




Minecraft®	Modding	For	Kids	For	Dummies®

Published	by	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ
07030-5774,	www.wiley.com

Copyright	©	2015	by	John	Wiley	&	Sons,	Inc.,	Hoboken,	New	Jersey

Published	simultaneously	in	Canada

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system
or	transmitted	in	any	form	or	by	any	means,	electronic,	mechanical,
photocopying,	recording,	scanning	or	otherwise,	except	as	permitted	under
Sections	107	or	108	of	the	1976	United	States	Copyright	Act,	without	either
the	prior	written	permission	of	the	Publisher.	Requests	to	the	Publisher	for
permission	should	be	addressed	to	the	Permissions	Department,	John	Wiley
&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030,	(201)	748-6011,	fax
(201)	748-6008,	or	online	at	http://www.wiley.com/go/permissions.

Trademarks:	Wiley,	For	Dummies,	the	Dummies	Man	logo,
Dummies.com,	Making	Everything	Easier,	and	related	trade	dress	are
trademarks	or	registered	trademarks	of	John	Wiley	&	Sons,	Inc.	and/or	its
affiliates	in	the	United	States	and	other	countries,	and	may	not	be	used
without	written	permission.	All	other	trademarks	are	the	property	of	their
respective	owners.	John	Wiley	&	Sons,	Inc.	is	not	associated	with	any
product	or	vendor	mentioned	in	this	book.

LIMIT	OF	LIABILITY/DISCLAIMER	OF	WARRANTY:	THE
PUBLISHER	AND	THE	AUTHOR	MAKE	NO	REPRESENTATIONS
OR	WARRANTIES	WITH	RESPECT	TO	THE	ACCURACY	OR
COMPLETENESS	OF	THE	CONTENTS	OF	THIS	WORK	AND
SPECIFICALLY	DISCLAIM	ALL	WARRANTIES,	INCLUDING
WITHOUT	LIMITATION	WARRANTIES	OF	FITNESS	FOR	A
PARTICULAR	PURPOSE.	NO	WARRANTY	MAY	BE	CREATED	OR
EXTENDED	BY	SALES	OR	PROMOTIONAL	MATERIALS.	THE
ADVICE	AND	STRATEGIES	CONTAINED	HEREIN	MAY	NOT	BE
SUITABLE	FOR	EVERY	SITUATION.	THIS	WORK	IS	SOLD	WITH
THE	UNDERSTANDING	THAT	THE	PUBLISHER	IS	NOT
ENGAGED	IN	RENDERING	LEGAL,	ACCOUNTING,	OR	OTHER
PROFESSIONAL	SERVICES.	IF	PROFESSIONAL	ASSISTANCE	IS
REQUIRED,	THE	SERVICES	OF	A	COMPETENT	PROFESSIONAL

http://www.wiley.com/
http://www.wiley.com/go/permissions


PERSON	SHOULD	BE	SOUGHT.	NEITHER	THE	PUBLISHER	NOR
THE	AUTHOR	SHALL	BE	LIABLE	FOR	DAMAGES	ARISING
HEREFROM.	THE	FACT	THAT	AN	ORGANIZATION	OR	WEBSITE
IS	REFERRED	TO	IN	THIS	WORK	AS	A	CITATION	AND/OR	A
POTENTIAL	SOURCE	OF	FURTHER	INFORMATION	DOES	NOT
MEAN	THAT	THE	AUTHOR	OR	THE	PUBLISHER	ENDORSES
THE	INFORMATION	THE	ORGANIZATION	OR	WEBSITE	MAY
PROVIDE	OR	RECOMMENDATIONS	IT	MAY	MAKE.	FURTHER,
READERS	SHOULD	BE	AWARE	THAT	INTERNET	WEBSITES
LISTED	IN	THIS	WORK	MAY	HAVE	CHANGED	OR	DISAPPEARED
BETWEEN	WHEN	THIS	WORK	WAS	WRITTEN	AND	WHEN	IT	IS
READ.

For	general	information	on	our	other	products	and	services,	please	contact
our	Customer	Care	Department	within	the	U.S.	at	877-762-2974,	outside	the
U.S.	at	317-572-3993,	or	fax	317-572-4002.	For	technical	support,	please
visit	www.wiley.com/techsupport.

Wiley	publishes	in	a	variety	of	print	and	electronic	formats	and	by	print-on-
demand.	Some	material	included	with	standard	print	versions	of	this	book
may	not	be	included	in	e-books	or	in	print-on-demand.	If	this	book	refers	to
media	such	as	a	CD	or	DVD	that	is	not	included	in	the	version	you
purchased,	you	may	download	this	material	at
http://booksupport.wiley.com	.	For	more	information	about	Wiley
products,	visit	www.wiley.com.

Library	of	Congress	Control	Number:	2015940558

ISBN:	978-1-119-05004-9;	ISBN:	978-1-119-05765-9	(ePDF);	ISBN:	978-
1-119-05767-3	(ePub)

http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com/


Minecraft®	Modding	For	Kids	For
Dummies®
Visit
www.dummies.com/cheatsheet/minecraftmoddingforkids
to	view	this	book's	cheat	sheet.

Table	of	Contents
Cover
Introduction

About	This	Book

Foolish	Assumptions

Icons	Used	in	This	Book

Accessing	the	LearnToMod	Software

Beyond	the	Book

Where	to	Go	from	Here

Part	1:	Making	Your	First	Minecraft	Mod
Project	1:	Getting	Started	on	Modding	Minecraft

Know	What	Minecraft	Modding	Is

Use	the	LearnToMod	Online	Software

Become	Familiar	with	the	Programming	Environment

Write	Your	First	Minecraft	Mod

Run	Your	First	Mod	in	Minecraft

Write	Your	Own	Minecraft	Mods

Share	Your	Mods	with	Friends

Project	2:	Earning	Modding	Badges
Write	Mods	with	Functions

Earn	Scramble	Badges

Earn	Missing	Badges

http://www.dummies.com/cheatsheet/minecraftmoddingforkids


Make	and	Call	New	Functions

Complete	the	Functions	Badge	Code

Earn	Quiz	Badges

Challenge	Yourself	Beyond	Badges

Complete	the	Function	Challenge

Project	3:	Building	and	Protecting	Structures
Use	Drones	to	Build	Structures	in	Minecraft

Build	a	Tower	in	Minecraft	By	Breaking	Coding	into	Phases

Use	Locations	to	Strike	Lightning	on	Yourself	in	Minecraft

Use	Locations	to	Strike	Lightning	on	Drones	in	Minecraft

Debug	Complex	Mods

Spawn	Entities	and	Add	Inventory	Items

Build	a	One-Click	House	in	Minecraft

Part	2:	Making	Your	First	Minecraft	Minigame
Project	4:	Making	a	Single-Player	Game	in
Minecraft:	Spleef

Introduce	the	Gameplay	Loop

Make	Spleef:	Iteration	1

Make	Spleef:	Iteration	2

Project	5:	Making	a	Multilevel	Minecraft	Minigame:
Monster	Arena

Draw	the	Gameplay	Loop

Iteration	1:	Make	Monster	Arena

Iteration	2:	Add	Levels

Iteration	3:	Add	Even	More	Levels	and	Challenges

Make	More	Iterations:	Be	Creative	and	Unique

Project	6:	Minecraft	Modding	with	Friends:	The
Multiplayer	Version	of	Spleef

Start	from	the	Single-Player	Spleef	Game

Summarize	the	Gameplay	Loop

Iteration	1:	Refactor	the	Single-Player	Version

Iteration	2:	Add	in	Player2

Test	the	Multiplayer	Spleef	Game

Iteration	3:	End	the	Game	at	200	Blocks



Part	3:	Designing	and	Building	a	Multiplayer	Minigame
Project	7:	Modding	with	Projectiles

Design	and	Build	an	Exploding	Projectile

Make	a	Projectile	Library

Complete	an	Extra	Challenge:	Use	the	Projectile	Library	to	Make
a	Teleporting	Projectile

Project	8:	Making	a	Multiplayer	Minigame:
Capture	the	Flag

Plan	the	Capture-the-Flag	Game

Prepare	the	Capture-the-Flag	Mod

Iteration	1:	Create	the	Single-Player	Version

Project	9:	Iterating	on	Gameplay	Using	an
Existing	Game:	Capture	the	Flag

Iteration	2:	Add	Player	2

Iteration	3:	Make	Someone	Win

Play	the	Game	in	Alternative	Ways

Part	4:	Building	Your	Own	Minecraft	Minigame
Project	10:	Building	Your	Own	Game

Sketch	Out	Your	Mod

Plan	Your	Mod

Draw	the	Gameplay	Loop

Outline	Your	Mod

Refactor	Your	Mods

Test	Your	Code

Share	Your	Mod	with	Friends

Remix	Other	People’s	Mods

Engage	with	Your	Community

About	the	Author
Cheat	Sheet
Advertisement	Page
Connect	with	Dummies
End	User	License	Agreement



Introduction
So	you	want	to	mod	Minecraft	—	that’s	a	great	idea!	You’re	about	to
be	transformed	from	a	Minecraft	player	into	a	Minecraft	maker,	and	in
order	to	get	there,	you	have	to	learn	how	to	code.	The	task	is	quite	simple,
because	you’ll	use	many	of	the	skills	you	already	have	—	logic,	creativity,
math,	gaming,	and	problem	solving	—	to	design,	build,	test,	and	share
Minecraft	mods.	This	book	tells	you	everything,	from	building	a	large
house	to	making	a	multiplayer	game	that	you	can	play	inside	Minecraft	with
your	friends.

About	This	Book
Minecraft	modding	used	to	be	a	task	that	only	expert	coders	could	take	on.
And	becoming	an	expert	coder	was	no	easy	task,	because	that	topic	is	rarely
taught	in	school.	Luckily,	the	information	in	this	book	shows	you	how	to	be
a	coder	and	how	to	be	a	Minecraft	modder.	Like	content	across	the	entire
For	Dummies	series,	this	book	is	clearly	written,	fun	to	read,	and	organized
in	an	easy-access	format.	By	using	your	new	skills,	you	can	be	well	on	your
way	to	coding	successfully	in	other	applications	and	transforming	the	way
you	and	your	friends	play	Minecraft.

Modding	Minecraft	For	Kids	For	Dummies	is	assembled	as	a	series	of	mods
that	feature	steps	for	designing,	building,	and	testing	each	mod,	from	start
to	finish.	As	you	work	through	each	project,	keep	a	couple	of	conventions
in	mind:

Programming	code	and	web	addresses	appear	in	monofont.	If	you’re
reading	a	digital	version	of	this	book	on	a	device	connected	to	the	Internet,
note	that	you	can	click	web	addresses	to	visit	that	website,	like	this:
www.dummies.com.

Working	with	LearnToMod	is	super	simple:	I	generally	just	give	you
instructions	such	as	“Drag	a	function	into	the	programming	environment”
or	“Click	on	the	Minecraft	category	and	then	Players.”	Or	I	may	simply	tell
you	to	click	on	a	link	or	a	tab.

http://www.dummies.com


Foolish	Assumptions
In	this	book,	I	make	a	few	assumptions	about	you	in	regard	to	getting
started:

You’re	reasonably	comfortable	typing	on	a	computer	and	using	a
mouse.	Your	experience	can	be	on	a	Windows	system	or	a	Mac	system;
either	one	will	do.	All	coding	takes	place	in	a	web	browser	—	and	on
any	browser	on	either	platform.	The	figures	in	this	book	show
LearnToMod	operating	on	a	Mac	using	the	Chrome	browser.
You’re	capable	of	navigating	a	standard	website,	because	LearnToMod
takes	place	only	in	your	web	browser.

Furthermore,	I’ve	made	some	assumptions	with	regard	to	your	entrance
into	the	world	of	Minecraft	modding:

You	have	played	Minecraft,	and	you	understand	the	basic	mechanics	of
playing.	Regardless	of	whether	you	play	Minecraft	on	Windows	or	the
Mac,	you	must	use	the	desktop	version.	The	Pocket	Edition,	which	is
played	on	mobile	devices,	doesn’t	work	with	LearnToMod.
You’re	comfortable	with	basic	math	principles,	math	operations	such	as
adding	whole	numbers,	and	logical	operations	such	as	comparing	two
whole	numbers.

Icons	Used	in	This	Book

	The	Tip	icon	marks	advice	and	shortcuts	that	you	can	use	to	make
modding	easier.

	The	Remember	icon	marks	concepts	you	should	keep	in	mind	to
make	modding	easier.



	The	Coding	Connections	icon	describes	how	the	modding	you’re
doing	relates	to	the	bigger	picture	of	coding.

	The	Math	Connections	icon	describes	math	that	is	being	used	in
your	modding.

	Watch	out!	This	icon	marks	important	information	that	may	save
you	from	the	common	headaches	that	modders	sometimes	have	to
endure.

Accessing	the	LearnToMod
Software

To	access	the	LearnToMod	software,	you	use	the	access	key	located	on	the
inside	front	cover	of	this	book.	Then	all	you	need	to	do	is	follow	these	steps
to	access	your	new	LearnToMod	account:

1.	 Go	to	http://mod.learntomod.com.
The	first	time	you	log	in,	the	site	redirects	you	to	ThoughtSTEM’s	login
page	to	create	your	account.

2.	 Use	the	Sign	Up	window	(located	below	the	Log	In	window)	to	create
your	LearnToMod	account.
If	you	need	to,	you	can	contact	the	LearnToMod	customer	service	team
at	learntomod@thoughtstem.com.
You	can	choose	whatever	password	you	want	for	your	account.	It	does
not	have	to	be	the	access	key.

3.	 After	you	create	your	LearnToMod	account,	you	are	redirected	to	a
page	that	asks	for	your	access	key.	Copy	and	paste	the	access	key
that	appears	in	the	inside	front	cover	of	this	book.

4.	 Choose	a	LearnToMod	nickname	—	any	name	you	want!

http://mod.learntomod.com
mailto:learntomod@thoughtstem.com


You	see	the	dashboard	(the	Home	screen).	Now	you	can	start	unlocking
badges	to	learn	how	to	mod!



Obtaining	an	Access	Key	as	an	E-
Book	Reader

E-book	readers	must	answer	a	security	question	to	receive	an	access	key	for
the	LearnToMod	software	trial.

1.	 Go	to	http://www.dummies.com/go/getaccess.
You	see	a	welcome	message	and	a	drop	down	menu,	“Select	Your	E-
Book.”

2.	 Use	the	drop	down	menu	to	choose	Minecraft	Modding	For	Kids	For
Dummies.
If	you	need	to,	you	can	contact	the	Dummies	customer	service	team	at
http://dummies.custhelp.com.

3.	 Complete	the	registration	page.
Answer	the	security	code	at	the	bottom	of	the	page	to	receive	the	e-mail
with	your	access	key.

4.	 Follow	the	instructions	provided	in	the	Accessing	the	LearntoMod
Software	section	of	this	chapter	to	access	the	free	trial.
If	you	need	to,	you	can	contact	the	LearnToMod	customer	service	team
at	learntomod@thoughtstem.com.

Beyond	the	Book
I’m	making	available	some	extra	content	that	you	won’t	find	in	this	book.
Go	online	to	find	these	items:

An	online	Cheat	Sheet	for	LearnToMod	and	basic	Minecraft
modding	is	available	at
www.dummies.com/cheatsheet/minecraftmoddingforkids	.	The
description	of	basic	modding	skills	that’s	condensed	into	the	Cheat	Sheet
shows	the	fundamentals	of	mod	design	and	coding.
Online	articles	covering	additional	topics	are	available	at
www.dummies.com/extras/minecraftmoddingforkids	.

http://www.dummies.com/go/getaccess
http://dummies.custhelp.com
http://www.learntomod@thoughtstem.com
http://www.dummies.com/cheatsheet/minecraftmoddingforkids
http://www.dummies.com/extras/minecraftmoddingforkids


You	can	find	updates	to	this	book,	if	they	become	necessary,	at
www.dummies.com/updates/minecraftmoddingforkids	.

Where	to	Go	from	Here
LearnToMod	was	developed	to	guide	students	just	like	you	through	the
challenges	of	Minecraft	modding,	to	present	coding	concepts	and
demonstrate	how	much	fun	it	can	be	to	start	making	fun	and	exciting
Minecraft	mods.	LearnToMod	has	over	200	badges	that	guide	you	in	the
creation	of	simple	mods;	however,	you	can	also	make	your	own	creative
mods.	If	you	need	guidance	in	making	larger,	more	creative	mods,	we
aren’t	in	the	same	physical	location	for	me	to	show	you	how,	so	I	show	you
how	to	make	these	larger,	more	creative	mods	using	a	method	that	has
worked	well	for	hundreds	of	For	Dummies	books:	This	book	uses	printed
instructions	and	screen	shot	examples	to	guide	you	through	a	series	of	fun
projects!

The	mods	in	the	earlier	chapters	of	this	book	are	pretty	simple	to	complete,
but	later	mods	are	larger,	more	complex,	and	more	difficult.	The	mods	are
intended	to	be	completed	sequentially,	and	sometimes	they	build	on	each
other	—	but	you’re	welcome	to	jump	around	and	try	out	harder	projects
first.

After	you	have	made	a	few	Minecraft	mods	with	the	help	of	this	book,
millions	of	mods	are	waiting	for	you	to	write	them.	You	can	go	to	the
LearnToMod	site	and	continue	earning	badges,	or	continue	creating	and
sharing	mods	with	other	LearnToMod	modders.	Even	more,	you’re
learning	how	to	code!	You	can	also	go	out	and	find	other	languages	and
applications	in	which	to	code.	Coding	is	exciting,	and	I’m	glad	that	you
have	chosen	to	not	only	learn	to	code	but	also	transform	the	way	you	and
your	friends	play	Minecraft!

http://www.dummies.com/updates/minecraftmoddingforkids


Part	1
Making	Your	First	Minecraft	Mod



This	week	you’ll:
Sign	up	for	LearnToMod	and	make	your	first	Minecraft	mod
Learn	about	the	different	badge	types	in	LearnToMod,	and	start	earning
badges
Use	invisible	robots	to	build	structures	inside	Minecraft	and	protect
them	with	lightning



Project	1
Getting	Started	on	Modding

Minecraft
In	this	book,	I	show	you	how	to	write	minigame	Minecraft	mods.	A
minigame	Minecraft	mod	is	a	game	that	you	play	inside	of	Minecraft.	You
can	see	how	to	make	several	minigames	and	gain	the	skills	you	need	to
perfect	a	minigame	of	your	own	creation.

The	LearnToMod	online	software	teaches	you	how	to	make	modifications,
or	mods,	that	you	can	run	in	the	multiplayer	version	of	Minecraft.	With
hundreds	of	badges	to	guide	you	through	various	programming	concepts
and	mods,	you’ll	gain	the	skills	necessary	to	make	creative	mods	of	your
own.	You	should	have	some	basic	familiarity	with	playing	Minecraft,	but
you	don’t	need	to	be	an	expert.	All	you	need	is	the	computer	version	of
Minecraft	and	an	Internet	connection.

In	this	chapter,	I	explain	what	a	mod	is,	describe	how	to	use	the
LearnToMod	online	software	and	how	to	connect	to	the	LearnToMod
multiplayer	Minecraft	Server,	and	spell	out	how	to	use	the	basic	tools,	such
as	invisible	robots,	that	you	need	in	order	to	make	your	own,	fun-filled
mods.



Know	What	Minecraft	Modding	Is
Video	games	are	made	up	of	thousands	of	lines	of	code.	Code	makes
players	(like	you)	able	to	explore	new	worlds,	interact	with	characters,	and
have	fun.

Some	games,	like	Minecraft,	allow	players	to	add	their	own	code	to	the
games	to	create	new	worlds,	challenges,	or	even	characters.	Throughout
this	book,	I	show	you	how	to	write	these	game	modifications	—	or	mods	—
and	you	can	then	see	how	to	write	code.

Perhaps	you	have	already	begun	to	explore	the	world	of	Minecraft	mods.
Programmers	all	around	the	world	have	created	their	own	mods	and	then
shared	them	with	Minecraft	players	—	for	free.

Mods	can	consist	of	almost	any	task;	this	list	describes	a	few	tasks	that	you
can	accomplish	by	using	mods:

Texture:	Change	the	way	the	Minecraft	world	looks	by	applying	a	new
texture	pack.
Block	interaction:	Cause	an	explosion	whenever	the	player	destroys	a



block	of	type	wood.

New	block:	Create	new	blocks.
Minigame:	Create	a	minigame	to	play	within	a	Minecraft	world.
Large	structure:	Create	huge	structures	to	explore	and	personalize	—
ones	that	would	take	a	long	time	to	make	by	hand	but	take	only	a	short
time	to	make	with	code.

Use	the	LearnToMod	Online
Software

The	LearnToMod	online	software	walks	you	through	a	series	of	challenges
that	you	complete	in	order	to	earn	badges.	These	challenges	help	show	you
basic	programming	skills	and	how	to	make	Minecraft	mods.

In	this	section,	I	show	you	how	to	log	in	to	the	LearnToMod	online	software
(available	at	mod.learntomod.com	),	create	and	run	your	first	mod,	and	share
that	mod	with	other	modders.

Sign	up	for	the	LearnToMod	online	software
Signing	up	for	the	LearnToMod	online	software	is	quick	and	easy.	It	takes
only	about	5	minutes	to	complete	the	sign-up	process	and	start	earning
badges.

Find	your	access	key	for	LearnToMod	on	the	inside	front	cover	of	this
book,	and	then	follow	these	steps	to	access	your	new	LearnToMod	account:

1.	 Go	to	http://mod.learntomod.com	.
The	first	time	you	log	in,	the	site	redirects	you	to	ThoughtSTEM’s	login
page	to	create	your	account.

2.	 Use	the	Sign	Up	window	(located	below	the	Log	In	window,	as	shown
in	Figure	1-1)	to	create	your	LearnToMod	account.
If	you	need	to,	you	can	contact	the	LearnToMod	customer	service	team
at	learntomod@thoughtstem.com.
You	can	choose	whatever	password	you	want	for	your	account.	It	does
not	have	to	be	the	access	key.

http://mod.learntomod.com
http://mod.learntomod.com/
mailto:learntomod@thoughtstem.com


3.	 After	you	create	your	LearnToMod	account,	you	are	redirected	to	a
page	that	asks	for	your	access	key.	Copy	and	paste	the	access	key
that	appears	in	the	inside	front	cover	of	this	book,	as	shown	in
Figure	1-2.

4.	 Choose	a	LearnToMod	nickname	(see	Figure	1-3).	Pick	any	name
you	want!
You	see	the	dashboard	(the	Home	screen),	as	shown	in	Figure	1-4.	Now
you	can	start	unlocking	badges	to	learn	how	to	mod!



Figure	1-1



Figure	1-2

Figure	1-3

Figure	1-4



Get	started	with	the	LearnToMod	badges
To	access	your	LearnToMod	badges,	log	in	at	http://mod.learntomod.com
with	the	email	address	and	password	you	used	to	sign	up	(refer	to	Figure	1-
1).	You	see	the	home	page	(refer	to	Figure	1-4).	To	see	the	list	of
challenges,	click	on	the	Learn	tab	at	the	top	of	the	home	page.	You	see	the
first	set	of	challenges,	as	shown	in	Figure	1-5.

Figure	1-5

As	you	complete	challenges,	color	is	added	to	the	badges	so	that	they	no
longer	appear	shaded.	Badges	that	are	shaded,	like	those	in	Figure	1-5,	have
yet	to	be	earned.

Connect	your	mods	to	Minecraft
To	get	started,	click	on	the	first	badge,	Minecraft	Connect.	In	this	badge,
you	can	find	all	the	instructions	to	help	you	connect	your	mods	to	Minecraft
so	that	you	can	see	their	effects	in	the	game.	In	this	section,	I	summarize
those	steps	for	you.

To	run	your	mods	in	Minecraft,	you	should	have	the	most	recent	version	of
Minecraft.	Over	time,	Minecraft	improves	by	way	of	updates,	and	you
should	always	use	the	newest	version	so	that	you	have	access	to	the	newest

http://mod.learntomod.com


LearnToMod	features.	To	see	which	version	of	Minecraft	you’re	running,
follow	these	steps:

1.	 Click	the	Edit	Profile	button	in	the	lower	left	corner	of	the	Minecraft
startup	screen,	shown	in	Figure	1-6.

2.	 In	the	Profile	Name	text	box,	name	the	new	profile	(see	Figure	1-7).
3.	 Look	at	the	Version	Selection	section,	shown	in	Figure	1-8,	to	see	which

version	you’re	using.	It’s	in	the	Use	Version	text	box.	You	should	be
using	the	version	at	the	top	of	the	list.	In	this	case,	it’s	version	1.8.

4.	 Click	the	Save	Profile	button	at	the	bottom	of	the	screen	(refer	to	Figure
1-7).
If	you’re	using	an	earlier	version	(such	as	version	1.7),	you	should
complete	one	of	these	actions:

Change	it	to	the	most	recent	version.
Create	a	new	profile	where	you	set	the	version	to	the	most	recent
version.

5.	 Add	your	Minecraft	username	to	the	LearnToMod	account	by	typing	it
in	the	text	box	on	the	badge,	as	shown	in	Figure	1-9.

	Your	username	must	be	spelled	exactly	the	same	as	you	created
it	(including	capitalization)	in	order	for	your	mods	to	be	connected	to
your	Minecraft	account.	If	it	isn’t	spelled	the	same,	you	can’t	see	your
mods	within	Minecraft.

6.	 Click	the	Connect	button.
The	Minecraft	Connect	badge	pops	up,	as	shown	in	Figure	1-10.
Under	the	text	box	in	the	Minecraft	Connect	badge,	you	see	the	text
Success!,	as	shown	in	Figure	1-11.



Figure	1-6

Figure	1-7



Figure	1-8

Figure	1-9

Figure	1-10



Figure	1-11

Follow	the	11	steps	that	you	see	onscreen	in	the	Minecraft	Connect	badge:

1.	 Click	Play	on	the	Minecraft	home	screen	(refer	to	Figure	1-6).
2.	 Choose	Multiplayer.
3.	 Click	Add	Server.
4.	 Type	Learn	To	Mod	as	the	server	name,	and	type

play.learntomod.com	as	the	server	address.

5.	 Click	Done.
6.	 Click	Join	Server.

When	you	have	completed	these	steps,	you	see	a	prebuilt	world	that	looks
similar	to	the	one	shown	in	Figure	1-12.	It’s	similar	to	a	waiting	room.	You
can	explore	this	world	while	Minecraft	finds	you	a	new	world	in	which	you
can	test	your	mods.	Your	wait	time	should	be	between	1	and	5	minutes.	(Be
patient	—	it’s	not	that	long!)

Figure	1-12

	If	you’re	having	trouble	connecting	to	the	LearnToMod	server,

http://play.learntomod.com


email	the	technical	support	team	at	learntomod@thoughtstem.com.

Whenever	you’re	connected	to	your	testing	world,	you	have	a	mod	chest	in
your	inventory	(see	the	bottom	of	Figure	1-13),	and	you	can	play	in	either
Creative	mode	or	Survival	mode.

Figure	1-13

Become	Familiar	with	the
Programming	Environment

Before	you	begin	your	modding	adventure,	you	should	be	familiar	with	the
programming	environment	you’ll	use.

1.	 Click	the	Learn	tab	at	the	top	of	the	LearnToMod	website.
You’re	taken	to	the	first	set	of	challenges	again,	as	shown	in	Figure	1-
14.

2.	 Click	the	Write	Your	First	Mod	badge.
You	see	the	challenge	(see	Figure	1-15).

mailto:learntomod@thoughtstem.com


Figure	1-14

Figure	1-15

Take	a	look	at	these	four	areas	of	the	page:

Upper	left	corner:	Shows	the	badge	name;	its	large,	round	icon;	and	the
Back	to	Badges	button,	which	takes	you	back	to	the	screen	you	see	in
Figure	1-14.



	You	can	also	click	the	Learn	tab	at	the	top	of	the	screen	to	return
to	the	list	of	badges.
Left	column:	Consists	of	a	set	of	instructions.	A	short	video	is	always
available	to	explain	the	badge,	followed	by	a	list	of	steps	that	spell	out
what	to	do.
Right	side:	Shows	the	programming	environment.	In	this	book	you	can
read	how	to	program	using	a	block-based	language	that	is	visual,
though	you	can	try	a	text-based	language,	JavaScript,	on	your	own,	too.
To	access	the	block-based	coding	blocks,	you	click	on	one	of	the	code
categories,	such	as	Minecraft,	and	click	to	choose	a	block	to	drag	into
the	blank	programming	area.	This	process	is	described	in	more	detail	in
the	next	section.
Lower	center:	Holds	two	buttons	—	Mod	and	Simulator.	In	this	book,
you	use	the	Mod	button	to	send	your	mod	to	the	Minecraft	testing	world.
Clicking	the	Simulator	button	opens	a	Minecraft	simulated	world	in
your	browser,	as	shown	in	Figure	1-16.	You	use	the	Minecraft	simulator
to	test	your	mod	to	earn	the	badge.	To	enter	the	simulator,	click
anywhere	in	the	simulator	area.	To	close	the	simulator,	click	the
Simulator	button	again,	or	press	the	Esc	key	on	the	keyboard.

Figure	1-16

After	you	complete	the	challenge	and	test	it	in	the	simulator,	a	badge	pops



up,	as	shown	in	Figure	1-17.	You	can	exit	this	badge	by	clicking	the	Back	to
Badges	button.

Figure	1-17

Write	Your	First	Minecraft	Mod
When	you’re	ready	to	write	your	first	Minecraft	mod,	click	on	the	Learn	tab
to	go	back	to	the	list	of	badges,	and	then	click	on	the	Write	Your	First	Mod
badge,	as	shown	in	Figure	1-18.



Figure	1-18

In	this	section,	I	describe	how	to	earn	the	second	badge.	You	can	also	find
these	steps	in	the	left	column	of	the	badge	by	watching	a	video	or	reading
written	instructions.

	You	should	watch	the	video	before	continuing.

You	use	a	function	in	this	challenge.	A	function	is	a	way	to	group	tasks
together	and	name	them.	For	example,	if	you	write	a	function	named	jump
rope,	it	might	contain	the	tasks	hop	and	spin	rope.	I	tell	you	more	about
functions	in	Chapter	2.

To	earn	the	second	badge,	follow	these	steps:

1.	 Drag	a	function	into	the	programming	environment	and	rename	it	main.
Figure	1-19	shows	where	to	find	the	function	block.

2.	 Click	on	the	text	do	something	,	as	shown	in	Figure	1-20.

3.	 Type	main	to	create	a	main	function,	as	shown	in	Figure	1-21.

4.	 Click	on	the	Minecraft	category	and	then	Players,	as	shown	in	Figure	1-



22.
5.	 Click	to	select	the	send	message	block,	and	then	drag	it	to	connect	it	to

the	main	function,	as	shown	in	Figure	1-23.

6.	 Click	to	select	the	Text	code	category,	as	shown	in	Figure	1-24,	and	then
locate	the	text	block.

7.	 Drag	the	text	block	to	connect	it	to	the	send	message	block,	and	then
type	Hello,	World!	inside	the	text	block.	Figure	1-25	shows	how	to	do
this	step.

8.	 Click	the	Minecraft	category	and	then	Players,	as	shown	in	Figure	1-26.
Then	locate	the	me	block.

9.	 Drag	the	me	block	and	connect	it	to	the	second	space	on	the	send
message	block,	as	shown	in	Figure	1-27.

10.	 At	the	bottom	of	the	four	steps	for	this	challenge,	click	the	Test	In
Simulator	button,	as	shown	in	Figure	1-28.

11.	 Click	in	the	simulator,	and	then	press	the	M	key	on	your	keyboard.	You
see	the	message	Hello,	World!	(see	Figure	1-29).

12.	 When	the	badge	you	have	earned	pops	up,	you	can	click	Back	to	Badges,
as	shown	in	Figure	1-30.

Figure	1-19



Figure	1-20

Figure	1-21

Figure	1-22



Figure	1-23

Figure	1-24

Figure	1-25



Figure	1-26

Figure	1-27



Figure	1-28



Figure	1-29



Figure	1-30

Congratulations!	You	have	written	your	first	Minecraft	mod.	In	the	next
section,	you	test	your	mod	in	Minecraft.

	You	can	select	the	link	on	the	progress	bar	at	the	top	or	ask	a
question	by	clicking	the	link	in	the	upper	right	corner	of	the	screen,	as
shown	in	Figure	1-31.

Figure	1-31



Run	Your	First	Mod	in	Minecraft
After	you	write	your	first	mod,	the	next	task	you	take	on	is	to	run	the	mod
in	Minecraft.	The	third	badge,	Run	Your	Mod	(refer	to	Figure	1-18),	spells
out	the	steps	to	do	this:

1.	 Click	the	Mod	button	at	the	bottom	of	the	programming	environment.
You	can	see	the	button	in	the	lower	left	corner	of	Figure	1-32.
When	you	click	on	it,	you	see	a	message,	shown	in	Figure	1-33,	letting
you	know	that	the	mod	was	successfully	sent	to	your	Minecraft	account.

2.	 Click	the	Minecraft	icon	on	the	taskbar	of	your	computer,	as	shown	in
Figure	1-34.
You’re	still	in	the	testing	world,	so	you	see	the	mod	chest	in	the
inventory,	as	shown	in	Figure	1-35.

	If	you	aren’t	already	in	this	world,	go	back	to	the	Minecraft
Connect	badge	and	reconnect,	as	described	in	the	earlier	section
“Connect	your	mods	to	Minecraft.”

3.	 To	equip	your	mod	and	use	it	in	Minecraft,	follow	these	steps	while
you’re	in	Minecraft:

a.	 Open	the	mod	chest	by	pressing	9,	and	then	right-click	the	mouse
button.

b.	 Choose	the	mod	that	you	want	to	run,	and	drag	it	from	the	mod
chest	to	the	inventory.	Hover	the	mouse	cursor	over	different
mods	to	see	their	names	appear.

c.	 Press	the	Esc	key	to	exit	the	mod	chest	and	return	to	playing.
d.	 Run	your	mod	by	pressing	the	number	that	corresponds	with	the

position	of	the	mod	in	the	inventory.
For	example,	if	you	place	the	mod	block	all	the	way	to	the	left,	as
shown	in	Figure	1-36,	you	press	the	1	key	and	then	right-click	the
mouse	button	to	run	the	mod.



Figure	1-32

Figure	1-33

Figure	1-34



Figure	1-35

Figure	1-36

Return	to	the	LearnToMod	website	and	see	that	you	have	earned	the	third
badge.	You	should	then	complete	the	next	three	challenges,	which	are	quiz
badges.	I	don’t	walk	you	through	these	three	badges,	because	you	should	be
testing	your	knowledge	and	earn	them	on	your	own.

Write	Your	Own	Minecraft	Mods



In	Chapter	2,	I	walk	you	through	the	next	set	of	badges	on	the	Learning	to
Program	tab.	After	you	have	earned	at	least	ten	badges,	you	might	have	an
idea	for	your	own	creative	mod	that	you	want	to	write.	Follow	these	steps:

1.	 Scroll	to	the	top	of	the	LearnToMod	online	software	and	click	on	the
Mod	tab,	shown	in	Figure	1-37.

2.	 The	new	page,	shown	in	Figure	1-38,	opens.	On	this	page	you	can	type	a
title	for	your	mod,	such	as	Say_Hello.

3.	 Click	the	Blockly	(Multiplayer)	button	to	create	a	server-side	mod.	This
book	shows	you	how	to	make	server-side	mods,	which	means	that
they’re	multiplayer.
A	new	mod	block	appears,	as	shown	in	Figure	1-39.

4.	 Click	on	the	new	mod	block	to	show	the	mod’s	description	page	(see
Figure	1-40).

5.	 Click	the	Code	button.
You	see	the	programming	environment,	as	shown	in	Figure	1-41.

Figure	1-37



Figure	1-38

Figure	1-39

Figure	1-40



Figure	1-41

Now	you	can	try	writing	a	new	mod	—	for	example,	one	that	says	hello	to
you	personally	(see	Figure	1-42).

Figure	1-42

Share	Your	Mods	with	Friends
Writing	mods	and	testing	them	in	Minecraft	is	fun,	but	being	able	to	have
your	friends	test	them	in	their	Minecraft	worlds	can	help	you	and	your
friends	come	up	with	creative	mods,	because	you	can	get	new	ideas.

	After	you	write	some	code,	have	your	friends	test	it	for	you	—	it’s	a
good	way	to	find	bugs	and	become	a	better	modder.

Sharing	a	mod	with	your	fellow	LearnToMod	modders	is	easy.	Just	follow



these	steps:

1.	 Click	on	the	Back	button	in	your	mod	(refer	to	Figure	1-41).
2.	 Click	on	the	image	box	on	the	top	left,	as	shown	in	Figure	1-43.
3.	 Add	a	screen	shot	and	description	for	the	mod,	by	following	the	steps	as

shown	in	Figure	1-44.
4.	 Click	the	indicator	to	make	the	mod	public,	as	shown	in	Figure	1-45,

and	then	click	the	Save	button.
If	your	friends	have	LearnToMod,	they	can	click	the	Find	a	Mod	button
on	their	own	home	pages,	as	shown	in	Figure	1-46.
Then	they	can	search	for	your	mod,	named	Say_Hello,	as	shown	in
Figure	1-47.
Your	mod	appears,	as	shown	in	Figure	1-48.	The	other	person	can	click
on	it	to	test	it	and	see	your	code.

Figure	1-43



Figure	1-44

Figure	1-45

Figure	1-46

Figure	1-47



Figure	1-48



Project	2
Earning	Modding	Badges

In	this	project,	I	help	you	grasp	the	basic	concepts	of
programming,	by	completing	challenges	and	earning	badges.	I	give	you	the
steps	to	earn	different	kinds	of	badges	while	learning	about	functions,	and	I
encourage	you	to	try	writing	your	own	mods	(see	the	end	of	Project	1).

Write	Mods	with	Functions
In	Project	1,	I	describe	how	to	write	a	mod	that	has	a	function	named	main
(refer	to	Figure	1-27,	over	in	Project	1).	From	now	on,	I’ll	call	it	the	main
function.	When	you	run	a	mod	in	Minecraft,	your	mod	always	starts
running	from	the	main	function.

Notice	that	the	Saying	Hello	badge	is	similar	to	the	Write	Your	First	Mod
badge,	except	that	it	has	three	messages	instead	of	two.	Figure	2-1	shows	the
code	you	should	write	to	complete	the	Saying	Hello	badge.



Figure	2-1

	To	get	help	with	completing	badges,	click	the	Click	for	Hints	link
on	the	progress	bar	at	the	top	of	the	mod,	or	watch	the	video	to	see
how	to	solve	the	challenge.	Sometimes	it’s	tricky	to	position	the	blocks
in	the	right	spot,	so	you	can	always	reorder	them	after	you	have
applied	them	to	your	programming	environment,	though.	Later	in	this
book,	I	introduce	you	to	the	cut-and-paste	process	to	make	coding	even
faster.

To	earn	the	badge,	you	have	to	test	your	mod	in	the	Minecraft	simulator	on
the	LearnToMod	site.	The	progress	bar	in	this	mod	says	that	you	have
completed	writing	100	percent	of	the	code,	but	it	reminds	you	to	test	the
code	in	the	simulator	(see	Figure	2-2).

Figure	2-2

To	test	your	mod	in	the	simulator,	click	the	Simulator	button,	which	is	next
to	the	Mod	button	(see	Figure	2-3).



Figure	2-3

	The	Minecraft	simulator	sometimes	doesn’t	work	in	older	versions
of	browsers.	If	you	download	the	Unity	Player	plugin	and	the	simulator
still	doesn’t	work,	update	your	browser	or	use	a	different	one.	You	can
download	free	and	reliable	browsers	such	as	Chrome,	Safari,	or
Firefox.

	Unity	Player	is	the	third-party	software	that	supports	your	being
able	to	see	Minecraft	in	the	browser.

When	you	click	the	Simulator	button,	the	simulator	pops	up,	as	shown	in
Figure	2-4.	To	test	your	mod	in	the	simulator,	simply	press	the	M	key	on	the
keyboard.

Figure	2-4

After	the	mod	runs,	you	earn	the	badge.	You	see	a	screen	shot	of	you



completing	the	badge,	as	shown	in	Figure	2-5.

Figure	2-5

	To	enter	the	simulator,	drag	the	mouse	into	it	and	click	anywhere.
To	exit	the	simulator,	press	the	Esc	key	on	the	keyboard.

Earn	Scramble	Badges
You	can	earn	a	few	different	kinds	of	badges.	The	one	I	describe	earlier	in
this	project	is	a	Code	Writing	badge.	To	earn	it,	you	write	the	code	that
matches	the	tutorial.	In	this	section,	I	introduce	you	to	Scramble	badges,
which	are	different	from	the	other	types:	All	the	code	blocks	you	need	are
already	in	the	programming	area	—	they’re	just	scrambled	around	on	the
screen	in	an	animation.

To	earn	a	Scramble	badge,	follow	these	steps:

1.	 Test	the	correct	version	of	the	code	in	the	simulator	or	Minecraft	to	see
what	it’s	supposed	to	do,	like	saying	“Hello,	World!”

2.	 Gather	together	all	blocks	that	have	been	scrambled	on	the	screen,	by
dragging	them	near	each	other	(see	Figure	2-6).

3.	 Unscramble	the	blocks,	and	test	your	mod	to	see	whether	it	matches	the
correct	version	that	you	test	in	Step	1	of	this	list.



Figure	2-6

	To	find	all	the	blocks	you	need	in	order	to	complete	the	badge
(sometimes,	the	blocks	that	have	been	scrambled	are	offscreen),	you
move	around	by	using	the	scroll	bars	on	the	right	side	and	bottom	of
the	programming	environment.

Earn	the	Saying	Hello	badge:	Scramble
Edition
Open	the	Saying	Hello	(Scramble)	challenge	by	clicking	on	the	badge,	as
shown	in	Figure	2-7.



Figure	2-7

You	see	ten	blocks	scrambled	on	the	screen	(refer	to	Figure	2-6).

Follow	these	steps	to	solve	the	challenge	and	earn	the	badge:

1.	 Click	the	blue	Test	button	to	test	the	correct	version	in	Minecraft,	or
click	the	orange	Test	button	to	test	the	correct	version	in	the	simulator.
Then	observe	what	happens	(see	Figure	2-8).

2.	 Gather	the	ten	blocks	and	begin	to	arrange	them	in	such	a	way	that	when
you	run	the	mod,	it	does	exactly	the	same	thing	that	the	correct	version
did.

3.	 Test	your	mod	in	Minecraft	or	the	simulator	to	see	whether	it	has	the
same	effect	as	the	correct	version.
If	it	doesn’t,	edit	the	blocks	arrangement	and	test	again.

4.	 Continue	this	edit-test	cycle	until	you	have	put	together	the	correct
arrangement	of	blocks.



Figure	2-8

Communicate	with	your	computer
Writing	code	is	the	way	that	programmers	communicate	with	their
computers,	and	the	way	that	you	communicate	with	Minecraft.	The	problem,
however,	is	that	computers	do	exactly	what	you	tell	them	to	do,	not	what
you	think	they	should	do.	For	example,	in	the	Saying	Hello	(Scramble)
challenge,	you	may	have	noticed	that	the	answer	looks	strange	if	you
expected	the	messages	to	be	sent	in	numbered	order,	like	this:

One	Mississippi
Two	Mississippi
Three	Mississippi

and	instead	they’re	sent	out	of	order,	like	this:

Two	Mississippi
One	Mississippi
Three	Mississippi



If	you	were	told,	“Go	to	your	shoes	and	put	on	your	room,”	you	probably
would	figure	out	that	what	you	should	do	is	go	to	your	room	and	put	on
your	shoes.	If	you	told	a	computer,	“Go	to	your	shoes	and	put	on	your
room,”	the	computer	would	literally	go	to	its	shoes	and	then	try	to	put	on	its
room,	which	is	impossible,	so	it	would	probably	display	an	error	message.

	You	must	be	precise	when	you	write	code,	and	—	more	importantly
—	you	should	test	your	code	often	and	in	small	increments	to	catch
mistakes.

	At	the	bottom	of	any	Scramble	challenge	are	two	videos	(as	shown
in	Figure	2-9)	that	you	can	watch	to	see	strategies	for	completing	this
type	of	badge.



Figure	2-9

Though	the	videos	aren’t	specific	to	each	challenge,	watching	them	can	help
you	with	any	badge	that	asks	you	to	unscramble	code.



Earn	Missing	Badges
A	Missing	badge	has	nearly	completed	code	that	is	missing	only	a	few
blocks.	Your	challenge?	To	figure	out	which	blocks	are	missing	and	where
to	place	them.	Without	those	missing	blocks,	the	mod	cannot	run.

As	with	a	Scramble	badge,	you	use	a	smart	strategy	to	earn	a	Missing
badge.	Follow	these	steps:

1.	 Identify	how	many	blocks	are	missing,	and	identify	where	they’re
missing.	Start	thinking	about	what	type	of	blocks	might	be	missing,	such
as	a	text	block.

2.	 Test	the	correct	version	of	the	code	in	the	simulator	(by	clicking	the
blue	Test	button)	or	Minecraft	(by	clicking	the	orange	Test	button)	to
see	what	it’s	supposed	to	do.

3.	 Follow	the	code	as	it’s	running,	and	identify	where	the	missing	blocks
should	be	placed.	(Read	the	following	section	for	tips	on	following
code.)

4.	 Add	in	the	blocks	that	are	missing,	and	test	your	code	to	see	whether	it
accomplishes	the	same	result	as	the	correct	version	does	in	Step	1	of
this	list.	This	is	what	professional	coders	do:	They	follow	their	code
while	they’re	testing	it,	to	ensure	that	they	have	told	the	computer	to	do
the	right	thing.

Trace	code
Coders	make	mistakes,	and	communicating	with	computers	can	be	tricky.

	Coders	(like	you)	should	be	sure	to	follow	the	code,	before	and
while	it’s	running,	to	ensure	that	you	put	the	lines	of	code	in	the	correct
order.

Tracing	code	is	an	important	skill	to	master,	and	you	can	do	it	in	multiple
ways.	Here	are	two	helpful	code	tracing	strategies:

Use	the	computer.	Especially	for	Missing	badges,	this	is	a	great	way	to
trace	code.	First,	run	your	code	(or	the	correct	version)	and	watch	what



happens.	Then	run	the	code	again,	but	this	time	point	to	each	line	of
code	as	it’s	being	run.	For	example,	when	you	see	the	Hello,	World!
message,	point	to	the	line	of	code	shown	in	Figure	2-10.	Then	you	can
figure	out	what	is	happening	in	the	correct	code	when	your	code	has	a
missing	block.
Use	pencil	and	paper.	If	you	have	a	written	mod	that	isn’t	working	the
way	you	expect,	draw	on	paper	what	is	happening	after	each	line	of	code
executes.	For	example,	the	code	shown	in	Figure	2-10,	Send	Message
“Hello,	World!”	to	me	will	be	printed	to	the	screen,	so	you	should
write	it	down	on	paper.

Figure	2-10

Earn	the	Saying	Hello	badge:	Missing	Edition
Open	the	Saying	Hello	(Missing)	challenge	by	clicking	on	the	badge.	When
you	earn	the	badge,	the	code	makes	part	of	the	lyrics	to	a	Cat	Stevens	song
print	to	the	screen	(see	Figure	2-11).

Figure	2-11

Three	blocks	are	missing	from	this	mod.	The	first	is	probably	a	player
block	because	that’s	the	only	player	you	have	used	and	that’s	what	the	other
ones	are	using.	The	last	two	are	likely	to	be	text	blocks	because	that’s	the
only	kind	of	message	you	have	sent,	and	the	first	two	are	sending	text
messages	too.	It’s	impossible	to	guess	what	text	should	be	placed	in	the	text
blocks,	because	the	list	of	possibilities	is	very,	very	large.



To	complete	a	missing	badge,	follow	these	steps:

1.	 Run	the	correct	version	in	Minecraft	or	the	simulator	and	watch	what
happens.	When	you	run	your	code,	you	should	see	the	scene	shown	in
Figure	2-12.
The	first	line	of	code	sends	the	message	How	can	I	try	to	explain?
but	doesn’t	specify	which	player	is	the	target	of	the	message	(the	one
that	will	receive	the	message).	After	running	the	code,	you	can	see	that
the	target	should	be	the	me	block	because	you	can	see	that	message	when
you	run	the	correct	version	(see	Figure	2-13)	and	the	last	two	messages
are

It	has	always	been	the	same,

same	old	story	.	.	.

	Everything	sent	to	me	shows	up	on	the	screen	of	the	person	who
ran	the	mod.	So,	if	you	run	the	mod	and	you	see	the	message,	the	target
of	the	message	was	me.

2.	 Add	in	the	me	block	and	the	two	text	blocks	with	the	correct	messages	in
them	(refer	to	Figure	2-13).	Then	test	your	mod,	to	be	sure	that	it	does
the	same	thing	as	the	correct	version	does	(refer	to	Figure	2-12).



Figure	2-12

Figure	2-13

	If	you	return	to	a	Missing	badge	or	Scramble	badge	after
completing	it,	the	LearnToMod	software	asks	whether	you	want	to
reset	the	code	so	that	it’s	missing	or	scrambled	again.	If	you	choose	to
reset	your	badge,	you	will	still	have	the	badge.	You	just	get	to	attempt
the	challenge	again.

Make	and	Call	New	Functions
A	function	is	a	way	to	group	a	lot	of	code	and	then	name	it.	You	make	a	new
function	(or	define	or	write	a	new	function)	when	you	drag	a	function
block,	change	its	name,	and	add	code	inside	it.	You	call	a	function	when	you
drag	the	specific	function	block	into	another	function,	like	the	main
function.

Here	are	the	primary	characteristics	of	the	main	function:

Each	mod	has	exactly	one	main	function.	Your	mod	starts	at	the	main
function,	so	you	need	to	have	at	least	one.	If	you	had	two	or	more,	your
mod	wouldn’t	know	which	one	to	start	with.	In	fact,	to	avoid	this	type	of
confusion,	each	function	must	have	a	name	that’s	different	from	any
other	function	in	that	mod.
You	can	create	the	main	function	by	dragging	a	function	block	into	the
programming	environment	and	naming	it	main.



The	other	coding	blocks,	like	send	message,	are	inside	the	main
function.
Minecraft	and	the	simulator	first	look	for	the	main	function	and	then
begin	running	the	code	inside	it,	from	top	to	bottom,	line	by	line.

The	main	function	is	essential	for	writing	mods,	but	there	are	reasons	for
having	other	functions,	too.	In	the	same	way	that	chapters	in	a	book	let	you
group	ideas	and	name	those	ideas,	functions	allow	you	to	group	code	and
name	the	grouping	that	results.

Figure	2-14	shows	an	example	of	a	long	main	function.	In	this	mod,	two
stories	are	being	told:	The	Three	Pigs	and	Goldilocks	and	The	Three	Bears.



Figure	2-14

On	Line	13	of	the	code,	you	can	see	that	the	modder	misspelled	accidentally
as	axidentaly	(see	Figure	2-15).	Someone	might	catch	this	mistake	while
testing	the	mod,	but	finding	it	will	be	difficult	because	you	have	to	read	each
word.

Figure	2-15

Finding	the	problem	is	much	easier	if	the	code	uses	other	functions,	as



shown	in	Figure	2-16,	because	then	you	can	look	for	the	error	only	in	the
Goldilocks	and	The	Three	Bears	function.

Figure	2-16

Having	shorter	functions	is	useful	because	then	you	can	rearrange	large
parts	of	the	code	quickly.	Figure	2-17	shows	how	simply	swapping	two
lines	of	code	can	change	the	order	in	which	the	stories	are	told.

Figure	2-17

Complete	the	Functions	Badge
Code

In	the	following	sections,	I	walk	you	through	completing	the	Functions
challenge	and	earning	the	Functions	badge.	To	start,	be	sure	that	you	have
opened	the	Functions	challenge	by	clicking	on	the	badge.

By	the	time	you	reach	the	end	of	this	section,	you	will	know	how	to	define
two	new	functions:	creeper1	and	creeper2.	The	final	code	that	you	write	is
shown	in	Figure	2-18.	When	you	test	this	code,	you	see	the	scene	shown	in



Figure	2-19.

Figure	2-18

Figure	2-19

Use	the	Perform	Command	block
In	the	Functions	badge,	the	block	named	perform	command	performs	the



command	that	is	in	the	text	block	for	a	certain	player,	as	defined	by	the
player	block.	Figure	2-20	shows	the	perform	command	block,	which
summons	a	cow	to	you.

Figure	2-20

Minecraft	has	a	set	of	commands	that	you	can	run	from	inside	the	game.
You	can	search	the	Internet	for	the	term	Minecraft	commands	to	see	millions
of	web	pages	that	introduce	them.	For	example,	if	you	want	to	summon	a
cow	without	writing	a	mod,	you	can	type	the	command	/summon	Cow	(see
Figure	2-21)	in	Minecraft	to	summon	one.	Figure	2-22	shows	you	how	to
do	this.

Figure	2-21

Figure	2-22

	To	make	Minecraft	run	the	perform	command	block,	you	have	to



place	the	block	inside	the	main	function,	as	shown	in	Figure	2-23.

Figure	2-23

Test	your	code	at	this	point,	to	make	sure	that	it	does	what	you	want.	When
you	run	this	code	in	Minecraft,	you	see	a	scene	similar	to	the	one	shown	in
Figure	2-24.

Figure	2-24

Create	and	call	a	new	function
As	you	can	see	in	the	completed	code	for	this	challenge	(refer	to	Figure	2-
18),	you	need	to	define	two	new	functions.	Define	the	first	one	and	test	your
code	to	make	sure	it	works.	Then	define	the	second	one.	If	you	finish
writing	your	code	without	testing	it,	you	make	errors	harder	to	find,
because	you’ll	have	lots	of	code	to	trace.

To	create	and	then	call	the	creeper	function,	follow	these	steps:

1.	 Drag	a	function	block	into	the	programming	environment.



2.	 Click	on	the	words	do	something	and	rename	the	function	creeper,	as
shown	in	Figure-25.

3.	 Add	a	perform	command	block	in	the	creeper	function	and	type	summon
creeper	in	the	text	area,	as	shown	in	Figure	2-26.

4.	 Run	your	mod	in	Minecraft	or	the	simulator.
Notice	that	only	a	cow	is	summoned,	not	a	creeper.	The	reason	is	that
only	the	main	function	is	called	(from	Minecraft	or	the	simulator).	You
did	not	call	the	creeper	function,	so	it’s	ignored.

5.	 When	you	view	the	Functions	category,	notice	that	a	new	block	has	been
created	—	the	creeper	call	block,	shown	in	Figure	2-27.

6.	 Call	creeper	from	the	main	function,	as	shown	in	Figure	2-28.

7.	 Run	your	mod	in	Minecraft	or	the	simulator.
A	cow	and	a	creeper	are	summoned.

Figure	2-25

Figure	2-26



Figure	2-27



Figure	2-28

Trace	function	calls
To	better	understand	what	is	happening	when	you	run	your	mod,	trace	your
code	using	the	paper-and-pencil	strategy	described	in	the	section	“Trace
code,”	earlier	in	this	project.

To	trace	each	line	of	code,	follow	these	steps:

1.	 The	main	function	is	called,	and	the	first	thing	it	does	is	run	the	perform
command	block	that	summons	a	cow,	and	that	makes	a	cow	appear,	so
draw	a	cow.

2.	 The	creeper	function	is	called,	so	Minecraft	looks	into	the	creeper
function.	You	should	look	at	it	too.

3.	 When	the	perform	command	block	that	summons	a	creeper	is	run,	it
makes	a	creeper	appear,	so	draw	a	creeper.
The	creeper	function	has	no	more	lines	of	code,	Minecraft	looks	back
(and	you	do,	too)	to	the	main	function.
The	main	function	has	no	more	lines	of	code,	so	the	code	is	complete.

Add	a	second	Creeper	function
In	the	same	way	you	created	the	first	creeper	function,	create	the	second
creeper	function.	Step	3	in	the	Functions	challenge	gives	you	instructions
on	this	task,	as	shown	in	Figure	2-29.



Figure	2-29

If	you	need	help,	you	can	ask	questions	in	the	Comment	area	below	the
badge	by	clicking	the	Are	You	Stuck?	link,	shown	in	Figure	2-30.

Figure	2-30

Earn	Quiz	Badges
As	you	use	the	LearnToMod	software,	you	run	into	opportunities	to	earn
Quiz	badges,	such	as	the	Functions	Quiz	badge,	shown	in	Figure	2-31.
Earning	a	Quiz	badge	can	be	tricky,	so	be	sure	to	read	the	entire	question
and	all	answer	choices	carefully.



Figure	2-31

	If	it	helps,	use	a	pencil	and	paper	to	work	through	the	quiz	question,
especially	when	you	begin	using	drones	in	Project	3.

When	you	think	you	have	the	correct	answer,	just	click	on	the	colored	box
that	holds	the	answer	choice.	If	you	answer	incorrectly,	you	see	the	message
shown	in	Figure	2-32.	Otherwise,	you	earn	the	badge,	and	you	can	move	on.



Figure	2-32

Challenge	Yourself	Beyond
Badges

Earning	badges	can	be	a	lot	of	fun,	but	I	want	you	to	be	able	to	create	your
own	mods,	not	just	follow	along	with	badges.	In	this	section,	you	face	a
challenge	that	has	no	badge	associated	with	it.	If	you	get	stuck	at	any	point,
just	ask	questions	in	the	LearnToMod	forum	by	clicking	on	the	Social	tab
from	the	home	page,	as	shown	in	Figure	2-33.

Figure	2-33

Complete	the	Function	Challenge
Before	you	attempt	the	challenge	in	this	section,	you	should	have	earned	at



least	five	badges	from	the	Functions	challenges.

To	write	a	mod	from	scratch	(see	the	section	in	Project	1	about	writing	your
own	Minecraft	mods),	go	to	your	home	page	and	click	the	Mod	link	at	the
top	of	the	page,	as	shown	in	Figure	2-34.

Figure	2-34

Name	your	mod	function_challenge_1	and	choose	Blockly	(Multiplayer)
as	the	language.	Click	on	the	mod	block	and	then	the	Code	button	until	you
get	to	the	programming	environment.	It	should	look	like	Figure	2-35.

Figure	2-35

Write	a	mod	that	has	these	four	functions:

summonCreepers	function:	Summons	two	creepers

summonZombies	function:	Summons	three	zombies



summonCreatures	function:	Summons	four	creepers	and	three	zombies
by	calling	the	summonCreepers	and	summonZombies	functions

main	function:	Summons	two	sets	of	creatures	by	calling	the
summonCreatures	function.

	As	an	extra	challenge	before	you	run	the	completed	code,	predict
how	many	total	zombies	and	creepers	will	be	summoned.	Predicting
what	your	code	will	do	is	a	useful	way	to	help	you	determine	whether
you’ve	written	the	code	correctly.

The	final	code	should	have	only	14	lines	of	code.	If	you	need	help,	see	the
solution	code	in	Figure	2-36.	(But	try	not	to	peek	ahead	of	time!)

Figure	2-36

	A	block	of	code	is	different	from	a	line	of	code.	One	block	of	code
can	be	the	me	block,	whereas	one	line	of	code	can	be	three	blocks	of
code,	like	the	perform	command	block	with	a	text	block	and	a	me	block.
When	you’re	counting	lines	of	code,	the	completed	perform	command
is	considered	one	line.	When	you’re	counting	blocks	of	code,	the
completed	perform	command	is	considered	three	blocks.	An	empty
function	is	considered	one	block	and	one	line	of	code.



Project	3
Building	and	Protecting

Structures
In	this	project,	I	walk	you	through	the	steps	to	build	and	protect
structures	in	your	Minecraft	world.	First	I	describe	how	to	build	small
structures	like	towers,	and	then	I	progress	into	how	to	build	complex,
intricate	structures	like	houses,	castles,	and	villages.	I	tell	you	how	to	build
a	structure	brick	by	brick,	how	to	protect	your	structures	with	lightning,	and
then	how	to	use	loops	to	build	them	faster.



Use	Drones	to	Build	Structures	in
Minecraft

Building	structures	is	made	much	easier	when	you	can	use	drones.	A	drone
is	an	invisible	robot	that	can	move	around	and	place	blocks	and	entities	at
its	location.	In	this	section,	you	start	building	structures	in	Minecraft	using
drones	—	knowledge	that	comes	in	handy	when	you	need	to	build	large
structures.

For	example,	in	Project	4,	I	show	you	how	to	make	the	game	of	Spleef,
which	requires	you	to	create	a	platform	with	a	short	fence	around	it	and
then	put	lava	all	over	the	platform.	Then	you	have	to	create	another
platform	with	a	tall	fence	around	it,	directly	above	the	first	platform	you
made.	Because	the	platform	has	to	be	at	least	20	blocks	wide,	placing	the
platform	brick	by	brick	would	take	a	long	time.	(That’s	more	than	1,000
blocks!)	Instead,	you	can	write	a	mod	that	builds	these	platforms,	and	you
can	play	lots	of	versions	of	the	game	without	having	to	rebuild	it	every
time.

Create	a	drone
Creating	a	drone	isn’t	complicated,	but	it	does	require	you	to	use	a	new
coding	feature:	variables.	A	variable	is	a	way	to	name	an	object.	In	this
section,	you	can	follow	along	with	my	description	of	the	Drones	challenge
in	the	LearnToMod	online	software.

Open	the	Drones	challenge,	and	follow	these	steps:

1.	 To	be	able	to	give	commands	to	the	drone,	you	need	to	name	it.	You
name	an	object,	like	a	drone,	by	assigning	it	to	a	variable.	First	drag	a
variable	block	into	the	main	function,	as	shown	in	Figure	3-1.

2.	 Always	give	objects	names	that	make	sense	to	you	and	that	you	can
easily	remember.	In	this	example,	create	a	new	variable	by	clicking	on
the	arrow	next	to	item	(see	Figure	3-2)	and	name	it	d,	for	drone	(see
Figure	3-3).

3.	 To	create	a	drone,	you	have	to	assign	a	new	one	to	the	variable	you	just
made.	Figure	3-4	shows	where	you	can	find	the	new	Drone	block,	and



Figure	3-5	shows	you	where	to	put	it	in	the	d	assign	block.

Figure	3-1

Figure	3-2



Figure	3-3



Figure	3-4

Figure	3-5



Now	that	you	have	a	drone,	you	can	access	it	by	using	its	name,	d,	and	you
can	tell	it	to	perform	certain	actions,	such	as	place	blocks	or	spawn	entities.

Build	a	structure	and	move	a	drone
After	you	give	the	new	drone	a	name,	you	can	give	it	commands.	Figure	3-6
shows	you	where	to	find	the	place	block	code	block.

Figure	3-6

This	code	block	requires	you	to	specify	a	type	of	block	that	the	drone	will
put	down,	like	a	brick	or	diamond	block.	Figure	3-7	shows	you	where	you
can	find	the	brick	type,	and	Figure	3-8	shows	you	the	completed	code.



Figure	3-7

Figure	3-8

If	you	run	this	code	in	Minecraft	or	the	simulator,	you	see	a	scene	like	the
one	shown	in	Figure	3-9.



Figure	3-9

	Your	structure	appears	in	the	area	in	which	you’re	looking,	so
move	to	an	empty	area	when	you	build.	I	even	like	to	go	into	Creative
mode	and	build	in	the	sky:	Double-click	the	spacebar	to	hover,	and	then
press	the	spacebar	again	to	move	upward.

Continuing	with	Step	3	of	the	Drones	challenge,	you	should	add	a	move
block	to	your	mod.	Figure	3-10	shows	the	move	block	that	you	add.	You	can



find	the	block	under	the	Minecraft	category	and	then	Drones,	just	like	the
place	block	code	block	you	found	(refer	to	Figure	3-6).

Figure	3-10

If	you	run	the	code	again,	you	see	the	same	result	shown	in	Figure	3-9.	The
drone	is	invisible,	so	moving	it	around	has	no	visible	effect.

Continue	working	to	complete	this	challenge	by	adding	three	more	lines	of
code.	Figure	3-11	shows	the	completed	code	needed	to	earn	this	badge.

Figure	3-11



Before	you	run	the	mod,	predict	on	paper	what	you	will	see.	Then	run	the
mod	in	the	simulator,	and	compare	your	prediction	to	what	you	see.

	If	your	prediction	was	incorrect,	go	back	to	the	code	and	trace	it
either	on	paper	or	on	the	computer.	(Visit	the	“Trace	code”	section	in
Project	2	for	tips	on	how	to	do	this.)	To	trace	using	the	computer,
disable	all	blocks	of	code	by	right-clicking	and	choosing	Disable
Block	(see	Figure	3-12).	Then	reenable	one	block	at	a	time,	testing	the
mod	every	time	you	enable	one,	to	see	whether	you	understand	what	is
going	on.

Figure	3-12

Build	a	Tower	in	Minecraft	By
Breaking	Coding	into	Phases

Knowing	how	to	create	drones,	move	them,	and	use	them	to	place	blocks
allows	you	to	build	anything	you	can	imagine.	Building	large,	complex
structures,	however,	requires	lots	of	code,	and	the	whole	process	can	get



confusing.

Before	making	a	large,	complex	structure,	explore	how	to	make	a	smaller
structure	so	that	you	can	understand	the	mechanics	of	building	with	drones.
The	following	sections	spell	out	how	to	create	a	tower	using	drones.

Coding	is	a	complicated	process,	but	it	can	be	broken	up	into	three	main
segments:	design,	develop,	test.	Expert	coders	cycle	through	these	three
stages	throughout	the	coding	experience:

Design:	In	this	phase,	you	(the	coder)	evaluate	the	problem	that	you’re
trying	to	solve,	such	as	building	a	tower	in	Minecraft.	You	research
different	ways	of	solving	the	problem	and	come	up	with	a	plan	of
action.	Sometimes,	this	phase	requires	using	paper	and	pencil.	You	draw
a	tower	on	paper	and	make	notes	on	how	many	blocks	high	the	tower	is,
and	what	material	it’s	made	of,	like	brick.
Sometimes,	you	restructure	your	code	without	changing	what	it	does	—
that’s	known	as	refactoring.	Figure	2-14	(over	in	Project	2)	is	quite	a
long	main	function	with	multiple	stories	being	told.	To	make	the	code
easier	to	see	without	changing	the	stories,	you	refactor	the	code	so	that	it
looks	like	Figure	2-16.	The	code	changes,	but	what	it	does	(tell	two
stories)	doesn’t	change.
Develop:	In	this	phase,	you	write	the	code	that	follows	the	plan	of	action
from	the	design	phase.	Sometimes	you	hit	a	roadblock	(you	didn’t	think
about	how	wide	the	tower	should	be,	for	example)	and	you	have	to
return	to	the	design	phase	to	redesign	some	or	all	of	the	solution.
Test:	In	this	phase,	you	test	the	code	you	wrote	to	make	sure	that	it	does
what	you	want	in	all	cases.	Testing	can	be	complicated,	so	coders	write
test	cases.
For	example,	if	your	program	is	supposed	to	add	two	numbers,	test	to
make	sure	that	all	the	following	test	cases	pass	(examples	are	included):

Two	positive	numbers	should	make	a	positive	number:	2+5	=	7.
Two	negative	numbers	should	make	a	negative	number:	–5	+	–3
=	–8.
A	positive	number	and	a	negative	number	results	in	subtracting
the	negative	number	from	the	positive	number:	–9	+	5	=	–4.



A	letter	and	a	number	should	return	an	error.
Two	letters	should	return	an	error:	a	+	b	=	ERROR.

Large	numbers	should	add	together:	500	+	289	=	789.
A	mixture	of	numbers,	letters,	or	any	other	symbols	(@,	for
example)	should	return	an	error:	hf7w	+	9	=	ERROR.

Consider	all	the	ways	the	code	should	work,	and	all	the	ways	it
shouldn’t.	You	may	find	a	test	case	that	doesn’t	work,	so	you’ll	have	to
return	to	the	development	or	design	phase.	Finding	and	fixing	bugs	is
one	of	the	most	time-consuming	areas	of	coding,	but	if	you	find	the
bugs	in	early	cycles,	coding	becomes	much	faster.

Sometimes	the	code	you	write	is	simple,	so	cycling	through	these	three
phases	isn’t	complicated.	But	as	you	start	writing	larger	and	more	complex
code,	it	becomes	more	important	to	make	sure	you’re	completing	all	three
phases.	If	you	go	straight	to	coding	and	don’t	design	or	test,	you	will
definitely	have	bugs	in	your	code	and	your	program	won’t	work	how	you
expect	it	to.

Design:	Sketch	out	the	tower
You	can	design	code	to	build	a	tower	in	many	different	ways.	In	this	section,
I	show	you	how	to	design	it	by	drawing	it	on	paper	or	using	real-life	blocks
to	build	it:

1.	 Sketch	or	build	the	tower	as	it	would	appear	in	Minecraft.	If	you’re
drawing	it	on	paper,	this	step	can	be	difficult	because	paper	is	2-
dimensional	(2D)	and	Minecraft	is	3-dimensional	(3D).	The	drawing
doesn’t	have	to	be	perfect,	however	—	you	just	need	to	form	an	idea	of
what	it	takes	to	make	a	tower	(such	as	how	many	blocks	or	what	type	of
block).	Figure	3-13	shows	two	sides	of	a	tower.

2.	 On	a	piece	of	paper,	break	your	design	into	manageable	pieces.
Figure	3-14	shows	one	way	to	do	it:

One	row	of	blocks:	Indicates	where	the	drone	is	moving.
Two	rows	of	blocks:	Show	how	you	need	to	reset	the	drone	for
each	row.	That	means	the	drone	will	have	to	move	back	to	the
beginning	of	the	row,	before	moving	up.



One	full	square	of	blocks:	Indicates	an	entire	square,	which
requires	16	blocks.	The	tower	consists	of	8	squares	arranged	on
top	of	each	other.
Two	rows	of	squares:	Show	how	you	need	to	reset	the	drone	for
each	column.
Four	rows	of	squares:	Ensure	that	you’re	still	on	the	right	track.
Eight	rows	of	squares:	The	Tower.

Figure	3-13



Figure	3-14

Development	and	testing:	Write	code	for	the
tower
During	the	development	phase,	you	build	each	of	the	six	chunks	of	your
tower	from	the	previous	section	(refer	to	Figure	3-14).	When	you	write	the
code	for	each	chunk,	test	it	to	make	sure	that	it	does	what	you	want.

Create	a	new	mod	named	Tower	using	Blockly	as	the	language.

(	Project	1	describes	how	to	make	a	new	mod	that	isn’t	a	badge.	Revisit	the
section	“Writing	Your	Own	Minecraft	Mods”	if	you	can’t	remember	how	to
make	a	new	one.)

Before	you	begin	this	step	list,	read	the	earlier	section	“Use	Drones	to	Build
Structures	in	Minecraft”	and	make	sure	you	have	earned	the	first	Drones
badge.	To	build	and	test	the	tower,	follow	these	steps:

1.	 Set	up	your	drone.



Figure	3-15	shows	the	code	to	set	up	your	drone	to	build	a	tower.
2.	 Make	one	row	of	blocks.

Figure	3-16	shows	the	code	to	make	one	row	of	blocks.	As	shown
earlier,	in	Figure	3-13	(looking	at	the	tower	from	the	top),	the	tower
measures	four	bricks	by	four	bricks,	so	each	row	should	have	four
bricks	in	it.

3.	 Test	the	code	to	ensure	that	it	makes	one	row	of	blocks.
Figure	3-17	shows	what	the	row	of	blocks	should	look	like.

Figure	3-15

Figure	3-16



Figure	3-17

	The	structure	will	appear	in	the	area	in	which	you’re	looking,	so	it’s
best	to	go	to	an	empty	area	when	you	build.	I	even	like	to	go	into
Creative	mode	and	build	in	the	sky:	Double-click	the	spacebar	to	hover,
and	then	press	the	spacebar	to	move	upward.

4.	 Make	two	rows	of	blocks	by	copying	the	first	row.
Figure	3-18	shows	the	code	for	making	two	rows.

5.	 Trace	the	code	(see	the	“Trace	code”	section	in	Project	2).
Look	over	the	code	carefully,	and	sketch	out	what	you	think	the	drone
will	do.	Figure	3-19	shows	one	way	to	sketch	it	out	and	trace	your	code.
And,	in	case	you’re	wondering,	it	doesn’t	make	two	rows	—	it	makes
one	row	that	is	eight	blocks	long.

6.	 Test	the	code.
You	can	see	that	the	tracing	shown	in	Figure	3-19	matches	what	is	made
in	the	scene	in	Figure	3-20.

7.	 Edit	the	code.
Before	you	add	the	code	to	make	the	second	row,	reset	the	drone	by
moving	it	back	to	the	right.	Then	move	the	drone	forward,	as	shown	in



Figure	3-21.

	Forward	and	backward	are	relative	to	you,	the	player,	not	to	the
drone.	So	whatever	direction	you’re	facing	is	forward,	and	the	opposite
direction	is	backward.

8.	 Test	the	code	again.	Doing	so	produces	the	scene	shown	in	Figure	3-22:
two	rows	of	blocks	where	each	row	is	four	blocks	long.

9.	 Refactor	your	code.

	Refactoring	your	code	means	changing	the	way	it	looks,	but	not
what	it	does.	This	concept	is	truly	useful	when	your	code	is	getting	long
and	you	want	to	separate	it	into	smaller	functions.
The	code	shown	in	Figure	3-21	is	already	starting	to	get	long,	and
you’ve	made	only	two	rows	of	blocks.	The	easiest	way	to	refactor	this
code	is	to	find	the	bits	that	repeat,	such	as	making	one	row	of	four
blocks,	and	put	them	in	a	separate	function.	Figure	3-23	shows	the	same
code,	refactored	to	be	shorter.

10.	 Make	one	square	of	blocks.
After	you	have	refactored	your	code,	making	a	4	x	4	square	of	blocks
should	seem	simple.	Figure	3-24	shows	the	code	to	create	the	structure,
and	Figure	3-25	shows	the	result	of	using	that	code	in	Minecraft.

11.	 Refactor	the	code	again.	In	Step	9,	you	refactor	the	code	to	make	it
easier	to	make	multiple	rows	of	four	blocks.	Now	refactor	the	code	to
make	it	easier	for	you	to	make	multiple	rows	of	4	x	4	squares.	Refactor
the	code	to	match	Figure	3-26.

12.	 Make	two	rows	of	4	x	4	squares.
After	you	can	make	one	square,	of	course,	you	can	easily	make	a	second
square	on	top	of	it.	The	tricky	part	is	to	reset	the	drone	correctly.	As	I
show	you	in	Steps	6,	7,	and	8,	you	might	need	to	“test-edit-test”	a	few
times	to	get	it	just	right.	Figures	3-27	and	3-28	show	two	correct
answers	for	starting	to	make	an	actual	tower.

13.	 Make	four	rows	of	squares.



Figure	3-29	shows	how	to	make	a	4	x	4	tower,	starting	with	the	code	in
Figure	3-28.

14.	 Make	eight	rows	of	squares.
At	last,	you	can	make	an	8	x	4	tower.	Figure	3-30	shows	a	final
refactored	version	of	the	tower	code.



Figure	3-18



Figure	3-19



Figure	3-20



Figure	3-21



Figure	3-22

Figure	3-23

Figure	3-24



Figure	3-25

Figure	3-26

Figure	3-27



Figure	3-28

Figure	3-29

Figure	3-30

In	the	following	sections,	I	show	you	how	to	strike	lightning	in	Minecraft,
and	then	you	can	defend	your	tower	with	lightning,	by	having	it	strike	on	all
four	sides.

Build	other	tower	variations
Whenever	you	write	code,	test	your	understanding	by	changing	the	code	slightly	to	do
something	a	little	different	from	normal.	This	helps	you	gain	an	understanding	of	how	the
functions	are	working	together,	and	how	to	be	creative	and	build	other	structures	as	well.

For	example,	here	are	a	few	variations	on	towers	that	you	can	build	on	your	own:

Build	a	3	x	8	tower.

Build	a	tower	that	is	in	the	shape	of	a	triangle	instead	of	a	square.

Build	a	tower	that	has	fallen	over	(a	horizontal	tower).

Build	two	towers	next	to	each	other.



Build	a	walkway	between	two	towers	that	are	next	to	each	other.
Hint:	Build	a	combination	of	the	fourth	and	fifth	items	in	this	list.

Use	Locations	to	Strike	Lightning
on	Yourself	in	Minecraft

In	the	Drones	and	Locations	set	of	badges	are	specific	badges	related	to
locations.	The	fun	part	about	having	the	location	of	a	player	or	drone	is	that
you	can	make	things	happen	directly	at	that	location,	such	as	strike
lightning.	This	section	describes	the	first	Locations	challenge,	which	shows
you	how	to	strike	lightning	on	yourself.

Note:	From	now	on,	I’m	not	walking	you	through	the	process	of	clicking
on	badges	or	creating	new	mods.	If	you	can’t	remember	how	to	do	this,
revisit	Project	1.

	Make	sure	you’re	in	Creative	mode	while	in	Minecraft	when	you
test	this	badge.

Figure	3-31	shows	the	final	batch	of	code	you	write	to	make	lightning
strike	on	yourself.

Figure	3-31

This	code	example	uses	two	new	blocks:

world	strike	lightning	at:	You	can	find	it	under	the	Minecraft
category	and	then	World,	as	shown	in	Figure	3-32.
location	of:	You	can	find	it	under	the	Minecraft	category	and	then
Entities,	as	shown	in	Figure	3-33.



Figure	3-32



Figure	3-33

When	you	run	this	mod	in	either	Minecraft	or	the	simulator,	two	things
happen:

You	see	the	lightning	descend	from	the	sky,	as	shown	in	Figure	3-34.
The	grass	around	you	catches	fire	(see	Figure	3-35).



Figure	3-34

Figure	3-35

Use	Locations	to	Strike	Lightning
on	Drones	in	Minecraft

In	the	Locations	Part	2	challenge,	you	can	read	how	to	strike	lightning	on
drones	rather	than	on	yourself.	This	information	can	come	in	handy	when



you’re	trying	to	defend	structures	you’ve	created,	like	the	tower	I	tell	you
how	to	make	in	the	earlier	section	“Building	a	Tower	in	Minecraft.”

Figure	3-36	shows	the	code	you	need	in	order	to	strike	lightning
somewhere	other	than	on	yourself.

Figure	3-36

	You	can	strike	lightning	in	multiple	places	by	using	multiple	drones
—	neat-o!

Figure	3-37	shows	you	how	to	make	three	drones	and	strike	lightning	on
each	of	them.



Figure	3-37

	Being	able	to	make	multiple	drones	can	also	come	in	handy	if	you
want	to	make	multiple	structures.	Each	drone	can	be	in	charge	of
making	a	different	structure,	and	you	don’t	have	to	reset	one	before
making	something	new.

Debug	Complex	Mods
When	the	code	in	your	mod	isn’t	working	the	way	you	want,	such	as	when
you	make	a	row	of	eight	bricks	instead	of	two	rows	of	four	bricks,	it	may
have	an	error,	or	bug.	If	your	code	has	a	bug	in	it,	you	have	to	debug	it,	or
fix	it.	Writing	large,	complex	mods	makes	it	even	more	likely	that	you’ll
run	into	mistakes	that	are	hard	to	find.

In	this	section,	I	give	you	four	strategies	for	debugging	your	code:



Walk	away.	When	your	code	stops	making	sense,	just	walk	away	and
watch	a	video	or	TV	show,	and	then	get	back	to	the	task	at	hand.
Sometimes,	when	you	work	on	one	problem	for	a	long	time,	you	miss
the	error	that	would	be	easy	to	find	if	you	were	to	simply	take	a	break.
Tech	companies	such	as	Microsoft,	Google,	and	Facebook	often	have
game	rooms	with	Xbox,	PlayStation,	foosball,	and	ping-pong	set	up	so
that	their	programmers	can	take	breaks	when	they	run	into	tricky	bugs.
Draw	using	pencil	and	paper.	The	great	thing	about	programming
something	you	can	see	is	that	you	can	trace	your	code	and	draw	it	out	on
paper.	Go	line	by	line	and	move	your	pencil	just	like	the	drone,	and
draw	a	block	whenever	the	drone	places	a	block.	That	will	help	you	see
anything	that	is	going	wrong.
Disable	blocks.	In	this	helpful	technique,	you	add	the	blocks	into	your
mod	1	block	by	1	block.	Rather	than	delete	your	code,	you	can	just
disable	specific	lines	that	may	be	causing	trouble.	Figures	3-38	and	3-
39	show	you	how	to	disable	blocks.	When	you	have	a	bug	you	can’t
find,	disable	all	blocks	except	the	main	function	and	the	first	block	in	the
main	function.	Then	run	your	mod.	Then	enable	the	next	block,	and	run
your	mod.	Continue	doing	that	until	you	find	the	bug.
Ask	for	help	in	the	forums.	LearnToMod	has	forums	where	you	can
ask	for	help,	as	shown	in	Figure	3-40.	you	can	search	by	clicking	on	the
magnifying	glass	or	just	browse	topics	to	find	them;	Figure	3-41	shows
a	sample	screen	from	a	forum.	Sometimes,	someone	else	has	already
found	the	bug	that	you’ve	run	across,	so	the	answer	might	even	already
be	there.



Figure	3-38



Figure	3-39

Figure	3-40



Figure	3-41

	The	term	bug	referred	to	a	technical	error	even	before	computers
were	invented.	Admiral	Grace	Hopper	(an	amazing	computer
scientist!)	found	a	literal	bug	—	a	moth,	to	be	exact	—	in	one	of	the
first	computers,	which	was	causing	her	program	to	misbehave.

Spawn	Entities	and	Add
Inventory	Items

In	the	Inventory	and	Entity	Commands	badge	set,	you	can	find	badges	that
show	you	how	to	spawn	entities	(for	example,	make	creepers	and	cows
appear)	using	drones	and	how	to	programmatically	add	objects	to	the
inventory	(make	diamond	swords	or	redstone	appear).

Being	able	to	spawn	entities	and	add	inventory	items	can	be	useful	for
preparing	for	nighttime	in	Survival	mode	in	Minecraft	or	to	protect
yourself	from	other	Minecraft	players.

For	example,	you	could	create	a	tower	and	then	use	the	drone	to	spawn	a
bunch	of	protective	creepers	around	your	tower,	as	in	Figure	3-42.

Figure	3-42

And	you	could	arm	yourself	before	nightfall	by	giving	yourself	a	diamond
sword,	as	in	Figure	3-43.



Figure	3-43

	To	be	able	to	give	yourself	the	item,	change	the	name	in	Figure	3-
43	from	Steve	to	your	Minecraft	username.

Build	a	One-Click	House	in
Minecraft

In	this	section,	I	describe	how	to	make	a	mod	that	builds	a	house.	I	like	to
refer	to	this	process	as	building	a	one-click	house,	because	whenever
you’re	in	Minecraft	with	one-click	capability,	you	can	have	a	house.

The	following	sections	describe	how	to	build	a	house	in	Minecraft.	In	the
same	way	I	show	you	how	to	build	the	tower,	I	tell	you	how	to	design,	and
then	build,	the	house.	This	house	can	serve	as	a	starting	point	for	building	a
castle.

Start	a	new	mod	titled	Simple_House,	as	shown	in	Figure	3-44.

Figure	3-44

Design	a	simple	house	on	paper
First,	sketch	out	the	house	on	paper.	(Figure	3-45	shows	an	example	of	how
to	do	it.)	Though	this	process	is	slightly	more	complicated	than	building	the



tower	earlier	in	this	project,	in	the	“Build	a	Tower	in	Minecraft	By
Breaking	Coding	into	Phases”	section,	the	same	principles	of	design	apply,
such	as	drawing	at	the	house	from	multiple	angles.	As	with	the	tower,	you
should	figure	out	what	functions	are	needed	to	build	the	house	(see	Figure
3-45).

Figure	3-45

In	the	Tower	mod	(described	in	the	earlier	section	“Build	a	Tower	in
Minecraft),”	you	move	code	into	functions	as	you	write	the	mod;	in	this
mod,	you	should	decide	what	functions	you	want	to	create	as	you	design	the
code.	This	alternative	design	strategy	requires	fewer	refactoring	iterations
(the	number	of	times	you	have	to	refactor	your	code)	because	you	already



know	the	functions,	and	you	don’t	have	to	move	code	into	functions	after
you	write	it.	Figure	3-45	shows	the	functions	labeled	and	defined	on	paper.

	The	drawings	you	create	in	the	design	phase	don’t	have	to	be
perfect.	You	just	need	to	form	an	idea	of	what	functions	you	need	to
write	and	how	many	blocks	you	need	to	place.

As	with	the	Tower	mod,	write	small	bits	of	code	and	test	them	often.	Before
you	even	begin	writing	code,	one	strategy	you	can	follow	is	to	add	all	the
functions	you	need	in	your	mod.	Figure	3-46	shows	you	how	to	do	this,
following	the	sketched-out	design	from	Figure	3-45.



Figure	3-46

Write	the	first	function	for	your	house
Start	with	the	first	wall,	the	function	named	wall_5x5.	First,	make	a	line.
Figure	3-47	shows	the	code	for	making	a	line	of	five	bricks	in	one
direction.



Figure	3-47

Then	test	your	code.	You	see	a	scene	similar	to	the	one	shown	in	Figure	3-
48.



Figure	3-48

	Sometimes,	Minecraft	worlds	become	so	filled	with	trees	that	it’s
difficult	to	find	a	place	to	run	mods	with	large	structures	in	them.	If
this	happens	to	you,	just	switch	to	Creative	mode	in	Minecraft	and	run
your	mods	in	the	sky.	As	long	as	you	use	material	such	as	brick,	your
mods	will	appear	in	the	clear,	open	sky	around	you.	Though	making
structures	in	the	sky	becomes	a	problem	whenever	you	want	to	use
water	or	lava	(because	those	materials	will	begin	to	fall),	it	also	creates
an	amazing	waterfall	(or	lavafall).



After	you	have	one	line	of	your	house	structure,	you	can	easily	extend	it	to
five	lines	to	make	an	entire	wall.	You	can	place	a	block	and	move	the	drone
a	lot	of	the	time,	as	you	did	in	to	make	the	tower,	or	you	can	use	loops.

A	loop	is	a	coding	construct	that	you	can	use	to	repeat	lines	of	code.	You
can	use	four	types	of	loops	in	LearnToMod.	Each	one	repeats	the	code	that’s
inside	of	it.	If	you	haven’t	done	so	already,	go	to	the	LearnToMod	badges
and	complete	all	badges	in	the	“Introduction	to	Loops”	section	to	gain	a
basic	understanding	of	loops.

Figure	3-49	shows	you	all	the	different	types	of	loops	you	can	use.	In	this
case,	you	see	how	to	use	the	loop	that	repeats	a	certain	number	of	times,
because	you	know	that	you	want	it	to	repeat	exactly	five	times.

Figure	3-49

This	loop	repeats	anything	you	put	inside	it;	however	many	times	you
specify.	Figure	3-50	shows	your	wall	code	using	this	loop.



Figure	3-50

Now	test	your	mod.	You	see	something	like	the	scene	shown	in	Figure	3-51.



Figure	3-51

Debug	the	first	function	for	your	house
If	you	run	into	a	bug	in	the	code	(refer	to	Figure	3-51),	never	fear:	You
have	debugging	strategies.	Debugging	is	an	important	skill	to	have,	because
rarely	will	you	write	code	that	is	perfectly	correct.	You’ll	have	to	debug
when	you	use	LearnToMod	or	any	other	coding	system,	so	I	provide	you
with	a	few	of	my	favorite	strategies	in	the	next	few	sections.

Identify	the	bug
Suppose	that	your	mod	has	a	lot	of	complex	code	in	it.	Not	only	does	the
mod	have	multiple	lines,	but	they	also	repeat	five	times.	Before	you	can	find
the	bug,	you	should	simplify	the	code.

Reduce	the	number	of	times	the	loop	repeats.	You	know	that	one	line	works
(refer	to	Figure	3-48),	so	try	repeating	two	times,	as	shown	in	Figure	3-52.



Figure	3-52

Test	your	mod,	and	you	see	the	scene	shown	in	Figure	3-53.



Figure	3-53

It	seems	that	the	second	line	is	starting	one	block	too	soon,	so	the	backward
code	is	probably	the	bug.

Change	the	code	and	test	it	out	(Debugging	approach	1)
The	bug	is	that	the	second	line	is	off	by	one	block.	“Off	by	one”	bugs	are
common	in	programming.

One	way	to	fix	the	problem	is	to	edit	the	line	and	test	it.	You	know	that	the
backward	block	is	most	likely	the	culprit,	so	change	the	backward	block	by
1,	as	shown	in	Figure	3-54.

Figure	3-54

When	you	test	your	mod,	you	see	that	it	works!	It	makes	two	lines	directly
on	top	of	each	other,	as	shown	in	Figure	3-55.



Figure	3-55

Use	paper	(Debugging	approach	2)
Another	way	to	debug	is	to	trace	the	code.	For	each	line	of	code,	draw	on
paper	what	it	does,	such	as	drawing	a	red	square	when	a	brick	block	is
placed.	Then	draw	what	you	want	to	happen	and	look	at	the	difference.

You	can	see	in	Figure	3-56	that	what	you	have	is	moving	backward	five
times,	but	what	you	need	is	to	move	backward	four	times.



Figure	3-56

Complete	the	first	function	for	your	house
After	you	have	debugged	your	code,	you	can	change	the	loop	back	to
iterating	five	times,	and	you	see	a	scene	like	the	one	shown	in	Figure	3-57.



Figure	3-57

Prepare	to	write	the	second	function	for	your
house
Before	writing	the	second	function,	you	have	to	make	sure	that	the	drone	is
in	the	correct	location.	At	the	end	of	the	first	function,	the	drone	moves	up
and	back	to	the	beginning	of	the	line.	Then	the	drone	needs	to	reset	to	make
the	second	wall	appear	in	the	correct	place.

Write	this	reset	code	in	the	main	function,	as	shown	in	Figure	3-58.



Figure	3-58

	When	you	work	with	any	of	the	code	in	this	project,	make	sure	you
have	already	completed	the	badges	in	the	Functions,	Drones	and
Locations,	and	Introduction	to	Loops	categories.	You	can	always
revisit	a	badge	you	have	already	earned	for	a	refresher,	or	even	ask
questions	on	the	LearnToMod	online	forums	if	you’re	still	having
trouble.

Write	the	wall	functions	for	your	house
Write	the	second	function	as	shown	in	Figure	3-59.



Figure	3-59

Continue	to	test	and	code	until	you	have	written	all	four	functions	to	create
the	four	walls	of	your	house.

Sketch	the	roof	function
The	roof	of	your	house	is	a	pyramid,	which	is	a	bit	tricky	to	make,	so	take
out	the	paper	and	pencil	for	this	one.	You	know	that	the	base	of	the	triangle
should	be	6	x	6	(so	that	it’s	one	unit	bigger	than	the	house).	Figure	3-60
shows	one	way	to	decompose	the	pyramid.



Figure	3-60

It	looks	like	it	might	be	useful	to	have	a	function	for	each	of	the	drawings	in
Figure	3-60.	Place	functions	for	the	roof,	as	in	Figure	3-61.

Figure	3-61

Write	the	functions	for	the	roof
The	6	x	6	function	is	shown	in	Figure	3-62.	It	creates	a	square	around	the
top	of	the	house,	as	shown	in	Figure	3-63.



Figure	3-62



Figure	3-63

Reset	the	drone,	as	shown	in	Figure	3-64,	and	then	write	the	4	x	4	and	2	x	2
functions.



Figure	3-64

You	can	see	the	complete	mod	at
http://mod.learntomod.com/programs/sarah-Simple_House	.

Refactor	the	roof	functions
After	you	have	a	completed	house,	you	can	refactor	your	code	roof	to	make
it	simpler	to	understand.

Before	you	refactor,	copy	the	mod	and	create	another	version	of	it	named
Simple_House_Refactored.	That	way,	if	you	accidentally	introduce	new
bugs,	you	can	always	revert	to	the	original,	working	version.

The	only	difference	between	the	three	functions	shown	in	Figure	3-65	is	the
number	of	times	the	loops	repeat.

Figure	3-65

Rather	than	have	three	different	functions,	you	can	write	one	square
function	that	takes	a	parameter	named	size.

A	parameter	is	a	kind	of	variable	that	can	be	used	in	a	function	to	make	it	do
something	slightly	different	every	time	it’s	called.	For	example,	if	you	have
a	function	named	jump,	you	could	add	a	parameter	named	how_many_times.
Then	every	time	you	call	the	jump	function,	you	specify	how	many	times	it
should	make	the	character	jump.	The	function	still	does	the	same	thing
(makes	a	player	jump),	but	the	slight	change	is	that	it	jumps	a	different
number	of	times	(depending	on	what	you	specify).	I	tell	you	more	about
parameters	when	you	reach	the	Parameters	challenges	in	the	LearnToMod
software.

http://mod.learntomod.com/programs/sarah-Simple_House


To	make	the	square	function,	follow	these	steps:

1.	 Bring	in	a	new	function,	name	it	square,	and	click	on	the	blue	star	in	the
upper	left	corner,	as	shown	in	Figure	3-66.

2.	 Drag	a	new	input	into	the	square	function,	as	shown	in	Figure	3-67.
3.	 Rename	the	input	to	become	size,	as	shown	in	Figure	3-68.

4.	 Click	on	the	blue	star	again	to	close	the	input	dialog	box,	as	shown	in
Figure	3-69.

Figure	3-66

Figure	3-67



Figure	3-68

Figure	3-69

When	you	call	the	function,	you	specify	the	value	for	the	parameter	(see
Figure	3-70)	and	then,	throughout	the	function,	the	parameter	(in	this	case,
size)	will	have	the	specified	value	(in	this	case,	6).	This	allows	you	to	call
the	same	function,	with	different	parameters,	giving	you	slightly	different
outcomes,	as	shown	in	Figure	3-71.



Figure	3-70



Figure	3-71

Inside	the	square	function,	put	the	four	loops	that	are	in	the	2	x	2,	4	x	4,	and
6	x	6	functions.	Rather	than	loop	by	a	certain	number,	loop	by	the	parameter
size	(found	under	variables).	Figure	3-70	shows	how	the	square	function
should	be	written,	and	how	you	should	call	the	square	function	from	the
main	function.

You	can	replace	the	calls	to	the	4	x	4	and	2	x	2	functions	with	calls	to	the



square	function,	just	passing	in	a	different	value	for	the	parameter	size
(refer	to	Figure	3-71).

The	final	refactored	code	can	be	found	at
http://mod.learntomod.com/programs/sarah-Simple_House_Refactored

Challenge	yourself	beyond	this	book
For	a	fun	challenge,	use	the	information	in	this	project	to	build	a	large	fortress	with	buildings,
towers,	and	defense	mechanisms.

Try	to	make	at	least	four	towers	and	three	buildings,	and	try	two	different	ways	of	protecting
your	fortress.	You	might	have	creepers	at	one	entrance	and	lightning	at	another,	for	example.

Add	in	loops,	or	make	patterns	in	your	towers;	don’t	always	use	brick.

Share	your	awesome	fortress	defense	mods	on	the	LearnToMod	forums	and	with	your
friends.	You	can	even	invite	friends	into	your	server	to	check	them	out	and	try	to	get	in	by
avoiding	the	defenses.

http://mod.learntomod.com/programs/sarah-Simple_House_Refactored


Part	2
Making	Your	First	Minecraft

Minigame



This	week	you’ll	build:
The	game	Spleef	inside	Minecraft
The	multilevel	game	Monster	Arena	inside	Minecraft
A	multiplayer	Spleef	game	so	that	you	can	play	with	friends



Project	4
Making	a	Single-Player	Game	in

Minecraft:	Spleef
One	of	the	most	complex	(but	also	fun!)	Minecraft	mods	that	you
can	make	is	a	minigame	inside	of	Minecraft.	In	this	project,	I	guide	you	in
making	Spleef,	a	game	in	which	a	player	walks	around	a	platform	and
makes	a	block	disappear	by	stepping	on	it.	Using	this	simple	idea,	you	can
make	a	lot	of	variations	of	Spleef	—	for	example:

Players	have	to	try	to	not	fall	into	the	lava	that	you	have	placed
underneath	the	platform.
After	you	put	lava	underneath	the	platform	and	other	entities	in	the
arena,	players	try	to	make	the	other	entities	fall	into	the	lava	before	they
do.
In	a	game	in	which	you’ve	made	multiple	levels	of	platforms,	players
have	to	collect	items	on	each	level	before	they	fall	through	to	the	level
beneath	them.
In	a	multiplayer	game,	players	have	to	try	not	to	fall	before	the
opposing	player	falls.

In	this	project,	I	show	you	how	to	make	a	simple	Spleef	game,	and	I	give
you	tips	on	how	to	extend	Spleef	to	make	it	your	own.



Introduce	the	Gameplay	Loop
Before	you	jump	into	making	a	game,	even	a	simple	one	like	Spleef,	spend
some	time	designing	it	so	that	you	can	prevent	major	errors	when	you	go	to
develop	it.	As	I	mention	in	Project	3,	you	should	always	design	your	code
before	writing	it.	When	you	have	a	program	that	is	complex,	like	a	game,
this	rule	becomes	critical	because	it	has	so	many	pieces	of	code	that	could
introduce	errors.	In	this	section	I	introduce	you	to	the	design	technique
known	as	the	gameplay	loop.

Figure	4-1	shows	the	basic	gameplay	loop	with	these	four	parts	(as
described	in	the	following	four	sections):

Start:	Create	a	basic	scene	(the	place	where	your	game	takes	place).
Goal:	Add	a	way	to	win	and	lose.
Challenge:	Make	winning	increasingly	difficult.
Reward:	Make	players	want	to	win.



Figure	4-1

Start:	Create	a	basic	scene
Start	by	creating	a	basic	scene	for	your	game.	You	can	begin	by	sketching
out	an	idea	on	paper	or	by	building	it	in	Minecraft,	without	mods.	The
purpose	of	this	step	is	to	help	you	start	thinking	about	the	constraints	that	the
scene	will	place	on	the	players,	and	therefore	on	how	the	game	will	play
out.

For	example,	making	a	game	where	you	use	the	normal	Minecraft	world	is
much	different	from	making	a	game	where	you’re	in	a	20	x	20	arena	with
walls,	because	in	the	Minecraft	world	you	have	infinite	space	to	play,	while
in	the	20	x	20	arena	you	can	only	play	in	a	20	x	20	area.	As	you	build	and



define	the	game,	you	can	change	the	scene,	such	as	make	the	arena	bigger
or	add	details.	The	design	process	is	iterative,	which	means	that	you	repeat
each	step	multiple	times.	If	you	were	building	Minecraft	from	the	ground
up,	you	might	start	by	creating	a	small	world,	but	as	you	iterate	through	the
gameplay	loop,	you	make	the	world	larger	—	eventually	making	it
infinitely	large,	as	it	is	today.

	Coding	takes	iterations,	so	if	you	make	a	decision	early	on	in	your
design,	you	can	always	make	a	change	later.

Goal:	Add	a	way	to	win	and	lose
Some	of	the	games	that	you	will	want	to	make	may	be	truly	complicated,	but
if	you	break	up	the	parts	of	the	game	according	to	the	four	gameplay	loop
pieces,	you	start	to	see	that	you	can	make	a	simple	version	of	the	game	by
creating	only	a	basic	scene	and	a	way	to	win	(or	lose).

For	example,	if	you	were	playing	a	super-simple	version	of	Minecraft	in
Survival	mode,	the	goal	would	be	to	not	die	at	night.	With	only	the
Minecraft	world	and	the	goal	to	survive,	it	wouldn’t	be	hard	to	survive,
because	there	are	no	enemies.	But	at	this	point	you	would	add	the	simplest
feature	to	your	game:	the	hearts.	And	you	would	add	logic	to	the	game	to
ask	players	whether	they	want	to	respawn	whenever	they	run	out	of	hearts.
Again,	at	this	point	the	game	might	not	be	much	fun,	but	when	you	reach	the
next	step	(the	challenge,	followed	by	the	reward),	you	start	to	add	enemies
and	ways	that	players	can	earn	back	hearts.

Challenge:	Make	winning	more	difficult
Your	game	gets	interesting	when	you	start	making	it	difficult	for	players	to
beat.	At	first,	you	might	want	to	offer	a	small	challenge.	Don’t	worry:	You
can	iterate	up	to	the	more	difficult	challenges	as	you	cycle	through	the
gameplay	loop.

For	example,	in	the	simplified	Minecraft	game	that	I	describe	in	the
preceding	section,	the	first	challenge	you	might	add	is	one	creeper.	You
would	put	into	the	world	one	creeper	that,	upon	seeing	the	player,	tries	to
attack.	This	challenge	makes	the	game	more	difficult	than	before	because
now	the	player	can	get	hurt	and	lose	a	heart.	This	game	might	not	be	lots	of



fun,	because	players	can	only	get	hurt	and	can’t	defend	themselves,	but	as
you	iterate	through	the	gameplay	loop,	you	can	start	adding	more	creepers
—	and	even	other	creatures,	and	items	for	the	player	to	use	to	defend
themselves.

Reward:	Make	players	want	to	win
Rewarding	your	players	makes	your	game	fun	for	them.	Rewards	can	come
in	many	forms,	such	as	allowing	players	to	move	on	to	the	next	level	or
awarding	them	items	such	as	stars	and	coins.	Some	games	even	take	coins
to	another	level,	by	allowing	players	to	use	coins	to	purchase	items	that	can
help	them	beat	other	levels.

In	the	example	of	a	simplified	Minecraft	game	(from	the	earlier	“Goal”
section),	a	player	is	rewarded	with	full	health	after	finding	an	Instant	Health
potion.	Similarly,	if	the	player	is	playing	Minecraft	at	the	Peaceful	difficulty
level,	simply	staying	alive	and	uninjured	is	rewarded	with	health.

Make	Spleef:	Iteration	1
After	you	know	the	basics	of	how	to	use	the	gameplay	loop,	you	can	begin
to	design	and	build	a	simple,	single-player	minigame	using	that	technique.
In	this	section,	I	show	you	how	to	make	a	game	that	you	can	play	with
friends,	and	you	can	even	personalize	it	to	make	it	unique.

First,	make	a	new	mod	by	following	these	steps:

1.	 Go	to	your	home	page	and	click	Mod	at	the	top	of	the	page.	Name	the
mod	Spleef,	as	shown	in	Figure	4-2.

2.	 Click	the	Blockly	(Multiplayer)	button,	and	then	click	on	the	mod	tile
that	gets	created,	as	shown	in	Figure	4-3.

3.	 When	the	mod	page	opens,	click	the	Code	button	to	edit	the	code	for	the
mod,	as	shown	in	Figure	4-4.



Figure	4-2

Figure	4-3



Figure	4-4

Now	you’re	ready	to	make	the	Spleef	game.	In	the	rest	of	this	section,	I	walk
you	through	building	on	the	gameplay	loop.

Start:	Create	the	Spleef	scene
The	scene	in	Spleef	is	an	arena	that	has	a	fence	around	it,	as	you	can	see	in
Figure	4-5.

Figure	4-5

To	make	this	arena,	you	use	the	ArenaBuilder	library	on	LearnToMod.	A



library	is	a	mod	that	is	already	written	for	you.	You	can	use	it	without
having	to	know	how	it	is	written.

To	explore	the	library,	follow	these	steps:

1.	 Go	to	mod.learntomod.com/programs/sarah-ArenaBuilder.
You	see	these	five	functions:

init

move_drone

ArenaWithFence

Platform

Fence

2.	 Click	the	question	mark	(?)	on	each	function.
A	comment	pops	up,	describing	what	the	function	does.	For	example,
Figure	4-6	shows	the	comment	for	the	Fence	function.

3.	 Look	through	this	code,	and	its	parameters,	to	see	what	the	code	is
doing.
Notice	that	there’s	no	main	function,	because	this	mod	cannot	run	on	its
own	in	Minecraft.	Instead,	it	must	be	called	from	other	mods,	as
explained	in	the	following	section.
Also	notice	the	block:	export.	The	export	block,	as	you	can	see	in
Figure	4-7,	makes	the	function	that’s	written	in	the	block	accessible	to
other	mods,	meaning	other	mods	can	call	the	functions	even	though
they’re	in	a	different	mod.
Three	functions	are	being	exported:	ArenaWithFence,	init,	and
move_drone.
Now	you	can	use	these	three	functions	in	your	Spleef	game.

http://mod.learntomod.com/programs/sarah-ArenaBuilder


Figure	4-6

Figure	4-7

Import	the	ArenaBuilder	library
After	you	have	exposed	the	ArenaBuilder	library,	go	back	to	your	Spleef
mod	and	import	that	library.	Follow	these	steps:

1.	 Under	the	Misc	category,	find	the	import	block,	as	shown	in	Figure	4-8.

2.	 Drag	it	into	the	mod	and	type	sarah-ArenaBuilder	to	replace	the	text
lib-name,	as	shown	in	Figure	4-9.
If	you	enter	the	mod	name	correctly,	the	block	stays	green	and	new
functions	appear	under	the	Functions	category,	as	shown	in	Figure	4-10.



Notice	that	the	three	functions	you	now	have	access	to	are	the	three	that
were	exported	from	the	ArenaBuilder	library.

3.	 Create	a	main	function,	and	add	a	call	to	the	init	function	from	the
ArenaBuilder	library.
The	init	function,	if	you	look	back	at	the	library,	basically	creates	the
drone	that	will	be	used	to	create	the	arena	for	you.	Figure	4-11	shows
you	how	to	set	up	your	ArenaBuilder.

4.	 After	your	drone	is	ready	to	build	your	arena,	add	a	call	to	the
ArenaWithFence	function	from	the	ArenaBuilder	library	to	the	main
function.
Figure	4-12	shows	how	to	make	a	20	x	20	arena	made	of	diamond	with
a	fence	that’s	five	blocks	high	and	a	platform	width	of	one	block.	The
arena	will	be	filled	with	air.	This	makes	the	arena	where	you	will	play
Spleef.

5.	 Even	though	you	didn’t	write	the	ArenaBuilder	library,	test	your	code	as
you’re	building	it.	To	test	your	code,	make	sure	that	the	mod	is	saved,
click	the	Mod	button,	and	test	the	code	in	Minecraft.
You	see	a	scene	like	the	one	in	Figure	4-13.

6.	 Before	moving	on	to	the	goal	in	the	next	section,	refactor	the	code	—
change	it	without	changing	what	it	does.
In	this	case,	you’re	refactoring	the	code	so	that	the	arena	is	built	in	a
function	named	arena	and	so	that	the	arena	function	is	called	from	main.
Figure	4-14	shows	how	to	complete	this	step.



Figure	4-8

Figure	4-9



Figure	4-10



Figure	4-11

Figure	4-12

Figure	4-13



Figure	4-14

Congratulations	—	you’ve	created	the	basic	Spleef	scene!

Goal:	Make	a	way	to	win	and	lose
After	you	have	an	arena	to	play	in,	you	need	to	make	a	way	for	the	player	to
win	and	lose.	The	easiest	version	of	the	goal	for	Spleef	is	this:

Win:	You	win	if	you	stay	on	the	diamond	platform.
Lose:	You	lose	if	you	fall	through	the	platform.

It’s	impossible	to	lose	now	because	players	don’t	make	blocks	below	them
disappear.	However,	you	can	still	code	the	logic	for	what	happens	if	they
fall	through	the	platform.

Now	you	add	in	some	basic	logic	to	make	sure	that	players	start	in	the	right
place	and	know	what	to	do	when	they	respawn.	Then,	in	the	next	section,	I
show	you	how	to	add	to	a	challenge:	Blocks	disappear	one	second	after
being	touched,	making	it	possible	to	fall	into	the	lava.

To	set	up	the	winning	and	losing	conditions	for	Iteration	1	of	Spleef,	follow
these	steps:

1.	 Add	a	call	to	the	ArenaBuilder ’s	SetArenaCenter	function	at	the	end	of
the	Arena	function.

	The	SetArenaCenter	function	will	be	in	the	Functions	category



of	code	because	you	imported	my	ArenaBuilder	mod,	and	I	exported	the
SetArenaCenter	function	so	that	you	could	use	it.
This	step	finds	the	center	of	the	arena	so	that	the	player	can	be	moved	to
the	center	for	the	start	of	the	game.	Figure	4-15	shows	the	added	call	to
SetArenaCenter	in	the	Arena	function.
The	SetArenaCenter	not	only	finds	the	center	of	the	arena	but	also
creates	a	melon	block	in	the	arena.	You	use	this	melon	block	to	start	the
game.	The	melon	block	is	on	the	platform,	as	shown	in	Figure	4-16.
Make	sure	you	see	it	before	moving	on.

2.	 Make	a	new	function	named	StartGame	that	takes	info	as	a	parameter,	as
shown	in	Figure	4-17.	It’s	time	to	start	the	game	when	the	player	breaks
the	melon	block.
The	special	function	StartGame	is	used	for	events.	You	call	it	as	shown
in	Figure	4-18.
As	you	can	see	in	Figure	4-18,	the	StartGame	function	is	called	only
when	a	player	breaks	a	block.	So,	every	single	time	you	break	a	block,
this	function	runs.
However,	you	should	put	players	into	Survival	mode	only	when	the
block	they	break	is	the	melon	block.	Luckily,	the	info	parameter
represents	the	block	you	broke.

	Variables	are	represented	by	a	box	consisting	of	two	sections:
name	and	data,	as	shown	in	Figure	4-19.	Some	variables	are	simple.	As
evidence,	Figure	4-20	shows	a	variable	named	num	with	the	data	5.
Figure	4-21	shows	a	variable	named	name	with	the	data	Sarah.
Some	variables,	on	the	other	hand,	are	more	complicated.	For	example,
Figure	4-22	shows	the	info	parameter	for	an	event	function	associated
with	a	block	(that	is,	the	block_break	event).	In	Figure	4-22	you	can	see
that	the	info	parameter	has	a	block	for	its	data.	The	block	has	a	type	for
its	data,	and	the	type’s	data	is	Melon	Block.
The	first	two	lines	of	code	in	the	StartGame	function	follow	the	boxes
shown	in	Figure	4-22	to	find	the	type	of	melon	block	that	was	broken.
Then	you	check	to	see	whether	the	type	that	was	broken	was	a	melon
block;	if	it	was,	you	set	the	player ’s	gamemode	to	Survival	so	that	they



have	to	step	on	the	blocks	and,	possibly,	lose	all	health	if	they	fall
through	the	platform.

3.	 Run	the	mod	in	Minecraft.	When	you	break	the	melon	block,	you,	the
player,	are	put	into	Survival	mode.	Make	sure	the	mod	works	before
you	continue.

4.	 Set	up	the	respawn	event.
A	player	who	dies	respawns	to	the	center	of	the	arena.	This	step	is
tricky:	Figure	4-23	shows	the	SetupPlayer	function,	which	is	called
when	the	player	respawns;	Figure	4-24	shows	a	way	to	call	the
SetupPlayer	function	when	the	player	respawns.
Take	another	look	at	Figure	4-23.	The	JavaScript	block	is	used	to	call
the	event	PlayerRespawnEvent,	which	requires	these	three	parameters:

The	function	to	call	when	the	player	respawns.
The	player	who	is	respawning.
A	true	or	false	value	that	indicates	whether	this	is	a	BedSpawn.
(Use	the	false	value	because	you	don’t	want	to	teleport	back	to
your	bed.)

The	SetupPlayer	function	gets	data	from	the	info	parameter	(refer	to
Figure	4-22)	except	that	this	time	the	info	parameter	is	a	player,	not	a
block.
Figure	4-25	shows	how	this	data	is	retrieved,	and	Figure	4-26	shows
another	way	to	get	the	same	data.
After	you	have	the	name	of	the	player,	you	can	set	up	the	event	to
teleport	the	player	to	the	center	of	the	arena,	but	only	two	seconds
(2,000	milliseconds)	after	the	player	has	respawned,	as	shown	in	Figure
4-26.

	Events	can	be	tricky.	But	you	can	always	review	badges	you
have	already	earned	or	ask	questions	on	the	LearnToMod	forums	if	you
need	help.

5.	 To	test	the	mod,	run	it	and	break	the	melon	block.	When	you	do	that,	the
gamemode	should	switch	to	Survival	mode.	Then	break	a	diamond
block	and	fall.	Two	seconds	after	you	respawn,	you’re	placed	into	the



arena	again.

Figure	4-15

Figure	4-16



Figure	4-17

Figure	4-18

Figure	4-19



Figure	4-20

Figure	4-21



Figure	4-22

Figure	4-23

Figure	4-24



Figure	4-25

Figure	4-26

You	now	have	a	game!	The	problem	is	that	unless	you	actually	break	a
diamond	block,	you	never	lose.	In	the	next	section,	I	help	you	find	a	way	to
make	the	game	more	challenging.

Challenge:	Make	blocks	disappear	one
second	after	touching	them
To	add	the	first	challenge	to	the	game,	you	need	to	create	another	event.
This	time,	when	the	player	moves,	a	function	is	called	that	finds	the	location



of	the	player	and	replaces,	using	an	Air	block,	the	block	that	is	one	block
below	the	player ’s	current	location.

Figure	4-27	shows	the	two	new	functions	you	need	to	add	—
removeBlockAfterStep	and	removeBlock	—	and	explains	how	to	make	a	call
to	them	from	the	main	function.

Figure	4-27

At	this	point,	the	entire	Spleef	mod	should	look	like	Figure	4-28,	and	you
should	test	out	the	game.



Figure	4-28

Test:	Plan	and	execute	test	cases
Before	playing	your	mod,	identify	the	different	test	cases	to	make	sure	that
your	game	is	working	properly.

	Test	cases	(as	described	in	Project	3),	are	the	different	ways	to
test	your	mod	to	check	whether	it’s	behaving	correctly.

Before	you	write	a	test	case,	make	two	lists	that	spell	out

What	you	will	test:	For	example:	Break	the	melon	block.
What	you	expect	to	happen:	For	example,	the	gamemode	switches	to
Survival,	and	blocks	below	you	disappear	after	one	second.

If	your	test	cases	pass,	you	know	that	the	mod	is	correct.

The	following	list	shows	five	sample	test	cases	for	the	Spleef	mod:

The	scene	sets	up	properly.	When	you	run	the	mod,	two	arenas	appear:
a	brick	arena	with	lava	and	a	diamond	arena	with	a	tall	fence.
The	player	is	put	into	Survival	mode	when	the	melon	block	breaks.
When	you	break	the	melon	block,	the	player	is	set	to	Survival	mode.
Blocks	disappear.	One	second	after	you	touch	a	block,	it	disappears.
Lava	causes	the	player	to	lose	health.	When	the	player	falls	into	the



lava,	they	lose	all	their	health.
Respawn	back	to	arena.	Two	seconds	after	the	player	respawns,	she
automatically	returns	to	the	arena	again.

Come	up	with	at	least	one	more	test	case,	and	then	test	all	of	them	on	your
game.	If	something	doesn’t	match	your	expectation,	such	as	blocks	don’t
disappear	when	you	walk	over	them,	begin	debugging	the	code,	as
explained	in	Project	3.

Debug:	Fix	bugs	related	to	events
In	Minecraft,	you	have	no	way	to	indicate	that	you	no	longer	want	to	trigger
events.

To	trigger	an	event	means	that	Minecraft	recognizes	that	the	event	has
happened	and	then	calls	the	function	that	was	set	up	in	the	event	call.	For
example,	earlier	in	this	project,	Figure	4-26	shows	the	SetupPlayer
function,	which	has	an	event	setup	block	in	it.	This	event	is	triggered	after
two	seconds,	and	then	it	teleports	the	player	to	the	center	of	the	arena.

Because	you	don’t	always	want	events	to	be	triggered,	testing	your	code	can
be	difficult.	For	example,	in	Spleef	you	replace	only	the	block	below	you
with	air	if	you’re	walking	on	diamond	blocks	(the	arena).

If	you	run	the	Spleef	mod	and	play	it	and	then	decide	to	explore	a	cave
instead,	you	start	to	fall	through	the	ground.	That’s	because,	as	you	can	see
in	Figure	4-29,	every	1	second	the	removeBlockAfterStep	function	is	called
and	the	block	below	you	is	replaced	with	an	air	block.

Figure	4-29



	You	can	get	an	event	to	stop	triggering,	but	you	have	to	disconnect
from	the	server	and	reconnect.

To	avoid	having	to	disconnect	from	the	server	every	time	you	play	a	game
of	Spleef,	you	can	add	a	simple	conditional	statement	that	checks	to	make
sure	that	you’re	walking	on	a	diamond	block	before	it	changes	it	to	an	air
block.

Figure	4-30	shows	the	blocks	you	need	to	add	to	the	removeBlock	function
to	check	the	type	of	block	you’re	walking	on.	This	example	is	similar	to	the
code	I	show	you	how	to	write	for	the	StartGame	function	earlier	in	this
project,	in	the	section	“Goal:	Make	a	way	to	win	and	lose.”

Figure	4-30

Reward:	Reward	the	player	with	points
In	the	first	iteration	of	the	game,	points	can	be	represented	by	the	number	of
blocks	the	player	destroys	before	falling	through	the	platform	and	dying.
To	make	this	happen,	you	just	have	to	count	the	number	of	blocks	that	get
converted	to	Air.	Follow	these	steps:



1.	 Add	to	the	StartGame	function	a	new	variable	named	blocks_destroyed
that	is	set	to	0,	as	shown	in	Figure	4-31.

2.	 Add	1	to	the	blocks_destroyed	variable	every	time	you	place	an	air
block	in	the	removeBlock	function,	as	shown	in	Figure	4-32.

3.	 Add	a	SendMessage	block	to	the	SetupPlayer	function	to	let	players
know	how	many	blocks	they	have	destroyed	before	falling	through	the
platform,	as	shown	in	Figure	4-33.
When	you	play	the	Spleef	game	now,	a	message	like	the	one	shown	in
Figure	4-34	appears	after	you	respawn.
Congratulations!	You	have	completed	an	entire	iteration	of	the
gameplay	loop	for	your	Spleef	game.

Figure	4-31



Figure	4-32

Figure	4-33



Figure	4-34

Make	Spleef:	Iteration	2
After	you	have	completed	an	iteration	of	the	Spleef	game,	you	can	repeat
the	gameplay	loop	and	make	the	game	more	fun,	challenging,	and	unique.
In	this	section,	I	walk	you	through	four	examples	in	each	of	the	parts	of	the
gameplay	loop	so	that	you	can

Add	a	lava	platform	underneath	the	diamond	arena.
Challenge	your	player	to	destroy	200	blocks.
Add	in	an	enemy.
Add	fireworks	into	the	game.

Start:	Add	a	lava	platform
After	you	have	a	working	game,	you	can	add	to	the	scene	to	make	it	more
interesting.	In	this	section,	I	tell	you	how	to	add	a	platform	of	lava	below	the
arena	so	that	a	player	who	falls	through	the	platform	falls	into	a	lava	pit.

Because	you’re	using	the	ArenaBuilder	library,	the	change	to	the	Spleef
code	is	minor.	Figure	4-35	shows	you	what	to	call	to	add	to	the	arena
function	so	that	you	produce	the	scene	shown	in	Figure	4-36.



Figure	4-35



Figure	4-36

Goal:	Destroy	at	least	200	blocks
Because	you’re	already	counting	the	number	of	blocks	that	the	player
destroys	as	a	part	of	the	Reward	phase	in	Iteration	1,	you	can	easily	add	a	bit
of	code	to	the	removeBlock	function	to	congratulate	the	player	on	becoming
a	Master	Spleefer,	as	shown	in	Figure	4-37.

Figure	4-37



Challenge:	Add	an	enemy
You	can	easily	add	an	enemy	into	the	arena	by	using	the	melon	block	as	the
spawning	point.	Figure	4-38	shows	how	to	spawn	a	creeper	in	a	random
spot	in	the	arena.	Then	the	player	has	to	avoid	the	creeper	and	try	not	to	fall
before	gaining	at	least	200	blocks.	Figure	4-39	shows	the	player
approaching	the	creeper.

Figure	4-38



Figure	4-39

Reward:	Add	fireworks
Finally,	you	can	make	the	reward	a	little	more	interesting:	Rather	than
congratulate	players,	you	can	give	them	a	fireworks	show!	Figure	4-40
shows	how	to	add	the	Fireworks	block	into	the	removeBlock	function.	You
can	find	the	Fireworks	block	under	the	World	category,	as	shown	in	Figure
4-41.



Figure	4-40



Figure	4-41

Challenge	yourself	beyond	the	book
After	you	have	completed	two	iterations	of	the	gameplay	loop	for	Spleef,	challenge	yourself	to
either	make	a	third	iteration	on	the	same	game	you	build	in	this	project	or	start	over	and	make	a
new	version	of	Spleef.

This	time,	you	can	make	multiple	arenas	(as	shown	in	the	sidebar	figure)	and	let	the	goal	be	to
destroy	at	least	100	blocks	on	each	level.





Project	5
Making	a	Multilevel	Minecraft
Minigame:	Monster	Arena

Monster	Arena	is	a	multilevel	Minecraft	minigame	in	which	the
player	is	placed	in	a	large	arena	with	monsters	that	spawn	around	a	melon
block.	The	player ’s	goal	is	to	reach	the	melon	cube	without	being	attacked
by	the	monsters.	Every	time	the	player	reaches	the	melon	cube,	the	moves
on	to	the	next	level,	with	more	monsters	that	are	harder	to	defeat.	The	goal
of	the	game	is	to	reach	the	highest	level	possible	before	being	defeated	by
the	monsters.

In	this	project,	I	explain	how	to	make	a	Minecraft	mod	that	creates	this	game
within	Minecraft.	Then	you	and	your	friends	can	play	Monster	Arena	and
see	who	can	defeat	the	most	monsters!	Figure	5-1	shows	you	how	the	final
game	will	look,	with	five	creepers	standing	between	you	and	the	melon
block.



Figure	5-1

Draw	the	Gameplay	Loop
Before	you	begin	coding	your	game,	you	must	draw	the	gameplay	loop	for
the	Monster	Arena	game.	Figure	5-2	shows	the	first	iteration	of	the	loop,	as
described	in	this	list:

Start:	Build	the	arena
Goal:	Break	the	melon	block
Challenge:	Add	monsters
Reward:	Level	up



Figure	5-2

In	each	iteration	of	the	gameplay	loop,	you	enhance	each	piece.	To	start	out
with,	though,	you	have	a	simple	arena	with	a	melon	block,	1	monster,	and	1
level.

Iterate	is	a	term	from	computer	science	that	means	“Do	something	over
and	over.”	And,	more	importantly,	every	time	you	do	that	something,
you	make	progress.	For	example,	if	you	iterate	on	the	gameplay	loop,
you	should	add	a	feature,	such	as	add	a	new	challenge	or	a	new	reward,
to	your	game	in	at	least	one	place	in	the	loop.



Iteration	1:	Make	Monster	Arena
Here’s	one	way	to	break	up	the	iterations	of	the	gameplay	loop:

1.	 Start:	Create	a	basic	arena	enclosed	by	a	fence.
In	Monster	Arena,	the	scene	is	a	circular	arena.	A	large	fence	surrounds
the	arena	to	keep	the	player	and	monsters	inside	it.

2.	 Goal:	Add	a	melon	block	to	break.
In	the	Monster	Arena	game,	you	need	to	add	a	melon	block	in	the	arena,
and	you	need	to	write	code	to	reset	the	arena	when	the	player	breaks	the
melon	block.

3.	 Challenge:	Add	monsters	to	the	arena.
In	Monster	Arena,	you	add	one	monster	to	the	arena,	and	the	player	has
to	avoid	the	monster	while	trying	to	break	the	melon	block.	If	the	player
successfully	breaks	the	melon	block,	the	game	resets.

	Ask	your	friends	to	test	your	game	now.	They’ll	probably	say
that	it	isn’t	much	of	a	challenge	to	play,	but	you	can	gain	insight	into	the
kinds	of	challenges	your	players	are	looking	for,	such	as	more
monsters	or	a	bigger	arena.

4.	 Reward:	Replay	the	first	level.
In	the	first	iteration	of	Monster	Arena,	the	user	breaking	the	melon
block	is	the	one	who	gets	to	play	Level	1	again.	In	later	iterations,	you
add	more	levels	that	the	player	gets	to	play.
After	you	plan	out	the	gameplay	loop	in	Steps	1–4,	it’s	time	to	build
Monster	Arena.

5.	 Make	a	new	mod,	and	name	it	Monster_Arena.	Choose	Blockly
(Multiplayer)	as	the	language.

Start:	Create	a	basic	arena	with	a	fence
When	you	build	any	game,	the	first	thing	you	need	is	a	basic	scene	for	the
game.	For	Monster	Arena,	you	need	a	large,	enclosed	area.	Figure	5-3
shows	the	kind	of	arena	you	build	—	a	large,	circular	platform	that	has	a



radius	of	20	blocks.	Surrounding	the	arena	is	a	fence,	reinforced	with	stone.
The	fence	is	required	so	that	neither	the	monsters	nor	the	player	can	leave
the	arena	throughout	the	game.

Figure	5-3

As	you	may	have	already	learned	in	geometry	class,	the	radius	is	the
line	from	the	circle’s	center	point	to	any	point	on	the	circle’s	edge.
Because	everything	in	Minecraft	is	made	with	blocks,	you	count	the
blocks	between	the	center	and	the	edge	of	the	circle,	and	that	is	the
radius.

The	initial	scene	is	not	the	final	version.	You	can	always	iterate	on	the
design.	The	purpose	of	making	the	initial	scene	is	to	have	a	functional	area
to	play	the	game	and	to	keep	gameplay	inside	this	area.	In	Monster	Arena,
the	player	needs

A	place	for	the	player	and	monster	to	run	around
A	way	to	ensure	that	the	monsters	and	player	can’t	leave	the	area

For	this	basic	scene,	you	create



A	platform
A	fence

In	Project	4,	in	the	section	about	making	the	first	iteration	of	Spleef,	I	show
you	how	to	make	an	arena	using	the	LearnToMod	library	named	sarah-
ArenaBuilder.	This	library	makes	square	arenas,	and	this	time	you	need	to
make	a	round	one.	Luckily,	you	can	use	WorldEdit	commands	to	make	the
arena	in	LearnToMod!

A	WorldEdit	command	is	one	that	you	can	run	in	Minecraft	to	edit	the
world,	such	as	making	thousands	of	blocks	appear	at	once.	You	can	explore
lots	of	WorldEdit	commands	online	—	search	for	the	term	minecraft
worldedit	commands	using	your	favorite	search	engine.

	Visit	http://wiki.sk89q.com/wiki/WorldEdit	(the	official
WorldEdit	wiki)	to	see	a	list	of	all	WorldEdit	commands	for	Minecraft.
Just	click	on	one	of	the	links	to	a	category,	like	Filling	Pits	under
Utilities	to	find	the	WorldEdit	commands	associated	with	filling	pits.

To	make	the	circular	arena,	you	need	to	make	a	cylinder	and	a	circle,	which
you	can	find	under	the	Generation	category	on	the	wiki	(it’s	toward	the
bottom).

Figure	5-4	shows	how	to	use	the	WorldEdit	commands	in	Minecraft.	The
WorldEdit	commands	use	algorithms	(another	way	of	saying	list	of	steps)
to	create	the	effect	in	the	Minecraft	world.	The	figure	is	from	the	wiki	page
about	WorldEdit	commands,	found	at

http://wiki.sk89q.com/wiki/WorldEdit/Generation#Cylinders_and_circles

http://wiki.sk89q.com/wiki/WorldEdit
http://wiki.sk89q.com/wiki/WorldEdit/Generation#Cylinders_and_circles


Figure	5-4

Test	WorldEdit	commands	in	Minecraft
Before	writing	the	code	to	make	the	arena,	test	out	the	WorldEdit	commands
in	Minecraft.

Figure	5-5	shows	how	to	make	a	platform	made	of	stone	and	with	a	radius
of	20,	and	Figure	5-6	shows	the	platform	that	gets	created.

Figure	5-5

Figure	5-6



	When	you’re	trying	to	build	a	large	structure,	double-click	on	the
spacebar	to	hover,	and	then	click	and	hold	the	spacebar	to	move	up	into
the	sky	before	running	your	mod.	This	action	creates	the	large
platform	in	the	sky	and	makes	it	easier	to	see.

You	can	also	test	making	the	fence.	Figure	5-7	shows	how	to	make	a	stone
fence.	If	you	don’t	move,	you	can	then	give	the	command	shown	in	Figure
5-8	to	make	a	wooden	fence	inside	the	stone	fence.	It	looks	like	Figure	5-9.

Figure	5-7

Figure	5-8

Figure	5-9

	If	you	move	after	you	have	created	the	platform	and	before	you
create	the	fence,	your	fence	won’t	fit	perfectly	around	the	platform.
You	can	try	it	to	see	what	happens:	Run	the	platform	command	from



Figure	5-5,	and	then	move	forward	until	you’re	near	the	center	of	the
platform.	Then	run	the	command	to	create	the	fence,	as	shown	in
Figures	5-7	and	5-8.

If	you	call	all	three	of	these	WorldEdit	commands	without	moving	(refer	to
Figures	5-5,	5-7,	and	5-8),	you	create	an	arena	with	a	fence	around	it,	as
shown	in	Figure	5-10.

Figure	5-10

	As	I	mention	In	Project	2,	calling	code	means	that	Minecraft	can
handle	that	task.

Mod	the	arena	in	LearnToMod
After	you	have	tested	the	WorldEdit	commands,	you	can	actually	call	them
from	the	LearnToMod	mod!

To	call	WorldEdit	Commands	from	LearnToMod,	you	have	to	use	a
PerformCommand	block,	which	can	be	found	under	the	Players	category,	as
shown	in	Figure	5-11.



Figure	5-11

When	you	use	a	PerformCommand	block,	the	first	slash	mark	(/)	is	already
included,	so	you	need	to	have	only	one	slash	mark	to	make	the	platform	and
fences.	Figure	5-12	shows	you	what	the	main	function	looks	like	for	the
initial	scene.



Figure	5-12

Test	your	mod	to	make	sure	that	the	result	is	the	same	kind	of	arena	shown
in	Figure	5-10.

Refactor:	Move	the	arena	code	to	a	new
function
Before	you	move	on	to	adding	a	goal,	refactor	your	code	so	that	the	main
function	stays	simple.	Figure	5-13	shows	you	how	to	refactor	your	code	to
clean	up	the	main	function.

Figure	5-13

Goal:	Add	a	melon	block	to	break
After	you	have	set	up	the	initial	scene,	you	can	use	the	scene	for	a	game.
The	arena	function	stays	the	same,	but	you	add	a	melon	block	on	the
opposite	side	of	the	arena	from	the	player.

Figure	5-14	shows	the	new	function,	SetupGame,	which	creates	the	arena,
places	the	melon	block,	and	puts	the	player	in	the	starting	position.



Figure	5-14

To	add	a	melon	block,	follow	these	steps:

1.	 Create	the	SetupGame	function	and	add	a	call	to	SetupGame	to	main.

2.	 Add	a	new	drone	named	d	and	move	it	to	one	side	of	the	arena.	The
drone	should	move	only	18	blocks	because	the	stone	and	the	fence
occupy	2	of	the	blocks	and	you	want	the	player	to	be	inside	the	fence.

3.	 Move	the	drone	up	by	2	so	that	the	player	starts	above	the	platform	and
falls	into	the	arena.



4.	 Move	the	player	to	the	location	of	the	drone.	Now	the	player	is	at	the
starting	position.

5.	 Move	the	drone	to	the	opposite	side	of	the	arena.	Moving	the	drone	33
blocks	leaves	2	blocks	empty	between	the	melon	block	and	the	fence.

6.	 Place	the	melon	block	and	move	the	drone	backward	by	1	block.

At	this	point,	nothing	happens	when	the	player	breaks	the	melon	block,	and
you	write	that	code	in	Iteration	2.

Test:	Make	sure	your	game	is	set	up	correctly
In	the	previous	section,	you	make	specific	calculations	to	ensure	that	the
player	and	the	melon	block	are	on	opposite	sides	of	the	arena.	Now	test
your	mod.	Figure	5-15	shows	the	scene	you	see	when	you	run	the	mod,	and
Figure	5-16	gives	you	the	bird’s-eye	view.

Figure	5-15



Figure	5-16

Challenge:	Add	monsters	to	the	arena
After	you	have	your	game	all	set	up,	you	can	start	making	it	playable.	On
the	first	iteration	of	the	gameplay	loop,	you	should	add	one	monster	for	the
player	to	defeat,	or	to	at	least	get	around.	This	time,	write	the	code	to	spawn
the	monster	in	a	separate	function	from	the	beginning.

Figure	5-17	shows	the	code	you	need	to	add	to	make	1	monster	spawn	near
the	melon	block.	Note	that	before	you	spawn	the	creeper,	you	move	the
drone	1	block	away	from	the	melon	block	so	that	the	creeper	doesn’t	spawn
inside	the	block	and	immediately	die.

Figure	5-17



Now	when	you	test	your	game,	you	see	a	screen	similar	to	Figure	5-18.

Figure	5-18

Reward:	Replay	the	first	level
In	future	iterations	of	the	gameplay	loop,	you	reward	players	with	levels
that	are	more	difficult	to	complete.	For	this	first	iteration,	however,	just	let
people	replay	the	first	level.

To	do	this,	you	have	to	make	an	event	(as	described	in	Project	4)	that	calls
the	function	on_block_break	whenever	the	player	breaks	any	block.	Figure
5-19	shows	how	to	add	this	event	call	into	the	main	function.

Figure	5-19

The	on_block_break	function	checks	to	see	whether	the	melon	block	was
the	block	that	was	broken.	If	it	was,	you	see	the	message	“Yay!	You	broke
the	Melon	Block!”	Figure	5-20	shows	the	on_block_break	function.



Figure	5-20

In	addition	to	congratulating	the	player	for	breaking	the	block,	you	want
that	person	to	restart	the	level.	To	do	this,	you	add	two	variables	to	the
SetupGame	function:	one	that	keeps	track	of	where	the	player	should	start	out
and	one	that	indicates	where	the	melon	block	should	be	placed.	Figure	5-21
shows	how	to	add	these	two	variables.

Figure	5-21

Now	you	can	write	a	ResetGame	function	that



Destroys	all	monsters	in	the	arena
Teleports	the	player	back	to	the	starting	position
Moves	Drone	d	back	to	the	melon	block’s	starting	position

Places	a	new	melon	block
Spawns	monsters	again

Figure	5-22	shows	this	new	function,	and	Figure	5-23	shows	how	to	call	it
from	the	on_block_break	function.

Figure	5-22

Figure	5-23

Test:	Iteration	1	completed
After	you	have	completed	the	four	parts	of	Iteration	1,	you	can	test	your



game	and	make	sure	that	everything	is	working	correctly.	Your	code	should
look	just	like	Figure	5-24.

Figure	5-24

	When	testing,	develop	a	series	of	test	cases	and	predictions	so	that
you	can	make	sure	everything	that	you’ve	written	has	been	tested	(see
Project	4,	the	section	about	planning	and	executing	test	cases).

Iteration	2:	Add	Levels
On	the	second	iteration	of	the	gameplay	loop,	you	can	add	more	levels	to
your	game.	You	can	also	take	this	time	to	make	the	arena	more	unique	and
personalized,	or	change	the	item	you	make	the	player	break	to	go	on	to	the
next	level.

Start:	Make	the	arena	unique
Add	some	designs	to	the	arena	floor.	In	Figure	5-25,	you	can	see	where	I
used	two	//hcyl	WorldEdit	commands	to	make	one	hollow	cylinder	of
glass	and	one	of	diamond.	You	can	see	the	changed	arena	function	in	Figure
5-26.



Figure	5-25

Figure	5-26

Take	the	time	to	be	creative	and	to	make	your	own	design	in	either	the
platform	or	the	fences.	You	might	even	want	to	add	a	ceiling	to	the	arena!

	If	you	add	a	ceiling,	start	your	player	inside	the	arena.	Otherwise,
that	person	will	get	locked	out.

Goal:	Wait	until	a	later	iteration



Sometimes,	when	you’re	iterating	through	the	gameplay	loop,	you	don’t
want	to	make	a	change	in	one	of	the	sections,	such	as	when	your	goal	is	still
the	same	(to	break	a	melon	block),	so	you	don’t	need	to	change	anything	in
the	Goal	section.	No	problem.

On	Iteration	2,	you	still	might	want	the	goal	to	be	to	break	the	melon	block,
so	you	don’t	have	to	make	any	changes	to	the	goal	this	time	around.

Challenge:	Add	monsters
Maneuvering	around	one	creeper	isn’t	too	difficult.	On	Iteration	2,	you
should	add	more	monsters	that	the	player	has	to	avoid	and	still	break	the
melon	block.	By	making	one	small	change	to	the	spawn_monster	function
(see	Figure	5-27),	you	can	spawn	5	creepers	instead	of	1.

Figure	5-27

Figure	5-28	shows	how	the	game	becomes	more	challenging	with	more
creepers	blocking	the	melon	block.



Figure	5-28

Reward:	Add	a	second	level
In	Monster	Arena,	levels	are	differentiated	by	which	monsters	the	player
faces.	To	add	a	second	level,	the	first	thing	you	have	to	do	is	create	a
variable	named	Level	that	keeps	track	of	which	level	the	player	is	on.	This
variable	should	start	at	1	because	the	player	starts	on	the	first	level.

You	should	also	create	a	list	of	monsters.	Name	the	list	Monsters	and	add
two	types	of	monsters:	creepers	and	zombies.

Figure	5-29	shows	how	to	create	these	two	variables	in	the	SetupGame
function.



Figure	5-29

Now	that	you	have	a	list	of	monsters	to	choose	from,	you	can	change	the
spawn-monster	function	to	choose	which	monsters	to	spawn,	based	on	the
level	the	player	is	on.	Figure	5-30	shows	how	to	choose	the	correct	item
from	the	list.

Figure	5-30



Finally,	you	have	to	increase	the	level	variable	every	time	the	player	breaks
the	melon	block.	If	the	player	reaches	the	final	level	(which	is	now	Level	2),
notify	her	that	the	game	is	finished;	otherwise,	the	game	should	reset,	but
with	the	new	monsters.

Figure	5-31	shows	the	changes	to	on_block_break	that	need	to	happen	to
start	the	new	level.

Figure	5-31

Test:	Make	sure	both	levels	work
After	you	have	added	the	changes	to	the	spawn-Monster	function,	test	your
mod.	When	you	start	the	test,	you	should	see	five	creepers,	as	shown	in
Figure	5-32.



Figure	5-32

If	you	break	the	melon	block,	the	game	resets	and	you	see	five	zombies,	as
shown	in	Figure	5-33.

Figure	5-33

If	you	break	the	melon	block	again,	the	game	doesn’t	change,	but	you	see
the	message	“Yay!	You	beat	all	of	the	levels!	Good	Job!”	(see	Figure
5-34).



Figure	5-34

Iteration	3:	Add	Even	More
Levels	and	Challenges

After	you	start	getting	the	hang	of	making	the	Monster	Arena	minigame,	it
shouldn’t	be	too	hard	to	add	a	few	more	levels	and	challenges.

In	this	iteration,	you	can	skip	the	Start	and	Goal	sections,	described	earlier
in	this	project,	because	the	game	is	becoming	fun	simply	by	adding	more
challenges	and	rewards.

Challenge:	Switch	to	Survival	mode
You	may	have	noticed	that	a	player	can	pretty	easily	advance	past	all	the
creatures,	because	the	player	is	in	Creative	mode.	As	you	did	in	Project	4,
you	should	add	a	PerformCommand	block	so	that	when	the	game	starts,	the
player	is	put	into	Survival	mode	(refer	to	Figure	4-17).

Figure	5-35	shows	the	changes	you	make	to	the	SetupGame	function	to	do
this.



Figure	5-35

Now	that	you’ve	made	it	easier	for	the	player	to	die,	you	should	also
include	an	event	to	be	triggered	whenever	the	player	respawns.	Figure	5-36
shows	the	changes	to	the	main	function	and	the	new	RespawnPlayer	function
to	teleport	the	player	back	to	the	arena.



Figure	5-36

Reward:	Add	five	more	levels
Adding	levels	is	pretty	easy	because	you	have	already	set	up	the	levels	to	be
based	on	a	list.

First,	refactor	the	on_block_break	function	to	confirm	that	you	have
iterated	through	all	of	the	monsters	in	the	Monster	list,	and	not	a	specific
number	(like	2).	Figure	5-37	shows	how	to	change	the	conditional	statement
to	have	it	based	on	the	list	length.

Figure	5-37

Now	you	can	just	add	more	monsters	to	your	monster	list.	Figure	5-38
shows	the	updated	SetupGame	function.



Figure	5-38

Finally,	you	can	change	the	spawn_monster	function,	shown	in	Figure	5-39,
to	spawn	more	monsters	as	the	levels	become	more	challenging.



Figure	5-39

Make	More	Iterations:	Be
Creative	and	Unique

After	you	have	created	a	fully	functional,	multilevel	Monster	Arena
minigame,	you	can	continue	iterating	on	the	gameplay	loop	to	make	even
more	challenges	and	rewards	and	to	set	different	goals.	You	can	even	make
the	arena	more	unique,	such	as	adding	patterns	to	the	platform,	as	you	can
see	in	Figure	5-1.

A	more	challenging	enhancement	is	to	add	random	monsters	at	each	level.
For	example,	at	Level	1	you	add	5	creepers,	and	at	Level	2	you	add	a	total
of	10	monsters	that	are	(randomly)	creepers	or	zombies.	At	Level	3,	you
add	a	total	of	15	monsters	that	are	(randomly)	creepers,	zombies,	or
spiders.	Figure	5-40	shows	how	to	add	randomness	to	the	spawn_monster
function.

Figure	5-40



Project	6
Minecraft	Modding	with	Friends:
The	Multiplayer	Version	of	Spleef
Making	Minecraft	minigames	can	be	a	lot	of	fun	because
after	you	make	it	you	can	play	games	inside	of	Minecraft	for	hours,	but
what	is	even	more	fun	is	making	minigames	that	you	can	play	with	your
friends.	In	this	project,	I	show	you	how	to	convert	single-player	games
(games	that	only	have	player)	into	multiplayer	games	(games	that	have
more	than	one	player).	I	also	explain	how	to	change	the	gameplay	loop	(for
the	single-player	Spleef	game	from	Project	3)	so	that	you	can	design	a
multiplayer	game	from	the	ground	up.



Start	from	the	Single-Player
Spleef	Game

Rather	than	remake	the	entire	Spleef	game,	you	can	start	from	the	single-
player	version	and	turn	it	into	a	multiplayer	version.

Note:	Before	you	begin	this	section,	you	should	have	already	built	Spleef.	If
you	haven’t	built	it	yet,	go	back	to	Project	4	and	build	a	single-player	Spleef
game.

To	start	from	single-player,	follow	these	steps:

1.	 Open	the	completed	single-player	Spleef	mod	(described	in	Project	4),
click	the	Actions	tab,	and	then	choose	Copy	from	the	menu,	as	shown	in



Figure	6-1.
2.	 Click	to	select	the	copied	version	of	Spleef,	shown	in	Figure	6'2,	and

then	click	on	Code	to	go	into	the	programming	environment.
3.	 At	the	top	of	the	screen,	click	the	Actions	tab	and	choose	Rename	from

the	menu,	as	shown	in	Figure	6-3.
4.	 Rename	the	mod	to	Spleef	_Multiplayer,	as	shown	in	Figure	6-4.
5.	 After	the	page	reloads,	click	on	the	Spleef	multiplayer	mod	again,	as

shown	in	Figure	6-5,	and	then	click	the	code	button	to	go	into	the
programming	environment.

Figure	6-1

Figure	6-2



Figure	6-3

Figure	6-4

Figure	6-5

Now	you’re	ready	to	start	modifying	your	single-player	version	of	Spleef
to	make	it	multiplayer.

	If	you	make	a	mistake	at	any	point,	you	can	always	go	back	and
make	another	copy	of	your	single-player	version.



	When	an	expert	modder	decides	to	use	an	earlier	version	of	a	chunk
of	code,	it’s	called	reverting.	This	is	why	you	should	always	test	your
code	as	you’re	writing	it,	to	avoid	making	a	single	tiny	mistake	just
before	you	finish	making	your	multiplayer	game	and	then	being
unable	to	figure	out	how	to	undo	it.	On	top	of	all	that,	you	have	to
revert	to	the	single-player	version	and	start	over.

	Test,	and	test	often!

Summarize	the	Gameplay	Loop
Even	though	you’re	making	a	multiplayer	game,	you	can	still	use	the
gameplay	loop	to	guide	you	in	making	small	changes.	At	each	iteration,	you
can	test	to	ensure	that	you	haven’t	made	any	mistakes.	This	makes	reverting
to	earlier	versions	easier	because	you’re	making	only	small,	incremental
changes,	and	because	they’re	small,	they’re	easier	to	undo.

	The	gameplay	loop	(see	Project	4)	is	shown	in	Figure	6-6.



Figure	6-6

Before	you	start	iterating	on	the	gameplay	loop,	summarize	on	paper	the
changes	you	plan	to	make,	like	this:

Start:	No	changes	need	to	be	made	to	the	scene	yet,	unless	you	want	to
enlarge	the	arena	to	make	the	games	last	longer.
Goal:	The	new	goal	is	to	break	200	blocks	before	your	opponent	does.
Challenge:	The	new	challenge	is	adding	a	player	to	the	scene.
Reward:	The	new	reward	is	beating	the	other	player.

The	new	gameplay	loop	should	be	simple	and	not	have	a	lot.	After	you



successfully	make	the	multiplayer	game,	you	can	always	revisit	the
gameplay	loop	and	make	it	more	interesting,	such	as	making	the	arena
bigger.

Iteration	1:	Refactor	the	Single-
Player	Version

Before	you	add	a	second	player	to	the	game,	you	need	to	do	a	bit	of
refactoring.	Instead	of	referring	to	me,	you	should	refer	to	a	specific	player
who	is	defined	in	your	mod.	In	this	section,	I	walk	you	through	the	steps	to
do	it	—	while	setting	up	for	the	multiplayer	version.

	Why	would	you	start	making	your	game	multi-player	by	only
replacing	me	rather	than	also	including	Player2?	When	you	make	a	lot
of	changes	to	your	code	to	refer	to	a	player	by	name,	rather	than	use
the	me	block,	you	can	test	the	changes	you	made	before	adding	even
more	complexity	with	multiple	named	players.	In	Iteration	2,	you	add
in	Player2.

First	you	need	to	determine	the	Minecraft	username	of	Player1	and	put	that
info	into	your	mod.	Follow	these	steps:

1.	 Make	a	new	function	named	SetupMultiplayer,	and	call	it	from	main,	as
shown	in	Figure	6-7	(and	described	in	Project	2).

	The	main	function	already	has	other	blocks	in	it	because	you’re
starting	from	the	Spleef	game	I	show	you	how	to	build	in	Project	4.

2.	 Create	a	new	variable	named	Player1,	and	set	it	to	the	first	player ’s
Minecraft	username,	as	shown	in	the	example	in	Figure	6-8.	In	this
example,	I’m	using	thoughtstem	as	Player1.

3.	 Review	your	mod	and	replace	any	references	to	me	with	references	to
the	player	with	the	name	of	the	Player1	variable.
For	example,	if	your	Minecraft	name	is	thoughtstem,	Figure	6-9	shows



three	ways	that	you	can	reference	your	player	in	Minecraft.
Start	with	main	(as	shown	in	Figure	6-10)	and	step	through	it	line	by
line.	This	means	you	will	look	at	the	functions	when	they	are	called
from	main.

a.	 Since	the	first	function	call	in	main	is	SetupMultiplayer,	look	at
that	function.
SetupMultiplayer,	shown	in	Figure	6-8,	is	the	one	I	made	for	my
multiplayer	version,	so	nothing	needs	to	change.

b.	 The	second	line	in	main	is	the	call	to	the	arena	function.	Figure	6-
11	shows	the	arena	function.

c.	 The	arena	function	only	builds	the	arena.	It	has	no	indication	of
players	in	the	game,	so	nothing	needs	to	change	here,	either.

d.	 The	next	line	in	main	is	the	event	that	is	triggered	when	a	block	is
broken.	When	any	player	breaks	a	block,	the	StartGame	function
is	called.

e.	 In	your	StartGame	function,	change	the	me	block	to	a	Player
named	Player1	block,	as	shown	in	the	yellow	box	in	Figure	6-12.

f.	 The	next	line	in	main	is	the	event	that	is	triggered	when	a	player
respawns.	When	any	player	respawns,	the	SetupPlayer	function
is	called.

g.	 In	the	SetupPlayer	function,	replace	the	two	me	blocks	with	the
Player	named	Player1	block,	as	shown	in	Figure	6-13.

h.	 Add	an	if	statement	to	ensure	that	the	player	who	respawned	was
Player1	and	not	any	other	player	in	the	Minecraft	world	(see
Figure	6-14).	This	is	in	preparation	for	later	in	this	project,	when
I	show	you	how	to	add	other	players	to	your	Minecraft	world.

i.	 In	the	respawn	event	line	in	main	(see	Figure	6-15)	is	a	reference
to	me.	It	doesn’t	have	to	be	changed,	because	me	is	the	player	who
launched	the	mod.	Regardless	of	who	is	playing	the	multiplayer
Spleef	game,	the	game-launcher	(me)	is	the	only	one	who	finds
out	whenever	anyone	respawns	(this	is	also	described	as	me
receiving	the	event).
The	final	line	in	main	is	the	event	that	is	triggered	when	a	player



moves.
j.	 Change	the	final	line	so	that	Player1	(instead	of	me)	triggers	this
event.
Figure	6-16	shows	the	change	you	make	to	main.

k.	 When	any	player	moves,	the	function	removeBlockAfterStep	is
called.
Change	the	removeBlockAfterStep	function	to	ensure	that	it	was
Player1	who	moved,	as	shown	in	Figure	6-17.
First	get	the	name	of	the	player	who	moved,	and	then	use	an	if
statement	to	ensure	that	it	was	Player1.

l.	 The	removeBlockAfterStep	function	calls	the	removeBlock
function.	In	this	function,	you’re	sending	a	message	to	me,	but	you
want	to	send	it	to	the	player	who	just	made	a	block	disappear.

m.	 Add	a	parameter	named	p_name,	and	send	the	function	the	name
of	the	player	who	just	moved.
Figure	6-18	shows	how	to	change	removeBlock	and
removeBlockAfterStep.

Figure	6-7

Figure	6-8

Figure	6-9



Figure	6-10

Figure	6-11



Figure	6-12

Figure	6-13

Figure	6-14

Figure	6-15

Figure	6-16



Figure	6-17

Figure	6-18

Figure	6-19	shows	the	entire	code	block	you	now	have	for	your	Spleef
multiplayer	mod.



Figure	6-19

Test	your	mod	to	make	sure	that	it	behaves	exactly	as	the	original	Spleef
game	(described	in	Project	4)	behaved.	There	should	be	no	changes	to	how
you	play	and	what	happens	during	play;	it’s	still	the	single-player	version	of
Spleef.

	If	you	don’t	recall	how	the	original	single-player	version	of	the
Spleef	game	works,	go	back	and	experiment	with	it	first,	and	then	with
the	multiplayer	version,	to	make	sure	that	they	both	do	the	same	thing.

Iteration	2:	Add	in	Player2
After	Iteration	1	(making	your	Spleef	game	independent	of	the	me	block)
you	can	move	on	to	Iteration	2	and	add	in	another	player	so	that	your	game
becomes	multiplayer.	In	this	section,	I	walk	you	through	the	exact	same
process	as	the	section	“Iteration	1:	Refactor	the	Single-Player	Version.”

To	add	Player2,	follow	these	steps:

1.	 Start	with	main	and	look	at	the	first	function,	SetupMultiplayer.	Add
another	variable	named	Player2,	and	put	the	Minecraft	username	of	the
second	player	there.



Figure	6-20	shows	an	example	where	the	two	players	are	thoughtstem
and	thoughtstem2.

	It’s	difficult	to	test	the	multiplayer	version	of	Spleef	without
having	a	real-life	second	player	to	join	you,	so	(in	this	section)	work
with	a	friend	who	also	has	Minecraft	and	who	can	join	your	server	when
you’re	ready	to	test.
Back	in	main,	the	next	function	is	arena.	The	previous	section	explains
that	the	arena	function	doesn’t	need	to	know	what	players	are	playing,
so	you	can	skip	to	the	next	line.
The	third	line	in	main	is	the	event	that	calls	the	StartGame	function	when
a	block	is	broken.

2.	 In	the	StartGame	function,	make	sure	both	players	are	set	to	Survival
mode.	Also,	because	you	don’t	know	which	player	broke	the	melon
block,	make	sure	both	players	are	teleported	to	the	center	of	the	arena.
Figure	6-21	shows	how	to	make	those	changes.

3.	 Still	in	the	StartGame	function,	rename	the	blocksDestroyed	variable	to
become	more	specific	to	Player1,	and	then	add	another	variable	for
blocks	destroyed	for	Player2,	as	shown	in	Figure	6-22.

4.	 Back	in	main,	the	next	line	is	the	event	that	is	called	whenever	a	player
respawns.

a.	 The	SetupPlayer	is	called.	To	make	SetupPlayer	multiplayer-
safe,	add	an	else-if	statement	to	the	if	statement	that	essentially
does	the	same	as	Player1,	but	for	Player2.

b.	 Add	a	second	message	to	let	each	player	know	how	many	blocks
the	other	player	has	broken.

Figure	6-23	shows	all	these	changes	to	the	SetupPlayer	function.

	Be	sure	to	use	all	the	right	variables	for	Player1	and	Player2	or
else	when	Player1	respawns,	it	will	teleport	Player2	back	to	the	arena.

5.	 Back	in	main,	the	next	line	is	the	event	that	is	called	when	a	player
moves;	the	removeBlockAfterStep	function	is	called.	Figure	6-24	shows



the	change	to	the	if	statement	that	takes	place.	If	either	Player1	or
Player2	was	the	one	who	moved,	call	the	removeBlock	function.

6.	 Change	the	removeBlock	function	also,	to	increment	the	correct
blocksDestroyed	counter	and	to	announce	the	name	of	the	200-block
destroyer.
Figure	6-25	shows	how	to	change	this	if	statement.	(	Note:	The
fireworks	display	has	been	removed.)
You’re	done!	Figures	6-26	and	6-27	show	the	final	batches	of	code,
which	you	can	also	see	at

mod.learntomod.com/programs/sarah-Spleef_Multiplayer

Figure	6-20

Figure	6-21



Figure	6-22

Figure	6-23



Figure	6-24

Figure	6-25



Figure	6-26

Figure	6-27



Test	the	Multiplayer	Spleef	Game
To	test	this	multiplayer	version	of	Spleef,	launch	Minecraft	and	go	to	the
LearnToMod	server	as	I	showed	you	in	Project	1.	Then	type	the	command
/open,	as	shown	in	Figure	6-28.	This	opens	your	Minecraft	world	to	anyone
else	who	has	access	to	the	LearnToMod	server,	but	the	only	way	they	can
get	in	is	if	they	know	the	number	that	you	see	in	Figure	6-29.

Figure	6-28

Figure	6-29

You	see	the	message	shown	in	Figure	6-29,	but	your	number	will	probably
be	different.

Have	a	friend	first	join	the	LearnToMod	server	and	then	type	the	command
/join	##,	where	##	represents	the	number	displayed	in	your	server	when
you	type	the	open	command.	For	example,	Figure	6-30	shows	what	the
other	person	would	type	if	the	message	is	the	one	shown	in	Figure	6-29.

Figure	6-30

	Make	sure	the	Minecraft	usernames	that	are	in	your
SetupMulitplayer	function	are	those	of	you	and	your	friends.	For
example,	if	your	Minecraft	username	is	thoughtstem	and	your	friend’s
username	is	thoughtstem2,	your	SetupMultiplayer	function	would
look	like	Figure	6-31.



Figure	6-31

Click	Mod	in	your	LearnToMod	account,	and	then	run	the
Spleef_Multiplayer	mod	in	Minecraft.	You	and	your	friend	are	teleported	to
the	center	of	the	arena,	as	shown	in	Figure	6-32.

Figure	6-32

When	one	of	you	breaks	the	melon	block,	you	both	should	start	making
blocks	below	you	disappear,	as	shown	in	Figure	6-33.



Figure	6-33

Play	the	multiplayer	version	to	make	sure	you	have	written	all	of	the	code
correctly	as	you	think	it	should	be.

Iteration	3:	End	the	Game	at	200
Blocks

You	should	have	the	multiplayer	version	of	Spleef	end	whenever	one	player
reaches	200	blocks.	Before	doing	this,	however,	revisit	your	scene.	Only
400	blocks	are	on	the	platform,	so	it	might	be	difficult	to	achieve	the	goal
of	destroying	200	blocks	because	it	would	mean	that	a	player	would	have	to
destroy	exactly	half	of	the	blocks	to	win,	minimizing	the	number	of
strategies	(like	destroying	blocks	on	opposite	sides	of	the	arena)	that	the
players	can	use.	An	easy	fix	is	to	double	the	size	of	the	arena.

Here’s	a	quick	fix:	In	the	Arena	function,	change	PlatformSize	from	20	to
40	for	both	the	lava	platform	and	the	diamond	arena,	as	shown	in	Figure	6-
34.



Figure	6-34

Now,	in	the	removeBlock	function,	an	easy	way	to	end	the	game	is	to	set	both
players	to	Creative	mode,	and	move	them	to	the	arena’s	center	(which	is
directly	above	the	arena).	Figure	6-35	shows	the	three	changes	you	need	to
make	to	end	the	game	when	one	player	destroys	200	blocks:	in	the
removeBlock,	StartGame,	and	endGame	functions.



Figure	6-35

Congratulations!	You	have	successfully	made	a	multiplayer	version	of
Spleef!	Be	sure	to	continue	building	onto	this	game	(maybe	try	adding	a
third	player),	test	out	all	of	the	changes	you	make	in	Iteration	3,	and
remember:	Have	fun!



Part	3
Designing	and	Building	a
Multiplayer	Minigame



This	week	you’ll	build:
Mods	that	throw	projectiles	that	cause	explosions	when	they	land
The	first	part	of	Capture	the	Flag
A	multiplayer	version	of	Capture	the	Flag	so	that	you	can	play	with
friends



Project	7
Modding	with	Projectiles

Being	able	to	build	objects,	send	drones	out,	or	trigger	events	can
be	fun;	but	being	able	to	cast	mods	out	into	the	world	and	have	them	affect
the	area	around	where	they	land	is	powerful.	In	this	project,	I	show	you	how
to	make	and	run	a	mod	that	projects	a	block	into	the	world	and	causes	an
explosion	when	it	lands.

Design	and	Build	an	Exploding
Projectile

In	this	section,	I	show	you	how	to	write	a	mod	that,	when	run	in	Minecraft,
causes	a	block	to	be	thrown	from	your	location.	When	the	block	lands,	it
causes	an	explosion,	destroying	anything	around	it.	You	can	later	modify
this	fun,	powerful	mod	to	have	it	do	other	things	also,	such	as	teleport	you
to	where	it	landed.

Design	the	launch	and	explosion



Before	you	start	coding,	plan	your	strategy.	Writing	this	exploding
projectile	mod	isn’t	as	complex	as	a	minigame	mod,	but	you	need	to	design
its	complex	pieces	still	(such	as	where	it	should	be	thrown	from	and	what
should	happen	when	it	lands).

For	starters,	you	have	to	define	these	two	actions	to	make	the	block

Launch	when	the	mod	is	run
Explode	when	it	lands

Plan	the	block	launch
When	you	run	your	mod,	make	a	block	(maybe	bedrock)	to	start	from	your
position	and	move	up	and	away	from	you.	Designing	the	code	for	a	three-
dimensional	(3D)	mod	is	kind	of	tricky	because	you	can’t	draw	it	easily	on
paper.	(3D	involves	six	directions:	up,	down,	left,	right,	forward,	and
backward).	To	write	this	3D	mod,	you	use	x-,	y-,	and	z-coordinates	to	plan
out	where	the	block	will	start	and	how	it	will	move.	Check	out	the	following
Math	Connections	paragraph	for	an	explanation	of	x-,	y-,	and	z-
coordinates,	if	you	don’t	already	know	about	them.

When	you	draw	something	on	paper,	you’re	making	a	2D	drawing.	You
know	that	something	is	2D	because	it	has	only	four	directions	(up,
down,	left,	and	right).	In	math,	up	and	down	are	represented	by	the	y-
axis	(a	higher	value	for	y	is	up	and	a	lower	value	for	y	is	down).	Left
and	right	are	represented	by	the	x-axis	(a	higher	value	for	x	is	right,	and
a	lower	value	for	y	is	left).	This	makes	x-coordinate	and	y-coordinate
easy	to	see	in	2D	space.

Figure	7-1	shows	a	2D	x-y	plane	with	a	dot	at	the	position	x=1	and	y=3,
which	can	also	be	represented	as	(1,3).



Figure	7-1

To	understand	the	3D	world,	you	have	to	introduce	another	direction
(forward	and	backward),	and	in	math,	this	is	represented	by	a	third
coordinate:	z.	Figure	7-2	shows	a	third	line	that	represents	the	z-plane
moving	into	the	screen.	The	green	dot	is	the	same	dot	from	Figure	7-1;	it’s
at	(1,3,0).	The	red	dot	is	at	(1,	3,	4)	and	is	actually	deep	into	the	screen.



Figure	7-2

Figure	7-3	shows	how	a	cube	would	look	on	the	x-,	y-,	z-	planes.	The	green
dot	from	Figure	7-2	would	be	on	the	blue	side,	flat	up	against	the	screen,
and	the	red	dot	would	be	along	the	red	side,	deep	into	the	screen.



Figure	7-3

One	way	to	make	the	block	launch	is	to	teleport	(move)	the	block	to	a
specific	location	using	the	teleport	block	in	LearnToMod.	You	can	teleport
the	block	to	(1,1,1)	then	(2,2,2)	then	(3,3,3)	then	(4,4,4)	and	so	on.	This
could	work,	but	if	you	search	through	your	LearnToMod	blocks,	you	will
find	some	useful	blocks	in	the	Minecraft⇒Block	category,	as	you	can	see	in
Figure	7-4.



Figure	7-4

A	falling	block	can	be	launched,	and	it	falls	as	it	moves	through	space,	just
as	though	you	were	to	throw	a	ball	in	the	real	world:	It	would	go	up	into	the
air	first,	and	then	it	would	fall	in	a	3D	space	(the	real	world).

Even	without	writing	the	code	yet,	you	can	plan	out	the	final	code	by
dragging	blocks	into	the	programming	environment	that	you’re	likely	to
use,	as	shown	in	Figure	7-5.

Figure	7-5

Plan	the	block	explosion



Once	you	launch	your	block,	as	described	in	the	preceding	section,	you
should	make	it	explode	when	it	hits	the	ground.	You	can	review	the
LearnToMod	blocks	to	find	the	create	explosion	block	under	the
Minecraft⇒World	category,	as	shown	in	Figure	7-6,	which	you	can	use	to
make	the	block	explode	when	it	hits	the	ground.

Figure	7-6

Similarly	to	my	instruction	in	the	previous	section,	you	can	plan	out	the
explode	function	as	shown	in	Figure	7-7.

Figure	7-7

Keep	track	of	state
An	important	aspect	to	keep	track	of	in	the	exploding	projectile	mod	is	the
state	of	the	block.	State	describes	what	the	block	is	doing	at	this	moment.	To
see	an	example,	you	can	track	your	own	state	for	an	entire	day,	and	you	can
use	a	state-machine	(a	diagram	that	tracks	data	about	the	events	in	the
world)	to	keep	track	of	it,	as	shown	in	Figure	7-8.



Figure	7-8

In	this	mod,	state	is	important	to	keep	track	of	because	you	don’t	want	the
block	to	explode	before	you	launched	it,	or	before	it	lands.	If	it	explodes
too	soon,	it	won’t	destroy	your	target	(the	place	where	it	lands).	State-
machines	are	useful	representations	of	all	possible	states	in	the	world	(or	at
least	all	the	ones	you	care	about).	Figure	7-8	shows	you	how	to	make	a
state-machine	about	your	real	life,	as	it	applies	to	playing	Minecraft.

As	you	can	see	in	Figure	7-8,	you	might	be	in	one	of	these	four	states	(in
real-life):

Asleep
Eating
Modding
Playing	Minecraft

If	you	follow	the	direction	of	the	arrow	from	the	Asleep	state	shown	in	the
figure,	you	can	see	that	the	only	action	you	can	take	when	you	leave	that
state	—	or	when	you	wake	up	—	is	to	eat	(probably	breakfast).	By
following	the	directions	of	the	arrows	again,	you	can	see	that	after	you	eat,
you	can	either	mod	or	play	Minecraft.	You	can	rotate	between	eating,
modding,	and	playing	Minecraft	all	you	want.	But	if	you	want	to	go	to	sleep
again,	you	have	to	eat	first	(probably	dinner).



The	state-machine	for	your	block	looks	something	like	Figure	7-9.	The
lines	show	actions	that	must	happen	if	the	previous	one	happens,	and	once
the	block	is	destroyed,	the	mod	is	over	and	you	can	run	it	again.

Figure	7-9

The	state-machine	in	Figure	7-9	is	simpler	than	your	Minecraft	day	state-
machine	in	Figure	7-8	because	your	block	can	take	only	one	path	through	it.
Once	it	is	created,	it	must	be	launched,	then	it	must	explode,	then	it	must	be
destroyed.	Once	it	has	been	destroyed,	the	mod	is	completed.

Running	the	mod	initiates	the	create	state,	but	it	is	useful	to	keep	track	of
whether	the	block	has	been	launched	and	whether	it	has	been	exploded.
Figure	7-10	shows	the	two	variables	you	should	add	to	keep	track	of	the
state	of	the	block.



Figure	7-10

Iteration	1:	Set	up	the	launch	event
Even	though	this	mod	has	no	gameplay	loop	(as	you	do	in	Projects	4,	5,	and
6),	you	should	still	write	this	mod	iteratively.	In	the	first	iteration,	you	make
the	block	launch	when	you	run	the	mod.	Follow	these	steps:

1.	 Send	a	message	when	you	enter	the	launch	function	to	make	sure	that
when	you	run	your	mod,	the	launch	function	gets	called.
Figure	7-11	shows	the	code	example.

2.	 You	need	to	get	your	location	so	that	the	block	launches	from	that	spot.
You	also	need	to	know	the	direction	you	are	facing	so	that	the	block
doesn’t	launch	behind	you.	(Ouch!)
To	find	this	location	information,	add	the	two	lines	shown	in	Figure	7-
12	to	the	launch	function.

	Local	variables	are	visible	only	to	the	function	they’re	in	—	and
this	step	uses	local	variables	instead	of	regular	variables.	If	you	make
the	local	variable	location	in	the	launch	function,	main	and	explode
won’t	even	know	that	location	variable	exists.	Local	variables	are
useful	when	you’re	creating	a	large	mod,	because	then	you	can	have	a
local	location	variable	in	five	different	functions.	Each	function	will	be



able	to	see	only	its	specific	location	variable,	so	if	you	change	the	value
in	one	function,	the	other	functions	don’t	accidentally	use	that	new	value.
They	don’t	even	know	it	exists.

3.	 You	can	find	local	variables	in	the	Misc	category,	as	shown	in	Figure	7-
13.

4.	 	Find	the	location’s	Direction	block	under	the	Misc	category,	as
shown	in	Figure	7-14.

5.	 Now	you	can	use	the	FallingBlock	blocks	shown	earlier,	in	Figure	7-5.
To	spawn	(create)	a	falling	block	of	type	Bedrock	at	your	location,	set
the	block’s	velocity	to	double	what	it	was	by	multiplying	it	by	2.	By
doubling	the	velocity,	the	block	starts	moving	away	from	you	(refer	to
Figure	7-3).
Figure	7-15	shows	you	how	to	set	it	up.

Figure	7-11

Figure	7-12



Figure	7-13

Figure	7-14

Figure	7-15



Velocity	is	the	speed	of	an	object	plus	the	direction	in	which	it	is
moving.	Speed	is	calculated	as	how	far	you	go	in	a	certain	amount	of
time,	such	as	moving	20	miles	in	1	hour.	That	means	you’re	moving	at
“20	miles	per	hour.”	Velocity	is	the	difference	in	your	position	in	a
certain	amount	of	time,	so	you’ll	also	know	which	direction	the	object	is
moving.

6.	 After	you’ve	ensured	that	the	only	blocks	you	have	are	the	ones	shown
in	Figure	7-15	(all	others	should	be	disabled),	test	your	mod.
When	you	run	your	mod,	you	see	a	bedrock	block	thrown	from	you	in
the	direction	that	you’re	looking,	as	shown	in	Figure	7-16.

Figure	7-16

Iteration	2:	Set	up	the	explode	event
After	you’re	sure	that	your	block	can	launch,	you	need	to	register	when	it
lands,	because	that’s	when	it	should	explode.	To	set	up	the	explode	event,
follow	these	steps:

1.	 Revisit	the	state-machine	shown	earlier,	in	Figure	7-9.



Your	block	should	explode	only	if	you	have	already	launched	it.	When
it’s	exploding,	it’s	no	longer	launching.	Figure	7-17	shows	how	the
explode	function	updates	the	state	of	your	mod	using	the	launching	and
exploding	variables.

2.	 Test	the	mod.
You	see	a	scene	like	the	one	shown	in	Figure	7-18.	When	the	block	hits
something,	you	see	the	message	Now	Exploding!.

3.	 Add	the	info	parameter	to	the	explode	function	and	use	it	to	get
information	about	the	block	that	triggered	the	event.
Because	this	function	is	being	called	from	an	event,	a	certain	block	(the
bedrock	block	that	you	launched)	triggers	the	event.	You	can	use	the
info	parameter	to	get	the	location	where	the	bedrock	landed	and	cause
an	explosion	around	that	location.	Then	set	the	exploding	variable	to
false,	because	it	is	no	longer	exploding.	Figure	7-19	shows	the	code
for	these	changes.

4.	 Test	your	code.
You	see	a	scene	like	the	one	shown	in	Figure	7-20,	where	an	explosion
takes	place	on	the	spot	where	the	bedrock	block	lands.

Figure	7-17



Figure	7-18

Figure	7-19



Figure	7-20

Iteration	3:	Set	up	the	destroy	event
You	may	have	noticed	that	the	bedrock	block	isn’t	destroyed	during	the
explosion.	To	do	make	it	disappear	(to	destroy	it),	you	can	use	a	technique
that	I	use	in	the	Spleef	minigame	(described	in	Project	4)	—	replace	the
block	with	air!	Figure	7-21	shows	you	how	to	do	it.

Figure	7-21

To	start,	call	the	destroy	function	from	the	explode	function,	as	shown	in
Figure	7-22.



Figure	7-22

When	you	test	the	mod,	you	see	an	explosion,	and	the	bedrock	block
disappears,	as	shown	in	Figure	7-23.

Figure	7-23

Iteration	4:	Refactor	and	check	the	state-
machine
Even	though	you	have	now	finished	writing	the	code	for	this	mod,	mods
aren’t	complete	unless	they’re	easy	to	use.	In	this	section,	I	tell	you	how	to
complete	Iteration	4,	where	you	refactor	your	code	to	make	it	cleaner	and
easier	to	understand.



Figure	7-24	shows	all	the	code	that	you	have	written	in	this	project,	and	it
looks	just	like	the	drawing	of	the	state-machine	in	Figure	7-25.

Figure	7-24

Figure	7-25

To	make	sure	that	you’re	transitioning	into	states	correctly	(going	from	one
state	to	another),	look	at	your	code	and	make	sure	it	matches	these	steps:

1.	 Change	the	main	function	to	match	the	one	shown	in	Figure	7-26.



When	you	run	your	mod,	the	main	function	is	called.	The	main	function
calls	the	launch	function,	and	sets	up	the	event	to	trigger	the	explode
function	when	the	block	hits	something.

2.	 Change	the	launch	function	to	match	Figure	7-27.
The	main	function	calls	the	launch	function,	which	happens	only	if	the
projectile	isn’t	already	launching	or	exploding.

3.	 Change	the	explode	function	to	match	Figure	7-28.
The	explode	function	is	called	whenever	the	main	function	notices	that
the	block	has	hit	something	(because	it	has	the	event	that	simply	waits
for	a	block	to	hit	something).	It’s	called	only	if	the	block	was	being
launched	and	it	isn’t	already	exploding.

4.	 Change	the	destroy	function	to	match	Figure	7-29.
The	destroy	function	is	called	when	the	explode	function	finishes
blowing	everything	up,	but	it	happens	only	if	the	block	is	no	longer
launching	—	and	is	actually	exploding.
By	the	end	of	exploding	projectile,	both	the	launching	and	exploding
variables	need	to	be	set	to	false	again.	The	entire	code	example	looks
like	the	one	shown	in	Figure	7-30.
Congratulations	—	you	have	made	an	exploding	projectile!

Figure	7-26



Figure	7-27

Figure	7-28

Figure	7-29



Figure	7-30

When	you	test	your	code,	it	should	do	the	same	thing	as	in	the	previous
section.

	When	code	is	refactored,	the	code	changes	but	its	effects	do	not.

Make	a	Projectile	Library
You	can	make	lots	of	projectile	effects	in	addition	to	exploding.	Rather	than
rebuild	all	the	projectile	code	from	scratch,	you	can	abstract	the	projectile
state-machine	(make	it	a	projectile	state-machine	for	any	effect,	not	just
exploding)	and	create	a	library	that	helps	you	build	a	lot	of	different
projectiles.

A	library	is	a	mod	that	lets	you	call	functions	from	other	mods.	In	Project	4,
I	show	you	how	to	use	the	ArenaBuilder	library	to	call	the	arena	function	to
build	an	arena.

Set	up	the	projectile	mods
To	set	up	the	projectile	mod,	copy	the	projectile	mod	that	I	explain	how	to
make	in	the	preceding	section.	Follow	these	steps:

1.	 Click	the	Actions	tab	and	then	choose	the	Copy	command,	as	shown	in
Figure	7-31.
You	see	two	versions	of	the	projectile	mod,	as	shown	in	Figure	7-32.



2.	 Open	one	mod	and	rename	it	Projectile_Library,	as	shown	in	Figure	7-
33.

3.	 Open	the	other	mod	and	rename	it	Exploding_Projectile,	as	shown	in
Figure	7-34.
The	two	mods	renamed	mods	are	shown	in	Figure	7-35.

Figure	7-31

Figure	7-32

Figure	7-33



Figure	7-34

Figure	7-35

Outline	the	projectile	library	and	explosion
projectile	mods
Open	the	mod	that	you	renamed	Projectile_Library	in	the	preceding	section.
It	looks	like	the	code	example	shown	in	Figure	7-36.

Figure	7-36

Making	the	Projectile_Library	mod	is	a	little	tricky	because	it	has	to	handle
the	following	information:



All	state	information,	like	launching
The	actual	launching
Destruction	of	the	projectile

But	the	Explosion_Projectile	mod	needs	to	handle

The	type	of	block	to	launch
The	actions	that	should	happen	when	the	block	lands

In	the	next	two	sections,	I	walk	you	through	the	steps	to	change	the
Projectile_Library	mod	and	the	Explosion_Projectile	mod.

	Make	one	more	copy	of	your	mod	and	name	it
Original_Explosion_Projectile,	just	in	case	you	mess	up	and	need	to
get	back	to	a	working	mod.

Change	the	main	and	launch	functions
The	first	list	in	the	previous	section	specifies	the	information	that	the
Projectile_Library	should	handle.	In	this	section,	however,	I	tell	you	how	to
actually	make	the	changes	in	your	code.

To	make	changes	to	the	main	function,	follow	these	steps:

1.	 Rename	the	main	function	init.
Because	this	mod	is	now	a	library,	the	functions	in	it	are	called	from
other	mods	—	though	the	library	itself	isn’t	run	in	Minecraft.

2.	 Export	this	function	(make	it	accessible	from	other	mods)	so	that	it	can
be	accessed	from	the	Explosion_Projectile	mod.	Figure	7-37	shows	how
the	function	should	look.	You	can	find	the	export	block	under	the	Misc
category,	as	you	can	see	in	Figure	7-38.

3.	 Add	a	parameter	named	launch_block	to	the	init	function	that	defines
the	type	of	block	to	be	launched,	and	save	the	parameter	in	a	variable
named	block_type.
Figure	7-39	shows	the	changes	you	make.

4.	 Delete	the	event.



This	step	is	handled	by	the	Exploding_Projectile	mod.	The	library
doesn’t	handle	it,	because	you	may	want	other	things	to	trigger	the
effects	later	on.	Figure	7-40	shows	the	changes	to	make.

5.	 To	name	the	exploding	variable	landing,	click	the	drop-down	arrow
next	to	the	word	exploding	and	choose	Rename	Variable	from	the	menu,
as	shown	in	Figure	7-41.

Figure	7-37

Figure	7-38



Figure	7-39

Figure	7-40



Figure	7-41

Renaming	the	variable	is	shown	in	Figure	7-42.



Figure	7-42

Your	init	should	look	like	the	one	shown	in	Figure	7-43.

Figure	7-43

After	you	complete	this	step	list,	you	may	want	to	make	a	minor	change	to
the	launch	function.	Figure	7-44	shows	how	to	change	the	bedrock	block	to
the	block_type	variable	instead;	that	way,	the	type	of	block	is	decided	in	the
Explosion_Projectile	mod.



Figure	7-44

	The	landing	variable	updates	by	itself	when	you	rename	it,	as	shown
in	Figure	7-43.

Change	the	explode	function
To	make	changes	to	the	explode	function,	you	first	need	to	change	it	to	a
function	that	has	a	return	value.	The	purpose	of	this	function,	in	the	library,
is	to	let	the	other	mod	know	whether	the	block	has	already	been	launched.
Follow	these	steps:

1.	 Rename	the	function	to	check_if_launched.
Figure	7-45	shows	the	new	function	block	you	have.

2.	 Make	a	new	variable	named	launched	and	initialize	(give	it	the	value)	it
to	false,	as	shown	in	Figure	7-46.
This	variable	should	be	returned	to	let	the	other	mod	know	whether	the
block	has	been	launched.

3.	 You	need	the	if	statement	from	the	original	explode	function,	but
instead	of	sending	a	message	and	exploding	and	destroying	anything
around	the	block,	just	set	the	launched	variable	to	true,	as	shown	in
Figure	7-47.

4.	 Export	this	function	too	so	that	the	other	mod	can	check	to	see	whether



the	block	has	been	launched.
Figure	7-48	shows	you	how.

Figure	7-45

Figure	7-46

Figure	7-47



Figure	7-48

Change	the	destroy	function
You	also	need	to	update	the	destroy	function	to	look	like	the	example
shown	in	Figure	7-49.	Follow	these	steps:

1.	 Add	a	parameter	named	block,	which	is	the	block	that	needs	to	be
destroyed.

2.	 Change	the	info’s	block	to	the	parameter	block.
3.	 Export	the	destroy	function.

Figure	7-49

Congratulations!	You	have	completed	the	Projectile_Library	mod.	The
entire	mod	should	look	like	the	one	shown	in	Figure	7-50.



Figure	7-50

Change	the	Explosion_Projectile	mod
After	the	library	is	written,	you	can	define	what	happens	in	the
Explosion_Projectile	mod.	First,	open	the	Explosion_Projectile	mod	and
import	the	Projectile_Library	that	I	tell	you	how	to	make	in	the	preceding
section.	Then	follow	these	steps:

1.	 Grab	an	import	block	from	the	Misc	category,	as	shown	in	Figure	7-51.
2.	 Type	your	LearnToMod	nickname	and	then	-Projectile_Library.	For

example,	if	your	LearnToMod	nickname	was	sarah,	your	import	block
should	look	like	Figure	7-52.
Now	you	should	make	changes	to	the	main	function	because	you	have
the	library	that	you	just	created	and	you	need	to	call	those	new	functions.

3.	 Remove	everything	from	the	main	function,	and	delete	all	of	the	blocks
except	the	event	blocks.	The	two	event	blocks	should	go	into	a	new
function	named	on_land_event,	but	the	function	that	should	be	called	is
a	new	function	named	on_land	that	has	a	parameter	named	info,	as
shown	in	Figure	7-53.

4.	 Look	in	the	Functions	category	and	you	should	see	three	new	functions
from	the	library	you	just	made,	as	shown	in	Figure	7-54.

5.	 Add	a	call	to	the	Projectile_Library.init	function,	with	a	parameter
of	Bedrock,	and	a	call	to	the	on_land_event	function,	as	shown	in



Figure	7-55.

Figure	7-51

Figure	7-52

Figure	7-53



Figure	7-54

Figure	7-55

Finally,	after	you	have	fixed	the	main	function,	fill	in	the	on_land	function.
Follow	these	steps:

1.	 Add	an	if-statement	that	calls	the
Projectile_Library.check_if_launched	function,	as	shown	in	Figure
7-56.

2.	 Put	the	explosion	code	from	the	old	explode	function	into	the	if-
statement,	as	shown	in	Figure	7-57.

3.	 Make	a	call	to	the	Projectile_Library.destroy	function,	as	shown	in
Figure	7-58.



Figure	7-56

Figure	7-57

Figure	7-58

Congratulations!	You	have	completed	the	code	for	the	Explosion_Projectile
mod!	Everything	else	in	the	mod	can	be	deleted,	so	your	entire	mod	should
look	like	Figure	7-59.

Figure	7-59

Test	your	new	library



If	you’ve	followed	along	with	all	the	steps	in	this	project,	you	should	now
have	two	mods:

Projectile_Library:	It	looks	like	the	example	shown	earlier,	in	Figure
7-50.
Explosion_Projectile:	It	looks	like	the	example	shown	in	Figure	7-59.
When	you	test	the	Explosion_Projectile	mod,	you	see	a	scene	like	the
one	shown	in	Figure	7-60.

Figure	7-60

Congratulations!	You	have	successfully	created	a	projectile	library	and	used
it	to	make	an	exploding	projectile.

Complete	an	Extra	Challenge:
Use	the	Projectile	Library	to
Make	a	Teleporting	Projectile

Figure	out	a	way	to	use	your	new	projectile	library	to	make	a	teleporting
projectile.	The	projectile	should	teleport	you	to	the	block	when	it	lands.



	You	need	to	change	only	the	two	blocks	shown	in	Figure	7-61.

Figure	7-61



Project	8
Making	a	Multiplayer	Minigame:

Capture	the	Flag
In	Project	7,	I	show	you	how	to	create	a	Projectile	library,	which	you
can	use	to	create	a	mod	that	causes	an	explosion	and	to	create	a	mod	that
teleports	you	to	another	location.	I	like	to	call	these	mods	magic	wands
because,	with	only	one	motion,	you	can	create	a	big	effect!	In	this	project,	I
explain	how	to	create	a	Capture	the	Flag	game	where	you	use	these	wands	to
defend	your	flags,	while	you	seek	out	your	opponent’s	flags.

In	the	early	1980s,	Scholastic	released	a	Capture	the	Flag–style	game	on
one	of	the	first	home	computers.	Since	then,	many	games	have	used	this	as	a
reference	for	their	games	(Call	of	Duty,	Halo,	and	Team	Fortress	2	are	just
a	few)	because	of	the	competition	that	Capture	the	Flag	inspires.	In	this
project,	I	show	you	how	to	turn	Minecraft	into	a	Capture	the	Flag	game	and
how	to	craft	the	competition	however	you	like!

Plan	the	Capture-the-Flag	Game



Before	you	start	coding,	you	should	plan	your	two-player	Capture	the	Flag
game	on	paper.	To	plan,	think	about	the	game	in	layers.	Layer	1	is	where
you	set	up	the	game	for	Capture	the	Flag.	Layer	2	is	where	you	set	up	your
libraries	to	use	during	Capture	the	Flag.	Figure	8-1	shows	what	happens	at
each	layer,	and	the	rest	of	this	project	walks	you	through	the	steps	to	build
the	Capture	the	Flag	minigame	mod.

Figure	8-1

Prepare	the	Capture-the-Flag
Mod



First,	prepare	the	Capture	the	Flag	mod	on	Layer	1:

1.	 Select	Mod	from	the	menu	at	the	top	of	the	homepage.
2.	 Create	a	new	mod	named	CaptureTheFlag,	as	shown	in	Figure	8-2.

3.	 Click	the	arrow	(as	shown	in	Figure	8-3)	to	enter	the	newly	created
mod,	as	shown	in	Figure	8-3.

4.	 Click	the	Code	box,	as	shown	in	Figure	8-4.
Now	outline	the	mod	that	you	want	to	create.	Start	out	with	a	single
player	so	that	you	can	test	the	mod	on	your	own.

Figure	8-2



Figure	8-3

Figure	8-4

Make	the	gameplay	loop
Imagine	a	gameplay	loop	for	this	iteration	of	the	Capture	the	Flag	mod.
Figure	8-5	shows	a	simple	gameplay	loop	with	four	iterations:

Start:	Make	1	player	with	1	flag	and	1	wand.	A	player	who	dies	should
respawn	at	their	flag.
Challenge:	Add	a	second	player	with	the	same	capabilities	as	Player	1.
Goal:	The	goal	is	to	destroy	the	other	person’s	flag.
Rewards:	A	player	who	destroys	all	of	their	opponent’s	flag	wins	the
game.



Figure	8-5

Iteration	1:	Create	the	Single-
Player	Version

In	this	section,	I	show	you	how	to	make	the	single-player	version	of	Capture
the	Flag.	When	you	are	making	a	multiplayer	game,	make	a	single-player
version	first,	to	ensure	that	the	game	mechanics	(such	as	giving	wands)	are
correct,	before	adding	an	extra	layer	of	complexity	(the	second	player).

Set	up	the	player
1.	 Create	a	main	function	with	a	variable	named	names,	as	shown	in	Figure

8-6.



2.	 Set	names	to	a	list,	as	shown	in	Figure	8-7	and	Figure	8-8.

3.	 To	start,	you	need	1	player,	so	click	the	star	on	the	list,	as	shown	in
Figure	8-9.

4.	 Move	the	two	extra	items	out	of	the	list,	as	shown	in	Figure	8-10.
5.	 Place	a	text	block	in	the	empty	item	space,	and	type	your	Minecraft

username,	as	shown	in	Figure	8-11.
6.	 Test	the	game.	So	far,	you	only	know	who	the	player	is,	so	just	print	that

info.	Add	a	Send	message	block,	as	shown	in	Figure	8-12.

7.	 Test	the	game	in	Minecraft.
You	see	the	scene	shown	in	Figure	8-13.

Figure	8-6

Figure	8-7



Figure	8-8

Figure	8-9



Figure	8-10

Figure	8-11

Figure	8-12



Figure	8-13

Add	a	wand
In	this	section,	I	tell	you	how	to	add	a	wand	item	to	the	inventory.	The	wand
doesn’t	do	anything;	it’s	simply	an	item	with	a	new	skin	on	it	—	a	wand	skin.
In	the	section	after	this	one,	I	tell	you	how	to	add	magic	to	the	wand.

Luckily,	LearnToMod	modding	experts	(the	creators	of	LearnToMod)	have
designed	new	wands	for	you	to	use	in	the	game.	And,	as	in	Project	7,	you
can	import	a	library	into	your	mod	to	use	the	wands	without	having	to
rewrite	it	all.

To	add	a	wand	to	the	inventory,	follow	these	steps:

1.	 Import	the	Example	Wand	mod.
The	import	can	be	found	under	the	Misc	category,	as	shown	in	Figure	8-
14.

2.	 Type	examples-magic_wands	into	the	import	block,	as	shown	in	Figure
8-15.

3.	 Create	a	new	function	named	SetupPlayer,	and	move	the	names	list	into
that	function.	Then	call	the	SetupPlayer	function	from	main,	as	shown
in	Figure	8-16.

4.	 Under	the	Functions	category,	grab	the	examples-magic_wands.init



function	(as	shown	in	Figure	8-17)	and	call	it	from	main,	as	shown	in
Figure	8-18.

5.	 Under	the	Functions	category,	grab	the	examples-
magic_wands.give_wand	function	(as	shown	in	Figure	8-19)	and	the
examples-magic_wands.light_green	function	(as	shown	in	Figure	8-
20).

6.	 Put	the	call	to	give_wand	in	the	SetupPlayer	function,	where	the	name	is
a	text	block	with	ExplosionWand,	and	the	wand	is	the	light_green	wand
from	Figure	8-20,	just	like	in	Figure	8-21.

7.	 Test	your	mod	in	Minecraft.
When	you	run	it,	you	see	a	message	saying	that	a	texture	pack	is	being
loaded.	Then	you	see	the	green	wand	show	up	in	the	inventory,	as	shown
in	Figure	8-22.	A	texture	pack	is	a	change	to	the	way	objects	look	in
Minecraft.



Figure	8-14

Figure	8-15



Figure	8-16

Figure	8-17

Figure	8-18



Figure	8-19



Figure	8-20

Figure	8-21



Figure	8-22

Awesome!	Now	it’s	time	to	see	what	actions	the	magic_wand	functions	are
performing:

1.	 Go	to	mod.learntomod.com/programs/examples-magic_wands	to	see	all
the	code	you’re	using.

2.	 The	init	function,	as	you	can	see	in	Figure	8-23,	loads	in	the	texture
pack	that	the	creators	of	LearnToMod	have	created	for	you!
The	light_green	function,	as	you	can	see	in	Figure	8-24,	simply
returns	RECORD_10.	In	Minecraft,	each	material	has	an	ID,	such	as	137,
and	the	Discs	that	we	are	using	to	represent	wands	have	IDs	3–12.	To
access	them	you	must	use	the	keyword	RECORD.	So,	to	use	the	green	disc,
you	need	access	it	with	RECORD_10.	The	texture	pack	that	you	import
in	the	init	function	is	basically	loading	a	picture	of	a	wand	to	replace
the	picture	of	the	disc.	LearnToMod	Experts	created	these	wand	pictures.
You	can	learn	more	about	this	topic	in	the	Magic	Wands	badges	under
the	Learn	category.
The	give_wand	function,	as	you	can	see	in	Figure	8-25,	creates	a	new
item	with	the	material	that	you	chose	to	pass	as	the	parameter
(light_green	wand,	in	this	case).	Then	it	gives	the	item	a	name,	the	one
that	you	pass	as	the	parameter.	Finally,	it	adds	the	item	to	the	player ’s
inventory.

Figure	8-23

http://mod.learntomod.com/programs/examples-magic_wands


Figure	8-24

Figure	8-25

Prepare	the	wand	for	magic
In	this	section,	you	call	a	function	when	the	player	interacts	with	the	magic
wand.	Follow	these	steps:

1.	 Create	an	event	that	calls	a	function	when	a	player_interact	event
happens,	as	shown	in	Figure	8-26.

2.	 Then	create	a	new	function	named	CastSpell,	which	is	called	from	the
event.
The	only	thing	this	function	should	do	is	send	a	message	saying	that	the
spell	has	been	cast,	as	shown	in	Figure	8-27.

3.	 Test	the	mod.



Notice	that	when	you	run	the	mod,	a	wand	appears	in	the	inventory	(as	it
did	in	the	previous	section).	Then	when	you	try	to	use	the	wand,	you	see
the	message	Casting	the	Exploding	Wand.

Figure	8-26

Figure	8-27

The	problem	is	that	when	you	try	to	use	any	item,	you	see	the	message
Casting	the	Exploding	Wand.	Try	it!

To	only	associate	the	CastSpell	function	with	the	wand,	follow	these	steps:

1.	 Identify	which	player	caused	the	event	and	save	that	information	in	a
local	variable	named	WandPlayer,	as	shown	in	Figure	8-28.

2.	 Get	the	name	of	the	item	in	the	player ’s	hand	by	using	the	magic_wands
library	function	Get	Item	In	Hand	Name	function	and	passing	the
WandPlayer	in	as	the	parameter,	as	shown	in	Figure	8-29.

3.	 Check	to	see	whether	the	item	the	player	just	interacted	with	was	the
exploding	wand,	and	send	the	message	only	if	that	is	the	case,	as	shown
in	Figure	8-30.

4.	 Test	the	mod	again.
This	time,	the	message	appears	only	when	you	try	to	use	the	wand,	but
not	any	other	item.



Figure	8-28

Figure	8-29

Figure	8-30

Design	the	wand’s	magic
After	you	have	a	wand	and	you	know	when	the	player	is	trying	to	use	it,	you
can	make	the	wand	cast	a	spell!

The	wand	you	made	in	the	previous	section	is	the	explosion	wand.	In
Project	7,	you	see	how	to	make	a	mod	that	throws	a	block	and	causes	an
explosion	when	it	lands.	You	reuse	that	code	here.	(You	can	see	the	code	in
Figure	8-31	and	Figure	8-32.)



Figure	8-31

Figure	8-32

Before	you	make	changes	to	the	code,	you	should	understand	how	all	the
mods	you’re	using	will	interact.	Figure	8-33	shows	the	three	mods	you
should	have	at	this	point,	if	you	have	followed	all	the	steps	in	this	project	so
far:	CaptureTheFlag,	ExplodingProjectile,	and	ProjectileLibrary.



Figure	8-33

Review	each	mod	to	be	sure	that	you	understand	the	purpose	of	each	mod:

CaptureTheFlag:	In	this	mod,	you	know	who	the	players	are,	and	you
know	which	wands	you	want	to	give	each	player.	You	need	to	be	able	to
associate	a	certain	type	of	wand	(like	ExplodingProjectile)	with	the
wand,	and	you	need	to	have	the	exploding	projectile	start	from	the
player	using	the	wand.
ExplodingProjectile:	The	exploding	projectile	sends	a	message,	which
needs	to	go	to	the	player	who	has	cast	the	spell,	not	me,	so	a	parameter
needs	to	be	passed	into	this	mod.
ProjectileLibrary:	The	projectile	library	needs	to	know	from	where	to
originate	the	projectile	so	that	it	doesn’t	always	start	at	the	location	of
me.	A	parameter	needs	to	be	passed	to	this	mod	as	well.

Change	the	Projectile	Library	mod



You	should	start	by	changing	the	projectile	library:

1.	 Add	a	parameter	to	the	init	function	named	casting_player,	as	shown
in	Figure	8-34.

2.	 Create	a	new	global	variable	named	player,	and	set	its	value	to
casting_player,	as	shown	in	Figure	8-35.

3.	 In	the	launch	function,	change	the	location	to	become	the	location	of	the
player,	not	me,	as	shown	in	Figure	8-36.
Your	mod	should	have	the	green	Saved	icon	in	the	top-right	corner	of
the	programming	environment.

Figure	8-34



Figure	8-35

Figure	8-36

At	this	point,	the	entire	ProjectileLibrary	mod	should	look	like	Figure	8-37.



Figure	8-37

Change	the	Exploding	Projectile	mod
After	your	projectile	library	can	be	given	the	casting	player,	it’s	time	to
change	the	ExplodingProjectile	mod	to	be	able	to	accept	the	casting	player,
and	pass	it	to	the	library:

1.	 Click	in	the	import	statement.	Delete	the	last	y	in	the	word	Library,	and
then	and	type	it	in	again,	see	Figure	8-38.
This	step	causes	LearnToMod	to	update	the	library	it’s	using.

2.	 Now	whenever	you	look	at	the	functions	that	you	can	use	from
ProjectileLibrary,	you	will	see	the	init	function	has	a	new	parameter,
casting_player,	as	shown	in	Figure	8-39.

3.	 Replace	the	call	to	ProjectileLibrary.init	with	the	new	function,	as
shown	in	Figure	8-40.

4.	 Add	a	parameter	to	main	named	casting_player,	as	shown	in	Figure	8-
41.

5.	 Add	a	global	variable	named	player	that	is	set	to	the	casting_player
parameter,	as	shown	in	Figure	8-42.

6.	 In	the	on_land	function,	change	the	me	block	to	player.	Be	sure	to	also
delete	and	add	back	in	the	call	to	the	check_if_launched	and	destroy



functions.
You	have	to	delete	the	old	ones	and	add	the	new	ones	back	in	because
you	updated	the	library.	The	on_land	function	now	looks	like	Figure	8-
43.

7.	 Change	the	main	function	to	launch,	and	export	the	launch	function,	as
shown	in	Figure	8-44.

Figure	8-38



Figure	8-39



Figure	8-40

Figure	8-41



Figure	8-42

Figure	8-43



Figure	8-44

At	this	point,	the	entire	ExplodingProjectile	mod	looks	like	Figure	8-45.

Figure	8-45

Make	your	wand	use	magic



After	your	old	mods	can	handle	who	is	casting	the	spell,	you	can	call	the
launch	mod	from	your	CaptureTheFlag	mod.	Follow	these	steps:

1.	 Import	the	ExplodingProjectile	library	into	your	CaptureTheFlag	mod,
as	shown	in	Figure	8-46.

2.	 In	the	Functions	category,	drag	the	Launch	function	into	the
programming	environment,	as	shown	in	Figure	8-47.

3.	 Add	a	call	to	the	launch	function	in	your	CastSpell	function,	passing
WandPlayer	in	as	the	casting_player	parameter.	Also,	change	the
message	to	be	sent	to	WandPlayer,	as	shown	in	Figure	8-48.
At	this	point,	the	entire	CaptureTheFlag	mod	looks	like	Figure	8-49.

4.	 Test	your	mod.
This	time,	when	you	run	the	mod,	you	receive	a	light	green	wand.	When
you	try	to	use	the	wand,	a	projectile	is	thrown;	when	it	lands,	it	causes	an
explosion.

Figure	8-46



Figure	8-47



Figure	8-48

Figure	8-49

Give	the	player	a	flag
After	the	player	has	a	wand	that	can	cast	magic,	you	should	give	her	a	flag
to	protect.	Follow	these	steps:

1.	 Create	a	function	called	give_flag	that	takes	1	parameter	named
flag_type,	as	shown	in	Figure	8-50.

2.	 Use	a	counted	loop	to	loop	through	all	names	in	the	names	list,	as	shown
in	Figure	8-51.

3.	 Remove	all	flags	from	the	inventory	of	each	player,	as	shown	in	Figure
8-52.



4.	 Give	each	player	in	the	list	1	item	of	type	flag_type,	as	shown	in	Figure
8-53.

5.	 Call	the	new	function	from	the	SetupPlayer	function,	as	shown	in
Figure	8-54.
Test	the	mod.
Now	you	get	a	light	green	wand	and	one	glowstone	to	place.

Figure	8-50

Figure	8-51

Figure	8-52

Figure	8-53



Figure	8-54

Store	the	player’s	flag	locations
Now	you	need	to	set	up	the	ability	for	the	player	to	respawn	at	his	flag.	You
need	to	store	the	location	of	the	flags	and	associate	that	with	the	player	that
placed	it.

This	might	be	tricky.	Figure	8-55	sketches	out	what	to	do,	as	explained	in
this	list:

respawn_locations	is	an	object	that	holds	other	objects.	The	objects	it
holds	are	lists	associated	with	names	of	players.
"smesper"	is	the	name	of	the	first	player,	but	that	would	mean	I	would
have	to	be	playing.	Change	it	to	be	your	Minecraft	name.
players_respawn_list	is	the	list	of	respawn	locations,	and	it	should
start	out	empty.



Figure	8-55

You	should	set	up	this	object	in	the	give_flag	function.	Follow	these	steps:

1.	 Create	a	new	object	named	respawn_locations,	as	shown	in	Figure	8-
56.

2.	 For	each	player,	create	an	empty	list	named
players_respawn_locations,	as	shown	in	Figure	8-57.

3.	 Place	the	empty	list	in	the	new	object	you	just	created,	with	the	name	of
the	player	as	the	way	to	access	the	list,	as	shown	in	Figure	8-58.



Figure	8-56

Figure	8-57

Figure	8-58

When	the	player	places	the	flag,	you	add	the	location	to	her	specific	list.
Follow	these	steps:

1.	 Create	a	function	named	setup_respawn_locations	with	the	parameter
info,	as	shown	in	Figure	8-59.



2.	 Call	the	setup_respawn_locations	function	from	main	when	a
block_placed	event	happens,	as	shown	in	Figure	8-60.

3.	 Create	six	new,	local	variables	to	gather	the	information	about	who
placed	what	block,	as	shown	in	Figure	8-61.

4.	 Check	to	see	whether	the	block	that	was	placed	is	a	flag_type	block,	as
shown	in	Figure	8-62.

5.	 Create	a	local	variable	named	player_respawn_list,	and	get	the	actual
list	for	the	player	who	placed	the	block	from	the	object	you	created	in
the	give_flag	function,	as	shown	in	Figure	8-63.

6.	 Check	to	see	whether	the	list	exists,	as	shown	in	Figure	8-64.	If	it
doesn’t,	the	player	isn’t	one	of	the	players	in	the	game.

7.	 If	the	list	exists,	add	the	block’s	location	to	the	list	using	JavaScript,	as
shown	in	Figure	8-65.

Figure	8-59

Figure	8-60



Figure	8-61

Figure	8-62



Figure	8-63

Figure	8-64

Figure	8-65



Respawn	players	at	their	flag	locations
The	final	step	to	this	iteration	of	the	CaptureTheFlag	Mod	is	to	make	the
players	respawn	at	their	flag’s	location.	Follow	these	steps:

1.	 Create	a	function	named	respawn_player	with	the	parameter	info,	as
shown	in	Figure	8-66.

2.	 Add	a	call	to	respawn_player	when	a	respawn_event	happens.
Use	the	JavaScript	block	to	do	this,	as	shown	in	Figure	8-67.

3.	 Create	three	local	variables	to	get	the	data	from	the	info	parameter	and
the	list	of	respawn	locations,	as	shown	in	Figure	8-68.

4.	 Check	to	see	whether	a	respawn	location	exists	for	that	player,	as	shown
in	Figure	8-69.

5.	 If	a	location	exists,	create	a	local	variable	to	represent	the	location	of
the	flag,	as	shown	in	Figure	8-70.

6.	 Two	seconds	(2000	milliseconds)	after	the	player	respawns,	teleport	her
to	the	location	of	the	flag,	as	shown	in	Figure	8-71.

Figure	8-66

Figure	8-67



Figure	8-68

Figure	8-69

Figure	8-70

Figure	8-71



Test	Iteration	1
Congratulations!	You	should	have	a	pretty	large	mod	at	this	point,	and	you
can	see	all	of	its	code	in	Figure	8-72.

Figure	8-72

Now	it’s	time	to	test	the	mod.	When	you	run	it,	these	three	things	happen:

One	glowstone	and	one	light	green	magic	wand	are	added	to	the
inventory,	and	you	go	into	Survival	mode.
When	you	use	the	magic	wand,	the	exploding	projectile	gets	created.
Place	the	glowstone	somewhere	and	then	die.	When	you	respawn,
you’re	taken	to	your	glowstone.

	Make	sure	that	your	code	is	working	before	you	move	on	to	Project
9.



Project	9
Iterating	on	Gameplay	Using	an
Existing	Game:	Capture	the	Flag
In	this	project,	I	show	you	how	to	convert	the	single-player	version
of	Capture	the	Flag	to	multiplayer.	Playing	Capture	the	Flag	by	yourself
isn’t	much	fun	—	you	need	to	have	at	least	one	other	player.	Before	reading
this	project,	complete	all	the	code	instructions	from	Project	8.	Your	code
example	should	look	like	Figure	8-73.	Then	test	all	the	code	you	wrote	in
Project	8.

	Always	test	the	code	before	you	start	making	changes.

First	I	show	you	how	to	change	the	gameplay	loop	to	include	the	second
player	and	how	to	iterate	over	the	code	to	add	the	second	player	to	each
function.	This	ensures	that	the	second	player	is	also	getting	a	wand,	getting
respawn	locations,	and	being	able	to	respawn	at	the	respawn	location.



Look	at	the	gameplay	loop	shown	in	Figure	9-1	(and	defined	in	Project	8):
It	shows	that	you	have	completed	all	steps	in	the	Start	phase	and	you’re
facing	a	new	challenge	—	adding	Player	2	to	the	game.

Figure	9-1

After	you	add	a	second	player,	you	need	to	add	a	way	to	beat	the	game.	In
this	project,	I	walk	you	through	the	last	two	iterations	of	the	gameplay	loop:
adding	player	two	and	making	someone	win.

Iteration	2:	Add	Player	2
In	the	following	sections,	I	walk	you	through	the	steps	to	add	a	second
player	to	your	Capture	the	Flag	game.	The	code	you	wrote	in	Project	8	was
designed	to	make	it	easy	to	add	players.



Add	the	new	player	to	your	list
To	add	a	second	player,	you	first	have	to	add	the	person	to	the	list	of	players
in	your	code.	Follow	these	steps:

1.	 Click	on	the	star	on	the	names	list	in	the	SetupPlayer	function,	as	shown
in	Figure	9-2.

2.	 Add	your	friend’s	Minecraft	username	to	the	list,	as	shown	in	Figure	9-
3.

	To	avoid	getting	errors,	spell	your	friend’s	Minecraft	username
correctly.

3.	 Put	a	loop	around	the	player	command	block	so	that	you’re	setting	all
players	to	Survival	mode,	as	shown	in	Figure	9-4.

Figure	9-2



Figure	9-3

Figure	9-4

Give	all	players	wands
To	give	all	players	a	wand,	follow	these	steps:

1.	 In	a	new	tab	in	your	browser,	go	to
mod.learntomod.com/programs/examples-magic_wands	and	click	Copy
This	Mod,	as	shown	in	Figure	9-5.

2.	 Go	to:	mod.learntomod.com/book/mod	and	click	on	the	Examples	Magic
Wands	mod,	shown	in	Figure	9-6.

3.	 Click	on	the	Code	box	in	the	lower-right	corner,	as	shown	in	Figure	9-7.
Now	you	can	claim	your	own	copy	of	the	Magic	Wands	badge,	and	you
can	edit	it	to	give	wands	to	more	than	one	person.

4.	 Add	a	new	parameter	named	player_names	to	the	init	function,	as
shown	in	Figure	9-8.

5.	 Create	a	global	variable	named	players.	Global	variables	are	ones	that
all	functions	in	the	mod	can	see.	They’re	the	opposite	of	local	variables
(see	Project	7).

http://mod.learntomod.com/programs/examples-magic_wands
http://mod.learntomod.com/book/mod


It’s	a	list	of	all	players	in	the	game	(see	Figure	9-9).
6.	 Add	a	loop	around	the	texture	pack	change,	shown	in	Figure	9-10.
7.	 Create	a	local	variable	named	player.

The	variable	holds	each	player ’s	name	as	you	loop	through	the	list	of
names,	as	shown	in	Figure	9-11.

8.	 Add	the	player	to	the	list	of	players	you	created	in	Step	5,	as	shown	in
Figure	9-12.

9.	 Replace	the	me	block	with	the	player	block,	as	shown	in	Figure	9-13.

10.	 In	the	give_wand	function,	add	a	loop	around	the	give_item	block	so
that	you	can	give	the	item	to	each	player,	as	shown	in	Figure	9-14.

11.	 Do	the	same	thing	as	in	Step	10	for	the	give_all	function,	shown	in
Figure	9-15.

Figure	9-5



Figure	9-6

Figure	9-7

Figure	9-8



Figure	9-9

Figure	9-10

Figure	9-11



Figure	9-12

Figure	9-13



Figure	9-14

Figure	9-15

Import	your	own	Magic	Wands	library
In	your	CaptureTheFlag	mod,	you	need	to	import	the	Magic	Wands	library
(the	one	that	I	show	you	how	to	change	in	the	previous	section).

1.	 Change	the	import	statement	to	import	your	Magic	Wands	library,	as
shown	in	Figure	9-16.

2.	 Delete	all	calls	to	the	example-magic_wands	functions,	and	replace	them



with	the	function	calls	to	your	magic_wands	library	functions,	like	you
did	in	Project	8.	Move	the	call	to	the	magic_wands.init	function	to	the
SetupPlayer	function,	and	make	sure	that	your	call	to	give_wands	and
the	light_green	wand	is	from	your	library,	not	from	the	examples
library.	Your	SetupPlayer	function	should	look	like	Figure	9-17.

3.	 Change	the	call	to	the	item_in_hand	function	in	the	CastSpell	function
to	your	library	instead	of	to	the	examples	library,	as	shown	in	Figure	9-
18.

Figure	9-16

Figure	9-17

Figure	9-18



Test	your	game
At	this	point,	your	entire	mod	should	be	able	to	handle	multiple	players.
CaptureTheFlag	should	look	like	Figure	9-19.

Figure	9-19

To	test	your	game,	invite	a	friend	to	join	your	server.	Follow	these	steps:

1.	 On	your	LearnToMod	private	server,	type	/open.
A	message	appears,	showing	your	server	number.

2.	 After	your	friend	is	on	her	own	LearnToMod	private	server,	have	her
type	/join	##,	where	##	is	the	number	of	your	server.
After	your	friend	has	joined,	find	each	other	in	the	Minecraft	world	and
run	your	mod.	You	should	each	get	1	light	green	mod	and	1	glowstone
flag.

If	one	of	you	dies,	you	respawn	to	your	glowstone	block,	not	to	your
opponent’s.	Experiment!

Iteration	3:	Make	Someone	Win
The	final	iteration	I	describe	in	this	project	is	how	to	announce	when



someone	loses.	To	lose,	the	player	must	die	and	not	have	a	flag	to	spawn
back	to.	The	goal	of	the	game,	then,	is	to	destroy	your	opponent’s	flag	so
that	he	cannot	respawn.	In	Minecraft,	you	can’t	capture	anything	without
destroying	it,	so	maybe	we	should	have	named	this	mod	DestroyTheFlag.

The	only	changes	you	need	to	make	are	to	the	respawn_player	function.
Follow	these	steps:

1.	 Add	a	loop	that	loops	through	all	of	the	players'	respawn_locations,
and	remove	the	data	that	you	were	originally	setting	to	the
respawn_location	variable.
The	function	looks	like	Figure	9-20.

2.	 Set	the	respawn_location	variable	to	the	variable	k,	which	is	one	of	the
respawn	locations	for	the	player	who	is	respawning,	as	shown	in	Figure
9-21.

3.	 Create	a	local	variable	named	block,	which	is	the	block	that’s	at	the
location	of	the	respawn	location,	as	shown	in	Figure	9-22.

4.	 Check	to	see	whether	the	block	at	that	location	is	glowstone.
If	it	is	glowstone,	the	flag	is	still	there;	if	it	isn’t	glowstone,	the
opponent	has	destroyed	the	flag.	The	function	looks	like	Figure	9-23.

5.	 If	the	flag	is	no	longer	there,	loop	through	all	players	in	the	game,	as
shown	in	Figure	9-24.

6.	 Send	a	message	to	everyone	saying	that	the	player	has	lost,	as	shown	in
Figure	9-25.
Whew	—	now	you	have	a	multiplayer	Capture	the	Flag	game!



Figure	9-20

Figure	9-21



Figure	9-22

Figure	9-23



Figure	9-24

Figure	9-25

Make	the	game	your	own
Using	the	powerful	Capture	the	Flag	game	described	in	this	project,	you	can



continue	iterating	on	the	gameplay	loop.	Here	are	some	ideas	on	how	to
enhance	the	game:

Add	flags	for	each	player.
Add	new	kinds	of	wands	for	each	player.
Give	each	player	different	wands.

What	are	your	ideas?	Be	sure	to	share	them	on	the	LearnToMod	forums	at
forum.learntomod.com.

Give	players	teleportation	wands
After	you	have	tested	your	game,	edit	your	code	to	give	each	player	a
teleportation	wand:

1.	 Add	a	second	call	to	the	give_wand	function	inside	the	SetupPlayer
function,	as	shown	in	Figure	9-26.

2.	 In	the	CastSpell	function,	click	on	the	star	on	the	if	statement	and	add
an	else-if	statement,	as	shown	in	Figure	9-27.

3.	 Compare	Wand	with	TeleportationWand	so	that	you	can	call	the
teleportation	function	only	if	the	TeleportationWand	was	used,	as	shown
in	Figure	9-28.

4.	 Go	to	the	Exploding	Projectile	mod	and	make	a	copy	of	it.	Open	the
copied	mod	and	rename	it	TeleportationWand.	Then	import
TeleportationWand	to	your	CaptureTheFlag	mod,	as	shown	in	Figure
9-29.

5.	 Change	the	on_land	function	in	the	Teleportation	Wand	mod	to	teleport
the	player	rather	than	explode	the	block,	as	shown	in	Figure	9-30.

6.	 The	entire	Teleportation	Wand	mod	looks	like	the	one	shown	in	Figure
9-31.

7.	 Call	the	launch	function	from	the	CastSpell	function,	and	send	a
message	that	you’re	teleporting	the	player,	as	shown	in	Figure	9-32.

http://forum.learntomod.com


Figure	9-26

Figure	9-27



Figure	9-28

Figure	9-29

Figure	9-30



Figure	9-31

Figure	9-32

Play	the	Game	in	Alternative
Ways

Here	are	some	alternative	ways	to	play	the	game	of	Capture	the	Flag:



Create	a	smaller	arena.	Rather	than	hide	glowstone	flags	in	the	infinite
world	of	Minecraft,	create	a	smaller	arena	to	play	in	so	that	you	face	a
new	challenge.
Add	the	rules	of	Spleef	(see	Project	4)	to	your	game	with	an	arena.
This	method	makes	it	more	likely	that	you’ll	die	—	even	without	your
opponent	attacking,	because	you	could	simply	fall	through	the	floor.
Set	a	timer.	Set	one	timer	to	limit	how	much	time	you	can	take	to	hide
flags,	and	then	set	another	timer	to	limit	how	long	you	have	to	find	the
glowstone	flags.

What	are	your	ideas	for	playing?	Be	sure	to	share	them	on	the	LearnToMod
forums	at	forum.learntomod.com.

http://forum.learntomod.com


Part	4
Building	Your	Own	Minecraft

Minigame



This	week	you’ll	build:
Your	own	creative	and	challenging	game	to	play	inside	Minecraft



Project	10
Building	Your	Own	Game

Throughout	this	book,	I	describe	lots	of	coding	concepts	and
game	design	strategies.	In	this	project,	however,	I	guide	you	through	the
steps	to	create	your	own	Minecraft	mod.	It’s	time	to	put	your	new	skills	to
use	in	a	new	and	creative	project	that	you	come	up	with	on	your	own.

Coming	up	with	new	mod	ideas	can	be	a	fun	process	all	on	its	own.	Get
together	with	friends	and	ask	them	what	they	wish	they	could	do	in
Minecraft,	or	watch	YouTube	videos	for	inspiration.



Sketch	Out	Your	Mod
The	first	thing	to	do	when	designing	a	new	mod	is	to	sketch	out	the	result
you	want.	Keep	these	guidelines	in	mind	when	you’re	sketching	out	your
mod:

Use	graph	paper.	You	can	sketch	out	your	mod	more	accurately	on
graph	paper	than	on	blank	paper.	Figure	10-1	shows	what	graph	paper
looks	like.	You	can	look	at	each	box	on	the	graph	paper	as	a	single
block	in	Minecraft.
Math	blocks	can	be	even	more	useful	than	graph	paper.	You	can
create	the	3D	effect,	where	you	almost	feel	like	you’re	walking	around
in	the	mod	you’re	designing.
Using	blank	paper	has	its	place,	too.	Sometimes	you	just	want	to	get	a
general	idea	of	what	your	mod	will	look	like	or	what	it	will	do,	so	you
don’t	need	to	add	lots	of	detail.
Build	it	in	Minecraft	first.	If	you’re	designing	a	mod	in	which	you
build	a	structure	such	as	a	roller	coaster,	build	the	structure	by	hand	in
Minecraft	first,	to	form	an	idea	of	its	construction.
Keep	paper	and	a	pencil	handy.	Even	after	you	sketch	out	your	mod,
you	may	need	to	jot	down	ideas	or	work	through	a	problem	in	your
mod.



Figure	10-1

Plan	Your	Mod
After	you	sketch	your	mod,	you	can	plan	which	functions	you	need,	such	as
one	for	setting	up	the	mod’s	scene.	You	don’t	have	to	be	precisely	correct,
but	you	should	at	least	have	an	idea	of	what	functions	you	will	have.

Here	are	a	few	suggestions	for	planning	your	mod:

Draw	circles	around	structures,	or	even	parts	of	structures,	and	name
them.
For	parts	of	your	mod	that	aren’t	structures,	like	events,	draw	a	box	with



the	following	parts	in	it:
At	the	top:	The	name	of	the	function
Inside	the	box:	A	list	of	actions	the	function	should	perform

Ask	yourself	how	data	will	be	passed	around	your	functions.	Will	it
have	parameters?	Which	variables	should	be	local,	and	which	should	be
global	(see	Project	7)?

After	you	have	an	understanding	of	the	code	you	want	to	write,	you	can
head	to	the	LearnToMod	site	and	start	outlining,	as	described	later	in	this
project,	in	the	section	“Outline	Your	Mod.”

Draw	the	Gameplay	Loop
If	you’re	making	a	minigame,	remember	to	draw	the	gameplay	loop,
described	fully	in	Project	4.	You	can	use	the	drawing	in	Figure	10-2	as	a
template	for	the	gameplay	loop.



Figure	10-2

Here	are	some	strategies	for	planning	the	gameplay	loop:

Make	a	separate	drawing	for	each	iteration	of	the	loop.	That	way,
you	know	how	much	you	need	to	get	done	before	you	have	a	game	that
you	can	play.
Each	iteration	should	result	in	a	game	that	you	can	play.	It	may	not
be	a	lot	of	fun	in	the	first	iteration,	but	it’s	still	a	game.
Feel	free	to	change	your	mind.	If	you	think	you	have	three	iterations
and	the	third	one	seems	easier	to	complete	than	the	second	one,	just
swap	them	around.

The	gameplay	loop	can	be	used	in	other	situations	too,	as	a	general



guideline,	but	it	is	most	effective	when	you	have	a	challenge	—	a	goal
you’re	trying	to	reach	when	you’re	playing	in	the	mod	that	you	made.

Outline	Your	Mod
After	you	understand	the	structure	of	your	mod	and	how	you	want	to
approach	breaking	it	up	into	functions,	you	can	outline	it	in	LearnToMod.

Follow	these	steps:

1.	 Go	to	mod.learntomod.com	and	click	on	Mod	at	the	top	of	the	screen.

2.	 Create	a	new	mod	and	choose	Blockly	(Multiplayer)	as	the	language.
3.	 Click	the	Code	button	to	go	to	the	coding	environment.
4.	 Create	all	the	functions	that	you	outlined	earlier,	in	the	“Plan	Your	Mod”

section,	but	don’t	fill	them	in	yet.
Just	let	the	functions	sit	in	your	mod,	empty,	with	names	and	parameters.
Though	these	functions	may	end	up	changing	as	you	iterate	over	your
gameplay	loop,	it’s	important	to	start	piecing	together	the	code	early	on
so	that	you	don’t	miss	any	crucial	actions.

5.	 Call	the	functions	from	the	other	functions	as	you	think	you	would	need
to.	For	example:	You	will	have	a	main	function,	and	it	might	be	that	the
main	function	calls	all	the	other	functions.	If	that	is	the	case,	put	a	call	to
each	function	inside	of	main.

This	step	list	helps	you	visualize	your	code!

Refactor	Your	Mods
A	mod	that	starts	to	grow	too	big	for	you	to	remember	it	all	can	cause	a	lot
of	problems	because	if	you	try	to	make	changes,	you	might	make	changes
in	the	wrong	function.

	Always	consider	refactoring	your	mods	when	they	become	too
large	to	understand	easily.

http://mod.learntomod.com


An	effective	way	to	refactor	your	mod	is	to	turn	it	into	a	library	and	then
import	it	into	a	new	mod,	where	you	have	more	control.	I	show	you	how	to
do	this	in	Project	7	with	the	projectile	library.

Another	form	of	refactoring	occurs	when	you	simply	change	how	your
functions	interact,	or	even	which	functions	you	have.

	Before	starting	to	refactor,	save	a	copy	of	your	mod	so	that	you	can
always	return	to	a	working	version.

	Sometimes,	when	you’re	making	simple	refactoring	changes,	you
can	break	your	code.	Be	sure	to	continually	test	your	code	as	you	build
it.

Test	Your	Code
Test,	and	test	often.	Avoid	the	situation	where	you	spend	hours	writing	code
that	doesn’t	even	work	and	then	have	to	rewrite	it.	That’s	when	designing	on
paper	and	using	a	gameplay	loop	are	helpful.

If	you	always	have	code	that	can	be	tested	and	you	make	only	small	changes
between	testing	periods,	you’re	more	likely	to	create	correct,	working	code
that	you	can	be	proud	of.

Share	Your	Mod	with	Friends
One	of	the	best	parts	about	writing	mods	in	LearnToMod	is	that	you	can
share	them	with	friends.	Anyone	with	a	LearnToMod	account	can	not	only
see	the	code	you	have	written	but	also	remix	it!	Account	holders	can	make	a
copy	of	your	mod,	try	it	out,	and	even	modify	their	own	versions.

For	the	best	way	to	share	your	mod,	follow	these	steps:

1.	 Name	it	something	awesome,	such	as	Exploding	Rollercoaster.
2.	 As	I’ve	done	in	Figure	10-3,	add	a	screen	shot	(on	the	left	side	of	the

figure)	and	a	description	(on	the	right)	to	its	page.



3.	 Publish	it	to	the	public	mods,	such	as	the	ones	at
mod.learntomod.com/program_profiles	.

Figure	10-3

You	can	even	invite	your	friends	into	your	Minecraft	private	server	so	that
you	can	show	them	the	effects	of	your	mods	and	chat	with	them	about	your
experience.

Remix	Other	People’s	Mods
Just	as	you	share	your	own	mods,	you	should	check	out	what	other	people
have	made,	too.

On	your	home	page,	click	on	the	Find	a	Mod	button,	as	shown	in	Figure	10-
4.

Figure	10-4

Thousands	of	people	from	around	the	world	are	sharing	their	mods	every
day.	Some	of	them	are	shown	in	Figure	10-5.

http://mod.learntomod.com/program_profiles


Figure	10-5

Browse	the	list	of	mods,	and	click	on	a	mod	that	you	find	interesting.	You
can	read	its	description	to	find	out	more	and	then	click	the	Code	button	to
make	a	copy	of	it	in	your	own	LearnToMod	account.

An	extra	challenge	for	you	is	to	try	to	figure	out	how	to	add	something	neat
to	a	mod	that	someone	else	has	made.	Follow	these	steps:

1.	 Test	the	mod	to	see	what	it	does,	and	compare	that	to	what	it	is	supposed
to	do.



2.	 Read	the	code,	and	draw	it	out.	(It’s	sort	of	the	reverse	step	of	designing
code.)

3.	 Design	one	addition	to	the	code	and	figure	out	where	it	should	go	(for
example,	in	its	own	function	or	inside	another	function).

4.	 As	you	add	code,	test,	test,	test!

After	you	have	remixed	the	mod,	share	it	with	everyone	else	on	the
LearnToMod	site	to	see	how	other	coders	can	take	it	even	further.

Engage	with	Your	Community
If	you’ve	followed	along	with	my	instructions	throughout	this	book,	you’re
now	a	LearnToMod	Minecraft	modder!	And	a	large	community	of	coders
are	out	there	to	learn	from	and	share	with	—	people	who	love	to	mod,	just
like	you	do.	If	you	get	stuck	and	can’t	figure	out	a	coding	problem,	visit	the
LearnToMod	forums	and	ask	questions.	You	might	even	find	that	you	can
answer	questions	for	other	people.

Never	hesitate	to	ask	questions.	One	helpful	way	to	learn	is	to	fail	without
fear	so	that	you	can	learn	from	your	mistakes.



About	the	Author
Sarah	Guthals,	Ph.D,	is	a	computer	scientist	and	an	educator	who	has
worked	as	a	programmer	at	Microsoft,	NASA-JPL,	and	ViaSat.	She	has	also
taught	hundreds	of	teachers	from	around	the	world	how	to	teach	computer
science	to	students	as	young	as	7.	Sarah	is	now	the	chief	technical	officer
(CTO)	and	cofounder	of	ThoughtSTEM,	where	she	develops	curriculum
and	training	for	teaching	computer	science	through	Minecraft	modding.

Stephen	Foster,	Ph.D,	is	an	educator	and	software	engineer	who	has	been
developing	educational	software	for	teaching	coding	throughout	his	career.
Stephen	is	the	CEO	of	ThoughtSTEM	and	acts	as	Lead	Developer	for
ThoughtSTEM’s	educational	technologies,	which	include	LearnToMod	and
CodeSpells.	Stephen	paved	the	way	for	teaching	kids	coding	through
modding	Minecraft.

Lindsey	Handley,	Ph.D,	is	a	scientist	and	educator	with	a	passion	for	high
quality	STEM	education	for	K-12	students.	Lindsey	is	currently	the	COO	of
ThoughtSTEM	and	manages	its	coding	after-school	programs	and	camps	in
over	25	locations	across	San	Diego.	Lindsey	also	provides	support	to
teachers	across	the	world	who	want	to	teach	coding	in	their	classrooms
using	the	LearnToMod	software.



Dedication
We	dedicate	this	book	to	our	close	friends,	and	to	our	families,	who	have
supported	us	not	only	in	writing	this	book	but	also	in	becoming	who	we	are
today.	We	specifically	dedicate	this	book	to	Adrian	Guthals,	who	stayed	up
late	at	night	to	battle	Sarah	in	Spleef,	Monster	Arena,	and	Capture	the	Flag.
Those	games	wouldn’t	have	been	much	fun	if	Adrian	hadn’t	been	there	to
play-test	them.



Authors’	Acknowledgments
We	would	like	to	acknowledge	all	of	the	hard	work	that	went	into	making
Minecraft,	an	incredibly	fun	and	open-ended	game	played	by	millions
around	the	world.	Without	Minecraft,	we	couldn’t	have	made	LearnToMod,
and	we	couldn’t	have	written	this	book.	We	also	want	to	thank	the	hard-
working	coders	who	helped	with	LearnToMod	—	using	their	fast	and
creative	problem-solving	skills,	we	can	help	teach	kids	how	to	make	even
more	with	Minecraft.	And,	of	course,	we	want	to	thank	the	millions	of	kids
around	the	world	who	play	Minecraft.	You	inspired	us	to	teach	coding
through	Minecraft!



Publisher’s	Acknowledgments
Acquisitions	Editor:	Amy	Fandrei

Project	Manager:	Colleen	Diamond

Development	Editor:	Becky	Whitney

Copy	Editor:	Becky	Whitney

Technical	Editor:	Nick	Falkner,	Ph.D

Editorial	Assistant:	Claire	Brock

Sr.	Editorial	Assistant:	Cherie	Case

Production	Editor:	Suresh	Srinivasan

Project	Manager:	Colleen	Diamond



To	access	the	cheat	sheet	specifically	for	this	book,	go	to
www.dummies.com/cheatsheet/minecraftmoddingforkids.

Find	out	"HOW"	at	Dummies.com

http://www.dummies.com/cheatsheet/minecraftmoddingforkids
http://www.dummies.com










Take	Dummies	with	you
everywhere	you	go!

Go	to	our	Website

Like	us	on	Facebook

Follow	us	on	Twitter

Watch	us	on	YouTube

Join	us	on	LinkedIn

Pin	us	on	Pinterest

http://www.dummies.com
http://www.dummies.com
http://www.facebook.com/fordummies
http://www.facebook.com/fordummies
http://www.twitter.com/fordummies
http://www.twitter.com/fordummies
http://www.youtube.com/user/fordummies
http://www.youtube.com/user/fordummies
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://pinterest.com/fordummies/
http://pinterest.com/fordummies/
https://plus.google.com/105265587979403653723


Circle	us	on	google+

Subscribe	to	our	newsletter

Create	your	own	Dummies	book	cover

Shop	Online

https://plus.google.com/105265587979403653723
http://www.dummies.com/go/newsletter
http://www.dummies.com/go/newsletter
http://covers.dummies.com/
http://covers.dummies.com/
http://dummiesmerchandise.com
http://dummiesmerchandise.com


WILEY	END	USER	LICENSE
AGREEMENT

Go	to	www.wiley.com/go/eula	to	access	Wiley’s	ebook	EULA.

http://www.wiley.com/go/eula

