft, naturally, wants you to buy its product.

https://www.gnu.org/software/gcc/
https://aka.ms/vs/15/release/vs_buildtools.exe
https://aka.ms/vs/15/release/vs_buildtools.exe
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2. Locate the downloaded file on your hard drive and double-click vs_
buildtools.exe.

You see a Visual Studio Installer dialog box. Before you can install the build 
tools, you need to tell the installer what you want to install.

3. Click Continue.

The Visual Studio Installer downloads and installs some additional support 
files. After this installation is complete, it asks which Workload to install, as 
shown in Figure 5-2.

4. Select the Visual C++ Build Tools option and then click Install.

You don’t need to install anything more than the default features. The 
Installation Details pane on the right side of the Visual Studio Installer window 
contains a confusing array of options that you won’t need for this book. The 
download process of approximately 1.1GB begins immediately. You can get a 
cup of coffee while you wait. The Visual Studio Installer window displays the 
progress of the download and installation. At some point, you see a message 
saying that the installation succeeded.

5. Close the Visual Studio Installer window.

Your copy of the Visual C++ Build Tools is ready for use. You may need to 
restart your system after performing the installation, especially if you had 
Visual Studio installed previously.

FIGURE 5-2:  
Choose the Visual 

C++ Build Tools 
workload to  

support your 
Python setup.
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Accessing your new environment  
in Notebook
When you open Notebook, it automatically selects the base or root environment — 
the default environment for the Anaconda tools. However, you need to access the 
TF_env environment to work with the code in this book. To make this happen, 
open Anaconda Navigator, rather than Jupyter Notebook as usual. In the resulting 
window, shown in Figure 5-3, you see an Applications On drop-down list. Choose 
the TF_env option from the drop-down list. You can then click Launch in the 
Jupypter Notebook panel to start Notebook using the TF_env environment.

FIGURE 5-3:  
Select an  

environment to 
use in Anaconda 

Navigator.
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Manipulating Raw Data

Data scientists not only work with data but also spend considerable time 
pursuing data from various sources. Sometimes this pursuit resembles 
that of a detective ferreting out clues from arcane sources. Consequently, 

any in-depth conversation about data, as you see it in later chapters of this mini-
book, must begin with the simple idea of obtaining data in a manner that will 
prove useful for analysis later. The acquisition of raw data in various forms is the 
focus of this chapter.

If you find it surprising that a data scientist doesn’t automatically know where to 
find a particular piece of information, consider the vastness of data today. Looking 
for a needle in a haystack is easy compared to locating that much-needed piece 
of data from all the sources that a data scientist has available. In some cases, you 
find that you must generate data with specific characteristics to perform tests 
that validate assumptions about raw data, so the data you need may not even exist 
until you create it. The first section of this chapter looks at raw data sources.

Recognizing the forms of data is also important because you rarely find data in the 
form you need. For example, you can find a great deal of raw textual data in var-
ious places and lightly formatted data in others. After a while, you recognize the 
patterns of data and the processes used to obtain it in a specific form. The second 
section of this chapter views data formats from a raw data perspective, which may 
not represent the final data format used for an analysis.

Chapter 1

IN THIS CHAPTER

 » Obtaining data

 » Defining the forms of data

 » Making data access reliable
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Because you rarely perform an analysis once, the data you obtain must be reliable 
in that you can be certain that the data will appear from a particular source, in an 
expected form, and with the characteristics that you need. The final section of this 
chapter describes reliability as it applies to raw data.

Defining the Data Sources
To perform an analysis, you must have data. However, data must have a source, 
and the source you rely on affects all sorts of factors that also affect your analysis. 
Even though you can categorize data sources in a wide variety of ways, the follow-
ing sections look at data as coming from the following:

 » Locally: On a hard drive attached to your system or your network. The main 
advantages of this data source are speed and reliability.

 » Web or other online sources: The data is located somewhere other than a 
system that you control directly in most cases. The main advantages of this 
data source are diversity and freshness (how current the data is).

 » Dynamically generated: The application creates the data in some manner. 
The main advantages of this data source are consistency and completeness 
(meaning that you won’t find any missing data unless you specifically add it).

 » Synthetically generated: You create the data you use according to criteria 
defined by a software script. (An example is the make_classification 
function from Scikit-learn: https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make_classification.html.) Synthetically 
generating data can help you test your algorithms or prove a theory. The main 
advantage is that you have full control of the data and its characteristics.

Obtaining data locally
In many cases, the data you need to work with won’t appear within a library, as 
the toy datasets do, for example, in the Scikit-learn library. Real-world data usu-
ally appears in a file of some type. A flat file presents the easiest kind of file to 
work with. The data appears as a simple list of entries that you can read one at a 
time, if desired, into memory. Depending on the requirements for your project, 
you can read all or part of the file.

A problem with using native Python techniques is that the input isn’t intelligent. 
For example, when a file contains a header, Python simply reads it as yet more 
data to process, rather than as a header. You can’t easily select a particular column 

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
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of data. The pandas library used in the sections that follow makes it much easier 
to read and understand flat-file data. Classes and methods in the pandas library 
interpret (parse) the flat-file data to make it easier to manipulate.

The least formatted and therefore easiest-to-read flat-file format is the text file. 
However, a text file also treats all data as strings, so you often have to convert 
numeric data into other forms. A comma-separated value (CSV) file provides more 
formatting and more information, but it requires a little more effort to read. At 
the high end of flat-file formatting are custom data formats, such as an Excel 
file, which contains extensive formatting and could include multiple datasets in 
a single file.

The following sections describe these three levels of flat-file dataset. (Chapter 4  
of this minibook contains examples of how to access them.) These sections assume 
that the file structures the data in some way. For example, the CSV file uses com-
mas to separate data fields. A text file might rely on tabs to separate data fields. 
An Excel file uses a complex method to separate data fields and to provide a wealth 
of information about each field. You can work with unstructured data as well, but 
working with structured data is much easier because you know where each field 
begins and ends.

Working with flat files
A flat file is simply a file that contains data in some form, normally as text. The 
overriding characteristic of a flat file is that it contains a single data entry, nor-
mally a table. You commonly see flat files with these characteristics:

 » Each data row is separated by a carriage return, line feed, or combination 
of the two.

 » Each column is separated by a tab or other control character that isn’t used 
for rows.

 » The data isn’t formatted in any way, so strings aren’t normally quoted.

 » The file may or may not contain a header row to identify the columns.

 » The file normally relies on pure text, such as ASCII or UTF-8 formatted 
characters.

A flat file represents the simplest available method of transferring data between 
any two entities, even when they’re different platforms or if the devices would 
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normally prove incompatible. The problems for the data scientist using flat files 
are numerous, especially when the flat file comes within documentation:

 » The flat file may not rely on control characters to define rows and columns; it 
may use some sort of positional format instead.

 » Interpreting some data proves impossible, such as whether 1 represents a 
numeric value or a string.

 » Missing data is nearly impossible to locate and add in.

 » Parsing the file can be difficult or impossible when the original file contains 
mistakes.

You use flat files when simplicity and ease of data transfer override other consid-
erations. The ability to generally view the data in a form that humans can recog-
nize and understand directly is also a big plus. However, you also need to consider 
the additional time required to process this type of file.

Using organized databases
Databases come in many forms. You also get different interpretations of the term 
depending on the experiences of the person describing a database. For some peo-
ple, a CSV file is an example of a database, rather than a flat file, because of the 
organization and formatting that a CSV file provides. However, other people con-
sider a CSV a kind of flat file because it doesn’t go far enough in formatting the 
data and in providing some sort of standardized access method. At the other end 
of the spectrum are relational databases that include their own programming lan-
guage, diagramming, and extensive control over data format. The point is that 
databases are organized methods of storing data that have these characteristics:

 » Rows and columns are distinctly identified using a specific methodology.

 » Some form of data formatting is employed so that it becomes possible to 
separate the string form of 1 from the integer form of 1.

 » Some form of column identification is provided so that it becomes possible to 
perform tasks like comparing files of the same type.

 » The file may contain metadata to characterize the file content and parsing 
requirements.

 » Because the files are organized, finding and fixing many data issues, such as 
missing data, become easier.
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The preceding isn’t a complete list of the characteristics found in all organized 
data sources, but it’s a good start. You might find all sorts of additional features 
that include security and other management needs. However, a general rule of 
thumb is that as the number of database features increase, so does complexity 
and the need for specific parsing mechanisms. You can parse a CSV using a general 
text processor if necessary, but you can’t say the same for an Excel file or a file 
used by a SQL database. In fact, in some cases, you need a specific parser for each 
version of a database product.

Complexity isn’t the only potential issue when using organized databases. You 
can also encounter the following issues, which make using an organized database 
significantly more difficult:

 » The file sizes are usually larger than a corresponding flat file, which means 
using more resources to manage them.

 » Some databases only work on a specific operating system platform, which 
means you can’t use them on all the devices in your organization.

 » The appearance of multiple tables and other objects within a single file 
complicates parsing.

 » The data isn’t understandable by a human in its raw form.

 » Creating bridges between various files can prove difficult, necessitating the 
use of transformations and other coding tricks.

Relational and NoSQL databases
The vast majority of data used by organizations rely on relational databases 
because these databases provide the means for organizing massive amounts of 
complex data in a manner that makes the data easy to manipulate. The goal of a 
database manager is to make data easy to manipulate; the focus of most data stor-
age is to make data easy to retrieve.

Relational databases accomplish both the manipulation and data retrieval objec-
tives with relative ease. However, because data storage needs come in all shapes 
and sizes for a wide range of computing platforms, many different relational 
database products exist. In fact, for the data scientist, the proliferation of different 
Database Management Systems (DBMSs) using various data layouts is one of the 
main problems you encounter with creating a comprehensive dataset for analysis.

The one common denominator among many relational databases is that they all 
rely on a form of the same language to perform data manipulation, which does 
make the data scientist’s job easier. The Structured Query Language (SQL) lets 
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you perform all sorts of management tasks in a relational database, retrieve data 
as needed, and even shape it in a particular way so that the need to perform addi-
tional shaping is unnecessary.

In addition to standard relational databases that rely on SQL, you find a wealth of 
databases of all sorts that don’t have to rely on SQL. These Not Only Structured 
Query Language (NoSQL) databases are used in large data storage scenarios in 
which the relational model can become overly complex or can break down in other 
ways. The databases generally don’t use the relational model. Of course, you find 
fewer of these DBMSes used in the corporate environment because they require 
special handling and training. Still, some common DBMSes are used because they 
provide special functionality or meet unique requirements. The process is essen-
tially the same for using NoSQL databases as it is for relational databases:

1. Import required database engine functionality.

2. Create a database engine.

3. Make any required queries using the database engine and the functionality 
supported by the DBMS.

The details vary quite a bit, and you need to know which library to use with 
your particular database product. For example, when working with MongoDB 
(https://www.mongodb.org/), you must obtain a copy of the PyMongo library 
(https://api.mongodb.org/python/current/) and use the MongoClient class to 
create the required engine.

Consuming freeform databases
Freeform databases can contain multiple tables, each of which has a different 
format. In addition, the data within a table need not necessarily following a spe-
cific format. Because you can’t gauge the format by using a header, these data-
bases require a great deal more formatting. Products such as askSam (https://
asksam.software.informer.com/) commonly see use for freeform informational 
databases. Accessing askSam would require a special parser. (You can likely use 
the same technique applied to relational databases as described at https://www. 
dummies.com/programming/big-data/data-science/data-science-how-to- 
use-python-to-manage-data-from-relational-databases/.)

Unlike other forms of data storage, a freeform database may not even use the 
table convention for storing information. You may find that it uses a hierarchical 
format instead, which means relying on special coding to move from record to 
record. The simple need to know what data the file contains and in the order in 
which it appears can prove difficult to meet. However, freeform storage can also 

https://www.mongodb.org/
https://api.mongodb.org/python/current/
https://asksam.software.informer.com/
https://asksam.software.informer.com/
https://www.dummies.com/programming/big-data/data-science/data-science-how-to-use-python-to-manage-data-from-relational-databases/
https://www.dummies.com/programming/big-data/data-science/data-science-how-to-use-python-to-manage-data-from-relational-databases/
https://www.dummies.com/programming/big-data/data-science/data-science-how-to-use-python-to-manage-data-from-relational-databases/
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prove to be incredibly space efficient, and you can use it to customize the data 
store so that the database becomes more flexible than just about any other means 
of storing data.

Most people would categorize eXtensible Markup Language (XML) and JavaScript 
Object Notation (JSON) as types of freeform databases. Both use hierarchical stor-
age techniques and provide extreme flexibility. As long as you don’t violate the 
few rules that each of these formats requires you to observe, the systems generally 
work as you might think they should. However, the flexibility these file formats 
provides can become a problem because the files can literally contain anything. 
To combat this issue, XML files can rely on an XML Schema Definition (XSD) 
file (https://www.tutorialspoint.com/xsd/index.htm) and JSON can rely on a 
JSON Schema file (https://www.tutorialspoint.com/json/json_schema.htm).

Another important consideration is that some freeform databases rely on a differ-
ent disk storage format than their in-memory presentation; the hierarchy or other 
in-memory form is built from data as it appears on disk. The use of this approach 
means that you can create a robust in-memory presentation that requires less 
disk storage space than conventional databases require. Because freeform data-
bases have significantly fewer rules than other data storage techniques, present-
ing a solid list of characteristics, pros, and cons is impossible.

Using online data sources
The amount of data available online defies conception. In fact, you can’t even 
visualize it because it boggles the imagination. The fact that each day sees more 
data added to online sources than many people could consume in a lifetime says 
much about online data. At some point, you use online data or you find yourself 
hopelessly outmatched by others who do. With this reality in mind, the following 
sections discuss online sources of raw data — some of which needs considerable 
manipulation before it provides any sort of useful information.

Accessing publicly available datasets
Governments, universities, nonprofit organizations, and other entities often 
maintain publicly available databases that you can use alone or combined with 
other databases to create big data for machine learning. For example, you can 
combine several Geographic Information Systems (GIS) to help create the big 
data required to make decisions such as where to put new stores or factories. 
The machine learning algorithm can take all sorts of information into account — 
everything from the amount of taxes you have to pay to the elevation of the land 
your store sits on (which can contribute to making your store easier to see).

https://www.tutorialspoint.com/xsd/index.htm
https://www.tutorialspoint.com/json/json_schema.htm
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The best part about using public data is that it’s usually free, even for commercial 
use (or you pay a nominal fee for it). In addition, many of the organizations that 
created them maintain these sources in nearly perfect condition because the orga-
nization has a mandate, uses the data to attract income, or uses the data inter-
nally. When obtaining public source data, you need to consider a number of issues 

FINDING YET MORE DATA ON DATA 
SCIENCE CENTRAL
A data scientist must have resources for locating data because no one person can 
possibly know about every source. Many of the resources you find online cover main-
stream topics that you might find helpful in enabling your data service, but that might 
fall short of affording an ultimate resource. Data Science Central (https://www. 
datasciencecentral.com/) provides access to a relatively large number of data 
science experts who tell you about the most obscure facts of data science. One of the 
more interesting blog posts appears at https://www.datasciencecentral.com/ 
profiles/blogs/huge-trello-list-of-great-data-science-resources.

Data Science Central points you to a Trello list (https://trello.com/) of some truly 
amazing resources. Navigating the huge list can be a bit difficult, but the process is 
aided by the treelike structure that Trello provides for organizing information. You want 
to meander through this sort of list when you have time and simply want to see what is 
available. The categories include the following (with possibly more by the time you read 
this book):

• Data news

• Data business people track

• Data journalist track

• Data padawan track

• Data scientist track

• Statistics

• R

• Python

• Big data and other tools

• Data

• Others

https://www.datasciencecentral.com/
https://www.datasciencecentral.com/
https://www.datasciencecentral.com/profiles/blogs/huge-trello-list-of-great-data-science-resources
https://www.datasciencecentral.com/profiles/blogs/huge-trello-list-of-great-data-science-resources
https://trello.com/
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to ensure that you actually get something useful. Here are some of the criteria you 
should think about when making a decision:

 » The cost, if any, of using the data source

 » The formatting of the data source

 » Access to the data source (which means having the proper infrastructure in 
place, such as an Internet connection when using Twitter data)

 » Permission to use the data source (some data sources are copyrighted)

 » Potential issues in cleaning the data to make it useful for machine learning

Scraping data from websites
It’s important to understand that many of the data sources you use come from 
online content in the form of web pages and other web sources. Scraping data is 
the process of extracting useful data from a web page, while removing the non-
data elements, such as tags. One of the better products for performing this task 
is BeautifulSoup (https://www.crummy.com/software/BeautifulSoup/). The 
example in the “Scraping Textual Datasets from the Web” section of Book 4, 
Chapter 4 tells you how to use this library in a practical way.

Relying on data from APIs
An Application Programming Interface (API) relies on a system of requests and 
responses to serve data. A client makes a request and a server provides a response. 
The specifics of each API vary, and you find that the strategies can become quite 
complex. The underlying technology for various APIs also differs. However, from 
a data perspective, you can expect to see the information sent and retrieved in a 
standards-oriented manner using technologies such as

 » XML

 » JSON

 » Binary (generally only for private APIs)

Pure text messaging is uncommon and perhaps even nonexistent today. The 
XML formats can become quite specialized. For example, when using the Simple 
Object Access Protocol (SOAP) to interact with an API, you use a specially format-
ted XML document that follows the SOAP messaging format (see https://www. 
w3schools.com/xml/xml:soap.asp for details). When working with an API, you 
must fully understand the techniques for interacting with it, in addition to later 
transforming the data to meet your needs.

https://www.crummy.com/software/BeautifulSoup/
https://www.w3schools.com/xml/xml:soap.asp
https://www.w3schools.com/xml/xml:soap.asp
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Binary formats such as the Common Object Request Broker Architecture (CORBA) 
may seem outdated, but you see them used for private APIs for a number of rea-
sons, including security and performance. You can often transmit binary data 
at significantly higher speeds than text data of the same content. The article at 
https://www.guru99.com/comparison-between-web-services.html discusses 
the whole alphabet soup of technologies used for web services, including:

 » Representation State Transfer (REST)

 » SOAP

 » CORBA

 » Distributed Common Object Model (DCOM)

 » Java Remote Method Invocation (RMI)

Of the binary formats, CORBA seems to be the most popular given that Microsoft 
fully embraces SOAP for its web offerings today. You can get a better overview of 
CORBA at https://www.sciencedirect.com/topics/computer-science/common- 
object-request-broker-architecture. The article at http://wwwconference.
org/proceedings/www2002/alternate/395/index.html provides a more detailed 
view of why CORBA might be a good choice when working with certain kinds of APIs.

No matter which kind of API you use and the type of data it serves, you generally 
need to do the following:

1. Transform the data from its transmitted form to a form suitable for processing.

2. Remove any extraneous information used as part of the transmission process.

3. Clean the data to remove undesirable elements.

4. Validate that the data is complete and hasn’t suffered transmission errors.

5. Translate the data into a form that matches the other data used for your 
analysis.

Gaining access to private data
You can obtain data from private organizations such as Amazon and Google, both 
of which maintain immense databases that contain all sorts of useful information. 
In this case, you should expect to pay for access to the data, especially when used 
in a commercial setting. You may not be allowed to download the data to your 
personal servers, so that restriction may affect how you use the data in a machine 
learning environment. For example, some algorithms work slower with data that 
they must access in small pieces.

https://www.guru99.com/comparison-between-web-services.html
https://www.sciencedirect.com/topics/computer-science/common-object-request-broker-architecture
https://www.sciencedirect.com/topics/computer-science/common-object-request-broker-architecture
http://wwwconference.org/proceedings/www2002/alternate/395/index.html
http://wwwconference.org/proceedings/www2002/alternate/395/index.html
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The biggest advantage of using data from a private source is that you can expect 
better consistency. The data is likely cleaner than from a public source. In addi-
tion, you usually have access to a larger database with a greater variety of data 
types. Of course, it all depends on where you get the data.

Employing dynamic data sources
Dynamic data sources are those that change over time. For example, the weather 
doesn’t remain static — it may rain today and not tomorrow. The probability of 
rain changes, which affects how you plan outside activities. The current weather 
predictions are always dynamic because they’re always changing. However, once 
the weather occurs and becomes historical in nature, it also becomes a static data 
source. The weather, once past, doesn’t change. If there was a tornado on a cer-
tain day, the tornado doesn’t somehow go away in the future — there is always a 
tornado for that day.

As with the weather, many data sources start as dynamic data sources and become 
static data sources in the future. Consequently, when viewing data for use within 
an application, you must always consider whether the data is dynamic or static. 
Static data is easier to handle because it never changes. Dynamic data requires that 
you perform updates on a specific schedule and then perform your analysis again 
if you are to get any benefit from the analysis. With these differences between 
dynamic and static in mind, the following sections discuss various forms of raw 
dynamic data and consider how you might handle them as part of an analysis.

Monitoring the user
Users receive a large share of the monitoring associated with dynamic data. Because 
this monitoring is usually surreptitious to avoid biasing the data, it’s more akin to 
spying. People spy on each other for all sorts of reasons —  everything from per-
forming marketing studies to conducting efficiency analysis. Much of this spying 
is benign; some of it is even helpful to the user. For example, sleep studies spy 
on the sleeper to determine whether modern technology can assist in reducing 
harmful sleep habits. The reason for monitoring (spying on) the user varies, but 
the result is normally data that reflects habits of some sort that prove helpful in 
predicting future actions. Even recommender systems, those aids that tell you 
that one item goes with another item or that people who purchased a particular 
item also bought another, rely on the study of buying habits.

When it comes to users, you need to consider issues beyond simple monitor-
ing and analysis. The article “AI is finding out when the person using your  
account isn’t you” (see https://thenextweb.com/problem-solvers/2018/07/ 
13/authentication-cybersecurity/) points out a particular problem with 
current thinking. It discusses the use of behavioral analytics as a means for 

https://thenextweb.com/problem-solvers/2018/07/13/authentication-cybersecurity/
https://thenextweb.com/problem-solvers/2018/07/13/authentication-cybersecurity/
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discovering the fraudulent use of an ID, but behavioral analytics don’t consider 
that human behaviors can change suddenly because of catastrophic events, such 
as the loss of a loved one. Fortunately, the article also discusses other approaches, 
such as the use of facial recognition and biometrics. However, no matter how you 
perform monitoring (or spying, as the case might be), the data received is apt to 
contain flaws that you must ferret out as part of the analysis.

For the most part, humans do change slowly (see “Change Doesn’t Hap-
pen Overnight: It Happens in These Five Stages” at https://www.forbes.com/
sites/amymorin/2014/03/17/change-doesnt-happen-overnight-it-happens- 
in-these-five-stages/ for details), so behavioral analytics work much of the 
time. However, you want to maintain the outlook that human behavior is quite 
dynamic and you need to constantly look for those changes that signal a major life 
event if your job is to predict the future.

Obtaining generated data
Your existing data may not work well for some data analysis scenarios, but that 
doesn’t keep you from creating a new data source using the old data as a starting 
point. For example, you might find that you have a customer database that con-
tains all the customer orders, but the data isn’t useful for your particular analysis 
because it lacks tags required to group the data into specific types. One of the 
new job types that you can expect to create is people who massage data to make 
it better suited for a particular analysis type, including the addition of specific 
information types such as tags.

Data analysis of all sorts has a significant effect on your business. The article at 
https://www.computerworld.com/article/3007053/how-machine-learning- 
will-affect-your-business.html describes some of the ways in which you can 
expect machine learning to change how you do business. One of the points in 
this article is that machine learning typically works on 80 percent of the data. In  
20 percent of the cases, you still need humans to take over the job of deciding 
just how to react to the data and then act upon it. The point is that using machine 
learning to manipulate your data saves money by taking over repetitious tasks 
that humans don’t really want to do in the first place (making them inefficient). 
However, machine learning doesn’t get rid of the need for humans completely, 
and it creates the need for new types of jobs that are a bit more interesting than 
the ones that machine learning has taken over. Also important to consider is that 
you need more humans at the outset until the modifications they make train the 
algorithm to understand what sorts of changes to make to the data.

https://www.forbes.com/sites/amymorin/2014/03/17/change-doesnt-happen-overnight-it-happens-in-these-five-stages/
https://www.forbes.com/sites/amymorin/2014/03/17/change-doesnt-happen-overnight-it-happens-in-these-five-stages/
https://www.forbes.com/sites/amymorin/2014/03/17/change-doesnt-happen-overnight-it-happens-in-these-five-stages/
https://www.computerworld.com/article/3007053/how-machine-learning-will-affect-your-business.html
https://www.computerworld.com/article/3007053/how-machine-learning-will-affect-your-business.html
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Whether you work with AI, machine learning, deep learning, or perform some 
sort of other data analysis, as a data scientist, you may also need to generate test 
data. Some packages and libraries include data generators for this purpose. You 
can also find data generators online that perform mocking, which is the simulation 
of a data source using fake data that reflects the data you expect from the actual 
source. The Mockaroo (https://mockaroo.com/) and Generate Data (https://
www.generatedata.com/) sites are examples of this sort of data generation.

Considering other kinds of data sources
Your organization has data hidden in all kinds of places. Recognizing the data as 
data can be a problem, though. For example, you may have sensors on an assem-
bly line that track how products move through the assembly process and ensure 
that the assembly line remains efficient. Those same sensors can potentially feed 
information into an algorithm because they could provide inputs on how product 
movement affects customer satisfaction or the price you pay for postage. The idea 
is to discover how to create mashups that present existing data as a new kind of 
data that lets you do more to make your organization work well.

Big data can come from any source, even your email. A recent article discusses 
how Google uses your email to create a list of potential responses for new 
emails. (See the article at https://www.semrush.com/blog/deep-learning-an- 
upcoming-gmail-feature-that-will-answer-your-emails-for-you/.) Instead 
of having to respond to every email individually, you can simply select a canned 
response at the bottom of the page. This sort of automation isn’t possible without 
the original email data source. Looking for big data in specific locations will blind 
you to the big data sitting in common places that most people don’t think about as 
data sources. Tomorrow’s applications will rely on these alternative data sources, 
but to create these applications, you must begin seeing the data hidden in plain 
view today.

Some of these applications already exist, and you’re completely unaware of 
them. The article at https://www.microsoft.com/en-us/research/video/the- 
master-algorithm-how-the-quest-for-the-ultimate-learning-machine- 
will-remake-our-world/ makes the presence of these kinds of applications 
more apparent. (You can watch just the video at https://www.youtube.com/ 
watch?v=8Ppqep-KAYI&feature=youtu.be.) By the time you complete the video, 
you begin to understand that many uses of machine learning are already in place 
and users already take them for granted (or have no idea that the application is 
even present).

https://mockaroo.com/
https://www.generatedata.com/
https://www.generatedata.com/
https://www.semrush.com/blog/deep-learning-an-upcoming-gmail-feature-that-will-answer-your-emails-for-you/
https://www.semrush.com/blog/deep-learning-an-upcoming-gmail-feature-that-will-answer-your-emails-for-you/
https://www.microsoft.com/en-us/research/video/the-master-algorithm-how-the-quest-for-the-ultimate-learning-machine-will-remake-our-world/
https://www.microsoft.com/en-us/research/video/the-master-algorithm-how-the-quest-for-the-ultimate-learning-machine-will-remake-our-world/
https://www.microsoft.com/en-us/research/video/the-master-algorithm-how-the-quest-for-the-ultimate-learning-machine-will-remake-our-world/
https://www.youtube.com/watch?v=8Ppqep-KAYI&feature=youtu.be
https://www.youtube.com/watch?v=8Ppqep-KAYI&feature=youtu.be
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Considering the Data Forms
Previous sections of the chapter have discussed the forms data appears in from an 
overview perspective. The form of data you receive affects the following:

 » How you interact with it

 » The level of information you can expect to derive from it

 » Issues related to data complexity

 » Time required to process and manicure it

 » Biases that could appear within it

The following sections provide a detailed view of the various data forms that you 
can expect to encounter. They break these forms into three main groups: pure 
text, formatted text, and binary. You might see data in other forms, but not often 
and usually not in a meaningful form.

Working with pure text
Pure text consists of the alphanumeric characters in the character set you use, 
such as American Standard Code for Information Interchange (ASCII) or Unicode 
Transformation Format 8-bit (UTF-8), and specific control characters, such as 
tab, linefeed, and carriage return. The reason for this extreme limit is to make 
the data created with pure text universally acceptable by the greatest number of 
devices and operating systems in existence.

With compatibility in mind, standard ASCII (http://www.asciitable.com/) is 
perhaps the most universal character set of all. However, even with these limits, 
ASCII isn’t universal because some very old systems use Extended Binary Coded 
Decimal Interchange Code (EBCDIC) (see https://pediaa.com/difference- 
between-ascii-and-ebcdic/ for details). When you compare an ASCII table to an 
EBCDIC table (http://www.astrodigital.org/digital/ebcdic.html), you see 
that the two encodings are incompatible.

About now, you may be wondering why this whole encoding issue is important 
given that most modern computers can use extended ASCII (a 256-character ver-
sion of original ASCII) and UTF-8 without any problem at all. The problem is that 
the data you need might not be from a modern machine, especially if your analysis 
has a historical basis to it. Consequently, you need to know that pure text, even 
with its extreme limitations, is hardly the universal transfer media that you might 
think it would be. When working with data, even pure text, you must be ready to 
deal with the unexpected.

http://www.asciitable.com/
https://pediaa.com/difference-between-ascii-and-ebcdic/
https://pediaa.com/difference-between-ascii-and-ebcdic/
http://www.astrodigital.org/digital/ebcdic.html
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Pure text doesn’t necessarily come in a specific format, either. You can order data 
in a file using a number of approaches. Therefore, you need to know how the 
data is organized before you can process it. Here are a few of the most common 
approaches to data organization:

 » Freeform: This text appears in a semiformatted state using control characters 
to separate fields and another set of control characters to separate rows.

 » Text-based freeform: This form is similar to freeform but relies on special 
text combinations instead of control characters to separate fields and rows. 
For example, a ZZ pair could signal the end of a field, while a ZZZ triplet could 
signal the end of a row. In most cases, you find this form used only with 
specialized applications or in-house uses.

 » Positional: This text doesn’t rely on any control characters to separate fields, 
but instead relies on the size of each field to determine the beginning and 
ending of a field. Rows are separated using control characters, normally the 
carriage return, line feed, or a combination of the two.

 » Continuous: This text that doesn’t use control characters for any purpose, but 
simply relies on field size to determine every aspect of data format.

Lest you think that this list is complete, it’s not. Point-of-Sale (POS) terminals are 
notorious for using truly unconventional data formats, for example. The article at 
https://www.acceleratedanalytics.com/blog/2010/01/15/top-questions- 
about-point-of-sale-data-analysis/ offers some clues as to just how convo-
luted the supposedly pure text data provided by POS terminals can become. As the 
article reveals, you can’t simply import the data into your Windows system and 
view it in Excel.

Of course, the biggest problem with pure text is that you get just the data — no 
context, no description, and especially no metadata. To use pure text formats, 
you must know about the source used to create the data, which means intimate 
knowledge of the originator as well. In some cases, pure text simply can’t provide 
what you need to perform a complete data analysis.

Accessing formatted text
Formatted text can take on a number of forms. You begin with pure text, but then 
add clues as to the formatting of the data. Here are some things that you find in a 
formatted text file that you won’t fine in a pure text file:

 » Contains headers to describe the fields

 » Contains metadata to tell you about the data source and other data features

https://www.acceleratedanalytics.com/blog/2010/01/15/top-questions-about-point-of-sale-data-analysis/
https://www.acceleratedanalytics.com/blog/2010/01/15/top-questions-about-point-of-sale-data-analysis/
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 » Uses quoting to make strings and numbers different

 » Treats numbers with decimal points as floating point, even when the number 
lacks a decimal portion or the decimal portion is 0

 » Uses True and False (or some variant) to define Boolean values

 » Uses keywords to denote data categories

 » Specifies field boundaries by using delimiters

 » Specifies rows by using carriage return, linefeed, or both

Not every formatted text file contains all these features, and some formatted text 
files rely on other characteristics to amplify the information you need. The point 
is that the underlying data is supported by additional, nondata information that 
tells you about the data so that you can interpret it with greater precision.

When you begin working with highly formatted text files, such as XML, JSON, and 
HTML, you start to see patterns and hierarchies. For example, the tags and other 
organizational aids used with these kinds of file aren’t part of the data; instead, 
they’re part of the metadata. You use them to see the construction and texture of 
the data. Automated processing designed to interpret these organizational aids 
can create datasets of extreme complexity that allow you to perform advanced 
analysis with a higher degree of confidence.

The use of stylesheets and other data input aids also increases the consistency of 
highly formatted text files by imposing rules for validating new data. Ensuring 
the absolute integrity of any data resource is impossible, but the use of validation 
tools does reduce the incidence of incorrect data and make the data more reliable.

The positive aspects of formatting come at a price, unfortunately. As the data for-
mat becomes more complex and the tools for working with it become more useful, 
the ability to transfer the data anywhere you want diminishes. In addition, the 
processing requirements for such data increases, increasing the likelihood that 
you need a more capable device to even see the data correctly, much less process 
it. There is no free lunch. The increased use of formatting conveys more informa-
tion but also requires more resources to handle and reduces flexibility.

Deciphering binary data
Binary data comes in many forms and it doesn’t just pertain to older technologies 
such as CORBA. Graphics are binary, as is music and many other forms of non-
textual information.
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Nontextual data generally comes only as binary data, but you find exceptions. 
For example, Scalable Vector Graphics (SVG) come as XML files (https://www. 
w3schools.com/graphics/svg_intro.asp) that describe what to draw rather 
than the drawing itself. Theoretically, you can use the same techniques with 
SVG that you use with any XML file to perform an analysis of the graphic image 
it describes, rather than rely on deciphering binary data. All graphics files that 
fall into this category are vector graphics (based on math) rather than raster 
graphics (based on individual pixels) (see https://vector-conversions.com/ 
vectorizing/raster_vs_vector.html for details).

Things get more complicated when you want to analyze the rendering of a vec-
tor graphic because now you have a raster graphic rendering to deal with. For 
example, you might want to know why a vector graphic produces a moiré pattern 
(http://mathworld.wolfram.com/MoirePattern.html) at one resolution and 
not another. The point is that you may find that you started with text, but now are 
working with binary data despite your desire to avoid doing so by using a textual 
data format.

When working with text, binary formats often became popular for a number of 
reasons:

 » Transmitting the data is more efficient than pure text.

 » The data can contain formatting information inline, so the formatting doesn’t 
get lost.

 » Securing the data from prying eyes is quite easy.

 » The use of checksums and other binary strategies can increase reliability and 
make the data self-repairing.

 » You can include information that isn’t possible with text formats, such as 
placing graphics and text together (as in a PDF).

Binary data became unpopular for a number of reasons that include complexity, 
difficulty of processing, and platform specificity. However, you see binary data of 
this sort today and you’ll likely continue to see it in the future. In some cases, you 
really do need to use a binary format.

When working with binary data, you need to consider all sorts of features that 
you may not find in other file types, such as a signature identifying the kind of 
binary data. The file may contain structural information and processing hints. You 
may find data in several formats residing in the same file. In short, binary data 
simply requires more processing than normal data because it doesn’t appear in 

https://www.w3schools.com/graphics/svg_intro.asp
https://www.w3schools.com/graphics/svg_intro.asp
https://vector-conversions.com/vectorizing/raster_vs_vector.html
https://vector-conversions.com/vectorizing/raster_vs_vector.html
http://mathworld.wolfram.com/MoirePattern.html
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a form that humans understand. Consequently, when working with binary data, 
you must know something about the application that generated the data and have 
specifications available that describe the data format.

Understanding the Need for  
Data Reliability

Data, like everything else, has a certain reliability. The problem is determining 
what reliability means when it concerns data. In most cases, to ensure that you 
have reliable data, you must consider these issues:

 » The data source remains available.

 » Static data doesn’t change.

 » Dynamic data is updated as often as needed to ensure that it doesn’t get stale.

 » Errant data is corrected, but with a change in dataset version number so that 
you know it has changed.

 » The data files aren’t corrupted in some manner (and not just from a virus or 
adware, but also from natural and unnatural sources).

 » Alternative sites provide data access when a host site becomes unavailable.

 » Someone is actually maintaining the data (it isn’t orphaned in some way).

 » The creator of the data source is fully identified.

 » A third party has vetted the data to ensure its integrity.

When your data meets all these criteria, you have data that is reasonably reliable. 
To summarize, the data must remain accessible in a form that you expect and 
without any outside tampering to be useful. Otherwise, you can’t be sure that any 
analysis you perform using the data has meaning. It’s hard to hit the bull’s-eye 
when the target constantly changes position.

Of course, these criteria talk about only the actual data file and its raw content, 
to an extent. The data itself must meet certain characteristics to be reliable. What 
you want in this case is data that has been
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 » Examined thoroughly during a peer review

 » Validated to meet appropriate standards

 » Collected with good scientific principles and statistical means in mind

 » Relies on best practices for meeting a particular need

 » Reflects reality with regard to specific conditions

In most cases, simply knowing that you have data is not enough. You need to 
know that the data targets something specifically oriented toward your analysis 
needs. Collecting emails from various people is useful only when those people are 
part of a target group for your analysis. Otherwise, you begin drawing incorrect 
conclusions from the data, and your analysis is no longer valid. One of the most 
important aspects of reliable data, then, is peer review, which can help ensure that 
bias and other issues don’t cloud the judgment of those collecting the data. The 
“Considering the Five Mistruths in Data” section of Book 6, Chapter 2 discusses 
the sorts of issues that can make reasonable-looking data unacceptable.
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Using Functional 
Programming 
Techniques

This chapter isn’t about a specific programming language (even though it 
uses Python to present examples); it’s about a programming paradigm.  
A paradigm is a framework that expresses a particular set of assumptions, 

relies on particular ways of thinking through problems, and uses particular meth-
odologies to solve those problems. Other paradigms you may use are imperative, 
procedural, object-oriented, and declarative. Consequently, this chapter is dif-
ferent because it focuses on the problems you need to solve. The first part of this 
chapter discusses how the functional programming paradigm accomplishes this 
problem solving, and the second part points out how functional programming 
differs from other paradigms you may have used.

Throughout this chapter, you consider why you’d want to use functional pro-
gramming at all. The math orientation of functional programming means that you 
might not create an application using it; you might instead solve straightforward 
math problems or devise what if scenarios to test. Because functional program-
ming is unique in its approach to solving problems, you might wonder how it 

Chapter 2

IN THIS CHAPTER

 » Understanding functional 
programming concepts

 » Using Python to perform functional 
programming tasks

 » Performing essential functional 
programming tasks

 » Relying on functional programming 
for data manipulation
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actually accomplishes its goals. The third part looks at essential functional pro-
gramming methods. Finally, the fourth part considers how you use functional 
programming for data manipulation, which is, of course, the topic of this book.

You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears 
in the DSPD_0202_Functional.ipynb source code file for Python source code file 
for Python and the DSPD_R_0202_Functional.ipynb source code file for R. See the 
Introduction for details on how to find these source files.

Defining Functional Programming
Functional programming has somewhat different goals and approaches than other 
paradigms use. Goals define what the functional programming paradigm is trying 
to do in forging the approaches used by languages that support it. However, the 
goals don’t specify a particular implementation; doing that is within the purview 
of the individual languages. The following sections give you additional informa-
tion on how the functional programming paradigm differs.

Differences with other programming 
paradigms
The main difference between the functional programming paradigm and other 
paradigms is that functional programs use math functions rather than statements 
to express ideas. This difference means that rather than write a precise set of 
steps to solve a problem, you use math functions, and you don’t worry about how 
the language performs the task. In some respects, this approach makes languages 
that support the functional programming paradigm similar to applications such 
as MATLAB. Of course, with MATLAB, you get a user interface, which reduces the 
learning curve. However, you pay for the convenience of the user interface with 
a loss of power and flexibility, which functional languages do offer. Using this 
approach to defining a problem relies on the declarative programming style, which 
you see used with other paradigms and languages, such as Structured Query Lan-
guage (SQL) for database management.

In contrast to other paradigms, the functional programming paradigm doesn’t  
maintain state. The use of state enables you to track values between function 
calls. Other paradigms use state to produce variant results based on environment, 
such as determining the number of existing objects and doing something differ-
ent when the number of objects is zero. As a result, calling a functional program 
function always produces the same result given a particular set of inputs, thereby 
making functional programs more predictable than those that support state.
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Because functional programs don’t maintain state, the data they work with is also 
immutable, which means that you can’t change it. To change a variable’s value, 
you must create a new variable. Again, this makes functional programs more pre-
dictable than other approaches and could make functional programs easier to run 
on multiple processors.

Understanding its goals
Imperative programming, the kind of programming that most developers have done 
until now, is akin to an assembly line, where data moves through a series of steps 
in a specific order to produce a particular result. The process is fixed and rigid, and 
the person implementing the process must build a new assembly line every time 
an application requires a new result. Object-oriented programming (OOP) simply 
modularizes and hides the steps, but the underlying paradigm is the same. Even 
with modularization, OOP often doesn’t allow rearrangement of the object code 
in unanticipated ways because of the underlying interdependencies of the code.

Functional programming gets rid of the interdependencies by replacing proce-
dures with pure functions, which requires the use of immutable state. Conse-
quently, the assembly line no longer exists; an application can manipulate data 
using the same methodologies as those used in pure math. The seeming restric-
tion of immutable state provides the means to allow anyone who understands the 
math of a situation to also create an application to perform the math.

Using pure functions creates a flexible environment in which code order depends 
on the underlying math. That math models a real-world environment, and as our 
understanding of that environment changes and evolves, the math model and 
functional code can change with it — without the usual problems of brittleness 
that cause imperative code to fail. Modifying functional code is faster and less 
error prone because the person implementing the change must understand only 
the math and doesn’t need to know how the underlying code works. In addition, 
learning how to create functional code can be faster as long as the person under-
stands the math model and its relationship to the real world.

Functional programming also embraces a number of unique coding approaches, 
such as the capability to pass a function to another function as input. This capa-
bility enables you to change application behavior in a predictable manner that 
isn’t possible using other programming paradigms.
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Understanding Pure and  
Impure Languages

Languages that support functional programming fall into two categories: pure and 
impure. A pure language allows only functional programming techniques and fully 
implements the functional programming paradigm. An impure language allows 
the use of other programming techniques and may only mostly implement the 
functional programming paradigm. Both pure and impure languages have specific 
advantages and disadvantages, as described in the sections that follow.

Using the pure approach
Programming languages that use the pure approach to the functional programming 
paradigm rely on lambda calculus principles, for the most part. In addition, a pure-
approach language allows the use of functional programming techniques only, so 
the result is always a functional program. Haskell is probably the most popular 
pure language because it provides the purest implementation, according to articles 
such as the one found on Quora at https://www.quora.com/What-are-the-most- 
popular-and-powerful-functional-programming-languages. Haskell is also a 
relatively popular language, according to the TIOBE index (https://www.tiobe.
com/tiobe-index/). Other pure-approach languages include Lisp, Racket, Erlang, 
and OCaml.

As with many elements of programming, opinions run strongly regarding whether 
a particular programming language qualifies for pure status. For example, many 
people would consider JavaScript to be a pure language, even though it’s untyped. 
Others feel that domain-specific declarative languages such as SQL and Lex/Yacc 
qualify for pure status even though they aren’t general programming languages. 
Simply having functional programming elements doesn’t qualify a language as 
adhering to the pure approach.

Using the impure approach
Many developers have come to see the benefits of functional programming. How-
ever, they also don’t want to give up the benefits of their existing language, so 
they use a language that mixes functional features with one of the other pro-
gramming paradigms (as described in the “Comparing the Functional Paradigm” 
section that follows). For example, you can find functional programming features 
in languages such as C++, C#, and Java. When working with an impure language, 
you need to exercise care because your code won’t work in a purely functional 
manner, and the features that you might think will work in one way actually work 
in another. For example, you can’t pass a function to another function in some 
languages.

https://www.quora.com/What-are-the-most-popular-and-powerful-functional-programming-languages
https://www.quora.com/What-are-the-most-popular-and-powerful-functional-programming-languages
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
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At least one language, Python, is designed from the outset to support multiple  
programming paradigms (see https://blog.newrelic.com/2015/04/01/
python-programming-styles/ for details). In fact, some online courses make a 
point of teaching this particular aspect of Python as a special benefit (see https://
www.coursehero.com/file/p1hkiub/Python-supports-multiple-programming- 
paradigms-including-object-oriented/). The use of multiple programming 
paradigms makes Python quite flexible but also leads to complaints and apologists. 
This chapter relies on Python to demonstrate the impure approach to functional 
programming because it’s both popular and flexible, plus it’s easy to learn.

Comparing the Functional Paradigm
You might think that only a few programming paradigms exist besides the func-
tional programming paradigm explored in this chapter, but the world of devel-
opment is literally packed with them. That’s because no two people truly think 
completely alike. Each paradigm represents a different approach to the puzzle of 
conveying a solution to problems by using a particular methodology while making 
assumptions about things like developer expertise and execution environment. In 
fact, you can find entire sites that discuss the issue, such as the one at https:// 
cs.lmu.edu/~ray/notes/paradigms/. Oddly enough, some languages (such as 
Python) mix and match compatible paradigms to create an entirely new way to 
perform tasks based on what has happened in the past.

The following sections discuss just four of these other paradigms. These para-
digms are neither better nor worse than any other paradigm, but they represent 
common schools of thought. Many languages in the world today use just these 
four paradigms, so your chances of encountering them are quite high.

Imperative
Imperative programming takes a step-by-step approach to performing a task. 
The developer provides commands that describe precisely how to perform the task 
from beginning to end. During the process of executing the commands, the code 
also modifies application state, which includes the application data. The code runs 
from beginning to end. An imperative application closely mimics the computer 
hardware, which executes machine code. Machine code is the lowest set of instruc-
tions that you can create and is mimicked in early languages, such as assembler.

https://blog.newrelic.com/2015/04/01/python-programming-styles/
https://blog.newrelic.com/2015/04/01/python-programming-styles/
https://www.coursehero.com/file/p1hkiub/Python-supports-multiple-programming-paradigms-including-object-oriented/
https://www.coursehero.com/file/p1hkiub/Python-supports-multiple-programming-paradigms-including-object-oriented/
https://www.coursehero.com/file/p1hkiub/Python-supports-multiple-programming-paradigms-including-object-oriented/
https://cs.lmu.edu/~ray/notes/paradigms/
https://cs.lmu.edu/~ray/notes/paradigms/
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Procedural
Procedural programming implements imperative programming, but adds func-
tionality such as code blocks and procedures for breaking up the code. The com-
piler or interpreter still ends up producing machine code that runs step by step, 
but the use of procedures makes it easier for a developer to follow the code and 
understand how it works. Many procedural languages provide a disassembly mode 
in which you can see the correspondence between the higher-level language and 
the underlying assembler. Examples of languages that implement the procedural 
paradigm are C and Pascal.

Early languages, such as Basic, used the imperative model because developers 
creating the languages worked closely with the computer hardware. However, 
Basic users often faced a problem called spaghetti code, which made large applica-
tions appear to be one monolithic piece. Unless you were the application’s devel-
oper, following the application’s logic was often hard. Consequently, languages 
that follow the procedural paradigm are a step up from languages that follow the 
imperative paradigm alone.

Object-oriented
The procedural paradigm does make reading code easier. However, the relation-
ship between the code and the underlying hardware still makes it hard to relate 
what the code is doing to the real world. The object-oriented paradigm uses the 
concept of objects to hide the code, but the more important aim is to make mod-
eling the real world easier. A developer creates code objects that mimic the real-
world objects they emulate. These objects include properties, methods, and events 
to allow the object to behave in a particular manner. Examples of languages that 
implement the object-oriented paradigm are C++ and Java.

Languages that implement the object-oriented paradigms also implement both 
the procedural and imperative paradigms. The fact that objects hide the use  
of these other paradigms doesn’t mean that a developer hasn’t written code to 
create the object using these older paradigms. Consequently, the object-oriented 
paradigm still relies on code that modifies application state, but could also allow 
for modifying variable data.

Declarative
Functional programming actually implements the declarative programming 
paradigm, but the two paradigms are separate. Other paradigms, such as logic 
programming, implemented by the Prolog language, also support the declarative 
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programming paradigm. The short view of declarative programming is that it 
does the following:

 » Describes what the code should do, rather than how to do it

 » Defines functions that are referentially transparent (without side effects)

 » Provides a clear correspondence to mathematical logic

Using Python for Functional  
Programming Needs

Remember that functional programming is a paradigm, which means that it does-
n’t have an implementation. The basis of functional programming is lambda calcu-
lus (https://brilliant.org/wiki/lambda-calculus/), which is actually a math 
abstraction. Consequently, when you want to perform tasks by using the functional 
programming paradigm, you’re really looking for a programming language that 
implements functional programming in a manner that meets your needs. In fact, 
you may even be performing functional programming tasks in your current lan-
guage without realizing it. Every time you create and use a lambda function, you’re 
likely using functional programming techniques (in an impure way, at least).

In addition to using lambda functions, languages like Python that implement the 
functional programming paradigm have some other features in common. Here is 
a quick overview of these features:

 » First-class and higher-order functions: Both first-class and higher-order 
functions allow you to provide a function as an input, as you would when 
using a higher-order function in calculus.

 » Pure functions: A pure function has no side effects. When working with a 
pure function, you can

• Remove the function if no other functions rely on its output

• Obtain the same results every time you call the function with a given set of 
inputs

• Reverse the order of calls to different functions without any change to 
application functionality

• Process the function calls in parallel without any consequence

• Evaluate the function calls in any order, assuming that the entire language 
doesn’t allow side effects

https://brilliant.org/wiki/lambda-calculus/
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 » Recursion: Functional language implementations rely on recursion to 
implement looping. In general, recursion works differently in functional 
languages because no change in application state occurs.

 » Referential transparency: The value of a variable (a bit of a misnomer 
because you can’t change the value) never changes in a functional language 
implementation because functional languages lack an assignment operator.

You often find a number of other considerations for performing tasks in func-
tional programming language implementations, but these issues aren’t consis-
tent across languages. For example, some languages use strict (eager) evaluation, 
while other languages use non-strict (lazy) evaluation. Under strict evaluation, 
the language fully checks the function before evaluating it. Even when a term 
within the function isn’t used, a failing term will cause the function as a whole 
to fail. However, under non-strict evaluation, the function fails only if the failing 
term is used to create an output. The Miranda, Clean, and Haskell languages all 
implement non-strict evaluation.

Various functional language implementations also use different type systems, so 
the manner in which the underlying computer detects the type of a value changes 
from language to language. In addition, each language supports its own set of 
data structures. These kinds of issues aren’t well defined as part of the functional 
programming paradigm, yet they’re important to creating an application, so you 
must rely on the language you use to define them for you. Assuming a particular 
implementation in any given language is a bad idea because it isn’t well defined 
as part of the paradigm.

Understanding How Functional  
Data Works

Data is a representation of something — perhaps a value. However, it can just as 
easily represent a real-world object. The data itself is always abstract, and exist-
ing computer technology represents it as a number. Even a character is a number: 
The letter A is actually represented as the number 65. The letter is a value, and 
the number is the representation of that value: the data. The following sections 
discuss data with regard to how it functions within the functional programming 
paradigm.
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Working with immutable data
Being able to change the content of a variable is problematic in many languages. 
The memory location used by the variable is important. If the data in a particu-
lar memory location changes, the value of the variable pointing to that memory 
location changes as well. The concept of immutable data requires that specific 
memory locations remain untainted.

Python data isn’t immutable in all cases. The “Passing by reference versus by 
value” section that appears later in the chapter gives you an example of this issue. 
When working with Python code, you can rely on the id function to help you 
determine when changes have occurred to variables. For example, in the following 
code, the output of the comparison between id(x) and oldID will be false:

x = 1
oldID = id(x)
x = x + 1
id(x) == oldID

Every scenario has some caveats, and doing this with Python does as well. The id 
of a variable is always guaranteed unique except in certain circumstances:

 » One variable goes out of scope and another is created in the same location.

 » The application is using multiprocessing and the two variables exist on 
different processors.

 » The interpreter in use doesn’t follow the CPython approach to handling 
variables.

When working with other languages, you need to consider whether the data sup-
ported by that language is actually immutable and what set of events occurs 
when code tries to modify that data. When working with Python, you can detect 
changes, but not all languages support the functionality required to ensure that 
immutability is maintained.

Considering the role of state
Application state is a condition that occurs when the application performs tasks 
that modify global data. An application doesn’t have state when using functional 
programming. The lack of state has the positive effect of ensuring that any call to 
a function will produce the same results for a given input every time, regardless of 
when the application calls the function. However, the lack of state has a negative 
effect as well: The application now has no memory. When you think about state, 
think about the capability to remember what occurred in the past, which, in the 
case of an application, is stored as global data.
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Eliminating side effects
The term declaration has a number of meanings in computer science, and different 
people use the term in different ways at different times. For example, in the con-
text of a language such as C, a declaration is a language construct that defines the 
properties associated with an identifier. You see declarations used for defining all 
sorts of language constructs, such as types and enumerations. However, that’s not 
how the functional paradigm uses the term declaration. When making a functional 
declaration, you’re telling the underlying language to do something. The declara-
tion “Make me a cup of tea!” has only one output: the cup of tea. The declaration 
doesn’t describe how to make the tea; the assumption is that the recipient of the 
declaration knows how to perform the task.

A procedure details what to do, when to do it, and how to do it. Nothing is left to 
chance and no knowledge is assumed on the part of the recipient. The steps appear 
in a specific order, and performing a step out of order will cause problems. For 
example, given the procedure for making a cup of tea, imagine pouring the hot 
water over the teabag before placing the teabag in the cup. Procedures are often 
error prone and inflexible, but they do allow for precise control over the execu-
tion of a task. Even though making a declaration might seem to be superior to a 
procedure, using procedures does have advantages that you must consider when 
designing an application.

The procedure has a side effect instead of a value. After making a cup of tea, the 
procedure indicates that the recipient of the request should take the cup of tea to 
the requestor. However, the procedure must successfully conclude for this event 
to occur. The procedure isn’t returning the tea; the recipient of the request is per-
forming that task. Consequently, the procedure isn’t returning a value.

Side effects also occur in data. When you pass a variable to a function, the 
expectation in functional programming is that the variable’s data will remain 
untouched  — immutable. A side effect occurs when the function modifies the 
variable data so that upon return from the function call, the variable changes in 
some manner.

Passing by reference versus by value
The point at which Python shows itself to be an impure language is the use of 
passing by reference. When you pass a variable by reference, it means that any 
change to the variable within the function results in a global change to the vari-
able’s value. In short, using passing by reference produces a side effect, which 
isn’t allowed when using the functional programming paradigm.
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Normally, you can write functions in Python that don’t cause the passing by ref-
erence problem. For example, the following code doesn’t modify x, even though 
you might expect it to:

def DoChange(x, y):
    x = x.__add__(y)
    return x
x = 1
print(x)
print(DoChange(x, 2))
print(x)

The value of x outside the function remains unchanged:

1
3
1

However, you need to exercise care when creating functions using some objects 
and built-in methods. For example, the following code will modify the output:

def DoChange(aList):
    aList.append(4)
    return aList
aList = [1, 2, 3]
print(aList)
print(DoChange(aList))
print(aList)

The following output shows that aList doesn’t remain the same:

[1, 2, 3]
[1, 2, 3, 4]
[1, 2, 3, 4]

The appended version will become permanent in this case because the built-in 
function, append, performs the modification. To avoid this problem, you must 
create a new variable within the function, change its value, and then return the 
new variable, as shown in the following code:

def DoChange(aList):
    newList = aList.copy()
    newList.append(4)
    return newList
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aList = [1, 2, 3]
print(aList)
print(DoChange(aList))
print(aList)

Here are the new results:

[1, 2, 3]
[1, 2, 3, 4]
[1, 2, 3]

In the first case, you see the changed list, but the second case keeps the list intact. 
Whether you encounter a problem with particular Python objects depends on 
their mutability. An int isn’t mutable, so you don’t need to worry about having 
problems with functions changing its value. On the other hand, a list is muta-
ble, which is the source of the problems with the examples that use a list in 
this section. The article at https://medium.com/@meghamohan/mutable-and-  
immutable-side-of-python-c2145cf72747 offers insights into the mutability of 
various Python objects.

Working with Lists and Strings
After you have used lists, you might be tempted to ask what a list can’t do. The 
list data structure is the most versatile offering for most languages. In most cases, 
lists are simply a sequence of values that need not be of the same type. You access 
the elements in a list using an index that begins at 0 for most languages, but could 
start at 1 for some. The indexing method varies among languages, but accessing 
specific values using an index is common. Besides storing a sequence of values, 
you sometimes see lists used in these coding contexts:

 » Stack

 » Queue

 » Deque

 » Sets

https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
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Generally, lists offer more manipulation methods than other kinds of data struc-
tures simply because the rules for using them are so relaxed. Many of these 
manipulation methods give lists a bit more structure for use in meeting special-
ized needs. Lists are also easy to search and to perform various kinds of analysis. 
The point is that lists often offer significant flexibility at the cost of absolute reli-
ability and dependability. (You can easily use lists incorrectly, or create scenarios 
in which lists can actually cause an application to crash, such as when you add an 
element of the wrong type.)

Depending on the language you use, lists can provide an impressive array of fea-
tures and make conversions between types easier. For example, using an iterator 
in Python lets you perform tasks such as outputting the list as a tuple, processing 
the content one element at a time, and unpacking the list into separate variables. 
The list features you obtain with a particular language depend on the functions the 
language provides and your own creativity in applying them.

LIST AND ARRAY DIFFERENCE
At first, lists may simply seem to be another kind of array. Many people wonder how 
lists and arrays differ. After all, from a programming perspective, the two can sound 
like the same thing. It’s true that lists and arrays both store data sequentially, and you 
can often store any sort of data you want in either structure (although arrays tend to be 
more restrictive).

The main difference comes in how arrays and lists store the data. An array always 
stores data in sequential memory locations, which gives an array faster access times 
in some situations but also slows the creation of arrays. In addition, because an array 
must appear in sequential memory, updating arrays is often hard, and some languages 
don’t allow you to modify arrays in the same ways as you can lists.

A list stores data using a linked data structure in which a list element consists of the 
data value and one or two pointers. Lists take more memory because you must now 
allocate memory for pointers to the next data location (and to the previous location as 
well in doubly-linked lists, which is the kind used by most languages today). Lists are 
often faster to create and add data to because of the linking mechanism, but they pro-
vide slower read access than arrays.
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Creating lists
Python, like most programming languages, makes creating lists easy. You use the 
following code to create a list:

a = [1, 2, 3, 4]

The variable a now contains a list of four values from 1 to 4. You can also create 
a list in Python based on a range. Here is one method for creating a list in Python 
based on a range:

b = list(range(1, 13))

This example combines the list function with the range function to create the 
list. Notice that the range function accepts a starting value, 1, and a stop value, 
13. The resulting list will contain the values 1 through 12 because the stop value is 
always one more than the actual output value, as shown by this code:

print(b)

Here is the result you see:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Python supports list comprehensions, but again, the code for creating a list in this 
manner is different. Here’s an example of how you could create the list, c, using 
list comprehensions:

c = [a * 2 for a in range(1,5)]
print(c)

This example shows the impure nature of Python because you rely on a statement 
rather than lambda calculus to get the job done. As an alternative, you can define 
the range function stop value by specifying len(a)+1. (The alternative approach 
makes it easier to create a list based on comprehensions because you don’t have to 
remember the source list length.) Here is the output from this example:

[2, 4, 6, 8]

Evaluating lists
Python provides a lot of different ways to evaluate lists. To start with, you can 
obtain a particular element using an index enclosed in square brackets. For exam-
ple, assuming that you have a list defined as a = [1, 2, 3, 4, 5, 6], typing a[0] 
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and pressing Enter will produce an output of 1. To interact with lists in Python, 
you use modifications of an index, as shown here:

 » a[0]: Obtains the head of the list, which is 1 in this case

 » a[1:]: Obtains the tail of the list, which is [2,3,4,5,6] in this case

 » a[:-1]: Obtains all but the last element, which is [1,2,3,4,5] in this case

 » a[-1:]: Obtains just the last element, which is 6 in this case

 » a[:-3]: Requires the number of elements you want to see as input and then 
shows that number from the beginning of the list, which is [1,2,3] in this case

 » a[-3:]: Requires the number of elements you don’t want to see as input and 
then shows the remainder of the list after dropping the required elements, 
which is [4,5,6] in this case

Python probably provides more ways to slice and dice lists than you’ll ever need 
or want. You can also perform similar levels of basic analysis using Python, as 
shown here:

 » len(a): Returns the number of elements in a list.

 » not a: Checks for an empty list. This check is different from a is None, which 
checks for an actual null value — a not being defined.

 » min(a): Returns the smallest list element.

 » max(a): Returns the largest list element.

 » sum(a): Adds the numbers of the list together.

Interestingly enough, Python has no single method call to obtain the product of a 
list — that is, all the numbers multiplied together. Python relies heavily on third-
party libraries such as NumPy (https://numpy.org/) to perform this task. One 
of the easiest ways to obtain a product without resorting to a third-party library 
is shown here:

from functools import reduce
print(reduce(lambda x, y: x * y, a))

Using a, the output is 720 in this case. The reduce method found in the functools 
library (see https://docs.python.org/3/library/functools.html for details) 
is incredibly flexible in that you can define almost any operation that works on 
every element in a list. In this case, the lambda function multiplies the current list 

https://numpy.org/
https://docs.python.org/3/library/functools.html
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element, y, by the accumulated value, x. If you wanted to encapsulate this tech-
nique into a function, you could do so using the following code:

prod = lambda z: reduce(lambda x, y: x * y, z)
print(prod(a))

As before, you obtain an output of 720. Python does provide you with a 
number of statistical calculations in the statistics library (see https:// 
pythonprogramming.net/statistics-python-3-module-mean-standard- 
deviation/ for details). However, you may find that you want to create your 
own functions to determine things like the average value of the entries in a list. 
The following code shows the Python version:

avg = lambda x: sum(x) // len(x)
print(avg(a))

As before, the output is 3. Note the use of the // operator to perform integer  
division. If you were to use the standard division operator, you would receive a 
floating-point value as output.

Performing common list manipulations
List manipulation means changing the list. However, in the functional program-
ming paradigm, you can’t change anything. For all intents and purposes, every 
variable points to a list that is a constant — one that can’t change for any reason 
whatsoever. So when you work with lists in functional code, you need to con-
sider the performance aspects of such a requirement. Every change you make to 
any list will require the creation of an entirely new list, and you have to point 
the variable to the new structure. To the developer, the list may appear to have 
changed, but underneath, it hasn’t; in fact, it can’t, or the underlying reason to 
use the functional programming paradigm fails. With this caveat in mind, here are  
the common list manipulations you want to consider (which are in addition to the 
evaluations described earlier):

 » Concatenation: Adding two lists together to create a new list with all the 
elements of both

 » Repetition: Creating a specific number of duplicates of a source list

 » Membership: Determining whether an element exists within a list and 
potentially extracting it

https://pythonprogramming.net/statistics-python-3-module-mean-standard-deviation/
https://pythonprogramming.net/statistics-python-3-module-mean-standard-deviation/
https://pythonprogramming.net/statistics-python-3-module-mean-standard-deviation/
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 » Iteration: Interacting with each element of a list individually

 » Editing: Removing specific elements, reversing the list in whole or in part, 
inserting new elements in a particular location, sorting, or in any other way 
modifying a part of the list while retaining the remainder

When working with Python, you have access to a whole array of list manipulation 
functions. Many of them are dot functions that you append to a list. Of course, 
using the dot functions is fine if you want to modify your original list, but in many 
situations, modifying the original idea is simply a bad idea, so you need another 
way to accomplish the task. In this case, you can use the following code to reverse 
a list and place the result in another list without modifying the original:

reverse = lambda x: x[::-1]
b = reverse(a)
print(b)

Using a from the previous sections, you see an output of

[6, 5, 4, 3, 2, 1]

Python provides an amazing array of list functions — too many to cover in this 
chapter (but you do see more as the book progresses). One of the best places to 
find a comprehensive list of Python list functions is at https://likegeeks.com/
python-list-functions/.

Understanding the Dict  
and Set alternatives
Python supports both dictionaries and sets. To create a dictionary, you provide 
name value pairs, as shown here:

myDict = {"First": 1, "Second": 2, "Third": 3}

The first value, the name, is also a key. The keys are separated from the values by 
a colon; individual entries are separated by commas. You can access any value in 
the dictionary using the key, such as print(myDict["First"]), which outputs a 
value of 1.

Sets in Python are either mutable (the set object) or immutable (the frozenset 
object). The immutability of the frozenset allows you to use it as a subset within 
another set or make it hashable for use in a dictionary. (The set object doesn’t 
offer these features.) Python has other kinds of sets, too, but for now, the focus 

https://likegeeks.com/python-list-functions/
https://likegeeks.com/python-list-functions/
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is on immutable sets for functional programming uses. Be aware, however, that 
other set types exist that may work better for your particular application. The fol-
lowing code creates a frozenset:

myFSet = frozenset([1, 2, 3, 4, 5, 6])

You use the frozenset to perform math operations or to act as a list of items. 
For example, you could create a set consisting of the days of the week. You can’t 
locate individual values in a frozenset but rather must interact with the object as 
a whole. However, the object is iterable, so the following code tells you whether 
myFSet contains the value 1:

for entry in myFSet:
   if entry == 1:
      print(True)

Considering the use of strings
Strings convey thoughts in human terms. Humans don’t typically speak num-
bers or math; they use strings of words made up of individual letters to con-
vey thoughts and feelings. Unfortunately, computers don’t know what a letter is, 
much less strings of letters used to create words or groups of words used to create 
sentences. None of it makes sense to computers. So, as foreign as numbers and 
math might be to most humans, strings are just as foreign to the computer (if not 
more so).

Humans see several kinds of objects as strings, but computer languages usually 
treat them as separate entities. Two of them are important for programming tasks 
in this book: characters and strings. A character is a single element from a char-
acter set, such as the letter A. Character sets can contain nonletter components, 
such as the carriage return control character. Extended character sets can provide 
access to letters used in languages other than English. However, no matter how 
someone structures a character set, a character is always a single entity within 
that character set. Depending on how the originator structures the character set, 
an individual character can consume 7, 8, 16, or even 32 bits.

A string is a sequential grouping of zero or more characters from a character set. 
When a string contains zero elements, it appears as an empty string. Most strings 
contain at least one character, however. The representation of a character in 
memory is relatively standard across languages; it consumes just one memory 
location for the specific size of that character. Strings, however, appear in various 
forms depending on the language. So computer languages treat strings differently 
from characters because of how each of them uses memory.
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Strings don’t just see use as user output in applications. Yes, you do use strings to 
communicate with the user, but you can also use strings for other purposes such 
as labeling numeric data within a dataset. Strings are also central to certain data 
formats, such as XML. In addition, strings appear as a kind of data. For example, 
HTML relies on the agent string to identify the characteristics of the client system. 
Consequently, even if your application doesn’t ever interact with the user, you’re 
likely to use strings in some capacity.

Python, as an impure language, also comes with a full list of string functions — 
too many to go into in this chapter. Creating a string is exceptionally easy:

myString = "Hello There!"

Strings are first-class citizens in Python, and you have access to all the usual 
manipulation features found in other languages, including special formatting and 
escape characters. (The tutorial at https://www.tutorialspoint.com/python/
python_strings.htm doesn’t even begin to show you everything, but it’s a good 
start.)

An important issue for Python developers is that strings are immutable. Of course, 
that leads to all sorts of questions relating to how someone can seemingly change 
the value of a string in a variable. However, what really happens is that when you 
change the contents of a variable, Python actually creates a new string and points 
the variable to that string rather than the existing string.

One of the more interesting aspects of Python is that you can also treat strings 
sort of like lists. The “Evaluating lists” section, later in this chapter, talks about 
how to evaluate lists, and many of the same features work with strings. You have 
access to all the indexing features to start with, but you can also do things like 
the following:

 » min(myString): Returns the space in the example string

 » max(myString): Returns the letter r in the example string

Obviously, you can’t use sum(myString) because there is nothing to sum. In fact, 
you get a TypeError exception if you try. With Python, if you’re not quite sure 
whether something will work on a string, give it a try.

https://www.tutorialspoint.com/python/python_strings.htm
https://www.tutorialspoint.com/python/python_strings.htm
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Employing Pattern Matching
Patterns consist of a set of qualities, properties, or tendencies that form a char-
acteristic or consistent arrangement — a repetitive model. Humans are good at 
seeing strong patterns everywhere and in everything. In fact, we purposely place 
patterns in everyday things, such as wallpaper or fabric. However, computers are 
better than humans are at seeing weak or extremely complex patterns because 
computers have the memory capacity and processing speed to do so. The capa-
bility to see a pattern is pattern matching. Pattern matching is an essential com-
ponent in the usefulness of computer systems and has been from the outset, so 
this chapter is hardly about something radical or new. Even so, understanding 
how computers find patterns is incredibly important in defining how this seem-
ingly old technology plays such an important part in new applications such as AI, 
machine learning, deep learning, and data analysis of all sorts.

The most useful patterns are those that we can share with others. To share a 
pattern with someone else, you must create a language to define it — an expres-
sion. This chapter also discusses regular expressions, a particular kind of pattern 
language, and their use in performing tasks such as data analysis. The creation of 
a regular expression helps you describe to an application what sort of pattern it 
should find, and then the computer, with its faster processing power, can locate 
the precise data you need in a minimum amount of time. This basic informa-
tion helps you understand more complex pattern matching of the sort that occurs 
within the realms of AI and advanced data analysis.

Of course, working with patterns using pattern matching through expressions 
of various sorts works a little differently in the functional programming para-
digm. The final sections of this chapter look at how to perform pattern matching 
using the two languages for this book: Haskell and Python. These examples aren’t 
earth shattering, but they do give you an idea of just how pattern matching works 
within functional programs so that you can apply pattern matching to other uses.

Looking for patterns in data
When you look at the world around you, you see patterns of all sorts. The same 
holds true for data that you work with, even if you aren’t fully aware of seeing the 
pattern at all. For example, telephone numbers and social security numbers are 
examples of data that follows one sort of pattern — that of a positional pattern. 
A telephone number in the United States consists of an area code of three digits, 
an exchange of three digits (even though the exchange number is no longer held 
by a specific exchange), and an actual number within that exchange of four digits. 
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The positions of these three entities is important to the formation of the tele-
phone number, so you often see a telephone number pattern expressed as (999) 
999-9999 (or some variant), where the value 9 is representative of a number. The 
other characters provide separation between the pattern elements to help humans 
see the pattern.

Other sorts of patterns exist in data, even if you don’t think of them as such. For 
example, the arrangement of letters from A to Z is a pattern. This statement may 
not seem like a revelation, but the use of this particular pattern occurs almost 
constantly in applications when the application presents data in ordered form to 
make it easier for humans to understand and interact with the data. Organiza-
tional patterns are essential to the proper functioning of applications today, yet 
humans take them for granted, for the most part.

Another sort of pattern is the progression. One of the easiest and most often 
applied patterns in this category is the exponential progression expressed as Nx, 
where a number N is raised to the x power. For example, an exponential progres-
sion of 2 starting with 0 and ending with 4 would be: 1, 2, 4, 8, and 16. The lan-
guage used to express a pattern of this sort is the algorithm, and you often use 
programming language features, such as recursion, to express it in code.

Some patterns are abstractions of real-world experiences. Consider color, for 
example. To express color in terms that a computer can understand requires 
the use of three or four three-digit variables, where the first three are always 
some value of red, blue, and green. The fourth entry can be an alpha value, which 
expresses opacity, or a gamma value, which expresses a correction used to define 
a particular color with the display capabilities of a device in mind. These abstract 
patterns help humans model the real world in the computer environment so that 
still other forms of pattern matching can occur (along with other tasks, such as 
image augmentation or color correction).

Transitional patterns help humans make sense of other data. For example, refer-
encing all data to a known base value enables you to compare data from different 
sources, collected at different times and in different ways, using the same scale. 
Knowing how various entities collect the required data provides the means for 
determining which transition to apply to the data so that it can become useful as 
part of a data analysis.

Data can even have patterns when missing or damaged. The pattern of unusable 
data could signal a device malfunction, a lack of understanding of how the data 
collection process should occur, or even human behavioral tendencies. The point 
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is that patterns occur in all sorts of places and in all sorts of ways, which is why 
having a computer recognize them can be important. Humans may see only part 
of the picture, but a properly trained computer can potentially see them all.

So many kinds of patterns exist that documenting them all fully would easily take 
an entire book. Just keep in mind that you can train computers to recognize and 
react to data patterns automatically in such a manner that the data becomes useful 
to humans in various endeavors. The automation of data patterns is perhaps one 
of the most useful applications of computer technology today, yet very few people 
even know that the act is taking place. What they see instead is an organized list of 
product recommendations on their favorite site or a map containing instructions 
on how to get from one point to another — both of which require the recognition of 
various sorts of patterns and the transition of data to meet human needs.

Understanding regular expressions
Regular expressions are special strings that describe a data pattern. The use of 
these special strings is so consistent across programming languages that know-
ing how to use regular expressions in one language makes it significantly easier to 
use them in all other languages that support regular expressions. As with all rea-
sonably flexible and feature-complete syntaxes, regular expressions can become 
quite complex, which is why you’ll likely spend more than a little time working 
out the precise manner by which to represent a particular pattern to use in pat-
tern matching.

You use regular expressions to refer to the technique of performing pattern 
matching using specially formatted strings in applications. However, the actual 
code class used to perform the technique appears as Regex, regex, or even RegEx, 
depending on the language you use. Some languages use a different term entirely, 
but they’re in the minority. Consequently, when referring to the code class rather 
than the technique, use Regex (or one of its other capitalizations).

The following sections constitute a brief overview of regular expressions. You can 
find the more detailed Python documentation at https://docs.python.org/3.6/ 
library/re.html. This source of additional help can become quite dense and hard 
to follow, though, so you might also want to review the tutorial at https://www. 
regular-expressions.info/ for further insights.

https://docs.python.org/3.6/library/re.html
https://docs.python.org/3.6/library/re.html
https://www.regular-expressions.info/
https://www.regular-expressions.info/
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Defining special characters using escapes
Character escapes usually define a special character of some sort, very often a con-
trol character. You escape a character using the backslash (\), which means that 
if you want to search for a backslash, you must use two backslashes in a row (\\).  
The character in question follows the escape. Consequently, \b signals that you 
want to look for a backspace character. Programming languages standardize these 
characters in several ways:

 » Control character: Provides access to control characters such as tab (\t), 
newline (\n), and carriage return (\r). Note that the \n character (which has a 
value of \u000D) is different from the \r character (which has a value 
of \u000A).

 » Numeric character: Defines a character based on numeric value. The 
common types include octal (\nnn), hexadecimal (\xnn), and Unicode (\unnnn). 
In each case, you replace the n with the numeric value of the character, such 
as \u0041 for a capital letter A in Unicode. Note that you must supply the 
correct number of digits and use 0s to fill out the code.

 » Escaped special character: Specifies that the regular expression compiler 
should view a special character, such as ( or [, as a literal character rather than 
as a special character. For example, \( would specify an opening parenthesis 
rather than the start of a subexpression.

Defining wildcard characters
A wildcard character can define a kind of character, but never a specific character. 
You use wildcard characters to specify any digit or any character at all. The fol-
lowing list tells you about the common wildcard characters. Your language may 

CAPITALIZATION MATTERS!
When working with regular expressions, you must exercise extreme care in capitalizing 
the pattern correctly. For example, telling the regular expression compiler to look for a 
lowercase a excludes an uppercase A. To look for both, you must specify both.

The same holds true when defining control characters, anchors, and other regular 
expression pattern elements. Some elements may have both lowercase and uppercase 
equivalents. For example, \w may specify any word character, while \W specifies any 
nonword character. The difference in capitalization is important.



154      BOOK 2  Interacting with Data Storage

not support all these characters, or it may define characters in addition to those 
listed. Here’s what the following characters match with:

Character Matches With

. Any character (with the possible exception of the newline 
character or other control characters)

\w Any word character

\W Any nonword character

\s Any whitespace character

\S Any non-whitespace character

\d Any decimal digit

\D Any nondecimal digit

Working with anchors
Anchors define how to interact with a regular expression. For example, you may 
want to work with only the start or end of the target data. Each programming lan-
guage appears to implement some special conditions with regard to anchors, but 
they all adhere to the basic syntax (when the language supports the anchor). The 
following table defines the commonly used anchors:

Anchor What It Does

^ Looks at the start of the string.

$ Looks at the end of the string.

* Matches zero or more occurrences of the specified character.

+ Matches one or more occurrences of the specified character. 
The character must appear at least once.

? Matches zero or one occurrences of the specified character.

{m} Specifies m number of the preceding characters required 
for a match.

{m,n} Specifies the range from m to n, which is the number of the 
preceding characters required for a match.

expression|expression Performs or searches where the regular expression compiler 
will locate either one expression or the other expression and 
count it as a match.
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You may find figuring out some of these anchors difficult. The idea of matching 
means to define a particular condition that meets a demand. For example, con-
sider this pattern: h?t, which would match hit and hot, but not hoot or heat, because 
the ? anchor matches just one character. If you instead wanted to match hoot and 
heat as well, then you’d use h*t, because the * anchor can match multiple charac-
ters. Using the right anchor is essential to obtaining a desired result.

Delineating subexpressions using  
grouping constructs
A grouping construct tells the regular expression compiler to treat a series of 
characters as a group. For example, the grouping construct [a-z] tells the regular 
expression compiler to look for all lowercase characters between a and z. How-
ever, the grouping construct [az] (without the dash between a and z) tells the 
regular expression compiler to look for just the letters a and z, but nothing in 
between, and the grouping construct [^a-z] tells the regular expression com-
piler to look for everything but the lowercase letters a through z. The following 
list describes the commonly used grouping constructs. The italicized letters and 
words in this list are placeholders.

Construct What It Means

[x] Look for a single character from the characters specified by x.

[x-y] Search for a single character from the range of characters specified 
by x and y.

[^expression] Locate any single character not found in the character expression.

(expression) Define a regular expression group. For example, ab{3} would match 
the letter a and then three copies of the letter b, that is, abbb. 
However, (ab){3} would match three copies of the expression 
ab: ababab.

Using pattern matching in analysis
Pattern matching in computers is as old as the computers themselves. In looking 
at various sources, you can find different starting points for pattern matching, 
such as editors. However, the fact is that you can’t really do much with a com-
puter system without having some sort of pattern matching occur. For example, 
the mere act of stopping certain kinds of loops requires that a computer match a 
pattern between the existing state of a variable and the desired state. Likewise, 
user input requires that the application match the user’s input to a set of accept-
able inputs.
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Developers recognize that function declarations also form a kind of pattern and 
that to call the function successfully, the caller must match the pattern. Sending 
the wrong number or types of variables as part of the function call causes the call 
to fail. Data structures also form a kind of pattern because the data must appear in 
a certain order and be of a specific type.

Where you choose to set the beginning for pattern matching depends on how you 
interpret the act. Certainly, pattern matching isn’t the same as counting, as in a 
for loop in an application. However, someone could argue that testing for a con-
dition in a while loop matches the definition of pattern matching to some extent. 
Many people look at editors as the first use of pattern matching because editors 
were the first kinds of applications to use pattern matching to perform a search, 
such as to locate a name in a document. Searching is most definitely part of the 
act of analysis because you must find the data before you can do anything with it.

The act of searching is just one aspect, however, of a broader application of pat-
tern matching in analysis. The act of filtering data also requires pattern matching. 
A search is a singular approach to pattern matching in that the search succeeds 
the moment that the application locates a match. Filtering is a batch process that 
accepts all the matches in a document and discards anything that doesn’t match, 
enabling you to see all the matches without doing anything else. Filtering can also 
vary from searching in that searching generally employs static conditions, while 
filtering can employ some level of dynamic condition, such as locating the mem-
bers of a set or finding a value within a given range.

Filtering is the basis for many of the analysis features in declarative languages, 
such as SQL, when you want to locate all the instances of a particular data struc-
ture (a record) in a large data store (the database). The level of filtering in SQL is 
much more dynamic than in mere filtering because you can now apply conditional 
sets and limited algorithms to the process of locating particular data elements.

Regular expressions, although not the most advanced of modern pattern- matching 
techniques, offer a good view of how pattern matching works in modern appli-
cations. You can check for ranges and conditional situations, and you can even 
apply a certain level of dynamic control. Even so, the current master of pattern 
matching is the algorithm, which can be fully dynamic and incredibly responsive 
to particular conditions.

Working with pattern matching
Pattern matching in Python closely matches the functionality found in many 
other languages. Python provides robust pattern-matching capabilities using 
the regular expression (re) library (https://docs.python.org/3.6/library/ 
re.html). The resource at https://www.regular-expressions.info/python.

https://docs.python.org/3.6/library/re.html
https://docs.python.org/3.6/library/re.html
https://www.regular-expressions.info/python.html
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html provides a good overview of the Python capabilities. The following sections 
detail Python functionality using a number of examples.

Performing simple Python matches
All the functionality you need for employing Python in basic RegEx tasks appears 
in the re library. The following code shows how to use this library:

import re
vowels = "[aeiou]"
print(re.search(vowels,
                "This is a test sentence.").group())

The search() function locates only the first match, so you see the letter i as out-
put because it’s the first item in vowels. You need the group() function call to 
output an actual value because search() returns a match object, as described at 
https://docs.python.org/3.6/library/re.html#match-objects.

When you look at the Python documentation, you find quite a few functions 
devoted to working with regular expressions, some of them not entirely clear in 
their purpose. For example, you have a choice between performing a search or a 
match. A match works only at the beginning of a string. Consequently, this code:

print(re.match(vowels, "This is a test sentence."))

returns a value of None because none of the vowels appears at the beginning of the 
sentence. However, this code:

print(re.match("a", "abcde").group())

returns a value of a because the letter a appears at the beginning of the test string.

Neither search nor match will locate all occurrences of the pattern in the target 
string. To locate all the matches, you use findall or finditer instead. For exam-
ple, this code:

print(re.findall(vowels, "This is a test sentence."))

returns a list like this:

['i', 'i', 'a', 'e', 'e', 'e', 'e']

Because this is a list, you can manipulate it as you would any other list.

https://www.regular-expressions.info/python.html
https://docs.python.org/3.6/library/re.html#match-objects
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Match objects are useful in other ways. For example, you can create a more com-
plete search by using the start() and end() functions, as shown in the following 
code:

testSentence = "This is a test sentence."
m = re.search(vowels, testSentence)
while m:
   print(testSentence[m.start():m.end()])
   testSentence = testSentence[m.end():]
   m = re.search(vowels, testSentence)

This code keeps performing searches on the remainder of the sentence after each 
search until it no longer finds a match, as shown here:

i
i
a
e
e
e
e

Using the finditer() function would be easier, but this code points out that 
Python does provide everything needed to create relatively complex pattern-
matching code.

Doing more than matching
Python’s regular expression library makes it quite easy to perform a wide variety 
of tasks that don’t strictly fall into the category of pattern matching. This chapter 
discusses only a few of the more interesting capabilities. One of the most com-
monly used is splitting strings. For example, you might use the following code to 
split a test string using a number of whitespace characters:

testString = "This is\ta test string.\nYippee!"
whiteSpace = "[\s]"
print(re.split(whiteSpace, testString))

The escaped character, \s, stands for all space characters, which includes the set 
of [ \t\n\r\f\v]. The split() function can split any content using any of the 
accepted regular expression characters, so it’s an extremely powerful data manip-
ulation function. The output from this example looks like this:

['This', 'is', 'a', 'test', 'string.', 'Yippee!']
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Performing substitutions using the sub() function is another forte of Python. 
Rather than perform common substitutions one at a time, you can perform them 
all simultaneously, as long as the replacement value is the same in all cases. Con-
sider the following code:

testString = "Stan says hello to Margot from Estoria."
pattern = "Stan|hello|Margot|Estoria"
replace = "Unknown"
re.sub(pattern, replace, testString)

The output of this example is

Unknown says Unknown to Unknown from Unknown.

You can create a pattern of any complexity and use a single replacement value 
to represent each match. This is handy when performing certain kinds of data 
manipulation for tasks such as dataset cleanup prior to analysis.

Working with Recursion
Some people confuse recursion with a kind of looping. The two are completely 
different sorts of programming and wouldn’t even look the same if you could 
view them at a low level. In recursion, a function calls itself repetitively and keeps 
track of each call through stack entries, rather than an application state, until 
a condition used to determine the need to make the function call meets some 
requirement. At this point, the list of stack entries unwinds with the function 
passing the results of its part of the calculation to the caller until the stack is 
empty and the initiating function has the required output of the call. Although this 
sounds mind-numbingly complex, in practice, recursion is an extremely elegant 
method of solving certain computing problems and may be the only solution in 
some situations. The following sections introduce you to the basics of recursion 
using Python, so don’t worry if this initial definition leaves you in doubt as to 
what recursion means.

Performing tasks more than once
One of the main advantages of using a computer is its capability to perform tasks 
repetitively — often far faster and with greater accuracy than a human can. Even 
a language that relies on the functional programming paradigms requires some 
method of performing tasks more than once; otherwise, creating the language 
wouldn’t make sense. Because the conditions under which functional languages 
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repeat tasks differ from those of other languages using other paradigms, thinking 
about the whole concept of repetition again is worthwhile, even if you’ve worked 
with these other languages. The following sections give you a brief overview.

Defining the need for repetition
The act of repeating an action seems simple enough to understand. However, rep-
etition in applications occurs more often than you might think. Here are just a few 
uses of repetition to consider:

 » Performing a task a set number of times

 » Performing a task a variable number of times until a condition is met

 » Performing a task a variable number of times until an event occurs

 » Polling for input

 » Creating a message pump

 » Breaking a large task into smaller pieces and then executing the pieces

 » Obtaining data in chunks from a source other than the application

 » Automating data processing using various data structures as input

In fact, you could easily create an incredibly long list of repeated code elements in 
most applications. The point of repetition is to keep from writing the same code 
more than once. Any application that contains repeated code becomes a mainte-
nance nightmare. Each routine must appear only once to make its maintenance 
easy, which means using repetition to allow execution more than one time.

Using recursion instead of looping
The functional programming paradigm doesn’t allow the use of loops for two 
simple reasons. First, a loop requires the maintenance of state, and the func-
tional programming paradigm doesn’t allow state. Second, loops generally require 
mutable variables so that the variable can receive the latest data updates as the 
loop continues to perform its task. As mentioned previously, you can’t use muta-
ble variables in functional programming. These two reasons would seem to sum 
up the entirety of why to avoid loops, but there is yet another.

One of the reasons that functional programming is so amazing is that you can 
use it on multiple processors without concern for the usual issues found with 
other programming paradigms. Because each function call is guaranteed to pro-
duce precisely the same result, every time, given the same inputs, you can execute 
a function on any processor without regard to the processor use for the previous 
call. This feature also affects recursion because recursion lacks state.
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When a function calls itself, it doesn’t matter where the next function call occurs; 
it can occur on any processor in any location. The lack of state and mutable vari-
ables makes recursion the perfect tool for using as many processors as a system 
has to speed applications as much as possible.

Understanding recursion
Recursion, in its essence, is a method of performing tasks repetitively, wherein 
the original function calls itself. Various methods are available for accomplishing 
this task, as described in the following sections. The important aspect to keep in 
mind, though, is the repetition. Whether you use a list, dictionary, set, or collec-
tion as the mechanism to input data is less important than the concept of a func-
tion’s calling itself until an event occurs or it fulfills a specific requirement. Basic 
recursion is the kind that you normally see demonstrated for most languages. In 
this case, the doRep function creates a list containing a specific number, n, of a 
value, x, as shown here for Python:

def doRep(x, n):
   y = []
   if n == 0:
      return []
   else:
      y = doRep(x, n - 1)
      y.append(x)
      return y
 
print(doRep(4, 5))

To understand this code, you must think about the process in reverse. The code 
begins with a call to doRep() with x = 4 and n = 5. Before it does anything else, 
the code actually calls doRep() repeatedly until n == 0. So, when n == 0, the first 
actual step in the recursion process is to create an empty list, which is what the 
code does.

At this point, the call returns and the first actual step concludes, even though you 
have called doRep() six times before it gets to this point. The next actual step, 
when n == 1, is to make y equal to the first actual step, an empty list, and then 
append x to the empty list by calling y.append(x). At this point, the second actual 
step concludes by returning [4] to the previous step, which has been waiting in 
limbo all this time. The recursion continues to unwind until n == 5, at which point 
it performs the final append and returns [4, 4, 4, 4, 4] to the caller.
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Sometimes it’s incredibly hard to wrap your head around what happens with recur-
sion, so putting a print statement in the right place can help. Here’s a modified 
version of the Python code with the print statement inserted. Note that the print 
statement goes after the recursive call so that you can see the result of making it.

def doRep(x, n):
   y = []
   if n == 0:
      return []
   else:
      y = doRep(x, n - 1)
      print(y)
      y.append(x)
      return y
 
print(doRep(4, 5))

This version of the code returns the following:

[]
[4]
[4, 4]
[4, 4, 4]
[4, 4, 4, 4]
[4, 4, 4, 4, 4]

Using recursion on lists
Lists represent multiple inputs to the same call during the same execution. A list 
can contain any data type in any order. You use a list when a function requires 
more than one value to calculate an output. For example, consider the following 
Python list:

myList = [1, 2, 3, 4, 5]

If you wanted to use standard recursion to sum the values in the list and provide 
an output, you could use the following code:

def lSum(list):
   if not list:
      return 0
   else:
      return list[0] + lSum(list[1:])
 
print(lSum(myList))
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You see an output of 15 in this case. The function relies on slicing to remove one 
value at a time from the list and add it to the sum. The base case (principle, sim-
plest, or foundation) is that all the values are gone and now list contains the 
empty set, ([]), which means that it has a value of 0.

Using lambda functions in Python recursion isn’t always easy, but this particular 
example lends itself to using a lambda function quite easily. The advantage is that 
you can create the entire function in a single line, as shown in the following code 
(with two lines, but using a line-continuation character):

lSum2 = lambda list: 0 if not list \
   else list[0] + lSum2(list[1:])
 
print(lSum2(myList))

As before, the result is 15. The code works precisely the same as the longer exam-
ple, relying on slicing to get the job done.

Considering advanced recursive tasks
You have full access to the various data structures in Python when using func-
tional programming techniques. For example, a dictionary takes the exclusivity of 
sets one step further by creating key/value pairs, in which the key is unique but 
the value need not be. Using keys makes searches faster because the keys are usu-
ally short and you need only to look at the keys to find a particular value. Python 
places the key first, followed by the value. Here’s a dictionary definition in Python:

myDic = {"a": 1, "b": 2, "c": 3, "d": 4}

You can access the individual values by using the key. Python uses a form of index 
to access individual values, such as myDic["b"], which also accesses the value 2. 
You can use recursion with dictionaries in the same manner as you do lists. How-
ever, recursion really begins to shine when it comes to complex data structures. 
Consider this Python nested dictionary:

myDic = {"A":{"A": 1, "B":{"B": 2, "C":{"C": 3}}}, "D": 4}

In this case, you have a dictionary nested within other dictionaries down to four 
levels, creating a complex dataset. In addition, the nested dictionary contains 
the same "A" key value as the first-level dictionary (which is allowed), the same 
"B" key value as the second level, and the "C" key on the third level. You might 
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need to look for the repetitious keys, and recursion is a great way to do that, as  
shown here:

def findKey(obj, key):
   for k, v in obj.items():
      if isinstance(v, dict):
         findKey(v, key)
      else:
         if key in obj:
            print(obj[key])
 
print(findKey(myDic, "B"))

This code looks at all the entries by using a for loop. Notice that the loop unpacks 
the entries into key, k, and value, v. When the value is another dictionary, the code 
recursively calls findKey with the value and the key as input. Otherwise, if the 
instance isn’t a dictionary, the code checks to verify that the key appears in the 
input object and prints just the value of that object. In this case, an object can be a 
single entry or a sub-dictionary. Here is the output from this example:

{'B': 2, 'C': {'C': 3}}
2
None

Passing functions instead of variables
Being able to pass a function to another function provides much needed flexibility. 
The passed function can modify the receiving function’s response without modi-
fying that receiving function’s execution. The two functions work in tandem to 
create output that’s an amalgamation of both.

Normally, when you use this function-within-a-function technique, one func-
tion determines the process used to produce an output, while the second func-
tion determines how the output is achieved. This isn’t always the case, but when 
creating a function that receives another function as input, you need to have a 
particular goal in mind that actually requires that function as input. Given the 
complexity of debugging this sort of code, you need to achieve a specific level of 
flexibility by using a function rather than some other input.

Also tempting is to pass a function to another function to mask how a process 
works, but this approach can become a trap. Try to execute the function externally 
when possible and input the result instead. Otherwise, you might find yourself 
trying to discover the precise location of a problem rather than processing data.
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For the example in this section, you can’t use a lambda function to perform the 
required tasks with Python, so the following code relies on standard functions 
instead:

def doAdd(x, y):
   return x + y
 
def doSub(x, y):
   return x - y
 
def compareWithHundred(function, x, y):
   z = function(x, y)
   out = lambda x: "GT" if 100 > x \
      else "EQ" if 100 == x else "LT"
   return out(z)
 
print(compareWithHundred(doAdd, 99, 2))
print(compareWithHundred(doSub, 99, 2))
print(compareWithHundred(doAdd, 99, 1))

This example outputs one of three strings: GT when 100 > x; EQ when 100 == x; 
and LT when 100 < x. To use compareWithHundred(), you pass either doAdd() 
or doSub(), which simply adds to or subtracts from the second argument, x, 
the third argument, y. To make the comparison, compareWithHundred() uses a 
lambda function, which appears on two lines in this case. The output from this 
example shows how the comparisons work:

LT
GT
EQ

Performing Functional Data Manipulation
The act of manipulating data means to modify it in some controlled way. You want 
some of the data, but not all of it. Data analysis often hinges on manipulating data 
in specific ways. The rest of the book does show various sorts of data manipula-
tion, but the following sections provide you with a quick start.
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Slicing and dicing
In some respects, slicing and dicing is considerably easier in Python than in some 
other languages. For one thing, you use indexes to perform the task. Also, Python 
offers more built-in functionality. Consequently, the one-dimensional list exam-
ple looks like this:

myList = [1, 2, 3, 4, 5]
 
print(myList[:2])
print(myList[2:])
print(myList[2:3])

The use of indexes enables you to write the code succinctly and without using 
special functions. The output is as you would expect:

[1, 2]
[3, 4, 5]
[3]

Slicing a two-dimensional list is every bit as easy as working with a one- 
dimensional list. Here’s the code and output for the two-dimensional part of the 
example:

myList2 = [[1,2],[3,4],[5,6],[7,8],[9,10]]
 
print(myList2[:2])
print(myList2[2:])
print(myList2[2:3])

Here’s the output:

[[1, 2], [3, 4]]
[[5, 6], [7, 8], [9, 10]]
[[5, 6]]

Dicing does require using a special function, but the function is concise in this 
case and doesn’t require multiple steps:

def dice(lst, rb, re, cb, ce):
    lstr = lst[rb:re]
    lstc = []
    for i in lstr:
        lstc.append(i[cb:ce])
    return lstc
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To call dice(), you need to provide a two-dimensional list (lst), the beginning 
row (rb), ending row (re), beginning column (cb), and the ending column (ce). 
In this case, you can’t really use a lambda function — or not easily, at least. The 
code slices the incoming list first and then dices it, but everything occurs within a 
single function. Notice that Python requires the use of looping, but this function 
uses a standard for loop instead of relying on recursion. The disadvantage of this 
approach is that the loop relies on state, which means that you can’t really use it 
in a fully functional setting. Here’s the test code for the dicing part of the example:

myList3 = [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]]
 
print(dice(myList3, 1, 4, 1, 2))

Here’s the output:

[[5], [8], [11]]

Mapping your data
You can find a number of extremely confusing references to the term map in 
computer science. For example, a map is associated with database management 
(see https://en.wikipedia.org/wiki/Data_mapping), in which data elements 
are mapped between two distinct data models. However, for this chapter, map-
ping refers to a process of applying a high-order function to each member of a 
list. Because the function is applied to every member of the list, the relationships 
among list members is unchanged. Many reasons exist to perform mapping, such 
as ensuring that the range of the data falls within certain limits. The following 
code provides an example of mapping:

square = lambda x: x**2
double = lambda x: x + x
items = [0, 1, 2, 3, 4]
 
print(list(map(square, items)))
print(list(map(double, items)))

The output shows that you get a square or double of each value in the list, as 
shown here:

[0, 1, 4, 9, 16]
[0, 2, 4, 6, 8]

https://en.wikipedia.org/wiki/Data_mapping
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Note that you must convert the map object to a list object before printing it. Given 
that Python is an impure language, creating code that processes a list of inputs 
against two or more functions is relatively easy, as shown in this code:

funcs = [square, double]
 
for i in items:
   value = list(map(lambda items: items(i), funcs))
   print(value)

Here is the output from this example:

[0, 0]
[1, 2]
[4, 4]
[9, 6]
[16, 8]

Filtering data
Python doesn’t provide the niceties of other languages when it comes to filtering. 
For example, you don’t have access to special keywords, such as odd or even. In 
fact, all the filtering in Python requires the use of lambda functions. To perform 
filtering, you use code like this:

items = [0, 1, 2, 3, 4, 5]
 
print(list(filter(lambda x: x % 2 == 1, items)))
print(list(filter(lambda x: x > 3, items)))
print(list(filter(lambda x: x % 3 == 0, items)))

which results in the following output:

[1, 3, 5]
[4, 5]
[0, 3]

Notice that you must convert the filter output using a function such as list. You 
don’t have to use list; you could use any data structure, including set and tuple. 
The lambda function you create must evaluate to True or False.
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Organizing data
Placing data in a particular order makes it easier to perform tasks like seeing pat-
terns. A computer can often use unsorted data, but humans need sorted data to 
make sense of it. The examples in this section use the following list:

original = [(1, "Hello"), (4, "Yellow"), (5, "Goodbye"),
            (2, "Yes"), (3, "No")]

To understand these examples, you need to know how to use the sort() method 
versus the sorted() function. When you use the sort() method, Python changes 
the original list, which may not be what you want. In addition, sort() works only 
with lists, while sorted() works with any iterable. The sorted() function pro-
duces output that doesn’t change the original list. Consequently, if you want to 
maintain your original list form, you use the following call:

sorted(original)

The output is sorted by the first member of the tuple: [(1, 'Hello'), (2, 'Yes'), 
(3, 'No'), (4, 'Yellow'), (5, 'Goodbye')], but the original list remains 
intact. Reversing a list requires the use of the reverse keyword, as shown here:

sorted(original, reverse=True)

Python can make use of lambda functions to perform special sorts. For example, 
to sort by the second element of the tuple, you use the following code:

sorted(original, key=lambda x: x[1])

The key keyword is extremely flexible. You can use it in several ways. For exam-
ple, key=str.lower would perform a case-insensitive sort. Some of the common 
lambda functions appear in the operator module. For example, you could also 
sort by the second element of the tuple using this code:

from operator import itemgetter
sorted(original, key=itemgetter(1))

You can also create complex sorts. For example, you can sort by the length of the 
second tuple element by using this code:

sorted(original, key=lambda x: len(x[1]))
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Notice that you must use a lambda function when performing a custom sort. For 
example, trying this code will result in an error:

sorted(original, key=len(itemgetter(1)))

Even though itemgetter is obtaining the key from the second element of the 
tuple, it doesn’t possess a length. To use the second tuple’s length, you must work 
with the tuple directly.
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Working with Scalars, 
Vectors, and Matrices

In Book 2, Chapter  1, you discover techniques for locating the data you need 
and use it for data science needs (Book 2, Chapter 4 continues this discussion). 
Simply knowing how to control a language by using its constructs to perform 

tasks isn’t enough, though. The goal of mathematical algorithms is to turn one 
kind of data into another kind of data. Manipulating data means taking raw input 
and doing something with it to achieve a desired result. For example, until you 
do something with traffic data, you can’t see the patterns that emerge that tell 
you where to spend additional money in improvements. The traffic data in its raw 
form does nothing to inform you; you must manipulate it to see the pattern in a 
useful manner. Therefore, those arcane mathematical symbols are useful after all. 
You use them as a sort of machine to turn raw data into something helpful, which 
is what you discover in this chapter.

In times past, people actually had to perform the various manipulations to make data 
useful by hand, which required advanced knowledge of math. Fortunately, you can 
find Python and R libraries to perform most of these manipulations using a little code. 
(In fact, both languages provide a great deal of native capability in this regard, with 
R being superior in this instance.) You don’t have to memorize arcane manipulations 
anymore — just know which language features to use. That’s what this chapter helps 
you achieve. You discover the means to perform various kinds of data manipulations 
using easily accessed language libraries designed especially for the purpose.

Chapter 3

IN THIS CHAPTER

 » Using matrixes and vectors to 
perform calculations

 » Obtaining the correct combinations

 » Employing recursive techniques to 
obtain specific results

 » Considering ways to speed 
calculations
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The chapter begins with scalar, vector, and matrix manipulations (see Chapter 2 
of this minibook for the functional version of some of these techniques). You also 
discover how to speed up the calculations so that you spend less time manipulat-
ing the data and more time doing something really interesting with it, such as 
discovering just how to keep quite so many traffic jams from occurring.

You don’t have to type the source code for this chapter manually. In fact, using the 
downloadable source is a lot easier. The source code for this chapter appears in the 
DSPD_0203_Data_Forms.ipynb source code file for Python and the DSPD_R_0203_
Data_Forms.ipynb source code file for R. See the Introduction for details on how 
to find these source files.

Considering the Data Forms
To perform useful data science analysis, you often need to work with larger 
amounts of data that comes in specific forms. These forms have odd-sounding 
names, but the names are quite important. The three terms you need to know for 
this chapter are as follows:

 » Scalar: A single base data item. For example, the number 2 shown by itself 
is a scalar.

 » Vector: A one-dimensional array (essentially a list) of data items. For example, 
an array containing the numbers 2, 3, 4, and 5 would be a vector. You access 
items in a vector using a zero-based index, a pointer to the item you want. The 
item at index 0 is the first item in the vector, which is 2 in this case.

 » Matrix: A two-or-more-dimensional array (essentially a table) of data items. 
For example, an array containing the numbers 2, 3, 4, and 5 in the first row 
and 6, 7, 8, and 9 in the second row is a matrix. You access items in a matrix 
using a zero-based row-and-column index. The item at row 0, column 0 is the 
first item in the matrix, which is 2 in this case.

Both Python and R provide substantial native capability to work with scalars, vec-
tors, and matrices, but you still have to do considerable work to perform some 
tasks. To reduce the amount of work you do, you can rely on code written by 
other people and found in libraries. The following sections describe how to use 
the NumPy library to perform various tasks on scalars, vectors, and matrixes in 
Python. The downloadable source provides the same techniques for R developers.
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Defining Data Type through Scalars
Every data form in Python and R begins with a scalar — a single item of a par-
ticular type. Precisely how you define a scalar depends on how you want to view 
objects within your code and the definitions of scalars for your language. For 
example, R provides these native, simple data types:

 » Character

 » Numeric (real or decimal)

 » Integer

 » Logical

 » Complex

In many respects, R views strings as vectors of characters; the scalar element is 
a character, not a string. The difference is important when thinking about how R 
works with scalars. R also provides a character vector, which is different from an 
R string. You can read about the difference at https://www.gastonsanchez.com/
r4strings/chars.html.

Python provides these native, simple data types:

 » Boolean

 » Integer

 » Float

 » Complex

 » String

Note that Python doesn’t include a character data type because it works with 
strings, not with characters. Yes, you can create a string containing a single char-
acter and you can interact with individual characters in a string, but there isn’t an 
actual character type. To see this fact for yourself, try this code:

anA = chr(65)
print(type(anA))

The output will be <class 'str'>, rather than <class 'char'>, which is what 
most languages would provide. Consequently, a string is a scalar in Python but a 
vector in R. Keeping language differences in mind will help as you perform analy-
sis on your data.

https://www.gastonsanchez.com/r4strings/chars.html
https://www.gastonsanchez.com/r4strings/chars.html
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Most languages also support what you might term as semi-native data types. For 
example, Python supports a Fraction data type that you create by using code like 
this:

from fractions import Fraction
x = Fraction(2, 3)
print(x)
print(type(x))

The fact that you must import Fraction means that it’s not available all the 
time, as something like complex or int is. The tip-off that this is not a built-in 
class is the class output of <class 'fractions.Fraction'>. However, you get 
Fraction with your Python installation, which means that it’s actually a part of 
the language (hence, semi-native).

External libraries that define additional scalar data types are available for most lan-
guages. Access to these additional scalar types is important in some cases. Python 
provides access to just one data type in any particular category. For example, if you 
need to create a variable that represents a number without a decimal portion, you 
use the integer data type. Using a generic designation like this is useful because it 
simplifies code and gives the developer a lot less to worry about. However, in scien-
tific calculations, you often need better control over how data appears in memory, 
which means having more data types — something that numpy provides for you. 
For example, you might need to define a particular scalar as a short (a value that 
is 16 bits long). Using numpy, you could define it as myShort = np.short(15). 
You could define a variable of precisely the same size using the np.int16 function. 
You can discover more about the scalars provided by the NumPy library for Python 
at https://www.numpy.org/devdocs/reference/arrays.scalars.html. You also 
find that most languages provide means of extending the native types (see the 
articles at https://docs.python.org/3/extending/newtypes.html and http://
greenteapress.com/thinkpython/thinkCSpy/html/app02.html for additional 
details).

Creating Organized Data with Vectors
A vector is essentially a list or array of scalars that are grouped together to allow 
access using a single name. The underlying type is a scalar of some sort, but vec-
tors act as a means of organizing the individual scalars and making them easier 
to work with. The following sections describe working with vectors from an over-
view perspective.

https://www.numpy.org/devdocs/reference/arrays.scalars.html
https://docs.python.org/3/extending/newtypes.html
http://greenteapress.com/thinkpython/thinkCSpy/html/app02.html
http://greenteapress.com/thinkpython/thinkCSpy/html/app02.html
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Defining a vector
The NumPy library provides essential functionality for scientific computing in 
Python. To use numpy, you import it using the following:

import numpy as np

Now you can access numpy using the common two-letter abbreviation np.

Use the numpy functions to create a vector. Here are some examples to try:

myVect1 = np.array([1, 2, 3, 4])
print(myVect1)
myVect2 = np.arange(1, 10, 2)
print(myVect2)

The array() function creates a vector using explicit numbers, while the arange() 
function creates a vector by defining a range. When using arange(), the first 
input tells the starting point, the second the stopping point, and the third the step 
between each number. A fourth argument lets you define the data type for the 
vector. You can also create a vector with a specific data type. All you need to do is 
specify the data type like this:

myVect3 = np.array(np.int16([1, 2, 3, 4]))
print(myVect3)
print(type(myVect3))
print(type(myVect3[0]))

The output tells you the facts about this particular array, including that the vector 
type is different from the scalar type of the items it contains:

[1 2 3 4]
<class 'numpy.ndarray'>
<class 'numpy.int16'>

Creating vectors of a specific type
In some cases, you need special numpy functions to create a vector (or a matrix) of 
a specific type. For example, some math tasks require that you fill the vector with 
ones. In this case, you use the ones function like this:

myVect4 = np.ones(4, dtype=np.int16)
print(myVect4)
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The output shows that you do have a vector filled with a series of ones:

[1 1 1 1]

You can also use a zeros() function to fill a vector with zeros.

Performing math on vectors
You can perform basic math functions on vectors as a whole, which makes this 
incredibly useful and less prone to errors that can occur when using programming 
constructs such as loops to perform the same task. For example, print(myVect1 + 1) 
produces an output of [2, 3, 4, 5] when working with standard Python integers. 
As you might expect, print(myVect1 - 1) produces an output of [0, 1, 2, 3]. You 
can even use vectors in more complex math scenarios, such as print(2 ** myVect1), 
where the output is [ 2,  4,  8, 16].

When you want to use NumPy functions and techniques on a standard Python list, 
you need to perform a conversion. Consider the following code:

myVect5 = [1, 2, 3, 4]
print(type(myVect5[0]))
print(type((2 ** np.array(myVect5))[0]))

The output shows that the type changes during the transition:

<class 'int'>
<class 'numpy.int32'>

Performing logical and comparison  
tasks on vectors
As a final thought on scalar and vector operations, you can also perform both logi-
cal and comparison tasks. For example, the following code performs comparison 
operations on two arrays:

a = np.array([1, 2, 3, 4])
b = np.array([2, 2, 4, 4])
 
print(a == b)
print(a < b)
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The output tells you about the relationships between the two arrays:

[False  True False  True]
[ True False  True False]

Starting with two vectors, a and b, the code checks whether the individual elements 
in a equal those in b. In this case, a[0] doesn’t equal b[0]. However, a[1] does 
equal b[1]. The output is a vector of type bool that contains true or false values 
based on the individual comparisons. Likewise, you can check for instances when 
a < b and produce another vector containing the truth-values in this instance.

Logical operations rely on special functions. You check the logical output of the 
Boolean operators AND, OR, XOR, and NOT.  Here is an example of the logical 
functions:

a = np.array([True, False, True, False])
b = np.array([True, True, False, False])
 
print(np.logical_or(a, b))
print(np.logical_and(a, b))
print(np.logical_not(a))
print(np.logical_xor(a, b))

The output tells you about the logical relationship between the two vectors:

[ True  True  True False]
[ True False False False]
[False  True False  True]
[False  True  True False]

You can also use numeric input to these functions. When using numeric input, a 0 
is false and a 1 is true. As with comparisons, the functions work on an element-by- 
element basis even though you make just one call. You can read more about the 
logic functions at https://docs.scipy.org/doc/numpy-1.10.0/reference/ 
routines.logic.html.

Multiplying vectors
Adding, subtracting, or dividing vectors occurs on an element-by-element basis, 
as described in the “Performing math on vectors” section, earlier in this chap-
ter. However, when it comes to multiplication, things get a little odd. In fact, 

https://docs.scipy.org/doc/numpy-1.10.0/reference/routines.logic.html
https://docs.scipy.org/doc/numpy-1.10.0/reference/routines.logic.html
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depending on what you really want to do, things can become quite odd indeed. 
First, consider the element-by-element multiplications below:

myVect = np.array([1, 2, 3, 4])
print(myVect * myVect)
print(np.multiply(myVect, myVect))

The following output shows that both approaches produce the same result.

[ 1,  4,  9, 16]
[ 1,  4,  9, 16]

Unfortunately, an element-by-element multiplication can produce incorrect 
results when working with algorithms. In many cases, what you really need 
is a dot product, which is the sum of the products of two number sequences. 
When working with vectors, the dot product is always the sum of the individual  
element-by-element multiplications and results in a single number. For exam-
ple, myVect.dot(myVect) results in an output of 30. If you sum the values from 
the element-by-element multiplication, you find that they do indeed add up 
to 30. The discussion at https://www.mathsisfun.com/algebra/vectors-dot- 
product.html tells you about dot products and helps you understand where 
they might fit in with algorithms. You can learn more about the linear alge-
bra manipulation functions for numpy at https://docs.scipy.org/doc/numpy/ 
reference/routines.linalg.html.

Creating and Using Matrices
A matrix is simply an extension of the vertex in that you now have a tabular struc-
ture consisting of multiple vertexes in multiple rows, all addressed by a single 
variable name. The table structure is at least two dimensions, but you find matri-
ces of many more dimensions than two. The following sections give you an over-
view of using matrices.

Creating a matrix
Many of the same techniques you use with vectors also work with matrixes. To 
create a basic matrix, you simply use the array function as you would with a vec-
tor, but you define additional dimensions. A dimension is a direction in the matrix. 
For example, a two-dimensional matrix contains rows (one direction) and col-
umns (a second direction). The following array call:

https://www.mathsisfun.com/algebra/vectors-dot-product.html
https://www.mathsisfun.com/algebra/vectors-dot-product.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
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myMatrix1 = np.array([[1,2,3], [4,5,6], [7,8,9]])
print(myMatrix1)

produces a matrix containing three rows and three columns, like this:

[[1 2 3]
 [4 5 6]
 [7 8 9]]

Note how you embed three lists within a container list to create the two dimen-
sions. To access a particular array element, you provide a row and column index 
value, such as myMatrix1[0, 0] to access the first value of 1.

You can produce matrixes with any number of dimensions using a similar tech-
nique, like this:

myMatrix2 = np.array([[[1,2], [3,4]], [[5,6], [7,8]]])
print(myMatrix2)

This code produces a three-dimensional matrix with x, y, and z axes that looks 
like this:

 [[[1 2]
  [3 4]]
 
 [[5 6]
  [7 8]]]

In this case, you embed two lists, within two container lists, within a single con-
tainer list that holds everything together. To access individual values, you must 
provide an x, y, and z index value. For example, myMatrix2[0, 1, 1] accesses 
the value 4.

Creating matrices of a specific type
In some cases, you need to create a matrix that has certain start values. For exam-
ple, if you need a matrix filled with ones at the outset, you can use the ones func-
tion like this:

myMatrix3 = np.ones([4,4], dtype=np.int32)
print(myMatrix3)
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The output shows a matrix containing four rows and four columns filled with 
int32 values, like this:

[[1 1 1 1]
 [1 1 1 1]
 [1 1 1 1]
 [1 1 1 1]]

Likewise, a call to

myMatrix4 = np.ones([4,4,4], dtype=np.bool)
print(myMatrix4)

creates a three-dimensional array, like this:

[[[ True  True  True  True]
  [ True  True  True  True]
  [ True  True  True  True]
  [ True  True  True  True]]
 
 [[ True  True  True  True]
  [ True  True  True  True]
  [ True  True  True  True]
  [ True  True  True  True]]
 
 [[ True  True  True  True]
  [ True  True  True  True]
  [ True  True  True  True]
  [ True  True  True  True]]
 
 [[ True  True  True  True]
  [ True  True  True  True]
  [ True  True  True  True]
  [ True  True  True  True]]]

This time, the matrix contains Boolean values of True. There are also functions 
for creating a matrix filled with zeros, the identity matrix, and for meeting other 
needs. You can find a full listing of vector and matrix array-creation functions at 
https://docs.scipy.org/doc/numpy/reference/routines.array-creation.
html.

https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
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Using the matrix class
The NumPy library supports an actual matrix class. The matrix class supports 
special features that make performing matrix-specific tasks easier. The easiest 
method to create a NumPy matrix is to make a call similar to the one you use for 
the array function but to use the mat function instead, such as:

myMatrix5 = np.mat([[1,2,3], [4,5,6], [7,8,9]])
print(myMatrix5)

which produces the following matrix:

[[1 2 3]
 [4 5 6]
 [7 8 9]]

You can also convert an existing array to a matrix using the asmatrix function, 
such as print(np.asmatrix(myMatrix3)). Use the asarray function to convert a 
matrix object back to an array form.

The only problem with the matrix class is that it works on only two-dimensional 
matrixes. If you attempt to convert a three-dimensional matrix to the matrix 
class, you see an error message telling you that the shape is too large to be a 
matrix.

Performing matrix multiplication
Multiplying two matrixes involves the same concerns as multiplying two vectors 
(as discussed in the “Multiplying vectors” section, earlier in this chapter). The 
following code produces an element-by-element multiplication of two matrixes:

a = np.array([[1,2,3],[4,5,6]])
b = np.array([[1,2,3],[4,5,6]])
 
print(a*b)

The output shows that each element in one matrix is multiplied directly by the 
same element in the second matrix:

[[ 1  4  9]
 [16 25 36]]
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Note that a and b are the same shape: two rows and three columns. To perform an 
element-by-element multiplication, the two matrixes must be the same shape. 
Otherwise, you see an error message telling you that the shapes are wrong. As 
with vectors, the multiply function also produces an element-by-element result.

Dot products work completely differently with matrixes. In this case, the number 
of columns in matrix a must match the number of rows in matrix b. However, the 
number of rows in matrix a can be any number, and the number of columns in 
matrix b can be any number as long as you multiply a by b. For example, the fol-
lowing code produces a correct dot product:

a = np.array([[1,2,3],[4,5,6]])
b = np.array([[1,2,3,4],[3,4,5,6],[5,6,7,8]])
 
print(a.dot(b))

Note that the output contains the number of rows found in matrix a and the num-
ber of columns found in matrix b:

[[22 28 34 40]
 [49 64 79 94]]

So how does all this work? To obtain the value found in the output array at index 
[0,0] of 22, you sum the values of a[0,0]*b[0,0] (which is 1), a[0,1]*b[1,0] (which 
is 6), and a[0,2]*b[2,0] (which is 15) to obtain the value of 22. The other entries 
work precisely the same way.

An advantage of using the numpy matrix class is that some tasks become more 
straightforward. For example, multiplication works precisely as you expect it 
should. The following code produces a dot product using the matrix class:

a = np.mat([[1,2,3],[4,5,6]])
b = np.mat([[1,2,3,4],[3,4,5,6],[5,6,7,8]])
 
print(a*b)

The output with the * operator is the same as using the dot function with an 
array.

[[22 28 34 40]
 [49 64 79 94]]

This example also points out that you must know whether you’re using an array or 
a matrix object when performing tasks such as multiplying two matrixes.
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To perform an element-by-element multiplication using two matrix objects, you 
must use the numpy multiply function.

Executing advanced matrix operations
This book takes you through all sorts of interesting matrix operations, but you use 
some of them commonly, which is why they appear in this chapter. When working 
with arrays, you sometimes get data in a shape that doesn’t work with the algo-
rithm. Fortunately, numpy comes with a special reshape function that lets you put 
the data into any shape needed. In fact, you can use it to reshape a vector into a 
matrix, as shown in the following code:

changeIt = np.array([1,2,3,4,5,6,7,8])
 
print(changeIt)
print()
print(changeIt.reshape(2,4))
print()
print(changeIt.reshape(2,2,2))

The starting shape of changeIt is a vector, but using the reshape function turns 
it into a matrix. In addition, you can shape the matrix into any number of dimen-
sions that work with the data, as shown here:

[1 2 3 4 5 6 7 8]
 
[[1 2 3 4]
 [5 6 7 8]]
 
[[[1 2]
  [3 4]]
 
 [[5 6]
  [7 8]]]

You must provide a shape that fits with the required number of elements. For 
example, calling changeIt.reshape(2,3,2) will fail because there aren’t enough 
elements to provide a matrix of that size.

You may encounter two important matrix operations in some algorithm formula-
tions. They are the transpose and inverse of a matrix. Transposition occurs when a 
matrix of shape n x m is transformed into a matrix m x n by exchanging the rows 
with the columns. Most texts indicate this operation by using the superscript T, as 
in AT. You see this operation used most often for multiplication in order to obtain 
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the right dimensions. When working with numpy, you use the transpose function 
to perform the required work. For example, when starting with a matrix that has 
two rows and four columns, you can transpose it to contain four rows with two 
columns each, as shown in this example:

changeIt2 = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print(np.transpose(changeIt2))

The output shows the expected transformation:

[[1 5]
 [2 6]
 [3 7]
 [4 8]]

You apply matrix inversion to matrixes of shape m x m, which are square matrixes 
that have the same number of rows and columns. This operation is quite impor-
tant because it allows the immediate resolution of equations involving matrix 
multiplication, such as y=bX, in which you have to discover the values in the vector 
b. Because most scalar numbers (exceptions include zero) have a number whose 
multiplication results in a value of 1, the idea is to find a matrix inverse whose 
multiplication will result in a special matrix called the identity matrix. To see an 
identity matrix in numpy, use the identity function, like this:

print(np.identity(4))

Note that an identity matrix contains all ones on the diagonal.

[[1. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 1. 0.]
 [0. 0. 0. 1.]]

Finding the inverse of a scalar is quite easy (the scalar number n has an inverse of 
n–1 that is 1/n). It’s a different story for a matrix. Matrix inversion involves quite a 
large number of computations. The inverse of a matrix A is indicated as A–1. When 
working with numpy, you use the linalg.inv function to create an inverse. The fol-
lowing example shows how to create an inverse, use it to obtain a dot product, and 
then compare that dot product to the identity matrix by using the allclose function.

a = np.array([[1,2], [3,4]])
b = np.linalg.inv(a)
 
print(np.allclose(np.dot(a,b), np.identity(2)))
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In this case, you get an output of True, which means that you have successfully 
found the inverse matrix.

Sometimes, finding the inverse of a matrix is impossible. When a matrix cannot 
be inverted, it is referred to as a singular matrix or a degenerate matrix. Singular 
matrixes aren’t the norm; they’re quite rare.

Extending Analysis to Tensors
A simple way of starting to look at tensors is that they begin as a generalized 
matrix that can be any number of dimensions. They can be 0-D (scalar), 1-D (a 
vector), or 2-D (a matrix). In fact, tensors can have more dimensions than imag-
inable. Tensors have the number of dimensions needed to convey the meaning 
behind some object using data. Even though most humans view data as a 2-D 
matrix that has rows containing individual objects and columns that have individ-
ual data elements that define those objects, in many cases a 2-D matrix won’t be 
enough. For instance, you may need to process data that has a time element, cre-
ating a 2-D matrix for every observed instant. All these sequences of 2-D matrixes 
require a 3-D structure to store because the third dimension is time.

However, tensors are more than simply a fancy sort of matrix. They represent a 
mathematical entity that lives in a structure filled with other mathematical enti-
ties. All these entities interact with each other such that transforming the entities 
as a whole means that individual tensors must follow a particular transformation 
rule. This fact makes tensors handy in various kinds of analysis and most espe-
cially for deep learning. The dynamic nature of tensors distinguishes them from 
standard matrixes. Every tensor within a structure responds to changes in every 
other tensor that occurs as part of a transformation.

To think about how tensors work with regard to deep learning, consider that an 
algorithm could require three inputs to function, as expressed by this vector:

inputs = np.array([5, 10, 15])

These are single values based on a single event. Perhaps they represent a query 
about which detergent is best on Amazon. However, before you can feed these 
values into the algorithm, you must weight their values based on the training 
performed on the model. In other words, given the detergents bought by a large 
group of people, the matrix represents which one is actually best given specific 
inputs. It’s not that the detergent is best in every situation, just that it represents 
the best option given certain inputs.
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The act of weighting the values helps reflect what the deep learning application 
has learned from analyzing huge datasets. For the sake of argument, you could see 
the weights in the matrix that follows as learned values:

weights = np.array([[.5,.2,-1], [.3,.4,.1], [-.2,.1,.3]])

Now that weighting is available for the inputs, you can transform the inputs based 
on the learning the algorithm performed in the past:

result = np.dot(inputs, weights)
print(result)

The output of

[2.5 6.5 0.5]

transforms the original inputs so that they now reflect the effects of learning. The 
vector, inputs, is a hidden layer in a neural network, and the output, result, is 
the next hidden layer in the same neural network. The transformations or other 
actions that occur at each layer determine how each hidden layer contributes to 
the whole neural network, which was weighting, in this case. Later chapters help 
you understand the concepts of layers, weighting, and other activities within a 
neural network. For now, simply consider that each tensor interacts with the 
structure based on the activities of every other tensor.

Using Vectorization Effectively
Vectorization is a process in which an application processes multiple scalar values 
simultaneously, rather than one at a time. The main reason to use vectorization is 
to save time. In many cases, a processor will include a special instruction related 
to vectorization, such as the SSE instruction in x86 systems (https://docs. 
oracle.com/cd/E26502_01/html/E28388/eojde.html). Instead of performing 
single instructions within a loop, a vectorization approach will perform them as a 
group, making the process considerably faster.

When working with huge amounts of data, vectorization becomes important 
because you perform the same operation many different times. Anything you can 
do to keep the process out of a loop will make the code as a whole execute faster. 
Here is an example of a simple vectorization:

https://docs.oracle.com/cd/E26502_01/html/E28388/eojde.html
https://docs.oracle.com/cd/E26502_01/html/E28388/eojde.html
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def doAdd(a, b):
    return a + b
 
vectAdd = np.vectorize(doAdd)
 
print(vectAdd([1, 2, 3, 4], [1, 2, 3, 4]))

When you execute this code, you get the following output:

[2 4 6 8]

The vectAdd function worked on all the values at one time, in a single call. Con-
sequently, the doAdd function, which allows only two scalar inputs, was extended 
to allow four inputs at one time. In general, vectorization offers these benefits:

 » Code that is concise and easier to read

 » Reduced debugging time because of fewer lines of code

 » The means to represent mathematical expressions more closely in code

 » A reduced number of inefficient loops

Selecting and Shaping Data
You may not need to work with all the data in a dataset. In fact, looking at just 
one particular column might be beneficial, such as age, or a set of rows with a 
significant amount of information. You perform two steps to obtain just the data 
you need to perform a particular task:

1. Filter rows to create a subset of the data that meets the criterion you select 
(such as all the people between the ages of 5 and 10).

2. Select data columns that contain the data you need to analyze. For example, 
you probably don’t need the individuals’ names unless you want to perform 
some analysis based on name.

The act of slicing and dicing data gives you a subset of the data suitable for analy-
sis. The following sections describe various ways to obtain specific pieces of data 
to meet particular needs.
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Slicing rows
Slicing can occur in multiple ways when working with data, but the technique of 
interest in this section is to slice data from a row of 2-D or 3-D data. A 2-D array 
may contain temperatures (x axis) over a specific time frame (y axis). Slicing a 
row would mean seeing the temperatures at a specific time. In some cases, you 
might associate rows with cases in a dataset.

A 3-D array might include an axis for place (x axis), product (y axis), and time 
(z axis) so that you can see sales for items over time. Perhaps you want to track 
whether sales of an item are increasing, and specifically where they are increasing. 
Slicing a row would mean seeing all the sales for one specific product for all loca-
tions at any time. The following example demonstrates how to perform this task:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],
             [[11,12,13], [14,15,16], [17,18,19],],
             [[21,22,23], [24,25,26], [27,28,29]]])
print(x[1])

In this case, the example builds a 3-D array. It then slices row 1 of that array to 
produce the following output:

[[11 12 13]
 [14 15 16]
 [17 18 19]]

Slicing columns
Using the examples from the previous section, slicing columns would obtain data 
at a 90-degree angle from rows. In other words, when working with the 2-D 
array, you would want to see the times at which specific temperatures occurred. 
Likewise, you might want to see the sales of all products for a specific location at 
any time when working with the 3-D array. In some cases, you might associate 
columns with features in a dataset. The following example demonstrates how to 
perform this task using the same array as in the previous section:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],
             [[11,12,13], [14,15,16], [17,18,19],],
             [[21,22,23], [24,25,26], [27,28,29]]])
print(x[:,1])

Note that the indexing now occurs at two levels. The first index refers to the row. 
Using the colon (:) for the row means to use all the rows. The second index refers to 
a column. In this case, the output will contain column 1. Here’s the output you see:
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[[ 4  5  6]
 [14 15 16]
 [24 25 26]]

This is a 3-D array. Therefore, each of the columns contains all the z axis ele-
ments. What you see is every row — 0 through 2 for column 1 with every z axis 
element 0 through 2 for that column.

Dicing
The act of dicing a dataset means to perform both row and column slicing such 
that you end up with a data wedge. For example, when working with the 3-D 
array, you might want to see the sales of a specific product in a specific location 
at any time. The following example demonstrates how to perform this task using 
the same array as in the previous two sections:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],
             [[11,12,13], [14,15,16], [17,18,19],],
             [[21,22,23], [24,25,26], [27,28,29]]])
print(x[1,1])
print(x[:,1,1])
print(x[1,:,1])
print()
print(x[1:2, 1:2])

This example dices the array in four different ways. First, you get row 1, column 1.  
Of course, what you may actually want is column 1, z axis 1. If that’s not quite 
right, you could always request row 1, z axis 1 instead. Then again, you may want 
rows 1 and 2 of columns 1 and 2. Here’s the output of all four requests:

[14 15 16]
[ 5 15 25]
[12 15 18]
 
[[[14 15 16]]]

Concatenating
Data used for data science purposes seldom comes in a neat package. You may 
need to work with multiple databases in various locations, each of which has its 
own data format. Performing analysis on such disparate sources of information 
with any accuracy is impossible. To make the data useful, you must create a single 
dataset (by concatenating, or combining, the data from various sources).
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Part of the process is to ensure that each field you create for the combined data-
set has the same characteristics. For example, an age field in one database might 
appear as a string, but another database could use an integer for the same field. 
For the fields to work together, they must appear as the same type of information.

The following sections help you understand the process involved in concatenating 
and transforming data from various sources to create a single dataset. After you 
have a single dataset from these sources, you can begin to perform tasks such as 
analysis on the data. Of course, the trick is to create a single dataset that truly rep-
resents the data in all those disparate datasets; modifying the data would result 
in skewed results.

Adding new cases and variables
You often find a need to combine datasets in various ways or even to add new 
information for the sake of analysis purposes. The result is a combined dataset 
that includes either new cases or variables. The following example shows tech-
niques for performing both tasks:

import pandas as pd
 
df = pd.DataFrame({'A': [2,3,1],
                   'B': [1,2,3],
                   'C': [5,3,4]})
 
df1 = pd.DataFrame({'A': [4],
                    'B': [4],
                    'C': [4]})
 
df = df.append(df1)
df = df.reset_index(drop=True)
print(df)
 
df.loc[df.last_valid_index() + 1] = [5, 5, 5]
print()
print(df)
 
df2 = pd.DataFrame({'D': [1, 2, 3, 4, 5]})
 
df = pd.DataFrame.join(df, df2)
print()
print(df)
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The easiest way to add more data to an existing DataFrame is to rely on the 
append() method. You can also use the concat() method. In this case, the three 
cases found in df are added to the single case found in df1. To ensure that the 
data is appended as anticipated, the columns in df and df1 must match. When you 
append two DataFrame objects in this manner, the new DataFrame contains the 
old index values. Use the reset_index() method to create a new index to make 
accessing cases easier.

You can also add another case to an existing DataFrame by creating the new case 
directly. Any time you add a new entry at a position that is one greater than the 
last_valid_index(), you get a new case as a result.

Sometimes you need to add a new variable (column) to the DataFrame. In this 
case, you rely on join() to perform the task. The resulting DataFrame will match 
cases with the same index value, so indexing is important. In addition, unless you 
want blank values, the number of cases in both DataFrame objects must match. 
Here’s the output from this example:

   A  B  C
0  2  1  5
1  3  2  3
2  1  3  4
3  4  4  4
 
   A  B  C
0  2  1  5
1  3  2  3
2  1  3  4
3  4  4  4
4  5  5  5
 
   A  B  C  D
0  2  1  5  1
1  3  2  3  2
2  1  3  4  3
3  4  4  4  4
4  5  5  5  5

Removing data
At some point, you may need to remove cases or variables from a dataset because 
they aren’t required for your analysis. In both cases, you rely on the drop() 
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method to perform the task. The difference in removing cases or variables is in 
how you describe what to remove, as shown in the following example:

import pandas as pd
 
df = pd.DataFrame({'A': [2,3,1],
                   'B': [1,2,3],
                   'C': [5,3,4]})
 
df = df.drop(df.index[[1]])
print(df)
 
df = df.drop('B', 1)
print()
print(df)

The example begins by removing a case from df. Notice how the code relies on 
an index to describe what to remove. You can remove just one case (as shown), 
ranges of cases, or individual cases separated by commas. The main concern is to 
ensure that you have the correct index numbers for the cases you want to remove.

Removing a column is different. This example shows how to remove a column 
using a column name. You can also remove a column by using an index. In both 
cases, you must specify an axis as part of the removal process (normally 1). Here’s 
the output from this example:

   A  B  C
0  2  1  5
2  1  3  4
 
   A  C
0  2  5
2  1  4

Sorting and shuffling
Sorting and shuffling are two ends of the same goal — to manage data order. In 
the first case, you put the data into order, while in the second, you remove any 
systematic patterning from the order. In general, you don’t sort datasets for the 
purpose of analysis because doing so can cause you to get incorrect results. How-
ever, you might want to sort data for presentation purposes. The following exam-
ple shows both sorting and shuffling:

import pandas as pd
import numpy as np 
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df = pd.DataFrame({'A': [2,1,2,3,3,5,4],
                   'B': [1,2,3,5,4,2,5],
                   'C': [5,3,4,1,1,2,3]})
 
df = df.sort_values(by=['A', 'B'], ascending=[True, True])
df = df.reset_index(drop=True)
print(df)
 
index = df.index.tolist()
np.random.shuffle(index)
df = df.loc[df.index[index]]
df = df.reset_index(drop=True)
print()
print(df)

It turns out that sorting the data is a bit easier than shuffling it. To sort the data, 
you use the sort_values() method and define which columns to use for indexing 
purposes. You can also determine whether the index is in ascending or descending 
order. Make sure to always call reset_index() when you’re done so that the index 
appears in order for analysis or other purposes.

To shuffle the data, you first acquire the current index using df.index.tolist() 
and place it in index. A call to random.shuffle() creates a new order for the 
index. You then apply the new order to df using loc[]. As always, you call reset_
index() to finalize the new order. Here’s the output from this example (but note 
that the second output may not match your output because it has been shuffled):

   A  B  C
0  1  2  3
1  2  1  5
2  2  3  4
3  3  4  1
4  3  5  1
5  4  5  3
6  5  2  2
 
   A  B  C
0  2  1  5
1  2  3  4
2  3  4  1
3  1  2  3
4  3  5  1
5  4  5  3
6  5  2  2
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Aggregating
Aggregation is the process of combining or grouping data together into a set, bag, 
or list. The data may or may not be alike. However, in most cases, an aggregation 
function combines several rows together statistically using algorithms such as 
average, count, maximum, median, minimum, mode, or sum. You have several 
reasons to aggregate data:

 » Make it easier to analyze

 » Reduce the ability of anyone to deduce the data of an individual from the 
dataset for privacy or other reasons

 » Create a combined data element from one data source that matches a 
combined data element in another source

The most important use of data aggregation is to promote anonymity in order to 
meet legal or other concerns. Sometimes even data that should be anonymous 
turns out to provide identification of an individual using the proper analysis tech-
niques. For example, researchers have found that it’s possible to identify individuals 
based on just three credit card purchases (see https://www.computerworld.com/
article/2877935/how-three-small-credit-card-transactions-could-reveal- 
your-identity.html for details). Here’s an example that shows how to perform 
aggregation tasks:

import pandas as pd
 
df = pd.DataFrame({'Map': [0,0,0,1,1,2,2],
                   'Values': [1,2,3,5,4,2,5]})
 
df['S'] = df.groupby('Map')['Values'].transform(np.sum)
df['M'] = df.groupby('Map')['Values'].transform(np.mean)
df['V'] = df.groupby('Map')['Values'].transform(np.var)
 
print(df)

In this case, you have two initial features for this DataFrame. The values in Map 
define which elements in Values belong together. For example, when calculating 
a sum for Map index 0, you use the Values 1, 2, and 3.

To perform the aggregation, you must first call groupby() to group the Map val-
ues. You then index into Values and rely on transform() to create the aggregated 
data using one of several algorithms found in NumPy, such as np.sum. Here are 
the results of this calculation:

https://www.computerworld.com/article/2877935/how-three-small-credit-card-transactions-could-reveal-your-identity.html
https://www.computerworld.com/article/2877935/how-three-small-credit-card-transactions-could-reveal-your-identity.html
https://www.computerworld.com/article/2877935/how-three-small-credit-card-transactions-could-reveal-your-identity.html
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   Map  Values  S    M    V
0    0       1  6  2.0  1.0
1    0       2  6  2.0  1.0
2    0       3  6  2.0  1.0
3    1       5  9  4.5  0.5
4    1       4  9  4.5  0.5
5    2       2  7  3.5  4.5
6    2       5  7  3.5  4.5

Working with Trees
A tree structure looks much like the physical object in the natural world. Using 
trees helps you organize data quickly and find it in a shorter time than using other 
data-storage techniques. You commonly find trees used for search and sort rou-
tines, but they have many other purposes as well. The following sections help you 
understand trees at a basic level.

Understanding the basics of trees
Building a tree is similar to how a tree grows in the physical world. Each item you 
add to the tree is a node. Nodes connect to each other using links. The combina-
tion of nodes and links forms a structure that looks much like a tree, as shown in 
Figure 3-1.

FIGURE 3-1:  
A tree in Python 
looks much like 

the physical 
alternative.



196      BOOK 2  Interacting with Data Storage

Note that the tree has just one root node — just as with a physical tree. The root 
node provides the starting point for the various kinds of processing you perform. 
Connected to the root node are either branches or leaves. A leaf node is always an 
ending point for the tree. Branch nodes support either other branches or leaves. 
The type of tree shown in Figure 3-1 is a binary tree because each node has, at 
most, two connections.

In looking at the tree, you see that Branch B is the child of the Root node. That’s 
because the Root node appears first in the list. Leaf E and Leaf F are both children 
of Branch B, making Branch B the parent of Leaf E and Leaf F.  The relation-
ship between nodes is important because discussions about trees often consider 
the child/parent relationship between nodes. Without these terms, discussions of 
trees could become quite confusing.

Building a tree
Python doesn’t come with a built-in tree object. You must either create your own 
implementation or use a tree supplied with a library. A basic tree implementation 
requires that you create a class to hold the tree data object. The following code 
shows how you can create a basic tree class:

class binaryTree:
    def __init__(self, nodeData, left=None, right=None):
        self.nodeData = nodeData
        self.left  = left
        self.right = right
 
    def __str__(self):
        return str(self.nodeData)

All this code does is create a basic tree object that defines the three elements that 
a node must include: data storage; left connection; and right connection. Because 
leaf nodes have no connection, the default value for left and right is None. The 
class also includes a method for printing the content of nodeData so that you can 
see what data the node stores.

Using this simple tree requires that you not try to store anything in left or right 
other than a reference to another node. Otherwise, the code will fail because there 
isn’t any error trapping. The nodeData entry can contain any value. The following 
code shows how to use the binaryTree class to build the tree shown in Figure 3-1:

tree = binaryTree("Root")
BranchA = binaryTree("Branch A")
BranchB = binaryTree("Branch B")
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tree.left = BranchA
tree.right = BranchB
 
LeafC = binaryTree("Leaf C")
LeafD = binaryTree("Leaf D")
LeafE = binaryTree("Leaf E")
LeafF = binaryTree("Leaf F")
BranchA.left = LeafC
BranchA.right = LeafD
BranchB.left = LeafE
BranchB.right = LeafF

You have many options when building a tree, but building it from the top down 
(as shown in this code) or the bottom up (in which you build the leaves first) are 
two common methods. Of course, you don’t really know whether the tree actually 
works at this point. Traversing the tree means checking the links and verifying that 
they actually do connect as you think they should. The following code shows how to 
use recursion (as described in Book 2, Chapter 2) to traverse the tree you just built.

def traverse(tree):
    if tree.left != None:
        traverse(tree.left)
    if tree.right != None:
        traverse(tree.right)
    print(tree.nodeData)
 
traverse(tree)

As the output shows, the traverse function doesn’t print anything until it gets 
to the first leaf:

Leaf C
Leaf D
Branch A
Leaf E
Leaf F
Branch B
Root

The traverse function then prints both leaves and the parent of those leaves. The 
traversal follows the left branch first, and then the right branch. The root node 
comes last.
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Trees have different kinds of data storage structures. Here is a quick list of the 
kinds of structures you commonly find:

 » Balanced trees: A kind of tree that maintains a balanced structure through 
reorganization so that it can provide reduced access times. The number of 
elements on the left side differs from the number on the right side by at  
most one.

 » Unbalanced trees: A tree that places new data items wherever necessary in 
the tree without regard to balance. This method of adding items makes 
building the tree faster but reduces access speed when searching or sorting.

 » Heaps: A sophisticated tree that allows data insertions into the tree structure. 
The use of data insertion makes sorting faster. You can further classify these 
trees as max heaps and min heaps, depending on the tree’s capability to 
immediately provide the maximum or minimum value present in the tree.

Representing Relations in a Graph
Graphs are another form of common data structure used in algorithms. You see 
graphs used in places like maps for GPS and all sorts of other places where the 
top-down approach of a tree won’t work. The following sections describe graphs 
in more detail.

Going beyond trees
A graph is a sort of tree extension. As with trees, you have nodes that connect 
to each other to create relationships. However, unlike binary trees, a graph can 
have more than one or two connections. In fact, graph nodes often have a multi-
tude of connections. To keep things simple, though, consider the graph shown in 
Figure 3-2.

In this case, the graph creates a ring where A connects to both B and F. However, 
it need not be that way. Node A could be a disconnected node or could also connect 
to C. A graph shows connectivity between nodes in a way that is useful for defining 
complex relationships.

Graphs also add a few new twists that you might not have thought about before. 
For example, a graph can include the concept of directionality. Unlike a tree, which 
has parent/child relationships, a graph node can connect to any other node with a 
specific direction in mind. Think about streets in a city. Most streets are bidirec-
tional, but some are one-way streets that allow movement in only one direction.
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The presentation of a graph connection might not actually reflect the realities of 
the graph. A graph can designate a weight to a particular connection. The weight 
could define the distance between two points, define the time required to traverse 
the route, or provide other sorts of information.

Arranging graphs
Most developers use dictionaries (or sometimes lists) to build graphs. Using a dic-
tionary makes building the graph easy because the key is the node name and the 
values are the connections for that node. For example, here is a dictionary that 
creates the graph shown in Figure 3-2:

graph = {'A': ['B', 'F'],
         'B': ['A', 'C'],
         'C': ['B', 'D'],
         'D': ['C', 'E'],
         'E': ['D', 'F'],
         'F': ['E', 'A']}

This dictionary reflects the bidirectional nature of the graph in Figure  3-2. It 
could just as easily define unidirectional connections or provide nodes without 

FIGURE 3-2:  
Graph nodes  

can connect to 
each other in 
myriad ways.
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any connections at all. However, the dictionary works quite well for this purpose, 
and you see it used in other areas of the book. Now it’s time to traverse the graph 
using the following code:

def find_path(graph, start, end, path=[]):
        path = path + [start]
 
        if start == end:
            print("Ending")
            return path
 
        for node in graph[start]:
            print("Checking Node ", node)
 
            if node not in path:
                print("Path so far ", path)
 
                newp = find_path(graph, node, end, path)
                if newp:
                    return newp
 
find_path(graph, 'B', 'E')

This simple code does find the path, as shown in the output:

Checking Node  A
Path so far  ['B']
Checking Node  B
Checking Node  F
Path so far  ['B', 'A']
Checking Node  E
Path so far  ['B', 'A', 'F']
Ending
 
['B', 'A', 'F', 'E']

Other strategies help you find the shortest path (see Algorithms For Dummies, by 
John Paul Mueller and Luca Massaron [Wiley] for details on these techniques). For 
now, the code finds only a path. It begins by building the path node by node. As 
with all recursive routines, this one requires an exit strategy, which is that when 
the start value matches the end value, the path ends.

Because each node in the graph can connect to multiple nodes, you need a for 
loop to check each of the potential connections. When the node in question already 
appears in the path, the code skips it. Otherwise, the code tracks the current path 
and recursively calls find_path to locate the next node in the path.
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Accessing Data in Files

Unless the data you use is a live feed or is generated in some manner, it 
likely comes from a file. In fact, files provide the means to preserve the 
majority of data used for analysis purposes. So the use of files for storage 

isn’t the issue; instead, the question is what sort of file you might expect to see. 
The format of the data in the file says a lot about the kind of information you can 
expect from it. Chapter 1 of this minibook describes the format of files from an 
overview perspective. This chapter demonstrates how to access data found in files 
of various formats.

Major divisions appear in the complexity of file storage as well. The files described 
in this chapter are flat file in nature, which means that they contain just one table. 
However, the chapter also discusses both textual and binary storage in both local 
and online sources. Chapter 5 of this minibook looks at relational databases, and 
Chapter  6 discusses NoSQL databases. Each form of data storage has pros and 
cons.

You don’t have to type the source code for this chapter manually. In fact, using the 
downloadable source is a lot easier. The source code for this chapter appears in the 
DSPD_0204_Data.ipynb source code file for Python and the DSPD_R_0204_Data.
ipynb source code file for R. See the Introduction for details on how to find these 
source files. In addition to the source code files, you must also have access to 
the Colors.txt, FixedWidth.txt, FixedWidth2.txt, Titanic.csv, Colors.csv, 
XMLData.xml, and Values.xls files.

Chapter 4

IN THIS CHAPTER

 » Working with simple and formatted 
text data

 » Using alternative flat-file sources

 » Considering nontext sources

 » Interacting with online data
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Understanding Flat File Data Sources
The most commonly used flat file is a pure text file because you can send it nearly 
anywhere. Text files can use a variety of storage formats. However, a common 
format is to have a header line that documents the purpose of each field, followed 
by another line for each record in the file. The file separates the fields using tabs. 
See Figure 4-1 for an example of the Colors.txt file used for the example in this 
section.

Native Python provides a wide variety of methods that you can use to read such 
a file. However, letting someone else do the work is far easier. In this case, you 
can use the pandas library to perform the task. Within the pandas library, you 
find a set of parsers, code used to read individual bits of data and determine the 
purpose of each bit according to the format of the entire file. Using the correct 
parser is essential if you want to make sense of file content. In this case, you use 
the read_csv() method to accomplish the task (older versions of pandas use the 
read_table() method instead), as shown in the following code:

import pandas as pd
color_table = pd.io.parsers.read_csv("Colors.txt",
                                     sep='\t')
print(color_table)

The code imports the pandas library, uses the read_csv() method to read Colors.
txt into a variable named color_table, and then displays the resulting memory 
data onscreen using the print function. Note that you must use the sep='\t' 
argument because the text file uses tabs to separate field entries. Here’s the out-
put you can expect to see from this example:

     Color Value
0      Red     1
1   Orange     2
2   Yellow     3
3    Green     4

FIGURE 4-1:  
A text file  contains 

only text and a 
little  formatting 

with control 
characters.
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4     Blue     5
5   Purple     6
6    Black     7
7    White     8

Notice that the parser correctly interprets the first row as consisting of field 
names. It numbers the records from 0 through 7. Using read_csv() method argu-
ments, you can adjust how the parser interprets the input file, but the default 
settings usually work best. You can read more about the read_csv() arguments at 
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/
pandas.read_csv.html.

Working with Positional Data Files
Positional data files, those in which each field takes up a specific amount of space, 
see use in various technologies, such as Point-of-Sale (POS) systems. These files 
also go by the names fixed width-field and fixed-length files. No matter what you 
call them, an advantage of this file format is that you can read the data as a record 
or a structure in most programming languages. Processing is simplified because 
you don’t have to worry about any (or very few) control characters. The downside 
is that these files consume more space than flat files that rely on tabs, but even the 
space requirement is easier to calculate because each record will always consume 
the same amount of space.

You usually find positional data files in two forms. The first eschews any sort of 
control characters at all, and the second relies on a carriage return, linefeed, or 
both to separate records. The files lack other control characters and you generally 
see them limited to the standard (7-bit) or extended (8-bit) ASCII character set. 
At least one vendor relied on a custom 6-bit (64-character) setup to save space 
(by using uppercase alpha characters, ten digits, and a number of punctuation 
marks such as period, question mark, space, and comma). With these constraints 
in mind, Figure 4-2 shows the FixedWidth.txt file used for the first example in 
this section.

FIGURE 4-2:  
Each field in this 

file consumes 
precisely the 
same space.

https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.read_csv.html
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Notice that no formatting is provided, as shown in Figure 4-1. All the data simply 
runs together. You use a different technique to process this file than you do with 
a flat file, as shown here:

row = 0
 
with open("FixedWidth.txt", "r") as FW:
    while True:
        Color = FW.read(6)
        if not Color:
            break
        Value = FW.read(5)
        if row == 0:
            color_table2 = pd.DataFrame(
                columns=[Color, Value])
        else:
            color_table2 = color_table2.append(
                [{'Color ': Color, 'Value': Value}],
                ignore_index=True, sort=False)
        row=row+1
 
print(color_table2)

The lack of any sort of row marker means that you must process this file record by 
record rather than line by line. The first entry is the column header, so the code 
produces a DataFrame containing the columns it finds. The code assumes that it’s 
reading a particular file. You could modify the code to make it more generic and 
use it for any file. Each of the rows that follow is appended to the DataFrame, as 
shown. Here’s what you see as output:

   Color   Value
0  Red         1
1  Orange      2
2  Yellow      3
3  Green       4
4  Blue        5
5  Indigo      6
6  Purple      7
7  Black       8
8  White       9
9  Gray       10

As you can see, the resulting DataFrame provides precisely what you expect in 
terms of formatted data. However, you may find that your positional data file does 
provide some sort of row marker, as shown in Figure 4-3.
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In this case, processing the file becomes infinitely easier, as shown here:

color_table3 = pd.read_fwf("FixedWidth2.txt",
                           widths=[6, 5])
print(color_table3)

The output is the same as before, but the amount of processing you need to 
perform is significantly less. The read_fwf() function assumes that the first 
row is a header, as described at https://pandas.pydata.org/pandas-docs/
stable/reference/api/pandas.read_fwf.html. If your file lacks a header, 
you simply add the header=None argument. You can use the other arguments 
defined for a TextFileWriter at https://tedboy.github.io/pandas/io/io2. 
html as well.

Accessing Data in CSV Files
The Comma-Separated Value (CSV) format predates the PC by a number of years. 
In fact, IBM originally used it with the Formula Translation (FORTRAN) language, 
as described at https://blog.sqlizer.io/posts/csv-history/. The fact that 
CSV is so obvious and useful at the same time explains why it has remained one 
of the better methods to transfer data from anyplace to anywhere. The following 
sections tell you more about CSV and explain how you can use it in your data sci-
ence endeavors.

Working with a simple CSV file
One of the things that differentiates a database from a pure text file is formatting, 
which enables you to discover more about the data simply by the manner in which 
it’s organized. Of the simple database files, CSV is the most common because you 

FIGURE 4-3:  
This file  

includes carriage 
returns for row 

indicators.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_fwf.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_fwf.html
https://tedboy.github.io/pandas/io/io2.html
https://tedboy.github.io/pandas/io/io2.html
https://blog.sqlizer.io/posts/csv-history/
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can send it almost anywhere and it doesn’t consume a lot of space. A CSV file also 
provides more formatting than a simple text file. In fact, CSV files can become 
quite complicated. There is a standard that defines the format of CSV files, and 
you can see it at https://tools.ietf.org/html/rfc4180. The CSV file used for 
this example is quite simple:

 » A header defines each of the fields

 » Fields are separated by commas

 » Records are separated by linefeeds

 » Strings are enclosed in double quotes

 » Integers and real numbers appear without double quotes

Figure 4-4 shows the raw format for the Titanic.csv file used for this example. 
You can see the raw format using any text editor.

Applications such as Excel can import and format CSV files so that they become 
easier to read. Figure 4-5 shows the same file in Excel.

Excel actually recognizes the header as a header. If you were to use features such 
as data sorting, you could select header columns to obtain the desired result. For-
tunately, pandas also enables you to work with the CSV file as formatted data, as 
shown in the following example:

import pandas as pd
titanic = pd.read_csv("Titanic.csv")
X = titanic[['age']]
print(X)

FIGURE 4-4:  
The raw format 

of a CSV file is still 
text and quite 

readable.

https://tools.ietf.org/html/rfc4180
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As with the previous example, this example uses the read_csv() parser. However, 
because a CSV file provides more formatting information, you don’t need to add 
the sep='\t' argument. Selecting a specific field is quite easy — you just supply 
the field name as shown. The output from this example looks like this (although 
some values are omitted for the sake of space):

           age
0      29.0000
1       0.9167
2       2.0000
3      30.0000
4      25.0000
5      48.0000
...
1304   14.5000
1305 9999.0000
1306   26.5000
1307   27.0000
1308   29.0000
[1309 rows x 1 columns]

A human-readable output like this one is nice when working through an exam-
ple, but you might also need the output as a list. To create the output as a list, 
you simply change the third line of code to read X = titanic[[‘age’]].values. 
Notice the addition of the values property. The output changes to something like 
this (with some values omitted for the sake of space):

[[ 29. ]
[ 0.91670001]
[ 2. ]
...,

FIGURE 4-5:  
Use an 

application such 
as Excel to create 
a formatted CSV 

presentation.
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[ 26.5 ]
[ 27. ]
[ 29. ]]

Making use of header information
The previous section makes use of a standards-based CSV file, which doesn’t offer 
much in the way of data format information. If you know the file well through 
examination, you can always guess about its content, but that’s not the same as 
actually knowing the data types. Some CSV users extend the standard by add-
ing header information as described at https://support.spatialkey.com/ 
providing-data-types-in-csv-headers/ and https://support.symantec.
com/us/en/article.HOWTO41097.html. Figure 4-6 shows a CSV file that employs 
some of these concepts to provide type information.

Obviously, processing this file requires a little extra code, as shown here:

color_table4 = pd.read_csv("Colors.csv")
print("Original types:\n", color_table4.dtypes, "\n")
 
for col in color_table4.columns:
    col_split = col.split('.')
    color_table4 = color_table4.rename(
        columns={col: col_split[0]})
    color_table4 = color_table4.astype(
        {col_split[0]: col_split[1]})
 
print("New types:\n", color_table4.dtypes, "\n")
print(color_table4)

FIGURE 4-6:  
CSV headers 

can contain data 
type information, 

among other 
clues.

https://support.spatialkey.com/providing-data-types-in-csv-headers/
https://support.spatialkey.com/providing-data-types-in-csv-headers/
https://support.symantec.com/us/en/article.HOWTO41097.html
https://support.symantec.com/us/en/article.HOWTO41097.html
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The header information now contains both a header name and a data type. The 
first print statement shows you the original header state, including the data 
types it uses. The for loop removes the type information from the header and uses 
it to change the data type of each column. Here is the output from this example:

Original types:
 Color.category    object
Value.int16        int64
dtype: object
 
New types:
 Color    category
Value       int16
dtype: object
 
    Color  Value
0     Red      1
1  Orange      2
2  Yellow      3
3   Green      4
4    Blue      5
5  Purple      6
6   Black      7
7   White      8

Moving On to XML Files
Markup languages as a whole have been around for a number of years. The XML 
file format started as a means to transfer formatted data when scientists found 
that HTML just wasn’t up to the task. You can read a brief history about XML 
at https://ccollins.wordpress.com/2008/03/03/a-brief-history-of-xml/. 
XML provides metadata that you won’t find with a flat file. This metadata helps 
preserve the format and context of data. The following sections tell you more 
about XML and describe how to use it.

Working with a simple XML file
One of the most beneficial data access techniques to know when working with web 
data is accessing XML. All sorts of content types, and even some web pages, rely 
on XML. Working with web services and microservices means working with XML 
(in most cases). With this idea in mind, the example in this section works with 

https://ccollins.wordpress.com/2008/03/03/a-brief-history-of-xml/
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XML data found in the XMLData.xml file, shown in Figure 4-7. In this case, the 
file is simple and uses only a couple of levels. XML is hierarchical and can become 
quite a few levels deep.

The technique for working with XML, even simple XML, can be a bit harder than 
anything else you’ve worked with so far. Here’s the code for this example:

from lxml import objectify
import pandas as pd
 
xml = objectify.parse(open('XMLData.xml'))
root = xml.getroot()
 
df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))
 
for i in range(0,4):
    obj = root.getchildren()[i].getchildren()
    row = dict(zip(['Number', 'String', 'Boolean'],
                   [obj[0].text, obj[1].text,
                    obj[2].text]))
    row_s = pd.Series(row)
    row_s.name = i
    df = df.append(row_s)
 
print(df)

FIGURE 4-7:  
XML is a 

hierarchical 
format that can 

become quite 
complex.
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The example begins by importing libraries and parsing the data file using the 
objectify.parse() method. Every XML document must contain a root node, 
which is <MyDataset> in this case. The root node encapsulates the rest of the 
content, and every node under it is a child. To do anything practical with the doc-
ument, you must obtain access to the root node using the getroot() method.

The next step is to create an empty DataFrame object that contains the correct col-
umn names for each record entry: Number, String, and Boolean. As with all other 
pandas data handling, XML data handling relies on a DataFrame. The for loop fills 
the DataFrame with the four records from the XML file (each in a <Record> node).

The process looks complex but follows a logical order. The obj variable contains all 
the children for one <Record> node. These children are loaded into a dictionary object 
in which the keys are Number, String, and Boolean to match the DataFrame columns.

Now the code has a dictionary object that contains the row data. The code creates 
an actual row for the DataFrame next. It gives the row the value of the current for 
loop iteration. It then appends the row to the DataFrame. To see that everything 
worked as expected, the code prints the result, which looks like this:

    Number String Boolean
0        1  First    True
1        2 Second   False
2        3  Third    True
3        4 Fourth   False

Parsing XML
XML files provide additional information about the content of a dataset, but they 
aren’t perfect. Simply extracting data from an XML file may not be enough to 
use it because the data may not be in the correct format. You could end up with a 
dataset containing only strings. Obviously, you can’t perform much data manip-
ulation with strings. The following example reads an XML file into memory and 
shapes the XML data to create a new DataFrame containing just the <Number> and 
<Boolean> elements in the correct format:

from lxml import objectify
import pandas as pd
from distutils import util
 
xml = objectify.parse(open('XMLData.xml'))
root = xml.getroot()
df = pd.DataFrame(columns=('Number', 'Boolean'))
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for i in range(0, 4):
    obj = root.getchildren()[i].getchildren()
    row = dict(zip(['Number', 'Boolean'],
                   [obj[0].pyval,
                    bool(util.strtobool(obj[2].text))]))
    row_s = pd.Series(row)
    row_s.name = obj[1].text
    df = df.append(row_s)
 
print(type(df.loc['First']['Number']))
print(type(df.loc['First']['Boolean']))

The DataFrame df is initially instantiated as empty, but as the code loops through 
the root node’s children, it extracts a list containing the following:

 » A <Number> element (expressed as an int)

 » An ordinal element (a string)

 » A <Boolean> element (expressed as a string)

that the code uses to increment df. In fact, the code relies on the ordinal number 
element as the index label and constructs a new individual row to append to the 
existing DataFrame. This operation programmatically converts the information 
contained in the XML tree into the right data type to place into the existing vari-
ables in df. The number elements are already available as int type; the conver-
sion of the <Boolean> element is a little harder. You must convert the string to a 
numeric value using the strtobool() function in distutils.util. The output is 
a 0 for False values and a 1 for True values. However, that’s still not a Boolean 
value. To create a Boolean value, you must convert the 0 or 1 using bool().

This example also shows how to access individual values in the DataFrame. Notice 
that the name property now uses the <String> element value for easy access. You 
provide an index value using loc and then access the individual feature using a 
second index. The output from this example is

<class 'int'>
<class 'bool'>

Using XPath for data extraction
Using XPath to extract data from your dataset can greatly reduce the complexity 
of your code and potentially make it faster as well. The following example shows 
an XPath version of the example in the previous section. Notice that this version 
is shorter and doesn’t require the use of a for loop.
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from lxml import objectify
import pandas as pd
from distutils import util
 
xml = objectify.parse(open('XMLData.xml'))
root = xml.getroot()
 
map_number = map(int, root.xpath('Record/Number'))
map_bool = map(str, root.xpath('Record/Boolean'))
map_bool = map(util.strtobool, map_bool)
map_bool = map(bool, map_bool)
map_string = map(str, root.xpath('Record/String'))
 
data = list(zip(map_number, map_bool))
 
df = pd.DataFrame(data,
                  columns=('Number', 'Boolean'),
                  index = list(map_string))
 
print(df)
print(type(df.loc['First']['Number']))
print(type(df.loc['First']['Boolean']))

The example begins just like the previous example, with the importing of data and 
obtaining of the root node. At this point, the example creates a data object that 
contains record number and Boolean value pairs. Because the XML file entries are 
all strings, you must use the map() function to convert the strings to the appro-
priate values. Working with the record number is straightforward: You just map it 
to an int. The xpath() function accepts a path from the root node to the data you 
need, which is 'Record/Number' in this case.

Mapping the Boolean value is a little more difficult. As in the previous section, you 
must use the util.strtobool() function to convert the string Boolean values to 
a number that bool() can convert to a Boolean equivalent. However, if you try 
to perform just a double mapping, you’ll encounter an error message saying that 
lists don’t include a required function, tolower().To overcome this obstacle, you 
perform a triple mapping and convert the data to a string using the str() func-
tion first.

Creating the DataFrame is different, too. Instead of adding individual rows, you 
add all the rows at one time by using data. Setting up the column names is the 
same as before. However, now you need some way of adding the row names, as in 
the previous example. This task is accomplished by setting the index parameter 
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to a mapped version of the xpath() output for the 'Record/String' path. Here’s 
the output you can expect:

      Number Boolean
First      1    True
Second     2   False
Third      3    True
Fourth     4   False
<type 'numpy.int64'>
<type 'numpy.bool_'>

Considering Other Flat-File Data Sources
You have many other flat-file data sources at your disposal, all of which likely 
require specialized processing. This chapter uses Excel, an application that you 
might have on your system. If you don’t have the application on your system, you 
can interact with an Internet version of the application. Excel and other Micro-
soft Office applications provide highly formatted content that you can use in a 
freeform database manner. You can specify every aspect of the information these 
files contain. The Values.xls file used for this example provides a listing of sine, 
cosine, and tangent values for a random list of angles. You can see this file in 
Figure 4-8.

When you work with Excel or other Microsoft Office products, you begin to expe-
rience some complexity. For example, an Excel file can contain more than one 
worksheet, so you need to tell pandas which worksheet to process. In fact, you 

FIGURE 4-8:  
An Excel 

file is highly 
formatted and 
might contain 

information of 
various types.
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can choose to process multiple worksheets, if desired. When working with other 
Office products, you have to be specific about what to process. Just telling pandas 
to process something isn’t good enough. Here’s an example of working with the 
Values.xls file.

import pandas as pd
xls = pd.ExcelFile("Values.xls")
trig_values = xls.parse('Sheet1', index_col=None,
                        na_values=['NA'])
print(trig_values)

The code begins by importing the pandas library as normal. It then creates a 
pointer to the Excel file using the ExcelFile() constructor. This pointer, xls, 
lets you access a worksheet, define an index column, and specify how to present 
empty values. The index column is the one that the worksheet uses to index the 
records. Using a value of None means that pandas should generate an index for 
you. The parse() method obtains the values you request. You can read more about 
the Excel parser options at https://pandas.pydata.org/pandas-docs/stable/
generated/pandas.ExcelFile.parse.html.

You don’t absolutely have to use the two-step process of obtaining a file pointer 
and then parsing the content. You can also perform the task using a single step, 
like this: trig_values = pd.read_excel("Values.xls", 'Sheet1', index_col= 
None, na_values=['NA']). Because Excel files are more complex, using the two-
step process is often more convenient and efficient because you don’t have to 
reopen the file for each read of the data.

Working with Nontext Data
Nontext data files consist of a series of bits. The file doesn’t separate the bits from 
each other in any way. You can’t simply look into the file and see any structure 
because there isn’t any to see. Unstructured file formats rely on the file user to 
know how to interpret the data. For example, each pixel of a picture file could 
consist of three 32-bit fields. Knowing that each field is 32-bits is up to you. A 
header at the beginning of the file may provide clues about interpreting the file, 
but even so, it’s up to you to know how to interact with the file.

The example in this section shows how to work with a picture as an unstruc-
tured file. The example image is a public domain offering from https://commons. 
wikimedia.org/wiki/Main_Page. To work with images, you need to access the 
Scikit-image library (https://scikit-image.org), which is a free-of-charge 
collection of algorithms used for image processing. You can find a tutorial for 

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.ExcelFile.parse.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.ExcelFile.parse.html
https://commons.wikimedia.org/wiki/Main_Page
https://commons.wikimedia.org/wiki/Main_Page
https://scikit-image.org/
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this library at http://scipy-lectures.github.io/packages/scikit-image/. 
The first task is to be able to display the image onscreen using the following code. 
(This code can require a little time to run. The image is ready when the busy indi-
cator disappears from the Notebook tab. You’ll also see a YAMLLoadWarning mes-
sage, which is a function of the library and not the book code.)

from skimage.io import imread
from skimage.transform import resize
from matplotlib import pyplot as plt
import matplotlib.cm as cm
 
example_file = ("http://upload.wikimedia.org/" +
    "wikipedia/commons/7/7d/Dog_face.png")
image = imread(example_file, as_gray=True)
plt.imshow(image, cmap=cm.gray)
plt.show()

The code begins by importing a number of libraries. It then creates a string that 
points to the example file online and places it in example_file. This string is part 
of the imread() method call, along with as_gray, which is set to True. The as_
gray argument tells Python to turn any color images into gray scale. Any images 
that are already in gray scale remain that way.

Now that you have an image loaded, it’s time to render it (make it ready to dis-
play onscreen. The imshow() function performs the rendering and uses a gray-
scale color map. The show() function actually displays image for you, as shown 
in Figure 4-9.

FIGURE 4-9:  
The image 

appears onscreen 
after you render 

and show it.

http://scipy-lectures.github.io/packages/scikit-image/


A
cc

es
si

ng
 D

at
a 

in
 F

ile
s

CHAPTER 4  Accessing Data in Files      217

You now have an image in memory, and you may want to find out more about it. 
When you run the following code, you discover the image type and size:

print("data type: %s, shape: %s" %
      (type(image), image.shape))

The output from this call tells you that the image type is a numpy.ndarray and the 
image size is 90 pixels by 90 pixels. The image is actually an array of pixels that 
you can manipulate in various ways. For example, if you want to crop the image, 
you can use the following code to manipulate the image array:

image2 = image[5:70,0:70]
plt.imshow(image2, cmap=cm.gray)
plt.show()

The numpy.ndarray in image2 is smaller than the one in image, so the output is 
smaller as well. Figure 4-10 shows typical results. The purpose of cropping the 
image is to make it a specific size. Both images must be the same size for you to 
analyze them. Cropping is one way to ensure that the images are the correct size 
for analysis.

Another method that you can use to change the image size is to resize it. The fol-
lowing code resizes the image to a specific size for analysis (you can safely ignore 
the UserWarning message that displays when you run this code):

image3 = resize(image2, (30, 30), mode='symmetric')
plt.imshow(image3, cmap=cm.gray)
print("data type: %s, shape: %s" %
      (type(image3), image3.shape))

FIGURE 4-10:  
Cropping the 

image makes it 
smaller.
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The output from the print() function tells you that the image is now 30 pixels 
by 30 pixels in size. You can compare it to any image with the same dimensions.

After you have all the images the right size, you need to flatten them. A dataset 
row is always a single dimension, not two dimensions. The image is currently an 
array of 30 pixels by 30 pixels, so you can’t make it part of a dataset. The following 
code flattens image3 so that it becomes an array of 900 elements that is stored in 
image_row.

image_row = image3.flatten()
print("data type: %s, shape: %s" %
      (type(image_row), image_row.shape))

Notice that the type is still a numpy.ndarray. You can add this array to a data-
set and then use the dataset for analysis purposes. The size is 900 elements, as 
anticipated.

Downloading Online Datasets
You’re unlikely to find enough local data resources to fulfill every analysis need. At 
some point, you need to locate data online to perform experimentation or develop 
new analysis methods. Fortunately, you don’t have to look far. The following sec-
tions discuss how to acquire and use online datasets.

Working with package datasets
Most languages support datasets you can use to perform simple data tasks or 
experimentation without having to create a dataset of your own. For example, 
Python supports a number of these datasets in Python packages such as the 
Scikit-learn library. You can see a list of them at https://scikit-learn.org/
stable/datasets/index.html. When working with R, many of these datasets 
are included directly with the language, as shown at https://stat.ethz.ch/R-
manual/R-devel/library/datasets/html/00Index.html. These datasets dem-
onstrate various ways in which you can interact with data, and you use them in 
the examples to perform a variety of tasks. The following list provides a quick 
overview of the functions used to import the datasets from Scikit-learn into your 
Python code:

 » load_boston(): Regression analysis with the Boston house prices dataset

 » load_iris(): Classification with the Iris dataset

https://scikit-learn.org/stable/datasets/index.html
https://scikit-learn.org/stable/datasets/index.html
https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html
https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html
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 » load_digits([n_class]): Classification with the digits dataset

 » fetch_20newsgroups(subset='train'): Data from 20 newsgroups

The technique for loading each of these datasets is the same across examples. The 
following example shows how to load the Boston house prices dataset:

from sklearn.datasets import load_boston
Boston = load_boston()
print(Boston.data.shape)

The output from the print() call is (506, 13).

Package datasets need not necessarily be contrived. Keras offers a download-
able wrapper for IMDb data. This dataset appears among other useful datasets 
at https://keras.io/datasets/. In particular, the IMDb textual data offered by 
Keras is cleansed of punctuation, normalized into lowercase, and transformed 
into numeric values. Each word is coded into a number representing its ranking 
in frequency. Most frequent words have low numbers; less frequent words have 
higher numbers. Using the Keras datasets is similar to using other packages, as 
shown here:

from keras.datasets import imdb
 
top_words = 10000
((x_train, y_train),
 (x_test, y_test)) = imdb.load_data(num_words=top_words,
                                    seed=21)
print("Training examples: %i" % len(x_train))
print("Test examples: %i" % len(x_test))

Using public domain datasets
Public domain datasets enable you to expand the number of datasets at your dis-
posal without having to generate the data yourself. In many cases, these public 
domain datasets are more complex than their package counterparts, but they also 
model the real world better. The following sections discuss how you can work with 
public domain datasets.

Downloading the file
Before you can use a public domain dataset, you need to locate the one that 
best matches your analysis scenario, which can take time (albeit less time than 
creating a dataset of your own unless the dataset you need is quite simple). 

https://keras.io/datasets/
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Fortunately, you can find repositories and compilations of datasets online, 
such as the ones found at Awesome Public Datasets (https://github.com/
awesomedata/awesome-public-datasets) and Data.gov (https://catalog. 
data.gov/dataset?q=public+domain). You should also spend time looking at  
articles for potential dataset sources, such as this one at Forbes (https://www.
forbes.com/sites/bernardmarr/2016/02/12/big-data-35-brilliant- 
and-free-data-sources-for-2016/#54573865b54d).

Some of these datasets come from the scientific community. For example, Kaggle 
(https://www.kaggle.com/) is a huge community of data scientists and others 
who need to work with large datasets to obtain the information needed to meet 
various goals. You can create new projects on Kaggle, view the work done by oth-
ers on completed projects, or participate in one of its ongoing competitions. How-
ever, Kaggle is more than simply a community of really smart people who like to 
play with data; it’s also a place where you can obtain resources needed to learn all 
about deep learning and to create projects of your own.

The best place to find out how Kaggle can help you discover more about deep learn-
ing is at https://www.kaggle.com/m2skills/datasets-and-tutorial-kernels- 
for-beginners. This site lists the various datasets and tutorial kernels that Kag-
gle provides. A tutorial kernel is a kind of project you use to learn how to analyze 
data in various ways. For example, you can find a tutorial kernel about mushroom 
classification at https://www.kaggle.com/uciml/mushroom-classification.

Opening and using an archive
Seeing an example of how to work with public domain data is useful. This sec-
tion relies on an example of a public domain downloadable file — the German 
Traffic Sign Recognition Benchmark (GTSRB) found at this Institute für Neu-
roInformatik at Ruhr-Universität Bochum page: http://benchmark.ini.rub.
de/?section=gtsrb. The following code snippet downloads it to the same direc-
tory as the Python code. Note that the download process can take a little time to 
complete, so now might be a good time to refill your teacup.

import urllib.request
url = "https://sid.erda.dk/public/archives/\
daaeac0d7ce1152aea9b61d9f1e19370/\
GTSRB_Final_Training_Images.zip"
filename = "./GTSRB_Final_Training_Images.zip"
urllib.request.urlretrieve(url, filename)

After retrieving the dataset as a .zip file from the Internet, the code sets an image 
size. (All images are resized to square images, so the size represents the sides in 
pixels.) The code also sets the portion of data to keep for testing purposes, which 

https://github.com/awesomedata/awesome-public-datasets
https://github.com/awesomedata/awesome-public-datasets
https://catalog.data.gov/dataset?q=public+domain
https://catalog.data.gov/dataset?q=public+domain
https://www.forbes.com/sites/bernardmarr/2016/02/12/big-data-35-brilliant-and-free-data-sources-for-2016/#54573865b54d
https://www.forbes.com/sites/bernardmarr/2016/02/12/big-data-35-brilliant-and-free-data-sources-for-2016/#54573865b54d
https://www.forbes.com/sites/bernardmarr/2016/02/12/big-data-35-brilliant-and-free-data-sources-for-2016/#54573865b54d
https://www.kaggle.com/
https://www.kaggle.com/m2skills/datasets-and-tutorial-kernels-for-beginners
https://www.kaggle.com/m2skills/datasets-and-tutorial-kernels-for-beginners
https://www.kaggle.com/uciml/mushroom-classification
http://benchmark.ini.rub.de/?section=gtsrb
http://benchmark.ini.rub.de/?section=gtsrb
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means excluding certain images from training to have a more reliable measure of 
how the neural network works.

A loop through the files stored in the downloaded .zip file retrieves individual 
images, resizes them, stores the class labels, and appends the images to two sep-
arate lists: one for the training and one for testing purposes. The sorting uses a 
hash function, which translates the image name into a number and, based on that 
number, decides where to append the image.

import zipfile
from imageio import imread
from skimage.transform import resize
 
IMG_SIZE = 32
TEST_SIZE = 0.2
X, Xt, y, yt = list(), list(), list(), list()
 
archive = zipfile.ZipFile(
                 './GTSRB_Final_Training_Images.zip', 'r')
file_paths = [file for file in archive.namelist()
              if '.ppm' in file]
 
for filename in file_paths:
    with archive.open(filename) as img_file:
        img = imread(img_file.read())
    img = resize(img,
                 output_shape=(IMG_SIZE, IMG_SIZE),
                 mode='reflect', anti_aliasing=True)
    img_class = int(filename.split('/')[-2])
 
    if (hash(filename) % 1000) / 1000 > TEST_SIZE:
        X.append(img)
        y.append(img_class)
    else:
        Xt.append(img)
        yt.append(img_class)
 
archive.close()

At this point, you could use the data for analysis purposes of some sort. That is, 
you didn’t have to generate the data yourself; someone else obtained it for you. 
So you can focus on your code without having to consider a data source until your 
code is ready for use in the real world.
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Chapter 5
Working with a 
Relational DBMS

Relational databases accomplish both the manipulation and data retrieval 
objectives with relative ease. However, because data storage needs come 
in all shapes and sizes for a wide range of computing platforms, many dif-

ferent relational database products exist. In fact, for the data scientist, the pro-
liferation of different Relational Database Management Systems (RDBMSs) using 
various data layouts is one of the main problems you encounter with creating a 
comprehensive dataset for analysis. The first part of this chapter focuses on com-
mon characteristics of RDBMS so that you have a better idea of what commonality 
you can expect when working with them.

The second part of the chapter discusses the mechanics of working with an 
RDBMS. However, in contrast to how code is done in many other chapters in this 
book, writing functional code is nearly impossible in this case because of varia-
tions between RDBMS and the fact that we, as the authors, can’t be sure what 
RDBMS you have at your disposal. Trying to create a functional example can’t be 
done in these circumstances, but you do receive enough information to work with 
your product to create your own RDBMS-specific applications.

Interacting with an RDBMS is complex, but it’s only the first step in a longer 
process. The third part of the chapter discusses what you need to know to move 
the data from the RDBMS into an environment in which you can perform analysis 

IN THIS CHAPTER

 » Understanding RDBMS characteristics

 » Working with RDBMS data

 » Developing datasets from RDBMS  
data

 » Using more than one RDBMS product
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on it. The fact that RDBMSs vary in characteristics is exacerbated by the signifi-
cant differences in relational design that have plagued Database Administrators 
(DBAs) for years. You can’t even be sure at the outset about table design differ-
ences between data sources, which is a considerable problem given that you must 
combine tables to obtain a complete picture of the data.

Finally, RDBMS vendors do make a huge effort to differentiate their products. Yes, 
standards exist, but vendors also have a strong incentive to add functionality that 
makes their product better than the competition in some way, which is a problem 
for the data scientist because now you have to deal with those differences when 
making various products work together. The final part of the chapter discusses a 
few of these issues.

Considering RDBMS Issues
Chapter 4 of this minibook discusses various sorts of flat-file databases. In most 
cases, these databases contain just one table, and you rely on just one file for the 
entire database. An exception might be a specialty database of the sort used by 
point-of-sale (POS) systems, but generally, you have only one thing to worry about.

An RDBMS can handle extremely complex data because it relies on Edgar (Ted) 
Frank Codd’s (https://history-computer.com/ModernComputer/Software/
Codd.html) relational rules, as described at https://www.w3resource.com/sql/
sql-basic/codd-12-rule-relation.php. An RDBMS, by definition, relates data 
in multiple tables together so that you can store a great deal of information in an 
incredibly small space while still making that data accessible with less effort than 
you might normally require.

JUST HOW COMPLEX IS COMPLEX?
To give you some idea of just how complex an RDBMS can become, consider Microsoft’s 
AdventureWorks database (http://merc.tv/img/fig/AdventureWorks2008.gif), 
which is designed to mimic the real world. The diagram shows all the tables that this 
database contains. This database requires a great deal of commentary to even start 
to understand (see one such commentary at http://www.wilsonmar.com/sql_ 
adventureworks.htm), and there are databases that are considerably more complex 
than this one. Unlike most forms of data storage discussed in this book, the RDBMS 
gives you the best idea of what you might be facing when developing a truly complex 
real-world analysis.

https://history-computer.com/ModernComputer/Software/Codd.html
https://history-computer.com/ModernComputer/Software/Codd.html
https://www.w3resource.com/sql/sql-basic/codd-12-rule-relation.php
https://www.w3resource.com/sql/sql-basic/codd-12-rule-relation.php
http://merc.tv/img/fig/AdventureWorks2008.gif
http://www.wilsonmar.com/sql_adventureworks.htm
http://www.wilsonmar.com/sql_adventureworks.htm
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The following sections offer an extremely brief overview of RDBMS character-
istics as they apply to data science. If you were to perform an analysis based on 
information from a complex RDBMS, you would probably require the services of a 
skilled DBA to help you. Yes, the data can become that complicated.

Defining the use of tables
A single table contains just one sort of information, much as a flat-file data-
base does. However, unlike a flat-file database, the single table may be part of a 
much larger picture. For example, consider an employee entry in a database. The 
employee information table may contain just one-off information (those entries 
that consume just one record), such as name and employee number. To locate 
the employee’s contact information, you may need to look at another table that 
records just contact information.

An employee could have multiple contacts — such as multiple addresses, mul-
tiple phone numbers, and so on — so a one-to-many relationship exists between 
the employee information table and the contacts table. The relation between the 
single employee entry and the multiple contact information records is what an 
RDBMS is all about. You enter each piece of information only once. To obtain a 
complete record for analysis purposes, you need both tables (and often a great 
many more).

When you’re a DBA, you need to understand the relationships between all the 
tables. Even a manager might need to understand the fact that multiple tables 
constitute a single employee record. A data scientist may not be interested in 
all the tables and may not even want all of them. In fact, if your sole purpose 
is to create an analysis of where employees live (to help city planners develop 
travel patterns, for example, as part of an infrastructure upgrade), you don’t 
even need the entire contacts table. Perhaps all you really need is the locality, 
city, and state for each of the employees. You don’t want the information to be 
personally identifiable, so you don’t even want the employee number that would 
normally be part of that table (to create the relationship between the employee 
and the contact).

Unfortunately, as a data scientist, the contacts table may not actually contain 
everything you need. What you need is a locality, not a precise address. The con-
tacts table contains a precise address that you would then need to cross-reference 
to a locality, say the Port View area of town. The resolution of the information 
depends on the purpose to which you put it. A fine-grained resolution of precise 
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address may actually make the analysis harder than it needs to be and provide less 
useful information. Now you need:

 » Part of the contacts table

 » Nothing from the employee information table (except to create the initial data 
request)

 » An external database that provides localities based on the precise address

Often, when you start looking at data for analysis, what you find is that it’s pre-
senting a view of something that satisfies someone else’s needs, not yours. Before 
you make an initial data request and start cleaning the data, you need to work 
through how you plan to use the data in your analysis, which may mean spend-
ing considerable time looking at a diagram of the database schema. The database 
schema will show things like:

 » How one table is linked to another

 » Which fields link to other fields to create the relationship

 » The type of relationship (such as one-to-many, one-to-one, or many-to-many)

 » Fields used for indexing

 » Fields used as a key for searching

Understanding keys and indexes
For data scientists, keys and indexes take on a different meaning than they might 
for other RDBMS users. However, the use of these two elements is the same. 
 Multiple kinds of keys exist, as described here:

 » Primary key: One or more table columns that uniquely identify each row in 
the table. Unlike other kinds of databases, an RDBMS contains code that 
ensures that each primary key is unique. For data scientists, the use of a 
primary key means that you can count on the uniqueness of each record. In 
addition, primary keys can’t contain missing elements, so you can be sure that 
the information you receive from a primary key is always complete, but not 
necessarily correct.

 » Foreign key: An entry in a secondary table that points to a primary key  
in another table. For example, a contacts table will contain a foreign key 
containing the employee ID of an employee in an employee information  
table. The key is unique in the employee information table, but you may see 
multiple copies of the key in the contacts table — each of which points at a 
particular employee.
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 » Other keys: Depending on the resource you use, you may see terms such  
as super key, composite key, alternate key, and so on. For the most part, as  
a data scientist, you really don’t care about these other keys unless they 
somehow affect how you retrieve information from the RDBMS.

As you can see from the list, a key is part of a mechanism to uniquely identify 
records. Because the keys are unique, you can generally use the indexes created 
from them to search for a single result in the table when working with a primary 
key, to search for or a group of related entries when working with a foreign key.

An index is part of a mechanism to make searching for data efficient, regardless 
of whether the data is unique. For example, you can create an index that views 
telephone numbers based on area code. The area code isn’t unique, but you can 
search on the area code to locate all the numbers that use it. The goal is to find 
information groups rather than unique information.

For purists, a key is part of the database’s logical structure, not an entity. When 
you create a key, the RDBMS also creates an index for you based on that key. You 
can also create indexes that aren’t based on a key. So, you always search using 
an index, even you appear to be using a key to do it. This can become a confusing 
issue for some, and for a data scientist, it doesn’t really matter. All that matters is 
locating all the records in the RDBMS that meet certain criteria.

Using local versus online databases
In general, an RDBMS works the same whether you access it locally or remotely. 
You still obtain data based on a query in the form that the RDBMS is designed to 
provide and within the constraints that you specify. However, some mechanics 
of working with online databases differ from those experienced when working 
locally:

 » The method of access will likely differ, and you may need to configure 
elements like firewalls to work with the RDBMS.

 » Access times will increase when working remotely, and response times may 
be longer still.

 » An RDBMS may limit the forms of response data to those that work well with a 
remote connection, meaning that you may need to perform additional data 
transformations.

 » A remote connection may experience limits in data access for security 
reasons.
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You may find additional differences between local and online access, but these are 
the most common. The point is that, when working with large amounts of sensi-
tive data, a local connection may prove more useful. Even if you make the request, 
place the data on a hard drive, and move it to the remote location, you may still 
find that you save time and effort. Oddly enough, this is a common practice even 
with large online services such as AWS (see https://aws.amazon.com/blogs/
aws/send-us-that-data/ for details).

Working in read-only mode
An RDBMS devotes considerable resources to keeping data safe, as described by 
Codd’s 12 rules. However, you can reduce the overhead of interacting with data 
simply by telling the RDBMS that you have no desire to modify anything. In fact, 
as a data scientist, you really don’t want to modify anything most of the time, so 
opening the database in full read/write mode makes no sense whatsoever. Con-
sequently, by opening your database in read-only mode, you can gain a speed 
advantage in performing various tasks.

A second level of read-only is to create a database snapshot. A snapshot takes a 
picture of the database at a specific time so that you have static data. Chapter 1 of 
this minibook discusses the use of static and dynamic data sources. However, in 
this case, the choice has significant consequences. When you choose to access an 
RDBMS database in read-only mode, you still have the database engine perform-
ing updates in the background, costing you time. If you use a snapshot, no updates 
take place and you can access data much faster.

Of course, read-only mode and the use of snapshots increase data access speed at 
the cost of interactivity. You must first consider how you need to interact with the 
database (normally you don’t want to change anything; you just want to acquire 
data for analysis). Then you must consider whether the data changes quickly 
enough to warrant using a dynamic setup.

Accessing the RDBMS Data
Understanding how an RDBMS works from the data science perspective enables you 
to access the database in an efficient manner. However, depending on the data you 
need, you may need to rely on several techniques to access it. An RDBMS doesn’t 
simply spit out a file with the information you need; you need to understand how 
to request the data in a manner that reduces the number of requests while increas-
ing the number of records you receive that actually match your requirements. The 
following sections discuss a few of the most common data access methods.

https://aws.amazon.com/blogs/aws/send-us-that-data/
https://aws.amazon.com/blogs/aws/send-us-that-data/
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Using the SQL language
The one common denominator among many relational databases is that they all 
rely on a form of the same language to perform data manipulation, which does 
make the data scientist’s job easier. The Structured Query Language (SQL) lets 
you perform all sorts of management tasks in a relational database, retrieve data 
as needed, and even shape it in a particular way so that the need to perform addi-
tional shaping is unnecessary.

Creating a connection to a database can be a complex undertaking. For one thing, 
you need to know how to connect to that particular database. However, you can 
divide the process into smaller pieces. The first step is to gain access to the data-
base engine using a product like SQLAlchemy (https://www.sqlalchemy.org/). 
You use two lines of code similar to the following code. (Note, however, that the 
code presented here is not meant to execute and perform a task; the examples 
at https://docs.sqlalchemy.org/en/13/core/engines.html will help you in 
this regard.)

from sqlalchemy import create_engine
engine = create_engine('sqlite:///:memory:')

KEEPING REQUESTS UNDER CONTROL
The temptation exists to request every possible record with every possible field to 
reduce the number of requests that an application makes from an RDBMS. However, 
this trap increases resource usage, reduces response speed, and makes manicuring 
the data later painful. In a perfect world, you would tailor a request in a manner that 
retrieves just the records you need and only the fields you actually require for analysis. 
The world isn’t perfect, though, so you normally end up with extra data. However, you 
can reduce the waste and make your applications run considerably faster by reducing 
the amount of data you request.

In addition, you must also choose the correct request technique. The more work you 
can perform on the server, the less you have to transport across the network (no mat-
ter what kind of network you use). However, you need to keep in mind that working 
on the server keeps you from seeing the entire dataset, so this approach involves a 
trade-off. You may actually end up missing data that would make your analysis bet-
ter by putting too many restrictions on the request. In the end, making requests is 
more art than science, and you gain a good understanding of what to do only through 
practice.

https://www.sqlalchemy.org/
https://docs.sqlalchemy.org/en/13/core/engines.html
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After you have access to an engine, you can use the engine to perform tasks spe-
cific to that DBMS. The output of a read method is always a DataFrame object that 
contains the requested data. To write data, you must create a DataFrame object 
or use an existing DataFrame object. You normally use these methods to perform 
most tasks:

 » read_sql_table(): Reads data from a SQL table to a DataFrame object

 » read_sql_query(): Reads data from a database using a SQL query to a 
DataFrame object

 » read_sql(): Reads data from either a SQL table or query to a DataFrame 
object

 » DataFrame.to_sql(): Writes the content of a DataFrame object to the 
specified tables in the database

The sqlalchemy library provides support for a broad range of SQL databases. The 
following list contains just a few of them:

 » SQLite

 » MySQL

 » PostgreSQL

 » SQL Server

 » Other relational databases, such as those you can connect to using Open 
Database Connectivity (ODBC)

You can discover more about working with databases using SQLAlchemy at 
https://docs.sqlalchemy.org/en/13/core/tutorial.html. This tutorial helps 
you through some of the unique elements of different vendor offerings with 
regard to accessing data. The techniques that you discover in this book for using 
the toy databases also work with RDBMSs. However, these principles apply only to 
retrieving and manicuring the data. If you want to start creating database objects, 
updating tables, and performing other database tasks, you must follow the SQLAl-
chemy techniques for doing so because they don’t quite match what you would do 
within the database manager. In addition, you also need to know about differences 
between vendor SQL implementations to make the code work properly. If you 
need to expand your knowledge of the SQL language, check out SQL All-in-One For  
Dummies by Allen G Taylor (Wiley).

https://docs.sqlalchemy.org/en/13/core/tutorial.html
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Relying on scripts
A script (sometimes called a stored procedure) is like a mini-application that exists 
within the RDBMS environment. For many RDBMSs, a script is merely a series of 
SQL statements bound together by a little glue code. The advantage of working 
with scripts is that you can obtain relatively precise results because the script will 
perform a substantial amount of data manipulation for you. In addition, with the 
use of the right arguments, you can make the script quite flexible so that it can 
answer a wide variety of needs.

Using a script means that you can perform at least some of the processing needed 
to obtain useful data on the server rather than on the client. The problem is figur-
ing out how to create a script that provides a generic enough response, yet delivers 
the data you need. The tutorial at https://www.w3schools.com/sql/ gives the 
basics of creating SQL statements, and the tutorial at https://docs.microsoft.
com/en-us/sql/ssms/tutorials/scripting-ssms?view=sql-server-2017 
helps you understand the tool used to create and manage scripts, SQL Server Man-
agement Studio (SSMS), for Microsoft’s product.

Unfortunately, scripting is an area in which the RDBMS characteristics tend to vary 
by vendor. The script you create for SQL Server is unlikely to run on MySQL. Conse-
quently, you need to know each RDBMS or work with a DBA for that RDBMS to create 
the custom script you require. The disadvantage of using scripts is complexity. This 
is a platform-specific solution that requires substantial time to hone in many cases.

Relying on views
You can frequently use views to obtain a particular piece of data you need on a 
regular basis. A view is the stored result of a SQL query. As a result, it represents a 
static dataset, but you can rerun the view to update the information. A view differs 

OPENING A FIREWALL PORT
One of the issues you may have to consider when working with an RDBMS is that the 
request port differs from the standard port 80 or 443 (for SSL) used for many requests. 
These special ports often vary by vendor and product. For example, the default SQL 
Server port is 1433, which means reconfiguring your firewall to make an exception 
(https://docs.microsoft.com/en-us/sql/sql-server/install/configure- 
the-windows-firewall-to-allow-sql-server-access?view=sql-server- 
2017). Even when using a local network setup, you must make the change in the firewall 
configuration, which can become a sticking point in some cases when opening a port is 
an issue for support staff.

https://www.w3schools.com/sql/
https://docs.microsoft.com/en-us/sql/ssms/tutorials/scripting-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/tutorials/scripting-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/sql-server/install/configure-the-windows-firewall-to-allow-sql-server-access?view=sql-server-2017
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from a snapshot in that a snapshot isn’t updateable and a snapshot is a static 
image of the database as a whole. (Depending on which resource you use, you may 
find conflicting definitions of view and snapshot, but these are the definitions used 
for this book.) When you download a view, you see just the piece of the database 
reflected by the SQL query, while a snapshot would provide raw information that 
you could query locally in ways that you hadn’t originally intended with the view.

Using views is very efficient because you transfer only the data you need. Unlike 
scripts, views tend to be generic across platforms because most platforms use a 
standard set of SQL commands (with some small modifications as the commands 
become more complex). You require less intimate knowledge of the platform to 
use a view, and a DBA who is reluctant to let you create a script (because they are 
more powerful and flexible) may let you create a view, which can’t modify the 
database content.

The negative part of using views is that they’re single use: The same query means 
the same result unless the underlying data changes. In addition, views are signifi-
cantly less powerful than scripts, so using one means that you spend more time 
manicuring the data locally after you receive it. What you gain with views is ease 
of use, but that gain comes with a loss of flexibility and efficiency.

Relying on functions
A function in an RDBMS works like a function in functional programming (see 
Chapter 2 of this minibook) because SQL is a declarative programming environ-
ment. Functions differ from scripts in a number of important ways. Functions

 » Can’t modify state (including database records)

 » Can be used to calculate values

 » Must return a value (scripts can simply perform tasks without returning a 
value)

 » Can appear as part of SQL statements when they return a scalar value

 » Can’t call scripts (but scripts can call functions)

Other differences likely exist between scripts and functions depending on the 
RDBMS vendor, but these are the important differences from a data science per-
spective. The two most important of these differences are that a function won’t 
modify state (which is good because you don’t usually want to modify state, even 
accidentally) and you can use a function to calculate values.
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The ability to calculate values and then use that calculation as part of a request 
is extremely important. For example, you could perform part of your statistical 
analysis on the server using a function and then use the result to make another 
request without ever passing information back to the client. This means that you 
gain a significant advantage in analysis efficiency.

Creating a Dataset
When working with a product such as SQLAlchemy (see the “Using the SQL lan-
guage” section of the chapter), you use standard Python structures, along with 
those provided by libraries such as NumPy and pandas. For example, when you 
make a query, you retrieve a DataFrame that looks like any other DataFrame you 
might use with the toy databases used in this book. Consequently, much of what 
you do with SQLAlchemy output is the same as what you do with any DataFrame 
you have already used. However, the following sections point out some complexi-
ties that you need to consider when interacting with an RDBMS that you may not 
have to deal with otherwise.

Combining data from multiple tables
No matter how hard you try to complete queries on the server, you often have to 
combine data from queries on the client to create a complete dataset. The impor-
tant thing is to try to get the database server to do as much of the work for you as 
possible by creating SQL queries that retrieve precisely what you need. Otherwise, 
you can spend considerable time trying to determine how to perform the task 
locally using two DataFrame objects in a manner that you might not otherwise use.

If you do end up having to combine tables locally, you must do so with a database 
style merge or join, as described at https://pandas.pydata.org/pandas-docs/
stable/user_guide/merging.html#database-style-dataframe-or-named- 
series-joining-merging. If you simply concatenate the two tables, you won’t 
end up with the correct result and your analysis will be tainted.

Unfortunately, you can only join two DataFrame objects at a time. If you were 
to perform the same task on the database server, you could perform one single 
large join across multiple tables. So, performing the task locally means perform-
ing multiple small tasks rather than one big task. To guarantee success, you need 
to work through a small subset of the data to ensure that you see the correct result 
before working on the huge datasets normally contained within an RDBMS.

https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#database-style-dataframe-or-named-series-joining-merging
https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#database-style-dataframe-or-named-series-joining-merging
https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#database-style-dataframe-or-named-series-joining-merging


234      BOOK 2  Interacting with Data Storage

Ensuring data completeness
An RDBMS is a specialized engine that contains all sorts of safeguards not found 
with your local setup. As you go through the pandas documentation for perform-
ing database style merges and joins, note the topics on looking for duplicate keys. 
When you work with an RDBMS, the RDBMS would automatically detect the dupli-
cate keys and ask how to handle them. This lack of data automation means that 
you must now perform additional work to manicure your data properly.

Along with duplicate keys, you must consider that you could have to deal with miss-
ing keys and missing data. This wouldn’t mean that the software is inept, but rather 
that it lacks the functionality that an RDBMS can provide. In working through a data 
importation procedure, you must validate attributes such as the data types of the 
various fields and determine whether the fields are consistent. You perform this kind 
of work manually because automatic validation is likely to produce inexact results.

At this point, you may wonder why you’d even attempt to import data into one or 
more DataFrame objects and then perform the work locally. The answer goes back 
to some of the original assumptions at the start of the chapter. The data in the 
RDBMS may simply not reflect what you need to perform an analysis. For example, 
if you have precise addresses in the RDBMS, but what you need is localities, you 
may not have the option of performing all the work in the RDBMS because it sim-
ply doesn’t have the data you need. Now you find yourself working with multiple 
data sources, some of which may not even appear in an RDBMS — perhaps the 
locality information is found in a flat-file database or is the result of an API query.

Slicing and dicing the data as needed
Slicing and dicing the data works much as it does for any Python object (see the 
“Selecting and Shaping Data” section of Book 2, Chapter 3), except that you must 
now consider how the data is put together before you do anything. The DataFrame 
you create as the result of various database requests and manipulations may con-
tain complexities that would make normal slicing and dicing strategies inappro-
priate. For example, cutting off the keys can save space but might also result in 
an unusable DataFrame.

Mixing RDBMS Products
The DBA at your organization is likely using a single product at a complex and 
detailed level far beyond what you need. The managers are accessing this data in 
a manner that helps them perform tasks such as evaluating employees and seeing 
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the latest sales figures. Your RDBMS use will differ from anyone else’s at the 
organization, in many cases, because you need outside data to perform analysis 
correctly. For example, knowing the sales figures from your organization isn’t 
enough; you may need to know how the compare to other organizations so that 
you can determine how you’re performing against the competition with greater 
confidence. This difference means that you’re quite likely to use more than one 
RDBMS, each with its own rules.

To determine how best to mix and match the RDBMS products you need, you 
should review feature comparisons like the one found at https://medium.com/@
mindfiresolutions.usa/a-comparison-between-mysql-vs-ms-sql-server- 
58b537e474be for MySQL and SQL Server. Knowing what to expect from each 
RDBMS will reduce the errors you make when creating queries on each system 
to retrieve the data you need. In addition, you can start to determine how to deal 
with RDBMS-specific differences in things like data type handling. One of the 
more critical issues is how the products handle dates when you perform time-
related analysis.

The complexities mount as you begin adding other data sources. If RDBMS isn’t 
complex enough already, you need to consider what happens when you start deal-
ing with flat-file, API, and generated sources. Perhaps some of these sources pro-
vide dynamic data when you have a static view or snapshot of the RDBMS data. 
If so, you need to consider how best to handle that issue. Unfortunately, no best 
practices exist in this regard. The best approach is probably to experiment to see 
whether you get what you expected, or if you can explain differences you didn’t 
expect.

https://medium.com/@mindfiresolutions.usa/a-comparison-between-mysql-vs-ms-sql-server-58b537e474be
https://medium.com/@mindfiresolutions.usa/a-comparison-between-mysql-vs-ms-sql-server-58b537e474be
https://medium.com/@mindfiresolutions.usa/a-comparison-between-mysql-vs-ms-sql-server-58b537e474be
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Working with a 
NoSQL DMBS

The previous chapter talks about the inordinate amount of organization 
 surrounding Relational Database Management Systems (RDBMSs). In fact, 
authors write huge tomes about the topic, yet no one resource manages to 

communicate just how organized these databases are. The hierarchical database 
is quite the opposite in terms of organization. It isn’t untidy by any means; it 
always knows which pile contains the data it has on hand. Still, sometimes the 
viewer wonders about it all at first glance. Yet, you often need a hierarchical form 
of data storage, such as the Not Only SQL (NoSQL) database, to store the chaotic 
information of the real world in a manner that would elude the RDBMS. That type 
of storage capability is what this chapter considers.

Books 3 and 4 of this minibook give you the underpinnings and simplified tech-
niques of hierarchical data storage in the form of trees, graphs, and XML. You 
could add JavaScript Object Notation (JSON) (see Chapter 1 of this minibook for an 
overview of JSON as a raw data storage methodology) into the mix of technologies 
that allow hierarchical storage as well. The first part of this chapter takes a more 
detailed look at the various strategies used to store data in a hierarchical form.

The next part of the chapter discusses how data access occurs. You spend some 
time looking at a NoSQL implementation and discover how you access it as a 
database engine using techniques similar to those used with an RDBMS.  Even 

Chapter 6

IN THIS CHAPTER

 » Understanding hierarchical data

 » Using hierarchical datasets

 » Considering other forms of 
hierarchical data
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though the underlying storage strategies differ greatly from an RDBMS, any use-
ful  hierarchical data storage methodology must provide a way to manage records 
in a consistent manner.

The final part of this chapter discusses some of the alternative forms of hierar-
chical data storage. All the straightforward methods of data storage might seem to 
be taken already, but that’s not the case. As long as humans have a need to store 
data, someone will come up with another method of doing so that provides some 
benefit not offered by the other methods.

Considering the Ramifications of 
Hierarchical Data

You can use hierarchies to store data of various types. A hierarchy has the advan-
tage of providing a searchable method of locating disorganized data. Each data 
element may differ in size and content, but the hierarchy will provide a means of 
searching it anyway. This ability to locate what you might not otherwise find in 
an RDBMS is a significant difference between the RDBMS and the hierarchy, as 
explained in the following sections.

Understanding hierarchical organization
Hierarchies appear all over the place. The organizational chart used to describe the 
responsibilities, status, and interrelationships in a company is a hierarchy. Deep 
learning requires the use of hierarchies of neurons to perform tasks. Trees and graphs 
are programming structures that rely on hierarchies. In fact, if you really think about 
it, you can’t get around the hierarchy. Even looking outside your window, you see 
plants, shrubs, bushes, and yes, even trees that form hierarchies. Hierarchies of ani-
mals also exist when it comes to the food chain, with the most capable predators at 
the top and the least aware microscopic organisms at the bottom. Sometimes the 
linkage in a hierarchy seems to defy imagination, such as with the whale that eats 
massive quantities of krill and plankton. A hierarchy can happen anywhere, even in 
completely unexpected places and in the most difficult to understand ways.

For all the complexities that hierarchies represent, however, they’re actually quite 
simple in construction. A hierarchy normally consists of these elements:

 » Object nodes, whether real, imagined, or abstract in nature

 » Linkages between nodes
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 » Directionality, whether top to bottom, one-way, two-way, cyclic, or any other 
direction you can imagine

 » Attributes that describe node, linkage, and directionality as needed (or are 
absent when not)

In some minds, a hierarchy denotes a system of ranking objects, as in an orga-
nizational chart. However, you can use the hierarchical structure without rank-
ing anything. For example, when you use a hierarchy to define the content of a 
 warehouse, the hierarchy doesn’t rank the various items; rather, it might simply 
group like items together under the root node of the warehouse as a whole.

Developing strategies for freeform data
You can easily assign strategies that are normally employed by RDBMS to hierar-
chical databases when the only experience a person has is with the RDBMS. For 
example, when working with a warehouse, the automatic response to linkage is to 
attach a part number to everything. Unfortunately, although a part number works 
fine in an RDBMS, it doesn’t work at all with a hierarchy.

CHOOSING HIERARCHIES OVER RDBMS
An RDBMS works best when data is consistent, records have approximately the same 
size, and you have a unique method of identifying each item. For example, if your goal 
is to catalog a warehouse strictly according to part number, product name, location, 
and so on, then an RDBMS will work best because each item is formatted precisely the 
same. The problem is that this form might not serve well when you have a warehouse 
containing a large group of unlike items.

Another way to view the warehouse is as a group of objects with unique characteristics, 
such as whether the item is frozen or refrigerated when such a designation works. Some 
items may have colors; others may employ specific metals. In this case, you work with 
items based on individual attributes rather than rely on some other strategy. A hierarchi-
cal organization works best in this case because you need to group like items together. 
For example, you wouldn’t put metal working equipment and food items in the same 
group; they’re different sorts of items based on how you interact with them. Likewise, 
you might put the blue metal working equipment into one group and the red metal 
working equipment into another group, with the difference being the color in this case.
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What you really want is something that describes the item, such as the item name. 
For example, item number 1234-5678JX isn’t descriptive, but Radial Tires  
(P 225/70R14 98S SL RWL) is. Making the name descriptive is helpful in differ-
entiating like items. You may have many different radial tire sizes, so providing a 
descriptive part number will help.

Of course, using a consistent numbering strategy is relatively easy to search, as 
long as you know the item number. Searching a hierarchy of names is harder 
unless you use techniques such as those found in Book 4, Chapter 4 to perform 
natural language processing. By using the correct search techniques, you can get 
around issues like

 » Misspellings

 » Word order

 » Nomenclature consistency

 » Missing terms

 » Punctuation

 » Diacritical marks

 » Language inconsistencies (think colour versus color)

In addition, you may find performing tasks such as displaying the item data 
more difficult because each item can contain unique information. Creating flex-
ible forms is an essential element of making freeform data stored in a hierarchy 
 manageable. The form will need to construct its content based on the actual item 
data available.

The point is that freeform data requires a different kind of handling than the rows 
and columns found in an RDBMS table. You may even find it necessary to create 
methods for restructuring the hierarchy at times. Perhaps you normally link items 
together using the item name, but you find a sudden need to link items by physical 
location instead.

Performing an analysis
Most data scientists don’t have a problem figuring out how to perform an anal-
ysis using RDBMS data because the data is already in tabular form, which is 
 compatible with programming structures like a pandas DataFrame. Freeform data 
presents certain challenges based on the need to describe an item, rather than 
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simply document it (as is done in an RDBMS). You may need to squint at the data 
a little and choose a different means of obtaining analysis information based on 
the following:

 » Consistent attributes: Even if the attributes vary greatly among items, some 
attributes may remain consistent, such as size, value, weight, and so on. You 
can use these consistent elements as a basis for comparison, such as value 
and size versus storage cost.

 » Item inconsistencies: Given enough items in a particular group, you may be 
able to perform an analysis of items in that group (rather than the warehouse 
as a whole) based on item inconsistencies.

 » Promised versus realized attributes: The value of an item description is that 
you can determine whether the promised item composition matches the item 
as it actually appears in the real world.

 » Missingness: Items in one group may have attributes or attribute values that 
are missing in another, similar, group.

Generally, you can’t use every part of an item description in an analysis, just as 
you wouldn’t use the information in the real world. For example, when shopping 
at the store, the cost and perceived value of an item are more important than the 
color of the packaging, even though the color of the packaging may ultimately 
affect whether you buy the item. Packaging can also affect issues such as how 
many items you buy. However, when you view two like items and one is signifi-
cantly more expensive than the other, you’re more likely to let price decide which 
item you get.

Freeform data arranged in a hierarchy focuses on description, so your analysis 
must focus on description, too. You must think through the process of determin-
ing which attributes are consistent enough to allow for the particular analysis 
you need to perform. You need to consider how a descriptive entry can make your 
analysis more efficient or correct than using the abstractions of an RDBMS.

Working around dangling data
The one area in which an RDBMS and a hierarchical data source have an equal set 
of problems is with dangling data — the orphaned record or object that simply 
doesn’t connect to anything. With an RDBMS, the problem generally occurs as 
the result of code that deletes a parent record without also removing all the child 
records. Because of the nature of an RDBMS, locating such records or eliminating 
them from happening at all is relatively easy using rules. Dangling freeform data 
in a hierarchical form isn’t nearly so easy to locate.



242      BOOK 2  Interacting with Data Storage

The problem is one of linkages. It’s hard to tell sometimes whether every object 
in the database connects to something else (ending with the root item that con-
nects to everything else). The only way to locate dangling data is to traverse the 
tree as you would a graph, binary search tree (BST), or binary heap. For example, 
consider Figure 6-1. If Leaf F is disconnected from the rest of the tree, you need to

1. Determine that Leaf F exists.

2. Traverse the entire tree to know what is and isn’t connected (creating a list of 
nodes in the process).

3. Search for Leaf F in the connection list.

4. Define Leaf F as disconnected when it doesn’t appear in the list.

The process of knowing that Leaf F exists is problematic. You could create a his-
torical database to track which items should appear in the database at any given 
time. The process is incredibly time consuming and error prone, yet you must 
have a procedure in place for locating these dangling data items or database cor-
ruption will quickly create issues for any analysis you want to perform. Unfortu-
nately, the tree support for Python is lacking, and you sometimes can’t locate a 
library to perform the task, either, so some of these error-handling techniques 
require custom code. Chapters 5 through 7 of Algorithms For Dummies, by John Paul 
Mueller and Luca Massaron (Wiley), provide code and extensive details about how 
to manage various kinds of tree structures.

FIGURE 6-1:  
A hierarchical 
construction 

relies on links to 
each item.
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Accessing the Data
Any data you store is useless unless you can obtain access to it. How this access 
occurs depends on the data storage strategy:

 » Flat-file storage such as XML requires a search of the tree.

 » In-memory structures, such as dictionaries, rely on keys that you can locate 
using a single search.

 » NoSQL databases rely on keys as well, but you can also sort and index them in 
various ways.

You need to be aware of the kind of data storage that you’re using, including its 
limits and advantages. The following sections provide an overview of data access 
in a general way, discussing some of the ways in which hierarchical data storage 
methods can differ.

Creating a picture of the data form
Figure 6-1 shows a basic hierarchy and how you start at the root node to find 
any particular leaf. The picture shows a basic binary tree. Not every form of 

CONSIDERING THE TYPES OF TREES
Different kinds of data storage structures are available. Here is a quick list of the kinds 
of structures you commonly find:

• Balanced trees: A kind of tree that maintains a balanced structure through reor-
ganization so that it can provide reduced access times. The number of elements on 
the left size differs from the number on the right side by one at most.

• Unbalanced trees: A tree that places new data items wherever necessary in the 
tree without regard to balance. This method of adding items makes building the 
tree faster but reduces access speed when searching or sorting.

• Heaps: A sophisticated tree that allows data insertions into the tree structure. The 
use of data insertion makes sorting faster. You can further classify these trees as 
max heaps and min heaps, depending on the tree’s capability to immediately pro-
vide the maximum or minimum value present in the tree.
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hierarchical storage works this way, though. You may find that the data storage 
you use relies on any of these structures:

 » Ternary tree: Uses up to three links for each data node.

 » Binary Search Tree (BST): The left and right subtrees must also be BST.

 » Adelson-Velsky and Landis (AVL) tree: A kind of self-balancing BST, which 
improves tree performance.

Many other kinds of trees exist as well, and sometimes a data storage technique 
will rely on a graph instead. Without a picture of what the data looks like, you have 
no hope of truly understanding how to access any particular node. Consequently, 
one of the first issues you must deal with is determining how the data storage is 
laid out, and the best way to do this is in graphic form. The article at https://
www.freecodecamp.org/news/all-you-need-to-know-about-tree-data- 
structures-bceacb85490c/ tells how someone actually draws the tree structure 
to better understand it.

Employing the correct transiting strategy
Of all the tasks that applications do, searching is the more time consuming and 
also the one required most. Even though adding data (and sorting it later) does 
require some amount of time, the benefit of creating and maintaining a dataset 
comes from using it to perform useful work, which means searching it for impor-
tant information. Consequently, you can sometimes get by with less efficient Cre-
ate, Read, Update, and Delete (CRUD) functionality and even a less-than-optimal 
sort routine, but searches must proceed as efficiently as possible. The only prob-
lem is that no one search performs every task with absolute efficiency, so you 
must weigh your options based on what you expect to do as part of the search 
routines.

Two of the more efficient methods of searching involve the use of the binary 
search tree (BST) and binary heap. Both of the search techniques rely on a tree-like  
structure to hold the keys used to access data elements. However, the arrangement 
of the two methods is different, which is why one has advantages over the other 
when performing certain tasks. Figure 6-2 shows the arrangement for a BST.

Note how the keys follow an order in which lesser numbers appear to the left 
and greater numbers appear to the right. The root node contains a value that is 
in the middle of the range of keys, giving the BST an easily understood balanced 
approach to storing the keys. Contrast this arrangement to the binary heap shown 
in Figure 6-3.

https://www.freecodecamp.org/news/all-you-need-to-know-about-tree-data-structures-bceacb85490c/
https://www.freecodecamp.org/news/all-you-need-to-know-about-tree-data-structures-bceacb85490c/
https://www.freecodecamp.org/news/all-you-need-to-know-about-tree-data-structures-bceacb85490c/
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Each level contains values that are less than the previous level, and the root con-
tains the maximum key value for the tree. In addition, in this particular case, the 
lesser values appear on the left and the greater on the right (although this order 
isn’t strictly enforced). The figure actually depicts a binary max heap. You can also 
create a binary min heap, in which the root contains the lowest key value and each 
level builds to higher values, with the highest values appearing as part of the 
leaves.

The manner you use to traverse a tree or graph is important. Consider the graph 
shown in Figure 6-4 as the starting point for discussion in this case.

FIGURE 6-2:  
The arrangement 

of keys when 
using a BST.

FIGURE 6-3:  
The arrangement 

of keys when 
using a binary 

heap.
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The most popular techniques in this case are the Breadth First Search (BFS) and 
Depth First Search (DFS):

 » BFS: Begins at the graph root and explores every node that attaches to the 
root. It then searches the next level — exploring each level in turn until it 
reaches the end. Consequently, in the example graph, the search explores 
from A to B and C before it moves on to explore D. BFS explores the graph in 
a systematic way, exploring vertexes all around the starting vertex in a circular 
fashion. It begins by visiting all the vertexes a single step from the starting 
vertex; it then moves two steps out, then three steps out, and so on.

 » DFS: The algorithm begins at the graph root and then explores every node 
from that root down a single path to the end. It then backtracks and begins 
exploring the paths not taken in the current search path until it reaches the 
root again. At that point, if other paths to take from the root are available, the 
algorithm chooses one and begins the same search again. The idea is to 
explore each path completely before exploring any other path. To make this 
search technique work, the algorithm must mark each vertex it visits. In this 
way, it knows which vertexes require a visit and can determine which path to 
take next.

Even though Figure  6-4 shows a graph, the same techniques work with trees. 
The article at https://www.geeksforgeeks.org/bfs-vs-dfs-binary-tree/ 
describes the same process using a tree rather than a graph. Using BFS or DFS 
can make a difference according to the way in which you need to traverse a graph. 

FIGURE 6-4:  
An example 

graph that you 
can use for 

certain types of 
data storage.

https://www.geeksforgeeks.org/bfs-vs-dfs-binary-tree/
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From a programming point of view, the difference between the two algorithms is 
how each one stores the vertexes to explore the following:

 » A queue for BFS, a list that works according to the FIFO principle. Newly 
discovered vertexes don’t wait long for processing.

 » A stack for DFS, a list that works according to the last in/first out (LIFO) 
principle.

The choice between BFS and DFS depends on how you plan to apply the output 
from the search. Developers often employ BFS to locate the shortest route between 
two points as quickly as possible. This means that you commonly find BFS used in 
applications such as GPS, where finding the shortest route is paramount. For the 
purposes of this book, you also see BFS used for spanning tree, shortest path, and 
many other minimization algorithms.

A DFS focuses on finding an entire path before exploring any other path. You use 
it when you need to search in detail rather than generally. For this reason, you 
often see DFS used in games, in which finding a complete path is important. It’s 
also an optimal approach to performing tasks such as finding a solution to a maze.

Sometimes you have to decide between BFS and DFS based on the limitations of 
each technique. BFS needs lots of memory because it systematically stores all the 
paths before finding a solution. On the other hand, DFS needs less memory, but 
you have no guarantee that it’ll find the shortest and most direct solution.

Ordering the data
You have essentially two methods of ordering your hierarchical data: sorting and 
indexing. When sorting the data, you create a new version of the dataset in a 
specific order depending on the storage strategy you use. You use sorting only on 
small datasets. Indexing is the method of choice when working with large data-
sets. Even though you have a lot of options when it comes to indexing, here are 
the most popular:

 » B-Tree: This is one of the most common indexing methods for DBMSs. When 
working with a B-tree, the internal nodes can have a variable number of child 
nodes depending on a predefined range. The advantage of this approach is 
that the code has to balance the tree less often. The disadvantage is that the 
tree has more unused space.

 » B+-Tree: This is a variation of the B-tree in which all the keys reside in the leaf 
nodes, providing a boost in speed.
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 » T-Tree: This is a mix of AVL-trees (see https://www.geeksforgeeks.org/ 
avl-tree-set-1-insertion/ for details) and B-trees in which the resulting 
tree is balanced but each node can have a different number of children. 
A T-Tree tends to have better overall performance than a corresponding 
AVL-Tree. The nodes each contain one key/value pair and a pointer tuple. 
A T-Tree provides three kinds of nodes:

• T-Node: Has both a right and left child

• Half-leaf node: Has just one child

• Leaf node: Has no children

 » O2-Tree: This is an evolution of Red-Black trees (see https://www. 
geeksforgeeks.org/red-black-tree-set-1-introduction-2/ for 
details), which is a form of Binary-Search tree in which the leaf nodes con-
tain a tuple with the key/value pairs and a pointer to the next node. The 
basic reason to use this kind of indexing is that it enhances overall indexing 
performance. As with Red-Black trees, every node is either red or black, with 
a black root. When a node is red, both of its children are black. Leaf nodes 
are double linked both forward and backward, making this index incredibly 
easy to traverse.

Interacting with Data from  
NoSQL Databases

Hierarchical data formats can take many forms. For example, XML and JSON files 
are a type of hierarchical storage. However, these flat file formats are relatively 
limited in scope, so you need something with additional functionality, such as 
the databases described in the slide show at https://www.computerworld.com/ 
article/3412345/the-best-nosql-database-options-for-the-enterprise.
html. Many of these offerings are in the cloud, so you don’t even have to worry 
about creating a localized implementation. All these NoSQL databases are designed 
to handle the complexities of corporate data in a manner consistent with hierar-
chical storage.

NoSQL databases are used in large data storage scenarios in which the relational 
model can become overly complex or can break down in other ways. The data-
bases generally don’t use the relational model. Of course, you find fewer of these 
DBMSs used in the corporate environment because they require special handling 
and training. Still, some common DBMSs are used because they provide special 

https://www.geeksforgeeks.org/avl-tree-set-1-insertion/
https://www.geeksforgeeks.org/avl-tree-set-1-insertion/
https://www.geeksforgeeks.org/red-black-tree-set-1-introduction-2/
https://www.geeksforgeeks.org/red-black-tree-set-1-introduction-2/
https://www.computerworld.com/article/3412345/the-best-nosql-database-options-for-the-enterprise.html
https://www.computerworld.com/article/3412345/the-best-nosql-database-options-for-the-enterprise.html
https://www.computerworld.com/article/3412345/the-best-nosql-database-options-for-the-enterprise.html
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functionality or meet unique requirements. The process is essentially the same for 
using NoSQL databases as it is for relational databases:

1. Import required database engine functionality.

2. Create a database engine.

3. Make any required queries using the database engine and the functionality 
supported by the DBMS.

The details vary quite a bit, and you need to know which library to use with your 
particular database product. For example, when working with MongoDB (https://
www.mongodb.org/), you must obtain a copy of the PyMongo library (https://
api.mongodb.org/python/current/) and use the MongoClient class to create 
the required engine. The MongoDB engine relies heavily on the find() function 
to locate data. Following is a pseudo-code example of a MongoDB session. (You 
won’t be able to execute this code in Notebook; it’s shown only as an example.)

import pymongo
import pandas as pd
from pymongo import Connection
connection = Connection()
db = connection.database_name
input_data = db.collection_name
data = pd.DataFrame(list(input_data.find()))

Working with Dictionaries
Chapter 2 of this minibook describes how to create and use dictionaries. In that 
chapter, you use scalar values as the value portion of the key/value pair. However, 
you don’t have to use a scalar value. You can use other standard data types as the 
value, or you can even create a class to hold custom data. The point is that you use 
the key to locate the data and the value to hold the data.

Here’s an example of using a list. You can create a dictionary containing a series 
of lists like this:

X = {'a': [1, 2, 3], 'b': [4, 5, 6]}

To access a particular key, you use code like this:

print(X['a'])

https://www.mongodb.org/
https://www.mongodb.org/
https://api.mongodb.org/python/current/
https://api.mongodb.org/python/current/
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The output in this instance is a list: [1, 2, 3]. To access a given list element, you 
use code like this:

print(X['a'][1])

What you see is the value 2 as output. The point of this example is that you could 
easily implement a hierarchical data storage setup using a dictionary by providing 
a pointer to the next key as one of the value elements, like this:

X = {'a': ['b', 1, 2, 3], 'b': ['a', 4, 5, 6]}

To move to the next node, you simply index it as you would a value:

print("Next element is: ", X['a'][0])

You see Next element is:  b as the output. You can create a B-tree or any other  
hierarchical structure using this approach if desired. Using a custom class is  
similar to working with a list, but you have to design the class. The article at 
https://code.tutsplus.com/tutorials/how-to-implement-your-own-data-
structure-in-python--cms-28723 offers a discussion of this approach.

Developing Datasets from 
Hierarchical Data

You can work with hierarchical data directly in your applications. It means using 
various traversal techniques and writing a lot of code to deal with the various 
nodes. Unfortunately, it also means that you have to reinvent the wheel in per-
forming many common tasks that libraries like pandas make extremely easy. Still, 
sometimes you have no other choice but to work with the data in hierarchical form.

Sometimes, you may find that your hierarchical data is amenable to being 
stuffed into a pandas DataFrame by using smart coding techniques and look-
ing for patterns. For example, the discussion at https://stackoverflow.com/
questions/48374823/parsing-hierarchical-data-from-xml-to-pandas talks 
about moving a particular XML dataset (which is hierarchical) into a DataFrame. 
In looking at the data for this example, you see that it’s already in a some-
what tabular format. If the data were completely freeform, the example wouldn’t 
work because creating the required rows and columns wouldn’t be possible. Even 
so, this XML example is somewhat typical of certain kinds of data, such as log 
entries.

https://code.tutsplus.com/tutorials/how-to-implement-your-own-data-structure-in-python--cms-28723
https://code.tutsplus.com/tutorials/how-to-implement-your-own-data-structure-in-python--cms-28723
https://stackoverflow.com/questions/48374823/parsing-hierarchical-data-from-xml-to-pandas
https://stackoverflow.com/questions/48374823/parsing-hierarchical-data-from-xml-to-pandas
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You can find some examples of complex data imports online, but generally the 
code for these examples is extremely brittle, which means that it’ll break the 
moment anything unexpected happens with your data source. In many cases, 
unless the data you want to use as part of a DataFrame is already in a form that 
lends itself to tabular display, the better bet is to simply work with it as a hierar-
chical data source.

Processing Hierarchical Data  
into Other Forms

You eventually need to consider how to work with forms of data that you require 
for your analysis that simply defy easy storage using existing methods. Because 
you can find nearly constant development in this area, you can safely assume that 
other data scientists face the same issues as you do.

One of the more interesting newer entries into this field is object storage of the sort 
provided by Amazon Web Services (AWS) Simple Storage Service (S3) (https://
aws.amazon.com/what-is-cloud-object-storage/). The methodology seems 
incredibly messy at first because you simply throw objects into what amounts to 
an electronic bucket. The data doesn’t even appear neatly stacked on shelves. Yet, 
this storage method offers fast and easy storage of items that just don’t fit any-
where else and seemingly defy organization.

Image files can prove especially difficult to deal with because not only are they 
stored in a hierarchical manner but the images themselves can present problems. 
The article at https://realpython.com/storing-images-in-python/ offers 
some interesting ways to work with image files that you want to use as part of an 
analysis. Besides the usual disk storage technique (using the Pillow library), this 
article tells you about these techniques:

 » Lightning Memory-Mapped Databases (LMDB)

 » Hierarchical Data Format (HDF5)

https://aws.amazon.com/what-is-cloud-object-storage/
https://aws.amazon.com/what-is-cloud-object-storage/
https://realpython.com/storing-images-in-python/
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Working with Linear 
Regression

Some people find linear regression a confusing topic, so the first part of 
this chapter helps you understand it and what makes it special. Instead 
of assuming that you can simply look at a linear regression and figure it 

out, the first section gives you a more detailed understanding of both simple and 
 multiple linear regressions.

Data science is based on data, and you store data in variables. A variable is a kind 
box where you stuff data. The second part of this chapter tells you how variables 
used for linear regression can vary from other sorts of variables that you might 
have used in the past. Just as you need the right box to use for a given purpose, so 
is getting the right variable for your data important.

The third part of this chapter looks at both simple and complex uses of linear 
regression. You begin by using linear regression to make predictions, which can 
help you envision the future in many respects. A more complex example discusses 
a way to use linear regression as a starting point for more complex tasks, such as 
machine learning.

Chapter 1

IN THIS CHAPTER

 » Considering the uses for linear 
regression

 » Working with variables

 » Using linear regression for prediction

 » Learning with linear regression
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You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears 
in the DSPD_0301_Linear_Regression.ipynb source code file for Python and the 
DSPD_R_0301_Linear_Regression.ipynb source code file for R. See the Introduction 
for details on how to find these source files.

Considering the History of  
Linear Regression

Sometimes data scientists seem to talk in circles or use terms in a way that most 
people don’t. When you think about data, what you’re really thinking about is what 
the data means; that is, you’re thinking about answers. In other words,  having 
data is like the game show Jeopardy!: You have the answer to a  question, but you 
have to come up with the correct question. A regression defines the  question so that 
you can use it to work with other data. In this case, the question is the same one 
you answered in math class — the equation you must solve. A  regression provides 
an equation. Now that you have the equation, you can plug other numbers into it.

Now that you know what a regression is, you need to know what sort of equation it 
provides. A linear regression provides an equation for a straight line. You create an 
equation that will draw a straight line through a series of data points. By knowing 
the equation that best suits the data points you have, you can predict other data 
points along the same line. So, the history of linear regression begins not with an 
answer, but with the search for a question in the form of an equation.

It may seem odd that the math came before the name, but in this case it did. Carl 
Friedrich Gauss first discovered the least squares method in 1795 (see https://
priceonomics.com/the-discovery-of-statistical-regression/ for details) 
as a means for improving navigation based on the movement of planets and stars. 
Given that this was the age of discovery, people in power would pay quite a lot to 
improve navigation. The use of least squares seemed so obvious to Gauss, how-
ever, that he thought someone else must have invented it earlier. That’s why 
Adrien-Marie Legendre published the first work on least squares in 1805. Gauss 
would eventually get most of the credit for the work, but only after a long fight.

The least squares technique didn’t actually have a name as a generalized method 
until 1894, when Sir Francis Galton wrote a paper on the correlation between the 
size of parent sweet pea seeds and their progeny (see https://www.tandfonline.
com/doi/full/10.1080/10691898.2001.11910537 for details). He found that, as  
generations progressed, the seeds produced by the progeny of parents that produce 

https://priceonomics.com/the-discovery-of-statistical-regression/
https://priceonomics.com/the-discovery-of-statistical-regression/
https://www.tandfonline.com/doi/full/10.1080/10691898.2001.11910537
https://www.tandfonline.com/doi/full/10.1080/10691898.2001.11910537
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large seeds tended to get smaller — toward the mean size of the seeds as a whole. 
The seeds regressed toward the mean rather than continuing to get larger, which 
is where the name regression comes from.

One of the important things to take away from regression history is that it 
 presents itself as an answer to a practical problem. In every case, the user starts 
with data, such as the location of planets or the size of sweet pea seeds, and needs 
to answer a question by using an equation that expresses the correlation between 
the data. By understanding this correlation, you can make a prediction of how the 
data will change in the future, which has practical uses in navigation and botany, 
in these cases.

Combining Variables
The previous section gives you a history of regression that discusses why you want 
to use it. If you already have data that correlates in some manner, but lack an 
equation to express it, then you need to use regression. Some data lends itself to 
expression as an equation of a straight line, which is how you use linear regression 
in particular. With this in mind, the following sections guide you through a basic 
examination of linear regression as it applies to specific variable configurations.

Working through simple linear regression
Think about a problem in which two variables correlate, such as the size of  parent 
sweet pea seeds compared to the size of child sweet pea seeds. However, in this 
case, the problem is something that many people are either experiencing now 
or have experienced in the past — dealing with grades and studying. Before you 
move forward, though, you need to consider the following equation model:

y = a + bx

All equations look daunting at first. When thinking about grades, y is the grade.

The grade you expect to get if you don’t study at all is a, which is also called 
the y-intercept (or constant term). Some people actually view this constant in 
terms of probability. A multiple choice test containing four answers for each 
 question would give you a 25 percent chance of success. So, for the purposes of 
this  example, you use a value for a of 25. None of the y data points will be less than 
25 because you should get at least that amount.
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Now you have half of the equation, and you don’t have to do anything more than 
consider the probabilities of guessing correctly. The bx part is a little more dif-
ficult to determine. The value x defines the number of hours you study. Given that  
0 hours of study is the least you can do (there is no anti-study in the universe), the 
first x value is 0 with a y value of 25. This example is looking at the data simply, 
so it will express x in whole hours. Say that you have only eight hours of available 
study time, so x will go from 0 through 8. The x value is called an explanatory or 
independent variable because it determines the value of y, which is the dependent 
variable.

The final piece, b, is the slope variable. It determines how much your grade will 
increase for each hour of study. You have data from previous tests that show 
how your grade increased for each hour of study. This increase is expressed as b,  
but you really don’t know what it is until you perform analysis on your data. 
 Consequently, this example begins by importing some libraries you need to 
 perform the analysis and defining some data:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
 
x = range(0,9)
y = (25, 33, 41, 53, 59, 70, 78, 86, 98)

The purpose of the %matplotlib inline line is to allow you to see your data results 
within your Notebook. This is a magic function and you see a number of them in 
the book. As previously mentioned, the x values range from 0 through 8 and the 
y values reflect grades for each additional hour of study. The analysis portion of 
the code comes next:

plt.scatter(x, y)
 
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
 
plt.plot(x, p(x), 'g-')
plt.show()

This example relies on graphics to show you how the data appears, so the first 
task is to plot the x and y data as a scatterplot so that you can see the individual 
data points. The analysis comes from the polyfit() function, which fits a linear 
model, z, to the data points. The poly1d() function call creates the actual function 
used to display the data points. After you have this function, p, you can use it to 
plot the regression line onscreen, as shown in Figure 1-1.
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Creating a graph of your data and the line that goes through the data points is 
nice, but it still doesn’t provide you with a question. To get the question, which is 
an equation, you must use this line of code:

print(np.poly1d(p))

This line of code simply extracts the equation from p using poly1d(). The result 
is shown here:

9.033 x + 24.2

The data suggests that you’ll likely not get all of those no-study-time questions 
correct, but you’ll get a little over 24 percent of them. Then, for each hour of 
study, you get an additional 9 points. From a practical perspective, say that you 
want to go to a movie with a friend and it’ll consume 2 of your 8 hours of study 
time. The grade you can expect is

9.033 * 6 + 24.2 = 78.398

Of course, you have a computer, so let it do the math for you. This line of code will 
provide you with the grade you can expect (rounded to one decimal place):

print(np.poly1d(p(6)))

The values for the intercept and the slope are actually decided by the linear regres-
sion algorithm in order to create an equation that has specific characteristics. In 
fact, an equation can fit a cloud of points in infinite ways, but only one whose 
resulting squared errors are minimal (hence the least squares name). You discover 
more about this issue later, in the “Defining the family of linear models” section 
of the chapter.

FIGURE 1-1:  
Drawing a linear 

regression line 
through the data 

points.
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Advancing to multiple linear regression
Studying seldom happens with the precise level of quietude without interruptions 
that someone might like. The interruptions cause you to lose points on the test, 
of course, so having the linear regression you use consider interruptions might be 
nice. Fortunately, you have the option of performing a multiple linear regression, 
but the technique used in the previous section won’t quite do the job. You need 
another method of performing the calculation, which means employing a differ-
ent package, such as the Scikit-learn LinearRegression function used in this 
example. The following code performs the required imports and provides another 
list of values to use in the form of interruptions:

from sklearn.linear_model import LinearRegression
import pandas as pd
 
i = (0, -1, -3, -4, -5, -7, -8, -9, -11)

The pandas package helps you create a DataFrame to store the two individual 
independent variables. The equation model found in the previous section now 
changes to look like this:

y = a + b1x1 + b2x2

The model is also turned on its head a little. The two independent variables now 
represent the grade obtained for a certain number of hours of study (b1x1) and the 
points lost on average due to interruptions (b2x2) for each hour of study. If this 
seems confusing, keep following the example and you’ll see how things work out 
in the end. The following code performs the analysis and displays it onscreen:

studyData = pd.DataFrame({'Grades': y, 'Interrupt': i})
 
plt.scatter(x, y)
plt.scatter(x, i)
plt.legend(['Grades', 'Interruptions'])
 
regress = LinearRegression()
model = regress.fit(studyData, x)
studyData_pred = model.predict(studyData)
 
plt.plot(studyData_pred, studyData, 'g-')
plt.show()
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The code begins by creating a DataFrame that contains the grades and the 
interruptions. The regression comes next. However, this time you’re using a 
 LinearRegression object instead of calling polyfit() as the previous section 
does. You then fit the model to each of the independent variables and use the 
resulting model to perform a prediction. Figure 1-2 shows the results so far.

At this point, you have two sets of data points and two lines going through them, 
none of which seems particularly useful. However, what you have is actually quite 
useful. Say that you hope to get a 95, but you think that you might lose up to 
7 points because of interruptions. Given what you know, you can plug the num-
bers into your model to determine how long to study using the following code:

print(model.predict([[95, -7]]).round(2).item(0))

To use the prediction, you must provide a two-dimensional array with the data. 
The output in this case is

7.47

You must study at least seven and a half hours to achieve your goal. Now you begin 
to wonder what would happen if you could control the interruptions, but you want 
to be sure that you get at least a 90. What if you think that the worst-case  scenario 
is losing eight points and the best-case scenario is that you don’t lose any as a 
result of interruptions. The following code shows how to check both values at the 
same time:

print(model.predict([[90, 0], [98, -8]]).round(2))

FIGURE 1-2:  
Developing 

a  multiple 
 regression model.
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This time, you get two responses in an ndarray:

[6.29 7.86]

In the best-case scenario, you can get by with a little over six hours of study, but 
in the worst-case scenario, you need almost eight hours of study. It’s a good idea 
to keep those interruptions under control!

Considering which question to ask
The previous two sections show an example of simple linear regression and 
 multiple linear regression for essentially the same problem: determining what is 
needed to obtain a particular grade from an exam. However, you must  consider the 
orientation of the two sections. In the first section, the linear regression considers 
the question of what score someone will achieve after a given number of hours 
of study. The second section considers a different question: how many hours one 
must study to achieve a certain score given a particular number of interruptions. 
The approach is different in each case.

You can change the code in the first section so that the question is the same as 
the one in the second section, but without the capability to factor in interruptions. 
Essentially, the variables x and y will simply switch roles. Here is the code to use 
in this situation:

plt.scatter(y, x)
 
z = np.polyfit(y, x, 1)
p = np.poly1d(z)
 
plt.plot(y, p(y), 'g-')
plt.show()
 
print(np.poly1d(p(95)))

Figure 1-3 shows the new graphic for this part of the example. Note that you can 
now ask the model how many hours of study are needed to achieve a 95, rather 
than obtain the score for a certain number of hours of study. In this case, you must 
study 7.828 hours to obtain the 95.

Although you can change the question for a simple linear regression, the same 
can’t be said of the multiple linear regression in the second section. To create a 
correct model, you must ask the question as shown in the example because the two 
independent variables require it. Discovering which question to ask is important.
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Reducing independent variable complexity
In some situations, you must ask a question in a particular way, but the variables 
seem to get in the way. When that happens, you need to decide whether you can 
make certain assumptions. For example, you might ask whether the conditions 
in your dorm are stable enough that you can count on a certain number of lost 
points for each hour of study. If so, you can reduce the number of independent 
variables from two to one by combining the grades with the interruptions during 
your analysis, like this:

plt.scatter(x, y)
plt.scatter(x, i)
plt.legend(['Grades', 'Interruptions'])
 
y2 = np.array(y) + np.array(i)
print(y2)
 
z = np.polyfit(x, y2, 1)
p = np.poly1d(z)
 
plt.plot(x, p(x), 'g-')
plt.show()

This code looks similar to the code used for simple linear regression, but it 
 combines the two independent variables into a single independent variable. When 
you print y2, you see that the values originally found in y are now reduced by the 
values originally found in i:

[25 32 38 49 54 63 70 77 87]

FIGURE 1-3:  
Changing the 
 simple linear 

regression 
question.
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The assumption now is that every hour of study will have the same baseline 
number of lost points due to interruptions; y and i now depend on each other 
directly. However, the resulting plot shown in Figure 1-4 displays the effect 
of i on y.

You haven’t ignored the data; you’ve simplified it by making an assumption that 
may or may not be correct. (Only time will tell.) The following code performs the 
same test on the model as before:

print(np.poly1d(p))
print(np.poly1d(p(6)))

Because of the change in the model, the output is different. (Compare this out-
put with the output shown in the “Working through simple linear regression” 
 section, earlier in this chapter.)

7.683 x + 24.27
70.37

Even though the y-intercept hasn’t changed much, the number of points you 
receive for each hour of study has, which means that you must study harder now 
to overcome the expected interruptions. The point of this example is that you 
can reduce complexity as long as you’re willing to live with the consequences of 
doing so.

FIGURE 1-4:  
Seeing the effect 

of i on y.
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Manipulating Categorical Variables
In data science, a categorical variable is one that has a specific value from a limited 
selection of values. The number of values is usually fixed. Many developers know 
categorical variables by the moniker enumerations. Each of the potential values 
that a categorical variable can assume is a level.

To understand how categorical variables work, say that you have a variable 
expressing the color of an object, such as a car, and that the user can select blue, 
red, or green. To express the car’s color in a way that computers can represent and 
effectively compute, an application assigns each color a numeric value, so blue is 
1, red is 2, and green is 3. Normally when you print each color, you see the value 
rather than the color.

If you use pandas.DataFrame (https://pandas.pydata.org/pandas-docs/ 
stable/reference/api/pandas.DataFrame.html), you can still see the symbolic 
value (blue, red, and green), even though the computer stores it as a numeric 
value. Sometimes you need to rename and combine these named values to create 
new symbols. Symbolic variables are just a convenient way of representing and 
storing qualitative data.

CHECKING YOUR VERSION OF PANDAS
The categorical variable examples in this section depend on your having a minimum 
version of pandas 0.23.0 installed on your system. However, your version of Anaconda 
may have a previous pandas version installed instead. Use the following code to check 
your version of pandas:

import pandas as pd
print(pd.__version__)

You see the version number of pandas you have installed. Another way to check the 
version is to open the Anaconda Prompt, type pip show pandas, and press Enter. 
If you have an older version, open the Anaconda Prompt, type pip install pandas 
--upgrade, and press Enter. The update process will occur automatically, along with a 
check of associated packages. When working with Windows, you may need to open the 
Anaconda prompt using the Administrator option. (Right-click the Anaconda prompt 
entry in the Start menu and choose Run as Administrator from the context menu.)

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
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When using categorical variables for data science, you need to consider the algorithm 
used to manipulate the variables. Some algorithms, such as trees and ensembles 
of three, can work directly with the numeric variables behind the symbols. Other 
 algorithms, such as linear and logistic regression and SVM, require that you encode 
the categorical values into binary variables. For example, if you have three levels 
for a color variable (blue, red, and green), you have to create three binary variables:

 » One for blue (1 when the value is blue; 0 when it is not)

 » One for red (1 when the value is red; 0 when it is not)

 » One for green (1 when the value is green; 0 when it is not)

Creating categorical variables
Categorical variables have a specific number of values, which makes them 
 incredibly valuable in performing a number of data science tasks. For exam-
ple, imagine trying to find values that are out of range in a huge dataset. In this 
 example, you see one method for creating a categorical variable and then using it 
to check whether some data falls within the specified limits:

import pandas as pd
 
car_colors = pd.Series(['Blue', 'Red', 'Green'],
                       dtype='category')
 
car_data = pd.Series(
    pd.Categorical(
        ['Yellow', 'Green', 'Red', 'Blue', 'Purple'],
                   categories=car_colors, ordered=False))
 
find_entries = pd.isnull(car_data)
 
print(car_colors)
print()
print(car_data)
print()
print(find_entries[find_entries == True])

The example begins by creating a categorical variable, car_colors. The variable 
contains the values Blue, Red, and Green as colors that are acceptable for a car. 
Note that you must specify a dtype property value of category.

The next step is to create another series. This one uses a list of actual car colors, 
named car_data, as input. Not all the car colors match the predefined acceptable 
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values. When this problem occurs, pandas outputs Not a Number (NaN) instead of 
the car color.

Of course, you could search the list manually for the nonconforming cars, but the 
easiest method is to have pandas do the work for you. In this case, you ask pandas 
which entries are null using isnull() and place them in find_entries. You can 
then output just those entries that are actually null. Here’s the output you see 
from the example:

0     Blue
1      Red
2    Green
dtype: category
Categories (3, object): [Blue, Green, Red]
 
0      NaN
1    Green
2      Red
3     Blue
4      NaN
dtype: category
Categories (3, object): [Blue, Green, Red]
 
0    True
4    True
dtype: bool

Looking at the list of car_data outputs, you can see that entries 0 and 4 equal 
NaN. The output from find_entries verifies this fact for you. If this were a large 
dataset, you could quickly locate and correct errant entries in the dataset before 
performing an analysis on it.

Renaming levels
Sometimes, the naming of the categories you use is inconvenient or otherwise 
wrong for a particular need. Fortunately, you can rename the categories as needed 
using the technique shown in the following example:

import pandas as pd
 
car_colors = pd.Series(['Blue', 'Red', 'Green'],
                       dtype='category')
car_data = pd.Series(
    pd.Categorical(
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        ['Blue', 'Green', 'Red', 'Blue', 'Red'],
        categories=car_colors, ordered=False))
 
car_colors.cat.categories = ["Purple", "Yellow", "Mauve"]
car_data.cat.categories = car_colors
 
print(car_data)

All you really need to do is set the cat.categories property to a new value, as 
shown. Here is the output from this example:

0    Purple
1    Yellow
2     Mauve
3    Purple
4     Mauve
dtype: category
Categories (3, object): [Purple, Yellow, Mauve]

Combining levels
A particular categorical level might be too small to offer significant data for 
 analysis. Perhaps only a few of the values exist, which may not be enough to create 
a statistical difference. In this case, combining several small categories might offer 
better analysis results. The following example shows how to combine categories:

import pandas as pd
 
car_colors = pd.Series(['Blue', 'Red', 'Green'],
    dtype='category')
car_data = pd.Series(
    pd.Categorical(
       ['Blue', 'Green', 'Red', 'Green', 'Red', 'Green'],
       categories=car_colors, ordered=False))
 
car_data = car_data.cat.set_categories(
    ["Blue", "Red", "Green", "Blue_Red"])
print(car_data.loc[car_data.isin(['Red'])])
car_data.loc[car_data.isin(['Red'])] = 'Blue_Red'
car_data.loc[car_data.isin(['Blue'])] = 'Blue_Red'
 
car_data = car_data.cat.set_categories(
    ["Green", "Blue_Red"])



W
or

ki
ng

 w
it

h 
Li

ne
ar

 
Re

gr
es

si
on

CHAPTER 1  Working with Linear Regression      269

print()
print(car_data)

What this example shows you is that you have only one Blue item and only two 
Red items, but you have three Green items, which places Green in the  majority. 
Combining Blue and Red together is a two-step process. First, you add the   
Blue_Red category to car_data. Then you change the Red and Blue entries  
to Blue_Red, which creates the combined category. As a final step, you can remove 
the unneeded categories.

However, before you can change the Red entries to Blue_Red entries, you must 
find them. This is where a combination of calls to isin(), which locates the Red 
entries, and loc[], which obtains their index, provides precisely what you need. 
The first print statement shows the result of using this combination. Here’s the 
output from this example.

2    Red
4    Red
dtype: category
Categories (4, object): [Blue, Red, Green, Blue_Red]
 
0    Blue_Red
1       Green
2    Blue_Red
3       Green
4    Blue_Red
5       Green
dtype: category
Categories (2, object): [Green, Blue_Red]

Notice that you now have three Blue_Red entries and three Green entries. The 
Blue and Red categories are no longer in use. The result is that the levels are now 
combined as expected.

Using Linear Regression to Guess Numbers
Regression has a long history in statistics, from building simple but effective 
linear models of economic, psychological, social, or political data, to hypothesis 
testing for understanding group differences, to modeling more complex  problems 
with ordinal values, binary and multiple classes, count data, and  hierarchical 
relationships. It’s also a common tool in data science, a Swiss Army knife of 
machine learning that you can use for every problem. Stripped of most of its 
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statistical properties, data science practitioners perceive linear regression as a 
simple, understandable, yet effective algorithm for estimations, and, in its logistic 
regression version, for classification as well.

Defining the family of linear models
As mentioned in the “Working through simple linear regression” section, earlier 
in this chapter, linear regression is a statistical model that defines the  relationship 
between a target variable and a set of predictive features (the columns in a table 
that define entries of the same type, such as grades and interruptions in the  earlier 
examples). It does so by using a formula of the following type:

y = a + bx

As shown in earlier examples, a (alpha) and b (beta coefficient) are estimated on 
the basis of the data, and they are found using the linear regression algorithm so 
that the difference between all the real y target values and all the y values derived 
from the linear regression formula are the minimum possible.

CONSIDERING SIMPLE AND COMPLEX
Simple and complex aren’t absolute terms in data science; their meaning is relative to the 
data problem you’re facing. Some algorithms are simple summations; others require 
complex calculations and data manipulations (and Python deals with both the simple 
and complex algorithms for you). The data makes the difference. As a good practice, 
test multiple models, starting with the basic ones. You may discover that a simple 
solution performs better in many cases. For example, you may want to keep things 
simple and use a linear model instead of a more sophisticated approach and get more 
solid results. This is in essence what is implied by the “no free lunch” theorem: No one 
approach suits all problems, and even the most simple solution may hold the key to 
solving an important problem.

The “no free lunch” theorem by David Wolpert and William Macready states that “any 
two optimization algorithms are equivalent when their performance is averaged across 
all possible problems.” If the algorithms are equivalent in the abstract, no one is supe-
rior to the other unless proved in a specific, practical problem. See the discussion at 
http://www.no-free-lunch.org/ for more details about no-free-lunch theorems; 
two of them are actually used for machine learning.

http://www.no-free-lunch.org/
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You can express this relationship graphically as the sum of the square of all the 
vertical distances between all the data points and the regression line. Such a sum 
is always the minimum possible when you calculate the regression line correctly 
using an estimation called ordinary least squares, which is derived from statistics 
or the equivalent gradient descent, a machine learning method. The differences 
between the real y values and the regression line (the predicted y values) are 
defined as residuals (because they are what are left after a regression: the errors). 
The following code shows how to display the residuals:

import seaborn
 
x = range(0,9)
y = (15, 33, 41, 69, 59, 40, 78, 86, 98)
 
plt.scatter(x, y, color='purple', marker='*')
plt.grid()
 
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
 
plt.plot(x, p(x), 'g-')
 
seaborn.residplot(np.array(x), np.array(y), color='red')
plt.show()

The Seaborn package (https://seaborn.pydata.org/) provides some visualiza-
tions not found in other packages, including the ability to calculate and display 
the residuals. The actual linear regression looks much like the one earlier in the 
 chapter, with just a few changes to the data values to make the errors more prom-
inent. Figure  1-5 shows the output with the original data as purple stars, the 
regression as a green line, and the residuals as red dots.

Using more variables in a larger dataset
The “Advancing to multiple linear regression” section, earlier in this chapter, 
provides a simple demonstration of multiple linear regression with an  incredibly 
small dataset. The problem is that if the dataset is as small as that one, the  practical 
value of performing an analysis is extremely limited. This section moves on to a 
larger dataset, one that still isn’t the size of what you see in the real world, but 
that’s large enough to make analysis worthwhile. The following sections  consider 
issues that the previous parts of the chapter haven’t.

https://seaborn.pydata.org/
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Using the Boston dataset
When you have many variables, their scale isn’t important in creating precise 
 linear regression predictions. But a good habit is to standardize x because the scale 
of the variables is quite important for some variants of regression (that you see 
later on) and it’s insightful for your understanding of data to compare  coefficients 
according to their impact on y.

The following example relies on the Boston dataset from Scikit-learn. It tries to 
guess Boston housing prices using a linear regression. The example also tries  
to determine which variables influence the result more, so the example standard-
izes the predictors (the features used to predict a particular outcome).

from sklearn.datasets import load_boston
from sklearn.preprocessing import scale
boston = load_boston()
X = scale(boston.data)
y = boston.target

The regression class in Scikit-learn is part of the linear_model module. To obtain 
a good regression, you need to make the various variables the same scale so 
that one independent variable doesn’t play a larger role than the others. Having 
 previously scaled the X variable using scale(), you have no other preparations or 
special parameters to decide when using this algorithm.

from sklearn.linear_model import LinearRegression
regression = LinearRegression(normalize=True)
regression.fit(X, y)

FIGURE 1-5:  
Using a residual 

plot to see errant 
data.
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You can find out more detail about the meaning of the variables present in the 
Boston dataset by issuing the following command: print(boston.DESCR). You 
see the output of this command in the downloadable source code.

Checking the fit using R2

The previous section contains code that fits a line to the data points. The  regression.
fit(X, y) call performs this task. The act of fitting creates a line or curve that best 
matches the data points provided by the data; you fit the line or curve to the data 
points in order to perform various tasks, such as predictions, based on the trends 
or patterns produced by the data. The fit of an analysis is important.

 » When the line follows the data points too closely, it’s overfitted.

 » When the line doesn’t follow the data points closely enough, it’s underfitted.

Overfitting and underfitting can cause your model to perform poorly and make 
inaccurate predictions, so knowing how well the model fits the data points is 
essential.

Now that the algorithm is fitted, you can use the score method to report the R2 
measure, which is a measure that ranges from 0 to 1 and points out how using 
a particular regression model is better in predicting y than using a simple mean 
would be. You can also see R2 as being the quantity of target information explained 
by the model (the same as the squared correlation), so getting near 1 means being 
able to explain most of the y variable using the model.

print(regression.score(X, y))

Here is the resulting score:

0.740607742865

In this case, R2 on the previously fitted data is about 0.74, a good result for a 
 simple model. You can interpret the R2 score as the percentage of information 
present in the target variable that has been explained by the model using the 
predictors. A score of 0.74, therefore, means that the model has fit the larger part 
of the information you wanted to predict and that only 26 percent of it remains 
unexplained.

Calculating R2 on the same set of data used for the training is considered reason-
able in statistics when using linear models. In data science and machine learning, 
it’s always the correct practice to test scores on data that has not been used for 
training. Algorithms of greater complexity can memorize the data better than they 
learn from it, but this statement can be also true sometimes for simpler models, 
such as linear regression.
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Considering the coefficients
To understand what drives the estimates in the multiple regression model, you have 
to look at the coefficients_ attribute, which is an array containing the regression 
beta coefficients (the b part of the y = a + bx equation). The coefficients are the 
numbers estimated by the linear regression model in order to effectively transform 
the input variables in the formula into the target y prediction. The zip function will 
generate an iterable of both attributes, and you can print it for reporting:

print([a + ':' + str(round(b, 2)) for a, b in zip(
    boston.feature_names, regression.coef_,)])

The reported variables and their rounded coefficients (b values, or slopes, as 
described in the “Defining the family of linear models” section, earlier in this 
chapter) are

 ['CRIM:-0.92', 'ZN:1.08', 'INDUS:0.14', 'CHAS:0.68',
 'NOX:-2.06', 'RM:2.67', 'AGE:0.02', 'DIS:-3.1',
 'RAD:2.66','TAX:-2.08', 'PTRATIO:-2.06', 'B:0.86',
 'LSTAT:-3.75']

DIS is the weighted distances to five employment centers. It shows the major 
absolute unit change. For example, in real estate, a house that’s too far from 
 people’s interests (such as work) lowers the value. As a contrast, AGE and INDUS, 
with both proportions describing building age and showing whether nonretail 
activities are available in the area, don’t influence the result as much because the 
absolute value of their beta coefficients is lower than DIS.

Understanding variable transformations
Linear models, such as linear and logistic regression, are actually linear 
 combinations that sum your features (weighted by learned coefficients) and 
 provide a simple but effective model. In most situations, they offer a good approx-
imation of the complex reality they represent. Even though they’re characterized 
by a high bias (deviations from expected values for any number of reasons), using 
a large number of observations can improve their coefficients and make them 
more competitive when compared to complex algorithms.

However, they can perform better when solving certain problems if you 
 pre- analyze the data using the Exploratory Data Analysis (EDA) approach. After 
performing the analysis, you can transform and enrich the existing features by

 » Linearizing the relationships between features and the target variable using 
transformations that increase their correlation and make their cloud of points 
in the scatterplot more similar to a line.
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 » Making variables interact by multiplying them so that you can better 
 represent their conjoint behavior.

 » Expanding the existing variables using the polynomial expansion in order to 
represent relationships more realistically. In a polynomial expansion, you 
create a more complex equation after multiplying variables together and after 
raising variables to higher powers. In this way, you can represent more 
complex curves with your equation, such as ideal point curves, when you have 
a peak in the variable representing a maximum, akin to a parabola.

Doing variable transformations
An example is the best way to explain the kind of transformations you can  successfully 
apply to data to improve a linear model. This example uses the Boston dataset, which 
originally had ten variables to explain the different housing prices in Boston dur-
ing the 1970s. The current dataset has twelve variables, along with a  target variable 
containing the median value of the houses. The following sections use this dataset to 
demonstrate how to perform certain linear regression-related tasks.

Considering the effect of ordering
The Boston dataset has implicit ordering. Fortunately, order doesn’t influence 
most algorithms because they learn the data as a whole. When an algorithm learns 
in a progressive manner, ordering can interfere with effective model building. By 
using seed (to create a consistent sequence of random numbers) and shuffle 
from the random package (to shuffle the index), you can reindex the dataset:

from sklearn.datasets import load_boston
import random
from random import shuffle
 
boston = load_boston()
random.seed(0) # Creates a replicable shuffling
new_index = list(range(boston.data.shape[0]))
shuffle(new_index) # shuffling the index
X, y = boston.data[new_index], boston.target[new_index]
print(X.shape, y.shape, boston.feature_names)

In the code, random.seed(0) creates a replicable shuffling operation, and 
shuffle(new_index) creates the new shuffled index used to reorder the data. After 
that, the code prints the X and y shapes as well as the list of dataset variable names:

(506, 13) (506,) ['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM'
 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'  'B' 'LSTAT']
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Storing the Boston database in a DataFrame
Converting the array of predictors and the target variable into a pandas DataFrame 
helps support the series of explorations and operations on data. Moreover, 
although Scikit-learn requires an ndarray as input, it will also accept DataFrame 
objects:

import pandas as pd
df = pd.DataFrame(X,columns=boston.feature_names)
df['target'] = y

Looking for transformations
The best way to spot possible transformations is by graphical exploration, and 
using a scatterplot can tell you a lot about two variables. You need to make the 
relationship between the predictors and the target outcome as linear as possible, 
so you should try various combinations, such as the following:

ax = df.plot(kind='scatter', x='LSTAT', y='target', c='b')

In Figure 1-6, you see a representation of the resulting scatterplot. Notice that you 
can approximate the cloud of points by using a curved line rather than a straight 
line. In particular, when LSTAT is around 5, the target seems to vary between 
values of 20 to 50. As LSTAT increases, the target decreases to 10, reducing the 
variation.

FIGURE 1-6:  
Nonlinear 

 relationship 
between variable 
LSTAT and target 

prices.
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Logarithmic transformation can help in such conditions. However, your values 
should range from zero to one, such as percentages, as demonstrated in this 
example. In other cases, other useful transformations for your x variable could 
include x**2, x**3, 1/x, 1/x**2, 1/x**3, and sqrt(x). The key is to try them and 
test the result. As for testing, you can use the following script as an example:

import numpy as np
from sklearn.feature_selection import f_regression
single_variable = df['LSTAT'].values.reshape(-1, 1)
F, pval = f_regression(single_variable, y)
print('F score for the original feature %.1f' % F)
F, pval = f_regression(np.log(single_variable),y)
print('F score for the transformed feature %.1f' % F)

The code prints the F score, a measure to evaluate how predictive a feature is 
in a machine learning problem, both the original and the transformed feature. 
The score for the transformed feature is a great improvement over the untrans-
formed one:

F score for the original feature 601.6
F score for the transformed feature 1000.2

The F score is useful for variable selection. You can also use it to assess the 
usefulness of a transformation because both f_regression and f_classif are 
themselves based on linear models, and are therefore sensitive to every effective 
transformation used to make variable relationships more linear.

Creating interactions between variables
In a linear combination, the model reacts to how a variable changes in an inde-
pendent way with respect to changes in the other variables. In statistics, this kind 
of model is a main effects model.

The Naïve Bayes classifier (discussed in Book 3, Chapter  3) makes a similar 
assumption for probabilities, and it also works well with complex text problems. 
The following sections discuss and demonstrate variable interactions.

Understanding the need to see interactions
Even though machine learning works by using approximations, and a set of 
 independent variables can make your predictions work well in most situations, 
sometimes you may miss an important part of the picture. You can easily catch 
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this problem by depicting the variation in your target associated with the conjoint 
variation of two or more variables in two simple and straightforward ways:

 » Existing domain knowledge of the problem: For instance, in the car market, 
having a noisy engine is a nuisance in a family car but considered a plus for 
sports cars (car aficionados want to hear that you have an ultra-cool and 
expensive car). By knowing a consumer preference, you can model a noise-
level variable and a car-type variable together to obtain exact predictions 
using a predictive analytic model that guesses the car’s value based on 
its features.

 » Testing combinations of different variables: By performing group tests, 
you can see the effect that certain variables have on your target variable. 
Therefore, even without knowing about noisy engines and sports cars, you 
can catch a different average of preference level when analyzing your dataset 
split by type of cars and noise level.

Detecting interactions
The following example shows how to test and detect interactions in the Boston 
dataset. The first task is to load a few helper classes, as shown here:

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score, KFold
regression = LinearRegression(normalize=True)
crossvalidation = KFold(n_splits=10, shuffle=True,
                        random_state=1)

The code reinitializes the pandas DataFrame using only the predictor variables. 
A for loop matches the different predictors and creates a new variable contain-
ing each interaction. The mathematical formulation of an interaction is simply a 
multiplication:

df = pd.DataFrame(X,columns=boston.feature_names)
baseline = np.mean(cross_val_score(regression, df, y,
                                   scoring='r2',
                                   cv=crossvalidation))
interactions = list()
for var_A in boston.feature_names:
    for var_B in boston.feature_names:
        if var_A > var_B:
            df['interaction'] = df[var_A] * df[var_B]
            cv = cross_val_score(regression, df, y,
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                                 scoring='r2',
                                 cv=crossvalidation)
            score = round(np.mean(cv), 3)
            if score > baseline:
                interactions.append((var_A, var_B, score))
print('Baseline R2: %.3f' % baseline)
print('Top 10 interactions: %s' % sorted(interactions,
                                    key=lambda x :x[2],
                                    reverse=True)[:10])

The code starts by printing the baseline R2 score for the regression; then it reports 
the top ten interactions whose addition to the mode increase the score:

Baseline R2: 0.716
Top 10 interactions: [('RM', 'LSTAT', 0.79),
('TAX', 'RM', 0.782), ('RM', 'RAD', 0.778),
('RM', 'PTRATIO', 0.766), ('RM', 'INDUS', 0.76),
('RM', 'NOX', 0.747), ('RM', 'AGE', 0.742),
('RM', 'B', 0.738), ('RM', 'DIS', 0.736),
('ZN', 'RM', 0.73)]

The code tests the specific addition of each interaction to the model using a 10 
folds cross-validation. The code records the change in the R2 measure into a stack 
(a simple list) that an application can order and explore later.

The baseline score is 0.699, so a reported improvement of the stack of interac-
tions to 0.782 looks quite impressive. Knowing how this improvement is made 
possible is important. The two variables involved are RM (the average number of 
rooms) and LSTAT (the percentage of lower-status population). A plot will disclose 
the case about these two variables:

colors = ['b' if v > np.mean(y) else 'r' for v in y]
scatter = df.plot(kind='scatter', x='RM', y='LSTAT',
                  c=colors)

The scatterplot in Figure  1-7 clarifies the improvement. In a portion of houses  
at the center of the plot, you need to know both LSTAT and RM to correctly sepa-
rate the high-value houses from the low-value houses; therefore, an interaction 
is indispensable in this case.
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Putting the interaction data to use
Adding interactions and transformed variables leads to an extended linear regression 
model, a polynomial regression. Data scientists rely on testing and experimenting to 
validate an approach to solving a problem, so the following code slightly modifies the 
previous code to redefine the set of predictors using interactions and quadratic terms 
by squaring the variables:

polyX = pd.DataFrame(X,columns=boston.feature_names)
cv = cross_val_score(regression, polyX, y,
                     scoring='neg_mean_squared_error',
                     cv=crossvalidation)
baseline = np.mean(cv)
improvements = [baseline]
for var_A in boston.feature_names:
    polyX[var_A+'^2'] = polyX[var_A]**2
    cv = cross_val_score(regression, polyX, y,
                         scoring='neg_mean_squared_error',
                         cv=crossvalidation)
    improvements.append(np.mean(cv))
    for var_B in boston.feature_names:
        if var_A > var_B:
            poly_var = var_A + '*' + var_B
            polyX[poly_var] = polyX[var_A] * polyX[var_B]
            cv = cross_val_score(regression, polyX, y,
                         scoring='neg_mean_squared_error',
                         cv=crossvalidation)
            improvements.append(np.mean(cv))
import matplotlib.pyplot as plt
plt.figure()

FIGURE 1-7:  
Combined 

variables LSTAT 
and RM help to 

 separate high 
from low prices.
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plt.plot(range(0,92),np.abs(improvements),'-')
plt.xlabel('Added polynomial features')
plt.ylabel('Mean squared error')
plt.show()

To track improvements as the code adds new, complex terms, the example places 
values in the improvements list. Figure 1-8 shows a graph of the results that dem-
onstrates that some additions are great because the squared error decreases, and 
other additions are terrible because they increase the error instead.

Of course, instead of unconditionally adding all the generated variables, you could 
perform an ongoing test before deciding to add a quadratic term or an interac-
tion, checking by cross-validation to see whether each addition is really useful for 
your predictive purposes. This example is a good foundation for checking other 
ways of controlling the existing complexity of your datasets or the complexity 
that you have to induce with transformation and feature creation in the course of 
data exploration efforts. Before moving on, you check both the shape of the actual 
dataset and its cross-validated mean squared error:

print('New shape of X:', np.shape(polyX))
crossvalidation = KFold(n_splits=10, shuffle=True,
                        random_state=1)
cv = cross_val_score(regression, polyX, y,
                     scoring='neg_mean_squared_error',
                     cv=crossvalidation)
print('Mean squared error: %.3f' % abs(np.mean(cv)))

FIGURE 1-8:  
Adding 

polynomial 
features 

increases the 
predictive power.
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Even though the mean squared error is good, the ratio between 506 observations 
and 104 features isn’t all that good because the number of observations may not 
be enough for a correct estimate of the coefficients.

New shape of X: (506, 104)
Mean squared error: 12.514

As a rule of thumb, divide the number of observations by the number of coef-
ficients. The code should have at least 10 to 20 observations for every coefficient 
you want to estimate in linear models. However, experience shows that having at 
least 30 of them is better.

Understanding limitations and problems
Although linear regression is a simple yet effective estimation tool, it has quite a 
few problems. The problems can reduce the benefit of using linear regressions in 
some cases, but it really depends on the data. You determine whether any prob-
lems exist by employing the method and testing its efficacy. Unless you work hard 
on data, you may encounter these limitations:

 » Linear regression can model only quantitative data. When modeling catego-
ries as response, you need to modify the data into a logistic regression.

 » If data is missing and you don’t deal with it properly, the model stops working. 
You need to impute the missing values or, using the value of zero for the 
variable, create an additional binary variable pointing out that a value is 
missing.

 » Outliers are quite disruptive for a linear regression because linear regression 
tries to minimize the square value of the residuals, and outliers have big 
residuals, forcing the algorithm to focus more on them than on the mass of 
regular points.

 » The relation between the target and each predictor variable is based on a 
single coefficient; no automatic way exists to represent complex relations like 
a parabola (there is a unique value of x maximizing y) or exponential growth. 
The only way you can manage to model such relations is to use mathematical 
transformations of x (and sometimes y) or add new variables.

 » The greatest limitation is that linear regression provides a summation of 
terms, which can vary independently of each other. It’s hard to figure out how 
to represent the effect of certain variables that affect the result in very 
different ways according to their value. A solution is to create interaction terms, 
that is, to multiply two or more variables to create a new variable; however, 
doing so requires that you know what variables to multiply and that you 
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create the new variable before running the linear regression. In short, you 
can’t easily represent complex situations with your data, just simple ones.

Learning One Example at a Time
Finding the right coefficients for a linear model is just a matter of time and mem-
ory. However, sometimes a system won’t have enough memory to store a huge 
dataset. In this case, you must resort to other means, such as learning from one 
example at a time rather than having all of them loaded into memory. The fol-
lowing sections demonstrate the one-example-at-a-time approach to learning.

Using Gradient Descent
The gradient descent finds the right way to minimize the cost function one itera-
tion at a time. After each step, it checks all the model’s summed errors and updates 
the coefficients to make the error even smaller during the next data iteration. The 
efficiency of this approach derives from considering all the examples in the sam-
ple. The drawback of this approach is that you must load all the data into memory.

Unfortunately, you can’t always store all the data in memory because some  datasets 
are huge. In addition, learning using simple learners requires large amounts of 
data to build effective models (more data helps to correctly disambiguate multicol-
linearity). Getting and storing chunks of data on your hard disk is always possible, 
but it’s not feasible because of the need to perform matrix multiplication, which 
requires data swapping from disk to select rows and columns. Scientists who have 
worked on the problem have found an effective solution. Instead of learning from 
all the data after having seen it all (which is called an iteration), the algorithm 
learns from one example at a time, as picked from storage using sequential access, 
and then goes on to learn from the next example. When the algorithm has learned 
all the examples, it starts from the beginning unless it meets some stopping cri-
terion (such as completing a predefined number of iterations).

Implementing Stochastic Gradient Descent
When you have too much data, you can use the Stochastic Gradient Descent 
Regressor (SGDRegressor) or Stochastic Gradient Descent Classifier (SGDClassi-
fier) as a linear predictor. The only difference with other methods described ear-
lier in the chapter is that they actually optimize their coefficients using only one 
observation at a time. It therefore takes more iterations before the code reaches 
comparable results using a simple or multiple regression, but it requires much 
less memory and time.
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The increase in efficiency occurs because both predictors rely on  Stochastic 
 Gradient Descent (SGD) optimization  — a kind of optimization in which the 
parameter adjustment occurs after the input of every observation, leading to a 
longer and a bit more erratic journey toward minimizing the error function. Of 
course, optimizing based on single observations, and not on huge data matrices, 
can have a tremendous beneficial impact on the algorithm’s training time and the 
amount of memory resources.

Using the fit() method
When using SGDs, you’ll always have to deal with chunks of data unless you can 
stretch all the training data into memory. To make the training effective, you 
should standardize by having the StandardScaler infer the mean and standard 
deviation from the first available data. The mean and standard deviation of the 
entire dataset is most likely different, but the transformation by an initial esti-
mate will suffice to develop a working learning procedure:

from sklearn.linear_model import SGDRegressor
from sklearn.preprocessing import StandardScaler
 
SGD = SGDRegressor(loss='squared_loss',
                   penalty='l2',
                   alpha=0.0001,
                   l1_ratio=0.15,
                   max_iter=2000,
                   random_state=1)
scaling = StandardScaler()
scaling.fit(polyX)
scaled_X = scaling.transform(polyX)

DETERMINING WHEN YOU HAVE TOO 
MUCH DATA
Up to this point, the book has dealt with small example databases. Real data, apart from 
being messy, can also be quite big — sometimes so big that it can’t fit in memory, no 
matter what the memory specifications of your machine are. In a data science project, 
data can be deemed big when one of these two situations occur:

• It can’t fit in the available computer memory.

• Even if the system has enough memory to hold the data, the application can’t elab-
orate the data using machine learning algorithms in a reasonable amount of time.
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cv = cross_val_score(SGD, scaled_X, y,
         scoring='neg_mean_squared_error',
         cv=crossvalidation)
score = abs(np.mean(cv))
print('CV MSE: %.3f' % score)

The resulting mean squared error after running the SGDRegressor is

CV MSE: 12.179

Using the partial_fit() method
In the preceding example, you used the fit method, which requires that you 
 preload all the training data into memory. You can train the model in successive 
steps by using the partial_fit method instead, which runs a single iteration on 
the provided data and then keeps it in memory and adjusts it when receiving new 
data. This time, the code uses a higher number of iterations:

from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
 
X_tr, X_t, y_tr, y_t = train_test_split(scaled_X, y,
                                        test_size=0.20,
                                        random_state=2)
SGD = SGDRegressor(loss='squared_loss',
                   penalty='l2',
                   alpha=0.0001,
                   l1_ratio=0.15,
                   max_iter=2000,
                   random_state=1)
improvements = list()
for z in range(10000):
    SGD.partial_fit(X_tr, y_tr)
    score = mean_squared_error(y_t, SGD.predict(X_t))
    improvements.append(score)

Having kept track of the algorithm’s partial improvements during 10000 iterations 
over the same data, you can produce a graph and understand how the improve-
ments work, as shown in the following code. Note that you could have used dif-
ferent data at each step.

import matplotlib.pyplot as plt
plt.figure(figsize=(8, 4))
plt.subplot(1,2,1)
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range_1 = range(1,101,10)
score_1 = np.abs(improvements[:100:10])
plt.plot(range_1, score_1,'o--')
plt.xlabel('Iterations up to 100')
plt.ylabel('Test mean squared error')
plt.subplot(1,2,2)
range_2 = range(100,10000,500)
score_2 = np.abs(improvements[100:10000:500])
plt.plot(range_2, score_2,'o--')
plt.xlabel('Iterations from 101 to 5000')
plt.show()

As shown in the first of the two panes in Figure 1-9, the algorithm initially starts 
with a high error rate, but it manages to reduce it in just a few iterations, usu-
ally 5–10. After that, the error rate slowly improves by a smaller amount at each 
 iteration. In the second pane, you can see that after 1,500 iterations, the error rate 
reaches a minimum and starts increasing. At that point, you’re starting to overfit 
because data already understands the rules and you’re actually forcing the SGD 
to learn more when nothing is left in the data other than noise. Consequently, it 
starts learning noise and erratic rules.

Unless you’re working with all the data in memory, grid-searching and cross-
validating the best number of iterations will be difficult. A good trick is to keep a 
chunk of training data to use for validation apart in memory or storage. By check-
ing your performance on that untouched part, you can see when SGD learning 
performance starts decreasing. At that point, you can interrupt data iteration (a 
method known as early stopping).

FIGURE 1-9:  
A slow descent 

optimizing 
squared error.



W
or

ki
ng

 w
it

h 
Li

ne
ar

 
Re

gr
es

si
on

CHAPTER 1  Working with Linear Regression      287

Considering the effects of regularization
Regularization is the act of applying a penalty to certain coefficients to ensure that 
they don’t cause overfitting or underfitting. When using the SGDs, apart from dif-
ferent cost functions that you have to test for their performance, you can also try 
using regularizations like the following to obtain better predictions:

 » L1 (Lasso): This form of regularization adds a penalty equal to the sum of the 
absolute value of the coefficients. This form of regularization can shrink some 
of the coefficients to zero, which means that they don’t contribute toward the 
model. Look at this form of regularization as a kind of input data (feature) 
selection.

 » L2 (Ridge): This form of regularization adds a penalty equal to the sum of the 
squared value of the coefficients. Unlike L1, none of the features will shrink to 
zero in this case. You use this form of regularization when you want to be sure 
that all the features play a role in creating the model, but also that all the 
features have the same opportunity to influence the model.

 » Elasticnet: This is a combination of L1 and L2. You use it when you want to 
ensure that important features have a little more say in the resulting model, 
but that all the features have at least a little say.

To use these regularizations, you set the penalty parameter and the corresponding 
controlling alpha and l1_ratio parameters. Some of the SGDs are more resist-
ant to outliers, such as modified_huber for classification or huber for regression.

SGD is sensitive to the scale of variables, and that’s not just because of regular-
ization but is also because of the way it works internally. Consequently, you must 
always standardize your features (for instance, by using StandardScaler) or you 
force them in the range [0,+1] or [-1,+1]. Failing to do so will lead to poor 
results.
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Moving Forward with 
Logistic Regression

Linear regression, as described in the previous chapter, has limits. It helps you 
find only certain kinds of equations based on you data. To move forward in 
your ability to analyze data, you need logistic regression because it can help 

you model data with greater complexity. Of course, the modeling process itself is 
more complex as a result. The first part of this chapter helps you understand the 
origins of logistic regression and consider how it differs from linear regression so 
that you know which kind of regression to apply to particular datasets.

The second part of this chapter considers two uses for logistic regression: guess-
ing the class of a particular object and the probability of something like an event. 
You find that these two uses are actually two sides of the same coin, in a way. In 
some respects, it comes down to how you view the analysis you perform and how 
you employ it against new data.

Even though a single chapter can’t possibly exhaust the topic of logistic regres-
sion, the third part of the chapter takes you a little deeper by exploring multiclass 
logistic regression. Instead of simply telling you that an object is of one class or 
another, multiclass logistic regression can help you determine which of multiple 
classes reflects the nature of an object.

Chapter 2

IN THIS CHAPTER

 » Considering the uses for logistic 
regression

 » Using logistic regression to guess 
classes

 » Using logistic regression to calculate 
probabilities

 » Employing multiclass logistic 
regression
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You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears in 
the DSPD_0302_Logistic_Regression.ipynb source code file for Python and the 
DSPD_R_0302_Logistic_Regression.ipynb source code file for R. See the Intro-
duction for details on how to find these source files.

Considering the History  
of Logistic Regression

Some kinds of data don’t neatly fit in a straight line. In the previous chapter of 
this minibook, you read about the history of linear regression, which is also the 
start of the history for logistic regression. In that history, you discover that data 
represents the answer to a question that comes in the form of an equation, and 
that linear regression helps you locate the question, the equation, itself. You’re 
still looking for an equation with logistic regression, but now you’re looking for a 
more flexible equation, one that can handle data that doesn’t express itself in the 
form of a straight line.

The original use for logistic regression was determining population growth. In 
1789, Thomas Robert Malthus published a book entitled An Essay on the Principle 
of Population, in which he postulated that uncontained human population growth 
would represent a geometric progression. More than 200 years later, this principle 
is still used in many settings for things like economic analysis (see the article 
at https://www.intelligenteconomist.com/malthusian-theory/ for details). 
However, the key word here is uncontained. Population growth is seldom left to 
itself, without outside influence. The result would be impossibly high numbers 
that could never model how population growth actually works over the long term.

Consequently, in a series of three papers from 1838 to 1847, Pierre François Ver-
hulst, under guidance from his mentor Adolphe Quetelet, created a better model 
to describe population growth using the logistic function. Some contention exists 
as to where the name logistic comes from, but it apparently strives to create a 
contrast with a logarithmic function. When working with a logistic function, the 
curve follows these steps:

1. The curve begins with exponential growth because the object being modeled 
has both unlimited resources and unlimited area in which to grow.

2. As saturation of the environment and depletion of resources occurs, growth 
takes on a linear form.

3. At maturity, when there is little room to grow and fewer resources to use, 
growth tends toward stopping and possibly does stop.

https://www.intelligenteconomist.com/malthusian-theory/


M
ov

in
g 

Fo
rw

ar
d 

w
it

h 
Lo

gi
st

ic
 R

eg
re

ss
io

n

CHAPTER 2  Moving Forward with Logistic Regression      291

The logistic function model didn’t happen in a vacuum. Verhulst modeled it on 
French, Belgian, Essex, and Russian population growth. In other words, he started 
with the data and created an equation to act as a question for the data.

Oddly enough, the logistic function didn’t take off immediately; instead, it lan-
guished until someone else discovered a need for it. In 1920, Raymond Pearl (who 
had just been appointed Director of Biometry and Vital Statistics at Johns Hopkins 
University) and Lowell J. Reed published a paper on the food needs of a growing 
population, entitled On the Rate of Growth of the Population of the United States since 1790 
and Its Mathematical Representation. This is actually just the first of a whole series 
of papers that would investigate issues like longevity, fertility, contraception, and 
the effects of smoking and alcohol. The history of the logistic function and logistic 
regression associated with it is long and complex, but you can find a relatively com-
plete treatment of the topic at https://papers.tinbergen.nl/02119.pdf.

Differentiating between Linear  
and Logistic Regression

Both linear and logistic regression see a lot of use in data science but are com-
monly used for different kinds of problems. You need to know and understand 
both types of regression to perform a full range of data science tasks. Of the two, 
logistic regression is harder to understand in many respects because it necessar-
ily uses a more complex equation model. The following sections give you a basic 
overview of how linear and logistic regression differ so that you can better under-
stand the information in the rest of the chapter.

Considering the model
Any discussion of the difference between linear and logistic regression must 
start with the underlying equation model. The equation for linear regression is 
straightforward, as discussed in Book 3, Chapter 1:

y = a + bx

You may see this equation in other forms and you may see it called ordinary least-
squares regression, but the essential concept is always the same. Depending on 
the source you use, some of the equations used to express logistic regression can 
become downright terrifying unless you’re a math major. However, the start of 
this discussion can use one of the simplest views of logistic regression:

p = f(a + bx)

https://papers.tinbergen.nl/02119.pdf
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This equation model says that the probability of an occurrence, p, is equal to the 
logistic function, f, applied to two model parameters, a and b, and one explana-
tory variable, x. When you look at this particular model, you see that it really isn’t 
all that different from the linear regression model, except that you now feed the 
result of the linear regression through the logistic function to obtain the required 
curve. The output (dependent variable) is a probability ranging from 0 (not going 
to happen) to 1 (definitely will happen), or a categorization that says something is 
either part of the category or not part of the category. (You can also perform mul-
ticlass categorization, as described later in this chapter, but focus on the binary 
response for now.) The best way to view the difference between linear regression 
output and logistic regression output is to say the following:

 » Linear regression is continuous. A continuous value can take any value 
within a specified interval (range) of values. For example, no matter how 
closely the height of two individuals matches, you can always find someone 
whose height fits between those two individuals. Examples of continuous 
values include:

• Height

• Weight

• Waist size

 » Logistic regression is discrete. A discrete value has specific values that it can 
assume. For example, a hospital can admit only a specific number of patients 
in a given day. You can’t admit half a patient (at least, not alive). Examples of 
discrete values include:

• Number of people at the fair

• Number of jellybeans in the jar

• Colors of automobiles produced by a vendor

Defining the logistic function
Of course, now you need to know about the logistic function. You can find a variety 
of forms of this function as well, but here’s the easiest one to understand:

f(x) = ex / ex + 1

You already know about f, which is the logistic function, and x equals the  
algorithm you want to use, which is a + bx in this case. That leaves e, which is  
the natural logarithm and has an irrational value of 2.718, for the sake of  
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discussion (you can see a better approximation of the whole value at https://
www.intmath.com/exponential-logarithmic-functions/5-logs-base-e-ln.
php). Another way you see this function expressed is

f(x) = 1 / (1 + e-x)

Both forms are correct, but the first form is easier to use. Consider a simple prob-
lem in which a, the y-intercept, is 0, and b, the slope, is 1. The example uses  
x values from –6 to 6. Consequently, the first f(x) value would look like this when 
calculated (all values are rounded):

(1) e-6 / (1 + e-6)
(2) 0.00248 / 1 + 0.00248
(3) 0.002474

As you might expect, an x value of 0 would result in an f(x) value of 0.5, and an x 
value of 6 would result in an f(x) value of 0.9975. Obviously, a linear regression 
would show different results for precisely the same x values. If you calculate and 
plot all the results from both logistic and linear regression using the following 
code, you receive a plot like the one shown in Figure 2-1.

import matplotlib.pyplot as plt
%matplotlib inline
from math import exp
 
x_values = range(-6, 7)
lin_values = [(0 + 1*x) / 13 for x in range(0, 13)]
log_values = [exp(0 + 1*x) / (1 + exp(0 + 1*x))
              for x in x_values]
 
plt.plot(x_values, lin_values, 'b-^')
plt.plot(x_values, log_values, 'g-*')
plt.legend(['Linear', 'Logistic'])
plt.show()

This example relies on list comprehension (https://www.pythonforbeginners.
com/basics/list-comprehensions-in-python) to calculate the values because 
it makes the calculations clearer. The linear regression uses a different numeric 
range because you must normalize the values to appear in the 0 to 1 range for 
comparison. This is also why you divide the calculated values by 13. The exp(x) 
call used for the logistic regression raises e to the power of x, ex, as needed for the 
logistic function.

https://www.intmath.com/exponential-logarithmic-functions/5-logs-base-e-ln.php
https://www.intmath.com/exponential-logarithmic-functions/5-logs-base-e-ln.php
https://www.intmath.com/exponential-logarithmic-functions/5-logs-base-e-ln.php
https://www.pythonforbeginners.com/basics/list-comprehensions-in-python
https://www.pythonforbeginners.com/basics/list-comprehensions-in-python
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The model discussed here is simplified, and some math majors out there are prob-
ably throwing a temper tantrum of the most profound proportions right now. The 
Python or R package you use will actually take care of the math in the background, 
so really, what you need to know is how the math works at a basic level so that you 
can understand how to use the packages. This section provides what you need to 
use the packages. However, if you insist on carrying out the calculations the old 
way, chalk to chalkboard, you’ll likely need a lot more information.

Understanding the problems that  
logistic regression solves
You can separate logistic regression into several categories. The first is simple 
logistic regression, in which you have one dependent variable and one indepen-
dent variable, much as you see in simple linear regression. However, because of 
how you calculate the logistic regression, you can expect only two kinds of output:

 » Classification: Decides between two available outcomes, such as male or 
female, yes or no, or high or low. The outcome is dependent on which side of 
the line a particular data point falls.

 » Probability: Determines the probability that something is true or false. The 
values true and false can have specific meanings. For example, you might 
want to know the probability that a particular apple will be yellow or red 
based on the presence of yellow and red apples in a bin.

FIGURE 2-1:  
Contrasting 

linear to logistic 
regression.
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Fitting the curve
As part of understanding the difference between linear and logistic regression, 
consider the grade prediction problem from the previous chapter, which lends 
itself well to linear regression. In the following code, you see the effect of trying 
to use logistic regression with that data:

x1 = range(0,9)
y1 = (0.25, 0.33, 0.41, 0.53, 0.59,
      0.70, 0.78, 0.86, 0.98)
plt.scatter(x1, y1, c='r')
 
lin_values = [0.242 + 0.0933*x for x in x1]
log_values = [exp(0.242 + .9033*x) /
              (1 + exp(0.242 + .9033*x))
              for x in range(-4, 5)]
 
plt.plot(x1, lin_values, 'b-^')
plt.plot(x1, log_values, 'g-*')
plt.legend(['Linear', 'Logistic', 'Org Data'])
plt.show()

The example has undergone a few changes to make it easier to see precisely 
what is happening. It relies on the same data that was converted from questions 
answered correctly on the exam to a percentage. If you have 100 questions and you 
answer 25 of them correctly, you have answered 25 percent (0.25) of them cor-
rectly. Instead of performing the actual analysis, the code uses the equation found 
in the “Working through simple linear regression” section of Book 3, Chapter 1. 
The values are normalized to produce values between 0 and 1 percent. Figure 2-2 
shows the output of this experiment.

FIGURE 2-2:  
Considering  

the approach to 
fitting the data.
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As you can see from the figure, the linear regression follows the data points 
closely. The logistic regression doesn’t. However, logistic regression often is the 
correct choice when the data points naturally follow the logistic curve, which hap-
pens far more often than you might think. You must use the technique that fits 
your data best, which means using linear regression in this case.

Considering a pass/fail example
An essential point to remember is that logistic regression works best for probabil-
ity and classification. Consider that points on an exam ultimately predict passing 
or failing the course. If you get a certain percentage of the answers correct, you 
pass, but you fail otherwise. The following code considers the same data used for 
the example in the previous section, but converts it to a pass/fail list. When a stu-
dent gets at least 70 percent of the questions correct, success is assured.

y2 = [0 if x < 0.70 else 1 for x in y1]
plt.scatter(x1, y2, c='r')
 
lin_values = [0.242 + 0.0933*x for x in x1]
log_values = [exp(0.242 + .9033*x) /
              (1 + exp(0.242 + .9033*x))
              for x in range(-4, 5)]
 
plt.plot(x1, lin_values, 'b-^')
plt.plot(x1, log_values, 'g-*')
plt.legend(['Linear', 'Logistic', 'Org Data'])
plt.show()

This is an example of how you can use list comprehensions in Python to obtain a 
required dataset or data transformation. The list comprehension for y2 starts with 
the continuous data in y1 and turns it into discrete data. Note that the example 
uses precisely the same equations as before. All that has changed is the manner in 
which you view the data, as shown in Figure 2-3.

Because of the change in the data, linear regression is no longer the option to 
choose. Instead, you use logistic regression to fit the data. Take into account that 
this example really hasn’t done any sort of analysis to optimize the results. The 
logistic regression fits the data even better if you do so (as you see in the sections 
that follow).
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Using Logistic Regression to Guess Classes
As noted earlier in the chapter, linear regression is well suited for estimating val-
ues, but it isn’t the best tool for predicting the class of an observation. The previ-
ous sections focus on helping you understand the difference between linear and 
logistic regression. However, the examples use an exceptionally simple dataset to 
get the job done, which isn’t what you encounter in the real world. The following 
sections use a larger dataset to help you better understand the nuances of working 
with logistic regression. Even though this dataset is still smaller than real-world 
counterparts, it provides enough data for you to begin understanding how to use 
logistic regression in a real-world setting.

Applying logistic regression
Logistic regression is similar to linear regression, with the only difference being 
the y data, which should contain integer values indicating the class relative to 
the observation. Using the Iris dataset from the Scikit-learn datasets module, 
you can use the values 0, 1, and 2 to denote three classes that correspond to three 
species:

from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data[:-1,:]
y = iris.target[:-1]

FIGURE 2-3:  
Contrasting 

linear to logistic 
regression.
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To make the example easier to work with, leave a single value out so that later you 
can use this value to test the efficacy of the logistic regression model on it:

from sklearn.linear_model import LogisticRegression
logistic = LogisticRegression()
logistic.fit(X, y)
single_row_pred = logistic.predict(
    iris.data[-1, :].reshape(1, -1))
single_row_pred_proba = logistic.predict_proba(
    iris.data[-1, :].reshape(1, -1))
print ('Predicted class %s, real class %s'
       % (single_row_pred, iris.target[-1]))
print ('Probabilities for each class from 0 to 2: %s'
       % single_row_pred_proba)

The preceding code snippet outputs the following:

Predicted class [2], real class 2
Probabilities for each class from 0 to 2:
  [[ 0.00168787  0.28720074  0.71111138]]

In contrast to linear regression, logistic regression doesn’t just output the result-
ing class (in this case, the class 2) but also estimates the probability of the 
observation’s being part of all three classes. Based on the observation used for 
prediction, logistic regression estimates a probability of 71 percent of its being 
from class 2 — a high probability, but not a perfect score, therefore leaving a 
margin of uncertainty.

Using probabilities lets you guess the most probable class, but you can also order 
the predictions with respect to being part of that class. This is especially useful for 
medical purposes: Ranking a prediction in terms of likelihood with respect to others  
can reveal what patients are at most risk of getting or already having a disease.

Considering when classes are more
The problem considered in the previous section concerning logistic regression 
automatically handles a multiple class problem (it started with three iris species 
to guess). Most algorithms provided by Scikit-learn that predict probabilities or a 
score for class can automatically handle multiclass problems using two different 
strategies:

 » One-Versus-Rest (OVR): The algorithm compares every class with all the 
remaining classes, building a model for every class. If you have ten classes to 
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guess, you have ten models. This approach relies on the OneVsRestClassifier 
class from Scikit-learn. You might also see this strategy referred to as One- 
Versus-All (OVA).

 » One-Versus-One (OVO): The algorithm compares every class against every 
individual remaining class, building a number of models equivalent to n * 
(n-1) / 2, where n is the number of classes. If you have ten classes, you 
have 45 models, 10 * (10 - 1) / 2. This approach relies on the 
OneVsOneClassifier class from Scikit-learn.

In the case of logistic regression, the default multiclass strategy is the one versus 
the rest. The example in this section shows how to use both strategies with the 
handwritten digit dataset, containing a class for numbers from 0 to 9. The follow-
ing code loads the data and places it into variables:

from sklearn.datasets import load_digits
digits = load_digits()
train = range(0, 1700)
test = range(1700, len(digits.data))
X = digits.data[train]
y = digits.target[train]
tX = digits.data[test]
ty = digits.target[test]

The observations are actually a grid of pixel values. The grid’s dimensions are 
8 pixels by 8 pixels. To make the data easier to learn by machine learning algo-
rithms, the code aligns them into a list of 64 elements. The example reserves a 
part of the available examples for a test:

from sklearn.multiclass import OneVsRestClassifier
from sklearn.multiclass import OneVsOneClassifier
OVR = OneVsRestClassifier(LogisticRegression()).fit(X, y)
OVO = OneVsOneClassifier(LogisticRegression()).fit(X, y)
print('One vs rest accuracy: %.3f' % OVR.score(tX, ty))
print('One vs one accuracy: %.3f' % OVO.score(tX, ty))

The performances of the two multiclass strategies are

One vs rest accuracy: 0.938
One vs one accuracy: 0.969

The two multiclass classes OneVsRestClassifier and OneVsOneClassifier 
operate by incorporating the estimator (in this case, LogisticRegression). After 
incorporation, they usually work just like any other learning algorithm in Scikit-
learn. Interestingly, the one-versus-one strategy obtained the highest accuracy 
thanks to its high number of models in competition.
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Defining logistic regression performance
A logistic regression model will perform in a certain way. You split the data into 
two parts: training and testing. During training, the model will fine-tune the 
weights used to determine the classification or probability of like data. During 
testing, you verify the accuracy of the model. By using data from other datasets, 
you can further refine your estimation of the accuracy of the model in detect-
ing the class of a particular object or of determining the probability of an object 
belonging to a certain class. Accuracy determines three things:

 » The number of correct guesses, which includes both true positives (something 
is part of the class) and true negatives (something is not part of the class)

 » The number of false positives, with a guess saying that an object is part of a 
class, but it isn’t

 » The number of false negatives, with a guess saying that an object isn’t part of 
a class, but it really is

To determine the accuracy of a model, you divide the number of correct guesses by 
the total number of objects. For example, an application might say that 80 objects 
are part of the class, but only 70 of these objects actually are. It might also say 
that 20 objects aren’t part of the class, yet 30 of the objects actually are. The total 
number of objects is 100, so the accuracy is as follows: 70 true positives + 20 true 
negatives / 100 object total, or 90 percent.

However, you often see different measures used to define performance because 
accuracy is too inclusive. When you see the term precision, what it really means 
is the number of true positives divided by the number of total positives, and it 
doesn’t account for true negatives or false negatives. For example, if an applica-
tion says that 80 out of 100 objects are part of the class, yet it has guessed incor-
rectly in 10 of those cases, the precision is 70 true positives / 70 true positives + 10 
false positives, or 87.5 percent. What this measure really asks is how many of the 
selected items are relevant to the analysis.

You also see the term recall used, which is the measure of the relevance of the 
selected items. In this case, you begin with the number of true positives, which 
is 70 in the example, and divide it by a combination of the true positives and the 
false negatives. In this case, the recall is 70 / 70 + 0, or 100 percent. An inverse 
relationship exists between recall and precision; to get better recall, you must 
normally trade precision. (The article at https://towardsdatascience.com/ 
precision-vs-recall-386cf9f89488 describes the relationships between 
accuracy, precision, and recall.) The examples at https://www.kaggle.com/
pablovargas/comparing-logistic-regression-performance help you see how 
these three measures are used in real-world situations.

https://towardsdatascience.com/precision-vs-recall-386cf9f89488
https://towardsdatascience.com/precision-vs-recall-386cf9f89488
https://www.kaggle.com/pablovargas/comparing-logistic-regression-performance
https://www.kaggle.com/pablovargas/comparing-logistic-regression-performance


M
ov

in
g 

Fo
rw

ar
d 

w
it

h 
Lo

gi
st

ic
 R

eg
re

ss
io

n

CHAPTER 2  Moving Forward with Logistic Regression      301

Remember that you don’t ever get any form of analysis without cost. As you train 
with more examples and perform additional verification, the time required to cre-
ate a model and maintain it for changing conditions increases. At some point, your 
model becomes incredibly accurate, but the cost in time is so great that the answer 
you receive is no longer relevant. So, another indicator of performance is timeli-
ness; the task must proceed fast enough to ensure that the answer is still useful.

Switching to Probabilities
Up to now, the chapter has considered only regression models, which express 
numeric values as outputs from data learning. Most problems, however, also 
require classification. The following sections talk about how you can address both 
numeric and classification output.

Specifying a binary response
A solution to a problem involving a binary response (the model has to choose from 
between two possible classes) would be to code a response vector as a sequence 
of ones and zeros (or positive and negative values). The following Python code 
proves both the feasibility and limits of using a binary response:

import numpy as np
 
a = np.array([0, 0, 0, 0, 1, 1, 1, 1])
b = np.array([1, 2, 3, 4, 5, 6, 7, 8]).reshape(8,1)
from sklearn.linear_model import LinearRegression
regression = LinearRegression()
regression.fit(b,a)
print (regression.predict(b)>0.5)

When you run this code, you see the following output:

[False False False False  True  True  True  True]

In statistics, linear regression can’t solve classification problems because doing so 
would create a series of violated statistical assumptions. So, for statistics, using 
regression models for classification purposes is mainly a theoretical problem, not 
a practical one. When performing tasks such as deep learning, the problem with 
linear regression is that it serves as a linear function that’s trying to minimize 
prediction errors; therefore, depending on the slope of the computed line, it may 
not be able to solve the data problem.



302      BOOK 3  Manipulating Data Using Basic Algorithms

When a linear regression is given the task of predicting two values, such as 0 and 
+1, which represent two classes, it tries to compute a line that provides results 
close to the target values. In some cases, even though the results are precise, the 
output is too far from the target values, which forces the regression line to adjust 
in order to minimize the summed errors. The change results in fewer summed 
deviance errors but more misclassified cases.

Linear regression doesn’t produce acceptable results when the priority is clas-
sification accuracy, as shown in Figure 2-4 on the left. Therefore, it won’t work 
satisfactorily in many classification tasks. Linear regression works best on a con-
tinuum of numeric estimates. However, for classification tasks, you need a more 
suitable measure, such as the probability of class ownership.

Transforming numeric estimates  
into probabilities
The “Defining the logistic function” section, earlier in this chapter, describes how 
logistic regression differs from linear regression using the logistic function. In 
this function, the target is the probability that the response f(x = 1) will corre-
spond to the class 1. The letter x is the regression result, the sum of the variables 
weighted by their coefficients. The exponential function, exp(x), corresponds to 
Euler’s number e elevated to the power of x. A linear regression using this trans-
formation formula (also called a link function) for changing its results into prob-
abilities is a logistic regression.

Logistic regression (shown on the right in Figure  2-4) is the same as a linear 
regression except that the y data contains integer numbers indicating the class 
that’s relative to the observation. So, using the Boston dataset from the Scikit-
learn datasets module, you can try to guess what makes houses in an area overly 
expensive (median values >= 40). The first step is to load the Boston dataset, t as 
shown here:

FIGURE 2-4:  
Probabilities do 

not work as well 
with a straight 
line as they do 
with a sigmoid 

curve.
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from sklearn.datasets import load_boston
from sklearn.preprocessing import scale
boston = load_boston()
X, y = scale(boston.data), boston.target

Now that you have the dataset loaded, you can perform the analysis:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
 
binary_y = np.array(y >= 40).astype(int)
X_train, X_test, y_train, y_test = train_test_split(X,
            binary_y, test_size=0.33, random_state=5)
logistic = LogisticRegression()
logistic.fit(X_train,y_train)
from sklearn.metrics import accuracy_score
print('In-sample accuracy: %0.3f' %
      accuracy_score(y_train, logistic.predict(X_train)))
print('Out-of-sample accuracy: %0.3f' %
      accuracy_score(y_test, logistic.predict(X_test)))

Here’s the output from this example:

In-sample accuracy: 0.973
Out-of-sample accuracy: 0.958

The example splits the data into training and test sets, enabling you to check the 
efficacy of the logistic regression model on data that the model hasn’t used for 
learning. The resulting coefficients tell you the probability of a particular class’s 
being in the target class (which is any class encoded using a value of 1). If a coef-
ficient increases the likelihood, it will have a positive coefficient; otherwise, the 
coefficient is negative.

for var,coef in zip(boston.feature_names,
                    logistic.coef_[0]):
        print ("%7s : %7.3f" %(var, coef))

The output shows the effect of each coefficient (not necessarily in order):

   CRIM :  -0.006
     ZN :   0.197
  INDUS :   0.580
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   CHAS :  -0.023
    NOX :  -0.236
     RM :   1.426
    AGE :  -0.048
    DIS :  -0.365
    RAD :   0.645
    TAX :  -0.220
PTRATIO :  -0.554
      B :   0.049
  LSTAT :  -0.803

Reading the results on your screen, you can see that in Boston, criminality (CRIM) 
has some effect on prices. However, the level of poverty (LSTAT), distance from 
work (DIS), and pollution (NOX) all have much greater effects. Moreover, contrary 
to linear regression, logistic regression doesn’t simply output the resulting class 
(in this case a 1 or a 0) but also estimates the probability of the observation’s being 
part of one of the two classes:

print('\nclasses:',logistic.classes_)
print('\nProbs:\n',logistic.predict_proba(X_test)[:3,:])

The point is that you get a great deal more information based on the data you pro-
vide, as shown here:

classes: [0 1]
 
Probs:
 [[ 0.39022779  0.60977221]
 [ 0.93856655  0.06143345]
 [ 0.98425623  0.01574377]]

In this small sample, only the first case has a 61 percent probability of being 
an expensive housing area. When you perform predictions using this approach, 
you also know the probability that your forecast is accurate and can act accord-
ingly, choosing only predictions with the right level of accuracy. (For instance, 
you might pick only predictions that exceed an 80 percent likelihood.)
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Working through Multiclass Regression
In some situations, you must consider more than a simple binary outcome or work 
with more than just one class. In fact, the world is full of such situations, such as 
the following:

 » Selecting the color of an object from a list of colors

 » Identifying an object shape from a list of shapes

 » Choosing a particular action from a list of potential actions

 » Determining an object type from a list of types

However, when you work through a multiclass regression, what you really do is 
allow the package to break the multiple classes into multiple binary decisions. 
The task occurs in the background, where you really don’t need to worry about 
the details, but you could also perform this task manually if necessary. With these 
understandings in mind, the following sections discuss multiclass regression and 
various affiliated multiclass and multi-output strategies.

Understanding multiclass regression
All regression eventually breaks down into a binary decision, but your package 
will hide this fact from view to help you simplify any problem you’re trying to 
solve. In fact, you usually receive support for these kinds of multiclass problems:

 » Multiclass classification: In this case, you have an object and must decide 
between multiple classes. For example, when examining a car’s color, you 
must decide whether it’s blue, green, brown, or red. The assumption is that 
the object is assigned to just one class, meaning that the car can’t be both 
blue and green but must appear as blue or green.

 » Multilabel classification: This problem concerns an object that can have 
more than one class. For example, a car might have a blue upper half and a 
contrasting brown lower half. In this case, the car color is both blue and 
brown. You often see this sort of classification used to tag text. A book might 
contain humor but also talk about politics and its effects on medicine.

 » Multi-output regression: In this case, you perform a detailed analysis of 
complex objects and assign the object more than one target class. The 
classifications are binary, but the object has multiple properties. For example, 
you might say that a piece of fruit is an apple or a pear and that its exterior 
color is either yellow or green. The kind of fruit and its color are two separate 
target classes that you must handle individually.
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 » Multi-output/multiclass classification: In this case, an object can have 
multiple values assigned to multiple target classes. For example, you might 
consider the exterior and interior colors of a car, which you would assign as 
separate target classes. Another example is weather, when you assign the 
current weather conditions properties such as temperature range (cold, cool, 
warm, or hot), humidity (dry, moderate, or humid), wind speed (calm, 
pleasant, brisk, or hurricane), wind direction (cardinal points of the compass), 
and so on.

 » Multitask classification: With enough care, you can perform multiple 
classifications for each of multiple targets, with each being able to include 
multiple classes. Obviously, the more complexity you create for a classification 
and its outputs, the longer the classification takes.

Along with the kind of classification you want to perform, you must also consider 
the strategy used to perform it. The “Considering when classes are more” section, 
earlier in this chapter, discusses strategies in more detail.

Developing a multiclass regression 
implementation
In the “Considering when classes are more” section, earlier in this chapter, you 
see a comparison of strategies. In the following example, you see the OVR strategy 
used with the Iris dataset, in which a flower can appear as part of the Setosa, Ver-
sicolour, or Virginica class (see https://archive.ics.uci.edu/ml/datasets/
iris for details). The first step is to import the data, as shown here:

from sklearn import datasets
iris = datasets.load_iris()
X, y = iris.data, iris.target

The X data includes columns for sepal length, sepal width, petal length, and petal 
width, and the y data contains the iris class. The next step is to perform the mul-
ticlass classification, as shown here:

from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import LinearSVC
irisClass = OneVsRestClassifier(LinearSVC(
    random_state=0)).fit(X, y).predict(X)

https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
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You can now plot the results based on sepal length and sepal width, using the 
irisClass regression results to provide the colors for the various entries, as 
shown here:

plt.scatter(X[:,0], X[:,1], c=irisClass)
plt.show()

Notice how you use X[:,0] and X[:,1] to separate out the sepal length (x-axis) 
and sepal width (y-axis) for the scatterplot. The result is the plot shown in 
Figure 2-5.

FIGURE 2-5:  
The plot shows 

the result of 
a multiclass 

regression among 
three classes.
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Predicting Outcomes 
Using Bayes

Sometimes, a method of doing something seems less complicated than it actu-
ally is, which is how things went with Bayes’ Theorem. The theorem receives 
its name from the Reverend Thomas Bayes, who discovered it in the 1740s and 

promptly discarded it. Later, Pierre Simon Laplace worked on it to give it its modern 
form, and then he discarded it as well. According to Sharon McGrayne’s book, The 
Theory That Would Not Die, many people used Bayes’ Theorem for all sorts of pur-
poses, from mounting a defense for Captain Dreyfus (see https://www.business- 
standard.com/article/markets/the-bayesian-curse-112011300083_1.html 
for details) to breaking the German Enigma code (see https://www.investsmart.
com.au/investment-news/the-theory-that-cracked-the-enigma-code/138342 
for details), but they generally used it in secret. Not until the twenty-first century 
would anyone actually admit to using it for all the practical things it can do. So, 
this chapter is your introduction to a widely kept secret that can perform amazing 
practical tasks in statistics, and when you see it in its original form, you’ll declare 
Bayes’ Theorem to be surprisingly simple.

Of course, things never stay simple. The second part of this chapter moves into 
detailed uses of Bayes’ Theorem by employing the networked version. The net-
worked version uses the same basic form of the original version, but now you 
consider the complexity of evidence and the places that evidence can take you. 
Unsurprisingly, tracking down and employing all the evidence in an analysis can 

Chapter 3

IN THIS CHAPTER

 » Working with Bayes’ Theorem in a 
basic way

 » Performing tasks using networked 
Bayes

 » Using Bayes for linear regression

 » Using Bayes for logistic regression

https://www.business-standard.com/article/markets/the-bayesian-curse-112011300083_1.html
https://www.business-standard.com/article/markets/the-bayesian-curse-112011300083_1.html
https://www.investsmart.com.au/investment-news/the-theory-that-cracked-the-enigma-code/138342
https://www.investsmart.com.au/investment-news/the-theory-that-cracked-the-enigma-code/138342
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take time and sometimes become error prone. Court trials follow the same path. Yet, 
using Bayes helps you clear the muddy waters and make sense of difficult issues.

Book 3, Chapters 1 and 2 help you discover both linear and logistic regression. 
The third part of this chapter helps you combine this knowledge with your newly 
acquired knowledge of Bayes’ Theorem to create a powerful method of performing 
data analysis by uniting two simpler methods.

You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears 
in the DSPD_0303_Bayes.ipynb source code file for Python and the DSPD_R_0303_
Bayes.ipynb source code file for R. See the Introduction for details on how to find 
these source files.

Understanding Bayes’ Theorem
Before you begin using Bayes’ Theorem to perform practical tasks, knowing a 
little about its history is helpful. The reason this knowledge is so useful is because 
the theorem doesn’t seem to be able to do everything it purports to do when you 
first see it, which is why many statisticians rejected it outright. After you do have 
a basic knowledge of how the theorem came into being, you need to look at the 
theorem itself. The following sections provide you with a history of Bayes’ Theo-
rem that then moves into the theorem itself. These sections discuss the theorem 
from a practical perspective.

Delving into Bayes history
You might wonder why anyone would name an algorithm Naïve Bayes (yet you find 
this algorithm among the most effective machine learning algorithms in pack-
ages such as Scikit-learn). The naïve part comes from its formulation; it makes 
some extreme simplifications to standard probability calculations. The reference 
to Bayes in its name relates to the Reverend Bayes and his theorem on probability.

The Reverend Thomas Bayes (1701–1761) was an English statistician and a philos-
opher who formulated his theorem during the first half of the eighteenth century. 
The theorem is based on a thought experiment and then a demonstration using 
the simplest of means. Reverend Bayes wanted to determine the probability of a 
future event based on the number of times it occurred in the past. It’s hard to con-
template how to accomplish this task with any accuracy.

The demonstration relied on the use of two balls. An assistant would drop the 
first ball on a table where the end position of this ball was equally possible in any 
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location, but not tell Bayes its location. The assistant would then drop a second 
ball, tell Bayes the position of the second ball, and then provide the position of 
the first ball relative to the location of this second ball. The assistant would then 
drop the second ball a number of additional times — each time telling Bayes the 
location of the second ball and the position of the first ball relative to the second. 
After each toss of the second ball, Bayes would attempt to guess the position of 
the first. Eventually, he was to guess the position of the first ball based on the 
evidence provided by the second ball.

The theorem was never published while Bayes was alive. His friend Richard Price 
found Bayes’ notes after his death in 1761 and published the material for Bayes, 
but no one seemed to read it at first. The theorem has deeply revolutionized the 
theory of probability by introducing the idea of conditional probability — that is, 
probability conditioned by evidence. The critics saw problems with Bayes’ Theo-
rem that you can summarize as follows:

 » Guessing has no place in rigorous mathematics.

 » If Bayes didn’t know what to guess, he would simply assign all possible 
outcomes an equal probability of occurring.

 » Using the prior calculations to make a new guess presented an insurmountable 
problem.

Often, it takes a problem to illuminate the need for a previously defined solution, 
which is what happened with Bayes’ Theorem. By the late eighteenth century, the 
need to study astronomy and make sense of the observations made by the

 » Chinese in 1100 BC

 » Greeks in 200 BC

 » Romans in AD 100

 » Arabs in AD 1000

became essential. The readings made by these other civilizations not only reflected 
social and other biases but also were unreliable because of the differing meth-
ods of observation and the technology use. You might wonder why the study of 
astronomy suddenly became essential, and the short answer is money. Naviga-
tion of the late eighteenth century relied heavily on accurate celestial observa-
tions (https://penobscotmarinemuseum.org/pbho-1/history-of-navigation/ 
navigation-18th-century), so anyone who could make the readings more accurate 
could reduce the time required to ship goods from one part of the world to another.

Pierre-Simon Laplace wanted to solve the problem, but he couldn’t just dive into 
the astronomy data without first having a means to dig through all that data  

https://penobscotmarinemuseum.org/pbho-1/history-of-navigation/navigation-18th-century
https://penobscotmarinemuseum.org/pbho-1/history-of-navigation/navigation-18th-century
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to find out which was correct and which wasn’t. He encountered Richard Price, 
who told him about Bayes’ Theorem. Laplace used the theorem to solve an easier 
problem, that of the births of males and females. Some people had noticed that 
more boys than girls were born each year, but no proof existed for this observa-
tion. Laplace used Bayes’ Theorem to prove that more boys are born each year 
than girls based on birth records. Other statisticians took notice and started using 
the theorem, often secretly, for a host of other calculations, such as the calculation 
of the masses of Jupiter and Saturn from a wide variety of observations by Alexis 
Bouvard (see https://www.revolvy.com/page/Alexis-Bouvard for details).

Considering the basic theorem
When thinking about Bayes’ Theorem, it helps to start from the beginning — that 
is, probability itself. Probability tells you the likelihood of an event and is expressed 
in a numeric form. The probability of an event is measured in the range from 0 to 
1 (from 0 percent to 100 percent) and it’s empirically derived from counting the 
number of times a specific event happens with respect to all the events. You can 
calculate it from data!

When you observe events (for example, when a feature has a certain characteristic)  
and you want to estimate the probability associated with the event, you count the 
number of times the characteristic appears in the data and divide that figure by 
the total number of observations available. The result is a number ranging from 0 
to 1, which expresses the probability.

When you estimate the probability of an event, you tend to believe that you can 
apply the probability in each situation. The term for this belief is a priori because 
it constitutes the first estimate of probability with regard to an event (the one that 
comes to mind first). For example, if you estimate the probability of an unknown 
person’s being a female, you might say, after some counting, that it’s 50 percent, 
which is the prior, or the first, probability that you will stick with.

The prior probability can change in the face of evidence, that is, something that 
can radically modify your expectations. For example, the evidence of whether a 
person is male or female could be that the person’s hair is long or short. You can 
estimate having long hair as an event with 35 percent probability for the general 
population, but within the female population, it’s 60 percent. If the percentage is 
higher in the female population, contrary to the general probability (the prior for 
having long hair), that’s useful information for making a prediction.

Imagine that you have to guess whether a person is male or female and the evi-
dence is that the person has long hair. This sounds like a predictive problem, and 
in the end, this situation is similar to predicting a categorical variable from data: 
We have a target variable with different categories and you have to guess the 

https://www.revolvy.com/page/Alexis-Bouvard
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probability of each category based on evidence, the data. Reverend Bayes provided 
a useful formula:

P(B|E) = P(E|B)*P(B) / P(E)

The formula looks like statistical jargon and is a bit counterintuitive, so it needs 
to be explained in depth. Reading the formula using the previous example as input 
makes the meaning behind the formula quite a bit clearer:

 » P(B|E): The probability of being a female (the belief B) given long hair (the 
evidence E). This part of the formula defines what you want to predict. In 
short, it says to predict y given x where y is an outcome (male or female) and  
x is the evidence (long or short hair).

 » P(E|B): The probability of having long hair, the evidence of when a person is 
female. In this case, you already know that it’s 60 percent. In every data 
problem, you can obtain this figure easily by simple cross-tabulation of the 
features against the target outcome.

 » P(B): The probability of being a female, which has a 50 percent general chance 
(a prior).

 » P(E): The probability of having long hair in general, which is 35 percent 
(another prior).

When reading parts of the formula such as P(B|E), you should read them as fol-
lows: probability of B given E.  The | symbol translates as given. A probability 
expressed in this way is a conditional probability, because it’s the probability of 
a belief, B, conditioned by the evidence presented by E. In this example, plugging 
the numbers into the formula translates into

60% * 50% / 35% = 85.7%

Therefore, getting back to the previous example, even if being a female is a 50 
percent probability, just knowing evidence like long hair takes it up to 85.7 per-
cent, which is a more favorable chance for the guess. You can be more confident 
in guessing that the person with long hair is a female because you have a bit less 
than a 15 percent chance of being wrong.

Using Naïve Bayes for Predictions
Even though Bayes’ Theorem looks relatively simple compared to some of the other 
calculations you have already performed in this book, it really can do amazing 
things. The following sections discuss the basic theorem before you do anything 
fancy with it.
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Finding out that Naïve Bayes isn’t so naïve
Naïve Bayes, leveraging the simple Bayes’ Theorem, takes advantage of all the 
evidence available in order to modify the prior base probability of your pre-
dictions. Because your data contains so much evidence — that is, it has many  
features  — the data makes a big sum of all the probabilities derived from a  
simplified Naïve Bayes formula.

As discussed in the “Using Linear Regression to Guess Numbers” section of Book 3,  
Chapter  1, summing variables implies that the model takes them as separate 
and unique pieces of information. But this implication doesn’t hold true in real-
ity, because applications exist in a world of interconnections, with every piece 
of information connecting to many other pieces. Using one piece of information 
more than once means giving more emphasis to that particular piece.

Because you don’t know (or you simply ignore) the relationships among each 
piece of evidence, you probably just plug all of them in to Naïve Bayes. The simple 
and naïve move of throwing everything that you know at the formula works well 
indeed, and many studies report good performance despite the fact that you make 
a naïve assumption. Using everything for prediction is okay, even though it seem-
ingly shouldn’t be given the strong association between variables. Here are some 
of the ways in which you commonly see Naïve Bayes used:

 » Building spam detectors (catching all annoying emails in your inbox)

 » Sentiment analysis (guessing whether a text contains positive or negative 
attitudes with respect to a topic, and detecting the mood of the speaker)

 » Text-processing tasks such as spell correction, or guessing the language used 
to write or classify the text into a larger category

Naïve Bayes is also popular because it doesn’t need as much data to work. It can 
naturally handle multiple classes. With some slight variable modifications (trans-
forming them into classes), it can also handle numeric variables. Scikit-learn 
provides three Naïve Bayes classes in the sklearn.naive_bayes module:

 » MultinomialNB: Uses the probabilities derived from a feature’s presence. 
When a feature is present, it assigns a certain probability to the outcome, 
which the textual data indicates for the prediction.

 » BernoulliNB: Provides the multinomial functionality of Naïve Bayes, but it 
penalizes the absence of a feature. This class assigns a different probability 
when the feature is present than when it’s absent. In fact, it treats all features 
as dichotomous variables. (The distribution of a dichotomous variable is a 
Bernoulli distribution.) You can also use it with textual data.
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 » GaussianNB: Defines a version of Naïve Bayes that expects a normal distribu-
tion of all the features. Hence, this class is suboptimal for textual data in which 
words are sparse (use the multinomial or Bernoulli distributions instead). If 
your variables have positive and negative values, this is the best choice.

Predicting text classifications
Naïve Bayes is particularly popular for document classification. In textual prob-
lems, you often have millions of features involved, one for each word spelled  
correctly or incorrectly. Sometimes the text is associated with other nearby words 
in n-grams, that is, sequences of consecutive words. Naïve Bayes can learn the 
textual features quickly and provide fast predictions based on the input.

UNDERSTANDING ANACONDA 
NOTIFICATIONS
Newer versions of Anaconda display various notifications to help you understand why a 
particular process is taking longer than expected. For example, when you download the 
20newsgroups dataset, you may see the following message:

Downloading 20news dataset. This may take a few minutes.
Downloading dataset from
https://ndownloader.figshare.com/files/5975967 (14 MB)

The message will often appear in the same background color and the same text charac-
teristics as an error message. This message isn’t an error; it simply gives you additional 
information about the progress of a task. If you don’t see the message, it may simply 
mean that you have already downloaded the dataset at some point or that you’re using 
an older version of Anaconda that doesn’t support the message.

You could see other notifications for other needs. For example, when a package  
installation requires additional time to complete, you may see a notification message 
even if you have a copy of the package on your local system. All these messages help 
you understand what Anaconda is doing in the background.
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This section tests text classifications using the binomial and multinomial Naïve 
Bayes models offered by Scikit-learn. The examples rely on the 20newsgroups 
dataset, which contains a large number of posts from 20 kinds of newsgroups. The 
dataset is divided into a training set, for building your textual models, and a test 
set, which is comprised of posts that temporally follow the training set. You use 
the test set to test the accuracy of your predictions:

from sklearn.datasets import fetch_20newsgroups
newsgroups_train = fetch_20newsgroups(
            subset='train', remove=('headers', 'footers',
                                    'quotes'))
newsgroups_test = fetch_20newsgroups(
             subset='test', remove=('headers', 'footers',
                                    'quotes'))

After loading the two sets into memory, you import the two Naïve Bayes models 
and instantiate them. At this point, you set alpha values, which are useful for 
avoiding a zero probability for rare features (a zero probability would exclude 
these features from the analysis). You typically use a small value for alpha, as 
shown in the following code:

from sklearn.naive_bayes import BernoulliNB, MultinomialNB
Bernoulli = BernoulliNB(alpha=0.01)
Multinomial = MultinomialNB(alpha=0.01)

In some cases, you use what is known as the hashing trick to model textual data 
without fear of encountering new words when using the model after the training 
phase. (You can find the details of this technique in the “Performing the Hash-
ing Trick” in Chapter 12 of Python For Data Science For Dummies, 2nd Edition, by 
John Paul Mueller and Luca Massaron [Wiley].) You can use two different hashing 
tricks, one counting the words (for the multinomial approach) and one recording 
whether a word appeared in a binary variable (the binomial approach). You can 
also remove stop words, that is, common words found in the English language, 
such as “a,” “the,” “in,” and so on.

import sklearn.feature_extraction.text as txt
multinomial = txt.HashingVectorizer(stop_words='english',
                                binary=False, norm=None)
binary = txt.HashingVectorizer(stop_words='english',
                           binary=True, norm=None)

At this point, you can train the two classifiers and test them on the test set, which 
is a set of posts that temporally appear after the training set. The test measure is 
accuracy, which is the percentage of right guesses that the algorithm makes:
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import numpy as np
target = newsgroups_train.target
target_test = newsgroups_test.target
multi_X = np.abs(
    multinomial.transform(newsgroups_train.data))
multi_Xt = np.abs(
    multinomial.transform(newsgroups_test.data))
bin_X = binary.transform(newsgroups_train.data)
bin_Xt = binary.transform(newsgroups_test.data)
 
Multinomial.fit(multi_X, target)
Bernoulli.fit(bin_X, target)
 
from sklearn.metrics import accuracy_score
for name, model, data in [('BernoulliNB', Bernoulli,
                           bin_Xt),
                      ('MultinomialNB', Multinomial,
                       multi_Xt)]:
    accuracy = accuracy_score(y_true=target_test,
                              y_pred=model.predict(data))
    print ('Accuracy for %s: %.3f' % (name, accuracy))

The reported accuracies for the two Naïve Bayes models are

Accuracy for BernoulliNB: 0.570
Accuracy for MultinomialNB: 0.651

You might notice that both models don’t take long to train and report their pre-
dictions on the test set. Consider that the training set is made up of more than 
11,000 posts containing more than 300,000 words, and the test set contains about 
7,500 other posts.

print('number of posts in training: %i'
      % len(newsgroups_train.data))
D={word:True for post in newsgroups_train.data
   for word in post.split(' ')}
print('number of distinct words in training: %i'
      % len(D))
print('number of posts in test: %i'
      % len(newsgroups_test.data))

Running the code returns all these useful text statistics:

number of posts in training: 11314
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number of distinct words in training: 300972
number of posts in test: 7532

Getting an overview of Bayesian inference
In reading about the thought experiment that Bayes originally used to create his 
theorem in the “Delving into Bayes history” section of the chapter, you discover 
the dynamic nature of the underlying technique. Each previous estimate acts as the 
basis for the next estimate — it’s a refinement. Essentially, dropping the second 
ball enables you to create a better estimate of the actual location of the first ball 
through the process of inference. Each piece of new data further improves the over-
all estimate so that the estimate begins to match real-world results. The following 
sections offer an overview of how inference can work to refine a Bayes probability.

Coming to the wrong conclusion
Often, people make assumptions about data that aren’t true. By making a single 
observation of the relationship between data elements under dubious conditions 
that could change, many people conclude that something is true when it isn’t. A 
single observation of the moon when it’s full may lead one to believe that the moon 
is always full, yet it isn’t. You need more observations to determine that the moon 
sometimes disappears altogether. To determine the current state of the moon, you 
then need enough observations to determine the moon’s cycle and then consider 
the progress of that cycle to properly conclude that the moon is currently at the 
first quarter — neither full nor new. Bayesian inference assumes the following:

 » Data is limited to the observations made, which may not represent actual 
conditions.

 » When modeling the data, you can easily fit the curve to the known observa-
tions a little too closely (overfitting) so that any conclusions about future data 
using the model are flawed.

 » Some facts are more important than other facts, but the model often doesn’t 
contain this information, so making accurate predictions is impossible without 
knowing more about the facts.

 » Conclusions are accurate only when you consider all the facts, rather than 
only the most likely fact.

Getting the required inference packages
Performing Bayesian inference requires the use of the PyMC3 (https://pypi.
org/project/pymc3/) package, which relies on Markov chain Monte Carlo 
(MCMC) sampling to allow inference on increasingly complex models. You use 

https://pypi.org/project/pymc3/
https://pypi.org/project/pymc3/
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this package for Bayesian statistical modeling in this book. To install the pack-
age, you begin by opening an Anaconda Prompt (don’t use a standard command 
prompt or terminal window because they won’t have the required environmental 
setup). At the prompt, you type the following (all on one line):

conda create -n PYMC3_env python=3.7.3 anaconda=2019.03
 pymc3 nb_conda

and press Enter. The command will run for a while, seemingly doing nothing. 
However, at some point you see a description of what conda will do. Simply type y 
and press Enter to install the package.

To perform plotting using PyMC3, you also need the ArviZ package (https://
arviz-devs.github.io/arviz/). Type these entries at the prompt to install this 
package:

activate PYMC3_env
conda install arviz
deactivate

As before, you need to type y and press Enter when prompted to perform the 
installation.

Developing a simple inference example
The “Coming to the wrong conclusion” section, earlier in this chapter, tells you 
about some assumptions for Bayesian inference that could seem mind boggling, 
so it’s time for an example. Consider that your company tasks you with determin-
ing how many of each car color to produce to ensure that your company doesn’t 
have an overstock. So, you go out to the parking lot and count 3 red cars, 2 black 
cars, and 1 tan car. (The example uses smaller numbers to make things simpler.) A 
simple solution would be to make 50 percent of the cars red, 33 percent of the cars 
black, and 17 percent of the cars tan, but the simple solution is probably wrong for 
these reasons (among others):

 » You may not see all the cars driven by every employee.

 » The numbers in your parking lot may not reflect reality.

To work through this problem, you need to make some assumptions and use some 
additional data. For example, you know that your company is interested in mak-
ing only red, black, and tan cars, so you don’t need to consider other car colors in 
your analysis. You also discover that marketing has survey numbers that you can 
use to form a prior belief about the actual numbers. In this case, the survey shows 
that people actually prefer red cars in this ratio: for every 4 red car voters, 3 people 
voted for tan cars, and 1 person voted for a black car.

https://arviz-devs.github.io/arviz/
https://arviz-devs.github.io/arviz/
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The technique used to create the initial (the prior) belief relies on the Dirichlet-
multinomial distribution. You can read about it at https://ixkael.github.io/
dirichlet-multinomial-conjugate-priors/, but this example seeks to simplify 
these ideas for those who really want to get some work done and don’t have a 
degree in statistics. The important aspects to consider are as follows:

 » Number of trials (observations): Represented by n, which contains 6 in this 
case (3 red, 2 black, and 1 tan cars).

 » Number of outcomes: Represented by k, which totals 3 in this case: one each 
for red, black, and tan.

 » A vector of probabilities for each outcome: Represented by p in this case, 
this vector represents the output of the analysis.

The Dirichlet-multinomial distribution also relies on a special hyperparameter, α, 
which is a parameter of the prior. It contains the starting point information that 
exists before you make any observations, which would be the survey results of  
4 red, 1 black, and 3 tan cars in this case. The survey simply represents an  
expectation — a guess. Because this is a survey, it’s an educated guess, but it’s 
still a guess. The code will contain two distributions: multinomial (parameters—
event probabilities) and Dirichlet (prior distribution), as described here:

multinomial: (n=20, pred=?, pblack=?, ptan=?)
Dirichlet: (k=3, αred, αblack, αtan)

You must also account for the support data, represented by c, which is an array 
containing the three observed values of 7 red cars (4 survey and 3 observed);  
3 black cars (1 survey and 2 observed); and 4 tan cars (3 survey and 1 observed). 
The final model looks like this:

(p | c, α)

Use the following code to calculate the probabilities for each outcome:

import numpy as np
 
colors = ['Red', 'Black', 'Tan']
c = np.array([3, 2, 1])
alphas = np.array([4, 1, 3])
 
expected_p = (alphas + c) / (c.sum() + alphas.sum())
 
new_values = dict(zip(colors, expected_p))
for x in new_values:
    print("{}:\t{:2.2%}".format(x, new_values[x]))

https://ixkael.github.io/dirichlet-multinomial-conjugate-priors/
https://ixkael.github.io/dirichlet-multinomial-conjugate-priors/
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Based on the combination of the survey and the parking lot observation, you can 
now see that the percentages of colors to paint the cars has changed, like this:

Red:    50.00%
Black:  21.43%
Tan:    28.57%

As you continue to gather data, you can further refine the estimates, just as 
described for the original experiment. You must first create a model using the fol-
lowing code (which may generate deprecation notices depending on your setup):

import pymc3 as pm
 
with pm.Model() as model:
    parameters = pm.Dirichlet('parameters', a=alphas,
                              shape=3)
    observed_data = pm.Multinomial(
        'observed_data', n=6, p=parameters, shape=3,
        observed=c)

Note that model contains the two previously discussed distributions: Dirichlet 
and Multinomial. You can now train the model using this code:

with model:
    trace = pm.sample(draws=1000, chains=2, tune=500,
                      discard_tuned_samples=True)

The process samples data based on the No-U-Turn Sampler (NUTS), which is 
useful on models that have many continuous parameters. Basically, it searches for 
areas in the model where higher probabilities occur. The output you see explains 
how the sampling process occurs:

Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (2 chains in 4 jobs)
NUTS: [parameters]
Sampling 2 chains: 100%| | 3000/3000
   [00:11<00:00, 253.26draws/s]

NUTS uses parameters, which you previously defined as part of the model  — 
the previously collected survey information. The progress bar shows the sam-
pling process. If you’re interested in the whole jitter+adapt_diag methodology,  
you can read about it at https://discourse.pymc.io/t/what-exactly-is- 
jitter-adapt-diag-and-why-is-it-the-default-now/451. Essentially, it’s a 
sliding-window approach to interacting with the data.

https://discourse.pymc.io/t/what-exactly-is-jitter-adapt-diag-and-why-is-it-the-default-now/451
https://discourse.pymc.io/t/what-exactly-is-jitter-adapt-diag-and-why-is-it-the-default-now/451
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At this point, you have a model that can predict with some level of precision how 
many cars to create in each of the colors. Of course, seeing the predictions is 
always nice, and you can do so with the following code:

dataPlot1 = pm.plots.traceplot(trace, combined=True)
dataPlot1[0][0].set_title(
    "Red Posterior Probability Distribution")
dataPlot1[0][1].set_title("Red Trace Samples")
dataPlot1[1][0].set_title(
    "Black Posterior Probability Distribution")
dataPlot1[1][1].set_title("Black Trace Samples")
dataPlot1[2][0].set_title(
    "Tan Posterior Probability Distribution")
dataPlot1[2][1].set_title("Tan Trace Samples")

The output from this code appears in Figure  3-1. The graphs on the left show 
the probability distribution for each color, and the graphs on the right show the 
sample process used for each of the colors.

All that remains is to determine the values to use and consider the probability that 
these values are correct by estimating the Highest Posterior Density (HPD) (you can 
read more about this estimation at https://support.sas.com/documentation/
cdl/en/statug/63033/HTML/default/viewer.htm#statug_introbayes_sect005.
htm). The following code shows how to create the required plots:

dataPlot2 = pm.plots.plot_posterior(trace, figsize=(20,6))
dataPlot2[0].set_title('Red', fontsize=20)
dataPlot2[1].set_title('Black', fontsize=20)
dataPlot2[2].set_title('Tan', fontsize=20)

FIGURE 3-1:  
Seeing the  

probabilities  
for each of  
the colors.

https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introbayes_sect005.htm
https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introbayes_sect005.htm
https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introbayes_sect005.htm
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Figure 3-2 shows how the plots appear. Note that Red has a mean of 0.5 (50 percent),  
Black a mean of 0.2 (20 percent), and Tan a mean of 0.3 (30 percent). Each of these 
percentages reflects the number of cars to paint a certain color. The 94% HPD says 
that 94 percent of the estimates lie in the region shown, which is a high level of 
confidence that the calculation is correct.

Moving forward with Bayes inference  
and deep learning
When performing data science tasks, you are often tasked with making algo-
rithms work within specific fields such as AI learning, which relies on algorithms 
to define how and what to learn. In this environment, an algorithm is a kind of 
container. It provides a box for storing a method to solve a particular kind of a 
problem. Algorithms process data through a series of well-defined states. The 
states need not be deterministic, but the states are defined nonetheless. The goal 
is to create an output that solves a problem. In some cases, the algorithm receives 
inputs that help define the output, but the focus is always on the output.

Algorithms must express the transitions between states using a well-defined 
and formal language that the computer can understand. In processing the data 
and solving the problem, the algorithm defines, refines, and executes a function. 
The function is always specific to the kind of problem being addressed by the 
algorithm.

A group of scientists, called Bayesians, perceived that uncertainty was the key 
aspect to keep an eye on and that learning wasn’t assured, but rather took place 
as a continuous updating of previous beliefs that grew more and more accurate. 
This perception led the Bayesians to adopt statistical methods and, in particular, 
derivations from Bayes’ Theorem, which helps you calculate probabilities under 
specific conditions (for instance, seeing a card of a certain seed, the starting value 
for a pseudo-random sequence, drawn from a deck after three other cards of same 
seed).

FIGURE 3-2:  
Determining 

how many cars 
to paint specific 

colors.
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An application that relies on deep learning techniques uses Bayesian inference in a 
method called forward propagation (also called a feed-forward neural network) to 
help the neural network learn from the data you provide. In the article “Probabi-
listic Deep Learning: Bayes by Backprop,” at https://medium.com/neuralspace/
probabilistic-deep-learning-bayes-by-backprop-c4a3de0d9743, you dis-
cover that the techniques shown in the previous sections also apply to deep learn-
ing, and many data scientists feel that such inference is essential to the future of 
deep learning.

However, techniques work with only specific applications, and Convolutional 
Neural Networks (CNNs) represent a specific application. The article “Bayesian 
Convolutional Neural Networks with Bayes by Backprop,” at https://medium.
com/neuralspace/bayesian-convolutional-neural-networks-with-bayes-
by-backprop-c84dcaaf086e, takes these ideas a step further. You can also dis-
cover more about both feed-forward techniques in Book 4, Chapter 2, and about 
CNNs in Book 4, Chapter 3. Using Bayes in the simple manner shown so far is just 
the starting point for significantly more complex techniques.

Working with Networked Bayes
Not all decisions come in neat packages that rely on just one prediction. Some-
times, you must consider multiple levels of decision making to better model a sit-
uation. Networked Bayes is a type of Probabilistic Graphical Model (PGM), which 
also includes the Markov Network. The difference between these two PGMs is that 
Bayes relies on a directed acyclic graph, while the Markov version is both undi-
rected and cyclic. Both of these models model certain kinds of dependencies, but 
you use them in different ways and for different purposes. The following sections 
help you better understand networked Bayes and explain how you can use it to 
make predictions.

Considering the network types and uses
You use networked Bayes for a number of purposes that include prediction, anom-
aly detection, diagnostics, automated insight, reasoning, time series prediction, 
and decision making under uncertainty. However, you don’t use just one form of 
networked Bayes to perform all these tasks. Four different types or disciplines of 
networked Bayes exist, as described in the following list:

 » Descriptive: Considers how to describe or categorize data based on  
the probability that it is one thing or another. This discipline has these  
characteristics and uses:

https://medium.com/neuralspace/probabilistic-deep-learning-bayes-by-backprop-c4a3de0d9743
https://medium.com/neuralspace/probabilistic-deep-learning-bayes-by-backprop-c4a3de0d9743
https://medium.com/neuralspace/bayesian-convolutional-neural-networks-with-bayes-by-backprop-c84dcaaf086e
https://medium.com/neuralspace/bayesian-convolutional-neural-networks-with-bayes-by-backprop-c84dcaaf086e
https://medium.com/neuralspace/bayesian-convolutional-neural-networks-with-bayes-by-backprop-c84dcaaf086e
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• Automated insight

• Large patterns

• Anomalous patterns

• Multivariate

 » Diagnostic: Specifies the cause of an error or determines whether something 
is useful based on the probability that the underlying assumptions about it 
are correct. This discipline has these characteristics and uses:

• Value of information

• Reasoning

• Troubleshooting

• Tracing anomalies

 » Predictive: Defines a future value based on current information (as was done 
in the original experiment). This discipline has these characteristics and uses:

• Supervised or unsupervised learning

• Anomaly detection

• Time series

• Latent variables

 » Prescriptive: Performs decision-making based on the truth-values of the 
underlying data and outputs these decisions with levels of confidence (based 
on probabilities). This discipline has these characteristics and uses:

• Decision automation

• Cost based decision-making

• Decision support

• Decision-making under uncertainty

One of the best ways to explore how you might use a networked Bayes setup is 
to play with it. You find an interactive version of the Asia Bayesian network (see 
Figure  3-3) at https://www.bayesserver.com/examples/networks/asia. By 
selecting the various boxes, you can see how each node of the network affects the 
overall probability of a particular disease to be detected in a person who visits a 
clinic. When you select a box, that particular condition becomes known and the 
probability is now 100 percent. If you leave the box deselected, the network uses 
an assumed set of percentages for true and false. Notice that the network has a 
definite hierarchy and a definite direction between decision-making steps.

https://www.bayesserver.com/examples/networks/asia
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When using graphs to represent a prediction model, you have a number of options 
from which to choose. As specified in the next section, networked Bayes relies on 
the directed acyclic graph. However, you need to know that graphs have a number 
of different characteristics, as specified in the following list:

 » Cyclic: The edges forms a cycle that take you back to the initial vertex after 
having visited the intermediary vertexes.

 » A-cyclic: This graph lacks cycles.

 » Directed: Edges connect vertexes in a single direction, with an arrow or other 
indicator specifying the direction.

 » Undirected: Edges connect vertexes in both directions (typically without 
arrows or other indicators).

 » Weighted: Each edge has a cost associated with it, such as time, money, or 
energy, which you must pay to pass through it.

 » Unweighted: All the edges have no cost or the same cost.

 » Dense: This type of graph has a large number of edges when compared to the 
number of vertexes.

 » Sparse: This type of graph has a small number of edges when compared to 
the number of vertexes.

FIGURE 3-3:  
The interactive 
version of the 
Asia Bayesian 

network is helpful 
in understanding 

how networks 
work.
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Understanding Directed  
Acyclic Graphs (DAGs)
A Directed Acyclic Graph (DAG) is a finite directed graph that doesn’t have any loops 
in it. In other words, you start from a particular location and follow a specific 
route to an ending location without ever going back to the starting location. When 
using topological sorting, a DAG always directs earlier vertexes to later vertexes. 
This kind of graph has all sorts of practical uses, such as schedules, with each 
milestone representing a particular milestone.

DAGs are one of the most important kinds of graphs because they see so many 
practical uses. The basic principles of DAGs are that they

 » Follow a particular order so that you can’t get from one vertex to another and 
back to the beginning vertex using any route.

 » Provide a specific path from one vertex to another so that you can create a 
predictable set of routes.

You see DAGs used for many organizational needs. For example, a family tree is an 
example of a DAG. Even when the activity doesn’t follow a chronological or other 
overriding order, the DAG enables you to create predictable routes, which makes 
DAGs easier to process than many other kinds of graphs you work with.

However, DAGs can use optional routes. Imagine that you’re building a burger. The 
menu system starts with a bun bottom. You can optionally add condiments to the 
bun bottom, or you can move directly to the burger on the bun. The route always 
ends up with a burger, but you have multiple paths for getting to the burger. After 
you have the burger in place, you can choose to add cheese or bacon before adding 
the bun top. The point is that you take a specific path, but each path can connect 
to the next level in several different ways.

The DAG is commonly used with the evidence portion of a Bayes calculation. You 
use an evidentiary tree to decide various probabilities of evidence. For example, 
when deciding whether to play tennis, you might consider this tree of evidence:

1. Rain

2. Wind

3. Temperature

4. Humidity

If it isn’t raining, the wind isn’t too high, and the temperature is just right, it’s a 
good day to play tennis. However, you must also consider all the other probabilities, 
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which means calculating them for each branch of the tree. You don’t need to con-
sider any item more than once. When the prediction considers rain, it need not 
consider rain again. The tree also has an order, so you consider the chance of rain 
first. You see this particular tree in action in the “Employing networked Bayes in 
predictions” section, later in this chapter.

When working with DAGs, you often see the nomenclature, p(A, B), which means 
the probability of A and B. In other words, you no longer seek to find just the prob-
ability of A, but you want instead the probability of A and B occurring together, 
which means that they must both be true. You can see a conditional form of this 
nomenclature as well, p(A, B | C), which means the probability of A and B both 
occurring given the evidence presented by C. To put this in a real-world context, 
you might want to consider the probability that it’s both raining and windy given 
that you can see that the trees are bending an abnormal amount.

Sometimes you see this process extended further still by instantiation. In this case, 
you already know whether one of the items in the prediction is true or false. For 
example, you might see p(A = True, B | C), which means the probability of B 
given that A is True and the evidence presented by C.

Employing networked Bayes in predictions
Bayes’ Theorem can help you deduce how likely something is to happen in a cer-
tain context, based on the general probabilities of the fact itself and the evidence 
you examine, and combined with the probability of the evidence given the fact. 
Seldom will a single piece of evidence diminish doubts and provide enough cer-
tainty in a prediction to ensure that it will happen. As a true detective, to reach 
certainty, you have to collect more evidence and make the individual pieces work 
together in your investigation. Noticing that a person has long hair isn’t enough 
to determine whether person is female or a male. Adding data about height and 
weight could help increase confidence.

The Naïve Bayes algorithm helps you arrange all the evidence you gather and 
reach a more solid prediction with a higher likelihood of being correct. Gath-
ered evidence considered singularly couldn’t save you from the risk of predicting 
incorrectly, but all evidence summed together can reach a more definitive resolu-
tion. The following example shows how things work in a Naïve Bayes classifica-
tion. This is an old, renowned problem, but it represents the kind of capability that 
you can expect from an AI. The dataset is from the paper “Induction of Decision 
Trees,” by John Ross Quinlan (https://dl.acm.org/citation.cfm?id=637969). 
Quinlan is a computer scientist who contributed to the development of a machine 
learning algorithm called decision trees in a fundamental way, but his example 
works well with any kind of learning algorithm. The problem requires that the AI 
guess the best conditions to play tennis given the weather conditions. The set of 
features described by Quinlan is as follows:

https://dl.acm.org/citation.cfm?id=637969
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 » Outlook: Sunny, overcast, or rainy

 » Temperature: Cool, mild, hot

 » Humidity: High or normal

 » Windy: True or false

The following table contains the database entries used for the example:

Outlook Temperature Humidity Windy PlayTennis

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot High False Yes

Rainy Mild High False Yes

Rainy Cool Normal False Yes

Rainy Cool Normal True No

Overcast Cool Normal True Yes

Sunny Mild High False No

Sunny Cool Normal False Yes

Rainy Mild Normal False Yes

Sunny Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Rainy Mild High True No

The option of playing tennis depends on the four arguments shown in Figure 3-4.

The result of this AI learning example is a decision as to whether to play tennis, 
given the weather conditions (the evidence). Using just the outlook (sunny, over-
cast, or rainy) won’t be enough, because the temperature and humidity could be 
too high or the wind might be strong. These arguments represent real conditions 
that have multiple causes, or causes that are interconnected. The Naïve Bayes 
algorithm is skilled at guessing correctly when multiple causes exist.
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The algorithm computes a score, based on the probability of making a particu-
lar decision and multiplied by the probabilities of the evidence connected to that 
decision. For instance, to determine whether to play tennis when the outlook is 
sunny but the wind is strong, the algorithm computes the score for a positive 
answer by multiplying the general probability of playing (9 played games out of 14 
occurrences) by the probability of the day’s being sunny (2 out of 9 played games) 
and of having windy conditions when playing tennis (3 out of 9 played games). 
The same rules apply for the negative case (which has different probabilities for 
not playing given certain conditions):

likelihood of playing: 9/14 * 2/9 * 3/9 = 0.05
likelihood of not playing: 5/14 * 3/5 *  3/5 = 0.13

Because the score for the likelihood is higher, the algorithm decides that it’s safer 
not to play under such conditions. It computes such likelihood by summing the 
two scores and dividing both scores by their sum:

probability of playing : 0.05 / (0.05 + 0.13) = 0.278
probability of not playing :  0.13 / (0.05 + 0.13) = 0.722

Look at this example in a little more detail. The dataset is quite simple, consisting 
of only 14 observations relative to the weather conditions, with results that say 
whether playing tennis is appropriate.

The example contains four features: outlook, temperature, humidity, and wind, all 
expressed using qualitative classes instead of measurements (you could express 
temperature, humidity, and wind strength numerically) to convey a more intui-
tive understanding of how the weather features relate to the outcome. After these 
features are processed by the algorithm, you can represent the dataset using a 
tree-like schema, as shown in Figure 3-5. As the figure shows, you can inspect 
and read a set of rules by splitting the dataset to create parts in which the predic-
tions are easier by looking at the most frequent class (in this case, the outcome, 
which is whether to play tennis).

To read the nodes of the tree, just start from the topmost node, which corresponds 
to the original training data; next, start reading the rules. Note that each node has 
two derivations: The left branch means that the upper rule is true (stated as yes in 
a square box), and the right one means that it is false (stated as no in a square box).

FIGURE 3-4:  
A Naïve Bayes 

model can 
retrace evidence 

to the right 
outcome.
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On the right of the first rule, you see an important terminal rule (a terminal leaf), 
in a circle, stating a positive result, Yes, that you can read as play tennis=True. 
According to this node, when the outlook isn’t sunny (Sun) or rainy (Rain), it’s 
possible to play. (The numbers under the terminal leaf show four examples 
affirming this rule and zero denying it.) Note that you could understand the rule 
better if the output simply stated that when the outlook is overcast, play is pos-
sible. Frequently, decision tree rules aren’t immediately usable, and you need to 
interpret them before use. However, they are clearly intelligible (and much better 
than a coefficient vector of values).

On the left, the tree proceeds with other rules related to Humidity. Again, on the 
left, when humidity is high and outlook is sunny, most terminal leaves are nega-
tive, except when the wind isn’t strong. When you explore the branches on the 
right, you see that the tree reveals that play is always possible when the wind isn’t 
strong, or when the wind is strong but it doesn’t rain.

Bayesian networks, though intuitive, have complex math behind them, and they’re 
more powerful than a simple Naïve Bayes algorithm because they mimic the world 
as a sequence of causes and effects based on probability. Bayesian networks are 
so effective that you can use them to represent any situation. They have var-
ied applications, such as medical diagnoses, the fusing of uncertain data arriving 
from multiple sensors, economic modeling, and the monitoring of complex sys-
tems such as a car. For instance, because driving in highway traffic may involve 
complex situations with many vehicles, the Analysis of MassIve Data STreams 
(AMIDST) consortium, in collaboration with the automaker Daimler, devised a 
Bayesian network that can recognize maneuvers by other vehicles and increase 
driving safety. You can read more about this project and see the complex Bayesian 
network at http://project.amidsttoolbox.com/use-cases/identification- 
and-interpretation-of-maneuvers-in-traffic.html.

FIGURE 3-5:  
A visualization of 
the decision tree 

built from the 
play-tennis data.

http://project.amidsttoolbox.com/use-cases/identification-and-interpretation-of-maneuvers-in-traffic.html
http://project.amidsttoolbox.com/use-cases/identification-and-interpretation-of-maneuvers-in-traffic.html
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Deciding between automated  
and guided learning
The tree structure used throughout the chapter must have some sort of start. You 
must either guide the creation of the tree structure, or you must allow for auto-
mated creation. A guided method often relies on

 » Historic data

 » Prior expert knowledge (a guess based on experience)

 » Premodeled data created through various means, such as experimentation or 
previous analysis

An automated method takes a different route. Rather than rely on human input, 
this route reviews the data and automatically generates the tree. You can divide 
this approach into two tasks:

 » Structure learning: Create a tree structure based on the connectivity 
expressed in the data.

 » Parameter learning: Given a particular kind of tree structure, calculate the 
parameters used to create it.

These kinds of learning see use when working with extremely complex data. You 
can read about two significant uses of these learning approaches:

 » Comparison of automatic and guided learning for Bayesian networks to 
analyze pipe failures in the water distribution system (https://www.
sciencedirect.com/science/article/pii/S0951832017309377)

 » Construction and application of Bayesian networks in flood decision support-
ing system (https://ieeexplore.ieee.org/abstract/document/ 
1174468)

Considering the Use of Bayesian  
Linear Regression

Linear regression used on its own is a simple prediction methodology that relies 
on the use of data points, as described in Chapter 1 of this minibook. The problem 
is that the technique doesn’t work well when you have insufficient data or suffer 

https://www.sciencedirect.com/science/article/pii/S0951832017309377
https://www.sciencedirect.com/science/article/pii/S0951832017309377
https://ieeexplore.ieee.org/abstract/document/1174468
https://ieeexplore.ieee.org/abstract/document/1174468
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from a poor data distribution. Bayesian linear regression can overcome these 
problems by using the priors on the coefficients and noise so that in the absence 
of data, the priors can take over. More important, you can now use Bayes to deter-
mine the confidence level of the data in the following ways:

 » Calculate the confidence level of the estimated linear relation

 » Determine the full posterior distribution

 » Assess the estimated noise level

 » Assess the estimated gradient

 » Determine the direction of steepest ascent

 » Discover the location of an optimum or saddle-point

This particular technique enables you to fill in missing data. You can see  
the effect of this strategy demonstrated in the articles found at https:// 
towardsdatascience.com/bayesian-linear-regression-in-python-using- 
machine-learning-to-predict-student-grades-part-1-7d0ad817fca5 and 
https://towardsdatascience.com/bayesian-linear-regression-in-python- 
using-machine-learning-to-predict-student-grades-part-2-b72059a8ac7e.

Considering the Use of Bayesian  
Logistic Regression

Logistic regression helps you make predictions based on one or more inputs, as 
described in Chapter 2 of this minibook. For example, it could predict whether a 
person will get cancer based on weight and smoking habits. It works on discrete 
values, versus the continuous values used by linear regression. Adding Bayes to 
the mix helps ascertain the confidence level of a particular analysis. For example, 
it’s now possible to say that if someone smokes and is overweight, they will get 
cancer with a confidence factor of so many percent. However, it goes further than 
that by assigning a prior to each of the independent values, giving them a weight 
of a sort in the calculation. With this in mind, here are the benefits of using Bayes-
ian logistic regression:

 » The output consists of a range of inferential solutions, rather than a 
point estimate.

 » Starts with prior information, rather than just a belief in the calculation.

 » Updating the prediction becomes possible based on changing evidence.

https://towardsdatascience.com/bayesian-linear-regression-in-python-using-machine-learning-to-predict-student-grades-part-1-7d0ad817fca5
https://towardsdatascience.com/bayesian-linear-regression-in-python-using-machine-learning-to-predict-student-grades-part-1-7d0ad817fca5
https://towardsdatascience.com/bayesian-linear-regression-in-python-using-machine-learning-to-predict-student-grades-part-1-7d0ad817fca5
https://towardsdatascience.com/bayesian-linear-regression-in-python-using-machine-learning-to-predict-student-grades-part-2-b72059a8ac7e
https://towardsdatascience.com/bayesian-linear-regression-in-python-using-machine-learning-to-predict-student-grades-part-2-b72059a8ac7e
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 » Reduces potential bias in a prediction based on features that may not 
significantly contribute to an outcome.

 » Potentially improves the overall accuracy of a prediction.

It’s important to know that these advantages are crucial in certain fields, 
such as medicine. The article at https://academic.oup.com/aje/article/ 
153/12/1222/124010 discusses the use of Bayesian logistic regression in improv-
ing the accuracy of disease predictions for situations in which some features have a  
small probability (such as the effect of smoking on fetus health). You can see an  
example of building a Bayesian logistic regression using Python and  
PyMC3 at https://towardsdatascience.com/building-a-bayesian-logistic- 
regression-with-python-and-pymc3-4dd463bbb16.

https://academic.oup.com/aje/article/153/12/1222/124010
https://academic.oup.com/aje/article/153/12/1222/124010
https://towardsdatascience.com/building-a-bayesian-logistic-regression-with-python-and-pymc3-4dd463bbb16
https://towardsdatascience.com/building-a-bayesian-logistic-regression-with-python-and-pymc3-4dd463bbb16
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Learning with K-Nearest 
Neighbors

Previous chapters in this minibook demonstrate that you have multiple 
options when it comes to performing regression and classification tasks. 
The K-Nearest Neighbors (KNN) algorithm is another way to perform these 

tasks (along with others) and it has its own sets of pros and cons. The chapter 
begins by introducing you to KNN and showing you some of the more basic tasks 
you can perform with it. Along the way, you discover how KNN differs from other 
methods of performing both regression and classification.

The next part of the chapter discusses tuning. The k parameter provides the means 
to tune your algorithm. The need for tuning is high with KNN because of the way 
it works. This part of the chapter helps you understand, through demonstration, 
why the k parameter is so important and how to choose one correctly.

The final sections of this chapter look at regression and classification. You use 
regression to predict future values and classification to determine the type of 
something. Both tasks are essential in machine learning and deep learning. How-
ever, you can employ regression and classification in a substantial number of 
other ways.

Chapter 4

IN THIS CHAPTER

 » Understanding K-Nearest Neighbors 
in a basic way

 » Working with the right k parameter

 » Using KNN to perform regression

 » Using KNN to perform classification
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You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears in 
the DSPD_0304_KNN.ipynb source code file for Python and the DSPD_R_0304_KNN.
ipynb source code file for R. See the Introduction for details on how to find these 
source files.

Considering the History of  
K-Nearest Neighbors

Some confusion surrounds the history of KNN, partly because it’s the work of 
so many people. In many cases, articles ascribe the initial idea to Evelyn Fix and  
J.  L. Hodges, as described in an unpublished U.S.  Air Force School of Aviation  
Medicine report in 1951 (http://www.scholarpedia.org/article/K-nearest_ 
neighbor).

The paper must have gotten lost, because it wasn’t until 1967 that Thomas 
M. Cover and Peter E. Hart worked out some of the formal KNN properties. The 
history of KNN shows that the methodology relies on incremental innovations:

 » 1970: M. E. Hellman added new rejection approaches.

 » 1975: Keinosuke Fukunaga and Larry D. Hostetler refined density estimates 
(with respect to the Bayes error rate).

 » 1976: Sahibsingh A. Dudani introduced a distance-weighted KNN rule (WKNN).

 » 1978: T. Bailey and A. K. Jain reexamined the relationship between unweighted 
KNN and WKNN, showing that WKNN can achieve a lower error rate in some 
cases.

 » 1983: A. Jozwik developed a fuzzy KNN classification method.

 » 1985: James M. Keller, Michael R. Gray, and James A. Givens presented three 
methods for using the fuzzy KNN classification method.

 » 2000: Sergio Bermejo and Joan Cabestany presented adaptive soft learning 
KNN classifiers.

Probably a great many other people have contributed to KNN, so it’s hard to say 
that KNN as it appears today is the result of any one person’s work. However, the 
idea for KNN didn’t come out of the blue, nor was it some late-night inspira-
tion. Some references say that KNN has much older sources (see http://37steps.
com/4370/nn-rule-invention/ for details).

http://www.scholarpedia.org/article/K-nearest_neighbor
http://www.scholarpedia.org/article/K-nearest_neighbor
http://37steps.com/4370/nn-rule-invention/
http://37steps.com/4370/nn-rule-invention/
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One of these inspirational sources is Occam’s razor (http://math.ucr.edu/home/
baez/physics/General/occam.html), which essentially says that the hypothesis 
with the fewest assumptions is probably the correct one. You can actually find this 
rule stated in so many ways that it boggles the mind, but the basic idea is always 
the same: Simple is better.

Even though Occam performed his work in the fourteenth century, some sources 
assert that Occam’s work relied heavily on the still older work of Ibn al-Haytham 
(965 to 1040) (http://www.ibnalhaytham.com/). This scientist used a precursor 
of the modern scientific method to explain many things about how the eye acts as 
a light sensor, and he demonstrated that the brain actually sees the light. In short, 
KNN is one of the few algorithms that you really can’t pin down as having been 
invented at any particular time. As with many good scientific methods, it has been 
in development for a long time.

Learning Lazily with K-Nearest Neighbors
This section talks about the basics of KNN: how and why they work. You begin by 
considering the basis of KNN and work through several examples in the sections 
that follow.

Understanding the basis of KNN
KNN isn’t about building rules from data based on coefficients or probability. 
Rather, KNN works on the basis of similarities. When you have to predict some-
thing like a class, you may do best by finding the most similar observations to the 
one you want to classify or estimate. You can then derive the answer you need 
from the similar cases.

Observing how many observations are similar doesn’t imply learning something, 
but rather measuring. Because KNN isn’t learning anything, it’s considered lazy, 
and you’ll hear it referenced as a lazy learner or an instance-based learner. The 
idea is that similar premises usually provide similar results, and you don’t want to 
forget to get such low-hanging fruit before trying to climb the tree!

The algorithm is fast during training because it only has to memorize data about 
the observations. It actually calculates more during predictions. When it encoun-
ters too many observations, the algorithm can become slow and memory consum-
ing. You’re best advised not to use it with big data, or predicting anything may 
take almost forever! Moreover, this simple and effective algorithm works better 
when you have distinct data groups without too many variables involved because 
the algorithm is also sensitive to the dimensionality curse.

http://math.ucr.edu/home/baez/physics/General/occam.html
http://math.ucr.edu/home/baez/physics/General/occam.html
http://www.ibnalhaytham.com/


338      BOOK 3  Manipulating Data Using Basic Algorithms

The curse of dimensionality happens as the number of variables increases.  
Consider a situation in which you’re measuring the distance between observa-
tions and, as the space becomes larger and larger, it becomes difficult to find real 
neighbors — a problem for KNN, which sometimes mistakes a far observation for 
a near one. Rendering the idea is just like playing chess on a multidimensional 
chessboard. When playing on the classic 2-D board, most pieces are near, and you 
can more easily spot opportunities and menaces for your pawns when you have 
32 pieces and 64 positions. However, when you start playing on a 3-D board, such 
as those found in some sci-fi films, your 32 pieces can become lost in 512 possible 
positions. Now just imagine playing with a 12-D chessboard. You can easily mis-
understand what is near and what is far, which is what happens with KNN.

You can still make KNN smart in detecting similarities between observations by 
removing redundant information and simplifying the data dimensionality using 
data-reduction techniques.

Predicting after observing neighbors
For an example showing how to use KNN, you can start with the following digits 
dataset, also used in the “Considering when classes are more” section of Book 3, 
Chapter 2, which relies on logistic regression to perform classification. KNN is 
particularly useful, just like Naïve Bayes, when you have to predict many classes, 
or in situations that require you to build too many models or rely on a complex 
model.

from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
digits = load_digits()
train = range(0, 1700)
test = range(1700, len(digits.data))
pca = PCA(n_components = 25)
pca.fit(digits.data[train])
X = pca.transform(digits.data[train])
y = digits.target[train]
tX = pca.transform(digits.data[test])
ty = digits.target[test]

The KNN algorithm is quite sensitive to outliers. Moreover, you have to rescale 
your variables and remove some redundant information. In this example, you use 
Principle Component Analysis (PCA) (see https://towardsdatascience.com/ 
a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c for a 
discussion of PCA when used alone) to perform the analysis.

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
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Rescaling is not necessary because the data represents pixels, which means that 
it’s already scaled. You can avoid the problem with outliers by keeping the neigh-
borhood small, that is, by not looking too far for similar examples.

Knowing the data type can save you a lot of time and many mistakes. For exam-
ple, in this case, you know that the data represents pixel values. Doing Exploratory 
Data Analysis (EDA) (as described in the “Understanding variable transforma-
tions” section of Book 3, Chapter 1) is always the first step and can provide you 
with useful insights, but getting additional information about how the data was 
obtained and what the data represents is also a good practice and can be just as 
useful. To see this task in action, you reserve cases in tX and try a few cases that 
KNN won’t look up when looking for neighbors:

from sklearn.neighbors import KNeighborsClassifier
kNN = KNeighborsClassifier(n_neighbors=5, p=2,
                           metric='euclidean')
kNN.fit(X, y)

The output shows the actual classifier configuration:

KNeighborsClassifier(algorithm='auto', leaf_size=30,
           metric='euclidean', metric_params=None,
           n_jobs=None, n_neighbors=5, p=2,
           weights='uniform')

KNN uses a distance measure to determine which observations to consider as pos-
sible neighbors for the target case. The discussion of the DistanceMetric class at 
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
DistanceMetric.html tells about the available options. You can easily change the 
predefined distance using the p parameter:

 » When p is 2, use the Euclidean distance, which is the distance between two 
points on a plane (a concept that you likely studied at school). In a K-means 

REAL-WORLD USE OF PCA AND KNN
The techniques you see in this chapter also see use in the real world. For example, 
look at the article at https://www.ncbi.nlm.nih.gov/pubmed/19514813, which 
describes using PCA-based KNN to locate diseased tissue in the colon. The use of this 
technique in a real-world setting enables the medical community to diagnose problems 
earlier and with greater accuracy, saving lives in the process.

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
https://www.ncbi.nlm.nih.gov/pubmed/19514813
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application, each data point is a vector of features, so when comparing the 
distance of two points, you do the following:

1. Create a list containing the differences of the elements in the two vectors.

2. Square all the elements of the difference vector.

3. Calculate the square root of the summed elements.

In the end, the Euclidean distance is really just a big sum. When the variables 
making up the difference vector are significantly different in scale from each 
other, you end up with a distance dominated by the elements with the largest 
scale. Rescaling the variables is important so that they use a similar scale 
before applying the K-means algorithm. You can use a fixed range or a 
statistical normalization with zero mean and unit variance to achieve this goal.

 » When p is 1, use the Manhattan distance metric, which is the absolute 
distance between observations. In a 2-D square, when you go from one 
corner to the opposite one, the Manhattan distance is the same as walking 
the perimeter, whereas Euclidean is like walking on the diagonal. Although the 
Manhattan distance isn’t the shortest route, it’s a more realistic measure than 
Euclidean distance, and it’s less sensitive to noise and high dimensionality.

Usually, the Euclidean distance is the right measure, even though the KNeigh-
borsClassifier default is the Minkowski distance (https://people.revoledu.
com/kardi/tutorial/Similarity/MinkowskiDistance.html). Sometimes the  
Euclidean distance can give you worse results, especially when the analysis 
involves many correlated variables. The following code shows that the analysis 
seems fine using the Euclidean distance in this case:

print('Accuracy: %.3f' % kNN.score(tX,ty) )
print('Prediction: %s Actual: %s'
      % (kNN.predict(tX[-15:,:]),ty[-15:]))

The code returns the accuracy of 99 percent for this example and a sample of the 
predictions you can compare with the actual values in order to spot differences:

Accuracy: 0.990
Prediction: [2 2 5 7 9 5 4 8 1 4 9 0 8 9 8]
    Actual: [2 2 5 7 9 5 4 8 8 4 9 0 8 9 8]

Even though this example does well with the Euclidean distance, you may need to 
try other distance measures to get accurate results with your data. Verifying the 
results is always the best idea.

https://people.revoledu.com/kardi/tutorial/Similarity/MinkowskiDistance.html
https://people.revoledu.com/kardi/tutorial/Similarity/MinkowskiDistance.html
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Choosing the k parameter wisely
A critical parameter that you have to define in KNN is k. As k increases, KNN 
considers more points for its predictions, and the decisions are less influenced by  
noisy instances that could exercise an undue influence. Your decisions are based 
on an average of more observations, and they become more solid. When the  
k value you use is too large, you start considering neighbors that are too far,  
sharing less and less with the case you have to predict.

It’s an important trade-off. When the value of k is less, you consider a more 
homogeneous pool of neighbors but can more easily make an error by taking the 
few similar cases for granted. When the value of k is more, you consider more 
cases at a higher risk of observing neighbors that are too far or that are outliers. 
Getting back to the previous example with handwritten digit data, you can experi-
ment with changing the k value, as shown in the following code:

for k in [1, 5, 10, 50, 100, 200]:
    kNN = KNeighborsClassifier(n_neighbors=k, p=2,
                               metric='euclidean')
    kNN.fit(X, y)
    print('for k = %3i accuracy is %.3f'
          % (k, kNN.score(tX, ty))

After running this code, you get an overview of what happens when k changes and 
determine the value of k that best fits the data:

for k =   1 accuracy is 0.979
for k =   5 accuracy is 0.990
for k =  10 accuracy is 0.969
for k =  50 accuracy is 0.959
for k = 100 accuracy is 0.959
for k = 200 accuracy is 0.907

Through experimentation, you find that setting n_neighbors (the parameter rep-
resenting k) to 5 is the optimum choice, resulting in the highest accuracy. Using 
just the nearest neighbor (n_neighbors =1) isn’t a bad choice, but setting the 
value above 5 instead brings decreasing results in the classification task.

As a rule of thumb, when your dataset doesn’t have many observations, set k as a 
number near the squared number of available observations. However, no general 
rule exists, and trying different k values is always a good way to optimize your 
KNN performance. Always start from low values and work toward higher values.
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Leveraging the Correct k Parameter
The k parameter is the one you can work on tuning to make a KNN algorithm per-
form well in prediction and regression. The following sections describe how to use 
the k parameter to tune the KNN algorithm.

Understanding the k parameter
The k value, an integer number, is the number of neighbors that the algorithm 
has to consider in order to figure out an answer. The smaller the k parameter, the 
more the algorithm will adapt to the data you are presenting, risking overfitting 
but nicely fitting complex separating boundaries between classes. The larger the 
k parameter, the more it abstracts from the ups and downs of real data, which 
derives nicely smoothed curves between classes in data but does so at the expense 
of accounting for irrelevant examples.

As a rule of thumb, first try the nearest integer of the square root of the num-
ber of examples available as a k parameter in KNN.  For instance, if you have 
1,000 examples, start with k = 31 (or k = 32 because the actual square root is 
31.62277660168379) and then decrease the value in a grid search backed up by 
cross-validation.

Using irrelevant or unsuitable examples is a risk that a KNN algorithm takes as 
the number of examples it uses for its distance function increases. The previous 
illustration of the problem of data dimensions shows how to compute a well- 
ordered data space as a library in which you could look for similar books in the 
same bookshelf, bookcase, and section. However, things won’t look so easy when 
the library has more than one floor. At that point, books upstairs and downstairs 
are not necessarily similar, therefore being near but on a different floor won’t 
assure that the books are similar. Adding more dimensions weakens the role of 
useful ones, but that is just the beginning of your trouble.

Now imagine having more than the three dimensions in daily life (four if you con-
sider time). The more dimensions, the more space you gain in your library. (As 
in geometry, you multiply dimensions to get an idea of the volume.) At a certain 
point, you will have so much space that your books will fit easily with space left 
over. For instance, you could have 20 binary variables, with each representing a 
dimension — but think of the dimensions as providing separation, as with a cat-
egory. Books on space-based science fiction that include dolphins could appear 
on one bookshelf, in a particular bookcase, in a particular section, on a particular 
floor, at a particular time (and so on, until you come up with 20 levels of separa-
tion). You could have 2 raised to the 20th power combinations; that is, 1,048,576 
possible different dimensions — places to put books. It’s great to have a million 
book locations, but if you don’t have a million books to fill them (so there is at 
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least one book in each location), most of your library will be empty. So you obtain 
a book and then look for similar books to place in the same bookcase (those that 
fulfill all the requirements for all 20 dimensions). The chances of finding two 
books that are so alike that they meet the same precise values for 20 dimensions 
are slim, so you end up putting the next book in an empty location, but still, your 
library is relatively empty. Think about it: You start with The Hitchhiker’s Guide to 
the Galaxy and end up having a book on gardening as its nearest neighbor. This 
is the curse of dimensionality. The more dimensions, the more likely you are to 
experience some false similarity, misunderstanding far for near.

Using the right-sized k parameters alleviates the problem because the more 
neighbors you have to find, the further KNN has to look — but you have other 
remedies. PCA can compress the space, making it denser and removing noise and 
irrelevant, redundant information. In addition, feature selection can do the trick, 
selecting only the features that can really help KNN find the right neighbors.

KNN is an algorithm that’s sensitive to outliers. Neighbors on the boundaries of 
your data cloud in the data space could be outlying examples, causing your pre-
dictions to become erratic. You need to clean your data before using it. Running 
a K-means first can help you identify outliers gathered into groups of their own. 
(Outliers love to stay in separate groups; you can view them as the hermit types 
in your data.) Also, keeping your neighborhood large can help you minimize (but 
sometimes not avoid completely) the problem at the expense of a lower fit to the 
data (more bias than overfitting).

Experimenting with a flexible algorithm
The KNN algorithm has slightly different implementations in R and Python. In 
R, the algorithm is found in the library named class. The function is just for 
classification and uses only the Euclidean distance for locating neighbors. It does 
offer a convenient version with automatic cross-validation for discovering the 
best k value. There’s also another R library, FNN (https://cran.r-project.org/
web/packages/FNN/index.html), which contains one KNN variant for classifica-
tion and another for regression problems. The peculiarity of the FFN functions is 
that they can deal with the complexity of distance computations using different 
algorithms, but the Euclidean distance is the only distance available. (See the R 
downloadable source for additional details.)

The Python experiment with KNN uses the Python class from Scikit-learn and 
demonstrates how such a simple algorithm is quite adept at learning shapes and 
nonlinear arrangements of examples in the data space. The block of code prepares 
a tricky dataset: In two dimensions, two classes are arranged in bull’s-eye con-
centric circles, as shown in Figure 4-1.

https://cran.r-project.org/web/packages/FNN/index.html
https://cran.r-project.org/web/packages/FNN/index.html


344      BOOK 3  Manipulating Data Using Basic Algorithms

import numpy as np
from sklearn.datasets import make_circles, make_blobs
strange_data  = make_circles(n_samples=500, shuffle=True,
                             noise=0.15, random_state=101,
                             factor=0.5)
center = make_blobs(n_samples=100, n_features=2,
                    centers=1, cluster_std=0.1,
                    center_box=(0, 0))
first_half    = np.row_stack((strange_data[0][:250,:],
                center[0][:50,:]))
first_labels  = np.append(strange_data[1][:250],
                np.array([0]*50))
second_half   = np.row_stack((strange_data[0][250:,:],
                center[0][50:,:]))
second_labels = np.append(strange_data[1][250:],
                np.array([0]*50))
 
%matplotlib inline
import matplotlib.pyplot as plt
plt.scatter(first_half[:,0], first_half[:,1], s=2**7,
    c=first_labels, edgecolors='white',
            alpha=0.85, cmap='winter')
plt.grid() # adds a grid
plt.show() # Showing the result

After having built the dataset, you can test the experiment by setting the classifi-
cation algorithm to learn the patterns in data after fixing a neighborhood of 3 and 
setting the weights to be uniform (Scikit-learn allows you to weight less distant 

FIGURE 4-1:  
The bull’s-eye 

dataset, a 
nonlinear cloud 
of points that is 

difficult to learn.
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observations when it’s time to average them or pick the most frequent obser-
vations), and the Euclidean distance as metric. Scikit-learn algorithms, in fact, 
allow you to both regress and classify using different metrics, such as Euclidean, 
Manhattan, or Chebyshev, as shown in this Python code:

from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
 
for metric in ['euclidean', 'manhattan', 'chebyshev']:
    kNN = KNeighborsClassifier(n_neighbors=3,
                               weights='uniform',
                               algorithm='auto',
                               metric=metric)
    kNN.fit(first_half,first_labels)
    score = accuracy_score(y_true=second_labels,
                          y_pred=kNN.predict(second_half))
    print ("%(metric)s learning accuracy\
    score:%(value)0.3f" %
           {'metric':metric, 'value':score})

When you run this example, you see the outputs from each of the metrics, as 
shown here:

euclidean learning accuracy    score:0.930
manhattan learning accuracy    score:0.940
chebyshev learning accuracy    score:0.930

Implementing KNN Regression
Book 3, Chapter 1 introduces you to the grade prediction regression. The purpose 
of the regression is to determine what grade you receive after a certain number 
of hours of study. The “Advancing to multiple linear regression” section of that 
chapter even considers the effects of interruptions on your grade. The KNN ver-
sion of that example uses the same data, but the number of hours (x in the original 
example) must appear as a 2-D array instead of a simple range, as shown here:

hours = np.array(range(0,9)).reshape(-1, 1)
print(hours)
answers = (25, 33, 41, 53, 59, 70, 78, 86, 98)
interrupt = (0, -1, -3, -4, -5, -7, -8, -9, -11)
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The variables use names that are more readable in this case so that you can follow 
the code with greater ease. To create a model, you must combine the two features: 
answers and interrupt, into a single variable, features, using this code:

features = list(zip(answers, interrupt))
print(features)

The output is a list of tuples that match the number of answers that are correct to 
the effect of interruptions on those correct answers, like this:

[(25, 0), (33, -1), (41, -3), (53, -4), (59, -5),
 (70, -7), (78, -8), (86, -9), (98, -11)]

At this point, the data is ready to use. The process that the example uses is to fit 
the model, make a prediction, and then use the prediction to calculate a result. 
When working with KNN, what you actually receive as a prediction is the number 
of correct answers and the effect of the interruptions as separate answers. You 
must then calculate the actual result as a separate step. Here is the code needed to 
perform the required tasks:

from sklearn.neighbors import KNeighborsRegressor
 
gradeModel = KNeighborsRegressor(n_neighbors=2)
gradeModel.fit(hours, features)
 
prediction = gradeModel.predict([[6]])
print(prediction)
 
correct = prediction[0][0] + prediction[0][1]
print('You will answer {0} questions correctly.'.format(
    correct))

The outputs show the result of the regression and the calculated result:

[[74.  -7.5]]
You will answer 66.5 questions correctly.

In comparing the example in this chapter with the one found in Book 3, Chapter 1, 
you should note that the answer in that chapter is 78.4 for the number of correct 
answers, while this example predicts 74 correct answers. There is a difference 
between analysis methods, so you always need to consider which one provides 
you with the best results. The following code replicates the plot shown in Book 3, 
Chapter 1, Figure 1-2:
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plt.scatter(hours, answers)
plt.scatter(hours, interrupt)
plt.legend(['Grades', 'Interruptions'])
 
studyData_pred = gradeModel.predict(hours)
plt.plot(hours, studyData_pred)
plt.show()

The output shown in Figure 4-2 tells you that the KNN approach models the data 
points differently than multiple linear regression does.

Implementing KNN Classification
No matter if the problem is to guess a number or a class, the idea behind the learn-
ing strategy of the K-Nearest Neighbors (KNN) algorithm is always the same. The 
algorithm finds the most similar observations to the one you have to predict and 
from which you derive a good intuition of the possible answer by averaging the 
neighboring values, or by picking the most frequent answer class among them.

The learning strategy in a KNN is more like memorization. It’s just like remem-
bering what the answer should be when the question has certain characteris-
tics (based on circumstances or past examples) rather than really knowing the 
answer, because you understand the question by means of specific classification 
rules. In a sense, KNN is often defined as a lazy algorithm because no real learning 
is done at the training time — just data recording.

FIGURE 4-2:  
The KNN 

approach 
models the data 
differently than 
multiple linear 

regression.
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Being a lazy algorithm implies that KNN is quite fast at training but very slow at 
predicting. (Most of the searching activities and calculations on the neighbors is 
done at that time.) It also implies that the algorithm is quite memory intensive 
because you have to store your dataset in memory (which means that the number 
of possible applications is limited when dealing with big data). Ideally, KNN can 
make the difference when you’re working on classification and you have many 
labels to deal with (for instance, when a software agent posts a tag on a social 
network or when proposing a product-selling recommendation). KNN can easily 
deal with hundreds of labels, whereas other learning algorithms have to specify a 
different model for each label.

Usually, KNN works out the neighbors of an observation after using a measure of 
distance such as Euclidean (the most common choice) or Manhattan (works bet-
ter when you have many redundant features in your data). No absolute rules exist 
concerning what distance measure is best to use. It really depends on the imple-
mentation you have. You also have to test each distance as a distinct hypothesis 
and verify by cross-validation as to which measure works better with the problem 
you’re solving.

The example in this section answers the question of whether someone should 
drive based on conditions. The first condition is pertains to the road: Dry, Damp, 
or Flooded. The second condition is the environment: Sunny, Cloudy, or Raining. 
These conditions are the features used to create the input for the model. The third 
element is the target variable, which simply says No or Yes based on the two con-
ditions. Here is the data used for the example:

road = ['Dry', 'Dry', 'Dry', 'Damp', 'Damp', 'Damp',
        'Flooded', 'Flooded', 'Flooded']
weather = ['Sunny', 'Cloudy', 'Raining', 'Sunny',
           'Cloudy', 'Raining', 'Sunny', 'Cloudy',
           'Raining']
drive = ['Yes', 'Yes', 'Yes', 'Yes', 'Maybe', 'No', 'No',
         'No', 'No']

Obviously, the computer would have difficulty using the labels provided, so you 
need to encode them in some way. For example, you could encode Damp as 0, Dry 
as 1, and Flooded as 2. Fortunately, Scikit-learn performs this task for you, as 
shown here:

from sklearn import preprocessing
encoder = preprocessing.LabelEncoder()
 
roadEnc = encoder.fit_transform(road)
print(roadEnc)
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weatherEnc = encoder.fit_transform(weather)
print(weatherEnc)
driveEnc = encoder.fit_transform(drive)
print(driveEnc)

The output shows that the encoder automatically encodes the data in alphabetical 
order so that even though Sunny comes first in the weather list, it appears as a 2 
in the encoding:

[1 1 1 0 0 0 2 2 2]
[2 0 1 2 0 1 2 0 1]
[1 1 1 1 1 0 0 0 0]

Before you go further, you must combine the features into a single list, like this:

features = list(zip(roadEnc, weatherEnc))
print(features)

You end up with a series of tuples that match every road condition with a weather 
condition, like this:

[(1, 2), (1, 0), (1, 1), (0, 2), (0, 0), (0, 1), (2, 2),
 (2, 0), (2, 1)]

At this point, you can fit the model, ask a question, and get a result. The following 
code shows how the model performs this task for damp and cloudy conditions:

answers = ['Maybe', 'No', 'Yes']
 
driveModel = KNeighborsClassifier(n_neighbors=3,
                                  metric='manhattan')
driveModel.fit(features, driveEnc)
 
prediction = driveModel.predict([[0, 0]])
print('Should I drive? {0}'.format(
    answers[prediction[0]]))

The output shows that the model is undecided in this particular case:

Should I drive? Maybe
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Leveraging Ensembles 
of Learners

After discovering so many complex and powerful algorithms, you might 
be surprised to discover that a summation of simpler machine learning 
 algorithms can often outperform the most sophisticated solutions. Such 

is the power of ensembles, which are groups of models made to work together to 
produce better predictions. The amazing thing about ensembles is that they are 
made up of groups of singularly nonperforming algorithms.

Ensembles don’t work much differently from the collective intelligence of crowds, 
through which a set of wrong answers, if averaged, provides the right answer. Sir 
Francis Galton, the British, Victorian-era statistician known for having formu-
lated the idea of correlation, narrated the anecdote of a crowd in a county fair that 
could guess correctly the weight of an ox after all the people’s previous answers 
were averaged. You can find similar examples everywhere and easily re-create the 
experiment by asking friends to guess the number of sweets in a jar and averaging 
their answers. The more friends who participate in the game, the more precise the 
averaged answer.

Luck isn’t what’s behind the result; it’s simply the law of large numbers in action 
(see more at https://www.britannica.com/science/law-of-large-numbers).

Chapter 1

IN THIS CHAPTER

 » Considering decision trees

 » Performing predictions

 » Using gradient descent

 » Working with multiple predictors

https://www.britannica.com/science/law-of-large-numbers
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Even though an individual has a slim chance of getting the right answer, the guess 
is better than a random value. By accumulating guesses, the wrong answers tend 
to distribute themselves around the right one. Opposite wrong answers cancel 
each other when averaging, leaving the pivotal value around which all answers are 
distributed, which is the right answer. You can employ such an incredible fact in 
many practical ways (consensus forecasts in economics and political sciences are 
examples) and in machine learning.

You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears 
in the  DSPD_0401_Random_Forests.ipynb source code file for Python and 
DSPD_R_0401_Random_Forests.ipynb source code file for R. See the Introduction 
for details on how to find these source files.

Leveraging Decision Trees
Ensembles are based on a recent idea (formulated around 1990), but they lever-
age older tools, such as decision trees, which have been part of machine learning 
since 1950. Texts such as Machine Learning For Dummies, by John Paul Mueller and 
Luca Massaron (Wiley), cover decision trees as simple learners. You can also find 
an overview of them at https://towardsdatascience.com/decision-trees-in- 
machine-learning-641b9c4e8052. Decision trees at first looked quite promising 
and appealing to practitioners because of their ease of use and understanding. 
After all, a decision tree can easily do the following:

 » Handle mixed types of target variables and predictors, with very little or no 
feature preprocessing (missing values are handled almost automatically)

 » Ignore redundant variables and select only the relevant features

 » Work out-of-the box, with no complex hyperparameters to fix and tune

 » Visualize the prediction process as a set of recursive rules arranged in a tree 
with branches and leaves, thus offering ease of interpretation

Given the range of positive characteristics, you may wonder why practitioners 
slowly started distrusting decision trees after a few years. The main reason is that 
the resulting models often have high variance in the estimates.

To grasp the critical problem of decision trees better, you can consider the  problem 
visually. Think of the tricky situation of the bull’s-eye problem that requires 
a machine learning algorithm to approximate nonlinear functions (as neural net-
works do) or to transform the feature space (as when using a linear model with 

https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
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polynomial expansion or kernel functions in support vector machines). Figure 1-1  
shows the squared decision boundary of a single decision tree (on the left) as 
compared to an ensemble of decision trees (on the right).

Decision trees partition the feature space into boxes and then use the boxes for 
classification or regression purposes. When the decision boundary that separates 
classes in a bull’s-eye problem is an ellipse, decision trees can approximate it by 
using a certain number of boxes.

The visual example seems to make sense and might give you confidence when you 
see the examples placed far from the decision boundary. However, in proximity 
of the boundary, things are quite different from how they appear. The decision 
boundary of the decision tree is very imprecise, and its shape is extremely rough 
and squared. The issue is visible on bidimensional problems. It decisively worsens 
both as feature dimensions increase and when in the presence of noisy observations 
(observations that are somehow randomly scattered around the feature space). You 
can improve decision trees using some interesting heuristics that stabilize results 
from trees:

 » Keep only the correctly predicted cases to retrain the algorithm.

 » Build separate trees for misclassified examples.

 » Simplify trees by pruning the less decisive rules.

Apart from these heuristics, the best trick is to build multiple trees using different 
samples and then compare and average their results. The example in Figure 1-1, 
shown previously, indicates that the benefit is immediately visible. As you build 
more trees, the decision boundary gets smoother, slowly resembling the hypo-
thetical target shape.

FIGURE 1-1:  
Comparing a 

single decision 
tree output to 

an ensemble of 
 decision trees.
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Growing a forest of trees
Improving a decision tree by replicating it many times and averaging results to 
get a more general solution sounded like such a good idea that it spread, and 
 practitioners created various solutions. When the problem is a regression, the 
technique averages results from the ensemble. However, when the trees deal 
with a classification task, the technique can use the ensemble as a voting system, 
choosing the most frequent response class as an output for all its replications.

When using an ensemble for regression, the standard deviation, calculated from 
all the ensemble’s estimates for an example, can give you an estimate of how 
 confident you can be about the prediction. The standard deviation shows how 
good a mean is. For classification problems, the percentage of trees predicting a 
certain class is indicative of the level of confidence in the prediction, but you can’t 
use it as a probability estimate because it’s the outcome of a voting system.

Deciding on how to compute the solution of an ensemble happened quickly; find-
ing the best way to replicate the trees in an ensemble required more research and 
reflection. The first solution is pasting, that is, sampling a portion of your training 
set. Initially proposed by Leo Breiman, pasting reduces the number of training 
examples, which can become a problem for learning from complex data. It shows 
its usefulness by reducing the learning sample noise (sampling fewer examples 
reduces the number of outliers and anomalous cases). After pasting, Professor 
Breiman also tested the effects of bootstrap sampling (sampling with replace-
ment), which not only leaves out some noise (when you bootstrap, on average 
you leave out 37 percent of your initial example set) but also, thanks to sampling 
repetition, creates more variation in the ensembles, improving the results. This 
technique is called bagging (also known as bootstrap aggregation).

Bootstrapping is one of the validation alternatives. It’s a method long used to 
estimate the sampling distribution of statistics, which are presumed not to fol-
low a previously assumed distribution. Bootstrapping works by building a number 
(the more the better) of samples of size n (the original in-sample size) drawn with 
repetition. To draw with repetition means that the process could draw an example 
multiple times to use it as part of the bootstrapping resampling. Bootstrapping 
has the advantage of offering a simple and effective way to estimate the true error 
measure. In fact, bootstrapped error measurements usually have much less var-
iance than cross-validation ones. On the other hand, validation becomes more 
complicated because of the sampling with replacement, so your validation sample 
comes from the out-of-bootstrap examples. Moreover, using some training sam-
ples repeatedly can lead to a certain bias in the models built with bootstrapping.

Breiman noticed that results of an ensemble of trees improved when the trees dif-
fer significantly from each other (statistically, they’re uncorrelated), which leads 
to the last technique transformation: sampling from the training features. This 
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technique allows for the creation of mostly uncorrelated ensembles of trees. The 
approach performs predictions better than bagging. The transformation tweak 
samples both features and examples. Breiman, in collaboration with Adele Cutler, 
named the new ensemble Random Forests (RF).

Random Forests is a trademark of Leo Breiman and Adele Cutler (see https://www.
stat.berkeley.edu/~breiman/RandomForests/). For this reason, open source 
implementations often have different names, such as randomForest in R (see 
https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/ 
topics/randomForest) or RandomForestClassifier in Python’s Scikit-learn (see 
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble. 
RandomForestClassifier.html).

RF is a classification (naturally multiclass) and regression algorithm that uses 
a large number of decision tree models built on different sets of bootstrapped 
examples and subsampled features. Its creator strove to make the algorithm easy 
to use (little preprocessing and few hyperparameters to try) and understandable 
(the decision tree basis) that can democratize the access of machine learning to 
nonexperts. In other words, because of its simplicity and immediate usage, RF 
can allow anyone to apply machine learning successfully. The algorithm works 
through a few repeated steps:

1. Bootstrap the training set multiple times. The algorithm obtains a new set to 
use to build a single tree in the ensemble during each bootstrap.

2. Randomly pick a partial feature selection in the training set to use for finding 
the best split variable every time you split the sample in a tree.

3. Create a complete tree using the bootstrapped examples. Evaluate new 
subsampled features at each split. Don’t limit the full tree expansion to allow 
the algorithm to work better.

4. Compute the performance of each tree using examples you didn’t choose in 
the bootstrap phase (out-of-bag estimates, or OOB). OOB examples provide 
performance metrics without cross-validation or using a test set (equivalent to 
out-of-sample).

5. Produce feature importance statistics and compute how examples associate in 
the tree’s terminal nodes.

6. Compute an average or a vote on new examples when you complete all the 
trees in the ensemble. Declare for each of them the average estimate or the 
winning class as a prediction.

All these steps reduce both the bias and the variance of the final solution because 
the solution limits the bias. The solution builds each tree to its maximum possible 
extension, thus allowing a fine fitting of even complex target functions, which 

https://www.stat.berkeley.edu/~breiman/RandomForests/
https://www.stat.berkeley.edu/~breiman/RandomForests/
https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/randomForest
https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/randomForest
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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means that each tree is different from the others. It’s not just a matter of build-
ing on different bootstrapped example sets: Each split taken by a tree is strongly 
randomized, meaning that the solution considers only a random feature selection. 
Consequently, even if an important feature dominates the others in terms of pre-
dictive power, the times a tree doesn’t contain the selection allows the tree to find 
different ways of developing its branches and terminal leaves.

The main difference with bagging is this opportunity to limit the number of 
features to consider when splitting the tree branches. If the number of selected 
features is small, the complete tree will differ from others, thus adding uncor-
related trees to the ensemble. On the other hand, if the selection is small, the bias 
increases because the fitting power of the tree is limited. As always, determining 
the right number of features to consider for splitting requires that you use cross-
validation or OOB estimate results.

No problem arises in growing a high number of trees in the ensemble. You do 
need to consider the cost of the computational effort because completing a large 
ensemble takes a long time. A simple demonstration conveys how an RF algorithm 
can solve a simple problem using a growing number of trees. Python and R offer 
good implementations of the algorithm:

 » The Python implementation is easier to parallelize.

 » The R implementation has more parameters.

Seeing Random Forests in action
Because the test is computationally expensive, the example starts with the Python 
implementation. This example uses the digits dataset that you use in the previous 
chapter when challenging a support vector classifier:

import numpy as np
from sklearn import datasets
from sklearn.model_selection import validation_curve
from sklearn.ensemble import RandomForestClassifier
 
digits = datasets.load_digits()
X,y = digits.data, digits.target
series = [10, 25, 50, 100, 150, 200, 250, 300]
RF = RandomForestClassifier(random_state=101)
train_scores, test_scores = validation_curve(RF,
        X, y, 'n_estimators', param_range=series,
            cv=10, scoring='accuracy',n_jobs=-1)
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The example begins by importing functions and classes from Scikit-learn: numpy, 
the datasets module, the validation_curve function, and RandomForest 
Classifier. The last item is Scikit-learn’s implementation of RF for classifi-
cation problems. The validation_curve function is particularly useful for the 
tests because it returns the cross-validated results of multiple tests performed on 
ensembles made of differing numbers of trees (similar to learning curves).

The example will build almost 11,000 decision trees. To make the example run 
faster, the code sets the n_jobs parameter to –1, allowing the algorithm to use all 
available CPU resources. This setting may not work on some computer configu-
rations, which means setting n_jobs to 1. Everything will work, but the process 
takes longer.

After completing the computations, the code outputs a plot that reveals how the 
RF algorithm converges to a good accuracy after building a few trees, as shown in 
Figure 1-2. It also shows that adding more trees isn’t detrimental to the results, 
although you may see some oscillations in accuracy because of estimate variances 
that even the ensemble can’t control fully.

import matplotlib.pyplot as plt
%matplotlib inline
plt.figure()
plt.plot(series, np.mean(test_scores,axis=1), '-o')
plt.xlabel('number of trees')
plt.ylabel('accuracy')
plt.grid()
plt.show()

FIGURE 1-2:  
Seeing the 

 accuracy of 
ensembles of 

 different sizes.
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Understanding the importance measures
Random Forests algorithms have these benefits:

 » They fit complex target functions, but have little risk in overfitting.

 » They select the features they need automatically (although the random 
subsampling of features in branch splitting influences the process).

 » They are easy to tune up because they have few hyperparameters, and the 
most important one you should care is often just the number of subsampled 
features.

 » They offer OOB error estimation, saving you from setting up verification by 
cross-validation or test set.

Note that each tree in the ensemble is independent from the others (after all, they 
should be uncorrelated), which means that you can build each tree in parallel to 
the others. Given that all modern computers have multiprocessor and multithread 
functionality, they can perform computations of many trees at the same time, 
which is a real advantage of RF over other machine learning algorithms.

An RF ensemble can also provide additional output that could be helpful when 
learning from data. For example, it can tell you which features are more impor-
tant than others. You can build trees by optimizing a purity measure (entropy or 
gini index) so that each split chooses the feature that improves the measure the 
most. When the tree is complete, you check which features the algorithm uses at 
each split and sum the improvement when the algorithm uses a feature more than 
once. When working with an ensemble of trees, simply average the improvements 
that each feature provides in all the trees. The result shows you the ranking of the 
most important predictive features.

Practitioners evaluate the importance features in RFs using gini importance, which 
is also called mean decrease impurity. You can compute it in both Python and R algo-
rithm implementations. Importance estimation that uses mean decrease impu-
rity after building each tree replaces each feature with junk data and records the 
decrease in predictive power after doing so. If the feature is important, crowding 
it with casual data harms the prediction, but if it’s irrelevant, the predictions are 
unchanged. Reporting the average performance decrease in all trees that results 
from randomly changing the feature is a good indicator of a feature’s importance.

You can use importance output from RFs to select features to use in the RF or in 
another algorithm, such as a linear regression. The Scikit-learn algorithm ver-
sion offers a tree-based feature selection, which provides a way to select relevant 
features using the results from a decision tree or an ensemble of decision trees. 
You can use this kind of feature selection by employing the SelectFromModel 
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function found in the feature_selection module (see https://scikit- 
learn.org/stable/modules/generated/sklearn.feature_selection.Select 
FromModel.html).

Configuring your system for importance 
measures with Python
To make the example code work for checking importance measures in Python, 
you need to install the rfpimp (https://pypi.org/project/rfpimp/) package. 
The article at https://explained.ai/rf-importance/index.html tells why this 
particular package is so important. To install the package, you begin by opening 
an Anaconda Prompt (don’t use a standard command prompt or terminal window 
because neither has the required environmental setup). At the prompt, you type

conda install -c conda-forge rfpimp

and press Enter. The command runs for a while, seemingly doing nothing. 
 However, at some point you see a description of what conda will do, as shown in 
Figure 1-3. Simply type y and press Enter to install the package.

Seeing importance measures in action
To provide an interpretation of importance measures derived from RFs, this exam-
ple relies on the Boston Housing dataset (https://www.cs.toronto.edu/~delve/
data/boston/bostonDetail.html), which is easily accessible in both of the lan-
guages used for this book. The goal of this particular example is to determine 
which dataset features affect the price of a home the most.

FIGURE 1-3:  
Installing the 

rfpimp package 
in Python.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
https://pypi.org/project/rfpimp/
https://explained.ai/rf-importance/index.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
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The approach used for each of the languages is similar, as is the output. You 
can  find the R implementation of this code in the downloadable source files 
 mentioned at the beginning of the chapter. Here is the beginning Python code 
used for this example:

import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
 
boston = load_boston()
 
y = boston.target
X = pd.DataFrame(boston.data, columns =
                 boston.feature_names)
X_train, X_valid, y_train, y_valid = train_test_split(
    X, y, test_size = 0.8, random_state = 123)

The code begins by obtaining a copy of the Boston Housing dataset. Your language 
will determine precisely how the code performs this task, but the data is the same 
in all cases.

The task that this code is performing uses a numpy.ndarray, y, to hold the prices 
for each of the homes (obtained from boston.target). The X DataFrame contains 
a table of all the other values listed for the dataset with a heading containing the 
column names. The entire table contains 506 entries and 13 columns. You can see 
some other interesting manipulations of this dataset at https://medium.com/@ 
haydar_ai/learning-data-science-day-9-linear-regression-on-boston- 
housing-dataset-cd62a80775ef.

The train_test_split() function divides X and y into training and validation 
(testing) objects using a random pattern. Randomization ensures that you get 
better results when working with the data later. Normally, you’d make the ran-
domization completely random, but this example uses a random seed value of 
123 so that the results are repeatable. The splitting process uses 20 percent of the 
original dataset for training and 80 percent for validation, so X_train contains 101 
entries and X_valid contains 405. With the four datasets ready to go, it’s time to 
perform the regression using the following code:

from sklearn.ensemble import RandomForestRegressor
 
rf = RandomForestRegressor(n_estimators = 100,
                           n_jobs = -1,
                           oob_score = True,

https://medium.com/@haydar_ai/learning-data-science-day-9-linear-regression-on-boston-housing-dataset-cd62a80775ef
https://medium.com/@haydar_ai/learning-data-science-day-9-linear-regression-on-boston-housing-dataset-cd62a80775ef
https://medium.com/@haydar_ai/learning-data-science-day-9-linear-regression-on-boston-housing-dataset-cd62a80775ef
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                           bootstrap = True,
                           random_state = 123)
rf.fit(X_train, y_train)
 
print('R^2 Training Score: ', rf.score(X_train, y_train))
print('OOB Score: ', rf.oob_score_)
print('R^2 Validation Score: ', rf.score(X_valid,
                                         y_valid))

The regression begins by creating an RF estimator that uses 100 trees  
(n_estimators) to do its work. You want this task to complete as quickly as pos-
sible, so setting n_jobs to -1 tells the estimator to use all available CPUs. The 
estimator will rely on boostrap samples rather than use the entire dataset to begin 
building the trees. It will also output an OOB score. The results of fitting the model 
using rf.fit() follow.

R^2 Training Score:  0.9620949187819494
OOB Score:  0.7093667260280889
R^2 Validation Score:  0.8239084223508335

The training score tells you how well the model worked with the training data —  
the data that the model has already seen. The validation score tells you how the 
model performs with data that it hasn’t seen before. To get great results, the 
two numbers should be quite near 1.0 and similar as well. The OOB score tends 
to be lower than the validation score because it relies on data that is more fully 
randomized. The discussion at https://forums.fast.ai/t/oob-score-vs- 
validation-score/7859/2 tells you more about the differences.

Now that you have a model to use, you can calculate the importance measures. 
The following code shows one method for performing this task:

from sklearn.metrics import r2_score
from rfpimp import permutation_importances
 
def r2(rf, X_train, y_train):
    return r2_score(y_train, rf.predict(X_train))
 
perm_imp = permutation_importances(
    rf, X_train, y_train, r2)
print(perm_imp)

The code begins by creating the r2 function. This function accepts the RF esti-
mator, the X training, and the y training data as input. The output is a score that 
specifies the coefficient of determination, which is a fancy way of saying that it 

https://forums.fast.ai/t/oob-score-vs-validation-score/7859/2
https://forums.fast.ai/t/oob-score-vs-validation-score/7859/2
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tells you how well the model can predict an outcome — that is, whether the data 
points stay close to the regression line or stray far away from it. Obviously, the 
model is more accurate when the data points stay close to the line.

The actual calculation of which measure is most important takes place with the 
permutation_importances() function. The rfpimp package actually contains a 
number of importance functions, but the discussion at https://explained.ai/
rf-importance/index.html tells you that permutation importance (which avoids 
model parameter interpretation issues) provides the best result when working 
with Python. On the other hand, when working with R, you need to use the basic 
importance measure instead. After performing the calculation, you get the impor-
tance measures shown here:

         Importance
Feature
RM         0.788692
LSTAT      0.472561
DIS        0.059678
CRIM       0.054513
NOX        0.018895
AGE        0.015089
TAX        0.011688
B          0.009622
PTRATIO    0.008837
RAD        0.007896
INDUS      0.002389
ZN         0.000766
CHAS       0.000213

In looking at the data, you see that the number of rooms is most important in 
determining price, while the fact that the home borders the Charles River matters 
least. It makes sense that the number of rooms would have a heavy emphasis on 
the price, as would the economic status of the surrounding neighborhood.

Working with Almost Random Guesses
Thanks to bootstrapping, bagging produces variance reduction by inducing 
some variations in otherwise similar predictors. Bagging is most effective when 
the models created are different from each other and, though it can work with 
 different kinds of models, it mostly performs with decision trees. Bagging and its 
evolution, the RFs, aren’t the only ways to leverage an ensemble. The following 

https://explained.ai/rf-importance/index.html
https://explained.ai/rf-importance/index.html
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sections discuss another technique that relies on a process of guessing based on 
using the output of multiple weak learners to discover the answer to a part of the 
problem, and then put the pieces together to create the whole answer.

Understanding the premise
Instead of striving for ensemble elements’ independence, a totally contrarian 
strategy is to create interrelated ensembles of simple machine learning algo-
rithms to solve complex target functions. This approach is called boosting, which 
works by building models sequentially and training each model using information 
from the previous one. Numerous boosting algorithms exist, but these seem to be 
the most popular:

 » AdaBoost

 » GBM

 » XGBoost

Contrary to bagging, which prefers to work with fully grown trees, boosting uses 
biased models, which are models that can predict simple target functions well. 
Simpler models include decision trees with a single split branch (called stumps), 
linear models, perceptrons, and Naïve Bayes algorithms. These models may not 
perform well when the target function to guess is complex (they’re weak learn-
ers), but they can be trained fast and perform at least slightly better than a random 
lucky guess (which means that they can model a part of the target function).

Each of the algorithms in the ensemble guesses a part of the function well, 
so when summed together, they can guess the entire function. It’s a situ-
ation not too different from the story of the blind men and the elephant 
(https://americanliterature.com/author/james-baldwin/short-story/
the-blind-men-and-the-elephant).

In the story, a group of blind men needs to discover the shape of an elephant, but 
each man can feel only a part of the whole animal. One man touches the tusk, one 
the ears, one the proboscides, one the body, and one the tail, which are different 
parts of the entire elephant. Only when they put what each one learned separately 
together can they figure out the elephant’s shape. The information for the target 
function to guess is transmitted from one model to the other by modifying the 
original dataset so that the ensemble can concentrate on the parts of the dataset 
that have yet to be learned.

https://americanliterature.com/author/james-baldwin/short-story/the-blind-men-and-the-elephant
https://americanliterature.com/author/james-baldwin/short-story/the-blind-men-and-the-elephant
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Bagging predictors with AdaBoost
The first boosting algorithm formulated in 1995 is AdaBoost (short for Adaptive 
Boosting) by Yoav Freund and Robert Schapire. Most people use this particular 
algorithm for classification problems. It seeks to turn a series of poor learners into 
a single strong one. The math behind this algorithm can be a bit daunting, but you 
can read about it at https://towardsdatascience.com/boosting-algorithm- 
adaboost-b6737a9ee60c. Here’s a quick summary of what the algorithm actually 
does for you:

1. Transform each of the features in a dataset into predictions. Each prediction is 
actually a summary of the output of a number of weak learning models. You 
perform the transformation using this process:

a. Fit the classifiers to the dataset and choose the one with the lowest 
classification error.

b. Calculate the weight for each classifier in the ensemble. When a classifier’s 
output is better than a random guess, provide it with a positive value. Likewise, 
when a classifier’s output is worse than a random guess, provide it with a 
negative value. Consequently, each classifier adds to the output, even if it isn’t 
a good guesser.

2. Output the results as a vector of signs that show which class is most likely for a 
particular prediction. AdaBoost is a binary prediction algorithm, so you would 
see results that say a particular dataset entry is part of a particular class or not 
part of a particular class.

Both of the languages found in this book can perform analysis using AdaBoost, as 
described at the following:

 » Python: https://scikit-learn.org/stable/modules/ensemble.
html#adaboost

 » R: https://cran.r-project.org/web/packages/adabag/index.html

Getting the details about AdaBoost weighting
Note that the algorithm multiplies each model by an alpha value, which differs for 
each model. This is the weight of the model in the ensemble, and alpha is devised 
in a smart way because its value is related to the capacity of the model to produce 
the fewest prediction errors possible.

Alpha gets a larger value as the error of the model gets smaller. The algorithm 
multiplies models with fewer errors by larger alpha values, thus such models play 

https://towardsdatascience.com/boosting-algorithm-adaboost-b6737a9ee60c
https://towardsdatascience.com/boosting-algorithm-adaboost-b6737a9ee60c
https://scikit-learn.org/stable/modules/ensemble.html#adaboost
https://scikit-learn.org/stable/modules/ensemble.html#adaboost
https://cran.r-project.org/web/packages/adabag/index.html
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a more important role in the summation at the core of the AdaBoost algorithm. 
Models that produce more prediction errors are weighted less.

The role of the coefficient alpha doesn’t end with model weighting. Errors output 
by a model in the ensemble don’t simply dictate the importance of the model in 
the ensemble itself but also modify the relevance of the training examples used 
for learning. AdaBoost learns the data structure by using a simple algorithm a 
little at a time; the only way to focus the ensemble on different parts of the data 
is to assign weights. Assigning weights tells the algorithm to count an example 
according to its weight; therefore, a single example can count the same as two, 
three, or even more examples. You can also make an example disappear from 
the learning process by making it count less and less. When considering weights, 
reducing the cost function of the learning function becomes easier by working 
on the examples that weigh more (more weight = more cost function reduction). 
Using weights effectively guides the learning process.

Initially, the examples have the same contribution in the construction of the 
model. The optimization happens as usual. After creating the first model and esti-
mating a total error, the algorithm checks each example to determine whether 
the prediction is correct. If correctly predicted, nothing happens; each example’s 
weight remains the same as before. If misclassfied, each example has its weight 
increased and in the next iteration, examples with larger weight influence the 
model, placing a greater emphasis on finding a solution for the larger example.

At each iteration, the AdaBoost algorithm is guided by weights to work on the part 
of data that’s less predictable. In fact, you don’t need to work on data that the 
algorithm can predict well. Weighting is a smart solution for conditioning learn-
ing, and gradient boosting machines refine and improve the process. Notice that 
the strategy here is different from RF.  In RF, the goal is to create independent 
predictions; here, the predictors are chained together because earlier predictors 
determine how later predictors work. Because boosting algorithms rely on a chain 
of calculations, you can’t easily parallelize the computations, so they’re slower.

Consider the kinds of learning algorithms that work well with AdaBoost. Usu-
ally they are weak learners, which means that they don’t have much predictive 
power. Because AdaBoost approximates complex functions using an ensemble of 
its parts, using machine learning algorithms that train quickly and have a cer-
tain bias makes sense, so the parts are simple. Performing the task using weak 
learners with AdaBoost is like drawing a circle using a series of lines (where each 
weak learner is a line): Even though the line is straight, all you have to do is draw 
a polygon with as many sides as possible to approximate the circle. Commonly, 
decision stumps are the favored weak learner for an AdaBoost ensemble, but you 
can also successfully use linear models or Naïve Bayes algorithms.
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Seeing AdaBoost in action
The following example leverages the bagging function provided by Scikit-learn to 
determine whether decision trees, perceptron, or the K-Nearest Neighbors (KNN) 
algorithm is best for handwritten digits recognition. You previously saw this 
dataset used for the example in the “Seeing Random Forests in action”  section, 
earlier in this chapter.

import numpy as np
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import Perceptron
from sklearn.naive_bayes import BernoulliNB
from sklearn.model_selection import cross_val_score
from sklearn import datasets
 
digits = datasets.load_digits()
X,y = digits.data, digits.target

The first step is to obtain the required data. This means loading the data into 
memory and then extracting the necessary information. The data attribute con-
tains the information that the algorithm needs to learn, and the target attribute 
contains the label associated with each of the data elements. Now that the data is 
loaded, you can perform analysis on it, as shown here:

DT = cross_val_score(AdaBoostClassifier(
        DecisionTreeClassifier(),
        random_state=101) ,X, y,
        scoring='accuracy',cv=10)
P = cross_val_score(AdaBoostClassifier(
        Perceptron(max_iter=5), random_state=101,
        algorithm='SAMME') ,X, y,
        scoring='accuracy',cv=10)
NB = cross_val_score(AdaBoostClassifier(
        BernoulliNB(), random_state=101)
        ,X,y,scoring='accuracy',cv=10)
 
print ("Decision trees: %0.3f\nPerceptron: %0.3f\n"
       "Naive Bayes: %0.3f" %
       (np.mean(DT),np.mean(P), np.mean(NB)))
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In this case, you see three different weak classifiers: decision tree, perceptron, 
and multivariate Bernoulli Naïve Bayes (BernoulliNB) combined into an ensem-
ble. When working with the Perceptron() classifier, you need to set max_iter to 
define how long you want the classifier to keep working. Each of these classifiers 
has a different level of success in classifying the digits, as shown here:

Decision trees: 0.826
Perceptron: 0.909
Naive Bayes: 0.802

You can improve the performance of AdaBoost by increasing the number of ele-
ments in the ensemble until the cross-validation doesn’t report worsening results. 
The parameter you can increase is n_estimators, and it’s currently set to 50. The 
weaker your predictor is, the larger your ensemble should be in order to perform 
the prediction well.

Meeting Again with Gradient Descent
You don’t have to rely strictly on erroneous output to determine which algorithm 
works best, as with AdaBoost. The gradient boosting machines (GBM) algorithm 
uses the gradient descent optimization to determine the right weights for learning 
in the ensemble. The resulting performance is impressive, making GBM one of the 
most powerful predictive tools that you can learn to use in machine learning. The 
following sections help you work with GBM.

Understanding the GBM difference
As in AdaBoost, you start with a formulation that defines how to obtain a correct 
result using a boosting strategy. The GBM formulation requires that the algorithm 
make a weighted sum of multiple models. In fact, what changes the most is not 
the principle of how boosting works but rather the optimization process for get-
ting the weight and power of the summed functions, which weak learners can’t 
determine.

Up to this point, things aren’t all that different from AdaBoost. However, note 
that the algorithm weights each model by a constant factor, v, the shrinkage fac-
tor. This is where you start noticing the first difference between AdaBoost and 
GBM. The fact is that v is just like alpha. However, here it’s fixed and forces the 
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algorithm to learn in any case, no matter the performance of the previously added 
learning function. Considering this weighting difference, the algorithm builds the 
chain by reiterating the following sequence of operations:

1. After each iteration, the algorithm sums the result of the previous models with 
a new model that is built on the same features but uses a differently weighted 
series of examples.

2. From a gradient descent optimization, derives the weights with respect to a 
cost function, optionally of different kinds. This approach differs from 
AdaBoost, which relies on the misclassified errors from the previous model.

GBM can take on different problems: regression, classification, and ranking (for 
ordering examples), with each problem using a particular cost function. Gradi-
ent Descent helps discover the set of values that reduces the cost function. This 
 calculation is equivalent to selecting the best examples to use to obtain a better 
prediction. The secret of GBM’s performance lies in weights optimized by  Gradient 
Descent, as well as in these three smart tricks:

 » Shrinkage: Acts as a learning rate in the ensemble. As in Gradient Descent, 
you must fix an adequate learning rate to avoid jumping too far from the 
solution, which is the same as in GBM. Small shrinkage values lead to better 
predictions.

 » Subsampling: Emulates the pasting approach. If each subsequent tree 
builds on a subsample of the training data, the result is a Stochastic Gradient 
Descent. For many problems, the pasting approach helps reduce noise and 
influence by outliers, thus improving the results.

 » Trees of fixed size: Fixing the tree depth used in boosting is like fixing a 
complexity limit to learning functions that you put into the ensemble, yet 
relying on more sophisticated trees than the stumps used in AdaBoost. 
Depth acts like power in a polynomial expansion: The deeper the tree, the 
larger the expansion, thus increasing both the ability to intercept complex 
target functions and the risk of overfitting.

You can create GBM applications using both of the languages found in this book, 
as described at the following sites:

 » Python: https://scikit-learn.org/stable/modules/ensemble.
html#gradient-boosting

 » R: https://cran.r-project.org/web/packages/gbm/index.html

https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting
https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting
https://cran.r-project.org/web/packages/gbm/index.html
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XGBoost is a variant of GBM created by Tianqi Chen from Washington University, 
XGBoost is available for Python, R, Java, Scala, Julia, and C++, and it can work 
both on your local computer as well as on cloud clusters (made of hundreds of 
machines). Many practitioners consider it better performing than any standard 
GBM implementation because of the technical choices of its creator. You can find 
it at https://github.com/dmlc/xgboost.

Seeing GBM in action
The following example continues the test found in the “Seeing AdaBoost in 
action” section, earlier in this chapter. In this case, you create a GBM classifier for 
the handwritten digits dataset and test its performance. (Note that this example 
may run for a long time.)

import numpy as np
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import cross_val_score
from sklearn import datasets
 
digits = datasets.load_digits()
X,y = digits.data, digits.target

As before, you begin by obtaining the appropriate dataset and processing its  
content. The analysis part of the example appears here:

GBM = cross_val_score(
    GradientBoostingClassifier(n_estimators=300,
        subsample=0.8, max_depth=2, learning_rate=0.1,
        random_state=101), X, y, scoring='accuracy',cv=10)
 
print ("GBM: %0.3f" % (np.mean(GBM)))

The output tells you what you need to know about accuracy. Even though this 
example requires more time to run, the accuracy is also much higher than the 
three weak learners used with AdaBoost.

GBM: 0.950

https://github.com/dmlc/xgboost
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Averaging Different Predictors
Up to this section, the chapter discusses ensembles made of the same kind of 
machine learning algorithms, but both averaging and voting systems can also 
work fine when you use a mix of different machine learning algorithms. This is 
the averaging approach, and it’s widely used when you can’t reduce the estimate 
variance.

As you try to learn from data, you have to try different solutions, thus modeling 
your data using different machine learning solutions. It’s good practice to check 
whether you can put some of them successfully into ensembles using prediction 
averages or by counting the predicted classes. The principle is the same as in bag-
ging noncorrelated predictions, when models mixed together can produce less 
variance-affected predictions. To achieve effective averaging, you have to

1. Divide your data into training and test sets.

2. Use the training data with different machine learning algorithms.

3. Record predictions from each algorithm and evaluate the viability of the result 
using the test set.

4. Correlate all the predictions available with each other.

5. Pick the predictions that least correlate and average their result. Or, if you’re 
classifying, pick a group of least correlated predictions and, for each example, 
pick as a new class prediction the class that the majority of them predicted.

6. Test the newly averaged or voted-by-majority prediction against the test data. 
If successful, you create your final model by averaging the results of the 
models part of the successful ensemble.

To understand which models correlate the least, take the predictions one by one, 
correlate each one against the others, and average the correlations to obtain an 
averaged correlation. Use the averaged correlation to rank the selected predictions 
that are most suitable for averaging.
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Building Deep Learning 
Models

The idea of ensembles of learners appears in the previous chapter of this 
minibook. To make the computer better able to model complex real-world 
problems, you combine algorithms in different ways. Each algorithm adds 

to the whole. The computer doesn’t actually understand anything. You rely on 
math to create a model that approximates learning. Creating models that approxi-
mate learning is what this chapter is about, too, but now you move to another level 
of learning called deep learning. In deep learning, a computer builds a complex 
structure called a neural network that is able to delve into datasets at an incredibly 
low level and model the data more precisely than any ensemble. The whole prin-
ciple relies on mimicking the human brain using a mathematical neuron.

The first part of the chapter discusses the nature of a computer neuron and tells 
why it’s important. However, it starts with an historical view of the impact on 
data science by the perceptron, a device that was amazing in its time, but also 
oversold.

After you understand the mathematical neuron, you move on to how a computer 
models a neuron. The second part of the chapter discusses what must occur to 
make a computer appear to learn. Obviously, a computer doesn’t learn in the same 
manner as a human does, despite the use of language that makes this learning 
appear to be the case. A computer requires huge amounts of data to build a neural 

Chapter 2

IN THIS CHAPTER

 » Understanding neural network basics

 » Getting deeper into neural networks

 » Applying what you know to deep 
learning
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network; it can’t make the leaps that humans do in understanding very complex 
ideas using just a few examples.

The final part of the chapter moves from neural networks into deep learning. 
Although neural networks use lots of layers, deep learning uses even more  layers 
of neurons to perform various tasks. In addition, the manner in which a deep 
learning neural network activates neurons is different. Each of these sections 
builds upon the other to help you see the flow of neurons used to make it appear 
that computers can think like humans, even though a computer has no concept of 
thought or understanding. The entire process relies on math.

You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears 
in the DSPD_0402_Deep_Learning.ipynb source code file for Python and the 
DSPD_R_0402_Deep_Learning.ipynb source code file for R. See the Introduction 
for details on how to find these source files.

Discovering the Incredible Perceptron
Data science programming involves working with computers in many different 
ways, most of which involve some sort of intense math. You might think that all 
these endeavors are new, but they’re not. Some of the math has been around for 
hundreds of years. (really, Bayes Theorem, https://www.mathsisfun.com/data/ 
bayes-theorem.html, originally appeared in 1763). Looking at history is helpful 
to gain an idea of how things are progressing and how we currently use this older 
information.

The perceptron, which isn’t hundreds of years old, is actually a type (imple-
mentation) of machine learning for most people who are discovering AI, but 
other sources will tell you that it’s a true form of deep learning. You can start 
the journey toward discovering how machine learning algorithms work by look-
ing at models that figure out their answers using lines and surfaces to divide 
examples into classes or to estimate value predictions. These are linear models, 
and this chapter presents one of the earliest linear algorithms used in machine 
learning: the perceptron. Later chapters help you discover other sorts of modeling 
that are significantly more advanced than the perceptron. However, before you 
can advance to these other topics, you should understand the interesting history 
of the perceptron.

https://www.mathsisfun.com/data/bayes-theorem.html
https://www.mathsisfun.com/data/bayes-theorem.html


Bu
ild

in
g 

D
ee

p 
Le

ar
ni

ng
 

M
od

el
s

CHAPTER 2  Building Deep Learning Models      375

Understanding perceptron functionality
Frank Rosenblatt, of the Cornell Aeronautical Laboratory, devised the perceptron 
in 1957 under the sponsorship of the United States Naval Research. Rosenblatt 
was a psychologist and pioneer in the field of artificial intelligence. Proficient in 
cognitive science, his idea was to create a computer that could learn by trial and 
error, just as a human does.

The idea was successfully developed, and at the beginning, the perceptron 
 wasn’t conceived as just a piece of software; it was created as software  running 
on dedicated hardware. You can see it at https://blogs.umass.edu/comphon/ 
2017/06/15/did-frank-rosenblatt-invent-deep-learning-in-1962/. Using 
that combination allowed faster and more precise recognition of complex images 
than any other computer could do at the time. The new technology raised great 
expectations and caused a huge controversy when Rosenblatt affirmed that the 
perceptron was the embryo of a new kind of computer that would be able to walk, 
talk, see, write, and even reproduce itself and be conscious of its existence. If true, 
it would have been a powerful tool, and it introduced the world to AI.

Needless to say, the perceptron didn’t realize the expectations of its creator. It 
soon displayed a limited capacity, even in its image-recognition specialization. 
The general disappointment ignited the first AI winter (a period of reduced fund-
ing and interest resulting from overhyping, for the most part) and the temporary 
abandonment of connectionism until the 1980s.

Connectionism is the approach to machine learning that is based on neuroscience 
as well as the example of biologically interconnected networks. You can retrace 
the root of connectionism to the perceptron. The perceptron is an iterative algo-
rithm that strives to determine, by successive and reiterative approximations, the 
best set of values for a vector, w, which is also called the coefficient vector. The 
creation of vector w is the learning process, but the computer really isn’t learn-
ing anything; instead, it’s creating a set of weights that match a particular model.

When the perceptron has achieved a suitable coefficient vector, it can predict 
whether an example is part of a class. For instance, one of the tasks the percep-
tron initially performed was to determine whether an image received from visual 
sensors resembled a boat (an image-recognition example required by the United 
States Office of Naval Research, the sponsor of the research on the perceptron). 
When the perceptron saw the image as part of the boat class, this meant that it 
classified the image as a boat.

Vector w can help predict the class of an example when you multiply it by the 
matrix of features. These features are the attributes or properties that describe the 
object or other entity in question, X. The entity X contains the entity information 

https://blogs.umass.edu/comphon/2017/06/15/did-frank-rosenblatt-invent-deep-learning-in-1962/
https://blogs.umass.edu/comphon/2017/06/15/did-frank-rosenblatt-invent-deep-learning-in-1962/
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as numeric values expressed relative to your example. The algorithm adds the 
result of the multiplication to a constant term, called the bias, b. What X really 
contains are the properties (features) of the objects that you want classified, such 
as a boat. A boat can be a certain color, have a particular length, require masts, 
and so on. If the result of the sum is zero or positive, the perceptron classifies the 
example as part of the class. When the sum is negative, the example isn’t part of 
the class. Here’s the perceptron formula, where the sign function outputs 1 (when 
the example is part of the class) when the value inside the parentheses is equal or 
above zero; otherwise, it outputs 0:

y = sign(Xw + b)

Note that this algorithm contains all the elements that characterize a deep neural 
network, meaning that all the building blocks enabling the technology were pres-
ent since the beginning:

1. Numeric processing of the input: X contains numbers, and no symbolic 
values are used as input until you process it as a number. For instance, you 
can’t input symbolic information such as red, green, or blue until you convert 
these color values to numbers. You might choose, as an example, to represent 
red as the value 1, but it must appear as a number.

2. Weights and bias: The perceptron transforms X by multiplying it by the 
weights in vector w and adding the bias, b.

3. Summation of results: Using matrix multiplication when multiplying X by the 
w vector (an aspect of matrix multiplication covered in Book 2, Chapter 3).

4. Activation function: The perceptron activates a result of the input being part 
of the class when the summation exceeds a threshold — which, in this case, 
occurs when the resulting sum is zero or more.

5. Iterative learning of the best set of values for the vector w: The solution 
relies on successive approximations based on the comparison between the 
perceptron output and the expected result. When the output doesn’t match 
the expected result, the values in vector w change.

Touching the nonseparability limit
The secret to perceptron calculations is in how the algorithm updates the vec-
tor w values. Such updates happen by randomly picking one of the misclassi-
fied examples. You have a misclassified example when the perceptron determines 
that an example is part of the class, but it isn’t, or when the perceptron deter-
mines that an example isn’t part of the class, but it is. The perceptron handles one 
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misclassified example at a time (call it xt) and operates by changing the w vector 
using a simple weighted addition:

w = w + ŋ(xt * yt)

This formula is called the update strategy of the perceptron, and the letters stand 
for different numerical elements:

1. The letter w is the coefficient vectors, which is updated to correctly show 
whether the misclassified example t is part of the class.

2. The Greek letter eta (η) is the learning rate. It’s a floating number between 0 
and 1. When you set this value near zero, it can limit the capability of the 
formula to update the vector w almost completely, whereas setting the value 
near one makes the update process fully impact the w vector values. Setting 
different learning rates can speed up or slow down the learning process. 
Many other algorithms use this strategy, and lower eta is used to improve the 
optimization process by reducing the number of sudden w value jumps after 
an update. The trade-off is that you have to wait longer before getting the 
concluding results.

3. The xt variable refers to the vector of numeric features for the example t.

4. The yt variable refers to the ground truth of whether the example t is part of 
the class. For the perceptron, algorithm yt is numerically expressed with +1 
when the example is part of the class and with -1 when the example is not part 
of the class.

The update strategy provides intuition about what happens when using a per-
ceptron to learn the classes. If you imagine the examples projected on a Cartesian 
plane, the perceptron is nothing more than a line trying to separate the positive 
class from the negative one. As you may recall from linear algebra, everything 
expressed in the form of y = xb+a is actually a line in a plane. The perceptron uses 
a formula of y = xw + b, which uses different letters but expresses the same form, 
that is, the line in a Cartesian plane.

Initially, when w is set to zero or to random values, the separating line is just one 
of the infinite possible lines found on a plane, as shown in Figure 2-1. The updat-
ing phase defines it by forcing it to become nearer to the misclassified point. As 
the algorithm passes through the misclassified examples, it applies a series of 
corrections. In the end, using multiple iterations to define the errors, the algo-
rithm places the separating line at the exact border between the two classes.

In spite of being such a smart algorithm, the perceptron showed its limits quite 
soon. Apart from being capable of guessing two classes using only quantitative 
features, it had an important limit: If two classes had no border because of mix-
ing, the algorithm couldn’t find a solution and kept updating itself infinitively.
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If you can’t divide two classes spread on two or more dimensions by any line or 
plane, they’re nonlinearly separable. Overcoming data’s being nonlinearly sepa-
rable is one of the challenges that machine learning has to overcome in order to 
become effective against complex problems based on real data, not just on artifi-
cial data created for academic purposes.

When the nonlinearly separability matter came under scrutiny and practitioners 
started losing interest in the perceptron, experts quickly theorized that they could 
fix the problem by creating a new feature space in which previously insepara-
ble classes are tuned to become separable. Thus, the perceptron would be as fine 
as before. Unfortunately, creating new feature spaces is a challenge because it 
requires computational power that’s only partially available to the public today.

In recent years, the algorithm has had a revival thanks to big data. The percep-
tron, in fact, doesn’t need to work with all the data in memory, but it can do fine 
using single examples (updating its coefficient vector only when a misclassified 
case makes it necessary). It’s therefore a perfect algorithm for online learning, 
such as learning from big data an example at a time.

Hitting Complexity with Neural Networks
The previous section of the chapter helped you discover the neural network from 
the perspective of the perceptron. Of course, there is more to neural networks 
than that simple beginning. The capacity and other issues that plague the per-
ceptron see at least partial resolution in newer algorithms. The following sections 
help you understand neural networks as they exist today.

FIGURE 2-1:  
The  separating 

line of a 
 perceptron 
across two 

classes.



Bu
ild

in
g 

D
ee

p 
Le

ar
ni

ng
 

M
od

el
s

CHAPTER 2  Building Deep Learning Models      379

Considering the neuron
The core neural network component is the neuron (also called a unit). Many neu-
rons arranged in an interconnected structure make up a neural network, with each 
neuron linking to the inputs and outputs of other neurons. Thus, a neuron has two 
forms of input depending on its location in the neural network:

 » Features from examples

 » The results of other neurons

When the psychologist Rosenblatt conceived the perceptron (see the “Understand-
ing perceptron functionality” section, earlier in this chapter), he thought of it as 
a simplified mathematical version of a brain neuron. A perceptron takes values 
as inputs from the nearby environment (the dataset or other neurons), weights 
them (as brain cells do, based on the strength of the in-bound connections), sums 
all the weighted values, and activates when the sum exceeds a threshold. This 
threshold outputs a value of 1 (a prediction that the inputs belong to a certain 
class, for example); otherwise, the output is 0.

Unfortunately, a perceptron can’t learn when the classes it tries to process aren’t 
linearly separable. To perform this task, the perceptron would need to know how 
to perform an XOR operation to separate different classes even when mixed, 
rather than just draw a line between them. However, scholars discovered that 
even though a single perceptron couldn’t learn the logical operation XOR shown in 
Figure 2-2 (the exclusive OR, which is true only when the inputs are dissimilar), 
two perceptrons working together could.

Neurons in a neural network are a further evolution of the perceptron: They take 
many weighted values as inputs, sum them, and provide the summation as the 
result, just as a perceptron does. However, they also provide a more sophisticated 
transformation of the summation, something that the perceptron can’t do. In 
observing nature, scientists noticed that neurons receive signals but don’t always 
release a signal of their own. It depends on the amount of signal received. When 

FIGURE 2-2:  
Learning logical 

XOR using a 
single separating 

line isn’t possible.
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a neuron acquires enough stimuli, it fires an answer; otherwise, it remains silent. 
In a similar fashion, algorithmic neurons, after receiving weighted values, sum 
them and use an activation function to evaluate the result, which transforms it in 
a nonlinear way. For instance, the activation function can release a zero value 
unless the input achieves a certain threshold, or it can dampen or enhance a value 
by nonlinearly rescaling it, thus transmitting a rescaled signal.

A neural network has different activation functions, as shown in Figure 2-3.

 » Binary step: This function doesn’t apply any transformation; it simply 
performs a binary classification. Mostly a relic of the past, data scientists 
seldom use it today because it lacks predictive power and flexibility in 
handling different problems. A huge potential for confusion exists when 
multiple classes are active simultaneously. Because each class reports being 
100 percent active, making a choice between them becomes impossible. Even 
more important, this function doesn’t allow for stacking of layers. If the first 
layer activates fully, there is no need for additional layers because the 
additional layers can’t make the value higher than 100 percent.

 » Logistic: Neural networks commonly use the sigmoid function because it 
provides a steep gradient around the zero point. A small change in X produces 
a large change in Y. Each layer can do its part to bring a signal to full activation 
because an output from the previous layer may not be fully activated; it might 
be only 50 percent activated. However, this function produces a problem 
called vanishing gradients in which the network refuses to learn because the 
values of X must be truly huge to create even a small change in Y.

FIGURE 2-3:  
Plots of  different 

activation 
functions.
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 » Hyperbolic Tangent (TanH): This is really a scaled sigmoid function, which 
means that it has more gradient strength. Essentially, the curve is steeper, so 
decisions are made more quickly.

The figure shows how an input (expressed on the horizontal axis) can transform 
an output into something else (expressed on the vertical axis). The point is that 
different activation functions produce different plots and work in different ways. 
There are other activation functions not shown in Figure 2-3 (this section pro-
vides only an introduction). For example, the Rectified Linear Units (ReLU) is by 
far the most commonly used activation function today. The “Choosing the right 
activation function” section, later in this chapter, describes activation functions 
in more detail.

You learn more about activation functions later in the chapter, but note for now 
that activation functions clearly work well in certain ranges of x values. For this 
reason, you should always rescale inputs to a neural network using statistical 
standardization (zero mean and unit variance) or normalize the input in the range 
from 0 to 1 or from –1 to 1.

Activation functions are what make a neural network perform in a classification or 
regression; yet, the initial choice of the sigmoid or tanh activations for most net-
works pose a critical limit when using networks that are more complex, because 
both activations work optimally for a very restricted range of values.

Pushing data with feed-forward
In a neural network, you must consider the architecture, which is how the neural 
network components are arranged. Contrary to other algorithms, which have a 
fixed pipeline that determines how algorithms receive and process data, neural 
networks require you to decide how information flows by fixing the number of 
units (the neurons) and their distribution in layers, as shown in Figure 2-4.

FIGURE 2-4:  
An example of 

the  architecture 
of a neural 

network.
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The figure shows a simple neural architecture. Note how the layers filter informa-
tion in a progressive way. This is a feed-forward input because data feeds in one 
direction, forward, into the network. Only Layer 1 receives input from the original 
dataset; the other layers feed each other. Connections exclusively link the units 
in one layer with the units in the following layer (information flow from left to 
right). No connections exist between units in the same layer or with units outside 
the next layer. Moreover, the information pushes forward (from the left to the 
right). Processed data never returns to previous neuron layers.

Using a neural network is like using a stratified filtering system for water: You 
pour the water from above and the water is filtered at the bottom. The water has 
no way to go back; it just goes forward and straight down, and never laterally. In 
the same way, neural networks force data features to flow through the network 
and mix with each other only according to the network’s architecture. By using 
the best architecture to mix features, the neural network creates new composed 
features at every layer and helps achieve better predictions. Unfortunately, you 
have no way to determine the best architecture without empirically trying differ-
ent solutions and testing whether the output data helps predict your target values 
after flowing through the network.

The first and last layers play an important role. The first layer, called the input 
layer, picks ups the features from each data example processed by the network. 
The last layer, called the output layer, releases the results.

A neural network can process only numeric, continuous information; it can’t be 
constrained to work with qualitative variables (for example, labels indicating a 
quality such as red, blue, or green in an image). You can process qualitative vari-
ables by transforming them into a continuous numeric value, such as a series of 
binary values. When a neural network processes a binary variable, the neuron 
treats the variable as a generic number and turns the binary values into other 
values, even negative ones, by processing across units.

Note the limitation of dealing only with numeric values because you can’t expect 
the last layer to output a nonnumeric label prediction. When dealing with a regres-
sion problem, the last layer is a single unit. Likewise, when you’re working with 
a classification and you have output that must choose from a number n of classes, 
unless you have a binary problem in which you predict only two classes, you 
should have n terminal units, each one representing a score linked to the prob-
ability of the represented class. However, when you have a binary classification 
problem, you can use a single output neuron, as in a regression problem, because 
you just predict the probability of a class and automatically infer the probability of 
the other class (because it is 100 percent minus the predicted probability).
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To put the need for multiple input and terminal units into perspective, when clas-
sifying a multiclass problem such as an iris species, think about the famous Iris 
classification example, created by R. A. Fisher (https://archive.ics.uci.edu/
ml/datasets/iris). In this case, the input layer has enough units for each of the 
attributes:

 » Sepal length in cm

 » Sepal width in cm

 » Petal length in cm

 » Petal width in cm

The output layer has as many units as species. In a neural network based on the Iris 
dataset, you therefore have three units representing one of the three Iris species:

 » Setosa

 » Versicolor

 » Virginica

The predicted class is the one that gets the higher score at the end based on four 
input attributes.

Some neural networks have special final layers, collectively called softmax, which 
can adjust the probability of each class based on the values received from a previ-
ous layer. In classification, the final layer may represent both a partition of prob-
abilities thanks to softmax (a multiclass problem in which total probabilities sum 
to 100 percent) or an independent score prediction (because an example can have 
more classes, which is a multilabel problem in which summed probabilities can be 
more than 100 percent). When the classification problem is a binary classification, 
a single output suffices. Also, in regression, you can have multiple output units, 
each one representing a different regression problem. (For instance, in forecast-
ing, you can have different predictions for the next day, week, month, and so on.)

Defining hidden layers
Neural networks have different layers, each one having its own weights and using 
its own activation function. Because the neural network segregates computations 
by layers, knowing the reference layer is important because you can account for 
certain units and connections. You can refer to every layer using a specific number 
and generically talk about each layer using the letter l.

https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
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Each layer can have a different number of units, and the number of units located 
between two layers dictates the number of connections. By multiplying the 
number of units in the starting layer with the number in the following layer, 
you can determine the total number of connections between the two: number of 
connections(l) = units(l) * units(l+1).

A matrix of weights, usually named with the uppercase Greek letter Theta (Θ), 
represents the connections. For ease of reading, the book uses the capital letter 
W, which is a fine choice because it is a matrix or a multidimensional array. Thus, 
you can use W1 to refer to the connection weights from layer 1 to layer 2, W2 for 
the connections from layer 2 to layer 3, and so on.

Weights represent the strength of the connection between neurons in the net-
work. When the weight of the connection between two layers is small, it means 
that the network dumps values flowing between them and signals that taking this 
route won’t likely influence the final prediction. Alternatively, a large positive 
or negative value affects the values that the next layer receives, thus changing 
certain predictions. This approach is analogous to brain cells, which don’t stand 
alone but connect with other cells. As a person grows in experience, connections 
between neurons tend to weaken or strengthen to activate or deactivate certain 
brain network cell regions, causing other processing or an activity (a reaction 
to a danger, for instance, if the processed information signals a life-threatening 
situation).

Executing operations
Now that you know some conventions regarding layers, units, and connections, 
you can start examining the operations that neural networks execute in detail. To 
begin, you can call inputs and outputs in different ways:

 » a: The result stored in a unit in the neural network after being processed by 
the activation function (called g). This is the final output that is sent further 
along the network.

HIDDEN LAYERS
Outside this book, the layers between the input and the output are sometimes called 
hidden layers, and the layer count starts from the first hidden layer. This is just a differ-
ent convention from the one used in this book. The examples in the book always start 
counting from the input layer, so the first hidden layer is layer number 2.
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 » z: The multiplication between a and the weights from the W matrix. z repre-
sents the signal going through the connections, analogous to water in pipes 
that flows at a higher or lower pressure depending on the pipe diameter. In 
the same way, the values received from the previous layer become higher or 
lower because of the connection weights used to transmit them.

Each successive layer of units in a neural network progressively processes the 
values taken from the features. (Picture a conveyor belt.) As data transmits in 
the network, it arrives at each unit as a value produced by the summation of the 
values present in the previous layer and weighted by connections represented in 
the matrix W. When the data with added bias exceeds a certain threshold, the acti-
vation function increases the value stored in the unit; otherwise, it extinguishes 
the signal by reducing it. After processing by the activation function, the result 
is ready to push forward to the connection linked to the next layer. These steps 
repeat for each layer until the values reach the end and you have a result, as shown 
in Figure 2-5.

The figure shows a detail of the process that involves two units pushing their 
results to another unit. This series of events happens in every part of the network:

1. The input A1 is multiplied by its weighting factor W1.

2. The input A2 is multiplied by its weighting factor W2.

3. The two weighted inputs are summed with a bias to produce the value z.

4. The output, A3, is produced by the activation function, g, accepting the 
summed and biased value z. This output now goes to the next layer or is used 
as an output.

FIGURE 2-5:  
A detail of the 
feed-forward 

 process in a 
 neural network.
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Considering the details of data movement 
through the neural network
When you understand the passage from two neurons to one, you can understand 
the entire feed-forward process, even when more layers and neurons are involved. 
For more explanation, here are the seven steps used to produce a prediction in a 
neural network made of four layers (refer to Figure 2-4):

1. The first layer (notice the superscript 1 on a) loads the value of each feature in 
a different unit:

a(1)= X

2. The weights of the connections bridging the input layer with the second layer 
are multiplied by the values of the units in the first layer. A matrix multiplica-
tion weights and sums the inputs for the second layer together.

z(2)=W(1)a(1)

3. The algorithm adds a bias constant to layer two before running the activation 
function. The activation function transforms the second layer inputs. The 
resulting values are ready to pass to the connections.

a(2) = g(z(2) + bias(2))

4. The third layer connections weight and sum the outputs of layer two.

z(3) = W(2)a(2)

5. The algorithm adds a bias constant to layer three before running the activation 
function. The activation function transforms the layer-three inputs.

a(3) = g(z(3) + bias(3))

6. The layer-three outputs are weighted and summed by the connections to the 
output layer.

z(4) = W(3)a(3)

7. Finally, the algorithm adds a bias constant to layer four before running the 
activation function. The output units receive their inputs and transform the 
input using the activation function. After this final transformation, the output 
units are ready to release the resulting predictions of the neural network.

a(4) = g(z(4) + bias(4))
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The activation function plays the role of a signal filter, helping to select the rele-
vant signals and avoid the weak and noisy ones (because it discards values below 
a certain threshold). Activation functions also provide nonlinearity to the output 
because they enhance or damp the values passing through them in a nonpropor-
tional way.

The weights of the connections provide a way to mix and compose the features 
in a new way, creating new features in a way not too different from a polynomial 
expansion. The activation renders nonlinear the resulting recombination of the 
features by the connections. Both of these neural network components enable 
the algorithm to learn complex target functions that represent the relationship 
between the input features and the target outcome.

Using backpropagation to adjust learning
From an architectural perspective, a neural network does a great job of mixing 
signals from examples and turning them into new features to achieve an approx-
imation of complex nonlinear functions (functions that you can’t represent as 
a straight line in the features’ space). To create this capability, neural networks 
work as universal approximators (for more details, go to https://www.techleer. 
com/articles/449-the-universal-approximation-theorem-for-neural- 
networks/), which means that they can guess any target function. However, you 
have to consider that one aspect of this feature is the capacity to model complex 
functions (representation capability), and another aspect is the capability to learn 
from data effectively.

Learning occurs in a brain because of the formation and modification of syn-
apses between neurons, based on stimuli received by trial-and-error experi-
ence. Neural networks provide a way to replicate this process as a mathematical 
formulation called backpropagation. The following sections tell you more about 
backpropagation.

Delving into backpropagation beginnings
Since its early appearance in the 1970s, the backpropagation algorithm has been 
given many fixes. Each neural network learning process improvement resulted in 
new applications and a renewed interest in the technique. In addition, the current 
deep learning revolution, a revival of neural networks, which were abandoned 
at the beginning of the 1990s, is the result of key advances in the way neural 
networks learn from their errors. As seen in other algorithms, the cost function 
activates the necessity to learn certain examples better (large errors correspond to 
high costs). When an example with a large error occurs, the cost function outputs 

https://www.techleer.com/articles/449-the-universal-approximation-theorem-for-neural-networks/
https://www.techleer.com/articles/449-the-universal-approximation-theorem-for-neural-networks/
https://www.techleer.com/articles/449-the-universal-approximation-theorem-for-neural-networks/
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a high value that is minimized by changing the parameters in the algorithm. The 
optimization algorithm determines the best action for reducing the high outputs 
from the cost function.

In linear regression, finding an update rule to apply to each parameter (the vec-
tor of beta coefficients) is straightforward. However, in a neural network, things 
are a bit more complicated. The architecture is variable and the parameter coef-
ficients (the connections) relate to each other because the connections in a layer 
depend on how the connections in the previous layers recombined the inputs. The 
solution to this problem is the backpropagation algorithm. Backpropagation is 
a smart way to propagate the errors back into the network and make each con-
nection adjust its weights accordingly. If you initially feed-forward propagated 
information to the network, it’s time to go backward and give feedback on what 
went wrong in the forward phase.

Backpropagation is how adjustments required by the optimization algorithm are 
propagated through the neural network. Distinguishing between optimization and 
backpropagation is important. In fact, all neural networks use backpropagation, 
but the “Relying on a smart optimizer” section, later in this chapter, discusses 
many different optimization algorithms.

Understanding how backpropagation works
Discovering how backpropagation works isn’t complicated, even though demon-
strating how it works using formulas and mathematics requires derivatives and 
the proving of some formulations, which is quite tricky and beyond the scope of 
this book. To get a sense of how backpropagation operates, start from the end of 
the network, just at the moment when an example has been processed and you 
have a prediction as an output. At this point, you can compare the prediction with 
the real result and, by subtracting the two values, get an offset, which is the error. 
Now that you know the mismatch of the results at the output layer, you can prog-
ress backward to distribute the error information to all the units in the network.

The cost function of a neural network for classification is based on cross-entropy 
(as seen in logistic regression):

Cost = y * log(hW(X)) + (1 - y)*log(1 - hW(X))

This is a formulation involving logarithms. It refers to the prediction produced by 
the neural network and expressed as hW(X) (which reads as the result of the net-
work given connections W and X as input). To make things easier, when thinking 
of the cost, it helps to think of it as computing the offset between the expected 
results and the neural network output.
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The first step in transmitting the error back into the network relies on backward 
multiplication. Because the values fed to the output layer are made of the con-
tributions of all units, proportional to the weight of their connections, you can 
redistribute the error according to each contribution. For instance, the vector of 
errors of a layer n in the network, a vector indicated by the Greek letter delta (δ), 
is the result of the following formulation:

δ (n) = W(n)T * δ (n+1)

This formula says that, starting from the final delta, you can continue redistribut-
ing delta going backward in the network and using the weights you used to push 
forward the value to partition the error to the different units. In this way, you 
can get the terminal error redistributed to each neural unit, and you can use it to 
recalculate a more appropriate weight for each network connection to minimize 
the error. To update the weights W of layer l, you just apply the following formula:

W(l) = W(1) + η* δ (1) * g'(z(l))  *a(1)

The formula may appear puzzling at first sight, but it is a summation, and you can 
discover how it works by looking at its elements. First, look at the function g'. It’s 
the first derivative of the activation function g, evaluated by the input values z. 
In fact, this is the Gradient Descent method. Gradient Descent determines how to 
reduce the error measure by finding, among the possible combinations of values, 
the weights that most reduce the error.

The Greek letter eta (η), sometimes also called alpha (α) or epsilon (ε) depending 
on the textbook you consult, is the learning rate. As found in other algorithms, it 
reduces the effect of the update suggested by the Gradient Descent derivative. In 
fact, the direction provided may be only partially correct or just roughly correct. 
By taking multiple small steps in the descent, the algorithm can take a more pre-
cise direction toward the global minimum error, which is the target you want to 
achieve (that is, a neural network producing the least possible prediction error).

Setting the eta value
Different methods are available for setting the right eta value, because the opti-
mization largely depends on it. One method sets the eta value starting high and 
reduces it during the optimization process. Another method variably increases 
or decreases eta based on the improvements obtained by the algorithm: Large 
improvements call a larger eta (because the descent is easy and straight); smaller 
improvements call a smaller eta so that the optimization will move slower, look-
ing for the best opportunities to descend. Think of it as being on a tortuous path 
in the mountains: You slow down and try not to be struck or thrown off the road 
as you descend.
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Most implementations offer an automatic setting of the correct eta. You need to 
note this setting’s relevance when training a neural network because it’s one of 
the important parameters to tweak to obtain better predictions, together with the 
layer architecture. Weight updates can happen in different ways with respect to 
the training set of examples:

 » Online mode: The weight update happens after every example traverses the 
network. In this way, the algorithm treats the learning examples as a stream 
from which to learn in real time. This mode is perfect when you have to learn 
out of core, that is, when the training set can’t fit into RAM memory. However, 
this method is sensitive to outliers, so you have to keep your learning rate low. 
(Consequently, the algorithm is slow to converge to a solution.)

 » Batch mode: The weight update happens after processing all the examples in 
the training set. This technique makes optimization fast and less subject to 
having variance appear in the example stream. In batch mode, the backpropa-
gation considers the summed gradients of all examples.

 » Mini-batch (or stochastic) mode: The weight update happens after the 
network has processed a subsample of randomly selected training set 
examples. This approach mixes the advantages of online mode (low memory 
usage) and batch mode (a rapid convergence) while introducing a random 
element (the subsampling) to avoid having the Gradient Descent stuck in a 
local minima (a drop in value that isn’t the true minimum).

Understanding More about 
Neural Networks

You can find many discussions about neural network architectures online 
(such as the one at https://www.kdnuggets.com/2018/02/8-neural-network- 
architectures-machine-learning-researchers-need-learn.html). The prob-
lem, however, is that they all quickly become insanely complex, making normal 
people want to pull out their hair. Some unwritten law seems to say that math 
has to become instantly abstract and so complicated that no mere mortal can 
understand it, but anyone can understand a neural network. The material in the 
“Hitting Complexity with Neural Networks” section, earlier in this chapter, gives 
you a good start. Even though this earlier section does rely a little on math to 
get its point across, the math is relatively simple. The following sections help 
you use what you now know about neural networks to create an example using 
Python or R.

https://www.kdnuggets.com/2018/02/8-neural-network-architectures-machine-learning-researchers-need-learn.html
https://www.kdnuggets.com/2018/02/8-neural-network-architectures-machine-learning-researchers-need-learn.html
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Getting an overview of the  
neural network process
What a neural network truly represents is a kind of filter. You pour data into the 
top, that data percolates through the various layers you create, and an output 
appears at the bottom. The things that differentiate neural networks are the same 
sorts of things you might look for in a filter. For example, the kind of algorithm 
you choose determines the kind of filtering the neural network will perform. You 
may want to filter the lead out of the water but leave the calcium and other ben-
eficial minerals intact, which means choosing a kind of filter to do that.

However, filters can come with controls. For example, you might choose to filter 
particles of one size but let particles of another size pass. The use of weights and 
biases in a neural network are simply a kind of control. You adjust the control to 
fine-tune the filtering you receive. In this case, because you’re using electrical 
signals modeled after those found in the brain, a signal is allowed to pass when it 
meets a particular condition — a threshold defined by an activation function. To 
keep things simple for now, though, just think about it as you would adjustments 
to any filter’s basic operation.

You can monitor the activity of your filter. However, unless you want to stand 
there all day looking at it, you probably rely on some sort of automation to ensure 
that the filter’s output remains constant. This is where an optimizer comes into 
play. By optimizing the output of the neural network, you see the results you need 
without constantly tuning it manually.

Finally, you want to allow a filter to work at a speed and capacity that allows it to 
perform its tasks correctly. Pouring water or some other substance through the 
filter too quickly would cause it to overflow. If you don’t pour fast enough, the 
filter might clog or work erratically. Adjusting the learning rate of the optimizer 
of a neural network enables you to ensure that the neural network produces the 
output you want. It’s like adjusting the pouring rate of a filter.

Neural networks can seem hard to understand. The fact that much of what they do 
is shrouded in mathematical complexity doesn’t help matters. However, you don’t 
have to be a rocket scientist to understand what neural networks are all about. All 
you really need to do is break them down into manageable pieces and use the right 
perspective to look at them.

Defining the basic architecture
A neural network relies on numerous computation units, the neurons, arranged 
into hierarchical layers. Each neuron accepts inputs from all its predecessors and 
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provides outputs to its successors until the neural network as a whole satisfies 
a requirement. At this point, the network processing ends and you receive the 
output.

All these computations occur singularly in a neural network. The network passes 
over each of them using loops for loop iterations. You can also leverage the fact 
that most of these operations are plain multiplications, followed by addition, and 
take advantage of the matrix calculations shown in Book 2, Chapter 3.

The example in this section creates a network with an input layer (whose dimen-
sions are defined by the input), a hidden layer with three neurons, and a single 
output layer that tells whether the input is part of a class (a binary 0/1 answer). 
This architecture implies creating two sets of weights represented by two matri-
ces (when you’re actually using matrices):

 » The first matrix uses a size determined by the number of inputs x 3, repre-
sents the weights that multiply the inputs, and sums them into three neurons.

 » The second matrix uses a size of 3 x 1, gathers all the outputs from the hidden 
layer, and makes that layer converge into the output.

Here’s the required Python script (which may take a while to complete running, 
depending on the speed of your system):

import numpy as np
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
%matplotlib inline
 
def init(inp, out):
    return np.random.randn(inp, out) / np.sqrt(inp)
 
def create_architecture(input_layer, first_layer,
                        output_layer, random_seed=0):
    np.random.seed(random_seed)
    layers = X.shape[1], 3 , 1
    arch = list(zip(layers[:-1], layers[1:]))
    weights = [init(inp, out) for inp, out in arch]
    return weights

The interesting point of this initialization is that it uses a sequence of  matrices to 
automate the network calculations. How the code initializes them matters because 
you can’t use numbers that are too small  — there will be too little signal for 



Bu
ild

in
g 

D
ee

p 
Le

ar
ni

ng
 

M
od

el
s

CHAPTER 2  Building Deep Learning Models      393

the network to work. However, you must also avoid numbers that are too big 
because the calculations become too cumbersome to handle. Sometimes they 
fail, which causes the exploding gradient problem (wherein the neural network 
ceases to  function because of the exploding values; see the article at https:// 
machinelearningmastery.com/exploding-gradients-in-neural-networks/ 
for details) or, more often, causes saturation of the neurons, which means that you 
can’t correctly train a network because all the neurons are always activated.

Initializing your network using all zeros is always a bad idea because if all the 
neurons have the same value, they will react in the same way to the training input. 
No matter how many neurons the architecture contains, they operate as a single 
neuron.

The simpler solution is to start with initial random weights that are in the range 
required for the activation functions, which are the transformation functions that 
add flexibility to solving problems using the network. A possible simple solution 
is to set the weights to zero mean and one standard deviation, which in statistics 
is called the standard normal distribution and in the code appears as the np.random.
radn command.

However, smarter weight initializations exist for more complex networks, such 
as those found in this article: https://towardsdatascience.com/weight- 
initialization-techniques-in-neural-networks-26c649eb3b78.

Moreover, because each neuron accepts the inputs of all previous neurons, the 
code rescales the random normal distributed weights using the square root of 
the number of inputs. Consequently, the neurons and their activation functions 
always compute the right size for everything to work smoothly.

Documenting the essential modules
The architecture is just one part of a neural network. You can imagine it as the 
structure of the network. Architecture explains how the network processes data 
and provides results. However, for any processing to happen, you also need to 
code the neural network’s core functionalities.

The first building block of the network is the activation function. The “Consider-
ing the neuron” section, earlier in this chapter, details a few activation functions 
used in neural networks without explaining them in much detail. The example 
in this section provides code for the sigmoid function, one of the basic neural 
network activation functions. The sigmoid function is a step up from the Heav-
iside step function, which acts as a switch that activates at a certain threshold. A 
Heaviside step function outputs 1 for inputs above the threshold and 0 for inputs 
below it.

https://machinelearningmastery.com/exploding-gradients-in-neural-networks/
https://machinelearningmastery.com/exploding-gradients-in-neural-networks/
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
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The sigmoid functions outputs 0 or 1, respectively, for small input values below 
zero or high values above zero. For input values in the range between –5 and +5,  
the function outputs values in the range 0–1, slowly increasing the output of 
released values until it reaches around 0.2 and then growing fast in a linear way 
until reaching 0.8. It then decreases again as the output rate approaches 1. Such 
behavior represents a logistic curve, which is useful for describing many natural 
phenomena, such as the growth of a population that starts growing slowly and 
then fully blossoms and develops until it slows down before hitting a resource 
limit (such as available living space or food).

In neural networks, the sigmoid function is particularly useful for modeling inputs 
that resemble probabilities, and it’s differentiable, which is a mathematical aspect 
that helps reverse its effects and works out the best backpropagation phase:

def sigmoid(z):
    return 1/(1 + np.exp(-z))
 
def sigmoid_prime(s):
    return s * (1 -s)

After you have an activation function, you can create a forward procedure, which 
is a matrix multiplication between the input to each layer and the weights of the 
connection. After completing the multiplication, the code applies the activation 
function to the results to transform them in a nonlinear way. The following code 
embeds the sigmoid function into the network’s feed-forward code. Of course, 
you can use any other activation function if desired:

def feed_forward(X, weights):
    a = X.copy()
    out = list()
    for W in weights:
        z = np.dot(a, W)
        a = sigmoid(z)
        out.append(a)
    return out

By applying the feed forward to the complete network, you finally arrive at a result 
in the output layer. Now you can compare the output against the real values you 
want the network to obtain. The accuracy function determines whether the neu-
ral network is performing predictions well by comparing the number of correct 
guesses to the total number of predictions provided:

def accuracy(true_label, predicted):
    correct_preds = np.ravel(predicted)==true_label
    return np.sum(correct_preds) / len(true_label)
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The backpropagation function comes next because the network is working but all 
or some of the predictions are incorrect. Correcting predictions during training 
enables you to create a neural network that can take on new examples and provide 
good predictions. The training is incorporated into its connection weights as pat-
terns present in data that can help predict the results correctly.

To perform backpropagation, you first compute the error at the end of each layer 
(this architecture has two). Using this error, you multiply it by the derivative 
of the activation function. The result provides you with a gradient, that is, the 
change in weights necessary to compute predictions more correctly. The code 
starts by comparing the output with the correct answers (l2_error), and then 
computes the gradients, which are the necessary weight corrections (l2_delta). 
The code then proceeds to multiply the gradients by the weights the code must 
correct. The operation distributes the error from the output layer to the interme-
diate one (l1_error). A new gradient computation (l1_delta) also provides the 
weight corrections to apply to the input layer, which completes the process for a 
network with an input layer, a hidden layer, and an output layer:

def backpropagation(l1, l2, weights, y):
    l2_error = y.reshape(-1, 1) - l2
    l2_delta = l2_error * sigmoid_prime(l2)
    l1_error = l2_delta.dot(weights[1].T)
    l1_delta = l1_error * sigmoid_prime(l1)
    return l2_error, l1_delta, l2_delta

This is a Python code translation, in simplified form, of the formulas you find in 
the “Understanding how backpropagation works” section, earlier in this chapter. 
The cost function is the difference between the network’s output and the correct 
answers. The example doesn’t add biases during the feed-forward phase, which 
reduces the complexity of the backpropagation process and makes it easier to 
understand.

After backpropagation assigns each connection its part of the correction that 
should be applied over the entire network, you adjust the initial weights to repre-
sent an updated neural network. You do so by adding to the weights of each layer, 
the multiplication of the input to that layer, and the delta corrections for the layer 
as a whole. This is a Gradient Descent method step in which you approach the 
solution by taking repeated small steps in the right direction, so you may need to 
adjust the step size used to solve the problem. The alpha parameters help make 
changing the step size possible. Using a value of 1 won’t affect the impact of the 
previous weight correction, but values smaller than 1 effectively reduce it:

def update_weights(X, l1, l1_delta, l2_delta, weights,
                   alpha=1.0):
    weights[1] = weights[1] + (alpha * l1.T.dot(l2_delta))
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    weights[0] = weights[0] + (alpha * X.T.dot(l1_delta))
    return weights

A neural network is not complete if it can only learn from data, but not predict. 
The last predict function pushes new data using feed forward, reads the last out-
put layer, and transforms its values to problem predictions. Because the sigmoid 
activation function is so adept at modeling probability, the code uses a value half-
way between 0 and 1, that is, 0.5, as the threshold for having a positive or negative 
output. Such a binary output could help in classifying two classes or a single class 
against all the others if a dataset has three or more types of outcomes to classify.

def predict(X, weights):
    _, l2 = feed_forward(X, weights)
    preds = np.ravel((l2 > 0.5).astype(int))
    return preds

At this point, the example has all the parts that make a neural network work. You 
just need a problem that demonstrates how the neural network works.

Solving a simple problem
In this section, you test the neural network code you wrote by asking it to solve 
a simple, but not banal, data problem. The code uses the Scikit-learn package’s 
make_moons function to create two interleaving circles of points shaped as two 
half moons. Separating these two circles requires an algorithm capable of defining 
a nonlinear separation function that generalizes to new cases of the same kind. 
A  neural network, such as the one presented earlier in the chapter, can easily 
 handle the challenge.

np.random.seed(0)
 
coord, cl = make_moons(300, noise=0.05)
X, Xt, y, yt = train_test_split(coord, cl,
                                test_size=0.30,
                                random_state=0)
 
plt.scatter(X[:,0], X[:,1], s=25, c=y, cmap=plt.cm.Set1)
plt.show()

The code first sets the random seed to produce the same result anytime you want 
to run the example. The next step is to produce 300 data examples and split them 
into a train and a test dataset. (The test dataset is 30 percent of the total.) The 
data consists of two variables representing the x and y coordinates of points on a 
Cartesian graph. Figure 2-6 shows the output of this process.
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Because learning in a neural network happens in successive iterations (called 
epochs), after creating and initializing the sets of weights, the code loops 30,000 
iterations of the two half moons data (each passage is an epoch). On each iteration, 
the script calls some of the previously prepared core neural network functions:

 » Feed forward the data through the entire network.

 » Backpropagate the error back into the network.

 » Update the weights of each layer in the network, based on the backpropa-
gated error.

 » Compute the training and validation errors.

The following code uses comments to detail when each function operates:

weights = create_architecture(X, 3, 1)
 
for j in range(30000 + 1):
 
    # First, feed forward through the hidden layer
    l1, l2 = feed_forward(X, weights)
 
    # Then, error backpropagation from output to input
    l2_error, l1_delta, l2_delta = backpropagation(l1,
                                         l2, weights, y)

 

FIGURE 2-6:  
Two interleaving 

moon-shaped 
clouds of data 

points.
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    # Finally, updating the weights of the network
    weights = update_weights(X, l1, l1_delta, l2_delta,
                             weights, alpha=0.05)
 
    # From time to time, reporting the results
    if (j % 5000) == 0:
        train_error = np.mean(np.abs(l2_error))
        print('Epoch {:5}'.format(j), end=' - ')
        print('error: {:0.4f}'.format(train_error),
              end= ' - ')
        train_accuracy = accuracy(true_label=y,
                                  predicted=(l2 > 0.5))
        test_preds = predict(Xt, weights)
        test_accuracy = accuracy(true_label=yt,
                                 predicted=test_preds)
        print('acc: train {:0.3f}'.format(train_accuracy),
              end= '/')
        print('test {:0.3f}'.format(test_accuracy))

Variable j counts the iterations. At each iteration, the code tries to divide j by 
5,000 and check whether the division leaves a module. When the module is zero, 
the code infers that 5,000 epochs have passed since the previous check, and sum-
marizing the neural network error is possible by examining its accuracy (how 
many times the prediction is correct with respect to the total number of predic-
tions) on the training set and on the test set. The accuracy on the training set 
shows how well the neural network is fitting the data by adapting its parameters 
by the backpropagation process. The accuracy on the test set provides an idea of 
how well the solution generalized to new data and thus whether you can reuse it.

The test accuracy should matter the most because it shows the potential usability 
of the neural network with other data. The training accuracy just tells you how the 
network scores with the present data you are using. Here is an example of what 
you might see as output:

Epoch     0 - error: 0.5077 - acc: train 0.462/test 0.656
Epoch  5000 - error: 0.0991 - acc: train 0.952/test 0.944
Epoch 10000 - error: 0.0872 - acc: train 0.952/test 0.944
Epoch 15000 - error: 0.0809 - acc: train 0.957/test 0.956
Epoch 20000 - error: 0.0766 - acc: train 0.967/test 0.956
Epoch 25000 - error: 0.0797 - acc: train 0.962/test 0.967
Epoch 30000 - error: 0.0713 - acc: train 0.957/test 0.956
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Looking Under the Hood  
of Neural Networks

After you know how neural networks basically work, you need a better under-
standing of what differentiates them. Beyond the different architectures, the 
choice of the activation functions, the optimizers and the neural network’s learn-
ing rate can make the difference. Knowing basic operations isn’t enough because 
you won’t get the results you want. Looking under the hood helps you understand 
how you can tune your neural network solution to model specific problems. In 
addition, understanding the various algorithms used to create a neural network 
will help you obtain better results with less effort and in a shorter time. The fol-
lowing sections focus on three areas of neural network differentiation.

Choosing the right activation function
An activation function simply defines when a neuron fires. Consider it a sort of 
tipping point: Input of a certain value won’t cause the neuron to fire because it’s 
not enough, but just a little more input can cause the neuron to fire. A neuron is 
defined in a simple manner, as follows:

y = ∑ (weight * input) + bias

The output, y, can be any value between + infinity and – infinity. The problem, 
then, is to decide on what value of y is the firing value, which is where an activa-
tion function comes into play. The activation function determines which value is 
high or low enough to reflect a decision point in the neural network for a partic-
ular neuron or group of neurons.

As with everything else in neural networks, you don’t have just one activation 
function. You use the activation function that works best in a particular scenario. 
With this in mind, you can break the activation functions into these categories:

 » Step: A step function (also called a binary function) relies on a specific 
threshold for making the decision about activating or not. Using a step 
function means that you know which specific value will cause an activation. 
However, step functions are limited in that they’re either fully activated or fully 
deactivated — no shades of gray exist. Consequently, when attempting to 
determine which class is most likely correct based on a given input, a step 
function won’t work.



400      BOOK 4  Performing Advanced Data Manipulation

 » Linear: A linear function (A = cx) provides a straight-line determination of 
activation based on input. Using a linear function helps you determine which 
output to activate based on which output is most correct (as expressed by 
weighting). However, linear functions work only as a single layer. If you were 
to stack multiple linear function layers, the output would be the same as 
using a single layer, which defeats the purpose of using neural networks. 
Consequently, a linear function may appear as a single layer, but never as 
multiple layers.

 » Sigmoid: A sigmoid function (A = 1 / 1 + e-x), which produces a curve 
shaped like the letter C or S, is nonlinear. It begins by looking sort of like the 
step function, except that the values between two points actually exist on a 
curve, which means that you can stack sigmoid functions to perform classifica-
tion with multiple outputs. The range of a sigmoid function is between 0 
and 1, not – infinity to + infinity as with a linear function, so the activations are 
bound within a specific range. However, the sigmoid function suffers from a 
problem called vanishing gradient, which means that the function refuses to 
learn after a certain point because the propagated error shrinks to zero as it 
approaches faraway layers.

 » TanH: A tanh function (A = (2 / 1 + e-2x) – 1) is actually a scaled sigmoid 
function. It has a range of –1 to 1, so again, it’s a precise method for activating 
neurons. The big difference between sigmoid functions and tanh functions is 
that the tanh function gradient is stronger, which means that detecting small 
differences is easier, making classification more sensitive. Like the sigmoid 
function, tanh suffers from vanishing gradient issues.

 » ReLU: A ReLU function (A(x) = max(0, x)) provides an output in the range 
of 0 to infinity, so it’s similar to the linear function except that it’s also nonlin-
ear, enabling you to stack ReLU functions. An advantage of ReLU is that it 
requires less processing power because fewer neurons fire. The lack of activity 
as the neuron approaches the 0 part of the line means that there are fewer 
potential outputs to look at. However, this advantage can also become a 
disadvantage when you have a problem called the dying ReLU. After a while, 
the neural network weights don’t provide the desired effect any longer (the 
network simply stops learning) and the affected neurons die — meaning that 
they don’t respond to any input.

Also, the ReLU has some variants that you should consider:

 » ELU (Exponential Linear Unit): Differs from ReLU when the inputs are 
negative. In this case, the outputs don’t go to zero but instead slowly decrease 
to –1 exponentially.
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 » PReLU (Parametric Rectified Linear Unit): Differs from ReLU when the 
inputs are negative. In this case, the output is a linear function whose 
parameters are learned using the same technique as any other parameter of 
the network.

 » LeakyReLU: Similar to PReLU but the parameter for the linear side is fixed.

Relying on a smart optimizer
An optimizer serves to ensure that your neural network performs fast and cor-
rectly models whatever problem you want to solve by modifying the neural net-
work’s biases and weights. It turns out that an algorithm performs this task, but 
you must choose the correct algorithm to obtain the results you expect. As with 
all neural network scenarios, you have a number of optional algorithm types from 
which to choose (see https://keras.io/optimizers/):

 » Stochastic Gradient Descent (SGD)

 » RMSProp

 » AdaGrad

 » AdaDelta

 » AMSGrad

 » Adam and its variants, Adamax and Nadam

An optimizer works by minimizing or maximizing the output of an objective 
function (also known as an error function) represented as E(x). This function 
is dependent on the model’s internal learnable parameters used to calculate the 
target values (Y) from the predictors (X). Two internal learnable parameters are 
weights (W) and bias (b). The various algorithms have different methods of deal-
ing with the objective function.

You can categorize the optimizer functions by the manner in which they deal with 
the derivative (dy/dx), which is the instantaneous change of y with respect to x. 
Here are the two levels of derivative handling:

 » First order: These algorithms minimize or maximize the objective function 
using gradient values with respect to the parameters.

 » Second order: These algorithms minimize or maximize the object function using 
the second-order derivative values with respect to the parameters. The second-
order derivative can give a hint as to whether the first-order derivative is increas-
ing or decreasing, which provides information about the curvature of the line.

https://keras.io/optimizers/
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You commonly use first-order optimization techniques, such as Gradient Descent, 
because they require fewer computations and tend to converge to a good solution 
relatively fast when working on large datasets.

Setting a working learning rate
Each optimizer has completely different parameters to tune. One constant is fix-
ing the learning rate, which represents the rate at which the code updates the 
network’s weights (such as the alpha parameter used in the example for this 
chapter). The learning rate can affect both the time the neural network takes to 
learn a good solution (the number of epochs) and the result. In fact, if the learn-
ing rate is too low, your network will take forever to learn. Setting the value too 
high causes instability when updating the weights, and the network won’t ever 
converge to a good solution.

Choosing a learning rate that works is daunting because you can effectively try 
values in the range from 0.000001 to 100. The best value varies from optimizer to 
optimizer. The value you choose depends on what type of data you have. Theory 
can be of little help here; you have to test different combinations before finding 
the most suitable learning rate for training your neural network successfully.

In spite of all the math surrounding neural networks, tuning them and having 
them work best is mostly a matter of empirical efforts in trying different combi-
nations of architectures and parameters.

Explaining Deep Learning Differences 
with Other Forms of AI

Given the embarrassment of riches that pertain to AI as a whole, such as large 
amounts of data, new and powerful computational hardware available to ever-
yone, and plenty of private and public investments, you may be skeptical about 
the technology behind deep learning, which consists of neural networks that have 
more neurons and hidden layers than in the past. Deep networks contrast with the 
simpler, shallower networks of the past, which featured one or two hidden layers 
at best. Many solutions that render the deep learning of today possible are not at 
all new, but deep learning uses them in new ways.

Deep learning isn’t simply a rebranding of an old technology, the perceptron (see 
the section “Understanding perceptron functionality,” earlier in this  chapter). 
Deep learning works better because of the sophistication it adds through the full 
use of powerful computers and the availability of better (not just more) data. Deep 



Bu
ild

in
g 

D
ee

p 
Le

ar
ni

ng
 

M
od

el
s

CHAPTER 2  Building Deep Learning Models      403

learning also implies a profound qualitative change in the capabilities offered 
by the technology along with new and astonishing applications. The presence of 
these capabilities modernizes old but good neural networks, transforming them 
into something new. The following sections describe just how deep learning 
achieves its task.

Adding more layers
You may wonder why deep learning has blossomed only now when the technology 
used as the foundation of deep learning existed long ago. Computers are more pow-
erful today, and deep learning can access huge amounts of data. However, these 
answers point only to important problems with deep learning in the past, and lower 
computing power along with less data weren’t the only insurmountable obstacles. 
Until recently, deep learning also suffered from a key technical problem that kept 
neural networks from having enough layers to perform truly complex tasks.

Because it can use many layers, deep learning can solve problems that are out of 
reach of machine learning, such as image recognition, machine translation, and 
speech recognition. When fitted with only a few layers, a neural network is a per-
fect universal function approximator, which is a system that can re-create any possi-
ble mathematical function. When fitted with many more layers, a neural network 
becomes capable of creating, inside its internal chain of matrix multiplications, 
a sophisticated system of representations to solve complex problems. To under-
stand how a complex task like image recognition works, consider this process:

1. A deep learning system trained to recognize images (such as a network 
capable of distinguishing photos of dogs from those featuring cats) defines 
internal weights that have the capability to recognize a picture topic.

2. After detecting each single contour and corner in the image, the deep learning 
network assembles all such basic traits into composite characteristic features.

3. The network matches such features to an ideal representation that provides 
the answer.

In other words, a deep learning network can distinguish dogs from cats using its 
internal weights to define a representation of what, ideally, a dog and a cat should 
resemble. It then uses these internal weights to match any new image you provide 
it with.

One of the earliest achievements of deep learning that made the public aware 
of its potentiality is the cat neuron. The Google Brain team, run at that time by 
Andrew Ng and Jeff Dean, put together 16,000 computers to calculate a deep 
learning network with more than a billion weights, thus enabling unsupervised 
learning from YouTube videos. The computer network could even determine by 
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itself, without any human intervention, what a cat is, and Google scientists man-
aged to dig out of the network a representation of how the network itself expected 
a cat should look (see the “Wired” article at https://www.wired.com/2012/06/ 
google-x-neural-network/).

During the time that scientists couldn’t stack more layers into a neural net-
work because of the limits of computer hardware, the potential of the technol-
ogy remained buried, and scientists ignored neural networks. The lack of success 
added to the profound skepticism that arose around the technology during the last 
AI winter (1987 to 1993). However, what really prevented scientists from creating 
something more sophisticated was the problem with vanishing gradients.

A vanishing gradient occurs when you try to transmit a signal through a neural 
network and the signal quickly fades to near zero values; it can’t get through the 
activation functions. This happens because neural networks are chained multipli-
cations. Each below-zero multiplication decreases the incoming values  rapidly, 
and activation functions need large enough values to let the signal pass. The 
 farther neuron layers are from the output, the higher the likelihood that they’ll 
get locked out of updates because the signals are too small and the activation 
functions will stop them. Consequently, your network stops learning as a whole, 
or it learns at an incredibly slow pace.

Every attempt at putting together and testing complex networks ended in failure 
during the last AI winter because the backpropagation algorithm couldn’t update 
the layers nearer the input, thus rendering any learning from complex data, even 
when such data was available at the time, almost impossible. Today, deep networks 
are possible thanks to the studies of scholars from the University of Toronto in 
Canada, such as Geoffrey Hinton (https://www.utoronto.ca/news/artificial- 
intelligence-u-t), who insisted on working on neural networks even when they 
seemed to most to be an old-fashioned machine learning approach.

Professor Hinton, a veteran of the field of neural networks (he contributed to 
defining the backpropagation algorithm), and his team in Toronto devised a few 
methods to circumvent the problem of vanishing gradients. He opened the field 
to rethinking new solutions that made neural networks a crucial tool in machine 
learning and AI again.

Professor Hinton and his team are memorable also for being among the first to 
test GPU usage in order to accelerate the training of a deep neural network. In 
2012, they won an open competition, organized by the pharmaceutical  company 
Merck and by Kaggle (https://www.kaggle.com/, a website for data science 
competitions), using their most recent deep learning discoveries. This event 
brought great attention to the Hinton team’s work. You can read all the details 
of the Hinton team’s revolutionary achievement with neural network layers 
from this Geoffrey Hinton interview: http://blog.kaggle.com/2012/11/01/ 
deep-learning-how-i-did-it-merck-1st-place-interview/.

https://www.wired.com/2012/06/google-x-neural-network/
https://www.wired.com/2012/06/google-x-neural-network/
https://www.utoronto.ca/news/artificial-intelligence-u-t
https://www.utoronto.ca/news/artificial-intelligence-u-t
https://www.kaggle.com/
http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview/
http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview/
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Changing the activations
Geoffrey Hinton’s team (see preceding section) was able to add more layers 
to a neural architecture because of two solutions that prevented trouble with 
backpropagation:

 » They prevented the exploding gradients problem by using smarter network 
initialization. An exploding gradient differs from a vanishing gradient in that it 
can make a network blow up (stop functioning because of extremely high 
values) as the exploding gradient becomes too large to handle.

Your network can explode unless you correctly initialize the network to 
prevent it from computing large weight numbers. Then you solve the problem 
of vanishing gradients by changing the network activations.

 » The team realized that passing a signal through various activation layers 
tended to damp the backpropagation signal until it became too faint to pass 
anymore after examining how a sigmoid activation worked. They used a new 
activation as the solution for this problem. The choice of which algorithm to 
use fell to an old activation type of ReLU. An ReLU activation stopped the 
received signal if it was below zero, assuring the nonlinearity characteristic of 
neural networks and letting the signal pass as it was if above zero. (Using this 
type of activation is an example of combining old but still good technology 
with current technology.) Figure 2-7 shows how this process works.

FIGURE 2-7:  
How the ReLU 

activation 
 function works 

in receiving and 
releasing signals.
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The ReLU worked incredibly well and let the backpropagation signal arrive at the 
initial deep network layers. When the signal is positive, its derivative is 1. You 
can also find proof of the ReLU derivative in looking at Figure 2-7. Note that the 
rate of change is constant and equivalent to a unit when the input signal is posi-
tive (whereas when the signal is negative, the derivative is 0, thus preventing the 
signal from passing).

You can calculate the ReLU function using f(x)=max(0,x). The use of this 
 algorithm increased training speed a lot, allowing fast training of even deeper 
networks without incurring any dead neurons. A dead neuron is one that the 
 network can’t activate because the signals are too faint.

Adding regularization by dropout
The other introduction to deep learning made by Hinton’s team (see preceding 
sections in this chapter) to complete the initial deep learning solution aimed 
at regularizing the network. A regularized network limits the network weights, 
which keeps the network from memorizing the input data and generalizing the 
 witnessed data patterns.

Previous discussions in this chapter (see especially the “Adding more layers” 
 section) note that certain neurons memorize specific information and force the 
other neurons to rely on this stronger neuron, causing the weak neurons to give 
up learning anything useful themselves (a situation called co-adaptation). To 
 prevent co-adaptation, the code temporary switches off the activation of a ran-
dom portion of neurons in the network.

As you see from the left side of Figure  2-8, the weights normally operate by 
 multiplying their inputs into outputs for the activations. To switch off activa-
tion, the code multiplies a mask made of a random mix of ones and zeros with the 
results. If the neuron is multiplied by one, the network passes its signal. When a 
neuron is multiplied by zero, the network stops its signal, forcing other neurons 
not to rely on it in the process.

Dropout works only during training and doesn’t touch any part of the weights. 
It  simply masks and hides part of the network, forcing the unmasked part to 
take a more active role in learning data patterns. During prediction time, dropout 
doesn’t operate, and the weights are numerically rescaled to account for the fact 
that they didn’t work together during training.
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Using online learning
Neural networks are more flexible than other machine learning algorithms, and 
they can continue to train as they work on producing predictions and classifi-
cations. This capability comes from optimization algorithms that allow neural 
networks to learn, which can work repeatedly on small samples of examples 
(called batch learning) or even on single examples (called online learning). Deep 
learning networks can build their knowledge step by step and remain receptive to 
new information that may arrive (in a manner similar to a baby’s mind, which is 
always open to new stimuli and to learning experiences).

For instance, a deep learning application on a social media website can train on cat 
images. As people post photos of cats, the application recognizes them and tags 
them with an appropriate label. When people start posting photos of dogs on the 
social network, the neural network doesn’t need to restart training; it can con-
tinue by learning images of dogs as well. This capability is particularly useful for 
coping with the variability of Internet data. A deep learning network can be open 
to novelty and adapt its weights to deal with it.

Transferring learning
Flexibility is handy even when a network completes its training, but you must 
reuse it for purposes different from the initial learning. Networks that distinguish 
objects and correctly classify them require a long time and a lot of computational 
capacity to learn what to do. Extending a network’s capability to new kinds of 
images that weren’t part of the previous learning means transferring the knowl-
edge to this new problem (transfer learning).

FIGURE 2-8:  
Dropout 

 temporarily 
rules out  

40 percent of 
neurons from 

the training.
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For instance, you can transfer a network that’s capable of distinguishing between 
dogs and cats to perform a job that involves spotting dishes of macaroni and 
cheese. You use the majority of the layers of the network as they are (you freeze 
them) and then work on the final, output layers (fine-tuning). In a short time, 
and with fewer examples, the network will apply what it learned in distinguishing 
dogs and cats to macaroni and cheese. It will perform even better than a neural 
network trained only to recognize macaroni and cheese.

Transfer learning is something new to most machine learning algorithms and 
opens a possible market for transferring knowledge from one application to 
another, from one company to another. Google is already doing that, actually 
sharing its immense data repository by making public the networks that it built 
on it (as detailed in this post: https://techcrunch.com/2017/06/16/object- 
detection-api/). This is a step in democratizing deep learning by allowing ever-
yone to access its potentiality.

Learning end to end
Finally, deep learning allows end-to-end learning, which means that it solves 
problems in an easier and more straightforward way than previous deep learning 
solutions. This flexibility might result in a greater impact when solving problems.

You may want to solve a difficult problem, such as having the AI recognize known 
faces or drive a car. When using the classical AI approach, you had to split the 
problem into more manageable subproblems to achieve an acceptable result in a 
feasible time. For instance, if you wanted to recognize faces in a photo, previous 
AI systems arranged the problem into parts, as follows:

1. Find the faces in the photo.

2. Crop the faces from the photo.

3. Process the cropped faces to have a pose similar to an ID card photo.

4. Feed the processed cropped faces as learning examples to a neural network 
for image recognition.

Today, you can feed the photo to a deep learning architecture, guide it to learn to 
find faces in the images, and then use the deep learning architecture to classify 
them. You can use the same approach for language translation, speech recogni-
tion, or even self-driving cars. In all cases, you simply pass the input to a deep 
learning system and obtain the wanted result.

https://techcrunch.com/2017/06/16/object-detection-api/
https://techcrunch.com/2017/06/16/object-detection-api/
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Recognizing Images 
with CNNs

Humans are graphically (visually) oriented, but computers aren’t. So, the 
task that humans most want performed by deep learning — recognizing 
items in images — is also one of the harder tasks to perform using a com-

puter. The manner in which a computer deals with images is completely different 
from humans. When working with images, computers deal with the numeric val-
ues that make up individual pixels. The computer processes the numbers used to 
create an image much as it processes any other group of numbers. Consequently, 
this chapter deals with using a different kind of math to manipulate those pixel 
values so that a computer can output the desired result, despite having no concept 
whatsoever that it is even processing an image.

You have some methods of working with images that don’t involve heavy-duty 
usage of deep learning techniques, but the output from these methods is also 
simple. However, these techniques make a good starting point for the discussions 
later in the chapter, so you see them in the first part of this chapter.

The real basis for more advanced image processing today is the Convolutional 
Neural Network (CNN). The next part of the chapter provides you with a basis for 
understand CNNs, which are actually specialized layers of a neural network.

Chapter 3

IN THIS CHAPTER

 » Performing basic image recognition

 » Working with convolutions

 » Looking for edges and shapes in 
images
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The perceptron is discussed in the “Discovering the Incredible Perceptron” 
 section of Book 4, Chapter 2. Of course, a CNN is much more sophisticated than 
just a bunch of perceptrons and the introduction to them in the second part of the 
book will help you understand the difference better.

The third part of the chapter helps you understand how CNNs get used in the real 
world to some extent. You won’t see the full range of uses because that would 
take another book (possibly two). The examples in this chapter help you under-
stand that CNNs are quite powerful because of how the computer uses them to 
work with images numerically. The final piece in the chapter shows how you can 
use CNNs to detect both edges and shapes in images, which is quite a feat because 
even humans can’t always perform the task reliably.

You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears in 
the DSPD_0403_CNN.ipynb source code file for Python and the DSPD_R_0403_CNN.
ipynb source code file for R. See the Introduction for details on how to find these 
source files.

Beginning with Simple Image Recognition
Among the five senses, sight is certainly the most powerful in conveying knowl-
edge and information derived from the world outside. Many people feel that the 
gift of sight helps children know about the different items and persons around 
them. In addition, humans receive and transmit knowledge across time by means 
of pictures, visual arts, and textual documents. The sections that follow help you 
understand how machine learning can help your computer interact with images 
using the two languages found in this book.

Considering the ramifications of sight
Because sight is so important and precious, it’s invaluable for a machine  learning 
algorithm because the graphic data obtained through sight sensors, such as 
 cameras, opens the algorithm to new capabilities. Most information today is 
available in the following digital forms:

 » Text

 » Music

 » Photos

 » Videos
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Being able to read visual information in a binary format doesn’t help you to under-
stand it and to use it properly. In recent years, one of the more important uses of 
vision in machine learning is to classify images for all sorts of reasons. Here are 
some examples to consider:

 » A doctor could rely on a machine learning application to find the cancer in a 
scan of a patient.

 » Image processing and detection also makes automation possible. Robots 
need to know which objects they should avoid and which objects they need to 
work with, yet without image classification, the task is impossible.

 » Humans rely on image classification to perform tasks such as handwriting 
recognition and finding particular individuals in a crowd.

Here’s a smattering of other vital tasks of image classification: assisting in foren-
sic analysis; detecting pedestrians (an important feature to implement in cars and 
one that could save thousands of lives); and helping farmers determine where 
fields need the most water. Check out the state of the art in image classification at 
http://rodrigob.github.io/are_we_there_yet/build/.

Working with a set of images
At first sight, image files appear as unstructured data made up of a series of bits. 
The file doesn’t separate the bits from each other in any way. You can’t simply 
look into the file and see any image structure because none exists. As with other 
file formats, image files rely on the user to know how to interpret the data. For 
example, each pixel of a picture file could consist of three 32-bit fields. Knowing 
that each field is 32-bits is up to you. A header at the beginning of the file may 
provide clues about interpreting the file, but even so, it’s up to you to know how 
to interact with the file using the right package or library. The following section 
discusses how to work directly with images.

Finding a library
You use Scikit-image for the Python examples presented in this section and those 
that follow. It’s a Python package dedicated to processing images, picking them 
up from files, and handling them using NumPy arrays. By using Scikit-image, 
you can obtain all the skills needed to load and transform images for any machine 
learning algorithm. This package also helps you upload all the necessary images, 
resize or crop them, and flatten them into a vector of features in order to trans-
form them for learning purposes.

http://rodrigob.github.io/are_we_there_yet/build/
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Scikit-image isn’t the only package that can help you deal with images in Python. 
Other packages are available also, such as the following:

 » scipy.ndimage (http://docs.scipy.org/doc/scipy/reference/
ndimage.html): Allows you to operate on multidimensional images

 » Mahotas (http://mahotas.readthedocs.org/en/latest/): A fast C++ 
based processing library

 » OpenCV (https://opencv-python-tutroals.readthedocs.org/): 
A powerful package that specializes in computer vision

 » ITK (http://www.itk.org/): Designed to work on 3D images for medical 
purposes

The example in this section shows how to work with a picture as an unstruc-
tured file. The example image is a public domain offering from http://commons. 
wikimedia.org/wiki/Main_Page. To work with images, you need to access 
the Scikit-image library (http://scikit-image.org/), which is an algorithm 
 collection used for image processing. You can find a tutorial for this library at 
http://scipy-lectures.github.io/packages/scikit-image/. The first task is 
to display the image onscreen using the following code. (Be patient: The image is 
ready when the busy indicator disappears from the IPython Notebook tab.)

DATA SCIENCE IMAGE PROCESSING IN R
Image processing can become a complex task, and trying to precisely mimic techniques 
across languages is difficult and sometimes impossible. You need a library for your 
language that does what you need it to using that language’s native capabilities. When 
viewing the outputs for the various language examples in this section, you see essen-
tially the same result, so any data scientist could use the associated output to perform 
analysis. The technique, however, differs some between languages, and you might not 
find a one-for-one correlation in lines of code. Consequently, the R examples are heav-
ily commented to tell you when to expect a different approach and why the approach 
makes sense in that language.

The library used for R for this chapter (and any chapter that relies on image processing) 
is ImageMagick (https://imagemagick.org/index.php). You can read a review of it 
at https://heartbeat.fritz.ai/image-manipulation-for-machine-learning- 
in-r-ff2b92069fef. In some respects, ImageMagick is a little more comprehensive 
than its Scikit-image counterpart.

http://docs.scipy.org/doc/scipy/reference/ndimage.html
http://docs.scipy.org/doc/scipy/reference/ndimage.html
http://mahotas.readthedocs.org/en/latest/
https://opencv-python-tutroals.readthedocs.org/
http://www.itk.org/
http://commons.wikimedia.org/wiki/Main_Page
http://commons.wikimedia.org/wiki/Main_Page
http://scikit-image.org/
http://scipy-lectures.github.io/packages/scikit-image/
https://imagemagick.org/index.php
https://heartbeat.fritz.ai/image-manipulation-for-machine-learning-in-r-ff2b92069fef
https://heartbeat.fritz.ai/image-manipulation-for-machine-learning-in-r-ff2b92069fef
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from skimage.io import imread
from skimage.transform import resize
from matplotlib import pyplot as plt
import matplotlib.cm as cm
 
%matplotlib inline
 
example_file = ("http://upload.wikimedia.org/" +
    "wikipedia/commons/6/69/GeraldHeaneyMagician.png")
image = imread(example_file, as_grey=False)
plt.imshow(image, cmap=cm.gray)
plt.show()

The code begins by importing a number of libraries. It then creates a string that 
points to the example file online and places it in example_file. This string is part 
of the imread() method call, along with as_grey, which is set to True. The as_
grey argument tells Python to turn any color images into grayscale. Any images 
that are already in grayscale remain that way.

After you have an image loaded, you render it (make it ready to display onscreen). 
The imshow() function performs the rendering and uses a grayscale color map. 
The show() function actually displays image for you, as shown in Figure 3-1.

Dealing with image issues
Sometimes images aren’t perfect; they could present noise or other granular-
ity. You must smooth the erroneous and unusable signals. Filters can help you 
achieve that smoothing without hiding or modifying important characteristics of 

FIGURE 3-1:  
The image 

appears onscreen 
after you render 

and show it.
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the image, such as the edges. If you’re looking for an image filter, you can clean 
up your images using the following:

 » Median filter: Based on the idea that the true signal comes from a median of 
a neighborhood of pixels. A function disk provides the area used to apply the 
median, which creates a circular window on a neighborhood.

 » Total variation denoising: Based on the idea that noise is variance, which 
this filter reduces.

 » Gaussian filter: Uses a Gaussian function to define the pixels to smooth.

CHOOSING AN IMAGE
You need to exercise some caution in picture selection when performing filtering of 
the sort shown in this example. The picture chosen for this example works because it’s 
already in grayscale format in the correct arrangement. If you use a color image, how-
ever, you need to convert it to grayscale by setting the as_grey=True argument in the 
call to image = imread(example_file, as_grey=False). The result would be a 
nearly usable image in grayscale for some types of filtering, but not all.

The problem with making this change is that the dtype (data type) of the output image 
changes from uint8 to float64 when you set as_grey=True. The filters.rank.
median() method call expects a uint8 as input, so it displays a warning message. You 
could get rid of the warning message by making a simple call:

import warnings
warnings.filterwarnings("ignore")

but this isn’t usually the best solution. Another option you might try is to set the image 
to the correct type by calling image.astype('uint8'). However, this change presents 
other problems. The best solution is to find a picture of the appropriate type or to con-
vert the picture to the appropriate type outside the application as a preprocessing step, 
ensuring that the dtype stays at uint8 when you read it. You can test the dtype of an 
image by calling print(image.dtype).

The restoration.denoise_tv_chambolle() and filters.gaussian() method 
calls aren’t so particular. Each of these methods will accept either uint8 or float64 
without problem. So, the choice of filtering method becomes an issue as well.
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The following code demonstrates the effect that every filter has on the final image:

from skimage import filters, restoration
from skimage.morphology import disk
median_filter = filters.rank.median(image, disk(1))
tv_filter = restoration.denoise_tv_chambolle(image,
                                             weight=0.1)
gaussian_filter = filters.gaussian(image, sigma=0.7)

To see the effect of the filtering, you must display the filtered images onscreen. 
The following code performs this task by using an enumeration to display the fil-
ter name as a string and the actual filtered image. Each image appears as a subplot 
of a main image:

fig = plt.figure()
for k,(t,F) in enumerate((('Median filter',median_filter),
              ('TV filter',tv_filter),
              ('Gaussian filter', gaussian_filter))):
    f=fig.add_subplot(1,3,k+1)
    plt.axis('off')
    f.set_title(t)
    plt.imshow(F, cmap=cm.gray)
plt.show()

Figure 3-2 shows the output of each of the filters. Notice that the TV filter entry 
shows the best filtering effects.

FIGURE 3-2:  
Different filters 

for different noise 
cleaning.
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If you aren’t working in IPython (or you aren’t using the magic command  
%matplotlib inline), just close the image when you’ve finished viewing it after 
filtering noise from the image. (The asterisk in the In [*]: entry in Notebook 
tells you that the code is still running and you can’t move on to the next step.) The 
act of closing the image ends the code segment.

Manipulating the image
You now have an image in memory and you may want to find out more about it. 
When you run the following code, you discover the image type and size:

print("data type: %s, dtype: %s, shape: %s" %
      (type(image), image.dtype, image.shape))

The output from this call tells you that the image type is a numpy.ndarray, the 
dtype is uint8, and the image size is 1200 pixels by 800 pixels. The image is 
actually an array of pixels that you can manipulate in various ways. For example, 
if you want to crop the image, you can use the following code to manipulate the 
image array:

image2 = image[100:950,50:700]
plt.imshow(image2, cmap=cm.gray)
plt.show()
print("data type: %s, dtype: %s, shape: %s" %
      (type(image2), image2.dtype, image2.shape))

The numpy.ndarray in image2 is smaller than the one in image, so the output 
is smaller as well. Figure 3-3 shows typical results. Notice that the image is now 
850 pixels by 650 pixels in size. The purpose of cropping the image is to make it 
a specific size. Both images must be the same size for you to analyze them. Crop-
ping is one way to ensure that the images are the correct size for analysis.

FIGURE 3-3:  
Cropping the 
image makes 

it smaller.
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Another method that you can use to change the image size is to resize it. The fol-
lowing code resizes the image to a specific size for analysis:

image3 = resize(image2, (600, 460), mode='symmetric')
plt.imshow(image3, cmap=cm.gray)
print("data type: %s, dtype: %s, shape: %s" %
      (type(image3), image3.dtype, image3.shape))

The output from the print() function tells you that the image is now 600 pixels 
by 460 pixels in size. You can compare it to any image with the same dimensions.

After you have cleaned up all the images and made them the right size, you need to 
flatten them. A dataset row is always a single dimension, not two or more dimen-
sions. The image is currently an array of 600 pixels by 460 pixels, so you can’t 
make it part of a dataset. The following code flattens image3, so it becomes an 
array of 276,000 elements stored in image_row.

image_row = image3.flatten()
print("data type: %s, shape: %s" %
      (type(image_row), image_row.shape))

Notice that the type is still a numpy.ndarray. You can add this array to a dataset 
and then use the dataset for analysis purposes. The size is 276,000 elements, as 
anticipated.

Extracting visual features
Machine learning on images works because it can rely on features to compare 
pictures and associate an image with another one (because of similarity) or to a 
specific label (guessing, for instance, the represented objects). Humans can easily 
choose a car or a tree when we see one in a picture. Even if it’s the first time that 
we see a certain kind of tree or car, we can correctly associate it with the right 
object (labeling) or compare it with similar objects in memory (image recall).

In the case of a car, having wheels, doors, a steering wheel, and so on are all 
elements that help you categorize a new example of a car among other cars. It 
happens because you see shapes and elements beyond the image itself; thus, no 
matter how unusual a tree or a car may be, if it owns certain characteristics, you 
can $ out what it is.

An algorithm can infer elements (shapes, colors, particulars, relevant elements, 
and so on) directly from pixels only when you prepare data for it. Apart from spe-
cial kinds of neural networks, called Convolutional Neural Networks, or CNNs (dis-
cussed later in this chapter), it’s always necessary to prepare the right features 
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when working with images. CNNs rank as the state of the art in image recognition 
because they can extract useful features from raw images by themselves.

Feature preparation from images is like playing with a jigsaw puzzle: You have 
to figure out any relevant particular, texture, or set of corners represented inside 
the image to recreate a picture from its details. All this information serves as the 
image features and makes up a precious element for any machine learning algo-
rithm to complete its job.

CNNs filter information across multiple layers and train the parameters of their 
convolutions (which are kinds of image filters). In this way, they can filter out 
the features relevant to the images and the tasks they’re trained to perform and 
exclude everything else. Other special layers, called pooling layers, help the neural 
net catch these features in the case of translation (they appear in unusual parts of 
the image) or rotation.

Applying deep learning requires special techniques and machines that are able to 
sustain the heavy computational workload. The Caffe library, developed by Yangq-
ing Jia from the Berkeley Vision and Learning Center, allows building such neural 
networks but also leverages pretrained ones (http://caffe.berkeleyvision. 
org/model_zoo.html). A pretrained neural network is a CNN trained on a large 
number of varied images, thus it has learned how to filter out a large variety of 
features for classification purposes. The pretrained network lets you input your 
images and obtain a large number of values that correspond to a score on a certain 
kind of feature previously learned by the network as an output. The features may 
correspond to a certain shape or texture. What matters to your machine learn-
ing objectives is for the most revealing features for your purposes to be among 
those produced by the pretrained network. Therefore, you must choose the right 
features by making a selection using another neural network, an SVM, or a simple 
regression model.

When you can’t use a CNN or pretrained library (because of memory or CPU con-
straints), OpenCV (https://opencv-python-tutroals.readthedocs.io/en/ 
latest/py_tutorials/py_feature2d/py_table_of_contents_feature2d/py_ 
table_of_contents_feature2d.html) or some Scikit-image functions can still 
help. For instance, to emphasize the borders of an image, you can apply a simple 
process using Scikit-image, as shown here:

from skimage import measure
contours = measure.find_contours(image, 0.55)
plt.imshow(image, cmap=cm.gray)
for n, contour in enumerate(contours):
    plt.plot(contour[:, 1], contour[:, 0], linewidth=2)
plt.axis('image')
plt.show()

http://caffe.berkeleyvision.org/model_zoo.html
http://caffe.berkeleyvision.org/model_zoo.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_table_of_contents_feature2d/py_table_of_contents_feature2d.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_table_of_contents_feature2d/py_table_of_contents_feature2d.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_table_of_contents_feature2d/py_table_of_contents_feature2d.html
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You can read more about finding contours and other algorithms for feature 
 extraction (histograms; corner and blob detection) in the tutorials at https://
scikit-image.org/docs/dev/auto_examples/.

Recognizing faces using Eigenfaces
The capability to recognize a face in the crowd has become an essential tool for 
many professions. For example, both the military and law enforcement rely on it 
heavily. Of course, facial recognition has uses for security and other needs as well. 
This example looks at facial recognition in a more general sense. You may have 
wondered how social networks manage to tag images with the appropriate label or 
name. The following example demonstrates how to perform this task by creating 
the right features using eigenfaces.

Eigenfaces is an approach to facial recognition based on the overall appearance 
of a face, not on its particular details. By means of a technique that can inter-
cept and reshape the variance present in the image, the reshaped information is 
treated like the DNA of a face, thus allowing the recovery of similar faces (because 
they have similar variances) in a host of facial images. It’s a less effective tech-
nique than extracting features from the details of an image, yet it works, and you 
can implement it quickly on your computer. This approach demonstrates how 
machine learning can operate with raw pixels, but it’s more effective when you 
change image data into another kind of data. You can learn more about eigenfaces 
at https://towardsdatascience.com/eigenfaces-recovering-humans-from- 
ghosts-17606c328184 or by trying the tutorial that explores variance decompo-
sitions in Scikit-learn at https://scikit-learn.org/stable/auto_examples/ 
decomposition/plot_faces_decomposition.html.

In this example, you use eigenfaces to associate images present in a training set 
with those in a test set, initially using some simple statistical measures:

import numpy as np
from sklearn.datasets import fetch_olivetti_faces
dataset = fetch_olivetti_faces(shuffle=True,
                               random_state=101)
train_faces = dataset.data[:350,:]
test_faces  = dataset.data[350:,:]
train_answers = dataset.target[:350]
test_answers = dataset.target[350:]

The example begins by using the Olivetti faces dataset, a public domain set of 
images readily available from Scikit-learn. The following code displays a descrip-
tion of the dataset that you can use to learn more about it:

print (dataset.DESCR)

https://scikit-image.org/docs/dev/auto_examples/
https://scikit-image.org/docs/dev/auto_examples/
https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184
https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184
https://scikit-learn.org/stable/auto_examples/decomposition/plot_faces_decomposition.html
https://scikit-learn.org/stable/auto_examples/decomposition/plot_faces_decomposition.html
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For this experiment, the code divides the set of labeled images into a training and 
a test set. You need to pretend that you know the labels of the training set but 
don’t know anything from the test set. As a result, you want to associate images 
from the test set to the most similar image from the training set.

The Olivetti dataset consists of 400 photos taken from 40 people (so it contains 
ten photos of each person). Even though the photos represent the same person, 
each photo has been taken at different times during the day, with different light 
and facial expressions or details (for example, with glasses and without). The 
images are 64 x 64 pixels, so unfolding all the pixels into features creates a data-
set made of 400 cases and 4,096 variables. It seems like a high number of fea-
tures, and actually, it is. Using PCA, as shown in the following code, you can reduce 
them to a smaller and more manageable number:

from sklearn.decomposition import PCA
n_components = 25
Rpca = PCA(svd_solver='randomized',
           n_components=n_components,
           whiten=True,
           random_state=101).fit(train_faces)
print ('Explained variance by %i components: %0.3f' %
       (n_components,
        np.sum(Rpca.explained_variance_ratio_)))
compressed_train_faces = Rpca.transform(train_faces)
compressed_test_faces  = Rpca.transform(test_faces)

The output from this code tells you about the explained variance of each selected 
component, based on the number of selected components, which is 25  in this 
case. If you had used the full set of components, the summed ratio would be 1.0 
(or 100 percent).

Explained variance by 25 components: 0.794

DEPRECATION OF THE RandomizedPCA 
CLASS
At one point, sklearn.decomposition included a RandomizedPCA class. Later ver-
sions of sklearn.decomposition have deprecated this class. Consequently, if you 
see examples using the RandomizedPCA class, you must use the PCA class instead with 
the svd_solver='randomized' argument set. You can discover more about the PCA 
class at https://scikit-learn.org/stable/modules/generated/sklearn. 
decomposition.PCA.html.

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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The decomposition performed by PCA creates 25 new variables (n_components 
parameter) and whitening (whiten=True), removing some constant noise (created 
by textual and photo granularity) and irrelevant information from images in a 
different way from the filters just discussed. The resulting decomposition uses 25 
components, which is about 80 percent of the information held in 4,096 features. 
The following code displays the effect of this processing:

import matplotlib.pyplot as plt
photo = 17 # This is the photo in the test set
print ('We are looking for face id=%i'
       % test_answers[photo])
plt.subplot(1, 2, 1)
plt.axis('off')
plt.title('Unknown face '+str(photo)+' in test set')
plt.imshow(test_faces[photo].reshape(64,64),
           cmap=plt.cm.gray, interpolation='nearest')
plt.show()

Figure 3-4 shows the chosen photo, subject number 34, from the test set.

After the decomposition of the test set, the example takes the data relative only 
to photo 17 and subtracts it from the decomposition of the training set. Now the 
training set is made of differences with respect to the example photo. The code 
squares them (to remove negative values) and sums them by row, which results 
in a series of summed errors. The most similar photos are the ones with the least 
squared errors, that is, the ones whose differences are the least:

#Just the vector of value components of our photo
mask = compressed_test_faces[photo,]
squared_errors = np.sum(
    (compressed_train_faces - mask)**2,axis=1)
minimum_error_face = np.argmin(squared_errors)

FIGURE 3-4:  
The example 

application would 
like to find similar 

photos.
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most_resembling = list(np.where(squared_errors < 20)[0])
print ('Best resembling face in train test: %i' %
       train_answers[minimum_error_face])

After running this code, you find the following results:

Best resembling face in train test: 34

As it did before, the code can now display photo 17 using the following code. Photo 
17 is the photo that best resembles images from the train set. Figure 3-5 shows 
typical output from this example.

import matplotlib.pyplot as plt
plt.subplot(2, 2, 1)
plt.axis('off')
plt.title('Unknown face '+str(photo)+' in test set')
plt.imshow(test_faces[photo].reshape(64,64),
           cmap=plt.cm.gray, interpolation='nearest')
for k,m in enumerate(most_resembling[:3]):
   plt.subplot(2, 2, 2+k)
   plt.title('Match in train set no. '+str(m))
   plt.axis('off')
   plt.imshow(train_faces[m].reshape(64,64),
              cmap=plt.cm.gray, interpolation='nearest')
plt.show()

Even though the most similar photo is quite close to photo 17 (it’s just scaled 
slightly differently), the other two photos are quite different. However, even 
though those photos don’t match the text image as well, they really do show the 
same person as in photo 17.

FIGURE 3-5:  
The output 
shows the 

results that 
resemble the 

test image.
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Classifying images
This section adds to your knowledge of facial recognition, this time applying 
a learning algorithm to a complex set of images, called the Labeled Faces in 
the Wild dataset, which contains images of famous people collected over the 
Internet: http://vis-www.cs.umass.edu/lfw/. You must download the dataset 
from the Internet, using the Scikit-learn package in Python (see the fetch_lfw_ 
people site at https://scikit-learn.org/stable/modules/generated/sklearn. 
datasets.fetch_lfw_people.html for details). The package mainly contains 
photos of well-known politicians.

import warnings
warnings.filterwarnings("ignore")
from sklearn.datasets import fetch_lfw_people
lfw_people = fetch_lfw_people(min_faces_per_person=60,
                              resize=0.4)
X = lfw_people.data
y = lfw_people.target
target_names = [lfw_people.target_names[a] for a in y]
n_samples, h, w = lfw_people.images.shape
from collections import Counter
for name, count in Counter(target_names).items():
    print ("%20s %i" % (name, count))

When you run this code, you see some downloading messages. These messages 
are quite normal, and you shouldn’t worry about them. The downloading process 
can take a while because the dataset is relatively large. When the download pro-
cess is complete, the example code outputs the name of each well-known politi-
cian, along with the number of associated pictures, as shown here:

        Colin Powell 236
       George W Bush 530
         Hugo Chavez 71
   Junichiro Koizumi 60
          Tony Blair 144
        Ariel Sharon 77
     Donald Rumsfeld 121
   Gerhard Schroeder 109

As an example of dataset variety, after dividing the examples into training and 
test sets, you can display a sample of pictures from both sets depicting Junichiro 
Koizumi, former Prime Minister of Japan from 2001 to 2006. Figure 3-6 shows the 
output of the following code:

from sklearn.cross_validation import \
   StratifiedShuffleSplit

http://vis-www.cs.umass.edu/lfw/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_lfw_people.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_lfw_people.html
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train, test = list(StratifiedShuffleSplit(target_names,
            n_iter=1, test_size=0.1, random_state=101))[0]
 
plt.subplot(1, 4, 1)
plt.axis('off')
for k,m in enumerate(X[train][y[train]==6][:4]):
    plt.subplot(1, 4, 1+k)
    if k==0:
        plt.title('Train set')
    plt.axis('off')
    plt.imshow(m.reshape(50,37),
               cmap=plt.cm.gray, interpolation='nearest')
plt.show()
 
for k,m in enumerate(X[test][y[test]==6][:4]):
    plt.subplot(1, 4, 1+k)
    if k==0:
        plt.title('Test set')
    plt.axis('off')
    plt.imshow(m.reshape(50,37),
               cmap=plt.cm.gray, interpolation='nearest')
plt.show()

As you can see, the photos have quite a few variations, even among photos of the 
same person, which makes the task challenging. The application must consider:

FIGURE 3-6:  
Examples from 

the training and 
test sets differ 

in pose and 
expression.
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 » Expression

 » Pose

 » Light differences

 » Photo quality

For this reason, the example that follows applies the eigenfaces method described 
in the previous section, using different kinds of decompositions and reducing the 
initial large vector of pixel features (1850) to a simpler set of 150 features. The exam-
ple uses PCA, the variance decomposition technique; Non-Negative Matrix Factor-
ization (NMF), a technique for decomposing images into only positive features; and 
 FastICA, an algorithm for Independent Component Analysis, which is an analysis that 
extracts signals from noise and other separated signals. (This algorithm is success-
ful at handling problems like the cocktail party problem described at https://www. 
comsol.com/blogs/have-you-heard-about-the-cocktail-party-problem/.)

from sklearn import decomposition
n_components = 50
pca = decomposition.PCA(
    svd_solver='randomized',
    n_components=n_components,
    whiten=True).fit(X[train,:])
nmf = decomposition.NMF(n_components=n_components,
                        init='nndsvda',
                        tol=5e-3).fit(X[train,:])
fastica = decomposition.FastICA(n_components=n_components,
                              whiten=True).fit(X[train,:])
eigenfaces = pca.components_.reshape((n_components, h, w))
X_dec = np.column_stack((pca.transform(X[train,:]),
        nmf.transform(X[train,:]),
        fastica.transform(X[train,:])))
Xt_dec = np.column_stack((pca.transform(X[test,:]),
        nmf.transform(X[test,:]),
        fastica.transform(X[test,:])))
y_dec = y[train]
yt_dec = y[test]

After extracting and concatenating the image decompositions into a new training 
and test set of data examples, the code applies a grid search for the best combina-
tions of parameters for a classification support vector machine (SVM) to perform 
a correct problem classification:

from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVC

https://www.comsol.com/blogs/have-you-heard-about-the-cocktail-party-problem/
https://www.comsol.com/blogs/have-you-heard-about-the-cocktail-party-problem/
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param_grid = {'C': [0.1, 1.0, 10.0, 100.0, 1000.0],
              'gamma': [0.0001, 0.001, 0.01, 0.1], }
clf = GridSearchCV(SVC(kernel='rbf'), param_grid)
clf = clf.fit(X_dec, y_dec)
print ("Best parameters: %s" % clf.best_params_)

After the code runs, you see an output showing the best parameters to use, as 
shown here:

Best parameters: {'C': 10.0, 'gamma': 0.01}

After finding the best parameters, the following code checks for accuracy — that 
is, the percentage of correct answers in the test set. Obviously, using the preced-
ing code doesn’t pay if the accuracy produced by the SVM is too low; it would be 
too much like guessing.

from sklearn.metrics import accuracy_score
solution = clf.predict(Xt_dec)
print("Achieved accuracy: %0.3f"
      % accuracy_score(yt_dec, solution))

Fortunately, the example provides an estimate of about 0.84 (the measure may 
change when you run the code on your computer).

Achieved accuracy: 0.837

More interestingly, you can ask for a confusion matrix that shows the correct 
classes along the rows and the predictions in the columns. When a character in a 
row has counts in columns different from its row number, the code has mistak-
enly attributed one of the photos to someone else.

from sklearn.metrics import confusion_matrix
confusion = str(confusion_matrix(yt_dec, solution))
print (' '*26+ '  '.join(map(str,range(8))))
print (' '*26+ '-'*22)
for n, (label, row) in enumerate(
                    zip(lfw_people.target_names,
                    confusion.split('\n'))):
    print ('%s %18s > %s' % (n, label, row))

In this case, the example actually gets a perfect score for Junichiro Koizumi 
(notice that the output shows a 6 in row 6, column 6, and zeros in the remainder 
of the entries for that row). The code gets most confused about Gerhard Schroeder. 
Notice that the affected row shows 6 correct entries in column 4, but has a total of 
5 incorrect entries in the other columns.
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                          0  1  2  3  4  5  6  7
                          ----------------------
0       Ariel Sharon > [[ 7  0  0  0  1  0  0  0]
1       Colin Powell >  [ 0 22  0  2  0  0  0  0]
2    Donald Rumsfeld >  [ 0  0  8  2  1  0  0  1]
3      George W Bush >  [ 0  1  3 46  1  0  0  2]
4  Gerhard Schroeder >  [ 0  0  2  1  6  1  0  1]
5        Hugo Chavez >  [ 0  0  0  0  0  6  0  1]
6  Junichiro Koizumi >  [ 0  0  0  0  0  0  6  0]
7         Tony Blair >  [ 0  0  0  1  1  0  0 12]]

Understanding CNN Image Basics
Digital images are everywhere today because of the pervasive presence of digital 
cameras, webcams, and mobile phones with cameras. Because capturing images 
has become so easy, a new, huge stream of data is provided by images. Being able 
to process images opens the doors to new applications in fields such as robotics, 
autonomous driving, medicine, security, and surveillance.

Processing an image for use by a computer transforms it into data. Comput-
ers send images to a monitor as a data stream composed of pixels, so computer 
images are best represented as a matrix of pixels values, with each position in the 
matrix corresponding to a point in the image.

Modern computer images represent colors using a series of 32 bits (8 bits apiece 
for red, blue, green, and transparency  — the alpha channel). You can use just 
24  bits to create a true color image, however. The article at http://www.rit- 
mcsl.org/fairchild/WhyIsColor/Questions/4-5.html explains this process in 
more detail. Computer images represent color using three overlapping matrices, 
each one providing information relative to one of three colors: Red, Green, or Blue 
(also called RGB). Blending different amounts of these three colors enables you to 
represent any standard human-viewable color, but not those seen by people with 
extraordinary perception. (Most people can see a maximum of 1,000,000 colors, 
which is well within the color range of the 16,777,216 colors offered by 24-bit 
color. Tetrachromats can see 100,000,000 colors, so you couldn’t use a com-
puter to analyze what they see. The article at http://nymag.com/scienceofus/ 
2015/02/what-like-see-a-hundred-million-colors.html tells you more about 
tetrachromats.)

Generally, an image is therefore manipulated by a computer as a three- 
dimensional matrix consisting of height, width, and the number of channels — 
which is three for an RGB image, but could be just one for a black-and-white image. 

http://www.rit-mcsl.org/fairchild/WhyIsColor/Questions/4-5.html
http://www.rit-mcsl.org/fairchild/WhyIsColor/Questions/4-5.html
http://nymag.com/scienceofus/2015/02/what-like-see-a-hundred-million-colors.html
http://nymag.com/scienceofus/2015/02/what-like-see-a-hundred-million-colors.html
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(Grayscale is a special sort of RGB image for which each of the three channels is 
the same number; see https://introcomputing.org/image-6-grayscale.html 
for a discussion of how conversions between color and grayscale occur.) With a 
grayscale image, a single matrix can suffice by having a single number represent 
the 256-grayscale colors, as demonstrated by the example in Figure 3-7. In that 
figure, each pixel of an image of a number is quantified by its matrix values.

Given the fact that images are pixels (represented as numeric inputs), neural 
 network practitioners initially achieved good results by connecting an image 
directly to a neural network. Each image pixel connected to an input node in the 
network. Then one or more following hidden layers completed the network, finally 
resulting in an output layer. The approach worked acceptably for small images and 
to solve small problems but eventually gave way to different approaches for solv-
ing image recognition. As an alternative, researchers used other machine learn-
ing algorithms or applied intensive feature creation to transform an image into 
newly processed data that could help algorithms recognize the image better. An 
example of image feature creation is the Histograms of Oriented Gradients (HOG), 
which is a computational way to detect patterns in an image and turn them into 
a numeric matrix. (You can explore how HOG works by viewing this tutorial from 
the Skimage package: https://scikit-image.org/docs/dev/auto_examples/
features_detection/plot_hog.html.)

Neural network practitioners found image feature creation to be computationally 
intensive and often impractical. Connecting image pixels to neurons was difficult 
because it required computing an incredibly large number of parameters, and the 
network couldn’t achieve translation invariance, which is the capability to deci-
pher a represented object under different conditions of size, distortion, or position 
in the image, as shown in Figure 3-8.

FIGURE 3-7:  
Each pixel is read 
by the computer 

as a number  
in a matrix.

https://introcomputing.org/image-6-grayscale.html
https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html
https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html
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A neural network, which is made of dense layers, as described in the previous 
chapters in this minibook, can detect only images that are similar to those used 
for training — those that it has seen before — because it learns by spotting pat-
terns at certain image locations. Also, a neural network can make many mistakes. 
Transforming an image before feeding it to the neural network can partially solve 
the problem by resizing, moving, cleaning the pixels, and creating special chunks 
of information for better network processing. This technique, called feature cre-
ation, requires expertise on the necessary image transformations, as well as many 
computations in terms of data analysis. Because of the intense level of custom 
work required, image recognition tasks are more the work of an artisan than a 
scientist. However, the amount of custom work has decreased over time as the 
base of libraries automating certain tasks has increased.

Moving to CNNs with Character 
Recognition

CNNs aren’t a new idea. They appeared at the end of the 1980s as the solution for 
character recognition problems. Yann LeCun devised CNNs when he worked at 
AT&T Labs Research, together with other scientists such as Yoshua Bengio, Leon 
Bottou, and Patrick Haffner, on a network named LeNet5.

FIGURE 3-8:  
Only by 

 translation 
invariance can 

an algorithm 
spot the dog and 

its variations.
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At one time, people used Support Vector Machines (SVMs) to perform character 
recognition. However, SVMs were problematic in that they need to model each 
pixel as a feature. Consequently, they fail to correctly predict the right character 
when the input varies greatly from the character set used for training. CNNs avoid 
this problem by generalizing what they learn, so predicting the correct charac-
ter is possible even when the training character sets differ in some significant 
way. Of course, this is the short explanation as to why this section uses a CNN 
rather than an SVM to perform character recognition. You can find a much more 
detailed explanation at https://medium.com/analytics-vidhya/the-scuffle- 
between-two-algorithms-neural-network-vs-support-vector-machine- 
16abe0eb4181.

This example relies on the Modified National Institute of Standards and Tech-
nology (MNIST) (http://yann.lecun.com/exdb/mnist/) dataset that contains a 
training set of 60,000 examples and a test set of 10,000 examples. The dataset 
was originally taken from National Institute of Standards and Technology (NIST) 
(https://www.nist.gov/) documents. You can find a detailed description of the 
dataset’s construction on the MNIST site.

Accessing the dataset
The first step is to obtain access to the MNIST dataset. The following code down-
loads the dataset and then displays a series of characters from it, as shown in 
Figure 3-9:

import matplotlib.pyplot as plt
%matplotlib inline
from keras.datasets import mnist
 
(X_train, y_train), (X_test, y_test) = mnist.load_data()
 
plt.plot()
plt.axis('off')
for k, m in enumerate(X_train[:4]):
    plt.subplot(1, 4, 1+k)
    plt.axis('off')
    plt.imshow(m, cmap=plt.cm.gray)
 
plt.show()

https://medium.com/analytics-vidhya/the-scuffle-between-two-algorithms-neural-network-vs-support-vector-machine-16abe0eb4181
https://medium.com/analytics-vidhya/the-scuffle-between-two-algorithms-neural-network-vs-support-vector-machine-16abe0eb4181
https://medium.com/analytics-vidhya/the-scuffle-between-two-algorithms-neural-network-vs-support-vector-machine-16abe0eb4181
http://yann.lecun.com/exdb/mnist/
https://www.nist.gov/
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Reshaping the dataset
Each of the 60,000 images in X_train and the 10,000 images in X_test are 28 
pixels by 28 pixels. In the “Manipulating the image” section, earlier in this chap-
ter, you see how to flatten a single image using the numpy.ndarray.flatten 
(https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.
ndarray.flatten.html). This time, you rely on numpy.reshape (https://docs.
scipy.org/doc/numpy/reference/generated/numpy.reshape.html) to perform 
the same task. To obtain the required output, you must supply the number of 
entries and the number of pixels, as shown here:

import numpy
from keras.utils import np_utils
 
numpy.random.seed(100)
 
pixels = X_train.shape[1] * X_train.shape[2]
train_entries = X_train.shape[0]
test_entries = X_test.shape[0]
X_train_row = X_train.reshape(train_entries, pixels)
X_test_row = X_test.reshape(test_entries, pixels)
 
print(X_train_row.shape)
print(X_test_row.shape)

The output of this part of the code is

(60000, 784)
(10000, 784)

Now that the individual entries are flattened rather than 2-D, you can normal-
ize them. Normalization takes the 255 shades of gray and turns them into values 
between 0 and 1. However, the dtype of the X_train_row and X_test_row rows is 
currently unit8. What you really need is a float32, so this next step performs the 
required conversion as well:

# Change the data type
X_train_row = X_train_row.astype('float32')
X_test_row = X_test_row.astype('float32')

 

FIGURE 3-9:  
Displaying some 
of the handwrit-

ten characters 
from MNIST.

https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.ndarray.flatten.html
https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.ndarray.flatten.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
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# Perform the normalization.
X_train_row = X_train_row / 255
X_test_row = X_test_row / 255

Encoding the categories
In the preceding sections, you’re essentially asking the CNN to choose from 
ten different categories for each of the entries in X_train_row and X_test_row 
because the output can be from 0 through 9. This example uses a technique called 
one-hot encoding (https://hackernoon.com/what-is-one-hot-encoding-why-
and-when-do-you-have-to-use-it-e3c6186d008f). When you start, the values 
in y_train and y_test range from 0 through 9. The problem with this approach 
is that the learning process will associate the value 9 as being a lot better than the 
value 0, even though it doesn’t matter. So, this process converts a single scalar 
value, such as 7, into a binary vector. The following code shows how this works:

y_train_cat = np_utils.to_categorical(y_train)
y_test_cat = np_utils.to_categorical(y_test)
num_classes = y_test_cat.shape[1]
print(num_classes)
print(y_test[0])
print(y_test_cat[0])

When you run this code, you get this output:

10
7
[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]

The number of classes is still the same at 10. The original value of the first entry 
in y_test is 7. However, the encoding process turns it into the vector shown next, 
where the eighth value, which equates to 7 (when starting with 0), is set to 1 (or 
True). By encoding the entries this way, you preserve the label, 7, without giving 
the label any special weight.

Defining the model
In this section, you define a model to use to perform the analysis referred to in 
the preceding sections. A model starts with a framework of sorts and you then add 
layers to the model. Each layer performs a certain type of processing based on the 
attributes you set for it. After you create the model and define its layers, you then 
compile the model so that the application can use it, as shown here:

https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f
https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f
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from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
 
def baseline_model():
    # Specify which model to use.
    model = Sequential()
 
    # Add layers to the model.
    model.add(Dense(pixels, input_dim=pixels,
                    kernel_initializer='normal',
                    activation='relu'))
    model.add(Dense(num_classes,
                    kernel_initializer='normal',
                    activation='softmax'))
 
    # Compile the model
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam', metrics=['accuracy'])
    return model

The Sequential model (explained at https://keras.io/models/sequential/ and 
https://keras.io/getting-started/sequential-model-guide/) provides the 
means to create a linear stack of layers. To add layers to this model, you simply 
call add(). The two layers used in this example are ReLU and softmax. Book 4, 
Chapters 2 and 3, respectively, give all the information you need to understand 
both of these layers and what they do. The final task is to compile the model so 
that you can use it to perform useful work.

Using the model
The final step in this process is to use the model to perform an analysis of the 
data. The following code actually creates a model using the definition from the 
previous section. It then fits this model to the data. When the training part of the 
process is complete, the code can evaluate the success or failure of the model in 
detecting the correct values for each handwritten character:

model = baseline_model()
 
model.fit(X_train_row, y_train_cat,
          validation_data=(X_test_row, y_test_cat),
          epochs=10, batch_size=200, verbose=2)

 

https://keras.io/models/sequential/
https://keras.io/getting-started/sequential-model-guide/
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scores = model.evaluate(X_test_row, y_test_cat, verbose=0)
print("Baseline Error: %.2f%%" % (100-scores[1]*100))

The output tells you that the model works well but doesn’t provide absolute reli-
ability. The model has a 1.87 percent chance of choosing the wrong character, as 
shown here:

Train on 60000 samples, validate on 10000 samples
Epoch 1/10
 - 13s - loss: 0.2800 - acc: 0.9205 - val_loss: 0.1344
 - val_acc: 0.9623
Epoch 2/10
 - 13s - loss: 0.1116 - acc: 0.9681 - val_loss: 0.0916
 - val_acc: 0.9722
Epoch 3/10
 - 12s - loss: 0.0716 - acc: 0.9794 - val_loss: 0.0730
 - val_acc: 0.9775
Epoch 4/10
 - 12s - loss: 0.0501 - acc: 0.9854 - val_loss: 0.0677
 - val_acc: 0.9776
Epoch 5/10
 - 12s - loss: 0.0360 - acc: 0.9902 - val_loss: 0.0615
 - val_acc: 0.9812
Epoch 6/10
 - 12s - loss: 0.0264 - acc: 0.9929 - val_loss: 0.0643
 - val_acc: 0.9794
Epoch 7/10
 - 12s - loss: 0.0188 - acc: 0.9957 - val_loss: 0.0616
 - val_acc: 0.9802
Epoch 8/10
 - 12s - loss: 0.0144 - acc: 0.9967 - val_loss: 0.0609
 - val_acc: 0.9811
Epoch 9/10
 - 12s - loss: 0.0106 - acc: 0.9978 - val_loss: 0.0614
 - val_acc: 0.9820
Epoch 10/10
 - 13s - loss: 0.0087 - acc: 0.9980 - val_loss: 0.0587
 - val_acc: 0.9813
Baseline Error: 1.87%
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Explaining How Convolutions Work
Convolutions easily solve the problem of translation invariance because they 
offer a different image-processing approach inside the neural network. The idea 
started from a biological point of view by observing what happens in the human 
visual cortex.

A 1962 experiment by Nobel Prize winners David Hunter Hubel and Torsten Wiesel 
demonstrated that only certain neurons activate in the brain when the eye sees 
certain patterns, such as horizontal, vertical, or diagonal edges. In addition, the 
two scientists found that the neurons organize vertically, in a hierarchy, suggest-
ing that visual perception relies on the organized contribution of many single, 
specialized neurons. (You can find out more about this experiment by reading 
the article at https://knowingneurons.com/2014/10/29/hubel-and-wiesel- 
the-neural-basis-of-visual-perception/.) Convolutions simply take this idea 
and, by using mathematics, apply it to image processing in order to enhance the 
capabilities of a neural network to recognize different images accurately.

Understanding convolutions
To understand how convolutions work, you start from the input. The input is 
an image composed of one or more pixel layers, called channels, and the image 
uses values ranging from 0–255, with 0 meaning that the individual pixel is fully 
switched off and 255 meaning that the individual pixel is switched on. (Usually, 
the values are stored as integers to save memory.) As mentioned in the preceding 
section of this chapter, RGB images have individual channels for red, green, and 
blue colors. Mixing these channels generates the palette of colors as you see them 
on the screen.

A convolution works by operating on small image chunks across all image chan-
nels simultaneously. (Picture a slice of layer cake, with each piece showing all the 
layers). Image chunks are simply a moving image window: The convolution win-
dow can be a square or a rectangle, and it starts from the upper left of the image 
and moves from left to right and from top to bottom. The complete tour of the 
window over the image is called a filter and implies a complete transformation of 
the image. Also important to note is that when a new chunk is framed by the win-
dow, the window then shifts a certain number of pixels; the amount of the slide 
is called a stride. A stride of 1 means that the window is moving one pixel toward 
right or bottom; a stride of 2 implies a movement of two pixels; and so on.

https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/
https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/
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Every time the convolution window moves to a new position, a filtering process 
occurs to create part of the filter described in the previous paragraph. In this 
process, the values in the convolution window are multiplied by the values in the 
kernel. (A kernel is a small matrix used for blurring, sharpening, embossing, edge 
detection, and more. You choose the kernel you need for the task in question. The 
article at http://setosa.io/ev/image-kernels/ tells you more about various 
kernel types.) The kernel is the same size as the convolution window. Multiplying 
each part of the image with the kernel creates a new value for each pixel, which 
in a sense is a new, processed feature of the image. The convolution outputs the 
pixel value and when the sliding window has completed its tour across the image, 
you have filtered the image. As a result of the convolution, you find a new image 
having the following characteristics:

 » If you use a single filtering process, the result is a transformed image of a 
single channel.

 » If you use multiple kernels, the new image has as many channels as the 
number of filters, each one containing specially processed new feature values. 
The number of filters is the filter depth of a convolution.

 » If you use a stride of 1, you get an image of the same dimensions as the 
original.

 » If you use strides of a size above 1, the resulting convoluted image is smaller 
than the original (a stride of size two implies halving the image size).

 » The resulting image may be smaller depending on the kernel size, because the 
kernel has to start and finish its tour on the image borders. When processing 
the image, a kernel will eat up its size minus one. For instance, a kernel of 3 x 
3 pixels processing a 7-x-7 pixel image will eat up 2 pixels from the height and 
width of the image, and the result of the convolution will be an output of size 
5 x 5 pixels. You have the option to pad the image with zeros at the border 
(meaning, in essence, to put a black border on the image) so that the convolu-
tion process won’t reduce the final output size. This strategy is called same 
padding. If you just let the kernel reduce the size of your starting image, it’s 
called valid padding.

Image processing has relied on the convolution process for a long time. Convo-
lution filters can detect an edge or enhance certain characteristics of an image. 
Figure 3-10 provides an example of some convolutions transforming an image.

http://setosa.io/ev/image-kernels/
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The problem with using convolutions is that they are human made and require 
effort to figure out. When using a neural network convolution instead, you just set:

 » The number of filters (the number of kernels operating on an image that is its 
output channels)

 » The kernel size (set just one side for a square; set width and height for a 
rectangle)

 » The strides (usually 1- or 2-pixel steps)

 » Whether you want the image black bordered (choose valid padding or same 
padding)

After determining the image-processing parameters, the optimization process 
determines the kernel values used to process the image in a way to allow the best 
classification of the final output layer. Each kernel matrix element is therefore a 
neural network neuron and modified during training using backpropagation for 
the best performance of the network itself.

Another interesting aspect of this process is that each kernel specializes in find-
ing specific aspects of an image. For example, a kernel specialized in filtering 
features typical of cats can find a cat no matter where it is in an image and, if you 
use enough kernels, every possible variant of an image of a kind (resized, rotated, 
translated) is detected, rendering your neural network an efficient tool for image 
classification and recognition.

FIGURE 3-10:  
A convolution 

processes a 
chunk of an 

image by matrix 
multiplication.
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In Figure 3-11, the borders of an image are easily detected after a 3-x-3 pixel ker-
nel is applied. This kernel specializes in finding edges, but another kernel could 
spot different image features. By changing the values in the kernel, as the neural 
network does during backpropagation, the network finds the best way to process 
images for its regression or classification purpose.

The kernel is a matrix whose values are defined by the neural network optimiza-
tion, multiplied by a small patch of the same size moving across the image, but 
it can be intended as a neural layer whose weights are shared across the different 
input neurons. You can see the patch as an immobile neural layer connected to the 
many parts of the image always using the same set of weights. It is exactly the 
same result.

Keras offers a convolutional layer, Conv2D, out of the box. This Keras layer can take 
both the input directly from the image (in a tuple, you have to set the input_shape 
the width, height, and number of channels of your image) or from another layer 
(such as another convolution). You can also set filters, kernel_size, strides,  
and padding, which are the basic parameters for any convolutional layers, as 
described earlier in the chapter.

When setting a Conv2D layer, you may also set many other parameters, which are 
actually a bit too technical and may not be necessary for your first experiments 
with CNNs. The only other parameters you may find useful now are activation, 
which can add an activation of your choice, and name, which sets a name for the 
layer.

FIGURE 3-11:  
The borders of 

an image are 
detected after 

applying a 3-x-3 
pixel kernel.



Re
co

gn
iz

in
g 

Im
ag

es
 

w
it

h 
CN

N
s

CHAPTER 3  Recognizing Images with CNNs      439

Simplifying the use of pooling
Convolutional layers transform the original image using various kinds of filter-
ing. Each layer finds specific patterns in the image (particular sets of shapes and 
colors that make the image recognizable). As this process continues, the complex-
ity of the neural network grows because the number of parameters grows as the 
network gains more filters. To keep the complexity manageable, you need to speed 
the filtering and reduce the number of operations.

Pooling layers can simplify the output received from convolutional layers, thus 
reducing the number of successive operations performed and using fewer convo-
lutional operations to perform filtering. Working in a fashion similar to convolu-
tions (using a window size for the filter and a stride to slide it), pooling layers 
operate on patches of the input they receive and reduce a patch to a single num-
ber, thus effectively downsizing the data flowing through the neural network.

Figure 3-12 represents the operations done by a pooling layer. The pooling layer 
receives the filtered data, represented by the left 4-x-4 matrix, as input and oper-
ates on it using a window of size 2 pixels that moves by a stride of 2 pixels. As a 
result, the pooling layer produces the right output: a 2-x-2 matrix. The network 
applies the pooling operation on four patches represented by four different col-
ored parts of the matrix. For each patch, the pooling layer computes the maximum 
value and saves it as an output.

The current example relies on the max pooling layer because it uses the max 
transformation on its sliding window. You actually have access to four principal 
types of pooling layers:

 » Max pooling

 » Average pooling

FIGURE 3-12:  
A max pooling 

layer operating 
on chunks of a 

reduced image.
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 » Global max pooling

 » Global average pooling

In addition, these four pooling layer types have different versions, depending on 
the dimensionality of the input they can process:

 » 1-D pooling: Works on vectors. Thus, 1-D pooling is ideal for sequence data 
such as temporal data (data representing events following each other in time) 
or text (represented as sequences of letters or words). It takes the maximum 
or the average of contiguous parts of the sequence.

 » 2-D pooling: Fits spatial data that fits a matrix. You can use 2-D pooling for 
a grayscale image or each channel of an RBG image separately. It takes the 
maximum or the average of small patches (squares) of the data.

 » 3-D pooling: Fits spatial data represented as spatial-temporal data. You could 
use 3-D pooling for images taken across time. A typical example is to use 
magnetic resonance imaging (MRI) for a medical examination. Radiologists 
use an MRI to examine body tissues with magnetic fields and radio waves. 
(See the article from Stanford AI for healthcare to learn more about the 
contribution of deep learning: https://medium.com/stanford-ai-for- 
healthcare/dont-just-scan-this-deep-learning-techniques-for- 
mri-52610e9b7a85.) This kind of pooling takes the maximum or the average 
of small chunks (cubes) from the data.

You can find all these layers described in the Keras documentation, together with 
all their parameters, at https://keras.io/layers/pooling/.

Describing the LeNet architecture
You may have been amazed by the description of a CNN in the preceding sec-
tion, and about how its layers (convolutions and max pooling) work, but you may 
be even more amazed at discovering that it’s not a new technology; instead, it 
appeared in the 1990s. The following sections describe the LeNet architecture in 
more detail.

Considering the underlying functionality
The key person behind this innovation was Yann LeCun, who was working at AT&T 
Labs Research as head of the Image Processing Research Department. LeCun spe-
cialized in optical character recognition and computer vision. Yann LeCun is a French 
computer scientist who created CNNs with Léon Bottou, Yoshua Bengio, and Patrick 
Haffner. At present, he is the Chief AI Scientist at Facebook AI Research (FAIR) and 
a Silver Professor at New York University (mainly affiliated with the NYU Center for 
Data Science). His personal home page is at http://yann.lecun.com/.

https://medium.com/stanford-ai-for-healthcare/dont-just-scan-this-deep-learning-techniques-for-mri-52610e9b7a85
https://medium.com/stanford-ai-for-healthcare/dont-just-scan-this-deep-learning-techniques-for-mri-52610e9b7a85
https://medium.com/stanford-ai-for-healthcare/dont-just-scan-this-deep-learning-techniques-for-mri-52610e9b7a85
https://keras.io/layers/pooling/
http://yann.lecun.com/
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In the late 1990s, AT&T implemented LeCun’s LeNet5 to read ZIP codes for the 
United States Postal Service. The company also used LeNet5 for ATM check read-
ers, which can automatically read the check amount. The system doesn’t fail, as 
reported by LeCunn at https://pafnuty.wordpress.com/2009/06/13/yann- 
lecun/. However, the success of the LeNet passed almost unnoticed at the time 
because the AI sector was undergoing an AI winter: Both the public and  investors 
were significantly less interested and attentive to improvements in neural 
 technology than they are now.

Part of the reason for an AI winter was that many researchers and investors lost 
faith in the idea that neural networks would revolutionize AI. Data of the time 
lacked the complexity for such a network to perform well. (ATMs and the USPS 
were notable exceptions because of the quantities of data they handled.) With a 
lack of data, convolutions only marginally outperform regular neural networks 
made of connected layers. In addition, many researchers achieved results com-
parable to LeNet5 using brand-new machine learning algorithms such as Support 
Vector Machines (SVMs) and Random Forests, which were algorithms based on 
mathematical principles different from those used for neural networks.

You can see the network in action at http://yann.lecun.com/exdb/lenet/ or 
in this video, in which a younger LeCun demonstrates an earlier version of the 
network: https://www.youtube.com/watch?v=FwFduRA_L6Q. At that time, hav-
ing a machine able to decipher both typewritten and handwritten numbers was 
quite a feat.

As shown in Figure 3-13, the LeNet5 architecture consists of two sequences of 
convolutional and average pooling layers that perform image processing. The last 
layer of the sequence is then flattened; that is, each neuron in the resulting series 
of convoluted 2-D arrays is copied into a single line of neurons. At this point, two 
fully connected layers and a softmax classifier complete the network and provide 
the output in terms of probability. The LeNet5 network is really the basis of all the 
CNNs that follow. Re-creating the architecture using Keras, as you can do in the 
following sections, will explain it layer-by-layer and demonstrate how to build 
your own convolutional networks.

FIGURE 3-13:  
The architecture 

of LeNet5, a 
neural network 
for handwritten 

digits recognition.

https://pafnuty.wordpress.com/2009/06/13/yann-lecun/
https://pafnuty.wordpress.com/2009/06/13/yann-lecun/
http://yann.lecun.com/exdb/lenet/
https://www.youtube.com/watch?v=FwFduRA_L6Q
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Building your own LeNet5 network
This network will be trained on a relevant amount of data (the digits dataset 
 provided by Keras, consisting of more than 60,000 examples). You could  therefore 
have an advantage if you run it on Colab, or on your local machine if you have a 
GPU available. After opening a new notebook, you start by importing the  necessary 
packages and functions from Keras using the following code (note that some of 
this code is a repeat from the “Moving to CNNs with Character Recognition” 
 section, earlier in this chapter):

import keras
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Conv2D, AveragePooling2D
from keras.layers import Dense, Flatten
from keras.losses import categorical_crossentropy

After importing the necessary tools, you need to collect the data:

(X_train, y_train), (X_test, y_test) = mnist.load_data()

The first time you execute this command, the mnist command will download all 
the data from the Internet, which could take a while. The downloaded data  consists 
of single-channel 28-x-28-pixel images representing handwritten numbers from 
zero to nine. As a first step, you need to convert the response variable (y_train 
for the training phase and y_test for the test after the model is completed) into 
something that the neural network can understand and work on:

num_classes = len(np.unique(y_train))
print(y_train[0], end=' => ')
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
print(y_train[0])

This code snippet translates the response from numbers to vectors of numbers, 
where the value at the position corresponding to the number the network will 
guess is 1 and the others are 0. The code will also output the transformation for 
the first image example in the training set:

5 => [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]

Notice that the output is 0 based and that the 1 appears at the position corre-
sponding to the number 5. This setting is used because the neural network needs 
a response layer, which is a set of neurons (hence the vector) that should become 
activated if the provided answer is correct. In this case, you see ten neurons, and 
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in the training phase, the code activates the correct answer (the value at the cor-
rect position is set to 1) and turns the others off (their values are 0). In the test 
phase, the neural network uses its database of examples to turn the correct neu-
ron on, or at least turn on more than the correct one. In the following code, the 
code prepares the training and test data:

X_train = X_train.astype(np.float32) / 255
X_test = X_test.astype(np.float32) / 255
img_rows, img_cols = X_train.shape[1:]
X_train = X_train.reshape(len(X_train),
                          img_rows, img_cols, 1)
X_test = X_test.reshape(len(X_test),
                        img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)

The pixel numbers, which range from 0 to 255, are transformed into a decimal 
value ranging from 0 to 1. The first two lines of code optimize the network to 
work properly with large numbers that could cause problems. The lines that fol-
low reshape the images to have height, width, and channels.

The following line of code defines the LeNet5 architecture. You start by calling the 
sequential function that provides an empty model:

lenet = Sequential()

The first layer added is a convolutional layer, named C1:

lenet.add(Conv2D(6, kernel_size=(5, 5), activation='tanh',
      input_shape=input_shape, padding='same', name='C1'))

The convolution operates with a filter size of 6 (meaning that it will create six new 
channels made by convolutions) and a kernel size of 5 x 5 pixels.

The activation for all the layers of the network but the last one is tanh (Hyperbolic 
Tangent function), a nonlinear function that was state of the art for activation 
at the time Yann LeCun created LetNet5. The function is outdated today, but the 
example uses it to build a network that resembles the original LetNet5 architec-
ture. To use such a network for your own projects, you should replace it with a 
modern ReLU (see https://www.kaggle.com/dansbecker/rectified-linear- 
units-relu-in-deep-learning for details). The example adds a pooling layer, 
named S2, which uses a 2-x-2-pixel kernel:

lenet.add(AveragePooling2D(
    pool_size=(2, 2), strides=(1, 1), padding='valid'))

https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning
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At this point, the code proceeds with the sequence, always performed with a con-
volution and a pooling layer but this time using more filters:

lenet.add(Conv2D(16, kernel_size=(5, 5), strides=(1, 1),
                 activation='tanh', padding='valid'))
lenet.add(AveragePooling2D(
    pool_size=(2, 2), strides=(1, 1), padding='valid'))

The LeNet5 closes incrementally using a convolution with 120 filters. This convo-
lution doesn’t have a pooling layer but rather a flattening layer, which projects the 
neurons into the last convolution layer as a dense layer:

lenet.add(Conv2D(120, kernel_size=(5, 5),
                 activation='tanh', name='C5'))
lenet.add(Flatten())

The closing of the network is a sequence of two dense layers that process the 
convolution’s outputs using the tanh and softmax activation. These two layers 
provide the final output layers where the neurons activate an output to signal the 
predicted answer. The softmax layer is actually the output layer, as specified by 
name='OUTPUT':

lenet.add(Dense(84, activation='tanh', name='FC6'))
lenet.add(Dense(10, activation='softmax', name='OUTPUT'))

When the network is ready, you need Keras to compile it. (Behind all the Python 
code is some C language code.) Keras compiles it based on the SGD optimizer:

lenet.compile(loss=categorical_crossentropy,
              optimizer='SGD', metrics=['accuracy'])
lenet.summary()

The summary tells you about the structure of your model:

Layer (type)                 Output Shape          Param #
==========================================================
C1 (Conv2D)                  (None, 28, 28, 6)     156
__________________________________________________________
average_pooling2d_1 (Average (None, 27, 27, 6)     0
__________________________________________________________
conv2d_1 (Conv2D)            (None, 23, 23, 16)    2416
__________________________________________________________
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average_pooling2d_2 (Average (None, 22, 22, 16)    0
__________________________________________________________
C5 (Conv2D)                  (None, 18, 18, 120)   48120
__________________________________________________________
flatten_1 (Flatten)          (None, 38880)         0
__________________________________________________________
FC6 (Dense)                  (None, 84)            3266004
__________________________________________________________
OUTPUT (Dense)               (None, 10)            850
==========================================================
Total params: 3,317,546
Trainable params: 3,317,546
Non-trainable params: 0
__________________________________________________________

At this point, you can run the network and wait for it to process the images:

batch_size = 64
epochs = 50
history = lenet.fit(X_train, y_train,
                      batch_size=batch_size,
                      epochs=epochs,
                      validation_data=(X_test,
                                       y_test))

Completing the run takes 50 epochs, with each epoch processing batches of 64 
images at one time. (An epoch is the passing of the entire dataset through the neu-
ral network one time, and a batch is a part of the dataset, which means breaking the 
dataset into 64 chunks in this case.) With each epoch (lasting about eight seconds 
if you use Colab), you can monitor a progress bar telling you the time required 
to complete that epoch. You can also read the accuracy measures for both the 
training set (the optimistic estimate of the goodness of your model; see https://
towardsdatascience.com/measuring-model-goodness-part-1-a24ed4d62f71 
for details on what, precisely, goodness means) and the test set (the more real-
istic view). At the last epoch, you should read that a LeNet5 built in a few steps 
achieves an accuracy of 0.988, meaning that out every 100 handwritten numbers 
that it tries to recognize, the network should guess about 99 correctly. To see this 
number more clearly, you use the following code:

print("Best validation accuracy: {:0.3f}"
       .format(np.max(history.history['val_acc'])))

https://towardsdatascience.com/measuring-model-goodness-part-1-a24ed4d62f71
https://towardsdatascience.com/measuring-model-goodness-part-1-a24ed4d62f71
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You can also create a plot of how the training process went using this code:

plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.ylabel('accuracy'); plt.xlabel('epochs')
plt.legend(['train', 'test'], loc='lower right')
plt.show()

Figure 3-14 shows typical output for the plotting process.

Detecting Edges and Shapes from Images
Convolutions process images automatically and perform better than a densely 
connected layer because they learn image patterns at a local level and can retrace 
them in any other part of the image (a characteristic called translation invariance). 
On the other hand, traditional dense neural layers can determine the overall char-
acteristics of an image in a rigid way without the benefit of translation invariance. 
The difference between convolutions and tradition layers is like that between 
learning a book by memorizing the text in meaningful chunks or memorizing it 
word by word. The student (or the convolutions) who learned chunk by chunk can 
better abstract the book content and is ready to apply that knowledge to similar 
cases. The student (or the dense layer) who learned it word by word struggles to 
extract something useful.

CNNs are not magic, nor are they a black box. You can understand them through 
image processing and leverage their functionality to extend their capabilities to 
new problems. This feature helps solve a series of computer vision problems that 
data scientists deemed too hard to crack using older strategies.

FIGURE 3-14:  
A plot of the 

LeNet5 network 
training process.
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Visualizing convolutions
A CNN uses different layers to perform specific tasks in a hierarchical way. Yann 
LeCun (see the “Moving to CNNs with Character Recognition” section, earlier in 
this chapter) noticed how LeNet first processed edges and contours, and then 
motifs, and then categories, and finally objects. Recent studies further unveil how 
convolutions really work:

 » Initial layers: Discover the image edges

 » Middle layers: Detect complex shapes (created by edges)

 » Final layers: Uncover distinctive image features that are characteristic of the 
image type that you want the network to classify (for instance, the nose of a 
dog or the ears of a cat)

This hierarchy of patterns discovered by convolutions also explains why deep 
convolutional networks perform better than shallow ones: The more stacked con-
volutions there are, the better the network can learn more and more complex 
and useful patterns for successful image recognition. Figure 3-15 provides an idea 
of how things work. The image of a dog is processed by convolutions, and the 
first layer grasps patterns. The second layer accepts these patterns and assembles 
them into a dog. If the patterns processed by the first layer seem too general to be 
of any use, the patterns unveiled by the second layer recreate more characteristic 
dog features that provide an advantage to the neural network in recognizing dogs.

FIGURE 3-15:  
Processing a 

dog image using 
convolutions.
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The difficulty in determining how a convolution works is in understanding how 
the kernel (matrix of numbers) creates the convolutions and how they work on 
image patches. When you have many convolutions working one after the other, 
determining the result through direct analysis is difficult. However, a technique 
designed for understanding such networks builds images that activate the most 
convolutions. When an image strongly activates a certain layer, you have an idea 
of what that layer perceives the most.

Analyzing convolutions helps you understand how things work, both to avoid bias 
in prediction and to devise new ways to process images. For instance, you may 
discover that your CNN is distinguishing dogs from cats by activating on the back-
ground of the image because the images you used for the training represents dogs 
outdoors and cats indoors.

A 2017 paper called “Feature Visualization,” by Chris Olah, Alexander Mordvintsev, 
and Ludwig Schubert from the Google Research and Google Brain Team, explains 
this process in detail (https://distill.pub/2017/feature-visualization/). 
You can even inspect the images yourself by clicking and pointing at the layers 
of GoogleLeNet, a CNN built by Google at https://distill.pub/2017/feature- 
visualization/appendix/. The images from the Feature Visualization may 
remind you of deepdream images, if you had occasion to see some when they were 
a hit on the web (read the original deepdream paper and glance at some images 
at https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into- 
neural.html). Feature Visualization is the same technique as deepdream, but 
instead of looking for images that activate a layer the most, you pick a convolu-
tional layer and let it transform an image.

You can also copy the style of works from a great artist of the past, such as Picasso 
or Van Gogh, using a similar technique that’s based on using convolutions to 
transform an existing image; this technique is a process called artistic style transfer. 
The resulting picture is modern, but the style isn’t. You can get some interesting 
examples of artistic style transfer from the original paper “A Neural Algorithm 
of Artistic Style,” by Leon Gatys, Alexander Ecker, and Matthias Bethge (found at 
https://arxiv.org/pdf/1508.06576.pdf).

In Figure 3-16, the original image is transformed in style by applying the draw-
ing and color characteristics found in the Japanese Ukiyo-e “The Great Wave off 
Kanagawa,” a woodblock print by the Japanese artist Katsushika Hokusai, who 
lived from 1760 to 1849.

https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/appendix/
https://distill.pub/2017/feature-visualization/appendix/
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://arxiv.org/pdf/1508.06576.pdf
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Unveiling successful architectures
In recent years, data scientists have achieved great progress thanks to deeper 
investigation into how CNNs work. Other methods have also added to the  progress 
in understanding how CNNs work. Image competitions have played a major role 
by challenging researchers to improve their networks, which has made large 
quantities of images available.

The architecture update process started during the last AI winter. Fei-Fei Li, a 
computer science professor at the University of Illinois at Urbana Champaign (and 
now chief scientist at Google Cloud as well as professor at Stanford) decided to 
provide more real-world datasets to better test algorithms for neural networks. 
She started amassing an incredible number of images representing a large num-
ber of object classes. She and her team performed such a huge task by using Ama-
zon’s Mechanical Turk, a service that you use to ask people to do microtasks for 
you (such as classifying an image) for a small fee.

The resulting dataset, completed in 2009, was called ImageNet and initially con-
tained 3.2 million labeled images (it now contains more than 10 million images) 
arranged into 5,247 hierarchically organized categories. If interested, you can 
explore the dataset at http://www.image-net.org/ or read the original paper at 
http://www.image-net.org/papers/imagenet_cvpr09.pdf.

ImageNet soon appeared at a 2010 competition in which neural networks, using 
convolutions (hence the revival and further development of the technology devel-
oped by Yann LeCun in the 1990s), proved their capability in correctly classifying 
images arranged into 1,000 classes. In seven years of competition (the challenge 
closed in 2017), the winning algorithms improved the accuracy of predicting 
images from 71.8 percent to 97.3 percent, which surpasses human capabilities. 

FIGURE 3-16:  
The content 

of an image is 
 transformed by 

style transfer.

http://www.image-net.org/
http://www.image-net.org/papers/imagenet_cvpr09.pdf
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(Humans make mistakes in classifying objects.) Here are some notable CNN 
architectures that were devised for the competition:

 » AlexNet (2012): Created by Alex Krizhevsky from the University of Toronto. It 
used CNNs with an 11-x-11-pixel filter, won the competition, and introduced 
the use of GPUs for training neural networks, together with the ReLU activa-
tion to control overfitting.

 » VGGNet (2014): This appeared in two versions, 16 and 19. It was created by 
the Visual Geometry Group at Oxford University and defined a new 3-x-3 
standard in filter size for CNNs.

 » ResNet (2015): Created by Microsoft. This CNN not only extended the idea of 
different versions of the network (50, 101, 152) but also introduced skip layers, 
a way to connect deeper layers with shallower ones to prevent the vanishing 
gradient problem and allow much deeper networks that are more capable of 
recognizing patterns in images.

You can take advantage of all the innovations introduced by the ImageNet com-
petition and even use each of the neural networks. This accessibility allows you 
to replicate the network performance seen in the competitions and successfully 
extend them to myriad other problems.

Discussing transfer learning
Networks that distinguish objects and correctly classify them require a lot of 
images, a long processing time, and vast computational capacity to learn what to 
do. Adapting a network’s capability to new image types that weren’t part of the 
initial training means transferring existing knowledge to the new problem. This 
process of adapting a network’s capability is called transfer learning, and the net-
work you are adapting is often referred to as a pretrained network. You can’t apply 
transfer learning to other machine learning algorithms; only deep learning has 
the capability of transferring what it learned with one problem to another.

Transfer learning is something new to most machine learning algorithms and 
opens a possible market for transferring knowledge from one application to 
another, and from one company to another. Google is already doing that; it is 
sharing its immense data repository by making public the networks it built on TF 
Hub (https://www.tensorflow.org/hub).

For instance, you can transfer a network that’s capable of distinguishing between 
dogs and cats to perform a job that involves spotting dishes of macaroni and 
cheese. From a technical point of view, you achieve this task in different ways, 

https://www.tensorflow.org/hub
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depending on how similar the new image problem is to the previous one and how 
many new images you have for training. (A small image dataset amounts to a few 
thousand images, and sometimes even fewer.)

If your new image problem is similar to the old one, your network may know all 
the convolutions necessary (edge, shape, and high-level feature layers) to deci-
pher similar images and classify them. In this case, you don’t need to put too 
many images into training, add much computational power, or adapt your pre-
trained network too deeply. This type of transfer is the most common application 
of transfer learning, and you usually apply it by leveraging a network trained 
during the ImageNet competition (because those networks were trained on so 
many images that you probably have all the convolutions needed to transfer the 
knowledge to other tasks).

Say that the task you want to extend involves not only spotting dogs in images but 
also determining the dog’s breed. You use the majority of the layers of an Ima-
geNet network such as VGG16 as they are, without further adjustment. In transfer 
learning, you freeze the values of the pretrained coefficients of the convolutions 
so that they are not affected by any further training and the network won’t overfit 
to the data you have, if it is too little. (You can see overfitting discussed in the 
“Checking the fit using R2” section of Book 3, Chapter 1.)

With the new images, you then train the output layers set on the new problem 
(a process known as fine-tuning). In a short time and with just a few examples, 
the network will apply what it learned in distinguishing dogs and cats to breeds 
of dogs. It will perform even better than a neural network trained only to recog-
nize breeds of dogs because in fine-tuning, it is leveraging what the network has 
learned before from millions of images.

A neural network identifies only objects that it has been trained to identify. Con-
sequently, if you train a CNN to recognize major breeds of dogs such as a Labrador 
Retriever or a Husky, the CNN won’t recognize mixes of those two breeds, such 
as a Labsky. Instead, the CNN will output the closest match based on the internal 
weights it develops during training.

If the task you have to transfer to the existing neural network is different from the 
task it was trained to do, which is spotting dishes of macaroni and cheese starting 
from a network used to identify dogs and cats, you have some options:

 » If you have little data, you can freeze the first and middle layers of the 
pretrained network and discard the final layers because they contain high-
level features that probably aren’t useful for your problem. Instead of the final 
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convolutions, you then add a response layer suitable to your problem. The 
fine-tuning will work out the best coefficients for the response layer, given the 
pretrained convolutional layers available.

 » If you have lots of data, you add the suitable response layer to the pretrained 
network, but you don’t freeze the convolutional layers. You use the pretrained 
weights as a starting point and let the network fit your problem in the best 
way because you can train on lots of data.

The Keras package offers a few pretrained models that you can use for transfer 
learning. You can read about all the available models and their architectures at 
https://keras.io/applications/. The model descriptions also talk about some 
of the award-winning networks discussed in the “Delving into ImageNet and 
Coco” section of Book 5, Chapter 2: VGG16, VGG19, and ResNet50.

https://keras.io/applications/
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Processing Text and 
Other Sequences

Natural Language Processing (NLP) is all about taking text that humans can 
understand as words, even if those words don’t form a sentence, and 
putting it in a form that computers can process in some manner to look 

for patterns. For example, the computer doesn’t understand “Turn on the radio,” 
but it can process that command into a specific pattern. Sometimes, the computer 
also reacts to the processed pattern to perform a task, such as turning on the 
radio. The processing and the action of performing the task are separate. In this 
chapter, you start with the basics needed to understand NLP and see how it can 
serve you in building better applications for language problems. For example, you 
discover some of the issues in processing even raw text and in storing some types 
of data using sparse matrices so that the data doesn’t take so much space. You also 
discover how to score and classify text.

You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears in 
the DSPD_0404_NLP.ipynb source code file for Python and the DSPD_R_0404_NLP.
ipynb source code file for R. See the Introduction for details on how to find these 
source files.

Chapter 4

IN THIS CHAPTER

 » Understanding natural language 
processing

 » Considering raw text processing and 
use of sparse matrices

 » Performing scoring and classification
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Introducing Natural Language Processing
When thinking about language in data science, you need to consider it from two 
perspectives: human and computer. The human perspective defines what people 
expect of each other in the way of communication, as well as what people perceive 
that the computer is doing, even if it isn’t doing it at all. The computer perspective 
considers how the computer gives the appearance of working with language. The 
following sections introduce both perspectives of language.

Defining the human perspective as it 
relates to data science
Text comes in a number of forms. Most of these forms are language based, even 
the name of items such as the parts of a product. When you call a piece of metal 
bent in a particular way a widget and use that name to order it from a company, 
the term widget is part of a language devised to make communication possible. 
However, just saying widget wouldn’t convey enough meaning; you must place the 
term in a sentence or provide context by placing the name on an order form. Even 
though humans understand that a part name isn’t a sentence, a computer doesn’t 
understand the difference at all. In fact, a computer can’t understand language; it 
only processes language for specific applications.

As human beings, understanding language is one our first achievements, and 
associating words to their meaning seems natural. It’s also automatic to handle 
discourses that are ambiguous, unclear, or simply have a strong reference to the 
context of where we live or work (such as dialect, jargon, or terms that family or 
associates understand). In addition, humans can catch subtle references to feel-
ings and sentiments in text, enabling people to understand polite speech that 
hides negative feelings and irony. Computers don’t have these abilities but can 
rely on Natural Language Processing (NLP) — discussed in the next section.

Humans also resolve ambiguity by examining the text for hints about elements 
like place and time that express the details of the conversation (such as under-
standing what happened between John and Luca, or whether the conversion is 
about a computer when mentioning a mouse. Relying on additional informa-
tion for understanding is part of the human experience. This sort of analysis is 
somewhat difficult for computers. Moreover, if the task requires critical contex-
tual knowledge or demands that the listener resort to common sense and general 
expertise, the task for computers becomes daunting.
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Considering the computer perspective  
as it relates to data science
Textual language elements include text-based numeric information and special 
symbols. It can also include certain kinds of encodings. A computer can perform 
math only on actual numbers (rather than on a category or text), and math is the 
only basis on which computers can process anything. The string 1 is different 
from the number 1 as far as the computer is concerned. A string 1 appears as the 
number 49 to the computer when using the ASCII encoding, while the numeric 1 
is precisely that — a 1. Any text provided as input, regardless of whether a human 
considers it to be text, requires processing before the computer can perform math 
calculations (including comparisons) on it.

A computer can’t normally process language at all unless it’s highly formal and 
precise, such as a programming language. Rigid syntax rules and grammar enable 
a computer to turn a program written by a developer in a computer language like 
Python into the machine language using a compiler or interpreter (special kinds 
of programs) that determines what tasks the computer will perform. The fact that 
most humans can barely read a program doesn’t change the fact that a program 
is a kind of human language. The machine language that a computer processes is 
numbers consisting of opcodes (what to do) and operands (the data required to 
perform the task). You can see a listing of such numbers for Intel processors at 
http://www.mathemainzel.info/files/x86asmref.html. A human sees nothing 
but numbers; the computer sees a set of precise instructions telling it what to do 
and how to do it.

However, this chapter isn’t about programming languages that are relatively easy 
to process because of the rigidity of their nature. Instead, it deals with human lan-
guage of the sort used in conversation, both spoken and written. Human language 
is not at all similar to a computer’s language because it

 » Lacks a precise structure

 » Is full of errors

 » Contains contradictions

 » Hides meaning in ambiguities

Yet human language works well for humans, with some effort on the part of the 
hearer, to serve human society and the progress of knowledge. Humans can over-
come the deficiencies of the spoken or written word with relative ease; it’s some-
thing that we do based on years of experience and a few errors in childhood. This 
kind of processing is outside the reach of a computer, however, even if it were to 
have a special compiler to help handle the task.

http://www.mathemainzel.info/files/x86asmref.html
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Since Alan Turing first devised the Turing Test in 1950, which aims at spotting 
an artificial intelligence based on how it communicates with humans (https://
en.wikipedia.org/wiki/Turing_test), NLP experts have developed a series of 
techniques that define the state of the art in computer-human interaction by text. 
Simply put, NLP still has a lot of ground to cover in order to discover how to 
extract meaningful summaries from text effectively or how to complete missing 
information from text. Programming a computer to process human language is 
therefore a daunting task, which is only recently possible using the following:

 » Natural Language Processing (NLP)

 » Deep learning Recurrent Neural Networks (RNNs)

 » Word embeddings

Word embeddings is the name of the language-modeling and feature-learning 
technique in NLP that maps vocabulary to real number vectors using products 
like Word2vec, GloVe, and FastText. You also see it used in most recent state- 
of-the-art networks such as Google’s open-sourced BERT that uses embeddings 
for words based on the context they appear in, allowing better performing NLP 
solutions.

A computer powered with NLP can successfully spot spam in your email, tag the 
part of a conversation that contains a verb or a noun, and spot an entity like 
the name of a person or a company (called named entity recognition; see https://
medium.com/explore-artificial-intelligence/introduction-to-named-
entity-recognition-eda8c97c2db1). All these achievements have found appli-
cation in tasks such as spam filtering, predicting the stock market using news 
articles, and de-duplicating redundant information in data storage.

Things get more difficult for NLP when translating a text from another language 
and understanding whom or what the subject is in an ambiguous phrase. For 
example, consider the sentence, “John told Luca he shouldn’t do that again.” In 
this case, you can’t really tell whether “he” refers John or Luca. Disambiguating 
words with many meanings, such as considering whether the word mouse in a 
phrase refers to an animal or a computer device, can prove difficult. Obviously, the 
difficulty in all these problems arises because of the context.

Understanding How Machines Read
Before a computer can do anything with text, it must be able to read the text  
in some manner. Book 3, Chapter 1 shows how you can prepare data to deal with 
categorical variables, such as a feature representing a color (for instance, repre-
senting whether an example relates to the colors red, green, or blue). Categorical 

https://en.wikipedia.org/wiki/Turing_test
https://en.wikipedia.org/wiki/Turing_test
https://medium.com/explore-artificial-intelligence/introduction-to-named-entity-recognition-eda8c97c2db1
https://medium.com/explore-artificial-intelligence/introduction-to-named-entity-recognition-eda8c97c2db1
https://medium.com/explore-artificial-intelligence/introduction-to-named-entity-recognition-eda8c97c2db1
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data is a type of short text that you represent using binary variables, that is, vari-
ables coded using one or zero values according to whether a certain value is pres-
ent in the categorical variable. Not surprisingly, you can represent complex text 
using the same logic.

Creating a corpus
Just as you transform a categorical color variable, having values such as red, green, 
and blue, into three binary variables, with each one representing one of the three 
colors, so you can transform a phrase like “The quick brown fox jumps over the 
lazy dog” using nine binary variables, one for each word that appears in the text.

When working with categories, “The” is distinct from “the” because of its initial 
capital letter. This is the bag-of-words (BoW) form of representation. In its sim-
plest form, BoW shows whether a certain word is present in the text by flagging a 
specific feature in the dataset.

The input data is three phrases, text_1, text_2, and text_3, placed in a list, cor-
pus. A corpus is a set of homogenous documents, put together for NLP analysis:

text_1 = 'The quick brown fox jumps over the lazy dog.'
text_2 = 'My dog is quick and can jump over fences.'
text_3 = 'Your dog is so lazy that it sleeps all the day.'
corpus = [text_1, text_2, text_3]

When you analyze text using a computer, you load the documents from disk or 
scrape them from the web and place each of them into a string variable. If you 
have multiple documents, you store them all in a list, called the corpus. When you 
have a single document, you can split it using chapters, paragraphs, or simply the 
end of each line. After splitting the document, place all its parts into a list and 
apply analysis as if the list were a corpus of documents.

Performing feature extraction
Now that you have a corpus, you use a class from the feature_extraction mod-
ule in Scikit-learn, CountVectorizer, which easily transforms texts into BoW, 
like this:

from sklearn.feature_extraction import text
vectorizer = text.CountVectorizer(binary=True).fit(corpus)
vectorized_text = vectorizer.transform(corpus)
print(vectorized_text.todense())
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The output is a list of lists, as shown here:

[[0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0]
 [0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0]
 [1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 1]]

The CountVectorizer class learns the corpus content using the fit method and 
then turns it (using the transform method) into a list of lists. A list of lists is 
nothing more than a matrix in disguise, so what the class returns is actually a 
matrix made of three rows (the three documents, in the same order as the corpus) 
and 21 columns representing the content.

When viewing the output of this part of the code, remember that the output is zero 
based. Consequently, the first entry in the list has a value of 0, not 1.

Understanding the BoW
The BoW representation turns words into the column features of a document 
matrix, and these features have a nonzero value when present in the processed 
text. For instance, consider the word dog. The following code shows its represen-
tation in the BoW:

print(vectorizer.vocabulary_)

The straightforward output appears here:

{'day': 4, 'jumps': 11, 'that': 18, 'the': 19, 'is': 8,
 'fences': 6, 'lazy': 12, 'and': 1, 'quick': 15, 'my': 13,
 'can': 3, 'it': 9, 'so': 17, 'all': 0, 'brown': 2,
 'dog': 5, 'jump': 10, 'over': 14, 'sleeps': 16,
 'your': 20, 'fox': 7}

Of course, if you have a larger vocabulary, you want it sorted. The following code 
will show a sorted version for you:

from collections import OrderedDict
ordered = OrderedDict(sorted(
    vectorizer.vocabulary_.items(),
    key=lambda x: x[1]))
print(dict(ordered))

The output now appears as
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{'all': 0, 'and': 1, 'brown': 2, 'can': 3, 'day': 4,
 'dog': 5, 'fences': 6, 'fox': 7, 'is': 8, 'it': 9,
 'jump': 10, 'jumps': 11, 'lazy': 12, 'my': 13,
 'over': 14, 'quick': 15, 'sleeps': 16, 'so': 17,
 'that': 18, 'the': 19, 'your': 20}

Asking the CountVectorizer to print the vocabulary it learned from the sample 
text outputs a report that it associates dog with the number 5, which means that 
dog is the sixth element in the BoW representations. In fact, in the obtained BoW, 
the sixth element of each document list always has a value of 1 because dog is the 
only word present in all three documents.

Storing documents in a document matrix form can be memory intensive because 
you must represent each document as a vector of the same length as the diction-
ary that created it. The dictionary in this example is quite limited, but when you 
use a larger corpus, you discover that a dictionary of the English language con-
tains well over a million terms. The solution is to use sparse matrices. A sparse 
matrix is a way to store a matrix in your computer’s memory without having zero 
values occupying memory space. You can read more about sparse matrices here: 
https://en.wikipedia.org/wiki/Sparse_matrix.

Processing and enhancing text
Marking whether a word is present in a text is a good start on machine reading, 
but sometimes it’s not enough. The BoW model has its own limits. In a BoW, 
words lose their order relationship with each other; it’s like putting stuff ran-
domly into a bag. For instance, in the phrase My dog is quick and can jump over 
fences, you know that quick refers to dog because it is glued to it by is, a form of the 
verb to be. In a BoW, however, everything is mixed and some internal references 
are lost. Further processing can help prevent the reference losses. The following 
sections discuss how to process and enhance text.

Performing word counting
Instead of marking the presence or absence of an element of the phrase (techni-
cally called a token), you can instead count how many times it occurs, as shown in 
the following code:

text_4 = 'A black dog just passed by but my dog is brown.'
corpus.append(text_4)
vectorizer = text.CountVectorizer().fit(corpus)
vectorized_text = vectorizer.transform(corpus)
print(vectorized_text.todense()[-1])

https://en.wikipedia.org/wiki/Sparse_matrix
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When you run this code, you get the following output:

[[0 0 1 1 1 1 0 0 2 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0]]

This code modifies the previous example by adding a new phrase with the word dog 
repeated two times. The code appends the new phrase to the corpus and retrains 
the vectorizer, but it omits the binary=True setting this time. The resulting 
vector for the last inserted document clearly shows a 2 value in the ninth position, 
thus the vectorizer counts the word dog twice.

Counting tokens helps make important words stand out. Yet, it’s easy to repeat 
phrase elements, such as articles, that aren’t important to the meaning of the 
expression. In the “Stemming and removing stop words” section, you discover 
how to exclude less important elements, but for the time being, the example 
underweights them using the Term Frequency-Inverse Document Frequency (TF-
IDF) transformation.

Changing weights using TF-IDF
The TF-IDF transformation is a technique that, after counting how many times a 
token appears in a phrase, divides the value by the number of documents in which 
the token appears. Using this technique, the vectorizer deems a word less impor-
tant, even if it appears many times in a text, when it also finds that word in other 
texts. In the example corpus, the word dog appears in every text. In a classification 
problem, you can’t use the word to distinguish between texts because it appears 
everywhere in the corpus. The word fox appears in only one phrase, making it an 
important classification term.

You commonly apply a number of transformations when applying TF-IDF, with the 
most important transformation normalizing the text length. Clearly, a longer text has 
more chances to have more words that are distinctive when compared to a shorter 
text. For example, when the word fox appears in a short text, it appears relevant to 
the meaning of that expression because fox stands out among few other words. How-
ever, having fox appear once in a long text might not seem to matter as much because 
it’s a single word among many others. For this reason, the transformation divides 
the total tokens by the count of each token for each phrase. Treating a phrase like this 
turns token counting into a token percentage, so TF-IDF no longer considers how 
many times the word fox appears, but instead considers the percentage of times the 
word fox appears among all the tokens. The following example demonstrates how to 
complete the previous example using a combination of normalization and TF-IDF:

TfidF = text.TfidfTransformer(norm='l1')
tfidf = TfidF.fit_transform(vectorized_text)
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phrase = 3 # choose a number from 0 to 3
total = 0
for word in vectorizer.vocabulary_:
    pos = vectorizer.vocabulary_[word]
    value = list(tfidf.toarray()[phrase])[pos]
    if value !=0:
        print ("%10s: %0.3f" % (word, value))
        total += value
print ('\nSummed values of a phrase: %0.1f' % total)

When you run this code, you see the following output:

        is: 0.077
        by: 0.121
     brown: 0.095
       dog: 0.126
      just: 0.121
        my: 0.095
     black: 0.121
    passed: 0.121
       but: 0.121
 
Summed values of a phrase: 1.0

Using this new TF-IDF model rescales the values of important words and makes 
the number of entries comparable between each text in the corpus.

Maintaining order using n-grams
Your text started out in a particular order and with various aids to make it reada-
ble. The current text ordering isn’t useful to humans because the words appear in 
an order that makes analysis possible. To recover part of the ordering of the text 
before the BoW transformation, you add n-grams (https://en.wikipedia.org/
wiki/N-gram). An n-gram is a continuous sequence of tokens in the text that you 
use as a single token in the BoW representation. For instance, in the phrase The 
quick brown fox jumps over the lazy dog, a bi-gram (pronounced “by gram”) — that is, 
a sequence of two tokens — transforms brown fox and lazy dog into single tokens. 
A tri-gram may create a single token from quick brown fox.

An n-gram is a powerful tool, but it has a drawback because it doesn’t know which 
combinations are important to the meaning of a phrase. N-grams create all the 
contiguous sequences of size N. The TF-IDF model can underweight the less use-
ful n-grams, but only projects like Google’s NGram viewer (you can read more 
about this viewer later in the chapter) can tell you which n-grams are useful in 

https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/N-gram
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NLP with any certainty. The following example uses CountVectorizer to model 
n-grams in the range of (2, 2), that is, bi-grams:

bigrams = text.CountVectorizer(ngram_range=(2,2))
ord_bigrams = OrderedDict(sorted(
    bigrams.fit(corpus).vocabulary_.items(),
    key=lambda x: x[1]))
print (dict(ord_bigrams))

Here is the output you see when running the example (in sorted order):

{'all the': 0, 'and can': 1, 'black dog': 2,
 'brown fox': 3, 'but my': 4, 'by but': 5,
 'can jump': 6, 'dog is': 7, 'dog just': 8,
 'fox jumps': 9, 'is brown': 10, 'is quick': 11,
 'is so': 12, 'it sleeps': 13, 'jump over': 14,
 'jumps over': 15, 'just passed': 16, 'lazy dog': 17,
 'lazy that': 18, 'my dog': 19, 'over fences': 20,
 'over the': 21, 'passed by': 22, 'quick and': 23,
 'quick brown': 24, 'sleeps all': 25, 'so lazy': 26,
 'that it': 27, 'the day': 28, 'the lazy': 29,
 'the quick': 30, 'your dog': 31}

If you don’t care about order, you could simply print out the list of bi-grams, like 
this:

print (bigrams.fit(corpus).vocabulary_)

Setting different ranges lets you use both unigrams (single tokens) and n-grams in 
your NLP analysis. For instance, the setting ngram_range=(1,3) creates all tokens, 
all bi-grams, and all tri-grams. You usually never need more than tri-grams in 
an NLP analysis. Increasing the number of n-grams is slightly beneficial after 
trigrams and sometimes even just after bi-grams, depending on the corpus size 
and the NLP problem.

Stemming and removing stop words
Stemming is the process of reducing words to their stem (or root) word. This task 
isn’t the same as understanding that some words come from Latin or other roots, 
but instead makes similar words equal to each other for the purpose of compari-
son or sharing. For example, the words cats, catty, and catlike all have the stem cat. 
The act of stemming helps you analyze sentences when tokenizing them because 
words having the same stem should have the same meaning (represented by a 
single feature).
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Creating stem words by removing suffixes to make tokenizing sentences easier 
isn’t the only way to make the document matrix simpler. Languages include many 
glue words that don’t mean much to a computer but have significant meaning to 
humans, such as a, as, the, that, and so on in English. They make the text flow and 
concatenate in a meaningful way. Yet, the BoW approach doesn’t care much about 
how you arrange words in a text. Thus, removing such words is legitimate. These 
short, less useful words are called stop words.

The act of stemming and removing stop words simplifies the text and reduces the 
number of textual elements so that only the essential elements remain. In addi-
tion, you keep just the terms that are nearest to the true sense of the phrase. By 
reducing the number of tokens, a computational algorithm can work faster and 
process the text more effectively when the corpus is large.

The following example demonstrates how to perform stemming and remove stop 
words from a sentence. It begins by training an algorithm to perform the required 
analysis using a test sentence. Afterward, the example checks a second sentence 
for words that appear in the first:

from sklearn.feature_extraction import text

import nltk

GETTING THE NATURAL LANGUAGE 
TOOLKIT (NLTK)
This example requires the use of the Natural Language Toolkit (NLTK), which Anaconda 
doesn’t install by default. The easy way to get this toolkit is to open the Anaconda 
prompt, ensure that you’re in the (base) environment, and type this command:

conda install -c anaconda nltk

The conda command may appear to freeze because collecting the required information 
can take several minutes. Eventually, you see a message saying that conda is collecting the 
package metadata and you know that the installation is going as planned. Just be patient.

If you’re working in an environment that doesn’t match the book’s environment, you 
must download and install NLTK using the instructions found at http://www.nltk.
org/install.html for your platform. Make certain that you install the NLTK for what-
ever version of Python you’re using for this book when you have multiple versions of 
Python installed on your system. After you install NLTK, you must also install the pack-
ages associated with it. The instructions at http://www.nltk.org/data.html tell you 
how to perform this task. (Install all the packages to ensure that you have everything.)

http://www.nltk.org/install.html
http://www.nltk.org/install.html
http://www.nltk.org/data.html
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from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
nltk.download('punkt')
 
stemmer = PorterStemmer()
 
def stem_tokens(tokens, stemmer):
    stemmed = []
    for item in tokens:
        stemmed.append(stemmer.stem(item))
    return stemmed
 
def tokenize(text):
    tokens = word_tokenize(text)
    stems = stem_tokens(tokens, stemmer)
    return stems
 
vocab = ['Sam loves swimming so he swims all the time']
vect = text.CountVectorizer(tokenizer=tokenize,
                           stop_words='english')
vec = vect.fit(vocab)
 
sentence1 = vec.transform(['George loves swimming too!'])
 
print (vec.get_feature_names())
print (sentence1.toarray())

At the outset, the example creates a vocabulary using a test sentence and places 
it in the variable vocab. It then creates a CountVectorizer, vect, to hold a list of 
stemmed words, but it excludes the stop words. The stop_words parameter refers 
to a pickle file that contains the English stop words. The tokenizer parameter 
defines the function used to stem the words. The vocabulary is fitted into another 
CountVectorizer, vec, which is used to perform the actual transformation on a 
test sentence using the transform() function. (You can see other parameters for 
CountVectorizer() at

https://scikit-learn.org/stable/modules/generated/sklearn.feature_
extraction.text.CountVectorizer.html.) Here’s the output from this example 
(note that the data path information may differ on your system).

[nltk_data] Downloading package punkt to
[nltk_data]     C:\Users\Luca\AppData\Roaming\nltk_data...
 [nltk_data]   Unzipping tokenizers\punkt.zip.
['love', 'sam', 'swim', 'time']
[[1 0 1 0]]

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
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The first output shows the stemmed words. Notice that the list contains only 
swim, not swimming or swims. All the stop words are missing as well. For example, 
you don’t see the words so, he, all, or the.

The second output shows how many times each stemmed word appears in the test 
sentence. In this case, a love variant appears once and a swim variant appears once 
as well. The words sam and time don’t appear in the second sentence, so those 
values are set to 0.

Scraping textual datasets from the web
Given NLP’s capabilities, building complete language models is just a matter of 
gathering large text collections. Digging through large amounts of text enables 
machine learning algorithms using NLP to discover connections between words 
and derive useful concepts relative to specific contexts. For instance, when dis-
cussing a mouse in the form of a device or an animal, a machine learning algo-
rithm powered by NLP text processing can derive the precise topic from other 
hints in the phrase. Humans decipher these hints by having lived, seen, talked 
about, or read about the topic of the conversation. The following sections discuss 
how computers interact with the web to develop better NLP capabilities.

Understanding web scraping
Computers also build information databases based on digital textual sources or 
inputs from sensors. As noted previously, computers don’t see or hear as humans 
do, but only accept input in the form of data. The web offers access to millions of 
documents, most of them freely accessible without restrictions.

Web scraping (the act of accessing text on websites and downloading it as a data 
source) allows machine learning algorithms to automatically feed NLP pro-
cesses and build new capabilities in recognizing and classifying text. Develop-
ers have already done much to create NLP systems capable of processing textual 

WORKING WITH PYTHON PICKLES
No, Python developers aren’t any more prone to eating condiments than anyone else is. 
A pickle is special kind of serialized storage format that you can read about at https://
pythontips.com/2013/08/02/what-is-pickle-in-python/. Essentially, the pickle 
is a kind of package. It contains stop words for a specific language, which is English in 
this case. It also has files for other languages, such as French and German (see the list at 
https://pypi.org/project/stop-words/). The pickle files can come with issues for 
English, as discussed at https://scikit-learn.org/stable/modules/feature_ 
extraction.html#stop-words and https://aclweb.org/anthology/W18-2502.

https://pythontips.com/2013/08/02/what-is-pickle-in-python/
https://pythontips.com/2013/08/02/what-is-pickle-in-python/
https://pypi.org/project/stop-words/
https://scikit-learn.org/stable/modules/feature_extraction.html#stop-words
https://scikit-learn.org/stable/modules/feature_extraction.html#stop-words
https://aclweb.org/anthology/W18-2502
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information better by leveraging the richness of the web. The developer creatively 
directs the computer to process data in specific ways, and the computer then does 
the following:

 » Automates processing

 » Ensures that processing is done consistently

 » Presents new patterns that the developer must recognize as the result of 
processing

By using free text acquired from the web and other open text sources, such as 
dictionaries, scientists at Microsoft Research have developed various versions of 
MindNet, a semantic network that is a network of words connected by meaning. 
MindNet can find related words through the following:

 » Synonyms

 » Parts

 » Causes

 » Locations

 » Sources

For instance, when you ask for the word car, MindNet provides answers such as 
vehicle (a synonym) and then connects vehicle to wheel because it is a specific part 
of a car, thus providing knowledge directly derived from text even though nobody 
has specifically instructed MindNet about cars or how they’re made. You can read 
more about MindNet at https://research.microsoft.com/en-us/projects/
mindnet/default.aspx.

Google developed something similar based on its Google Books project, helping 
to build better language models for all Google’s applications. A public API based 
on Google’s work is the Ngram Viewer, which can explore how frequently cer-
tain combinations of tokens up to five-grams have appeared over time: https://
books.google.com/ngrams.

The capability to retrieve information from the web allows even greater achieve-
ments. For example, you could build a dictionary of positive or negative words based 
on associated emoticons or emoji (https://en.wikipedia.org/wiki/Emoji).

Web scraping is a complex subject that could require an entire book to explain. 
This chapter offers an example of web scraping and an overview of what to expect.

https://research.microsoft.com/en-us/projects/mindnet/default.aspx
https://research.microsoft.com/en-us/projects/mindnet/default.aspx
https://books.google.com/ngrams
https://books.google.com/ngrams
https://en.wikipedia.org/wiki/Emoji
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Installing the Beautiful Soup package
You need to install the Beautiful Soup package when using Python to perform 
web scraping (http://www.crummy.com/software/BeautifulSoup/). This pack-
age should already be part of your Anaconda installation. To determine whether 
you have Beautiful Soup installed, enter the following command at the Anaconda 
Prompt:

conda search beautifulsoup4 --info

After you type this command at the Anaconda Prompt and press Enter, you see 
output like this when the package is installed:

beautifulsoup4 4.7.1 py37_1001
------------------------------
file name   : beautifulsoup4-4.7.1-py37_1001.tar.bz2
name        : beautifulsoup4
version     : 4.7.1
build       : py37_1001
build number: 1001
size        : 140 KB
license     : MIT
subdir      : win-64
url         : https://conda.anaconda.org/conda-forge/...
-py37_1001.tar.bz2
md5         : 38cb1888a82d4a041fb5f7c087c66ff4
timestamp   : 2019-01-08 22:44:20 UTC
dependencies:
  - python >=3.7,<3.8.0a0
  - soupsieve

The precise presentation can vary by system, but this gives you a good idea of 
what to look for. When Beautiful Soup is missing, you can easily install it on your 
system by typing this command at the Anaconda Prompt and pressing Enter:

conda install -c anaconda beautifulsoup4

Beautiful Soup, created by Leonard Richardson, is an excellent tool for scraping 
data from HTML or XML files retrieved from the web, even if they are malformed 
or written in a nonstandard way. The package name refers to the fact that HTML 
documents are made of tags, and when they are a mess, many developers idiom-
atically call the document a tag soup. Thanks to Beautiful Soup, you can easily nav-
igate in a page to locate the objects that matter and extract them as text, tables, 
or links.

http://www.crummy.com/software/BeautifulSoup/
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Using Beautiful Soup in your code
This example demonstrates how to download a table from a Wikipedia page con-
taining all the major U.S. cities. Wikipedia (https://www.wikipedia.org/) is a 
free-access and free-content Internet encyclopedia, enjoyed by millions of users 
every day, all around the world. Because its knowledge is free, open, and, most 
important, well structured, it’s a precious resource for learning from the web.

from bs4 import BeautifulSoup
import pandas as pd
try:
    import urllib2 # Python 2.7.x
except:
    import urllib.request as urllib2 # Python 3.x
 
wiki = "https://en.wikipedia.org/wiki/\
List_of_United_States_cities_by_population"
header = {'User-Agent': 'Mozilla/5.0'}
query = urllib2.Request(wiki, headers=header)
page = urllib2.urlopen(query)
soup = BeautifulSoup(page, "lxml")

After you upload the Beautiful Soup package, the code defines a header (stating 
that you are a human user using a browser) and a target page. The target page is 
a document containing a list of major U.S. cities: https://en.wikipedia.org/
wiki/List_of_United_States_cities_by_population. The list also contains 
information about the population and surface of the city.

table = soup.find("table",
    { "class" : "wikitable sortable" })
final_table = list()
for row in table.findAll('tr'):
    cells = row.findAll("td")
    if len(cells) >=6:
        v1 = cells[1].find(text=True)
        v2 = cells[2].find(text=True)
        v3 = cells[3].find(text=True)
        v4 = cells[4].find(text=True)
        v5 = cells[6].findAll(text=True)
        final_table.append([v1, v2, v3, v4, v5])
cols = ['City','State','Population_2017','Census_2010'
        ,'Land_Area_km2']
df = pd.DataFrame(final_table, columns=cols)
 
print(df[['City', 'Population_2017']])

https://www.wikipedia.org/
https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population
https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population
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After downloading the page into the variable named soup, you can use the find() 
and findAll() methods to look for a table (the <tr> and <td> tags). The cells 
variable contains a number of cell entries, each of which can contain text. The 
code looks inside each cell for textual information (v1 through v5) that it stores 
in a list (final_table). It then turns the list into a pandas DataFrame for further 
processing later. For example, you can use the DataFrame, df, to turn strings 
into numbers. Simply printing df outputs the resulting table. Here is an exam-
ple of what you see from the print() call, which selects only two of the available 
columns:

                 City Population_2017
0       New York City      8,622,698

WIKIPEDIA CAVEATS
Most publishers and many college instructors view Wikipedia as being a dubious  
source of information. Anyone can edit the entries it contains, and sometimes people 
do so in ways that slant the information politically or socially, or simply reflects a  
lack of knowledge (see https://www.foxbusiness.com/features/just-how- 
accurate-is-wikipedia). These issues can mean that the information you receive 
may not reflect reality. However, many studies show that the community effort behind 
creating Wikipedia (see https://www.livescience.com/32950-how-accurate- 
is-wikipedia.html, https://www.cnet.com/news/study-wikipedia-as- 
accurate-as-britannica/, and https://www.zmescience.com/science/ 
study-wikipedia-25092014/) does tend to mitigate this issue partially.

No matter which side of the Wikipedia as an information source divide you fall on, you 
need to exercise some level of care in taking Wikipedia entries at face value, just as you 
would any Internet content. Just because someone tells you that something is so does-
n’t make it true (no matter what form that information source might take). You need 
to cross-reference the information and verify the facts before accepting any Internet 
information source as factual, even Wikipedia. This said, the authors have verified every 
Wikipedia source used in the book as much as possible to ensure that you receive accu-
rate information.

Wikipedia also has its own rules and terms of service, which you may read at https://
meta.wikimedia.org/wiki/Bot_policy#Unacceptable_usage. The terms of 
service forbid the use of bots for automated tasks, such as modifying the website (cor-
rections and automatic posting), and bulk downloads (downloading massive amounts 
of data). Wikipedia is a great source for NLP analysis because you can download all its 
English articles at https://dumps.wikimedia.org/enwiki/. Other languages are 
also available for download. Just consult https://dumps.wikimedia.org/ for further 
information.

https://www.foxbusiness.com/features/just-how-accurate-is-wikipedia
https://www.foxbusiness.com/features/just-how-accurate-is-wikipedia
https://www.livescience.com/32950-how-accurate-is-wikipedia.html
https://www.livescience.com/32950-how-accurate-is-wikipedia.html
https://www.cnet.com/news/study-wikipedia-as-accurate-as-britannica/
https://www.cnet.com/news/study-wikipedia-as-accurate-as-britannica/
https://www.zmescience.com/science/study-wikipedia-25092014/
https://www.zmescience.com/science/study-wikipedia-25092014/
https://meta.wikimedia.org/wiki/Bot_policy#Unacceptable_usage
https://meta.wikimedia.org/wiki/Bot_policy#Unacceptable_usage
https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/
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1         Los Angeles      3,999,759
2             Chicago      2,716,450
3             Houston      2,312,717
4             Phoenix      1,626,078
5        Philadelphia      1,580,863
...
308        Tuscaloosa        100,287
309        San Angelo        100,119
310         Vacaville        100,032
 
[311 rows x 2 columns]

Handling problems with raw text
Even though raw text wouldn’t seem to present a problem in parsing because it 
doesn’t contain any special formatting, you do have to consider how the text is 
stored and whether it contains special words within it. Some character sets don’t 
quite match up, and converting between them can be difficult even when you 
don’t think a problem should occur. Languages also use special character sets, and 
it can be hard to get anything but garbage when you try to transition the text to a 
form you can use within Python. The multiple forms of encoding on web pages can 
present interpretation problems that you need to consider as you work through 
the text. The following sections take a very brief look at some of the issues you’ll 
encounter when working with supposedly raw text.

Dealing with encoding
The way the text is encoded can differ because of different operating systems, lan-
guages, and geographical areas. Be prepared to find a host of different encodings 
as you recover data from the web. Human language is complex, and the original 
ASCII coding, comprising just unaccented English letters, can’t represent all the 
different alphabets. That’s why so many encodings appeared with special char-
acters. For example, a character can use either seven or eight bits for encoding 
purposes. The use of special characters can differ as well. In short, the interpre-
tation of bits used to create characters differs from encoding to encoding. You can 
see a host of encodings at http://www.i18nguy.com/unicode/codepages.html. 
Fortunately, Python supports a huge number of encodings, as shown at https://
docs.python.org/3/library/codecs.html#standard-encodings.

Sometimes you need to work with encodings other than the default encoding set 
within the Python environment. When working with Python 3.x, you rely on Uni-
versal Transformation Format 8-bit (UTF-8) as the encoding used to read and 
write files by default. To check the default encoding, you use this code:

http://www.i18nguy.com/unicode/codepages.html
https://docs.python.org/3/library/codecs.html#standard-encodings
https://docs.python.org/3/library/codecs.html#standard-encodings
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import sys
sys.getdefaultencoding()

In previous versions of Python, you had to go through all sorts of weird machina-
tions to read other file formats. The discussions at https://stackoverflow.com/
questions/2276200/changing-default-encoding-of-python and https://
anonbadger.wordpress.com/2015/06/16/why-sys-setdefaultencoding-will- 
break-code/ will give you some idea of how bad things got. The point is that these 
old systems are no longer in place because you have easier options to use now. To 
encode and decode between the default Python UTF-8 and other encodings, you 
use the encode() and decode() methods, as shown here:

utf8_string = "Hello there!"
utf7_string = utf8_string.encode('utf7')
print(utf7_string, type(utf7_string))
 
utf7_string = "This is a new string!".encode("utf7")
utf8_string = utf7_string.decode('utf8')
print(utf8_string, type(utf8_string))

The output from this example code tells you something about Python:

b'Hello there!' <class 'bytes'>
This is a new string! <class 'str'>

When a string uses an encoding other than UTF-8, Python stores it as a series of 
bytes. You can still see the string as output, but you may not be able to read every 
character if Python can’t read it correctly. You must also encode and decode the 
strings as necessary to ensure that the strings remain readable. For example, if 
you encode the first string as UTF-32 instead, what you see for output is

b'\xff\xfe\x00\x00H\x00\x00\x00e\x00\x00\x00l\x00\x00\x00l
\x00\x00\x00o\x00\x00\x00\x00\x00\x00t\x00\x00\x00h\x00
\x00\x00e\x00\x00\x00r\x00\x00\x00e\x00\x00\x00!\x00\x00
\x00'

If you look carefully, you can still see the individual characters, such as H as \x00H 
(along with some padding). The biggest problem with Python and encoding is that 
Python will encode and decode text using whatever encoding you specify, which 
means that you might end up with garbage. The data is there; you just can’t read 
it. One way to overcome this issue is to try to determine the encoding based on 
locale, like this:

import locale
locale.getpreferredencoding()

https://stackoverflow.com/questions/2276200/changing-default-encoding-of-python
https://stackoverflow.com/questions/2276200/changing-default-encoding-of-python
https://anonbadger.wordpress.com/2015/06/16/why-sys-setdefaultencoding-will-break-code/
https://anonbadger.wordpress.com/2015/06/16/why-sys-setdefaultencoding-will-break-code/
https://anonbadger.wordpress.com/2015/06/16/why-sys-setdefaultencoding-will-break-code/


472      BOOK 4  Performing Advanced Data Manipulation

Unfortunately, knowing the locale doesn’t always help or solve problems. 
For example, when you run this code on a Windows system, you discover that  
Windows relies on cp1252, where cp stands for code page. Oddly enough, prob-
lems occur when transitioning cp1252 to UTF-8, as discussed at https://
stackoverflow.com/questions/26324622/what-characters-do-not-directly-map- 
from-cp1252-to-utf-8. The most important issue, though, is for you to know 
what sort of encoding the text uses before you try to process it in Python.

Considering Unicode
Languages include all sorts of accented characters, and the Unicode character set 
also has a wealth of special characters. To work with certain characters, you must 
rely on Unicode encoding, as described at https://docs.python.org/3/howto/
unicode.html. The problem is that you must know which kind of encoding to use. 
Consider the following code:

uString1 = "This is a winking face: \N{WINKING FACE}"
print(uString1)
 
uString2 = "This is a winking face: \U0001F609"
print(uString2)
 
uString3 = "This is not a winking face: \u1F609"
print(uString3)

This is the three kinds of encoding that Python supports. The first two encodings, 
name and 32-bit, produce the desired output of a winking face. Of course, you 
have to know that the character is named WINKING FACE to use the first encod-
ing, and you have to know the actual number of the character to use the second 
encoding, but the encoding is possible and works without problem. The 16-bit 
encoding won’t work in this case because the character number is too high. So, 
you must choose the correct encoding to get the desired result. Python outputs a 
spade symbol and the number 9 in the third case.

A problem can occur when you try to encode and decode strings with Unicode 
characters. For example, the following code produces less than stellar results:

utf7_string = uString1.encode('utf7')
print(utf7_string)
 
uString4 = utf7_string.decode('utf8')
print(uString4)

You might think that the string will become impossible to read when you encode 
it as UTF-7 but that decoding it should fix the problem. Unfortunately, the results 
are something different:

https://stackoverflow.com/questions/26324622/what-characters-do-not-directly-map-from-cp1252-to-utf-8
https://stackoverflow.com/questions/26324622/what-characters-do-not-directly-map-from-cp1252-to-utf-8
https://stackoverflow.com/questions/26324622/what-characters-do-not-directly-map-from-cp1252-to-utf-8
https://docs.python.org/3/howto/unicode.html
https://docs.python.org/3/howto/unicode.html
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b'This is a winking face: +2D3eCQ-'
This is a winking face: +2D3eCQ-

The encoding and decoding processes produce unusable results. The problem can 
become worse when you try to encode uString1 or uString2 as ASCII.  In this 
case, Python actually raises an example. However, you have a perfectly usable 
alternative in this case, as shown in the following code:

utf7_string = uString1.encode('ascii', 'namereplace')
print(utf7_string)
 
uString4 = utf7_string.decode('utf8', 'replace')
print(uString4)

The output still doesn’t quite recover the original content, but at least you know 
what the original content was:

b'This is a winking face: \\N{WINKING FACE}'
This is a winking face: \N{WINKING FACE}

In the end, you need to exercise care when processing raw text because raw text 
really isn’t all that easy to process. It contains all sorts of extra bits of information 
that your application may not know how to handle.

Storing processed text data  
in sparse matrices
Feature extraction, as described in the “Performing feature extraction” section of 
the chapter, can produce relatively large matrices full of mostly zeros that would 
take considerable space to store. Compressing these matrices for storage would make 
sense because otherwise you’ll spend considerable resources using them. Of course, 
you have to eventually expand the sparse matrices as well, so you need to know how 
to go both directions. The following sections discuss the use of sparse matrices.

Creating a sparse matrix
Fortunately, Python makes creating a sparse matrix easy. All you need is the 
scipy.sparse package, described at https://docs.scipy.org/doc/scipy/ 
reference/sparse.html, which offers a number of sparse matrix conversions. The 
conversion you choose depends on how you want to see the sparse matrix after-
ward. This example relies on a row-based sparse matrix using the following code:

from scipy.sparse import csr_matrix

https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
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full_matrix = vectorized_text.todense()
print(full_matrix)
 
sparse_matrix = csr_matrix(full_matrix)
print(sparse_matrix)

In this case, you see both the expansion and the compression of the data. The 
vectorized_text variable actually contains a sparse matrix to begin with, but 
using todense() forms it into the matrix shown here, which is the decompressed 
(non-sparse) version:

[[0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 2 0]
 [0 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0]
 [1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1 1 1 1 1]
 [0 0 1 1 1 1 0 0 2 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0]]

To create a sparse matrix, you use one of the sparse matrix classes. This example 
uses the Compressed Sparse Row (CSR) matrix. The output looks like this (with 
the actual output appearing in a single column):

Coordinate Number of Entries Coordinate Number of Entries

(0, 3) 1 (0, 8) 1

(0, 10) 1 (0, 14) 1

(0, 16) 1 (0, 18) 1

(0, 20) 1 (0, 24) 2

(1, 1) 1 (1, 6) 1

(1, 8) 1 (1, 9) 1

(1, 11) 1 (1, 13) 1

(1, 17) 1 (1, 18) 1

(1, 20) 1 (2, 0) 1

(2, 7) 1 (2, 8) 1

(2, 11) 1 (2, 12) 1

(2, 16) 1 (2, 21) 1

(2, 22) 1 (2, 23) 1

(2, 24) 1 (2, 25) 1

(3, 2) 1 (3, 3) 1

(3, 4) 1 (3, 5) 1
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Coordinate Number of Entries Coordinate Number of Entries

(3, 8) 2 (3, 11) 1

(3, 15) 1 (3, 17) 1

(3, 19) 1

As shown in the table, each entry in the full matrix becomes a set of coordinates 
and the value at the coordinate. Remember that the coordinates are zero-based, 
so entry (0, 3) is actually the fourth entry in the first row of the original matrix, 
which had a value of 1, as shown in the table.

Using the MovieLens sparse matrix
The MovieLens site (https://movielens.org/) is all about helping you find a 
movie you might like. After all, with millions of movies out there, finding some-
thing new and interesting could take time that you don’t want to spend. The setup 
works by asking you to input ratings for movies that you already know about. The 
MovieLens site then makes recommendations for you based on your ratings. In 
short, your ratings teach an algorithm what to look for, and then the site applies 
this algorithm to the entire dataset.

You can obtain the MovieLens dataset directly at https://grouplens.org/ 
datasets/movielens/, but the following code obtains the file for you automati-
cally. (Note that the url is on multiple lines using a line continuation character, 
\ or backslash, and that the second line must appear outdented as shown, or you 
can place the entire URL on a single line.)

import urllib.request
import os.path
from zipfile import ZipFile
 
filename = "ml-20m.zip"
if not os.path.exists("ml-20m.zip"):
    url = "https://files.grouplens.org/datasets/\
movielens/ml-20m.zip"
    urllib.request.urlretrieve(url, filename)
 
archive = ZipFile(filename)
archive.extractall()

The first part of the code retrieves the MovieLens datasets from its online loca-
tion using urllib.request. You must assign it a local filename, which is simply 
the same name used online in this case. Because MovieLens actually contains a 

https://movielens.org/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
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number of datasets, the files appear as .csv (Comma Separated Value) files in a 
.zip archive. You must extract these files using the extractall() method of the 
ZipFile package, which creates a subdirectory in your code directory named ml-
20m. This subfolder contains the six datasets and a README.txt file.

The interesting thing about this site is that you can download all or part of the 
dataset based on how you want to interact with it. You can find downloads in the 
following sizes:

 » 100,000 ratings from 1,000 users on 1,700 movies

 » 1 million ratings from 6,000 users on 4,000 movies

 » 10 million ratings and 100,000 tag applications applied to 10,000 movies by 
72,000 users

 » 20 million ratings and 465,000 tag applications applied to 27,000 movies by 
138,000 users

 » MovieLens’s latest dataset in small or full sizes (At this writing, the full size 
contained 21,000,000 ratings and 470,000 tag applications applied to 27,000 
movies by 230,000 users; its size will increase in time.)

This dataset presents you with an opportunity to work with user-generated data 
using both supervised and unsupervised techniques. The large datasets present 
special challenges that only big data can provide. However, this example starts a 
little more simply by reading the data into the application and then seeing what it 
contains. The first step is to read in the ratings information, as shown here:

ratings = pd.read_csv("ml-20m/ratings.csv")
print(ratings.shape)
print(ratings.head())

Reading the data may take a few moments on your system. After it has been read, 
you can see the output shown here:

(20000263, 4)
   userId  movieId  rating   timestamp
0       1        2     3.5  1112486027
1       1       29     3.5  1112484676
2       1       32     3.5  1112484819
3       1       47     3.5  1112484727
4       1       50     3.5  1112484580

The column names are important because you use them later to create larger 
datasets on which you can perform various kinds of analysis. This example uses 
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only two of the datasets, the second of which is the movie names. The following 
code shows how to import this second dataset:

names = pd.read_csv("ml-20m/movies.csv")
print(names.shape)
print(names.head())

The output of this code appears like this:

(27278, 3)
   movieId                               title  \
0        1                    Toy Story (1995)
1        2                      Jumanji (1995)
2        3             Grumpier Old Men (1995)
3        4            Waiting to Exhale (1995)
4        5  Father of the Bride Part II (1995)
 
                                        genres
0  Adventure|Animation|Children|Comedy|Fantasy
1                   Adventure|Children|Fantasy
2                               Comedy|Romance
3                         Comedy|Drama|Romance
4                                       Comedy

Note that both datasets have a movieId column. You can use this column to create 
a larger dataset using the following code:

movie_data = pd.merge(names, ratings, on="movieId")
print(movie_data.shape)
print(movie_data.head())

The dataset shape will change, of course, but because movieId is repeated, the 
output has only one copy, producing six, rather than seven, columns, as shown 
here:

 (20000263, 6)
   movieId             title                     genres  \
 
1        1  Toy Story (1995)  Adventure|Animation|Child...
2        1  Toy Story (1995)  Adventure|Animation|Child...
3        1  Toy Story (1995)  Adventure|Animation|Child...
4        1  Toy Story (1995)  Adventure|Animation|Child...
 
   userId  rating   timestamp
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0       3     4.0   944919407
1       6     5.0   858275452
2       8     4.0   833981871
3      10     4.0   943497887
4      11     4.5  1230858821

At this point, you can perform various kinds of analysis. For example, you might 
want to know the average rating of each movie. The following code sorts the mov-
ies by name and then finds the mean of the ratings for each movie:

print(movie_data.groupby('title')['rating'].mean()
.sort_values().head())

The code first groups the entries and then finds the mean of the entries by title. 
It then sorts the entries based on the rating and outputs the first five entries, as 
shown here:

title
Magic Christmas Tree, The (1964)               0.5
Vampir (Cuadecuc, vampir) (1971)               0.5
Prisoner of Zenda, The (1979)                  0.5
Late Great Planet Earth, The (1979)            0.5
Last Warrior, The (Last Patrol, The) (2000)    0.5
Name: rating, dtype: float64

Sparse matrices enable you to provide a great deal of text in a raw text form for 
analysis. The .csv files used for this example qualify as a sort of raw text form 
in that they aren’t processed in any manner other than to organize them. Often, 
organized raw text will require a great deal of manipulation before you can get 
anything useful out of it. Consider that MovieLens has four other .csv files that 
this example hasn’t even touched and, even with these two datasets, you can 
combine the various pieces of information in many other ways.

Understanding Semantics  
Using Word Embeddings

Most of this chapter involves accessing textual data, forming it in the right way, 
determining what the words actually say, and performing statistical analysis 
while storing the information efficiently. All these techniques play into modern 
NLP approaches. However, you also need to consider the role that AI can play, 
most especially the neural networks used for deep learning.



Pr
oc

es
si

ng
 T

ex
t 

an
d 

O
th

er
 S

eq
ue

nc
es

CHAPTER 4  Processing Text and Other Sequences      479

Neural networks are incredibly fast at processing data and finding the right 
weights to achieve the best predictions, and so are all the deep learning layers you 
find discussed today, from Convolutional Neural Networks (CNNs) to Recurrent 
Neural Networks (RNNs). These neural networks have effectiveness limits based 
on the data they have to process, such as normalizing data to allow a neural net-
work to work properly or forcing its range of input values between 0 to +1 or –1 to 
+1 to reduce trouble when updating network weights.

Normalization is done internally to the network by using activation functions like 
tanh, which squeezes values to appear in the range from –1 to +1 (https://tex.
stackexchange.com/questions/176101/plotting-the-graph-of-hyperbolic- 
tangent), or by using specialized layers like BatchNormalization (https://
keras.io/layers/normalization/), which apply a statistical transformation on 
values transferred from one layer to another.

Another kind of problematic data that a neural network finds difficult to handle is 
sparse data. You have sparse data when your data mostly consists of zero values, 
which is exactly what happens when you process textual data using frequency or 
binary encoding, even if you don’t use TF-IDF. When working with sparse data, 
not only will the neural network have difficulties finding a good solution (as tech-
nically explained in these Quora answers at https://www.quora.com/Why-are- 
deep-neural-networks-so-bad-with-sparse-data), but you’ll also need to have 
a huge number of weights for the input layer because sparse matrices are usually 
quite wide (they have many columns).

Sparse data problems motivated the use of word embeddings, which is a way to 
transform a sparse matrix into a dense one. Word embeddings can reduce the 
number of columns in the matrix from hundreds of thousands to a few hundred. 
Also, they allow no zero values inside the matrix. The word embedding process 
isn’t done randomly but is devised so that words get similar values when they 
have the same meaning or are found within the same topics. In other words, it’s 
a complex mapping; each embedding column is a specialty map (or a scale, if you 
prefer) and the similar or related words gather near each other.

Word embeddings aren’t the only advanced technique that you can use to make 
deep learning solutions shine with unstructured text, but they are the technique 
that recent research advancements are developing and enhancing the most. 
Recently, a series of pretrained networks appeared that make it even easier to 
model language problems because they take into account not just the word you 
want to embed but also the words around it. Using these pretrained networks 
allows a more precise modelling of words with multiple meanings depending on 
their context. For instance, one of the most promising is the Google Bidirectional 
Encoder Representations from Transformers (BERT). Here’s a link to the Google 
AI blog post describing the technique: https://ai.googleblog.com/2018/11/
open-sourcing-bert-state-of-art-pre.html.

https://tex.stackexchange.com/questions/176101/plotting-the-graph-of-hyperbolic-tangent
https://tex.stackexchange.com/questions/176101/plotting-the-graph-of-hyperbolic-tangent
https://tex.stackexchange.com/questions/176101/plotting-the-graph-of-hyperbolic-tangent
https://keras.io/layers/normalization/
https://keras.io/layers/normalization/
https://www.quora.com/Why-are-deep-neural-networks-so-bad-with-sparse-data
https://www.quora.com/Why-are-deep-neural-networks-so-bad-with-sparse-data
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
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As another example, you can have an embedding that transforms the name of 
different foods into columns of numeric values, which is a matrix of embedded 
words. On that matrix, the words that show fruits can have a similar score on a 
particular column. On the same column, vegetables can get different values, but 
not too far from those of fruit. Finally, the names of meat dishes can be far away 
in value from fruits and vegetables. An embedding performs this work by con-
verting words into values in a matrix. The values are similar when the words are 
synonymous or refer to a similar concept. (This is called semantic similarity, with 
semantic referring to the meaning of words.)

Because the same semantic meaning can occur across languages, you can use 
carefully built embeddings to help you translate from one language to another: 
A word in one language will have the same embedded scores as the same word 
in another language. Researchers at Facebook AI Research (FAIR) lab have found 
a way to synchronize different embeddings and leverage them to provide mul-
tilingual applications based on deep learning (go to https://code.fb.com/ml-
applications/under-the-hood-multilingual-embeddings/ for details).

An important aspect to keep in mind when working with word embeddings is 
that they are a product of data and thus reflect the content of the data used to 
create them. Because word embeddings require large amounts of text examples 
for proper generation, the content of texts fed into the embeddings during the 
training is often retrieved automatically from the web and not fully scrutinized. 
The use of unverified input may lead to word embeddings biases. For instance, you 
may be surprised to discover that the word embeddings create improper associa-
tions between words. You need to be aware of such a risk and test your application 
carefully because the consequence is adding the same unfair biases to the deep 
learning applications you create.

For now, the most popular word embeddings commonly used for deep learning 
applications are

 » Word2vec: Created by a team of researchers led by Tomáš Mikolov at  
Google (you can read the original paper about this patented method here: 
https://arxiv.org/pdf/1301.3781.pdf). It relies on two shallow neural 
network layers that attempt to learn to predict a word by knowing the words 
that precede and follow it. Word2vec comes in two versions: one based on 
something like a bag-of-words model (called continuous bag-of-words, or 
CBoW), which is less sensitive to word order; and another based on n-grams 
(called continuous skip-gram), which is more sensitive to the order. Word2vec 
learns to predict a word given its context using distributional hypothesis, which 
means that similar words appear in similar contexts of words. By learning 
what words should appear in different contexts, Word2vec internalizes the 
contexts. Both versions are suitable for most applications, but the skip-gram 
version is actually better at representing infrequent words.

https://code.fb.com/ml-applications/under-the-hood-multilingual-embeddings/
https://code.fb.com/ml-applications/under-the-hood-multilingual-embeddings/
https://arxiv.org/pdf/1301.3781.pdf


Pr
oc

es
si

ng
 T

ex
t 

an
d 

O
th

er
 S

eq
ue

nc
es

CHAPTER 4  Processing Text and Other Sequences      481

 » GloVe (Global Vectors): Developed as an open source project at Stanford 
University (https://nlp.stanford.edu/projects/glove/), the GloVe 
approach is similar to statistical linguist methods. It takes word-word co-
occurrence statistics from a corpus and reduces the resulting sparse matrix to 
a dense one using matrix factorization, which is an algebraic method widely 
used in multivariate statistics.

 » fastText: Created by Facebook’s AI Research (FAIR) lab, fastText (https://
fasttext.cc/) is a word embedding, available in multiple languages that works 
with word subsequences instead of single words. It breaks a word down into 
many chunks of letters and embeds them. This technique has interesting 
implications because fastText offers a better representation of rare words (which 
are often composed of subsequences that aren’t rare) and determines how to 
project misspelled words. The capability to handle misspellings and errors allows 
an effective use of the embedding with text coming from social networks, emails, 
and other sources people don’t usually use a spell checker with.

EXPLAINING WHY (KING – MAN) +  
WOMAN = QUEEN
Word embeddings translate a word into a series of numbers representing its position 
in the embedding itself. This series of numbers is the word vector. It’s usually made up 
of about 300 vectors (the number of vectors Google used in its model trained on the 
Google news dataset), and neural networks use it to process textual information better 
and more effectively. In fact, words with similar meaning or that are used in similar con-
texts have similar word vectors; therefore, neural networks can easily spot words with 
similar meaning. In addition, neural networks can work with analogies by manipulating 
vectors, which means that you can obtain amazing results, such as

• king – man + woman = queen

• paris – france + poland = warsaw

It may seem like magic but it’s simple mathematics. You can see how things work by 
looking at the following figure, which represents two Word2vec vectors.

Each vector in Word2vec represents a different semantic; it could be food type, quality of 
a person, nationality, or gender. There are many semantics and they aren’t predefined; 
the embedding training created them automatically based on the presented examples. 
The figure shows two vectors from Word2vec: one representing the quality of a person, 
another representing the gender of a person. The first vector defines roles, starting with 
king and queen with higher scores, passing through actor and actress, and finally ending 

(continued)

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://fasttext.cc/
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Using Scoring and Classification
The previous NLP discussions in this chapter show how a machine learning algo-
rithm can read text (after scraping it from the web) using the BoW representation 
and how NLP can enhance its understanding of text using text length normaliza-
tion, TF-IDF model, and n-grams. The following sections demonstrate how to 
put text processing into use by learning to solve two common problems in textual 
analysis: classification and sentiment analysis.

Performing classification tasks
When you classify texts, you assign a document to a class because of the topics it 
discusses. You can discover the topics in a document in different ways. The sim-
plest approach is prompted by the idea that if a group of people talks or writes 
about a topic, the people tend to use words from a limited vocabulary because they 

with man and woman having lower scores. If you add this vector to the gender vector, 
you see that the male and female variants separate by different scores on that vector. 
Now, when you subtract man and add woman to king, you are simply moving away 
from the coordinates of king and shifting along the gender vector until you reach the 
position of queen. This simple trick of coordinates, which doesn’t imply any understand-
ing of words by Word2vec, is possible because all the vectors of a word embedding are 
synchronized, representing the meaning of a language, and you can meaningfully shift 
from one coordinate to another as though you were shifting concepts in reasoning.

(continued)
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refer or relate to the same topic. When you share some meaning or are part of the 
same group, you tend to use the same language. Consequently, if you have a col-
lection of texts and don’t know what topics the text references, you can reverse 
the previous reasoning; you can simply look for groups of words that tend to 
associate, so their newly formed group by dimensionality reduction may hint at 
the topics you’d like to know about. This is a typical unsupervised learning task.

This learning task is a perfect application for the Singular Value Decomposition 
(SVD) family of algorithms, because by reducing the number of columns, the fea-
tures (which, in a document, are the words) will gather in dimensions, and you can 
discover the topics by checking high-scoring words. SVD and Principal Components 
Analysis (PCA) provide features to relate both positively and negatively to the newly 
created dimensions. So a resulting topic may be expressed by the presence of a word 
(high positive value) or by the absence of it (high negative value), making inter-
pretation both tricky and counterintuitive for humans. The Scikit-learn package 
includes the Non-Negative Matrix Factorization (NMF) decomposition class, which 
allows an original feature to relate only positively with the resulting dimensions.

This example starts by loading the 20newsgroups dataset, a dataset collecting 
newsgroup postings scraped from the web, selecting only the posts regarding 
objects for sale and automatically removing headers, footers, and quotes. You 
may receive a warning message to the effect of WARNING:sklearn.datasets.
twenty_newsgroups:Downloading dataset from ..., with the URL of the site 
used for the download when working with this code. The download will take a few 
moments because the dataset consumes 14MB.

import warnings
warnings.filterwarnings("ignore")
from sklearn.datasets import fetch_20newsgroups
dataset = fetch_20newsgroups(shuffle=True,
    categories = ['misc.forsale'],
     remove=('headers', 'footers', 'quotes'), random_state=101)
print ('Posts: %i' % len(dataset.data))

After the download is complete, you see the number of posts as output.

Posts: 585

The TfidVectorizer class is imported and set up to remove stop words (common 
words such as the or and) and keep only distinctive words, producing a matrix 
whose columns point to distinctive words:

from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(max_df=0.95,
            min_df=2, stop_words='english')
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tfidf = vectorizer.fit_transform(dataset.data)
from sklearn.decomposition import NMF
n_topics = 5
nmf = NMF(n_components=n_topics, random_state=101).fit(tfidf)

As noted earlier in the chapter, term frequency-inverse document frequency (TF-
IDF) is a simple calculation based on the frequency of a word in a document. It is 
weighted by the rarity of the word among all the documents available. Weighting 
words is an effective way to rule out words that can’t help you classify or iden-
tify the document when processing text. For example, you can eliminate common 
parts of speech or other common words.

As with other algorithms from the sklearn.decomposition module, the n_com-
ponents parameter indicates the number of desired components. If you want to 
look for more topics, you use a higher number. As the required number of topics 
increases, the reconstruction_err_ method reports lower error rates. It’s up to 
you to decide when to stop, given the trade-off between more time spent on com-
putations and more topics.

The last part of the script outputs the resulting five topics, as shown here:

feature_names = vectorizer.get_feature_names()
n_top_words = 15
for topic_idx, topic in enumerate(nmf.components_):
   print ("Topic #%d:" % (topic_idx+1),)
   print (" ".join([feature_names[i] for i in
                    topic.argsort()[:-n_top_words - 1:-1]]))

By reading the printed words, you can decide on the meaning of the extracted 
topics, thanks to product characteristics (for instance, the words drive, hard, card, 
and floppy refer to computers) or the exact product (for instance, comics, car, stereo, 
games):

Topic #1:
drive hard card floppy monitor meg ram disk motherboard
 vga scsi brand color internal modem
Topic #2:
00 50 dos 20 10 15 cover 1st new 25 price man 40 shipping
 comics
Topic #3:
condition excellent offer asking best car old sale good
 new miles 10 000 tape cd
Topic #4:
email looking games game mail interested send like thanks
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 price package list sale want know
Topic #5:
shipping vcr stereo works obo included amp plus great
 volume vhs unc mathes gibbs radley

You can explore the resulting model by looking into the attribute components_ 
from the trained NMF model. It consists of a NumPy ndarray holding positive val-
ues for words connected to the topic. By using the argsort method, you can get 
the indexes of the top associations, whose high values indicate that they are the 
most representative words.

print (nmf.components_[0,:].argsort()[:-n_top_words-1:-1])

Here are the indexes of the top words for topic 0:

[1337 1749  889 1572 2342 2263 2803 1290 2353 3615 3017  806 
1022 1938

 2334]

Decoding the words’ indexes creates readable strings by calling them from the 
array derived from the get_feature_names method applied to the TfidfVector-
izer that was previously fitted.

print (vectorizer.get_feature_names()[1337])

For example, here is the human-readable form of index 1337:

drive

Analyzing reviews from e-commerce
Sentiment is difficult to catch because humans use the same words to express 
even opposite sentiments. The expression you convey is a matter of how you con-
struct your thoughts in a phrase, not simply the words used. Even though diction-
aries of positive and negative words do exist and are helpful, they aren’t decisive 
because word context matters. You can use these dictionaries as a way to enrich 
textual features, but you have to rely more on machine learning if you want to 
achieve good results.

Seeing how positive and negative word dictionaries work is a good idea. The 
AFINN-111 dictionary contains 2,477 positive and negative words and phrases 
(http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010). 
Another good choice is the larger opinion lexicon by Hu and Liu that appears 
at https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon. 
Both dictionaries contain English words.

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon


486      BOOK 4  Performing Advanced Data Manipulation

Using labeled examples that associate phrases to sentiments can create more 
effective predictors. In this example, you create a machine learning model based 
on a dataset containing reviews from Amazon, Yelp, and IMDb that you can find 
at the UCI, the machine learning repository, https://archive.ics.uci.edu/ml/
datasets/Sentiment+Labelled+Sentences.

This dataset was created for the paper “From Group to Individual Labels Using 
Deep Features,” by Kotzias and others, for KDD 2015. The dataset contains 3,000 
labeled reviews equally divided from the three sources, and the data has a simple 
structure. Some text is separated by a tab from a binary sentiment label, where 1 is 
a positive sentiment and 0 a negative one. You can download the dataset and place 
it in your Python working directory using the following commands:

import urllib.request as urllib2
import requests, io, os, zipfile
 
UCI_url = 'https://archive.ics.uci.edu/ml/\
machine-learning-databases/00331/sentiment%20\
labelled%20sentences.zip'
 
response = requests.get(UCI_url)
compressed_file = io.BytesIO(response.content)
z = zipfile.ZipFile(compressed_file)
print ('Extracting in %s' %  os.getcwd())
for name in z.namelist():
    filename = name.split('/')[-1]
    nameOK = ('MACOSX' not in name and '.DS' not in name)
    if filename and nameOK:
            newfile = os.path.join(os.getcwd(),
                               os.path.basename(filename))
            with open(newfile, 'wb') as f:
                f.write(z.read(name))
            print ('\tunzipping %s' % newfile)

In case the previous script doesn’t work, you can download the data (in ZIP for-
mat) directly from https://archive.ics.uci.edu/ml/machine-learning- 
databases/00331/ and expand it using your favorite unzipper. You’ll find the 
imdb_labelled.txt file inside the newly created sentiment labelled sen-
tences directory. After downloading the files, you can upload the IMDb file to a 
pandas DataFrame by using the read_csv function:

import numpy as np
import pandas as pd
dataset = 'imdb_labelled.txt'

https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://archive.ics.uci.edu/ml/machine-learning-databases/00331/
https://archive.ics.uci.edu/ml/machine-learning-databases/00331/
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data = pd.read_csv(dataset, header=None, sep=r"\t",
                   engine='python')
data.columns = ['review','sentiment']

Exploring the textual data is quite interesting. You’ll find all short phrases such 
as “Wasted two hours” or “It was so cool.” Some are clearly ambiguous for a 
computer, such as “Waste your money on this game.” Even though waste has a 
negative meaning, the imperative makes the phrase sound positive. A machine 
learning algorithm can learn to decipher ambiguous phrases like these only after 
seeing many variants. The next step is to build the model by splitting the data into 
training and test sets:

from sklearn.cross_validation import train_test_split
corpus, test_corpus, y, yt = train_test_split(
    data.ix[:,0], data.ix[:,1],
    test_size=0.25, random_state=101)

After splitting the data, the code transforms the text using most of the NLP tech-
niques described in this chapter: token counts, unigrams and bi-grams, stop words 
removal, text length normalization, and TF-IDF transformation.

from sklearn.feature_extraction import text
vectorizer = text.CountVectorizer(ngram_range=(1,2),
                    stop_words='english').fit(corpus)
TfidF = text.TfidfTransformer()
X = TfidF.fit_transform(vectorizer.transform(corpus))
Xt = TfidF.transform(vectorizer.transform(test_corpus))

After the text for both the training and test sets is ready, the algorithm can learn 
sentiment using a linear support vector machine. This kind of support vec-
tor machine supports L2 regularization, so the code must search for the best C 
parameter using the grid search approach:

from sklearn.svm import LinearSVC
from sklearn.grid_search import GridSearchCV
param_grid = {'C': [0.01, 0.1, 1.0, 10.0, 100.0]}
clf = GridSearchCV(LinearSVC(loss='hinge',
                    random_state=101), param_grid)
clf = clf.fit(X, y)
print ("Best parameters: %s" % clf.best_params_)

The output shows the best hyperparameter to use:

Best parameters: {'C': 1.0}
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Now that the code has determined the best hyperparameter for the problem, you 
can test performance on the test set using the accuracy measure, the percentage of 
correct times that the code can guess the correct sentiment:

from sklearn.metrics import accuracy_score
solution = clf.predict(Xt)
print("Achieved accuracy: %0.3f" %
      accuracy_score(yt, solution))

The results indicate accuracy of higher than 80 percent, but determining which 
phrases tricked the algorithm into making a wrong prediction is interesting.

Achieved accuracy: 0.816

You can print the misclassified texts and consider what the learning algorithm is 
missing in terms of learning from text:

print(test_corpus[yt!=solution])

That’s quite a bit of text (and you’re not seeing all of it in the book):

601    There is simply no excuse for something this p...
32     This is the kind of money that is wasted prope...
887    At any rate this film stinks, its not funny, a...
668    Speaking of the music, it is unbearably predic...
408         It really created a unique feeling though.
413         The camera really likes her in this movie.
138    I saw "Mirrormask" last night and it was an un...
132    This was a poor remake of "My Best Friends Wed...
291                               Rating: 1 out of 10.
904    I'm so sorry but I really can't recommend it t...
410    A world better than 95% of the garbage in the ...
55     But I recommend waiting for their future effor...
826    The film deserves strong kudos for taking this...
100            I don't think you will be disappointed.
352                                    It is shameful.
171    This movie now joins Revenge of the Boogeyman ...
814    You share General Loewenhielm's exquisite joy ...
218    It's this pandering to the audience that sabot...
168    Still, I do like this movie for it's empowerme...
479                     Of course, the acting is blah.
31                      Waste your money on this game.
805    The only place good for this film is in the ga...
127    My only problem is I thought the actor playing...
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613                                       Go watch it!
764                      This movie is also revealing.
107    I love Lane, but I've never seen her in a movi...
674    Tom Wilkinson broke my heart at the end... and...
30     There are massive levels, massive unlockable c...
667                                    It is not good.
823    I struggle to find anything bad to say about i...
739         What on earth is Irons doing in this film?
185                              Highly unrecommended.
621    A mature, subtle script that suggests and occa...
462    Considering the relations off screen between T...
595    Easily, none other cartoon made me laugh in a ...
8                                   A bit predictable.
446    I like Armand Assante & my cable company's sum...
449    I won't say any more - I don't like spoilers, ...
715    Im big fan of RPG games too, but this movie, i...
241    This would not even be good as a made for TV f...
471    At no point in the proceedings does it look re...
481    And, FINALLY, after all that, we get to an end...
104                           Too politically correct.
522    Rating: 0/10 (Grade: Z) Note: The Show Is So B...
174               This film has no redeeming features.
491    This movie creates its own universe, and is fa...
Name: review, dtype: object
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Making 
Recommendations

One of the oldest and most common sales techniques is to recommend 
something to a customer based on what you know about the customer’s 
needs and wants. If people buy one product, they might buy another asso-

ciated product if given a good reason to do so. They may not even have thought 
about the need for the second product until the salesperson recommends it, yet 
they really do need it to use the primary product. For this reason alone, most 
people actually like to get recommendations. Given that web pages now serve as 
a salesperson in many cases, recommender systems are a necessary part of any 
serious sales effort on the web. This chapter helps you better understand the sig-
nificance of the recommender revolution in all sorts of venues.

Recommender systems serve all sorts of other needs. For example, you might see 
an interesting movie title, read the synopsis, and still not know whether you’re 
likely to find it a good movie. Watching the trailer might prove equally fruitless. 
Only after you see the reviews provided by others do you feel that you have enough 
information to make a good decision. In this chapter, you also find methods for 
obtaining and using rating data.

Gathering, organizing, and ranking such information is hard, though, and infor-
mation overflow is the bane of the Internet. A recommender system can perform 
all the required work for you in the background, making the work of getting to 

Chapter 1

IN THIS CHAPTER

 » Defining why recommenders are 
important

 » Obtaining rating data

 » Working with behaviors

 » Using SVD to your advantage
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a decision a lot easier. You may not even realize that search engines are actually 
huge recommender systems. The Google search engine, for instance, can provide 
personalized search results based on your previous search history.

Recommender systems do more than just make recommendations. After reading 
images and texts, machine learning algorithms can also read a person’s personal-
ity, preferences, and needs, and act accordingly. This chapter helps you under-
stand how all these activities take place by exploring techniques such as singular 
value decomposition (SVD).

You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears in  
the DSPD_0501_Recommender.ipynb source code file for Python and the 
DSPD_R_0501_Recommender.ipynb source code file for R. See the Introduction for 
details on how to find these source files.

Realizing the Recommendation Revolution
A recommender system can suggest items or actions of interest to a user, after 
having learned the user’s preferences over time. The technology, which is based 
on data and machine learning techniques (both supervised and unsupervised), has 
appeared on the Internet for about two decades. Today you can find recommender 
systems almost everywhere, and they’re likely to play an even larger role in the 
future under the guise of personal assistants, such as Siri (developed by Apple), 
Amazon Alexa, Google Home, or some other artificial-intelligence–based digital 
assistant. The drivers for users and companies to adopt recommender systems are 
different but complementary:

 » Users: Have a strong motivation to reduce the complexity of the modern 
world (regardless of whether the issue is finding the right product or a place 
to eat) and avoid information overload.

 » Companies: Need recommender to systems provide a practical way to 
communicate in a personalized way with their customers and successfully 
push sales.

Recommender systems actually started as a means to handle information overload. 
The Xerox Palo Alto Research Center built the first recommender in 1992. Named 
Tapestry (see the story at https://medium.com/the-graph/how-recommender- 
systems-make-their-suggestions-da6658029b76), it handled the increasing 
number of emails received by center researchers. The idea of collaborative filter-
ing was born by learning from users and leveraging similarities in preferences. 
The GroupLens project (https://grouplens.org/) soon extended recommender 

https://medium.com/the-graph/how-recommender-systems-make-their-suggestions-da6658029b76
https://medium.com/the-graph/how-recommender-systems-make-their-suggestions-da6658029b76
https://grouplens.org/
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systems to news selection and movie recommendations (the MovieLens project, 
https://movielens.org/, whose data you initially work with in the “Using the 
MovieLens sparse matrix” section of Book 4, Chapter 4).

When giant players in the e-commerce sector, such as Amazon, started adopt-
ing recommender systems, the idea went mainstream and spread widely in  
e-commerce. Netflix did the rest by promoting recommenders as a business tool 
and sponsoring a competition to improve its recommender system (see https://
www.netflixprize.com/ and https://www.thrillist.com/entertainment/
nation/the-netflix-prize for details) that involved various teams for quite a 
long time. The result is an innovative recommender technology that uses SVD and 
Restricted Boltzmann Machines (a kind of unsupervised neural network).

However, recommender systems aren’t limited to promoting products. Since 2002, 
a new kind of Internet service has made its appearance: social networks such as 
Friendster, Myspace, Facebook, and LinkedIn. These services promote exchanges 
between users and share information such as posts, pictures, and videos. In addi-
tion, these services help create links between people with similar interests. Search 
engines, such as Google, amassed user response information to offer more per-
sonalized services and understand how to match user’s desires when responding 
to users’ queries better (https://moz.com/learn/seo/google-rankbrain).

Recommender systems have become so pervasive in guiding people’s daily life 
that experts now worry about the impact on our ability to make independent deci-
sions and perceive the world in freedom. A recommender system can blind peo-
ple to other options — other opportunities — in a condition called filter bubble. By 
limiting choices, a recommender system can also have negative impacts, such as 
reducing innovation. You can read about this concern in the articles at https://
dorukkilitcioglu.com/2018/10/09/recommender-filter-serendipity.html 
and https://www.technologyreview.com/s/522111/how-to-burst-the-filter- 
bubble-that-protects-us-from-opposing-views/. One detailed study of the 
effect, entitled “Exploring the Filter Bubble: The Effect of Using Recommender Sys-
tems on Content Diversity,” appears on ACM at https://dl.acm.org/citation.
cfm?id=2568012. The history of recommender systems is one of machines striving 
to learn about our minds and hearts, to make our lives easier, and to promote the 
business of their creators.

Downloading Rating Data
Getting good rating data can be hard. Later in this chapter, you use the  MovieLens 
dataset to see how SVD can help you in creating movie recommendations. 
 (MovieLens is a sparse matrix dataset that you can see demonstrated in Book 4, 
Chapter 4.) However, you have other databases at your disposal. The following 

https://movielens.org/
https://www.netflixprize.com/
https://www.netflixprize.com/
https://www.thrillist.com/entertainment/nation/the-netflix-prize
https://www.thrillist.com/entertainment/nation/the-netflix-prize
https://moz.com/learn/seo/google-rankbrain
https://dorukkilitcioglu.com/2018/10/09/recommender-filter-serendipity.html
https://dorukkilitcioglu.com/2018/10/09/recommender-filter-serendipity.html
https://www.technologyreview.com/s/522111/how-to-burst-the-filter-bubble-that-protects-us-from-opposing-views/
https://www.technologyreview.com/s/522111/how-to-burst-the-filter-bubble-that-protects-us-from-opposing-views/
https://dl.acm.org/citation.cfm?id=2568012
https://dl.acm.org/citation.cfm?id=2568012
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sections tell you more about the MovieLens dataset and describe the data logs 
contained in MSWeb — both of which work quite well when experimenting with 
recommender systems.

Navigating through anonymous web data
One of the more interesting datasets that you can use to learn about preferences is 
the MSWeb dataset (https://archive.ics.uci.edu/ml/datasets/Anonymous+ 
Microsoft+Web+Data). It consists of a week’s worth of anonymously recorded 
data from the Microsoft website with these characteristics:

 » Number of instances: 37,711

• Training: 32,711

• Test: 5,000

 » Number of attributes: 294

 » Number of users: 32,710

 » Number of Vroots: 285

In this case (unlike the MovieLens dataset), the recorded information is about 
a behavior, not a judgment, thus values are expressed in a binary form. You  
can download the MSWeb dataset from https://github.com/amirkrifa/ 
ms-web-dataset/raw/master/anonymous-msweb.data, get information about its 
structure, and explore how its values are distributed. The following code shows 
how to obtain the data using Python:

import urllib.request
import os.path
 
filename = "anonymous-msweb.data"
if not os.path.exists("anonymous-msweb.data"):
    url = "https://github.com/amirkrifa/ms-web-dataset/\
raw/master/anonymous-msweb.data"
    urllib.request.urlretrieve(url, filename)

The technique for obtaining the file is similar to that used for the MovieLens 
dataset. In fact, this is a kind of CSV file, but you won’t use Pandas to work with it 
because it has a complex dataset structure. The sections that follow describe how 
to work with this dataset in Python. R actually makes the process of working with 
the MSWeb dataset considerably easier because you can download the MSWeb 
dataset from the R recommenderlab library. If you want to see Python techniques 
in addition to those in this chapter for working with the MSWeb dataset, check out 
the site at https://github.com/amirkrifa/ms-web-dataset.

https://archive.ics.uci.edu/ml/datasets/Anonymous+Microsoft+Web+Data
https://archive.ics.uci.edu/ml/datasets/Anonymous+Microsoft+Web+Data
https://github.com/amirkrifa/ms-web-dataset/raw/master/anonymous-msweb.data
https://github.com/amirkrifa/ms-web-dataset/raw/master/anonymous-msweb.data
https://github.com/amirkrifa/ms-web-dataset
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Parsing the data file
The data file contains complex data to track user behavior, and you may encounter 
this sort of data when performing data science tasks. It looks complicated at first, 
but if you break the data file down carefully, you can eventually tease out the file 
details. If you were to open this data file (it’s text, so you can look if desired), you 
would find that it contains three kinds of records:

 » A: Attributes of the particular page. Each attribute is a different page, so you 
could use the word page (or pages for multiples) in place of attributes, but the 
example uses attributes for clarity.

 » C: Users who are looking at the pages.

 » V: Vroots for each of the pages. A Vroot is a series of grouped website pages. 
Together they constitute an area of the website. The binary values show 
whether someone has visited a certain area. (You just see a flag; you don’t see 
how many times the user has actually visited that website area.)

Each record appears on a separate line. Consequently, you build one dictionary for 
each of the record types to separate one from the other, as shown here:

import codecs
import collections
 
# Open the file.
file = codecs.open(filename, 'r')
 
# Setup for attributes.
attribute = collections.namedtuple(
    'page', ['id', 'description', 'url'])
attributes = {}
 
# Setup for users
current_user_id = None
current_user_ids = []
user_visits = {}
 
# Setup for Vroots
page_visits = {}
 
# Process the data one line at a time and place
# each record in the appropriate storage unit.
for line in file:
    chunks = line.split(',')
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    entry_type = chunks[0]
 
    if entry_type == 'A':
        type, id, ignored, description, url = chunks
        attributes[int(id)] = attribute(
            id=int(id), description=description, url=url)
 
    if entry_type == 'C':
        if not current_user_id == None:
            user_visits[current_user_id] = set(
                current_user_ids)
            current_user_ids = []
        current_user_id = int(chunks[2])
 
    if entry_type == 'V':
        page_id = int(chunks[1])
        current_user_ids.append(page_id)
        page_visits.setdefault(page_id, [])
        page_visits[page_id].append(current_user_id)
 
# Display the totals
print('Total Number of Attributes: ',
      len(attributes.keys()))
print('Total Number of Users: ', len(user_visits.keys()))
print('Total Number of VRoots: ', len(page_visits.keys()))

The code begins by setting up variables to hold information for each of the record 
types. It then reads the file one line at a time and determines the record type. Each 
record requires a different kind of process. For example, an attribute contains a 
page number, description, and URL. User records contain the user ID and a list 
of pages that the user has visited. The Vroot entries associate pages with users. 
At the end of the process, you can see the number of each kind of record in the 
dataset.

Total Number of Attributes:  294
Total Number of Users:  32710
Total Number of VRoots:  285

The idea is that a user’s visit to a certain area indicates a specific interest. For 
instance, when a user visits pages to learn about productivity software along with 
visits to a page containing terms and prices, this behavior indicates an interest in 
acquiring the productivity software soon. Useful recommendations can be based 
on such inferences about a user’s desire to buy certain versions of the productivity 
software or bundles of different software and services.
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Viewing the attributes
It’s important to remember that the focus is on pages and users viewing them, so 
it pays to know a little something about the pages. After you parse the dataset, the 
following code will display the page information for you:

for k, v in attributes.items():
    print("{:4} {:30.30} {:12}".format(
        v.id, v.description, v.url))

When you run this code, you see all 294 attributes (pages). Here is a partial listing:

1287 "International AutoRoute"      "/autoroute"
1288 "library"                      "/library"
1289 "Master Chef Product Infor..." "/masterchef"
1297 "Central America"              "/centroam"
1215 "For Developers Only Info"     "/developer"
1279 "Multimedia Golf"              "/msgolf"
1239 "Microsoft Consulting"         "/msconsult"

Obtaining statistics
In addition to viewing the data, you can also perform analysis on it by various 
means, such as statistics. Here are some statistics you can try with the users:

nbr_visits = list(map(len, user_visits.values()))
average_visits = sum(nbr_visits) / len(nbr_visits)
one_visit = sum(x == 1 for x in nbr_visits)
 
print("Number of user visits: ", sum(nbr_visits))
print("Average number of visits: ", average_visits)
print("Users with just one visit: ", one_visit)

When you run this code, you see some interesting information about the users 
who visited the various pages:

Number of user visits:  98653
Average number of visits:  3.0159889941913787
Users with just one visit:  9994

Encountering the limits of rating data
For recommender systems to work well, they need to know about you as well as 
other people, both like you and different from you. Acquiring rating data allows a 
recommender system to learn from the experiences of multiple customers. Rating 
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data could derive from a judgment (such as rating a product using stars or num-
bers) or a fact (a binary 1/0 that simply states that you bought the product, saw a 
movie, or stopped browsing at a certain web page).

No matter the data source or type, rating data is always about behaviors. To rate a 
movie, you have to decide to see it, watch it, and then rate it based on your experi-
ence of seeing the movie. Actual recommender systems learn from rating data in 
different ways:

 » Collaborative filtering: Matches raters based on movie or product similari-
ties used in the past. You can get recommendations based on items liked by 
people similar to you or on items similar to those you like.

 » Content-based filtering: Goes beyond the fact that you watched a movie. It 
examines the features relative to you and the movie to determine whether a 
match exists based on the larger categories that the features represent. For 
instance, if you are a female who likes action movies, the recommender will 
look for suggestions that include the intersection of these two categories.

 » Knowledge based recommendations: Based on metadata, such as prefer-
ences expressed by users and product descriptions. It relies on machine 
learning and is effective when you do not have enough behavioral data to 
determine user or product characteristics. This is called a cold start and 
represents one of the most difficult recommender tasks because you don’t 
have access to either collaborative filtering or content-based filtering.

The example that appears in the sections that follow performs collaborative filter-
ing. It locates the movies that are the most similar to Young Frankenstein.

Considering collaborative filtering
When using collaborative filtering, you need to calculate similarity. See Chapter 14 
of Machine Learning For Dummies, by John Paul Mueller and Luca Massaron (Wiley), 
for a discussion of the use of similarity measures. Another good place to look 
is at http://dataaspirant.com/2015/04/11/five-most-popular-similarity- 
measures-implementation-in-python/. Apart from Euclidean, Manhattan, and 
Chebyshev distances, the remainder of this section discusses cosine similarity. 
Cosine similarity measures the angular cosine distance between two vectors, which 
may seem like a difficult concept to grasp but is just a way to measure angles in 
data spaces.

The idea behind the cosine distance is to use the angle created by the two points 
connected to the space origin (the point where all dimensions are zero) instead. 
If the points are near, the angle is narrow, no matter how many dimensions are 
there. If they are far away, the angle is quite large. Cosine similarity implements 

http://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/
http://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/
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the cosine distance as a percentage and is quite effective in telling whether a user 
is similar to another or whether a film can be associated to another because the 
same users favor it.

Obtaining the data
The code in this section assumes that you have access to the MovieLens database 
using the code from the “Using the MovieLens sparse matrix” section of Book 4, 
Chapter 4. Assuming that you’re working with a new notebook, however, you need 
to read the data into the notebook and merge the two datasets used for this exam-
ple, as shown here:

import pandas as pd
 
ratings = pd.read_csv("ml-20m/ratings.csv")
movies = pd.read_csv("ml-20m/movies.csv")
 
movie_data = pd.merge(ratings, movies, on="movieId")
print(movie_data.head())

After you perform the merge, you see a new dataset, movie_data, which contains 
the combination of ratings and movies, as shown here:

   userId  movieId  rating   timestamp           title  \
0       1        2     3.5  1112486027  Jumanji (1995)
1       5        2     3.0   851527569  Jumanji (1995)
2      13        2     3.0   849082742  Jumanji (1995)
3      29        2     3.0   835562174  Jumanji (1995)
4      34        2     3.0   846509384  Jumanji (1995)
 
                       genres
0  Adventure|Children|Fantasy
1  Adventure|Children|Fantasy
2  Adventure|Children|Fantasy
3  Adventure|Children|Fantasy
4  Adventure|Children|Fantasy

All these entries are for Jumanji because head() shows only the first five entries 
in the movie_data dataset, and Jumanji obviously has at least five ratings. You can 
use the new dataset to obtain a simple statistic for the movies; however, the mean 
of the ratings for each movie is shown here:

print(movie_data.groupby('title')['rating'].mean().head())
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This code looks rather complicated, but it isn’t. Calling groupby('title') creates 
a grouping of the various movies by title. You can then access the ['rating'] col-
umn of that grouping to obtain a mean(). The output shows the first five entries, 
as shown here (note that groupby() automatically sorts the entries for you):

title
"Great Performances" Cats (1998)                  2.748387
#chicagoGirl: The Social Network Takes on a...      3.666667
$ (Dollars) (1971)                                2.833333
$5 a Day (2008)                                   2.871795
$9.99 (2008)                                      3.009091
Name: rating, dtype: float64

The rating column doesn’t have a title, but you see it listed on the last line as the 
column used to create the mean, which is of type float64.

Massaging the data
The current MovieLens dataset is huge and cumbersome. When working with an 
online product, such as Google Colab (see Book 1, Chapter 3 for details), the data-
set might very well work in its current form. When working with a desktop sys-
tem, you need to massage the data to ensure that you actually can get the desired 
results. In fact, massaging the data is an essential part of performing data science 
tasks because you may not actually have good data. This section looks at ways that 
you might want to massage the MovieLens dataset to ensure good results.

Desktop setups can be particularly picky when you’re working with huge data. 
One of the issues you can encounter when working with these datasets is memory. 
When performing certain tasks, such as creating the pivot table for this exam-
ple, you might see ValueError: negative dimensions are not allowed as an 
output. What this really means is that your system ran out of memory. You have 
a number of options for countering this problem, some of the most important of 
which appear in this section.

You can reduce the memory requirements for working with the data by removing 
items that you don’t really want in the analysis anyway. For this analysis, you have 
three extra columns: movieId, timestamp, and genres. In addition, a person would 
need to think enough of a movie to give it at least three out of five stars. Conse-
quently, you can also get rid of the lesser value reviews using the following code:

reduced_movie = movie_data.loc[
    movie_data['rating'] >= 3.0]
reduced_movie = reduced_movie.drop(
    columns=['movieId','timestamp', 'genres'])
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print(reduced_movie.head())
print()
print("Original Shape: {0}, New Shape: {1}".format(
    movie_data.shape, reduced_movie.shape))

The reduction in size doesn’t actually affect the better movies. Instead, you just 
lose lesser movies that would have unfavorably affected the results. The size of 
the reduced_movie dataset is significantly smaller than the original movie_data 
dataset, as shown here:

   userId  rating           title
0       1     3.5  Jumanji (1995)
1       5     3.0  Jumanji (1995)
2      13     3.0  Jumanji (1995)
3      29     3.0  Jumanji (1995)
4      34     3.0  Jumanji (1995)
 
Original Shape: (20000263, 6), New Shape: (16486759, 3)

The number of reviews also reflects the popularity of a movie. When a movie has 
few reviews, it might reflect a cult following  — a group of devotees who don’t 
reflect the opinion of the public at large. You can remove movies with only a few 
reviews using the following code:

reduced_movie = reduced_movie[
    reduced_movie.groupby('title')['rating'].transform(
        'size') > 3000]
 
print(reduced_movie.groupby('title')[
    'rating'].count().sort_values().head())
print()
print("New shape: ", reduced_movie.shape)

The call to transform() selects only movies that have a certain number of 
reviews — more than 3,000 of them in this case. You can use transform() in a 
huge number of ways based solely on the function you provide as input, which is 
the built-in size function in this case. Here is the result of this particular bit of 
trimming:

title
Eastern Promises (2007)                               3001
Triplets of Belleville, The (Les triplettes de Bel...   3003
Bad Santa (2003)                                      3006
Mexican, The (2001)                                   3010
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1984 (Nineteen Eighty-Four) (1984)                    3010
Name: rating, dtype: int64
 
New shape:  (12083404, 3)

The way you shape your data will affect the output of any analysis you perform. 
You may not get the desired results the first time, so you may end up spending a 
lot of time trying different shaping methods. The point is to keep trying to shape 
the data in various ways until you obtain a good result.

A final way to save memory for analysis purposes is to clean up your variables, 
which can consume a lot of memory. This example uses the following code for 
this purpose:

ratings = None
movies = None
movie_data = None

Performing collaborative filtering
Making recommendations depends on finding the right kind of information on 
which to make a comparison. Of course, this is where the art of data science comes 
into play. If making a recommendation only involved performing analysis on data 
in a particular manner using a specific algorithm, anyone could do it. The art is in 
choosing the correct data to analyze. In this section, you use a combination of the 
user ID and the ratings assigned by those users to a particular movie as the means 
to perform collaborative filtering. In other words, you’re making an assumption 
that people who have similar tastes in movies will rate those movies at a partic-
ular level.

After you’ve shaped your data, you can use it to create a pivot table. The pivot table 
will compare user IDs with the reviews that the user has created for particular 
movies. Here is the code used to create the pivot table:

user_rating = pd.pivot_table(
    reduced_movie,
    index='userId',
    columns='title',
    values='rating')
 
print(user_rating.head())

The results might look a little odd because the pivot table will be a sparse matrix 
like the sample shown here:
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title   Young Frankenstein  Young Guns  Zodiac  \
userId
1                      4.0         NaN     NaN
2                      NaN         NaN     NaN
3                      5.0         NaN     NaN
4                      NaN         NaN     NaN
5                      NaN         NaN     NaN

In this case, you see that Young Frankenstein is the only movie that was rated by 
users 1 through 5. The point is that the rows contain individual user reviews and 
the columns are the names of movies they reviewed.

The next step in the process is to obtain a listing of reviews for the target movie, 
which is Young Frankenstein. The following code creates a list of reviewers:

YF_ratings = user_rating['Young Frankenstein (1974)']
print(YF_ratings.sort_values(ascending=False).head())

The output of this part of the code shows that Jumanji isn’t the most popular 
movie around, but it’ll work for the example:

userId
60898     5.0
52548     5.0
101177    5.0
101198    5.0
28648     5.0
Name: Young Frankenstein (1974), dtype: float64

Now that you have sample data to use, you can correlate it with the pivot table as 
a whole. The following code outputs the movies that most closely match Jumanji 
in appeal by the users who liked Jumanji:

print(user_rating.corrwith(
    YF_ratings).sort_values(
    ascending=False).head())

The output shows that you can derive some interesting results using collaborative 
filtering techniques:

title
Young Frankenstein (1974)                 1.000000
Blazing Saddles (1974)                    0.421143
Monty Python and the Holy Grail (1975)    0.300413
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Producers, The (1968)                     0.297317
Magnificent Seven, The (1960)             0.291847
dtype: float64

Even though the correlation results seem a little low (with 1.000000 being the 
most desirable), the names of the movies selected make sense. For example, like 
Young Frankenstein, Blazing Saddles is a Mel Brooks movie, and Monty Python and the 
Holy Grail is a comedy.

Leveraging SVD
A property of SVD is to compress the original data at such a level and in such a 
smart way that, in certain situations, the technique can actually create new mean-
ingful and useful features, not just compressed variables. The following sections 
help you understand what role SVD plays in recommender systems.

Considering the origins of SVD
SVD is a method from linear algebra that can decompose an initial matrix into the 
multiplication of three derived matrices. The three derived matrices contain the 
same information as the initial matrix, but in a way that expresses any redundant 
information (expressed by statistical variance) only once. The benefit of the new 
variable set is that the variables have an orderly arrangement according to the 
initial variance portion contained in the original matrix.

SVD builds the new features using a weighted summation of the initial features. 
It places features with the most variance leftmost in the new matrix, whereas 
features with the least or no variance appear on the right side. As a result, no cor-
relation exists between the features. (Correlation between features is an indicator 
of information redundancy, as explained in the previous paragraph.) Here’s the 
formulation of SVD:

A = U * D * VT

For compression purposes, you need to know only about matrices U and D, but 
examining the role of each resulting matrix helps you understand the values bet-
ter, starting with the origin. A is a matrix n*p, where n is the number of examples 
and p is the number of variables. As an example, consider a matrix containing the 
purchase history of n customers, who bought something in the p range of avail-
able products. The matrix values are populated with quantities that customers 
purchased. As another example, imagine a matrix in which rows are individuals, 
columns are movies, and the content of the matrix is a movie rating (which is 
exactly what the MovieLens dataset contains).
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After the SVD computation completes, you obtain the U, S, and V matrices. U is 
a matrix of dimensions n by k, where k is p, exactly the same dimensions of the 
original matrix. It contains the information about the original rows on a recon-
structed set of columns. Therefore, if the first row on the original matrix is a 
vector of items that Mr. Smith bought, the first row of the reconstructed U matrix 
will still represent Mr. Smith, but the vector will have different values. The new 
U matrix values are a weighted combination of the values in the original columns.

Of course, you might wonder how the algorithm creates these combinations. The 
combinations are devised to concentrate the most variance possible on the first 
column. The algorithm then concentrates most of the residual variance in the 
second column, with the constraint that the second column is uncorrelated with 
the first one, thereby distributing the decreasing residual variance to each col-
umn in succession. By concentrating the variance in specific columns, the origi-
nal features that were correlated are summed into the same columns of the new 
U matrix, thus cancelling any previous redundancy present. As a result, the new 
columns in U don’t have any correlation between themselves, and SVD distributes 
all the original information in unique, nonredundant features. Moreover, given 
that correlations may indicate causality (but correlation isn’t causation; it can 
simply hint at it — a necessary but not sufficient condition), cumulating the same 
variance creates a rough estimate of the variance’s root cause.

V is the same as the U matrix, except that its shape is p*k and it expresses the 
original features with new cases as a combination of the original examples. This 
means that you’ll find new examples composed of customers with the same buying 
habits. For instance, SVD compresses people buying certain products into a single 
case that you can interpret as a homogeneous group or as an archetypal customer.

In such reconstruction, D, a diagonal matrix (only the diagonal has values) con-
tains information about the amount of variance computed and stored in each new 
feature in the U and V matrices. By cumulating the values along the matrix and 
making a ratio with the sum of all the diagonal values, you can see that the vari-
ance is concentrated on the first leftmost features, while the rightmost are almost 
zero or an insignificant value. Therefore, an original matrix with 100 features can 
be decomposed and have an S matrix whose first 10 newly reconstructed features 
represent more than 90 percent of the original variance.

SVD has many optimizing variants with slightly different objectives. The core 
functions of these algorithms are similar to SVD. Principal component analysis 
(PCA) focuses on common variance. It’s the most popular algorithm and is used in 
machine learning preprocessing applications.

A great SVD property is that the technique can create new meaningful and useful 
features, not just compressed variables, as a by-product of compression in certain 
situations. In this sense, you can consider SVD a feature-creation technique.
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Understanding the SVD connection
If your data contains hints and clues about a hidden cause or motif, an SVD can 
put them together and offer you proper answers and insights. That is especially 
true when your data consists of interesting pieces of information like the ones in 
the following list:

 » Text in documents hints at ideas and meaningful categories: Just as you 
can make up your mind about discussion topics by reading blogs and 
newsgroups, so can SVD help you deduce a meaningful classification of 
groups of documents or the specific topics being written about in 
each of them.

 » Reviews of specific movies or books hint at your personal preferences 
and larger product categories: If you say on a rating site that you loved the 
original Star Trek series collection, the algorithm can easily determine what 
you like in terms of other films, consumer products, or even personality types.

An example of a method based on SVD is latent semantic indexing (LSI), which 
has been successfully used to associate documents and words based on the idea 
that words, though different, tend to have the same meaning when placed in  
similar contexts. This type of analysis suggests not only synonymous words but 
also higher grouping concepts. For example, an LSI analysis on some sample 
sports news may group baseball teams of the major league based solely on the  
co-occurrence of team names in similar articles, without any previous knowledge 
of what a baseball team or the major league are.

Other interesting applications for data reduction are systems for generating 
recommendations about the things you may like to buy or know more about.  
You likely have quite a few occasions to see recommenders in action. On most 
e-commerce websites, after logging in, visiting some product pages, and rating or 
putting a product into your electronic basket, you see other buying opportunities 
based on other customers’ previous experiences. (As mentioned previously, this 
method is called collaborative filtering.) SVD can implement collaborative filtering 
in a more robust way, relying not just on information from single products but 
also on the wider information about a product in a set. For example, collaborative 
filtering can determine not only that you liked the film Raiders of the Lost Arc but 
also that you generally like all action and adventure movies.

You can implement collaborative recommendations based on simple means or 
frequencies calculated on other customers’ sets of purchased items or on ratings 
using SVD. This approach helps you reliably generate recommendations even in 
the case of products that the vendor seldom sells or that are quite new to users.
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Performing Complex 
Classifications

Deep neural network solutions have been highly successful in the image-
recognition field. The great part of this technology’s success, especially 
in AI applications, comes from three key characteristics: the availabil-

ity of suitable data to train and test image networks; the application of deep  
neural networks to different problems thanks to transfer learning; and increas-
ing sophistication of the technology, which allows it to answer complex questions 
about image content.

In this chapter, you delve into the topic of object classification and detection 
challenges to discover their contribution to the foundation of the present deep 
learning renaissance. Competitions, such as those based on the ImageNet dataset, 
provide the right data to train reusable networks for different purposes (thanks to 
transfer learning, as discussed in Book 4, Chapter 3). Competitions serve another 
purpose as well, which is to push researchers to find new and smarter solutions 
for increasing the a neural network’s capability to understand images.

The chapter closes with an example of how to use an image dataset. Using the 
dataset, you build your own CNN for recognizing traffic signs using image aug-
mentation and weighting for balancing the frequency of different classes in the 
examples.

Chapter 2

IN THIS CHAPTER

 » Discovering publicly available image 
datasets

 » Augmenting images in various ways

 » Delving into traffic sign recognition
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You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears 
in the DSPD_0502_Classification.ipynb source code file for Python and the 
DSPD_R_0502_Classification.ipynb source code file for R. See the Introduction 
for details on how to find these source files.

Using Image Classification Challenges
The CNN layers for image recognition were first conceived by Yann LeCun and a team 
of researchers. AT&T actually implemented LeNet5 (the neural network for hand-
written numbers described in Book 4, Chapter 3) into ATM check readers. However, 
the invention didn’t prevent another AI winter, starting in the 1990s, with many 
researchers and investors losing faith again that computers could achieve any prog-
ress toward having a meaningful conversation with humans, translating from differ-
ent languages, understanding images, and reasoning in the manner of human beings.

Actually, expert systems had already undermined public confidence. Expert sys-
tems are a set of automatic rules set by humans to allow computers to perform 
certain operations. Nevertheless, the new AI winter prevented neural networks 
from being developed in favor of different kinds of machine learning algorithms. 
At the time, computers lacked computational power and had certain limits, such 
as the vanishing gradient problem. (Book 4, Chapter 2 discusses the vanishing 
gradient and other limitations that prevented deep neural architectures.) The data 
also lacked complexity at the time, and consequently a complex and revolutionary 
CNN like LeNet5, which already worked with the technology and limitations of the 
time, had little opportunity to show its true power.

Only a handful of researchers, such as Geoffrey Hinton, Yann LeCun, Jürgen 
Schmidhuber, and Yoshua Bengio, kept developing neural network technologies 
striving to get a breakthrough that would have ended the AI winter. Meanwhile, 
2006 saw an effort by Fei-Fei Li, a computer science professor at the University 
of Illinois Urbana-Champaign (now an associate professor at Stanford, as well 
as the director of the Stanford Artificial Intelligence Lab and the Stanford Vision 
Lab) to provide more real-world datasets to better test algorithms. She started 
amassing an incredible number of images, representing a large number of object 
classes. You can read about this effort in the “Unveiling successful architectures” 
section of Book 4, Chapter 3. The proposed classes range through different types 
of objects, both natural (for instance, 120 dog breeds) and human made (such as 
means of transportation). You can explore them all at http://image-net.org/
challenges/LSVRC/2014/browse-synsets. By using this huge image dataset for 
training, researchers noticed that their algorithms started working better (noth-
ing like ImageNet existed at that time) and then they started testing new ideas 
and improving neural network architectures.

http://image-net.org/challenges/LSVRC/2014/browse-synsets
http://image-net.org/challenges/LSVRC/2014/browse-synsets
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Delving into ImageNet and Coco
The impact and importance of the ImageNet competition (also known as Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC; http://image-net.org/ 
challenges/LSVRC/) on the development of deep learning solutions for image 
recognition can be summarized in three key points:

 » Helping establish a deep neural network renaissance: The AlexNet CNN 
architecture (developed by Alex Krizhevsky, Ilya Sutskever, and Geoffrey 
Hinton) won the 2012 ILSVRC challenge by a large margin over other solutions.

 » Pushing various teams of researchers to develop more sophisticated 
solutions: ILSVRC advanced the performance of CNNs. VGG16, VGG19, 
ResNet50, Inception V3, Xception, and NASNet are all neural networks tested 
on ImageNet images that you can find in the Keras package (https://keras.
io/applications/). Each architecture represents an improvement over the 
previous architectures and introduces key deep learning innovations.

 » Making transfer learning possible: The ImageNet competition helped make 
available the set of weights that made them work. The 1.2 million ImageNet 
training images, distributed over 1,000 separate classes, helped create 
convolutional networks whose upper layers can actually generalize to 
problems other than ImageNet.

Recently, a few researchers started suspecting that the more recent neural archi-
tectures are overfitting the ImageNet dataset. After all, the same test set has been 
used for many years to select the best networks, as researchers Benjamin Recht, 
Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar speculate at https://
arxiv.org/pdf/1806.00451.pdf.

OBTAINING A HUMAN PERSPECTIVE IN 
IMAGE CLASSIFICATION
Convolutional Neural Networks (CNNs) have seen considerable use in image recogni-
tion, and you can find CNNs discussed in Book 4, Chapter 3. However, it’s possible to 
extend CNNs using other technologies, such as those described in this chapter. Local 
response normalization and inception modules are technological solutions that are too 
complex to discuss in this book, but you should be aware that they’re revolutionary.  
All were introduced by neural networks that won the ImageNet competition: AlexNet  
(in 2012); GoogleLeNet (in 2014); and ResNet (in 2015). You can read more about this 
technology at https://towardsdatascience.com/difference-between-local- 
response-normalization-and-batch-normalization-272308c034ac and 
https://prateekvjoshi.com/2016/04/05/what-is-local-response- 
normalization-in-convolutional-neural-networks/.

http://image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/
https://keras.io/applications/
https://keras.io/applications/
https://arxiv.org/pdf/1806.00451.pdf
https://arxiv.org/pdf/1806.00451.pdf
https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac
https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac
https://prateekvjoshi.com/2016/04/05/what-is-local-response-normalization-in-convolutional-neural-networks/
https://prateekvjoshi.com/2016/04/05/what-is-local-response-normalization-in-convolutional-neural-networks/
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Other researchers from the Google Brain team (Simon Kornblith, Jonathon Shlens, 
and Quoc V. Le) have discovered a correlation between the accuracy obtained on 
ImageNet and the performance obtained by transfer learning of the same network 
on other datasets. They published their findings in the paper “Do Better ImageNet 
Models Transfer Better?” (https://arxiv.org/pdf/1805.08974.pdf). Interest-
ingly, they also pointed out that if a network is overtuned on ImageNet, it could 
experience problems generalizing. It is therefore a good practice to test transfer 
learning based on the most recent and best performing network found on Ima-
geNet, but not to stop there. You may find that some less performing networks are 
actually better for your problem.

Other objections about using ImageNet is that common pictures in everyday 
scenes contain more objects and that these objects may not be clearly visible when 
partially obstructed by other objects or because they mix with the background. If 
you want to use an ImageNet pretrained network in an everyday context, such as 
when creating an application or a robot, the performance may disappoint you. 
Consequently, since the ImageNet competition stopped (organizers claimed that 
improving performance by continuing to work on the dataset wouldn’t be possi-
ble), researchers have increasingly focused on using alternative public datasets to 
challenge one’s own CNNs and improve the state of the art in image recognition. 
Here are the alternatives so far:

 » PASCAL VOC (Visual Object Classes) http://host.robots.ox.ac.uk/
pascal/VOC/: Developed by the University of Oxford, this dataset sets a 
neural network training standard for labeling multiple objects in the same 
picture, the PASCAL VOC xml standard. The competition associated with this 
dataset was halted in 2012.

 » SUN https://groups.csail.mit.edu/vision/SUN/: Created by the 
Massachusetts Institute of technology (MIT), this dataset provides benchmarks 
to help you determine your CNN performance. No competition is associated 
with it.

 » MS COCO http://cocodataset.org/: Prepared by Microsoft Corporation, 
this dataset offers a series of active competitions.

In particular, the Microsoft Common Objects in the Context dataset (hence the 
name MS COCO) offers fewer training images for your model than you find in 
ImageNet, but each image contains multiple objects. In addition, all objects 
appear in realistic positions (not staged) and settings (often in the open air and in 
public settings such as roads and streets). To distinguish the objects, the dataset 
provides both contours in pixel coordinates and labeling in the PASCAL VOC XML 
standard, having each object defined not just by a class but also by its coordinates 
in the images (a picture rectangle that shows where to find it). This rectangle is 
called a bounding box, defined in a simple way using four pixels, in contrast to the 
many pixels necessary for defining an object by its contours.

https://arxiv.org/pdf/1805.08974.pdf
http://host.robots.ox.ac.uk/pascal/VOC/
http://host.robots.ox.ac.uk/pascal/VOC/
https://groups.csail.mit.edu/vision/SUN/
http://cocodataset.org/
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The ImageNet dataset has recently started offering, in at least one million images, 
multiple objects to detect as well as their bounding boxes.

Learning the magic of data augmentation
Even if you have access to large amounts of data for your deep learning model, 
such as the ImageNet and MS COCO datasets, that may be not enough because of 
the multitude of parameters found in most complex neural architectures. In fact, 
even if you use techniques such as dropout (as explained in the “Adding regu-
larization by dropout” section of Book 4, Chapter 2), overfitting is still possible. 
Overfitting occurs when the network memorizes the input data and learns no gen-
erally useful data patterns. Apart from dropout, other techniques that could help 
a network fight overfitting are LASSO, Ridge, and ElasticNet. However, nothing is 
as effective for enhancing your neural network’s predictive capabilities as adding 
more examples to your training schedule.

Originally, LASSO, Ridge, and ElasticNet were ways to constrain the weights of a 
linear regression model, which is a statistical algorithm for computing regres-
sion estimates. In a neural network, they work in a similar way by forcing the 
total sum of the weights in a network to be the lowest possible without harming 
the correctness of predictions. LASSO strives to put many weights down to zero, 
thus achieving a selection of the best weights. By contrast, Ridge instead tends to 
dampen all the weights, avoiding higher weights that can generate overfitting. 
Finally, ElasticNet is a mix of the LASSO and Ridge approaches, amounting to a 
trade-off between the selection and dampening strategies.

Image augmentation provides a solution to the problem of a lack of examples to 
feed a neural network to artificially create new images from existing ones. Image 
augmentation consists of different image-processing operations that are carried 
out separately or conjointly to produce an image different from the initial one. The 
result helps the neural network learn its recognition task better.

For instance, if you have training images that are too bright or too blurry, image 
processing modifies the existing images into darker and sharper versions. These 
new versions exemplify the characteristics that the neural network must focus 
on, rather than provide examples that focus on image quality. In addition, turn-
ing, cutting, or bending the image, as shown in Figure 2-1, could help because, 
again, they force the network to learn useful image features, no matter how the 
object appears.
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The most common image augmentation procedures, as shown in Figure 2-1, are

 » Flip: Flipping your image on its axis tests the algorithm’s capability to find it 
regardless of perspective. The overall sense of your image should hold even 
when flipped. Some algorithms can’t find objects when upside down or even 
mirrored, especially if the original contains words or other specific signs.

 » Rotation: Rotating your image allows algorithm testing at certain angles, 
simulating different perspectives or imprecisely calibrated visuals.

 » Random crop: Cropping your image forces the algorithm to focus on an 
image component. Cutting an area and expanding it to the same size of a 
standard image enables you to test for recognition of partially hidden image 
features.

 » Color shift: Changing the nuances of image colors generalizes your example 
because the colors can change or be recorded differently in the real world.

 » Noise addition: Adding random noise tests the algorithm’s capability to 
detect an object even when object quality is less than perfect.

 » Information loss: Randomly removing parts of an image simulates visual 
obstruction. It also helps the neural network rely on general image features, 
not on particulars (which could be randomly eliminated).

 » Contrast change: Changing the luminosity makes the neural network less 
sensitive to the light conditions (for instance, to daylight or artificial light).

FIGURE 2-1:  
Some  

common image 
augmentations.
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You don’t need to specialize in image processing to leverage this powerful image-
augmentation technique. Keras offers a way to easily incorporate augmentation 
into any training using the ImageDataGenerator function (https://faroit.
github.io/keras-docs/1.2.2/preprocessing/image/).

The ImageDataGenerator’s main purpose is to generate batches of inputs to feed 
your neural network. This means that you can get your data as chunks from a 
NumPy array using the .flow method. In addition, you don’t need to have all the 
training data in memory because the .flow_from_directory method can get it 
for you directly from disk. As ImageDataGenerator pulls the batches of images, it 
can transform them using rescaling (images are made of integers, ranging from 
0 to 255, but neural networks work best with floats ranging from zero to one) or 
by applying some transformations, such as

 » Standardization: Getting all your data on the same scale by setting the mean 
to zero and the standard deviation to one (as the statistical standardization), 
based on the mean and standard deviation of the entire dataset ( feature-wise) 
or separately for each image (sample-wise).

 » ZCA whitening: Removing any redundant information from the image while 
maintaining the original image resemblance.

 » Random rotation, random shifts, and random flips: Orienting, shifting, and 
flipping the image so that objects appear in a different pose than the original.

 » Reordering dimensions: Matching the dimensions of data between images. 
For instance, converting BGR images (a color image format previously popular 
among camera manufacturers) into standard RGB.

When you use ImageDataGenerator to process batches of images, you’re not 
bound by the size of computer memory on your system, but rather by your storage 
size (for instance, the size of your hard disk) and its speed of transfer. You could 
even get the data you need on the fly from the Internet, if your connection is fast 
enough.

You can get even more powerful image augmentations using a package such as 
the albumentations package (https://github.com/albu/albumentations). 
Alexander Buslaev, Alex Parinov, Vladimir I. Iglovikov, and Evegene Khvedchenya 
created it based on their experience with many image-detection challenges.  
The package offers an incredible array of possible image processing tools based on 
the task to accomplish and the kind of neural network you use.

https://faroit.github.io/keras-docs/1.2.2/preprocessing/image/
https://faroit.github.io/keras-docs/1.2.2/preprocessing/image/
https://github.com/albu/albumentations
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Distinguishing Traffic Signs
After discussing the theoretical grounds and characteristics of CNNs, you can try 
building one. TensorFlow and Keras can construct an image classifier for a spe-
cific delimited problem. Specific problems don’t imply learning a large variety of 
image features to accomplish the task successfully. Therefore, you can easily solve 
them using simple architectures, such as LeNet5 (the CNN that revolutionized 
neural image recognition, discussed in Book 4, Chapter  3) or something simi-
lar. This example performs an interesting, realistic task using the German Traffic 
Sign Recognition Benchmark (GTSRB) found at this Institute für NeuroInformatik 
at Ruhr-Universität Bochum page: http://benchmark.ini.rub.de/?section= 
gtsrb&subsection=about.

Reading traffic signs is a challenging task because of differences in visual appear-
ance in real-world settings. The GTSRB provides a benchmark to evaluate dif-
ferent machine learning algorithms applied to the task. You can read about the 
construction of this database in the paper by J.  Stallkamp and others called 
“Man vs. computer: Benchmarking machine learning algorithms for traffic sign  
recognition” at  https://www.ini.rub.de/upload/file/1470692859_c57fac98ca 
9d02ac701c/stallkampetal_gtsrb_nn_si2012.pdf.

The GTSRB dataset offers more than 50,000 images arranged in 42 classes (traf-
fic signs), which allows you to create a multiclass classification problem. In a 
multiclass classification problem, you state the probability of the image’s being 
part of a class and take the highest probability as the correct answer. For instance, 
an “Attention: Construction Site” sign will cause the classification algorithm to 
generate high probabilities for all attention signs. (The highest probability should 
match its class.) Blurriness, image resolution, different lighting, and perspective 
conditions make the task challenging for a computer (as well as sometimes for a 
human), as you can see from some of the examples extracted from the dataset in 
Figure 2-2.

FIGURE 2-2:  
Some examples 

from the German 
Traffic Sign 

Recognition 
Benchmark.

http://benchmark.ini.rub.de/?section=gtsrb&subsection=about
http://benchmark.ini.rub.de/?section=gtsrb&subsection=about
https://www.ini.rub.de/upload/file/1470692859_c57fac98ca9d02ac701c/stallkampetal_gtsrb_nn_si2012.pdf
https://www.ini.rub.de/upload/file/1470692859_c57fac98ca9d02ac701c/stallkampetal_gtsrb_nn_si2012.pdf
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Preparing the image data
The example begins by configuring the model, setting the optimizer, preprocess-
ing the images, and creating the convolutions, the pooling, and the dense layers, 
as shown in the following code. (See Book 1, Chapter 5 for how to work with Ten-
sorFlow and Keras.)

import numpy as np
import zipfile
import pprint
 
from skimage.transform import resize
from skimage.io import imread
 
import matplotlib.pyplot as plt
%matplotlib inline
 
import warnings
warnings.filterwarnings("ignore")

Here are the Keras-specific imports needed for this example:

from keras.models import Sequential
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import to_categorical
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import (Flatten, Dense, Dropout)

The dataset comprises more than 50,000 images, and the associated neural net-
work can achieve a near-human level of accuracy in recognizing traffic signs. 
Such an application will require a large amount of computer calculations, and 
running this code locally could take a long time on your computer, depending on 
the kind of computer you have. Likewise, Colab can take longer depending on the 
resources that Google makes available to you, including whether you actually have 
access to a GPU, as mentioned in Book 1, Chapter 3. Timing this initial application 
on your setup will help you know whether your local machine or Colab is the fast-
est environment in which to run larger datasets. However, the best environment 
is the one that produces the most consistent and reliable results. You may not 
have a solid Internet connection to use, making Colab a poorer choice.

At this point, the example retrieves the GTSRB dataset from its location on the 
Internet (the INI Benchmark website, at the Ruhr-Universität Bochum specified 
previously). The following code snippet downloads it to the same directory as the 
Python code. Note that the download process can take a little time to complete, so 
now might be a good time to refill your teacup.
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import urllib.request
import os.path
if not os.path.exists("GTSRB_Final_Training_Images.zip"):
    url = "https://sid.erda.dk/public/archives/\
    daaeac0d7ce1152aea9b61d9f1e19370/\
    GTSRB_Final_Training_Images.zip"
    filename = "./GTSRB_Final_Training_Images.zip"
    urllib.request.urlretrieve(url, filename)

After retrieving the dataset as a .zip file from the Internet, the code sets an image 
size. (All images are resized to square images, so the size represents the sides in 
pixels.) The code also sets the portion of data to keep for testing purposes, which 
means excluding certain images from training to have a more reliable measure of 
how the neural network works.

IMG_SIZE = 32
TEST_SIZE = 0.2

A loop through the files stored in the downloaded .zip file retrieves individual 
images, resizes them, stores the class labels, and appends the images to two sep-
arate lists: one for the training and one for testing purposes. The sorting uses a 
hash function, which translates the image name into a number and, based on that 
number, decides where to append the image:

X, Xt, y, yt = list(), list(), list(), list()
 
archive = zipfile.ZipFile(
          'GTSRB_Final_Training_Images.zip', 'r')
file_paths = [file for file in archive.namelist()
              if '.ppm' in file]
 
for filename in file_paths:
    img = imread(archive.open(filename))
    img = resize(img,
                 output_shape=(IMG_SIZE, IMG_SIZE),
                 mode='reflect')
    img_class = int(filename.split('/')[-2])
 
    if (hash(filename) % 1000) / 1000 > TEST_SIZE:
        X.append(img)
        y.append(img_class)
    else:
        Xt.append(img)
        yt.append(img_class)
archive.close()
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After the job is completed, the code reports the consistency of the train and test 
examples:

test_ratio = len(Xt) / len(file_paths)
print("Train size:{} test size:{} ({:0.3f})".format(
    len(X),
    len(Xt),
    test_ratio))

The train size is more than 30,000 images, and the test almost is 8,000 (20 per-
cent of the total):

Train size:31344 test size:7865 (0.201)

Your results may vary a little from those shown. For example, another run of the 
example produced a train size of 31,415 and a test size of 7,794. Neural networks 
can learn multiclass problems better when the classes are numerically similar 
or they tend to concentrate their attention on learning just the more populated 
classes. The following code checks the distribution of classes:

classes, dist = np.unique(y+yt, return_counts=True)
NUM_CLASSES = len(classes)
print ("No classes:{}".format(NUM_CLASSES))
 
plt.bar(classes, dist, align='center', alpha=0.5)
plt.show()

Figure 2-3 shows that the classes aren’t balanced. Some traffic signs appear more 
frequently than others do (for instance, while driving, stop signs are encountered 
more frequently than a deer crossing sign).

FIGURE 2-3:  
Distribution of 

classes.
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As a solution, the code computes a weight, which is a ratio based on frequencies of 
classes that the neural network uses to increase the signal it receives from rarer 
examples and to dump the more frequent ones:

class_weight = {c:dist[c]/np.sum(dist) for c in classes}

Running a classification task
After setting the weights, the code defines the image generator, the part of the 
code that retrieves the images in batches (samples of a predefined size) for train-
ing and validation, normalizes their values, and applies augmentation to fight 
overfitting by slightly shifting and rotating them. Notice that the following code 
applies augmentation only on the training image generator, not the validation 
generator, because it’s necessary to test the original images only.

batch_size = 256
tgen=ImageDataGenerator(rescale=1./255,
                        rotation_range=5,
                        width_shift_range=0.10,
                        height_shift_range=0.10)
 
train_gen = tgen.flow(np.array(X),
                      to_categorical(y),
                      batch_size=batch_size)

Here is the code for the validation generator:

vgen=ImageDataGenerator(rescale=1./255)
 
val_gen = vgen.flow(np.array(Xt),
                    to_categorical(yt),
                    batch_size=batch_size)

The code finally builds the neural network:

def small_cnn():
    model = Sequential()
    model.add(Conv2D(32, (5, 5), padding='same',
                     input_shape=(IMG_SIZE, IMG_SIZE, 3),
                     activation='relu'))
    model.add(Conv2D(64, (5, 5), activation='relu'))
    model.add(Flatten())
    model.add(Dense(768, activation='relu'))
    model.add(Dropout(0.4))
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    model.add(Dense(NUM_CLASSES, activation='softmax'))
    return model
 
 
model = small_cnn()
model.compile(loss='categorical_crossentropy',
              optimizer=Adam(),
              metrics=['accuracy'])

The neural network consists of two convolutions, one with 32 channels, the other 
with 64, both working with a kernel of size (5,5). The convolutions are followed 
by a dense layer of 768 nodes. Dropout (dropping 40 percent of the nodes) regu-
larizes this last layer, and softmax activates it (thus the sum of the output prob-
abilities of all classes will sum to 100 percent).

On the optimization side, the loss to minimize is the categorical cross-entropy. 
The code measures success on accuracy, which is the percentage of correct answers 
provided by the algorithm. (The traffic sign class with the highest predicted prob-
ability is the answer.)

history = model.fit_generator(
    train_gen,
    steps_per_epoch=len(X) // batch_size,
    validation_data=val_gen,
    validation_steps=len(Xt) // batch_size,
    class_weight=class_weight,
    epochs=100,
    verbose=2)

Using the fit_generator on the model, the batches of images start being ran-
domly extracted, normalized, and augmented for the training phase. After pulling 
out all the training images, the code sees an epoch (a training iteration using a full 
pass on the dataset) and computes a validation score on the validation images. 
After reading 100 epochs, the training and the model are completed.

If you don’t use any augmentation, you can train your model in just about 30 
epochs and reach a performance of your model that is almost comparable to a 
driver’s skill in recognizing the different kinds of traffic signs (which is about 
98.8 percent accuracy). The more aggressive the augmentation you use, the more 
epochs necessary for the model to reach its top potential, although accuracy per-
formances will be higher, too. Here is the code that outputs the validation accuracy:

print("Best validation accuracy: {:0.3f}"
       .format(np.max(history.history['val_acc'])))
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At this point, the code plots a graph depicting how the training and validation 
accuracy behaved during training:

plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.ylabel('accuracy'); plt.xlabel('epochs')
plt.legend(['train', 'test'], loc='lower right')
plt.show()

CONSIDERING THE COST OF 
REALISTIC OUTPUT
As mentioned a few times in this book already, deep learning training can take a consid-
erable amount of time to complete. Whenever you see a fit function in the code, such as 
model.fit_generator, you’re likely asking the system to perform training. The exam-
ple code will always strive to provide you with realistic output — that is, what a scientist 
in the real world would consider acceptable.

Unfortunately, realistic output may cost you too much in the way of time. Not every-
one has access to the latest high-technology system, and not everyone will get a GPU 
on Colab. The example in this chapter consumes a great deal of time to train in some 
cases. For example, testing the code on Colab took a little over 16 hours to complete 
when Colab didn’t provide a GPU. The same example might run in as little as an hour 
if Colab does provide a GPU. (Book 1, Chapter 3 tells you more about the GPU issue.) 
Likewise, using a CPU-only system, a 16-core Xeon system required 4 hours and  
23 minutes to complete training, but an Intel i7 processor with 8 cores took a little  
over 9 hours to do the same thing.

One way around this issue is to change the number of epochs used to train your model. 
The epochs=100 setting used for the example in this chapter provides an output accu-
racy of a little over 99 percent. However, if time is a factor, you may want to use a lower 
epochs setting when running this example to reduce the time you wait for the example 
to complete.

Another alternative for avoiding the problem is using GPU support on your local 
machine. However, to use this alternative, you must have a display adapter with the right 
kind of chip. Because the setup is complex and you’re not likely to have the right GPU, 
this book takes the CPU-only route. However, you can certainly install the correct sup-
port by using Book 1, Chapter 3 as a starting point and then adding CUDA support. The 
article at https://towardsdatascience.com/tensorflow-gpu-installation- 
made-easy-use-conda-instead-of-pip-52e5249374bc provides additional details.

https://towardsdatascience.com/tensorflow-gpu-installation-made-easy-use-conda-instead-of-pip-52e5249374bc
https://towardsdatascience.com/tensorflow-gpu-installation-made-easy-use-conda-instead-of-pip-52e5249374bc
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The code will report to you the best validation accuracy recorded and plot the 
accuracy curves achieved on training and validation data during the increasing 
epochs of learning, as shown in Figure 2-4. Notice how the training and valida-
tion accuracies are nearly similar at the end of training, although the validation 
is always better than the training. That’s easily explained because the validation 
images are actually “easier” to guess than the training images because no aug-
mentation is applied to them.

Given that the code can initialize the neural network in different ways, you may 
see different best results at the end of the training optimization. However, by 
the end of the 100 epochs set in the code, the validation accuracy should exceed  
99 percent. (Sample runs achieved up to 99.5 percent on Colab.)

A difference exists between the performance you obtain on the train data (which 
is often less) and on your validation subset, because train data is more complex 
and variable than validation data, given the image augmentations that the code 
sets up.

You should consider this result to be quite an excellent one based on the  
state-of-the-art benchmarks that you can read about in the paper called “HALOI, 
Mrinal. Traffic sign classification using deep inception-based convolutional net-
works” (https://arxiv.org/pdf/1511.02992.pdf). The paper hints at what can 
be easily achieved in terms of image recognition on limited problems using clean 
data and readily available tools such as TensorFlow and Keras.

FIGURE 2-4:  
Training and 

validation errors 
compared.

https://arxiv.org/pdf/1511.02992.pdf
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Identifying Objects

Deep learning solutions for image recognition have become so impressive 
in their human-level performance that you see them used in developing 
or already marketed applications, such as self-driving cars and video-

surveillance appliances. The video-surveillance appliances already perform tasks, 
such as automatic satellite image monitoring, facial detection, and people local-
ization and counting. Yet you can’t imagine a complex application when your 
network labels an image with only a single prediction. Even a simple dog or cat 
detector may not prove useful when the photos you analyze contain multiple dogs 
and cats. The real world is messy and complex. You can’t expect, except in lim-
ited and controlled cases, laboratory-style images that consist of single, clearly 
depicted objects.

The need to handle complex images paved the way for variants of Convolu-
tional Neural Networks (CNNs). Such variants offer sophistication that’s still 
being developed and refined, such as multiple-object detection and localization.  
Multiple-object detection can deal with many different objects at a time. Local-
ization can tell you where they are in the picture, and segmentation can find 
their exact contours. These new capabilities require complex neural architectures 
and image processing more advanced than the basic CNNs discussed in previous 
chapters. This chapter illustrates the fundamentals of how these solutions work, 
names key approaches and architectures, and, finally, tests one of the best per-
forming object detection implementations.

Chapter 3

IN THIS CHAPTER

 » Understanding classification

 » Considering classification types

 » Performing classification tasks

 » Tricking image recognition software
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The chapter closes by unveiling an expected weakness in an otherwise unbelieva-
ble technology. Someone could maliciously trick CNNs to report misleading detec-
tions or ignore seen objects using appropriate image-manipulation techniques. 
This puzzling discovery opens a new research front that shows that deep learning 
performance must also consider security for private and public use.

You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears  
in the DSPD_0503_Object_ID.ipynb source code file for Python and DSPD_R_0503_ 
Object_ID.ipynb source code file for R. See the Introduction for details on how 
to find these source files.

Distinguishing Classification Tasks
CNNs are the building blocks of deep learning–based image recognition, yet they 
answer only a basic classification need: Given a picture, can the CNN associate its 
content with a specific image class learned through previous examples? The fol-
lowing sections discuss the issues concerning this seemingly simple task. Humans 
can perform it with ease, but computers find the task difficult at best.

Understanding the problem
When you train a deep neural network to recognize dogs and cats, you can feed it 
a photo and obtain output that tells you whether the photo contains a dog or cat. 
If the last network layer is a softmax layer, the network outputs the probability 
of the photo containing a dog or a cat (the two classes you trained it to recognize) 
and the output sums to 100 percent. When the last layer is a sigmoid-activated 
layer, you obtain scores that you can interpret as probabilities of content belong-
ing to each class, independently. The scores won’t necessarily sum to 100 percent. 
In both cases, the classification may fail when the following occurs:

 » The main object isn’t what you trained the network to recognize. You 
may present the example neural network with a photo of a raccoon. In this 
case, the network will output an incorrect answer of dog or cat.

 » The main object is partially obstructed. Your cat is playing hide and seek in 
the photo you show the network, and the network can’t spot the cat because 
a piece of furniture partially hides it.

 » The photo contains many different objects to detect. The image may 
include animals other than cats and dogs. In this case, the output from the 
network will suggest a single class rather than include all the objects.
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Figure 3-1 shows image 47780 (http://cocodataset.org/#explore?id=47780) 
taken from the MS Coco dataset (released as part of the open source Creative 
Commons Attribution 4.0 License). The series of three outputs shows how a CNN 
detects, localizes, and segments the objects appearing in the image (a kitten and 
a dog standing on a field of grass). A plain CNN can’t reproduce the examples in 
Figure 3-1 because its architecture will treat the entire image as being of a certain 
class. To overcome this limitation, researchers extend the basic CNN’s capabilities 
to make them capable of the following:

 » Detection: Determining when an object is present in an image. Detection is 
different from classification because it involves just a portion of the image, 
implying that the network can detect multiple objects of the same and of 
different types. The capability to spot objects in partial images is called 
instance spotting.

 » Localization: Defining exactly where a detected object appears in an image. 
You can have different types of localizations. Depending on granularity, they 
distinguish the part of the image that contains the detected object.

 » Segmentation: Classification of objects at the pixel level. Segmentation takes 
localization to the extreme. This kind of neural model assigns each pixel of the 
image to a class or even an entity. For instance, the network marks all the 
pixels in a picture relative to dogs and distinguishes each one using a different 
label (called instance segmentation).

Performing localization
Localization is perhaps the easiest extension that you can get from a regular 
CNN. It requires that you train a regressor model alongside your deep learning 
classification model. A regressor is a model that guesses numbers. Defining object 
location in an image is possible using corner pixel coordinates, which means 
that you can train a neural network to output key measures that make it easy to 

FIGURE 3-1:  
Detection, 

localization, and 
segmentation 

example from the 
Coco dataset.

http://cocodataset.org/#explore?id=47780


528      BOOK 5  Performing Data-Related Tasks

determine where the classified object appears in the picture using a bounding 
box. Usually a bounding box uses the x and y coordinates of the lower-left corner, 
together with the width and the height of the area that encloses the object.

Classifying multiple objects
The classification of multiple objects begins by classifying those objects individu-
ally. A CNN performs these tasks on each object:

 » Detect: Predict an object’s class.

 » Localize: Provide the object’s coordinates.

You still use a CNN to classify multiple objects in an image, but this means work-
ing with each object present in the picture individually using one of two old 
image-processing solutions:

 » Sliding window: Analyzes only a portion (called a region of interest) of the 
image at a time. When the region of interest is small enough, it likely contains 
only a single object. The small region of interest allows the CNN to correctly 
classify the object. This technique is called sliding window because the 
software uses an image window to limit visibility to a particular area (the way 
a window in a home does) and slowly moves this window around the image. 
The technique is effective but could detect the same image multiple times, or 
you may find that some objects go undetected based on the window size that 
you decide to use to analyze the images.

 » Image pyramids: Solves the problem of using a window of fixed size because 
it generates increasingly smaller resolutions of the image. Therefore, you can 
apply a small sliding window. In this way, you transform the objects in the 
image, and one of the reductions may fit exactly into the sliding window used.

These techniques are computationally intensive. To apply them, you have to resize 
the image multiple times and then split it into chunks. You then process each 
chunk using your classification CNN. The number of operations for these activities 
is so large that rendering the output in real time is impossible.

The sliding window and image pyramid have inspired deep learning researchers 
to discover a couple of conceptually similar approaches that are less computation-
ally intensive. The first approach is one-stage detection. It works by dividing the 
images into grids, and the neural network makes a prediction for every grid cell, 
predicting the class of the object inside. The prediction is quite rough, depending 
on the grid resolution (the higher the resolution, the more complex and slower 
the deep learning network). One-stage detection is very fast, having almost the 
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same speed as a simple CNN for classification. The results have to be processed 
to gather the cells representing the same object together, and that may lead to 
further inaccuracies. Neural architectures based on this approach are Single-Shot 
Detector (SSD), You Only Look Once (YOLO), and RetinaNet. One-stage detectors 
are very fast, but not so precise.

The second approach is two-stage detection. This approach uses a second neural 
network to refine the predictions of the first one. The first stage is the proposal 
network, which outputs its predictions on a grid. The second stage fine-tunes 
these proposals and outputs a final detection and localization of the objects. 
Region Convolutional Neural Network (R-CNN), Fast R-CNN, and Faster R-CNN 
are all two-stage detection models that are much slower than their one-stage 
equivalents, but more precise in their predictions. You can read a more in-
depth version of the technology behind R-CNN, Fast R-CNN, and Faster R-CNN  
at https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo- 
object-detection-algorithms-36d53571365e.

Annotating multiple objects in images
To train deep learning models to detect multiple objects, you need to provide more 
information than in simple classification. For each object, you provide both a clas-
sification and coordinates within the image using the annotation process, which 
contrasts with the labeling used in simple image classification.

Labeling images in a dataset is a daunting task even in simple classification. Given 
a picture, the network must provide a correct classification for the training and 
test phases. In labeling, the network decides on the right label for each picture, 
and not every part of the network will perceive the depicted image in the same 
way. The people who created the ImageNet dataset used the classification pro-
vided by multiple users from the Amazon Mechanical Turk crowdsourcing plat-
form. (ImageNet used the Amazon service so much that in 2012, it turned out to 
be Amazon’s most important academic customer.)

In a similar way, you rely on the work of multiple people when annotating an 
image using bounding boxes. Annotation requires that you not only label each 
object in a picture but also determine the best box with which to enclose each 
object. These two tasks make the annotation even more complex than labeling 
and more prone to producing erroneous results. Performing annotation correctly 
requires the work of more people who can provide a consensus on the accuracy of 
the annotation.

https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
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Some open source software can help in annotation for image detection (as well as 
for image segmentation, discussed in the following section). These tools are par-
ticularly effective:

 » LabelImg (https://github.com/tzutalin/labelImg): Created by TzuTa 
Lin using Python, it relies on the Qt graphical interface (https://doc.qt.io/
qt-5.9/qtgui-index.html). You can find a tutorial for this tool at https://
www.youtube.com/watch?v=p0nR2YsCY_U).

 » LabelMe (https://github.com/wkentaro/labelme): A powerful tool for 
image segmentation that provides an online service. The advantage of this 
tool is that you can use more than just squares to build a box to enclose each 
object, which makes it more time consuming to use but also more accurate.

 » FastAnnotationTool (https://github.com/christopher5106/
FastAnnotationTool): Based on the OpenCV computer vision library 
(https://developer.nvidia.com/opencv). This package isn’t maintained  
as well as the others in the list but is still viable.

Segmenting images
Semantic segmentation predicts a class for each pixel in the image, which is a 
different perspective from either labeling or annotation. Some people also call 
this task dense prediction because it makes a prediction for every pixel in an image. 
The task doesn’t specifically distinguish different objects in the prediction. For 
instance, a semantic segmentation can show all the pixels that are of the class 
cat, but it won’t provide any information about what the cat (or cats) is doing in 
the picture. You can easily get all the objects in a segmented image by postprocess-
ing, because after performing the prediction, you can get the object pixel areas and 
distinguish between different instances of them, if multiple separated areas exist 
under the same class prediction.

Different deep learning architectures can achieve image segmentation. Fully Con-
volutional Networks (FCNs) and U-Nets (https://arxiv.org/abs/1505.04597) 
are among the most effective. FCNs are built for the first part (called the encoder), 
which is the same as CNNs. After the initial series of convolutional layers, FCNs 
end with another series of CNNs that operate in a reverse fashion as the encoder 
(making them a decoder). The decoder is constructed to re-create the original 
input image size and output as pixels the classification of each pixel in the image. 
In such a fashion, the FCN achieves the semantic segmentation of the image. FCNs 
are too computationally intensive for most real-time applications. In addition, 
they require large training sets to learn their tasks well; otherwise, their segmen-
tation results are often coarse.

https://github.com/tzutalin/labelImg
https://doc.qt.io/qt-5.9/qtgui-index.html
https://doc.qt.io/qt-5.9/qtgui-index.html
https://www.youtube.com/watch?v=p0nR2YsCY_U
https://www.youtube.com/watch?v=p0nR2YsCY_U
https://github.com/wkentaro/labelme
https://github.com/christopher5106/FastAnnotationTool
https://github.com/christopher5106/FastAnnotationTool
https://developer.nvidia.com/opencv
https://arxiv.org/abs/1505.04597
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Finding the encoder part of the FCN pretrained on ImageNet, which accelerates 
training and improves learning performance, is common.

U-Nets are an evolution of FCN devised by Olaf Ronneberger, Philipp Fischer, 
and Thomas Brox in 2015 for medical purposes (see https://lmb.informatik.
uni-freiburg.de/people/ronneber/U-Net/). U-Nets present advantages com-
pared to FCNs. The encoding (also called contraction) and the decoding parts (also 
referred to as expansion) are perfectly symmetric. In addition, U-Nets use shortcut 
connections between the encoder and the decoder layers. These shortcuts allow 
the details of objects to pass easily from the encoding to the decoding parts of the 
U-Net, and the resulting segmentation is precise and fine-grained.

Building a segmentation model from scratch can be a daunting task, but you don’t 
need to do that. You can use some pretrained U-Net architectures and imme-
diately start using this kind of neural network by leveraging the segmentation 
model zoo (a term used to describe the collection of pretrained models offered by 
many frameworks; see https://modelzoo.co/ for details) offered by segmenta-
tion models, a package offered by Pavel Yakubovskiy. You can find installation 
instructions, the source code, and plenty of usage examples at https://github.
com/qubvel/segmentation_models. The commands from the package seamlessly 
integrate with Keras.

Perceiving Objects in Their Surroundings
As automation takes a larger role in all aspects of human existence, the need 
for automation to perceive objects becomes greater. Robots need to see obsta-
cles, self-driving cars need to see pedestrians, and even medical systems need to  
see patients. The computer that controls the automation can’t understand what 
an object is or how it functions; instead, it uses camera input in the form of  
digital images to identify objects and then interact with those objects in pre-
defined ways. The following sections discuss how automation uses this form of 
perception (which differs from human perception) through 2-D camera imagery 
to perform tasks.

Considering vision needs in self-driving cars
Integrating vision capabilities into the sensing system of a self-driving car could 
enhance how safely it drives. A segmentation algorithm could help the car distin-
guish lanes from sidewalks, as well as from other obstacles the car should notice. 
The car could even feature a complete end-to-end system, such as NVidia’s, that 
controls steering, acceleration, and braking in a reactive manner based on its 

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://modelzoo.co/
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models
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visual inputs. (You can learn more about the NVidia self-driving car efforts at 
https://www.nvidia.com/en-us/self-driving-cars/.) A visual system could 
spot certain objects on the road relevant to driving, such as traffic signs and traf-
fic lights. It could visually track the trajectories of other cars. In all cases, a deep 
learning network could provide the solution.

No concept of emotion exists for a computer, so a computer performs an analysis 
and then follows rules to perform tasks such as steering. A computer can’t drive 
confidently because confidence is an expression of an emotional state brought on 
by success. A successful computer only performs its tasks with greater precision. 
The lack of emotion also means that computers don’t experience an adrenaline 
rush prior to an accident, making the capability to act faster than normal a real-
ity. A computer can make decisions at the one speed at which analysis allows it to 
make decisions. In short, no matter how well you program a computer to mimic 
human processes, the computer will still perform differently from a human and 
react to environmental issues in different ways.

The “Distinguishing Classification Tasks” section, at the start of this chapter, 
discusses how object detection improves upon single-object classification offered 
by CNNs. This section also clarifies the architectures and current models of the 
two main approaches: one-stage detection (or one-shot detection) and two-stage 
detection (also known as region proposal). This section tells how a one-stage 
detection system works and provides help for an autonomous vehicle. You need to 
consider these issues in light of how computers differ from humans when driving 
a car, but you can apply the principles to any form of automation where a com-
puter takes over a task from a human.

Programming such a detection system from scratch would be a daunting task, 
one requiring an entire book of its own. Fortunately, you can employ open source 
projects on GitHub such as Keras-RetinaNet (https://github.com/fizyr/
keras-retinanet). The next section of the chapter provides additional details on 
how using RetinaNet works.

Isaac Newton stated, “If I have seen further, it is by standing on the shoulders of 
Giants.” Likewise, you can achieve more in deep learning when you make use of 
existing neural architectures and pretrained networks. For instance, you can find 
many models on GitHub (www.github.com) such as the TensorFlow model zoo 
(https://github.com/tensorflow/models).

Discovering how RetinaNet works
The RetinaNet is a sophisticated and interesting object-detection model that 
strives to be as fast as other one-stage detection models while also achieving 
the accuracy of bounding box predictions of two-stage detection systems like 

https://www.nvidia.com/en-us/self-driving-cars/
https://github.com/fizyr/keras-retinanet
https://github.com/fizyr/keras-retinanet
http://www.github.com
https://github.com/tensorflow/models
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Faster R-CNN (the top-performing model). Thanks to its architecture, RetinaNet 
achieves its goals, using techniques similar to the U-Net architecture discussed 
for semantic segmentation. RetinaNet is part of a group of models called Feature 
Pyramid Networks (FPN).

RetinaNet owes its performance to its authors, Tsung-Yi Lin, Priya Goyal, Ross 
Girshick, Kaiming He, and Piotr Dollár, who noted that one-stage detection models 
don’t always detect objects precisely because they are affected by the overwhelm-
ing presence of distracting elements in the images used for training. Their paper, 
“Focal Loss for Dense Object Detection” (https://arxiv.org/pdf/1708.02002.
pdf), provides details of the techniques RetinaNet uses. The problem is that the 
images present few objects of interest to detect. In fact, one-stage detection net-
works are trained to guess the class of each cell in an image divided by a fixed grid, 
where the majority of cells are empty of objects of interest.

In semantic segmentation, the targets of the classification are single pixels. In 
one-stage detection, the targets are sets of contiguous pixels, performing a task 
similar to semantic segmentation but at a different granularity level.

Here’s what happens when you have such a predominance of null examples in 
images and are using a training approach that examines all available cells as 
examples. The network will be more likely to predict that nothing is in a processed 
image cell than to provide a correctly predicted class. Neural networks always take 
the most efficient route to learn, and in this case, predicting the background is 
easier than anything else. In this situation, which goes under the name of unbal-
anced learning, many objects are undetected by the neural network using a single-
shot object detection approach.

In machine learning, when you want to predict two numerically different classes 
(one is the majority class and the other is the minority class), you have an unbal-
anced classification problem. Most algorithms don’t perform properly when the 
classes are unbalanced because they tend to prefer the majority class. A few solu-
tions are available for this problem:

 » Sampling: Selecting some examples and discarding others.

 » Downsample: Reducing the effect of the majority class by choosing to use 
only a part of it, which balances the majority and minority predictions. In 
many cases, this is the easiest approach.

 » Upsample: Increasing the effect of the minority class by replicating its 
examples many times until the minority class has the same number of 
examples as the majority class.

https://arxiv.org/pdf/1708.02002.pdf
https://arxiv.org/pdf/1708.02002.pdf


534      BOOK 5  Performing Data-Related Tasks

The creators of RetinaNet take a different route, as they note in their paper “Focal 
Loss for Dense Object Detection” mentioned earlier in this section. They discount 
the majority class examples that are easier to classify and concentrate on the cells 
that are difficult to classify. The result is that the network cost function focuses 
more on adapting its weights to recognize background objects. This is the focal loss 
solution and represents a smart way to make one-stage detection perform more 
correctly, yet speedily, which is a real-time application requirement, such as for 
obstacle or object detection in self-driving cars, or processing large quantities of 
images in video surveillance.

Using the Keras-RetinaNet code
Released under the open source Apache License 2.0, Keras-RetinaNet is a proj-
ect sponsored by the Dutch robotic company Fitz and made possible by many 
contributors (the top contributors are Hans Gaiser and Maarten de Vries). It’s an 
implementation of the RetinaNet neural network written in Python using Keras 
(https://github.com/fizyr/keras-retinanet/). You find Keras-RetinaNet 
used successfully by many projects — the most notable and impressive of which 
is the winning model for the NATO Innovation Challenge, a competition whose 
task was to detect cars in aerial images. (You can read the narrative from the 
winning team in this blog post: https://medium.com/data-from-the-trenches/
object-detection-with-deep-learning-on-aerial-imagery-2465078db8a9.)

Object detection network code is too complex to explain in a few pages, plus 
you can use an existing network to set up deep learning solutions, so this sec-
tion demonstrates how to download and use Keras-RetinaNet on your computer. 
Before you try this process, ensure that you have configured your computer as 
described in Book 1, Chapter 5, and consider the trade-offs involved in using var-
ious execution options described in the “Considering the cost of realistic output” 
sidebar in Book 5, Chapter 2.

Obtaining Keras-RetinaNet
As a first step, you upload the necessary packages and start downloading the zipped 
version of the GitHub repository. This example uses the 0.5.0 version of Keras-
RetinaNet, which was the most recent version available at the time of writing.

import os
import zipfile
import urllib.request
import warnings
warnings.filterwarnings("ignore")
url = "https://github.com/fizyr/\
keras-retinanet/archive/0.5.0.zip"
urllib.request.urlretrieve(url, './'+url.split('/')[-1])

https://github.com/fizyr/keras-retinanet/
https://medium.com/data-from-the-trenches/object-detection-with-deep-learning-on-aerial-imagery-2465078db8a9
https://medium.com/data-from-the-trenches/object-detection-with-deep-learning-on-aerial-imagery-2465078db8a9
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After downloading the zipped code, the example code automatically extracts it 
using these commands:

zip_ref = zipfile.ZipFile('./0.5.0.zip', 'r')
for name in zip_ref.namelist():
  zip_ref.extract(name, './')
zip_ref.close()

The execution creates a new directory called keras-retinanet-0.5.0, which 
contains the code for setting up the neural network. The code then executes the 
compilation and installation of the package using the pip command:

os.chdir('./keras-retinanet-0.5.0')
!python setup.py build_ext --inplace
!pip install .

As the setup process proceeds, you see a long series of messages as output. The 
task can also require a little time to complete. Both the messages and the instal-
lation time are normal. The best thing you can do is get a cup of coffee and wait.

Obtaining pretrained weights
All the commands in the previous section retrieved the code that builds the net-
work architecture. The example now needs the pretrained weights and relies on 
weights trained on the MS Coco dataset using the ResNet50 CNN, the neural net-
work that Microsoft used to win the 2015 ImageNet competition.

os.chdir('../')
url = "https://github.com/fizyr/keras-retinanet/\
releases/download/0.5.0/resnet50_coco_best_v2.1.0.h5"
urllib.request.urlretrieve(url, './'+url.split('/')[-1])

Downloading all the weights takes a while, so now would be a good time to catch 
up on your reading (assuming you don’t need more coffee).

Initializing the RetinaNet model
After you have completed the downloads, the example is ready to import all the 
necessary commands and to initialize the RetinaNet model using the pretrained 
weights retrieved from the Internet. This step also sets a dictionary to convert 
the numeric network results into understandable classes. The selection of classes 
is useful for the detector on a self-driving car or any other solution that has to 
understand images taken from a road or an intersection.
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import os
import numpy as np
from collections import defaultdict
import keras
from keras_retinanet import models
from keras_retinanet.utils.image import (read_image_bgr,
           preprocess_image, resize_image)
from keras_retinanet.utils.visualization import (draw_box,
           draw_caption)
from keras_retinanet.utils.colors import label_color
import matplotlib.pyplot as plt
%matplotlib inline
 
model_path = os.path.join('.',
           'resnet50_coco_best_v2.1.0.h5')
 
model = models.load_model(model_path,
           backbone_name='resnet50')
 
labels_to_names = defaultdict(lambda: 'object',
          {0: 'person', 1: 'bicycle', 2: 'car',
           3: 'motorcycle', 4: 'airplane', 5: 'bus',
           6: 'train', 7: 'truck', 8: 'boat',
           9: 'traffic light', 10: 'fire hydrant',
           11: 'stop sign', 12: 'parking meter',
           25: 'umbrella'})

Downloading the test image
To make the example useful, you need a sample image to test the RetinaNet model. 
The example relies on a free image from Wikimedia representing an intersection 
with people expecting to cross the road, some stopped vehicles, traffic lights, and 
traffic signs.

url = "https://upload.wikimedia.org/wikipedia/commons/\
thumb/f/f8/Woman_with_blue_parasol_at_intersection.png/\
640px-Woman_with_blue_parasol_at_intersection.png"
urllib.request.urlretrieve(url, './'+url.split('/')[-1])

Testing the neural network
Now that the download process and initialization are complete, it’s time to test 
the neural network. In the code snippet that follows this explanation, the code 
reads the image from disk and then switches the blue with red image channels 
(because the image is uploaded in BGR format, but RetinaNet works with RGB 
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images). Finally, the code preprocesses and resizes the image. All these steps 
complete using the provided functions and require no special settings.

The model will output the detected bounding boxes, the level of confidence (a prob-
ability score that the network truly detected something), and a code label that will 
convert into text using the previously defined dictionary of labels. The loop filters 
the boxes printed on the image by the example. The code uses a confidence thresh-
old of 0.5, implying that the example will keep any detection whose confidence is at 
least at 50 percent. Using a lower confidence threshold results in more detections, 
especially of those objects that appear small in the image, but also increases wrong 
detections (for instance, some shadows may start being detected as objects).

Depending on your objectives using RetinaNet, you may decide that using a lower 
confidence threshold is fine. You’ll notice that as you lower the confidence, the pro-
portion of the resulting exact guesses (those with nearly 100 percent confidence) will 
diminish. Such a proportion is called the precision of the detection, and by deciding 
what precision you can tolerate, you can set the best confidence for your purposes.

image = read_image_bgr(
    '640px-Woman_with_blue_parasol_at_intersection.png')
draw = image.copy()
draw[:,:,0], draw[:,:,2] = image[:,:,2], image[:,:,0]
 
image = preprocess_image(image)
image, scale = resize_image(image)
 
boxes, scores, labels = model.predict_on_batch(
    np.expand_dims(image, axis=0))
boxes /= scale
 
for box, score, label in zip(
    boxes[0], scores[0], labels[0]):
 
    if score > 0.5:
      color = label_color(label)
      b = box.astype(int)
      draw_box(draw, b, color=color)
      caption = "{} {:.3f}".format(
          labels_to_names[label], score)
      draw_caption(draw, b, caption.upper())
plt.figure(figsize=(12, 6))
plt.axis('off')
plt.imshow(draw)
plt.show()
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The first time you run the code may take a while, but after some computations, 
you should obtain the output reproduced in Figure 3-2.

The network can successfully detect various objects, some extremely small (such 
as a person in the background), some partially shown (such as the nose of a car 
on the right of the image). Each detected object is delimited by its bounding box, 
which creates a large range of possible applications.

For instance, you could use the network to detect that an umbrella — or some 
object — is being used by a person. When processing the results, you can relate 
the fact that two bounding boxes are overlapping, with one being an umbrella and 
the other one being a person, and that the first box is positioned on top of the 
second in order to infer that a person is holding an umbrella. This is called visual 
relationship detection. In the same way, by the overall setting of detected objects 
and their relative positions, you can train a second deep learning network to infer 
an overall description of the scene.

Overcoming Adversarial Attacks on  
Deep Learning Applications

As deep learning finds many applications in self-driving cars, such as detecting 
and interpreting traffic signs and lights; detecting the road and its lanes; detect-
ing crossing pedestrians and other vehicles; controlling the car by steering and 
braking in an end-to-end approach to automatic driving; and so on, questions 
may arise about the safety of a self-driving car. Driving isn’t the only common 
activity that’s undergoing a revolution because of deep learning applications. 

FIGURE 3-2:  
Object detection 

resulting from 
Keras-RetinaNet.
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Recently introduced applications that are accessible by the public include facial 
recognition for security access. (You can read about this use in ATMs in China 
at https://www.telegraph.co.uk/news/worldnews/asia/china/11643314/
China-unveils-worlds-first-facial-recognition-ATM.html.) Another exam-
ple of a deep learning application is in speech recognition used for Voice Con-
trollable Systems (VCSs), as provided by a plethora of companies such as Apple, 
Amazon, Microsoft, and Google in a wide variety of applications that include Siri, 
Alexa, and Google Home.

Some of these deep learning applications may cause economic damage or even be 
life threatening when they fail to provide the correct answer. Therefore, you may 
be surprised to discover that hackers can intentionally trick deep neural networks 
and guide them into failing predictions by using particular techniques called 
adversarial examples.

An adversarial example is a handcrafted piece of data that is processed by a neural 
network as training or test inputs. A hacker modifies the data to force the algo-
rithm to fail in its task. Each adversarial example bears modifications that are 
indeed slight, subtle, and deliberately made imperceptible to humans. The modi-
fications, although ineffective on humans, are still quite effective in reducing the 
effectiveness and usefulness of a neural network. Often, such malicious examples 
aim at leading a neural network to fail in a predictable way to create some ille-
gal advantage for the hacker. Here are just a few malicious uses of adversarial 
examples (the list is far from exhaustive):

 » Misleading a self-driving car into an accident

 » Obtaining money from an insurance fraud by having fake claim photos 
trusted as true ones by automatic systems

 » Tricking a facial recognition system to recognize the wrong face and grant 
access to money in a bank account or personal data on a mobile device

Tricking pixels
First made known by the paper “Intriguing Properties of Neural Networks” (go to 
https://arxiv.org/pdf/1312.6199.pdf), adversarial examples have attracted 
much attention in recent years, and successful (and shocking) discoveries in the 
field have led many researchers to devise faster and more effective ways of creat-
ing such examples than the original paper pointed out.

https://www.telegraph.co.uk/news/worldnews/asia/china/11643314/China-unveils-worlds-first-facial-recognition-ATM.html
https://www.telegraph.co.uk/news/worldnews/asia/china/11643314/China-unveils-worlds-first-facial-recognition-ATM.html
https://arxiv.org/pdf/1312.6199.pdf
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Adversarial examples are still confined to deep learning research laboratories. For 
this reason, you find many scientific papers quoted in these paragraphs when 
referring to various kinds of examples. However, you should never discount adver-
sarial examples as being some kind of academic diversion because their potential 
for damage is high.

At the foundations of all these approaches the idea that mixing some numeric 
information, called a perturbation, with the image can lead a neural network to 
behave differently from expectations, although in a controlled way. When you 

DISCOVERING THAT A MUFFIN IS  
NOT A CHIHUAHUA
Sometimes deep learning image classification fails to provide the right answer because 
the target image is inherently ambiguous or rendered to puzzle observers. For instance, 
some images are so misleading that they can even mystify a human examiner for a 
while, such as the Internet memes Chihuahua vs Muffin (see https://imgur.com/
QWQiBYU) or Labradoodle vs Fried Chicken (see https://imgur.com/5EnWOJU). A neu-
ral network can misunderstand confusing images if its architecture isn’t adequate to the 
task and its training hasn’t been exhaustive in terms of seen examples. The AI technol-
ogy columnist Mariya Yao has compared different computer vision APIs at https://
medium.freecodecamp.org/chihuahua-or-muffin-my-search-for-the-best- 
computer-vision-api-cbda4d6b425d) and found that even full-fledged vision  
products can be tricked by ambiguous pictures.

Recently, other studies have challenged deep neural networks by proposing unex-
pected perspectives of known objects. In the paper called “Strike (with) a Pose: Neural 
Networks Are Easily Fooled by Strange Poses of Familiar Objects” at https://arxiv.
org/pdf/1811.11553.pdf, researchers found that simple ambiguity can trick state- 
of-the-art image classifiers and object detectors trained on large-scale image datasets.

Often, objects are learned by neural networks from pictures taken in canonical poses 
(which means in common and usual situations). When faced with an object in an unu-
sual pose or outside its usual environment, some neural networks can’t categorize the 
resulting object. For instance, you expect a school bus to be running on the road, but 
if you rotate and twist it in the air and then land it in the middle of the road, a neural 
network can easily see it as a garbage truck, a punching bag, or even a snowplow. You 
may argue that the misclassification occurs because of learning bias (teaching a neural 
network using only images in canonical poses). Yet that implies that at present, you 
shouldn’t rely such technology under all circumstances, especially, as the authors of the 
paper point out, in self-driving car applications because objects may suddenly appear 
on the road in new poses or circumstances.

https://imgur.com/QWQiBYU
https://imgur.com/QWQiBYU
https://imgur.com/5EnWOJU
https://medium.freecodecamp.org/chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d
https://medium.freecodecamp.org/chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d
https://medium.freecodecamp.org/chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d
https://arxiv.org/pdf/1811.11553.pdf
https://arxiv.org/pdf/1811.11553.pdf
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create an adversarial example, you add some specially devised noise (which 
appear to be random numbers when you view them) to an existing image, and 
that’s enough to trick most CNNs (because often the same trick works with dif-
ferent architectures when trained by the same data). Generally, you can discover 
such perturbations by having access to the model (its architecture and weights). 
You then exploit its backpropagation algorithm to systematically discover the best 
set of numeric information to add to an image so that you can mutate one pre-
dicted class into another one.

You can create the perturbation effect by changing a single pixel in an image. 
Researchers have obtained perfectly working adversarial examples using this 
approach, as discovered by researchers Jiawei Su, Danilo Vasconcellos Var-
gas, and Kouichi Sakurai from Kyushu University and described in their paper 
“One Pixel Attack for Fooling Deep Neural Networks” (https://arxiv.org/
pdf/1710.08864.pdf).

Hacking with stickers and other artifacts
Most adversarial examples are laboratory experiments on vision robustness, and 
those examples can demonstrate all their capabilities because they are produced 
by directly modifying data inputs and tested images during the training phase. 
However, many applications based on deep learning operate in the real world, and 
the use of laboratory techniques doesn’t prevent malicious attacks. Such attacks 
don’t need access to the underlying neural model to be effective. Some examples 
may take the form of a sticker or an inaudible sound that the neural network 
doesn’t know how to handle.

A paper called “Adversarial Examples in the Physical World” by Alexey Kurakin, 
Ian J.  Goodfellow, and Samy Bengio (found at https://arxiv.org/pdf/1607. 
02533.pdf) demonstrates that various attacks are also possible in a nonlabora-
tory setting. All you need is to print the adversarial examples and show them to 
the camera feeding the neural network (for instance, by using the camera in a 
mobile phone). This approach demonstrates that the efficacy of an adversarial 
example is not strictly due to the numerical input fed into a neural network. It’s 
the ensemble of shapes, colors, and contrast present in the image that achieves 
the trick, and you don’t need any direct access to the neural model to find out 
what ensemble works best. You can see how a network could mistake the image 
of a washing machine for a safe or a loudspeaker directly from this video made by 
the authors, who tricked the TensorFlow camera demo, an application for mobile 
devices that performs on-the-fly image classification: https://www.youtube.
com/watch?v=zQ_uMenoBCk.

Other researchers from Carnegie Mellon University have found a way to trick face 
detection into believing a person is a celebrity by fabricating eyeglass frames that 

https://arxiv.org/pdf/1710.08864.pdf
https://arxiv.org/pdf/1710.08864.pdf
https://arxiv.org/pdf/1607.02533.pdf
https://arxiv.org/pdf/1607.02533.pdf
https://www.youtube.com/watch?v=zQ_uMenoBCk
https://www.youtube.com/watch?v=zQ_uMenoBCk
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can affect how a deep neural network recognizes instances. As automated secu-
rity systems become widespread, the ability to trick the system by using simple 
add-ons like eyeglasses could turn into a serious security threat. A paper called 
“Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Rec-
ognition” (https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf) 
describes how accessories could allow both dodging personal recognition and 
impersonation.

Finally, another disturbing real-world use of an adversarial example appears in 
the paper “Robust Physical-World Attacks on Deep Learning Visual Classifica-
tion” (https://arxiv.org/pdf/1707.08945.pdf). Plain black-and-white stick-
ers placed on a stop sign can affect how a self-driving car understands the signal, 
causing it to see the stop sign as another road indication. When you use more 
colorful (but also more noticeable) stickers, such as the ones described in the 
paper “Adversarial Patch” (https://arxiv.org/pdf/1712.09665.pdf), you can 
guide the predictions of a neural network in a particular direction by having it 
ignore anything but the sticker and its misleading information. As explained in 
the paper, a neural network could predict a banana to be anything else just by 
placing a proper deceitful sticker nearby.

At this point, you may wonder whether any defense against adversarial examples 
is possible, or if sooner or later they will destroy the public confidence in deep 
learning applications, especially in the self-driving car field. By intensely study-
ing how to mislead a neural network, researchers are also finding how to protect 
it against any misuse. First, neural networks can approximate any function. If the 
neural networks are complex enough, they can also determine by themselves how 
to rule out adversarial examples when taught by other examples. Second, novel 
techniques such as constraining the values in a neural network or reducing the 
neural network size after training it (a technique called distillation, used previously 
to make a network viable on devices with little memory) have been successfully 
tested against many different kinds of adversarial attacks.

https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf
https://arxiv.org/pdf/1707.08945.pdf
https://arxiv.org/pdf/1712.09665.pdf
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Analyzing Music 
and Video

You can find considerable discussions online about whether computers can 
be creative by employing deep learning. The dialogue goes to the very 
essence of what it means to be creative. Philosophers and others have  

discussed the topic endlessly throughout human history without arriving at a 
conclusion as to what, precisely, creativity means. Consequently, a single chapter 
in a book written in just a few months won’t solve the problem for you.

However, to provide a basis for the discussions in this chapter, this book defines 
creativity as the ability to define new ideas, patterns, relationships, and so on. 
The emphasis is on new: the originality, progressiveness, and imagination that 
humans provide. It doesn’t include copying someone else’s style and calling it 
one’s own. Of course, this definition will almost certainly raise the ire of some 
while garnering the accepting nods of others, but to make the discussion work 
at all, you need a definition. Mind you, this definition doesn’t exclude creativity 
by nonhumans. For example, some people can make a case for creative apes (see 
http://www.bbc.com/future/story/20140723-are-we-the-only-creative- 
species for more details).

Chapter 4

IN THIS CHAPTER

 » Discovering how to imitate creativity

 » Understanding that deep learning 
can’t create

 » Developing art and music based on 
established styles

 » Using GANs to generate art based on 
existing styles

http://www.bbc.com/future/story/20140723-are-we-the-only-creative-species
http://www.bbc.com/future/story/20140723-are-we-the-only-creative-species
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Creativity and computers can definitely come together in a fascinating collabora-
tion. As you know, computers rely on math to do everything, and their association 
with art and music is no exception. A computer can transfer existing art or music 
patterns to a neural network and use the result to generate something that looks 
new but actually relies on the existing pattern. Generative Adversarial Networks 
(GANs) are the best available technology for this task of transferring patterns to 
neural networks today, but you can count on other technologies appearing in the 
future.

Computers don’t perform the tasks involved in outputting art on their own; they rely 
on a human to provide the means to accomplish such tasks. For example, a human 
designs the algorithm that the computer uses to perform the statistical analysis 
of the patterns. Moreover, a human decides which artistic style to mimic, and a 
human defines what sort of output might prove aesthetically pleasing. In short, 
the computer ends up being a tool in the hands of an exceptionally smart human 
to automate the process of creating what could be deemed as new, but really isn’t.

As part of the process of defining how some can see a computer as creative, the 
chapter also defines how computers mimic an established style. You can see for 
yourself that deep learning relies on math to perform a task generally not associ-
ated with math at all. An artist or musician doesn’t rely on calculations to create 
something new, but could rely on calculations to see how others performed their 
task. When an artist or musician employs math to study another style, the process 
is called learning, not creating. Of course, this entire minibook (part of a larger 
discussion on data science programming) is about how deep learning performs 
learning tasks, and even that process differs greatly from how humans learn.

Learning to Imitate Art and Life
You have likely seen interesting visions of AI art, such as those mentioned in the 
article at https://news.artnet.com/art-world/ai-art-comes-to-market-is- 
it-worth-the-hype-1352011. The art undeniably has aesthetic appeal. In fact, 
the article mentions that Christie’s, one of the most famous auction houses in the 
world, originally expected to sell the piece of art for $7,000 to $10,000 but  actually 
it sold for $432,000, according to the Guardian (https://www.theguardian.com/
artanddesign/shortcuts/2018/oct/26/call-that-art-can-a-computer- 
be-a-painter) and the New York Times (https://www.nytimes.com/2018/10/25/
arts/design/ai-art-sold-christies.html). So not only is this type of art 
appealing, it can also generate a lot of money. However, in every unbiased story 
you read, the question remains as to whether the AI art actually is art at all. The 

https://news.artnet.com/art-world/ai-art-comes-to-market-is-it-worth-the-hype-1352011
https://news.artnet.com/art-world/ai-art-comes-to-market-is-it-worth-the-hype-1352011
https://www.theguardian.com/artanddesign/shortcuts/2018/oct/26/call-that-art-can-a-computer-be-a-painter
https://www.theguardian.com/artanddesign/shortcuts/2018/oct/26/call-that-art-can-a-computer-be-a-painter
https://www.theguardian.com/artanddesign/shortcuts/2018/oct/26/call-that-art-can-a-computer-be-a-painter
https://www.nytimes.com/2018/10/25/arts/design/ai-art-sold-christies.html
https://www.nytimes.com/2018/10/25/arts/design/ai-art-sold-christies.html
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following sections help you understand that computer generation doesn’t corre-
late to creativity; instead, it translates to amazing algorithms employing the latest 
in statistics.

Transferring an artistic style
One of the differentiators of art is the artistic style. Even when someone takes 
a photograph and displays it as art (https://www.wallartprints.com.au/
blog/artistic-photography/), the method in which the photograph is taken, 
 processed, and optionally touched up all define a particular style. In many cases, 
depending on the skill of the artist, you can’t even tell that you’re looking at 
a photograph because of its artistic elements (https://www.pinterest.com/
lorimcneeartist/artistic-photography/?lp=true).

Some artists become so famous for their particular style that others take time to 
study it in depth to improve their own technique. For example, Vincent van Gogh’s 
unique style is often mimicked (https://www.artble.com/artists/vincent_ 
van_gogh/more_information/style_and_technique). Van Gogh’s style — his use 
of colors, methods, media, subject matter, and a wealth of other considerations — 
requires intense study for humans to replicate. Humans improvise, so the adjective 
suffix esque often appears as a descriptor of a person’s style. A critic might say that 
a particular artist uses a van Goghesque methodology.

To create art, the computer relies on a particular artistic style to modify the 
appearance of a source picture. In contrast to a human, a computer can per-
fectly replicate a particular style given enough consistent examples. Of course, 
you could create a sort of mixed style by using examples from various periods 
in the artist’s life. The point is that the computer isn’t creating a new style, nor 
is it improvising. The source image isn’t new, either. You see a perfectly copied 
style and a perfectly copied source image when working with a computer, and 
you transfer the style to the source image to create something that looks a little 
like both.

The process used to transfer the style to the source picture and produce an  output 
is complex and generates a lot of discussion. For example, considering where 
source code ends and elements such as training begin is important. The arti-
cle at https://www.theverge.com/2018/10/23/18013190/ai-art-portrait- 
auction-christies-belamy-obvious-robbie-barrat-gans discusses one such 
situation that involves the use of existing code but different training from the 
original implementation, which has people wondering over issues such as attri-
bution when art is generated by computer. Mind you, all the discussion focuses 
on the humans who create the code and perform the training of the computer; 
the computer itself doesn’t figure in to the discussion because the computer is 
simply crunching numbers.

https://www.wallartprints.com.au/blog/artistic-photography/
https://www.wallartprints.com.au/blog/artistic-photography/
https://www.pinterest.com/lorimcneeartist/artistic-photography/?lp=true
https://www.pinterest.com/lorimcneeartist/artistic-photography/?lp=true
https://www.artble.com/artists/vincent_van_gogh/more_information/style_and_technique
https://www.artble.com/artists/vincent_van_gogh/more_information/style_and_technique
https://www.theverge.com/2018/10/23/18013190/ai-art-portrait-auction-christies-belamy-obvious-robbie-barrat-gans
https://www.theverge.com/2018/10/23/18013190/ai-art-portrait-auction-christies-belamy-obvious-robbie-barrat-gans
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Reducing the problem to statistics
Computers can’t actually see anything, so analyzing images doesn’t occur in 
the same manner as humans use; you must solve the problem in another way. 
 Someone takes a digital image of a real-world object or creates a fanciful draw-
ing like the one in Figure 4-1, and each pixel in that image appears as tuples of 
numbers representing the red, blue, and green values of each pixel, as shown in 
Figure 4-2. These numbers, in turn, are what the computer interacts with using 
an algorithm. The computer doesn’t understand that the numbers form a tuple; 
that’s a human convention. All it knows is that the algorithm defines the opera-
tions that must take place on the series of numbers. In short, the art becomes a 
matter of manipulating numbers using a variety of methods, including statistics.

OTHER SORTS OF GENERATED ART
Keep in mind that this book discusses a particular kind of computer art — the sort 
generated by a deep learning network. You can find all sorts of other computer-
generated art that doesn’t necessarily rely on deep learning. One of the earlier 
examples of generated art is the fractal (http://www.arthistory.net/fractal-
art/), created by using an equation. The first of these fractals is the Mandelbrot set 
(http://mathworld.wolfram.com/MandelbrotSet.html), created in 1980 by 
Benoit B. Mandelbrot, a Polish mathematician. Some fractals today are quite beautiful 
(https://www.creativebloq.com/computer-arts/5-eye-popping-examples- 
fractal-art-71412376) and even incorporate some real-world elements. Even so, 
the creativity belongs not to the computer, which is simply crunching numbers, but to 
the mathematician or artist who designs the algorithm used to generate the fractal.

A next step in generated art is Computer Generated Imagery (CGI). You have likely seen 
some amazing examples of CGI art in movies, but it appears just about everywhere 
today (https://www.vice.com/en_us/topic/cgi-art). Some people restrict CGI 
to 3-D art and some restrict it to 3-D dynamic art of the sort used for video games and 
movies. No matter what restrictions you place on CGI art, the process is essentially 
the same. An artist decides on a series of transformations to create effects on the 
computer screen, such as water that looks wet and fog that looks misty (https://
www.widewalls.ch/cgi-artworks/). CGI also sees use in building models based on 
designs, such as architectural drawings (https://archicgi.com/3d-modeling- 
things-youve-got-know/ and https://oceancgi.com/). These models help 
you visualize what the finished product will look like long before the first spade of earth 
is turned. However, in the end what you see is the creativity of an artist, architect, math-
ematician, or other individual in telling the computer to perform various kinds of calcu-
lations to transform design into something that looks real. The computer understands 
nothing in all of this.

http://www.arthistory.net/fractal-art/
http://www.arthistory.net/fractal-art/
http://mathworld.wolfram.com/MandelbrotSet.html
https://www.creativebloq.com/computer-arts/5-eye-popping-examples-fractal-art-71412376
https://www.creativebloq.com/computer-arts/5-eye-popping-examples-fractal-art-71412376
https://www.vice.com/en_us/topic/cgi-art
https://www.widewalls.ch/cgi-artworks/
https://www.widewalls.ch/cgi-artworks/
https://archicgi.com/3d-modeling-things-youve-got-know/
https://archicgi.com/3d-modeling-things-youve-got-know/
https://oceancgi.com/
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Deep learning relies on a number of algorithms to manipulate the pixels in a 
source drawing in a variety of ways to reflect the particular style you want to use. 
In fact, you can find a dizzying array of such algorithms because everyone appears 
to have a different idea of how to force a computer to create particular kinds of art. 
The point is that all these methods rely on algorithms that act on a series of num-
bers to perform the task; the computer never takes brush in hand to actually create 
something new. Two methods appear to drive the current strategies, though:

 » Convolutional Neural Networks (CNNs): See Book 4, Chapter 3 for an 
overview; also see the “Defining a new piece based on a single artist” section, 
later in this chapter, for the artistic perspective.

FIGURE 4-1:  
A human might 

see a fanciful 
drawing.

FIGURE 4-2:  
The computer 

sees a series of 
numbers.
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 » Generative Adversarial Networks (GANs): The “Moving toward GANs” 
section of this chapter provides an overview of this topic. The article at 
https://skymind.ai/wiki/generative-adversarial-network-gan is 
also helpful in seeing how GANs work. Check out the “Visualizing how neural 
networks dream” section, later in this chapter, again for the artistic perspective.

Understanding that deep learning  
doesn’t create
For art created by deep learning, the images are borrowed, the computer doesn’t  
understand them at all, and the computer relies on algorithms to perform the 
task of modifying the images. Deep learning doesn’t even choose the method of 
learning about the images — a human does that. In short, deep learning is an 
interesting method of manipulating images created by someone else using a style 
that another person also created.

Whether deep learning can create something isn’t the real question to ask. The 
question that matters is whether humans can appreciate the result of the deep 
learning output. Despite its incapacity to understand or create, deep learning can 
deliver some amazing results. Consequently, creativity is best left to humans, but 
deep learning can give everyone an expressive tool  — even people who aren’t 
artistic. For example, you could use deep learning to create a van Gogh version 
of a loved one to hang on your wall. The fact that you participated in the pro-
cess and that you have something that looks professionally drawn is the point to 
 consider — not whether the computer is creative.

Deep learning is also about automation. A human may lack the ability to trans-
late a vision into reality. However, by using the automation that deep learning 
provides, such translation may become possible, even predictable. Humans have 
always relied on tools to overcome deficiencies, and deep learning is just another 
in a very long line of tools. In addition, the automation that deep learning provides 
also makes repetition possible, supplying consistent and predictable output from 
even less skilled humans.

Mimicking an Artist
Deep learning helps you mimic a particular artist. You can mimic any artist you 
want because the computer doesn’t understand anything about style or drawing. 
The deep learning algorithm will faithfully reproduce a style based on the inputs 
you provide (even if you can’t reproduce the style on your own). Consequently, 

https://skymind.ai/wiki/generative-adversarial-network-gan
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mimicking is a flexible way to produce a particular output, as described in the 
following sections.

Defining a new piece based on  
a single artist
Convolutional Neural Networks (CNNs) appear in a number of uses for deep learn-
ing applications. For example, they’re used for self-driving cars and facial rec-
ognition systems. Book 4, Chapter 3 provides some additional examples of how 
CNNs do their job, but the point is that a CNN can perform recognition tasks well 
given enough training.

Interestingly, CNNs work particularly well in recognizing art style. So you can 
combine two pieces of art into a single piece. However, those two pieces supply 
two different kinds of input for the CNN:

 » Content: The image that defines the desired output. For example, if you 
provide a content image of a cat, the output will look like a cat. It won’t be the 
same cat you started with, but the content defines the desired output with 
regard to what a human will see.

 » Style: The image that defines the desired modification. For example, if you 
provide an example of a van Gogh painting, the output will reflect that style.

In general, you see CNNs that rely on a single content image and a single style 
image. Using just the two images like this lets you see how content and style work 
together to produce a particular output. The example at https://medium.com/
mlreview/making-ai-art-with-style-transfer-using-keras-8bb5fa44b216 
provides a method for combining two images in this manner.

Of course, you need to decide how to combine the images. In fact, this is where 
the statistics of deep learning come into play. To perform this task, you use a 
neural style transfer, as outlined in the paper “A Neural Algorithm of Artistic 
Style,” by Leon A.  Gatys, Alexander S.  Ecker, and Matthias Bethge (https://
arxiv.org/pdf/1508.06576.pdf or https://www.robots.ox.ac.uk/~vgg/rg/
papers/1508.06576v2.pdf).

The algorithm works with these kinds of images: a content image, which depicts 
the object you want to represent; a style image, which provides the art style you 
want to mimic; and an input image, which is the image to transform. The input 
image is usually a random image or the same image as the content image. Trans-
ferring the style implies preserving the content (that is, if you start with a photo 
of a dog, the result will still depict a dog). However, the transformed input image 

https://medium.com/mlreview/making-ai-art-with-style-transfer-using-keras-8bb5fa44b216
https://medium.com/mlreview/making-ai-art-with-style-transfer-using-keras-8bb5fa44b216
https://arxiv.org/pdf/1508.06576.pdf
https://arxiv.org/pdf/1508.06576.pdf
https://www.robots.ox.ac.uk/~vgg/rg/papers/1508.06576v2.pdf
https://www.robots.ox.ac.uk/~vgg/rg/papers/1508.06576v2.pdf
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is nearer to the style image in presentation. The algorithm you use will define two 
loss measures:

 » Content loss: Determines the amount of the original image that the CNN 
uses to provide output. A greater loss here means that the output will better 
reflect the style you provide. However, you can reach a point at which the loss 
is so great that you can no longer see the content.

 » Style loss: Determines the manner in which the style is applied to the content. 
A higher level of loss means that the content retains more of its original style. 
The style loss must be low enough for you to end up with a new piece of art 
that reflects the desired style.

Having just two images doesn’t allow for extensive training, so you use a pre-
trained deep learning network, such as VGG-19 (the 2014 winner of the ImageNet 
challenge created by the Visual Geometry Group, VGG, at Oxford University). The 
pretrained deep learning network already knows how to process an image into 
image features of different complexity. The algorithm for neural style transfer 
picks the CNN of a VGG-19, excluding the final, fully connected layers. In this way, 
you have the network that acts as a processing filter for images. When you send 
in an image, VGG-19 transforms it into a neural network representation, which 
could be completely different from the original. However, when you use only the 
top layers of the network as image filters, the network transforms the resulting 
image but doesn’t completely change it.

Taking advantage of such transformative neural network properties, the neural 
transfer style doesn’t use all the convolutions in the VGG-19. Instead, it monitors 
them using the two loss measures to assure that, in spite of the transformations 
applied to the image, the network maintains the content and applies the style. 
In this way, when you pass the input image through VGG-19 several times, its 
weights adjust to accomplish the double task of content preservation and style 
learning. After a few iterations, which actually require a lot of computations and 
weight updates, the network transforms your input image into the anticipated 
image and art style.

You often see the output of a CNN referred to as a pastiche. It’s a fancy word that 
generally means an artistic piece composed of elements borrowed from motifs 
or techniques of other artists. Given the nature of deep learning art, the term is 
appropriate.

Combining styles to create new art
If you really want to get fancy, you can create a pastiche based on multiple style 
images. For example, you could train the CNN using multiple Monet works so 
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that the pastiche looks more like a Monet piece in general. Of course, you could 
just as easily combine the styles of multiple impressionist painters to create  
what appears to be a unique piece of art that reflects the impressionist style in 
general. The actual method for performing this task varies, but the article at 
https://ai.googleblog.com/2016/10/supercharging-style-transfer.html 
offers ideas for accomplishing the task.

Visualizing how neural networks dream
Using a CNN is essentially a manual process with regard to choosing the loss 
functions. The success or failure of a CNN depends on the human setting the var-
ious values. A GAN takes a different approach. It relies on two interactive deep 
networks to automatically adjust the values to provide better output. You can see 
these two deep networks having these names:

 » Generator: Creates an image based on the inputs you provide. The image 
needs to retain the original content, but with the appropriate level of style to 
produce a pastiche that is hard to distinguish from an original.

 » Discriminator: Determines whether the generator output is real enough to 
pass as an original. If not, the discriminator provides feedback telling the 
generator what is wrong with the pastiche.

To make this setup work, you actually train two models: one for the generator and 
another for the discriminator. The two act in concert, with the generator creating 
new samples and the discriminator telling the generator what is wrong with each 
sample. The process goes back and forth between generator and discriminator 
until the pastiche achieves a specific level of perfection. In the “Moving toward 
GANs” section, later in this chapter, you can find an even more detailed explana-
tion about how GANs work.

This approach is advantageous because it provides a greater level of  automation 
and a higher probability of good results than using a CNN.  The disadvan-
tage is that this approach also requires considerable time to implement, and 
the processing requirements are much greater. Consequently, using the CNN 
approach is often better to achieve a result that’s good enough. You can see 
an example of the GAN approach at https://towardsdatascience.com/
gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0.

Using a network to compose music
This chapter focuses mainly on visual art because you can easily judge the sub-
tle changes that occur to it. However, the same techniques also work with music. 
You can use CNNs and GANs to create music based on a specific style. Computers 

https://ai.googleblog.com/2016/10/supercharging-style-transfer.html
https://towardsdatascience.com/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0
https://towardsdatascience.com/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0
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can’t see visual art, nor can they hear music. The musical tones become numbers 
that the computer manipulates just as it manipulates the numbers associated with 
pixels. The computer doesn’t see any difference at all.

However, deep learning does detect a difference. Yes, you use the same algorithms 
for music as for visual art, but the settings you use are different, and the train-
ing is unique as well. In addition, some sources say that training for music is 
a lot harder than for art (see https://motherboard.vice.com/en_us/article/
qvq54v/why-is-ai-generated-music-still-so-bad for details). Of course, part 
of the difficulty stems from the differences among the humans listening to the 
music. As a group, humans seem to have a hard time defining aesthetically pleas-
ing music, and even people who like a particular style or particular artists rarely 
like everything those artists produce.

In some respects, the tools used to compose music using AI are more formalized 
and mature than those used for visual art. This doesn’t mean that the music com-
position tools always produce great results, but it does mean that you can easily 
buy a package to perform music composition tasks. Here are the two most popular 
offerings today:

 » Amper: https://www.ampermusic.com/

 » Jukedeck: https://www.jukedeck.com/

AI music composition is different from visual art generation because the music 
tools have been around for a longer time, according to the article at https://
www.theverge.com/2018/8/31/17777008/artificial-intelligence-taryn- 
southern-amper-music. The late songwriter and performer David Bowie used 
an older application called Verbasizer (https://motherboard.vice.com/en_us/
article/xygxpn/the-verbasizer-was-david-bowies-1995-lyric-writing- 
mac-app) in 1995 to aid in his work. The key idea here is that this tool aided in, 
rather than produced, work. The human being is the creative talent; the AI serves 
as a creative tool to produce better music. Consequently, music takes on a collab-
orative feel, rather than giving the AI center stage.

Other creative avenues
One of the more interesting demonstrations of the fact that computers can’t 
 create is in writing. The article at https://medium.com/deep-writing/how-to- 
write-with-artificial-intelligence-45747ed073c describes a deep learning 
network used to generate text based on a particular writing style. Although the 
technique is interesting, the text that the computer generates is nonsense. The 
computer can’t generate new text based on a given style because the computer 
doesn’t actually understand anything.

https://motherboard.vice.com/en_us/article/qvq54v/why-is-ai-generated-music-still-so-bad
https://motherboard.vice.com/en_us/article/qvq54v/why-is-ai-generated-music-still-so-bad
https://www.ampermusic.com/
https://www.jukedeck.com/
https://www.theverge.com/2018/8/31/17777008/artificial-intelligence-taryn-southern-amper-music
https://www.theverge.com/2018/8/31/17777008/artificial-intelligence-taryn-southern-amper-music
https://www.theverge.com/2018/8/31/17777008/artificial-intelligence-taryn-southern-amper-music
https://motherboard.vice.com/en_us/article/xygxpn/the-verbasizer-was-david-bowies-1995-lyric-writing-mac-app
https://motherboard.vice.com/en_us/article/xygxpn/the-verbasizer-was-david-bowies-1995-lyric-writing-mac-app
https://motherboard.vice.com/en_us/article/xygxpn/the-verbasizer-was-david-bowies-1995-lyric-writing-mac-app
https://medium.com/deep-writing/how-to-write-with-artificial-intelligence-45747ed073c
https://medium.com/deep-writing/how-to-write-with-artificial-intelligence-45747ed073c
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The article at https://www.grammarly.com/blog/transforming-writing- 
style-with-ai/ provides a more promising avenue of interaction between human 
and AI. In this case, a human writes the text and the computer analyzes the style 
to generate something more appropriate to a given situation. The problem is that 
the computer still doesn’t understand the text. Consequently, the results will 
require cleanup by a human to ensure reliable results.

To realize just how severe the problem can become when using an AI in  certain 
creative fields, consider the problems that occurred when the New York Times 
decided to favor technology over humans (see the article at https://www.
chronicle.com/blogs/linguafranca/2018/06/14/new-york-times-gets-rid- 
of-copy-editors-mistakes-ensue/). Without copy editors to verify the text, the 
resulting paper contains more errors. Of course, you’ve likely seen this problem 
when a spell checker or a grammar checker fixes your perfectly acceptable prose 
in a manner that makes it incorrect. Relying on technology to the exclusion of 
human aid seems like a less than useful solution to the problem of creating truly 
inspiring text.

Eventually, most humans will augment their creativity using various AI-driven 
tools. In fact, we’re probably there now. This book benefits from the use of a 
spelling and grammar checker, along with various other aids. However, the writer 
is still human, and the book would never make it into print without an entire staff 
of humans to check the accuracy and readability of the text. When you think of 
deep learning and its effect on creativity, think augmentation, not replacement.

Moving toward GANs
In 2014, at the Départment d’informatique et de recherche opérationnelle at 
 Montréal University, Ian Goodfellow and other researchers (among whom is 
Yoshua Bengio, one of Canada’s most noted scientists working on artificial neural 
networks and deep learning) published the first paper on GANs. You can read the 
work at https://arxiv.org/pdf/1406.2661v1.pdf or https://papers.nips.
cc/paper/5423-generative-adversarial-nets.pdf. In the following months, 
the paper attracted attention and was deemed innovative for its proposed mix of 
deep learning and game theory. The idea became widespread because of its acces-
sibility in terms of neural network architecture: You can train a working GAN 
using a standard computer. (The technique works better if you can invest a lot of 
computational power.)

Contrary to other deep learning neural networks that classify images or sequences, 
the specialty of GANs is their capability to generate new data by deriving inspi-
ration from training data. This capability becomes particularly impressive when 

https://www.grammarly.com/blog/transforming-writing-style-with-ai/
https://www.grammarly.com/blog/transforming-writing-style-with-ai/
https://www.chronicle.com/blogs/linguafranca/2018/06/14/new-york-times-gets-rid-of-copy-editors-mistakes-ensue/
https://www.chronicle.com/blogs/linguafranca/2018/06/14/new-york-times-gets-rid-of-copy-editors-mistakes-ensue/
https://www.chronicle.com/blogs/linguafranca/2018/06/14/new-york-times-gets-rid-of-copy-editors-mistakes-ensue/
https://arxiv.org/pdf/1406.2661v1.pdf
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
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dealing with image data, because well-trained GANs can generate new pieces of 
art that people sell at auctions (such as the artwork sold at Christie’s for nearly 
half a million dollars, mentioned earlier in this chapter). This feat is even more 
incredible because previous results obtained using other mathematical and statis-
tical techniques were far from credible or usable.

Finding the key in the competition
The GAN name contains the term adversarial because the key idea behind GANs is 
the competition between two networks, which play as adversaries against each 
other. Ian Goodfellow, the principal author of the original paper on GANs, used 
a simple metaphor to describe how everything works. Goodfellow described the 
process as an endless challenge between a forger and a detective: The forger has to 
create a fake piece of art by copying some real art masterpiece, so he starts paint-
ing something. After the forger completes the fake painting, a detective examines 
it and decides whether the forger created a real piece of art or simply a fake. If 
the detective sees a fake, the forger receives notice that something is wrong with 
the work (but not where the fault lies). When the forger shows that the art is real 
despite the negative feedback of the detective, the detective receives notice of 
the mistake and changes the detection technique to avoid failure during the next 
attempt. As the forger continues attempts to fool the detective, both the forger 
and the detective grow in expertise in their respective duties. Given time, the art 
produced by the forger becomes extremely high in quality and is almost undistin-
guishable from the real thing except by someone with an expert eye.

Figure 4-3 illustrates the story of GANs as a simple schema, in which inputs and 
neural architectures interact together in closed loop of reciprocal feedbacks. The 
generator network plays the part of the forger, and a discriminator network plays 
the detective. GANs use the term discriminator because of the similarity in pur-
pose to electronic circuits that accept or reject signals based on their characteris-
tics. The discriminator in a GAN accepts (wrongly) or refuses (correctly) the work 
created by the generator. The interesting aspect of this architecture is that the 
generator never sees a single training example. Only the discriminator accesses 
such data in its training. The generator receives random inputs (noise) to provide 
a random starting point each time, which forces it to produce a different result.

The generator may seem take all the glory (after all, it generates the data product). 
However, the real powerhouse of the architecture is the discriminator. The dis-
criminator computes errors that are backpropagated to its own network to learn 
how best to distinguish between real and fake data. The errors also propagate to 
the generator, which optimizes itself to cause the discriminator to fail during the 
next round.
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FIGURE 4-3:  
How a GAN 

operates.

THE PROBLEM WITH FAKE DATA
Just as a GAN can generate impressive art, so it can generate fake people. Look at 
https://www.thispersondoesnotexist.com/ to see a person who doesn’t exist. 
Unless you know where to look, the pictures are really quite convincing. However, little 
details give them away for now:

• The backgrounds look muddy or lack that real feel in some manner.

• Those who have watched the movie The Matrix will be familiar with the episodic 
glitches that appear in some images.

• The foreground pixel texture may not be quite right. For example, you might see 
moiré patterns (https://photographylife.com/what-is-moire) where they 
aren’t expected.

However, recognizing these sorts of issues requires a human. In addition, the various 
problems will eventually go away when GANs improve. GANs can fake more than just 
pictures. You could create a completely fake human identity in an incredibly short time 
with little effort. GANs could have all the right records in all the right places. The technol-
ogy exists today to create fake human identities that could possibly appear in places 
where rooting them out would be extremely inconvenient. For example, imagine the 
effect of flooding an airport with fake terrorist identities immediately before a real ter-
rorist attack. The authorities could be confused about who is a real terrorist and who is 
a fake one just long enough for the attack to succeed. This is the sort of problem that 
you need to be aware of — not killer robots.

https://www.thispersondoesnotexist.com/
https://photographylife.com/what-is-moire
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GANs may seem creative. However, a more correct term would be that they are 
generative: They learn from examples how data varies, and they can generate new 
samples as if they were taken from the same data. A GAN learns to mimic a previ-
ously existing data distribution; it can’t create something new. As stated earlier in 
this chapter, deep learning isn’t creative.

Considering a growing field
After starting with a plain-vanilla implementation, similar to the one just com-
pleted, researchers have grown the GAN idea into a large number of variants 
that achieve tasks more complex than simply creating new images. The list of 
GANs and their applications grows every day, and keeping up is difficult. Avinash 
Hindupur has built a “GAN Zoo” by tracking all the variants, a task that’s becom-
ing more difficult daily. (You can see the most recent updates at https://github.
com/hindupuravinash/the-gan-zoo.) Zheng Liu favors a historical approach 
instead, and you can see the GAN timeline he maintains at https://github.com/
dongb5/GAN-timeline. No matter how you approach GANs, seeing how each new 
idea sprouts from previous ones is a useful exercise.

Inventing realistic pictures of celebrities
The chief application of GANs is to create images. The first GAN network that 
evolved from the original paper by Goodfellow and others is the DCGAN, which 
was based on convolutional layers.

DCGAN greatly improved the generative capabilities of the original GANs, and 
they soon impressed everyone when they created fake images of faces by tak-
ing examples from photos of celebrities. Of course, not all the DCGAN-created 
faces were realistic, but the effort was just the starting point of a rush to cre-
ate more realistic images. EBGAN-PT, BEGAN, and Progressive GAN are all 
improvements that achieve a higher degree of realism. You can read the NVidia 
paper prepared on Progressive GANs to gain a more precise idea of the quality 
reached by such state-of-the-art techniques: https://research.nvidia.com/
publication/2017-10_Progressive-Growing-of.

Another great enhancement to GANs is the conditional GAN (CGAN). Although 
having a network produce realistic images of all kinds is interesting, it’s of little 
use when you can’t control the type of output you receive in some way. CGANs 
manipulate the input and the network to suggest to the GAN what it should 
 produce. Now, for instance, you have networks that produce images of faces of 
persons who don’t exist, based on your preferences of how hair, eyes, and other 
details appear, as shown by this demonstrative video by NVidia: https://www.
youtube.com/watch?v=kSLJriaOumA.

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/dongb5/GAN-timeline
https://github.com/dongb5/GAN-timeline
https://research.nvidia.com/publication/2017-10_Progressive-Growing-of
https://research.nvidia.com/publication/2017-10_Progressive-Growing-of
https://www.youtube.com/watch?v=kSLJriaOumA
https://www.youtube.com/watch?v=kSLJriaOumA
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Enhancing details and image translation
Producing images of higher quality and possibly controlling the output generated 
has opened the way to more applications. This chapter doesn’t have room to dis-
cuss them all, but the following list offers an overview of what you can find:

 » Cycle GAN: Applied to neural transfer style. For example, you can turn a horse 
into a zebra or a Monet painting into one that appears to come from van Gogh. 
By exploring the project at https://github.com/junyanz/CycleGAN, you 
can see how it works and consider the kind of transformations it can apply 
to images.

 » Super Resolution GAN (SRGAN): Transforms images by making blurred, 
low-resolution images into clear, high-resolution ones. The application of this 
technique to photography and cinema is interesting because it improves 
low-quality images at nearly no cost. You can find the paper describing the 
technique and results here: https://arxiv.org/pdf/1609.04802.pdf.

 » Pose Guided Person Image Generation: Controls the pose of the person 
depicted in the created image. The paper at https://arxiv.org/pdf/ 
1705.09368.pdf describes practical uses in the fashion industry to generate 
more poses of a model, but you might be surprised to know that the same 
approach can create videos of one person dancing exactly the same as 
another one: https://www.youtube.com/watch?v=PCBTZh41Ris.

 » Pix2Pix: Translates sketches and maps into real images and vice versa. You 
can use this application to transform architectural sketches into a picture of a 
real building or to convert a satellite photo into a drawn map. The paper at 
https://arxiv.org/pdf/1611.07004.pdf discusses more of the possibili-
ties offered by the Pix2Pix network.

 » Image repairing: Repairs or modifies an existing image by determining what’s 
missing, cancelled, or obscured: https://github.com/pathak22/context- 
encoder.

 » Face Aging: Determines how a face will age. You can read about it at 
https://arxiv.org/pdf/1702.01983.pdf.

 » Midi Net: Creates music in your favorite style, as described at https://
arxiv.org/pdf/1703.10847.pdf.

https://github.com/junyanz/CycleGAN
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1705.09368.pdf
https://arxiv.org/pdf/1705.09368.pdf
https://www.youtube.com/watch?v=PCBTZh41Ris
https://arxiv.org/pdf/1611.07004.pdf
https://github.com/pathak22/context-encoder
https://github.com/pathak22/context-encoder
https://arxiv.org/pdf/1702.01983.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
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Considering Other 
Task Types

Book 4, Chapter 4 introduces you to the topic of Natural Language Processing 
(NLP), where you consider how a computer can process text despite not 
understanding it. The chapter points out that programming a computer to 

process human language is a daunting task, which is only recently possible using 
Natural Language Processing (NLP), deep learning Recurrent Neural Networks 
(RNNs), and word embeddings. This chapter takes you further by looking more 
closely at tokenization, the bag-of-words approach to analysis, and sentiment 
analysis. These approaches rely on building a model using Keras and employing 
deep learning techniques.

You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears 
in the DSPD_0505_Other_Tasks.ipynb source code file for Python and the 
DSPD_R_0505_Other_Tasks.ipynb source code file for R. See the Introduction for 
details on how to find these source files.

Chapter 5

IN THIS CHAPTER

 » Moving forward with text processing

 » Performing sentiment analysis

 » Working through a time series
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Processing Language in Texts
Even though Book 4, Chapter 4 shows how to turn text (no matter what source 
you use) into data that a computer can analyze, it never really gets into the issue 
of language, which is a lot more than simply text. Language includes nuanced 
terms and hidden meanings that express more than the text would say on its 
own. Obviously, a computer can’t understand things like sentiment, but you can 
make it appear that it does to a degree by performing certain types of deep learn-
ing analysis, which is where the following sections lead you. Of course, no matter 
how much analysis you perform, a computer can’t ever discover the true meaning 
of sentences said with differing vocal inflections or possessing hidden meanings 
known only to the people engaging in the conversation.

Considering the processing methodologies
As a simplification, you can view language as a sequence of words made of let-
ters (as well as punctuation marks, symbols, emoticons, and so on). Deep learn-
ing processes language best by using layers of RNNs, such as Long Short-Term 
Memory (LSTM) or Gated Recurrent Units (GRU). (Chapter  11 of Deep Learning 
For  Dummies, by John Paul Mueller and Luca Massaron [Wiley], explains the 
use of LTSM and GRU.) However, knowing to use RNNs doesn’t tell you how to 
use sequences as inputs; you need to determine the kind of sequences. In fact, 
deep learning networks accept only numeric input values. Computers encode  
letter sequences that you understand into numbers according to a protocol, such 
as Unicode Transformation Format-8 bit (UTF-8). UTF-8 is the most widely 
used encoding. (You can read the primer about encodings at https://www.
alexreisner.com/code/character-encoding.)

Deep learning can also process textual data using Convolutional Neural Networks 
(CNNs) instead of RNNs by representing sequences as matrices (similar to image 
processing). Keras supports CNN layers, such as the Conv1D (https://keras.io/
layers/convolutional/), which can operate on ordered features in time — that 
is, sequences of words or other signals. The 1D convolution output is usually fol-
lowed by a MaxPooling1D layer that summarizes the outputs. CNNs applied to 
sequences find a limit in their insensitivity to the global order of the sequence. 
(They tend to spot local patterns.) For this reason, they’re best used in sequence 
processing in combination with RNNs, not as their replacement.

Natural Language Processing (NLP) consists of a series of procedures that improve 
the processing of words and phrases for statistical analysis, machine learning 
algorithms, and deep learning. NLP owes its roots to computational linguistics 
that powered AI rule-based systems, such as expert systems, which made deci-
sions based on a computer translation of human knowledge, experience, and way 

https://www.alexreisner.com/code/character-encoding
https://www.alexreisner.com/code/character-encoding
https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/
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of thinking. NLP digested textual information, which is unstructured, into more 
structured data so that expert systems could easily manipulate and evaluate it.

Deep learning has taken the upper hand today, and expert systems are limited to 
specific applications in which interpretability and control of decision processes are 
paramount (for instance, in medical applications and driving-behavior  decision 
systems in some self-driving cars). Yet, the NLP pipeline is still quite relevant for 
many deep learning applications.

Defining understanding as tokenization
In an NLP pipeline, the first step is to obtain raw text. Usually you store it in 
memory or access it from disk. When the data is too large to fit in memory, you 
maintain a pointer to it on disk (such as the directory name and the filename). 
In the following example, you use three documents (represented by string vari-
ables) stored in a list (in computational linguistics, the document container is 
the corpus):

import numpy as np
 
texts = ["My dog gets along with cats",
         "That cat is vicious",
         "My dog is happy when it is lunch"]

After obtaining the text, you process it. As you process each phrase, you extract 
the relevant features from the text (you usually create a bag-of-words matrix) 
and pass everything to a learning model, such as a deep learning algorithm. Dur-
ing text processing, you can use different transformations to manipulate the text 
(with tokenization being the only mandatory transformation):

 » Tokenization (mandatory): Split a sentence into individual words.

 » Cleaning: Remove nontextual elements such as punctuation and numbers.

 » Lemmatization: Transform a word into its dictionary form (the lemma). It’s 
an alternative to stemming, but it’s more complex because you don’t use an 
algorithm. Instead, you use a dictionary to convert every word into its lemma.

 » N-grams: Associate every word with a certain number (the n in n-gram), of 
following words and treat them as a unique set. Usually, bi-grams (a series of 
two adjacent elements or tokens) and tri-grams (a series of three adjacent 
elements or tokens) work the best for analysis purposes.

 » Normalization: Remove capitalization.
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 » Pos-tagging: Tag every word in a phrase with its grammatical role in the 
sentence (such as tagging a word as a verb or as a noun). You can read more 
about Parts of Speech (POS) tagging at https://medium.com/analytics-
vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31.

 » Stemming: Reduce a word to its stem (which is the word form before adding 
inflectional affixes, as you can read here: https://www.thoughtco.com/
stem-word-forms-1692141). An algorithm, called a stemmer, can do this 
based on a series of rules.

 » Stop word removal: Remove common, uninformative words that don’t add 
meaning to the sentence, such as the articles the and a. Removing negations 
such as not could be detrimental if you want to guess the sentiment.

To achieve these transformations, you may need a specialized Python package 
such as NLTK (http://www.nltk.org/api/nltk.html) or Scikit-learn (see the 
tutorial at https://scikit-learn.org/stable/tutorial/text_analytics/
working_with_text_data.html). When working with deep learning and a large 
number of examples, you need only basic transformations: normalization, clean-
ing, and tokenization. The deep learning layers can determine what information 
to extract and process. When working with few examples, you do need to provide 
as much NLP processing as possible to help the deep learning network determine 
what to do in spite of the little guidance provided by the few examples.

Keras offers a function, keras.preprocessing.text.Tokenizer, that normal-
izes (using the lower parameter set to True), cleans (the filters parameter con-
tains a string of the characters to remove, usually these: ’!"#$%&()*+,-./:;<=>?@
[\]^_`{|}~ ’), and tokenizes.

Putting all the documents into a bag
After processing the text, you have to extract the relevant features, which means 
transforming the remaining text into numeric information for the neural net-
work to process. This is commonly done using the bag-of-words approach, which 
is  obtained by frequency encoding or binary encoding the text. This process 
equates to transforming each word into a matrix column as wide as the number 
of words you need to represent. The following example shows how to achieve this 
process and what it implies.

Obtaining the vocabulary size
The example uses the texts list instantiated earlier in the chapter. As a first step, 
you prepare a basic normalization and tokenization using a few Python com-
mands to determine the word vocabulary size for processing:

https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31
https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31
https://www.thoughtco.com/stem-word-forms-1692141
https://www.thoughtco.com/stem-word-forms-1692141
http://www.nltk.org/api/nltk.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
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unique_words = set(word.lower() for phrase in texts for
                   word in phrase.split(" "))
print(f"There are {len(unique_words)} unique words")

When you run this code using the texts list defined in the previous section, you 
see this output:

There are 14 unique words

Processing the text
You now proceed to load the Tokenizer function from Keras and set it to process 
the text by providing the expected vocabulary size:

from keras.preprocessing.text import Tokenizer
vocabulary_size = len(unique_words) + 1
tokenizer = Tokenizer(num_words=vocabulary_size)

Using a vocabulary_size that’s too small may exclude important words from the 
learning process. One that’s too large may uselessly consume computer memory. 
You need to provide Tokenizer with a correct estimate of the number of distinct 
words contained in the list of texts. You also always add 1 to the vocabulary_size 
to provide an extra word for the start of a phrase (a term that helps the deep 
learning network). At this point, Tokenizer maps the words present in the texts 
to indexes, which are numeric values representing the words in text:

tokenizer.fit_on_texts(texts)
print(tokenizer.index_word)

The resulting indexes are as follows:

{1: 'is', 2: 'my', 3: 'dog', 4: 'gets', 5: 'along',
 6: 'with', 7: 'cats', 8: 'that', 9: 'cat', 10: 'vicious',
 11: 'happy', 12: 'when', 13: 'it', 14: 'lunch'}

The indexes represent the column number that houses the word information:

  print(tokenizer.texts_to_matrix(texts))

Here’s the resulting matrix:

[[0. 0. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0.]
 [0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1.]]
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The matrix consists of 15 columns (14 words plus the start of phrase pointer) 
and three rows, representing the three processed texts. This is the text matrix to 
process using a shallow neural network (RNNs require a different format, as dis-
cussed later), which is always sized as vocabulary_size by the number of texts.

The numbers inside the matrix represent the number of times a word appears 
in the phrase. This isn’t the only representation possible, though. Here are the 
others:

 » Frequency encoding: Counts the number of word appearances in 
the phrase.

 » One-hot-encoding or binary encoding: Notes the presence of a word in a 
phrase, no matter how many times it appears.

 » Term Frequency-Inverse Document Frequency (TF-IDF) score: Encodes a 
measure relative to how many times a word appears in a document relative to 
the overall number of words in the matrix. (Words with higher scores are 
more distinctive; words with lower scores are less informative.)

Using the TF-IDF transformation instead
You can use the TF-IDF transformation from Keras directly. The Tokenizer offers 
a method, texts_to_matrix, that by default encodes your text and transforms it 
into a matrix in which the columns are your words, the rows are your texts, and 
the values are the word frequency within a text. If you apply the transforma-
tion by specifying mode='tfidf’, the transformation uses TF-IDF instead of word 
 frequencies to fill the matrix values:

print(np.round(tokenizer.texts_to_matrix(texts,
                               mode='tfidf'), 1))

The new output matrix looks like this:

[[0.  0.  0.7 0.7 0.9 0.9 0.9 0.9 0.  0.  0.  0.  0.  0.
  0. ]
 [0.  0.7 0.  0.  0.  0.  0.  0.  0.9 0.9 0.9 0.  0.  0.
  0. ]
 [0.  1.2 0.7 0.7 0.  0.  0.  0.  0.  0.  0.  0.9 0.9 0.9
  0.9]]

Note that by using a matrix representation, no matter whether you use binary, 
 frequency, or the more sophisticated TF-IDF, you have lost any sense of word 
ordering that exists in the phrase. During processing, the words scatter in dif-
ferent columns, and the neural network can’t guess the word order in a phrase. 
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This lack of order is why you call it a bag-of-words approach. The bag-of-words 
approach is used in many machine learning algorithms, often with results rang-
ing from good to fair, and you can apply it to a neural network using dense archi-
tecture layers. Transformations of words encoded into n_grams (discussed in the 
previous paragraph as an NLP processing transformation) provide some more 
information, but again, you can’t relate the words.

Retaining order using RNNs
RNNs keep track of sequences, so they still use one-hot-encoding, but they don’t 
encode the entire phrase; rather, they individually encode each token (which could 
be a word, a character, or even a bunch of characters). For this reason, they expect 
a sequence of indexes representing the phrase:

sequences = tokenizer.texts_to_sequences(texts)
print(sequences)

The output sequences look like this:

[[2, 3, 4, 5, 6, 7], [8, 9, 1, 10], [2, 3, 1, 11, 12, 13,
 1, 14]]

By matching the indexes found in the “Processing the text” section, earlier in this 
chapter, to the numbers in these lists, you can re-create the original sentences. 
For example, 2 is the 2: 'my' in the index, which is the first word in "My dog gets 
along with cats", the first entry in texts.

As each phrase passes to a neural network input as a sequence of index numbers, 
the number is turned into a one-hot encoded vector. You can use this code to see 
how the encoding works:

from keras.utils import to_categorical
print(to_categorical(sequences[0]))

The one-hot encoded vectors are then fed into the RNN’s layers one at a time, 
making them easy to learn. For instance, here’s the transformation of the first 
phrase in the matrix:

 [[0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]]
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In this representation, you get a distinct matrix for each piece of text. Each matrix 
represents the individual texts as distinct words using columns, but now the rows 
represent the word appearance order. (The first row is the first word, the second 
row is the second word, and so on.)

Using AI for sentiment analysis
Sentiment analysis computationally derives from a written text using the  writer’s 
attitude (whether positive, negative, or neutral), toward the text topic. This kind 
of analysis proves useful for people working in marketing and communication 
because it helps them understand what customers and consumers think of a 
product or service and thus act appropriately (for instance, by trying to recover 
unsatisfied customers or deciding to use a different sales strategy). Everyone 
performs sentiment analysis. For example, when reading text, people naturally 
try to determine the sentiment that moved the person who wrote it. However, 
when the number of texts to read and understand is too huge and the text con-
stantly accumulates, as in social media and customer emails, automating the task 
is important.

The example in the following sections show a test run of RNNs using Keras and 
TensorFlow that builds a sentiment analysis algorithm capable of classifying the 
attitudes expressed in a film review. The data is a sample of the IMDb dataset 
that contains 50,000 reviews (split in half between train and test sets) of mov-
ies accompanied by a label expressing the sentiment of the review (0=negative, 
1=positive). IMDb (https://www.imdb.com/) is a large online database contain-
ing information about films, TV series, and video games. Originally maintained 
by a fan base, it’s now run by an Amazon subsidiary. On IMDb, people find the 
information they need about their favorite show as well as post their comments or 
write a review for other visitors to read.

Getting the IMDb data
Keras offers a downloadable wrapper for IMDb data. You prepare, shuffle, and 
arrange this data into a train and a test set. This dataset appears among other 
useful datasets at https://keras.io/datasets/. In particular, the IMDb textual 
data offered by Keras is cleansed of punctuation, normalized into lowercase, and 
transformed into numeric values. Each word is coded into a number representing 
its ranking in frequency. The most frequent words have low numbers; the less 
frequent words have higher numbers.

As a starting point, the code imports the imdb function from Keras and uses it to 
retrieve the data from the Internet (about a 17.5MB download). The parameters 
that the example uses encompass just the top 10,000 words, and Keras should 
shuffle the data using a specific random seed. (Knowing the seed enables you to 

https://www.imdb.com/
https://keras.io/datasets/
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reproduce the shuffle as needed.) The function returns two train and test sets, 
both made of text sequences and the sentiment outcome.

from keras.datasets import imdb
 
top_words = 10000
((x_train, y_train),
 (x_test, y_test)) = imdb.load_data(num_words=top_words,
                                    seed=21)

After the previous code completes, you can check the number of examples using 
the following code:

print("Training examples: %i" % len(x_train))
print("Test examples: %i" % len(x_test))

The following output shows that the examples are split evenly between training 
and testing:

Training examples: 25000
Test examples: 25000

This dataset is a relatively small one for a language problem; clearly the dataset is 
mainly for demonstration purposes. In addition, the code determines whether the 
dataset is balanced, which means it has an almost equal number of positive and 
negative sentiment examples.

import numpy as np
print(np.unique(y_train, return_counts=True))

Here’s the output you should see:

(array([0, 1], dtype=int64), array([12500, 12500],
 dtype=int64))

The result, array([12500, 12500]), confirms that the dataset is split evenly 
between positive and negative outcomes. Such a balance between the response 
classes is exclusively because of the demonstrative nature of the dataset. In the 
real world, you seldom find balanced datasets.

Creating the review dictionaries
Now that you have a dataset to use, it’s time to create some Python dictionaries 
that can convert between the code used in the dataset and the real words. In fact, 
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the dataset used in this example is preprocessed and provides sequences of num-
bers representing the words, not the words themselves. (LSTM and GRU algo-
rithms that you find in Keras expect sequences of numbers as numbers.)

word_to_id = {w:i+3 for w,i in
 imdb.get_word_index().items()}
id_to_word = {0:'<PAD>', 1:'<START>', 2:'<UNK>'}
id_to_word.update({i+3:w for w,i in
 imdb.get_word_index().items()})
 
def convert_to_text(sequence):
    return ' '.join(
       [id_to_word[s] for s in sequence if s>=3])
 
print(convert_to_text(x_train[8]))

Here’s the output from this part of the example:

this movie was like a bad train wreck as horrible as it
 was you still had to continue to watch my boyfriend and i
 rented it and wasted two hours of our day now don't get
 me wrong the acting is good just the movie as a whole
 just both of us there wasn't anything positive or good
 about this scenario after this movie i had to go rent
 something else that was a little lighter jennifer is as
 usual a very dramatic actress her character seems manic
 and not all there hannah though over played she does a
 wonderful job playing out the situation she is in more
 than once i found myself yelling at the tv telling her to
 fight back or to get violent all in all very violent
 movie not for the faint of heart

The previous code snippet defines two conversion dictionaries (from words to 
numeric codes and vice versa) and a function that translates the dataset examples 
into readable text. As an example, the code prints the ninth example: “this movie 
was like a bad train wreck as horrible as it was . . .”. From this excerpt, you can 
easily anticipate that the sentiment for this movie isn’t positive. Words such as 
bad, wreck, and horrible convey a strong negative feeling, and that makes guessing 
the correct sentiment easy.

In this example, you receive the numeric sequences and turn them back into 
words, but the opposite is common. Usually, you get phrases made up of words 
and turn them into sequences of integers to feed to a layer of RNNs. Keras offers 
a specialized function, Tokenizer (see https://keras.io/preprocessing/
text/#tokenizer), which can do that for you. It uses the methods fit_on_text, 

https://keras.io/preprocessing/text/#tokenizer
https://keras.io/preprocessing/text/#tokenizer
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to learn how to map words to integers from training data, and texts_to_matrix, 
to transform text into a sequence.

However, in other reviews, you may not find revealing words like bad, wreck, and 
horrible. The feeling is expressed in a more subtle or indirect way, and under-
standing the sentiment early in the text may not be possible because revealing 
phrases and words may appear much later in the discourse. For this reason, you 
also need to decide how much of the review you want to analyze. Conventionally, 
you take an initial part of the text, a phrase, and use it as representative of the 
entire review. Sometimes you just need a few initial words — for instance, the 
first 50 words — to get the sense; sometimes you need more. Especially long texts 
don’t reveal their orientation early. It’s therefore up to you to understand the type 
of text you’re working with and decide how many words to analyze using deep 
learning. This example considers only the first 200 words, which should suffice.

Performing input padding
You may have noticed that the code starts encoding words beginning with 
the  number 3, thus leaving codes from 0 to 2. Lower numbers are used for  
special tags, such as signaling the start of the phrase, filling empty spaces to have 
the sequence fixed at a certain length, and marking the words that are excluded 
because they’re not frequent enough. This example picks up only the most 
 frequent 10,000 words. Using tags to point out start, end, and notable situations is 
a trick that works with RNNs, especially for machine translation.

from keras.preprocessing.sequence import pad_sequences
 
max_pad = 200
x_train = pad_sequences(x_train,
                        maxlen=max_pad)
 
x_test = pad_sequences(x_test,
                       maxlen=max_pad)
 
print(x_train[0])

As output, you see the following list (shortened to fit in the book):

[  88    4 3310  406 6762    2    4  427 2140 1656...
    2  494   46 1954 4712  198   51   13  683 1193...
   89    4  114  495 7303  197    4 1168 1656   61...
   21   13  839   90  145    8  113   34 8253   27...
    6 8870 3310   88 8222   92    2    8 5388    5...
    2  449  168    6  404    2  112  207 1075    4...
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  406 1522   13  124  903   97   90    2   21    2...
    2    2   93   61  492    2  305    7    2    4...
 5679   83   27  117 2687 5419   29  941 1889   90...
  793    4 1526   84   37   28   34   96    7   49...
   56   23   61 2301 1111    9    4  255    8  937...
  159   29 1131   13 2134 3872   81   41   32   14...
  576 1301    5 5348 3134  255  335  170    8    2...
   29    9    2    2 3310  415   11 5215   89 1047...
  106   14   20  126]

By using the pad_sequences function from Keras with max_pad set to 200, 
the code takes the first two hundred words of each review. In case the review  
contains fewer than two hundred words, as many zero values as necessary pre-
cede the sequence to reach the required number of sequence elements. Cutting the 
sequences to a certain length and filling the voids with zero values is called input 
padding, an important processing activity when using RNNs like deep learning 
algorithms.

Designing an architecture
To perform an analysis of the reviews, you need to create a model that includes 
the needed algorithms. The resulting model is the architecture of your analysis 
engine. This example uses the following architecture:

from keras.models import Sequential
from keras.layers import Bidirectional, Dense, Dropout
from keras.layers import GlobalMaxPool1D, LSTM
from keras.layers.embeddings import Embedding
 
embedding_vector_length = 32
model = Sequential()
model.add(Embedding(top_words,
                    embedding_vector_length,
                    input_length=max_pad))
 
model.add(Bidirectional(LSTM(64, return_sequences=True)))
model.add(GlobalMaxPool1D())
model.add(Dense(16, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
 
model.compile(loss='binary_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
 
print(model.summary())
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The previous code snippet defines the shape of the deep learning model, where 
it uses a few specialized layers for natural language processing from Keras. The 
example also has required a summary of the model (model.summary() command) 
to determine what is happening with architecture by using different neural layers. 
Here’s the summary of the model in this case:

__________________________________________________________
Layer (type)                 Output Shape       Param #
==========================================================
embedding_1 (Embedding)      (None, 200, 32)    320000
__________________________________________________________
bidirectional_1 (Bidirection (None, 200, 128)   49664
__________________________________________________________
global_max_pooling1d_1 (Glob (None, 128)        0
__________________________________________________________
dense_1 (Dense)              (None, 16)         2064
__________________________________________________________
dense_2 (Dense)              (None, 1)          17
==========================================================
Total params: 371,745
Trainable params: 371,745
Non-trainable params: 0
__________________________________________________________
None

You have the Embedding layer, which transforms the numeric sequences into a 
dense word embedding. A dense word embedding is easier for the layer of RNNs 
to learn, as discussed in the “Understanding Semantics Using Word Embeddings” 
section of Book 4, Chapter 4. Keras provides an Embedding layer, which, apart 
from having to be the first layer of the network, can accomplish two tasks:

 » Applying pretrained word embedding (such as Word2vec or GloVe) to the 
sequence input. You just need to pass the matrix containing the embedding 
to its parameter weights.

 » Creating a word embedding from scratch, based on the inputs it receives.

In this second case, Embedding needs to know:

 » input_dim: The size of the vocabulary expected from data

 » output_dim: The size of the embedding space that will be produced (the 
so-called dimensions)

 » input_length: The sequence size to expect
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After you determine the parameters, Embedding will find better weights to trans-
form the sequences into a dense matrix during training. The dense matrix size is 
given by the length of sequences and the dimensionality of the embedding.

If you use The Embedding layer provided by Keras, you have to remember that the 
function provides only a weight matrix of the size of the vocabulary by the dimen-
sion of the desired embedding. It maps the words to the columns of the matrix and 
then tunes the matrix weights to the provided examples. This solution, although 
practical for nonstandard language problems, is not analogous to the word embed-
dings discussed previously, which are trained in a different way and on millions 
of examples.

The example uses Bidirectional wrapping — an LSTM layer of 64 cells. Bidi-
rectional transforms a normal LSTM layer by doubling it: On the first side, it 
applies the normal sequence of inputs you provide; on the second, it passes the 
reverse of the sequence. You use this approach because sometimes you use words 
in a different order, and building a bidirectional layer will catch any word pattern, 
no matter the order. The Keras implementation is straightforward; you apply it as 
a function on the layer you want to render bidirectionally.

The bidirectional LSTM is set to return sequences (return_sequences=True); that 
is, for each cell, it returns the result provided after seeing each element of the 
sequence. The results, for each sequence, is an output matrix of 200 x 128, where 
200 is the number of sequence elements and 128 is the number of LSTM cells used 
in the layer. This technique prevents the RNN from taking the last result of each 
LSTM cell. Hints about the sentiment of the text could actually appear anywhere 
in the embedded words sequence.

In short, it’s important not to take the last result of each cell, but rather the best 
result of it. The code therefore relies on the following layer, GlobalMaxPool1D, 
to check each sequence of results provided by each LSTM cell and retain only the 
maximum result. That should ensure that the example picks the strongest signal 
from each LSTM cell, which is hopefully specialized by its training to pick some 
meaningful signals.

After the neural signals are filtered, the example has a layer of 128 outputs, one 
for each LSTM cell. The code reduces and mixes the signals using a successive 
dense layer of 16 neurons with ReLU activation (thus making only positive  signals 
pass through; see the “Choosing the right activation function” section of Book 4, 
Chapter  2 for details). The architecture ends with a final node using sigmoid 
 activation, which will squeeze the results into the 0–1 range and make them look 
like probabilities.
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Training and testing the network
Having defined the architecture, you can now train the network. Three epochs 
(passing the data three times through the network to have it learn the patterns) 
will suffice. The code uses batches of 256 reviews each time, which allows the 
network to see enough variety of words and sentiments each time before updating 
its weights using backpropagation. Finally, the code focuses on the results pro-
vided by the validation data (which isn’t part of the training data). Getting a good 
result from the validation data means that the neural net is processing the input 
correctly. The code reports on validation data just after each epoch finishes.

history = model.fit(x_train, y_train,
                    validation_data=(x_test, y_test),
                    epochs=3, batch_size=256)

Getting the results takes a while, but if you are using a GPU, it will complete in the 
time you take to drink a cup of coffee. At this point, you can evaluate the results, 
again using the validation data. (The results shouldn’t have any surprises or dif-
ferences from what the code reported during training.)

loss, metric = model.evaluate(x_test, y_test, verbose=0)
print("Test accuracy: %0.3f" % metric)

The final accuracy, which is the percentage of correct answers from the deep 
neural network, will be a value of around 85–86 percent. The result will change 
slightly each time you run the experiment because of randomization when build-
ing your neural network. That’s perfectly normal given the small size of the data 
you are working with. If you start with the right lucky weights, the learning will 
be easier in such a short training session.

In the end, your network is a sentiment analyzer that can guess the sentiment 
expressed in a movie review correctly about 85 percent of the time. Using even 
more training data and more sophisticated neural architectures, you can get 
results that are even more impressive. In marketing, a similar tool is used to 
automate many processes that require reading text and taking action. Again, you 
could couple a network like this with a neural network that listens to a voice and 
turns it into text. (This is another application of RNNs, which now power Alexa, 
Siri, Google Voice, and many other personal assistants.) The transition allows 
the application to understand the sentiment even in vocal expressions, such as a 
phone call from a customer.
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Processing Time Series
It’s possible to use RNNs for time series predictions. Unlike regression analysis, a 
time series prediction adds the complexity of a sequence to the prediction. Simply 
predicting a value overall is not enough; you must now predict that value based on 
where it fits in a sequence. For example, you may want to predict the sales for a 
store in a given month based on previous data for that month. Merely viewing the 
sales as a whole is not enough because stores commonly go through sales cycles 
such that 100 sales in January might be quite good, while 100 sales in July is abys-
mal. However, you also can’t just use the sales for that month because the store 
will experience an overall sales trend that appears as sales increases or decreases 
in all the months as a whole.

Defining sequences of events
To better understand how a time series works, it pays to look at a dataset that 
includes a time series. The example in this and the sections that follow relies on the 
Airline Passengers Prediction dataset, found at https://raw.githubusercontent.
com/jbrownlee/Datasets/master/airline-passengers.csv. The following code 
downloads the dataset when you don’t already have it installed on your system:

import urllib.request
import os.path
 
filename = "airline-passengers.csv"
if not os.path.exists(filename):
    url = "https://raw.githubusercontent.com/\
jbrownlee/Datasets/master/airline-passengers.csv"
    urllib.request.urlretrieve(url, filename)

After you have a copy of the dataset, you can display the pertinent data as a plot so 
that you can see how the data varies over time using the following code:

%matplotlib inline
 
import pandas
import matplotlib.pyplot as plt
 
apDataset = pandas.read_csv('airline-passengers.csv',
                          usecols=[1])
plt.plot(apDataset)
plt.show()

https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv
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Figure 5-1 shows how the data varies. Notice that the number of passengers varies 
over time, steadily increasing. However, the data also has a cycle that you must 
account for when working with it.

Performing a prediction using LSTM
As mentioned in the “Considering the processing methodologies” section, early 
in this chapter, LSTM is one of the processing methodologies you have at your 
disposal when performing certain tasks. You can use it to perform predictions 
on time-series data using RNNs. The following sections show how to perform 
 predictions on the Airline Passengers Prediction dataset using LSTM.

Creating training and testing datasets
The first step is to obtain the values from the dataset you just imported, using 
this code:

values = apDataset.values.astype('float32')

LSTM is sensitive to the range of data you provide. This next step normalizes the 
data so that it falls in the range between 0 and 1.

from sklearn.preprocessing import MinMaxScaler
 
scaler = MinMaxScaler(feature_range=(0, 1))
normValues = scaler.fit_transform(values)

FIGURE 5-1:  
Working with 

cyclic data that 
varies over time.
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If you were to print normValues, you’d find that the values range between 0 and 
1 as expected. As you can see from the graph in Figure 5-1, the dataset contains 
144 entries, constituting 12 years of data. You need to split the normalized dataset 
into training and testing datasets. To provide enough training data, you want to 
use eight years of data for training (96 entries) and four years of data for testing 
(48 entries), using the following code:

train, test = normValues[0:96,:], normValues[96:144,:]
print("Train size: {0}, Test size: {1}".format(
    len(train), len(test)))

Managing the passenger sequence
The analysis you want to perform is all about sequence. You want to know 
how things happen in a time sequence, so the example uses special functions to 
create two datasets for training, trainX and trainY, where trainX is this month’s 
passengers and trainY is next month’s passengers. The same holds true for  
testX and testY. To better see how the analysis works, the following code 
 performs the task in the original (before normalization) dataset first:

import numpy as np
 
np.random.seed(5)
 
def create_dataset(dataset):
        dataX, dataY = [], []
        for i in range(len(dataset)-2):
                a = dataset[i:(i+1), 0]
                dataX.append(a)
                dataY.append(dataset[i + 1, 0])
        return np.array(dataX), np.array(dataY)
 
valuesX, valuesY = create_dataset(values)
 
for a, b in zip(valuesX, valuesY):
    print("{0}   {1}".format(a, b))

The output (shortened for the book) shows how the next month, b, is always one 
ahead of this month, a:
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[112.]   118.0
[118.]   132.0
[132.]   129.0
[129.]   121.0
[121.]   135.0

Of course, you now need to do the same thing to the normalized values, using this 
code:

trainX, trainY = create_dataset(train)
testX, testY = create_dataset(test)

Each row in the trainX and testX datasets are currently one-month samples. 
Within that sample is a feature — the number of passengers in a normalized form. 
So, a value like [0.01544401] is a sample feature configuration. To perform the 
analysis, what you really need is a sample, a step within that sample, and then a 
feature. The following code reshapes the trainX and testX datasets so that they 
appear as [[0.01544401]]:

trainX = np.reshape(trainX, (trainX.shape[0],
                             1, trainX.shape[1]))
testX = np.reshape(testX, (testX.shape[0], 1,
                           testX.shape[1]))

Defining the passenger analysis model
After all the required preparation is complete, you can finally create a model to 
perform the desired analysis. The following code specifies the elements in the 
model and then compiles it. It then fits the data to the model.

from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.metrics import mean_squared_error
 
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=50, batch_size=1,
          verbose=2)



578      BOOK 5  Performing Data-Related Tasks

You could use additional epochs, but if you view the output, you see that the model 
stabilizes by epoch 25, so using 50 epochs is a little overkill.

Making a prediction
It’s time to use the model to make a prediction. The following code makes a pre-
diction using the training and testing models:

trainPredict = model.predict(trainX)
testPredict = model.predict(testX)

Because of the method used to perform the prediction, it’s essential to invert the 
data so that you see the results in the original form of thousands of passengers 
per month:

trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])

Finally, you can calculate the root-mean-square-error (RMSE) of the predictions. 
This score shows the goodness of the model:

import math
 
trainScore = math.sqrt(mean_squared_error(
    trainY[0], trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(
    testY[0], testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))

Here’s the output you can expect:

Train Score: 23.19 RMSE
Test Score: 49.74 RMSE
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Developing Impressive 
Charts and Plots

Many people think that data science is all about data manipulation 
and analysis; a few add data cleaning and selection into the mix. The 
idea of being able to see patterns in data that no one else can see is 

intoxicating — akin to going on a treasure hunt and finding something fabulous. 
Of course, if you’ve ever watched treasure hunters, you know that they don’t keep 
their discoveries to themselves. They blast the radio and television waves with 
their finds, they show up in bookstores, their adventures appear in blogs, and they 
most definitely talk about them on Facebook and Twitter. After all, what’s the use 
in finding something amazing and then keeping it to yourself? That’s what this 
chapter is about: telling others about your data science finds. Most people react 
more strongly to visual experiences than to text, though, so this chapter talks 
about graphical communication methods. The goal is to make you look impressive 
when you present the most dazzling data find ever using a bit of pizzazz.

You don’t need to be a graphic designer to use graphs, charts, and plots in your 
notebooks (don’t worry if you don’t know the difference now; you’ll discover the 
difference between these forms of presentation early in the chapter). In fact, if 
you follow a simple process of following where your data leads, you’ll likely end 
up with something usable without a lot of effort. The first part of this chapter 
discusses how to create a basic presentation without a lot of augmentation so that 
you can see whether your selection will actually work.

Chapter 6

IN THIS CHAPTER

 » Starting a basic chart or plot

 » Augmenting a chart or plot

 » Developing advanced charts and 
plots

 » Working with specialized charts and 
plots
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The second section of this chapter discusses various kinds of augmentation you 
perform to make your presentation eye grabbing and informative. You use graphs, 
charts, and plots to communicate specific ideas to people who don’t necessarily 
know (or care) about data science. The graphic nature of the presentation gives up 
some precision in favor of communicating more clearly.

Some types of graphs, charts, and plots see more use in data science because they 
communicate big data, statistics, and various kinds of analysis so well. You see 
some of these presentations in earlier chapters in the book, and you can be sure of 
seeing more of them later. The third section of the chapter describes these special 
data science perspectives in more detail so that you know, for example, why a 
scatterplot often works better for presenting data than a line chart.

The final section of the chapter discusses the presentation of data abstractions 
used in data science in graphical form. For example, a hierarchy is hard to vis-
ualize, even for an experienced data scientist, in some cases. Using the correct 
directed or undirected graph can make a huge difference in understanding the 
data you want to analyze.

You don’t have to type the source code for this chapter manually. In fact, using the 
downloadable source is a lot easier. The source code for this chapter appears in the 
DSPD_0506_Graphics.ipynb source code file for Python and the DSPD_R_0506_
Graphics.ipynb source code file for R. See the Introduction for details on how to 
find these source files.

Starting a Graph, Chart, or Plot
Graphs, charts, and plots don’t suddenly appear in your notebook out of nowhere; 
you must create them. The problem for many data scientists, who are used to 
looking at the big picture, is that the task can seem overwhelming. However, every 
task has a beginning, and by breaking the task down into small enough pieces, you 
can make it quite doable. The following sections discuss the starting point for any 
graph, chart, or plot that you need to present your data.

Understanding the differences between 
graphs, charts, and plots
The terms graph, chart, and plot are used relatively often in the chapter, and you 
might be confused by their use. The problem is that many people are confused, 
and this confusion leads to a lack of consensus on precisely what the terms mean. 



D
ev

el
op

in
g 

Im
pr

es
si

ve
 

Ch
ar

ts
 a

nd
 P

lo
ts

CHAPTER 6  Developing Impressive Charts and Plots      581

However, before the chapter can proceed, you need to know how the book uses the 
terms graph, chart, and plot:

 » Graph: Used to present data abstractions, such as the output of a mathemati-
cal formula or an algorithm, in a continuous form, such as a line graph. In 
addition, you see graphs used to present abstract data, such as the points in a 
hierarchy or the connections between nodes in a representation of a complex 
relationship. A graph is also used as the output for certain kinds of analysis, 
such as trying to compute the best route from one point to another based on 
time, distance, fuel use, or some other criterion.

 » Chart: Presents data as discrete elements using specialized symbols, such as 
bars. A chart normally presents discrete real data, as opposed to data 
abstractions. There is usually some x/y element to the data presentation, such 
that each data element is compared according to some common constraint. 
For example, a chart might show the number of passengers who travel by air 
in a given month, with the chart presenting the number of passengers for 
each month over a given time frame as individual bars.

USING PLOT, GRAPH, OR CHART 
GENERICALLY
For many people, any graphic presentation of data, no matter the form, is a plot. The 
term is just a shorthand method of referring to a graphic presentation when speaking 
informally. Likewise, you find other people using graph or chart in the same manner. 
The use of a term generically often reflects a person’s preference for a particular  
presentation — the presentation they use most often.

In many respects, this sort of informal use is inaccurate because the person hearing 
the term doesn’t quite know what sort of graphic presentation to expect, yet people will 
continue to use these terms generically simply because precision isn’t always necessary 
or even possible. For example, it’s hard to know how to refer to a graphic presentation 
that includes both a line graph and a bar chart, which happens more often than you 
might think. Likewise, data scientists often show plots with lines graphs added to show 
a general trend or the results of an analysis against the plotted data.

When possible, try to use the correct term so that people will know what sort of graphic 
presentation to expect. However, even in this book, you’ll find some generic uses of the 
term plot simply because it’s more convenient and easier to read than listing multiple 
terms constantly. In addition, data science is more prone to using plots because of the 
interest in seeing data clusters and trends.
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 » Plot: Presents data in a coordinate system in which both the x and y axis are 
continuous and two points can occupy the same place at the same time. Plots 
normally rely on dots or other symbols to display each data element within 
the coordinate system without any connectivity between each of the data 
elements. The grouping and clustering of plot points tends to present 
patterns to the viewer, rather than showing a specific average or other 
calculated value. Plots often add another dimension to a data display using 
color for each of the data categories or size for the data values.

Considering the graph, chart,  
and plot types
This book considers the use of MatPlotLib (https://matplotlib.org/) for drawing 
in Python because it’s flexible and is found in many source code examples online. 
However, you can find a long list of graphic packages for Python online, including 
those found here: https://wiki.python.org/moin/UsefulModules#Plotting. 
Even if you restrict yourself to MatPlotLib, you still have access to a broad range of 
graph, chart, and plot types, as described here: https://matplotlib.org/3.1.0/
tutorials/introductory/sample_plots.html.

When working with R, the best solution is to rely on built-in functionality for 
most needs, as described at https://www.statmethods.net/graphs/index.
html. However, you also have specialized alternatives, such as ggplot2 (https://
ggplot2.tidyverse.org/).

No matter which language you work in, the variety of graph, chart, and plot types 
can be overwhelming. However, if you limit yourself to these kinds of graphs, 
charts, and plots at the outset, you find that you can cover the majority of your 
needs without getting that second degree in graphic design:

 » Line graph: This is the standby for every sort of continuous data. The 
emphasis here is on continuous; you want to have an ongoing relationship 
between the various data elements. This is why this particular kind of graph 
works so well for the output of certain kinds of algorithms. You use this graph 
to smooth differences — that is, to see trends.

 » Bar chart: This is the standby for every sort of discrete data, where each 
value stands on its own. To see how sales increase over time, for example, 
you must choose a discrete time interval and chart the sales for the interval as 
a unit, rather than consider the sales from any other interval. You use this 
chart to amplify differences — to see specifically how things differ.

https://matplotlib.org/
https://wiki.python.org/moin/UsefulModules#Plotting
https://matplotlib.org/3.1.0/tutorials/introductory/sample_plots.html
https://matplotlib.org/3.1.0/tutorials/introductory/sample_plots.html
https://www.statmethods.net/graphs/index.html
https://www.statmethods.net/graphs/index.html
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
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 » Histogram: This is a kind of bar chart that groups data within a range in a 
practice called binning. For example, you may want to see how many trees fall 
within specific height ranges, so you group the data elements by height and 
then display discrete heights on screen. In addition, you may want to have the 
trees that grow to 10 feet fall into one bin, those that grow to 20 feet fall into a 
second bin, those that grow to 30 feet into a third bin, and so on.

 » Pie chart: This is a special sort of chart for statistical analysis that considers 
parts of a whole. You often see it used for financial data, but it also has uses for 
other needs. Because this is a part of a whole chart, the values depicted are 
percentages, not actual values. (However, you can label each wedge with the 
specific value for that wedge.) As a result, this is a special kind of analysis chart.

 » Scatter plot: This is the standby for discrete data displayed using coordinates. 
Unlike other display types, this one shows actual data values when compared 
to some specific criteria. For example, you might use this kind of plot to show 
the number and size of messages generated by individual users on a particu-
lar day. The x-axis might show the number of messages, while the y-axis 
shows the message size.

Defining the plot
Most libraries use a type of line graph for quick or simple displays. You create 
two variables to hold the x and y coordinates and then plot them, as shown in the 
following code:

%matplotlib inline
 
import matplotlib.pyplot as plt
 
x = [1, 2, 3, 4, 5, 6]
y = [2, 8, 4, 3, 2, 5]
plt.plot(x, y)
plt.show()

In this particular case, you see the line graph shown in Figure 6-1. There aren’t 
any labels to tell you about the line graph, but you can see the layout of the data. 
In some cases, this is really all you need to get your point across when the viewer 
can also see the code.
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Drawing multiple lines
Sometimes a single plot will contain multiple datasets. You can to compare the 
two datasets, so you use a single line for each to make comparison easy. In this 
case, you plot each of the lines separately, but in the same graph, as shown here:

x = [1, 2, 3, 4, 5, 6]
y1 = [2, 8, 4, 3, 2, 5]
y2 = [1, 3, 9, 2, 4, 6]
 
plt.plot(x, y1)
plt.plot(x, y2)
plt.show()

Even using the default settings, you see the two lines in different colors or using 
unique symbols for each of the data points. The lines help you keep the two plots 
apart, as shown in Figure 6-2.

Drawing multiple plots
You might need to show multiple kinds of subplots as part of the same plot (or 
figure). Perhaps direct comparison isn’t possible, or you may simply want to use 
different plot types. The following code shows how to draw multiple subplots in 
the same plot.

FIGURE 6-1:  
The output of a 

plain line graph.
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import numpy as np
 
width = .5
spots = np.arange(len(y1))
x1 = 1 + spots - width / 2
x2 = 1 + spots + width / 2
 
figure = plt.figure(1)
 
plt.subplot(1,2,1)
plt.plot(x, y1)
plt.plot(x, y2)
 
plt.subplot(1,2,2)
plt.bar(x1, y1, width)
plt.bar(x2, y2, width)
plt.show()

This presentation requires a little more explanation. In order to display the bar 
chart elements side by side, you need to define a new x-axis that provides one set 
of values for the first set of bars and a second, offset, x-axis that provides a sec-
ond set of values for the second set of bars. The rather odd-looking code calculates 
these values. If you were to print x1 and x2 out, you’d see these values:

[0.75 1.75 2.75 3.75 4.75 5.75]
[1.25 2.25 3.25 4.25 5.25 6.25]

FIGURE 6-2:  
The output of 

multiple datasets 
in a single line 

graph.
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To create multiple subplots, you must first define a figure to hold each plot. You 
then use plt.subplot() to specify the start of each subplot. The three numbers 
you see define the number of rows and columns for the subplot, along with an 
index into that subplot series. Consequently, this example has one row and two 
columns, with the line graph at index 1 and the bar chart at index 2, as shown in 
Figure 6-3.

Saving your work
Sometimes you want to save just the output of an analysis as a plot to disk. Perhaps 
you want to put it in a report other than the kind you can create with Notebook.

To save your work, you must have access to a figure. The previous section saves 
figure number 1 to the variable figure using figure = plt.figure(1). Without 
this variable, you can’t save the plot to disk. The actual act of saving the figure 
requires just one line of code, as shown here:

figure.savefig('MyFig.png', dpi=300)

The filename extension defines the format of the saved figure. You can also spec-
ify the format separately. Defining the dpi value is important because the default 
setting is None, which can cause some issues when you try to import the figure 
into certain graphics applications.

FIGURE 6-3:  
The output 
of multiple 

 presentations  
in a single figure.
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Setting the Axis, Ticks, and Grids
Even though a plot will never be quite as accurate for obtaining measurements as 
actual text, you can still make it possible to perform rough measurement using an 
axis, ticks, and grids. As with many other aspects of graphic presentations, these 
three terms can mean different things to different people. Here is how the book 
uses them:

 » Axis: The line used to differentiate data planes within the graphic presentation. 
The x-axis, which is horizontal, and the y-axis, which is vertical, are the two most 
common. A three-dimensional graphic presentation will have a z-axis. The axis 
controls formatting such as the minimum and maximum values, scaling (with 
linear and logarithmic being common), labeling, and so on.

 » Ticks: The placement of markers along the axis to show data measurements. 
The ticks represent values that the viewer can see and use to determine the 
value of a data point at a specific place along the line. You can control tick 
labeling, color, and size, among other things.

 » Grids: The addition of lines across the graphic presentation as a whole that 
usually extend the ticks to make measurement easier. A grid can make data 
measurements easier but can also obscure some data points, so using a grid 
carefully is essential. The data grid can include variations in color, thickness, 
and other formatting elements.

Even though axes is the plural of axis, some graphics libraries make a significant 
difference between axes and axis. For example, in MatPlotLib, the Axes object 
contains most of the figure elements, and you use it to set the coordinate system. 
The Axes object contains Axis, Tick, Line2D, Text, Polygon, and other graphic 
elements used to define a graphic presentation, so you need to exercise care when 
using axes as the plural of axis.

Getting the axis
When working with R, you need to perform all the tasks required to create a 
graphic within a single cell. However, you have the same access to graphing func-
tionality as you do with Python. The example source for the R example in this 
section shows you some additional details.

When working with Python, you may notice that after you call plt.show() when 
using the %matplotlib inline magic, you can’t get the plot to display again 
 without essentially rebuilding it. The article at https://matplotlib.org/users/
artists.html describes the technical details that explain why this inability to 
display the graphic output again occurs. However, you can present changes to 

https://matplotlib.org/users/artists.html
https://matplotlib.org/users/artists.html
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a graph as part of a Notebook by using another technique. It starts by using the 
%matplotlib notebook magic and figure.canvas.draw() instead, as shown 
here:

%matplotlib notebook
 
figure = plt.figure(1)
 
ax1 = figure.add_subplot(1,2,1)
ax1.plot(x, y1)
ax1.plot(x, y2)
 
figure.canvas.draw()

The output differs from the previous outputs in this chapter, as shown in 
Figure 6-4. This form of output presents you with considerable leeway in siz-
ing, printing, and interacting with the figure in other ways. You also see just one 
image, rather than multiple images, for each step of the modification process.

This same figure remains in place as you make changes. For example, if you want 
to change the color used for the graph, you access the patch attribute and set the 
desired color, as shown here:

ax1.patch.set_facecolor('yellow')
figure.canvas.draw()

FIGURE 6-4:  
Allowing multiple 

revisions to a 
single output 

graphic.
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When you run this code, you see the background of the original figure change, 
rather than see a new figure created. The point is that the changes can occur 
over multiple cells, making this approach more flexible in some respects, even if 
you can’t see an actual progression using multiple figures. You can even add new 
graphics by using the following code:

width = .5
spots = np.arange(len(y1))
x1 = 1 + spots - width / 2
x2 = 1 + spots + width / 2
 
ax2 = figure.add_subplot(1,2,2)
ax2.bar(x1, y1, width)
ax2.bar(x2, y2, width)
figure.canvas.draw()

You can also make additions to existing graphics. The following code adds titles to 
the existing graphics. You can see the output in Figure 6-5.

ax1.set_title("Line Graph")
ax2.set_title("Bar Chart")
figure.canvas.draw()

FIGURE 6-5:  
The original 

figure changes  
as needed.
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Formatting the ticks
The ticks you use to draw your chart help define how easily someone can use the 
data. It may seem at first that providing small tick increments and precise mea-
sures would provide better information, but sometimes doing so just makes the 
plot look cramped and hard to read. In addition, when working with ticks, you 
often find that the labeling is critical in making the data understandable. The fol-
lowing code takes the line shown in Figure 6-2 and augments the ticks to make 
them easier to see:

figure2 = plt.figure(2)
 
ax3 = figure2.add_subplot(1,1,1)
ax3.plot(x, y1)
ax3.plot(x, y2)
 
plt.xticks(np.arange(start=1, stop=7),
           ('A', 'B', 'C', 'D', 'E', 'F'))
plt.yticks(np.arange(start=1, stop=10, step=2))
plt.tick_params('both', color='red', length=10,
                labelcolor='darkgreen', labelsize='large')
 
figure2.canvas.draw()

Even though you can’t see the colors in Figure 6-6, you can see that the ticks are 
now larger and wider spaced to make determining the approximate values of each 
data point easier. The use of letters for the x-axis ticks simply points out that you 
could use any sort of textual label desired. Notice that you don’t work with the 
axis variable, ax3, but rather change the plot as a whole. To see more tick manip-
ulation pyplot functions, see the listing that appears at https://matplotlib.
org/3.1.0/api/_as_gen/matplotlib.pyplot.html.

Adding grids
Adding grids to a plot is one way to make it easier for the viewer to make more 
precise data value judgments. The downside of using them, however, is that they 
can also obscure precise data points. You want to use grids with caution, and the 
correct configuration can make a significant difference in what the reviewer sees. 
The following code adds grids to the plot in Figure 6-6:

plt.grid(axis='x', linestyle='-.',
         color='lightgray', linewidth=1)
plt.grid(axis='y', linestyle='--',
         color='blue', linewidth=2)

https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.html
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.html
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You can choose to create various grid presentations to meet the needs of your 
audience using separate calls, as shown here. Figure 6-7 doesn’t show the colors, 
but you can see the effect of the settings quite well. If you don’t provide an axis 
argument, the grid settings apply to both axes.

Defining the Line Appearance
The formatting of lines in your graphics can make a big difference in visibil-
ity, ease of understanding, and focus (heavier lines tend to focus the viewers’ 
attention). So far, the various graphics have used solid lines to present relation-
ships between data points as needed. In addition, the examples have used the 

FIGURE 6-6:  
Modifying the 

plot ticks.

FIGURE 6-7:  
Adding grid lines 

to make data 
easier to read.
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default line colors and haven’t provided any sort of markers for the individual 
data points. All these factors are relatively easy to control when you have access 
to the required line objects, such as Line2D, described at https://matplotlib.
org/3.1.0/api/_as_gen/matplotlib.lines.Line2D.html. The following sec-
tions show how to work with lines in various ways so that you can change their 
appearance as needed.

Working with line styles
You can set line styles either as part of creating the plot or afterward. In fact, 
changing the focus during a presentation is possible by making changes to line 
style. Some changes are subtle, such as making the line thicker, while others are 
dramatic, such as changing the line color or style. The following code presents just 
a few of the changes you can make:

import matplotlib.lines as lines
 
figure3 = plt.figure(3)
 
ax4 = figure3.add_subplot(1,1,1)
ax4Lines = ax4.plot(x, y1, '-.b', linewidth=2)
ax4.plot(x, y2)
 
line1 = ax4Lines[0]
line1.set_drawstyle('steps')
 
line2 = ax4.get_lines()[1]
line2.set_linestyle(':')
line2.set_linewidth(3)
line2.set_color('green')
 
figure3.canvas.draw()

The initial plotting process sets the line characteristics for the first line using 
plot() method arguments. The '-.b' argument is a format string that can con-
tain the marker type, line style, and line color, as described in the plot() methods 
notes at https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.
plot.html#matplotlib.pyplot.plot.

Notice that you can obtain the list of lines in a plot using one of two methods:

 » Saving the plot output

 » Using the get_lines() method on the plot

https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.lines.Line2D.html
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.lines.Line2D.html
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot
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Instead of the 'default' draw style, the first line now uses the 'steps' draw 
style, which can make seeing data transitions significantly easier. This example 
obtains the parameters for the second line in the subplot using the get_lines() 
method. It sets the three properties for the line that the code set as part of the plot 
for the first line. Figure 6-8 shows how these changes appear in the output.

Adding markers
Markers, like grid lines, can serve to emphasize data. In this case, you emphasize 
individual data points and sometimes data transitions as well. Like grid lines, 
the size of the marker can affect the viewer’s ability to see precisely where the 
data point lies, reducing accuracy in the process. Consequently, you must always 
 consider the trade-offs of using certain marker configurations on a plot; that is, 
you need to consider whether the goal is to emphasize a data point or to make 
it possible for a viewer to see the data more accurately. The following code adds 
markers to the plot shown previously in Figure 6-8.

line1.set_marker('s')
line1.set_markerfacecolor('red')
line1.set_markersize(10)
 
line2.set_marker('8')
line2.set_markerfacecolor('yellow')
line2.set_markeredgecolor('purple')
line2.set_markersize(6)

FIGURE 6-8:  
Making changes 
to a line as part 

of the plot or 
separately.
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The kind of marker you choose can affect how easily someone can see the marker 
and how much it interferes with the data points. In this example, the square used 
for line1 is definitely more intrusive than the octagon used for line2. MatPlotLib 
supports a number of different markers that you can see at https://matplotlib.
org/3.1.0/api/markers_api.html#module-matplotlib.markers.

The size of the marker also affects how prominent it appears. The various markers 
have different default sizes, so you definitely want to look at the size when creat-
ing a presentation.

The line2 configuration also shows just one of a wide variety of special effects that 
you can create. In this case, the outside of the octagon is purple, while the inside 
is yellow. Figure 6-9 shows the results of these changes.

Using Labels, Annotations, and Legends
A graphic might not tell the story of the data by itself, especially when the graphic 
is complex or reflects complex data. However, you might not be around to explain 
the meaning behind the graphic — perhaps you’re sending a report to another 
office. Consequently, you rely on various methods of adding explanations to a 
graphic so that others can better understand precisely what you mean. The three 
common approaches to adding explanations appear in the following list:

FIGURE 6-9:  
Adding markers 

to emphasize  
the data points.

https://matplotlib.org/3.1.0/api/markers_api.html#module-matplotlib.markers
https://matplotlib.org/3.1.0/api/markers_api.html#module-matplotlib.markers
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 » Labels: The addition of explanatory text to a particular element, such as the 
line or bar in a graphic. You can also label individual data points.

 » Annotation: The addition of explanatory text in a free-form manner that 
reflects on one or more graphic elements as a whole, rather than on specific 
graphic elements.

 » Legend: A method of identifying the data elements within a graphic that are 
normally associated with related data elements, such as all the elements for a 
particular month of sales.

Some crossover occurs between explanatory methods depending on the language 
and associated library you use. For example, whether a title is actually a kind 
of label or a kind of annotation depends on the person you’re talking with. The 
 following sections describe how to use various kinds of explanatory text with your 
graphics, using the definitions found in the previous list.

Adding labels
Labels enable you to point out specific features of a graphic. In this example, the 
labels specify the minimum and maximum values for each of the lines. Of course, 
the text can say anything you want, and you have full formatting capabilities for 
the text, as shown in the following code:

figure4 = plt.figure(4, figsize=(7.7, 7.0))
ax5 = figure4.add_subplot(1,1,1)
ax5.plot(x, y1, color='red')
ax5.plot(x, y2, color='blue')
 
plt.text(2.2, 7.5, 'Line 1\nMax', color='red')
plt.text(1.2, 2.2, 'Line 1\nMin 1', color='red')
plt.text(5.2, 1.6, 'Line 1\nMin 2', color='red',
        bbox=dict(facecolor='yellow'))
plt.text(3.2, 8.5, 'Line 2\nMax', color='blue')
plt.text(1.4, 1.0, 'Line 2\nMin', color='blue')
figure4.canvas.draw()

This example begins by creating a new figure, but with a specific size, rather 
than using the default as usual. The size used will accommodate the various 
kinds of explanation added to this example. It’s important to remember that 
figures are configurable when creating reports. You can see all the figure argu-
ments at https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.
figure.html.

https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.figure.html
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.figure.html
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One way to create labels, besides using titles and other direct graphic features, is 
to use the text() function. You specify where to place the text and the text you 
want to see. The display text can use escape characters, such as \n for a new-
line. You have access to the same escape characters as those you use in Python. 
All the text() calls in this example use the color argument to associate the text 
with a particular line. The second minimum value for line one also uses the bbox 
(bounding box) argument, which has its own list of arguments as defined for 
the Rectangle at https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.
patches.Rectangle.html#matplotlib.patches.Rectangle. You can find other 
text() function features described at https://matplotlib.org/3.1.0/api/_as_ 
gen/matplotlib.pyplot.text.html. Figure 6-10 shows how the labeling looks.

Annotating the chart
At first, some kinds of annotation might look like labeling in disguise. However, 
annotation takes a somewhat different course in that you use it to point some-
thing out. So, for example, annotation can have an arrow, whereas labeling can’t, as 
described at https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.
annotate.html. The following code adds annotation to the example shown in 
Figure 6-10.

FIGURE 6-10:  
Labels identify 

specific graphic 
elements.

https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.patches.Rectangle.html#matplotlib.patches.Rectangle
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.patches.Rectangle.html#matplotlib.patches.Rectangle
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.text.html
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.text.html
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.annotate.html
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.annotate.html
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ax5.annotate('This is some\nannotation.', xy=(2.8, 8.0),
             xytext=(1.0, 8.5), color='green',
             weight='bold', fontsize=14,
             arrowprops=dict(facecolor='black'))

As with labels, you can use all the standard escape characters with the annota-
tion text. The xy argument is the starting point for the annotation. It’s where the 
head of the arrow will go should you choose to include one. The xytext argument 
defaults to the same value as xy, but you need to provide this value when using an 
arrow or the arrow will simply appear on top of the annotation.

The remaining arguments define formatting. You can define the color, weight, 
and fontsize of the annotation text using the same approach that you do with 
labels. The arrowprops argument is a dict containing arguments that define the 
arrow appearance. Most of the bbox arguments work with an arrow, along with 
the special arrowprop arguments, such as the kind of arrow to draw. Figure 6-11 
shows the example with the annotation added.

FIGURE 6-11:  
Annotation 

 provides the 
means of pointing 

something out.
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Creating a legend
A legend is a box that appears within the graphic identifying grouped data ele-
ments, such as the data points used for a line graph or the bars used for a chart. 
Legends are important because they enable you to differentiate between the 
grouped elements. The legend depends on the label argument for each of the 
plots. Given that the example doesn’t define this argument during the initial 
setup, the code begins by adding the labels before displaying the legend in the 
following code:

lines1 = ax5.get_lines()[0]
lines1.set_label('Line 1')
lines2 = ax5.get_lines()[1]
lines2.set_label('Line 2')
plt.legend()

As with any other sort of explanatory text, legend() provides a wealth of  
formatting features, as described at https://matplotlib.org/3.1.0/api/_as_ 
gen/matplotlib.pyplot.legend.html. Figure 6-12 shows the final form of this 
example.

FIGURE 6-12:  
Legends identify 

the individual 
grouped data 

elements.

https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.legend.html
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.legend.html
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Creating Scatterplots
You see scatterplots used a lot in data science because they help people see  
patterns in seemingly random data. The data points may not form a line or work 
well as bars because they’re simply coordinates that express something other than 
precise values, such as the number of sales during December. In fact, you may not 
know what the data represents until you actually do see the pattern.

Unfortunately, humans can still miss the patterns all those dots in the screen. 
No matter how hard a person looks, there just doesn’t seem to be anything there 
worthy of consideration. That’s where certain kinds of augmentation come into 
play. You can use color, shapes, size, and other methods to emphasize particular 
data points so that the pattern does become more obvious. The following sections 
consider some of the augmentations you can perform on a scatterplot to see the 
patterns.

Depicting groups
Seeing groups in data is critical for data science. Entire books of algorithms exist 
to find ways to see where groups lie in the data — to make sense of where the 
data belongs. Without the ability to see groups, it’s often difficult to make any 
sort of determination of what the data means. Consider the data presented by the 
following code:

%matplotlib inline
 
x1 = [2.3, 1.1, 1.5, 2.1, 1.3, 2.2, 1.0]
x2 = [2.6, 3.3, 3.1, 3.5, 3.9, 4.0, 4.1]
y1 = [2.4, 1.0, 2.1, 3.2, 4.3, 2.1, 2.0]
y2 = [2.5, 3.3, 1.9, 3.7, 3.2, 1.4, 4.5]

This data is excessively simple, so you could probably see patterns without doing 
any analysis at all. However, real datasets aren’t nearly so easy. The following 
code plots these data points in a generic manner that might match some of the 
plots you’ve worked with:

plt.scatter([x1, x2], [y1, y2])
plt.show()

The output shown in Figure 6-13 doesn’t tell you anything about the data. All you 
really see is a random bunch of dots.
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However, when you plot the same data in a different way, using the following 
code, you get a completely different result:

s1 = [20*3**n for n in y1]
s2 = [20*3**n for n in y2]
 
plt.scatter(x1, y1, s=s1, c='red', marker="*")
plt.scatter(x2, y2, s=s2, c='blue', marker="^")
plt.show()

In this case, the code differentiates the two groups within the data using different 
plots that have different colors and markers. In addition, the size of the dots used 
within the plot reflect the output of a particular algorithm, which is straightfor-
ward in this case. The output of the algorithm depends on the y-axis position of 
the dot. Figure 6-14 shows the output, which is infinitely easier to interpret. Now 
you can see the differences between each group.

Showing correlations
Most of this book deals with showing where separations occur between data 
points in a dataset. Book 3 starts with simple techniques, Book 4 moves on to 
more advanced methods, and Book 5 uses AI to separate data elements in a smart 
manner. The analysis of data generally results in data categorization or the pre-
diction of probabilities. A correlation looks at data relationships. The correlation 
value falls between –1 and 1 where:

FIGURE 6-13:  
Some plots 

really don’t say 
 anything at all.
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 » Magnitude: Defines the strength of correlation. Values that are closer to –1 or 
1 specify a stronger correlation.

 » Sign: A positive value defines a positive (or regular) correlation, where a minus 
value defines an inverse correlation.

To see how correlations can work, consider this example:

x1 = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]
y1 = [4.0, 3.5, 3.0, 2.5, 2.0, 1.5, 1.0]
 
z1 = np.corrcoef(x1, y1)
print(z1)
 
s1 = [(20*(n-p))**2 for n,p in zip(x1,y1)]
plt.scatter(x1, y1, s=s1)
plt.show()

In this case, x1 increases as y1 decreases, so there is a negative correlation. The 
output from z1 demonstrates this fact:

[[ 1. -1.]
 [-1.  1.]]

FIGURE 6-14:  
Differentiation 

makes the  
plots easier to 

interpret.
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The four matrix output values show the following:

 » x1 with x1 = 1

 » x1 with y1 = -1

 » y1 with x1 = -1

 » y1 with y1 = 1

This represents a high degree of negative correlation. If this were a positive cor-
relation, where the values in x1 and y1 were precisely the same, the output matrix 
would contain all 1 values. Figure 6-15 shows the scatterplot for this example. If 
this were a regular correlation, the scatterplot would actually be blank because 
this scatterplot shows increasing levels of difference and there would be no dif-
ferences if x1 and y1 contain the same values.

Here’s another example:

x2 = [2.0, 2.5, 3.0, 3.5, 4.0, 4.0, 4.0]
y2 = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]
 
z2 = np.corrcoef(x2, y2)
print(z2)
 
s2 = [(20*(n-p))**2 for n,p in zip(x2,y2)]
plt.scatter(x2, y2, s=s2)
plt.show()

FIGURE 6-15:  
A scatterplot 

showing a 
high degree 
of  negative 
correlation.
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In this case, the correlation is positive. As x2 increases, so does y2. However, the 
correlation isn’t perfect because x2 is a value of 1 above y2 until it plateaus and y2 
catches up. The output of this example is

[[1.         0.95346259]
 [0.95346259 1.        ]]

The correlation is still high, but not as high as the previous example. Figure 6-16 
shows the scatterplot of this example. Notice that the angle of the data is in the 
opposite direction from the example in Figure 6-15 — one is negative (upper left 
to lower right), while the other is positive (lower left to upper right).

Plotting Time Series
Working with time is an essential part of many analyses. You need to know what 
happened at a particular time or over a length of time. Reviewing the number of 
sales in January this year as contrasted to those last year is a common occurrence. 
The “Processing Time Series” section of Book 5, Chapter 5 discusses how you can 
use time-related data to perform predictions. In short, many business situations 
require you to consider how time affects past, present, and future business needs.

The following sections don’t do anything too fancy with time with regard to the 
data. What they focus on is how you can present time-related data so that it makes 
the most sense to your viewer. Note that these examples rely on the airline-
passengers.csv file originally downloaded in the “Defining sequences of events” 
section of Book 5, Chapter 5.

FIGURE 6-16:  
A scatterplot 

showing a high 
degree of positive 

correlation.
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Representing time on axes
You have multiple options for presenting time on axes. The easiest method to use 
with most of the data out there is the plot() shown here:

import pandas
 
apDataset = pandas.read_csv('airline-passengers.csv',
                            usecols=[1])
xAxis = pandas.read_csv('airline-passengers.csv',
                        usecols=[0])
years = []
for x in xAxis.values.tolist()[::12]:
    years.append(x[0])
 
figure5 = plt.figure(5)
ax6 = figure5.add_subplot(111, xlabel="Year/Month",
                          ylabel="Number of Passengers",
                          title="Airline Passengers")
ax6.plot(apDataset.values)
plt.xticks(np.arange(start=1, stop=len(xAxis), step=12),
           years, rotation=90)
plt.grid()
plt.show()

The ticks for the x-axis won’t work with all the entries in place. The labeling 
would be so crowded that it would become useless. With this idea in mind, the 
example converts the NumPy DataFrame into a simple list containing just the 
entries needed for labeling. Even with the conversion, you must rotate the labels 
90 degrees using the rotation argument of xticks() to make them fit.  Compare 
the output in Figure  6-17 with the similar graphic in Figure  5-1 of Book  5, 
Chapter 5.

Another method of performing this task is to use plot_date() instead. In this 
case, you must convert the date strings in the data to actual dates. This approach 
can require less time and effort than using a standard plot(), as shown here:

from datetime import datetime
yearsAsDate = []
for x in xAxis.values.tolist():
    yearsAsDate.append(datetime.strptime(x[0], '%Y-%m'))
 
figure6 = plt.figure(6)
ax7 = figure6.add_subplot(111, xlabel="Year",
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                          ylabel="Number of Passengers",
                          title="Airline Passengers")
ax7.plot_date(yearsAsDate, apDataset, fmt='-')
plt.grid()
plt.show()

Notice that you must provide the correct string format to strptime(), which is just 
the four-digit year and the month in this case. The function assumes a day value 
of 1 to create a complete date. For example, even though the date might appear 
as 1950-02 in the airline-passengers.csv file, the actual date will appear as 
01-02-1950 after the conversion. Figure 6-18 shows the output of this example.

Plotting trends over time
In looking at the graphics in Figures 6-17 and 6-18, you can discern that the trend 
is to generally see more passengers flying to their destination each year. You can’t 
be more specific than to say that there are more, however. To be able to give more 
information, you need to perform a relatively simple analysis, one that defines 
how many more passengers, on average, that you can expect to see, as shown in 
the following example.

FIGURE 6-17:  
Using a general 

plot to display 
date-oriented 

data.
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x = range(0, len(apDataset.values))
z = np.polyfit(x, apDataset.values.flatten(), 1)
p = np.poly1d(z)
 
figure5 = plt.figure(5)
ax6 = figure5.add_subplot(111, xlabel="Year/Month",
                          ylabel="Number of Passengers",
                          title="Airline Passengers")
ax6.plot(x, apDataset.values)
zeroPoint = min(apDataset.values)
ax6.plot(apDataset.values-zeroPoint,
         p(apDataset.values-zeroPoint), 'm-')
 
plt.xticks(np.arange(start=1, stop=len(xAxis), step=12),
           years, rotation=90)
plt.ylim(0,max(apDataset.values))
plt.xlim(0,len(apDataset.values))
plt.grid()
plt.show()

The code begins by computing the line that defines the data trend. This line goes 
straight across the graphic to show the actual direction of change. It requires 
these three steps:

FIGURE 6-18:  
Using plot_
date() to 

display date-
oriented data.



D
ev

el
op

in
g 

Im
pr

es
si

ve
 

Ch
ar

ts
 a

nd
 P

lo
ts

CHAPTER 6  Developing Impressive Charts and Plots      607

1. Define the number of steps to use in presenting the line, which must equal the 
number of data values used for the computation.

2. Perform a least squares linear regression calculation using NumPy polyfit() 
(https://docs.scipy.org/doc/numpy/reference/generated/numpy.
polyfit.html) to determine the line that will best fit the data points. You can 
discover more about linear regression in Book 3, Chapter 1. The least squares 
calculation also appears at https://www.technologynetworks.com/
informatics/articles/calculating-a-least-squares-regression- 
line-equation-example-explanation-310265.

3. Use the coefficient calculation results from Step 2 to define a one-dimensional 
polynomial class (essentially a model for a line) using poly1d() (https://
docs.scipy.org/doc/numpy/reference/generated/numpy.poly1d.html).

After the calculation is finished, the plotting begins. This example uses the plot() 
technique shown previously in Figure 6-17 to show the original data. Over the 
original data, you see a line representing the trend. This line is the result of the 
model created earlier. Figure 6-19 shows the results of this example. Notice how 
the trend line goes directly through the middle of the data points.

FIGURE 6-19:  
The results 

of  calculating 
a trend line 

for the airline 
 passenger data.

https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
https://www.technologynetworks.com/informatics/articles/calculating-a-least-squares-regression-line-equation-example-explanation-310265
https://www.technologynetworks.com/informatics/articles/calculating-a-least-squares-regression-line-equation-example-explanation-310265
https://www.technologynetworks.com/informatics/articles/calculating-a-least-squares-regression-line-equation-example-explanation-310265
https://docs.scipy.org/doc/numpy/reference/generated/numpy.poly1d.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.poly1d.html


608      BOOK 5  Performing Data-Related Tasks

Plotting Geographical Data
The real world is full of contradictions. For example, all the factors might favor 
placing a store in one location, but the reality is that due to the geography of an 
area, another location will work better. Unless you plot the various locations on 
a map, you won’t realize until too late that the prime location really isn’t all that 
prime. A geographical plot helps you move from planning locations based on data 
to making a choice based on the real-world environment. The following sections 
provide an overview of working with geographical data.

Getting the toolkit
You can find a number of mapping packages online, but one of the more com-
mon is Basemap (https://matplotlib.org/basemap/). This mapping package 
supports most of the projections used for mapping, and you can provide detailed 
drawing instructions with it. To run this example, you need the Basemap package 
installed on your system. To begin, open the Anaconda Prompt on your system 
and type the following command:

conda search basemap --info

UNDERSTANDING THE POLY1D() OUTPUT
In looking at the output of Figure 6-19, you might think it’s magic, but it really isn’t. In 
fact, Python will tell you that it isn’t. Consider that the line is defined by the equation  
Y = a + bX, where a is the Y intercept and b is the X coefficient. In other words, if X is 
equal to 0, then a is equal to Y. To see how this works out, use the following code:

print(np.poly1d(p))

The output you see is actually backward. It actually comes out to Y = bX + a, but it still 
works:

2.657 x + 90.31

The Y intercept for this data is 90.31 and the X coefficient is 2.657. In other words, 
the trend started with 90.31 passengers, even though the actual data is higher. Each 
month, the airlines added an average of another 2.657 passengers.

https://matplotlib.org/basemap/
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If the package is installed, you see information about it like this:

basemap 1.2.0 py37hd3253e1_3
----------------------------
file name   : basemap-1.2.0-py37hd3253e1_3.tar.bz2
name        : basemap
version     : 1.2.0
build       : py37hd3253e1_3
build number: 3
size        : 15.2 MB
license     : MIT
subdir      : win-64
url         : https://conda.anaconda.org/conda-forge/...
3253e1_3.tar.bz2
md5         : 857574e2b82e6ce057c18eabe4cbdba0
timestamp   : 2019-05-26 18:25:46 UTC
dependencies:
  - geos >=3.7.1,<3.7.2.0a0
  - matplotlib-base >=1.0.0
  - numpy >=1.14.6,<2.0a0
  - pyproj >=1.9.3,<2
  - pyshp >=1.2.0
  - python >=3.7,<3.8.0a0
  - six
  - vc >=14,<15.0a0

Notice that this example uses version 1.2.0; using a different version may produce 
different results or may not work at all with the example code. Otherwise, you 
need to type the following command to install it:

conda install -c anaconda basemap

The conda utility will require some time to set things up. In fact, it may very well 
look stuck, but eventually it will solve the new environment requirements. After it 
resolves the environment requirements, conda will ask permission to perform the 
installation, which will take significantly less time than the original setup.

Drawing the map
Working with geographical data begins with the map. You need the right sort of 
map to present the data or seeing how the data fits the map might be difficult. 
The following sections discuss a number of map types and presentations, but they 
don’t even start to describe what sorts of things you can do. Experimentation is 
your best bet in finding precisely what you need.
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Starting simply
You can see a number of Basemap projections at https://matplotlib.org/ 
basemap/users/mapsetup.html. Here is an example of an orthographic projection:

from mpl_toolkits.basemap import Basemap
 
map = Basemap(projection='ortho',
              lat_0=41.8781,lon_0=-87.6298,
              resolution='l')
 
map.drawcoastlines(linewidth=0.25)
map.drawcountries(linewidth=0.25)
map.fillcontinents(color='green',lake_color='lightblue')
map.drawmapboundary(fill_color='lightblue')
map.drawmeridians(np.arange(0,360,30))
map.drawparallels(np.arange(-90,90,30))
 
plt.show()

The process for creating a map generally follows four or five steps:

1. Import the required packages, including Basemap.

2. Define the kind of projection you want to use, along with the project’s param-
eters (see https://matplotlib.org/basemap/api/basemap_api.html for 
details). The parameters normally require these arguments as a minimum:

• Projection name

• Latitude and longitude of the map center

• Resolution of the coastal boundaries, with l, low resolution, being the 
fastest to draw

3. Specify the map particulars, such as the thickness of the various lines, whether 
the map displays country boundaries, and the presence of meridians and 
parallels. You also define the colors used for various map elements.

4. (Optional) Add points of interest to the map. The points of interest need not be 
cities or structures; you can also draw things like wind flow patterns. The 
documentation at https://matplotlib.org/basemap/users/examples.
html tells more about the large number of items you can add to your map.

5. Specify plotting details and plot the map.

https://matplotlib.org/basemap/users/mapsetup.html
https://matplotlib.org/basemap/users/mapsetup.html
https://matplotlib.org/basemap/api/basemap_api.html
https://matplotlib.org/basemap/users/examples.html
https://matplotlib.org/basemap/users/examples.html
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The number of permutations for Basemap are nearly endless. Figure 6-20 shows 
the orthographic projection defined by the example code.

Creating a real-world look
Don’t get the idea that the maps are only of the colored sort found for presenta-
tions. You also have access to realistically colored maps using the bluemarble() 
and shadedrelief() functions (among others). Here is an example of the 
shadedrelief() form that includes the terminator between night and day for 
6/24/19 at 12:00 noon UTC (the required support is already imported):

map = Basemap(projection='ortho',
              lat_0=41.8781,lon_0=-87.6298,
              resolution='l')
 
map.shadedrelief()
date = datetime(2019, 6, 24, 12, 0, 0)
map.nightshade(date)
 
plt.show()

The output shown in Figure 6-21 looks reasonably like the real world. The blue-
marble() output is even more realistic. It’s the form that you might see in a NASA 
photograph. Note that you may get a warning message when using this particular 
form, but you can safely ignore it.

FIGURE 6-20:  
An orthographic 

projection of  
the world.
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Zooming in
Of course, the maps would be of no use at all if you couldn’t zoom in and show 
a much smaller portion of the world. You need to use the kind of projection that 
allows zooming to perform this task. This example relies on a Stereographic 
Projection:

map = Basemap(projection='stere',
              lat_0=41.8781,lon_0=-87.6298,
              height=400000, width=400000,
              resolution='l')
 
map.drawcoastlines(linewidth=0.25)
map.drawstates(linewidth=0.25)
map.drawrivers(color='lightblue')
map.fillcontinents(color='green',lake_color='blue')
map.drawmapboundary(fill_color='lightblue')
 
plt.show()

Notice that you must include some type of limit on the map size when using the 
Stereographic Projection. This example uses height and width in meters. You 
can also define the four corners of the bounding box using the upper right and 
lower left of the longitude and latitude: llcrnrlon, llcrnrlat, urcrnrlon, and 
urcrnrlat.

The location on this map is of North America, so you have some additional kinds 
of map items you can include. For example, you can draw lines between the states 
and add rivers. Some of these features aren’t available in other world locations. 
Figure 6-22 shows how this map appears when drawn.

FIGURE 6-21:  
Your maps 

can look quite 
realistic.
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Plotting the data
Plotting data precisely as you want it can be a little tricky but doesn’t have to 
be hard if you follow a few rules. The most important rule is that, even though 
the documentation at https://matplotlib.org/basemap/users/examples.html 
shows all kinds of fancy ways of presenting information, using an approach that 
you already know usually works better. The second rule is that you need to modify 
your well-known techniques to fit the map. The rules for working with graphics 
are just a little different when working with Basemap.

You probably noticed that Basemap doesn’t provide any sort of means for add-
ing cities to your map. To perform this task, you begin by obtaining the latitude 
and longitude for each of the cities you want to add. If the longitude appears as 
so many degrees west, you must add a minus sign to the measurement. Making 
the measures as accurate as possible is important, especially when working on 
street-level maps.

When you have the latitude and longitude, you can ask the map to provide x and y 
coordinates so that you can interact with that location on the map. The following 
code shows how to use standard pyplot functions to add locations for Milwaukee 
and Chicago to the map you see in Figure 6-22.

map = Basemap(projection='stere',
              lat_0=41.8781,lon_0=-87.6298,
              height=400000, width=400000,
              resolution='l')
 
map.drawcoastlines(linewidth=0.25)
map.drawstates(linewidth=0.25)

FIGURE 6-22:  
Some projections 

allow for a  
close look.

https://matplotlib.org/basemap/users/examples.html
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map.drawrivers(color='lightblue')
map.fillcontinents(color='green',lake_color='blue')
map.drawmapboundary(fill_color='lightblue')
 
x1, y1 = map(-87.6298, 41.8781)
plt.annotate('Chicago', xy=(x1+5000, y1+5000),
             color='white')
plt.plot(x1, y1, '*', markersize=12, color='orange')
 
x2, y2 = map(-87.9065, 43.0389)
plt.annotate('Milwaukee', xy=(x2+5000, y2+5000),
             color='white')
plt.plot(x2, y2, 'o', markersize=6, color='yellow')
plt.show()

The basic map construction is the same as in the previous example. All this exam-
ple adds are markers and text for the two cities. The call to the map object you cre-
ate with longitude and latitude produces coordinates you can use for that location 
on the map.

You need to add offsets for the text or it appears directly on top of the marker, 
making the marker hard to see. You can make the markers different types, colors, 
and sizes to indicate preferences, just as you would any other sort of graphic. 
 Figure 6-23 shows the results of this example.

FIGURE 6-23:  
Adding  locations 

or other 
 information to 

the map.
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Visualizing Graphs
Imagine data points that are connected to other data points, such as how one web 
page is connected to another web page through hyperlinks. Each of these data 
points is a node. The nodes connect to each other using links. Not every node links 
to every other node, so the node connections become important. By analyzing the 
nodes and their links, you can perform all sorts of interesting tasks in data sci-
ence, such as define the best way to get from work to your home using streets and 
highways. The following sections describe how graphs work and how to perform 
basic tasks with them.

Understanding the adjacency matrix
An adjacency matrix represents the connections between nodes of a graph. When a 
connection exists between one node and another, the matrix indicates it as a value 
greater than 0. The precise representation of connections in the matrix depends 
on whether the graph is directed (where the direction of the connection matters) 
or undirected.

A problem with many online examples is that the authors keep them simple for 
explanation purposes. However, real-world graphs are often immense, and they 
defy easy analysis simply through visualization. Just think about the number of 
nodes that even a small city would have when considering street intersections 
(with the links being the streets themselves). Many other graphs are far larger, 
and simply looking at them will never reveal any interesting patterns. Data scien-
tists call the problem in presenting any complex graph using an adjacency matrix 
a hairball.

One key to analyzing adjacency matrices is to sort them in specific ways. For 
example, you might choose to sort the data according to properties other than the 
actual connections. A graph of street connections might include the date the street 
was last paved with the data, enabling you to look for patterns to direct someone 
to a location based on the streets that are in the best repair. In short, making the 
graph data useful becomes a matter of manipulating the organization of that data 
in specific ways.

Using NetworkX basics
Working with graphs could become difficult if you had to write all the code from 
scratch. Fortunately, the NetworkX package for Python makes it easy to cre-
ate, manipulate, and study the structure, dynamics, and functions of complex 
networks (or graphs). Even though this book covers only graphs, you can use 
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the package to work with digraphs (or directed graphs, where each of the edges 
between nodes have a specific direction; see http://mathworld.wolfram.com/
DirectedGraph.html as an example) and multigraphs (a kind of graph in which 
two nodes can have multiple connections; see http://mathworld.wolfram.com/
Multigraph.html as an example) as well.

The main emphasis of NetworkX is to avoid the whole issue of hairballs. The use of 
simple calls hides much of the complexity of working with graphs and adjacency 
matrices from view. The following example shows how to create a basic adjacency 
matrix from one of the NetworkX-supplied graphs:

import networkx as nx
 
G = nx.cycle_graph(10)
A = nx.adjacency_matrix(G)
 
print(A.todense())

The example begins by importing the required package. It then creates a graph 
using the cycle_graph() template. The graph contains ten nodes. Calling 
adjacency_matrix() creates the adjacency matrix from the graph. The final step 
is to print the output as a matrix, as shown here:

[[0 1 0 0 0 0 0 0 0 1]
 [1 0 1 0 0 0 0 0 0 0]
 [0 1 0 1 0 0 0 0 0 0]
 [0 0 1 0 1 0 0 0 0 0]
 [0 0 0 1 0 1 0 0 0 0]
 [0 0 0 0 1 0 1 0 0 0]
 [0 0 0 0 0 1 0 1 0 0]
 [0 0 0 0 0 0 1 0 1 0]
 [0 0 0 0 0 0 0 1 0 1]
 [1 0 0 0 0 0 0 0 1 0]]

You don’t have to build your own graph from scratch for testing purposes. The 
NetworkX site documents a number of standard graph types that you can use, all 
of which are available within Notebook. The list appears at https://networkx.
github.io/documentation/latest/reference/generators.html.

It’s interesting to see how the graph looks after you generate it. The following 
code displays the graph for you. Figure 6-24 shows the result of the plot.

nx.draw_networkx(G)
plt.show()

http://mathworld.wolfram.com/DirectedGraph.html
http://mathworld.wolfram.com/DirectedGraph.html
http://mathworld.wolfram.com/Multigraph.html
http://mathworld.wolfram.com/Multigraph.html
https://networkx.github.io/documentation/latest/reference/generators.html
https://networkx.github.io/documentation/latest/reference/generators.html
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The plot shows that you can add an edge between nodes 1 and 5. Here’s the code 
needed to perform this task using the add_edge() function. Figure 6-25 shows 
the result.

G.add_edge(1,5)
nx.draw_networkx(G)
plt.show()

FIGURE 6-24:  
Plotting the 

 original graph.

FIGURE 6-25:  
Plotting the  

graph addition.
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Locating Errors in 
Your Data

Your data likely contains errors, which seems like a sweeping statement 
when you consider that only you really understand your data. However, 
most data available today contains various kinds of errors that can derail 

your analysis. If you don’t catch these errors, you may make a prediction that 
has no chance whatsoever of being accurate — even if your algorithms and logic 
are both bulletproof. The problem is in figuring out where the errors lie because 
they can be quite difficult to see. Consequently, this chapter begins by help-
ing you understand the types of data errors so that you have a better chance of 
 finding them.

The source of your data often determines the kind of errors you find, how deep you 
have to go into the code to locate them, and how difficult they are to find. Consider 
the simple act of scraping data from a website online. Even if the data is in the 
right form, doesn’t have any missing elements, and appears reasonably correct, 
you have no way of knowing that the data is accurate unless you research it your-
self. Of course, if you take all the time required to perform in depth research, you 
may as well generate the data yourself to ensure accuracy.

One means of ensuring that the data is less error prone is to perform various 
kinds of automated data validation. The validation process can tell you a lot about 
the data and even indicate, to some degree, the data accuracy. The process isn’t 

Chapter 1

IN THIS CHAPTER

 » Defining data error types

 » Obtaining data reliably

 » Performing data validation

 » Trimming data in various ways



622      BOOK 6  Diagnosing and Fixing Errors

perfect, but anything you can do to reduce errors will make your analysis more 
accurate.

After validating your data, you can use various methods of trimming the data to 
include only those elements you can be sure will contain accurate information. The 
act of trimming the data, and performing other sorts of data maintenance, will 
greatly improve the results you receive from your analysis. Many data scientists 
spend a majority of their time performing the process outlined in this chapter. The 
act of ensuring that data is as accurate as possible consumes considerable time, 
but it’s a necessary part of any data analysis.

You don’t have to type the source code for this chapter manually. In fact, using the 
downloadable source is a lot easier. The source code for this chapter appears in the 
DSPD_0601_Data_Errors.ipynb source code file for Python and the DSPD_R_0601_
Data_Errors.ipynb source code file for R. See the Introduction for details on how 
to find these source files.

Considering the Types of Data Errors
For many people, error equates to wrong. However, in many cases, data is cor-
rect, yet also erroneous. You can consider data errant when it meets any of these 
criteria:

 » Incorrect

 » Missing

 » Wrong type

 » Malformatted (perhaps using an outdated standard)

 » Wrong format for the task

 » Incomplete

 » Imprecise

 » Misaligned (shifted in position within a field)

 » Outdated

 » Consists of opinion rather than fact

 » Misclassified
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In fact, this list could extend further, but it presents the kinds of things you 
should consider when looking for data errors. Trying to find just these types of 
data errors would be difficult, to say the least, but you can also classify data errors 
in another way:

 » Automatic code detection, such as missingness

 » Deterrence through form design, such as incompleteness

 » External cleaning, such as misalignment

 » Time stamping and other currency techniques, such as outdated data

Classifying the data error types by the techniques used to avoid or fix them is 
also helpful when considering how to manage your database. Part of your initial 
assessment of a data source must include a thorough examination of the kinds of 
data errors that the data contains, along with measures you can use to fix these 
errors well enough to perform analysis text.

IT’S ALL IN THE PREPARATION
This minibook may seem to spend a lot of time massaging data and little time in actually 
analyzing it. However, the majority of a data scientist’s time is actually spent preparing 
data because the data is seldom in any order to actually perform analysis. To prepare 
data for use, a data scientist must:

• Get the data

• Aggregate the data

• Create data subsets

• Clean the data

• Develop a single dataset by merging various datasets together

Fortunately, you don’t need to die of boredom while wading your way through these 
various tasks. Using Python and the various libraries it provides makes the task a lot 
simpler, faster, and more efficient, which is the point of spending all the time on seem-
ingly mundane topics in these early chapters. The better you know how to use Python 
to speed your way through these repetitive tasks, the sooner you begin having fun 
 performing various sorts of analysis on the data.
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After spending hours fixing a data source, it’s always easy to think that the data 
is now somehow clean and pure. The problem is that it isn’t clean or pure because 
many measures of correctness are subjective and biased toward a specific need. 
You must always assume that your data contains some number of errant entries, 
even when those entries might normally be considered correct, because they 
aren’t correct for your particular need.

Obtaining the Required Data
Having plentiful data available isn’t enough to perform analysis tasks success-
fully. Presently, an algorithm can’t extract information directly from raw data. 
You can’t simply tell an algorithm to analyze data from a number of unrelated 
sites and expect anything but gibberish as a result — assuming that the analysis 
even completes. Most algorithms rely on external collection and manipulation 
prior to analysis. When an algorithm collects useful information, it may not rep-
resent the right information. The following sections help you understand how to 
collect, manipulate, and automate data collection from an overview perspective.

Considering the data sources
The data you use comes from a number of sources. The most common data source 
is from information entered by humans at some point. Even when a system col-
lects shopping-site data automatically, humans initially enter the information.  
A human clicks various items, adds them to a shopping cart, specifies character-
istics (such as size) and quantity, and then checks out. Later, after the sale, the 
human gives the shopping experience, product, and delivery method a rating and 
makes comments. In short, every shopping experience becomes a data collection 
exercise as well.

Consider that most data sources are incomplete or provide a biased perspective. 
For example, the shopping-site data may include purchases, but not returns or 
failed deliveries. As a consequence, the view the algorithm receives of sales is both 
incomplete and biased because it doesn’t reflect the reality of the actual sales.

Many data sources today rely on input gathered from human sources. Humans 
also provide manual input. You call or go into an office somewhere to make an 
appointment with a professional. A receptionist then gathers information from 
you that’s needed for the appointment. This manually collected data eventually 
ends up in a dataset somewhere for analysis purposes. When the receptionist 
makes a mistake, the mistake also appears in the dataset.
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Data is also collected from sensors, and these sensors can take almost any form. 
For example, many organizations base physical data collection, such as the num-
ber of people viewing an object in a window, on cellphone detection. Facial recog-
nition software could potentially detect repeat customers.

Sensors can create datasets from almost anything; however, their recordings are 
not always completely reliable. Depending on the application, you need a certain 
amount of data adjustment and cleaning. The weather service relies on datasets 
created by sensors that monitor environmental conditions such as rain, tempera-
ture, humidity, cloud cover, and so on. Robotic monitoring systems help correct 
small flaws in robotic operation by constantly analyzing data collected by moni-
toring sensors. A sensor, combined with a small AI application, could tell you 
when your dinner is cooked to perfection tonight. The sensor collects data, but the 
AI application uses rules to help define when the food is properly cooked.

Obtaining reliable data
The word reliable seems so easy to define, yet so hard to implement. Something 
is reliable when the results it produces are both expected and consistent. A reli-
able data source produces mundane data that contains no surprises; no one is 
shocked in the least by the outcome. Depending on your perspective, it could 
actually be a good thing that most people aren’t yawning and then falling asleep 
when reviewing data. The surprises make the data worth analyzing and reviewing. 
Consequently, data has an aspect of duality. People want reliable, mundane, fully 
anticipated data that simply confirms what they already know, but the unexpected 
is what makes collecting the data useful in the first place.

Still, you don’t want data that is so far out of the ordinary that it becomes almost 
frightening to review. You need to maintain balance when obtaining data. The 
data must fit within certain limits (as described in the “Manicuring the Data” sec-
tion, later in this chapter). It must also meet specific criteria as to truth value (as 
described in the “Considering the Five Mistruths in Data” section of Chapter 2 of 
this minibook). The data must also come at expected intervals, and all the fields 
of the incoming data record must be complete.

To some extent, data security also affects data reliability. Data consistency comes 
in several forms. When the data arrives, you can ensure that it falls within expected 
ranges and appears in a particular form. However, after you store the data, the 
reliability can decrease unless you ensure that the data remains in the expected 
form. An entity fiddling with the data affects reliability, making the data suspect 
and potentially unusable for analysis later. Ensuring data reliability means that 
after the data arrives, no one tampers with it to make it fit within an expected 
domain (making it mundane as a result).
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Making human input more reliable
Humans make mistakes  — it’s part of being human. In fact, expecting that 
humans won’t make mistakes is unreasonable. Yet, many application designs 
assume that humans somehow won’t make mistakes of any sort. The design 
expects that everyone will simply follow the rules. Unfortunately, the vast major-
ity of users are guaranteed to not even read the rules because most humans are 
also lazy or too pressed for time when it comes to doing things that don’t really 
help them directly.

Consider the entry of a state into a form. If you provide just a text field, some users 
might input the entire state name, such as Kansas. Of course, some users will 
make a typo or capitalization error and come up with Kansus or kANSAS. People 
and organizations have various approaches to performing the task of entering a 
state name that makes these sorts of errors more prevalent:

 » Someone in the publishing industry might use the Associated Press (AP) style 
guide and input Kan.

 » Someone who is older and used to the Government Printing Office (GPO) 
guidelines might input Kans.

 » The U.S. Post Office (USPS) uses KS.

 » The U.S. Coast Guard uses KA.

 » The International Standards Organization (ISO) form goes with US-KS.

Mind you, this is just a state entry, which is reasonably straightforward — or so 
you thought before reading this section. Clearly, because the state isn’t going to 
change names anytime soon, you could simply provide a drop-down list box on 
the form for choosing the state in the required format, thereby eliminating dif-
ferences in abbreviation use, typos, and capitalization errors in one fell swoop.

Drop-down list boxes work well for an amazing array of data inputs, and using 
them ensures that human input into those fields becomes extremely reliable 
because the human has no choice but to use one of the default entries. Of course, 
the human can always choose the incorrect entry, which is where double-checks 
come into play. Some newer applications compare the ZIP code to the city and 
state entries to see whether they match. When they don’t match, the user is asked 
again to provide the correct input. This double-check verges on being annoying 
(see the “More annoying than useful input aids” sidebar for details), but the user 
is unlikely to see it very often, so it shouldn’t become too annoying.
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MORE ANNOYING THAN USEFUL 
INPUT AIDS
Input validation is almost more of an art than a science because using rote rules seldom 
produces a useful and pleasurable input experience. Using a drop-down list for states 
works as long as the list is complete and the person is where you expect them to be. 
However, if you have an international customer who has an address outside the coun-
try for which you wrote the application, you suddenly find that the bulletproof input 
field almost makes it impossible for the user to complete the form. The input field has 
gone from being useful and convenient to being frustrating and annoying because of a 
limit on the kind of correct data the user can enter.

Input fields can also control the form of input, to an extent. The problem is that what 
the developer thinks is helpful really isn’t helpful at all. You have probably encountered 
shopping sites that disallow dashes between the numbers of a credit card or require 
a telephone number to appear in a specific form. The form beeps unhelpfully in many 
cases until you discover just what format the developer wants. In some cases, the cus-
tomer will finally give up and go anywhere else that has a better form and the desired 
product. A helpful input is one that accepts the odd formatting that the user may want 
to provide and automatically reformats the data as needed. When the user enters 
(555)123-4567, the form might automatically reformat it as 1-555-123-4567. The user 
is happy, the database is less error prone, and the developer gets to go home for the 
weekend.

A user may also not want to share certain personal details, such as age, gender, or 
sexual orientation. If your form requires such entries, the user might go somewhere 
else rather than provide the personal information. In fact, given the manner in which 
society has progressed, assuming anything about a person based on predefined biases 
will almost certainly cause problems for the business. For example, some people don’t 
identify as either male or female, so assuming that they do is a bad choice.

Forms that require more information than the user is willing to provide are also unhelp-
ful. A user may be willing to provide a numeric evaluation of a product, but may not 
want to provide a written comment. Many forms require both, which means that a sur-
vey or other means of obtaining information goes unanswered. A form should have a 
default non-answer value.

The ultimate of unhelpful aids, however, is the input field that simply assumes that the 
user knows what to fill in. Address fields are especially bad in this area. All you might 
see is a series of inputs that look sort of like a mailing label on an envelope, which 

(continued)
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Even with cross-checks and static entries, humans still have plenty of room for 
making mistakes. For example, entering numbers can be problematic. When a 
user needs to enter 2.00, you might see 2, or 2.0, 2., or any of a variety of other 
entries. Fortunately, parsing the entry and reformatting it will fix the problem, 
and you can perform this task automatically, without the user’s aid.

Unfortunately, reformatting won’t correct an errant numeric input. You can par-
tially mitigate such errors by including range checks. Consider, for example, how 
to process a customer’s return of some purchased merchandise. A customer can’t 
buy –5 bars of soap. The legitimate way to show the customer returning the bars of 
soap is to process a return, not a sale. However, the user might have simply made an 
error, and you can provide a message stating the proper input range for the value.

Using automated data collection
Some people think that automated data collection solves all the human input 
issues associated with datasets. In fact, automated data collection does provide a 
number of benefits:

 » Better consistency

 » Improved reliability

 » Lower probability of missing data

 » Enhanced accuracy

 » Reduced variance for things like timed inputs

Unfortunately, to say that automated data collection solves every issue is sim-
ply incorrect. Automated data collection still relies on sensors, applications, and 
computer hardware designed by humans that provide access only to the data that 
humans decide to allow. Because of the limits that humans place on the character-
istics of automated data collection, the outcome often provides less helpful infor-
mation than hoped for by the designers. Consequently, automated data collection 
is in a constant state of flux as designers try to solve the input issues.

assumes that the user is aware of that particular label format. It also assumes that 
the user can see the form, although a user with special visual needs may use a screen 
reader that will have no idea of what to do with the form. Every input should have an 
associated label that’s short, yet expresses precisely what information to provide. It 
should also have a help screen to provide more details and examples of what informa-
tion to provide. The error message associated with the input should also say precisely 
what is wrong with the input, rather than make the user guess.

(continued)
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Automated data collection also suffers from both software and hardware errors 
present in any computing system, but with a higher potential for soft issues (which 
arise when the system is apparently working but isn’t providing the desired result) 
than other kinds of computer-based setups. When the system works, the reliabil-
ity of the input far exceeds human abilities. However, when soft issues occur, 
the system often fails to recognize that a problem exists, as a human might, and 
therefore the dataset could end up containing more mediocre or even bad data.

Validating Your Data
When it comes to data, no one really knows what a large database contains. Yes, 
everyone has seen bits and pieces of it, but when you consider the size of some 
databases, viewing it all would be physically impossible. Because you don’t know 
what’s in there, you can’t be sure that your analysis will actually work as desired 
and provide valid results. In short, you must validate your data before you use it 
to ensure that the data is at least close to what you expect it to be. This means 
performing tasks such as removing duplicate records before you use the data for 
any sort of analysis (duplicates would unfairly weight the results).

However, you do need to consider what validation actually does for you. It doesn’t 
tell you that the data is correct or that there won’t be values outside the expected 
range. In fact, later chapters help you understand the techniques for handling 
these sorts of issues. What validation does is ensure that you can perform an 
analysis of the data and reasonably expect that analysis to succeed. Later, you 
need to perform additional massaging of the data to obtain the sort of results that 
you need in order to perform the task you set out to perform in the first place.

Figuring out what’s in your data
Figuring out what your data contains is important because checking data by hand 
is sometimes simply impossible because of the number of observations and vari-
ables. In addition, hand verifying the content is time consuming, error prone, and, 
most important, really boring. Finding duplicates is important because you end up

 » Spending more computational time to process duplicates, which slows your 
algorithms down.

 » Obtaining false results because duplicates implicitly overweight the results. 
Because some entries appear more than once, the algorithm considers these 
entries more important.
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As a data scientist, you want your data to enthrall you, so it’s time to get it to talk 
to you — not figuratively, of course, but through the wonders of pandas, as shown 
in the following example:

from lxml import objectify
import pandas as pd
 
xml = objectify.parse(open('XMLData2.xml'))
root = xml.getroot()
df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))
 
for i in range(0,4):
    obj = root.getchildren()[i].getchildren()
    row = dict(zip(['Number', 'String', 'Boolean'],
                   [obj[0].text, obj[1].text,
                    obj[2].text]))
    row_s = pd.Series(row)
    row_s.name = i
    df = df.append(row_s)
 
search = pd.DataFrame.duplicated(df)
print(df)
print()
print(search[search == True])

This example shows how to find duplicate rows. It relies on a modified version 
of the XMLData.xml file found in Book 2, Chapter 4, XMLData2.xml, which con-
tains a simple repeated row in it. A real data file contains thousands (or more) of 
records and possibly hundreds of repeats, but this simple example does the job. 
The example begins by reading the data file into memory using the same tech-
nique as that explored in the “Working with a simple XML file” section of Book 2, 
Chapter 4. It then places the data into a DataFrame.

At this point, your data is corrupted because it contains a duplicate row. However, 
you can get rid of the duplicated row by searching for it. The first task is to cre-
ate a search object containing a list of duplicated rows by calling pd.DataFrame.
duplicated(). The duplicated rows contain a True next to their row number.

Of course, now you have an unordered list of rows that are and aren’t duplicated. 
The easiest way to determine which rows are duplicated is to create an index in 
which you use search == True as the expression. Following is the output you see 
from this example. Notice that row 3 is duplicated in the DataFrame output and 
that row 3 is also called out in the search results:
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  Number  String Boolean
0      1   First    True
1      2  Second   False
2      3   Third    True
3      3   Third    True
 
3    True
dtype: bool

Removing duplicates
To get a clean dataset, you want to remove the duplicates from it. Fortunately, you 
don’t have to write any weird code to get the job done; pandas does it for you, as 
shown in the following example:

from lxml import objectify
import pandas as pd
 
xml = objectify.parse(open('XMLData2.xml'))
root = xml.getroot()
df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))
for i in range(0,4):
    obj = root.getchildren()[i].getchildren()
    row = dict(zip(['Number', 'String', 'Boolean'],
                   [obj[0].text, obj[1].text,
                    obj[2].text]))
    row_s = pd.Series(row)
    row_s.name = i
    df = df.append(row_s)
 
print(df.drop_duplicates())

As with the previous example, you begin by creating a DataFrame that contains 
the duplicate record. To remove the errant record, all you need to do is call drop_
duplicates(). Here’s the result you get:

  Number  String Boolean
0      1   First    True
1      2  Second   False
2      3   Third    True
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Creating a data map and a data plan
You need to know about your dataset — that is, how it looks statically. A data map 
is an overview of the dataset. You use it to spot potential problems in your data, 
such as

 » Redundant variables

 » Possible errors

 » Missing values

 » Variable transformations

Checking for these problems goes into a data plan, which is a list of tasks you have 
to perform to ensure the integrity of your data. The following example shows a 
data map, A, with two datasets, B and C:

import pandas as pd
pd.set_option('display.width', 55)
 
df = pd.DataFrame({'A': [0,0,0,0,0,1,1],
                   'B': [1,2,3,5,4,2,5],
                   'C': [5,3,4,1,1,2,3]})
 
a_group_desc = df.groupby('A').describe()
print(a_group_desc)

In this case, the data map uses 0s for the first series and 1s for the second series. 
The groupby() function places the datasets, B and C, into groups. To determine 
whether the data map is viable, you obtain statistics using describe(). What you 
end up with is a dataset B, series 0 and 1, and dataset C, series 0 and 1, as shown 
in the following output:

      B                                            \
  count mean       std  min   25%  50%   75%  max
A
0   5.0  3.0  1.581139  1.0  2.00  3.0  4.00  5.0
1   2.0  3.5  2.121320  2.0  2.75  3.5  4.25  5.0
 
      C
  count mean       std  min   25%  50%   75%  max
A
0   5.0  2.8  1.788854  1.0  1.00  3.0  4.00  5.0
1   2.0  2.5  0.707107  2.0  2.25  2.5  2.75  3.0
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These statistics tell you about the two dataset series. The breakup of the two data-
sets using specific cases is the data plan. As you can see, the statistics tell you that 
this data plan may not be viable because some statistics are relatively far apart.

The default output from describe() shows the data unstacked. Unfortunately, 
the unstacked data can print with an unfortunate break, making it very hard to 
read. To keep this break from happening, you set the width you want to use for 
the data by calling pd.set_option('display.width', 55). You can set a number 
of pandas options this way by using the information found at https://pandas.
pydata.org/pandas-docs/stable/generated/pandas.set_option.html.

Although the unstacked data is relatively easy to read and compare, you may pre-
fer a more compact presentation. In this case, you can stack the data using the 
following code:

stacked = a_group_desc.stack()
print(stacked)

Using stack() creates a new presentation. Here’s the output shown in a compact 
form:

                B         C
A
0 count  5.000000  5.000000
  mean   3.000000  2.800000
  std    1.581139  1.788854
  min    1.000000  1.000000
  25%    2.000000  1.000000
  50%    3.000000  3.000000
  75%    4.000000  4.000000
  max    5.000000  5.000000
1 count  2.000000  2.000000
  mean   3.500000  2.500000
  std    2.121320  0.707107
  min    2.000000  2.000000
  25%    2.750000  2.250000
  50%    3.500000  2.500000
  75%    4.250000  2.750000
  max    5.000000  3.000000

Of course, you may not want all the data that describe() provides. Perhaps you 
really just want to see the number of items in each series and their mean. Here’s 
how you reduce the size of the information output:

print(a_group_desc.loc[:,(slice(None),['count','mean']),])

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.set_option.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.set_option.html
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Using loc lets you obtain specific columns. Here’s the final output from the exam-
ple showing just the information you absolutely need to make a decision:

      B          C
  count mean count mean
A
0   5.0  3.0   5.0  2.8
1   2.0  3.5   2.0  2.5

Manicuring the Data
Some people use the term manipulation when speaking about data, giving the 
impression that the data is somehow changed in an unscrupulous or devious 
manner. Perhaps a better term would be manicuring, which makes the data well 
shaped and lovely. No matter what term you use, however, raw data seldom meets 
the requirements for processing and analysis. To get something out of the data, 
you must manicure it to meet specific needs. The following sections discuss data 
manicuring needs.

Dealing with missing data
To answer a given question correctly, you must have all the facts. You can guess 
the answer to a question without all the facts, but then the answer is just as likely 
to be wrong as correct. Often, someone who makes a decision, essentially answer-
ing a question, without all the facts is said to jump to a conclusion. The following 
sections discuss the issue of missing data and what to do about it.

Understanding how missing data  
affects a dataset
When analyzing data, you have probably jumped to more conclusions than 
you think because of missing data. A data record, which is one entry in a dataset 
(which in turn is all the data), consists of fields that contain facts used to answer 
a question. Each field contains a single kind of data that addresses a single fact. 
If that field is empty, you don’t have the data you need to answer the question 
using that particular data record.

As part of the process of dealing with missing data, you must know that the data 
is missing. Identifying that your dataset is missing information can actually be 
quite hard because it requires you to look at the data at a low level — something 
that most people aren’t prepared to do and is time consuming even if you do have 
the required skills. Often, your first clue that data is missing is the preposterous 
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answers that your questions get from the algorithm and associated dataset. When 
the algorithm is the right one to use, the dataset must be at fault.

A problem can occur when the data collection process doesn’t include all the data 
needed to answer a particular question. Sometimes you’re better off to actually 
drop a fact rather than use a considerably damaged fact.

Less damaged fields can have data missing in one of two ways. Randomly miss-
ing data is often the result of human or sensor error. It occurs when data records 
throughout the dataset have missing entries. Sometimes a simple glitch causes 
the damage. Sequentially missing data occurs during some type of generalized 
failure. An entire segment of the data records in the dataset lack the required 
information, which means that the resulting analysis can become quite skewed.

Fixing randomly missing data is easiest. You can use a simple median or average 
value as a replacement. No, the dataset isn’t completely accurate, but it will likely 
work well enough to obtain a reasonable answer. In some cases, data scientists 
used a special algorithm to compute the missing value, which can make the data-
set more accurate at the expense of computational time.

Sequentially missing data is significantly harder, if not impossible, to fix because 
you lack any surrounding data on which to base any sort of guess. If you can find 
the cause of the missing data, you can sometimes reconstruct it. However, when 
reconstruction becomes impossible, you can choose to ignore the field. Unfortu-
nately, some answers will require that field, which means that you might need to 
ignore that particular sequence of data records — potentially causing incorrect 
output.

Finding the missing data
As a first step, count the number of missing cases in each variable. When a vari-
able has too many missing cases, you may need to drop it from the training and 
test dataset. A good rule of thumb is to drop a variable if more than 90 percent of 
its instances are missing.

Some learning algorithms do not know how to deal with missing values and report 
errors in both training and test phases, whereas other models treat them as zero 
values, causing an underestimation of the predicted value or probability (it’s 
just as if part of the formula isn’t working properly). Consequently, you need to 
replace all the missing values in your data matrix with some suitable value for 
your analysis to succeed.

Many reasons exist for missing data, but the essential point is whether the data 
is missing randomly or in a specific order. Random missing data is ideal because 
you can guess its value using a simple average, a median, or another algorithm 
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without too many concerns. Some cases contain a strong bias toward certain kinds 
of examples. For instance, think of the case of studying the income of a popula-
tion. Wealthy people (for taxation reasons, presumably) tend to hide their true 
income by reporting to you that they don’t know. Poor people, on the other hand, 
may say that they don’t want to report their income for fear of negative judge-
ment. If you miss information from certain strata of the population, repairing 
the missing data can be difficult and misleading because you may think that such 
cases are just like the others. Instead, they are quite different. Therefore, you can’t 
simply use average values to replace the missing values — you must use com-
plex approaches and tune them carefully. Moreover, identifying cases that aren’t 
missing data at random is difficult because it requires a closer inspection of how 
missing values are associated with other variables in the dataset.

When data is missing at random, you can easily repair the empty values because 
you obtain hints to their true value from other variables. When data isn’t miss-
ing at random, you can’t get good hints from other available information unless 
you understand the data association with the missing case. Therefore, if you have 
to figure out missing income in your data, and it is missing because the person 
is wealthy, you can’t replace the missing value with a simple average because 
you’ll replace it with a medium income. Instead, you should use an average of the 
income of wealthy people as a replacement.

When data isn’t missing at random, the fact that the value is missing is inform-
ative because it helps track down the missing group. You can leave the chore of 
looking for the reason that it’s missing to your algorithm by building a new binary 
feature that reports when the value of a variable is missing. Consequently, the 
algorithm will determine the best value to use as a replacement by itself.

Encoding missingness
You have a few possible strategies to handle missing data effectively. Your strat-
egy may change if you have to handle missing values in quantitative (values 
expressed as numbers) or qualitative features. Qualitative features, although also 
expressed by numbers, are in reality referring to concepts, so their values are 
somewhat arbitrary and you cannot meaningfully compute an average or perform 
other computations on them.

When working with qualitative features, your value guessing should always pro-
duce integer numbers, based on the numbers used as codes. Common strategies 
for missing data handling are as follows:

 » Replace missing values with a computed constant such as the mean or 
the median value. If your feature is a category, you must provide a specific 
value because the numbering is arbitrary, and using mean or median doesn’t 
make sense. Use this strategy when the missing values are random.
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 » Replace missing values with a value outside the normal value range of 
the feature. For instance, if the feature is positive, replace missing values with 
negative values. This approach works fine with decision tree–based algo-
rithms and qualitative variables.

 » Replace missing values with 0, which works well with regression models 
and standardized variables. This approach is also applicable to qualitative 
variables when they contain binary values.

 » Interpolate the missing values when they are part of a series of values 
tied to time. This approach works only for quantitative values. For instance, if 
your feature is daily sales, you could use a moving average of the last seven 
days or pick the value at the same time the previous week.

 » Impute their value using the information from other predictor features 
(but never use the response variable). Particularly in R, specialized libraries 
like missForest (https://cran.r-project.org/web/packages/missForest/
index.html), MICE (https://cran.r-project.org/web/packages/mice/
index.html), and Amelia II (https://gking.harvard.edu/amelia) can do 
everything for you. Scikit-learn recently introduced an experimental missing 
values imputer (which you can find at https://scikit-learn.org/stable/
modules/generated/sklearn.impute.IterativeImputer.html) that allows 
imputing data in Python using Multivariate Imputation by Chained Equations 
(MICE), missForest, or even Amelia methodologies.

Another good practice is to create a new binary feature for each variable whose 
values you repaired. The binary variable will track variations due to replacement 
or imputing with a positive value, and your machine learning algorithm can figure 
out when it must make additional adjustments to the values you actually used.

Inputting missing data
In Python, notification of missing values is made possible using the ndarray data 
structure from the NumPy package. Python marks missing values with a special 
value that appears printed on the screen as NaN (Not a Number). The DataFrame 
data structure from the pandas package offers methods for both replacing missing 
values and dropping variables.

The following Python example demonstrates how to perform replacement tasks. It 
begins by creating a dataset of 5 observations and 3 features, named “A,” “B,” “C”:

import pandas as pd
import numpy as np
data = pd.DataFrame([[1,2,np.nan],[np.nan,2,np.nan],
                     [3,np.nan,np.nan],[np.nan,3,8],
                     [5,3,np.nan]],columns=['A','B','C'])

https://cran.r-project.org/web/packages/missForest/index.html
https://cran.r-project.org/web/packages/missForest/index.html
https://cran.r-project.org/web/packages/mice/index.html
https://cran.r-project.org/web/packages/mice/index.html
https://gking.harvard.edu/amelia
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
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print(data,'\n') # prints the data
# counts NaN values for each feature
print(data.isnull().sum(axis=0))

Notice the use of np.nan to mark missing values in the code. When you run this 
example, you see the following output:

    A   B   C
0   1   2 NaN
1 NaN   2 NaN
2   3 NaN NaN
3 NaN   3   8
4   5   3 NaN
 
A    2
B    1
C    4
dtype: int64

Because feature C has just one value, you can drop it from the dataset. The code 
then replaces the missing values in feature B with a medium value and interpo-
lates the value in feature A because it displays a progressive order:

# Drops definitely C from the dataset
data.drop('C', axis=1, inplace=True)
# Creates a placeholder for B's missing values
data['missing_B'] = data['B'].isnull().astype(int)
# Fills missings in B using B's average
data['B'].fillna(data['B'].mean(), inplace=True)
# Interpolates A
data['A'].interpolate(method='linear', inplace=True)
print(data)

Here is the output you see when you run the code:

   A    B  missing_B
0  1  2.0          0
1  2  2.0          0
2  3  2.5          1
3  4  3.0          0
4  5  3.0          0

The printed output is the final dataset. Be sure to note that the mean of B isn’t 
an integer value, so the code converted all B values to floating numbers. This 
approach makes sense if B is numeric. If it were a category, and the numbering 
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were marking a class, the code should have filled the feature using the command 
data['B'].fillna(data['B'].mode().iloc[0], inplace=True), which uses 
the mode, that is, the first most frequent value in the series.

As shown in the example, sometimes you can’t do much with examples that have 
a lot of missing values in their features. In such cases:

 » When the example is for training, remove it from the set (a procedure called 
listwise deletion) so that the incomplete cases won’t affect learning.

 » When the example is part of your test, you shouldn’t remove it, but rather use 
it to evaluate how well your algorithm handles such situations.

Considering data misalignments
Data might exist for each of the data records in a dataset, but it might not align 
with other data in other datasets you own. For example, the numeric data in a field 
in one dataset might be a floating-point type (with decimal point), but an integer 
type in another dataset. Before you can combine the two datasets, the fields must 
contain the same type of data.

All sorts of other kinds of misalignment can occur. For example, date fields are 
notorious for being formatted in various ways. To compare dates, the data for-
mats must be the same. However, dates are also insidious in their propensity for 
looking the same but not being the same. For example, dates in one dataset might 
use Greenwich Mean Time (GMT) as a basis, while the dates in another dataset 
might use some other time zone. Before you can compare the times, you must 
align them to the same time zone. It can become even weirder when dates in one 
dataset come from a location that uses Daylight Saving Time (DST), but dates 
from another location don’t.

Even when the data types and format are the same, other data misalignments can 
occur. For example, the fields in one dataset may not match the fields in the other 
dataset. In some cases, these differences are easy to correct. One dataset may treat 
first and last name as a single field, while another dataset might use separate 
fields for first and last name. The answer is to change all datasets to use a single 
field or to change them all to use separate fields for first and last name. Unfortu-
nately, many misalignments in data content are harder to figure out. In fact, it’s 
entirely possible that you might not be able to figure them out at all. However, 
before you give up, consider these potential solutions to the problem:

 » Calculate the missing data from other data that you can access.

 » Locate the missing data in another dataset.
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 » Combine datasets to create a whole that provides consistent fields.

 » Collect additional data from various sources to fill in the missing data.

 » Redefine your question so that you no longer need the missing data.

Separating out useful data
Some organizations are of the opinion that they can never have too much data, 
but an excess of data becomes as much of a problem as not enough. To solve 
problems efficiently, an algorithm-based task, such as AI, requires just enough 
data. Defining the question that you want to answer concisely and clearly helps, 
as does using the correct algorithm (or algorithm ensemble). Of course, the major 
problems with having too much data are that finding the solution (after wading 
through all that extra data) takes longer, and sometimes you get confusing results 
because you can’t see the forest for the trees.

As part of creating the dataset you need for analysis, you make a copy of the origi-
nal data rather than modify it. Always keep the original, raw data pure so that 
you can use it for other analyses later. In addition, creating the right data output 
for analysis can require a number of tries because you may find that the output 
doesn’t meet your needs. The point is to create a dataset that contains only the 
data needed for analysis, but keep in mind that the data may need specific kinds 
of pruning to ensure the desired output.

Dealing with Dates in Your Data
Dates can present problems in data. For one thing, dates are stored as numeric 
values. However, the precise value of the number depends on the representation 
for the particular platform and could even depend on the users’ preferences. For 
example, Excel users can choose to start dates in 1900 or 1904 (https://support.
microsoft.com/en-us/help/214330/differences-between-the-1900-and- 
the-1904-date-system-in-excel). The numeric encoding for each is different, 
so the same date can have two numeric values depending on the starting date.

In addition to problems of representation, you also need to consider how to work 
with time values. Creating a time value format that represents a value that the user 
can understand is hard. For example, you might need to use Greenwich Mean Time 
(GMT) in some situations but a local time zone in others. Transforming between 

https://support.microsoft.com/en-us/help/214330/differences-between-the-1900-and-the-1904-date-system-in-excel
https://support.microsoft.com/en-us/help/214330/differences-between-the-1900-and-the-1904-date-system-in-excel
https://support.microsoft.com/en-us/help/214330/differences-between-the-1900-and-the-1904-date-system-in-excel
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various times is also problematic, such as differentiating between 12-hour time 
and 24-hour time. With these kinds of time differences in mind, the following 
sections provide you with details on dealing with time issues.

Formatting date and time values
Obtaining the correct date and time representation can make performing analysis 
a lot easier. For example, you often have to change the representation to obtain 
a correct sorting of values. Python provides two common methods of formatting 
date and time. The first technique is to call str(), which simply turns a datetime 
value into a string without any formatting. The strftime() function requires 
more work because you must define how you want the datetime value to appear 
after conversion. When using strftime(), you must provide a string containing 
special directives that define the formatting. You can find a listing of these direc-
tives at http://strftime.org/.

Now that you have some idea of how time and date conversions work, it’s time to 
see an example. The following example creates a datetime object and then con-
verts it into a string using two different approaches:

import datetime as dt
 
now = dt.datetime.now()
 
print(str(now))
print(now.strftime('%a, %d %B %Y'))

In this case, you can see that using str() is the easiest approach. However, as 
shown by the following output, it may not provide the output you need. Using 
strftime() is infinitely more flexible:

2018-09-21 11:39:49.698891
Fri, 21 September 2018

Using the right time transformation
Time zones and differences in  local time can cause all sorts of problems when 
you’re performing analysis. In addition, some types of calculations simply require 
a time shift in order to get the right results. No matter what the reason, you may 

http://strftime.org/
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need to transform one time into another time at some point. The following exam-
ples show some techniques you can employ to perform the task:

import datetime as dt
 
now = dt.datetime.now()
timevalue = now + dt.timedelta(hours=2)
 
print(now.strftime('%H:%M:%S'))
print(timevalue.strftime('%H:%M:%S'))
print(timevalue - now)

The timedelta() function makes the time transformation straightforward. You 
can use any of these parameter names with timedelta() to change a time and 
date value:

 » days

 » seconds

 » microseconds

 » milliseconds

 » minutes

 » hours

 » weeks

You can also manipulate time by performing addition or subtraction on time 
 values. You can even subtract two time values to determine the difference between 
them. Here’s the output from this example:

11:42:22
13:42:22
2:00:00

Note that now is the local time, timevalue is two time zones different from this 
one, and there is a two-hour difference between the two times. You can perform 
all sorts of transformations using these techniques to ensure that your analysis 
always shows precisely the time-oriented values you need.



CHAPTER 2  Considering Outrageous Outcomes      643

Considering Outrageous 
Outcomes

If you work with data long enough, you eventually start to gain an appreciation 
for when the output of an analysis looks right. It may not be the output you 
expected, but when you start thinking about it, the output is consistent with the 

data — it makes sense. Unfortunately, the output you receive might not always 
make sense, and that’s when the output becomes outrageous. You start seeing 
results like the sun coming out at midnight and the anticipated income from a 
new store being well into the negative numbers. Of course, recognizing outra-
geous isn’t always so easy, so the first part of this chapter begins with defining 
outrageous.

An outlier is data that lies outside the expected range. It’s an indicator that some-
thing may be wrong with your data or the method used to analyze it. Outliers can 
skew the results of an analysis or they can indicate that your original assumptions 
are incorrect. In some cases, it can simply mean that not everything or everyone 
fits within the little box you’d like to put them in — an outlier can simply be a 
serendipitous event. The next section of the chapter looks at outliers and helps 
you understand what they can mean.

The last parts of the chapter discuss two kinds of statistical analysis: univariate 
and multivariate. In both cases, you look for patterns in the data to tell you some-
thing about that data. The univariate approach uses just one variable, while the 

Chapter 2

IN THIS CHAPTER

 » Defining when an outcome is 
outrageous

 » Detecting outliers

 » Using the simple univariate method

 » Using the multivariate approach
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multivariate approach uses two or more variables. Some texts include a bivariate 
approach, which specifically uses two variables, but you won’t find this approach 
in this book. The goals of performing statistical analysis include understanding 
the relationship of a variable with the underlying data, understanding the rela-
tionships between multiple variables, and simplifying data.

You don’t have to type the source code for this chapter manually. In fact, using the 
downloadable source is a lot easier. The source code for this chapter appears in the 
DSPD_0602_Outliers.ipynb source code file for Python and the DSPD_R_0602_ 
Outliers.ipynb source code file for R. See the Introduction for details on how to 
find these source files.

Deciding What Outrageous Means
An outrageous result is one that doesn’t make sense and is at least marginally prov-
able as incorrect. You can have a result that doesn’t match your initial assump-
tions. Such analysis results occur all of the time. These unexpected results are 
unanticipated, but they aren’t outrageous. However, a time comes when the result 
of an analysis simply doesn’t make sense for one of these reasons:

 » The result is physically impossible.

 » The analysis never focuses in on a single provable result.

 » Different data produce widely varying results.

 » Variables that must correlate in some manner never do.

 » Analysis results never seem to match real-world outcomes.

An important aspect of understanding the term outrageous is to keep an open 
mind. Data scientists and mathematicians continue to create and refine algo-
rithms because the world is complex and humanity doesn’t truly understand 
it. The universe is even more complex and the questions that humanity hasn’t 
answered in even the smallest way would likely fill several libraries.

In addition, sometimes a result runs counter to common wisdom. If you perform an 
analysis that assumes that everyone in every country in the world reacts the same to 
a specific food ingredient, you’re likely to find that this assumption is incorrect. For 
example, most Americans would quickly suffer from high blood pressure from drink-
ing butter tea (https://www.yowangdu.com/tibetan-food/butter-tea.html and 
https://www.organicfacts.net/health-benefits/animal-product/butter- 
tea.html), yet this tea is a staple of places like Nepal, where people  actually have a 
lower incidence of high blood pressure than in America.

https://www.yowangdu.com/tibetan-food/butter-tea.html
https://www.organicfacts.net/health-benefits/animal-product/butter-tea.html
https://www.organicfacts.net/health-benefits/animal-product/butter-tea.html
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Oddly enough, you can find papers on all sorts of things that run counter to 
 common wisdom online and on reputable sites, such as the National Center for 
Biotechnology Information (NCBI) component of the National Institutes of Health 
(NIH) (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880218/). When 
you determine the result of an analysis before you actually perform the analysis, 
you likely find that your conclusions are skewed and that it’s the conclusion, not 
the result, that is outrageous.

Considering the Five Mistruths in Data
Humans are used to seeing data for what it is in many cases: an opinion. In fact, 
in some cases, people skew data to the point where it becomes useless, a mistruth.  
A computer can’t tell the difference between truthful and untruthful data; all it sees 
is data. One of the issues that make it hard, if not impossible, to perform analysis 
accurately is that humans can work with mistruths and computers can’t. The best 
you can hope to achieve is to see the errant data as outliers and then filter it out, but 
that technique doesn’t necessarily solve the problem because a human would still 
use the data and attempt to determine a truth based on the mistruths that are there.

A common thought about creating less contaminated datasets is that instead of 
allowing humans to enter the data, collecting the data through sensors or other 
means should be possible. Unfortunately, sensors and other mechanical input 
methodologies reflect the goals of their human inventors and the limits of what 
the particular technology is able to detect. Consequently, even machine-derived 
or sensor-derived data is also subject to generating mistruths that are quite diffi-
cult for an algorithm used for a task such as AI to detect and overcome.

The following sections use a car accident as the main example to illustrate five 
types of mistruths that can appear in data. The concepts that the accident is trying 
to portray may not always appear in data, and they may appear in different ways 
than discussed. The fact remains that you normally need to deal with these sorts 
of things when viewing data.

Commission
Mistruths of commission are those that reflect an outright attempt to substitute 
truthful information for untruthful information. For example, when filling out 
an accident report, someone could state that the sun momentarily blinded them, 
making it impossible to see someone they hit. In reality, perhaps the person was 
distracted by something else or wasn’t actually thinking about driving (possibly 
considering a nice dinner instead). If no one can disprove this theory, the person 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880218/
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might get by with a lesser charge. However, the data would also be contaminated. 
The effect is that an insurance company would now base premiums on errant data.

Although mistruths of commission might seem to be completely avoidable, often 
they aren’t. Humans tell “little white lies” to save others embarrassment or to 
deal with an issue with the least amount of personal effort. Sometimes a mistruth 
of commission is based on errant input or hearsay. In fact, the sources for errors 
of commission are so many that it really is hard to come up with a scenario where 
someone could avoid them entirely. All this said, mistruths of commission are one 
type of mistruth that someone can avoid more often than not.

Omission
Mistruths of omission occur when a person tells the truth in every stated fact but 
leaves out an important fact that would change the perception of an incident as a 
whole. Thinking again about the accident report, say that someone strikes a deer, 
causing significant damage to the car. The driver truthfully says:

 » The road was wet.

 » It was near twilight, so the light wasn’t as good as it could be.

 » Slow response times delayed pressing on the brake.

 » The deer simply ran out from a thicket at the side of the road.

The conclusion would be that the incident is simply an accident. However, the 
person has left out an important fact by not mentioning an ongoing conversation 
through texting. If law enforcement knew about the texting, it would change the 
reason for the accident to inattentive driving. The driver might be fined and the 
insurance adjuster would use a different reason when entering the incident into 
the database. As with the mistruth of commission, the resulting errant data would 
change how the insurance company adjusts premiums.

Completely avoiding mistruths of omission isn’t possible. Yes, someone could 
purposely leave facts out of a report, but equally likely is that someone will sim-
ply forget to include all the facts. After all, most people are quite rattled after an 
accident, so they easily lose focus and report only those truths that left the most 
significant impression. Even if a person later remembers additional details and 
reports them, the database is unlikely to ever contain a full set of truths.

Perspective
Mistruths of perspective occur when multiple parties view an incident from mul-
tiple vantage points. For example, in considering an accident involving a struck 
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pedestrian, the person driving the car, the person getting hit by the car, and a 
bystander who witnessed the event would all have different perspectives. An offi-
cer taking reports from each person would understandably get different facts 
from each one, even assuming that each person tells the truth as each knows it. 
In fact, experience shows that this is almost always the case, and what the officer 
submits as a report is the middle ground of what each of those involved states, 
augmented by personal experience. In other words, the report will be close to the 
truth, but not close enough for completely successful analysis.

When dealing with perspective, you need to consider vantage point. The driver 
of the car can see the dashboard and knows the car’s condition at the time of the 
accident. This is information that the other two parties lack. Likewise, the per-
son getting hit by the car has the best vantage point for seeing the driver’s facial 
expression (intent). The bystander might be in the best position to see whether 
the driver made an attempt to stop and to assess issues such as whether the  
driver tried to swerve. Each party will have to make a report based on seen data 
without the benefit of hidden data.

Perspective is perhaps the most dangerous of the mistruths because anyone  
who tries to derive the truth in this scenario will, at best, end up with an aver-
age of the various stories, which will never be fully correct. A human viewing the  
information can rely on intuition and instinct to potentially obtain a better approxi-
mation of the truth, but an algorithm will always use just the average, which means 
that the algorithm is always at a significant disadvantage. Unfortunately, avoid-
ing mistruths of perspective is impossible because no matter how many witnesses 
you have to the event, the best you can hope to achieve is an approximation of the 
truth, not the actual truth. You also have another sort of mistruth of perspective 
to consider. Think about this scenario: You’re a deaf person in 1927. Each week 
you go to the theater to view a silent film, and for an hour or more, you feel like 
everyone else. You can see the movie in just the same way as everyone else; differ-
ences don’t exist. In October of that year, the deaf person sees a sign saying that 
the theater is upgrading to support a sound system so that it can display talkies —  
films with a sound track. The sign says that it’s the best thing ever, and almost 
everyone seems to agree except for the deaf person, who is now made to feel like a 
second-class citizen, different from everyone else and even pretty much excluded 
from the theater. In the deaf person’s eyes, that sign is a mistruth: Adding a sound 
system is the worst possible thing, not the best possible thing. What seems to be 
generally true isn’t actually true for everyone. The idea of a general truth — one that 
is true for everyone — is a myth; it doesn’t exist.

Bias
Mistruths of bias occur when someone is able to see (gather the required input) 
the truth but, because of personal concerns or beliefs, is unable to actually see 
(comprehend) it. For example, when thinking about an accident, a driver might 
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focus attention so completely on the middle of the road that the deer at the edge of 
the road becomes invisible. Consequently, the driver has no time to react when the 
deer suddenly decides to bolt out into the middle of the road in an effort to cross.

A problem with bias is that it can be incredibly hard to categorize. For example, a 
driver who fails to see the deer can have a genuine accident, meaning that the deer 
was hidden from view by shrubbery. However, the driver might also be guilty of 
inattentive driving because of incorrect focus. The driver might also experience a 
momentary distraction. In short, the fact that the driver didn’t see the deer isn’t 
the question; instead, it’s a matter of why the driver didn’t see the deer. In many 
cases, confirming the source of bias becomes important when creating an algo-
rithm designed to avoid a bias source.

Theoretically, avoiding mistruths of bias is always possible. In reality, however, 
all humans have biases of various types, and those biases will always result in 
mistruths that skew datasets. Just getting someone to actually look and then see 
something — to have it register in the person’s brain — is a difficult task. Humans 
rely on filters to avoid information overload, and these filters are also a source of 
bias because they prevent people from actually seeing things.

Frame-of-reference
Of the five mistruths, frame of reference need not actually be the result of any sort 
of error, but one of understanding. A frame-of-reference mistruth occurs when 
one party describes something, such as an event like an accident, and because a 
second party lacks experience with the event, the details become muddled or com-
pletely misunderstood. Comedy routines abound that rely on frame-of-reference 
errors. One famous example is from Abbott and Costello, Who’s On First?, as shown at 
https://www.youtube.com/watch?v=kTcRRaXV-fg. Getting one person to under-
stand what a second person is saying can be impossible when the first person lacks 
experiential knowledge — the frame of reference.

Another frame-of-reference mistruth example occurs when one party can’t 
 possibly understand the other. For example, a sailor experiences a storm at sea. 
Perhaps it’s a monsoon, but assume for a moment that the storm is substan-
tial, perhaps even life threatening. Even with the use of videos, interviews, and 
a  simulator, the experience of being at sea in a life-threatening storm would be 
impossible to convey to someone who hasn’t experienced such a storm firsthand; 
such a person has no frame of reference for it.

The best way to avoid frame-of-reference mistruths is to ensure that all  parties 
involved can develop similar frames of reference. To accomplish this task, the 
various parties require similar experiential knowledge to ensure the accurate 
transfer of data from one person to another. However, when working with a 

https://www.youtube.com/watch?v=kTcRRaXV-fg
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dataset, which is necessarily recorded, static data, frame-of-reference errors will 
still occur when the prospective viewer lacks the required experiential knowledge.

An algorithm will always experience frame-of-reference issues because an algo-
rithm necessarily lacks the ability to create an experience. A databank of acquired 
knowledge isn’t quite the same thing. The databank would contain facts, but 
experience is based on not only facts but also conclusions that current technology 
is unable to duplicate.

Considering Detection of Outliers
As a general definition, outliers are data that differ significantly (they’re distant) 
from other data in a sample. The reason they’re distant is that one or more values 
are too high or too low when compared to the majority of the values. They could 
also display an almost unique combination of values. For instance, if you are ana-
lyzing records of students enlisted in a university, students who are too young or 
too old may catch your attention. Students studying unusual mixes of different 
subjects would also require scrutiny. The following sections discuss outliers as 
they pertain to data science.

Understanding outlier basics
Outliers skew your data distributions and affect all your basic central tendency (mean, 
median, or mode) statistics (see https://statistics.laerd.com/statistical- 
guides/measures-central-tendency-mean-mode-median.php for details). Means 
are pushed upward or downward, influencing all other descriptive measures. An 
outlier will always inflate variance and modify correlations, so you may obtain 
incorrect assumptions about your data and the relationships between variables.

This simple example can display the effect (on a small scale) of a single outlier 
with respect to more than 1,000 regular observations:

import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
%matplotlib inline
 
import numpy as np
from scipy.stats.stats import pearsonr
np.random.seed(101)
normal = np.random.normal(loc=0.0, scale= 1.0, size=1000)

https://statistics.laerd.com/statistical-guides/measures-central-tendency-mean-mode-median.php
https://statistics.laerd.com/statistical-guides/measures-central-tendency-mean-mode-median.php
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print('Mean: %0.3f Median: %0.3f Variance: %0.3f' %
                                  (np.mean(normal),
                                   np.median(normal),
                                   np.var(normal)))

Using the NumPy random generator, the example creates the variable named  
normal, which contains 1,000 observations derived from a standard normal 
 distribution. Basic descriptive statistics (mean, median, variance) do not show 
anything unexpected. Here are the resulting mean, median, and variance:

Mean: 0.026 Median: 0.032 Variance: 1.109

Now you change a single value by inserting an outlying value:

outlying = normal.copy()
outlying[0] = 50.0
print('Mean: %0.3f Median: %0.3f Variance: %0.3f' %
                                (np.mean(outlying),
                                 np.median(outlying),
                                 np.var(outlying)))
 
print('Pearson''s correlation: %0.3f p-value: %0.3f' %
                            pearsonr(normal,outlying))

You can call this new variable outlying and put an outlier into it (at index 0, you 
have a positive value of 50.0). Now you obtain more descriptive statistics:

Mean: 0.074 Median: 0.032 Variance: 3.597
Pearsons correlation coefficient: 0.619 p-value: 0.000

Now the statistics show that the mean has a value three times higher than before, 
and so does the variance. Only the median, which relies on position (it tells you 
the value occupying the middle position when all the observations are arranged in 
order), is not affected by the change.

More significantly, the correlation of the original variable and the outlying vari-
able is quite far from being +1.0 (the correlation value of a variable with respect 
to itself is +1.0, see https://www.kellogg.northwestern.edu/faculty/weber/
emp/_session_3/Correlation.htm for details), indicating that the measure of 
linear relationship between the two variables has been seriously damaged.

https://www.kellogg.northwestern.edu/faculty/weber/emp/_session_3/Correlation.htm
https://www.kellogg.northwestern.edu/faculty/weber/emp/_session_3/Correlation.htm
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Finding more things that can go wrong
Outliers don’t simply shift key measures in your explorative statistics; they also 
change the structure of the relationships between variables in your data. Outliers 
can affect algorithms in two ways:

 » Algorithms based on coefficients may take the wrong coefficient to minimize 
their inability to understand the outlying cases. Linear models are a clear 
example (they are sums of coefficients), but they are not the only ones. 
Outliers can also influence tree-based learners such as Adaboost (see 
https://towardsdatascience.com/basic-ensemble-learning-random- 
forest-adaboost-gradient-boosting-step-by-step-explained- 
95d49d1e2725 for additional information) or Gradient Boosting Machines 
(see https://machinelearningmastery.com/gentle-introduction- 
gradient-boosting-algorithm-machine-learning/ for additional 
information). Book 4, Chapter 1 provides you with an overview of Adaboost.

 » Because algorithms learn from data samples, outliers may induce the 
algorithm to overweight the likelihood of extremely low or high values given a 
certain variable configuration.

Both situations limit the capacity of a learning algorithm to generalize well to 
new data. In other words, they make your learning process overfit to the present 
dataset.

A few remedies exist for outliers, some of which require that you modify your 
present data and others that you choose a suitable error function for your algo-
rithm. (Some algorithms offer you the possibility of choosing a different error 
function as a parameter when setting up the learning procedure.)

Most algorithms used for tasks such as machine learning can accept different 
error functions. The error function is important because it helps the algorithm 
learn by understanding errors and enforcing adjustments in the learning process. 
However, some error functions are extremely sensitive to outliers, while oth-
ers are quite resistant to them. For instance, a squared error measure tends to 
emphasize outliers because errors deriving from examples with large values are 
squared, thus becoming even more prominent.

Understanding anomalies and novel data
Because outliers occur as mistakes or anomalies in extremely rare cases, detecting 
an outlier is never an easy job; it is, however, an important one for obtaining effec-
tive results from your data science project. In certain fields, detecting anomalies 

https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725
https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725
https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725
https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
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is itself the purpose of data science: fraud detection in insurance and banking, 
fault detection in manufacturing, system monitoring in health and other critical 
applications, and event detection in security systems and for early warning.

An important distinction is when you look for existing outliers in data, or when 
you check for any new data containing anomalies with respect to existing cases. 
Maybe you spent a lot of time cleaning your data or you developed a machine 
learning application based on available data, so it would be critical to figure out 
whether the new data is similar to the old data and whether the algorithms will 
continue working well in classification or prediction.

In such cases, data scientists instead talk of novelty detection, because they need 
to know how well the new data resembles the old. Being exceptionally new is con-
sidered an anomaly: Novelty may conceal a significant event or may risk prevent-
ing an algorithm from working properly because tasks such as machine learning 
rely heavily on learning from past examples, and the algorithm may not gener-
alize to completely novel cases. When working with new data, you should retrain 
the algorithm.

Experience teaches that the world is rarely stable. Sometimes novelties do nat-
urally appear because the world is so mutable. Consequently, your data changes 
over time in unexpected ways, in both target and predictor variables. This phe-
nomenon is called concept drift. The term concept refers to your target and drift 
to the source data used to perform a prediction that moves in a slow but uncon-
trollable way, like a boat drifting because of strong tides. When considering a 
data science model, you distinguish between different concept drift and novelty 
situations:

 » Physical: Face or voice recognition systems, or even climate models, never 
really change. Don’t expect novelties, but check for outliers that result from 
data problems, such as erroneous measurements.

 » Political and economic: These models sometimes change, especially in the 
long run. You have to keep an eye out for long-term effects that start slowly 
and then propagate and consolidate, rendering your models ineffective.

 » Social behavior: Social networks and the language you use every day change 
over time. Expect novelties to appear, and take precautionary steps; other-
wise, your model will suddenly deteriorate and turn unusable.

 » Search engine data, banking, and e-commerce fraud schemes: These 
models change quite often. You need to exercise extra care in checking for 
the appearance of novelties, telling you to train a new model to maintain 
accuracy.
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 » Cyber security threats and advertising trends: These models change 
continuously. Spotting novelties is the norm, and reusing the same models 
over a long time is a hazard.

Examining a Simple Univariate Method
When looking for outliers, a good way to start, no matter how many variables you 
have in your data, is to look at every single variable by itself, using both graphi-
cal and statistical inspection. This is the univariate approach, which allows you to 
spot an outlier given an incongruous value on a variable. The following sections 
discuss this approach in more detail.

Using the pandas package
The pandas package can make spotting outliers quite easy thanks to

 » A straightforward describe method that informs you on mean, variance, 
quartiles, and extremes of your numeric values for each variable

 » A system of automatic boxplot visualizations

Using both techniques in tandem makes it easy to know when you have outliers 
and where to look for them. The diabetes dataset, from the Scikit-learn datasets 
module, is a good example to start with.

from sklearn.datasets import load_diabetes
diabetes = load_diabetes()
X,y = diabetes.data, diabetes.target

After these commands, all the data is contained in the X variable, a NumPy ndar-
ray. The example then transforms it into a pandas DataFrame and asks for some 
descriptive statistics (see the output in Figure 2-1):

import pandas as pd
pd.options.display.float_format = '{:.2f}'.format
df = pd.DataFrame(X)
df.describe()
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You can spot the problematic variables by looking at the extremities of the 
 distribution (the maximum value of a variable). For example, you must consider 
whether the minimum and maximum values lie respectively far from the 25th 
and 75th percentile. As shown in the output, many variables have suspiciously 
large maximum values. A boxplot analysis will clarify the situation. The following 
 command creates the boxplot of all variables shown in Figure 2-2.

fig, axes = plt.subplots(nrows=1, ncols=1,
                         figsize=(10, 5))
df.boxplot(ax=axes);

Boxplots generated from pandas DataFrame will have whiskers set to plus or 
minus 1.5 IQR (interquartile range or the distance between the lower and upper 
quartile) with respect to the upper and lower side of the box (the upper and 
lower quartiles). This boxplot style is called the Tukey boxplot (from the name of  
statistician John Tukey, who created and promoted it among statisticians together 

FIGURE 2-1:  
Descriptive 

statistics for a 
DataFrame.

FIGURE 2-2:  
Boxplots.
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with other explanatory data techniques) and it allows a visualization of the pres-
ence of cases outside the whiskers. (All points outside these whiskers are deemed 
outliers.)

Leveraging the Gaussian distribution
Another effective check for outliers in your data is accomplished by leveraging the 
normal distribution. Even if your data isn’t normally distributed, standardizing 
it will allow you to assume certain probabilities of finding anomalous values. For 
instance, 99.7% of values found in a standardized normal distribution should be 
inside the range of +3 and –3 standard deviations from the mean, as shown in the 
following code.

from sklearn.preprocessing import StandardScaler
Xs = StandardScaler().fit_transform(X)
# .any(1) method will avoid duplicating
df[(np.abs(Xs)>3).any(1)]

In Figure 2-3, you see the results depicting the rows in the dataset featuring some 
possibly outlying values.

The Scikit-learn module provides an easy way to standardize your data and to 
record all the transformations for later use on different datasets. This means that 
all your data, no matter whether it’s for machine learning training or for perfor-
mance test purposes, is standardized in the same way.

FIGURE 2-3:  
Reporting 

 possibly outlying 
examples.
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The 68-95-99.7 rule says that in a standardized normal distribution, 68  percent 
of values are within one standard deviation, 95 percent are within two standard 
deviations, and 99.7 percent are within three. When working with skewed data, 
the 68-95-99.7 rule may not hold true, and in such an occurrence, you may need 
some more conservative estimate, such as Chebyshev’s inequality. Chebyshev’s 
inequality relies on a formula that says that for k standard deviations around 
the mean, no more cases than a percentage of 1/k^2 should be over the mean. 
 Therefore, at seven standard deviations around the mean, your probability of 
finding a legitimate value is at most 2 percent, no matter what the distribution 
is. (Two percent is a low probability; your case could be deemed almost certainly 
an outlier.)

Chebyshev’s inequality is conservative. A high probability of being an outlier cor-
responds to seven or more standard deviations away from the mean. Use it when 
it may be costly to deem a value an outlier when it isn’t. For all other applications, 
the 68-95-99.7 rule will suffice.

Making assumptions and checking out
Having found some possible univariate outliers, you now have to decide how to 
deal with them. If you completely distrust the outlying cases, under the assump-
tion that they were unfortunate errors or mistakes, you can just delete them. 
(In Python, you can just deselect them using fancy indexing.)

Modifying the values in your data or deciding to exclude certain values is a 
 decision to make after you understand why you have some outliers in your data. 
You can rule out unusual values or cases for which you presume that some error 
in measurement has occurred, in recording or previous handling of the data. If 
instead you realize that the outlying case is a legitimate, though rare, one, the best 
approach would be to underweight it (when the learning algorithms uses weight 
for the observations) or to increase the size of your data sample.

In this case, after deciding to keep the data and standardizing it, you could just cap 
the outlying values by using a simple multiplier of the standard deviation:

Xs_capped = Xs.copy()
o_idx = np.where(np.abs(Xs)>3)
Xs_capped[o_idx] = np.sign(Xs[o_idx]) * 3

In the proposed code, the sign function from NumPy recovers the sign of the 
outlying observation (+1 or –1), which is then multiplied by the value of 3 and 
assigned to the respective data point recovered by a Boolean indexing of the stan-
dardized array.
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This approach does have a limitation. Because the standard deviation is used 
both for high and low values, it implies symmetry in your data distribution, an 
assumption often unverified in real data. As an alternative, you can use a bit more 
sophisticated approach called winsorizing. When using winsorizing, the values 
deemed outliers are clipped to the value of specific percentiles that act as value 
limits (usually the 5th percentile for the lower bound and the 95th for the upper):

from scipy.stats.mstats import winsorize
Xs_winsorized = winsorize(Xs, limits=(0.05, 0.95))

In this way, you create a different hurdle value for larger and smaller values, tak-
ing into account any asymmetry in the data distribution. Whatever you choose to 
use for capping (by standard deviation or by winsorizing), your data is now ready 
for further processing and analysis.

Finally, an alternative, automatic solution is to let Scikit-learn automati-
cally transform your data and clip outliers by using the RobustScaler, a scaler 
based on the IQR (as in the boxplot previously discussed in this chapter; refer to 
Figure 2-2):

from sklearn.preprocessing import RobustScaler
Xs_rescaled = RobustScaler().fit_transform(Xs)

Developing a Multivariate Approach
Working on single variables allows you to spot a large number of outlying obser-
vations. However, outliers do not necessarily display values too far from the norm. 
Sometimes outliers are made of unusual combinations of values in more variables. 
They are rare, but influential, combinations that can especially trick machine 
learning algorithms.

In such cases, the precise inspection of every single variable won’t suffice to rule 
out anomalous cases from your dataset. Only a few selected techniques, taking in 
consideration more variables at a time, will manage to reveal problems in your data.

The presented techniques approach the problem from different points of view:

 » Dimensionality reduction

 » Density clustering

 » Nonlinear distribution modeling
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Using these techniques allows you to compare their results, taking notice of the 
recurring signals on particular cases — sometimes already located by the univari-
ate exploration, sometimes as yet unknown.

Using principle component analysis
Principal component analysis can completely restructure the data, removing 
redundancies and ordering newly obtained components according to the amount 
of the original variance that they express. This type of analysis offers a synthetic 
and complete view over data distribution, making multivariate outliers particu-
larly evident.

The first two components, being the most informative in term of variance, can 
depict the general distribution of the data if visualized. The output provides a good 
hint at possible evident outliers.

The last two components, being the most residual, depict all the information that 
could not be otherwise fitted by the PCA method. They can also provide a sugges-
tion about possible but less evident outliers.

from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
from pandas.plotting import scatter_matrix
pca = PCA()
Xc = pca.fit_transform(scale(X))
 
first_2 = sum(pca.explained_variance_ratio_[:2]*100)
last_2 = sum(pca.explained_variance_ratio_[-2:]*100)
 
print('variance by the components 1&2: %0.1f%%' % first_2)
print('variance by the last components: %0.1f%%' % last_2)
 
df = pd.DataFrame(Xc, columns=['comp_' + str(j)
                               for j in range(10)])
fig, axes = plt.subplots(nrows=1, ncols=2,
                         figsize=(15, 5))
first_two = df.plot.scatter(x='comp_0', y='comp_1',
                            s=50, grid=True, c='Azure',
                            edgecolors='DarkBlue',
                            ax=axes[0])
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last_two  = df.plot.scatter(x='comp_8', y='comp_9',
                            s=50, grid=True, c='Azure',
                            edgecolors='DarkBlue',
                            ax=axes[1])
 
plt.show()

Figure  2-4 shows two scatterplots of the first and last components. The out-
put also reports the variance explained by the first two components (half of the 
informative content of the dataset) of the PCA and by the last two ones:

variance by the components 1&2: 55.2%
variance by the last components: 0.9%

Pay particular attention to the data points along the axis (where the x axis defines 
the independent variable and the y axis defines the dependent variable). You can 
see a possible threshold to use for separating regular data from suspect data.

Using the two last components, you can locate a few points to investigate using 
the threshold of –0.3 for the tenth component and of –1.0 for the ninth. All cases 
below these values are possible outliers (see Figure 2-5).

outlying = (Xc[:,-1] > 0.3) | (Xc[:,-2] > 1.0)
df[outlying]

Using cluster analysis
Outliers are isolated points in the space of variables, and DBScan is a clustering 
algorithm that links dense data parts together and marks the too-sparse parts. 
DBScan is therefore an ideal tool for an automated exploration of your data for 

FIGURE 2-4:  
The first two 
and last two 
components 

from the PCA.
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possible outliers to verify. Here is an example of how you can use DBScan for out-
lier detection:

from sklearn.cluster import DBSCAN
DB = DBSCAN(eps=2.5, min_samples=25)
DB.fit(Xc)
 
from collections import Counter
print(Counter(DB.labels_))
df[DB.labels_==-1]

However, DBSCAN requires two parameters, eps and min_samples. These two 
parameters require multiple tries to locate the right values, which makes using 
the parameters a little tricky.

Start with a low value of min_samples and try growing the values of eps from 
0.1  upward. After every trial with modified parameters, check the situation by 
counting the number of observations in the class by comparing the attribute 
labels_, with the value -1, and stop when the number of outliers seems reason-
able for a visual inspection.

There will always be points on the fringe of the dense parts’ distribution, so it’s 
hard to provide you with a threshold for the number of cases that might be classi-
fied in the –1 class. Normally, outliers should not be more than 5 percent of cases, 
so use this indication as a generic rule of thumb.

The output from the previous example will report to you how many examples are 
in the –1 group, which the algorithm considers not part of the main cluster, and 
the list of the cases that are part of it.

FIGURE 2-5:  
The possible 

outlying cases 
spotted by PCA.
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It is less automated, but you can also use the K-means clustering algorithm for 
outlier detection. You first run a cluster analysis with a reasonable enough num-
ber of clusters. (You can try different solutions if you’re not sure.) Then you look 
for clusters featuring just a few examples (or maybe a single one); they are prob-
ably outliers because they appear as small, distinct clusters that are separate from 
the large clusters that contain the majority of examples.

Automating outliers detection  
with Isolation Forests
Random Forests and Extremely Randomized Trees are powerful machine learning 
techniques. They work by dividing your dataset into smaller sets based on certain 
variable values to make it easier to predict the classification or regression on each 
smaller subset (a divide et impera solution).

IsolationForest is an algorithm that takes advantage of the fact that an outlier 
is easier to separate from majority cases based on differences between its values 
or combination of values. The algorithm keeps track of how long it takes to sep-
arate a case from the others and get it into its own subset. The less effort it takes 
to separate it, the more likely the case is an outlier. As a measure of such effort, 
IsolationForest produces a distance measurement (the shorter the distance, the 
more likely the case that it’s an outlier).

When your machine learning algorithms are in production, a trained Isolation-
Forest can act as a sanity check because many algorithms can’t cope with outly-
ing and novel examples.

To set IsolationForest to catch outliers, all you have to decide is the level of 
contamination, which is the percentage of cases considered outliers based on the 
distance measurement. You decide such a percentage based on your experience 
and expectation of data quality. Executing the following script will create a work-
ing IsolationForest:

from sklearn.ensemble import IsolationForest
auto_detection = IsolationForest(max_samples=50,
                                 contamination=0.05,
                                 random_state=0)
auto_detection.fit(Xc)
evaluation = auto_detection.predict(Xc)
df[evaluation==-1]
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The output reports the list of the cases suspected of being outliers. In addition, the 
algorithm is trained to recognize normal dataset examples. When you provide new 
cases to the dataset and you evaluate them using the trained IsolationForest, 
you can immediately spot whether something is wrong with your new data.

IsolationForest is a computationally intensive algorithm. Performing an analy-
sis on a large dataset takes a long time and a lot of memory.
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Dealing with Model 
Overfitting and 
Underfitting

A model is the description of the data points in the form of an algorithm (often 
represented by a mathematical function). Book 3 discusses various kinds 
of modeling associated with particular data point patterns. For example, 

data points that form a straight line rely on linear regression. The  purpose of cre-
ating a model is to either predict the location of future data points or to categorize 
data based on where it falls within the model. However, a model is only as good as 
the underlying algorithm. An algorithm that follows the  original data points too 
closely overfits the curve to the data. An algorithm that doesn’t follow the origi-
nal data points well enough underfits the curve to the data. Of course, overfitting 
and underfitting are both problems, which is why you need this chapter. Unless a 
model runs true to the data, anything you use the model for is suspect.

After you know why overfitting and underfitting occur, you need to consider the 
sources of these two problems. In some cases, the problem is definitely related to 
the data itself, but often the problem is in the manner that the data is collected 
and manicured for use. Poor assumptions about the data can also cause problems.

Chapter 3

IN THIS CHAPTER

 » Defining overfitting and underfitting

 » Considering model problem sources

 » Understanding the role of features
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One of the most important concerns with overfitting and underfitting pertains to 
the features you select — that is, one or more columns in the data table contain-
ing the data. Each of the rows is a case (or sometimes called an item, event, or 
instance). Analysis involves viewing the features for each case and using them to 
construct the model. When you choose the wrong features, the model won’t work. 
The last part of this chapter discusses working with features.

You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears in 
the DSPD_0603_Fitting.ipynb source code file for Python and the DSPD_R_0603_ 
Fitting.ipynb source code file for R. See the Introduction for details on how to 
find these source files.

Understanding the Causes
It’s an oversimplification to state that overfitting and underfitting are issues 
 surrounding the construction of a model based on the data. Something must cause 
the problem to occur. In fact, more than one problem can occur with the modeling 
of data, making the solution to overfitting and underfitting more complex than 
you might think. The following sections discuss common causes of overfitting and 
underfitting so that you can better understand how to locate the causes of these 
problems in your own models.

Considering the problem
Fitting a model implies learning from data a representation of the rules that 
generated the data in the first place. From a mathematical perspective, fitting a 
model is analogous to guessing an unknown function of the kind you faced in high 
school, such as y=4x^2+2x, just by observing its y results. Therefore, under the 
hood, you expect that data analysis algorithms generate mathematical formula-
tions by determining how reality works based on the examples provided.

Demonstrating whether such formulations are real is beyond the scope of data 
science. What is most important is that they work by producing exact predictions. 
For example, even though you can describe much of the physical world using 
mathematical functions, you often can’t describe social and economic dynamics 
this way, but people try guessing them anyway.

To summarize, as a data scientist, you should always strive to approximate the 
real, unknown functions underlying the problems you face by using the best 
information available. The result of your work is evaluated based on your capacity 
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to predict specific outcomes (the target outcome) given certain premises (the 
data) thanks to a useful range of algorithms (the machine learning algorithms).

Earlier in the book, you see something akin to a real function or law when the book 
presents a linear regression, which has its own formulation. The linear formula 
y=Bx + a, which mathematically represents a line on a plane, can often approx-
imate training data well, even if the data is not representing a line or something 
similar to a line. As with linear regression, all other algorithms used for tasks 
such as machine learning have an internal formulation (and some, such as neural 
networks, even require you to define their formulation from scratch). The linear 
regression’s formulation is one of the simplest ones; formulations from other 
learning algorithms can appear quite complex. You don’t need to know exactly 
how they work. You do need to have an idea of how complex they are, whether 
they represent a line or a curve, and whether they can sense outliers or noisy data. 
When planning to learn from data, you should address these problematic aspects 
based on the formulation you intend to use:

1. Whether the learning algorithm is the best one to approximate the unknown 
function that you imagine is behind the data you use. In order to make such a 
decision, you must consider the learning algorithm’s formulation performance 
on the data at hand and compare it with other, alternative formulations from 
other algorithms.

2. Whether the specific formulation of the learning algorithm is too simple, with 
respect to the hidden function, to make an estimate (this is called a bias 
problem).

3. Whether the specific formulation of the learning algorithm is too complex, with 
respect to the hidden function you need to guess (leading to the variance 
problem).

Not all algorithms are suitable for every data problem. If you don’t have enough 
data or the data is full of erroneous information, some formulations may have too 
much difficulty figuring out the real function.

Looking at underfitting
As previously mentioned, underfitting means that the model you create doesn’t 
actually follow the data points very well, so any prediction or categorization is 
suspect. Of course, using visualization to see how this process works is helpful. 
The first step is to generate some data using this code:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
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np.random.seed(51)
 
x = np.array(range(1, 50))
vary = (np.random.random(len(x))) / 5
y = np.sin(x * np.pi / 50.) + vary

What this code normally generates is a curve based on sine. Without vary, the 
output would be a nearly perfect sinewave, in fact. Adding vary means that the 
data will look more like the real world with little variations in the data points. 
Setting the np.random.seed() value ensures that the random values provided by 
vary remain the same for each test.

You can simulate underfitting by using a linear regression, as discussed in Book 
3, Chapter  1. For this example, the degree of polynomial fitting provided by  
polyfit() as described at https://docs.scipy.org/doc/numpy/reference/ 
generated/numpy.polyfit.html becomes important. A linear regression uses a 
single degree of polynomial fitting, as shown in the following code:

plt.scatter(x, y)
 
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
print(p)
 
plt.plot(x, p(x), 'g-')
plt.legend(['Model', 'Data'])
plt.show()

Figure 3-1 shows the output of this example. Notice that the line charges straight 
through the data, so any analysis would be accurate only where the model hap-
pens to cross the data, which is only two points in the range.

Examination of p shows that the model does indeed use only one degree of fitting:

0.0005854 x + 0.7309

When your model isn’t complex enough, it won’t fit your data properly, and you 
end up with inaccuracy rather than something useful.

Looking at overfitting
Overfitting means that the model fits the data too closely, so the model is unlikely 
to work with any new data you provide. The data developed in the previous section 

https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
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can also work to demonstrate overfitting. In fact, all you really need to do is add 
degrees of polynomial fitting, as shown in the following code:

plt.scatter(x, y)
 
z = np.polyfit(x, y, 18)
p = np.poly1d(z)
print(p)
 
plt.plot(x, p(x), 'g-')
plt.legend(['Model', 'Data'])
plt.show()

In this case, you use 18 degrees of polynomial fitting. Printing p demonstrates 
this fact:

        18          17         16          15          14
1.44e-22 x-6.054e-20 x+1.17e-17 x-1.379e-15 x+1.109e-13 x
            13          12          11          10
 - 6.465e-12 x+2.826e-10 x-9.461e-09 x+2.458e-07 x
            9           8           7         6         5
 - 4.99e-06 x+7.923e-05 x-0.0009799 x+0.00935 x-0.06763 x
          4       3       2
 + 0.3602 x-1.346 x+3.247 x-4.253 x+2.339

The graphic output of the example differs considerably, too. Figure 3-2 shows the 
results of overfitting against the data for which the model is created.

FIGURE 3-1:  
Underfitting is the 

result of using a 
model that isn’t 

complex enough.
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The model might actually look good in this case. However, the brittleness of this 
model becomes apparent when you change the randomness of vary, as shown in 
the following code, to demonstrate the introduction of new data.

np.random.seed(22)
 
vary = (np.random.random(len(x))) / 3
y = np.sin(x * np.pi / 50.) + vary
 
plt.scatter(x, y)
 
plt.plot(x, p(x), 'g-')
plt.legend(['Model', 'Data'])
plt.show()

The new output, shown in Figure 3-3, introduces all sorts of possible prediction 
errors. The problem with overfitting becomes evident in this case.

Plotting learning curves for insights
This chapter contains a number of examples of using algorithms and plots to see 
where problems may lie in data. Of course, nothing is guaranteed to work all the 
time, so you need to apply the correct algorithm to gain the insights you need. 
The examples in the previous sections demonstrate that you also need to experi-
ment with the configuration of the algorithm — that is, experiment with how it 
performs its work. The following code shows what happens when you tune the 
degrees of polynomial fitting:

FIGURE 3-2:  
Overfitting causes 

the model to 
 follow the data 

too closely.
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np.random.seed(51)
 
x = np.array(range(1, 50))
vary = (np.random.random(len(x))) / 3
y = np.sin(x * np.pi / 50.) + vary
plt.scatter(x, y)
 
z = np.polyfit(x, y, 2)
p = np.poly1d(z)
plt.plot(x, p(x), 'g-')
 
np.random.seed(22)
vary = (np.random.random(len(x))) / 3
y = np.sin(x * np.pi / 50.) + vary
plt.scatter(x, y)
 
plt.legend(['Model', 'Data 1', 'Data 2'])
plt.show()

The output shown in Figure 3-4 demonstrates that the model runs through the 
middle of both datasets with enough accuracy for you to perform predictions with 
some level of accuracy. However, the more important point is that this example 
also demonstrates the need to experiment with the algorithms at your disposal 
and the arguments they provide to create a useful model.

FIGURE 3-3:  
Applying the 

model to slightly 
different data 

shows the 
problem with 
overfitting in 
more detail.
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Determining the Sources of Overfitting 
and Underfitting

Merely knowing the causes of overfitting and underfitting isn’t sufficient because 
the causes have a source that you must deal with in order to obtain the desired 
algorithmic output. For example, when you experience bias or variance, you need 
to look at the formulation of your model. The following sections help you under-
stand the sources of overfitting and underfitting better.

FIGURE 3-4:  
Using the  correct 

degrees of 
 polynomial  

 fitting makes a 
big difference.

NO SILVER BULLET IN ANALYSIS
You can see thousands of message threads on various forums online where some-
one is looking to solve a particular data problem precisely and completely. However, in 
reviewing the material in this book, you often encounter terms like confidence level (how 
well an algorithm can predict an outcome) that would seem to say that you can only 
partly achieve your goal of perfection. This chapter considers the matter of overfitting 
and underfitting, but it comes with a caveat: You can’t really achieve perfection in this 
area because the data will change over time and the methods used to model data aren’t 
perfect. What you really end up with is a solution that works within a particular margin 
of error, not perfection. Driving yourself crazy trying to find perfection will only frustrate 
you and keep your project from completing on time. So, part of the hidden fix for the 
issues surrounding data analysis is deciding when the solution works well enough to 
meet your needs.



D
ea

lin
g 

w
it

h 
M

od
el

 
O

ve
rfi

tt
in

g 
an

d 
U

nd
er

fit
ti

ng

CHAPTER 3  Dealing with Model Overfitting and Underfitting      671

Understanding bias and variance
If your chosen learning algorithm can’t learn properly from data and is not per-
forming well, the cause is bias or variance in its estimates.

 » Bias: Given the simplicity of a formulation, your algorithm tends to overesti-
mate or underestimate the real rules behind the data and is systematically 
wrong in certain situations. Simple algorithms have high bias; having few 
internal parameters, they tend to represent only simple formulations well.

 » Variance: Given the complexity of a formulation, your algorithm tends to 
learn too much information from the data and detects rules that don’t exist, 
which causes its predictions to be erratic when faced with new data. You can 
think of variance as a problem connected to memorization. Complex algo-
rithms can memorize data features thanks to the algorithm’s high number of 
internal parameters. However, memorization doesn’t imply any understand-
ing about the rules.

Bias and variance depend on the complexity of the formulation at the core of 
the learning algorithm with respect to the complexity of the formulation that 
is  presumed to have generated the data you are observing. However, when you 
 consider a specific problem using the available data rules, you’re better off having 
high bias or variance when

 » You have few observations: Simpler algorithms perform better, no matter 
what the unknown function is. Complex algorithms tend to learn too much 
from data, causing inaccurate estimates.

 » You have many observations: Complex algorithms always reduce variance. 
The reduction occurs because even complex algorithms can’t learn all that 
much from data, so they learn just the rules, not any erratic noise.

 » You have many variables: Provided that you also have many observations, 
simpler algorithms tend to find a way to approximate even complex hidden 
functions.

Having insufficient data
If you only have one data point, predicting the next data point is impossible 
(unless you’re incredibly lucky). When you have two data points, predictions work 
only when the next data point happens to be in a straight line with the other two. 
Breaking the problem down this way makes it obvious that more data is better. 
Each additional data point you add can increase the accuracy of the prediction 
because you provide more data that the algorithm uses to learn.
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Insufficient data tends to make your model underfit. The effect of insufficient data 
is that the model you create is inaccurate because it hasn’t learned enough about 
the data. Without enough data points, you can’t use something like least squares 
to create a model that accurately reflects the trend of the data. (Book 3, Chapter 1 
describes how linear regression uses the least squares method.)

Being fooled by data leakage
Data leakage is defined as the creation of unexpected additional information in 
your data (most especially training data, when you split your dataset into train-
ing and testing sets), allowing a model or machine learning algorithm to make 
unrealistically good predictions. Normally, this additional data isn’t available to 
the model in the real world, so introducing it into the training process causes 
the learning process to fail; the model learns incorrectly. Here are some common 
causes of data leakage:

 » Preprocessing: The data is preprocessed in such a manner that it becomes 
skewed in an unrealistic way. For example, if you apply transformations to 
your training set, but also include the test set as part of the transformation, 
data will leak from the test set to the training set. Any transformations you 
apply should appear as part of the training set alone.

 » Duplicates: The existence of the same data point, even from different 
observations, in both the training set and the test set could cause the model 
to fixate on that data point. Removing duplicates so that the training set and 
test set contain unique data points is essential.

 » Temporal information: Data is especially prone to leakage when it relies on 
time because the variation of data over time tends to follow patterns that may 
not reflect reality in general. The best way to avoid this problem is to ensure 
that the training set and the test set contain a mix of data points across the 
entire time frame used for data collection.

Guessing the Right Features
Ensuring that you have the right features, which means the properties used to 
 perform an analysis, is essential. The features determine what the algorithm con-
siders when performing its analysis. Without the right information, the algorithm 
can’t perform its task. The following sections discuss how to obtain and use the 
right features in your analysis.
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Selecting variables like a pro
Selecting the right variables can improve the learning process by reducing the 
amount of noise (useless information) that can influence the learner’s estimates. 
Variable selection, therefore, can effectively reduce the variance of predictions. In 
order to involve just the useful variables in training and leave out the redundant 
ones, you can use these techniques:

 » Univariate approach: Select the variables most related to the target  
outcome.

 » Greedy or backward approach: Keep only the variables that you can remove 
from the learning process without damaging its performance.

This example relies on the Boston dataset. The following code imports the dataset 
so that it’s available for use:

from sklearn.datasets import load_boston
from sklearn.preprocessing import scale
from sklearn.metrics import mean_squared_error
 
boston = load_boston()
X = scale(boston.data)
y = boston.target

Selecting by univariate measures
If you decide to select a variable by its level of association with its target, the 
class SelectPercentile provides an automatic procedure for keeping only a cer-
tain percentage of the best, associated features. The available metrics for associa-
tion are

 » f_regression: Used only for numeric targets and based on linear regression 
performance

 » f_classif: Used only for categorical targets and based on the Analysis of 
Variance (ANOVA) statistical test

 » chi2: Performs the chi-square statistic for categorical targets, which is less 
sensitive to the nonlinear relationship between the predictive variable and its 
target

When evaluating candidates for a classification problem, f_classif and chi2 
tend to provide the same set of top variables. It’s still a good practice to test the 
selections from both the association metrics.
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Apart from applying a direct selection of the top percentile associations, Select-
Percentile can also rank the best variables to make it easier to decide at what 
percentile to exclude a feature from participating in the learning process. The 
class SelectKBest is analogous in its functionality, but it selects the top k vari-
ables, where k is a number, not a percentile.

from sklearn.feature_selection import SelectPercentile
from sklearn.feature_selection import f_regression
Selector_f = SelectPercentile(f_regression, percentile=25)
Selector_f.fit(X, y)
for n,s in zip(boston.feature_names,Selector_f.scores_):
    print('F-score: %3.2f\t for feature %s ' % (s,n))

After a few iterations, the code prints the following results (your precise scores 
may differ from those shown):

F-score: 88.15     for feature CRIM
F-score: 75.26     for feature ZN
F-score: 153.95    for feature INDUS
F-score: 15.97     for feature CHAS
F-score: 112.59    for feature NOX
F-score: 471.85    for feature RM
F-score: 83.48     for feature AGE
F-score: 33.58     for feature DIS
F-score: 85.91     for feature RAD
F-score: 141.76    for feature TAX
F-score: 175.11    for feature PTRATIO
F-score: 63.05     for feature B
F-score: 601.62    for feature LSTAT

Using the level of association output (higher values signal more association of a 
feature with the target variable) helps you to choose the most important variables 
for your model, but you should watch out for these possible problems:

 » Some variables with high association could also be highly correlated, introduc-
ing duplicated information, which acts as noise in the learning process.

 » Some variables may be penalized, especially binary ones (variables indicating 
a status or characteristic using the value 1 when it is present, 0 when it is not). 
For example, notice that the output shows the binary variable CHAS as the 
least associated with the target variable (but you know from previous 
examples that it’s influential during the cross-validation phase).
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The univariate selection process can give you a real advantage when you have a 
huge number of variables to select from and all other methods turn computation-
ally infeasible. The best procedure is to reduce the value of SelectPercentile by 
half or more of the available variables, reduce the number of variables to a man-
ageable number, and consequently allow the use of a more sophisticated and more 
precise method, such as a greedy selection.

Using a greedy search
When using a univariate selection, you have to decide for yourself how many 
variables to keep: Greedy selection automatically reduces the number of features 
involved in a learning model on the basis of their effective contribution to the 
performance measured by the error measure.

The Boston dataset contains more than 500 observations and 13 features. The 
target is a price measure, so you decide to use linear regression to perform your 
analysis and to optimize the result using the mean squared error. The objective is 
to ensure that a linear regression is a good model for analyzing the Boston data-
set and to quantify how good the analysis result is using the mean squared error 
(which lets you compare it with alternative models).

from sklearn.linear_model import LinearRegression
regression = LinearRegression()
regression.fit(X,y)
print('Mean squared error: %.2f' % mean_squared_error(
    y_true=y, y_pred=regression.predict(X)))

The output from this code is

Mean squared error: 21.89

The RFECV class, after fitting the data, can do the following:

 » Give information about the number of useful features

 » Point these features out to you

 » Automatically transform the X data into a reduced variable set

 as shown in the following example:

from sklearn.feature_selection import RFECV
selector = RFECV(estimator=regression,
                 cv=10,
                 scoring='neg_mean_squared_error')
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selector.fit(X, y)
print("Optimal number of features : %d"
      % selector.n_features_)

The example outputs an optimal number of features for the problem:

Optimal number of features: 6

Obtaining an index to the optimum variable set is possible by calling the attribute 
support_ from the RFECV class after you fit it:

print(boston.feature_names[selector.support_])

The command will print the list containing the features:

 ['CHAS' 'NOX' 'RM' 'DIS' 'PTRATIO' 'LSTAT']

Notice that CHAS is now included among the most predictive features, which 
contrasts with the result from the univariate search in the previous section. The 
RFECV method can detect whether a variable is important, no matter whether it is 
binary, categorical, or numeric, because it directly evaluates the role played by the 
feature in the prediction.

The RFECV method is certainly more efficient, when compared to the univariate 
approach, because it considers highly correlated features and is tuned to opti-
mize the evaluation measure (which usually is not Chi-square or F-score). Being a 
greedy process, it’s somehow computationally demanding and may only approx-
imate the best set of predictors.

As RFECV learns the best set of variables from data, the selection may overfit, 
which is what happens with all other machine learning algorithms. Trying RFECV 
on different samples of the training data can confirm the best variables to use.

Using nonlinear transformations
Linear models, such as linear and logistic regression, are actually linear combi-
nations that sum your features (weighted by learned coefficients) and provide 
a simple but effective model. In most situations, they offer a good approxima-
tion of the complex reality they represent. Even though they’re characterized by a 
high bias, using a large number of observations can improve their coefficients and 
make them more competitive when compared to complex algorithms.
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However, they can perform better when solving certain problems if you pre- 
analyze the data using the Exploratory Data Analysis (EDA) approach. After 
 performing the analysis, you can transform and enrich the existing features by:

 » Linearizing the relationships between features and the target variable using 
transformations that increase their correlation and make their point cloud in 
the scatterplot more similar to a line (see https://whatis.techtarget.
com/definition/point-cloud for details on how point clouds work).

 » Making variables interact by multiplying them so that you can better repre-
sent their conjoint behavior.

 » Expanding the existing variables using the polynomial expansion in order to 
represent relationships more realistically (such as ideal point curves, when 
there is a peak in the variable representing a maximum, akin to a parabola).

Doing variable transformations
An example is the best way to explain the kind of transformations you can 
 successfully apply to data to improve a linear model. The example in this section, 
and the “Regularizing linear models” section that follows, relies on the Boston 
dataset. The problem relies on regression, and the data originally has ten variables 
to explain the different housing prices in Boston during the 1970s. The dataset 
also has implicit ordering. Fortunately, order doesn’t influence most algorithms 
because they learn the data as a whole. When an algorithm learns in a progressive 
manner, ordering can interfere with effective model building. By using seed (to 
fix a preordinated sequence of random numbers) and shuffle from the random 
package (to shuffle the index), you can reindex the dataset.

import random
from random import shuffle
 
random.seed(0) # Creates a replicable shuffling
new_index = list(range(boston.data.shape[0]))
shuffle(new_index) # shuffling the index
X, y = boston.data[new_index], boston.target[new_index]
print(X.shape, y.shape, boston.feature_names)

In the code, random.seed(0) creates a replicable shuffling operation, and 
shuffle(new_index) creates the new shuffled index used to reorder the data. 
After that, the code prints the X and y shapes as well as the list of dataset variable 
names:

(506, 13) (506,) ['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM'
 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'  'B' 'LSTAT']

https://whatis.techtarget.com/definition/point-cloud
https://whatis.techtarget.com/definition/point-cloud
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You can find out more detail about the meaning of the variables present in the 
Boston dataset by issuing the following command: print(boston.DESCR). You 
see the output of this command in the downloadable source code.

Converting the array of predictors and the target variable into a pandas DataFrame 
helps support the series of explorations and operations on data. Moreover, 
although Scikit-learn requires an ndarray as input, it will also accept DataFrame 
objects:

import pandas as pd
df = pd.DataFrame(X,columns=boston.feature_names)
df['target'] = y

The best way to spot possible transformations is by graphical exploration, and 
using a scatterplot can tell you a lot about two variables. You need to make the 
relationship between the predictors and the target outcome as linear as possible, 
so you should try various combinations, such as the following:

ax = df.plot(kind='scatter', x='LSTAT', y='target', c='b')

In Figure 3-5, you see a representation of the resulting scatterplot. Notice that you 
can approximate the cloud of points by using a curved line rather than a straight 
line. In particular, when LSTAT is around 5, the target seems to vary between 
values of 20 to 50. As LSTAT increases, the target decreases to 10, reducing the 
variation.

FIGURE 3-5:  
Nonlinear 

 relationship 
between  variable 

LSTAT and 
target prices.
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Logarithmic transformation can help in such conditions. However, your values, 
such as percentages, should range from zero to one, as demonstrated in this 
example. In other cases, other useful transformations for your x variable could 
include x**2, x**3, 1/x, 1/x**2, 1/x**3, and sqrt(x). The key is to try them and 
test the result. As for testing, you can use the following script as an example:

single_variable = df['LSTAT'].values.reshape(-1, 1)
F, pval = f_regression(single_variable, y)
print('F score for the original feature %.1f' % F)
F, pval = f_regression(np.log(single_variable),y)
print('F score for the transformed feature %.1f' % F)

The code prints the F score, a measure to evaluate how a feature is predictive 
in a machine learning problem, both the original and the transformed feature. 
The score for the transformed feature is a great improvement over the untrans-
formed one.

F score for the original feature 601.6
F score for the transformed feature 1000.2

The F score is useful for variable selection. You can also use it to assess the 
usefulness of a transformation because both f_regression and f_classif are 
themselves based on linear models, and are therefore sensitive to every effective 
transformation used to make variable relationships more linear.

Creating interactions between variables
In a linear combination, the model reacts to how a variable changes in an inde-
pendent way with respect to changes in the other variables. In statistics, this kind 
of model is a main effects model.

The Naïve Bayes classifier makes a similar assumption for probabilities; also, it 
works well with complex text problems.

Even though machine learning works by using approximations, and a set of inde-
pendent variables can make your predictions work well in most situations, some-
times you may miss an important part of the picture. You can easily catch this 
problem by depicting the variation in your target associated with the conjoint 
variation of two or more variables in two simple and straightforward ways:

 » Existing domain knowledge of the problem: For instance, in the car market, 
having a noisy engine is a nuisance in a family car but considered a plus for 
sports cars. (Car aficionados want to hear that you have an ultra-cool and 
expensive car.) By knowing a consumer preference, you can model a noise 
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level variable and a car-type variable together to obtain exact predictions 
using a predictive analytic model that guesses the car’s value based on 
its features.

 » Testing combinations of different variables: By performing group tests, 
you can see the effect that certain variables have on your target variable. 
Therefore, even without knowing about noisy engines and sports cars, you 
could have caught a different average of preference level when analyzing your 
dataset split by type of cars and noise level.

The following example shows how to test and detect interactions in the Boston 
dataset. The first task is to load a few helper classes, as shown here:

from sklearn.model_selection import cross_val_score, KFold
regression = LinearRegression(normalize=True)
crossvalidation = KFold(n_splits=10, shuffle=True,
                        random_state=1)

The code reinitializes the pandas DataFrame using only the predictor variables. 
A for loop matches the different predictors and creates a new variable contain-
ing each interaction. The mathematical formulation of an interaction is simply a 
multiplication.

df = pd.DataFrame(X,columns=boston.feature_names)
baseline = np.mean(cross_val_score(regression, df, y,
                                   scoring='r2',
                                   cv=crossvalidation))
interactions = list()
for var_A in boston.feature_names:
    for var_B in boston.feature_names:
        if var_A > var_B:
            df['interaction'] = df[var_A] * df[var_B]
            cv = cross_val_score(regression, df, y,
                                 scoring='r2',
                                 cv=crossvalidation)
            score = round(np.mean(cv), 3)
            if score > baseline:
                interactions.append((var_A, var_B, score))
print('Baseline R2: %.3f' % baseline)
print('Top 10 interactions: %s' % sorted(interactions,
                                    key=lambda x :x[2],
                                    reverse=True)[:10])
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The code starts by printing the baseline R2 score for the regression; then it reports 
the top ten interactions whose addition to the mode increases the score:

Baseline R2: 0.716
Top 10 interactions: [('RM', 'LSTAT', 0.79), ('TAX', 'RM',
 0.782), ('RM', 'RAD', 0.778), ('RM', 'PTRATIO', 0.766),
 ('RM', 'INDUS', 0.76), ('RM', 'NOX', 0.747), ('RM',
 'AGE', 0.742), ('RM', 'B', 0.738), ('RM', 'DIS', 0.736),
 ('ZN', 'RM', 0.73)]

The code tests the specific addition of each interaction to the model using a 10 
folds cross-validation. The code records the change in the R2 measure into a stack 
(a simple list) that an application can order and explore later.

The baseline score is 0.699, so a reported improvement of the stack of interac-
tions to 0.782 looks quite impressive. It’s important to know how this improve-
ment is made possible. The two variables involved are RM (the average number of 
rooms) and LSTAT (the percentage of lower-status population). A plot will dis-
close the case about these two variables:

colors = ['b' if v > np.mean(y) else 'r' for v in y]
scatter = df.plot(kind='scatter', x='RM', y='LSTAT',
                  c=colors)

The scatterplot in Figure 3-6 clarifies the improvement. In a portion of houses 
at the center of the plot, you need to know both LSTAT and RM to correctly sepa-
rate the high-value houses from the low-value houses; therefore, an interaction 
is indispensable in this case.

FIGURE 3-6:  
Combined 

 variables LSTAT 
and RM help to 

separate high 
from low prices.
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Adding interactions and transformed variables leads to an extended linear regres-
sion model, a polynomial regression. Data scientists rely on testing and experi-
menting to validate an approach to solving a problem, so the following code 
slightly modifies the previous code to redefine the set of predictors using interac-
tions and quadratic terms by squaring the variables:

polyX = pd.DataFrame(X,columns=boston.feature_names)
cv = cross_val_score(regression, polyX, y,
                     scoring='neg_mean_squared_error',
                     cv=crossvalidation)
baseline = np.mean(cv)
improvements = [baseline]
for var_A in boston.feature_names:
    polyX[var_A+'^2'] = polyX[var_A]**2
    cv = cross_val_score(regression, polyX, y,
                         scoring='neg_mean_squared_error',
                         cv=crossvalidation)
    improvements.append(np.mean(cv))
    for var_B in boston.feature_names:
        if var_A > var_B:
            poly_var = var_A + '*' + var_B
            polyX[poly_var] = polyX[var_A] * polyX[var_B]
            cv = cross_val_score(regression, polyX, y,
                         scoring='neg_mean_squared_error',
                         cv=crossvalidation)
            improvements.append(np.mean(cv))

This bit of code plots the results for you:

plt.figure()
plt.plot(range(0,92),np.abs(improvements),'-')
plt.xlabel('Added polynomial features')
plt.ylabel('Mean squared error')
plt.show()

To track improvements as the code adds new, complex terms, the example places 
values in the improvements list. Figure 3-7 shows a graph of the results. The graph 
demonstrates that some additions are great because they decrease the squared 
error, and other additions are terrible because they increase the error instead.
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Of course, instead of unconditionally adding all the generated variables, you could 
perform an ongoing test before deciding to add a quadratic term or an interac-
tion, checking by cross-validation to see whether each addition is really useful for 
your predictive purposes. This example is a good foundation for checking other 
ways of controlling the existing complexity of your datasets or the complexity 
that you have to induce with transformation and feature creation in the course of 
data-exploration efforts. Before moving on, you check both the shape of the actual 
dataset and its cross-validated mean squared error:

print('New shape of X:', np.shape(polyX))
crossvalidation = KFold(n_splits=10, shuffle=True,
                        random_state=1)
cv = cross_val_score(regression, polyX, y,
                     scoring='neg_mean_squared_error',
                     cv=crossvalidation)
print('Mean squared error: %.3f' % abs(np.mean(cv)))

Even though the mean squared error is good, the ratio between 506 observations 
and 104 features isn’t all that good because the number of observations may not 
be enough for a correct estimate of the coefficients.

New shape of X: (506, 104)
Mean squared error: 12.514

As a rule of thumb, divide the number of observations by the number of coef-
ficients. The code should have at least 10 to 20 observations for every coefficient 
you want to estimate in linear models. However, experience shows that having at 
least 30 of them is better.

FIGURE 3-7:  
Adding 

 polynomial 
 features 

increases the 
 predictive  

power.
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Regularizing linear models
Linear models have a high bias, but as you add more features, more interactions, 
and more transformations, they start gaining adaptability to the data character-
istics and memorizing power for data noise, thus increasing the variance of their 
estimates. Trading higher variance for less bias isn’t always the best choice, but, 
as mentioned earlier, sometimes it’s the only way to increase the predictive power 
of linear algorithms.

You can introduce L1 and L2 regularization as a way to control the trade-off 
between bias and variance in favor of an increased generalization capability of 
the model. When you introduce one of the regularizations, an additive function 
that depends on the complexity of the linear model penalizes the optimized cost 
function. In linear regression, the cost function is the squared error of the predic-
tions, and the cost function is penalized using a summation of the coefficients of 
the predictor variables.

If the model is complex but the predictive gain is little, the penalization forces the 
optimization procedure to remove the useless variables, or to reduce their impact 
on the estimate. The regularization also acts on highly correlated  features  — 
attenuating or excluding their contribution, thus stabilizing the results and 
reducing the consequent variance of the estimates:

 » L1 (also called Lasso): Shrinks some coefficients to zero, making your 
coefficients sparse. It performs variable selection.

 » L2 (also called Ridge): Reduces the coefficients of the most problematic 
features, making them smaller, but seldom equal to zero. All coefficients keep 
participating in the estimate, but many become small and irrelevant.

You can control the strength of the regularization using a hyperparameter, usu-
ally a coefficient itself, often called alpha. When alpha approaches 1.0, you have 
stronger regularization and a greater reduction of the coefficients. In some cases, 
the coefficients are reduced to zero. Don’t confuse alpha with C, a parameter used 
by LogisticRegression and by support vector machines, because C is 1/alpha, 
so it can be greater than 1. Smaller C numbers actually correspond to more regu-
larization, exactly the opposite of alpha.

Regularization works because it is the sum of the coefficients of the predictor 
variables; therefore they need to be on the same scale or the regularization may 
find it difficult to converge, and variables with larger absolute coefficient values 
will greatly influence it, generating an infective regularization. It’s good practice 
to standardize the predictor values or bind them to a common min-max, such as 
the [-1,+1] range. The following sections demonstrate various methods of using 
both L1 and L2 regularization to achieve various effects.
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Relying on Ridge regression (L2)
The first example uses the L2 type regularization, reducing the strength of the 
coefficients. The Ridge class implements L2 for linear regression. Its usage is 
simple; it presents just the parameter alpha to fix. Ridge also has another param-
eter, normalize, that automatically normalizes the inputted predictors to zero 
mean and unit variance.

from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Ridge
ridge = Ridge(normalize=True)
search_grid = {'alpha':np.logspace(-5,2,8)}
search = GridSearchCV(estimator=ridge,
                      param_grid=search_grid,
                      scoring='neg_mean_squared_error',
                      refit=True, cv=10, iid=False)
search.fit(polyX,y)
print('Best parameters: %s' % search.best_params_)
score = abs(search.best_score_)
print('CV MSE of best parameters: %.3f' % score)

After searching for the best alpha parameter, the resulting best model is

Best parameters: {'alpha': 0.001}
CV MSE of best parameters: 11.630

A good search space for the alpha value is in the range np.logspace(-5,2,8). Of 
course, if the resulting optimum value is on one of the extremities of the tested 
range, you need to enlarge the range and retest.

The polyX and y variables used for the examples in this section and the sec-
tions that follow are created as part of the example in the “Creating interactions 
between variables” section, earlier in this chapter. If you haven’t worked through 
that section, the examples in this section will fail to work properly.

Using the Lasso (L1)
The second example uses the L1 regularization, the Lasso class, whose principal 
characteristic is to reduce the effect of less useful coefficients down toward zero. 
This action enforces sparsity in the coefficients, with just a few having values 
above zero. The class uses the same parameters of the Ridge class that are dem-
onstrated in the previous section.

from sklearn.linear_model import Lasso
lasso = Lasso(normalize=True,tol=0.05, selection='random')
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search_grid = {'alpha':np.logspace(-2,3,8)}
search = GridSearchCV(estimator=lasso,
                      param_grid=search_grid,
                      scoring='neg_mean_squared_error',
                      refit=True, cv=10, iid=False)
search.fit(polyX,y)
print('Best parameters: %s' % search.best_params_)
score = abs(search.best_score_)
print('CV MSE of best parameters: %.3f' % score)

In setting the Lasso, the code uses a less sensitive algorithm (tol=0.05) and a 
random approach for its optimization (selection='random’). The resulting mean 
squared error obtained is higher than it is using the L2 regularization:

Best parameters: {'alpha': 0.01}
CV MSE of best parameters: 20.406

Leveraging regularization
Because you can indent the sparse coefficients resulting from a L1 regression as 
a feature selection procedure, you can effectively use the Lasso class for select-
ing the most important variables. By tuning the alpha parameter, you can select a 
greater or lesser number of variables. In this case, the code sets the alpha param-
eter to 0.01, obtaining a much simplified solution as a result:

lasso = Lasso(normalize=True, alpha=0.01)
lasso.fit(polyX,y)
print(polyX.columns[np.abs(lasso.coef_)>0.0001].values)

The simplified solution is made of a handful of interactions:

['CRIM*CHAS' 'ZN*CRIM' 'ZN*CHAS' 'INDUS*DIS' 'CHAS*B'
 'NOX^2' 'NOX*DIS' 'RM^2' 'RM*CRIM' 'RM*NOX' 'RM*PTRATIO'
 'RM*B' 'RM*LSTAT' 'RAD*B' 'TAX*DIS' 'PTRATIO*NOX'
 'LSTAT^2']

You can apply L1-based variable selection automatically to both regression and 
classification using the RandomizedLasso and RandomizedLogisticRegression 
classes. Both classes create a series of randomized L1 regularized models. The code 
keeps track of the resulting coefficients. At the end of the process, the  application 
keeps any coefficients that the class didn’t reduce to zero because they’re con-
sidered important. You can train the two classes using the fit method, but 
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they don’t have a predict method; instead, they have just a transform method 
that effectively reduces your dataset, as is true of most classes in the sklearn. 
preprocessing module.

Combining L1 & L2: Elasticnet
L2 regularization reduces the impact of correlated features, whereas L1 regular-
ization tends to select them. A good strategy is to mix them using a weighted 
sum by using the ElasticNet class. You control both L1 and L2 effects by using 
the same alpha parameter, but you can decide the L1 effect’s share by using the 
l1_ratio parameter. Clearly, if l1_ratio is 0, you have a Ridge regression; on the 
other hand, when l1_ratio is 1, you have a Lasso.

from sklearn.linear_model import ElasticNet
elastic = ElasticNet(normalize=True, selection='random')
search_grid = {'alpha':np.logspace(-4,3,8),
               'l1_ratio': [0.10 ,0.25, 0.5, 0.75]}
search = GridSearchCV(estimator=elastic,
                      param_grid=search_grid,
                      scoring='neg_mean_squared_error',
                      refit=True, cv=10, iid=False)
search.fit(polyX,y)
print('Best parameters: %s' % search.best_params_)
score = abs(search.best_score_)
print('CV MSE of best parameters: %.3f' % score)

After a while, you get a result that’s quite comparable to L1’s:

Best parameters: {'alpha': 0.0001, 'l1_ratio': 0.75}
CV MSE of best parameters: 12.581
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Obtaining the Correct 
Output Presentation

Throughout this book, you discover methods for obtaining, cleaning, and 
analyzing data using a wide variety of techniques. Oddly enough, data 
scientists spend most of their time cleaning the data (see https://www.

analyticsindiamag.com/6-tasks-data-scientists-spend-the-most-time- 
doing/ for details). The next most common task is simply obtaining the data. Yet, 
all this effort doesn’t amount to anything if no one can understand the results. 
Other data scientists are likely to understand, but you must work with people who 
don’t have six degrees in math, two in computer science, and another in logic. 
Consequently, simply generating output that depicts the results of your efforts 
isn’t enough; you must generate output that speaks to the viewer, which is the 
first consideration in this chapter.

In some respects, you become a detective when it comes to output, because what 
you really need is a profile of the people who will look at the output you cre-
ate. If you don’t understand the needs of the people who view your analysis, you 
won’t ever create useful output for them. The problem is that people differ widely 
around the world with regard to what they expect given their occupation, envi-
ronment, and cultural norms, among many other factors. So, no boxed solution 
exists to address the problem of how to present your output in a manner that 
others will understand. You must prepare a profile, which is the purpose of the 
second part of this chapter.

Chapter 4

IN THIS CHAPTER

 » Defining a correct output 
presentation

 » Considering the needs of the 
audience

 » Determining which graph type to use

 » Interacting with external data

https://www.analyticsindiamag.com/6-tasks-data-scientists-spend-the-most-time-doing/
https://www.analyticsindiamag.com/6-tasks-data-scientists-spend-the-most-time-doing/
https://www.analyticsindiamag.com/6-tasks-data-scientists-spend-the-most-time-doing/
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Just like everyone else, data scientists get stuck in a rut. If you view examples 
online, you find that most of them use scatterplots, followed by line graphs. In 
some cases, you find rare examples of histograms or boxplots, depending on 
the skill of the data scientist. Fortunately, you have many other options at your 
 disposal, and the third section of this chapter explores only a few of them.

Oddly enough, in a world filled with emoji and many other assorted graphic 
 presentations, the data analyses provided in most of the examples you see online 
are devoid of any sort of decoration. Most of them are outright bland to the point 
of making you somnolent. The last section of this chapter addresses the use of 
external data, such as graphics, to add a bit of pizzazz to your presentation.

You don’t have to type the source code for this chapter manually. In fact, using 
the downloadable source is a lot easier. The source code for this chapter appears 
in the DSPD_0604_Presentation.ipynb source code file for Python and the 
DSPD_R_0604_Presentation.ipynb source code file for R.  See the Introduction 
for details on how to find these source files.

Considering the Meaning of Correct
The term correct is a loaded one. In fact, most terms are loaded because each could 
mean something different to every person reading this text. What is correct to one 
person can be incorrect to another based on a wealth of qualifiers, such as:

 » Bias

 » Experience

 » Environment

 » Personal knowledge

 » Technological changes

 » World events

In fact, it wouldn’t take long to compile a long enough list of qualifiers to make 
any discussion of correctness meaningless. However, at some point you must 
decide that a particular output presentation is correct. The next section of this 
chapter discusses what the presentation must contain to be correct. However, the 
presentation alone doesn’t determine correctness overall.
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A good starting point for ensuring that the output of your analysis contains the 
fewest possible mistruths is to use the material from the “Considering the Five 
Mistruths in Data” section of Chapter 2 of this minibook. The fact that your output 
is believable will make it more correct as well. However, the essential character-
istic of data you have vetted and manicured for the highest level of truthfulness 
is that you also believe in that data, which in turn makes you, as a person, more 
believable.

The fit and finish of your output also matters. Ensuring that you use the correct 
kind of graphic output is essential because some types of graphic output can actu-
ally obscure the point you want to make, thereby making it less correct. Adding 
various kinds of graphics and other external data is important because it helps you 
draw a parallel between the abstract data in your presentation and the physical 
world.

The issue of correctness is also personal. Always remember that the correctness 
you perceive may appear as incorrectness to someone else, so getting a second, 
third, or fourth opinion is helpful, too. Of course, presentation by committee leads 
to the muddying of your presentation, also making it less correct. The clarity of 
the vision of an individual augmented by insights provided by a small number 
of  others generally results in a presentation that is correct from a number of 
 perspectives, but remains focused.

Determining a Presentation Type
The presentation of your analysis output is how it appears to others. Of course, 
how they see it depends on their point of view. If you ask any number of people 
to look at a painting of nearly anything in nearly any style, each person will likely 
see something slightly different. The painting doesn’t change; the perspective of 
the person does. Consequently, the presentation of the output of an analysis mat-
ters and is one of the determining factors in conveying information to others in 
an unambiguous manner.

Considering the audience
One of the most difficult and confounding aspects of creating a presentation is 
frame of reference. Your audience has

 » Had certain experiences

 » Obtained a particular level of education
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 » Engaged in a particular set of jobs

 » A need for specific kinds of information

The inability for various groups to communicate stems from the lack of a frame of 
reference between them. Part of your task is to try to see things from the perspec-
tive of your audience, which may feel uncomfortable but is a requirement if you 
want to communicate your ideas and the results of your analysis.

Avoid using stereotypes to define your audience. Even seasoned presenters fall flat 
when sizing up an audience incorrectly. One audience may have certain charac-
teristics in common with other audiences, but each audience is unique in one or 
more ways. It’s important to consider these differences whether your method of 
presentation is in person, through writing, or by various means online.

Defining a depth of detail
As a data scientist, you may find that you like to see all the details. In fact, you 
might be downright exuberant about details and find them fascinating. Not every 
audience wants details, however. You may have encountered a manager who felt 
that a presentation was mired in unnecessary detail. All the manager needed was 
an overview. The manager hired others to deal with the details, but needed just 
an overview to get the big picture as part of running a large business. If your audi-
ence doesn’t not need detailed information, that fact affects everything from the 
amount of data you provide to the kind of graphics you choose.

Another issue to consider is that when an audience does need detail, the details 
may reflect specific needs. The audience might not need to know about the raw 
data but may instead need only to look at specific areas of the manicured data you 
provide. In fact, you may find that you have to research particular areas to provide 
more detail than needed to perform your analysis. A particular presentation may 
require that you provide historical information with the data. You don’t need the 
historical information to perform the analysis, but your audience needs it to make 
sense of the data.

When considering the depth of detail for a presentation, look at other successful 
reports, videos, or oral presentations for the same group. You know when a source 
is successful because people talk about it, and you see it cited in still other reports. 
Look for the buzz factor when thinking about depth of detail because anyone can get 
friends to provide positive reviews, but no one can generate buzz as an act of will.
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Ensuring that the data is consistent 
with audience needs
The attention span of your audience is likely short. In fact, according to the info-
graphic at https://www.digitalinformationworld.com/2018/09/the-human- 
attention-span-infographic.html, humans now have a shorter attention span 
than goldfish. Consequently, you may have as little as nine seconds before your 
audience assumes a blank expression and enters its own little world, which does-
n’t include you or your data. To keep your audience from becoming comatose, you 
need to provide data that the audience wants and needs:

 » Wants: Has a strong desire to obtain, even when the data isn’t needed, 
usually because the information has become popular. People’s wants change 
so fast that you may get dizzy tracking them.

 » Needs: Required to perform tasks or to discover something new related to 
an occupation or activity. The audience may not recognize a need, especially 
when a need isn’t popular. You know when you’ve been successful because 
the audience will suddenly experience that lightbulb moment when the need 
becomes clear. Needs tend to change slowly.

You likely used an immense database to perform your analysis, and if you pres-
ent all of it, your audience will go from comatose to somnolent to fully asleep. By 
drawing up a list of wants and needs for this particular audience, you can whittle 
the data down to a manageable size. The important thing is to focus on just a few 
of these wants and needs based on what you know about your audience. Remem-
ber that you need to grab the audience’s undivided attention in only nine seconds.

Understanding timeliness
The timeliness of your data depends on the sort of information you present and 
the focus of your audience. When performing a medical analysis for a disease 
with a long history, you might use data that’s 10, 15, or even 20 years old, espe-
cially when the presentation is for medical researchers (versus family practitio-
ners) who are looking for trends. Your data may span hundreds or thousands 
of years when talking with historians. However, if your analysis is for graphics  
designers who specialize in website design, having data any more than a year old 
may be ruinous. Deciding on how old is too old is an essential part of creating your 
presentation.

https://www.digitalinformationworld.com/2018/09/the-human-attention-span-infographic.html
https://www.digitalinformationworld.com/2018/09/the-human-attention-span-infographic.html
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Choosing the Right Graph
The kind of graph you choose determines how people view the associated data, so 
choosing the right graph from the outset is important. For example, if you want to 
show how various data elements contribute toward a whole, you really need to use 
a pie chart. On the other hand, when you want people to form opinions on how data 
elements compare, you use a bar chart. The idea is to choose a graph that naturally 
leads people to draw the conclusion that you need them to draw about the data 
that you’ve carefully massaged from various data sources. The following sections 
describe the various graph types and offer basic examples of how to use them.

Telling a story with your graphs
You use the graphics you create to tell a story pictorially. The goal isn’t to display 
data; you can use a table to do that. Instead, the goal is to see the data in a partic-
ular way that doesn’t lend itself easily to either tables or text.

The difference between presenting data and telling a story is important because 
many people don’t relate well to abstract information. You can show them the data, 
explore it in detail, and consider every possible approach to demonstrating that 
the data contains useful patterns, yet your audience still won’t understand. As an 
example from this book, Chapter 3 of this minibook shows how underfitting appears 
in Figure 3-1. The graphic nature of the example shows in concrete terms what 
underfitting is all about and in a way that words really can’t adequately describe.

When working with graphics, think about the story you want to tell using those 
graphics. A graph can have characters involved with it. You can show chases and 
escapes, deal a death blow to a nefarious villain, and show how the good person 
wins. If you can’t see the story in your graphic, neither will your audience.

Showing parts of a whole with pie charts
Pie charts focus on showing parts of a whole. The entire pie represents 100 per-
cent. The question is how much of that percentage each value occupies. The fol-
lowing example shows how to create a pie chart with many of the special features 
in place:

import matplotlib.pyplot as plt
%matplotlib inline
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values = [5, 8, 9, 10, 4, 7]
colors = ['b', 'g', 'r', 'c', 'm', 'y']
labels = ['A', 'B', 'C', 'D', 'E', 'F']
explode = (0, 0.2, 0, 0, 0, 0)
 
plt.pie(values, colors=colors, labels=labels,
        explode=explode, autopct='%1.1f%%',
        counterclock=False, shadow=True)
plt.title('Values')
 
plt.show()

The essential part of a pie chart is the values. You could create a basic pie chart 
using just the values as input.

The colors parameter lets you choose custom colors for each pie wedge. You use 
the labels parameter to identify each wedge. In many cases, you need to make 
one wedge stand out from the others, so you add the explode parameter with a list 
of explode values. A value of 0 keeps the wedge in place; any other value moves the 
wedge out from the center of the pie.

Each pie wedge can show various kinds of information. This example shows the 
percentage occupied by each wedge with the autopct parameter. You must pro-
vide a format string to format the percentages.

Some parameters affect how the pie chart is drawn. Use the counterclock param-
eter to determine the direction of the wedges. The shadow parameter determines 
whether the pie appears with a shadow beneath it (for a 3-D effect). You can find 
other parameters at https://matplotlib.org/api/pyplot_api.html.

In most cases, you also want to give your pie chart a title so that others know what 
it represents. You do this using the title() function. Figure 4-1 shows the output 
from this example.

Creating comparisons with bar charts
Bar charts make comparing values easy. The wide bars and segregated measure-
ments emphasize the differences between values, rather than the flow of one value 
to another, as a line graph would do. Fortunately, you have all sorts of methods 
at your disposal for emphasizing specific values and performing other tricks. The 

https://matplotlib.org/api/pyplot_api.html
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following example shows just some of the things you can do with a vertical bar 
chart:

import matplotlib.pyplot as plt
%matplotlib inline
 
values = [5, 8, 9, 10, 4, 7]
widths = [0.7, 0.8, 0.7, 0.7, 0.7, 0.7]
colors = ['b', 'r', 'b', 'b', 'b', 'b']
plt.bar(range(0, 6), values, width=widths,
        color=colors, align='center')
 
plt.show()

To create even a basic bar chart, you must provide a series of x coordinates and 
the heights of the bars. The example uses the range() function to create the x 
coordinates, and values contains the heights.

Of course, you may want more than a basic bar chart, and MatPlotLib provides 
a number of ways to get the job done. In this case, the example uses the width 
parameter to control the width of each bar, emphasizing the second bar by mak-
ing it slightly larger. The larger width would show up even in a black-and-white 
printout. The example also uses the color parameter to change the color of the 
target bar to red. (The rest are blue.)

As with other chart types, the bar chart provides some special features that you 
can use to make your presentation stand out. The example uses the align param-
eter to center the data on the x coordinate. (The standard position is to the left.) 

FIGURE 4-1:  
Pie charts show 

a percentage 
of the whole.



O
bt

ai
ni

ng
 t

he
 C

or
re

ct
 

O
ut

pu
t 

Pr
es

en
ta

ti
on

CHAPTER 4  Obtaining the Correct Output Presentation      697

You can also use other parameters, such as hatch, to enhance the visual appear-
ance of your bar chart. Figure 4-2 shows the output of this example.

This chapter helps you get started using MatPlotLib to create a variety of chart and 
graph types. Of course, more examples are better, so you can also find some more 
advanced examples on the MatPlotLib site at https://matplotlib.org/1.2.1/
examples/index.html. Some of the examples, such as those that demonstrate 
animation techniques, become quite advanced, but with practice you can use any 
of them to improve your own charts and graphs.

Showing distributions using histograms
Histograms categorize data by breaking it into bins, where each bin contains a 
subset of the data range. A histogram then displays the number of items in each 
bin so that you can see the distribution of data and the progression of data from 
bin to bin. In most cases, you see a curve of some type, such as a bell curve. The 
following example shows how to create a histogram with randomized data:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
 
x = 20 * np.random.randn(10000)
 
plt.hist(x, 25, range=(-50, 50), histtype='stepfilled',
         align='mid', color='g', label='Test Data')
plt.legend()

FIGURE 4-2:  
Bar charts make 

performing 
 comparisons 

easier.

https://matplotlib.org/1.2.1/examples/index.html
https://matplotlib.org/1.2.1/examples/index.html
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plt.title('Step Filled Histogram')
plt.show()

In this case, the input values are a series of random numbers. The distribution of 
these numbers should show a type of bell curve. As a minimum, you must pro-
vide a series of values, x in this case, to plot. The second argument contains the 
number of bins to use when creating the data intervals. The default value is 10. 
Using the range parameter helps you focus the histogram on the relevant data and 
exclude any outliers.

You can create multiple histogram types. The default setting creates a bar chart. 
You can also create a stacked bar chart, stepped graph, or filled stepped graph 
(the type shown in the example). In addition, you can control the orientation of 
the output, with vertical as the default.

As with most other charts and graphs in this chapter, you can add special features 
to the output. For example, the align parameter determines the alignment of 
each bar along the baseline. Use the color parameter to control the colors of the 
bars. The label parameter doesn’t actually appear unless you also create a legend 
(as shown in this example). Figure 4-3 shows typical output from this example.

Random data varies call by call. Every time you run the example, you see slightly 
different results because the random-generation process differs.

FIGURE 4-3:  
Histograms 
let you see 

 distributions 
of numbers.
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Depicting groups using boxplots
Boxplots provide a means of depicting groups of numbers through their quartiles 
(three points dividing a group into four equal parts). A boxplot may also have 
lines, called whiskers, indicating data outside the upper and lower quartiles. The 
spacing shown within a boxplot helps indicate the skew and dispersion of the 
data. The following example shows how to create a boxplot with randomized data:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
 
spread = 100 * np.random.rand(100)
center = np.ones(50) * 50
flier_high = 100 * np.random.rand(10) + 100
flier_low = -100 * np.random.rand(10)
data = np.concatenate((spread, center,
                       flier_high, flier_low))
 
plt.boxplot(data, sym='gx', widths=.75, notch=True)
plt.show()

To create a usable dataset, you need to combine several different number- 
generation techniques, as shown at the beginning of the example. Here’s how 
these techniques work:

 » spread: Contains a set of random numbers between 0 and 100

 » center: Provides 50 values directly in the center of the range of 50

 » flier_high: Simulates outliers between 100 and 200

 » flier_low: Simulates outliers between 0 and –100

The code combines all these values into a single dataset using concatenate(). 
Being randomly generated with specific characteristics (such as a large number of 
points in the middle), the output will show specific characteristics but will work 
fine for the example.

The call to boxplot() requires only data as input. All other parameters have 
default settings. In this case, the code sets the presentation of outliers to green Xs 
by setting the sym parameter. You use widths to modify the size of the box (made 
extra large in this case to make the box easier to see). Finally, you can create a 
square box or a box with a notch using the notch parameter (which normally 
defaults to False). Figure 4-4 shows typical output from this example.
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The box shows the three data points as the box, with the red line in the middle 
being the median. The two black horizontal lines connected to the box by whiskers 
show the upper and lower limits (for four quartiles). The outliers appear above 
and below the upper and lower limit lines as green Xs.

Defining a data flow using line graphs
One of the most commonly used graphs in this book is the line graph, which shows 
trends in data. You see not only the data points but also the flow between the data 
points. Using a line graph helps you to see the predictive nature of data science by 
drawing a line showing the missing data between the existing data points. What 
you receive is a continuous view of the data — at least, if the data is perfect. (See 
Chapter 3 of this minibook for a discussion of overfitting and underfitting of data.) 
The following example shows how to create a line graph with multiple lines:

import matplotlib.pyplot as plt
%matplotlib inline
 
x = range(0, 6)
y1 = [5, 8, 9, 10, 4, 7]
y2 = [2, 3, 0, 11, 5, 6]
 
plt.plot(x, y1, 'o--g', markersize=4, linewidth=1)
plt.plot(x, y2, 'h-.b', markersize=10,
         markeredgecolor='red',
         markerfacecolor='purple', markevery=2,
         dash_capstyle='round', linewidth=3)
plt.legend(['Old', 'New'])
 
plt.show()

FIGURE 4-4:  
Use boxplots 

to present groups 
of numbers.
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This line graph uses a few features that you don’t actually see in the book. The first 
line is standard, but with the addition of a specific marker size and line width. The 
second line includes all sorts of addition features that emphasize the New option 
over the Old option. The point of this example is that you don’t have to stick with 
any particular set of rules. If you want your audience to pay particular attention to 
something, emphasize it. Figure 4-5 shows the output from this example.

Seeing data patterns using scatterplots
Scatterplots show clusters of data rather than trends (as with line graphs) or dis-
crete values (as with bar charts). The purpose of a scatterplot is to help you see 
data patterns. The following example shows how to create a scatterplot using 
randomized data:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
 
x1 = 5 * np.random.rand(40)
x2 = 5 * np.random.rand(40) + 25
x3 = 25 * np.random.rand(20)
x = np.concatenate((x1, x2, x3))
 
y1 = 5 * np.random.rand(40)
y2 = 5 * np.random.rand(40) + 25
y3 = 25 * np.random.rand(20)
y = np.concatenate((y1, y2, y3))

 

FIGURE 4-5:  
Use line graphs to 

show trends.
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plt.scatter(x, y, s=[100], marker='^', c='m')
plt.show()

The example begins by generating random x and y coordinates. For each x coordi-
nate, you must have a corresponding y coordinate. Creating a scatterplot is possi-
ble using just the x and y coordinates.

You can dress up a scatterplot in a number of ways. In this case, the s parameter 
determines the size of each data point. The marker parameter determines the data 
point shape. You use the c parameter to define the colors for all the data points, 
or you can define a separate color for individual data points. Figure 4-6 shows the 
output from this example.

You actually see a large number of scatterplots in this book because they appear 
quite commonly in data science output. Book 5, Chapter 6 shows how to create 
some advanced scatterplot presentations that you find helpful with complex data. 
The point is that you shouldn’t rely too much on scatterplots and line graphs. 
Other kinds of presentations may help your viewer focus on the data in ways that 
you hadn’t originally envisioned.

Working with External Data
Pictures say a lot of things that words can’t (or at least they do it with far less 
effort). Notebook is both a coding platform and a presentation platform. You may 
be surprised at just what you can do with it. The following sections provide a brief 
overview of some of the more interesting features.

FIGURE 4-6:  
Use scatterplots 

to show groups of 
data points and 
their associated 

patterns.
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Embedding plots and other images
At some point, you might have spotted a notebook with multimedia or graphics 
embedded into it and wondered why you didn’t see the same effects in your own 
files. In fact, all the graphics examples in the book appear as part of the code. 
Fortunately, you can perform some more magic by using the %matplotlib magic 
function. The possible values for this function are: 'gtk', 'gtk3', 'inline', 
'nbagg', 'osx', 'qt', 'qt4', 'qt5', 'tk', and 'wx', each of which defines a dif-
ferent plotting backend (the code used to actually render the plot) for presenting 
information onscreen.

When you run %matplotlib inline, any plots you create appear as part of the 
document. That’s how Figure 4-1, earlier in this chapter, shows the plot it creates 
immediately below the affected code.

Loading examples from online sites
Because some examples you see online can be hard to understand unless you have 
them loaded on your own system, you should also keep the %load magic function 
in mind. All you need is the URL of an example you want to see on your system. 
For example, try %load https://matplotlib.org/_downloads/pyplot_text.py. 
When you click Run Cell, Notebook loads the example directly in the cell and com-
ments the %load call out, as shown in Figure 4-7. (The actual code is much longer 
than that shown in the figure.) You can then run the example and see the output 
from it on your own system.

FIGURE 4-7:  
Load  external 

code as 
needed to 

 provide  specific 
 information 

for your 
presentation.

https://matplotlib.org/_downloads/pyplot_text.py
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Obtaining online graphics and multimedia
A lot of the functionality required to perform special multimedia and graph-
ics processing appears within IPython.display. By importing a required class, 
you can perform tasks such as embedding images into your notebook. Here’s an 
example of embedding one of the pictures from the author’s blog into the note-
book for this chapter:

from IPython.display import Image, display
Embed = Image(
'http://blog.johnmuellerbooks.com/' +
'wp-content/uploads/2015/04/Layer-Hens.jpg',
    width=600, height=450,
    metadata={'Animal': 'Chicks'})
print('A picture of: ' + Embed.metadata['Animal'])
display(Embed)

The code begins by importing the required class, Image, and then using features 
from it to first define what to embed and then actually embed the image. Notice 
that you can attach metadata to the image and display it later. The output you see 
from this example appears in Figure 4-8.

FIGURE 4-8:  
Embedding 

images can dress 
up your notebook 

presentation.
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If you expect an image to change over time, you might want to create a link to 
it instead of embedding it. You must refresh a link because the content in the 
notebook is only a reference rather than the actual image. However, as the image 
changes, you see the change in your notebook as well. To accomplish this task, 
you use SoftLinked = Image(url='http://blog.johnmuellerbooks.com/wp- 
content/uploads/2015/04/Layer-Hens.jpg') instead of Embed.

When working with embedded images on a regular basis, you might want to set 
the form in which the images are embedded. For example, you may prefer to 
embed them as PDFs. To perform this task, you use code similar to this:

from IPython.display import set_matplotlib_formats
set_matplotlib_formats('pdf', 'svg')

You have access to a wide number of formats when working with a notebook. The 
commonly supported formats are 'png', 'retina', 'jpeg', 'svg', and 'pdf'.

The IPython display system is nothing short of amazing, and this section  hasn’t 
even begun to tap the surface for you. For example, you can import a YouTube video 
and place it directly into your notebook as part of your presentation if you want. You 
can see quite a few more of the display features demonstrated at http://nbviewer.
jupyter.org/github/ipython/ipython/blob/1.x/examples/notebooks/ 
Part%205%20-%20Rich%20Display%20System.ipynb.

http://blog.johnmuellerbooks.com/wp-content/uploads/2015/04/Layer-Hens.jpg
http://blog.johnmuellerbooks.com/wp-content/uploads/2015/04/Layer-Hens.jpg
http://nbviewer.jupyter.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part%205%20-%20Rich%20Display%20System.ipynb
http://nbviewer.jupyter.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part%205%20-%20Rich%20Display%20System.ipynb
http://nbviewer.jupyter.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part%205%20-%20Rich%20Display%20System.ipynb
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Developing Consistent 
Strategies

Some people view data merely as a disorganized collection of unkempt infor-
mation from various sources. Throughout this book, you have seen strate-
gies for organizing and manicuring data prior to performing analysis on 

it. All these strategies see use in business today because data scientists spend an 
inconceivable amount of time just obtaining, organizing, and manicuring data. 
Unfortunately, the output of these efforts is often lacking in usefulness because 
the data simply won’t be tamed. The problem is one of consistency in obtaining, 
organizing, and manicuring the data. If consistency is absent, it’s reasonable to 
assume that the output of an analysis will be suspect. The purpose of this chapter 
is to define methods of making the act of interacting with raw data more consis-
tent so that the outcome of an analysis is more predictable and, therefore more 
reliable.

Standardizing Data Collection Techniques
The data you use comes from a number of sources. The most common data source 
is from information entered by humans at some point. Even when a system 
 collects shopping-site data automatically, humans initially enter the information. 

Chapter 5

IN THIS CHAPTER

 » Obtaining data correctly

 » Performing automatic data collection

 » Keeping data relevant

 » Interacting with data correctly
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A human clicks various items, adds them to a shopping cart, specifies character-
istics (such as size) and quantity, and then checks out. Later, after the sale, the 
human gives the shopping experience, product, and delivery method a rating and 
makes comments. In short, every shopping experience becomes a data-collection 
exercise as well.

You can’t sit by each shopper’s side and provide instructions on how to enter data 
consistently. Consequently, the data you receive is inconsistent and nearly unus-
able at times. By reviewing forms of successful online stores, however, you can 
see how to provide a virtual self to assist the shopper in making consistent entries. 
The forms you provide for entering information have a great deal to do with the 
data you obtain. When a form contains fewer handwritten entries and more check 
boxes, it tends to provide a better experience for the customer and a more consis-
tent data source for you.

Many data sources today rely on input gathered from human sources. Humans 
also provide manual input. You call or go into an office somewhere to make an 
appointment with a professional. A receptionist then gathers information from 
you that’s needed for the appointment. This manually collected data eventually 
ends up in a dataset somewhere for analysis purposes.

By providing training on proper data entry techniques, you can improve the 
 consistency of input that the receptionist provides. In addition, you’re unlikely 
to have just one receptionist providing input, so training can also help the entire 
group of receptionists provide consistent input despite individual differences in 
perspective. Some forms of regulated data entry of this sort have become so com-
plex today that the people doing it actually require a formal education, such as 
medical data entry personnel (see the course at https://study.com/articles/
Medical_Data_Entry_Training_Programs_and_Courses.html). The point is that 
the industry, as a whole, is generally moving toward trained data entry people, so 
your organization should make use of this trend to improve the consistency of the 
data you receive.

Data is also collected from sensors, and these sensors can take almost any form. 
For example, many organizations base physical data collection, such as the 
 number of people viewing an object in a window, on cellphone detection. Facial 
recognition software could potentially detect repeat customers.

However, sensors can create datasets from almost anything. The weather  service 
relies on datasets created by sensors that monitor environmental conditions such 
as rain, temperature, humidity, cloud cover, and so on. Robotic monitoring sys-
tems help correct small flaws in robotic operation by constantly analyzing data 
collected by monitoring sensors. A sensor, combined with a small AI applica-
tion, could tell you when your dinner is cooked to perfection tonight. The sensor 

https://study.com/articles/Medical_Data_Entry_Training_Programs_and_Courses.html
https://study.com/articles/Medical_Data_Entry_Training_Programs_and_Courses.html
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collects data, but the AI application uses rules to help define when the food is 
properly cooked.

Of the forms of data collection, the data provided by sensors is the easiest to make 
consistent. However, sensor data is often inconsistent because vendors keep add-
ing functionality as a means of differentiation. The solution to this problem is 
better data standards so that vendors must adhere to certain specifics when cre-
ating data. Standards efforts are ongoing, but it pays to ensure that the sensors 
you use to collect data all rely on the same standards to ensure that you obtain 
consistent input.

Using Reliable Sources
The word reliable seems so easy to define, yet so hard to implement. Something is 
reliable when the results it produces are both expected and consistent. A reliable 
data source produces mundane data that contains no surprises; no one is shocked in 
the least by the outcome. On the other hand, depending on your perspective, it could 
actually be a good thing that most people aren’t yawning and then falling asleep 
when reviewing data. That’s because the surprises make the data worth analyzing 
and reviewing. Consequently, data has an aspect of duality. You want reliable, mun-
dane, fully anticipated data that simply confirms what you already know, but the 
unexpected is what makes collecting the data useful in the first place.

You can also define reliability by the number of failure points contained in any 
measured resource. More failure points automatically mean lower reliability if 
you have two data sources of equal reliability. Given that general data analysis, 
AI, machine learning, and deep learning all require huge amounts of information, 
the methodology used automatically reduces the reliability of such data because 
you have more failure points to consider. Consequently, you must have data from 
highly reliable sources of the correct type.

Scientists began fighting against impressive amounts of data for years before 
anyone coined the term big data. At that point, the Internet didn’t produce the 
vast sums for data that it does today. Remember that big data is not just simply 
a fad created by software and hardware vendors but has a basis in many of the 
following fields:

 » Astronomy: Consider the data received from spacecraft on a mission (such as 
Voyager or Galileo) and all the data received from radio telescopes, which are 
specialized antennas used to receive radio waves from astronomical bodies. 
A common example is the Search for Extraterrestrial Intelligence (SETI) project 
(https://www.seti.org/), which looks for extraterrestrial signals by 

https://www.seti.org/
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observing radio frequencies arriving from space. The amount of data received 
and the computer power used to analyze a portion of the sky for a single hour 
is impressive (http://www.setileague.org/askdr/howmuch.htm). If aliens 
are out there, it’s very hard to spot them. (The movie Contact, which you can 
read about at https://www.amazon.com/exec/obidos/ASIN/B002GHHHKQ/ 
datacservip0f-20/, explores what could happen should humans actually 
intercept a signal.)

 » Meteorology: Think about trying to predict weather for the near term given 
the large number of required measures, such as temperature, atmospheric 
pressure, humidity, winds, and precipitation at different times, locations, and 
altitudes. Weather forecasting is really one of the first problems in big data, 
and quite a relevant one. According to Weather Analytics, a company that 
provides climate data, more than 33 percent of the Worldwide Gross 
Domestic Product (GDP) is determined by how weather conditions affect 
agriculture, fishing, tourism, and transportation, just to name a few. Dating 
back to the 1950s, the first supercomputers of the time were used to crunch 
as much as data as possible because, in meteorology, the more data, the 
more accurate the forecast. That’s the reason everyone is amassing more 
storage and processing capacity, as you can read in this story regarding the 
Korean Meteorological Association (https://www.wired.com/
insights/2013/02/how-big-data-can-boost-weather-forecasting/) 
for weather forecasting and studying climate change.

 » Physics: Consider the large amounts of data produced by experiments using 
particle accelerators in an attempt to determine the structure of matter, 
space, and time. For example, the Large Hadron Collider (https://home.
cern/topics/large-hadron-collider), the largest particle accelerator 
ever created, produces 15PB (petabytes) of data every year as a result of 
particle collisions (https://home.cern/science/computing).

 » Genomics: Sequencing a single DNA strand, which means determining the 
precise order of the many combinations of the four bases — adenine, 
guanine, cytosine, and thymine — that constitute the structure of the 
associated molecule, requires quite a lot of data. For instance, a single 
chromosome, a structure containing the DNA in the cell, may require from 
50MB to 300MB. A human being normally has 46 chromosomes, and the 
DNA data for just one person consumes an entire DVD. Just imagine the 
massive storage required to document the DNA data of a large number 
of people or to sequence other life forms on earth (https://www.wired.
com/2013/10/big-data-biology/).

 » Oceanography: Gathers data from the many sensors placed in the oceans to 
measure statistics, such as temperature and currents, using hydrophones and 
other sensors. This data even includes sounds for acoustic monitoring for 
scientific purposes (discovering characteristics about fish, whales, and 

http://www.setileague.org/askdr/howmuch.htm
https://www.amazon.com/exec/obidos/ASIN/B002GHHHKQ/datacservip0f-20/
https://www.amazon.com/exec/obidos/ASIN/B002GHHHKQ/datacservip0f-20/
https://www.wired.com/insights/2013/02/how-big-data-can-boost-weather-forecasting/
https://www.wired.com/insights/2013/02/how-big-data-can-boost-weather-forecasting/
https://home.cern/topics/large-hadron-collider
https://home.cern/topics/large-hadron-collider
https://home.cern/science/computing
https://www.wired.com/2013/10/big-data-biology/
https://www.wired.com/2013/10/big-data-biology/
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plankton) and military defense purposes (finding sneaky submarines from 
other countries). You can have a sneak peek at this old surveillance problem, 
which is turning more complex and digital, by reading this article: https://
www.theatlantic.com/technology/archive/2014/08/listening-in- 
the-navy-is-tracking-ocean-sounds-collected-by-scientists/ 
378630/.

 » Satellites: Recording images from the entire globe and sending them back to 
earth to monitor the Earth’s surface and its atmosphere isn’t a new business 
(TIROS 1, the first satellite to send back images and data, dates back to 1960). 
Over the years, however, the world has launched more than 1,400 active 
satellites that provide earth observation. The amount of data arriving on earth 
is astonishing and serves both military (surveillance) and civilian purposes, 
such as tracking economic development, monitoring agriculture, and monitor-
ing changes and risks. A single European Space Agency’s satellite, Sentinel 1A, 
generates 5PB of data during two years of operation, as you can read from 
https://spaceflightnow.com/2016/04/28/europes-sentinel-satellites- 
generating-huge-big-data-archive/).

All these data sources have one thing in common: Someone collects and stores the 
data as static information (once collected, the data doesn’t change). This means 
that if errors are found, correcting them with an overall increase in reliability is 
possible. The next section of this chapter discusses dynamic data, which isn’t 
nearly so easy to make reliable.

What you need to take away from this section is that you likely deal with immense 
amounts of data from various sources that could have any number of errors. Find-
ing these errors in such huge quantities is nearly impossible. Using the most reli-
able sources that you can will increase the overall quality of the original data, 
reducing the effect of individual data failure points. In other words, sources that 
provide consistent data are more valuable than sources that don’t.

Verifying Dynamic Data Sources
Dynamic data provides you with timely sources of information to use for analysis. 
The trade-off is trying to manage all that data. When data flows in huge amounts, 
storing it all may be difficult or even impossible. In fact, storing it all might not 
even be useful. Here are some figures of just some of what you can expect to hap-
pen within a single minute on the Internet:

 » 150 million emails sent

 » 350,000 new tweets sent on Twitter

https://www.theatlantic.com/technology/archive/2014/08/listening-in-the-navy-is-tracking-ocean-sounds-collected-by-scientists/378630/
https://www.theatlantic.com/technology/archive/2014/08/listening-in-the-navy-is-tracking-ocean-sounds-collected-by-scientists/378630/
https://www.theatlantic.com/technology/archive/2014/08/listening-in-the-navy-is-tracking-ocean-sounds-collected-by-scientists/378630/
https://www.theatlantic.com/technology/archive/2014/08/listening-in-the-navy-is-tracking-ocean-sounds-collected-by-scientists/378630/
https://spaceflightnow.com/2016/04/28/europes-sentinel-satellites-generating-huge-big-data-archive/
https://spaceflightnow.com/2016/04/28/europes-sentinel-satellites-generating-huge-big-data-archive/
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 » 2.4 million queries requested on Google

 » 700,000 people logged in to their account on Facebook

The following sections consider the effects of such huge amounts of dynamic data 
used for analysis purposes. Because dynamic data constantly changes, it presents 
significant management issues that you don’t encounter with static data.

Considering the problem
Dynamic data likely makes up more of the data you use for various forms of analy-
sis today. When working with dynamic data, you often don’t provide long-term 
storage because doing so would prove impossible and the data has a definite shelf 
life. In addition, the related data sources continue to churn out new data at an 
incredible rate. Consider the problems associated with trying to store data from 
these sources:

 » As reported by the National Security Agency (NSA), the amount of information 
flowing through the Internet every day from all over the world amounted to 
1,826PB of data in 2013, and 1.6 percent of it consisted of emails and tele-
phone calls. To assure national security, the NSA must verify the content 
of at least 0.025 percent of all emails and phone calls (looking for key 
words that could signal something like a terrorist plot). That still amounts 
to 25PB per year, which equates to 37,500 CD-ROMs every year of data 
stored and analyzed (and that’s growing). You can read the full story at 
https://www.business-standard.com/article/news-ani/nsa- 
claims-analysts-look-at-only-0-00004-of-world-s-internet- 
traffic-for-surveillance-113081100.

 » The Internet of Things (IoT) is a reality. You may have heard the term many 
times in the past, but now the growth of items connected to the Internet is 
exploding. The idea is to put sensors and transmitters on everything and use 
the data to both better control what happens in the world and to make 
objects smarter. Transmitting devices are getting tinier, cheaper, and less 
power demanding; some are already so small that they can be put every-
where. (Just look at the ant-sized radio developed by Stanford engineers 
at https://news.stanford.edu/news/2014/september/ant-radio- 
arbabian-090914.html.) Experts estimate that by 2020, there will be 
six times as many connected things on earth as there are people, but many 
research companies and think tanks are already revisiting those figures.

https://www.business-standard.com/article/news-ani/nsa-claims-analysts-look-at-only-0-00004-of-world-s-internet-traffic-for-surveillance-113081100
https://www.business-standard.com/article/news-ani/nsa-claims-analysts-look-at-only-0-00004-of-world-s-internet-traffic-for-surveillance-113081100
https://www.business-standard.com/article/news-ani/nsa-claims-analysts-look-at-only-0-00004-of-world-s-internet-traffic-for-surveillance-113081100
https://news.stanford.edu/news/2014/september/ant-radio-arbabian-090914.html
https://news.stanford.edu/news/2014/september/ant-radio-arbabian-090914.html


D
ev

el
op

in
g 

Co
ns

is
te

nt
 

St
ra

te
gi

es

CHAPTER 5  Developing Consistent Strategies      713

Given such volumes of data, accumulating the data all day for incremental analy-
sis might not seem efficient. In the past, a vendor would collect the information 
and store it in a data warehouse for batch analysis. However, useful data queries 
tend to ask about the most recent data in the stream, and data becomes less use-
ful when it ages. (In some sectors, like financial, a day can be a lot of time.) In 
fact, many marketing firms analyze data on a constant basis to determine the 
effectiveness of marketing campaigns. Data collected just a few minutes ago 
might see use in tweaking a campaign to make it more effective (see the article at 
https://www.sas.com/en_us/insights/articles/marketing/do-marketers- 
need-real-time-analytics.html for details).

Moreover, you can expect even more data to arrive tomorrow (the amount of data 
increases daily) and that makes it difficult, if not impossible, to pull data from 
repositories as you push new data in. Pulling old data from repositories as fresh 
data pours in is akin to the punishment of Sisyphus. Sisyphus, as a Greek myth 
narrative, received a terrible punishment from the god Zeus: being forced to eter-
nally roll an immense boulder up on the top of a hill, only to watch it roll back 
down each time (see http://www.mythweb.com/encyc/entries/sisyphus.html 
for additional details).

Sometimes, rendering things even more impossible to handle, data can arrive so 
fast and in such large quantities that writing it to disk is impossible: New infor-
mation arrives faster than the time required to write it to the hard disk. This is 
a problem typical of particle experiments with particle accelerators such as the 
Large Hadron Collider, requiring scientists to decide what data to keep (https://
home.cern/science/computing/processing-what-record). Of course, you may 
queue data for some time, but not for too long, because the queue will quickly 
grow and become impossible to maintain. For instance, if kept in memory, queue 
data will soon lead to an out-of-memory error.

Because new data flows may render older processing techniques used on static 
data obsolete, and procrastination is not a solution, people have devised multiple 
strategies to deal instantaneously with massive and changeable data amounts. 
People use three ways to deal with large amounts of data:

 » Stored: Some data is stored because it may help answer unclear questions 
later. This method relies on techniques to store it immediately and analyze it 
later very fast, no matter how massive it is.

 » Summarized: Some data is summarized because keeping it all as it is makes 
no sense; only the important data is kept.

 » Consumed: The remaining data is consumed because its usage is predeter-
mined. Algorithms can instantly read, digest, and turn the data into informa-
tion. After that, the system forgets the data forever.

https://www.sas.com/en_us/insights/articles/marketing/do-marketers-need-real-time-analytics.html
https://www.sas.com/en_us/insights/articles/marketing/do-marketers-need-real-time-analytics.html
http://www.mythweb.com/encyc/entries/sisyphus.html
https://home.cern/science/computing/processing-what-record
https://home.cern/science/computing/processing-what-record
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When talking of massive data arriving into a computer system, you will often hear 
it compared to water: streaming data, data streams, data fire hose. You discover 
how working with a data stream is like consuming tap water: Opening the tap 
lets you store the water in cups or drinking bottles, or you can use it for cooking, 
scrubbing food, cleaning plates, or washing hands. In any case, most or all of the 
water is gone, yet it proves very useful and indeed vital.

Analyzing streams with the right recipe
Streaming data needs streaming algorithms, and the key thing to know about 
streaming algorithms is that, apart from a few measures that it can compute 
exactly, a streaming algorithm necessarily provides approximate results. The 
algorithm output is almost correct, not quite guessing the correct answer, but 
close to it.

When dealing with streams, you clearly have to concentrate only on the measures 
of interest and leave out many details. You could be interested in a statistical 
measurement, such as mean, minimum, or maximum. Moreover, you could want 
to count elements in the stream or distinguish old information from new. There 
are many algorithms to use, depending on the problem, yet the recipes always use 
the same ingredients. The trick of cooking the perfect stream is to use one or all 
of these algorithmic tools as ingredients:

 » Sampling: Reduce your stream to a more manageable data size; represent 
the entire stream or the most recent observations using a shifting 
data window.

 » Hashing: Reduce infinite stream variety to a limited set of simple integer 
numbers.

 » Sketching: Create a short summary of the measure you need, removing the 
less useful details. This approach lets you leverage a simple working storage, 
which can be your computer’s main memory or its hard disk.

Another characteristic to keep in mind about algorithms operating on streams 
is their simplicity and low computational complexity. Data streams can be quite 
fast. Algorithms that require too many calculations can miss essential data, which 
means that the data is gone forever. When you view the situation in this light, you 
can appreciate how hash functions prove useful because they’re prompt in trans-
forming inputs into something easier to handle and search for both operations. 
You can also appreciate the sketching and sampling techniques, which bring about 
the idea of lossy compression that enables you to represent something complex by 
using a simpler form. You lose some detail but save a great deal of computer time 
and storage.
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Sampling means drawing a limited set of examples from your stream and treating 
them as if they represented the entire stream. It is a well-known tool in statistics 
through which you can make inferences on a larger context (technically called the 
universe or the population) by using a small part of it.

Looking for New Data Collection Trends
Because data is so valuable and users are sometimes adverse to giving it up, vendors 
constantly find new ways to collect data. One such method comes down to spying. 
Microsoft, for example, was recently accused (yet again) of spying on  Windows 10 
users even when the user doesn’t want to share the data (see https://www.
extremetech.com/computing/282263-microsoft-windows-10-data-collection 
for details). Lest you think that Microsoft is solely interested in your computing 
concerns, think again. The data it admits to collecting (and there is likely more) is 
pretty amazing (see https://www.theverge.com/2017/4/5/15188636/microsoft- 
windows-10-data-collection-documents-privacy-concerns for details).

Microsoft’s data gathering doesn’t stop with your Windows 10 actions; it also col-
lects data with Cortana, the personal assistant (see https://www.computerworld.
com/article/3106863/cortana-the-spy-in-windows-10.html). Mind you, Alexa 
is accused of doing the same thing (https://www.washingtonpost.com/news/
powerpost/paloma/the-technology-202/2019/05/06/the-technology-202- 
alexa-are-you-spying-on-me-here-s-why-smart-speakers-raise-serious- 
privacy-concerns/5ccf46a9a7a0a46cfe152c3c/). Google, likewise, does the 
same thing (see https://www.consumerwatchdog.org/privacy-technology/how- 
google-and-amazon-are-spying-you). So, one of the trends the vendors are using 
is spying, and it doesn’t stop with Microsoft, nor does it stop with the obvious 
 spying sources.

It might actually be possible to write an entire book on the ways in which  people 
are spying on you, but that would make for a very paranoid book, and there are 
other new data collection trends to consider. You may have noticed that you get 
more email from everyone about the services or products you were provided. 
Everyone wants you to provide free information about your experiences in one of 
these forms:

 » Close-ended surveys: A close-ended survey is one in which the questions 
have specific answers that you check mark. The advantage is greater consis-
tency of feedback. The disadvantage is that you can’t learn anything beyond 
the predefined answers.

https://www.extremetech.com/computing/282263-microsoft-windows-10-data-collection
https://www.extremetech.com/computing/282263-microsoft-windows-10-data-collection
https://www.theverge.com/2017/4/5/15188636/microsoft-windows-10-data-collection-documents-privacy-concerns
https://www.theverge.com/2017/4/5/15188636/microsoft-windows-10-data-collection-documents-privacy-concerns
https://www.computerworld.com/article/3106863/cortana-the-spy-in-windows-10.html
https://www.computerworld.com/article/3106863/cortana-the-spy-in-windows-10.html
https://www.washingtonpost.com/news/powerpost/paloma/the-technology-202/2019/05/06/the-technology-202-alexa-are-you-spying-on-me-here-s-why-smart-speakers-raise-serious-privacy-concerns/5ccf46a9a7a0a46cfe152c3c/
https://www.washingtonpost.com/news/powerpost/paloma/the-technology-202/2019/05/06/the-technology-202-alexa-are-you-spying-on-me-here-s-why-smart-speakers-raise-serious-privacy-concerns/5ccf46a9a7a0a46cfe152c3c/
https://www.washingtonpost.com/news/powerpost/paloma/the-technology-202/2019/05/06/the-technology-202-alexa-are-you-spying-on-me-here-s-why-smart-speakers-raise-serious-privacy-concerns/5ccf46a9a7a0a46cfe152c3c/
https://www.washingtonpost.com/news/powerpost/paloma/the-technology-202/2019/05/06/the-technology-202-alexa-are-you-spying-on-me-here-s-why-smart-speakers-raise-serious-privacy-concerns/5ccf46a9a7a0a46cfe152c3c/
https://www.consumerwatchdog.org/privacy-technology/how-google-and-amazon-are-spying-you
https://www.consumerwatchdog.org/privacy-technology/how-google-and-amazon-are-spying-you
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 » Open-ended surveys: An open-ended survey is one in which the questions 
rely on text boxes in which the user enters data manually. In some cases, 
this form of survey enables you to find new information, but at the cost of 
consistency, reliability, and cleanliness of the data.

 » One-on-one interviews: Someone calls you or approaches you at a place 
like the mall and talks to you. When the interviewer is well trained, you obtain 
consistent data and can also discover new information. However, the quality 
of this information comes at the cost of paying someone to obtain it.

 » Focus group: Three or more people meet with an interviewer to discuss a 
topic (including products). Because the interviewer acts as a moderator, the 
consistency, reliability, and cleanliness of the data remain high and the costs 
are lower. However, now the data suffers contamination from the interaction 
between members of the focus group.

 » Direct observation: No conversation occurs in this case; someone monitors 
the interactions of another party with a product or service and records the 
responses using a script. However, because you now rely on a third party to 
interpret someone else’s actions, you have a problem with contamination in 
the form of bias. In addition, if the subject of the observation is aware of being 
monitored, the interactions likely won’t reflect reality.

These are just a few of the methods that are seeing greater use in data collec-
tion today. They’re just the tip of the iceberg. The concepts you should take away 
from this section is that no perfect means for collecting some types of data exists 
and that all data collection methods require some sort of participative event.

Weeding Old Data
Contrary to fine wine, data doesn’t age well and you need to think about methods 
of keeping it fresh. The problem is most apparent when working with static data. 
You collect data from a source like a robotic mission to Mars, and then use it to 
make decisions about future missions. The problem is determining when that data 
is too old. At some point, the data becomes useless because it no longer reflects 
state-of-the-art technology.

The problem with old data is monumental because you can’t really create a rule 
that says the data is actually useless. You may not be able to use data for a  current 
analysis for a line of business decision, but the same data may have historical 
value. In addition, old data often provides examples for use in creating models 
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that reflect special, uncommon events. Consequently, the rule that states that 
you really don’t need something until after you throw it out comes into play. 
Of course, you could always archive the data in some unused location for all eter-
nity, but that’s not really practical, either.

When thinking about old data, you must consider a number of factors that deter-
mine whether the data isn’t useful any longer. These factors include (but aren’t 
limited to):

 » Technology to which the data refers

 » Environment in which the data is collected

 » Attitudes of society as a whole

 » Use of data within an analysis

 » Cost of storing the data versus value gained

 » Legal or other requirements

 » Data format with regard to analysis techniques

Considering the Need for Randomness
Oddly enough, creating a consistent analysis often means training your algo-
rithm using randomized data so that it doesn’t learn a specific pattern. Random-
ization relies on the capability by your computer to generate random numbers, 
which means creating the number without a plan. Therefore, a random number is 
unpredictable, and as you generate subsequent random numbers, they shouldn’t 
relate to each other.

However, randomness is hard to achieve. Even when you throw dice, the result 
can’t be completely unexpected because of the way you hold the dice, the way 
you throw them, and the fact that the dice aren’t perfectly shaped. Computers 
aren’t good at creating random numbers, either. They generate randomness by 
using algorithms or pseudorandom tables (which work by using a seed value as a 
starting point, a number equivalent to an index) because a computer can’t create 
a truly random number. Computers are deterministic machines; everything inside 
them responds to a well-defined response pattern, which means that it imitates 
randomness in some way.
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Considering why randomization is needed
Even if a computer can’t create true randomness, streams of pseudorandom num-
bers (numbers that appear as random but that are somehow predetermined) can 
still make the difference in many computer science problems. Any algorithm that 
employs randomness in its logic can appear as a randomized algorithm, no matter 
whether randomness determines its results, improves performance, or mitigates 
the risk of failing by providing a solution in certain cases.

Usually you find randomness employed in selecting input data, the start point 
of the optimization, or the number and kind of operations to apply to the data. 
When randomness is a core part of the algorithm logic and not just an aid to its 
performance, the expected running time of the algorithm and even its results 
may become uncertain and subject to randomness, too; for instance, an algorithm 
may provide different, though equally good, results during each run. It’s there-
fore useful to distinguish between kinds of randomized solutions, each one named 
after iconic gambling locations:

 » Las Vegas: These algorithms are notable for using random inputs or 
resources to provide the correct problem answer every time. Obtaining a 
result may take an uncertain amount of time because of its random proce-
dures. An example is the Quicksort algorithm.

 » Monte Carlo: Because of their use of randomness, Monte Carlo algorithms may 
not provide a correct answer or even an answer at all, although these outcomes 
seldom happen. Because the result is uncertain, a maximum number of trials in 
their running time may bind them. Monte Carlo algorithms demonstrate that 
algorithms do not necessarily always successfully solve the problems they are 
supposed to. An example is the Solovay–Strassen primality test.

 » Atlantic City: These algorithms provide a correct problem answer at least 
75 percent of the time. Monte Carlo algorithms are always fast but not 
always correct, and Las Vegas algorithms are always correct but not always 
fast. People therefore think of Atlantic City algorithms as halfway between 
the two because they are usually both fast and correct. This class of algo-
rithms was introduced in 1982 by J. Finn in an unpublished manuscript 
entitled Comparison of Probabilistic Test for Primality. Created for theoretical 
reasons to test for prime numbers, this class comprises hard-to-design 
solutions, thus very few of them exist today.

Understanding how probability works
Probability tells you the likelihood of an event, which you normally express as a 
number. In this book, and generally in the field of probabilistic studies, the proba-
bility of an event is measured in the range between 0 (no probability that an event 
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will occur) and 1 (certainty that an event will occur). Intermediate values, such as 
0.25 or 0.75, indicate that the event will happen with a certain frequency under 
conditions that should lead to that event (referred to as trials). Even if a numeric 
range from 0 to 1 doesn’t seem intuitive at first, working with probability over 
time makes the reason for using such a range easier to understand. When an event 
occurs with probability 0.25, you know that out of 100 trials, the event will happen 
0.25 * 100 = 25 times.

For instance, when the probability of your favorite sports team winning is 0.75, 
you can use the number to determine the chances of success when your team plays 
a game against another team. You can even get more specific information, such as 
the probability of winning a certain tournament (your team has a 0.65 probability 
of winning a match in this tournament) or conditioned by another event (when 
you aren’t playing on your home court, the probability of winning for your team 
decreases to 0.60).

Probabilities can tell you a lot about an event, and they’re helpful for algorithms, 
too. In a randomized algorithmic approach, you may wonder when to stop an 
algorithm because it should have reached a solution. It’s good to know how long 
to look for a solution before giving up. Probabilities can help you determine how 
many iterations you may need.

You commonly hear about probabilities as percentages in sports and econom-
ics, telling you that an event occurs a certain number of times after 100 trials. 
It’s exactly the same probability no matter whether you express it as 0.25 or 
25  percent. That’s just a matter of conventions. In gambling, you even hear about 
odds, which is another way of expressing probability, where you compare the 
likelihood of an event (for example, having a certain horse win the race) against 
not having the event happen at all. In this case, you express 0.25 as 25 against 75 
or in any other way resulting in the same ratio.

You can multiply a probability for a number of trials and get an estimated num-
ber of occurrences of the event, but by doing the inverse, you can empirically 
estimate a probability. Perform a certain number of trials, observe each of them, 
and count the number of times an event occurs. The ratio between the number of 
occurrences and the number of trials is your probability estimate. For instance, 
the probability 0.25 is the probability of picking a certain suit when choosing a 
card randomly from a deck of cards. French playing cards (the most widely used 
type of deck, which also appears in America and Britain) provide a classic exam-
ple for explaining probabilities. (The Italians, Germans, and Swiss, for example, 
use  decks with different suits, which you can read about at http://healthy. 
uwaterloo.ca/museum/VirtualExhibits/Playing%20Cards/decks/index.
html.) The deck contains 52 cards equally distributed into four suits: clubs and 
spades, which are black, and diamonds and hearts, which are red. If you want to 

http://healthy.uwaterloo.ca/museum/VirtualExhibits/Playing%20Cards/decks/index.html
http://healthy.uwaterloo.ca/museum/VirtualExhibits/Playing%20Cards/decks/index.html
http://healthy.uwaterloo.ca/museum/VirtualExhibits/Playing%20Cards/decks/index.html
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determine the probability of picking an ace, you must consider that, by picking 
cards from a deck, you will observe four aces, which affects the probability of 
picking an ace (rather than a specific ace, such as the ace of hearts). Your trials at 
picking the cards are 52 (the number of cards); therefore the answer in terms of 
probability is 4/52 = 0.077.

You can get a more reliable estimate of an empirical probability by using a larger 
number of trials. When using a few trials, you may not get a correct estimate of 
the event probability because of the influence of chance. As the number of trials 
grows, event observations will get nearer to the true probability of the event itself. 
The principle there is a generating process behind events. To understand how the 
generating process works, you need many trials. Using trials in such a way is also 
known as sampling from a probabilistic distribution.
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Index
A
a priori, 312
absolute errors, 48
access control, 42
accuracy, 49, 300, 488
activation functions, 380, 381, 393, 405
acyclic graph, 326
Ada (programming language), 20
AdaBoost

bagging predictors with, 365–369
classifiers, 369
example, 368–369
improving performance of, 369
online, 366
weighting, 366–367

AdaDelta, 401
AdaGrad, 401
Adam, 401
Adamax, 401
Adelson-Velsky and Landis (AVL) tree, 244
adjacency matrix, 615
AdventureWorks database, 224
adversarial examples, 539
AFINN-111 dictionary, 485
aggregation, 194–195
AI. See artificial intelligence (AI)
AI winter, 375, 404, 441
Airline Passengers Prediction dataset, 574
albumentations package, 515
Alexa, 494
AlexNet, 450, 511
Algorithmia, 16
algorithms, 323
Algorithms for Dummies (Mueller and Massaron), 200, 242
aList, 142
Al-Kindi, 11
alpha channel, 427
alpha parameter, 287
alternate key, 227
Amazon, 120, 486, 495
Amazon Alexa, 494, 539
Amazon Mechanical Turk crowdsourcing platform, 529–530

Amazon Web Services (AWS), 228, 251
American Standard Code for Information Interchange 

(ASCII), 124
Amper, 552
AMSGrad, 401
Anaconda

about, 20, 52, 58
downloading, 58
Linux installation, 63
Mac installation, 63
notifications, 315
Prompt, 59, 72–73, 104–106, 265, 319, 361, 467, 608
for R, 72–73
supported platforms, 58
Windows installation, 59–63

analysis, 11
Analysis of MassIve Data STreams (AMIDST), 331
analysis platform

about, 52
desktop systems, 53
development language, 56–57
frameworks, 55
gaming laptop, 54
graphics processing unit (GPU), 54
online IDEs, 53–54

anchors, 154–155
animal protection, 43
annotations, 529–530, 595, 596–597
anonymous web data

obtaining statistics, 499
parsing data file, 497–498
viewing attributes, 498

Apache License 2.0, 534–538
Apache Spark, 21
append( ) method, 142, 191
Apple, 494, 539
application framework, 76
application programming interfaces (APIs), 14, 119–120
application-specific integrated units (ASICs), 80
archiving data, 33
argsort method, 484
array( ) function, 175
arrays, vs. lists, 143
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art, 17
art, computer-generated

CGI, 546
combining styles to create new art, 550–551
defining new piece based on single artist, 549–550
fractals, 546
mimicking artists, 548–553
online resources, 544, 545
statistics, 546–547
transferring artistic style, 545

artificial intelligence (AI)
about, 12
categorizing, 37–38
classification types, 38–39
creating pipeline from data to, 47–49
levels of, 33
vs. machine learning, 33, 39–40
overview, 33–34
uses of, 41–42

Artificial Intelligence for Dummies (Mueller and Massaron), 12
artistic framework, 76
artistic style transfer, 448
ASCII encoding, 455
Asian Bayesian network, 325–326
askSam, 116
assumptions, 40
astronomy, 709–710
AT&T, 510
AT&T Labs Research, 429
Atlantic City algorithm, 718
attributes

in hierarchy, 239
promised versus realized, 241
viewing, 498

augmentation, image
albumentations package, 515
color shift, 514
contrast change, 514
flip, 514
ImageDataGenerator, 515
information loss, 514
noise addition, 514
random crop, 514
random flips, 515
random rotation, 515
random shifts, 515
reordering dimensions, 515

rotation, 514
standardization, 515
ZCA whitening, 515

automated data collection, 628–629
automated learning, 332
automation, 42
average pooling, 439
averaging, 372
Awesome Public Datasets, 220
axis. See also graphs

defined, 587
getting, 587–589

Azure Notebooks, 71–72

B
B+-tree, 247
backpropagation. See also deep learning

defined, 387
eta value, 389–390
history, 387
learning rate and, 389
overview, 388–389
performing, 395
weight updates, 390

backslash (\), 153
bagging, 356, 364
bag-of-words (BoW) representation, 457, 458–459
Bailey, T., 336
balanced trees, 198, 243
bar charts, 582, 695–697
Basemap, 608, 610
Basic, 136
batch learning, 407, 445
batch mode, weight update, 390
BatchNormalization, 479
Bayes, Thomas, 309–311, 313
Bayes’ Theorem

basic theorem, 312–313
Bayesian inference, 317–324
formula, 313
history of, 309–311, 373
linear regression, 332–333
logistic regression, 333–334
Naïve Bayes, 313–323
networked Bayes, 324–332
overview, 309
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Bayesian inference
assumptions, 318
deep learning and, 323–324
overview, 318
packages, 318–319
simple inference example, 319–323

Beautiful Soup
installing, 467
parsing HTML documents, 88–89
scraping data with, 119
using in codes, 468–469

Becker, Rick, 23
BEGAN, 556
beliefs versus facts, 34
Bell Laboratories, 23
Bengio, Samy, 541
Bengio, Yoshua, 429, 440, 510, 553
Bermejo, Sergio, 336
BernoulliNB, 314, 369
BERT, 456
Bethge, Matthias, 448, 549
bias, 274, 376, 647–648, 671
Bidirectional wrapping, 572
big data, 12, 113, 709
binary data, 119–120, 126–128
binary encoding, 564
binary function, 399
binary heap, 242
binary max heap, 245
binary min heap, 245
binary response, 301–302
binary search tree, 242, 244–245
binary steps, 380
binaryTree class, 196
bins, 697
blind men and the elephant story, 365
bodily-kinesthetic intelligence, 35
bool( ), 212
boosting

AdaBoost, 365–369
defined, 365
gradient boosting machines, 369–371
XGBoost, 371

bootstrap aggregation, 356
bootstrapping, 356
Boston Housing dataset, 272, 361–362, 675
Bottou, Leon, 429, 440
Bouvard, Alexis, 312

Bowie, David, 552
box plots, 699–700
brain imaging, 37
branch nodes, 196
Breadth First Search (BFS), 246–247
Breiman, Leo, 356, 357
Brox, Thomas, 531
B-tree, 247
Buslaev, Alexander, 515

C
C programming language, 136
C# programming language, 134
C++ programming language, 134, 136
Cabestany, Joan, 336
cactus framework, 76
canonical poses, 540
caret, 90
Carnegie Mellon University, 541
cases, adding, 190–191
cat neuron, 403–404
categorical data, 456–457
categorical variables. See also variables

combining levels, 268–269
creating, 265
defined, 265
renaming levels, 267–268

cb( ) function, 167
ce( ) function, 167
central processing unit (CPU), 54
central tendency, 649
Chambers, John, 23
channels, 435
character recognition. See also convolutional neural 

networks (CNNs)
accessing datasets, 430
defining models, 432–433
encoding categories, 432
reshaping datasets, 431–432
using models, 433–434

characteristics, demographics, 14
characters

control, 153
defined, 148
escaped special characters, 153
numeric, 153
wildcard, 153–154
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charts
annotating, 596–597
bar, 582, 695–697
defined, 581
pie, 583, 694–695

cheat sheet, 5
Chebyshev distance, 345, 500
Chebyshev inequality, 656
Chen, Tianqi, 371
Chihuahua vs Muffin (Internet meme), 540
Christie’s, 544
classification, 294
Classification and Regression Training (CARET), 90
classification tasks. See also convolutional neural  

networks (CNNs)
annotating multiple objects in images, 529–530
classification of multiple objects, 528–529
image pyramids, 528
image segmentation, 530–531
localization, 527–528
one-stage detection, 528
sliding window, 528
two-stage detection, 529
understanding problem, 526–527

Cleveland, William S., 10
close-ended surveys, 715
cluster analysis, 659–661
CNNs. See convolutional neural networks (CNNs)
co-adaptation, 406
Codd, Edgar Frank, 224
code repository

Python, 64–69
R, 75–76

coding styles, 23
coefficient vectors, 375, 377
coefficients, 274
Cognitive Toolkit (CNTK), 87
Colab, 502, 522
Colaboratory, 69–71, 517
cold start, 500
collaborative filtering. See also recommender systems

defined, 500, 507
history, 494
performing, 504–506

color shift, image augmentation, 514
colorization, 16
colors, 15–16, 427–428

Columbia University, 10
columns, slicing, 188–189
comma-separated value (CSV) files

about, 205
flat-file formatting, 113
header information, 208–209
working with, 205–207

commission, 645–646
Common Object Request Broker Architecture (CORBA), 120
companion files, 5
Comparison of Probabilistic Test for Primality (Finn), 718
comparison tasks, 176
complex analysis, 42
composite key, 227
Comprehensive R Archive Network (CRAN), 24
Compressed Sparse Row (CSR) matrix, 474
Compute Unified Device Architecture (CUDA), 55
computer generated imagery (CGI), 546
computer perspective, 455–456
computerized axial tomography (CAT), 37
concat( ) method, 191
concatenation, 146, 189–190
concept drift, 652
conda utility, 72–73
conditional GANs, 556. See also generative adversarial 

networks (GANs)
confidence level, 670
connectionism, 375
constructs, 155
consumed data, 713
content

defined, 549
image, 549
loss, 550

content-based filtering, 500–501
continuous text, 125
continuous value, 292
contraction, 531
contrast change, image augmentation, 514
control characters, 153
ConviD, 560
convolutional neural networks (CNNs)

accessing datasets, 430
AlexNet, 450
architectures, 449–450
Bayesian, 324
character recognition, 429–434
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colorization with, 16
defining models, 432–433
detecting edges and shapes from images, 446–452
encoding categories, 432
final layers, 447
image basics, 426–427
image classification, 410–411
initial layers, 447
LeNet architecture, 440–446
middle layers, 447
online resources, 16, 324
overview, 409–410, 435–438, 547
pooling layers, 439–440
pretrained neural network, 418
processing textual data, 560
reshaping datasets, 431–432
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transfer learning, 450–452
using models, 433–434
variants, 525
VGGNet, 450
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cooling fans, 55
Cornell Aeronautical Laboratory, 375
corpus, 457
correctness, 690–691
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cost functions, 387–388
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Cover, Thomas M., 336
Create, Read, Update, and Delete (CRUD) functionality, 244
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creative intelligence, 36
creativity, 543–544
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cores, 55, 522
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current activities, demographics, 14
curve-fitting, 295–296
customer service, 42
Cutler, Adele, 357
cyber security, 652
cycle GANs, 557. See also generative adversarial  

networks (GANs)
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D
Daimler, 331
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data

aggregating, 194–195
archiving, 33
binary, 126–128
capture, 11
dangling, 241–242
defined, 138
demographics, 13–14
errors. See errors
extraction, 212–214
functional, 138–142
handling, 40
hierarchical, 238–242, 250–251
immutable, 133, 139
input, 40
learning from, 19
loading, 26
manicuring, 634–640
misalignments, 639–640
missing, 634–639
mistruths in, 645–649
nontext, 215–218
old, 716–717
patterns in, 150–152
preparing, 18, 623
private, 120–121
reliability, 127–128
reliable, 625
removing, 191–192
role in real world, 13–18
scraping from websites, 119
selecting and shaping, 187–195
separating out useful, 640
sources, 31–32
types of, 173–174
validation, 629–634
visualizing, 19

data access
NoSQL RDBMS, 243–248
RDBMS, 228–232

data analysis
exploratory, 18–19
performing, 32–33
using pandas, 85
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automated, 628–629
data sources, 624–625
human input, 626–628
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standardization, 707–709
trends, 715–716
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about, 172
binary data, 126–128
formatted text, 125–126
NoSQL RDBMS, 243–244
overview, 124
pure text, 124–125

data manipulation
defined, 171
filtering, 168
mapping, 167–168
organizing, 168
overview, 165
slicing and dicing, 166–167

data map, 632–634
data plan, 632–634
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data science

computer perspective, 455–456
elements of, 10–14
emergence of, 10–11
human perspective, 454
overview, 20
pipeline, 18–19
programming languages. See programming languages
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data science lab

analysis platform, 52–55
overview, 51–52
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data sources
big data, 123
deep learning, 47–48
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overview, 114
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about, 85
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combining, 233
creating, 211–212, 213
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importing data into, 234
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positional data files, 204
in SQL databases, 230
storing Boston database in, 276

Datal.gov, 220
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Boston, 272
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from hierarchical data, 250–251
missing data, 634–635
MovieLens, 496, 501–506
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variables, 271–274

dates
formatting, 641
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bootstrap aggregation, 356
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data sources, 47–48
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denoising, 414
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digital assistants, 494
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Dudani, Sahibsingh A., 336
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emoticons, 466
encode( ) method, 471
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exploding gradient, 393, 405
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FastAnnotationTool, 530
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FastICA, 425
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Feature Pyramid Networks (FPNs), 533
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content-based, 500
data, 168
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filters, 391, 435
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first-order derivatives, 401
Fischer, Philipp, 531
Fisher, R.A., 383
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types, 76–77

fraud detection, 41
freeform data, 238–239
freeform databases, 116–117
freeform text, 125
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gaming laptop, 54
GANs. See generative adversarial networks (GANs)
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Gatys, Leon, 448, 549
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Gaussian filter, 414, 415
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about, 544
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creating realistic pictures of celebrities, 556
cycle, 557
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enhancing details and image translation, 557
fake data, 555
generator, 551, 554
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online resources, 548
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super resolution, 557
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toolkit, 608–609

German Traffic Sign Recognition Benchmark (GTSRB), 
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getroot( ) method, 210
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Brain, 403, 448, 512
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Research, 448
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transfer learning, 408
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about, 52
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need for, 54
Nvidia T, 55
online, 56
realistic output with, 522

graphs
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choosing, 694–702
creating with igraph, 91–92
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diagraphs, 616
line, 582, 584, 700–701
links, 615
multigraphs, 616
nodes, 198–199, 615
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telling story with, 694
visualizing, 614–617

grasping truths, 34
Gray, Michael R., 336
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grids
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group( ) function, 157
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Index      731

GroupLens, 494
guided learning, 332

H
H2O, 86
hacking, 541–542
Haffner, Patrick, 429, 440
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Hart, Peter E., 336
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He, Kaiming, 533
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Heaviside step function, 393
heuristics, 355
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analysis, 240–241
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datasets from hierarchical data, 250–251
elements, 238–239
freeform data, 238–239
overview, 238
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hyperbolic tangent, 381
hyperparameters, 44

I
IBM, 205
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libraries, 411–413
tasks, 411
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image recognition, 403
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recall, 417
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file format, 68
importing notebook, 68–69
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Labeled Faces in the Wild dataset, 423
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categorical variables, 265–269
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combining variables, 257–264
continuous value, 292
datasets, 271–274
defined, 256
fitting, 273
gradient descent, 283
guessing numbers using, 269–281
history of, 256–257
independent variables, 263–264
limitations and problems, 282–283
vs. logistic regression, 290–297
model, 291–292
multiple, 260–262
overview, 255
predictive features, 270
R2, 273
regularization, 287
simple, 257–259
stochastic gradient descent, 283–286
variable transformations, 274–277
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flat files, 113–114
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curve-fitting, 295–296
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model, 291–292
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performance, 300
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hyperparameters in, 44
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Machine Learning for Dummies (Mueller and Massaron), 12, 
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feature extraction, 457–458
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stemming, 462–465
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storing processed text data in sparse matrices, 470–473
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Mandelbrot, Benoit B., 546
Manhattan distance, 340, 344, 500
Manuscript on Deciphering Cryptographic Messages 

(Al-Kindi), 11
map( ) function, 213
mapping, 167–168
maps

creating, 610
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inversion, 184
multiplication, 181–182
singular, 185
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matrix factorization, 481
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missing data. See also errors
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commission, 645–646
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implementation, 306–307
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multimedia, 704–705
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directed acyclic graphs, 327–328
graphs, 326
overview, 324
in predictions, 328–331
predictive, 325
prescriptive, 325
types of, 324–325

NetworkX, 615–617
neural networks

activation functions, 380, 381, 393, 399–401
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Scikit-learn, 85
SciPy, 83–84
TensorFlow, 87

Q
Quetelet, Adolphe, 290
Quora, 134, 479



742      Data Science Programming All-in-One For Dummies

R
R (programming language)

about, 57
AdaBoost, 366
code repository, 75–76
distributions, 24–25
gradient boosting machines (GBMs), 370
image processing in, 412
installing, 72–73
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slicing and dicing data, 234
SQL language, 229–230
tables, 225–226
views, 231–232

relational databases, 115–116
reliability, analysis performance, 49

reliable data, 127–128, 625, 709–711
Remote Method Invocation (RMI), 120
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transform( ) method, 194, 458, 503
transformations, variable

effect of ordering, 275
looking for, 276
nonlinear, 677–679
storing Boston database in DataFrame, 276

translation invariance, 446
transposition, 183
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removing duplicates, 631

value
continuous, 292
discrete, 292
passing by, 140–142

value of color, 15
van Gogh, Vincent, 545
vanishing gradient, 400, 404
Vargas, Danilo Vasconcellos, 541
variables

adding, 190–191
categorical, 265–269
combining, 257–264
creating interactions between, 277–282
defined, 255
independent, 263–264
interactions between, 679–683
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what if scenarios, 131
while loop, 156
widgets, 454
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