
Mary Jane Sterling
Author of Algebra Workbook For Dummies, 
Algebra II For Dummies, and Algebra II 
Workbook For Dummies

Learn to:
•  Understand algebra

•  Solve complex problems

•  Find the solution every time

•   Increase your understanding of how 
algebra works

Algebra I

2nd Edition
Making Everything Easier!™

         Open the book and find:

•  Plain-English explanations of 
“algebra speak”

•  How to figure out fractions and 
deal with decimals

•  Guidance on working with 
exponents and radicals

•  The rules of divisibility

•  The standard quadratic expression

•  When to use FOIL and unFOIL

•  Special cases for factoring

•  The ground rules for solving 
equations

•  How to put the Pythagorean 
theorem to work

Mary Jane Sterling has been teaching algebra, business calculus, 

geometry, and finite mathematics at Bradley University in Peoria, 

Illinois, for more than 30 years. She is the author of Algebra Workbook 

For Dummies, Algebra II For Dummies, and Algebra II Workbook 

For Dummies.

$19.99 US / $23.99 CN / £14.99 UK

ISBN 978-0-470-55964-2

Mathematics/Algebra

Go to Dummies.com®

for videos, step-by-step examples, 
how-to articles, or to shop!

The pain-free way 
to ace Algebra I
Does the word polynomial make your hair stand on end? 
Let this friendly guide show you the easy way to tackle 
algebra. You’ll get plain-English explanations of the basics — 
and the tougher stuff — in terms you can understand. 
Whether you want to brush up on your math skills or help 
your children with their homework, this book gives you 
power — to the nth degree.

•  It’s all about numbers — get the lowdown on numbers — 
rational and irrational, integers, and positive and negative 

•  Factor in the fun — discover the easy way to figure out working 
with prime numbers, factoring, and distributing

•  Don’t hate, equate! — get a handle on the most common 
equations you’ll encounter in algebra, from basic linear 
problems to the quadratic formula and everything in between

•  Resolve to solve — learn how to solve linear and quadratic 
equations, keep equations balanced, and check your work

•  Put it to use — find out how to apply algebra to tackle 
measurements, formulas, story problems, and graphs

A
lgebra I

Sterling

2nd Edition

Spine: 768



Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique 
titles, Dummies is a global leader in how-to information. Now 
you can get the same great Dummies information in an App. With 
topics such as Wine, Spanish, Digital Photography, Certification, 
and more, you’ll have instant access to the topics you need to 
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

Spine: 768

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com 
Dummies.com makes your life easier with 1,000s 
of answers on everything from removing wallpaper 
to using the latest version of Windows. 

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step instructions

Plus, each month you can win valuable prizes by entering 
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries, visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to 
www.dummies.com/cheatsheet/algebra1

www.dummies.com/cheatsheet/algebra1


by Mary Jane Sterling

Algebra I
FOR

DUMmIES
‰

2ND EDITION

01_559642-ffirs.indd   i01_559642-ffirs.indd   i 4/16/10   11:00 AM4/16/10   11:00 AM



Algebra I For Dummies®, 2nd Edition

Published by
Wiley Publishing, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or 
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written 
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the 
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. 
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley 
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the 
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything 
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affi liates in the United States and other countries, and may not be used without written permission. 
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated 
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO 
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF 
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE 
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES 
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE 
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR 
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF 
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE 
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE 
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES 
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT 
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS 
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND 
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care 
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may 
not be available in electronic books.

Library of Congress Control Number: 2010920659

ISBN: 978-0-470-55964-2

Manufactured in the United States of America

10   9   8   7   6   5   4   3   2   1

01_559642-ffirs.indd   ii01_559642-ffirs.indd   ii 4/16/10   11:00 AM4/16/10   11:00 AM

www.wiley.com


About the Author
Mary Jane Sterling has been an educator since graduating from college. 
Teaching at the junior high, high school, and college levels, she has had the 
full span of experiences and opportunities to determine how best to explain 
how mathematics works. She has been teaching at Bradley University in 
Peoria, Illinois, for the past 30 years. She is also the author of Algebra II For 
Dummies, Trigonometry For Dummies, Math Word Problems For Dummies, 
Business Math For Dummies, and Linear Algebra For Dummies.

Dedication
I dedicate this book to my husband, Ted, and my three children — Jon, Jim, 
and Jane — for their love, support, and contributions. They constantly either 
come up with suggestions for my writing or get themselves into interesting 
situations that I can write about. I also dedicate the book to two teachers, 
Catherine Kay and Alba Biagini, who are responsible for the professional path 
I’ve taken. And, fi nally, I dedicate the book to my nephew, Timothy, for his 
continuing demonstrations of courage and faith.

Author’s Acknowledgments
I’d like to thank several people for making the second edition of this book 
possible: Lindsay Lefevere, my acquisitions editor, who continues to keep 
her pulse on the world of math projects; Elizabeth Kuball, my fantastic proj-
ect editor and copy editor; and Stefanie Long, my technical editor, who gave 
my math a thorough, careful examination.

01_559642-ffirs.indd   iii01_559642-ffirs.indd   iii 4/16/10   11:00 AM4/16/10   11:00 AM



Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com. 
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974, 
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media 

Development

Project Editor: Elizabeth Kuball
(Previous Edition: Kathleen A. Dobie)

Senior Acquisitions Editor: 
Lindsay Sandman Lefevere

Copy Editor: Elizabeth Kuball

Assistant Editor: Erin Calligan Mooney

Editorial Program Coordinator: Joe Niesen

Technical Editor: Stefanie Long

Senior Editorial Manager: Jennifer Ehrlich

Editorial Supervisor and Reprint Editor: 

Carmen Krikorian

Editorial Assistants: Jennette ElNaggar, 
Rachelle Amick

Senior Editorial Assistant: David Lutton

Cover Photos: © Imthezorro | Dreamstime.com

Cartoons: Rich Tennant 
(www.the5thwave.com)

Composition Services

Project Coordinator: Sheree Montgomery

Layout and Graphics: Nikki Gately, 
Joyce Haughey

Proofreaders: Melissa D. Buddendeck, 
Rebecca Denoncour

Indexer: Sherry Massey

Publishing and Editorial for Consumer Dummies

Diane Graves Steele, Vice President and Publisher, Consumer Dummies

Kristin Ferguson-Wagstaffe, Product Development Director, Consumer Dummies

Ensley Eikenburg, Associate Publisher, Travel

Kelly Regan, Editorial Director, Travel

Publishing for Technology Dummies

Andy Cummings, Vice President and Publisher, Dummies Technology/General User

Composition Services

Debbie Stailey, Director of Composition Services

01_559642-ffirs.indd   iv01_559642-ffirs.indd   iv 4/16/10   11:00 AM4/16/10   11:00 AM



Contents at a Glance
Introduction ................................................................ 1

Part I: Starting Off with the Basics .............................. 7
Chapter 1: Assembling Your Tools .................................................................................. 9
Chapter 2: Assigning Signs: Positive and Negative Numbers ..................................... 19
Chapter 3: Figuring Out Fractions and Dealing with Decimals .................................. 35
Chapter 4: Exploring Exponents and Raising Radicals ............................................... 55
Chapter 5: Doing Operations in Order and Checking Your Answers ........................ 73

Part II: Figuring Out Factoring ................................... 91
Chapter 6: Working with Numbers in Their Prime ...................................................... 93
Chapter 7: Sharing the Fun: Distribution .................................................................... 107
Chapter 8: Getting to First Base with Factoring ......................................................... 127
Chapter 9: Getting the Second Degree ........................................................................ 139
Chapter 10: Factoring Special Cases ........................................................................... 157

Part III: Working Equations ...................................... 169
Chapter 11: Establishing Ground Rules for Solving Equations ................................ 171
Chapter 12: Solving Linear Equations ......................................................................... 183
Chapter 13: Taking a Crack at Quadratic Equations ................................................. 203
Chapter 14: Distinguishing Equations with Distinctive Powers ............................... 223
Chapter 15: Rectifying Inequalities .............................................................................. 243

Part IV: Applying Algebra ........................................ 263
Chapter 16: Taking Measure with Formulas ............................................................... 265
Chapter 17: Formulating for Profi t and Pleasure ....................................................... 281
Chapter 18: Sorting Out Story Problems..................................................................... 291
Chapter 19: Going Visual: Graphing ............................................................................ 311
Chapter 20: Lining Up Graphs of Lines ....................................................................... 327

Part V: The Part of Tens ........................................... 345
Chapter 21: The Ten Best Ways to Avoid Pitfalls ...................................................... 347
Chapter 22: The Ten Most Famous Equations ........................................................... 353

Index ...................................................................... 357

02_559642-ftoc.indd   v02_559642-ftoc.indd   v 4/16/10   11:01 AM4/16/10   11:01 AM



02_559642-ftoc.indd   vi02_559642-ftoc.indd   vi 4/16/10   11:01 AM4/16/10   11:01 AM



Table of Contents

Introduction ................................................................. 1
About This Book .............................................................................................. 2
Conventions Used in This Book ..................................................................... 2
What You’re Not to Read ................................................................................ 2
Foolish Assumptions ....................................................................................... 3
How This Book Is Organized .......................................................................... 3

Part I: Starting Off with the Basics ....................................................... 3
Part II: Figuring Out Factoring .............................................................. 4
Part III: Working Equations ................................................................... 4
Part IV: Applying Algebra ...................................................................... 4
Part V: The Part of Tens ........................................................................ 5

Icons Used in This Book ................................................................................. 5
Where to Go from Here ................................................................................... 6

Part I: Starting Off with the Basics ............................... 7

Chapter 1: Assembling Your Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Beginning with the Basics: Numbers ............................................................ 9
Really real numbers ............................................................................. 11
Counting on natural numbers ............................................................ 11
Wholly whole numbers ....................................................................... 11
Integrating integers.............................................................................. 11
Being reasonable: Rational numbers ................................................. 12
Restraining irrational numbers .......................................................... 12
Picking out primes and composites .................................................. 12

Speaking in Algebra ....................................................................................... 13
Taking Aim at Algebra Operations .............................................................. 14

Deciphering the symbols .................................................................... 14
Grouping ............................................................................................... 15
Defi ning relationships ......................................................................... 16
Taking on algebraic tasks ................................................................... 16

Chapter 2: Assigning Signs: Positive and Negative Numbers . . . . . . .19

Showing Some Signs ...................................................................................... 19
Picking out positive numbers ............................................................. 20
Making the most of negative numbers .............................................. 20
Comparing positives and negatives .................................................. 21
Zeroing in on zero ................................................................................ 22

02_559642-ftoc.indd   vii02_559642-ftoc.indd   vii 4/16/10   11:01 AM4/16/10   11:01 AM



Algebra I For Dummies, 2nd Edition viii
Going In for Operations ................................................................................ 22

Breaking into binary operations ........................................................ 22
Introducing non-binary operations ................................................... 23

Operating with Signed Numbers .................................................................. 24
Adding like to like: Same-signed numbers ........................................ 25
Adding different signs ......................................................................... 26
Subtracting signed numbers .............................................................. 27
Multiplying and dividing signed numbers ........................................ 29

Working with Nothing: Zero and Signed Numbers .................................... 30
Associating and Commuting with Expressions ......................................... 31

Reordering operations: The commutative property ....................... 31
Associating expressions: The associative property ........................ 32

Chapter 3: Figuring Out Fractions and Dealing with Decimals . . . . . .35

Pulling Numbers Apart and Piecing Them Back Together ....................... 36
Making your bow to proper fractions ............................................... 36
Getting to know improper fractions .................................................. 37
Mixing it up with mixed numbers ...................................................... 37

Following the Sterling Low-Fraction Diet .................................................... 38
Inviting the loneliest number one ...................................................... 39
Figuring out equivalent fractions ....................................................... 40
Realizing why smaller or fewer is better........................................... 41

Preparing Fractions for Interactions ........................................................... 43
Finding common denominators ......................................................... 43
Working with improper fractions ...................................................... 45

Taking Fractions to Task .............................................................................. 46
Adding and subtracting fractions ...................................................... 46
Multiplying fractions ........................................................................... 47
Dividing fractions ................................................................................. 50

Dealing with Decimals ................................................................................... 51
Changing fractions to decimals .......................................................... 52
Changing decimals to fractions .......................................................... 53

Chapter 4: Exploring Exponents and Raising Radicals . . . . . . . . . . . . .55

Multiplying the Same Thing Over and Over and Over .............................. 55
Powering up exponential notation .................................................... 56
Comparing with exponents................................................................. 57
Taking notes on scientifi c notation ................................................... 58

Exploring Exponential Expressions ............................................................. 60
Multiplying Exponents .................................................................................. 65
Dividing and Conquering .............................................................................. 66
Testing the Power of Zero ............................................................................ 66
Working with Negative Exponents .............................................................. 67
Powers of Powers .......................................................................................... 68
Squaring Up to Square Roots ....................................................................... 69

02_559642-ftoc.indd   viii02_559642-ftoc.indd   viii 4/16/10   11:01 AM4/16/10   11:01 AM



ix Table of Contents

Chapter 5: Doing Operations in Order and 
Checking Your Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Ordering Operations ..................................................................................... 74
Gathering Terms with Grouping Symbols .................................................. 76
Checking Your Answers ................................................................................ 78

Making sense or cents or scents . . .  ................................................. 79
Plugging in to get a charge of your answer ...................................... 79

Curbing a Variable’s Versatility ................................................................... 80
Representing numbers with letters ................................................... 81
Attaching factors and coeffi cients ..................................................... 82
Interpreting the operations ................................................................ 82

Doing the Math ............................................................................................... 83
Adding and subtracting variables ...................................................... 83
Adding and subtracting with powers ................................................ 85

Multiplying and Dividing Variables ............................................................. 86
Multiplying variables ........................................................................... 86
Dividing variables ................................................................................ 87
Doing it all ............................................................................................. 88

Part II: Figuring Out Factoring .................................... 91

Chapter 6: Working with Numbers in Their Prime. . . . . . . . . . . . . . . . .93

Beginning with the Basics ............................................................................ 93
Composing Composite Numbers ................................................................. 95
Writing Prime Factorizations ....................................................................... 96

Dividing while standing on your head............................................... 96
Getting to the root of primes with a tree .......................................... 98
Wrapping your head around the rules of divisibility ...................... 99

Getting Down to the Prime Factor ............................................................. 100
Taking primes into account .............................................................. 100
Pulling out factors and leaving the rest .......................................... 102

Chapter 7: Sharing the Fun: Distribution  . . . . . . . . . . . . . . . . . . . . . . . .107

Giving One to Each ...................................................................................... 107
Distributing fi rst ................................................................................. 109
Adding fi rst ......................................................................................... 109

Distributing Signs ........................................................................................ 110
Distributing positives ........................................................................ 110
Distributing negatives ....................................................................... 111
Reversing the roles in distributing .................................................. 112

Mixing It Up with Numbers and Variables ................................................ 113
Negative exponents yielding fractional answers ........................... 115
Working with fractional powers ....................................................... 116

02_559642-ftoc.indd   ix02_559642-ftoc.indd   ix 4/16/10   11:01 AM4/16/10   11:01 AM



Algebra I For Dummies, 2nd Edition x
Distributing More Than One Term ............................................................ 117

Distributing binomials ....................................................................... 118
Distributing trinomials ...................................................................... 119
Multiplying a polynomial times another polynomial .................... 119

Making Special Distributions ..................................................................... 120
Recognizing the perfectly squared binomial .................................. 120
Spotting the sum and difference of the same two terms .............. 122
Working out the difference and sum of two cubes ........................ 123

Chapter 8: Getting to First Base with Factoring  . . . . . . . . . . . . . . . . . .127

Factoring ....................................................................................................... 127
Factoring out numbers ...................................................................... 128
Factoring out variables ..................................................................... 130
Unlocking combinations of numbers and variables ...................... 131
Changing factoring into a division problem ................................... 133

Grouping Terms ........................................................................................... 134

Chapter 9: Getting the Second Degree . . . . . . . . . . . . . . . . . . . . . . . . . .139

The Standard Quadratic Expression ......................................................... 139
Reining in Big and Tiny Numbers .............................................................. 141
FOILing .......................................................................................................... 142

FOILing basics .................................................................................... 142
FOILed again, and again .................................................................... 143
Applying FOIL to a special product ................................................. 146

UnFOILing ..................................................................................................... 147
Unwrapping the FOILing package .................................................... 148
Coming to the end of the FOIL roll .................................................. 151

Making Factoring Choices .......................................................................... 152
Combining unFOIL and the greatest common factor .................... 153
Grouping and unFOILing in the same package............................... 154

Chapter 10: Factoring Special Cases  . . . . . . . . . . . . . . . . . . . . . . . . . . .157

Befi tting Binomials ...................................................................................... 157
Factoring the difference of two perfect squares ............................ 158
Factoring the difference of perfect cubes ....................................... 159
Factoring the sum of perfect cubes ................................................. 161

Tinkering with Multiple Factoring Methods ............................................. 162
Starting with binomials ..................................................................... 163
Ending with binomials ....................................................................... 164

Knowing When to Quit ................................................................................ 164
Incorporating the Remainder Theorem .................................................... 165

Synthesizing with synthetic division ............................................... 166
Choosing numbers for synthetic division....................................... 167

02_559642-ftoc.indd   x02_559642-ftoc.indd   x 4/16/10   11:01 AM4/16/10   11:01 AM



xi Table of Contents

Part III: Working Equations ...................................... 169

Chapter 11: Establishing Ground Rules for Solving Equations  . . . . .171

Creating the Correct Setup for Solving Equations .................................. 171
Keeping Equations Balanced ...................................................................... 172

Balancing with binary operations .................................................... 172
Squaring both sides and suffering the consequences .................. 174
Taking a root of both sides ............................................................... 175
Undoing an operation with its opposite ......................................... 176

Solving with Reciprocals ............................................................................ 176
Making a List and Checking It Twice ......................................................... 178

Doing a reality check ......................................................................... 179
Thinking like a car mechanic when checking your work .............. 180

Finding a Purpose ........................................................................................ 181

Chapter 12: Solving Linear Equations. . . . . . . . . . . . . . . . . . . . . . . . . . .183

Playing by the Rules .................................................................................... 183
Solving Equations with Two Terms ........................................................... 184

Devising a method using division .................................................... 185
Making the most of multiplication ................................................... 186
Reciprocating the invitation ............................................................. 188

Extending the Number of Terms to Three ............................................... 189
Eliminating the extra constant term ................................................ 189
Vanquishing the extra variable term ............................................... 190

Simplifying to Keep It Simple ..................................................................... 191
Nesting isn’t for the birds ................................................................. 192
Distributing fi rst ................................................................................. 192
Multiplying or dividing before distributing .................................... 194

Featuring Fractions ..................................................................................... 196
Promoting practical proportions ..................................................... 196
Transforming fractional equations into proportions .................... 198

Solving for Variables in Formulas .............................................................. 199

Chapter 13: Taking a Crack at Quadratic Equations  . . . . . . . . . . . . . .203

Squaring Up to Quadratics ......................................................................... 204
Rooting Out Results from Quadratic Equations ...................................... 206
Factoring for a Solution .............................................................................. 208

Zeroing in on the multiplication property of zero ......................... 209
Assigning the greatest common factor and multiplication 

property of zero to solving quadratics ....................................... 210
Solving Quadratics with Three Terms ...................................................... 211
Applying Quadratic Solutions .................................................................... 217
Figuring Out the Quadratic Formula ......................................................... 219
Imagining the Worst with Imaginary Numbers ........................................ 221

02_559642-ftoc.indd   xi02_559642-ftoc.indd   xi 4/16/10   11:01 AM4/16/10   11:01 AM



Algebra I For Dummies, 2nd Edition xii
Chapter 14: Distinguishing Equations with Distinctive Powers  . . . . . 223

Queuing Up to Cubic Equations ................................................................. 223
Solving perfectly cubed equations .................................................. 224
Working with the not-so-perfectly cubed ....................................... 225
Going for the greatest common factor ............................................ 226
Grouping cubes .................................................................................. 228
Solving cubics with integers ............................................................. 228

Working Quadratic-Like Equations ........................................................... 230
Rooting Out Radicals ................................................................................... 234

Powering up both sides .................................................................... 234
Squaring both sides twice................................................................. 237

Solving Synthetically ................................................................................... 239

Chapter 15: Rectifying Inequalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . .243

Translating between Inequality and Interval Notation ........................... 244
Intervening with interval notation ................................................... 244
Grappling with graphing inequalities .............................................. 245

Operating on Inequalities ........................................................................... 247
Adding and subtracting inequalities ............................................... 247
Multiplying and dividing inequalities .............................................. 248

Solving Linear Inequalities ......................................................................... 250
Working with More Than Two Expressions ............................................. 251
Solving Quadratic and Rational Inequalities ............................................ 252

Working without zeros ...................................................................... 255
Dealing with more than two factors ................................................ 256
Figuring out fractional inequalities.................................................. 257

Working with Absolute-Value Inequalities ............................................... 258
Working absolute-value equations .................................................. 259
Working absolute-value inequalities ............................................... 260

Part IV: Applying Algebra ......................................... 263

Chapter 16: Taking Measure with Formulas . . . . . . . . . . . . . . . . . . . . .265

Measuring Up ............................................................................................... 265
Finding out how long: Units of length ............................................. 266
Putting the Pythagorean theorem to work ..................................... 267
Working around the perimeter ........................................................ 269

Spreading Out: Area Formulas ................................................................... 273
Laying out rectangles and squares .................................................. 273
Tuning in triangles ............................................................................. 274
Going around in circles ..................................................................... 276

02_559642-ftoc.indd   xii02_559642-ftoc.indd   xii 4/16/10   11:01 AM4/16/10   11:01 AM



xiii Table of Contents

Pumping Up with Volume Formulas .......................................................... 277
Prying into prisms and boxes........................................................... 277
Cycling cylinders................................................................................ 278
Scaling a pyramid ............................................................................... 279
Pointing to cones ............................................................................... 279
Rolling along with spheres ............................................................... 280

Chapter 17: Formulating for Profi t and Pleasure. . . . . . . . . . . . . . . . . .281

Going the Distance with Distance Formulas ............................................ 282
Calculating Interest and Percent ............................................................... 283

Compounding interest formulas ...................................................... 284
Gauging taxes and discounts ............................................................ 286

Working Out the Combinations and Permutations ................................. 287
Counting down to factorials ............................................................. 288
Counting on combinations ............................................................... 288
Ordering up permutations ................................................................ 290

Chapter 18: Sorting Out Story Problems. . . . . . . . . . . . . . . . . . . . . . . . .291

Setting Up to Solve Story Problems .......................................................... 292
Working around Perimeter, Area, and Volume ........................................ 293

Parading out perimeter and arranging area ................................... 294
Adjusting the area .............................................................................. 295
Pumping up the volume .................................................................... 297

Making Up Mixtures .................................................................................... 300
Mixing up solutions ........................................................................... 301
Tossing in some solid mixtures ....................................................... 302
Investigating investments and interest ........................................... 302
Going for the green: Money .............................................................. 304

Going the Distance ...................................................................................... 305
Figuring distance plus distance ....................................................... 306
Figuring distance and fuel ................................................................. 307

Going ’Round in Circles .............................................................................. 308

Chapter 19: Going Visual: Graphing  . . . . . . . . . . . . . . . . . . . . . . . . . . . .311

Graphing Is Good ......................................................................................... 312
Grappling with Graphs ................................................................................ 313

Making a point .................................................................................... 314
Ordering pairs, or coordinating coordinates ................................. 315

Actually Graphing Points ............................................................................ 316
Graphing Formulas and Equations ............................................................ 317

Lining up a linear equation ............................................................... 318
Going around in circles with a circular graph ............................... 319
Throwing an object into the air ....................................................... 319

02_559642-ftoc.indd   xiii02_559642-ftoc.indd   xiii 4/16/10   11:01 AM4/16/10   11:01 AM



Algebra I For Dummies, 2nd Edition xiv
Curling Up with Parabolas .......................................................................... 321

Trying out the basic parabola .......................................................... 321
Putting the vertex on an axis ............................................................ 322
Sliding and multiplying...................................................................... 324

Chapter 20: Lining Up Graphs of Lines  . . . . . . . . . . . . . . . . . . . . . . . . . .327

Graphing a Line ............................................................................................ 327
Graphing the equation of a line ........................................................ 329

Investigating Intercepts .............................................................................. 332
Sighting the Slope ........................................................................................ 333

Formulating slope .............................................................................. 335
Combining slope and intercept ........................................................ 337
Getting to the slope-intercept form ................................................. 338
Graphing with slope-intercept ......................................................... 338

Marking Parallel and Perpendicular Lines ............................................... 339
Intersecting Lines ........................................................................................ 341

Graphing for intersections ................................................................ 341
Substituting to fi nd intersections .................................................... 342

Part V: The Part of Tens ............................................ 345

Chapter 21: The Ten Best Ways to Avoid Pitfalls . . . . . . . . . . . . . . . . .347

Keeping Track of the Middle Term ............................................................ 347
Distributing: One for You and One for Me ................................................ 348
Breaking Up Fractions (Breaking Up Is Hard to Do) ............................... 348
Renovating Radicals .................................................................................... 349
Order of Operations .................................................................................... 349
Fractional Exponents .................................................................................. 349
Multiplying Bases Together ....................................................................... 350
A Power to a Power ..................................................................................... 350
Reducing for a Better Fit ............................................................................. 351
Negative Exponents ..................................................................................... 351

Chapter 22: The Ten Most Famous Equations . . . . . . . . . . . . . . . . . . . .353

Albert Einstein’s Theory of Relativity ....................................................... 353
The Pythagorean Theorem ......................................................................... 354
The Value of e .............................................................................................. 354
Diameter and Circumference Related with Pi .......................................... 354
Isaac Newton’s Formula for the Force of Gravity .................................... 355
Euler’s Identity ............................................................................................. 355
Fermat’s Last Theorem ............................................................................... 355
Monthly Loan Payments ............................................................................. 356
The Absolute-Value Inequality ................................................................... 356
The Quadratic Formula ............................................................................... 356

Index ....................................................................... 357

02_559642-ftoc.indd   xiv02_559642-ftoc.indd   xiv 4/16/10   11:01 AM4/16/10   11:01 AM



Introduction

Let me introduce you to algebra. This introduction is somewhat like 
what would happen if I were to introduce you to my friend Donna. I’d 

say, “This is Donna. Let me tell you something about her.” After giving a 
few well-chosen tidbits of information about Donna, I’d let you ask more 
questions or fill in more details. In this book, you find some well-chosen 
topics and information, and I try to fill in details as I go along.

As you read this introduction, you’re probably in one of two situations:

 ✓ You’ve taken the plunge and bought the book.

 ✓ You’re checking things out before committing to the purchase.

In either case, you’d probably like to have some good, concrete reasons why 
you should go to the trouble of reading and finding out about algebra.

One of the most commonly asked questions in a mathematics classroom is, 
“What will I ever use this for?” Some teachers can give a good, convincing 
answer. Others hem and haw and stare at the floor. My favorite answer is, 
“Algebra gives you power.” Algebra gives you the power to move on to bigger 
and better things in mathematics. Algebra gives you the power of knowing 
that you know something that your neighbor doesn’t know. Algebra gives you 
the power to be able to help someone else with an algebra task or to explain 
to your child these logical mathematical processes.

Algebra is a system of symbols and rules that is universally understood, no 
matter what the spoken language. Algebra provides a clear, methodical 
process that can be followed from beginning to end. It’s an organizational 
tool that is most useful when followed with the appropriate rules. What 
power! Some people like algebra because it can be a form of puzzle-solving. 
You solve a puzzle by finding the value of a variable. You may prefer Sudoku 
or Ken Ken or crosswords, but it wouldn’t hurt to give algebra a chance, too.
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About This Book
This book isn’t like a mystery novel; you don’t have to read it from beginning 
to end. In fact, you can peek at how it ends and not spoil the rest of the story.

I divide the book into some general topics — from the beginning nuts and 
bolts to the important tool of factoring to equations and applications. So you 
can dip into the book wherever you want, to find the information you need.

Throughout the book, I use many examples, each a bit different from the 
others, and each showing a different twist to the topic. The examples have 
explanations to aid your understanding. (What good is knowing the answer if 
you don’t know how to get the right answer yourself?)

The vocabulary I use is mathematically correct and understandable. So 
whether you’re listening to your teacher or talking to someone else about 
algebra, you’ll be speaking the same language.

Along with the how, I show you the why. Sometimes remembering a process 
is easier if you understand why it works and don’t just try to memorize a 
meaningless list of steps.

Conventions Used in This Book
I don’t use many conventions in this book, but you should be aware of the 
following:

 ✓ When I introduce a new term, I put that term in italics and define it 
nearby (often in parentheses).

 ✓ I express numbers or numerals either with the actual symbol, such as 8, 
or the written-out word: eight. Operations, such as +, are either shown as 
this symbol or written as plus. The choice of expression all depends on 
the situation — and on making it perfectly clear for you.

What You’re Not to Read
The sidebars (those little gray boxes) are interesting but not essential to your 
understanding of the text. If you’re short on time, you can skip the sidebars. 
Of course, if you read them, I think you’ll be entertained.

You can also skip anything marked by a Technical Stuff icon (see “Icons Used 
in This Book,” for more information).
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3 Introduction

Foolish Assumptions
I don’t assume that you’re as crazy about math as I am — and you may be 
even more excited about it than I am! I do assume, though, that you have a 
mission here — to brush up on your skills, improve your mind, or just have 
some fun. I also assume that you have some experience with algebra — full 
exposure for a year or so, maybe a class you took a long time ago, or even 
just some preliminary concepts.

If you went to junior high school or high school in the United States, you 
probably took an algebra class. If you’re like me, you can distinctly remember 
your first (or only) algebra teacher. I can remember Miss McDonald saying, 
“This is an n.” My whole secure world of numbers was suddenly turned 
upside down. I hope your first reaction was better than mine.

You may be delving into the world of algebra again to refresh those long-ago 
lessons. Is your kid coming home with assignments that are beyond your 
memory? Are you finally going to take that calculus class that you’ve been 
putting off? Never fear. Help is here!

How This Book Is Organized
Where do you find what you need quickly and easily? This book is divided 
into parts dealing with the most frequently discussed and studied concepts 
of basic algebra.

Part I: Starting Off with the Basics
The “founding fathers” of algebra based their rules and conventions on the 
assumption that everyone would agree on some things first and adopt the 
process. In language, for example, we all agree that the English word for 
good means the same thing whenever it appears. The same goes for algebra. 
Everyone uses the same rules of addition, subtraction, multiplication, 
division, fractions, exponents, and so on. The algebra wouldn’t work if the 
basic rules were different for different people. We wouldn’t be able to 
communicate. This part reviews what all these things are that everyone has 
agreed on over the years.

The chapters in this part are where you find the basics of arithmetic, fractions, 
powers, and signed numbers. These tools are necessary to be able to deal 
with the algebraic material that comes later. The review of basics here puts 
a spin on the more frequently used algebra techniques. If you want, you can 
skip these chapters and just refer to them when you’re working through the 
material later in the book.
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In these first chapters, I introduce you to the world of letters and symbols. 
Studying the use of the symbols and numbers is like studying a new language. 
There’s a vocabulary, some frequently used phrases, and some cultural 
applications. The language is the launching pad for further study.

Part II: Figuring Out Factoring
Part II contains factoring and simplifying. Algebra has few processes more 
important than factoring. Factoring is a way of rewriting expressions to help 
make solving the problem easier. It’s where expressions are changed from 
addition and subtraction to multiplication and division. The easiest way to 
solve many problems is to work with the wonderful multiplication property 
of zero, which basically says that to get a 0 you multiply by 0. Seems simple, 
and yet it’s really grand.

Some factorings are simple — you just have to recognize a similarity. Other 
factorings are more complicated — not only do you have to recognize a 
pattern, but you have to know the rule to use. Don’t worry — I fill you in on 
all the differences.

Part III: Working Equations
The chapters in this part are where you get into the nitty-gritty of finding 
answers. Some methods for solving equations are elegant; others are 
down and dirty. I show you many types of equations and many methods for 
solving them.

Usually, I give you one method for solving each type of equation, but I 
present alternatives when doing so makes sense. This way, you can see 
that some methods are better than others. An underlying theme in all the 
equation-solving is to check your answers — more on that in this part.

Part IV: Applying Algebra
The whole point of doing algebra is in this part. There are everyday formulas 
and not-so-everyday formulas. There are familiar situations and situations 
that may be totally unfamiliar. I don’t have space to show you every possible 
type of problem, but I give you enough practical uses, patterns, and skills to 
prepare you for many of the situations you encounter. I also give you some 
graphing basics in this part. A picture is truly worth a thousand words, or, in 
the case of mathematics, a graph is worth an infinite number of points.
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Part V: The Part of Tens
Here I give you ten important tips: how to avoid the most common algebraic 
pitfalls. You also find my choice for the ten most famous equations. (You may 
have other favorites, but these are my picks.)

Icons Used in This Book
The little drawings in the margin of the book are there to draw your attention 
to specific text. Here are the icons I use in this book:

 To make everything work out right, you have to follow the basic rules of 
algebra (or mathematics in general). You can’t change or ignore them and 
arrive at the right answer. Whenever I give you an algebra rule, I mark it with 
this icon.

 An explanation of an algebraic process is fine, but an example of how the 
process works is even better. When you see the Example icon, you’ll find one 
or more problems using the topic at hand.

 Paragraphs marked with the Remember icon help clarify a symbol or process. 
I may discuss the topic in another section of the book, or I may just remind 
you of a basic algebra rule that I discuss earlier.

 The Technical Stuff icon indicates a definition or clarification for a step in 
a process, a technical term, or an expression. The material isn’t absolutely 
necessary for your understanding of the topic, so you can skip it if you’re in a 
hurry or just aren’t interested in the nitty-gritty.

 The Tip icon isn’t life-or-death important, but it generally can help make your 
life easier — at least your life in algebra.

 The Warning icon alerts you to something that can be particularly tricky. 
Errors crop up frequently when working with the processes or topics next to 
this icon, so I call special attention to the situation so you won’t fall into the 
trap.
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Where to Go from Here
If you want to refresh your basic skills or boost your confidence, start with 
Part I. If you’re ready for some factoring practice and need to pinpoint which 
method to use with what, go to Part II. Part III is for you if you’re ready to 
solve equations; you can find just about any type you’re ready to attack. 
Part IV is where the good stuff is — applications — things to do with all those 
good solutions. The lists in Part V are usually what you’d look at after visiting 
one of the other parts, but why not start there? It’s a fun place! When the first 
edition of this book came out, my mother started by reading all the sidebars. 
Why not?

Studying algebra can give you some logical exercises. As you get older, the 
more you exercise your brain cells, the more alert and “with it” you remain. 
“Use it or lose it” means a lot in terms of the brain. What a good place to use 
it, right here!

The best why for studying algebra is just that it’s beautiful. Yes, you read that 
right. Algebra is poetry, deep meaning, and artistic expression. Just look, and 
you’ll find it. Also, don’t forget that it gives you power.

Welcome to algebra! Enjoy the adventure!
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In this part . . .

Could you just up and go on a trip to a foreign country 
on a moment’s notice? If you’re like most people, 

probably not. Traveling abroad takes preparation and 
planning: You need to get your passport renewed, apply 
for a visa, pack your bags with the appropriate clothing, 
and arrange for someone to take care of your pets. In 
order for the trip to turn out well and for everything to go 
smoothly, you need to prepare. You even make provisions 
in case your bags don’t arrive with you!

The same is true of algebra: It takes preparation for the 
algebraic experience to turn out  to be a meaningful one. 
Careful preparation prevents problems along the way and 
helps solve problems that crop up in the process. In this 
part, you find the essentials you need to have a successful 
algebra adventure.
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Chapter 1

Assembling Your Tools
In This Chapter
▶ Giving names to the basic numbers

▶ Reading the signs — and interpreting the language

▶ Operating in a timely fashion

You’ve probably heard the word algebra on many occasions, and you 
knew that it had something to do with mathematics. Perhaps you 

remember that algebra has enough information to require taking two 
separate high school algebra classes — Algebra I and Algebra II. But what 
exactly is algebra? What is it really used for?

This book answers these questions and more, providing the straight scoop 
on some of the contributions to algebra’s development, what it’s good for, 
how algebra is used, and what tools you need to make it happen. In this 
chapter, you find some of the basics necessary to more easily find your way 
through the different topics in this book. I also point you toward these topics.

In a nutshell, algebra is a way of generalizing arithmetic. Through the use of 
variables (letters representing numbers) and formulas or equations involving 
those variables, you solve problems. The problems may be in terms of 
practical applications, or they may be puzzles for the pure pleasure of the 
solving. Algebra uses positive and negative numbers, integers, fractions, 
operations, and symbols to analyze the relationships between values. It’s a 
systematic study of numbers and their relationship, and it uses specific rules.

Beginning with the Basics: Numbers
Where would mathematics and algebra be without numbers? A part of 
everyday life, numbers are the basic building blocks of algebra. Numbers 
give you a value to work with. Where would civilization be today if not for 
numbers? Without numbers to figure the distances, slants, heights, and 
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directions, the pyramids would never have been built. Without numbers to 
figure out navigational points, the Vikings would never have left Scandinavia. 
Without numbers to examine distance in space, humankind could not have 
landed on the moon.

Even the simple tasks and the most common of circumstances require a 
knowledge of numbers. Suppose that you wanted to figure the amount of 
gasoline it takes to get from home to work and back each day. You need a 
number for the total miles between your home and business and another 
number for the total miles your car can run on a gallon of gasoline.

The different sets of numbers are important because what they look like 
and how they behave can set the scene for particular situations or help to 
solve particular problems. It’s sometimes really convenient to declare, “I’m 
only going to look at whole-number answers,” because whole numbers do 
not include fractions or negatives. You could easily end up with a fraction if 
you’re working through a problem that involves a number of cars or people. 
Who wants half a car or, heaven forbid, a third of a person?

Algebra uses different sets of numbers, in different circumstances. I describe 
the different types of numbers here.

Aha algebra
Dating back to about 2000 B.C. with the 
Babylonians, algebra seems to have developed 
in slightly different ways in different cultures. 
The Babylonians were solving three-term 
quadratic equations, while the Egyptians 
were more concerned with linear equations. 
The Hindus made further advances in about 
the sixth century A.D. In the seventh century, 
Brahmagupta of India provided general solu-
tions to quadratic equations and had interest-
ing takes on 0. The Hindus regarded irrational 
numbers as actual numbers — although not 
everybody held to that belief.

The sophisticated communication technology 
that exists in the world now was not available 
then, but early civilizations still managed to 
exchange information over the centuries. In A.D. 
825, al-Khowarizmi of Baghdad wrote the first 
algebra textbook. One of the first solutions to 

an algebra problem, however, is on an Egyptian 
papyrus that is about 3,500 years old. Known 
as the Rhind Mathematical Papyrus after the 
Scotsman who purchased the 1-foot-wide, 
18-foot-long papyrus in Egypt in 1858, the arti-
fact is preserved in the British Museum — with 
a piece of it in the Brooklyn Museum. Scholars 
determined that in 1650 B.C., the Egyptian scribe 
Ahmes copied some earlier mathematical 
works onto the Rhind Mathematical Papyrus.

One of the problems reads, “Aha, its whole, 
its seventh, it makes 19.” The aha isn’t an 
exclamation. The word aha designated the 
unknown. Can you solve this early Egyptian 
problem? It would be translated, using current 
algebra symbols, as: . The unknown is 

represented by the x, and the solution is .
It’s not hard; it’s just messy.
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Really real numbers
Real numbers are just what the name implies. In contrast to imaginary 
numbers, they represent real values — no pretend or make-believe. 
Real numbers cover the gamut and can take on any form — fractions or 
whole numbers, decimal numbers that can go on forever and ever without 
end, positives and negatives. The variations on the theme are endless.

Counting on natural numbers
A natural number (also called a counting number) is a number that comes 
naturally. What numbers did you first use? Remember someone asking, “How 
old are you?” You proudly held up four fingers and said, “Four!” The natural 
numbers are the numbers starting with 1 and going up by ones: 1, 2, 3, 4, 5, 
6, 7, and so on into infinity. You’ll find lots of counting numbers in Chapter 6, 
where I discuss prime numbers and factorizations.

Wholly whole numbers
Whole numbers aren’t a whole lot different from natural numbers. Whole 
numbers are just all the natural numbers plus a 0: 0, 1, 2, 3, 4, 5, and so on 
into infinity.

Whole numbers act like natural numbers and are used when whole amounts 
(no fractions) are required. Zero can also indicate none. Algebraic problems 
often require you to round the answer to the nearest whole number. This 
makes perfect sense when the problem involves people, cars, animals, 
houses, or anything that shouldn’t be cut into pieces.

Integrating integers
Integers allow you to broaden your horizons a bit. Integers incorporate all 
the qualities of whole numbers and their opposites (called their additive 
inverses). Integers can be described as being positive and negative whole 
numbers: . . . –3, –2, –1, 0, 1, 2, 3, . . . .

Integers are popular in algebra. When you solve a long, complicated problem 
and come up with an integer, you can be joyous because your answer is 
probably right. After all, it’s not a fraction! This doesn’t mean that answers 
in algebra can’t be fractions or decimals. It’s just that most textbooks and 

05_559642-ch01.indd   1105_559642-ch01.indd   11 4/16/10   11:01 AM4/16/10   11:01 AM



12 Part I: Starting Off with the Basics 

reference books try to stick with nice answers to increase the comfort level 
and avoid confusion. This is my plan in this book, too. After all, who wants a 
messy answer, even though, in real life, that’s more often the case. I use 
integers in Chapters 8 and 9, where you find out how to solve equations.

Being reasonable: Rational numbers
Rational numbers act rationally! What does that mean? In this case, acting 
rationally means that the decimal equivalent of the rational number behaves. 
The decimal ends somewhere, or it has a repeating pattern to it. That’s what 
constitutes “behaving.”

Some rational numbers have decimals that end such as: 3.4, 5.77623, –4.5. 
Other rational numbers have decimals that repeat the same pattern, such 
as , or . The horizontal bar over the 164 and the 6 lets 
you know that these numbers repeat forever.

In all cases, rational numbers can be written as fractions. Each rational 
number has a fraction that it’s equal to. So one definition of a rational number

is any number that can be written as a fraction, , where p and q are integers
(except q can’t be 0). If a number can’t be written as a fraction, then it isn’t a 
rational number. Rational numbers appear in Chapter 13, where you see 
quadratic equations, and in Part IV, where the applications are presented.

Restraining irrational numbers
Irrational numbers are just what you may expect from their name — the 
opposite of rational numbers. An irrational number cannot be written as a 
fraction, and decimal values for irrationals never end and never have a nice 
pattern to them. Whew! Talk about irrational! For example, pi, with its 
never-ending decimal places, is irrational. Irrational numbers are often 
created when using the quadratic formula, as you see in Chapter 13.

Picking out primes and composites
A number is considered to be prime if it can be divided evenly only by 1 
and by itself. The first prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 
and so on. The only prime number that’s even is 2, the first prime number. 
Mathematicians have been studying prime numbers for centuries, and prime 
numbers have them stumped. No one has ever found a formula for producing 
all the primes. Mathematicians just assume that prime numbers go on forever.
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A number is composite if it isn’t prime — if it can be divided by at least one 
number other than 1 and itself. So the number 12 is composite because it’s 
divisible by 1, 2, 3, 4, 6, and 12. Chapter 6 deals with primes, but you also 
see them in Chapters 8 and 10, where I show you how to factor primes out of 
expressions.

Speaking in Algebra
Algebra and symbols in algebra are like a foreign language. They all mean 
something and can be translated back and forth as needed. It’s important to 
know the vocabulary in a foreign language; it’s just as important in algebra.

 ✓ An expression is any combination of values and operations that can be 
used to show how things belong together and compare to one another. 
2x2 + 4x is an example of an expression. You see distributions over 
expressions in Chapter 7.

 ✓ A term, such as 4xy, is a grouping together of one or more factors 
(variables and/or numbers). Multiplication is the only thing connecting 
the number with the variables. Addition and subtraction, on the other 
hand, separate terms from one another. For example, the expression 
3xy + 5x – 6 has three terms.

 ✓ An equation uses a sign to show a relationship — that two things are 
equal. By using an equation, tough problems can be reduced to easier 
problems and simpler answers. An example of an equation is 2x2 + 4x = 7. 
See the chapters in Part III for more information on equations.

 ✓ An operation is an action performed upon one or two numbers to 
produce a resulting number. Operations are addition, subtraction, 
multiplication, division, square roots, and so on. See Chapter 5 for more 
on operations.

 ✓ A variable is a letter representing some unknown; a variable always 
represents a number, but it varies until it’s written in an equation or 
inequality. (An inequality is a comparison of two values. For more on 
inequalities, turn to Chapter 15.) Then the fate of the variable is set — it 
can be solved for, and its value becomes the solution of the equation. 
By convention, mathematicians usually assign letters at the end of the 
alphabet to be variables (such as x, y, and z).

 ✓ A constant is a value or number that never changes in an equation — it’s 
constantly the same. Five is a constant because it is what it is. A variable 
can be a constant if it is assigned a definite value. Usually, a variable 
representing a constant is one of the first letters in the alphabet. In the 
equation ax2 + bx + c = 0, a, b, and c are constants and the x is the 
variable. The value of x depends on what a, b, and c are assigned to be.
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 ✓ An exponent is a small number written slightly above and to the right 
of a variable or number, such as the 2 in the expression 32. It’s used to 
show repeated multiplication. An exponent is also called the power of 
the value. For more on exponents, see Chapter 4.

Taking Aim at Algebra Operations
In algebra today, a variable represents the unknown. (You can see more on 
variables in the “Speaking in Algebra” section earlier in this chapter.) Before 
the use of symbols caught on, problems were written out in long, wordy 
expressions. Actually, using letters, signs, and operations was a huge 
breakthrough. First, a few operations were used, and then algebra became 
fully symbolic. Nowadays, you may see some words alongside the operations 
to explain and help you understand, like having subtitles in a movie.

By doing what early mathematicians did — letting a variable represent a 
value, then throwing in some operations (addition, subtraction, multiplication, 
and division), and then using some specific rules that have been established 
over the years — you have a solid, organized system for simplifying, solving, 
comparing, or confirming an equation. That’s what algebra is all about: That’s 
what algebra’s good for.

Deciphering the symbols
The basics of algebra involve symbols. Algebra uses symbols for quantities, 
operations, relations, or grouping. The symbols are shorthand and are much 
more efficient than writing out the words or meanings. But you need to know 
what the symbols represent, and the following list shares some of that info. 
The operations are covered thoroughly in Chapter 5.

 ✓ + means add or find the sum, more than, or increased by; the result of 
addition is the sum. It also is used to indicate a positive number.

 ✓ – means subtract or minus or decreased by or less than; the result is the 
difference. It’s also used to indicate a negative number.

 ✓ × means multiply or times. The values being multiplied together are the 
multipliers or factors; the result is the product. Some other symbols 
meaning multiply can be grouping symbols: ( ), [ ], { }, ·, *. In algebra, 
the × symbol is used infrequently because it can be confused with the 
variable x. The dot is popular because it’s easy to write. The grouping 
symbols are used when you need to contain many terms or a messy 
expression. By themselves, the grouping symbols don’t mean to 
multiply, but if you put a value in front of a grouping symbol, it means 
to multiply.
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 ✓ ÷ means divide. The number that’s going into the dividend is the divisor. 
The result is the quotient. Other signs that indicate division are the 
fraction line and slash, /.

 ✓  means to take the square root of something — to find the number, 
which, multiplied by itself, gives you the number under the sign. (See 
Chapter 4 for more on square roots.)

 ✓  means to find the absolute value of a number, which is the number 
itself or its distance from 0 on the number line. (For more on absolute 
value, turn to Chapter 2.)

 ✓ π is the Greek letter pi that refers to the irrational number: 3.14159. . . . It 
represents the relationship between the diameter and circumference of 
a circle.

Grouping
When a car manufacturer puts together a car, several different things have 
to be done first. The engine experts have to construct the engine with all its 
parts. The body of the car has to be mounted onto the chassis and secured, 
too. Other car specialists have to perform the tasks that they specialize in as 
well. When these tasks are all accomplished in order, then the car can be put 
together. The same thing is true in algebra. You have to do what’s inside the 
grouping symbol before you can use the result in the rest of the equation.

Grouping symbols tell you that you have to deal with the terms inside the 
grouping symbols before you deal with the larger problem. If the problem 
contains grouped items, do what’s inside a grouping symbol first, and then 
follow the order of operations. The grouping symbols are

 ✓ Parentheses ( ): Parentheses are the most commonly used symbols for 
grouping.

 ✓ Brackets [ ] and braces { }: Brackets and braces are also used frequently 
for grouping and have the same effect as parentheses. Using the different 
types of symbols helps when there’s more than one grouping in a problem. 
It’s easier to tell where a group starts and ends.

 ✓ Radical : This is used for finding roots.

 ✓ Fraction line (called the vinculum): The fraction line also acts as 
a grouping symbol — everything above the line (in the numerator) is 
grouped together, and everything below the line (in the denominator)
is grouped together.

Even though the order of operations and grouping-symbol rules are fairly 
straightforward, it’s hard to describe, in words, all the situations that can 
come up in these problems. The examples in Chapters 5 and 7 should clear 
up any questions you may have.
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Defining relationships
Algebra is all about relationships — not the he-loves-me-he-loves-me-not kind 
of relationship — but the relationships between numbers or among the terms 
of an equation. Although algebraic relationships can be just as complicated 
as romantic ones, you have a better chance of understanding an algebraic 
relationship. The symbols for the relationships are given here. The equations 
are found in Chapters 11 through 14, and inequalities are found in Chapter 15.

 ✓ = means that the first value is equal to or the same as the value that follows.

 ✓ ≠ means that the first value is not equal to the value that follows.

 ✓ ≈ means that one value is approximately the same or about the same as 
the value that follows; this is used when rounding numbers.

 ✓ ≤ means that the first value is less than or equal to the value that follows.

 ✓ < means that the first value is less than the value that follows.

 ✓ ≥ means that the first value is greater than or equal to the value that follows.

 ✓ > means that the first value is greater than the value that follows.

Taking on algebraic tasks
Algebra involves symbols, such as variables and operation signs, which are 
the tools that you can use to make algebraic expressions more usable and 
readable. These things go hand in hand with simplifying, factoring, and 
solving problems, which are easier to solve if broken down into basic parts. 
Using symbols is actually much easier than wading through a bunch of 
words.

 ✓ To simplify means to combine all that can be combined, cut down on 
the number of terms, and put an expression in an easily understandable 
form.

 ✓ To factor means to change two or more terms to just one term. (See Part 
II for more on factoring.)

 ✓ To solve means to find the answer. In algebra, it means to figure out 
what the variable stands for. (You see solving equations in Part III and 
solving for answers to practical applications in Part IV.)
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Equation solving is fun because there’s a point to it. You solve for something 
(often a variable, such as x) and get an answer that you can check to see 
whether you’re right or wrong. It’s like a puzzle. It’s enough for some people 
to say, “Give me an x.” What more could you want? But solving these equations 
is just a means to an end. The real beauty of algebra shines when you solve 
some problem in real life — a practical application. Are you ready for these 
two words: story problems? Story problems are the whole point of doing 
algebra. Why do algebra unless there’s a good reason? Oh, I’m sorry — you 
may just like to solve algebra equations for the fun alone. (Yes, some folks 
are like that.) But other folks love to see the way a complicated paragraph in 
the English language can be turned into a neat, concise expression, such as, 
“The answer is three bananas.”

Going through each step and using each tool to play this game is entirely 
possible. Simplify, factor, solve, check. That’s good! Lucky you. It’s time to dig in!
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Chapter 2

Assigning Signs: Positive 
and Negative Numbers

In This Chapter
▶ Signing up signed numbers

▶ Using operations you find outside the box

▶ Noting the properties of nothing

▶ Doing algebraic operations on signed numbers

▶ Looking at associative and commutative properties

Numbers have many characteristics: They can be big, little, even, odd, 
whole, fraction, positive, negative, and sometimes cold and indifferent. 

(I’m kidding about that last one.) Chapter 1 describes numbers’ different 
names and categories. But this chapter concentrates on mainly the positive 
and negative characteristics of numbers and how a number’s sign reacts to 
different manipulations.

This chapter tells you how to add, subtract, multiply, and divide signed 
numbers, no matter whether all the numbers are all the same sign or a 
combination of positive and negative.

Showing Some Signs
Early on, mathematicians realized that using plus and minus signs and 
making rules for their use would be a big advantage in their number world. 
They also realized that if they used the minus sign, they wouldn’t need to 
create a bunch of completely new symbols for negative numbers. After all, 
positive and negative numbers are related to one another, and inserting a 
minus sign in front of a number works well. Negative numbers have positive 
counterparts and vice versa.
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Numbers that are opposite in sign but the same otherwise are additive 
inverses. Two numbers are additive inverses of one another if their sum is 
0 — in other words, a + (–a) = 0. Additive inverses are always the same 
distance from 0 (in opposite directions) on the number line. For example, the 
additive inverse of –6 is +6; the additive inverse of  is .

Picking out positive numbers
Positive numbers are greater than 0. They’re on the opposite side of 0 from 
the negative numbers. If you were to arrange a tug-of-war between positive 
and negative numbers, the positive numbers would line up on the right side 
of 0, as shown in Figure 2-1.

 

Figure 2-1: 
Positive 

numbers 
getting 

larger to the 
right.

 

0 1 5
2

4 7.559
10

9

Positive numbers get bigger and bigger the farther they are from 0: 212°F, the 
boiling temperature of water, is hotter than 32°F, the temperature at which 
water freezes, because 212 is farther away from 0 than 32 is. Both 212 and 
32 are positive numbers, but one may seem “more positive” than the other. 
Check out the difference between freezing water and boiling water to see how 
much more positive a number can be!

Making the most of negative numbers
The concept of a number less than 0 can be difficult to grasp. Sure, you can 
say “less than 0,” and even write a book with that title, but what does it really 
mean? Think of entering the ground floor of a large government building. You 
go to the elevator and have to choose between going up to the first, second, 
third, or fourth floors, or going down to the first, second, third, fourth, or 
fifth subbasement (down where all the secret stuff is). The farther you are 
from the ground floor, the farther the number of that floor is from 0. The 
second subbasement could be called floor –2, but that may not be a good 
number for a floor.
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Negative numbers are smaller than 0. On a line with 0 in the middle, negative 
numbers line up on the left, as shown in Figure 2-2.

 

Figure 2-2: 
Negative 
numbers 

getting 
smaller to 

the left.
 

0–1.531
10

–9 –8 –5 –25
4

–

Negative numbers get smaller and smaller the farther they are from 0. This 
situation can get confusing because you may think that –400 is bigger than 
–12. But just think of –400°F and –12°F. Neither is anything pleasant to think 
about, but –400°F is definitely less pleasant — colder, lower, smaller.

 When comparing negative numbers, the number closer to 0 is the bigger or 
greater number.

Comparing positives and negatives
Although my mom always told me not to compare myself to other people, 
comparing numbers to other numbers is often useful. And, when you 
compare numbers, the greater-than sign (>) and less-than sign (<) come in 
handy, which is why I use them in Table 2-1, where I put some positive- and 
negative-signed numbers in perspective.

 Two other signs related to the greater-than and less-than signs are the 
greater-than-or-equal-to sign (≥) and the less-than-or-equal-to sign (≤).

Table 2-1 Comparing Positive and Negative Numbers

Comparison What It Means

6 > 2 6 is greater than 2; 6 is farther from 0 than 2 is.

10 > 0 10 is greater than 0; 10 is positive and is bigger than 0.

–5 > –8 –5 is greater than –8; –5 is closer to 0 than –8 is.

–300 > –400 –300 is greater than –400; –300 is closer to 0 than –400 is.

0 > –6 Zero is greater than –6; –6 is negative and is smaller than 0.

7 > –80 7 is greater than –80. Remember: Positive numbers are always 
bigger than negative numbers.
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So, putting the numbers 6, –2, –18, 3, 16, and –11 in order from smallest to 
biggest gives you: –18, –11, –2, 3, 6, and 16, which are shown as dots on a 
number line in Figure 2-3.

 

Figure 2-3: 
Positive and 

negative 
numbers on 

a number 
line.

 

+10 +15 +20+50-15 -10 -5-20

Zeroing in on zero
But what about 0? I keep comparing numbers to see how far they are from 0. 
Is 0 positive or negative? The answer is that it’s neither. Zero has the unique 
distinction of being neither positive nor negative. Zero separates the positive 
numbers from the negative ones — what a job!

Going In for Operations
Operations in algebra are nothing like operations in hospitals. Well, you get 
to dissect things in both, but dissecting numbers is a whole lot easier (and a 
lot less messy) than dissecting things in a hospital.

Algebra is just a way of generalizing arithmetic, so the operations and rules 
used in arithmetic work the same for algebra. Some new operations do crop 
up in algebra, though, just to make things more interesting than adding, 
subtracting, multiplying, and dividing. I introduce three of those new 
operations after explaining the difference between a binary operation and a 
non-binary operation.

Breaking into binary operations
Bi means two. A bicycle has two wheels. A bigamist has two spouses. A 
binary operation involves two numbers. Addition, subtraction, multiplication, 
and division are all binary operations because you need two numbers to 
perform them. You can add 3 + 4, but you can’t add 3 + if there’s nothing after 
the plus sign. You need another number.
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Introducing non-binary operations
A non-binary operation needs just one number to accomplish what it does. A 
non-binary operation performs a task and spits out the answer. Square roots 
are non-binary operations. You find  by performing this operation on 
just one number (see Chapter 4 for more on square roots). In the following 
sections, I show you three non-binary operations.

Getting it absolutely right with absolute value
One of the most frequently used non-binary operations is the one that finds 
the absolute value of a number — its value without a sign. The absolute value 
tells you how far a number is from 0. It doesn’t pay any attention to whether 
the number is less than or greater than 0; it just determines how far it is 
from 0.

 The symbol for absolute value is two vertical bars: . The absolute value of a, 
where a represents any real number, either positive or negative, is

 ✓ , where a ≥ 0.

 ✓ , where a < 0 (negative), and –a is positive.

 Here are some examples of the absolute-value operation:

 ✓ 

 ✓ 

 ✓ 

 ✓ 

Basically, the absolute-value operation gives you an undirected distance — 
the distance from 0 without regard to direction. The absolute-value operation 
doesn’t pay any attention to whether the number is less than 0 or greater 
than 0; it just determines how far the number is from 0.

Getting the facts straight with factorial
The factorial operation looks like someone took you by surprise. You indicate 
that you want to perform the operation by putting an exclamation point 
after a number. If you want 6 factorial, you write 6!. Okay, I’ve given you the 
symbol, but you need to know what to do with it.

 To find the value of n!, you multiply that number by every positive integer 
smaller than n.

n! = n(n – 1)(n – 2)(n – 3) . . . 3 · 2 · 1
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 Here are some examples of the factorial operation:

 ✓ 3! = 3 · 2 · 1 = 6

 ✓ 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720

 ✓ 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5,040

 The value of 0! is 1. This result doesn’t really fit the rule for computing the 
factorial, but the mathematicians who first described the factorial operation 
designated that 0! is equal to 1 so that it worked with their formulas involving 
permutations, combinations, and probability.

Getting the most for your math with the greatest integer
You may have never used the greatest integer function before, but you’ve 
certainly been its victim. Utility and phone companies and sales tax schedules 
use this function to get rid of fractional values. Do the fractions get dropped 
off? Why, of course not. The amount is rounded up to the next greatest integer.

 The greatest integer function takes any real number that isn’t an integer and 
changes it to the greatest integer it exceeds. If the number is already an inte-
ger, then it stays the same.

 Here are some examples of the greatest integer function at work:

 ✓ 

 ✓ 

 ✓ 

You may have done a double-take for the result of using the function on 
–3.87. Just picture the number line. The number –3.87 is to the right of –4, so 
the greatest integer not exceeding –3.87 is –4.

Operating with Signed Numbers
If you’re on an elevator in a building with four floors above the ground floor 
and five floors below ground level, you can have a grand time riding the 
elevator all day, pushing buttons, and actually “operating” with signed 
numbers. If you want to go up five floors from the third subbasement, you 
end up on the second floor above ground level.

06_559642-ch02.indd   2406_559642-ch02.indd   24 4/16/10   11:03 AM4/16/10   11:03 AM



25 Chapter 2: Assigning Signs: Positive and Negative Numbers

You’re probably too young to remember this, but people actually used to get 
paid to ride elevators and push buttons all day. I wonder if these people had 
to understand algebra first. . . .

Adding like to like: Same-signed numbers
When your first-grade teacher taught you that 1 + 1 = 2, she probably didn’t 
tell you that this was just one part of the whole big addition story. She didn’t 
mention that adding one positive number to another positive number is 
really a special case. If she had told you this big-story stuff — that you can 
add positive and negative numbers together or add any combination of 
positive and negative numbers together — you might have packed up your 
little school bag and sack lunch and left the room right then and there.

Adding positive numbers to positive numbers is just a small part of the whole 
addition story, but it was enough to get you started at that time. This section 
gives you the big story — all the information you need to add numbers of any 
sign. The first thing to consider in adding signed numbers is to start with the 
easiest situation — when the numbers have the same sign. Look at what 
happens:

 ✓ You have three CDs and your friend gives you four new CDs:

  (+3) + (+4) = +7

  You now have seven CDs.

 ✓ You owed Jon $8 and had to borrow $2 more from him:

  (–8) + (–2) = –10

  Now you’re $10 in debt.

 There’s a nice “S” rule for addition of positives to positives and negatives to 
negatives. See if you can say it quickly three times in a row: When the signs are 
the same, you find the sum, and the sign of the sum is the same as the signs. This 
rule holds when a and b represent any two real numbers:

(+a) + (+b) = + (a + b)

(–a) + (–b) = – (a + b)

I wish I had something as alliterative for all the rules, but this is math, not 
poetry!

Say you’re adding –3 and –2. The signs are the same; so you find the sum of 
3 and 2, which is 5. The sign of this sum is the same as the signs of –3 and –2, 
so the sum is also a negative.

06_559642-ch02.indd   2506_559642-ch02.indd   25 4/16/10   11:03 AM4/16/10   11:03 AM



26 Part I: Starting Off with the Basics 

 Here are some examples of finding the sums of same-signed numbers:

 ✓ (+8) + (+11) = +19: The signs are all positive.

 ✓ (–14) + (–100) = –114: The sign of the sum is the same as the signs.

 ✓ (+4) + (+7) + (+2) = +13: Because all the numbers are positive, add them 
and make the sum positive, too.

 ✓ (–5) + (–2) + (–3) + (–1) = –11: This time all the numbers are negative, so 
add them and give the sum a minus sign.

Adding same-signed numbers is a snap! (A little more alliteration for you.)

Adding different signs
Can a relationship between a Leo and a Gemini ever add up to anything? I 
don’t know the answer to that question, but I do know that numbers with 
different signs add up very nicely. You just have to know how to do the 
computation, and, in this section, I tell you.

 When the signs of two numbers are different, forget the signs for a while and 
find the difference between the numbers. This is the difference between their 
absolute values (see the “Getting it absolutely right with absolute value” 
section, earlier in this chapter). The number farther from 0 determines the 
sign of the answer.

 if the positive a is farther from 0.

 if the negative b is farther from 0.

Look what happens when you add numbers with different signs:

 ✓ You had $20 in your wallet and spent $12 for your theater ticket:

  (+20) + (–12) = +8

  After settling up, you have $8 left.

 ✓ I have $20, but it costs $32 to fill my car’s gas tank:

  (+20) + (–32) = –12

  I’ll have to borrow $12 to fill the tank.

 Here are some examples of finding the sums of numbers with different signs:

 ✓ (+6) + (–7) = –1: The difference between 6 and 7 is 1. Seven is farther 
from 0 than 6 is, and 7 is negative, so the answer is –1.
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 ✓ (–6) + (+7) = +1: This time the 7 is positive. It’s still farther from 0 than 6 
is. The answer this time is +1.

 ✓ (–4) + (+3) + (+7) + (–5) = +1: If you take these in order from left to right 
(although you can add in any order you like), you add the first two 
together to get –1. Add –1 to the next number to get +6. Then add +6 to 
the last number to get +1.

Subtracting signed numbers
Subtracting signed numbers is really easy to do: You don’t! Instead of inventing a 
new set of rules for subtracting signed numbers, mathematicians determined 
that it’s easier to change the subtraction problems to addition problems and 
use the rules I explain in the previous section. Think of it as an original form 
of recycling.

Consider the method for subtracting signed numbers for a moment. Just 
change the subtraction problem into an addition problem? It doesn’t make 
much sense, does it? Everybody knows that you can’t just change an 
arithmetic operation and expect to get the same or right answer. You found 
out a long time ago that 10 – 4 isn’t the same as 10 + 4. You can’t just change 
the operation and expect it to come out correctly.

So, to make this work, you really change two things. (It almost seems to fly in 
the face of two wrongs don’t make a right, doesn’t it?)

 When subtracting signed numbers, change the minus sign to a plus sign and 
change the number that the minus sign was in front of to its opposite. Then 
just add the numbers using the rules for adding signed numbers.

 ✓ (+a) – (+b) = (+a) + (–b)

 ✓ (+a) – (–b) = (+a) + (+b)

 ✓ (–a) – (+b) = (–a) + (–b)

 ✓ (–a) – (–b) = (–a) + (+b)

 The following examples put the process of subtracting signed numbers into 
real-life terms:

 ✓ The submarine was 60 feet below the surface when the skipper shouted, 
“Dive!” It went down another 40 feet:

  –60 – (+40) = –60 + (–40) = –100
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  Change from subtraction to addition. Change the 40 to its opposite, –40. 
Then use the addition rule. The submarine is now 100 feet below the 
surface.

 ✓ Some kids are pretending that they’re on a reality-TV program and 
clinging to some footholds on a climbing wall. A team challenges the 
position of the opposing team’s player. “You were supposed to go down 
3 feet, then up 8 feet, then down 4 feet. You shouldn’t be 1 foot higher 
than you started!” The referee decides to check by having the player go 
backward — do the opposite moves. Making the player do the opposite, 
or subtracting the moves:

  –(–3) – (+8) – (–4) = +(+3) + (–8) + (+4) = –5 + (+4) = –1

  The player ended up 1 foot lower than where he started, so he had 
moved correctly in the first place.

 Here are some examples of subtracting signed numbers:

 ✓ –16 – 4 = –16 + (–4) = –20: The subtraction becomes addition, and the +4 
becomes negative. Then, because you’re adding two signed numbers with 
the same sign, you find the sum and attach their common negative sign.

 ✓ –3 – (–5) = –3 + (+5) = 2: The subtraction becomes addition, and the –5 
becomes positive. When adding numbers with opposite signs, you find 
their difference. The 2 is positive because the +5 is farther from 0.

 ✓ 9 – (–7) = 9 + (+7) = 16: The subtraction becomes addition, and the –7 
becomes positive. When adding numbers with the same sign, you find 
their sum. The two numbers are now both positive, so the answer is 
positive.

Coming up with nothing
Consider adding two numbers with different 
signs where there is no difference between the 
absolute value of the numbers:

  (+3) + (–3)

  (–5) + (+5)

The difference between the numbers without 
their signs is 0. And because 0 is neither posi-
tive nor negative — it has no sign — that takes 
care of having to determine what the sign of the 

answer is by which number is farther from 0. 
Neither wins! So, in the following examples, 0 
is the hero:

  (–10) + (+10) = 0

  (–a) + (+a) = 0

  (+abc) + (–abc) = 0

In the last two examples, assume that a, b, and 
c are the same throughout the expression.
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Multiplying and dividing signed numbers
Multiplication and division are really the easiest operations to do with signed 
numbers. As long as you can multiply and divide, the rules are not only 
simple, but the same for both operations.

Consider the stock market (something that gets considered a lot these days). 
The news reporter declares that the Dow Jones went down 20 points twice in 
a row. You multiply two times –20 to get –40. So a positive times a negative is 
a negative.

How about dividing? You and three friends decide to buy another friend 
lunch. The luncher owes $23.64. How much does each person chip in? Divide 
–23.64 by 4, and the –5.91 is what each of you contributes.

 When multiplying and dividing two signed numbers, if the two signs are the 
same, then the result is positive; when the two signs are different, then the 
result is negative.

(+a) × (+b) = +ab (+a) ÷ (+b) = + (a ÷ b)

(+a) × (–b) = –ab (+a) ÷ (–b) = – (a ÷ b)

(–a) × (+b) = –ab (–a) ÷ (+b) = – (a ÷ b)

(–a) × (–b) = +ab (–a) ÷ (–b) = + (a ÷ b)

Notice in which cases the answer is positive and in which cases it’s negative. 
You see that it doesn’t matter whether the negative sign comes first or 
second when you have a positive and a negative. Also, notice that 
multiplication and division seem to be “as usual” except for the positive 
and negative signs.

 Here are some examples of multiplying and dividing signed numbers:

 ✓ (–8) × (+2) = –16

 ✓ (–5) × (–11) = +55

 ✓ (+24) ÷ (–3) = –8

 ✓ (–30) ÷ (–2) = +15

You can mix up these operations doing several multiplications or divisions or 
a mixture of each and use the following even-odd rule.
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 According to the even-odd rule, when multiplying and dividing a bunch of 
numbers, count the number of negatives to determine the final sign. An even 
number of negatives means the result is positive. An odd number of negatives 
means the result is negative.

 Here are some examples of multiplying and dividing collections of signed 
numbers:

 ✓ (+2) × (–3) × (+4) = –24: This problem has just one negative sign. 
Because 1 is an odd number (and often the loneliest number), the 
answer is negative. The numerical parts (the 2, 3, and 4) get multiplied 
together and the negative is assigned as its sign.

 ✓ (+2) × (–3) × (+4) × (–1) = +24: Two negative signs mean a positive 
answer because 2 is an even number.

 ✓ : An even number of negatives means you have a positive

  answer. Or, if you want to do the problem in two parts, you multiply the 
numbers in the numerator first and get –12. Then you have a negative 
divided by a negative, which is positive. It’s really easier just to count 
the signs than to keep track of new signs as you perform operations.

 ✓ : Three negatives yield a negative.

 ✓ (–1)(–1)(–1)(–1)(–1)(–1)(–1)(–1)(–1)(–1)(–1)(–1)(–1)(–1)(–1) = –1: An 
odd number of negative signs gives you a negative answer. All that 
negativity! And if there’d been just one more –1, the answer would’ve 
been positive. . . .

Working with Nothing: Zero 
and Signed Numbers

What role does 0 play in the signed-number show? What does 0 do to the 
signs of the answers? Well, when you’re doing addition or subtraction, what 
0 does depends on where it is in the problem. When you multiply or divide, 0 
tends to just wipe out the numbers and leave you with nothing.

Here are some general guidelines about 0:

 ✓ Adding zero: 0 + a is just a. Zero doesn’t change the value of a. (This is 
also true for a + 0.)

 ✓ Subtracting zero: 0 – a = –a. Use the rule for subtracting signed numbers: 
Change the operation from subtraction to addition and change the 
sign of the second number, giving you 0 + (–a). But changing the order, 
a – 0 = a. It doesn’t change the value of a to subtract 0 from it.
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 ✓ Multiplying by 0: a × 0 = 0. Twice nothing is nothing; three times nothing is 
nothing; multiply nothing and you get nothing: Likewise, 0 × a = 0.

 ✓ Dividing 0 by a number: 0 ÷ a = 0. Take you and your friends: If none of 
you has anything, dividing that nothing into shares just means that each 
share has nothing.

  You can’t use 0 as a divisor. Numbers can’t be divided by 0; not even 0 
can be divided by 0. The answers just don’t exist.

So, working with 0 isn’t too tricky. You follow normal addition and subtraction 
rules, and just keep in mind that multiplying and dividing with 0 (0 being 
divided) leaves you with nothing — literally.

Associating and Commuting 
with Expressions

Algebra operations follow certain rules, and those rules have certain 
properties. The properties usually make computations easier. In this section, 
I talk about two of those properties — the commutative property and the 
associative property.

Reordering operations: The 
commutative property
Before discussing the commutative property, take a look at the word commute. 
You probably commute to work or school and know that whether you’re 
traveling from home to work or from work to home, the distance is the same: 
The distance doesn’t change because you change directions (although 
getting home during rush hour may make that distance seem longer).

The same principle is true of some algebraic operations: It doesn’t matter 
whether you add 1 + 2 or 2 + 1, the answer is still 3. Likewise, multiplying 
2 × 3 or 3 × 2 yields 6.

 The commutative property means that you can change the order of the numbers 
in an operation without affecting the result. Addition and multiplication are 
commutative. Subtraction and division are not. So,

a + b = b + a

a × b = b × a

a – b ≠ b – a (except in a few special cases)

a ÷ b ≠ b ÷ a (except in a few special cases)
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 In general, subtraction and division are not commutative. The special cases 
occur when you choose the numbers carefully. For example, if a and b are the 
same number, then the subtraction appears to be commutative because 
switching the order doesn’t change the answer. In the case of division, if a and 
b are opposites, then you get –1 no matter which order you divide them in. By 
the way, this is why, in mathematics, big deals are made about proofs. A few 
special cases of something may work, but a real rule or theorem has to work 
all the time.

 Take a look at how the commutative property works:

 ✓ 4 + 5 = 9 and 5 + 4 = 9, so 4 + 5 = 5 + 4.

 ✓ 3 × (–7) = –21 and (–7) × 3 = –21, so 3 × (–7) = (–7) × 3.

 ✓ (–5) – (+2) = –7 and (+2) – (–5) = +7, so (–5) – (+2) ≠ (+2) – (–5).

 ✓ (–6) ÷ (+1) = –6 and
 

, so (–6) ÷ (+1) ≠ (+1) ÷ (–6).

Associating expressions: 
The associative property
The commutative property has to do with the order of the numbers when 
you perform an operation. The associative property has to do with how the 
numbers are grouped when you perform operations on more than two numbers.

Think about what the word associate means. When you associate with 
someone, you’re close to the person, or you’re in the same group with the 
person. Say that Anika, Becky, and Cora associate. Whether Anika drives over 
to pick up Becky and the two of them go to Cora’s and pick her up, or Cora is 
at Becky’s house and Anika picks up both of them at the same time, the same 
result occurs — the three ladies are all in the car at the end.

 The associative property means that even if the grouping of the operation 
changes, the result remains the same. (If you need a reminder about grouping, 
check out Chapter 1.) Addition and multiplication are associative. Subtraction 
and division are not associative operations. So,

a + (b + c) = (a + b) + c

a × (b × c) = (a × b) × c

a – (b – c) ≠ (a – b) – c (except in a few special cases)

a ÷ (b ÷ c) ≠ (a ÷ b) ÷ c (except in a few special cases)

06_559642-ch02.indd   3206_559642-ch02.indd   32 4/16/10   11:03 AM4/16/10   11:03 AM



33 Chapter 2: Assigning Signs: Positive and Negative Numbers

 You can always find a few cases where the property works even though it isn’t 
supposed to. For example, in the subtraction problem 5 – (4 – 0) = (5 – 4) – 0 
the property seems to work. Also, in the division problem 6 ÷ (3 ÷ 1) = (6 ÷ 3) ÷ 1, 
it seems to work. Although there are exceptions, a rule must work all the time.

 Here’s how the associative property works:

 ✓ 4 + (5 + 8) = 4 + 13 = 17 and (4 + 5) + 8 = 9 + 8 = 17, so 4 + (5 + 8) = (4 + 5) + 8

 ✓ 3 × (2 × 5) = 3 × 10 = 30 and (3 × 2) × 5 = 6 × 5 = 30, so 3 × (2 × 5) = (3 × 2) × 5

 ✓ 13 – (8 – 2) = 13 – 6 = 7 and (13 – 8) – 2 = 5 – 2 = 3, so 13 – (8 – 2) ≠ (13 – 8) – 2

 ✓ 48 ÷ (16 ÷ 2) = 48 ÷ 8 = 6 and
 

, so 48 ÷ (16 ÷ 2) ≠ 
(48 ÷ 16) ÷ 2

The commutative and associative properties come in handy when you work 
with algebraic expressions. You can change the order of some numbers or 
change the grouping to make the work less messy or more convenient. Just 
keep in mind that you can commute and associate addition and multiplication 
operations, but not subtraction or division.

 You can use the commutative and associative properties to find the answer 
to the problem: 417 + 932 + (– 416) + (– 432) + 800. To simplify the expression, 
you would normally just move from left to right, adding and subtracting in 
order, but rearranging the numbers works better. Use the commutative 
property to switch the 932 and –416:

417 + (–416) + 932 + (–432) + 800

Now group (associate) the first two numbers and the third and fourth 
numbers. Combine them and add up the results:

(417 + [–416]) + (932 + [–432]) + 800 = 1 + 500 + 800 = 1,301

 You can do the computation in your head when you use these handy properties.
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Chapter 3

Figuring Out Fractions and 
Dealing with Decimals

In This Chapter
▶ Changing how a fraction looks

▶ Practicing operations on fractions instead of on people

▶ Dividing whole pies into pieces

▶ Linking fractions to decimals

At one time or another, most math students wish that the world were 
made up of whole numbers only. But those non-whole numbers called 

fractions really make the world a wonderful place. (Well, that may be stretching it 
a bit.) In any case, fractions are here to stay, and this chapter helps you delve 
into them in all their wondrous workings.

Compare developing an appreciation for fractions with watching or playing 
a sport: If you want to enjoy and appreciate a game, you have to understand 
the rules. You know that this is true if you watch soccer games. That offside 
rule is hard to understand at first. But, finally, you figure it out, discover the 
basics of the game, and love the sport. This chapter gets down to basics with 
the rules involving fractions so you can “play the game.”

You may not think that decimals belong in a chapter on fractions, but there’s 
no better place for them. Decimals are just a shorthand notation for the most 
favorite fractions. Think about the words that are often used and abbreviated, 
such as Mister (Mr.), Doctor (Dr.), Tuesday (Tues.), October (Oct.), and so 
on! Decimals are just fractions with denominators of 10, 100, 1,000, and so on, 
and they’re abbreviated with periods, or decimal points.
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Pulling Numbers Apart and Piecing 
Them Back Together

Understanding fractions, where they come from, and why they look the way 
they do helps when you’re working with them. A fraction has two parts:

 
or 

 The denominator of a fraction, or bottom number, tells you the total number 
of items. The numerator, or top number, tells you how many of that total (the 
bottom number) are being considered.

 You may be able to remember the exact placement of the numbers and their 
proper names if you think in terms of

 ✓ N: Numerator; North; ↑

 ✓ D: Denominator; Down; ↓

In all the cases using fractions, the denominator tells you how many equal 
portions or pieces there are. Without the equal rule, you could get different
pieces in various sizes. For example, in a recipe calling for  cup of flour, 
if you didn’t know that the one part was one of two equal parts, then there 
could be two unequal parts — one big and one little. Should the big or the 
little part go into the cookies?

Along with terminology like numerator and denominator, fractions fall into 
one of three types — proper, improper, or mixed — which I cover in the 
following sections.

Making your bow to proper fractions
The simplest type of fraction to picture is a proper fraction, which is always 
just a smaller part of the whole thing (always smaller than 1). One whole 
pie can be cut into proper fractions. One whole play can be divided into 
fractions — acts or scenes.

 In a proper fraction, the numerator is always smaller than the denominator, 
and its value is always less than 1.

Take a look at the following proper fractions:
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 ✓ : Cut a cake into six slices. Eat one piece, and you still have five pieces 
  left. Lucky you! You can have your cake and eat it, too!

 ✓ : You took four months out of last year to finish the project.

 ✓ : One pound of butter equals 16 ounces. Put 1 ounce of butter on the
   popcorn. But remember, a minute on the lips, a lifetime on the hips!

Getting to know improper fractions
Fractions are improper when they have more parts than necessary for one 
whole number. (It has nothing to do with a lack of social decorum.) These 
top-heavy fractions, however, are useful in many situations. The bottom 
number tells you what size the pieces are. It’s just that in the case of 
improper fractions, you have more than enough pieces to make one whole 
number.

 Improper fractions are fractions whose numerators are bigger than their 
denominators.

Take a look at the following improper fractions:

 ✓ : After the party, Maria put all the left-over pieces of pizza together. 

  There were 15 pieces, each 
 
of a pizza. Maria has a whole pizza 

plus seven pieces more.

 ✓ : A recipe calls for
 

 cup of sugar, but you want to double the recipe 

  (you have a hungry family). Doubling the sugar requires  cup. 
  If you’re using a 1-cup measuring cup, your cup will runneth over.
  These fractions may be called improper, but they behave very well.

Mixing it up with mixed numbers
Improper fractions can get a bit awkward, but mixed numbers help clean up 
the act. Using a mixed number — one with both a whole number and a proper 
fraction — to express the same thing that an improper fraction expresses 
makes things easier to visualize. For example, instead of using the improper 

fraction , you can use the mixed number . Recipes are easier to use and 
hat sizes are easier to read when mixed numbers enter the mix.
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 A mixed number contains both a whole number and a fraction, as the following 
examples show:

 ✓ : The recipe calls for four full cups and one half-cup of flour. Sure, 
  you could add 9 half-cups, and get the same “rise” out of your cake, but 

the larger measure makes it easier.

 ✓ : The hat size is 7 plus  more, so it isn’t too tight.

 ✓ : It’s been five years and seven months since he left for Europe.

Following the Sterling Low-Fraction Diet
Just when you thought you’d heard about all the possible ways to reduce, 
here comes another. Reduce! If only weight reduction were this easy!

When you use fractions, you want them to be as nice as possible. Sometimes, 
nice means that two fractions have the same denominator. But, in this case, 
nice means the smallest-possible numbers in the numerator and denomina-
tor of the fraction. Sometimes small numbers are just easier to deal with — 
easier to understand and easier to visualize — than larger numbers. Doing 
the arithmetic is much easier with smaller numbers, too. The lowest terms 
are desirable when borrowing money; the lowest terms are also desirable 
when dealing with fractions.

Converting fractions on Wall Street
Stocks in the U.S. stock market used to be 
priced using fractions for the parts. You’d see

prices, such as , and read that the price had

gone down by . This custom of using fractions
is supposed to have started when coins could 
be broken into pieces; when dividing up some-
thing into pieces, it’s easier to break that thing 
in half, and then break each half into halves 
(quarters), and then break those quarters into 
halves (eighths), and so on.

In the year 2000, the stock market changed 
these parts to decimals. This wasn’t any 
response to a desire to go metric — it was 
done just to make the increments smaller. 
There are eight divisions between one number 
and the next number if you use eighths and ten 
divisions using decimals, or tenths. The tenths 
are smaller than eighths, so there are smaller 
steps going up (or down).

07_559642-ch03.indd   3807_559642-ch03.indd   38 4/16/10   11:04 AM4/16/10   11:04 AM



39 Chapter 3: Figuring Out Fractions and Dealing with Decimals

 A fraction is in lowest terms if no whole number (other than 1) divides both the 
numerator and denominator evenly.

Inviting the loneliest number one
The number 1 doesn’t do much when you multiply it times a number or 
divide a number by it — but those two operations are very important 
when dealing with fractions. It’s not so much the number 1 that’s used with 
fractions as all the numbers that are equal to 1.

Dividing by one
 Any number divided by 1 equals that number: For any real number n, n ÷ 1 = n.

So, knowing this allows you to change how a fraction looks without changing 
its value. See how it works in the following example?

 could be .

You do the same thing on the top and bottom of the fraction, so you really 
just divided by 1, which doesn’t change the value — just how it looks.

Multiplying by one
 Any number multiplied by 1 equals that number: For any real number n, n × 1 = n.

Like division, you can multiply by 1 and change how a fraction looks without 
changing its value. That is,

4 × 1 = 4 –8 · 1 = –8 

In the case of fractions, instead of actually using 1, a fraction equal to 1 is 
used:

Using the fractional value for the number 1 allows you to change how 
fractions look without changing their value.

 could be .

Table 3-1 lists some equivalent fractions of everyday things.
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Table 3-1 Some Equivalent Fractions

Fractions Equivalent

One-half of a basketball game

Two periods of a hockey game

Four days of a week

Five innings of a baseball game

Seven months of a year

Twenty-three hours of a day

Figuring out equivalent fractions
When you multiply or divide the numerator and denominator of a fraction by 
the same number, you don’t change the value of the fraction. In fact, you’re 
basically multiplying or dividing by 1 because any time the numerator and 
denominator of a fraction are the same number, it equals 1.

How much of a 32-ounce package are you using if your recipe calls for 12 
ounces? If you divide the 12 in the numerator and 32 in the denominator 

of  by 4, you’re basically dividing  by , which equals 1. The same goes 
for multiplying the numerator and denominator by the same number.

 Here are some examples of creating equivalent fractions by multiplying and 
dividing:

 ✓ . The fraction  has the same value as .

 ✓ . The fraction  is equivalent to , but it’s also equivalent 

  to :  and .

Not all fractions with large numbers, however, can be changed to smaller 
numbers. Certain rules have to be followed so that the fraction maintains its 
integrity; the fraction has to have the same value as it did originally.
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 To reduce fractions to their lowest terms, follow these steps:

 1. Look for numbers that evenly divide both the numerator and 
denominator.

  If you find more than one number that divides both evenly, choose the 
largest.

 2. Divide both the numerator and denominator by the number you 
chose, and put the results in their corresponding positions.

 To reduce  to the lowest terms, you follow these steps:

 1. Look for numbers that evenly divide both the numerator and the 
denominator.

  You have many choices. The numbers 48 and 60 are both divisible by 2, 
3, 4, 6, and 12. You choose the 12.

 2. Do the division and rewrite the fraction.

  

 When reducing fractions, your fraction isn’t wrong if you don’t choose the 
largest-possible divisor. It just means that you have to divide again to get to 

 the lowest terms. When reducing the fraction , you might have chosen to
 divide by 6 instead of 12. In that case, you’d get the fraction , which can be 
 reduced again by dividing the numerator and denominator by 2. Choosing the 

largest number possible just reduces the number of steps you have to take.

 When can you use this reducing process? Well, what if you spent 48 minutes 
waiting in line to buy your airline ticket? That’s 48 minutes out of the total 60 

 minutes in an hour. As a fraction, that’s written . You can see that 48 out 
 of 60 is a big hunk of time. To get a better picture of what’s going on, put the
 fraction in lowest terms: 12 divides both 48 and 60 evenly. So, you spent  of 

the hour standing in line.

Realizing why smaller or fewer is better
Why is  better than ? Most people can relate better to smaller numbers.
You can picture 4 out of 5 things in your mind more easily than you can 
picture 48 out of 60 — refer to Figure 3-1 if you don’t believe me.
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Figure 3-1: 
Forty-eight 

of 60, or 4 
of 5? You 

decide.
 

A few more situations may help you get this:

 ✓ A survey found that 162 out of 198 people preferred Bix Peanut Butter.
  The fraction  reduces to , which offers clearer information as far as 
  the preference for the peanut butter.

 ✓ An ad on TV says, “Nine out of ten dentists surveyed prefer Squishy 
Toothpaste.” (I’ve always wondered how many dentists were actually

   surveyed.) The fraction  gives good information as far as the 
  preference, but were only 10 dentists surveyed or were 10,000?

 ✓ You’ve paid 18 installments out of a total of 36 for a new TV. Both 
numbers are divisible by 18 — 18 goes into 18 once, and 18 goes into 36

  twice. So you know that you’ve made  of your total payments. That’s
  . You’re half done or have half to go — depending on
  whether you’re a glass-half-full or glass-half-empty type of person.

 ✓ Your favorite pitcher has pitched 96 innings so far. Because there are

  nine innings in a regulation game, he has pitched . Because  
  is an improper fraction, first divide 96 by 9 and write the remainder as a

  fraction:  games.

 A remainder is the value left over when one number is divided by another, 
and the division doesn’t come out even. The remainder is either written as a 
fraction, with the amount remaining over the divisor, or the remainder is 
indicated with an R, such as R 6.
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Preparing Fractions for Interactions
To add, subtract, or compare fractions, you need fractions divided into the 
same number of equal pieces. In other words, the denominators have to be 
the same.

Finding common denominators
Common denominators (the same numbers in the denominators) are 
necessary for adding, subtracting, and comparing fractions. Carefully 
selected fractions that are equal to the number 1 are used to create common 
denominators because multiplying by 1 doesn’t change a number’s value.

 Follow these steps to find a common denominator for two fractions and write 
the equivalent fractions:

 1. Find the least common multiple of the two denominators — the 
smallest number that both denominators divide evenly.

  First, look to see if you can determine the common multiple by simple 
observation; you may know some multiples of the two numbers. If you 
find the common multiple by observation, then go directly to Step 4. 
(Do not pass Go; do not collect $200.)

 2. If the common multiple isn’t easily determined, then start your search 
by choosing the larger denominator.

 3. Check to see if the smaller denominator divides the larger one evenly.

  If it doesn’t, check consecutive multiples of the larger denominator until 
you find one that the smaller one divides.

 4. When you find a common denominator, rewrite both fractions as 
equivalent fractions with that denominator.

 Here’s how to find a common denominator for the two fractions  and :

 1. Look to see if you can determine a common multiple for 18 and 24 just 
by observation.

  The numbers 18 and 24 are pretty big, so nothing may jump out at first.

 2. Determine which fraction has the larger denominator.

  In this case, the 24 is the larger of the two denominators.
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 3. Check to see if the smaller denominator divides the larger one evenly. 
If it doesn’t, check multiples of the larger denominator until you find 
one that the smaller denominator can divide into evenly, too.

  The number 18 doesn’t divide 24 evenly. Two times 24 is 48, but 18 
doesn’t divide that evenly, either. Three times 24 is 72. Eighteen does 
divide that evenly. The common denominator is 72.

 4. Write the two fractions as equivalent fractions with the common 
denominator.

  The number 24 divides 72 three times, so, multiplying the fraction  by :
  .

  Eighteen divides 72 four times, so the fraction  is multiplied by : 
  .

 Here’s how to find the least common denominator for the two fractions  and :

 1. Look to see if you can determine a common multiple for 25 and 9 just 
by observation.

  Nothing seems to work.

 2. Determine which fraction has the larger denominator.

  In this case, the 25 is the larger of the two denominators.

 3. Check to see if the smaller denominator divides the larger one evenly. 
If it doesn’t, check multiples of the larger denominator until you find 
one that the smaller denominator can divide into evenly, too.

  The number 9 doesn’t divide 25 evenly. Two times 25 is 50, but 9 doesn’t 
divide that evenly either. Three times 25 is 75. Nine doesn’t divide that 
either. In fact, you don’t find a common multiple until you get to 9 × 25, 
which is 225.

 4. Write the two fractions as equivalent fractions with the common 
denominator.

  Here are the two equivalent fractions:
 

  

 In this case, the least common denominator was just the product of the two 
denominators. This happens when the two denominators have no factors in 
common. Sometimes you can get a common denominator quickly by multiplying 
the two denominators together. This method doesn’t always give the best or 
smallest choice, but it’s efficient.
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Working with improper fractions
Multiplying and dividing improper fractions (see the “Getting to know 
improper fractions” section, earlier in this chapter, for an introduction) is no 
more difficult than multiplying or dividing other fractions. Understanding the 
final result is easier, however, if you write the answer as a mixed number 
(see the “Mixing it up with mixed numbers” section, earlier in this chapter). 
Also, what do you do if you start out with a mixed number and need its 
corresponding improper fraction? I tell you how to do the switcheroo right 
here!

Changing from improper fraction to mixed number
To change an improper fraction to a mixed number, divide the numerator by 
the denominator. The number of times the denominator divides is the whole 
number in front, and the remainder — the leftover value — is written in the 
numerator of the proper fraction, with the original denominator.

 Here are some examples of changing improper fractions to mixed numbers:

 ✓ : The number 9 divides 11 once with 2 left over.

 ✓ : The number 7 divides 26 three times with 5 left over.

 ✓ : The number 11 divides 402 a total of 36 times with 6 left

  over. This example makes it especially apparent that the mixed number 
is more understandable.

Taking on mixed numbers to make them improper
To change a mixed number to an improper fraction, you multiply the whole 
number in front times the denominator; then you add the numerator to the 
product. The final result of the multiplying and adding goes in the numerator 
of the improper fraction, and the denominator stays the same.

 Here are some examples of changing mixed numbers to improper fractions:

 ✓ 

 ✓ 
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Taking Fractions to Task
Now that you know everything about fractions — their proper names, 
characteristics, strong and weak points, and so on — it’s time to put them 
to work. The rules for addition, subtraction, multiplication, and division of 
fractions are the same ones used later when variables are added to do 
algebra problems. This is reassuring! The rules don’t change.

Adding and subtracting fractions
Adding and subtracting fractions takes a little special care. You can add 
quarts and gallons if you change them to the same unit. It’s the same with 
fractions. You can add thirds and sixths if you find the common denominator 
first.

 To add or subtract fractions:

 1. Convert the fractions so that they have the same number in the 
denominators.

  Find out how to do this in the “Finding common denominators” section.

 2. Add or subtract the numerators.

  Leave the denominators alone.

 3. Reduce the answer, if needed.

 Jim played for half an hour in yesterday’s soccer game and for 45 minutes in 
today’s game. How long did Jim play altogether?

Set up the problem in terms of the number of hours Jim played. Half an 
hour is just that: . And 45 minutes is  of an hour.

The fractions  and  don’t fit together when you try to add them. You can’t 
just add the numerators and the denominators. But the larger denominator, 
4, is a multiple of the smaller denominator, 2. So your common denominator
is 4. Rewrite the fraction  by multiplying by .

Now you can add the numerators of the fractions and simplify the problem:

Jim played  of an hour (or 1 hour and 15 minutes).
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 In her will, Jane gave  of her money to the Humane Society and  of her

  money to other charities. How much was left for her children’s inheritance?

The fractions  and  aren’t compatible. You can’t combine or compare them

very easily. The fraction  can be  or  or  and more. The fraction  can

be , , , , , , and more.

It may take a while to find a good fit, but  and .

Add the numerators to get the total designation to charity in Jane’s will:

Subtract that total from the whole of Jane’s proceeds to find what portion is 
allotted to her children:

Jane’s children will be awarded  of Jane’s estate.

Multiplying fractions
Multiplying fractions is a tad easier than adding or subtracting them. 
Multiplying is easier because you don’t need to find a common denominator 
first. The only catch is that you have to change any mixed numbers to 
improper fractions. Then, at the end, you may have to change the fraction 
back again to a mixed number. Small price to pay.

 When multiplying fractions follow these steps:

 1. Change all mixed numbers to improper fractions.

 2. Multiply the numerators together and the denominators together.

 3. Reduce the answer if necessary.

 Fred ate  of a -pound box of candy. How much candy did he eat?

He ate  pound of candy (and 6 zillion calories). The original 

multiplication yields a fraction that is reduced by dividing both numerator 
and denominator by 6.
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 Sadie worked  hours at time-and-a-half. How many hours will she get 
paid for?

 earned hours to multiply by the hourly rate. Both
parts of the problem started out as mixed numbers. You change them to 
improper fractions before multiplying.

 Reducing the fractions before multiplying can make multiplying fractions 
easier. Smaller numbers are more manageable, and if you reduce the fractions 
before you multiply, you don’t have to reduce them afterward.

Here’s another way of looking at Fred’s candy problem: Multiply the fractions 
by reducing first. The expression  has a 2 in the first numerator and 
a 4 in the second denominator. Even though the 2 and 4 aren’t in the same 
fraction, you can reduce them, because this is a multiplication problem. 
Multiplication is commutative, meaning that it doesn’t matter what order 
you multiply the numbers. You can pretend that the 2 and 4 are in the same 
fraction.

So, dividing the first numerator by 2 and the second denominator by 2, 
you get

But  has a 3 in the first denominator and a 3 in the second numerator. 
You can divide by 3.

So , which is the same answer as in the original example.

In the previous example, either method — reducing before or after 
multiplying — was relatively easy. The next example shows how necessary 
reducing before working the problem can be.

 Multiply the two fractions: .

The numerator of the first fraction and the denominator of the second 
fraction can each be divided by 180:
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Rewriting the problem, you now see that the denominator of the first fraction 
and the numerator of the second fraction each can be divided by 11:

Now the multiplication is simple:

This is much simpler than the original problem would’ve been!

 After reducing the original fraction in a multiplication problem and finally 
multiplying the numerators and denominators together, it’s always important 
to look over your answer to be sure that it can’t be further reduced. If you got 
all the common factors before multiplying, then you won’t find any more after 
multiplying. But, just in case you missed a division, you should check to be 
sure of your answer.

The operations of addition and multiplication have several special features. 
One feature that applies here is the property that you can efficiently perform 
the operation of addition or multiplication on more than two fractions at a 
time.

The following example shows how to multiply three fractions together. A 
situation such as this could happen if you were applying one discount after 
another to an original list price.

 Multiply the three fractions: .

You can make the problem easier if you reduce fractions first. The 15 and 75 
are both divisible by 15, the 21 and 49 are both divisible by 7, and the 16 and 
24 are both divisible by 8:

 Before multiplying mixed numbers together, you need to change them to 
improper fractions.
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 Multiply: .

First, change the mixed numbers to improper fractions:

Reduce the fractions by dividing by 3 and dividing by 2:

Dividing fractions
Dividing fractions is as easy as (dividing) pie! That is, dividing the pie into 
enough pieces so that everybody at your table gets an equal share. Actually, 
dividing fractions uses the same techniques as multiplying fractions, except 
that the numerator and the denominator of the second fraction first have to 
change places.

 When dividing fractions:

 1. Change all mixed numbers to improper fractions.

 2. Flip the second fraction, placing the bottom number on top and the 
top number on the bottom.

 3. Change the division sign to multiplication.

 4. Continue as with the multiplication of fractions.

 The flip of a fraction is called its reciprocal. All real numbers except 0 have a 
reciprocal. The product of a number and its reciprocal is equal to 0.
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 If you buy  pounds of sirloin steak and want to cut it into pieces that weigh 

  pound each, how many pieces will you have?

First, change the mixed number to an improper fraction. Then flip the second 
fraction, and change the division to multiplication:

Now reduce the fraction and multiply. Change the answer to a mixed number:

Having  pieces means that you’ll have eight pieces weighing the full  
pound and one piece left over that’s smaller. (That’s the cook’s bonus or 
mean Aunt Martha’s piece.)

Dealing with Decimals
Decimals are nothing more than glorified fractions. Decimals are special 
because, when written as fractions, their denominators are always powers 
of 10 — for example, 10, 100, 1,000, and so on. Because decimals are such 
special fractions, you don’t even have to bother with the denominator part. 
Just write the numerator and use a decimal point to indicate that it’s really a 
fraction with a denominator that’s a power of 10.

 The number of digits (decimal places) to the right of the decimal point in a 
number tells you the number of zeros in the power of 10 that is written in the 
denominator of the corresponding fraction.

 Here are some examples of changing fractions to decimals:

 ✓ : The decimal has just one digit, 3, to the right of the decimal 
  point, so the denominator has one zero.

 ✓ : The decimal has three digits, 408, to the right of the 
  decimal point, so you use the power of 10 with three zeros.
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 ✓ : The decimal has five digits, 00009, to the right of 

  the decimal point. The 60.00009 is written in front of the fraction and 
doesn’t affect the decimal value. The lead zeros are not written in front 
of the 9 in the numerator. You start by writing the first nonzero digit.

 A digit is any single number from 0 through 9. (But, when you count the ten 
digits at the end of your feet, you start with 1 and end with 10.)

Decimal fractions are great because you can add, subtract, multiply, and 
divide them so easily. The ease in computation (and typing) is why changing 
a fraction to a decimal is often desirable.

Changing fractions to decimals
All fractions can be changed to decimals. In Chapter 1, I tell you that rational 
numbers have decimals that can be written exactly as fractions. The decimal 
forms of rational numbers either end (terminate) or repeat in a pattern.

 To change a fraction to a decimal, just divide the top by the bottom:

 ✓  becomes  so .

 ✓  becomes  so .

 ✓  becomes  so . The division 
  never ends, so the three dots (ellipses) tell you that the pattern repeats 

forever.

If the division doesn’t come out evenly, you can either show the repeating 
digits or you can stop after a certain number of decimal places and round off.

Decimal-point abuse
When a decimal point is misused, it can be 
costly. Ninety-nine cents can use a cent symbol 
(99¢) or a dollar symbol ($0.99). When people 
aren’t careful or don’t understand, you may see 
0.99¢. You figure that they mean 99¢, but that’s
not what this says. The price 0.99¢ means  
cent — not quite a cent.

A friend of mine once challenged a hamburger 
establishment on this. It advertised a super-duper 

hamburger for the regular price and any addi-
tional for 0.99¢. He went in and asked for his 
regular-priced hamburger and two additional 
for 1¢ each. (He was willing to round up to a 
whole penny.) When the flustered clerk finally 
realized what had happened, he honored my 
friend’s request. Actually, the friend wouldn’t 
have made a big deal of it. He just wanted to 
make a point . . . but you can bet that the sign 
was quickly corrected.
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 To round numbers:

 1. Determine the number of places you want and look one further to the 
right.

 2. Increase the last place you want by one number if the one further is 5 
or bigger.

 3. Leave the last place you want as it is, if the one further is less than 5.

 The symbol ≈ means approximately equal or about equal. This symbol is useful 
when you’re rounding a number.

 Here are some examples of rounding each decimal to the nearer thousandth 
(three decimal places):

 ✓ : When rounded to three decimal places, you look 

  at the fourth digit (one further). The fourth digit is 6, which is greater 
than 5, so you increase the third digit by 1, making the 3 a 4.

 ✓ : When rounded to three decimal places, you look 

  at the fourth digit. The fourth digit is 2, which is smaller than 5, so you 
leave the third digit as it is.

 ✓ : When rounded to three decimal places, you look at 

  the fourth digit. The fourth digit is 5, so you increase the third digit by 1, 
making the 2 a 3.

 You may find some people using an alternate rule for rounding when dropping 
a single digit of 5. The alternate rule is: Round to the even number. So, if you’re 
rounding to three decimal places, the number 0.3125 rounds to 0.312 (rounding 
down to the even), and the number 0.6175 rounds to 0.618 (rounding up to the 
even).

Changing decimals to fractions
Decimals representing rational numbers come in two varieties: terminating 
decimals and repeating decimals. When changing from decimals to fractions, 
you put the digits in the decimal over some other digits and reduce the fraction.

Getting terminal results with terminating decimals
 To change a terminating decimal into a fraction, put the digits to the right of 

the decimal point in the numerator. Put the number 1 in the denominator 
followed by as many zeros as the numerator has digits. Reduce the fraction if 
necessary.
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 Change 0.36 into a fraction:

There were two digits in 36, so the 1 in the denominator is followed by two 
zeros. Both 36 and 100 are divisible by 4, so the fraction reduces.

 Change 0.403 into a fraction:

There were three digits in 403, so the 1 is followed by three zeros. The frac-
tion doesn’t reduce.

 Change 0.0005 into a fraction:

Don’t forget to count the zeros in front of the 5 when counting the number of 
digits. The fraction reduces.

Repeating yourself with repeating decimals
When a decimal repeats itself, you can always find the fraction that corre-
sponds to the decimal. In this chapter, I only cover the decimals that show 
every digit repeating.

 To change a repeating decimal (in which every digit is part of the repeated pat-
tern) into its corresponding fraction, write the repeating digits in the numera-
tor of a fraction and, in the denominator, as many nines as there are repeating 
digits. Reduce the fraction if necessary.

 Here are some examples of changing the repeating decimals to fractions:

 ✓ : The three repeating digits are 126. Placing the 

  126 over a number with three 9s, you reduce by dividing numerator and 
denominator by 9.

 ✓ : The six repeating digits are put 

  over six nines. Reducing the fraction takes a few divisions. The common 
factors of the numerator and denominator are 11, 13, 27, and 37.
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Chapter 4

Exploring Exponents and 
Raising Radicals

In This Chapter
▶ Notating titanic numbers with exponents

▶ Making the miniscule accessible

▶ Operating on exponents and roots

▶ Running with radicals

Exponents, those small symbols, slightly higher and to the right of 
numbers, were developed so that mathematicians wouldn’t have to 

keep repeating themselves! What is an exponent? An exponent is the small, 
superscripted number to the upper right of the larger number that tells you 
how many times you multiply the larger number, called the base. That is, 
three to the fourth power (34) is 3 multiplied 4 times. Got that? Now, here’s 
what happens:

34 = 3 · 3 · 3 · 3 = [(3 · 3) · 3] · 3 = 81

So, really, three to the fourth power (34) is another way of saying 81.

Multiplying the Same Thing 
Over and Over and Over

When algebra was first written with symbols — instead of with all words — 
there were no exponents. If you wanted to multiply the variable y times itself 
six times, you’d write it: yyyyyy. (Kinda like talking to a 3-year-old: “Why, 
why, why, why, why, why?”) Writing the variable (the letter representing 
a number) over and over can get tiresome (just like 3-year-olds), so the 
wonderful system of exponents was developed.
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Powering up exponential notation
Writing numbers with exponents is one thing — knowing what these 
exponents mean and what you can do with them is another thing altogether. 
Using exponents is so convenient that it’s worth the time and trouble to find 
out the rules for using them correctly.

The base of an exponential expression can be any real number. (Real numbers 
are the rational and irrational numbers together.) The exponent (the power) 
can be any real number, too. An exponent can be positive, negative, fractional, 
or even a radical. What power!

 When a number x is involved in repeated multiplication of x times itself, then 
the number n can be used to describe how many multiplications are involved: 
xn = x · x · x · x · x . . . n times.

 Even though the x in the expression x2 can be any real number and the n can 
be any real number, they can’t both be 0 at the same time. For example, 00 
really has no meaning in algebra. It takes a calculus course to prove why this 
restriction is so. Also, if x is equal to 0, then n can’t be negative.

Paying off a royal debt exponentially
There’s an old story about a king who backed 
out on his promise to the knight who saved 
his castle from a fire-breathing dragon. The 
king was supposed to pay the knight two bags 
of gold for his bravery and for the successful 
endeavor.

After the knight had slain the dragon, the king 
was reluctant to pay up — after all, no more 
fire breathing in the neighborhood! So the frus-
trated knight, wanting to get his just reward, 
struck a bargain with the king: On January 
1, the king would pay him 1 pence, and he 
would double the amount every day until the 
end of April. So, on January 2, the king would 
pay him 2 pence. On January 3, the king would pay 
him 4 pence. On January 4, the king would 
pay him 8 pence. On January 5, the king would pay 

him 16 pence. And this would continue through 
April 30.

The king thought that this was a pretty good 
deal. After all, the knight was just asking 
for some of the smallest coins that the king 
had. So he agreed and started paying off the 
knight. It went pretty well until the end of 
January. On January 20, he had to pay 524,288 
pence. Then, on February 20, he had to pay 
1,125,899,906,842,624 pence. On the last day, 
April 30, he had to pay over 664,613,998,000,
000,000,000,000,000,000,000,000 pence. Add 
up all the pence on all the days, and the total 
amount was more than 1,329,227,000,000,000,
000,000,000,000,000,000,000 pence. If a pence is 
close to a penny, then this is way over a trillion 
trillion dollars! Guess who was king then?
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 Here are some examples using exponential notation:

 ✓ 24 = 2 · 2 · 2 · 2 = 16

 ✓ 35 = 3 · 3 · 3 · 3· 3 = 243

 ✓ 108 = 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 = 100,000,000

 ✓ 

See the “Working with Negative Exponents” section, later in the chapter, for 
more on the last example.

 The nice thing about powers of 10 is that the power tells you how many zeros 
are in the answer.

 Write the expression 33x2y4z6 without exponents.

In this example, several bases are multiplied together. Each base has its own, 
separate exponent. The x, y, and z are variables representing real numbers:

33x2y4z6 = 3 · 3 · 3 · x · x · y · y · y · y · z · z · z · z · z · z

You can see why using the powers is preferable. And in the next example, the 
base is a binomial.

 Write the expression (a + b)3 without an exponent.

(a + b)3 = (a + b) · (a + b) · (a + b)

 The parentheses mean that you add the two values together before applying 
the exponent.

Comparing with exponents
Comparing amounts is easier when you use exponents. Try to compare these 
two numbers: 943,260,000,000,000,000,000,000 and 8,720,000,000,000,000,000,
000,000. Which is bigger? The first number may look bigger because of the 
first three digits, but this is deceiving. To compare large numbers, rewrite 
them as products involving exponents.

Using the previous numbers, you can write them as follows:

943,260,000,000,000,000,000,000 =

9.4326 × 100,000,000,000,000,000,000,000 =

9.4326 × 1023
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and

8,720,000,000,000,000,000,000,000 =

8.72 × 1,000,000,000,000,000,000,000,000 =

8.72 × 1024

The number with the higher power of 10 is the larger number:

8.72 × 1024 > 9.4326 × 1023

If the powers are the same, then compare the numbers multiplying the power 
of 10.

Why is the number with the higher power of 10 larger? Look at these two 
numbers that are a little more manageable (they don’t have over 20 zeros): 
3 × 102 and 9 × 101. That’s comparing 3 × 100 = 300 with 9 × 10 = 90. Even 
though the 9 is bigger than the 3, it’s the larger power of 10 that “wins.”

 The star Rigel, in the constellation Orion, is 777 light years away. A light year is 
the distance that light travels in a year. So, if light travels at 186,000 miles per 
second, you multiply: 186,000 times 60 seconds in a minute times 60 minutes 
in an hour times 24 hours in a day times 365 days in a year times 777 years to 
get about 4,557,645,792,000,000 miles. Written exponentially, the distance to 
Rigel is about 4.558 × 1015 miles away.

 Viruses are the smallest microbes, but they pack a nasty wallop! The Ebola 

 virus measures  inch, or 0.00004 inch. The influenza virus measures 

  inch, or 0.000005 inch. In scientific notation, the two viruses measure 

 4 × 10–5 and 5 × 10–6 inch, respectively.

Taking notes on scientific notation
When people talk about distances between planets, the number of grains 
of sand, or the amount of money spent by the government, they have to 
use very large numbers. When the topic turns to measurements of plant or 
animal cells, the size of atoms, or other such teeny things, they use very 
small numbers. Scientific notation is a standard way of recording these very 
large and very small numbers so they can fit on one line in the page of a book 
and so they can be compared more easily. Computations with large and small 
numbers are easier in scientific-notation form, too.
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 The form for a number written in scientific notation is: N × 10a, where N is a 
number between 1 and 10 (including 1 but not including 10 — you don’t use 10 
because it has two digits), and where a is an integer (a positive or negative 
number).

You can write large and small numbers in scientific notation by moving the 
decimal point until you create a number from 1 up to 10, and then indicating 
how many places the decimal point was moved by the power you raise 10 
to. Whether the power of 10 is positive or negative depends on whether you 
move the decimal to the right or to the left: Moving the decimal to the right 
makes the exponent negative; moving it to the left makes the exponent 
positive.

 To write a number in scientific notation:

 1. Determine where the decimal point is in the number and move it 
left or right until you have exactly one digit to the left of the decimal 
point.

  This gives you a number between 1 and 10.

 2. Count how many places (digits) you had to move the decimal point 
from its original position.

  This is the absolute value of your exponent.

 3. If you moved the original decimal point to the left, your exponent is 
positive. If you moved the original decimal point to the right, your 
exponent is negative.

 4. Rewrite the number in scientific notation by making a product of your 
new, between-1-and-10 number, times a 10 raised to the power of 
your exponent.

 Here are some numbers written in scientific notation:

 ✓ 41,000 = 4.1 × 104: A decimal point is implied (assumed there) after the 
last 0 in 41,000. Move the decimal place four spaces to the left, creating 
the number 4.1. The exponent is +4.

 ✓ 312,000,000,000 = 3.12 × 1011: The decimal place is moved 11 spaces to 
the left.

 ✓ 0.00000031 = 3.1 × 10–7: The decimal place is moved seven spaces to 
the right this time. This is a very small number, and the exponent is 
negative.

 ✓ 0.2 = 2 × 10–1: The decimal place is moved one space to the right.
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Exploring Exponential Expressions
Expressing very large numbers or very small numbers exponentially makes 
them so much easier to deal with! Exponents are very helpful when studying 
situations that involve doing the same thing over and over again.

Picture a cat stalking a mouse. They’re about 100 inches apart. Every time the 
mouse starts nibbling at the hunk of cheese, the cat takes advantage of 
the mouse’s distraction and creeps closer by one-tenth the distance between 
them. The cat wants to get about 6 inches away — close enough to pounce. 
How far apart are they after four moves? How about after ten moves? How 
long will it take before the cat can pounce on the mouse? Figure 4-1 shows 
you what’s happening.

 

Figure 4-1: 
Playing cat 
and mouse.

 65.61 inches

72.9 inches

81 inches

90 inches

100 inches

Use these steps to stalk your own mouse (or to figure any decreasing 
distance):

 1. Express the incremental move as a fraction.

  In the sample problem, that’s easy because the cat creeps closer by 
one-tenth the distance between them.

 2. Multiply the total distance by the fraction to get the length of the 
move.

  The cat and mouse are 100 inches apart, so you multiply 100 times  to 
get 10 inches.

 3. Subtract the length of the move from the current distance.

  100 inches minus 10 inches leaves 90 inches between them.

 4. Multiply the current distance by the fraction to find the distance of 
the second move.

  Second move: Multiply 90 times  to get 9 inches.

 5. Subtract the length of the move from the current distance.

  90 inches minus 9 inches leaves 81 inches between them.
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 6. Multiply the current distance by the fraction to find the distance of 
the third move.

  Third move: Multiply 81 times  to get 8.1 inches.

 7. Subtract the length of the move from the current distance.

  81 inches minus 8.1 inches = 72.9 inches between them.

And so on, and so on, and so on. (Aren’t you glad the cat wasn’t 200 inches 
away?)

Good news: There’s an easier way. Instead of finding one-tenth the distance 
remaining each time and subtracting, switch to finding the distance remaining 
between them, which is nine-tenths of the distance before that move. 
One-tenth plus nine-tenths equals one — the whole amount.

In each step, you multiply by , the fraction of the distance left after the 

move times the current distance. Nine-tenths times the current distance is 
the new distance. Then there’s just one operation to deal with each time.

 1. Find the distance left between them after the first move by multiplying 

  the current distance by .

   inches between them

 2. Find the distance left between them after the second move by 

multiplying the current distance by .

   inches between them

 3. Find the distance left between them after the third move by multiplying 

the current distance by .

   inches between them

 4. Find the distance left between them after the fourth move by multiplying 

the current distance by .

   inches between them

Again, as you see, this can get pretty tedious. The best way to find the answer 
is to use exponents. Figuring this problem using powers, or exponents, can 
make the computation easier. The third time is the charm for finding the 
distance between the cat and the mouse. Just use this formula:

Distance to pounce , where n is the number of moves the cat 
has made

 Perform the operations inside the grouping symbol first.

In this formula, because the fraction  is inside parentheses, apply the 
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exponent just outside the parentheses to the fraction first. Multiply the 
fraction n times itself before multiplying it by 100.

After the third move, the distance between them is  inches. 

After the tenth move, the distance between them is  inches. 
This still isn’t close enough to pounce.

Note: I’m using the approximately symbol (≈) here because the actual answer 
has many more decimal places and you don’t need all that information.

After the 26th move, the distance between them is  inches.

It’ll take one more move to be within the 6-inch pounce distance. Do you 
suppose the mouse still hasn’t caught on after 26 moves? If not, then it 
deserves to be pounced upon.

Now, to get away from this game of cat and mouse, let me bounce to an example 
that confounded many readers of the first edition of this book. In that edition, I 
gave the example of the bouncing ball and a formula to solve it. I only intended 
to illustrate the use of exponents, but the readers wanted more. They wanted to 
know why and how! So now you benefit from all the e-mails I received.

 Find the total distance that a super ball travels if it always bounces back 75 
percent of the distance it fell. You dropped it from a window that’s 40 feet 
above a nice, smooth sidewalk. Assume that the ball always falls straight down 
and returns straight up. (The theoretical is always easier than the practical.) 
Figure 4-2 shows you some of the first drops and bounces.

If you want to find out the total distance (up and down and up and down and 
up . . . ) that a super ball travels in n bounces, if it always bounces back 75 
percent of the distance it falls, then you want to add up all the distances — 
all of them!

In Figure 4-2, I show you some of the first distances: the original 40 feet, then 
75 percent of 40 = 30 feet, then 75 percent of 30 = 22.5 feet, and so on. The list 
of numbers 40, 30, 22.5, 16.875, 12.65625, and so on are part of an infinite 
geometric sequence. A geometric sequence is formed when each term is found 
by multiplying the previous term by a particular number, called the ratio. I 
don’t go into all the good details, and you’ll have to trust me here, but I can 
tell you that the sum of all the terms (infinitely many) of this type of geometric 
sequence is found with a rather simple formula.

 The sum of the terms of an infinite geometric sequence where the ratio, r, is a 
number between 0 and 1, is found by dividing the first term of the sequence, a, 
by the difference between 1 and r:
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In this bouncing-ball problem, I first add up all the downward distances. The 
first term is the 40, and the ratio is 0.75. So, using the formula, you get the 
sum of 40 + 30 + 22.5 + 16.875 + . . . to be:

That sum just gives you all the distances going downward. What about all the 
bounces back up? The simplest way to find all the upward distances is to just 
subtract 40 from the sum of the downward distances. (The number 40 is the 
only number not repeated.) So, subtracting 160 – 40, you get 120. And, adding 
the downward distances to the upward distances, you get 160 + 120 = 280 
feet. The ball travels a total distance of 280 feet.

You may wonder what the bouncing ball has to do with exponents — the 
main topic of this section. The answer is that the distance that the ball 
travels in n bounces is found with a formula involving powers of the 75 
percent bounce return. Using the equation:

distance = 40 + 240 [1 – 0.75n]

 

Figure 4-2: 
Does the 
bouncing 

ever really 
stop?

 

40

30 30

22.5

16.875 16.875

12.65625 12.65625

9.4921875 9.4921875

22.5
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You can find the distance after two bounces, four bounces, ten bounces, and 
so on. I already showed you the total number of bounces possible when n 
is forever, so anything less than forever will be less than 280 feet. After one 
bounce and before the second bounce, the total distance is 40 feet + 30 feet + 
30 feet = 100 feet. Check this with the formula:

distance = 40 + 240 [1 – 0.751] = 100 feet

After ten bounces, the total distance is 40 feet + 30 feet + 30 feet + 22.5 feet + . . . 
Ugh! Use the formula!

distance = 40 + 240 [1 – 0.7510] ≈ 266.48 feet

The total will keep getting closer and closer to 280 feet. Your calculator will 
round the total to 280 before you even get to n = 100.

Okay, now you want to know where the formula for the distance came from.

 The sum of the first n terms of any geometric sequence is found with the formula:

, where a is the first term in the sequence, r is the ratio, 

and n is the number of terms

With this formula, you aren’t restricted to the ratio being between 0 and 1 
or by n being infinitely large (all the terms). For the bouncing ball problem, 
I want to double each term after the 40, so I put the 40 in front and add it to 
twice the sum of the next n terms or bounces. The first term then becomes 30 
and the ratio is still 0.75.

Voilà!
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Multiplying Exponents
You can multiply many exponential expressions together without having to 
change their form into the big or small numbers they represent. The only 
requirement is that the bases of the exponential expressions that you’re 
multiplying have to be the same. The answer is then a nice, neat exponential 
expression.

You can multiply 24 · 26 and a5 · a8, but you cannot multiply 36 · 47 because the 
bases are not the same.

 To multiply powers of the same base, add the exponents together: xa · xb = xa + b.

 Here are some examples of finding the products of the numbers by adding the 
exponents:

 ✓ 24 · 29 = 24 + 9 = 213

 ✓ a5 · a8 = a13

 ✓ 4a · 42 = 4a + 2

Often, you find algebraic expressions with a whole string of factors; you want 
to simplify the expression, if possible. When there’s more than one base in an 
expression with powers, you combine the numbers with the same bases, find 
the values, and then write them all together.

 Here’s how to simplify the following expressions:

 ✓ 32 · 22 · 33 · 24 = 32 + 3 · 22 + 4 = 35 · 26: The two factors with base 3 
combine, as do the two factors with base 2.

 ✓ 4x6y5x4y = 4x6 + 4y5 + 1 = 4x10y6: The number 4 is a coefficient, which is 
written before the rest of the factors.

 When there’s no exponent showing, such as with y, you assume that the 
exponent is 1. In the preceding example, you see that the factor y was written 
as y1 so its exponent could be added to that in the other y factor.

 You can add exponents when multiplying numbers with the same base. But 
you can multiply numbers that have the same power (in a multiplication 
problem). The rule is that: an · bn = (a · b)n. So, if you have 48 · 78, you simplify 
it to (4 · 7)8 = 288. You’d rather leave the simplified expression as the power of 
28, because the actual number is huge!
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Dividing and Conquering
You can divide exponential expressions, leaving the answers as exponential 
expressions, as long as the bases are the same. Division is the opposite of 
multiplication, so it makes sense that, because you add exponents when 
multiplying numbers with the same base, you subtract the exponents when 
dividing numbers with the same base. Easy enough?

 To divide powers with the same base, subtract the exponents: 

 , where x can be any real number except 0. (Remember: 

 You can’t divide by 0.)

 Here are some examples of simplifying expressions by dividing:

 ✓ 210 ÷ 24 = 210 – 4 = 26: These exponentials represent the problem 1,024 ÷ 
16 = 64. It’s much easier to leave the numbers as bases with exponents.

 ✓ : The variables represent 

  numbers, so writing this out the long way would be

  

  By crossing out the common factors, all that’s left is 2x2z.

Need I say more? Well, yes, there’s lots more to say — especially about 
nothing. I need to tell you about the exponent nothing — better known as 0.

Testing the Power of Zero
If x3 means x · x · x, what does x0 mean? Well, it doesn’t mean x times 0, so the 
answer isn’t 0. x represents some unknown real number; real numbers can be 
raised to the 0 power — except that the base just can’t be 0. To understand 
how this works, use the following rule for division of exponential expressions 
involving 0.

 Any number to the power of 0 equals 1 as long as the base number is not 0. In 
other words, a0 = 1 as long as a ≠ 0.

08_559642-ch04.indd   6608_559642-ch04.indd   66 4/16/10   11:04 AM4/16/10   11:04 AM



67 Chapter 4: Exploring Exponents and Raising Radicals

Consider the situation where you divide 24 by 24 by using the rule for dividing 
exponential expressions, which says that if the base is the same, subtract the 
two exponents in the order that they’re given. Doing this you find that the 
answer is 24 – 4 = 20. But 24 = 16, so 24 ÷ 24 = 16 ÷ 16 = 1. That means that 20 = 1. 
This is true of all numbers that can be written as a division problem, which 
means that it’s true for all numbers except those with a base of 0.

 Here are some examples of simplifying, using the rule that when you raise a 
real number a to the 0 power, you get 1:

 ✓ m2 ÷ m2 = m2 – 2 = m0 =1.

 ✓ 4x3y4z7 ÷ 2x3y3z7 = 2x3 – 3y4 – 3z7 – 7 = 2x0y1z0 = 2y. Both x and z end up with 
exponents of 0, so those factors become 1. Neither x nor z may be equal 
to 0.

 ✓ .

Working with Negative Exponents
Negative exponents are a neat little creation. They mean something very 
specific and have to be handled with care, but they are oh, so convenient to 
have.

You can use a negative exponent to write a fraction without writing a fraction! 
Using negative exponents is a way to combine expressions with the same 
base, whether the different factors are in the numerator or denominator. It’s 
a way to change division problems into multiplication problems.

Negative exponents are a way of writing powers of fractions or decimals 

without using the fraction or decimal. For example, instead of writing , 
you can write 10–14.

 A reciprocal of a number is the multiplicative inverse of the number. The 
product of a number and its reciprocal is equal to 1.

 The reciprocal of xa is , which can be written as x–a. The variable x is any 

 real number except 0, and a is any real number. Also, to get rid of the negative 

 exponent, you write: .
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 Here are some examples of changing numbers with negative exponents to 
fractions with positive exponents:

 ✓ . The reciprocal of 23 is .

 ✓ . The reciprocal of z4 is . In this case, z cannot be 0.

 ✓ . The reciprocal of 6 is .

But what if you start out with a negative exponent in the denominator? What

happens then? Look at the fraction . If you write the denominator as a 

fraction, you get . Then, changing the complex fraction (a fraction with a 

fraction in it) to a division problem: . (Refer to 

division of fractions in Chapter 3, if you need a refresher.) So, to simplify 
a fraction with a negative exponent in the denominator, you can do a 

switcheroo: .

 Here are some examples of simplifying the fractions by getting rid of the 
negative exponents:

 ✓ 

 ✓ 

Powers of Powers
Because exponents are symbols for repeated multiplication, one way to write 
(x3)6 is x3 · x3 · x3 · x3 · x3 · x3. Using the multiplication rule, where you just add 
all the exponents together, you get x3 + 3 + 3 + 3 + 3 + 3 = x18. Wouldn’t it be just 
grand if the rule for raising a power to a power was just to multiply the two 
exponents together? Lucky you!

 To raise a power to a power, use this formula: (xn) m = xnm. In other words, 
when the whole expression, xn, is raised to the mth power, the new power of x 
is determined by multiplying n and m together.

 Here are some examples of simplifying using the rule for raising a power to a 
power:

 ✓
 

: You first multiply the exponents; then rewrite 
  the product to create a positive exponent.

 ✓
 

3 3 3 1
3

2
5 2 5 10

10( )( ) = = == =
− −( ) −

 ✓ (x–2)–3 = x(–2)(–3) = x6
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 ✓ (3x2y3)2 = 32x2 · 2y3 · 2 = 9x4y6: Each factor in the parentheses is raised to 
the power outside the parentheses.

 ✓ 

  
: Notice that the order of operations is observed here. 

  First, you raise the expressions in the parentheses to their powers. 
Then you multiply the two expressions together. This example shows 
multiplying exponents (raising a power to a power) and adding exponents 
(multiplying same bases). The rule involving the order of operations 
even applies when you have negative exponents.

 ✓ (x2 y3)–2(x–2 y–3)–4 = (x2(–2) y3(–2))(x(–2)(–4) y(–3)(–4)) = (x–4 y–6)(x8 y12) = 
x–4 + 8 y–6 + 12 = x4 y6

Squaring Up to Square Roots
When you do square roots, the symbol for that operation is a radical, . A 
cube root has a small 3 in front of the radical; a fourth root has a small 4, and 
so on.

The radical is a non-binary operation (involving just one number) that asks 
you, “What number times itself gives you this number under the radical?” 
Another way of saying this is: “If , then b2 = a.”

Finding square roots is a relatively common operation in algebra, but 
working with and combining the roots isn’t always so clear.

 Expressions with radicals can be multiplied or divided as long as the root 
power or the value under the radical is the same. Expressions with radicals 
cannot be added or subtracted unless both the root power and the value 
under the radical are the same.

 Here are some examples of simplifying the radical expressions when possible:

 ✓ 2 3 6⋅⋅ = : These can be combined because it’s multiplication, and the 
root power is the same.

 ✓ : These can be combined because it’s division, and the root 
power is the same.

 ✓ : These cannot be combined because it’s addition, and the value 
under the radical is not the same.

 ✓ : These cannot be combined because it’s subtraction, and the 
value under the radical is not the same.
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 ✓ : These cannot be combined because it’s subtraction, and the 
root power isn’t the same.

 ✓ : These can be combined because the root power and 
the numbers under the radical are the same.

When the numbers inside the radical are the same, you can see some nice 
combinations involving addition and subtraction. Multiplication and division 
can be performed whether they’re the same or not. The root power refers to 
square root ( ), cube root ( ), fourth root ( ), and so on.

 Here are the rules for adding, subtracting, multiplying, and dividing radical 
expressions. Assume that a and b are positive values.

 ✓ : Addition and subtraction can be performed if 
the root power and value under the radical are the same.

 ✓ 

 ✓ 

 ✓ : Multiplication and division can be performed if the root 
powers are the same.

 ✓ 

Here are some of the more frequently used square roots:

  

  

  

  

 Notice that the square root of a 1 followed by an even number of zeros is 
always a 1 followed by half that many zeros.

The convention that mathematicians have adopted is to use fractions in the 
powers to indicate that this stands for a root or a radical. The fractional 
exponents are easier to use when combining factors, and they’re easier to 

type — for example, , , and .

Notice that, when there’s no number outside and to the upper left of the 
radical, you assume that it’s a 2, for a square root. Also, recall that when 
raising a power to a power, you multiply the exponents (see the “Powers of 
Powers” section, earlier in this chapter).
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 When changing from radical form to fractional exponents:

 ✓ : The nth root of a can be written as a fractional exponent with a 
raised to the reciprocal of that power.

 ✓ : When the nth root of am is taken, it’s raised to the th power. 

  Using the “Powers of Powers” rule, the m and the  are multiplied 
together.

This rule involving changing radicals to fraction exponents allows you to sim-
plify the following expressions. Note that when using the “Powers of Powers” 
rule, the bases still have to be the same.

 Here are some examples of simplifying each expression, combining like 
factors:

 ✓ 

 ✓ : Leave the exponent as . 
Don’t write the exponent as a mixed number.

 ✓ : The exponents can’t really be combined, because the 
bases are not the same.
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Chapter 5

Doing Operations in Order and 
Checking Your Answers

In This Chapter
▶ Organizing your operations into bite-size pieces

▶ Ordering your problem from first to last

▶ Making sure your answers make sense

▶ Taking stock of the rules for working with variables

▶ Using the basic operations on terms with variables

Algebra had its start as expressions that were all words. Everything 
was literally spelled out. As symbols and letters were added, algebraic 

manipulations became easier. But, as more symbols and notations were 
added, the rules that went along with the symbols also became a part of 
algebra. All this shorthand is wonderful, as long as you know the rules and 
follow the steps that go along with them. The order of operations is a biggie 
that you use frequently when working in algebra. It tells you what to do first, 
next, and last in a problem, whether terms are in grouping symbols or raised 
to a power.

And, because you may not always remember the order of operations correctly, 
checking your work is very important. Making sure that the answer you get 
makes sense, and that it actually solves the problem, is the next-to-last step 
of working every problem. And then the very final step is writing the solution 
in a way that other folks can understand easily.

This chapter walks you through the order of operations, checking your 
answers, and writing them correctly.
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Ordering Operations
When does it matter in what order you do things? Or does it matter at all? 
Well, take a look at a couple of real-world situations:

 ✓ When you’re cleaning the house, it doesn’t matter whether you clean the 
kitchen or the living room first.

 ✓ When you’re getting dressed, it does matter whether you put on your 
shoes first or your socks first.

Sometimes the order matters, sometimes it doesn’t. In algebra, the order 
depends on which mathematical operations are performed. If you’re doing 
only addition or you’re doing only multiplication, you can use any order you 
want. But as soon as you mix things up with addition and multiplication in 
the same expression, you have to pay close attention to the correct order. 
You can’t just pick and choose what to do first, next, and last according to 
what you feel like doing.

For example, look at the different ways this problem could be done, if there 
were no rules. Notice that all four operations are represented here.

8 – 3 × 4 + 6 ÷ 2 =

One way to do the problem is to just go from left to right:

 1. 8 – 3 = 5

 2. 5 × 4 = 20

 3. 20 + 6 = 26

 4. 26 ÷ 2 = 13

This gives you a final answer of 13.

Another approach is to group the 3 × 4 together in parentheses. Grouped 
terms tell you that you have to do the operation inside the grouping symbol 
first.

 1. 8 – (3 × 4) = 8 – 12 = –4

 2. –4 + 6 = 2

 3. 2 ÷ 2 = 1

This gives you a final answer of 1.

09_559642-ch05.indd   7409_559642-ch05.indd   74 4/16/10   11:05 AM4/16/10   11:05 AM



75 Chapter 5: Doing Operations in Order and Checking Your Answers

Using other groupings, I can make the answer come out to be 25, 60, or even 
0. I won’t go into how these answers are obtained because they’re all wrong 
anyway.

Mathematicians designed rules so that anyone reading a mathematical 
expression would do it the same way as everyone else and get the same 
correct answer. In the case of multiple signs and operations, working out the 
problems needs to be done in a specified order, from the first to the last. This 
is the order of operations.

 According to the order of operations, work out the operations and signs in the 
following order:

 1. Powers and roots

 2. Multiplication and division

 3. Addition and subtraction

If you have more than two operations of the same level, do them in order 
from left to right, following the order of operations.

 Simplify the following expression using the order of operations: 
24 ÷ 3 + 11 – 9 × 2.

Doing the division and multiplication first,

24 ÷ 3 + 11 – 9 × 2 = 8 + 11 – 18

Adding the 8 and 11 and then subtracting the 18,

8 + 11 – 18 = 19 – 18 = 1

 Simplify the following expression using the order of operations: 
.

Perform the power and root first:

A multiplication symbol is introduced when the radical is removed — to 
show that the 2 multiplies the result. Two multiplications are performed to 
get 36 – 20 + 8. Now subtract and add: 16 + 8 = 24.
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Gathering Terms with Grouping Symbols
In algebra problems, parentheses, brackets, and braces are all used for 
grouping. Terms inside the grouping symbols have to be operated upon 
before they can be acted upon by anything outside the grouping symbol. 
All the grouping types have equal weight; none is more powerful or acts 
differently from the others.

If the problem contains grouped items, do what’s inside a grouping symbol 
first, and then follow the order of operations. The grouping symbols are

 ✓ Parentheses ( ): Parentheses are the most commonly used symbols for 
grouping.

 ✓ Brackets [ ] and braces { }: Brackets and braces are also used frequently 
for grouping and have the same effect as parentheses. Using the different 
types of symbols helps when there’s more than one grouping in a 
problem. It’s easier to tell where a group starts and ends.

 ✓ Radical : This is an operation used for finding roots.

 ✓ Fraction line (called the vinculum): The fraction line also acts as a 
grouping symbol; everything above the line in the numerator is grouped 
together, and everything below the line in the denominator is grouped 
together.

 ✓ Absolute value : This is an operation used to find the unsigned value 
of a number.

Grouping symbols not carrying their weight
When writing algebraic expressions, you 
use parentheses, brackets, and braces to 
show what operations need to be performed 
first. When several different groupings are 
necessary, you use more than one type, 
usually nested one within the other, to 
make reading the expression easier. You 
can’t do this with graphing calculators, 
though. The brackets and braces mean 
something entirely different in those 
instruments. In most graphing calculators:

 ✓ Brackets mean that the items inside are a 
part of a matrix, a rectangular arrangement 
of numbers.

 ✓ Braces mean that what’s inside is part of a 
list of numbers.

These differences make for some awkward 
situations when you want to show several 
groupings within a single expression. Because 
you’re limited to parentheses only, and they’re 
all the same size, there’s often confusion as to 
when a grouping starts and where it ends. You 
trade the convenience of the calculator for the 
inconvenience of the notation.
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Even though the order of operations and grouping-symbol rules are fairly 
straightforward, it’s hard to describe, in words, all the situations that can 
come up in these problems. The examples I show here should clear up many 
questions you may have.

 Use grouping to simplify [8 ÷ (5 – 3)] × 5.

[8 ÷ (5 – 3)] × 5 =

[8 ÷ 2] × 5 =

4 × 5 =

20

 Remember: The fraction line is a grouping symbol when simplifying.

 Simplify .

 Use both the order of operations and grouping symbols to simplify: 
2 + 32 (5 – 1).

 1. Subtract the 1 from the 5 in the parentheses to get 4.

  2 + 32 (4)

 2. Raise the 3 to the second power to get 9.

  2 + 9 (4)

 3. Multiply the 9 and 4 to get 36.

  2 + 9 (4) = 2 + 36

 4. Add to get the final answer.

  2 + 36 = 38

 Remember: The fraction line, radical, and absolute-value operation all act as 
grouping symbols.

 Simplify: .

 1. Working from the inside out, first square the 2 before subtracting it 
from the 12. You can also subtract the numbers in the absolute value 
and the numbers under the radical. Go ahead and square the –3.
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  You can do all these steps at once because none of the results interacts 
with the others yet.

  

 2. Now add the numbers in the brackets, find the absolute value of the 
–15, and find the square root.

  

 3. Multiply the 5 and 11. Then simplify the two fractions by reducing 
them.

  

 4. You can then add the fractions quite nicely.

  

 Be sure to catch the subtle difference between the two expressions: –24 and 
(–2)4. Simplifying the expression –24 you get –16 because the order of operations 
says to first raise to the fourth power and then apply the negative sign. The 
expression (–2)4 = 16 because the entire expression in parentheses is raised to 
the fourth power. This is equivalent to multiplying –2 by itself four times. The 
multiplication involves an even number of negative signs, so the result is 
positive.

 In general, if you want a negative number raised to a power, you have to put it 
in parentheses with the power outside.

Checking Your Answers
Checking your answers when doing algebra is always a good idea, just 
like reconciling your checkbook with your bank statement is a good idea. 
Actually, checking answers in algebra is easier and more fun than reconciling 
a checking account. Or maybe your checking account is more fun than mine.

Check your answers in algebra on two levels.

 ✓ Level 1: Does the answer make any sense? If your checkbook balance 
shows $40 million, does that make any sense? Sure, we’d all like it to be 
that, but for most of us, this would be a red flag that something is wrong 
with our computations.

 ✓ Level 2: Does actually putting the answer back into the problem give 
you a true statement? Does it work? This is the more critical check 
because it gives you more exact information about your answer. The 
first level helps weed out the obvious errors. This is the final check.
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The next sections help you make even more sense of these checks.

Making sense or cents or scents . . .
To check whether an answer makes any sense, you have to know something 
about the topic. A problem will be meaningful if it’s about a situation you’re 
familiar with. Just use your common sense. You’ll have a good feeling as to 
whether the money amount in an answer is reasonable.

For example, your answer to an algebra problem is x = 5. If you’re solving for 
Jon’s weight in pounds, unless Jon is a guinea pig instead of a person, you 
probably want to go back and redo the work. Five pounds or 5 ounces or 5 
tons doesn’t make any sense as an answer in this context.

On the other hand, if the problem involves a number of pennies in a person’s 
pocket, then five pennies seems reasonable. Getting five as the number of 
home runs a player hit in one ballgame may at first seem quite possible, but 
if you think about it, five home runs in one game is a lot — even for Ryan 
Howard or Albert Pujols. You may want to double-check.

Plugging in to get a charge of your answer
Actually plugging in your answer requires you to go through the algebra and 
arithmetic manipulations in the problem. You add, subtract, multiply, and 
divide to see if you get a true statement using your answer.

 Suppose Jack’s cellular plan has 400 more minutes than Jill’s. If the two of 
them have a total of 1,400 minutes altogether, then how many minutes does 
Jill have? Does x = 500 work for an answer?

 1. Write the problem.

  Let x represent the number of minutes that Jill has. Jack has x + 400 
minutes. That means, x + (x + 400) = 1,400. The number of minutes Jill 
has plus the number of minutes Jack has equals 1,400.

 2. Insert the answer into the equation.

  Replace the variable, x, with your answer of 500 to get 500 + (500 + 400) 
= 1,400.

 3. Do the operations and check to see if the answer works.

  500 + 900 = 1,400 is a true statement, so the problem checks. Jill has 500 
minutes; Jack has 400 more than that, or 900 minutes; together, they 
have 1,400 minutes.
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 You can apply a variation of the preceding steps to check whether x = 2 works 
in the equation 5x [x + 3 (x2 – 3)] + 1 = 0.

 1. Write out the equation.

  5x [x + 3 (x2 – 3)] + 1 = 0

 2. Replace the variable with 2.

  5 × 2[2 + 3(22 – 3)] + 1 = 0

 3. Do the operations and simplify.

  Square the 2 to get 5 × 2[2 + 3(4 – 3)] + 1 = 0.

  Subtract in the parentheses to get 5 × 2 [2 + 3(1)] + 1 = 0.

  Add in the brackets to get 5 × 2[5] + 1 = 0.

  Multiply the 5, 2, and 5 to get 50 + 1 ≠ 0.

This time the work does not check. You should go back and try again to find a 
value for x that works.

Curbing a Variable’s Versatility
When algebra uses variables to represent numbers that can be added, 
subtracted, multiplied, and divided, you always assume that the variables are 
representing quantities or amounts that can be added, subtracted, multiplied, 
and divided. But using the representation is not quite that simple or obvious. 
Even when you’re just adding numbers together, restrictions exist. Likewise, 
there are restrictions and rules when you’re adding variables together or 
adding numbers and variables together.

Wait a minute! What restrictions are there for just adding numbers together? 
Why would there be any problem with that? Doesn’t 1 plus 1 still equal 2? 
Sure, unless it’s equal to 4. Seriously, consider what happens when you add 
six quarters and four dimes. When you add the numbers together, what do 
you get (aside from not enough money for a gourmet cup of coffee)? Ten 
quarters? Ten dimes? Ten duarters? Ten quimes?

No. This is silly, of course. But it illustrates what I mean by restrictions on 
adding numbers together. If you want to add quarters and dimes, then count 
the number of coins and say that you have ten coins, or change to the money 
value of each coin and say that you have $1.90. When adding quantities or 
amounts, you have to be sure that the amounts can be added. That’s even 
more critical when you add letters because silly errors aren’t as obvious. You 
have to be careful to add them correctly.
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Representing numbers with letters
The letters in the word tip represent “to insure proper service,” and NATO 
stands for North Atlantic Treaty Organization. What does this have to do 
with algebra? In algebra, letters don’t stand for actions, places, or people. 
The letters, or variables, always stand in for numbers.

Letting a variable represent a quantity, you can simplify a problem and lead 
to nice, neat situations because you don’t have to deal with a bunch of messy 
words. Sometimes you do have to deal with some fairly complicated situations. 
But fear not! A few simple rules can help change even the most complicated 
situation into an easily understandable one.

Consider the task of collecting, organizing, and reporting on the coins 
collected during a charity drive. Let n represent the value of the nickels in a 
roll of nickels, let d represent the value of the dimes in a roll of dimes, and let 
q represent the value of the quarters in a roll of quarters.

Notice that each of the variables n, d, and q represents a money amount — a 
number. Now let me show you the way in which the variables are used to 
describe multiple amounts of the numbers.

I’m putting you in charge of combining all the efforts of the charity-drive 
helpers. After collecting the money, you get this information from your 
helpers:

 ✓ Ann collected six rolls of nickels, four rolls of dimes, and nine rolls of 
quarters, or 6n + 4d + 9q.

 ✓ Ben collected five rolls of nickels, three rolls of dimes, and seven rolls of 
quarters, or 5n + 3d + 7q.

 ✓ Cal collected 15 rolls of nickels, two rolls of dimes, and six rolls of 
quarters, or 15n + 2d + 6q.

 ✓ Don collected one roll of nickels, three rolls of dimes, and four rolls of 
quarters, or 1n + 3d + 4q.

Now you can combine the amounts, compare the amounts, or sort the 
amounts using shorthand notation involving the rolls of coins. (The section 
“Adding and subtracting variables,” later in this chapter, shows you how to 
do the math.)

 When you want to add terms, because each of them has an a, you can add 
them together as long as the a represents the same thing in each one. One a 
can’t represent the number of apples while the other a represents the number 
of aardvarks. They all have to represent the same thing in the same problem.
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A variable that appears more than once in an expression or equation should 
always represent the same number. If the variable could represent more 
than one thing, the statement would be worthless — with no way to tell one 
meaning of the variable from another.

 It’s nice when the variable chosen to represent some number can start with 
the same letter as what it represents, such as a for aardvark. But this isn’t 
necessary. A letter/name coordination is useful when a problem is composed 
of more than one variable, but taking careful notes and identifying variables 
works just as well.

Attaching factors and coefficients
One nice thing about algebra is that it conserves energy — the energy that 
would be needed to write multiple multiplication symbols between letters or 
between a number and a letter. Even having to write teeny little dots between 
symbols takes time, so a simpler system was devised. When a number is 
written in front of a variable, such as 3x, it means that the 3 and x are multiplied 
together. The 3 and the x are both factors of the term 3x. And the 3 is a 
coefficient in this case — it gets a special designation.

A number preceding a variable is a coefficient. For example, the number 4 is 
the coefficient when a + a + a + a is expressed as 4a. When several variables 
are multiplied together, multiplication symbols aren’t needed. The term 3xyz 
means that all four factors are multiplied together.

Interpreting the operations
The symbols + and – may mean many things to you. You look for the symbols 
on your batteries when inserting them in a flashlight. You always want to 
see the + symbol when looking at your bank-account balance. The + and – 
symbols mean several things in algebra, too. The meaning of the symbol all 
depends on the context. For one thing, the + and – symbols always separate 
terms, which are clusters of variables and numbers connected by multiplication 
and division. In algebra-speak, a plus sign means and, more, increased by, 
added to, and so on.

 ✓ +a: A gift of a dollars has increased the value of my account by a dollars.

 ✓ 2 + a: Two people went through the door, and then a more went in.

 ✓ a + 20: The temperature was a degrees, and then it went up 20 degrees.
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This is somewhat different from the term 2a in which the coefficient 2 
doubles the amount of the variable a:

 ✓ 2a: Hillary lost a pounds, but Georgia lost 2a, twice as much.

 ✓ 2a: The temperature was a degrees, and then it doubled to 2a degrees.

The minus sign means less, take away, decreased by, subtracted from, and so on.

 ✓ a – 2: There were a administrators, but their number was decreased
 by two.

 ✓ a – 1: There was one less than a alligators in the pond.

 ✓ a – 4: William Tell had a apples when he started and four fewer when he 
finished.

Even though you have to take care when letting variables represent 
numbers, the benefit and ease in working with variables outweighs the 
possible difficulties. Besides the advantage of not having to write as much, 
focusing on a problem that takes up less space is easier — your eyes can 
track better. Also, algebraic symbols are precise. The hidden meanings that 
written words can have don’t exist in algebra. Algebra is a universal language 
that crosses the boundaries that language and time can present.

Doing the Math
Addition was probably the first operation you discovered. Addition is the 
easiest for people of all ages to picture and relate to, and it’s usually the 
happiest operation. “Do you want one more cookie? How many does that 
make?!” Adding is a bit trickier in algebra just because you often come to 
places where you can’t add. But when you can, it’s a nice process. When can’t 
you add? You can’t add a + b to get an ab in the same way that you can’t add 
apples and bananas to get apanas.

Adding and subtracting variables
When adding like variables, instead of expressing a + a + a + a the long way, 
you can just write 4a, which says the same thing more efficiently because 
multiplication is just repeated addition. In the case of 4a, the number 
represented by a is added four times. Or you can say that a is multiplied by 4.

 When adding or subtracting terms that have exactly the same variables, 
combine the coefficients.
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 When adding 2a + 5a + 4a what is the result?

2a + 5a + 4a = (2 + 5 + 4)a = 11a

Why does this work? Just look at the three terms in another way:

2a = a + a 5a = a + a + a + a + a 4a = a + a + a + a

So 2a + 5a + 4a = a + a + a + a + a + a + a + a + a + a + a.

That’s a total of 11 a variables altogether. Notice that the numbers in front — 
the coefficients 2, 5, and 4 — add up to 11.

 When there is no number in front of the variable, assume that the coefficient 
is a 1:

a = 1a x = 1x

The following examples show you how one variable can be added to another 
term with the same variable or variables.

 Simplify the following expression by combining like terms: a + 3a + x + 2x.

a + 3a + x + 2x =

1a + 3a + 1x + 2x =

(1 + 3)a + (1 + 2)x =

4a + 3x

Notice that you add terms that have the same variables because they 
represent the same amounts. You don’t try to add the terms with different 
variables.

 Simplify the following expression by combining like terms: 3x + 4y – 2x – 8y + x.

3x + 4y – 2x – 8y + x =

(3 – 2 + 1)x + (4 – 8)y =

2x – 4y

When subtracting terms, use the rules for adding and subtracting signed 
numbers and apply them to the coefficients. (Check out Chapter 2 for 
information on working with signed numbers.)
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 Simplify the following expression by combining like terms: 
5az + 4az – 2a + 6 – 3b – 2b.

5az + 4az – 2a + 6 – 3b – 2b =

(5 + 4)az – 2a + (–3 – 2)b + 6 =

9az – 2a –5b + 6

Notice that the 6 doesn’t have a variable. It stands by itself; it isn’t multiplying 
anything. Also, a term with az is different from a term with just a, so they 
don’t combine.

Adding and subtracting with powers
The following list of simplifications shows how addition and subtraction are 
performed on several terms involving variables with exponents:

 ✓ x + x + x = 3x

 ✓ x2 – 2x2 + 3x2 + 3x2 = 5x2

 ✓ x + 3x + 4x2 + 5x2 + 6x3 = 4x + 9x2 + 6x3

 ✓ 4x4 – 3x3 + 2x2 + x – 1

Notice that the terms that combine always have exactly the same variables 
with exactly the same powers. (For more on powers, or exponents, see 
Chapter 4.) In the last problem, none of the powers are the same, so even 
though the variables are the same, you can’t add the numbers in front 
together.

 In order to add or subtract terms with the same variable, the exponents of 
the variable must be the same. Perform the required operations on the 
coefficients, leaving the variable and exponent as they are. Because x and x2 
don’t represent the same amount, they can’t be added together.

 Simplify the following expression with powers: 3a3 + 3a2 + 3a + a + 2a2 + 2a4.

3a3 + 3a2 + 3a + a + 2a2 + 2a4 =

2a4 + 3a3 + (3 + 2) a2 + (3 + 1)a =

2a4 + 3a3 + 5a2 + 4a

Notice that the exponents are listed in order from highest to lowest. This is a 
common practice to make answers easy to compare.
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 Simplify the following expression with powers: 2m + 3m2 + 5m3 – 2m2 – 3m – 1.

2m + 3m2 + 5m3 – 2m2 – 3m – 1 =

5m3 + (3 – 2) m2 + (– 3 + 2) m – 1 =

5m3 + m2 – m – 1

Multiplying and Dividing Variables
Multiplying variables is in some ways easier than adding or subtracting them, 
just as with fractions — multiplying and dividing fractions is easier than 
adding or subtracting because you don’t have to find common denominators. 
The only real caution comes when you divide variables; you need to follow 
some relatively strict rules to avoid dividing by 0. In this section, I give you 
the tips and rules.

Multiplying variables
When the variables are the same in a multiplication problem, multiplying 
them together “compresses” them into a single factor, or variable. You’re 
able to write the expression in a shorter format by using powers. But, as with 
addition and subtraction, you still can’t combine different variables.

 When multiplying factors containing variables, multiply the coefficients and 
variables as usual. If the bases are the same, you can multiply the bases by 
merely adding their exponents. (See more on the multiplication of exponents 
in Chapter 4.)

 Here are some examples of multiplying several variable factors:

 ✓ a · a · b · c = a2bc: The two factors a combine with an exponent to show 
the number of times the factor appears in the expression.

 ✓ 2 · a · a · a · b · b · c = 2a3b2c

 ✓ 2 · a · a · a · a · 3 · b · b · b · 4 · c · c = 24a4b3c2: The three numbers 
have a product of 24. Multiplication is commutative, so you can multiply 
them in any order.

 ✓ 2 · a2 · a3 · 3 · b · b · b6 · 5 · c · c2 · c10 = 30a5b8c13: Add the exponents on 
the like factors.

 ✓ (2a2 b2 c3)(4a3 b2 c4) = 2(4)a2 + 3 b2 + 2 c3 + 4 = 8a5 b4 c7

 ✓ (3x2 yz–2)(4x–2 y2 z4)(3xyz) = 3(4)(3)x2 – 2 + 1 y1 + 2 + 1 z–2 + 4 + 1 = 36x1 y4 z3
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Dividing variables
When you want to divide one term containing variables and numbers by 
another, divide the numbers as if you’re reducing fractions (see Chapter 3 for 
fraction reduction). But only variables that are alike can be divided.

In division of whole numbers, such as 27 ÷ 5, the answers don’t have to come 
out even. There can be a remainder (a value left over when one number is 
divided by another). But you usually don’t want remainders when dividing 
algebraic expressions — the remainders would be new terms. So, be sure you 
don’t leave any remainders lying around.

 When dividing variables, write the problem as a fraction. Using the greatest 
common factor (GCF), divide the numbers and reduce. Use the rules of 
exponents (see Chapter 4) to divide variables that are the same. Dividing 
variables is fairly straightforward. Each variable is considered separately. The 
number of coefficients are reduced the same as in simple fractions.

First, let me illustrate this rule with aluminum cans.

 Four friends decided to collect aluminum cans for recycling (and money). 
They collected 12x3 cans, and they’re going to get y2 cents per can. The total 
amount of money collected is then 12x3y2 cents. How will they divvy this up?

Divide the total amount by 4 to get the individual amount that each of the 
four friends will receive:

 cents each

The only thing that divides here is the coefficient. If you want the number of 
cans each will get paid for, divide by 4y2 instead of just 4:

 cans

Why is using variables better than using just numbers in this aluminum-can 
story? Because if the number of cans or the value per can changes, then you 
still have all the shares worked out. Just let the x and y change in value.

The following examples show how to divide using variables, coefficients, and 
exponents.

 Use division of algebraic expressions to solve the following problems:

 ✓ If a stands for the number of apples, ten apples divided into groups of 
  five apples each results in two groups (not two apples): .

 ✓ Ten apples divided into five groups results in two apples per group: 

  .
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 ✓ Simplify the expression . Three divides 6 twice. Using the rules 
  of exponents, a2 ÷ a = a.

 ✓ Simplify . I prefer to write the answer with x in the 

  denominator and a positive exponent rather than in the numerator with 
a negative exponent.

 ✓ And one more simplification: .

Doing it all
I cover the four main operations — addition, subtraction, multiplication, and 
division — in the preceding sections. But many algebra problems involve 
more than one operation, so look at the following steps to see how to handle 
a combination of operations.

In this next problem, you see multiplication and addition. The order of 
operations still applies, and the rules for combining factors and terms are in 
force.

 Simplify: 4a2 b3 (2a3 b2) + 5ab–2 (2a4 b7) + 5.

 1. Rearrange the factors in each term so you can multiply the variables 
together separately.

  4 × 2a2a3b3b2 + 5 × 2aa4b–2b7 + 5

 2. Multiply the numbers and add the exponents of the variables that are 
alike.

  8a2 + 3 b3 + 2 + 10a1 + 4 b–2 + 7 + 5 = 8a5 b5 + 10a5 b5 + 5

  You can see that the first two terms are alike as far as the variables they 
have and the exponents on those variables, which is why you can add 
them together.

 3. Combine terms that are alike.

  (8 + 10)a5 b5 + 5 = 18a5 b5 + 5

Okay. Now that you’ve successfully met the challenge of performing several 
operations on one complex example, why not try going through the steps 
again to perform a combination of operations on another example?

 Simplify: 3m2(2mn) – 4m3 n3(2n–2) + 5m2 n3 – 6mn(mn).
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 1. Rearrange the factors in each term so you can multiply the variables 
together separately.

  3 × 2m2mn – 4 × 2m3n3n–2 + 5m2n3 – 6mmnn

 2. Multiply the numbers and add the exponents of the variables that are 
alike.

  6m2 + 1 n – 8m3 n3 – 2 + 5m2 n3 –6m1 + 1 n1+ 1 = 6m3 n – 8m3 n + 5m2 n3 – 6m2 n2

 3. Combine the terms that are alike.

  In this case, only the first two terms can be combined; their variables 
and their exponents match.

  (6 – 8) m3 n + 5m2 n3 – 6m2 n2 = –2m3 n + 5m2 n3 – 6m2 n2

The following example is your chance to strut your stuff. You’ve done the 
multiplying, so the next step is division (which is really simple subtraction). 
Go for it!

 Simplify: .

 1. Divide by subtracting the exponents of the common bases.

  Divide the known numbers. Assume that the base without an exponent 
has 1 for an exponent. This problem has negative exponents to deal with 
in both the numerator and the denominator.

  

 2. Complete the subtraction on the exponents.

  Note: When the negative exponent x–5 that was in the denominator was 
brought up, it became positive and was added. Fractional exponents 
work just like other whole-number exponents; they add and subtract 
just the same.

  2xy2 – 5xy2 + 13x3 y3 + 11x3 y3

 3. Add or subtract the terms that are exactly alike — numbers that have 
variables and exponents in common.

  (2 – 5)xy2 + (13 + 11)x3 y3 = –3xy2 + 24x3 y3
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Figuring Out 
Factoring
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In this part . . .

Here you find out how to rearrange algebraic expres-
sions to make them more usable. Factoring is 

always a high priority in mathematics, and I cover it in 
depth in this part. You use factoring when solving equa-
tions and to compare expressions. Polynomials in fac-
tored form are more useful when you’re graphing. The 
techniques found in these chapters help you recognize 
what type of factoring to perform and how to do it.
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Chapter 6

Working with Numbers 
in Their Prime

In This Chapter
▶ Preparing for perplexing prime numbers

▶ Bringing big numbers down to size: Divisibility rules!

▶ Investigating composite numbers with prime factorizations

▶ Finding and using factoring methods

Prime numbers (whole numbers evenly divisible only by themselves and 
one) have been the subject of discussions between mathematicians 

and non-mathematicians for centuries. Prime numbers and their mysteries 
have intrigued philosophers, engineers, and astronomers. These folks and 
others have discovered plenty of information about prime numbers, but 
many unproven conjectures remain. Prime numbers play an important role in 
coding (encrypting passwords and protecting information).

Probably the biggest mystery is determining what prime number will be 
discovered next. Computers have aided the search for a comprehensive list 
of prime numbers, but because numbers go on forever without end, and 
because no one has yet found a pattern or method for listing prime numbers, 
the question involving the next big one remains.

Beginning with the Basics
Prime numbers are important in algebra because they help you work with the 
smallest-possible numbers. Big numbers are often unwieldy and can produce 
more computation errors when you perform operations and solve equations. 
So, reducing fractions to their lowest terms and factoring expressions to 
make problems more manageable are basic and very desirable tasks.
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 A prime number is a whole number larger than the number 1 that can be 
divided evenly only by itself and 1.

The first and smallest prime number is the number 2. It’s the only even prime 
number. All primes after 2 are odd because all even numbers can be divided 
evenly by 1, themselves, and 2. So even numbers greater than 2 don’t fit the 
definition of a prime number.

Here are the first 46 prime numbers:

2 3 5 7 11 13 17 19

23 29 31 37 41 43 47 53

59 61 67 71 73 79 83 89

97 101 103 107 109 113 127 131

137 139 149 151 157 163 167 173

179 181 191 193 197 199

 When you already recognize that a number is prime, you don’t waste time 
trying to find things to divide into it when you’re reducing a fraction or 
factoring an expression. There are so many primes that you can’t memorize 
or recognize them all, but just knowing or memorizing the primes smaller than 
100 is a big help, and memorizing the first 46 (all the primes smaller than 200) 
would be a bonus.

Why isn’t the number 1 prime?
By tradition and definition, the number 1 is not 
prime. The definition of a prime number is that 
it can be divided evenly only by itself and 1. In 
this case, there would be a double hit, because 
1 is itself.

Many theorems and conjectures involving 
primes don’t work if 1 is included. 
Mathematicians around the time of Pythagoras 

sometimes even excluded the number 2 from 
the list of primes because they didn’t consider 
1 or 2 to be true numbers — they were just 
generators of all other even and odd numbers. 
Sometimes it seems that mathematical rules 
are a bit arbitrary. But in this case, it just makes 
everything else work better if 1 isn’t a prime.
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Composing Composite Numbers
Prime numbers are interesting to think about, but they can also be a dead 
end in terms of factoring algebraic expressions or reducing fractions. The 
opposite of prime numbers, composite numbers, can be broken down into 
factorable, reducible pieces. In this section, you see how every composite 
number is the product of prime numbers, in a process known as prime 
factorization. Every number’s prime factorization is unique.

 The prime factorization of a number is the unique product of prime numbers 
that results in the given number. A prime number’s prime factorization 
consists of just that prime number, by itself.

 Here are some examples of prime factorization:

 ✓ 6 = 2 · 3

 ✓ 12 = 2 · 2 · 3 = 22 · 3

 ✓ 16 = 2 · 2 · 2 · 2 = 24

 ✓ 250 = 2 · 5 · 5 · 5 = 2 · 53

 ✓ 510,510 = 2 · 3 · 5 · 7 · 11 · 13 · 17

 ✓ 42,059 = 137 · 307

Mersenne primes
Mersenne primes are special prime numbers 
that can be written as 1 less than a power of 
2. The numbers 3 and 7 are Mersenne primes, 
because 22 – 1 = 3 and 23 – 1 = 7. But, if you 
try 24 – 1 = 15, you see that 15 isn’t a prime. So 
this formula doesn’t always give you a prime, 
it’s just that there are many primes that can be 
written this way, as 1 less than a power of 2.

In 1996, the Great Internet Mersenne Prime 
Search was launched. This involved a contest 
to find large Mersenne primes. A gentleman, on 

his home computer, found a Mersenne prime 
of sufficient size, and the Electronic Frontier 
Foundation awarded him $50,000. With this 
search continuing, the 47th known Mersenne 
prime was found in April 2009 by a Norwegian 
computer tech. His prime is almost 13 mil-
lion digits long, when written out, and is equal 
to 242,643,801 – 1. For more information on the 
Great Internet Mersenne Prime Search, go to 
www.mersenne.org.
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Okay, so that last one is a doozy. Finding that prime factorization without a 
calculator, a computer, or list of primes is difficult.

The factors of some numbers aren’t always obvious, but I do have some 
techniques to help you write prime factorizations, so check out the next 
section.

Writing Prime Factorizations
Writing the prime factorization of a composite number is one way to be 
absolutely sure you’ve left no stone unturned when reducing fractions or 
factoring algebraic expressions. These factorizations show you the one and 
only way a number can be factored. Two favorite ways of creating prime 
factorizations are upside-down division and trees.

Dividing while standing on your head
A slick way of writing out prime factorizations is to do an upside-down division. 
You put a prime factor (a prime number that evenly divides the number 
you’re working on) on the outside left and the result or quotient (the number 
of times it divides evenly) underneath. You divide the quotient (the number 
underneath) by another prime number and keep doing this until the bottom 
number is a prime. Then you can stop. The order you do the divisions in 
doesn’t matter. You get the same result or list of prime factors no matter 
what order you use. So, if you like to get all the even factors out first, just 
divide by 2 until you can’t any longer.

 Here’s an example of finding the prime factorization of 120 using upside-down 
division:

5
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Starting with the only even prime, I divided by 2, first, and got 60. Because 
60 isn’t prime, I divided by 2 again and got 30. Then I divided by 2 again and 
got 15. The number 15 is divisible by 3, and the result of the division is 5. 
Because the number 5 is prime, I stopped dividing and used the results to 
write the prime factorization.

Looking at the numbers going down the left side of the work and the number 
at the bottom, you see that they act the same as the divisors in a division 
problem — only, in this case, they’re all prime numbers. Although many 
composite numbers could have played the role of divisor for the number 
120, the numbers for the prime factorization of 120 must be prime-number 
divisors.

When using this process, you usually do all the 2s first, then all the 3s, then 
all the 5s, and so on to make the prime factorization process easier, but you 
can do this in any order: 120 = 2 · 2 · 2 · 3 · 5 = 23 · 3 · 5. In the next example, 
start with 13 because it seems obvious that it’s a factor. The rest are all in a 
mixed-up order.

 Here’s another prime factorization example, this time finding the prime 
factorization of 13,000:

5

So 13,000 = 13 · 5 · 2 · 2 · 5 · 2 · 5 = 23 · 53 · 13.
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Getting to the root of primes with a tree
Another popular method for finding prime factorizations is to use a tree. 
Think of the number you start with as being the trunk of the tree and the 
prime factors as being at the ends of the roots.

To use the tree method, you write down your number and find two factors 
whose product is that number. Then you find factors for the two factors, and 
factors for the factors of the factors, and so on. You’re finished when the 
lowest part of any root system is a prime number. Then you collect all those 
prime numbers for the factorization.

 Figure 6-1 shows an example of finding the prime factorization of 6,350,400 
using a factor tree.

 

Figure 6-1: 
Finding the 

prime 
factors 

using a tree.
 

6,350,400

63,504 100

254

22 55

610584

8

4

2 23 37 21

3 7

2

1323

147 9

32

Now you collect all the prime numbers at the ends of the roots. I see the 
prime factors as: 7, 3, 7, 3, 3, 2, 2, 2, 2, 3, 2, 2, 5, 5. Putting them in order, I get:

 You may not have created a tree the same way I did. Everyone sees different 
multiples and factors and has his or her favorites as far as dividing. I like to 
stick to numbers I can divide in my head. But you may be a calculator person. 
The great thing is that every way works and gives you the same final answer.
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Wrapping your head around 
the rules of divisibility
The techniques for finding prime factorizations work just fine, as long as 
you have a good head start on what divides a number evenly. You probably 
already know the rules for dividing by 2 or 5 or 10. But many other numbers 
have very helpful rules or gimmicks for just looking at the number and seeing 
whether it’s divisible by a particular factor. In Table 6-1, I give you many of 
the more commonly used rules of divisibility. Some are easier to use than 
others. Notice that I don’t have the numbers in order; I prefer to group the 
numbers by the types of rules used.

Table 6-1 Rules of Divisibility

Number Rule

2 The number ends in 0, 2, 4, 6, or 8.

5 The number ends in 0 or 5.

10 The number ends in 0.

4 The last two digits form a number divisible by 4.

8 The last three digits form a number divisible by 8.

3 The sum of the digits is a number divisible by 3.

9 The sum of the digits is a number divisible by 9.

11 The difference between the sums of the alternating digits is divisible by 11.

6 The number is divisible by both 2 and 3 (use both rules).

12 The number is divisible by both 3 and 4 (use both rules).

 Here’s an example of using the rules of divisibility to determine what divides 
360 evenly:

 ✓ The number 360 ends in 0, so it’s divisible by 2, 5, and 10.

 ✓ The last two digits of 360 form the number 60, which is divisible by 4, so 
the whole number is divisible by 4.

 ✓ The last three digits of 360 (okay, so it’s all of them) form a number 
divisible by 8, so the whole number is divisible by 8.

 ✓ The sum of the digits in 360 is 9, so the number is divisible by both 3 
and 9.
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 ✓ The difference between the sums of the alternating digits is 3, so the 
number is not divisible by 11. (To get that difference, I added the 3 + 0 to 
get 3 and the 6 had nothing to add to it. The difference between 6 and 3 
is 3.)

 ✓ The number 360 is divisible by 2 and 3, both, so it’s divisible by 6.

 ✓ The number 360 is divisible by 3 and 4, both, so it’s divisible by 12.

 Here’s another example, this time with the number 1,056:

 ✓ The number 1,056 ends in 6, so it’s divisible by 2.

 ✓ The last two digits of 1,056 form the number 56, which is divisible by 4, 
so the whole number is divisible by 4.

 ✓ The last three digits of 1,056 form the number 56 (the 0 in front is 
ignored), which is divisible by 8, so the whole number is divisible by 8.

 ✓ The sum of the digits is 12, which is divisible by 3, so the whole number 
is divisible by 3.

 ✓ The difference between the sums of the alternating digits is 0, which is 
divisible by 11, so the whole number is divisible by 11.

 ✓ The number is divisible by 2 and 3, both, so it’s divisible by 6.

 ✓ The number is divisible by 3 and 4, both, so it’s divisible by 12.

 There are rules for 7 and 13 and other multiples of numbers, but the additional 
rules are seldom used, so I don’t go into them here.

Getting Down to the Prime Factor
Doing the actual factoring in algebra is easier when you can recognize which 
numbers are composite and which are prime. If you know in which category a 
number belongs, then you know what to do with it. When reducing fractions 
or factoring out many-termed expressions, you look for what the numbers 
have in common. If a number is prime, you stop looking. Now, try putting all 
this knowledge to work!

Taking primes into account
Prime factorizations are useful when you reduce fractions. Sure, you can do 
repeated reductions — first divide the numerator and denominator by 5 and 
then divide them both by 3 and so on. But a much more efficient use of your 
time is to write the prime factorizations of the numerator and denominator 
and then have an easy task of finding the common factors all at once.
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 Reduce the fraction  by following these steps:

 1. Find the prime factorization of the numerator.

  120 is 23 · 3 · 5.

 2. Find the prime factorization of the denominator.

  165 is 3 · 5 · 11.

 3. Next, write the fraction with the prime factorizations in it.

  

 4. Cross out the factors the numerator shares with the denominator to 
see what’s left — the reduced form.

  

 Now, try reducing the fraction :

 1. Find the prime factorization of the numerator.

  100 is 22 · 52.

 2. Find the prime factorization of the denominator.

  243 is 35.

 3. Write the fraction with the prime factorizations.

  

Look at the prime factorizations. You can see that the numerator and denom-
inator have absolutely nothing in common. The fraction can’t be reduced. 
The two numbers are relatively prime. The beauty of using the prime factor-
ization is that you can be sure that the fraction’s reduction possibilities are 
exhausted — you haven’t missed anything. You can leave the fraction in this 

factored form or go back to the simpler . It depends on your preference.

Next, I add some variables to the mix.

 Reduce the fraction :

 1. Find the prime factorization of the numerator.

  48x3y2z = 24 · 3 · x3y2z.

 2. Find the prime factorization of the denominator.

  84xy2z3 = 22 · 3 · 7 · xy2z3.
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 3. Write the fraction with the prime factorization.

  

 4. Cross out the factors in common.

  

By writing the prime factorizations, you can be certain that you haven’t 
missed any factors that the numerator and denominator may have in 
common.

 Reduce the fraction :

 1. Find the prime factorization of the numerator.

  Take advantage of all the zeros by writing the number using a variation 
on scientific notation.

  

 2. Find the prime factorization of the denominator, using scientific 
notation again.

  

 3. Write the fraction with the prime factorization.

  

 4. Cross out the factors in common.

  

  The 2 in the numerator and the 10 in the denominator have a factor of 2 
in common:

  

Pulling out factors and leaving the rest
Pulling out common factors from lists of terms or the sums or differences of 
a bunch of terms is done for a good reason. It’s a common task when you’re 
simplifying expressions and solving equations. The common factor that 
makes the biggest difference in these problems is the greatest common factor 
(GCF). When you recognize the GCF and factor it out, it does the most good.
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 The greatest common factor is the largest-possible number that evenly divides 
each term of an expression containing two or more terms (or evenly divides 
the numerator and denominator of a fraction).

In any factoring discussion, the GCF, the most common and easiest factoring 
method, always comes up first. And it’s helpful to know about the GCF when 
solving equations. In an expression with two or more terms, finding the 
greatest common factor can make the expression more understandable and 
manageable.

When simplifying expressions, the best-case scenario is to recognize and pull 
out the GCF from a list of terms. Sometimes, though, the GCF may not be so 
recognizable. It may have some strange factors, such as 7, 13, or 23. It isn’t 
the end of the world if you don’t recognize one of these numbers as being a 
multiplier; it’s just nicer if you do.

The three terms in the expression 12x2 y4 + 16xy3 – 20x3 y2 have common 
factors. What is the GCF? These steps help you find it.

 1. Determine any common numerical factors.

 2. Determine any common variable factors.

 3. Write the prime factorizations of each term.

 4. Find the GCF.

 5. Divide each term by the GCF.

 6. Write the result as the product of the GCF and the results of the 
division.

 Here’s how to find the GCF of 12x2 y4 + 16xy3 – 20x3 y2 and write the factorization:

 1. Determine any common numerical factors.

  Each term has a coefficient that is divisible by a power of 2, which is 22 = 4.

 2. Determine any common variable factors.

  Each term has x and y factors.

 3. Write the prime factorizations of each term.

  12x2y4 = 22 · 3 · x2y4

  16xy3 = 24 · xy3

  –20x3y2 = –22 · 5 · x3y2

11_559642-ch06.indd   10311_559642-ch06.indd   103 4/16/10   11:05 AM4/16/10   11:05 AM



104 Part II: Figuring Out Factoring 

 4. Find the GCF.

  The GCF is the product of all the factors that all three terms have in 
common. The GCF contains the lowest power of each variable and 
number that occurs in any of the terms. Each variable in the sample 
problem has a factor of 2. If the lowest power of 2 that shows in any of 
the factors is 22, then 22 is part of the GCF.

  Each factor has a power of x. If the lowest power of x that shows up in 
any of the factors is 1, then x1 is part of the GCF.

  Each factor has a power of y. If the lowest power of y that shows in any 
of the factors is 2, then y2 is part of the GCF.

  The GCF of 12x2 y4 + 16xy3 – 20x3 y2 is 22 xy2 = 4xy2.

 5. Divide each term by the GCF.

  The respective terms are divided as shown:

 • 

 • 

 • 

  Notice that the three different results of the division have nothing in 
common. Each of the first two results has a y and the first and third 
both have an x, but nothing is shared by all the results. This is the best 
factoring situation, which is what you want.

 6. Write the result as the product of the GCF and the results of the 
division.

  Rewriting the original expression with the GCF factored out and in 
parentheses: 12x2 y4 + 16xy3 – 20x3 y2 = 4xy2 (3xy2 + 4y – 5x2).

In the next examples, I show you the shortened version of these steps.

 Find the GCF and write the factorization of 40a5x + 80a5y – 120a5z = 40a5 
(x + 2y – 3z). The factorizations of the terms are: 235a5 x, 245a5y, and – 233 · 
5a5z. Each term has a factor of 23 · 5, and a5, so the GCF is 40a5, and you can 
write the expression as the product of the GCF and the results of dividing each 
term by the GCF.

 Find the GCF and write the factorization of 18x2y + 25z3 + 49z2. Even though 
none of these terms is prime, the three terms have nothing in common — 
nothing that all three share. The following prime factorizations demonstrate:
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 ✓ 18x2y = 2 · 32x2y

 ✓ 25z3 = 52 z3

 ✓ 49z2 = 72 z2

The last two terms do have a factor of z in common, but the first term 
doesn’t. This expression is said to be prime because it can’t be factored.
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Chapter 7

Sharing the Fun: Distribution
In This Chapter
▶ Passing out the assignments evenly

▶ Multiplying binomials and trinomials

▶ Knowing what the patterns look like in distributions

Algebra is full of contradictory actions. First, you’re asked to factor (see 
Chapters 8, 9, and 10 for facts on factoring) and then to distribute or 

“unfactor.” Or another example: First, you’re asked to reduce fractions, and 
then you’re supposed to multiply and create bigger numbers. First, you’re 
asked to compress the math expression, and then you’re asked to spread it 
all out again. Make up your mind!

But rest assured that good reasons are behind doing all these seemingly 
contradictory processes. You carefully wrap a birthday gift so it can be 
unwrapped the next day. You water and fertilize your lawn to make it grow — 
just so you can cut it. See, contradictions are everywhere!

In this chapter, I tell you when, why, and how to factor and “unfactor.” You 
want to make informed decisions and then have the skills to execute them 
correctly. What good does it do you to buy an iPod if you don’t know what to 
do with it?

Giving One to Each
When things are shared equitably, everyone or everything involved gets 
an equal share — just one of the shares — not twice as many as others get. 
When a child is distributing her birthday treats to classmates, it’s: “One 
for you, and one for you. . . .” In the game Mancala, the stones in a cup are 
distributed one to each of the next cups until they’re gone. Any other way 
is cheating! In algebra, distributing is much the same process — each gets a 
share.
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Distributing items is an act of spreading them out equally. Algebraic distribution 
means to multiply each of the terms within the parentheses by another 
term that is outside the parentheses. Each term gets multiplied by the same 
amount.

 To distribute a term over several other terms, multiply each of the other 
terms by the first. Distribution is multiplying each individual term in a 
grouped series of terms by a value outside of the grouping.

The addition signs could just as well be subtraction, and a is any real 
number: positive, negative, integer, fraction.

 A term is made up of variable(s) and/or number(s) joined by multiplication 
and/or division. Terms are separated from one another by addition or 
subtraction.

 Distribute the number 2 over the terms 4x + 3y – 6.

 1. Multiply each term by the number(s) and/or variable(s) outside of the 
parentheses.

  2(4x + 3y – 6)

  2(4x) + 2(3y) – 2(6)

 2. Perform the multiplication operation in each term.

  8x + 6y – 12

When you distribute some factor over several terms, you don’t change the 
value of the original expression. The answer is the same, whether you 
distribute first or add up what’s in the parentheses first. When performing 
algebraic manipulations, you often have to make a judgment call as to 
whether to combine what’s in the parentheses first or to distribute first.

 Distributing first to get the answer is the better choice when the multiplication 
of each term gives you nicer numbers. Fractions or decimals in the parentheses 
are sometimes changed into nice, whole numbers when the distribution is 
done first. The other choice — adding up what’s in the parentheses first — 
is preferred when the distributing gives you too many big multiplication 
problems. Sometimes it’s easy to tell which case you have; other times, you 
just have to guess and try it.
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Distributing first
Sometimes you can tell just by looking whether it’s easier to distribute the 
term outside the parentheses before or after summing up the terms within 
the parentheses. Taking a moment to see what may be the best approach 
may save time in the long run.

 Simplify by finding the product: .

Look at what’s involved if you multiply 60 times  only after 

adding the fractions first. You need to find a common denominator and then 
add and subtract the fractions:

Now look at the better choice, where the distribution is done first:

Multiplying by 60 gets rid of all the fractions, so you don’t have to find a 
common denominator.

30 + 36 – 45 + 52 = 73

Do you see the advantage in this case of doing the distribution first? For an 
example of a situation in which doing the adding first is best, see the next 
section.

Adding first
Before working through a distribution problem, look at the size of the numbers.
If the numbers are large, then distributing one large term over other large 
terms within the parentheses can only make each term larger and less 
manageable. In the case of big numbers, it may be easier to work through any 
simple addition and subtraction within the parentheses before distributing 
the term outside the parentheses over those within.
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 Simplify: 43(160 – 159 + 433 – 432).

Distribute 43 first (ugh):

43(160 – 159 + 433 – 432) =

43(160) – 43(159) + 43(433) – 43(432) =

6,880 – 6,837 + 18,619 – 18,576 =

86

Now look at the better choice, where you combine first:

43(160 – 159 + 433 – 432) =

43(1+1) = 43(2) = 86

 The examples in this section and the preceding section are a bit exaggerated, 
but I wanted to make a point. The best route to take isn’t always obvious. But 
if you keep your eyes open for the choices available, you can save yourself 
some time and some work.

Distributing Signs
When a number is distributed over terms within parentheses, you multiply 
each term by that number. An even easier type of distribution is distributing 
a simple sign (no, you don’t distribute a Leo or Libra — they’d object). But, 
what should be rather simple is often done in error. Hence, I’m devoting 
some time to signs.

Positive (+) and negative (–) signs are simple to distribute, but distributing a 
negative sign can cause errors.

Distributing positives
 Distributing a positive sign makes no difference in the signs of the terms.
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 Distribute positive numbers over terms.

 ✓ +(4x + 2y – 3z + 7) is the same as multiplying through by +1:

  +1(4x + 2y – 3z + 7) = + 1(4x) + 1(2y) +(– 3z) + 1(7) =

  4x + 2y – 3z + 7

 ✓ When distributing +3, the signs of the terms don’t change:

  +3(4x + 2y – 3z + 7) = + 3(4x) + 3(2y) + 3(–3z) +3(7) =

  12x + 6y – 9z + 21

  Even when a positive number other than the number 1 is distributed, it 
doesn’t affect the signs. The terms were changed by the multiplier of 3, 
but the signs of the terms in the expression stayed the same.

Distributing negatives
 When distributing a negative sign, each term has a change of sign: from 

negative to positive or from positive to negative.

 Distribute –1 over terms in the parentheses; –(4x + 2y – 3z + 7) is the same as 
multiplying through by –1:

–1(4x + 2y – 3z +7) =

–1(4x) – 1(2y) – 1(–3z) –1(7) =

–4x – 2y + 3z –7

Each term was changed to a term with the opposite sign.

 One mistake to avoid when you’re distributing a negative sign is not 
distributing over all the terms. This is especially the case when the process 
is hidden. By hidden, I mean that a negative sign may not be in front of the 
whole expression, where it sticks out. It can be between terms, showing a 
subtraction and not being recognized for what it is. Don’t let the negative 
signs ambush you.

 Simplify the expression by distributing and combining like terms: 
4x(x – 2) – (5x + 3).
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Distribute the 4x over the x and the –2 by multiplying both terms by 4x:

4x(x – 2) = 4x(x) – 4x(2)

Distribute the negative sign over the 5x and the 3 by changing the sign of 
each term. Be careful — you can easily make a mistake if you stop after only 
changing the 5x.

–(5x + 3) = – (+ 5x) – (+3)

Multiply and combine the like terms:

4x(x) – 4x(2) – (+ 5x) – (+ 3) =

4x2 – 8x – 5x – 3 =

4x2 – 13x – 3

Reversing the roles in distributing
Distributing multiplication over an expression that has several terms added 
or subtracted is an extension of simply multiplying. What does this do to the 
value of an expression in terms of the commutative law?

 Multiplication is commutative, which means that the order in which you 
multiply the terms doesn’t matter: a × b = b × a.

Palindromes
The word palindrome comes from the Greek 
word palindromos, which means running back 
again. A palindrome is any word, sentence, or 
even a complete poem that reads the same 
backward as it does forward. For example, 
Leigh Mercer wrote, “A man, a plan, a canal — 
Panama” to honor the man responsible for 
building the Panama Canal. Or, how about 
“Niagara, O roar again!” There are words that 
are palindromes: rotator, Malayalam (an East 
Indian language), and redivider.

Number palindromes have been of great 
interest to mathematicians over the years. 

Some perfect squares are palindromes: 121 and 
14,641 for example. A palindromic date might 
be October 9, 1901 (1091901). Some couples 
choose their wedding dates by observing when 
a particular day is a palindrome.

You can create a palindrome by reversing the 
digits of almost any number and adding the 
reversal to the original number. For example, 
take 146, reverse the digits to get 641. Add 
them together: 146 + 641 = 787. If you don’t 
get a palindrome, just repeat the steps (and 
repeat . . .) until you finally (and you will) get a 
palindrome.
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What happens to distributing if you reverse the order? After all, both adding 
and subtracting is involved, too.

 Find and compare the products: 3(x2 + y – 7 – z) and (x2 + y – 7 – z)3.

In the first expression, the 3 is in front:

3(x2 + y – 7 – z) =

3(x2) + 3(y) + 3(–7) + 3(–z)

Giving you:

3x2 + 3y – 21 – 3z

In the second expression, the three is in back.

(x2 + y – 7 – z)3 =

x2(3) + y(3) – 7(3) – z(3)

Multiply and rewrite:

3x2 + 3y – 21 – 3z

The results are exactly the same. Hurrah! A task made easier.

Mixing It Up with Numbers 
and Variables

Distributing variables over the terms in an algebraic expression involves 
multiplication rules and the rules for exponents. When different variables 
are multiplied together, they can be written side by side without using any 
multiplication symbols between them. If the same variable is multiplied as 
part of the distribution, then the exponents are added together.

 When multiplying factors with the same base, add the exponents:

ax · ay = ax + y

Let me show you a couple of distribution problems involving factors with 
exponents.
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 Distribute the a through the terms in the parentheses: a(a4 + 2a2 + 3).

Multiply a times each term:

a(a4 + 2a2 + 3) =

a · a4 + a · 2a2 + a · 3

Use the rules of exponents to simplify:

a5 + 2a3 + 3a

 Distribute z4 over the terms .

Distribute the z4 by multiplying it times each term:

Simplify by adding the exponents:

 The exponent 0 means the value of the expression is 1. x0 = 1 for any real 
number x except 0.

You combine exponents with different signs by using the rules for adding and 
subtracting signed numbers. Fractional exponents are combined after finding 
common denominators. Exponents that are improper fractions are left in that 
form.

This next example shows what happens when you have more than one 
variable — and how you have to use the rule of adding exponents very 
carefully.

 Simplify the expression by distributing: 5x2y3(16x2 – 2x + 3xy + 4y3 – 11y5 + z – 1).

Multiply each term by 5x2y3:

5x2y3 · 16x2 – 5x2y3 · 2x + 5x2y3 · 3xy + 5x2y3 · 4y3 – 5x2y3 · 11y5 + 5x2y3z – 5x2y3
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Complete the multiplication in each term. Add exponents where needed:

80x4y3 – 10x3y3 + 15x3y4 + 20x2y6 – 55x2y8 + 5x2y3z – 5x2y3

You’re finished! There are no like terms to be combined.

The next example is cluttered with negative signs.

 Simplify by distributing: –4xyzw(4 – x – y – z – w).

Multiply each term by –4xyzw:

–4xyzw(4) – 4xyzw(–x) – 4xyzw(–y) – 4xyzw(–z) – 4xyzw(–w)

Complete the multiplication in each term:

–16xyzw + 4x2yzw + 4xy2zw + 4xyz2w + 4xyzw2

Negative exponents yielding 
fractional answers
As the heading suggests, a base that has a negative exponent can be changed 
to a fraction. The base and the exponent become part of the denominator of 
the fraction, but the exponent loses its negative sign in the process. Then you 
cap it all off with a 1 in the numerator.

 The formula for changing negative exponents to fractions is . (See 
Chapter 4 for more details on negative exponents.)

In the following example, I show you how a negative exponent leads to a 
fractional answer.

 Distribute the 5a–3b–2 over each term in the parentheses:

5a–3b–2(2ab3 – 3a2b2 + 4a4b – ab) =

5a–3b–2(2ab3) – (5a–3b–2)(3a2b2) + (5a–3b–2)(4a4b) – (5a–3b–2)(ab)

Multiplying the numbers and adding the exponents:

10a–3 + 1b–2 + 3 – 15a–3 + 2b–2 + 2 + 20a–3 + 4b–2 + 1 – 5a–3 + 1b –2 + 1
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The factor of b with the 0 exponent becomes 1:

10a–2b1 – 15a–1b0 + 20a1b–1 – 5a–2b–1

This next step shows the final result without negative exponents — using 
the formula for changing negative exponents to fractions (see earlier in this 
section):

Working with fractional powers
Exponents that are fractions work the same way as exponents that are 
integers. When multiplying factors with the same base, the exponents are 
added together. The only hitch is that the fractions must have the same 
denominator to be added. (The rules don’t change just because the fractions 
are exponents.)

 Distribute and simplify: .

Multiply the factor times each term:

Rearrange the variables and add the exponents:

Finish up by adding the fractions:

 Radicals can be changed to expressions with fractions as exponents. This is 
handy when you want to combine terms with the same bases and you have 
some of the bases under radicals:

 ✓ 

 ✓ 

 ✓ 

 ✓  and 
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Distribution is easier when you have radicals in the problem if you first 
change everything to fractional exponents. (Turn to Chapter 4 for more on 
exponential operations within radicals.)

 Remember: The exponent rule for raising a product in parentheses to a power 
is to multiply each power in the parentheses by the outside power — for 
example: (x4y3)2 = x8y6.

 Simplify by distributing: .

Change the radical notation to fractional exponents:

Raise the powers of the factors inside the parentheses:

Distribute the outside term over each term within the parentheses:

Add the exponents of the variables:

Simplify the fractional exponents:

x3y2 – x1y5

Distributing More Than One Term
The preceding sections in this chapter describe how to distribute one term 
over several others. This section shows you how to distribute a binomial (a 
polynomial with two terms). You also discover how to distribute polynomials 
with three or more terms.

 The word polynomial comes from poly meaning “many” and nomen meaning 
“name” or “designation.” A polynomial is an algebraic expression with one 
or more terms in it. For example, a polynomial with one term is a monomial; 
a polynomial with two terms is a binomial. If there are three terms, it’s a 
trinomial.
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Distributing binomials
Distributing two terms (a binomial) over several terms amounts to just 
applying the distribution process twice. The following steps tell you how to 
distribute a binomial over some polynomial:

 1. Break the binomial into its two terms.

 2. Distribute each term of the binomial over the other factor.

 3. Do the distributions you’ve created.

 4. Simplify and combine any like terms.

 Multiply using distribution: (x2 + 1)(y – 2).

 1. Break the binomial into its two terms.

  In this case, (x2 + 1)(y – 2), break the first binomial into its two terms, 
x2 and 1.

 2. Distribute each term over the other factor.

  Multiply the first term, x2, times the second binomial, and multiply the 
second term, 1, times the second binomial.

  x2(y – 2) + 1(y – 2)

 3. Do the two distributions.

  x2(y – 2) + 1(y – 2) = x2y –2x2 + y – 2

 4. Simplify and combine any like terms.

  In this case, nothing can be combined; none of the terms are alike.

Now that you have the idea, try walking through a polynomial distribution 
that has variables in all the terms.

 Multiply using distribution: (a2 + 2b)(4a2 + 3ab –2ab2 – b2).

Break the binomial into its two terms and multiply those terms times the 
second factor:

a2(4a2 + 3ab – 2ab2 – b2) + 2b(4a2 + 3ab – 2ab2 – b2)

Doing the two distributions:

a2(4a2) + a2(3ab) – a2(2ab2) – a2(b2) + 2b(4a2) + 2b(3ab) – 2b(2ab2) – 2b(b2)

Multiply and simplify:

4a4 + 3a3b – 2a3b2 – a2b2 + 8a2b + 6ab2 – 4ab3 – 2b3
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Distributing trinomials
A trinomial (a polynomial with three terms) can be distributed over another 
expression. Each term in the first factor is distributed separately over the 
second factor, and then the entire expression is simplified, combining 
anything that can be combined. This process can be extended to multiplying 
with any size polynomial. In this section, I show you trinomials and leave the 
extension to you when you run into anything larger.

The following problem introduces you to working through the distribution of 
trinomials.

 Multiply by distributing the first factor over the second: 
(x + y + 2)(x2 – 2xy + y + 1).

Distribute each term of the trinomial by multiplying them times the second 
factor:

x(x2 – 2xy + y + 1) + y(x2 – 2xy + y + 1) + 2(x2 – 2xy + y + 1)

Do the three distributions:

x3 – 2x2y + xy + x + x2y –2xy2 + y2 + y + 2x2 – 4xy + 2y + 2

Simplify:

x3 – x2y + 2x2 + x –2xy2 + y2 – 3xy + 3y + 2

Multiplying a polynomial 
times another polynomial
This is where I establish a rule that can cover just about any product of any 
number of terms. You can use this general method for four, five, or even 
more terms.

 When distributing a polynomial (many terms) over any number of other 
terms, multiply each term in the first factor times each of the terms in the 
second factor. When the distribution is done, combine anything that goes 
together to simplify.

(a + b + c + d + . . .)(z + y + x + w + . . .) =

az + ay + ax + aw + . . . + bz + by + bx + bw + . . . + cz + cy + cx + cw + . . .

12_559642-ch07.indd   11912_559642-ch07.indd   119 4/16/10   11:06 AM4/16/10   11:06 AM



120 Part II: Figuring Out Factoring 

 Multiply the two trinomials by distributing: (x2 + x + 2)(3x2 – x + 1).

Separate the terms in the first factor from one another. Multiply each term in 
the first factor times the second factor:

(x2 + x + 2)(3x2 – x + 1) =

x2(3x2 – x + 1) + x(3x2 – x + 1) + 2(3x2 – x + 1)

Distribute and do the multiplication:

3x4 – x3 + x2 + 3x3 – x2 + x + 6x2 – 2x + 2

Combine like terms:

3x4 + 2x3 + 6x2 – x + 2

Making Special Distributions
Several distribution shortcuts can make life easier. Distributing binomials 
over other terms is not difficult, but you can save time if you recognize 
situations where you can apply a shortcut. If you don’t notice that a special 
shortcut could have been used, don’t worry about your oversight. But you 
may end up kicking yourself afterward for not taking advantage of the easier 
process.

Recognizing the perfectly 
squared binomial

 When the same binomial is multiplied by itself — when each of the first two 
terms is distributed over the second and same terms — then the resulting 
trinomial contains the squares of the two terms and twice their product: 
(a + b)2 = (a + b)(a + b) = a2 + 2ab + b2.

 Square the binomial using the special rule: (x + 3)2 = (x + 3)(x + 3).

The result of the following operation is the sum of the squares of x and 3 
along with twice their product:

 ✓ The square of x is x2.

 ✓ The square of 3 is 9.

 ✓ Twice the product of x and 3 is 2(x · 3) = 6x.
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So,

(x + 3)2 =

(x + 3)(x + 3) =

x2 + 6x + 9

Notice that the preferred order of the terms was used: decreasing powers of x.

 Square the binomial using the special rule: .

 ✓ The square of 4x is (4x)2 = 16x2.

 ✓ The square of  is . Note that this square is positive.

 ✓ Twice the product of 4x and  is .

So,

This rule works very nicely when the terms have high powers.

 Square the binomial using the special rule: (2x4 + y3)2.

 ✓ The square of 2x4 is (2x4)2 = 4x8.

 ✓ The square of y3 is (y3)2 = y6.

 ✓ Twice the product of 2x4 and y3 is 2(2x4 · y3) = 4x4y3.

So,

(2x4 + y3)2 =

4x8 + 4x4y3 + y6

This special method is also handy when your binomial contains another 
binomial!

 Square the expression using the special rule: [x + (a + b)]2.

 ✓ The square of x is x2.

 ✓ The square of the binomial (a + b) is (a + b)2 = a2 + 2ab + b2.

 ✓ Then you find that twice the product of x and (a + b) is 2x(a + b).
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Putting all the results together, you have:

[x + (a + b)]2 =

x2 + 2x(a + b) + a2 + 2ab + b2 =

x2 + 2xa + 2xb + a2 + 2ab + b2

Spotting the sum and difference 
of the same two terms
There’s just one little — which can be big — difference between the 
multiplications in this section and the ones in the preceding section. The 
difference is that there’s a sign change between the first and second 
binomials. Instead of multiplying exactly the same binomial times itself, in 
this section you do a switcheroo and see two different signs separating the 
terms. The same two terms are always used — it’s just that the sign between 
them changes.

The sum of any two terms multiplied by the difference of the same two terms 
is easy to spot and even easier to work out.

 The sum of any two terms multiplied by their difference equals the difference 
of the squares of these same two terms. For any real numbers a and b: (a + b)
(a – b) = a2 – b2.

Notice that the middle term just disappears because a term and its opposite 
are always in the middle. You can see that here, where the terms in the first 
binomial are distributed over the second:

(a + b)(a – b) =

a(a – b) + b(a – b)

Multiplying and simplifying:

a2 – ab + ab – b2 = a2 – b2

The rule always works, so you can use the shortcut to do these special 
distributions.

 Find the product using the special rule: (x – 4)(x + 4).

 ✓ The first term squared is x2.

 ✓ The second term will always be negative and a perfect square like the 
first term: (–4)(+4) = –16.
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So,

(x – 4)(x + 4) = x2 – 16

 Find the product using the special rule: (ab – 5)(ab + 5).

This problem has a slightly more complicated variable term.

 ✓ The square of ab = (ab)2 = a2b2.

 ✓ The opposite of the square of 5 = –25.

So,

(ab – 5)(ab + 5) = a2b2 – 25

 Find the product using the special rule: [5 + (a – b)][5 – (a – b)].

In this problem, the second term is a binomial.

 ✓ The square of 5 = 25.

 ✓ The opposite of the square of (a – b) = –(a – b)2.

Square the binomial and distribute the negative sign:

–(a2 – 2ab + b2) =

–a2 + 2ab – b2

So,

[5 + (a – b)][5 – (a – b)] =

25 – a2 + 2ab – b2

Working out the difference 
and sum of two cubes
So, what are cubes? Although some cubes are made of sugar and spice and 
everything nice, the cubes used in algebra are slightly different. Some of 
them are three-dimensional objects, but the cubes in this section are values 
that are multiplied times themselves again and again.

 A value multiplied by itself is a perfect square; a value multiplied by itself once 
and then again is a perfect cube. So, 33 is 27 because 3 · 3 · 3 = 27. The variable 
x cubed is written: x3.
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A multiplication problem that ultimately results in the difference or sum of 
two cubes is usually pretty hard to spot. You may not notice that you’ll get 
such a simple answer until you get to the end and then say, “Oh, yeah. That’s 
right!” However, being able to recognize what results in the difference or 
sum of two cubes is even more important in Chapter 15, which addresses 
cubic equations (equations that contain a term with an exponent of 3 and no 
higher).

 The difference or sum of two cubes is equal to the difference or sum of their 
cube roots times a trinomial, which contains the squares of the cube roots 
and the opposite of the product of the cube roots. For any real numbers a and b,

(a – b) (a2 + ab + b2) = a3 – b3

(a + b)(a2 – ab + b2) = a3 + b3

To recognize what type of multiplication problem results in the difference or 
sum of two cubes, look to see if the distribution has a binomial times a 
trinomial. The binomial contains the two cube roots, and the trinomial 
contains the squares of the two roots and the opposite of the product of the 
roots.

 A number’s opposite is that same number with a different sign in front. If the 
number is a negative number, then its opposite would be positive, and vice 
versa.

Let me show you the distribution to demonstrate why the pattern works:

(a – b)(a2 + ab + b2)

Distribute the a and the –b over the trinomial:

a(a2 + ab + b2) – b(a2 + ab + b2)

Distribute the two values separately and multiply each term:

a3 + a2b + ab2 – a2b – ab2 – b3

Notice that the four terms in the middle are all pairs of opposites that add up 
to 0:
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This leaves you with a3 – b3.

This pattern always results in the difference of two cubes.

 Use the rule and pattern to multiply: (2 – ab)(4 + 2ab + a2b2).

The multiplication fits the pattern, because the square of the first term in the 
binomial, 2, is 22 = 4, and the square of the second term, ab is (ab)2 = a2b2. 
The opposite of the product of the two terms in the binomial is +2ab. The 
trinomial is exactly what’s needed. So the product must be the cubes of the 
two numbers in the binomial. The cube of 2 is 8, and the cube of –ab is –a3b3, 
giving you

(2 – ab)(4 + 2ab + a2b2) =

8 – a3b3

 Use the rule and pattern to multiply: (x + 4)(x2 – 4x + 16).

The multiplication has all the right stuff. The sign in the binomial is +, so the 
answer has a +. The cube of 4 is 64. So,

(x + 4)(x2 – 4x + 16) =

x3 + 64

 Use the rule and pattern to multiply: (6 + 5yz)(36 – 30yz + 25y2z2).

This problem isn’t quite as obvious. You have to recognize that the opposite 
of the product of the two terms in the binomial is –30yz. But when you see 
the pattern , you just find the cube of 6, which is 216, and the cube of 
5yz = (5yz)3 = 53y3z3. So,

(6 + 5yz)(36 – 30yz + 25y2z2) =

216 + 125y3z3
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Chapter 8

Getting to First Base 
with Factoring

In This Chapter
▶ Taking away what all terms have in common

▶ Using variables versus numbers

▶ Finding the greatest common factor

▶ Getting terms joined together by grouping

You may believe in the bigger-is-better philosophy, which can apply to 
salaries, cookies, or houses, but it doesn’t really work for algebra. For 

the most part, the opposite is true in algebra: Smaller numbers are easier and 
more comfortable to deal with than larger numbers.

In this chapter, you discover how to get to those smaller-is-better terms. 
You find the basics of factoring and how factoring is related to division. The 
factoring patterns you see here carry over somewhat in more complicated 
expressions.

Factoring
Factoring is another way of saying: “Rewrite this so everything is all multiplied 
together.” You usually start out with two or more terms and have to determine 
how to rewrite them so they’re all multiplied together in some way or 
another. And, oh yes, the two expressions have to be equal! Why all this fuss? 
You rewrite expressions as products — keeping the new results equivalent 
to the old — so that you can perform operations on the results. Fractions 
reduce more easily, equations solve more easily, and answers are observed 
more easily when you can factor.
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Factoring out numbers
Factoring is the opposite of distributing; it’s “undistributing” (see Chapter 7 for 
more on distribution). When performing distribution, you multiply a series 
of terms by a common multiplier. Now, by factoring, you seek to find what a 
series of terms has in common and then take it away, dividing the common 
factor or multiplier out from each term. Think of each term as a numerator 
of a fraction, and you’re finding the same denominator for each. By factoring 
out, the common factor is put outside parentheses or brackets and all the 
results of the divisions are left inside.

 An expression can be written as the product of the largest number that 
divides all the terms evenly times the results of the divisions: ab + ac + ad = 
a(b + c + d).

Writing factoring as division
In the trinomial 16a – 8b + 40c2, 2 is a common factor. But 4 is also a common 
factor, and 8 is a common factor. Here are the divisions of the terms by 2, 4, 
and 8:

Reviewing the terms and rules
You’ll understand factoring better if you have 
a firm handle on what the terms used to talk 
about factoring mean:

 ✓ Term: A group of number(s) and/or 
variable(s) connected to one another by 
multiplication or division and separated 
from other terms by addition or subtraction.

 ✓ Factor: Any of the values involved in a mul-
tiplication problem that, when multiplied 
together, produce a result.

 ✓ Coefficient: A number that multiplies a vari-
able and tells how many of the variable.

 ✓ Constant: A number or variable that never 
changes in value.

 ✓ Relatively prime: Terms that have no fac-
tors in common. If the only factor that num-
bers share in common is 1, then they’re 
considered relatively prime.

Here is an illustration for all the terms I just 
gave: In the expression 5xy + 4z – 6, you see 
three terms. In the first term, 5xy, three fac-
tors are all multiplied together. The 5 is usually 
referred to as the coefficient. The second term 
has two factors, 4 and z, and the third term con-
tains just a constant. The first and second terms 
are relatively prime because they have no fac-
tors in common. (The number 4 is not prime, but 
it’s relatively prime to 5.)
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You see that the final result, in each case, does not contain a fraction. For a 
number to be a factor, it must divide all the terms evenly. To show the results 
of factoring, you write the factor outside parentheses and the results of the 
division inside:

16a – 8b + 40c2 = 2(8a – 4b + 20c2)

16a – 8b + 40c2 = 4(4a – 2b + 10c2)

16a – 8b + 40c2 = 8(2a – b + 5c2)

Outlining the factoring method
The absolutely proper way to factor an expression is to write the prime 
factorization of each of the numbers and look for the greatest common factor 
(GCF). What’s really more practical and quicker in the end is to look for the 
biggest factor that you can easily recognize. Factor it out and then see if the 
numbers in the parentheses need to be factored again. Repeat the division 
until the terms in the parentheses are relatively prime.

 Here’s how to use the repeated-division method to factor the expression 
450x + 540y – 486z + 216. You see that the coefficient of each term is even, so 
divide each term by 2:

450x + 540y – 486z + 216 = 2(225x + 270y – 243z + 108)

The numbers in the parentheses are a mixture of odd and even, so you can’t 
divide by 2 again. The numbers in the parentheses are all divisible by 3, but 
there’s an even better choice: You may have noticed that the digits in the 
numbers in all the terms add up to 9. That’s the rule for divisibility by 9, so 
9 can divide each term evenly. (You find rules of divisibility in Chapter 6.) 
Thus,

2(225x + 270y – 243z + 108) = 2[9(25x + 30y – 27z + 12)]

Now multiply the 2 and 9 together to get

450x + 540y – 486z + 216 = 18(25x + 30y – 27z + 12)

You could have divided 18 into each term in the first place, but not many 
people know the multiplication table of 18. (It’s a stretch even for me.) What 
about the coefficients of the numbers in the parentheses? None is a prime 
number. And several have factors in common. But there’s no single factor 
that divides all the coefficients equally. The four coefficients are relatively 
prime, so you’re finished with the factoring.
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Factoring out variables
Variables represent values; variables with exponents represent the powers 
of those same values. For that reason, variables as well as numbers can be 
factored out of the terms in an expression, and in this section you can find 
out how.

 When factoring out powers of a variable, the smallest power that appears 
in any one term is the most that can be factored out. For example, in an 
expression such as a4b + a3c + a2d + a3e4, the smallest power of a that appears 
in any term is the second power, a2. So you can factor out a2 from all the terms 
because a2 is the greatest common factor. You can’t factor anything else out of 
each term: a4b + a3c + a2d + a3e4 = a2(a2b + a1c + d + a1e4).

 When performing algebraic operations or solving equations, always take the 
time to check your work. Sometimes the check is no more than just seeing if 
the answer makes sense. In the case of factoring expressions, a good visual 
check is to multiply the factor through all the terms in the parentheses to see 
if you get what you started with before factoring. To perform checks on your 
factoring:

 ✓ Multiply through (distribute) your answer in your head to be sure that 
the factored form is equivalent to the original form.

 ✓ Another good way to check your work visually is to scan the terms in 
parentheses to make sure that they don’t share the same variable.

Factoring in the real world
You usually use factoring when you need to 
reduce fractions or solve a quadratic equation. 
But a type of factoring comes to the rescue in 
several real-life situations.

For example, Stephanie wants to organize her 
collection of CDs, putting some in her room, 
some in her office, and some in her car. She has 
18 rap CDs, 24 rock CDs, 30 hip-hop CDs, and 42 
pop CDs. How can she divide the CDs so there’s 
a nice balance in each location?

Writing the numbers of CDs as a sum, Stephanie 
has 18 + 24 + 30 + 42 total. Each of the numbers 

is divisible by 2, 3, and 6, so the factorizations 
could be any of the following:

  2(9 + 12 + 15 + 21)

  3(6 + 8 + 10 + 14)

  6(3 + 4 + 5 + 7)

The last factorization shows you four relatively 
prime numbers within the parentheses. But 
Stephanie has only three locations to put her 
CDs in, so she’ll go with 6 rap CDs, 8 rock CDs, 
10 hip-hop CDs, and 14 pop CDs in each place.
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 Perform the quick checks on the following factored expression:

x2y3 + x3y2z4 + x4yz = x2y(y2 + x1y1z4 + x2z)

Does your answer multiply out to become what you started with? Multiply in 
your head:

x2y · y2 = x2y3 Check!

x2y · xyz4 = x3y2z4 Check!

x2y · x2z = x4yz Check!

Those are the three terms in the original problem.

Now, for the second part of the quick check: Look at what’s in the parentheses 
of your answer. The first two terms have y and the second two have x and z, 
but no variable occurs in all three terms. The terms in the parentheses are 
relatively prime. Check!

Unlocking combinations of 
numbers and variables
The real test of the factoring process is combining numbers and variables, 
finding the GCF, and factoring successfully. Sometimes you may miss a 
factor or two, but a second sweep through can be done and is nothing to be 
ashamed of when doing algebra problems. If you do your factoring in more 
than one step, it really doesn’t matter in what order you pull out the factors. 
You can do numbers first or variables first. It’ll come out the same.

Diophantus
The mathematician Diophantus, the first to use 
symbols to abbreviate his thoughts systemati-
cally, lived some time between A.D. 100 and 400. 
Some consider him the “father of algebra.” 
Using symbols allowed him to categorize num-
bers of particular types and then symbolically 
study their properties. One of Diophantus’s 
followers summarized his life in terms of an 
algebra riddle:

  Diophantus’s youth lasted one-sixth of his 
life. He grew a beard after one-twelfth 
more. After one-seventh more of his life, 
Diophantus married. Five years later he 
had a son. The son lived exactly one-half 
as long as his father, and Diophantus died 
just four years after his son. All this adds up 
to the years Diophantus lived.

Just in case you’re dying to know the answer: 
Diophantus lived 84 years.
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 Factor 12x2y3z + 18x3y2z2 – 24xy4z3.

Each term has a coefficient that’s divisible by 2, 3, and 6. You select 6 as the 
largest of those common factors.

Each term has a factor of x. The powers on x are 2, 3, and 1. You have to 
select the smallest exponent when looking for the greatest common factor, so 
the common factor is just x.

Each term has a factor of y. The exponents are 3, 2, and 4. The smallest 
exponent is 2, so the common factor is y2.

Each term has a factor of z, and the exponents are 1, 2, and 3. The number 1 
is smallest, so you can pull out a z from each term.

Put all the factors together, and you get that the GCF is 6xy2z. So,

12x2y3z + 18x3y2z2 – 24xy4z3 = 6xy2z(2x1y1 + 3x2z1 – 4y2z2)

Doing a quick check, you multiply through by the GCF in your head to be sure 
that the products match the original expression. You then do a sweep to be 
sure that there isn’t a common factor among the terms within the parentheses.

 Factor 100a4b – 200a3b2 + 300a2b2 – 400.

The greatest common factor of the coefficients is 100. Even though the 
powers of a and b are present in the first three terms, none of them occurs 
in the last term. So you’re out of luck finding any more factors. Doing the 
factorization,

100a4b – 200a3b2 + 300a2b2 – 400 = 100(a4b – 2a3b2 + 3a2b2 – 4)

 Factor 26mn3 – 25x2y + 21a4b4mnxy.

Even though each of the numbers is composite (each can be divided by 
values other than themselves), the three have no factors in common. The 
expression cannot be factored. It’s considered prime.

 Factor 484x3y2 + 132x2y3 – 88x4y5.

In this example, even if you don’t divide through by the GCF the first time, 
all is not lost. A second run takes care of the problem. Often, doing the 
factorizations in two steps is easier because the numbers you’re dividing 
through by each time are smaller, and you can do the work in your head.
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Assume that you determined that the GCF of the expression in this example 
is 4x2y. Then 484x3y2 + 132x2y3 – 88x4y5 = 4x2y(121x1y1 + 33y2 – 22x2y4).

Looking at the expression in the parentheses, you can see that each of the 
numbers is divisible by 11 and that there’s a y in every term. The terms in the 
parentheses have a GCF of 11y.

4x2y[121x1y1 + 33y2 – 22x2y4] =

4x2y[11y(11x + 3y1 – 2x2y3)] =

(4x2y)(11y)(11x + 3y1 – 2x2y3) =

44x2y2(11x + 3y1 – 2x2y3)

You can do this factorization all at the same time, using the GCF 44x2y2, but 
not everyone recognizes the multiples of 44. Also, the factorization could 
have been done in two or more steps in a different order with different 
factors each time. The result always comes out the same in the end.

 Factor –4ab – 8a2b – 12ab2.

Each term in the expression is negative; dividing out the negative from all the 
terms in the parentheses makes them positive.

–4ab – 8a2b – 12ab2 = –4ab(1 + 2a1 + 3b1)

 When factoring out a negative factor, be sure to change the signs of each of 
the terms.

Changing factoring into a division problem
You may be a whiz at dividing terms in your head, but sometimes even 
the mightiest find it easier to write down the terms to be factored and the 
common factor as a series of division problems. Yes, even I sometimes 
resort to reducing fractions to make the computations easier and improve 
my success rate.

 Factor 480x4y8z6 – 320x6y4z4 – 640x8y5z3.

First, identify the GCF of the coefficients. They all end in 0, so each is 
divisible by 10.

Then, looking at 48, 32, and 64 (dropping the 0 at the end), you see that the 
numbers are all divisible by 16.
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Putting the 10 and 16 together, you see a GCF of 160.

Checking out the powers of x, y, and z, you see that you can divide each term 
by x4y4z3.

Now, write each term in the numerator of a fraction with the greatest 
common factor in the denominator:

Reducing the fractions, you get

Notice that each term has two of the three variables, but no variable appears 
in all three terms. The coefficients are relatively prime, so there’s no common 
factor to pull out. So,

480x4y8z6 – 320x6y4z4 – 640x8y5z3 = 160x4y4z3(3y4z3 – 2x2z – 4x4y)

Grouping Terms
Groups are formed when people have something in common with one 
another. Put 20 people on an island, leave them there for a few days, and 
chances are good that the 20 people will form groups as they seek out those 
they can relate to in some way. Television producers have capitalized on this 
phenomenon by creating contests on these islands and introducing all sorts 
of conflict and drama.

The same general process can be done in factoring (but without the drama). 
The rules are a bit stricter when factoring by grouping than even the island 
social situation, but the principle is the same. I show you those algebraic 
principles in this section.

 When using grouping to factor, follow these steps:

 1. Divide the terms into groups of an equal number of terms in each.

 2. Look for a GCF in each group of terms and do the factorization.

 3. Rewrite the expression as products of the GCF of each term and a 
factor in parentheses.
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 4. Look for a GCF of the new terms.

  If there isn’t a GCF of the new terms, try a different arrangement of the 
terms in the divisions.

 5. Factor out the new GCF.

 Factor 4xy + 4xb + ay + ab. You see that two terms have a 4 in common. Some 
terms have a y in common. And some terms have a, b, and x mixed in there, 
too. But all four terms do not have a single variable or number in common. 
They can be grouped, though, into two parts that can be factored independently:

 1. Divide the terms into groups of two terms in each.

  Group the first two terms together and then the last two.

  (4xy + 4xb) + (ay + ab)

 2. Look for a GCF in each group of terms and factor.

  4xy + 4xb = 4x(y + b)

  ay + ab = a(y + b)

 3. Rewrite the expression.

  4x(y + b) + a(y + b)

 4. Look for a GCF of the new terms.

  The new GCF is (y + b).

 5. Factor out the new GCF.

  (y + b)(4x + a)

The original expression containing four terms is now a single term.

This grouping business doesn’t really help, though, unless the results of the 
two separate factorizations then share something. Looking at the preceding 
series of steps, in Step 3 each of the factored groups had (y + b) in it. When 
this happens, the (y + b) can be factored out of the newly formed terms:

4x(y + b) + a(y + b) = (y + b)(4x + a)

This is the factored form. If you multiply this through (distribute), then you 
get the four terms that you started with.

Again, the following example has nothing that all the terms share in common. 
But, if you group the first two and the last two, you can factor those pairs.

 Factor ax2y – 3a + 9x2y – 27.

 1. Divide the terms into equal groups of two terms in each.

  (ax2y – 3a) + (9x2y – 27)
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 2. Look for a GCF in each group of terms and factor.

  (ax2y – 3a) = a(x2y – 3)

  (9x2y – 27) = 9(x2y – 3)

 3. Rewrite the expression.

  a(x2y – 3) + 9(x2y – 3)

 4. Look for a GCF of the new terms.

  The GCF is x2y – 3.

 5. Factor out the new GCF.

  a(x2y – 3) + 9(x2y – 3) = (x2y – 3)(a + 9)

What happens if the terms aren’t in this order? How do you know what order 
to write them in? Do you get a different answer? Well, scramble the terms and 
write the problem as ax2y + 9x2y – 27 – 3a and see what you have.

The first two terms have a GCF of x2y. The second two terms have a GCF of 
–3. Grouping and factoring gives you x2y(a + 9) – 3(9 + a).

The expressions in the parentheses don’t look exactly alike, but addition is 
commutative — you can add in either order and get the same result. You can 
reverse the 9 and the a in the last factor so that it looks the same as the first:

x2y (a + 9) – 3(a + 9)

Now, you can factor the (a + 9) out of each term to finish the problem:

(a + 9)(x2y – 3)

The two factors in this answer are reversed from the first way you did the 
problem, but multiplication is also commutative.

In this last example, note that the two pairs of terms can be grouped and 
factored.

 Factor 4ab2 – 8ac2 + 5x2b – 10x2c.

Grouping and factoring,

(4ab2 – 8ac2) + (5x2b – 10x2c) =

4a(b2 – 2c2) + 5x2(b – 2c)
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The expressions in the parentheses look similar, but they aren’t the same. 
Changing the order won’t help in this case. There are now two terms, but 
they don’t have a common factor. This expression is as simple as it can be. In 
other words, it’s prime (in the algebraic sense).

So far, the examples I’ve shown you all contained four terms, which grouped 
into two groups of two. What about six or eight terms? Can you use grouping? 
The answer is yes.

 Factor 2x2y2 + 6x2y + 2x2 – 3y2 – 9y – 3.

Here are your choices:

 ✓ Group the first three terms together, factoring out 2x2; group the second 
three terms together, factoring out –3.

 ✓ Group the first and fourth terms together, factoring out y2; group the 
second and fifth terms, factoring out 3y; and group the third and sixth 
terms, just showing a multiplication of 1.

Using the first choice:

2x2y2 + 6x2y + 2x2 – 3y2 – 9y – 3 =

2x2(y2 + 3y + 1) – 3(y2 + 3y + 1)

The common factor of the two terms is then factored out.

(y2 + 3y + 1)(2x2 – 3)

Now, using the second method, I first have to rearrange the terms:

2x2y2 + 6x2y + 2x2 – 3y2 – 9y – 3 =

(2x2y2 – 3y2) + (6x2y – 9y) + (2x2 – 3) =

y2(2x2 – 3) + 3y(2x2 – 3) + 1(2x2 – 3)

You see that the three terms now all have a common factor of (2x2 – 3), which 
can be factored out.

(2x2 – 3)(y2 + 3y + 1)

The order of the two factors is different from what you get using the other 
method, but multiplication is commutative, so they’re equivalent.
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Chapter 9

Getting the Second Degree
In This Chapter
▶ Getting squared away with quadratic expressions

▶ Finding out how to FOIL without thwarting

▶ Stepping through the unFOIL process

▶ Getting organized to factor a quadratic

▶ Performing multiple factorizations

Quadratic (second-degree) expressions — such as 3x2 – 12 or –16t2 + 
32t + 11 — are studied extensively in algebra because they have so 

many applications in calculus and physics and other disciplines. These are 
expressions because they’re made up of two or more terms with plus (+) or 
minus (–) signs between them. If there were equal signs, they would be 
equations. The good news is that they’re manageable. The bad news — well, 
there is none! Second-degree expressions are so darned nice to work with!

Quadratics have a particular variable raised to the second degree. A 
quadratic expression can have one or more terms, and not all the terms 
must have a squared variable, but at least one of the terms needs to have 
that exponent of 2. Also, a quadratic expression can’t have any power greater 
than 2 on the designated variable. The highest power in an expression 
determines its name.

Some quadratics may have one variable in them, such as 2x2 – 3x + 1. Others 
may have two or more variables, such as πr2 +2πrh. These expressions all 
have their place in mathematics and science. In this chapter, you see how 
they work for you.

The Standard Quadratic Expression
 The quadratic, or second-degree, expression in x has the x variable that is 

squared, and no x terms with powers higher than 2. The coefficient on 
the squared variable is not equal to 0. The standard quadratic form is 
ax2 + bx + c.
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You may notice that the following examples of quadratic expressions all have 
a variable raised to the second degree:

4x2 + 3x – 2 a2 + 11 6y2 – 5y

Quadratics are usually written in terms of a variable represented by an x, y, z, 
or w. The letters at the end of the alphabet are used more frequently for the 
variable, while those at the beginning of the alphabet are usually used for 
a number or constant. This isn’t always the case, but it’s the standard 
convention.

In a quadratic expression, the a — the coefficient of the variable raised to the 
second power — can’t be 0. If a were allowed to be 0, then the x2 would be 
multiplied by 0, and it wouldn’t be a quadratic expression anymore. The 
variables b or c can be 0, but a can’t.

Quadratics don’t necessarily have all positive terms either. The standard 
form, ax2 + bx + c, is written with all positives for convenience. But if a, b, or c 
represents a negative number, then that term would be negative. The terms 
are usually written with the second-degree term first, the first-degree term 
next, and the number last. Another mathematical convention has to do with 
the order of the terms in a quadratic expression. If you find more than one 
variable, decide which variable makes it a quadratic expression (look for the 
variable that’s squared) and write the expression in terms of that variable. 
This means, after you find the variable that’s squared, write the rest of the 
expression in decreasing powers of that variable.

 Rewrite aby + cdy2 + ef using the standard convention involving order. This can 
be a second-degree expression in y.

Written in the standard form for quadratics, ax2 + bx + c, where the 
second-degree term comes first, it looks like (cd)y2 + (ab)y + ef. The parenthe-
ses aren’t necessary around the cd or the ab and they don’t change anything, 
but they’re used sometimes for emphasis. The parentheses just make seeing 
the different parts easier.

In the next example, you get to make choices.

 Rewrite a2bx + cdx2 + aef using the standard convention involving order. This 
can be a second-degree expression in terms of either a or x.

Writing as a second degree in a:

(bx)a2 + (ef)a + cdx2
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Even though there’s a second-degree factor of x in the last term, that term is 
thought of as a constant, a value that doesn’t change, rather than a variable if 
the expression is a to the second degree. Now, changing roles, the 
second-degree expression in x:

(cd)x2 + (a2b)x + aef

Reining in Big and Tiny Numbers
Some perfectly good quadratic expressions are just too awkward to handle. 
Some of these can be made better by factoring. Some others are just going to 
be uncooperative — you’re stuck with them. In this section, I go back to my 
favorite standby for simplifying: finding a greatest common factor (GCF). If 
the terms in the quadratic have something in common, then that can be 
factored out, leaving an expression more reasonable to deal with.

 Rewrite the quadratics by factoring out GCFs:

 ✓ 800x2 + 40,000x – 100,000: This quadratic expression can be made 
more usable by factoring out the common factor and arranging the 
result in a nice, organized expression. It has large numbers, but each 
number can be evenly divided by 800 — a common factor:

  800x2 + 40,000x – 100,000 = 800(x2 + 50x – 125)

 ✓ a2x2 + a2c2 + a2b2x: These terms have four different variables with 
powers of 2. Only the x, though, appears in a term with a power of 1. So, 
you may choose to write this as a quadratic in x and factor out some of 
the other variables. Rewrite the expression in decreasing powers of x:

  a2x2 + a2b2x + a2c2

  Find the GCF, which is a2, and factor it out:

  a2(x2 + b2x + c2)

 ✓ 0.00000008y2 + 0.000000004y + 0.000000016: This last expression 
consists of powers of y and multipliers that are very small. Find the GCF, 
which is 0.000000004, and factor it out:

  0.00000008y2 + 0.000000004y + 0.000000016 = 0.000000004(20y2 + y + 4)
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FOILing
What is FOIL?

a) A brainchild of Mr. Reynolds Aluminum.

b) An expression of dismay: “Rats! FOILed again!”

c) An acronym for first, outer, inner, and last.

Choice C is my final answer. FOIL is an acronym that cropped up somewhere 
between my high school years and my teaching years. It was sort of “under 
the counter” at first — respected mathematicians didn’t want to use it, 
because it seemed to introduce an unnecessary and specialized process to 
the work with binomials. But it has caught on and is now accepted, 
published, and used extensively in the algebra classroom. FOIL is easy to 
remember and apply.

This chapter is on factoring, but first you need to find out how to multiply 
two binomials together using FOIL. Chapter 7 shows you how to multiply 
two binomials together by distributing. This chapter gives you an alternate 
method.

FOILing basics
Many quadratic expressions, such as 6x2 + 7x – 3, are the result of multiplying 
two binomials (two terms separated by addition or subtraction), so you can 
undo the multiplication by factoring them:

6x2 + 7x – 3 = (2x + 3)(3x – 1)

Algebra-speak
Just as some phrases, such as a hill of beans, 
lack a verb, an algebraic expression, such 
as 6x2 + 11, lacks an equal sign. Neither this 
phrase nor the algebraic expression makes any 
assertions.

On the other hand, a statement or an algebraic 
equation makes an assertion. A statement must 
contain a verb, which is similar to the equal sign 

or inequality symbol in an algebraic equation 
or inequality. For example, you may say that 
6 + 3 is 9. A statement, such as, “The car is 
worth $15,000,” can be true or false depending 
on what car you’re referring to. Mathematical 
statements — such as 6x – 1y = 11 or 16y + 7 
< 80 — make a claim. Whether the claims are 
true depends on what the x and y are.
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The right side is the factored form. But how can you tell that the left side 
of that equation is equal to the right side just by looking at it? It’s not like 
searching for a GCF, when you look for something in common. A nice way to 
do the multiplication is using FOIL.

What does FOIL stand for? Each of the letters refers to two different terms in 
the multiplication — one from each of two binomials — multiplied together 
in a certain order. The steps don’t have to be done in this order, but they 
usually are. Otherwise, the acronym would be something like OFIL (which 
would be awful).

The following list describes what each letter in the FOIL acronym stands for:

 ✓ F stands for the first term in each binomial: (3a + 6)(2a – 1)

 ✓ O stands for the two outer terms — those farthest to the left and right: 
(3a + 6)(2a – 1)

 ✓ I stands for the inner terms in the middle: (3a + 6)(2a – 1)

 ✓ L stands for the last term in each binomial: (3a + 6)(2a – 1)

In each binomial, there’s the left term and the right term. But the two terms 
have other names, also (just as someone named Michael may be “Mike” to 
one person and “son” to another). The other names for the terms in the 
binomials refer to their positions with respect to the whole picture. The two 
terms not in the middle are the outer terms. The two terms in the middle are 
the inner terms. Use this as an example: (a + b)(c + d). The terms a and c are 
first; the terms b and d are last in each binomial. The terms a and d are outer; 
the terms b and c are inner in the big picture. As you can see, each term has 
two names. In the problem (2x + 3)(3x – 1) the term 2x is called first one time 
and outer another time. That’s okay.

Figure 9-1 gives you a visual on how this is done.

 

Figure 9-1: 
The FOIL 

happy face.
 

( a + b ) ( c + d )

FOILed again, and again
The following steps demonstrate how to use FOIL on the problem of multiply-
ing two binomials together: (4x – 7)(5x + 3).
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 1. Multiply the first term of each binomial together.

  (4x)(5x) = 20x2

 2. Multiply the outer terms together.

  (4x)(+3) = +12x

 3. Multiply the inner terms together.

  (–7)(5x) = –35x

 4. Multiply the last term of each expression together.

  (–7)( +3) = –21

 5. List the four results of FOIL in order.

  20x2 +12x –35x – 21

 6. Combine the like terms.

  20x2 – 23x – 21

Distributing the two terms in the first binomial over the second produces the 
same result, but in the case of binomials, using FOIL is easier. (For more on 
distributing, see Chapter 7.)

See how the FOIL numbered steps work on a couple of negative terms in the 
following example.

 Use FOIL to perform the multiplication: (x – 3)(2x – 9).

 1. Multiply the first terms.

  (x)(2x) = 2x2

 2. Multiply the outer terms.

  (x)(–9) = –9x

 3. Multiply the inner terms.

  (–3)(2x) = –6x

 4. Multiply the last terms.

  (–3)(–9) = 27

 5. List the four results of FOIL in order.

  2x2 – 9x – 6x + 27

 6. Combine the like terms.

  2x2 – 15x + 27
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The following example is a bit more complicated to do, but FOIL makes it 
much easier. The tasks are broken down into smaller, simpler tasks, and then 
the results are combined for the final result.

 Use FOIL to perform the multiplication: [x + (y – 4)][3x + (2y + 1)].

 1. Multiply the first terms.

  (x)(3x) = 3x2

 2. Multiply the outer terms.

  (x)(2y + 1) = 2xy + x

 3. Multiply the inner terms.

  (y – 4)(3x) = 3xy – 12x

 4. Multiply the last terms.

  The last terms are two binomials, too. You FOIL these binomials when 
you finish this series of FOIL steps.

  (y – 4)(2y + 1)

 5. List the four results of FOIL in order.

  3x2 + 2xy + x + 3xy –12x + (y – 4)(2y + 1)

 6. Combine like terms.

  3x2 + 5xy – 11x + (y – 4)(2y + 1)

Now to finish the product of the two at the end: (y – 4)(2y + 1). You can FOIL 
them:

 1. Multiply the first terms.

  (y)(2y) = 2y2

 2. Multiply the outer terms.

  (y)(1) = y

 3. Multiply the inner terms.

  (–4)(2y) = –8y

 4. Multiply the last terms.

  (–4)(1) = –4

 5. Write the results in order.

  2y2 + y – 8y – 4
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 6. Combine like terms.

  2y2 – 7y – 4

Now, replace the two binomials multiplied together with this new result, and 
you can rewrite the entire problem:

3x2 + 5xy – 11x + 2y2 – 7y – 4

This may seem complicated, but using FOIL is easier than doing all the 
distributing.

Applying FOIL to a special product
Do you remember the rule for multiplying the sum of any two terms by their 
difference? If your answer is “Yes,” then skip this section, give yourself a pat 
on the back, and move to the head of the class. If your answer is “No,” then 
just give yourself a pat on the back and plod on.

The sum of any binomial multiplied by the difference of the same two terms 
(see the operation that follows) is an easy operation because the middle 
terms cancel each other out — they both have the same absolute value, 
except one is positive and the other is negative.

(a + b)(a – b) = a(a – b) + b(a – b) = a2 – ab + ab – b2 = a2 – b2

The following operation multiplies the sum and difference of the same two 
values. In Chapter 7, I show you how the middle terms cancel each other out 
or disappear. This is even more evident with FOIL.

 Use FOIL to perform the multiplication: (5x – 3)(5x + 3).

 1. Multiply the first terms.

  (5x)(5x) = (5x)2 = 25x2

 2. Multiply the outer terms.

  (5x)(3) = 15x

 3. Multiply the inner terms.

  (–3)(5x) = –15x

 4. Multiply the last terms.

  (–3)( + 3) = –9

 5. Write the results in order.

  25x2 + 15x – 15x –9
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 6. Combine like terms.

  The products, 15x and –15x, are opposites of each other. The first and 
last products are all that’s left.

  25x2 – 9

Take a look at the multiplication problems that follow. Are they good 
examples of the sum and difference of binomials and FOIL?

(3x + 2)(3x – 2) = 9x2 – 4

(2z – m)(2z + m) = 4z2 – m2

(m2 – n2)(m2 + n2) = m4 – n4

UnFOILing
When you look at an expression such as 2x2 – 5x – 12, you may think that 
figuring out how to factor this into the product of two binomials is an awful 
chore. And you may wonder whether it can even be factored that way. Let 
me assure you that these problems are really quite easy. Think of them as 
puzzles — not quite as challenging as Sudoku or KenKen.

Carl Friedrich Gauss, child prodigy
The mathematician Carl Friedrich Gauss, a child 
prodigy, was only 3 years old when he cor-
rected some calculations in his father’s payroll 
records. He later went on to make significant 
contributions to mathematics.

Legend has it that when Gauss was a school-
boy, his tired teacher told the class to find the 
sum of the numbers from 1 through 100 (to keep 
them occupied so he could rest). Moments 
later, little Carl Friedrich was at the teacher’s 
elbow with a solution. The teacher looked in 
disbelief at the boy’s answer, which, of course, 
was correct. Gauss wasn’t a whiz at adding. 
He just got organized and found patterns in the 
numbers to make the adding easier and much 

more interesting. He saw that 1 + 99 = 100, 2 + 
98 = 100, 3 + 97 = 100, and so on. The sum of 49 
of these 100s, the 50 in the middle, and the 100 
at the end is 5,050.

Thanks to Gauss, a standard formula is 
available for the sum of any list of integers that 
have a common difference. This formula is

. The S represents the sum of

the numbers, the n tells you how many are 
in the list, the a1 is the first in the list, and the an 
is the last in the list. So Gauss could have found 

the sum with: .
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The nice thing in solving this particular puzzle is that there’s a system to 
make unFOILing simple. You go through the system, and it helps you find 
what the answer is or even helps you determine if there isn’t an answer. This 
can’t be said about all factoring problems, but it is true of quadratics in the 
form ax2 + bx + c. That’s why quadratics are so nice to work with in algebra.

Unwrapping the FOILing package
The key to unFOILing these factoring problems is being organized:

 ✓ Be sure you have an expression in the form ax2 + bx + c.

 ✓ Be sure the terms are written in the order of decreasing powers.

 ✓ If needed, review the lists of prime numbers and perfect squares.

 ✓ Follow the steps.

 Follow these steps to factor the quadratic ax2 + bx + c, using unFOIL.

 1. Determine all the ways you can multiply two numbers to get a.

  Every number can be written as at least one product, even if it’s only the 
number times 1. So assume that there are two numbers, e and f, whose 
product is equal to a. These are the two numbers you want for this 
problem.

 2. Determine all the ways you can multiply two numbers together to get c.

  If the value of c is negative, ignore the negative sign for the moment. 
Concentrate on what factors result in the absolute value of c.

  Now assume that there are two numbers, g and h, whose product is 
equal to c. Use these two numbers for this problem.

 3. Now look at the sign of c and your lists from steps 1 and 2.

 • If c is positive, find a value from your Step 1 list and another from 
your Step 2 list such that the sum of their product and the product 
of the two numbers they’re paired with in those steps results in b.

  Find e · g and f · h, such that e · g + f · h = b.

 • If c is negative, find a value from your Step 1 list and another 
from your Step 2 list such that the difference of their product and 
the product of two numbers they’re paired with from those steps 
results in b.

  Find e · g and f · h, such that e · g – f · h = b.
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 4. Arrange your choices as binomials.

  The e and f have to be in the first positions in the binomials, and the g 
and h have to be in the last positions. They have to be arranged so the 
multiplications in Step 3 have the correct outer and inner products.

  (e   h) (f   g)

 5. Place the signs appropriately.

  The signs are both positive if c is positive and b is positive.

  The signs are both negative if c is positive and b is negative.

  One sign is positive and one sign is negative if c is negative; the choice 
depends on whether b is positive or negative and how you arranged the 
factors.

 Factor the quadratic 2x2 – 5x – 12 using unFOIL.

 1. Determine all the ways you can multiply two numbers to get a, which 

is 2 in this problem.

  The number 2 is prime, so the only way to multiply and get 2 is 2 × 1.

 2. Determine all the ways you can multiply two numbers to get c, which 
is –12 in this problem.

  Ignore the negative sign right now. The negative becomes important in the 
next step. Just concentrate on what multiplies together to give you 12.

  There are three ways to multiply two numbers together to get 12: 12 × 1, 
6 × 2, or 4 × 3.

 3. Look at the sign of c and your lists from steps 1 and 2.

  Since c is negative, you find a value from Step 1 and another from your 
Step 2 list such that the difference of their product and the product of 
the other numbers in the pairs results in b.

  Use the 2 × 1 from Step 1 and the 4 × 3 from Step 2. Multiply the 1 from 
Step 1 times the 3 from Step 2 and then multiply the 2 from Step 1 times 
the 4 from Step 2.

  (1)(3) = 3 and (2)(4) = 8

  The two products are 3 and 8, whose difference is 5.

 4. Arrange the choices in binomials.

  The following arrangement multiplies the (1x)(2x) to get the 2x2 needed 
for the first product. Likewise, the 4 and 3 multiply to give you 12. The 
outer product is 3x and the inner product is 8x, giving you the difference 
of 5x.

  (1x   4)(2x   3)
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 5. Place the signs to give the desired results.

  You want the 5x to be negative, so you need the 8x product to be 
negative. The following arrangement accomplishes this:

  (1x – 4)(2x + 3) = 2x2 + 3x – 8x – 12 = 2x2 – 5x – 12

The next example offers many combinations of numbers to choose from.

 Factor the quadratic: 24x2 – 34x – 45.

 1. Determine all the ways you can multiply two numbers to get 24.

  24 = 24 × 1 = 12 × 2 = 8 × 3 = 6 × 4

 2. Determine all the ways you can multiply two numbers to get 45.

  45 = 45 × 1 = 15 × 3 = 9 × 5

 3. Look at the sign of c. The last term is –45, so you want a difference of 
products.

  Use the 6 × 4 and the 9 × 5. The product of 4 and 5 is 20. The product of 6 
and 9 is 54. The difference of these products is 34.

 4. Arrange your choices as binomials so the results are those you want.

  (4x   9)(6x   5)

 5. Place the signs to give the desired results.

  (4x – 9)(6x + 5) =24x2 + 20x – 54x – 45 = 24x2 – 34x – 45

The combinations you want may not just leap out at you. But having a list of 
all the possibilities helps heaps. You can start systematically trying out the 
different combinations. For example, take the 24 × 1 and try it with all three 
sets of numbers that give you c: 45 × 1, 15 × 3, 9 × 5. If none of those work, 
then try the 12 × 2 with all the sets of numbers that give you c. Continue until 
you’ve systematically gone through all the possible combinations. If none 
works, you know you’re done. Doing it this way doesn’t leave you wondering 
if you’ve missed anything.

In the next example, a sum is used.

 Factor the quadratic: 2x2 – 9x + 4.

 1. Determine all the ways you can multiply two numbers to get 2.

  There’s only one choice: 2 × 1.

 2. Determine all the ways you can multiply two numbers to get 4.

  4 = 4 × 1 = 2 × 2.
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 3. The 4 is positive, so you want the sum of the outer and inner products.

  To get a sum of 9, use the 2 × 1 and the 4 × 1 factors, multiplying (2)(4) 
to get 8, and multiplying the two ones together to get 1. The sum of the 8 
and the 1 is 9.

 4. Arrange your choices as binomials so the results are those you want.

  (2x   1)(1x   4)

 5. Placing the signs, both binomials have to have subtraction so that the 
sum is –9 and the product is +4.

  (2x – 1)(1x – 4) = 2x2 – 8x – 1x + 4 = 2x2 – 9x + 4

In the next example, all the terms are positive. The sum of the outer and 
inner products will be used. And there are several choices for the multipliers.

 Factor: 10x2 + 31x + 15.

 1. Determine all the ways you can multiply two numbers to get 10.

  The 10 can be written as 10 × 1 or 5 × 2.

 2. Determine all the ways you can multiply two numbers to get 15.

  The 15 can be written as 15 × 1 or 5 × 3.

 3. The last term is +15, so you want the sum of the products to be 31.

  Using the 5 × 2 and the 5 × 3, multiply (2)(3) to get 6, and multiply (5)(5) 
to get 25. The sum of 6 and 25 is 31.

 4. Arrange your choices in the binomials so the factors line up the way 
you want to give you the products.

  (2x   5)(5x   3)

 5. Placing the signs is easy because everything is positive.

  (2x + 5)(5x + 3) = 10x2 + 6x + 25x + 15 = 10x2 + 31x + 15

Coming to the end of the FOIL roll
This last example looks, at first, like a great candidate for factoring by this 
method. You’ll see, though, that not everything can factor. Also, I get to 
make the point that using this method assures you that you’ve “left no stone 
unturned” and can be confident when claiming that a trinomial is prime (can’t 
be factored).

 Factor: 18x2 – 27x – 4.
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 1. Determine all the ways you can multiply two numbers to get 18.

  The 18 can be written as 18 × 1 or 9 × 2 or 6 × 3.

 2. Determine all the ways you can multiply two numbers to get 4.

  The 4 can be written as 4 × 1 or 2 × 2.

 3. Look at the sign of –4 and you see that you want a difference. And the 
difference of the products is to be 27.

  You can’t seem to find any combination that gives you a difference of 27. 
Run through all of them to be sure that you haven’t missed anything.

  Using the 18 × 1, cross it with:

 • 4 × 1, which gives you a difference of either 14, using the (1)(4) and 
(18)(1), or 71, using the (1)(1) and the (18)(4).

 • 2 × 2, which gives you a difference of 34, using (1)(2) and (18)(2); 
there’s only one choice because both of the second factors are 2.

  Using the 9 × 2, cross it with:

 • 4 × 1, which gives you a difference of either 34, using (2)(1) and (9)
(4), or 1, using (2)(4) and (9)(1).

 • 2 × 2, which gives you a difference of 14, only.

  Using the 6 × 3, cross it with:

 • 4 × 1, which gives you a difference of either 21, using (3)(1) and (6)
(4), or 6, using (3)(4) and (6)(1).

 • 2 × 2, which gives you a difference of 6, only.

Because you’ve exhausted all the possibilities and you haven’t been able 
to create a difference of 27, you can assume that this quadratic can’t be 
factored. It’s prime.

Making Factoring Choices
Sometimes you have to factor a problem more than once. This section 
shows you how you can use two completely different factoring techniques on 
the same problem. The process of using different factoring techniques is 
different from reusing the same methods, such as taking out common factors 
several times.
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Combining unFOIL and the 
greatest common factor
A quadratic, such as 40x2 – 40x – 240, can be factored using two different 
techniques, which can be done in two different orders. One of the choices 
makes the problem easier. It’s the order in which the factoring is done that 
makes one way easier and the other way harder. You just have to hope that 
you recognize the easier way before you get started.

I show you the harder method first, so you’ll see why it’s important to make 
a good choice. In this case, the big numbers are left in and the unFOILing is 
done first.

 Factor 40x2 – 40x – 240 by using FOIL first.

 1. Determine all the ways you can multiply two numbers to get 40.

  The 40 can be written as 40 × 1, 20 × 2, 10 × 4, or 8 × 5.

 2. Determine all the ways you can multiply two numbers to get 240.

  The 240 can be written as 240 × 1, 120 × 2, 80 × 3, 60 × 4, 48 × 5, 40 × 6, 
30 × 8, 24 × 10, 20 × 12, or 16 × 15.

 3. The sign of the last term, –240, tells you that you want a difference. 
The difference of the products should be 40.

  Using the 10 × 4 and the 20 × 12, multiply (4)(20) to get 80, and multiply 
(12)(10) to get 120. The difference between 80 and 120 is 40.

  Now, be honest with me. Did you find the listing of the multipliers and 
finding the right combination of cross-products to be a huge challenge? I 
certainly did!

 4. Arrange your choices as binomials and place the signs appropriately.

  (4x – 12)(10x + 20) = 40x2 – 40x – 240

  But just look at the coefficients in those binomials. Each pair of coefficients 
can be factored itself. Each of the terms in the first binomial can be factored 
by 4, and each of the terms in the second binomial can be factored by 10.

  (4x – 12)(10x + 20) = 4(x – 3)10(x + 2) = 40(x – 3)(x + 2)

It took two types of factorization: unFOILing and taking out a GCF.
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Next, try the easier way. Factor out the GCF first.

 Factor 40x2 – 40x – 240 by using the GCF first.

Each term’s coefficient is evenly divisible by 40. Doing the factorization:

40x2 – 40x – 240 = 40(x2 – x – 6)

Now, looking at the trinomial in the parentheses:

 1. Use unFOIL to factor the trinomial x2 – x – 6.

  The 1 that’s the coefficient of the x2 term can be written only as 1 × 1. 
The 6 can be written as 6 × 1 or 3 × 2. Notice how the list of choices is 
much shorter and more manageable than if you try to unFOIL before 
factoring out the GCF.

 2. Looking at the sign of the last term, –6, choose your products to create 
a difference of 1.

  Using the 1 × 1 and the 3 × 2, it’s easy to set up the factors:

  (1x   3)(1x   2)

  The middle term, x, is negative, so you want the 3x, the product of the 
outer terms, to be negative. Finish the factoring. Then put the 40 that 
you factored out in the first place back into the answer.

  40x2 – 40x – 240 = 40(x – 3)(x + 2)

 You can get to the correct answer no matter what you choose to do in what 
order. As a general rule, though, factoring out a GCF first is usually best.

Grouping and unFOILing 
in the same package
With many types of factoring methods available to you in algebra, it’s not 
surprising that you find so many different combinations of factorizations 
within a single problem. In Chapter 10, you see factorizations of sums and 
differences of cubes and differences of squares. Right now, I just stick to 
the methods covered in this chapter and Chapter 8 to show you another 
interesting combination.

In the next example, you see six terms — a type of expression that seems to 
suggest using grouping to factor it. The big surprise comes after the grouping 
is finished.
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 Factor: 3x2y – 24xy – 27y – 5x2z + 40xz + 45z.

The first three terms have coefficients divisible by 3, and each has a factor 
of y. So factor 3y out of each of those terms. The last three terms have 
coefficients that are divisible by 5, and each has a factor of z, so factor each 
term by 5z.

= 3y(x2 – 8x – 9) + 5z(–x2 + 8x + 9)

You see that the two trinomials are not the same. In order for grouping to 
work, you have to create a fewer number of terms — each with some factor 
in common. The problem here is that I didn’t factor out –5. Yes, I should’ve 
noticed, but I wanted to show you that repairs are easy. Changing the +5z to 
–5z, I factor –1 out of each term in the second trinomial and basically just 
change each sign to its opposite:

= 3y(x2 – 8x – 9) – 5z(x2 – 8x – 9)

Now I can factor the trinomial out of the two terms:

= (x2 – 8x – 9)(3y – 5z)

The trinomial can be factored using unFOIL. You want the difference of the 
cross-products to be 8, so you use the factors 1 × 1 and 9 × 1:

= (x – 9)(x + 1)(3y – 5z)
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Chapter 10

Factoring Special Cases
In This Chapter
▶ Sorting out the difference of two squares

▶ Paring down perfect cubes with sums and differences

▶ Putting polynomials with many terms in their place by factoring

▶ Using the remainder theorem and synthetic division to recognize factors

This chapter has some mighty helpful factoring information that doesn’t 
belong under linear or quadratic factoring rules. You may want to look 

at Chapters 8 and 9 for more factoring rules and tips. Half of the factoring 
process is knowing how to use the rules, and the other half is recognizing 
when to use what rule. These skills are equally important — you need both 
to be successful. I finish the chapter with a helpful process called synthetic 
division. If you’re for “all natural,” please don’t be put off. This synthetic 
material is environmentally friendly — I promise.

Befitting Binomials
If a binomial (two-term) expression can be factored at all, it will be factored 
in one of four ways. First, look at the addition or subtraction sign that always 
separates the two terms within a binomial. Then look at the two terms. Are 
they squares? Are they cubes? Are they nothing special at all? The nice thing 
about having two terms in an expression is that you have four and only four 
methods to consider when factoring.

 Here are the four ways to factor a binomial:

 ✓ Finding the greatest common factor (GCF): ab + ac = a(b + c)

 ✓ Factoring the difference of two perfect squares: a2 – b2 = (a + b)(a – b)

 ✓ Factoring the difference of two perfect cubes: a3 – b3 = (a – b)(a2 + ab + b2)

 ✓ Factoring the sum of two perfect cubes: a3 + b3 = (a + b)(a2 – ab + b2)
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When you have a factoring problem with two terms, you can go through the 
list to see which method works. Sometimes the two terms can be factored 
in more than one way, such as finding the GCF and the difference of two 
squares. After you go through one factoring method, check inside the 
parentheses to see if another factoring can be done. If you checked each 
item on the list of ways to factor, and none works, then you know that the 
expression can’t be factored any further. You can stop looking and say 
you’re done.

Finding the GCF is always a quick-and-easy option to look into when 
factoring (for more on how to find the GCF, see Chapter 8). What’s left 
after factoring out a GCF is much easier to deal with. But do read the 
following sections to discover other factoring pearls of wisdom.

Factoring the difference 
of two perfect squares
If two terms in a binomial are perfect squares and they’re separated by 
subtraction, then the binomial can be factored. A perfect square is not a 
reference to that ol’ high school prom date with two left feet who refused 
to dance the entire evening. A perfect square is the result of multiplying a 
number or variable by itself. Twenty-five is a perfect square because it’s 
equal to 5 times 5. To factor one of these binomials, just find the square 
roots of the two terms that are perfect squares and write the factorization as 
the sum and difference of the square roots. For example, the difference of 
x2 – 49 = (x + 7)(x – 7). This rule only works if you’re subtracting the squares. 
You can factor x2 – 9 and 9 – x2, but you can’t factor x2 + 9 because that’s a 
sum of squares, not a difference.

 If subtraction separates two squared terms, then the product of the sum and 
difference of the two square roots factors the binomial: a2 – b2 = (a + b)(a – b).

 Factor 9x2 – 16.

The square roots of 9x2 and 16 are 3x and 4, respectively. The sum of the 
roots is 3x + 4 and the difference between the roots is 3x – 4. So, 9x2 – 16 = 
(3x + 4) (3x – 4).

 Factor 25z2 – 81y2.

The square roots of 25z2 and 81y2 are 5z and 9y, respectively. So, 
25z2 – 81y2 = (5z + 9y) (5z – 9y).

 Factor x4 – y6.
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The square roots of x4 and y6 are x2 and y3, respectively. So the factorization 
of x4 – y6 = (x2 + y3) (x2 – y3).

 Factor x2 – 3.

In this case, the second number is not a perfect square. But sometimes it’s 
preferable to have the expression factored, anyway. The square root of 
x2 is x, and you can write the square root of 3 as . (For more on square 
roots and radicals, see Chapter 4.) Now the factorization can be written: 

. Not pretty, but it’s factored.

 You may have noticed that I’m always writing the (a + b) factor first and the 
(a – b) factor second. It really doesn’t matter in which order you write them; 
multiplication is commutative, so you can switch the factors, if you want. Just 
don’t switch the terms in the (a – b) factor.

Factoring the difference of perfect cubes
A perfect cube is the number you get when you multiply a number times itself 
and then multiply the answer times the first number again. A cube is the third 
power of a number or variable. The difference of two cubes is a binomial 
expression a3 – b3.

The most well-known perfect cubes are those whose roots are integers, not 
decimals. Here’s a short list of some positive integers cubed:

Integer Cube

1 1

2 8

3 27

4 64

5 125

6 216

7 343

8 512

9 729

10 1,000

11 1,331

12 1,728
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Becoming familiar with and recognizing these cubes in an algebra problem 
can save you time and improve your accuracy.

 When cubing variables and numbers that already have an exponent, you 
multiply the exponent by 3. When cubing the product of numbers and 
variables in parentheses, you raise each factor to the third power. (Refer to 
Chapter 4 if you need more on this.) For example: (a2)3 = a6 and (2yz)3 = 8y3z3.

Variable cubes are relatively easy to spot because their exponents are always 
divisible by 3. When a number is cubed and multiplied out, you can’t always 
tell it’s a cube.

Look at the following list of binomials. These expressions are the difference 
of cubes and can be factored. Each term is a cube — they all have cube roots. 
The variables all have powers that are multiples of 3:

m3 – 8 1,000 – 27z3 64x6 – 125y15

 To factor the difference of two perfect cubes, use the following pattern: 
a3 – b3 = (a – b)(a2 + ab + b2).

Here are the results of factoring the difference of perfect cubes:

 ✓ A binomial factor (a – b) made up of the two cube roots of the perfect 
cubes separated by a minus sign.

 ✓ A trinomial factor (a2 + ab + b2) made up of the squares of the two cube 
roots from the first factor added to the product of the cube roots in the 
middle. Remember: A trinomial has three terms, and this one has all 
plus signs in it.

The following examples show you how the rule works. The first example isn’t 
one you’d usually see in algebra because it doesn’t have any variables in it, 
but I include it to convince any doubting Thomases.

 Factor 216 – 125.

Using the rule a3 – b3 = (a – b)(a2 + ab + b2), let 216 be the a3 and 125 be the b3. 
The cube root of 216 is 6 and the cube root of 125 is 5, so 6 is the a and 5 
is the b. Also, 36 is a2, 25 is b2, and 30 is the product ab. Substituting into 
a3 – b3 = (a – b)(a2 + ab + b2), you get

216 – 125 = (6 – 5)(36 + 30 + 25)

Now check to see if the equation is true. The difference between 216 and 125 
is 91, and 36 + 30 + 25 equals 91.

216 – 125 = (6 – 5)( 36 + 30 + 25)

91 = (1)(91)
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This shows that, whether the expression is the difference of the two cubes or 
the factored form, the answer comes out the same.

This doesn’t really prove anything, but it’s a nice demonstration that the 
method works on numbers.

 Factor m3 – 8.

The cube root of m3 is m, and the cube root of 8 is 2.

m3 – 8 = (m – 2)(m2 + 2m + 4)

Notice that the sign between the m and the 2 is the same as the sign between 
the cubes. The square of m is m2 and the square of 2 is 4. The product of the 
two cube roots is 2m, and the signs in the trinomial are all positive.

 Factor 64x3 – 27y6.

The cube root of 64x3 is 4x, and the cube root of 27y6 is 3y2. The square of 4x 
is 16x2, the square of 3y2 is (3y2)2 = 9y4, and the product of (4x)(3y2) is 12xy2.

64x3 – 27y6 = (4x – 3y2)(16x2 + 12xy2 + 9y4)

The next example includes several rules involving exponents. Remember to 
divide the exponent by 3 when finding the cube root.

 Factor a3b6c9 – 1,331d300.

The cube root of a3b6c9 is ab2c3, and the cube root of 1331d300 is 11d100. The 
square of ab2c3 is a2b4c6, and the square of 11d100 is 121d200. The product of 
(ab2c3)(11d100) is 11ab2c3d100.

a3b6c9 – 1,331d300 = (ab2c3 – 11d100)(a2b4c6 + 11ab2c3d100 + 121d200)

Factoring the sum of perfect cubes
You have a break coming. The rule for factoring the sum of two perfect cubes 
is almost the same as the rule for factoring the difference between perfect 
cubes, which I cover in the previous section. You just have to change two 
little signs to make it work.

 To factor the sum of two perfect cubes, use the following pattern: 
a3 + b3 = (a + b)(a2 – ab + b2).

Like the results of factoring the difference of two cubes, the results of 
factoring the sum of two cubes is also made up of a binomial factor (a + b) 
and a trinomial factor (a2 – ab + b2).
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Notice that the sign between the two cube roots (a + b) is the same as the 
sign in the problem to be factored (a3 + b3). The squares in the trinomial 
expression are still both positive, but you change the sign of the middle term 
to negative.

 Factor 1,000z3 + 343.

The cube root of 1,000z3 is 10z, and the cube root of 343 is 7. The product of 
10z and 7 is 70z. So, 1,000z3 + 343 = (10z + 7)(100z2 – 70z + 49).

Tinkering with Multiple 
Factoring Methods

Any factoring problem is a matter of recognizing what you have so you know 
what method to apply. With trinomials, you can use unFOIL if the trinomial 
is of the form ax2 + bx + c. You can find the GCF of a trinomial if a common 
factor is available. When you have a binomial, you look for sums or differences 
of cubes and differences of squares. What I show you in this section is how 
the different methods often appear together, and what to do when the 
problem needs more than one method of factoring.

When factoring, determine what type of expression you have — binomial, 
trinomial, squares, cubes, and so on. This helps you decide what method 
to use. Keep going, checking inside all parentheses for more factoring 
opportunities, until you’re done.

Great leaders make great mathematicians
Two famous leaders, Napoleon Bonaparte and 
U.S. President James Garfield, were drawn 
to the mysteries of mathematics. Napoleon 
Bonaparte fancied himself an amateur geometer 
and liked to hang out with mathematicians — 
they’re such party animals!

Napoleon’s theorem, which he named for himself, 
says that if you take any triangle and construct 
equilateral triangles on each of the three sides 
and find the center of each of these three 

triangles and connect them, the connecting 
segments always form another equilateral 
triangle. Not bad for someone who met his 
Waterloo!

The twentieth U.S. President, James Garfield, 
also dabbled in mathematics and discovered a 
new proof for the Pythagorean theorem, which 
is done with a trapezoid consisting of three right 
triangles and some work with the areas of the 
triangles.
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Starting with binomials
This first example starts with a binomial. You see two squared factors in 
amongst the others, and that’s it, so you don’t expect anything exciting to 
happen. Oh, foolish you. Take the GCF out, and you find the difference of 
perfect cubes.

 Factor 4x4y – 108xy.

The GCF of the two terms is 4xy. Factor that out of each term first:

4x4y – 108xy = 4xy(x3 – 27)

Now you see that the binomial in the parentheses is the difference of two 
perfect cubes and can be factored using the rule from earlier in this chapter:

4xy(x3 – 27) = 4xy(x – 3)(x2 + 3x + 9)

Even though the last factor, the trinomial, seems to be a candidate for 
unFOIL, you don’t have to bother. When you get a trinomial from factoring 
cubes, it’s almost always prime. The only thing that may factor them is 
finding a GCF.

 Factor 16x4y5(81 – z4) – 54xy2(81 – z4).

The first thing that should jump out at you is that you see a common 
binomial factor of (81 – z4). Then, looking closer, you see that both terms 
contain factors of 2 and powers of x and y. Factoring out the GCF,

16x4y5(81 – z4) – 54xy2(81 – z4) = 2xy2(81 – z4)(8x3y3 – 27).

Now the factored form contains two binomial factors that can be factored. 
The first binomial is the difference of two squares, and the second binomial 
is the difference of cubes. Factoring,

= 2xy2(9 – z2)(9 + z2)(2xy – 3)(4x2y2 + 6xy + 9)

And, of course, you realize that you’re not finished. That first binomial can be 
factored as the difference of squares. Finishing the factoring,

= 2xy2(3 – z)(3 + z)(9 + z2)(2xy – 3)(4x2y2 + 6xy + 9)

Whew!
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Ending with binomials
In this section, I show you how you can start with four terms and apply a 
form of grouping (see Chapter 9 if you need a refresher on that method). The 
result is the difference of two squares.

 Factor x2 + 8x + 16 – y2.

When using grouping, you usually divide the four or six terms into equal-size 
groups. Sometimes four terms can be separated into unequal groupings with 
three terms in one group and one term in the other. The way to spot these 
special types of factoring situations is to look for squares. Of course, you 
usually don’t even look for unequal groupings unless other grouping methods 
have failed you.

This expression has four terms, but there’s no good equal pairing of terms 
that will give you a set of useful common factors. Another option is to group 
unevenly. Group the first three terms together because they form a trinomial 
that can be factored. That leaves the last term by itself:

x2 + 8x + 16 – y2 = (x2 + 8x + 16) – y2

Now you can factor the trinomial in the parentheses using unFOIL:

(x + 4)2 – y2

Notice that there are now two terms and that each is a perfect square.

Using the rule from the “Factoring the difference of two perfect squares” 
section earlier in this chapter, a2 – b2 = (a + b)(a – b), finish this example:

(x + 4)2 – y2 = [(x + 4) + y][(x + 4) – y]

There’s no big advantage to dropping the parentheses inside the brackets, so 
leave the answer the way it is.

Knowing When to Quit
One of my favorite scenes from the movie The Agony and the Ecstasy, which 
chronicles Michelangelo’s painting of the Sistine Chapel, comes when the 
pope enters the Sistine Chapel, looks up at the scaffolding, dripping paint, 
and Michelangelo perched up near the ceiling, and yells, “When will it be 
done?” Michelangelo’s reply: “When I’m finished!”

The pope’s lament can be applied to factoring problems: “When is it done?”
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Factoring is done when no more parts can be factored. If you refer to the 
listing of ways to factor two, three, four, or more terms, then you can check 
off the options, discard those that don’t fit, and stop when none works. 
After doing one type of factoring, you should then look at the values in 
parentheses to see if any of them can be factored.

 Factor x4 – 104x2 + 400.

There’s no GCF, so the only other option when there are three terms is to 
unFOIL:

x4 – 104x2 + 400 = (x2 – 4)(x2 – 100)

There are now two factors, but each of them is the difference of perfect 
squares:

(x2 – 4)(x2 – 100) = (x + 2)(x – 2)(x + 10)(x – 10)

You’re finished!

 Factor 3x5 – 18x3 – 81x.

The GCF of the terms is 3x.

3x5 – 18x3 – 81x = 3x(x4 – 6x2 – 27)

The trinomial can be unFOILed:

3x(x4 – 6x2 – 27) = 3x(x2 – 9)(x2 + 3)

The first binomial is the difference of squares:

3x(x2 – 9)(x2 + 3) = 3x(x – 3)(x + 3) (x2 + 3)

You’re finished!

Incorporating the Remainder Theorem
The remainder theorem is used heavily when you’re dealing with polynomi-
als of high degrees and you want to graph them or find solutions for equations 
involving the polynomials. I go into these processes in great detail in Algebra 
II For Dummies (Wiley). For now, I pick out just the best part (lucky you) and 
show you how to make use of the remainder theorem and synthetic division 
to help you with your factoring chores.
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The remainder theorem of algebra says that when you divide a polynomial by 
some linear binomial, the remainder resulting from the division is the same 
number as you’d get if you evaluated the polynomial using the opposite of 
the constant in the binomial.

 The remainder theorem states that the remainder, R, resulting from dividing 
P(x) = a

n
xn + a

n – 1x
n – 1 + a

n – 2x
n – 2 + . . .+ a1 x

1 + a0 by x + a, is equal to P(–a).

So, if you were to divide x3 + x2 – 3x + 4 by x + 1, the remainder is P(–1) = (–1)3 
+ (–1)2 – 3(–1) + 4 = –1 + 1 + 3 + 4 = 7. This is what the long division looks like 
(and why you want to avoid it here):

What you prefer, in factoring polynomials, is that the remainder be a 0 — 
no remainder means that the factor divided evenly. Long division can be 
tedious, and even the evaluation of polynomials can be a bit messy. So, 
synthetic division comes to the rescue.

Synthesizing with synthetic division
Synthetic division is a way of dividing a polynomial by a first-degree binomial 
without all the folderol. In this case, the folderol is all the variables — you 
just use coefficients and constants. To divide P(x) = a

n
xn + a

n – 1x
n – 1 + a

n – 2x
n – 2 

+ . . . .+ a1 x
1 + a0 by x + a, you list all the coefficients, a

i
, putting in zeros for 

missing terms in the decreasing powers, and then put an upside-down 
division sign in front of your work. You change the a in the binomial to its 
opposite and place it in the division sign. Then you multiply, add, multiply, 
add, and so on until all the coefficients have been added. The last number is 
your remainder.

 Divide x4 + 5x3 – 2x2 – 28x – 12 by x + 3 using synthetic division.

Write the coefficients in a row and a –3 in front.
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Now bring the 1 down, multiply it times –3, put the result under the 5, and 
add. Multiply the sum by the –3, put it under the –2 and add. Multiply the 
sum times the –3, put the product under the 20, and so on.

The first four numbers along the bottom are the coefficients of the quotient, 
and the 0 is the remainder. When using synthetic division to help you with 
factoring, the 0 remainder is what you’re looking for. It means that the 
binomial divides evenly and is a factor. The polynomial can now be written:

Next, you can see if the third-degree polynomial in the parentheses can be 
factored. (As it turns out, the polynomial is prime.)

 When rewriting a polynomial in factored form after applying synthetic division, 
be sure to change the sign of the number you used in the division to its 
opposite in the binomial.

Choosing numbers for synthetic division
Synthetic division is quick, neat, and relatively painless. But even quick, neat, 
and painless becomes tedious when you apply it without good results. When 
determining what might factor a particular polynomial, you need some clues. 
For example, you might be wondering if (x – 1), (x + 4), (x – 3), or some other 
binomials are factors of x4 – x3 – 7x2 + x + 6. I can tell just by looking that the 
binomial (x + 4) won’t work and that the other two factors are possibilities. 
How can I do that?

 The rational root theorem says that if a rational number (a number 
that can be written as a fraction) is a solution, r, of the equation 

 a
n
xn + a

n – 1x
n – 1 + a

n – 2x
n – 2 + . . . + a1x

1 + a0 = 0, then .

Using the rational root theorem for my factoring, I just find these possible 
solutions of the equation and do the synthetic division using only these 
possibilities.
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 Factor x4 – x3 – 7x2 + x + 6 using synthetic division, the rational root theorem, 
and the factor theorem.

First, I make a list of the possible solutions if this were an equation. All the 
factors of the constant, a0, are ±1, ±2, ±3, and ±6.

Next, I divide each of the factors by the factors of the lead coefficient, a
n
. I 

caught a break here. The lead coefficient is a 1, so the divisions are just the 
original numbers.

Now I use synthetic division to see if I get a remainder of 0 using any of these 
numbers:

The number 1 is a solution, so (x – 1) is a factor. Dividing again, into the 
result:

The number –1 is a solution, so (x + 1) is a factor. The numbers across the 
bottom are the coefficients of the trinomial factor multiplying the two 
binomial factors, so you can write

x4 – x3 – 7x2 + x + 6 = (x – 1)(x + 1)(x2 – x – 6)

What’s even nicer is that the trinomial is easily factored, giving you an end 
result of

= (x – 1)(x + 1)(x – 3)(x + 2)
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Working Equations
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In this part . . .

Are you a fan of Sherlock Holmes, Perry Mason, one 
of the CSI teams? They’re all sleuths using investiga-

tion, logic, and insight to solve problems — and entertain 
at the same time.

Solving equations in algebra can be entertaining, too. The 
thrill of the hunt and the final correct solution give you 
that warm, fuzzy feeling all over. You won’t get as much 
recognition as TV detectives do, but you’ll have accom-
plished as much as — if not more than — they have. On 
with the show!
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Chapter 11

Establishing Ground Rules 
for Solving Equations

In This Chapter
▶ Going somewhere? Where do you start when solving equations?

▶ Keeping your balance while performing equation manipulations

▶ Doing a reality check and reconciling your work

▶ Recognizing practical applications and using them

In this chapter, you find many different considerations involving solving 
equations in algebra. In earlier chapters, I cover the mechanics of 

working with algebraic expressions correctly. Now I put those rules to 
work by introducing the equal sign (=). Just as a verb makes a phrase into a 
sentence, an equal sign makes an expression into an equation. In this chapter, 
instead of dealing with expressions, such as 3x + 2, I show you how to 
prepare for solving equations, such as 3x + 2 = 11.

Two-term equations, unlike two-term presidents, are pretty simple. Master 
the easier equations, and you can apply the techniques you use on these 
equations to those more complicated ones. Introduce more than two terms 
or make the exponent on the variable bigger than 1, and you have many 
possibilities for solutions of simple equations.

Creating the Correct Setup 
for Solving Equations

Different types of equations take different types of handling in order to solve 
for the correct solution, all the solutions, and not too many solutions. The 
setup of the equation depends on which type of equation you’re dealing with 
at that time.
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Here’s a list of the most common algebraic equation types and their most 
general format:

 ✓ Linear equation: ax + b = c

 ✓ Quadratic equation: ax2 + bx + c = 0

 ✓ Cubic equation: ax3 + bx2 + cx + d = 0

 ✓ General polynomial equation: a
n
xn + a

n – 1x
n – 1 + a

n –2x
n –2 + . . . +a1x + a0 = 0

 ✓ Radical equation: 

 ✓ Rational equation: 

 ✓ System of linear equations:

  

 The convention is to use the letters toward the beginning of the alphabet as 
numbers or constants and the letters toward the end of the alphabet for 
variables.

In general, equations are usually set equal to 0 or some constant. I cover the 
differences and similarities in detail in the next few chapters.

Keeping Equations Balanced
When presented with an algebraic equation, your usual task is to solve the 
equation. Solving an equation means to find the value or values that replace 
the unknown(s) to make the equation a true statement. You may be able 
just to guess the answer, but you can’t rely on that method for all equations. 
Some answers are just too darned hard to find by guessing.

In this section, I tell you about the tried-and-true, approved methods of 
changing the original equation so that it’s in a format that shows you the 
solution.

Balancing with binary operations
One of the most efficient and easiest methods of changing the format of an 
equation is to perform arithmetic operations on each side of the equation. 
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Picture a teeter-totter or balance scale. When the teeter-totter is in balance, 
the two ends are at the same level, and the board is parallel to the ground. 
With a balance scale, you weigh items by placing the object in one tray and 
then adding known weights to the other tray until the two trays are in balance. 
Algebraic equations start out in balance, and your task is to keep them that way.

Adding to each side or subtracting from each side
When changing the format of an equation, if you add some amount (or 
subtract some amount) from one side of the equation, then you must do the 
same thing to the other side.

 Here are some examples of adding or subtracting from each side of the equation:

 ✓ If 2x – 10 = 46, then 2x – 10 + 10 = 46 + 10, or 2x = 56

 ✓ If x2 + 5x = 10, then x2 + 5x – 10 = 10 – 10, or x2 + 5x – 10 = 0

 ✓ If , then , or 

Multiplying each side by the same number
You can multiply each side of an equation by any number and not change 
the equality of the statement. You can even multiply each side by 0 and not 
change the equality (because you’d have 0 = 0), but you wouldn’t have much 
to work with if you did that. And you can change a false statement into a true 
statement by multiplying each side by 0. That’s not playing fair.

 Say you have the equation . Multiply both sides of the equation by 

 10 to solve it. Remember: You have to multiply each of the three terms by 10.

Dividing each side of the equation by the same number
An algebraic equation remains balanced — it has the same solution as 
the original — when you divide each side by the same number. The one 
exception to the rule is dividing by 0; you just can’t do that.

Usually, you won’t be tempted to divide by 0, but you might do it accidentally. 
For example, you might decide to divide each side of an equation by the 
binomial x – 2. Seems harmless enough, but, if the value of x is 2, then you’ve 
divided by 0 and created a non-answer. Also, dividing by 0 can cause you to 
lose a solution.
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 Say you’re faced with the following equation: . Divide both 
sides of the equation by 10:

Remember: Every single term gets divided by the selected number.

 Solve the equation x2 = 4x.

Divide both sides of the equation by x. Hold on! This is the situation I warned 
about. In the original equation, you see two different answers or solutions for 
the equation. x can be 4, giving you 16 = 16, or x can be 0, making the equation 
0 = 0. Either number makes the equation true. But, if you divide each side by 
x, you lose the solution that x = 0:

Squaring both sides and suffering 
the consequences
Some equations require squaring terms in order to solve them. The obvious 
candidates for squaring are equations containing radicals. Squaring both 
sides of an equation is a useful technique, but it comes with some concerns. 
Deal with the concerns, and you’re fine. Let me show you what happens, and 
when to watch out for the tricky part.

Consider, for example, the equation . If I square both sides, the 
radicals disappear: , giving me 8 = x. Works for me! So what’s 
the big problem?

Look at this next example: I start with 5 = –5. The statement is false, but, if 
I square both sides, I make the statement true: (5)2 = (–5)2 gives me 25 = 25. 
You say that you’d never do such a thing — take an untrue statement and 
make it appear to be true. But you just might do that inadvertently if the 
original equation contains a variable.

For example, if I start with the equation  and square both sides, I get 
the equation x2 = 100. Two numbers make the second equation true — both 
10 and –10. But the –10 isn’t a solution of the original equation; , 
because the square root of 100 is +10, only.
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In Chapter 14, I show you how to solve equations involving radicals and how 
to deal with the non-solutions that often appear.

Taking a root of both sides
The opposite of squaring both sides of an equation is taking a root of both 
sides. If your variable is raised to the second power, then you take a square 
root. If the variable is raised to the third power, you take a third root, and so on.

In the preceding section, I tell you that  is equal to +10 only. When you 
start out with an equation containing a radical like this one, then you only 
consider the positive answer. But — and here’s the catch —– when you start 
out with a second power and take the square root, then you can consider both 
positive and negative answers.

 Here are some examples of taking the square root of both sides of an equation:

 ✓ x2 = 49: Taking the square root, you put ± in front of the radicals to 
show that both a positive and negative number can give you that value: 

, giving you ±x = ±7. Putting the ± on both sides is really 
overkill. If both sides are positive, you get x = 7. If both sides are 
negative, you have –x = –7, which is the same as x = 7 after multiplying 
both sides by –1. If the left side is positive and the right side negative, 
you get x = –7. If it’s the opposite, then you get –x = 7, which is the same 
as x = –7, multiplying both sides by –1. So, by convention, you put the ± 
on just one side of the equation.

Using a balance scale to find the counterfeit coin
You’re given nine identical-looking gold coins 
and told that one of the coins is counterfeit. The 
counterfeit coin weighs slightly more than the 
real coins, but not enough for you to tell just 
by holding the coins in your hands. You have 
a balance scale and you’re allowed to use it 
just twice. How can you determine which is the 
counterfeit coin with just two weighings? (Think 
about it, before reading on for the answer.)

You divide the coins into three piles of three 
coins each. Put one pile in one tray of the 

balance scale, and a second pile in the other 
tray. If one side is lower, then the counterfeit 
coin must be in that pile. If the two sides of the 
balance scale are the same, then the counter-
feit coin must be in the pile not on the scale.

After you’ve determined the pile of three that 
contains the counterfeit coin, put two of the 
coins on the balance scale. (This is your second 
weighing.) If one side is lower, then that’s your 
counterfeit. If they’re the same, then the coin 
not on the scale is counterfeit.
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  After all that, did you forget what I was doing? If so, let me just tell you 
that the answer is x = ±7, which means that x = 7 or x = –7.

 ✓ 64 = (x + 1)2: Taking the square root of each side, you get  
or that ±8 = x + 1. (I put the ± on just one side.) The two numbers that 
work in this equation are 7 and –9. (I show you more on this in Chapter 14.)

Undoing an operation with its opposite
One helpful method used when working with equations is adding and 
subtracting the same thing to one side or the other — or multiplying and 
dividing one side by the same thing. Look at the following equations:

 ✓ If x = 8, then x + 2 – 2 = 8.

 ✓ If y = 11, then .

You’re probably looking at these equations and saying, “Well, that did a lot 
of good!” And I don’t blame you. I show you this now because I’m stressing 
keeping equations balanced. I revisit this subject in Chapter 19 when I find a 
standard form for the equation of a parabola.

Solving with Reciprocals
Multiplication and division are opposite operations. Multiplication is undone 
by division and vice versa, as I explain in the previous sections. Another 
option, though, may work better in certain circumstances — using the 
reciprocal, or multiplicative inverse, of the number that you’re trying to “get 
rid of.” Choose this alternative if a fraction is multiplying the variable, such
as in .

 Two numbers are reciprocals if multiplying them together yields a product of 1.

Look at the following examples of reciprocals:

 ✓ 5 and  are reciprocals of each other: .

 ✓  and  are reciprocals: .

 ✓ The reciprocal of a is  (as long as a isn’t 0).

 ✓ The reciprocal of  is b (as long as b isn’t 0).
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Solving equations in the fewest possible steps is usually preferable. 
Multiplying by the reciprocal replaces the two steps of multiplying each side 
and dividing each side. That’s why you can choose to multiply both sides 

of an equation by , the reciprocal of , to solve for a in the expression , 

which can be thought of as .

In the following examples, both sides of the equation are multiplied by the 
reciprocal of the fraction multiplying the variable.

 In this example, the variable is being multiplied by :

Multiply each side by the reciprocal, :

Reduce and simplify:

 a = 15

 Solve  for x.

 is another way of saying . So you can solve by multiplying by the 

reciprocal of , which is 2:

 x = 38

 Solve –f = 11 for f. This is an easy equation to solve, but you may be surprised 
at how many people get the wrong answer — all because of a little dash in 
front of a letter. Think of the f as being multiplied by –1. Putting in the –1 gives 
you a multiplier that you can work with to solve the equation. What’s the 
reciprocal of –1? It’s –1!

 –f = 11

 (–1)(–1f) = 11(–1)

 f = –11
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Another example involves using the reciprocal of a fraction, even though it 
doesn’t look like it at first.

 Solve for x in 0.7x = 42.

One way to solve this equation is to divide each side by 0.7.

 A decimal point can get lost easily when it’s in the front of a term. You may 
miss it or think it’s a fly speck. Putting a 0 in front of a decimal point draws 
attention to the decimal and doesn’t change the value of the number. Look at 
the difference between .8 and 0.8 in this sentence.

To solve the equation using a reciprocal, first convert 0.7 to , thereby 

replacing the decimal with the fraction. The reciprocal of  is .

Making a List and Checking It Twice
Algebraic problems can be naughty or nice — or something in between. 
Whatever the case, you want to have confidence in your work and get good 
results. When you’re performing operations in algebra, and solving equations, 
you want to check your work. There’s the careful, methodical mechanical 
check of your processes and numbers, and there’s the reality check.

I do the reality check first because it’s usually a visual or quick take on 
whether the answer fits the situation. Mechanical checks can be tricky. I 
don’t know about you, but I often make the same mistake all over again when 
I check my work too quickly after doing it.

 When possible, I try to leave at least half an hour between doing the original 
work and checking it. That’s not always possible — especially on a test — but 
it usually works better for me.
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Doing a reality check
Reality TV and reality checks in algebra: What do they have in common? 
Actually, they have very little in common. Reality checks in algebra are much 
more believable than reality TV is.

I usually do a reality check by asking: Does this answer make any sense? 
Would there really be 1,000 donuts in the paper bag? Does the sum really 
come out to be a negative number? If the answer doesn’t make sense, then 
there’s a good chance that you’ve made a computational error. Go back and 
try again.

 The number of soccer players participating at a summer soccer camp is 330, 
with 11 players from each club. You’re preparing club participation certificates 
to give to each club captain, so you need to know: How many clubs are 
represented?

To show you that a reality check can save you from making a big error, 
pretend that you didn’t really think this through and decided to solve the 
problem with the following equation:

The letter c represents the number of soccer clubs. You divide c by the 
number of players in each club and set it equal to the total number of 
players.

You used the variable and the two numbers in the problem. Does it matter 
what you use where? Will the equation give you a reasonable answer?

Multiply each side by 11 to solve for c:

 c = 3,630 clubs

Humph. This can’t be right. The answer doesn’t make any sense — only 330 
players are involved. The answer may satisfy your equation, but if it doesn’t 
make sense, the equation could be wrong.
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A quick look at the equation shows that it should have read:

11 players per club × the number of clubs = the total number of players

11c = 330

Now, solve this:

11c = 330

Divide each side by 11:

 c = 30 clubs

That makes much more sense.

 You can solve an equation correctly, but that doesn’t mean you chose the 
right equation to solve in the first place. Make sure that your answer makes 
sense.

Thinking like a car mechanic 
when checking your work
The more complete check of algebraic processes is checking the computations 
and algebraic operations. When a car mechanic has a spiffy-doodle computer 
to run a diagnostic check on your car, she finds all the problems very 
efficiently. If your car is older, though, or she doesn’t have that kind of 
electronic setup, then it’s a step-by-step, point-by-point check of all the 
essential parts. This is more like an algebraic check.

I want to see how good you are at checking work. Here’s a problem that a 
student did, and the answer is wrong. It’s more helpful to someone who’s 
made an error when you can point out where the error is in his computations. 
Can you find it? (The answer is –2.)
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You probably spotted the error right away because one of the most common 
mistakes in distributing is in not distributing the negative signs correctly. 
Yes, you’re right, the third term in the top-right fraction should be –6[–5(2)]. 
(I show you the distribution of signed numbers in Chapter 7, if you need a 
refresher.)

Finding a Purpose
One of the questions asked most frequently by students who are either tired 
of the algebra homework or frustrated by the challenges is: “When will I ever 
use this?” My answer usually depends on the situation, but sometimes it’s 
hard to come up with a convincing response.

When you’re studying algebra so that you can be successful in calculus, then 
there’s really no question as to the why and when you’ll use it. And, believe 
it or not, some people study algebra for the pure joy of doing so. (Are you 
one of those special people?) But, to finish this chapter, I really should give 
an example of how you could apply algebra — operations and variables and 
symbols — to organize and solve a problem.

 A famous group called Aftermath sold 130,000 copies of its latest DVD. This 
particular DVD cost $26. If the group’s share was $845,000, then what was its 
percent cut of the gross sales amount?

Letting p represent the percent of the total revenue, and using the 130,000 
and $26 per DVD, you can set up the following equation:

Income = (number DVDs)(price per DVD)(percentage)

845,000 = (130,000)(26)(p)

Solving the equation for p, you divide each side by the product of 130,000 and 
26. (I show you how to solve this type equation in Chapter 12.)

The value of p comes out to be 0.25 or 25 percent.
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Chapter 12

Solving Linear Equations
In This Chapter
▶ Finding the most direct path to your solution

▶ Considering alternate methods of dealing with fractions

▶ Piecing together pertinent parts of proportions

▶ Adapting formulas to your needs and preferences

Linear equations consist of some terms that have variables and others 
that are constants. A standard form of a linear equation is ax + b = c. 

What distinguishes linear equations from the rest of the pack is the fact 
that the variables are always raised to the first power. If you’re looking for 
squared variables or variables raised to higher or more exciting powers, turn 
to Chapters 13 and 14 for information on dealing with those types of equations.

In this chapter, I take you through many different types of opportunities for 
dealing with linear equations. Most of the principles you use with these 
first-degree equations are applicable to the higher-order equations, so you 
don’t have to start from scratch later on.

When you use algebra in the real world, more often than not you turn to a 
formula to help you work through a problem. Fortunately, when it comes to 
algebraic formulas, you don’t have to reinvent the wheel: You can make use 
of standard, tried-and-true formulas to solve some common, everyday 
problems. I show you how to change the format or adapt many of your most 
favorite formulas to make them more usable for your particular situation.

Playing by the Rules
When you’re solving equations with just two terms or three terms or even 
more than three terms, the big question is: “What do I do first?”
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Actually, as long as the equation stays balanced, you can perform any 
operations in any order. But you also don’t want to waste your time 
performing operations that don’t get you anywhere or even make matters 
worse.

The following list tells you how to solve your equations in the best order. The 
basic process behind solving equations is to use the reverse of the order of 
operations.

 The order of operations (see Chapter 5) is powers or roots first, then 
multiplication and division, and addition and subtraction last. Grouping 
symbols override the order. You perform the operations inside the 
grouping symbols to get rid of them first.

So, reversing the order of operations:

 1. Do all the addition and subtraction.

  Combine all terms that can be combined both on the same side of the 
equation and on opposite sides using addition and subtraction.

 2. Do all multiplication and division.

  This step is usually the one that isolates or solves for the value of the 
variable or some power of the variable.

 3. Multiply exponents and find the roots.

  Powers and roots aren’t found in these linear equations — they come in 
quadratic and higher-powered equations. But these would come next in 
the reverse order of operations.

When solving linear equations, the goal is to isolate the variable you’re trying 
to find the value of. Isolating it, or getting it all alone on one side, can take 
one step or many steps. And it has to be done according to the rules — you 
can’t just move things willy-nilly, helter-skelter, hocus pocus . . . you get the 
idea.

Solving Equations with Two Terms
Linear equations contain variables raised to the first power. The easiest 
types of linear equations to solve are those consisting of just two terms. The 
following equations are all examples of linear equations in two terms:

14x = 84 –64 = 8y  

Linear equations that contain just two terms are solved with multiplication, 
division, reciprocals, or some combinations of the operations.
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Devising a method using division
One of the most basic methods for solving equations is to divide each side 
of the equation by the same number. Many formulas and equations include 
a coefficient (multiplier) with the variable. To get rid of the coefficient and 
solve the equation, you divide. The following example takes you step by step 
through solving with division.

 Solve for x in 20x = 170.

 1. Determine the coefficient of the variable and divide both sides by it.

  Because the equation involves multiplying by 20, undo the multiplication 
in the equation by doing the opposite, which is division. Divide each 
side by 20:

  

 2. Reduce both sides of the equal sign.

  

  x = 8.5

 Do unto one side of the equation what the other side has had done unto it.

Next, I show you two examples with practical applications embedded in them.

 You need to buy 300 donuts for a big meeting. How many dozen doughnuts 
is that?

Let d represent the number of dozen doughnuts you need. There are 12 
doughnuts in a dozen, so 12d = 300. Twelve times the number of doughnuts 
you need has to equal 300.

 1. Determine the coefficient of the variable and divide both sides by it.

  Divide each side by 12.

  

 2. Reduce both sides of the equal sign.

  d = 25 dozen donuts

 The display board at the bank says that you can earn  percent interest on 

 your investment. You’d like to have earnings of at least $500 over the next 
year. How much do you have to deposit with the bank at that rate?
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Write this financial puzzle as an equation, letting x represent the amount of 
money you need to invest. You get the amount of interest by multiplying the 
principal (amount invested) times the interest rate (written as a decimal). 
The equation you need is: 500 = x(0.04875).

The decimal value 0.04875 multiplies the variable x, so divide each side of the 
equation by that decimal number:

You’d have to invest about $10,260 to earn the $500.

 This example doesn’t include any provision for compound interest (where the 
interest is figured more than once a year and the earned amount is added to 
the principal). So, technically, you’d end up with more than $500 at the end of 
the year.

Making the most of multiplication
The opposite operation of multiplication is division. I use division in the 
preceding section to solve equations where a number multiplies the 
variable. The reverse occurs in this section: I use multiplication where a 
number already divides the variable. The first example walks you through 
the steps needed.

 Solve for y in .

 1. Determine the value that divides the variable and multiply both sides 
by it.

  In this case, 11 is dividing the y, so that’s what you multiply by.

  

  

 2. Reduce both sides of the equal sign.

 

  

  y = –22
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Next, look at an example that’s applicable — a bit hairy (pardon the pun), but 
you read about situations like this all the time.

 A wealthy woman’s will dictated that her fortune be divided evenly among her 
nine cats. Each feline got $500,000, so what was her total fortune before it was 
split up? (Cats don’t pay inheritance tax. Does that give you paws? Ouch.)

Let f represent the amount of her fortune. Then you can write the equation:

In other words, the fortune divided by 9 gave a share of $500,000.

 1. Determine the value that divides the variable and multiply both sides 
by it.

  In this equation, the fortune was divided. Solve the puzzle by multiplying 
each side by 9. The opposite of division is multiplication, so multiplication 
undoes what division did.

  

  

 2. Reduce on the left and multiply on the right.

  

  

  f = $4,500,000

Her fortune was $4.5 million! Those are nine very happy kitties. You can bet 
their caretakers hope they have nice, long lives.

In the next example, the variable is both multiplied by 4 and divided by 5. 
You solve the problem using both multiplication and division.

 Solve for a in .

 1. Determine what is dividing the variable.

  In this case, the 5 is dividing both the 4 and the variable a.

 2. Multiply the values on each side of the equal sign by 5.
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 3. Reduce and simplify.
  

  

  4a = 60

 4. Determine what is multiplying the variable.

  The number 4 is the coefficient and multiplies the a.

 5. Divide the values on each side of the equal sign.
  
  

 6. Reduce and simplify.
  

  

  a = 15

A simpler way of solving this last equation is to multiply by the reciprocal of 
the variable’s coefficient. I show you that alternative next.

Reciprocating the invitation
The reciprocal of a number is its “flip.” A more mathematical definition is 
that a number and its reciprocal have a product of 1.

What makes the reciprocal so important in algebra is that you can create the 
number 1 as a coefficient of a variable by multiplying by the reciprocal of the 
current coefficient. So, in a way, this process is just a special case of 
multiplying each side by the same number.

In the first example, I solve a problem (the last example in the preceding 
section) using the reciprocal rather than doing the two operations of 
multiplication and division.

 Solve for a in .

The coefficient of the variable a is the fraction . The reciprocal of  is . So, 

to solve for a, you multiply each side of the equation by :

a = 15
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Extending the Number of Terms to Three
The standard form of a linear equation is ax + b = c. In the “Solving Equations 
with Two Terms” section, earlier in this chapter, you have linear equations 
for which the value of b is 0, which gives you just ax = c. In this section, I 
introduce that extra constant value and show you how to deal with it. Also, 
in this section, you find equations that start out with more than one variable 
term, and you work toward combining and creating a new equation with just 
the one variable.

In general, you solve linear equations by simplifying and performing operations 
that give you a variable term on one side of the equal sign and a constant 
term on the other side. Then you can use multiplication or division to finish 
the problem.

Eliminating the extra constant term
When you have a linear equation involving three terms, and just one of the 
terms contains a variable factor, you add or subtract a constant to isolate 
that variable term — get it by itself on one side of the equation.

 Solve for y in 3y – 11 = 19.

To isolate the y term, you add 11 to each side of the equation. The number 11 
is chosen, because it’s the opposite of –11, and the sum of –11 and 11 is 0.

Now you have a linear equation in two terms, which is solved by dividing 
each side of the equation by 3:

y = 10

In the next example, some of the characters seem to be out of order, but 
the properties of algebra come into play and allow you to use the same 
processes, no matter how the problem starts out.

 Solve for z in 41 = 14 – 9z.
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First, get the variable term by itself on the right side by subtracting 14 from 
each side of the equation:

Now divide each side of the equation by –9 to solve for z:

–3 = z

Another way of writing the solution is z = –3.

 Some people prefer working with the variable term on the left — it’s just 
what they’re used to. No problem. At any point in your work, you can switch 
the sides. So, starting at the beginning, the equation 41 = 14 – 9z becomes 
14 – 9z = 41. You notice that I don’t change the order of the terms — just the 
sides that they lie on.

 The symmetric property of equations says that if a = b, then b = a.

Vanquishing the extra variable term
One aim of the linear-equation solver is to get the variable term on one side 
of the equation and the constant term on the other side. In the preceding 
section, I show you how to get rid of the pesky extra constant. But what if 
you have more than one variable term? Can that be dealt with as easily as the 
constant numbers? The answer is a resounding “Yes.”

To reduce your linear equation to one variable term, you first perform any 
addition or subtraction necessary to get all the variable terms on one side 
of the equation. Then you combine those variable terms in the same manner 
that I show you in Chapter 5.

 Solve for the value of x in 5x – 4 = 3x + 8.

First, subtract 3x from each side of the equation. That step removes the x 
term from the right side. Subtracting 5x – 3x, you get 2x because the two 
terms have the same variable:
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Now the problem looks like those from the previous section. I isolate the 
variable term by adding 4 to each side of the equation:

Now the problem is finished by dividing each side of the equation by 2:

x= 6

 Solve for w in 3w – 5 + 4w = 16 – w + 3.

You see two variable terms on the left side of the equation and two constant 
terms on the right side. Combine those terms first:

– 5 + 7w = 19 – w

Add w to each side of the equation; then add 5 to each side:

Now you can divide each side of the equation by 8 and get w = 3.

Simplifying to Keep It Simple
Linear equations don’t always start out in the nice, ax + b = c form. 
Sometimes, because of the complexity of the application, a linear equation 
can contain multiple variable and constant terms and lots of grouping 
symbols, such as in this equation:

3[4x + 5(x + 2)] + 6 = 1 – 2[9 – 2(x – 4)]

The different types of grouping symbols are used for nested expressions (one 
inside the other), and the rules regarding order of operations (see Chapter 5) 
apply as you work toward figuring out what the variable x represents.
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Nesting isn’t for the birds
When you have a number or variable that needs to be multiplied by every 
value inside parentheses, brackets, braces, or a combination of those 
grouping symbols, you distribute that number or variable. Distributing means 
that the number or variable next to the grouping symbol multiplies every 
value inside the grouping symbol. If two or more of the grouping symbols 
are inside one another, they’re nested. Nested expressions are written within 
parentheses, brackets, and braces to make the intent clearer.

 The following conventions are used when nesting:

 ✓ When using nested expressions, every opening grouping symbol — 
such as left parenthesis (, bracket [, or brace { — has to have a closing 
grouping symbol — a right parenthesis ), bracket ], or brace }.

 ✓ When simplifying nested expressions, work from the inside to the 
outside. The innermost expression is the one with no grouping symbols 
inside it. Simplify that expression or distribute over it so the innermost 
grouping symbols can be dropped. Then go to the next innermost grouping.

Distributing first
Equations containing grouping symbols offer opportunities for making wise 
decisions. In some cases you need to distribute, working from the inside 
out, and in other cases it’s wise to multiply or divide first. In general, you’ll 
distribute first if you find more than two terms in the entire equation.

 Solve for y in 8(3y – 5) = 9(y – 6) – 1.

The equation has two terms involving grouping symbols. Distribute the 8 and 
9, first:

24y – 40 = 9y – 54 – 1

Combine the two constant terms on the right. Then subtract 9y from each 
side of the equation:
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Now add 40 to each side of the equation; then divide each side by 15:

Now let me show you the solution of the example I give at the beginning of 
this section.

 Solve for x in 3[4x + 5(x + 2)] + 6 = 1 – 2[9 – 2(x – 4)].

The best way to sort through all these operations is to simplify from the 
inside out. You see parentheses within brackets. The binomials in the 
parentheses have multipliers. I’ll step through this carefully to show you an 
organized plan of attack.

First, distribute the 5 over the binomial inside the left parentheses and the –2 
over the binomial inside the right parentheses:

3[4x + 5x + 10] + 6 = 1 – 2[9 – 2x + 8]

Now combine terms within the brackets:

3[9x + 10] + 6 = 1 – 2[17 – 2x]

Distribute the 3 over the two terms in the left brackets and the –2 over the 
terms in the right brackets:

27x + 30 + 6 = 1 – 34 + 4x

The constant terms on each side can be combined:

27x + 36 = –33 + 4x

Now subtract 4x from each side and subtract 36 from each side:

Now, dividing each side of the equation by 23, you get that x = –3.
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Multiplying or dividing before distributing
In this section, I show you where it might be easier to divide through by a 
number rather than distribute first. My only caution is that you always divide 
(or multiply) each term by the same number.

 Solve for z in 12z – 3(z + 7) = 6(z – 1).

In this equation, you see three terms: two on the left and one on the right. 
Each term has a multiplier of a multiple of 3. So divide each term by 3:

 Notice that the second term has the negative sign in front of the resulting 
binomial. Be very careful not to lose track of the negative multipliers.

Distribute the negative sign and the 2:

4z – z – 7 = 2z – 2

Combine the two variable terms on the left. Then subtract 2z from each side:

Finally, add 7 to each side and you get:

z = –2 + 7 = 5

The next example mixes two different situations that are actually the same. 
The terms in the equation either have a fractional multiplier or are in a 
fraction themselves. The point of the example is to show when multiplying 
each term by the same number first is preferable to distributing first.

 Solve for x in the following equation:

At first glance, the equation looks a bit forbidding. But quick action — in the 
form of multiplying each term by 8 — takes care of all the fractions. You’re 
left with rather large numbers, but that’s still nicer than fractions with 
different denominators. I choose to multiply by 8 because that’s the least 
common denominator of each term (even the last term). Each of the four 
terms is multiplied by 8:
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Do the multiplication and distribution in steps to avoid errors:

6x – 12 + 20x + 8 = 14x + 12 + 56

The two variable terms on the left and the two constant terms on the left can 
be combined. Likewise, combine the two constant terms on the right:

26x – 4 = 14x + 68

Now subtract 14x from each side and add 4 to each side:

Dividing each side of the equation by 12, you see that x = 6.

When eliminating fractions in an equation, you need to multiply through by 
the least common denominator of all the fractions in the terms. In the 
preceding example, the least common denominator was 8. In the equation 

, the least common denominator is 60.

The common denominator for fractions with denominators of 6, 12, and 15 is 
60. How did I get this? One way is to guess. Another way is to write the prime 
factorizations of the numbers and find what they’re all common to. Another 
quick trick is given in the following steps.

 1. Find the least common denominator by taking the biggest of the 
denominators and checking all its multiples until you find one that all 
the denominators divide.

  In the case of this problem, 15 is the biggest denominator:

 • 15 × 1 = 15: Neither 6 nor 12 divides that evenly.

 • 15 × 2 = 30: Only the 6 divides that evenly.

 • 15 × 3 = 45: Neither 6 nor 12 divides that evenly.

 • 15 × 4 = 60: A winner!
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 2. Multiply each fraction by that common denominator:

  When you multiply by 60 in the sample problem, all the denominators 
divide out or disappear.

  10x + 5x + 4x = 60

Featuring Fractions
Fractions appear frequently in algebraic equations. In the “Multiplying or 
dividing before distributing” section, earlier in this chapter, I show you how 
to remove the fractions from an equation when you have the right situation. 
In this section, I show you how to leave in the fraction, take advantage of the 
fractional setup, and use it to your advantage.

Promoting practical proportions
A proportion is an equation. It consists of two ratios (fractions) set equal to 
one another. When you write , you’re writing a proportion. Before I 

show you how proportions are solved in algebra problems, I have some 
properties to share.

 Given the proportion :

 ✓ The cross products are equal: ad = bc.

 ✓ The reciprocals are equal to one another: .

 ✓ You can reduce the fractions vertically, as usual: .

 ✓ You can reduce horizontally, across the equal sign: 

  .

Now I use some of the properties of proportions to solve equations.

 Solve for x: .

Before cross-multiplying, reduce the fraction on the right by dividing the 
numerator and denominator by 3:
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Now, using the cross-multiplying rule:

(3x – 5) · 5 = (x + 3) · 8

15x – 25 = 8x + 24

Subtract 8x from each side, and add 25 to each side:

Finally, divide each side by 7, and you get x = 7.

 Solve for y: .

The first thing to do is change the equation to a proportion. Move the second 
fraction to the right-hand side by adding that fraction to each side of the 
equation:

Now factor the terms in the two numerators and “reduce horizontally”:

 When reducing proportions, you can divide vertically or horizontally, but you 
can’t reduce the fractions diagonally. The diagonal reductions are done when 
multiplying fractions and you have a multiplication symbol between, not an 
equal sign between.

Next, cross-multiply and simplify:

 (4y – 5) · 5 = 3 · 3(2y – 3)

20y – 25 = 18y – 27
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Now, solve the equation by subtracting 18y from each side and then adding 
25 to each side:

And, finally, dividing each side by 2, you see that y = –1.

Transforming fractional equations 
into proportions
Proportions are very nice to work with because of their unique properties 
of reducing and changing into non-fractional equations. Many equations 
involving fractions must be dealt with in that fractional form, but other 
equations are easily changed into proportions. When possible, you want to 
take advantage of the situations where transformations can be done.

 Solve the following equation for x:

You could solve the problem by multiplying each fraction by the least 
common factor of all the fractions: 24. Another option is to find a common 
denominator for the two fractions on the left and subtract them, and then 
find a common denominator for the two fractions on the right and add them. 
Your result is a proportion:

The proportion can be reduced by dividing by 2 horizontally:
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Now cross-multiply and simplify the products:

    (–3x + 3) · 4 = 3 · (13x – 13)

–12x + 12 = 39x – 39

Add 12x to each side, and then add 39 to each side:

The last step consists of just dividing each side by 51 to get 1 = x.

Solving for Variables in Formulas
A formula is an equation that represents a relationship between some 
structures or quantities or other entities. It’s a rule that uses mathematical 
computations and can be counted on to be accurate each time you use it 
when applied correctly. The following are some of the more commonly used 
formulas that contain only variables raised to the first power.

 ✓ : The area of triangle involves base and height.

 ✓ I = Prt: The interest earned uses principal, rate, and time.

 ✓ C = 2πr: Circumference is twice π times the radius.

 ✓ : Degrees Fahrenheit uses degrees Celsius.

 ✓ P = R – C: Profit is based on revenue and cost.

When you use a formula to find the indicated variable (the one on the left of 
the equal sign), then you just put the numbers in, and out pops the answer. 
Sometimes, though, you’re looking for one of the other variables in the 
equation and end up solving for that variable over and over.

For example, let’s say that you’re planning a circular rose garden in your 
backyard. You find edging on sale and can buy a 20-foot roll of edging, a 
36-foot roll, a 40-foot roll, or a 48-foot roll. You’re going to use every bit of the 
edging and let the length of the roll dictate how large the garden will be. If 
you want to know the radius of the garden based on the length of the roll of 
edging, you use the formula for circumference and solve the following four 
equations:

20 = 2πr 36 = 2πr 40 = 2πr 48 = 2πr
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Another alternative to solving four different equations is to solve for r in the 
formula and then put the different roll sizes in to the new formula. Starting 
with C = 2πr, you divide each side of the equation by 2π, giving you:

The computations are much easier if you just divide the length of the roll by 2π.

Now I’ll show you some examples of solving for one of the variables in an 
equation. I won’t try to come up with any more gardening or other clever 
scenarios.

 Solve for w in the formula for the perimeter of a rectangle: P = 2(l + w).

First, divide each side of the equation by 2 (instead of distributing the 2 
through the terms in the binomial):

Now subtract l from each side. You can write the two terms as a single 
fraction if you want:

 or 

 Solve for x5 in the following formula for finding the mean average of five test 
grades:

Multiply each side of the equation by 5:

Now, subtract every x
i
 except the last one:

5A – x1 – x2 – x3 – x4 = x5

5A – (x1 + x2 + x3 + x4) = x5

This last formula could be used to answer the popular question: “What do I 
need on the last test to get a B in this class?”
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Archimedes: Mover and bather
Born about 287 B.C., Archimedes, an inspired 
mathematician and inventor, devised a pump 
to raise water from a lower level to a higher 
level. These pumps were used for irrigation, in 
ships, and in mines, and they’re still used today 
in some parts of the world.

He also made astronomical instruments and 
designed tools for the defense of his city during 
a war. Known for being able to move great 
weights with simple levers, cogwheels, and 
pulleys, Archimedes determined the smallest- 
possible cylinder that could contain a sphere 

and, thus, discovered how to calculate the 
volume of a sphere with his formula. The 
sphere/cylinder diagram was engraved on his 
tombstone.

A favorite legend has it that as Archimedes 
lowered himself into a bath basin, he had a 
revelation involving how he could determine 
the purity of a gold object using a similar water-
immersion method. He was so excited at the 
revelation that he jumped out of the tub and ran 
naked through the streets of the city shouting, 
“Eureka! Eureka!” (“I have found it!”)
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Chapter 13

Taking a Crack at Quadratic 
Equations

In This Chapter
▶ Dealing with solutions of special quadratic equations

▶ Factoring quadratic equations for solutions

▶ Applying the greatest common factor and not forgetting a solution

▶ Using the quadratic formula

▶ Making quadratic equations work for you

Quadratic (second-degree) equations are nice to work with because 
they’re manageable. Finding the solution or deciding whether a solution 

exists is relatively easy — easy, at least, in the world of mathematics.

A quadratic equation is a quadratic expression with an equal sign attached. 
As with linear equations, specific methods or processes, given in detail in 
this chapter, are employed to successfully solve quadratic equations. The 
most commonly used technique for solving these equations is factoring, but 
there’s also a quick-and-dirty rule for one of the special types of quadratic 
equations. I have to warn you, though, that just because someone puts in 
some numbers and makes up a quadratic equation, that doesn’t mean there’s 
necessarily a solution or answer to it. (I show you how to tell if there’s no 
answer in this chapter.)

Quadratic equations are important to algebra and many other sciences. Some 
quadratic equations say that what goes up must come down. Other equations 
describe the paths that planets and comets take. In all, quadratic equations 
are fascinating — and just dandy to work with.
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Squaring Up to Quadratics
A quadratic equation contains a variable term with an exponent of 2 and no 
variable term with a higher power.

 A quadratic equation has a general form that goes like this: ax2 + bx + c = 0. 
The constants a, b, and c in the equation are real numbers, and a cannot be 
equal to 0. (If a were 0, you wouldn’t have a quadratic equation anymore.)

If the equation looks familiar, it means that you’ve read Chapter 9, which 
talks about factoring and working with quadratic expressions. Remember: An 
expression is comprised of one or more terms but has no equal sign. Adding 
an equal sign changes the whole picture: Now you have an equation that says 
something. The equation forms a true statement if the solutions are put in for 
the variables.

Here are some examples of quadratic equations and their solutions:

 ✓ 4x2 + 5x – 6 = 0: In this equation, none of the coefficients is 0. The two 

  solutions are x = –2 and .

 ✓ 2x2 – 18 = 0: In this equation, the b is equal to 0. The solutions are 
x = 3 and x = –3.

 ✓ x2 + 3x = 0: In this equation, the c is equal to 0. The solutions are 
x = 0 and x = –3.

 ✓ x2 = 0: In this equation, both b and c are equal to 0. The equation has 
only one solution, x = 0.

A special feature of quadratic equations is that they can, and often do, have 
two completely different answers. As you see in the preceding examples, 
three of the equations have different solutions. The last equation has just one 
solution, but, technically, you count that solution twice, calling it a double 
root. Some quadratic equations have no solutions if you’re only considering 
real numbers, but get real! We stick to real solutions for now.

How did I find all those solutions in the examples? I used the methods on 
solving quadratic equations that are found in this chapter. My goal in this 
section is to get you used to having two different answers that work. You can 
jump ahead, though, if your curiosity is getting the better of you about other 
quadratic equations.

How can an equation have two answers? Which answer do you use in an 
application or story problem? For example, if the story problem asks about 
how much something costs, how can there be two correct answers? Well, 
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sometimes there are two right answers to the application, but usually one 
of the answers doesn’t really make sense in the particular situation. The 
nonsensical answer does solve the equation you set up and just comes along 
as extra baggage. When faced with two answers, you have to make a decision 
as to whether to pay attention to the extra answer.

Let me show you two examples of problems using quadratic equations that 
end up with two answers. In the first example, you see that both answers can 
work. In the second example, only one answer works.

 A ball is thrown upward into the air by a person standing on a 16-foot-high 
wall. The height, h (in feet), of the ball after t seconds is given by the quadratic 
equation: h = –16t2 + 80t + 16. When is the ball 80 feet in the air?

Don’t worry about where I got the equation; it’s something discussed in 
physics and in many math classes.

I want to figure out when the ball is 80 feet above the ground, so I put in 80 
for the height, h:

80 = –16t2 + 80t + 16

I just happen to know that when t is equal to 1 or 4, the equation is true. 
Well, I don’t actually know that, but I used the methods from this chapter 
for finding the solution of a quadratic equation to get the answers. Again, I’m 
showing you how two answers can work and both make sense.

When t = 1,

80 = –16(1)2 + 80(1) + 16 = –16 + 80 + 16 = 80

And when t = 4,

80 = –16(4)2 + 80(4) + 16 = –256 + 320 + 16 = 80

Both work! So this equation says that when t equals 1 (after 1 second) and 
when t equals 4 (after 4 seconds) the ball is 80 feet in the air. The first time, 
the ball is going upward, and the second time, the ball is falling toward the 
ground. If you throw a ball up into the air from 16 feet high, then the ball 
could go up, pass the 80-foot level, go higher than that, and then be at the 
80-foot level again on the way down.

The next example using a quadratic equation has two answers, but only one 
makes any sense in the actual problem. The answers both work in the equa-
tion, but only one answers the question.
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 You’re the controller of Whatchamacallits Company, and you use the following 
cost function to tell you the total cost of producing n units: C(n) = 0.04n2 + 2n + 
100. You get an order from a customer who says he has only $124 to work 
with. How many units can the customer buy?

Replace the C(n) with 124 and the equation reads: 124 = 0.04n2 + 2n + 100. 
Solving for n, you get that if n = 10 or if n = –60, either will make the equation 
into a true statement: C(10) = 124 and C(–60) = 124.

Getting these two answers — one of them negative — happens frequently 
when you use an equation to model what happens in real life. The equation 
usually works wonderfully to give you answers, but you can’t use it beyond 
what’s reasonable.

With this particular equation, it wouldn’t make sense to use negative 
numbers for n because you can’t manufacture a negative number of units. 
And in other situations it also may not be reasonable to use values of n up in 
the billions or trillions.

The price that’s paid for using these nice equations is that they have to be 
used under reasonable circumstances.

Rooting Out Results from 
Quadratic Equations

The general quadratic equation has the form ax2 + bx + c = 0, and b or c or 
both of them can be equal to 0. This section shows you how nice it is — and 
how easy it is to solve equations — when b is equal to 0.

 The first 20 perfect squares (products of a number times itself) are 1, 4, 9, 16, 
25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, and 400. Notice 
that the square numbers go from a low of 1 to a high of 400. There aren’t any 
other perfect squares between the ones listed. That means that the other 380 
numbers between 1 and 400 are not perfect squares. The perfect squares all 
have nice square roots. The square root of 121 is 11; the square root of 256 is 
16. Isn’t that nice? But the square root of 200 isn’t nice at all; it’s an irrational 
number.

Irrational numbers don’t terminate or repeat themselves after the decimal point. 
For example, the square root of 2, an irrational number, is 1.414213562373. . . . 
An irrational number can’t ever be written as a fraction. Irrationals are just as 
their name describes: wild and unpredictable. The roots have decimal values 
that can be approximated with a calculator, though.
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Don’t worry if you don’t recognize some of the larger squares because they 
aren’t used frequently, and you usually get some sort of a hint that the 
number is a perfect square when you’re doing a problem. Sometimes the hint 
comes from the wording of the problem — it may talk about a square room 
or sides of a right triangle. Sometimes the hint is just that it’d be so nice if it 
were square.

And here’s a twist to square roots and squares. Usually, if you’re asked for 
the square root of 25, you say, “Five.” Well, that’s right of course, but that’s 
just the principal square root. When solving quadratic equations, you start 
with statements involving a variable squared, so you usually have two solutions 
for the equations. In the case of x2 = 25, the two solutions are +5 and –5.

 The principal square root of a number is just the positive number that, when 
multiplied by itself, gives you the original number. The principal square root 
of 49 is 7. When doing a square root to solve an equation, both the principal 
square root and its inverse (the negative one) are used. So, under certain 
circumstances, such as solving quadratic equations, you have to consider that 
other answer, too.

The following is the rule for some special quadratic equations — the ones 
where b = 0. They start out looking like ax2 + c = 0, but the c is usually 
negative, giving you ax2 – c = 0 and the equation is rewritten as ax2 = c.

 If x2 = k, then  or if ax2 = c, then . If the square of a variable is 

 equal to the number k, then the variable is equal to the principal square root 
of k or its opposite.

The following examples show you how to use this square-root rule on 
quadratic equations where b = 0.

 Solve for x in x2 = 49.

Using the square root rule, . Checking, (7)2 = 49 and (–7)2 = 49.

 Solve for m in 3m2 + 4 = 52.

This equation isn’t quite ready for the square-root rule. Add –4 to each side:

3m2 = 48

Now divide each side by 3:

m2 = 16

So .
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 Solve for p in p2 + 11 = 7.

Add –11 to each side to get p2 = –4. Oops! What number times itself is equal 
to –4? The answer is: “None that you can imagine!”

 Mathematicians have created numbers that don’t actually exist so that these 
problems can be finished. The numbers are called imaginary numbers, but this 
section is concerned with the less-heady numbers. So, this problem doesn’t 
have an answer, if you’re looking for a real number.

 Solve for q in (q + 3)2 = 25.

In this case, you end up with two completely different answers, not one number 
and its opposite. Use the square-root rule, first, to get .

Now you have two different linear equations to solve:

q + 3 = +5 q + 3 = –5

Subtracting 3 from each side of each equation, the two answers are:

q = 2 q = –8

This problem definitely needs to be checked. Putting in the 2:

(2 + 3)2 = 25

52 = 25

Putting in the –8:

(–8 + 3)2 = 25

(–5)2 = 25

Yes, they both work!

Factoring for a Solution
This section is where running through all the factoring methods can really 
pay off. (Refer to Chapters 8, 9, and 10 for all the details.) In most quadratic 
equations, factoring is used rather than the square-root rule method covered 
in the preceding section. The square-root rule is used only when b = 0 in the 
quadratic equation ax2 + bx + c = 0. Factoring is used when c = 0 or when 
neither b nor c is 0.
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A very important property used along with the factoring to solve these 
equations is the multiplication property of zero. This is a very straightforward 
rule — and it even makes sense. Use the greatest common factor and the 
multiplication property of zero when solving quadratic equations that aren’t 
in the form for the square-root rule.

Zeroing in on the multiplication 
property of zero
Before you get into factoring quadratics for solutions, you need to know 
about the multiplication property of zero. You may say, “What’s there to 
know? Zero multiplies anything and leaves nothing. It wipes out everything!” 
True enough, but there’s this other nice property of 0 that is the basis of 
much equation solving in algebra. By itself, 0 is nothing. Put it as the result of 
a multiplication problem, and you really have something: the multiplication 
property of zero.

 The multiplication property of zero (MPZ) states that if p × q = 0, then either 
p = 0 or q = 0. At least one of them must be equal to 0.

This may seem obvious, but think about it. No other number has such a 
power over all other numbers. If you say that p × q = 12, you can’t predict 
a thing about p or q alone. These variables could be any number at all — 
positive, negative, fractional, radical, or a mixture of these. A product of 0, 
however, leads to one conclusion: One of the multipliers must be 0. No other 
means of arriving at a 0 product exists. Why is this such a big deal? Let me 
show you a few equations and how the MPZ works.

 Find the value of x if 3x = 0.

x = 0 because 3 can’t be 0. Using the MPZ, if the one factor isn’t 0, then the 
other must be 0.

 Find the value of x and y if xy = 0.

You have two possibilities in this equation. If x = 0, then y can be any number, 
even 0. If x ≠ 0, then y must be 0, according to the MPZ.

 Solve for x in x(x – 5) = 0.

Again, you have two possibilities. If x = 0, then the product of 0(–5) = 0. The 
other choice is when x = 5. Then you have 5(0) = 0.
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Assigning the greatest common factor 
and multiplication property of zero 
to solving quadratics
Factoring is relatively simple when there are only two terms and they have 
a common factor. This is true in quadratic equations of the form ax2 + bx = 0 
(where c = 0). The two terms left have the common factor of x, at least. You 
find the greatest common factor (GCF) and factor that out, and then use the 
MPZ to solve the equation.

The following examples make use of the fact that the constant term is 0, and 
there’s a common factor of at least an x in the two terms.

 Use factoring to solve for x in x2 – 7x = 0.

The GCF of the two terms is x, so write the left side in factored form:

x(x – 7) = 0

Use the MPZ to say that either x = 0 or x – 7 = 0. The first equation gives you 
x = 0, and the second solves to give you x = 7.

 Solve for x in 6x2 + 18x = 0.

The GCF of the two terms is 6x, so write the left side in factored form:

6x(x + 3) = 0

Use the MPZ to say that 6x = 0 or x + 3 = 0, which gives you the two solutions 
x = 0 or x = –3.

Getting the quadratic second-degree
The word quadratic is used to describe 
equations that have a second-degree term. 
Why, then, is the prefix quad-, which means 
“four,” used in a second-degree equation? It 
appears that this came about because a square 

is the regular four-sided figure, whose sides 
are the same. The area of a square with sides x 
long would be x2. So “squaring” in this case is 
raising to the second power.
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Technically, I could have written three different equations from the factored 
form:

6 = 0 x = 0 x + 3 = 0

The first equation, 6 = 0, makes no sense — it’s an impossible statement. So 
you either ignore setting the constants equal to 0 or combine them with the 
factored-out variable, where they’ll do no harm.

 Because c = 0 in so many quadratic equations, it might be useful to have a rule 
or formula for what the solutions are every time. So, to create a rule, solve for 
x in this general quadratic equation where c = 0: ax2 + bx = 0.

The GCF of the two terms is x, so write the left side in factored form:

x(ax + b) = 0

Use the MPZ to say that x = 0 or ax + b = 0. The first part of this is pretty 
clear. And this x = 0 business seems to crop up every time. The second part 
takes careful solving of the linear equation. Subtract b from each side:

ax + b – b = 0 – b

Divide each side by a:

So the two solutions of ax2 + bx = 0 are x = 0 and .

This recognizable pattern can help you solve these types of equations. You 
can use this as a formula and not have to do the factoring and solving each 
time.

 Missing the x = 0, a full half of the solution, is an amazingly frequent occurrence. 
You don’t notice the lonely little x in the front of the parentheses and forget 
that it gives you one of the two answers. Be careful.

Solving Quadratics with Three Terms
Quadratic equations are basic not only to algebra, but also to physics, 
business, astronomy, and many other applications. By solving a quadratic 
equation, you get answers to questions such as, “When will the rock hit the 
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ground?” or “When will the profit be greater than 100 percent?” or “When, 
during the year, will the earth be closest to the sun?”

In the two previous sections, either b or c has been equal to 0 in the quadratic 
equation ax2 + bx + c = 0. Now I won’t let anyone skip out. In this section, each 
of the letters, a, b, and c is a number that is not 0.

To solve a quadratic equation, moving everything to one side with 0 on the 
other side of the equal sign is the most efficient method. Factor the equation 
if possible, and use the MPZ after you factor. If there aren’t three terms in the 
equation, then refer to the previous sections.

In the following example, I list the steps you use for solving a quadratic 
trinomial by factoring.

 Solve for x in x2 – 3x = 28. Follow these steps:

 1. Move all the terms to one side. Get 0 alone on the right side.

  In this case, you can subtract 28 from each side:

  x2 – 3x – 28 = 0

  The standard form for a quadratic equation is ax2 + bx + c = 0.

 2. Determine all the ways you can multiply two numbers to get a.

  In x2 – 3x – 28 = 0, a = 1, which can only be 1 times itself.

 3. Determine all the ways you can multiply two numbers to get c (ignore 
the sign for now).

  28 can be 1 × 28, 2 × 14, or 4 × 7.

 4. Factor.

  If c is positive, find an operation from your Step 2 list and an operation 
from your Step 3 list that match so that the sum of their cross-products 
is the same as b.

  If c is negative, find an operation from your Step 2 list and an operation 
from your Step 3 list that match so that the difference of their 
cross-products is the same as b.

  In this problem, c is negative, and the difference of 4 and 7 is 3. 
Factoring, you get (x – 7)(x + 4) = 0.

 5. Use the MPZ.

  Either x – 7 = 0 or x + 4 = 0; now try solving for x by getting x alone to one 
side of the equal sign.

 • x – 7 + 7 = 0 + 7 gives you that x = 7.

 • x + 4 – 4 = 0 – 4 gives you that x = –4.

  So the two solutions are x = 7 or x = –4.
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 6. Check your answer.

  If x = 7, then (7)2 – 3(7) = 49 – 21 = 28.

  If x = –4, then (–4)2 – 3(–4) = 16 + 12 = 28.

  They both check.

Factoring to solve quadratics sounds pretty simple on the surface. But 
factoring trinomial equations — those with three terms — can be a bit less 
simple. If a quadratic with three terms can be factored, then the product of 
two binomials is that trinomial. If the quadratic equation with three terms 
can’t be factored, then use the quadratic formula (see “Figuring Out the 
Quadratic Formula” later in this chapter).

 The product of the two binomials (ax + b)(cx + d) is equal to the trinomial 
acx2 + (ad + bc)x + bd. This is a fancy way of showing what you get from using 
FOIL when multiplying the two binomials together.

Now, on to using unFOIL. If you need more of a review of FOIL and unFOIL, 
check out Chapter 9.

The following examples all show how factoring and the MPZ allow you to find 
the solutions of a quadratic equation with all three terms showing.

 Solve for x in x2 – 5x – 6 = 0.

 1. The equation is in standard form, so you can proceed.

 2. Determine all the ways you can multiply to get a.

  a = 1, which can only be 1 times itself. If there are two binomials that the 
left side factors into, then they must each start with an x because the 
coefficient of the first term is 1.

  (x   )(x   ) = 0

 3. Determine all the ways you can multiply to get c.

  c = –6, so, looking at just the positive factors, you have 1 × 6 or 2 × 3.

 4. Factor.

  To decide which combination should be used, look at the sign of the last 
term in the trinomial, the 6, which is negative. This tells you that you 
have to use the difference of the absolute value of the two numbers in 
the list (think of the numbers without their signs) to get the middle term 
in the trinomial, the –5. In this case, one of the 1 and 6 combinations 
work, because their difference is 5. If you use the +1 and –6, then you 
get the –5 immediately from the cross-product in the FOIL process. So 
(x – 6)(x + 1) = 0.
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 5. Use the MPZ.

  Using the MPZ, x – 6 = 0 or x + 1 = 0. This tells you that x = 6 or x = –1.

 6. Check.

  If x = 6, then (6)2 – 5(6) – 6 = 36 – 30 – 6 = 0.

  If x= –1, then (–1)2 – 5(–1) – 6 = 1 + 5 – 6 = 0.

  They both work!

 Solve for x in 6x2 + x = 12.

 1. Put the equation in the standard form.

  The first thing to do is to add –12 to each side to get the equation into 
the standard form for factoring and solving:

  6x2 + x – 12 = 0

  This one will be a bit more complicated to factor because the 6 in the 
front has a couple of choices of factors, and the 12 at the end also has 
several choices. The trick is to pick the correct combination of choices.

 2. Find all the combinations that can be multiplied to get a.

  You can get 6 with 1 × 6 or 2 × 3.

 3. Find all the combinations that can be multiplied to get c.

  You can get 12 with 1 × 12, 2 × 6, or 3 × 4.

 4. Factor.

  You have to choose the factors to use so that the difference of their 
cross-products (outer and inner) is 1, the coefficient of the middle term. 
How do you know this? Because the 12 is negative, in this standard form, 
and the value multiplying the middle term is assumed to be 1 when 
there’s nothing showing.

  Looking this over, you can see that using the 2 and 3 from the 6 and 
the 3 and 4 from the 12 will work: 2 × 4 = 8 and 3 × 3 = 9. The difference 
between the 8 and the 9 is, of course, 1. You can worry about the sign 
later.

  Fill in the binomials and line up the factors so that the 2 multiplies the 4 
and the 3 multiplies the 3, and you get a 6 in the front and 12 at the end. 
Whew!

  (2x   3)(3x   4) = 0

  The quadratic has a + on the term in the middle, so I need the bigger 
product of the outer and inner to be positive. I get this by making the 9x 
positive, which happens when the 3 is positive and the 4 is negative.

  (2x + 3)(3x – 4) = 0
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 5. Use the MPZ to solve the equation.

  The trinomial has been factored. The MPZ tells you that either 2x + 3 = 0 

  or 3x – 4 = 0. If 2x + 3 = 0 then 2x = –3 or . If 3x – 4 = 0 then 3x = 4 
  or .

 6. Check your work.

  When , then  and .

  When , then  and .

This checking wasn’t nearly as fun as some, but it sure does show how well 
this factoring business can work.

 Solve for y in 9y2 – 12y + 4 = 0.

 1. This is already in the standard form.

 2. Find all the numbers that multiply to get a.

  The factors for the 9 are 1 × 9 or 3 × 3.

 3. Find all the numbers that multiply to get c.

  The factors for c are 1 × 4 or 2 × 2.

 4. Factor.

  Using the 3s and the 2s is what works because both cross-products are 
6, and you need a sum of 12 in the middle. So,

  9y2 – 12y + 4 = (3y – 2)(3y –2) = 0

  Notice that I put the negative signs in because the 12 needs to be a 
negative sum.

 5. Use the MPZ to solve the equation.

  The two factors are the same here. That means that using the MPZ gives 
you the same answer twice. When 3y – 2 = 0, solve this for y. First add 

  the 2 to each side, and then divide by 3. The solution is . This is 

  a double root, which, technically, has only one solution, but it occurs 
twice.

 A double root occurs in quadratic trinomial equations that come from 
perfect-square binomials. Perfect-square binomials are discussed in Chapter 7, 
if you need a refresher. These perfect-square binomials are no more than the 
result of multiplying a binomial times itself. That’s why, when they’re factored, 
there’s only one answer — it’s the same one for each binomial.

19_559642-ch13.indd   21519_559642-ch13.indd   215 4/16/10   11:08 AM4/16/10   11:08 AM



216 Part III: Working Equations 

 Solve for z in 12z2 – 4z – 8 = 0.

 1. This quadratic is already in standard form.

  You can start out by looking for combinations of factors for the 12 and 
the 8, but you may notice that all three terms are divisible by 4. To make 
things easier, take out that GCF first, and then work with the smaller 
numbers in the parentheses.

  12x2 – 4z – 8 = 4(3z2 – z – 2) = 0

 2. Find the numbers that multiply to get 3.

  3 = 1 × 3

 3. Find the numbers to multiply to get 2.

  2 = 1 × 2

 4. Factor.

  This is really wonderful, especially because the 3 and 2 are both prime 
and can be factored only one way. Your only chore is to line up the 
factors so there will be a difference of 1 between the cross-products.

  4(3z2 – z – 2) = 4(3z   2)(z   1) = 0

  Because the middle term is negative, you need to make the larger 
product negative, so put the negative sign on the 1.

  4(3z + 2)(z – 1) = 0

 5. Use the MPZ to solve for the value of z.

  This time, when you use the MPZ, there are three factors to consider. 
Either 4 = 0, 3z + 2 = 0, or z – 1 = 0. The first equation is impossible; 4 
doesn’t ever equal 0. But the other two equations give you answers. If 

  3z + 2 = 0, then . If z – 1 = 0, then z = 1.

 6. Check.

  If , then  and 

  .

  If z = 1 , then 12(1)2 – 4(1) – 8 = 12 – 4 – 8 = 0.

 When checking your solution(s) — always use the original equation (the 
version before you did anything to it).
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Applying Quadratic Solutions
Quadratic equations are found in many mathematics, science, and business 
applications; that’s why they’re studied so much. The graphs of quadratic 
equations are always U-shaped, with an extreme point that’s highest, lowest, 
farthest left, or farthest right. That extreme point is often the answer to a 
question about the situation being modeled by the quadratic. In other 
applications, you want the point(s) at which the U-shaped curve crosses 
an axis; those points are found by finding solutions to setting the quadratic 
equal to 0. In this section, I show you some examples of how quadratic 
equations are used in applications.

In physics, an equation that tells you how high an object is after a certain 
amount of time can be written h = –16t2 + v0t + h0. In this equation, the –16t2 
part accounts for the pull of gravity on the object. The number representing 
v0 is the initial velocity — what the speed is at the very beginning. The h0 is 
the starting height — the height in feet of the building, cliff, or stool from 
which the object is thrown or shot or dropped. The variable t represents 
time — how many seconds or minutes have passed.

 A stone was thrown upward from the top of a 40-foot building with a beginning 
speed of 128 feet per second. When was the stone 296 feet up in the air?

Replacing the height, h, with the 296, the v0 with 128, and the h0 with 40, the 
equation now reads: 296 = –16t2 + 128t + 40. You can solve it using the following 
steps:

 1. Put the equation in standard form.

  Add –296 to each side.

  0 = –16t2 + 128t – 256

 2. Factor out the GCF.

  In this case, the GCF is –16.

  0 = –16(t2 – 8t + 16)

 3. Factor the quadratic trinomial inside the parentheses.

  0 = –16(t – 4)2

 4. Use the MPZ to solve for the variable.

  t – 4 = 0, t = 4

  After 4 seconds, the stone will be 296 feet up in the air.
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This next example gets into the business side of these equations. The profit 
earned from producing and selling items is determined by subtracting the 
cost from the revenue. Equations can act as models for the amount of profit 
based on the number of items produced and sold. This next example shows 
you how a model works.

 The profit from manufacturing and selling Flimsy Flip-Flops is determined 
using P(f) = –0.1f 2 + 22f –210, where f is the number of pairs of flip-flops. How 
many pairs of flip-flops must be produced and sold to have a positive profit?

The graph of the profit function is a parabola (a U-shaped curve) opening 
downward. (For more on these graphs, refer to Chapter 19.) What you need 
to find is when the profit goes from negative to positive and then back down 
to negative. (Profit decreases when there’s too much overtime or outsourcing 
from too many items being produced.) The function changes from negative 
to positive and positive to negative when P(f) = 0. So the answer is found by 
solving the quadratic equation –0.1f 2 + 22f – 210 = 0.

The first thing to do is to factor –0.1 out of each term. It’s hard to unFOIL 
quadratics when the lead coefficient is negative and even harder when it’s a 
decimal or fraction. Factoring out a GCF of –0.1, you get

–0.1(f 2 – 220f + 2,100) = 0

To factor the quadratic trinomial, you need to find two factors of 2,100 whose 
sum is 220. The two factors are 210 and 10. Factoring the quadratic, you get

–0.1(f – 10)(f – 210)

Using the MPZ, you get that the profit is 0 when f = 10 or when f = 210. And 
I show you that the profit is positive for numbers between 10 and 210 (and 
negative otherwise). Here are some of the function values:

f (5) = –0.1(5)2 + 22(5) – 210 = –2.5 + 110 – 210 = –102.5

f (15) = –0.1(15)2 + 22(15) – 210 = –22.5 + 330 – 210 = 97.5

f (100) = –0.1(100)2 + 22(100) – 210 = –1,000 + 2,200 – 210 = 990

f (205) = –0.1(205)2 + 22(205) – 210 = –4,202.5 + 4,510 – 210 = 97.5

f (250) = –0.1(250)2 + 22(250) – 210 = –6,250 + 5,500 – 210 = –960
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Figuring Out the Quadratic Formula
The quadratic formula is special to quadratic equations. A quadratic equation, 
ax2 + bx + c = 0, can have as many as two solutions, but there may be only one 
solution or even no solution at all.

 a, b, and c are any real numbers. The a can’t equal 0, but the b or c can equal 0.

The quadratic formula allows you to find solutions when the equations 
aren’t very nice. Numbers aren’t nice when they’re funky fractions, indecent 
decimals with no end, or raucous radicals.

 The quadratic formula says that if an equation is in the form ax2 + bx + c = 0, 
then its solutions, the values of x, can be found with the following:

You see an operation symbol, ±, in the formula. The symbol is shorthand 
for saying that the equation can be broken into two separate equations, one 
using the plus sign and the other using the minus sign. They look like the 
following:

 

Can you see the difference between the two equations? The only difference is 
the change from the plus sign to the minus sign before the radical.

You can apply this formula to any quadratic equation to find the solutions — 
whether it factors or not. Let me show you some examples of how the 
formula works.

 Use the quadratic formula to solve 2x2 + 7x – 4 = 0.

Refer to the standard form of a quadratic equation where the coefficient of 
x2 is a, the coefficient of x is b, and the constant is c. In this case, a = 2, b = 7, 
and c = –4. Inserting those numbers into the formula, you get
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Now, simplifying, and paying close attention to the order of operations, 
you get

The two solutions are found by applying the + in front of the 9 and then the – 
in front of the 9.

Whenever the answers you get from using the quadratic formula come out as 
integers or fractions, it means that the trinomial could have been factored. 
It doesn’t mean, though, that you shouldn’t use the quadratic formula on 
factorable problems. Sometimes it’s easier to use the formula if the equation 
has really large or nasty numbers. In general, though, it’s quicker to factor 
using unFOIL and then the MPZ when you can. Just to illustrate this, look at 
the previous example when it’s solved using factoring and the MPZ:

2x2 + 7x – 4 = (2x – 1)(x + 4) = 0

Then using the MPZ, you get 2x – 1 = 0 or x + 4 = 0, so  or x = –4.

So, what do the results look like when the equation can’t be factored? The 
next example shows you.

 Here are two things to watch out for when using the quadratic formula:

 ✓ Don’t forget that –b means to use the opposite of b. If the coefficient b 
in the standard form of the equation is a positive number, change it to a 
negative number before inserting into the formula. If b is negative, then 
change it to positive in the formula.

 ✓ Be careful when simplifying under the radical. The order of operations 
dictates that you square the value of b first, and then multiply the last 
three factors together before subtracting them from the square of b. 
Some sign errors can occur if you’re not careful.

 Solve for x using the quadratic formula in 2x2 + 8x + 7 = 0.

In this problem, you let a = 2, b = 8 and c = 7 when using the formula:

The radical can be simplified because , so
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 Be careful when simplifying this expression: . Both terms in 

 the numerator of the fraction have to be divided by the 2.

Here are the decimal equivalents of the answers:

When you check these answers, what do the estimates do? If x = –1.293, then 
2(–1.293)2 + 8(–1.293) + 7 =3.343698 – 10.344 + 7 = –0.000302.

That isn’t 0! What happened? Is the answer wrong? No, it’s okay. The rounding 
caused the error — it didn’t come out exactly right. This happens when you 
use a rounded value for the answer, rather than the exact radical form. An 
estimate was used for the answer because the square root of a number that 
is not a perfect square is an irrational number, and the decimal never ends. 
Rounding the decimal value to three decimal places seemed like enough 
decimal places.

 You shouldn’t expect the check to come out to be exactly 0. In general, if you 
round the number you get from your check to the same number of places that 
you rounded your estimate of the radical, then you should get the 0 you’re 
aiming for.

Imagining the Worst with 
Imaginary Numbers

An imaginary number is something that doesn’t exist — well, at least not 
until some enterprising mathematicians had their way. Not being happy with 
having to halt progress in solving some equations because of negative numbers 
under the radical, mathematicians came up with the imaginary number i.

 

The square root of –1 is designated as i.  and i2 = –1.

Since the declaration of the value of i, all sorts of neat mathematics and 
applications have cropped up. Sorry, I can’t cover all that good stuff in this 
book, but I at least give you a little preview of what complex numbers are all 
about.
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You’re apt to run into these imaginary numbers when using the quadratic 
formula. In the next example, the quadratic equation doesn’t factor and 
doesn’t have any real solutions (the only possible answers are imaginary).

 Use the quadratic formula to solve 5x2 – 6x + 5 = 0.

In this quadratic, a = 5, b = –6, and c = 5. Putting the numbers into the 
formula:

You see a –64 under the radical. Only positive numbers and 0 have square 
roots. So you use the definition of the imaginary number where  and 
apply it after simplifying the radical:

Applying this new imaginary number allowed mathematicians to finish their 
problems. You have two answers — although both are imaginary. (It’s sort of 
like having an imaginary friend as a child.)
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Chapter 14

Distinguishing Equations 
with Distinctive Powers

In This Chapter
▶ Solving cubic equations

▶ Solving quadratic-like equations

▶ Dealing with radical and rational equations

▶ Using synthetic division to solve polynomial equations

Many algebra applications involve solving equations of the first and 
second degree. Even in calculus and physics, these equations with 

powers of 1 and 2 seem to be enough to get through most of the applications. 
Do these equations well, and you’ll do well. But every once in a while, you’ll 
be thrown a curve with an equation of a degree higher than 2 or an equation 
with a radical in it or a fractional degree in it. No need to panic. You can 
deal with these rogue equations in many ways, and in this chapter, I tell you 
what the most efficient ways are. One common thread you’ll see in solving 
these equations is a goal to set the equation equal to 0 so you can use the 
multiplication property of zero to find the solution.

Queuing Up to Cubic Equations
Cubic equations contain a variable term with a power of 3 but no power 
higher than 3. In these equations, you can expect to find up to three different 
solutions, but there may not be as many as three. Also, a cubic equation must 
have at least one solution, even though it may not be a nice one. A quadratic 
equation (a second-degree equation with a term that has an exponent of 2) 
doesn’t offer this guarantee: Quadratic equations don’t have to have real 
solutions.

20_559642-ch14.indd   22320_559642-ch14.indd   223 4/20/10   8:59 AM4/20/10   8:59 AM



224 Part III: Working Equations 

If second-degree equations can have as many as two different solutions and 
third-degree equations can have as many as three different solutions, do you 
suppose that a pattern exists? Can you assume that fourth-degree equations 
could have as many as four solutions and fifth-degree equations . . . ? Yes, 
indeed you can — this is the general rule. The degree can tell you what the 
maximum number of solutions is. Although the number of solutions may be 
less than the number of the degree, there won’t be any more solutions than 
that number.

Solving perfectly cubed equations
If a cubic equation has just two terms and they’re both perfect cubes, then 
your task is easy. The sum or difference of perfect cubes can be factored into 
two factors with only one solution. The first factor, or the binomial, gives you 
a solution. The second factor, the trinomial, does not give you a solution. (If 
you can’t remember how to factor these cubics, turn to Chapter 10.)

If x3 – a3 = 0, then x3 – a3 = (x – a)(x2 + ax + a2) = 0 and x = a is the only 
solution. Likewise, if x3 + a3 = 0, then (x + a)(x2 – ax + a2) = 0 and x = –a is the 
only solution. The reason you have only one solution for each of these cubics 
is because x2 + ax + a2 = 0 and x2 – ax + a2 = 0 have no real solutions. The 
trinomials can’t be factored, and the quadratic formula gives you imaginary 
solutions. (See Chapter 13 for information on imaginary results.)

The key to solving cubic equations that have two terms that are both cubes 
is in recognizing that that’s what you have.

 Solve for x in x3 – 8 = 0.

 1. Factor first.

  The factorization is x3 – 8 = (x – 2)(x2 + 2x + 4).

 2. Apply the multiplication property of zero (MPZ).

  If (x – 2)(x2 + 2x + 4) = 0, then x – 2 = 0 or x2 + 2x + 4 = 0.

Only the first equation, x – 2 = 0, has an answer: x = 2. The other equation 
doesn’t have any numbers that satisfy it. There’s only the one solution.

The next two examples show you some different twists to these special cubic 
equations.

 Solve for y in 27y3 + 64 = 0 using factoring. The factorization here is 
27y3 + 64 = (3y + 4)(9y2 – 12y + 16). The first factor offers a solution, so set 

 3y + 4 equal to zero to get 3y = –4 or .
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 Solve for a in 8a3 – (a – 2)3 = 0 using factoring.

The factorization here works the same as factorizations of the difference 
between perfect cubes. It’s just more complicated because the second term 
is a binomial:

8a3 – (a – 2)3 = [2a – (a – 2)][4a2 + 2a(a – 2) + (a – 2)2] = 0

Simplify inside the first bracket by distributing the negative and you get

[2a – (a – 2)] = [2a – a + 2] = [a + 2]

Setting the first factor equal to 0, you get

a + 2 = 0

a = –2

As usual, the second factor doesn’t give you a real solution, even if you 
distribute, square the binomial, and combine all the like terms.

Working with the not-so-perfectly cubed
When you have a cubic equation consisting of just two terms, you can factor 
the terms if they’re both perfect cubes. But what if the variable is cubed 
and the other term is a constant that’s not a perfect cube? Are you stuck? 
Absolutely not — as long as you’re willing to work with the irrational.

 The solution of the cubic equation ax3 – b = 0 is , and the solution of the 

 cubic equation ax3 + b = 0 is .

The cube roots are irrational numbers when you don’t have perfect cubes 
under the radical. Irrational numbers have decimals that go on forever 
without repeating.

 Solve for x in the equation 5x3 – 4 = 0.

According to the rule, the answer is , which is about 0.9283177667 and 

so on. If you prefer not dealing with a special rule to solve these equations, 
just use a rule something like the square root rule (see Chapter 13), except 
take a cube root instead of a square root. Rewrite the original equation as 
5x3 = 4. Then divide each side of the equation by 5 and take the cube root of 
each side. Both positive and negative numbers have cube roots, so it doesn’t 
matter if you have a negative under the radical.
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Going for the greatest common factor
Another type of cubic equation that’s easy to solve is one in which you can 
factor out a variable greatest common factor (GCF), leaving a second factor 
that is linear or quadratic (first or second degree). You apply the MPZ and 
work to find the solutions — usually three of them.

Factoring out a first-degree variable GCF
When the terms of a three-term cubic equation all have the same first-degree 
variable as a factor, then factor that out. The resulting equation will have the 
variable as one factor and a quadratic expression as the second factor. The 
first-degree variable will always give you a solution of 0 when you apply the 
MPZ. If the quadratic has solutions, you can find them using the methods in 
Chapter 13.

 Solve for x in x3 – 4x2 – 5x = 0.

 1. Determine that each term has a factor of x and factor that out.

  The GCF is x. Factor to get x(x2 – 4x – 5) = 0.

  You’re all ready to apply the MPZ when you notice that the second 
factor, the quadratic, can be factored. Do that first and then use the MPZ 
on the whole thing.

 2. Factor the quadratic expression, if possible.

  x(x2 – 4x – 5) = x(x – 5)(x + 1) = 0

 3. Apply the MPZ and solve.

  Setting the individual factors equal to 0, you get x = 0, x – 5 = 0, or 
x + 1 = 0. This means that x = 0 or x = 5 or x = – 1.

 4. Check the solutions in the original equation.

  If x = 0, then 03 – 4(0)2 – 5(0) = 0 – 0 – 0 = 0.

  If x = 5, then 53 – 4(5)2 – 5(5) = 125 – 4(25) – 25 = 125 – 100 – 25 = 0.

  If x = –1, then (–1)3 – 4(–1)2 – 5(–1) = –1 – 4(1) + 5 = –1 – 4 + 5 = 0.

  All three work!

 Solve for z in z3 + z2 + z = 0.

 1. Determine that each term has a factor of z and factor that out.

  Again, there’s a common factor, and this time it’s z. Factoring the z out, 
the equation reads z(z2 + z + 1) = 0.
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 2. Factor the quadratic, if possible.

  This is where you get stuck. Even though you have factoring or the 
quadratic formula available to find solutions for z2 + z + 1 = 0, you find 
that, not only doesn’t the quadratic factor, but the solutions are imaginary. 
So the only solution is x = 0.

Factoring out a second-degree greatest common factor
Just as with first-degree variable greatest common factors, you can also 
factor out second-degree variables (or third-degree, fourth-degree, and so 
on). Factoring leaves you with another expression that may have additional 
solutions.

 Solve for w in w3 – 3w2 = 0.

 1. Determine that each term has a factor of w2 and factor that out.

  Factoring out w2, you get w3 – 3w = w2(w – 3) = 0.

 2. Use the MPZ.

  w2 = 0 or w – 3 = 0.

 3. Solve the resulting equations.

  Solving the first equation involves taking the square root of each side of 
the equation. This process usually results in two different answers — the 
positive answer and the negative answer. However, this isn’t the case 
with w2 = 0 because 0 is neither positive nor negative. So there’s only 
one solution from this factor: w = 0. And the other factor gives you a 
solution of w = 3. So, even though this is a cubic equation, there are only 
two solutions to it.

 Solve for t in 9t3 + 108t2 + 288t = 0. Factor out the greatest common factor. The 
greatest common factor of the three terms is 9t. Factor to get

9t3 + 108t2 + 288t = 9t(t2 + 12t + 32) = 0

You see that the trinomial inside the parentheses can be factored, giving you

9t(t + 4)(t + 8) = 0

Solve the equation using the MPZ: 9t= 0, t + 4 = 0, or t + 8 = 0. This means that 
t = 0, t = – 4, or t = –8.
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Grouping cubes
Grouping is a form of factoring that you can use when you have four or more 
terms that don’t have a single greatest common factor. These four or more 
terms may be grouped, however, when pairs of the terms have factors in 
common. The method of grouping is covered in Chapter 8. I give you one 
example here, but turn to Chapter 8 for a more complete explanation.

 Solve for x in x3 + x2 – 4x – 4 = 0.

 1. Use grouping to factor, taking x2 out of the first two terms and –4 out 
of the last two terms. Then factor (x + 1) out of the newly created 
terms.

  x3 + x2 – 4x – 4 = x2(x + 1) – 4(x + 1) = (x + 1)(x2 – 4) = 0

 2. The second factor is the difference between two perfect squares and 
can also be factored.

  (x + 1)(x2 – 4) = (x + 1)(x – 2)(x + 2) = 0

 3. Solve using the MPZ.

  x + 1 = 0, x – 2 = 0, or x + 2 = 0, which means that x = –1, x = 2, or x = –2.

There are three different answers in this case, but you sometimes get just 
one or two answers.

Solving cubics with integers
If you can’t solve a third-degree equation by finding the sum or difference 
of the cubes, factoring, or grouping (see Chapter 8), you can try one more 
method that finds all the solutions if they happen to be integers. Cubic 
equations could have one, two, or three different integers that are solutions. 
Having all three integral solutions generally only happens if the coefficient 
(multiplier) on the third-degree term is a 1. Just because the multiplier on 
the term to the third power is 1 doesn’t guarantee that the answers are 
integers, but it’s more likely to be so if that’s the case. If the coefficient on 
the term with the variable raised to the third power isn’t a 1, then at least 
one of the solutions may be a fraction. Synthetic division (see the “Dividing 
Synthetically” section, later in this chapter) can be used to look for solutions. 
You also find information on synthetic division used for factoring in Chapter 10.

 Find the solutions for x3 – 7x2 + 7x + 15 = 0 using the method of integer factors. 
To find the solutions when there are all integer solutions, follow these steps:
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 1. Write the cubic equation in decreasing powers of the variable. Look 
for the constant term and list all the numbers that divide that number 
evenly (its factors). Remember to include both positive and negative 
numbers.

  In the cubic x3 – 7x2 + 7x + 15 = 0 the equation is in decreasing powers, 
and the constant is 15. The list of numbers that divides 15 evenly is 
±1, ±3, ±5, and ±15. This is a long list, but you know that somehow or 
another the factors of the cubic have to multiply to get 15.

 2. Find a number from the list that makes the equation equal 0.

  Choose a 3 for your first guess. Trying x = 3, (3)3 – 7(3)2 + 7(3) + 15 = 
27 – 63 + 21 + 15 = 63 – 63 = 0. It works!

  Check out the synthetic division process in Chapter 10 for another way 
of evaluating the cubic.

 3. Divide the constant by that number.

  The answer to that division is your new constant. In the example, divide 
the original 15 by 3 and get 5. That’s your new constant.

 4. Make a list of numbers that divide the new constant evenly.

  Make a new list for the new constant of 5. The numbers that divide 5 
evenly are: ±1 and ±5. Two numbers are much nicer than four.

 5. Find a number from the new list that checks (makes the equation 
equal 0).

  Trying x = 1, you get (1)3 – 7(1)2 + 7(1) + 15 = 1 – 7 + 7 + 15 = 23 – 7 = 16. 
That doesn’t work, so try another number from the list.

  Trying x = 5, (5)3 – 7(5)2 + 7(5) + 15 = 125 – 175 + 35 + 15 = 175 – 175 = 0. 
So, it works.

 6. Divide the new constant by the newest answer.

  That answer gives you the choices for the last solution.

  Dividing the new constant of 5 by 5, you get 1. The only things that 
divide that evenly are 1 or –1. Because you already tried the 1, and it 
didn’t work, it must mean that the –1 is the last solution.

  When x = –1, you get (–1)3 – 7(–1)2 + 7(–1) + 15 = –1 – 7 – 7 + 15 = 0.

  That does work, of course, so your solutions for x3 – 7x2 + 7x + 15 = 0 are 
x = 3, x = 5, or x = –1. This also means that the factored version of the 
cubic is (x – 3)(x – 5)(x + 1) = 0.

Whew! That’s quite a process. Here’s one more example.
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 Solve for y in y3 – 4y2 + 5y – 2 = 0.

 1. The equation is already in decreasing powers of the variable. Making 
a list of the numbers that divide the constant , –2, evenly, you get a 
short list: ±1 and ±2.

 2. Find a number from the list that makes the equation equal 0.

  Trying y = 1, (1)3 – 4(1)2 + 5(1) – 2 = 1 – 4 + 5 – 2 = 6 – 6 = 0. This worked. 
The only disadvantage is that when you try to make the constant 
smaller, it doesn’t help in this case. Dividing by 1 doesn’t change the 
value. At least, it’s a short list.

 3. Try another number.

  Trying y = –1, (–1)3 – 4(–1)2 + 5(–1) – 2 = –1 – 4 – 5 – 2 = –1 – 11 = –12. 
This one didn’t work, so try a 2.

  Trying y = 2, (2)3 – 4(2)2 + 5(2) – 2 = 8 – 16 + 10 – 2 = 18 – 18 – 0. The 2 
works. So, if you divide the constant 2 by this 2, you get 1. The only 
factors for 1 are ±1. You already tried 1, and it worked. You tried –1, and 
it didn’t work. This means that the 1 will work again, and you have a 
double root of 1 in this problem.

  The solutions are x = 1, x = 1, or x = 2.

The way a double root or double solution works in these equations is that 
the solutions appear twice in the factored form. If you go backward from the 
MPZ and write the factors that give the solutions to the cubic equation, it 
looks like this:

y3 – 4y2 + 5y – 2 = (y – 1)(y – 1)(y – 2) = 0

Or, showing the double root or solution more distinctly,

(y – 1)(y – 1)(y – 2) = (y – 1)2(y – 2) = 0

Working Quadratic-Like Equations
Some equations with higher powers or fractional powers are quadratic-like, 
meaning that they have three terms and

 ✓ The variable in the first term has an even power (4, 6, 8, . . .) or 

  .

 ✓ The variable in the second term has a power that is half that of the first.

 ✓ The third term is a constant number.
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In general, the format for a quadratic-like equation is: ax2n + bxn + c = 0. Just 
as in the general quadratic equation, the x is the variable and the a, b, and 
c are constant numbers. The a can’t be 0, but the other two letters have no 
restrictions. The n is also a constant and can be anything except 0. For 
example, if n = 3, then the equation would read ax6 + bx3 + c = 0.

To solve a quadratic-like equation, first pretend that it’s quadratic and use 
the same methods as you do for those, and then do a step or two more. The 
extra steps usually involve taking an extra root or raising to an extra power.

Notice that each of the following quadratic-like equations meet all the 
requirements:

 ✓ x4 – 5x2 + 4 = 0

 ✓ y6 + 7y3 – 8 = 0

 ✓ z8 + 7x4 + 6 = 0

 ✓ 

When you recognize that you have a quadratic-like equation, solve it by 
following these steps:

 1. Rewrite the quadratic-like equation as an actual quadratic equation, 
replacing the actual powers with 2 and 1 by doing a substitution.

  Change the letters of the variables so that you don’t confuse the 
rewritten equation with the original.

 2. Factor the new quadratic equation. If the equation doesn’t factor, then 
use the quadratic formula.

 3. Reverse the substitution and replace the original variables.

 4. Use the MPZ to find the solutions.

The highest power of an equation, when it’s a whole number, tells you the 
number of possible solutions; there won’t be more than that number.

 Solve for x in x4 – 5x2 + 4 = 0.

 1. Rewrite the equation, replacing the actual powers with the numbers 2 
and 1.

  Rewrite this as a quadratic equation using the same coefficients (number 
multipliers) and constant.

  Change the letter used for the variable, so you won’t confuse this new 
equation with the original. Substitute q for x2 and q2 for x4:

  q2 – 5q + 4 = 0
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 2. Factor the quadratic equation.

  q2 – 5q + 4 = 0 factors nicely into (q – 4)(q – 1) = 0.

 3. Reverse the substitution and use the factorization pattern to factor the 
original equation.

  Use that same pattern to write the factorization of the original problem. 
When you replace the variable q in the factored form, use x2:

  x4 – 5x2 + 4 = (x2 – 4)(x2 – 1) = 0

 4. Solve the equation using the MPZ.

  Either x2 – 4 = 0 or x2 – 1 = 0. If x2 – 4 = 0, then x2 = 4 and x = ±2. If x2 – 1 = 
0, then x2 = 1 and x = ±1.

This fourth-degree equation did live up to its reputation and have four 
different solutions.

This next example presents an interesting problem because the exponents 
are fractions. But the trinomial fits into the category of quadratic-like, so I’ll 
show you how you can take advantage of this format to solve the equation. 
And, no, the rule of the number of solutions doesn’t work the same way here. 
There aren’t any possible situations where there’s half a solution.

 Solve .

 1. Rewrite the equation with powers of 2 and 1. Substitute q for  and 

  q2 for . (Remember: Squaring  gives you .)

  Rewrite the equation as q2 – 7q + 12 = 0.

 2. Factor.

  This factors nicely into (q – 3)(q – 4) = 0.

 3. Replace the variables from the original equation, using the pattern.

  Replace with the original variables to get .

 4. Solve the equation for the original variable, w.

  

  Now, when you use the MPZ, you get that either  or . 
How do you solve these things?

  Look at . Adding 3 to each side, you get . You can solve 

  for w if you raise each side to the fourth power: . This says 
that w = 81.

  Doing the same with the other factor, if , then  and 

  . This says that w = 256.
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 5. Check the answers.

  If w = 81, .

  If w = 256, .

  They both work.

Negative exponents are another interesting twist to these equations, as you 
see in the next example.

 Solve for the value of x in 2x–6 – x–3 – 3 = 0.

 1. Rewrite the equation using powers of 2 and 1. Substitute q for x–3 and 
q2 for x–6.

  Rewrite the equation as 2q2 – q – 3 = 0.

 2. Factor.

  This factors into (2q – 3)(q + 1) = 0.

 3. Go back to the original variables and powers.

  Use this pattern. Factor the original equation to get:

  (2x–3 – 3)(x–3 + 1) = 0

 4. Solve.

  Use the MPZ. The two equations to solve are 2x–3 –3 = 0 and x–3 + 1 = 0. 
These become 2x–3 = 3 and x–3 = –1. Rewrite these using the definition of 
negative exponents:

  

Physical challenges
One of the most famous musical composers 
was Beethoven. His accomplishments were 
even more incredible when you realize that 
he was deaf for a good deal of his life and still 
continued to produce musical masterpieces.

A similar situation occurred with the math-
ematician Leonhard Euler. Euler was one of 
the most prolific mathematicians of his gen-
eration and produced more than half his work 
after he had gone blind. He dictated his findings 

from memory. Euler showed that a proposed 
formula for creating prime numbers didn’t really
work. Fermat conjectured that  always 
produced a prime number. Euler showed that 
the formula failed when x = 5. (When x = 1, the 
formula produces the prime number 5; when 
x = 2, the result is 17; when x = 3, the result is 
257; and when x = 4, the number result is 65,537. 
Remember: This is before computers or even 
calculators.)
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  So the two equations can be written  and . Cross-multiply 

  in each case and get 3x3 = 2 and x3 = –1. Divide the first equation through 
by 3 to get the x3 alone, and then take the cube root of each side to solve 
for x:

   or 

Rooting Out Radicals
Some equations have radicals in them. You change those equations to linear 
or quadratic equations for greater convenience when solving. Radical equations 
crop up when doing problems involving distance in graphing points and 
lines. Included in distance problems are those involving the Pythagorean 
theorem — that favorite of Pythagoras that describes the relationship 
between the sides of a right triangle.

The basic process that leads to a solution of equations involving a radical 
is just getting rid of that radical. Removing the radical changes the 
problem into something more manageable, but the change also introduces 
the possibility of a nonsense answer or an error. Checking your answer is 
even more important in the case of solving radical equations. As long as 
you’re aware that errors can happen, then you know to be especially watchful. 
Even though this may seem a bit of a hassle — that these nonsense things 
come up — getting rid of the radical is still the most efficient and easiest way 
to handle these equations.

Powering up both sides
The main method to use when dealing with equations that contain radicals 
is to change the equations to those that do not have radicals in them. You 
accomplish this by raising the radical to a power that changes the fractional 
exponent (representing the radical) to a 1. If the radical is a square root, 

which can be written as a power of , the radical is raised to the second 

power. If the radical is a cube root, which can be written as a power of , 

then the radical is raised to the third power. (Turn to Chapter 4 if you need 
to review exponents and raising to powers.)

When the fractional power is raised to the reciprocal of that power, the two 
exponents are multiplied together, giving you a power of 1:
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Raising to powers clears out the radicals, but problems can occur when the 
variables are raised to even powers. Variables can stand for negative numbers 
or values that allow negatives under the radical, which isn’t always apparent 
until you get into the problem and check an answer. Instead of going on with 
all this doom and gloom and the problems that occur when powering up both 
sides of an equation, let me show you some examples of how the process 
works, what the pitfalls are, and how to deal with any extraneous solutions.

 Solve the equation for the value of y: .

 1. Get the radical by itself on one side of the equal sign.

  So, if you’re solving for y in , add 7 to each side to get the 
radical by itself on the left. Doing that gives you .

 2. Square both sides of the equation to remove the radical.

  Squaring both sides of the example problem gives you  or 
4 – 5y = 49.

 3. Solve the resulting linear equation.

  Subtract 4 from each side to get –5y = 45, or y = –9.

  It may seem strange that the answer is a negative number, but, in the 
original problem, the negative number is multiplied by another negative, 
which makes the result under the radical a positive number.

 4. Check your answer. (Always start with the original equation.)

  If y = –9, then  or . That leads to 
  . It checks!

 Solve for x in .

 1. Get the radical term by itself on one side of the equation.

  The first step is to add 3 to each side: .

 2. Square both sides of the equation. (You could divide both sides by 2, 
but I want to show you an important rule when squaring both sides.)

  One of the rules involving exponents is the square of the product of two 
factors is equal to the product of each of those same factors squared: 
(a · b)2 = a2 · b2.
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  Squaring the left side, .

  Squaring the right side, 122 = 144.

  So you get the new equation: 4(x + 15) = 144.

 3. Solve for x in the new, linear equation.

  Distribute the 4, first: 4x + 60 = 144.

  Subtract 60 from each side, and you get 4x = 84 or x = 21.

 4. Check your work.

  

  

Next I show you an example where you find two different solutions, but only 
one of them works.

 Solve for z in .

 1. Get the radical by itself on the left.

  Subtracting 7 from each side, you end up with the radical on the left and 
a binomial on the right.

  

 2. Square both sides of the equation.

  The only thing to watch out for here is squaring the binomial correctly.

  

  z – 1 = z2 –14z + 49

 3. Solve the equation.

  This time you have a quadratic equation. Move everything over to the 
right, so that you can set the equation equal to 0. To do this, subtract z 
from each side and add 1 to each side.

  0 = z2 – 15z + 50

  The right side factors, giving you (z – 5)(z – 10) = 0. Using the 
multiplication property of zero, you get either z = 5 or z = 10,

 4. Check your answer.

  Check these carefully because impossible answers often show up — 
especially when you create a quadratic equation by the squaring-each-side 
process.

  If z = 5, then . The 5 doesn’t work.

  If z = 10, then . The 10 does work.
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The only solution is that z equals 10. That’s fine. Sometimes these problems 
have two answers, sometimes just one answer, or sometimes no answer at 
all. The method works — you just have to be careful.

Squaring both sides twice
Just when you thought things couldn’t get any better, up comes a situation 
where you have to get to square both sides of an equation not once, but 
twice! This doubling your fun happens when you have more than one radical 
in an equation and getting them alone on one side of the equation isn’t possible.

As you go about solving these particular types of problems, you can’t do 
anything to isolate each radical term by itself on one side of the equation, 
and you have to square terms twice to get rid of all the radicals. The procedure 
is a little involved, but nothing too horrible. You see how to go about solving 
such a problem with the next example.

 Solve for the value of x in the equation  by following these 
steps:

 1. Get one radical on each side of the equal sign.

  Even though you can’t get either radical by itself, having them on either 
side of the equation helps. So subtract the  from each side to put it 
on the right with the 12: .

 2. Square both sides of the equation.

  On the left side, squaring involves the rule about exponents where 
you’re squaring a product. (This rule is covered in Chapter 4 and in the 
preceding section.) On the right side, squaring involves squaring a 
binomial (using FOIL).

  

  
  

 3. Simplify, and get the remaining radical by itself on one side of the 
equation.

  Simplifying involves combining the 144 and –3, subtracting x from each 
side of the equation, and then subtracting 141 from each side.
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 4. Look for a common factor in all the terms of the equation.

  You can make things a bit easier to deal with by dividing each side by 
the greatest common factor, 3:

  

  

  Now you can square both sides more easily (the squares of the numbers 
are smaller).

 5. Square both sides of the equation.

  

  25x2 – 150x + 225 = 64(x – 3)

  25x2 – 150x + 225 = 64x – 192

  These are still some rather large numbers.

 6. Get everything on one side of the equation and factor.

  You can move everything to the left and see whether you can factor 
anything out to make the numbers smaller. In this example, you can 
subtract 64x from each side and add 192 to each side.

  25x2 – 214x + 417 = 0

  This isn’t the easiest quadratic to factor, but it does factor, giving you 

  (25x – 139)(x – 3) = 0. So, you have two solutions. Either  or x = 3.

 7. Plug in the solutions to check your answer.

  If , then . What are the chances of this 

  being a true statement? You can get out your trusty calculator to see if it 
works.

  

  After all that, the answer doesn’t even work! Hope for the 3.

  If x = 3, then . Oh, good!

Ready for another? (Just kidding.)
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Solving Synthetically
Cubic equations that have nice integer solutions make life easier. But how 
realistic is that? Many answers to cubic equations that are considered to be 
rather nice are actually fractions. And what if you want to broaden your 
horizons beyond third-degree polynomials and try fourth- or fifth-degree 
equations or higher? Trying out guesses of answers until you find one that 
works can get pretty old pretty fast.

A method known as synthetic division can help out with all these concerns 
and lessen the drudgery. The division looks a little strange — it’s synthesized. 
Synthesize means to bring together separate parts. That’s what a synthesizer 
does with music. So turn on the Beethoven and get going.

Synthetic division is a short-cut division process. It takes the coefficients on 
all the terms in an equation and provides a method for finding the answer to 
a division problem by only multiplying and adding. It’s really pretty neat. I 
use synthetic division to help find both integer solutions and fractional 
solutions for polynomial equations.

Earlier in this chapter, in the “Solving cubics with integers” section, I show 
you how to choose possible solutions for cubic equations whose lead 
coefficient is a 1. This section expands your capabilities of finding rational 
solutions. You see how to solve equations with a degree higher than 3, and 
you see how to include equations whose lead coefficient is something other 
than 1.

Refer to Chapter 10 for the specific steps used in synthetic division. In this 
section, I concentrate on finding the solutions of the polynomials and just 
ignore the factoring part.

Here’s the general process to use:

 1. Put the terms of the equation in decreasing powers of the variable.

 2. List all the possible factors of the constant term.

 3. List all the possible factors of the coefficient of the highest power of 
the variable (the lead coefficient).
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 4. Divide all the factors in Step 2 by the factors in Step 3.

  This is your list of possible rational solutions of the equation.

 5. Use synthetic division to check the possibilities.

 Find the solutions of the equation: 2x4 + 13x3 + 4x2 = 61x + 30.

 1. Put the terms of the equation in decreasing powers of the variable.

  2x4 + 13x3 + 4x2 – 61x – 30 = 0

 2. List all the possible factors of the constant term.

  The constant term –30 has the following factors: ±1, ±2, ±3, ±5, ±6, ±10, 
±15, and ±30.

 3. List all the possible factors of the coefficient of the highest power of 
the variable (the lead coefficient).

  The lead coefficient 2 has factors ±1 and ±2.

 4. Divide all the factors in Step 2 by the factors in Step 3. This is your list 
of possible rational solutions of the equation.

  Dividing the factors of –30 by +1 or –1 doesn’t change the list of factors. 
Dividing by +2 or –2 adds fractions when the number being divided is 
odd — the even numbers just provide values already on the list. So the 

  complete list of possible solutions is ±1, ±2, ±3, ±5, ±6, ±10, ±15, ±30, , 

  , , and .

 5. Use synthetic division to check the possibilities.

  I first try the number 2 as a possible solution. The final number in 
the synthetic division is the value of the polynomial that you get by 
substituting in the 2, so you want the number to be 0.

  

  

  The 2 is a solution because the final number (what you get in evaluating 
the expression for 2) is equal to 0.

  Now look at the third row and use the lead coefficient of 2 and final 
entry of 15 (ignore the 0). You can now limit your choices to only factors

  of +15 divided by factors of 2. The new, revised list is: ±1, ±3, ±5, ±15, , 

  , , and .
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  I would probably try only integers before trying any fractions, but I want 
you to see what using a fraction in synthetic division looks like. I choose 

  to try . Use only the numbers in the last row of the previous division.

  

  

  

  Such a wise choice! The number worked and is a solution. You could go 
on with more synthetic division, but, at this point, I usually stop. The 
three numbers in the bottom row represent a quadratic trinomial. Write 
out the trinomial, factor it, use the MPZ, and find the last two solutions.

  The quadratic equation represented by that last row is: 2x2 + 16x + 30 = 0.

  First factor 2 out of each term. Then factor the trinomial: 2(x2 + 8x + 15) 
= 2(x + 3)(x + 5) = 0.

  The solutions from the factored trinomial are x = –3 and x = –5. Add 
  these two solutions to x = 2 and , and you have the four solutions 

of the polynomial.

  What? You’re miffed! You wanted me to finish the problem using 
synthetic division — not bail out and factor? Okay. I’ll pick up where I 
left off with the synthetic division and show you how it finishes:

  

  

  And, finally:
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Chapter 15

Rectifying Inequalities
In This Chapter
▶ Denoting the differences with interval notation

▶ Understanding inequalities

▶ Looking at linear inequalities

▶ Investigating quadratic and rational inequalities

▶ Attacking absolute-value equations and inequalities

Equality: a powerful word in social, political, and humanitarian arenas. 
And, it’s no less powerful as far as mathematics is concerned; algebra 

wouldn’t have much without equality. Fortunately, algebra knows how to 
deal with inequality, too (far better than in those other arenas). Equality is 
an important tool in mathematics and science. This chapter introduces you 
to algebraic inequality, which isn’t exactly the opposite of equality. You could 
say that algebraic inequality is a bit like equality but softer. You use inequal-
ity for comparisons. Inequality is used when determining if something is posi-
tive or negative, bigger than or smaller than, between numbers, or infinite. 
Inequality allows you to sandwich expressions between values on the low 
end and the high end.

Algebraic inequalities show relationships between a number and an expres-
sion or between two expressions. One expression is bigger or smaller than 
another for certain values of a given variable. For example, it could be that 
Janice has at least four more than twice as many cats as Eloise. There are lots 
of scenarios that can occur if it’s at least and not exactly as many.

Equations (statements with equal signs) are one type of relation — two things 
are exactly the same, it says. The inequality relation is a bit less precise. One 
thing can be bigger by a lot or bigger by a little, but there’s still that relation-
ship between them — that one is bigger than the other.

Many operations involving inequalities work the same as operations on 
equalities and equations, but you need to pay attention to some important 
differences that I show you in this chapter.

21_559642-ch15.indd   24321_559642-ch15.indd   243 4/16/10   11:09 AM4/16/10   11:09 AM



244 Part III: Working Equations 

Translating between Inequality 
and Interval Notation

Algebraic operations and manipulations are performed on inequality state-
ments while they’re in an inequality format. You see the inequality state-
ments written using the following notations:

 ✓ <: Less than

 ✓ >: Greater than

 ✓ ≤: Less than or equal to

 ✓ ≥: Greater than or equal to

To keep the direction straight as to which way to point the arrow, just 
remember that the itsy-bitsy part of the arrow is next to the smaller (itsy-
bitsier) of the two values.

Inequality statements have been around for a long time. The symbols are 
traditional and accepted by mathematicians around the world. But (weren’t 
you just expecting that qualifying word?), as well as the traditional inequal-
ity symbols work, they still have some competition — especially in the 
publishing and higher-math world. This competition is in the form of inter-
val notation — another way of writing inequalities. Interval notation uses 
parentheses and brackets instead of inequality symbols, and it introduces 
the infinity symbol.

Intervening with interval notation
Before defining how interval notation is used, let me first give a couple of 
examples in terms of writing the same statement in both inequality and inter-
val notation:

 ✓ x > 8 is written (8, ∞).

 ✓ x < 2 is written (–∞, 2).

 ✓ x ≥ –7 is written [–7, ∞).

 ✓ x ≤ 5 is written (–∞, 5].

 ✓ –4 < x ≤ 10 is written (–4, 10].
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So, now that you’ve seen interval notation in action, let me give you the rules 
for using it.

 Interval notation expresses inequality statements with the following rules:

 ✓ Parentheses to show less than or greater than (but not including)

 ✓ Brackets to show less than or equal to or greater than or equal to

 ✓ Parentheses at both infinity or negative infinity

 ✓ Numbers and symbols written in the same left-to-right order as a 
number line

 Here are some examples of writing inequality statements using interval 
notation:

 ✓ –3 ≤ x ≤ 11 becomes [–3, 11].

 ✓ –4 ≤ x < –3 becomes [–4, –3).

 ✓ x > –9 becomes (–9, ∞).

 ✓ 5 < x becomes (5, ∞). Notice that the variable didn’t come first in the 
inequality statement, and saying 5 must be smaller than some numbers 
is the same as saying that those numbers are bigger (greater) than 5, 
or x > 5.

 ✓ 4 < x < 15 becomes (4, 15). Here’s my biggest problem with interval nota-
tion: The notation (4, 15) looks like a point on the coordinate plane, not 
an interval containing numbers between 4 and 15. You just have to be 
aware of the context when you come across this notation.

 Now here are some examples of writing interval-notation statements using 
inequalities:

 ✓ [–8, 5] becomes –8 ≤ x ≤ 5.

 ✓ (–∞, 0) becomes x ≤ 0.

 ✓ (44, ∞) becomes x > 44.

Grappling with graphing inequalities
One of the best ways of describing inequalities is with a graph. It’s the old “a 
picture is worth a thousand words” business. A graph or picture isn’t always 
convenient, but it certainly gets the message across. Graphs in the form of 
number lines are a great help when solving quadratic inequalities (see the 
“Solving Quadratic and Rational Inequalities” section, later in this chapter).
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A number-line graph of an inequality consists of numbers representing the 
starting and ending points of any interval described by the inequality and 
symbols above the numbers indicating whether the number is to be included 
in the answer. The symbols used with inequality notation are hollow circles 
and filled-in circles. The symbols used with interval notation are the same 
parentheses and brackets used in the statements.

 Write the statement “all numbers between –3 and 4, including the 4” in 
inequality notation and interval notation. Then graph the inequality using 
both types of notation.

 ✓ The inequality notation is –3 < x ≤ 4. The graph is shown in Figure 15-1.

 ✓ The interval notation is (–3, 4]. The graph is shown in Figure 15-2.

 

Figure 15-1: 

A graph 
of the 

inequality.
 

–3 4

 

Figure 15-2: 

A graph of 
the interval.

 

–3 4
](

 Write the statement “all numbers greater than or equal to –5” in inequality 
notation and interval notation. Then graph the inequality using both types of 
notation.

 ✓ The inequality notation is x ≥ –5. The graph is shown in Figure 15-3.

 ✓ The interval notation is [–5, ∞). The graph is shown in Figure 15-4.

 

Figure 15-3: 

A graph 
of the 

inequality.
 

–5
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Figure 15-4: 

A graph of 
the interval.

 

–5
[

Operating on Inequalities
There are many similarities between working with inequalities and working 
with equations. The balancing part still holds. It’s when operations like mul-
tiplying each side by a number or dividing each side by a number come into 
play that there are some differences.

 The rules for operations on inequalities are given here. I’m showing the rules 
only for less than (<), but they also apply to greater than (>):

 ✓ If a < b, then a + c < b + c and a – c < b – c. The direction of the inequality 
stays the same.

 ✓ If a < b and c is positive, then a × c < b × c and . The direction of the 
inequality stays the same.

 ✓ If a < b and c is negative, then a × c > b × c and . When multiplying 

  or dividing with a negative number, the direction of the inequality 
symbol changes.

 ✓ If , then . The inequality symbol changes when you flip (write 
  the reciprocals of) the fractions.

Adding and subtracting inequalities
Adding and subtracting values within inequalities works exactly the same as 
with equations. You keep things balanced. Let me show you how this works.

Start with an inequality statement that you can tell is true by looking at it, 
such as 6 is less than 10: 6 < 10. What happens if you add the same thing to 
each side? You can do that to an equation and not have the truth change, but 
what about an inequality? Add 4 to each side:

6 + 4 < 10 + 4

    10 < 14
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“Ten is less than 14” is still a true statement. This demonstration isn’t enough 
to prove anything, but it does illustrate a rule that is true: When you add any 
number to both sides of an inequality, the inequality is still correct or true.

Similarly, when you subtract any number from both sides of an inequality, 
the inequality is still correct or true. Starting with 10 < 14, subtract 2 from 
each side.

10 – 2 < 14 – 2

        8 < 12

Eight is less than 12, so it looks as if adding and subtracting are okay. But you 
stayed with positive numbers and positive results. How about adding a nega-
tive number to each side that makes both sides negative? Starting with 8 < 12, 
add –24 to each side.

8 + (–24) < 12 + (–24)

         –16 < –12

This is still true: –16 is farther from 0 than –12.

Multiplying and dividing inequalities
Now come the tricky operations. Multiplication and division add a new 
dimension to working with inequalities.

When multiplying or dividing both sides of an inequality by a positive 
number, the inequality remains correct or true. When multiplying or dividing 
both sides by a negative number, the inequality sign has to be reversed — 
point in the opposite direction — for the inequality to be correct or true. You 
can never multiply each side by 0 — that always makes it false (unless you 
have an or equal to). And, of course, you can never divide anything by 0.

Start with positive numbers, such as 20 and 12:

20 > 12

Multiply each side by 4:

20 × 4 > 12 × 4

      80 > 48
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It’s still true. So is there a problem?

You can see the complication with my new inequality, 10 > –3. Multiply each 
side by –2:

10(–2) > –3(–2)

     –20 > 6

Oops! A negative can’t be greater than a positive:

–20 < 6

Making the inequality untrue is bad news. The good news is that turning the 
inequality symbol around is a relatively easy way to fix this.

 Whenever you multiply each side of an inequality by a negative number (or 
divide by a negative number), turn the inequality symbol to face the opposite 
direction.

Now, for division, take 18 > –36 and divide each side by –9. Make sure to 
switch the inequality symbol from a greater-than sign to a less-than sign:

 –2 < 4

 In the case of inequalities, you can neither divide nor multiply by 0. Of course, 
dividing by 0 is always forbidden, but you can usually multiply expressions by 
0 (and get a product of 0). However, you can’t multiply inequalities by 0.

Look at what happens when each side of an inequality is multiplied by 0:

      3 < 7

0 × 3 < 0 × 7

      0 < 0

No! It’s just not true: Zero is not less than itself, nor is it greater than itself. 
So, to keep 0 from getting an inferiority or superiority complex, don’t use it 
to multiply inequalities. If you have 3 ≤ 7 and multiply each side by 0, you get 
0 ≤ 0, which is true in the one case.

21_559642-ch15.indd   24921_559642-ch15.indd   249 4/16/10   11:09 AM4/16/10   11:09 AM



250 Part III: Working Equations 

Solving Linear Inequalities
Linear inequalities, like linear equations, are those statements in which the 
exponent on the variable is no more than 1. Solving linear inequalities is 
much like solving linear equations. The main thing to remember is to reverse 
the inequality symbol when you multiply or divide by a negative number — 
and only then. You also need to keep in mind that you don’t get just a single 
answer to linear inequalities but a whole bunch of answers — an infinite 
number of answers. The answer or solution could be something like x is 
bigger than 3; any number bigger than 3 can replace the x and make the 
inequality a true statement.

Now let me show you a linear inequality that needs to be solved.

 Solve for the values of z in –2(3z + 4) > 10.

In this case, the only variable term is already on the left. A usual next step 
would be to distribute the –2 over the terms on the left. But, because 2 divides 
10 evenly, an alternate step lets you avoid having to do the distribution.

 This is a good option when the division doesn’t result in any fractions; other-
wise, you should go ahead and distribute.

 1. Divide each side by –2.

  Be sure to switch the inequality symbol around.

  

           3z + 4 < –5

 2. Subtract 4 from each side.

  3z + 4 – 4 < –5 – 4

              3z < –9

 3. Divide each side by 3.

  

      z < –3
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 4. Check.

  Let z = –9. Then

  –2([3(–9)] + 4) > 10, or –2(–27 + 4) > 10

              –2(–23) > 10, or 46 > 10

  It checks.

 When checking inequalities, you’re mainly checking to be sure that the 
inequality symbol is facing in the right direction.

Working with More Than Two Expressions
One big advantage that inequalities have over equations is that they can be 
expanded or strung out into compound statements, and you can do more 
than one comparison at the same time. Look at this statement:

2 < 4 < 7 < 11 < 12

You can create another true statement by pulling out any pair of numbers 
from the inequality, as long as you write them in the same order. They don’t 
even have to be next to one another. For example

4 < 12 2 < 11 2 < 12

One thing you can’t do, though, is to mix up inequalities, going in opposite 
directions, in the same statement. You can’t write 7 < 12 > 2.

The operations on these compound inequality expressions use the same 
rules as for the linear expressions (refer to the “Operating on Inequalities” 
section, earlier in this chapter). You just extend them to acting on each sec-
tion or part.

Here’s the first statement:

2 < 4 < 7 < 11 < 12

Add 5 to each section:

7 < 9 < 12 < 16 < 17
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Multiply each by –1, and reverse the inequality, of course:

–7 > –9 > –12 > –16 > –17

 Solve for the values of x in –3 ≤ 5x + 2 < 17.

 1. The goal is to get the variable alone in the middle. Start by subtract-
ing 2 from each section.

  –3 – 2 ≤ 5x + 2 – 2 < 17 – 2

  –5 ≤ 5x < 15

 2. Now divide each section by 5.

  The number 5 is positive, so don’t turn the inequality signs around.

  

  –1 ≤ x < 3

  This says that x is greater than or equal to –1 while, at the same time, 
it’s less than 3. Some possible solutions are: 0, 1, 2, 2.9.

 3. Check the problem using two of these possibilities.

  If x = 1, then –3 < 5(1) + 2 < 17, or –3 < 7 < 17. That’s true.

  If x = 2, then –3 ≤ 5(2) + 2 < 17, or –3 ≤ 12 < 17. This also works.

Solving Quadratic and 
Rational Inequalities

A quadratic inequality is an inequality that involves a variable term with a 
second-degree power. When solving quadratic inequalities, the rules of addi-
tion, subtraction, multiplication, and division of inequalities still hold, but the 
final step in the solution is different. Working out these quadratic inequalities 
is almost like a puzzle that falls neatly into place as you work on it. The best 
way to describe how to solve a quadratic inequality is to use an example and 
put the rules right in the example. A rational inequality involves a fraction 
with an attitude. You deal with the attitude using techniques similar to those 
used with quadratic inequalities.

 Solve for x in x2 + 3x > 4.
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The answers to these inequalities can go in more than one direction — the 
numbers can be bigger than one number or smaller than another number or 
both — so I’m going to demonstrate how the solutions work before showing 
you how to solve them. Start by making some guesses as to what works for x 
in this expression:

 ✓ If x = 2, then (2)2 +3(2) is 4 + 6; 10 > 4, so 2 works.

 ✓ If x = 5, then (5)2 + 3(5) is 25 + 15; 40 > 4 so 5 works. It looks like the 
bigger, the better.

 ✓ If x = 0, then (0)2 + 3(0) is 0 + 0; 0 is not greater than 4, so, no, 0 doesn’t 
work. But, does anything smaller work? How about negative numbers?

 ✓ If x = –6, then (–6)2 + 3(–6) is 36 – 18; 18 > 4, so, yes, –6 works.

Some negatives work; some positives work. The challenge is to determine 
where those negative and positive numbers are. There’s a method you can 
use to find which work and which don’t work without all this guessing.

 To solve quadratic inequalities, follow these steps:

 1. Move all terms to one side of the inequality symbol so that the terms 
are greater than or less than 0.

 2. Factor, if possible.

 3. Find all values of the factored side that make that side equal to 0.

  These are your critical numbers.

 4. Create a number line listing the values (critical numbers), in order, 
that make the expression equal to 0.

  Leave spaces between the numbers for signs. Determine the signs (posi-
tive and negative) of the factored expression between those values that 
make it equal 0 and write them on the chart.

 5. Determine which intervals give you solutions to the problem.

Now, apply this to the problem.

 1. Move all terms to one side.

  First, move the 4 to the left by subtracting 4 from each side.

        x2 + 3x > 4

  x2 + 3x – 4 > 0
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 2. Factor.

  Factor the quadratic on the left using unFOIL.

  (x + 4)(x – 1) > 0

 3. Find all the values of x that make the factored side equal to 0.

  In this case, there are two values. Using the multiplication property of 
zero, you get x + 4= 0 or x – 1 = 0, which results in x = –4 or x = 1.

 4. Make a number line listing the values from Step 3, and determine the 
signs of the expression between the values on the chart.

  When you choose a number to the left of –4, both factors are negative 
and the product is positive. Between –4 and 1, the first factor is negative 
and the second factor is positive, resulting in a negative product. To the 
right of 1, both factors are positive, giving you a positive product. Just 
testing one of the numbers in the interval tells you what will happen to 
all of them. Figure 15-5 shows you a number line with the critical num-
bers in their places and the signs in the intervals between the points.

 

Figure 15-5: 

A number 
line helps 

you find the 
signs of 

the factors 
and their 

products.
 

–4 1(x + 4)(x – 1)
choose –5

(–5 + 4)(–5 – 1)
(–)(–) = +

(x + 4)(x – 1)
choose –3

(–3 + 4)(–3 – 1)
(+)(–) = –

(x + 4)(x – 1)
choose 4

(4 + 4)(4 – 1)
(+)(+) = +

+ – +

 5. Determine which intervals give you solutions to the problem.

  The values for x that work to make the quadratic x2 + 3x – 4 > 0 posi-
tive are all the negative numbers smaller than –4 down lower to really 
small numbers and all the positive numbers bigger than 1 all the way 
up to really big numbers. The only numbers that don’t work are those 
between –4 and 1. You write your answer as x < –4 or x > 1.

  In interval notation, the answer is (–∞, –4) , (1, ∞). The , symbol is for 
union, meaning everything in either interval (one or the other) works.

In the next example, the end points of the intervals (critical numbers) are 
included in the answer.

 Solve for the values of y in y2 + 15 ≤ 8y.
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 1. Subtract 8y from each side.

  y2 – 8y + 15 ≤ 0

 2. Factor.

  (y – 3)(y – 5) ≤ 0

 3. Find the values of y that make the factored expression equal to 0.

  The numbers you want are 3 and 5.

 4. Make a number line using the values that make the expression equal 
to 0.

  Check for the signs of the factors and their products to determine the 
signs between the critical numbers. You see how to create the sign line 
in Figure 15-6.

 

Figure 15-6: 
Filling in 

the signs 
between 

the critical 
numbers.

 

3 5(x – 3)(x – 5)
choose –1

(–1 – 3)(–1 – 5)
(–)(–) = +

(x – 3)(x – 5)
choose 4

(4 – 3)(4 – 5)
(+)(–) = –

(x – 3)(x – 5)
choose 7

(7 – 3)(7 – 5)
(+)(+) = +

+ – +

 5. Determine which intervals give you solutions to the problem.

  The original statement, y2 + 15 ≤ 8y is true when y2 – 8y + 15 ≤ 0 is equal 
to 0 or less than 0 (negative). So the numbers 3, 5, and all those between 
3 and 5 are solutions of the inequality. The answer is written 3 ≤ y ≤ 5 or, 
in interval notation, [3, 5].

Working without zeros
Setting an inequality equal to 0 works fine as long as you can find numbers 
that work. When the expression has no critical numbers or solutions to set-
ting it equal to 0, then the expression never changes sign. It’s always negative 
or always positive. You only have to determine whether anything solves the 
problem.

For example, the expression x2 + 4 in the inequality x2 + 4 > 0 doesn’t factor. 
And any number you put in for x gives you a positive value on the left. So this 
statement is always positive, and the inequality is true for all numbers.
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Dealing with more than two factors
Even though this section involves problems that are quadratic inequalities 
(inequalities that have at least one squared variable term and a greater-than 
or less-than sign), some other types of inequalities belong in the same sec-
tion because you handle them the same way as you do quadratics. You can 
really have any number of factors and any arrangement of factors and do the 
positive-and-negative business to get the answer, as I show you in the follow-
ing example.

 Solve for the values of x that work in (x – 4)(x + 3)(x – 2)(x + 7) > 0.

This problem is already factored, so you can easily determine that the num-
bers that make the expression equal to 0 (the critical numbers) are x = 4, 
x = –3, x = 2, x = –7. Put them in order from the smallest to the largest on a 
number line (see Figure 15-7), and test for the signs of the products in the 
intervals.

 

Figure 15-7: 

The sign 
changes at 

each critical 
number 

in this 
problem.

 

–7 2–3 4

(x + 7)(x + 3)(x – 2)(x – 4)
(+) (–) (–)

–

(–)
(x + 7)(x + 3)(x – 2)(x – 4)

(+) (+) (+)

–

(–)

(x + 7)(x + 3)(x – 2)(x – 4)
(–) (–) (–)

+

(–)
(x + 7)(x + 3)(x – 2)(x – 4)

(+) (+) (–)

+

(–)
(x + 7)(x + 3)(x – 2)(x – 4)

(+) (+) (+)

+

(+)

 When multiplying or dividing integers, if the number of negative signs in the 
problem is even, the result is positive. If the number of negative signs in the 
problem is odd, the result is negative.

Because the original problem is looking for values that make the expression 
greater than 0, or positive, the solution includes numbers in the intervals that 
are positive. Those numbers are

 ✓ Smaller than –7

 ✓ Between –3 and 2

 ✓ Bigger than 4

The solution is written x < –7 or –3 < x < 2 or x > 4. In interval notation, the 
solution is written (–∞, –7) , (–3, 2) , (4, ∞).
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Figuring out fractional inequalities
Inequalities with fractions that have variables in the denominator are another 
special type of inequality that fits under the general heading of quadratic 
inequalities; they get to be in this chapter because of the way you solve them.

To solve these rational (fractional) inequalities, do somewhat the same thing 
as you do with the inequalities dealing with two or more factors: Find where 
the expression equals 0. Actually, expand that to looking for, separately, 
what makes the numerator (top) equal to 0 and what makes the denomina-
tor (bottom) equal to 0. These are your critical numbers. Check the intervals 
between the zeros; and then write out the answer.

 The one big caution with rational inequalities is not to include any number in 
the final answer that makes the denominator of the fraction equal 0. Zero in 
the denominator makes it an impossible situation, not to mention an impossi-
ble fraction. So why look at what makes the denominator 0 at all? The number 
0 separates positive numbers from negative numbers. Even though the 0 itself 
can’t be used in the solution, it indicates where the sign changes from positive 
to negative or negative to positive.

 Solve for y in .

The numbers making the numerator or the denominator equal to 0 are y = –4 or 
y = 3. Make a sign line with the two critical numbers in proper order. Determine 
the sign of the quotient formed by the two binomials. In Figure 15-8, you see 
the critical numbers and the signs in the intervals. The critical number 3 gets a 
hollow circle to indicate that it can’t be used in the answer.

 

Figure 15-8: 

The sign of 
the quotient 

is shown.
 

–4 3

+ +–

y + 4
y – 3

–
–

+
+

+
–

y + 4
y – 3

y + 4
y – 3

The problem only asks for values that make the expression greater than 0, or 
positive, so the solution is: y < –4 or y > 3. In interval notation, the answer is 
written as: (–∞, –4) , (3, ∞).

 Solve for z in .
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Factor the numerator and denominator to get . The numbers 

making the numerator or denominator equal to 0 are z = +1, –1, +3, –3. Make a 
number line that contains the critical numbers and the signs of the intervals 
(see Figure 15-9).

 

Figure 15-9: 
The 1 and –1 
are included 

in the 
solution.

 

–3

+

(z + 1)(z – 1)
(z + 3)(z – 3)

(–)(–)
(–)(–)

–1

–

(z + 1)(z – 1)
(z + 3)(z – 3)

(–)(–)
(+)(–)

1

+

(z + 1)(z – 1)
(z + 3)(z – 3)

(+)(–)
(+)(–)

3

–

(z + 1)(z – 1)
(z + 3)(z – 3)

(+)(+)
(+)(–)

+

(z + 1)(z – 1)
(z + 3)(z – 3)

(+)(+)
(+)(+)

Because you’re looking for values of z that make the expression negative, 
you want the values between –3 and –1 and those between 1 and 3. Also, you 
want values that make the expression equal to 0. That can only include the 
numbers that make the numerator equal to 0, the 1 and –1. The answer is 
written

–3 < z ≤ –1 or 1 ≤ z < 3

In interval notation, the solution is written

(–3, –1] , [1, 3)

Notice that the < symbol is used by the –3 and 3 so those two numbers don’t 
get included in the answer.

Working with Absolute-Value 
Inequalities

Absolute-value inequalities are just what they say they are — inequalities 
that have absolute-value symbols somewhere in the problem.

  is equal to a if a is a positive number or 0.  is equal to the opposite of a, or 
–a, if a is a negative number. So  and .

Absolute-value equations and inequalities can look like the following:
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Working absolute-value equations
Before tackling the inequalities, take a look at absolute-value equations. An 
equation such as  is fairly easy to decipher. It’s asking for values of x 
that give you a 7 when you put it in the absolute-value symbol. Two answers, 
7 and –7, have an absolute value of 7. Those are the only two answers. But 
what about something a bit more involved, such as ?

 To solve an absolute-value equation of the form , change the abso-
lute-value equation to two equivalent linear equations and solve them.

 is equivalent to ax + b = c or ax + b = –c. Notice that the left side is 
the same in each equation. The c is positive in the first equation and negative 
in the second because the expression inside the absolute-value symbol can 
be positive or negative — absolute value makes them both positives when 
it’s performed.

 Solve for x in .

 1. Rewrite as two linear equations.

  3x + 2 = 4 or 3x + 2 = –4

 2. Solve for the value of the variable in each of the equations.

  Subtract 2 from each side in each equation: 3x = 2 or 3x = –6.

  Divide each side in each equation by 3:  or x = –2.

 3. Check.

  If x = –2, then .

  If , then .

  They both work.

In the next example, you see the equation set equal to 0. For these problems, 
though, you don’t want the equation set equal to 0. In order to use the rule 
for changing to linear equations, you have to have the absolute value by itself 
on one side of the equation.

 Solve for x in .

 1. Get the absolute-value expression by itself on one side of the equation.

  Adding –3 to each side
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 2. Rewrite as two linear equations.

  5x – 2 = –3 or 5x – 2 = +3

 3. Solve the two equations for the value of the variable.

  Add 2 to each side of the equations:

  5x = –1 or 5x = 5

  Divide each side by 5:

   or x = 1

 4. Check.

  If  then, .

  Oops! That’s supposed to be a 0. Try the other one.

  If x = 1, then .

  No, that didn’t work either.

Now’s the time to realize that the equation was impossible to begin with. (Of 
course, noticing this before you started would’ve saved time.) The definition 
of absolute value tells you that it results in everything being positive. Starting 
with an absolute value equal to –3 gave you an impossible situation to solve. 
No wonder you didn’t get an answer!

Working absolute-value inequalities
Solving absolute-value inequalities brings two different procedures together 
into one topic. The first procedure involves the methods similar to those 
used to deal with absolute-value equations, and the second involves the rules 
used to solve inequalities. You might say it’s the best of both worlds. Or you 
might not.

 To solve an absolute-value inequality of the form , change the abso-
lute-value inequality to two inequalities equivalent to that original problem 
and solve them:  is equivalent to ax + b > c or ax + b < –c. Notice that 
the inequality symbol is reversed with the –c.

 To solve an absolute-value inequality of the form , change the abso-
lute-value inequality to an equivalent inequality and solve it:  is 
equivalent to –c < ax + b < c.

The following two examples illustrate how to use these rules.
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 Solve for x in .

 1. Rewrite as two inequalities.

  2x – 5 > 7 or 2x – 5 < –7

 2. Solve each inequality.

  Add 5 to each side in each inequality:

  2x > 12 or 2x < –2

  Divide through by 2:

  x > 6 or x < –1

  In interval notation, that’s (–∞, –1) , (6, ∞).

 Solve for x in .

 1. Rewrite as two inequalities.

  –9 ≤ 5x + 1 ≤ 9

 2. Solve the inequality.

  Subtract 1 from each section:

  –10 ≤ 5x ≤ 8

  Now divide through by 5:

   or, in interval notation, 

Notice that this problem had a less-than-or-equal-to symbol. The rules for less 
than or greater than are the same as those for the problems including the end-
points of the interval.

21_559642-ch15.indd   26121_559642-ch15.indd   261 4/16/10   11:09 AM4/16/10   11:09 AM



262 Part III: Working Equations 

21_559642-ch15.indd   26221_559642-ch15.indd   262 4/16/10   11:09 AM4/16/10   11:09 AM



Part IV

Applying Algebra
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In this part . . .

No algebra book can ever be complete without talk-
ing about how to apply algebra to everyday situa-

tions. This part provides the motivation for having done 
all the preparation and work in the other parts. Formulas 
and story problems are the most frequently used applica-
tions of algebra. Add a few graphs for good measure, and 
you have it all!
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Chapter 16

Taking Measure with Formulas
In This Chapter
▶ Dealing with units of length

▶ Using the Pythagorean theorem

▶ Getting around the perimeter

▶ Determining the volume

You can’t get away from it: square yards of carpeting, miles per gallon 
for the car, capacity of the new freezer. You measure, and you use the 

appropriate formula to give you the answer you’re hoping for.

A formula is a relationship that’s proven to be true, no matter what. One of 
the first formulas that you learned is that the area of a rectangular area is 
based on how long and how wide.

In this chapter, I reacquaint you with area, perimeter, and volume. You also 
see how to deal with those awkward, irregularly shaped objects. It isn’t all 
that important that you memorize the formulas — the main emphasis is on 
how to use the formula and where to find it when you need it.

Measuring Up
Some universal concerns — some start at an early age — are those dealing 
with measurements. How far is it? How big are you? How much room do 
you need, anyway? How much more wrapping paper are you going to need? 
These questions all have to do with measurements and, usually, formulas.
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Finding out how long: Units of length
Before measurements were standardized, they varied according to who was 
doing the measuring: A yard was the distance from the tip of the nose to the 
end of an outstretched arm; a foot, well, you can probably guess where that 
came from; and an inch was often the length of the second bone in the index 
finger. When measuring fabric to purchase for his shop, a tailor would let his 
tall brother-in-law with the long arms do the measuring. When selling planks 
in his lumberyard, the businessowner would let Cousin Vinnie, the dwarf, be 
the measurement employee.

The units of measure for length most commonly used in the United States are 
inches, feet, yards, and miles. Some equivalent measures are 12 inches = 1 
foot, 3 feet = 1 yard, and 5,280 feet = 1 mile.

You can change the basic length equivalencies into formulas as follows:

 ✓ Feet to inches: Number of inches = number of feet × 12

 ✓ Inches to feet: Number of feet = number of inches ÷ 12

 ✓ Yards to feet: Number of feet = number of yards × 3

 ✓ Miles to feet: Number of feet = number of miles × 5,280

The best way to deal with these and other measures is to write a proportion. 
(To review the properties of proportions, see Chapter 12.)

When using a proportion to solve a measurement problem, write same units 
over same units or same units across from same units.

 Do the measurement conversions using proportions:

 ✓ How many inches in 8 feet? You know that 12 inches = 1 foot. So, put 
inches over inches and feet over feet:

  

  The values in the known relationship are across from one another. The 
unknown is represented by x. Now cross-multiply:

  12 × 8 = x × 1

  96 inches = x

  Eight feet is the same as 96 inches.
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 ✓ You’re in a plane, and the pilot says that you’re cruising at 14,000 feet. 
How high is that in miles? You know that 5,280 feet = 1 mile, so

  

  Cross-multiply:

  5,280 × x = 14,000 × 1

  5,280x = 14,000

  Divide each side of the equation by 5,280:

   miles up in the air

Putting the Pythagorean theorem to work
Another great formula to use when working with lengths and distances is the 
Pythagorean theorem. The Pythagorean theorem is a formula that shows the 
special relationship between the three sides of a right triangle.

 A right triangle (as opposed to a wrong triangle?) is one with a 90-degree angle.

Pythagoras noticed that if a triangle really was a right triangle, then the 
square of the length of the hypotenuse (the longest side) is always equal to 
the sum of the squares of the two shorter sides:

(length of hypotenuse)2 = (length of a shorter side)2 + (length of remain-
ing side)2

For example, a triangle with sides measuring 3 inches, 4 inches, and 5 inches 
is a right triangle. The longest side is the one that measures 5 inches; the 
square of 5 is 25. The two shorter sides are 3 and 4 inches; 32 = 9 and 42 = 16. 
The sum of 9 and 16 is 25 — the square of the longest side.

This property works only for right triangles, and if the relationship between 
the sides works, the triangle has to be a right triangle. Figure 16-1 shows you 
a general right triangle, as well as my favorite 3-4-5 right triangle.
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Figure 16-1: 
Triangulat-

ing the 
“right” way.

 

a
c

b
90 90

3
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 According to the Pythagorean theorem, if a, b, and c are the lengths of 
the sides of a right triangle, and c is the longest side (the hypotenuse), then 
a2 + b2 = c2.

The following examples show how you can use the Pythagorean theorem.

 Show that a triangle with sides that measure 5, 12, and 13 is a right triangle.

First, find the square of the measure of each side:

52 = 25 122 = 144 132 = 169

Add the two smaller squares together. That sum is the same as the largest 
square:

25 + 144 = 169

 A carpenter wants to determine whether a garage doorway has square corners 
or if it’s really leaning to one side. She measures 30 inches from one corner 
along the bottom of the doorway and makes a mark. She measures 40 inches 
up along the door frame from the same corner and makes a mark on the side. 
She then takes a tape measure and measures the distance between the marks; 
it comes out to be 49 inches.

Find the squares of the measures:

302 = 900, 402 = 1,600 492 = 2,401

Then, 900 + 1,600 = 2,500 ≠ 2,401. The two smaller squares don’t add up to the 
larger square, so the corner isn’t square.
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Working around the perimeter
How long is the running track around the field? What’s the distance around 
the room? How many feet of fencing do you need to go around the pool? The 
perimeter is the distance around the outside of a given figure — the total 
length of the periphery that borders a region.

In general, the perimeter of a figure is the sum of the lengths of the sides. If 
you have a triangle, measure each of the three sides and add them up. If you 
have a four-sided figure, add up the four lengths, and so on. Perimeter for-
mulas are used to simplify this process when you recognize that the figure is 
something special. You can use quick, easy formulas to do the computations. 
I give you many of these formulas in this section.

Triangulating triangles
 The perimeter of a triangle is equal to the sum of the measures of the three 

sides — sides s1, s2, and s3: P = s1 + s2 + s3.

 The formula for the perimeter of a triangle shows the variable s and the sub-
scripts 1, 2, and 3. The s stands for side. Rather than use an a, b, and c for the 
lengths, it’s customary to use a single variable (like s, in this case) and a 
number of subscripts when there’s nothing special about the sides or how 
their lengths relate to one another. Subscripts are also used when there are 
more than 26 sides in a figure because you can go only a through z to name 
the sides, but with subscripts you can go on as long as you like — the figure 
could have a thousand sides. Heaven forbid!

Puzzling Pythagoras
Pythagoras was born somewhere around 
570 B.C. He is best known for his Pythagorean 
theorem, but he’s also responsible for discov-
ering an important musical property: The notes 
sounded by a vibrating string depend on the 
length of the string.

Pythagoras was a great thinker, but he also 
exhibited some rather bizarre behavior. He 
founded a school where about 300 young aristo-
crats studied mathematics, politics, philosophy, 
religion, music, and astronomy. They formed a 
very tight fraternity or secret society where the 

members had their diets and actions regulated. 
They weren’t allowed to eat beans or drink wine 
or pick up anything that had fallen or stir a fire 
with an iron. They had to face in a certain direc-
tion when they urinated. These strange beliefs 
supposedly caused Pythagoras’s death. When 
he was being chased from his burning home by 
some persecutors, he was supposed to have 
stopped at the edge of a bean field and, rather 
than trample the beans, allowed his chasers to 
catch and kill him.
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The following examples show you how to find the perimeter of some triangles.

 Find the perimeter of the triangle with sides 5 feet, 11 feet, and 13 feet.

P = 5 + 11 + 13 = 29 feet

 Find the amount of fencing you’ll need for a triangular area if the two sides 
that form a right triangle are 7 yards and 24 yards, and you can’t measure the 
longest side, the hypotenuse, because it’s too muddy right now.

Because you have a right triangle, the sum of the squares of 7 and 24 is equal 
to the square of the longest side:

72 + 242 = 49 + 576 = 625

Because 625 is the square of 25, the sides of the area are 7, 24, and 25 yards. 
Then P = 7 + 24 + 25 = 56 yards of fencing needed.

Squaring up to squares and rectangles
A square is wonderful to work with because you have only one measure to 
worry about — the length of one side is the same as all the others. A rect-
angle is a special four-sided figure, too. Figure 16-2 shows a rectangle with 
square (90-degree) corners, where the opposite sides are the same length.

 

Figure 16-2: 

A shape 
for rooms, 

posters, and 
corrals.

 
Rectangle

 To find the perimeter of a square or rectangle, use the following formulas:

 ✓ The perimeter of a square is four times the length of a side: P = 4s (which 
is easier than adding s1 + s2 + s3 + s4).

 ✓ The perimeter of a rectangle is twice the length plus twice the width. Or 
you can add the length and width together and then multiply that sum 
by two. These formulas are easier than adding up the four sides: 
P = 2l + 2w = 2(l + w) or P = s1 + s2 + s3 + s4.
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The following examples illustrate using the formulas for perimeter.

 An environmental group is going to search a square mile of prairie to check 
for toxins in beetles. What is the perimeter of that square mile in feet?

You know that 1 mile is 5,280 feet. So the perimeter is 4 × 5,280 = 21,120 feet. 
So, if they want to rope off the area, they need plenty of rope!

 Your new garden is a rectangle measuring 85 feet long by 35 feet wide. How 
much fencing do you need to enclose it?

What’s the perimeter? Add the 85 and 35 together and double it: 2(85 + 35) = 
2(120) = 240 feet of fencing. Of course, this doesn’t include a gate — you should 
probably consider that, too, unless you like jumping hurdles.

Promoting polygons
A polygon is a dead parrot. (Sorry — math humor tends to have an evil bent 
to it.) Seriously, a polygon is a many-sided figure with the endpoints of each 
side meeting at the endpoints of the adjacent sides. The sides are all line 
segments.

In general, the perimeter of a polygon is simply the sum of the measures of 
the sides. When you have a regular polygon (a polygon in which all the sides 
and all the interior angles are the same), the perimeter is found by multiply-
ing the number of sides, n, by the length of any one of those sides, s: P = ns.

 A standard highway stop sign has eight sides that each measure about 12.4 
inches. If you want to put a reflective strip all around the outer edges of a stop 
sign, how many inches is that?

Multiply the length of one side times 8: P = ns = 8(12.4) = 99.2 inches.

Recycling circles
A circle has a perimeter, but there’s a special name for that perimeter: cir-
cumference. Think about the word: If the circumstances (conditions around 
you) are positive, you can circumnavigate (sail around), circumvent (go 
around and avoid), and circumscribe (draw around). To find the circumfer-
ence of a circle, all you need is the measure of the radius or the diameter. 
The radius is the distance from the center of the circle to any point on the 
circle. If you double the radius, you get the measure of the diameter, the 
distance from one side to the other through the center. Figure 16-3 shows a 
circle with the radius marked.
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Figure 16-3: 
In a circle, 

all points 
are equidis-

tant from 
the center.

 
Circle

r

 The formula for circumference (distance around the outside of a circle) is 
C = 2πr = πd, where r is the radius, d is the diameter, and π is always about 3.14 or 

 about .

 The symbol for the relationship between the circumference and diameter of a 
circle is the Greek letter π. The value of π is the same — no matter what size 
circle you have. The decimal value of π is approximately 3.14.

 You want to construct a circular garden but you’re a member of the waste-not-
want-not club. The fencing you want comes in bundles of 50 feet, 100 feet, 150 
feet, 200 feet, and so on, so you’re going to construct your garden such that it 
uses every bit of the fencing around the circumference. How can you easily 
determine the diameter of each garden with respect to the different fencing 
amounts?

You should rewrite the formula so you can easily determine how wide your 
circular garden will be if you buy a certain size bundle of fencing to put 
around it and use all the fencing in the bundle.

Solving for d in the formula C = πd, divide each side by π:

The diameter is equal to the circumference divided by π.

If the bundle has 50 feet of fencing,

 feet across
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If the bundle has 100 feet of fencing,

 feet across

If the bundle has 200 feet of fencing,

 feet across

If you know the dimensions of the lot where you’re putting your garden, you 
can determine which garden will fit.

Spreading Out: Area Formulas
Area is a measure of how many two-dimensional units (squares) a particular 
object or surface covers — how much flat space it occupies. Usually, area is 
given in square inches, square centimeters, square feet, or square miles, and 
so on.

Picture a floor covered with square tiles. If each tile is 1 foot by 1 foot, count-
ing the number of tiles tells you how large the floor is in square feet. In the 
real world, most floors aren’t covered with tiles that are a convenient 1-foot 
square. And most tile floors have partial tiles on the edges and in the corners 
and around things that are strange shapes. So area formulas, such as the 
ones in this section, help you do the figuring to determine the area.

In the previous section, the perimeter formulas deal with linear measure. 
Linear measure is just one dimension. It’s from one place to another — 
there’s no breadth to it. You measure it with a ruler or yardstick or tape 
measure in one direction. Square measurements are used to measure area. 
Area takes two measures — one along a side and a second perpendicular (90 
degrees) to that side.

Laying out rectangles and squares
Rectangles and squares have basically the same area formulas because they 
both have square corners and the equal lengths on opposite sides. The gen-
eral procedure here is just to multiply the measure of the length times the 
measure of the width. The product of two sides that are next to one another 
is the area.
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Finding the area of a rectangle or square
Most rooms in homes and offices are rectangular in shape. Desks and tables 
and rugs are usually rectangular, also. This makes it easy to fit furniture and 
other objects in the room.

 The area of a rectangle is its length times its width, and the area of a square is 
the square of the measure of any side:

Rectangle: A = l × w

Square: A = s2

 A garden 85 feet long by 35 feet wide needs some fertilizer. If a bag of fertilizer 
covers 6 square yards, how much fertilizer do you need?

Note that the measures are different. The garden is measured in feet and the 
fertilizer coverage is in square yards. Determine how many square feet the 
garden is. Then convert the fertilizer coverage to square feet per bag.

area of garden = l × w = 85 × 35 = 2,975 square feet

Now, how many square feet are there in a square yard? If a yard is equal to 
3 feet, then a square yard is 3 feet by 3 feet, so the area is 32 = 9 square feet. 
There are 9 square feet in a square yard. A bag of fertilizer covers 6 square 
yards, so that’s 6 × 9 = 54 square feet per bag.

Divide the 2,975 square feet by 54 square feet:

 square feet

You can buy 56 bags and have a lot left over, or buy 55 bags and skimp a little 
in some places.

Tuning in triangles
Finding the area of a triangle can be a bit of a challenge. Basically, a triangle’s 
area is half that of an imaginary rectangle that the triangle fits into. However, 
it isn’t always easy or necessary to find the length and width of this hypothet-
ical rectangle — you just need a measurement or two from the triangle.

The traditional formula for finding the area of a triangle involves the length 
of the base, or bottom, and the height, the perpendicular distance from the 
base up to the vertex (the intersection of the other two sides). Finding the 
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area of a triangle is easy if you can use a ruler to find the height, but that isn’t 
always practical. So, you have another option — Heron’s formula, covered 
later in this section.

Going the traditional route
 The area of a triangle is equal to half the product of the measure of the base of 

 the triangle, b, times the height of the triangle, h: .

The base is the length of the bottom that the height is drawn down to. The 
height is the length from the top angle down perpendicular to the base. The 
height forms a right angle (90 degrees) with the base. Figure 16-4 shows you a 
triangle with a height drawn.

 

Figure 16-4: 

Triangles 
come in all 

shapes and 
sizes.

 

8
10

17

21

You use this traditional rule for area when it’s possible to make these mea-
surements — when you can draw the height perpendicular to the base and 
measure both of them. The example shows you how to use the best-known 
rule first, and a later example finds the same area using Heron’s formula.

 Find the area of a triangle 21 feet long with a height of 8 feet. Refer to Figure 
16-4 for a sketch of such a triangle.

 square feet

Soaring with Heron’s formula
 According to Heron’s formula, the area of any triangle is equal to the square 

root of the product of four values:

 ✓ The semi-perimeter (half the perimeter)

 ✓ The semi-perimeter minus the length of the first side

 ✓ The semi-perimeter minus the second side

 ✓ The semi-perimeter minus the third side
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Let s represent the semi-perimeter and a, b, and c represent the measures of 
the sides:

When you’re trying to find the area of a huge triangle — say a big park — or if 
you can’t measure any angles to draw a line perpendicular to one of the sides 
for the height, then you can find the area simply by measuring the three sides 
and using Heron’s formula.

 Find the area of a triangle with sides of 10 inches, 17 inches, and 21 inches 
(refer to Figure 16-4). Let a = 10, b = 17, and c = 21. The perimeter is P = 10 + 17 
+ 21 = 48 inches, so the semi-perimeter s = 24 inches. Using Heron’s formula to 
find the area,

The area is 84 square inches. Does that number sound familiar? It should. 
The 84 part is the same answer as in the previous example where I used the 
more well-known formula.

I have to admit that I purposely used measurements that would give a nice, 
whole-number answer. These nice answers are more the exception than the 
rule. Having a radical in a formula can cause all sorts of complications. The 
next example shows you what I mean.

 Find the area of a triangle with sides 2, 3, and 4 feet. If the sides are 2, 3, and 4, 
 then a = 2, b = 3, c = 4, and s = . So, using Heron’s formula to 

find the area,

Going around in circles
The area of a circle is tied to both the radius of the circle and the value of π.

 The formula for the area of a circle is π (about 3.14) times the radius squared: 
A = πr2.
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 Find the area of a circular disk that is 50 feet across. First, you need to find 
the radius. If the circle is 50 feet across, that’s the measure of the diameter, 
all the way across. So the radius is half that or 25 feet. Using the formula to 
find the area,

A = πr2 = π · 252 = 3.14 · 625 = 1,962.5 square feet

Pumping Up with Volume Formulas
Area is a two-dimensional figure or representation. It’s a flat region. Volume 
is three-dimensional. Unlike your last loser boyfriend or girlfriend, it has 
depth. To find volume, you measure across, front to back, and up and down.

With volume, you count how many cubes (picture sugar cubes) you can fit 
into an object. These cubes can be 1 inch on each edge, 1 centimeter on each 
edge, 1 foot on each edge, or however big they need to be. And, in keeping 
with the cube theme, you measure volume in cubic inches, cubic feet, cubic 
centimeters, and cubic whatevers.

Prying into prisms and boxes
The volume of a rectangular prism, better known as a box, is one of the sim-
plest to find in the world of volume problems. The bottom and top of a prism 
have exactly the same measurements. The distance from the top to bottom 
is the same, no matter where you measure, as long as you keep that distance 
perpendicular to both top and bottom.

 The formula for finding volume of a prism is V = lwh, which means that the 
volume is equal to the product of the length, l, times the width, w, times the 
height, h.

 Find the volume of a box that is 4 feet long, 3 feet wide, and 9 feet high.

V= lwh = 4(3)(9) = 108 cubic feet

That’s 108 cubes, all 1 foot by 1 foot by 1 foot, that fit into the box.

 If you’re buying a 12-cubic-foot refrigerator, what are the dimensions (how big 
is it)?
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There is an infinite number of ways to multiply three numbers together to 
get 12. Go through some integers and some fractions.

Try to picture what the refrigerator would look like with these dimensions.

 ✓ 12 = 1(1)(12). That’s 1 foot long, 1 foot wide, and 12 feet tall.

 ✓ 12 = 2(1)(6). That’s 2 feet long, 1 foot wide, and 6 feet tall.

 ✓ 12 = 2(3)(2). That’s 2 feet long, 3 feet wide, and 2 feet tall.

 ✓ . That’s  feet long,  feet wide, and  feet tall.

Which refrigerator would you want? How tall are you? How far can you reach 
into the back?

Cycling cylinders
Cylinders were my brother’s favorite shape when he was in the Navy on the 
aircraft carrier USS Guadalcanal. Being the wonderful sister that I am, I would 
send him chocolate chip cookies that fit exactly into a 3-pound coffee can. 
Imagine a stack of chocolate chip cookies coming to you every couple of 
weeks. Was he ever popular on that ship!

 The formula for the volume of a cylinder is V = πr2h. The volume is equal to π 
times the radius (halfway across a circle) squared times the height.

A cylinder is a solid figure with a circle for a base. A can of tuna, a tube of 
ready-to-bake biscuits, a can of peas, a roll of toilet paper, and, of course, a 
coffee can are all examples of cylinders. The tops and bottoms are circles, 
and the height of a cylinder is the distance between the circles.

To find the volume of a cylinder, you need the radius of the top and bottom, 
and you need the height. This formula tells you how many cubes will fit in the 
cylinder — like putting square pegs in a round hole, just trim them a bit.

 Find the volume of an above-ground swimming pool that has a radius of 12 
feet and a height of 4 feet.

Using the formula for the volume of a cylinder,

V = πr2h = π(122)(4) = π(576) ≈ 3.14(576) = 1,808.64 cubic feet of water
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Scaling a pyramid
A pyramid is an easy thing to describe because everyone has a mental pic-
ture of what a pyramid looks like. Technically, a pyramid is an object with a 
base (bottom) and triangles coming up from each side of the base to meet at 
a point.

The pyramids in Egypt have squares for the bottom and same-size triangles on 
the sides — at least, that’s how they started. The wind and sand have eroded 
the tops so the Egyptian pyramids don’t come to a point anymore. But the 
base of a pyramid can be an equilateral triangle (all three sides are the same 
length), a square, a regular pentagon (five sides, all the same length), and so 
on. The example shown here, however, sticks with square bases.

 The formula for the volume of a pyramid is .

 Find the original volume of the Great Pyramid, which originally had a square 
base with each side measuring 756 feet and a height of 480 feet.

The base is a square, so the area of the base is s2:

 cubic feet

Pointing to cones
 The formula for the volume of a cone is .

The formula for finding the volume of a cone should look familiar for two 

reasons. First, it has the , like the pyramid formula has. The one-third factor 
is common when a figure goes up into a single point. The other familiar part 
is the πr2h, which is the formula for finding the volume of a cylinder. You 
can think of a cone as being just a cylinder that was whittled away. The 
pointy-bottomed ice-cream cone is a classic cone shape, as are traffic pylons.

 What is the volume of a cone-shaped tent that has a diameter of 18 feet and a 
height of 20 feet?

If the diameter is 18 feet, then the radius is 9 feet:
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Rolling along with spheres
A sphere is a familiar shape. Basketballs, baseballs, marbles, and globes 
are all spheres. You need only one thing to find the volume of a sphere: the 
radius, which is the distance from the center of the sphere to the outside.

 The formula to determine the volume of a sphere is .

Finding the volume of a sphere can be helpful when buying a tank of natural 
gas or a globe.

 What is the volume of a ball that has a diameter of 18 inches?

A diameter of 18 inches means that the radius of the ball is 9 inches:

 What is the volume of a sphere with a diameter of 4 inches?
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Chapter 17

Formulating for Profit and Pleasure
In This Chapter
▶ Distancing yourself from the problem

▶ Getting interested in interest

▶ Counting on combinations and permutations

I remember applying for my first car loan. What a traumatic experience! 
The application form was the first challenge. But the most mysterious 

and awe-inspiring part of the whole procedure was when the loan officer 
sat across the desk and started plugging numbers into his computer. It 
seemed as if he pushed buttons for hours. He’d pause and reflect. He’d push 
more numbers and frown. And then he looked up, smiled, and said, “Yes. 
Approved.” What formula was he using? I’ll never know. (He was probably 
just playing Tetris and trying to build the drama.)

Most of life’s formulas aren’t nearly so scary. And formulas that are a bit 
complicated can be tamed with a little know-how and a decent dose of 
confidence. This chapter is all about gaining experience, know-how, 
and confidence.

When you use algebra in the real world, more often than not you turn to a 
formula to help you work through a problem. Fortunately, when it comes to 
algebraic formulas, you don’t have to reinvent the wheel: You can make use 
of standard, tried-and-true formulas to solve some common, everyday 
problems.

In Chapter 16, you find formulas involving measurements. In this chapter, you 
work with counting, distance, rate, and that all-important money.
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Going the Distance with 
Distance Formulas

You’ve been on a slow boat to China for a couple of days and want to know 
how far you’ve come. Or you want to figure out how long it’ll take for the 
rocket to reach Jupiter. Or maybe you want to know how fast a train travels 
if it gets you from Toronto, Ontario, to Miami, Florida, in 18 hours. The 
distance = rate × time formula can help you find the answer to all these 
questions.

 The formula d = r × t means the distance traveled is equal to the rate r (the 
speed) times how long it takes, t (the time). Solving the formula for either the 

 rate or the time, you get:  and . Given any two of the values, you can 
solve for the third.

You change the original formula to one that you can use to find out how long 
it will take to get somewhere (say, to grandma’s house) by using the version 
that solves for time, t. Similarly, if you want to know how fast an express 
train travels the 1,492 miles from Toronto to Miami in just 18 hours, use the 
version that solves for the rate and end up dividing the distance (number of 
miles) by the time (18 hours).

The following problems use the distance formula in all its variations just to 
show how versatile one little formula can be.

 What is the average speed of an airplane that can go 2,000 miles in 4.8 hours?

You’re looking for the speed or rate, r, so you use this formula:

So, plugging in the numbers,  miles per hour.

 How long did it take the settlers to get from St. Louis to Sacramento if they 
could average 12 miles per day? The distance between the two cities is about 
1,980 miles.

This time you’re looking for the amount of time.

 Always be sure that the units are the same: Miles per day and total number 
of miles go together, but miles per hour and total number of days would take 
some adjusting.
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That’s almost half a year. You can drive it now in less than 40 hours.

 How far did Alberto travel in his triathlon if he bicycled at 25 mph for 45 min-
utes, swam at 2 mph for 30 minutes, and then ran at 6 mph for 6 minutes?

The distance formula d = rt is used three times and the results added together 
to get the total distance.

You need to change 25 mph for 45 minutes to 25 mph for  hour. Then 

change 2 mph for 30 minutes to 2 mph for  hour. Finally, change 6 mph for 6 

minutes to 6 mph for  hour. All those fractions of hours come from dividing 

the number of minutes by 60.

Alberto traveled over 20 miles.

Calculating Interest and Percent
Percentages are a part of our modern vocabulary. You probably hear or say 
one of these phrases every day:

 ✓ The chance of rain is 40 percent.

 ✓ There was a 2 percent rise in the Dow Jones Industrial Average.

 ✓ The grade on your test is 99 percent.

 ✓ Your height puts you in the 80th percentile.

Percent is one way of expressing fractions as equivalent fractions with a 
denominator of 100. The percent is what comes from the numerator of the 
fraction — how many out of 100:

 ✓ 

 ✓ 

 ✓ 
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You use percents and percentages in the formulas that follow. Change the 
percentages to decimals so that they’re easier to multiply and divide. To 
change from percent to decimal, you move the decimal point in the percent 
two places to the left. If no decimal point is showing, assume it’s to the right 
of the number.

Compounding interest formulas
Figuring out how much interest you have to pay, or how much you’re earning 
in interest, is simple with the formulas in this section. You probably want to 
dig out a calculator, though, to compute compound interest.

Figuring simple interest
Simple interest is used to determine the amount of money earned in interest 
when you’re not using compounding. It’s also used to figure the total amount 
to pay back when buying something on time. Simple interest is basically a 
percentage of the original amount. It’s figured on the beginning amount only — 
not on any changing total amount that can occur as an investment grows. To 
take advantage of the growth in an account, use compound interest.

 The amount of simple interest earned is equal to the amount of the principal, 
P (the starting amount), times the rate of interest, r (which is written as a 
decimal), times the amount of time, t, involved (usually in years). The formula 
to calculate simple interest is: I = Prt.

 What is the amount of simple interest on $10,000 when the interest rate is  
 percent and the time period is  years?

I = Prt

I = 10,000 × 0.025 × 3.5 = 875

The interest is $875.

 You’re going to buy a television “on time.” The appliance store will charge 
you 12 percent simple interest. You add this onto the price of the television 
and pay back the total amount in “24 easy monthly payments.” Twenty-four 
months is two years, so t = 2. The television costs $600. How much is the 
interest?

I = 600 × 0.12 × 2 = 144

The interest is $144. Now, to compute the “easy payments,” add the interest 
onto the cost of the television and the total is $744. Divide this by 24, and the 
payments are . That’s $31 per payment. Such a deal!
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Tallying compound interest
Compound interest is used when determining the total amount that you have 
in your savings account after a certain amount of time. Compound interest 
has its name because the interest earned is added to the beginning amount 
before the next interest is figured on the new total. The amount of times per 
year the interest is compounded depends on your account, but many savings 
accounts compound quarterly, or four times per year.

By leaving the earned interest in your account, you’re actually earning more 
money because the interest is figured on the new, bigger sum.

 The formula for compound interest is: , where A is the total 

 amount in the account, P is the principal (starting amount), r is the percentage 
rate (written as a decimal), n is the number of times it’s compounded each 
year, and t is the number of years. Whew!

The following examples show you how the formula works.

 How much is there in an account that started with $5,000 and has been 
earning interest for the last 14 years at the rate of 6 percent, compounded 
quarterly?

The principal is $5,000; the rate is 6 percent, or 0.06; the number of times per 
year it’s compounded is 4; the time in years is 14. So,

Carefully work from the inside out. Divide the 0.06 by 4 and add it to the 1. At 
the same time, multiply the 4 and 14 in the exponent to make it simpler:

A = 5,000(1.015)56

By the order of operations, raise to the power first:

A = 5,000(2.30196) = 11,509.82

The amount of money more than doubled. Compare this to the same amount 
of money earning simple interest. Using the simple interest formula,

I = Prt = 5,000 × 0.06 × 14 = $4,200

Add this interest onto the original $5,000, and the total is $9,200. Using 
compound interest earns you over $2,500 in additional revenue.
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 Here’s an even more dramatic example of the power of compounding: Suppose 
that you get a letter from the Bank of the West Indies, which claims that some 
ancestor of yours came over with Columbus, deposited a coin equivalent to $1 
with the bank, and then was lost at sea on the way home. His dollar’s-worth of 

 deposit has been sitting in the bank, earning interest at the rate of  percent 
 compounded quarterly. They claim that the ancestor’s account is becoming a 

nuisance account because fees have to be collected; the bank wants to charge 
this account the current fee rate of $25 per year — retroactively. Do you want 
to claim this account? Pay the fees?

At first, you may say, “No way! I’d owe money.” Then you get out your trusty 
calculator and do some figuring. If your ancestor came over with Columbus in 
1492, and if you got the letter in the year 2010, what exactly are you looking at?

The principal is $1; the interest rate is  percent compounded four times 

per year. This money has been deposited for 518 years, but that means 518 
years of $25 service charges:

That’s over $69 million for an initial deposit of $1.

Subtracting the service charges:

25 × 518 = 12,950

Paying $13,000 is minor. Take the money!

Gauging taxes and discounts
You can figure both the tax charged on an item you’re buying and the 
discount price of sale items with percentages.

 ✓ Total price = price of item × (1 + tax percent as a decimal)

 ✓ Discounted price = original price × (1 – discount percent as decimal)

 ✓ Original price = discount price ÷ (1 – discount percent as decimal)

All consumers are faced with taxes on purchases and hope to find situations 
in which they can buy things on sale. It pays to be a wise consumer.
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 The $24,000 car you want is being discounted by 8 percent. How much will it 
cost now with the discount? Be sure to add the 5 percent sales tax.

discounted price = 24,000 × (1 – 0.08) = 24,000 × 0.92 = $22,080

total price = cost of item × (1 + tax percent as a decimal)

total price = 22,080 × (1 + 0.05) = $23,184

 The shoes you’re looking at were discounted by 40 percent and then that 
price was discounted another 15 percent. What did they cost, originally, if you 
can buy them for $68 now? If the price now was discounted 15 percent, find 
the amount they were discounted from first (the first discount price). Solving 
the discounted price formula for the original price,

“second discounted price” = 

“first discounted price” = 

The discount of 40 percent followed by 15 percent is not the same as a discount 
of 55 percent. A 55 percent discount would have resulted in $60 shoes.

Working Out the Combinations 
and Permutations

Combinations and permutations are methods and formulas for counting 
things. You may think that you have that “counting stuff” mastered already, 
but do you really want to count the number of ways in the following?

 ✓ How many different vacations can you take if you plan to go to three 
different states on your next trip?

 ✓ How many different ways can you rearrange the letters in the word 
smart — and how many of the arrangements actually make words?

 ✓ How many different ways can you pick 6 numbers out of 54, and can you 
bet $1 on each set of 6 numbers to win the lottery?

You could start making lists of the different ways to accomplish the preceding 
problems, but you’d quickly get overwhelmed and perhaps a little bored. 
Algebra comes to the rescue with some counting formulas called combinations 
and permutations.
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Counting down to factorials
The main operation in combinations and permutations is the factorial 
operation. This is really a neat operation; it only takes one number to perform 
it. The symbol that tells you to perform the operation is an exclamation point 
(!). When I write, “6!”, I don’t mean, “Six, wow!” Well, I suppose I might say 
that if my dog had six puppies. But, in a math context, the exclamation point 
has a specific meaning:

6! = 6 × 5 × 4 × 3 × 2 × 1 = 720

4! = 4 × 3 × 2 × 1 = 24

 The factorial of any whole number is the product you get by multiplying that 
whole number by every counting number smaller than it:

n! = n(n – 1)(n – 2)(n – 3) . . . 3 · 2 · 1

 The counting numbers are 1, 2, 3, 4, and so on.

Factorial works when n is a whole number; that means that you can use 
numbers such as 0, 1, 2, 3, 4, . . .

 One surprise, though, is the value of 0!. Try it on a calculator. You get 
0! = 1. The value of 0! doesn’t really fit the formula; 0! was “declared” to be 
a 1 so that the formulas would work.

Counting on combinations
Combinations tell you how many different ways you can choose some of the 
items from the entire group of items; you can choose anywhere from one 
item to all the items in the group. You can

 ✓ Figure out how many different ways to choose three states to visit.

 ✓ Figure out how many ways there are to choose 6 numbers out of a 
possible 54 numbers.

 ✓ Figure out how to choose 8 astronauts for the flight out of a group of 40 
candidates.

Combinations don’t tell you what is in each of these selections, but they tell 
you how many ways there are. If you’re making a listing, you know when to 
stop if you know how many should be in the list.

 The number of combinations of r items taken from a total possible of n 
items is
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The subscripts on the C tell two things:

 ✓ To the left, the n indicates how many items are available altogether.

 ✓ The subscript to the right, the r, tells how many are to be chosen from 
all those available.

The computation involves finding n factorial divided by the product of r 
factorial times the difference of n and r factorial.

 Find the number of different ways to choose 3 states out of 50. The total 
number of states, n, is 50. The number of states you want to choose out of the 
50 is r, or 3. So,

You need a calculator for this one, but

There are 19,600 different vacations to choose from if you visit three states. 
I’ll start listing them.

Alabama, Alaska, and Arizona; Alabama, Alaska, and Arkansas; Alabama, . . . 
Okay, that’s enough. It doesn’t take long to see what a task this is. And this 
doesn’t even take into account the order that the states are visited in. That 
would be six times as many ways — and that’s permutations (see the next 
section).

 How many ways are there to select 6 numbers out of a possible 54?

Guess that’s too many to buy a ticket for each combination in a lottery 
game — even if the machines could print them all out in time.

 How many ways are there to select 8 astronauts out of 40?

These numbers are all pretty big. How about some examples where they’re 
more reasonable?
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 How many ways are there to choose two books from a shelf where there are 
seven books?

Okay, that’s more like it. You can choose Tom Sawyer and A Tale of Two 
Cities, or Tom Sawyer and Atlas Shrugged, and so on.

Ordering up permutations
Permutations are somewhat like combinations. The main difference is that, in 
permutations, the order matters. If you choose a vacation that involves trips 
to Alabama, Alaska, and Arizona, there are six different ways to arrange the 
visits:

Alabama, Alaska, Arizona Alabama, Arizona, Alaska

Alaska, Arizona, Alabama Alaska, Alabama, Arizona

Arizona, Alaska, Alabama Arizona, Alabama, Alaska

Just like with combinations, finding the number of permutations doesn’t tell 
you what they are, but it does tell you when you can finish with your list.

 The number of permutations of r items taken from a total possible of n items is

The subscripts on the P tell two things. To the left, the n indicates how 
many items are available altogether. The subscript to the right, the r, tells 
how many will be chosen from all those available. Notice that the only 
difference between this formula and the one for combinations is that the r! in 
the denominator of the combination formula is missing here. This makes the 
denominator a smaller number, which makes the end result a bigger number. 
When items are put in specific orders, there are more ways to do it.

 How many ways are there to choose two books out of seven on the shelf, if the 
order that you select them matters (which first and which second)?

 ways to choose the books

 How many different arrangements are there of the letters in the word smart? 
There are five letters in the word, and all five will be used each time. So,

 different arrangements
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Chapter 18

Sorting Out Story Problems
In This Chapter
▶ Using general suggestions for solving story problems

▶ Mixing it up with mixture story problems

▶ Keeping your distance problems at arm’s length

▶ Giving right triangles the right of way

▶ Circling the problem

Story problems can be one of the least-favorite activities for algebra 
students. Although algebra and its symbols, rules, and processes act as 

a door to higher mathematics and logical thinking, story problems give you 
immediate benefits and results in real-world terms.

I recognize that some story problems seem a bit contrived, which is why I 
don’t include age problems such as: “If Henry is three times as old as 
George was when George was 5 years older than Beth. . . .” Who cares? 
You also won’t find any consecutive-integer problems in this chapter; 
consecutive-integer problems read something like: “Find three consecutive 
even integers whose sum is 102.” (By the way, the answer is: 32, 34, and 
36.) These types of problems are good for developing the logical patterns 
necessary for further study in math, but I want to win you over on practical-
ity here, so I leave them out. If you’re disappointed in my omissions and 
want more, more, more story problems, look for my Math Word Problems For 
Dummies (Wiley).

Algebra allows you to solve problems. Not all problems — it won’t help 
with that noisy neighbor — but problems involving how to divvy up 
money equitably or make things fit in a room. In this chapter, you find 
some practical applications for algebra. You may not be faced with the 
exact situations I use in this chapter, but you should find some skills that 
will allow you to solve the story problems or practical applications that are 
special to your situation.
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Setting Up to Solve Story Problems
When solving story problems, the equation you should use or how all the 
ingredients interact isn’t always immediately apparent. Sometimes you have 
to come up with a game plan to get you started. Sometimes, just picking up 
a pencil and drawing a picture can be a big help. Other times, you can just 
write down all the numbers involved; I’m very visual, and I like to see what’s 
going on with a problem.

 You don’t have to use every suggestion in the following list with every problem, 
but using as many as possible can make the task more manageable:

 ✓ Draw a picture. It doesn’t have to be particularly lovely or artistic. Many 
folks respond well to visual stimuli, and a picture can act as one. Label 
your picture with numbers or names or other information that helps you 
make sense of the situation. Fill it in more or change the drawing as you 
set up an equation for the problem.

 ✓ Assign a variable(s) to represent how many or number of. You may 
use more than one variable at first and refine the problem to just one 
variable later.

  A variable can represent only a number; it can’t stand in for a person, 
place, or thing. A variable can represent the length of a boat or the 
number of people, but it can’t represent the boat itself or a person. 
You can choose the letters so they can help make sense of the problem. 
For example, you can let k represent Ken’s height — just don’t let it 
represent Ken.

 ✓ If you use more than one variable, go back and substitute known 
relationships for the extra variables. When it comes to solving the 
equations, you want to solve for just one variable. You can often rewrite 
all the variables in terms of just one of them. For example, if you let e 
represent the number of Ernie’s cookies and b represent Bert’s cookies, 
but you know that Ernie has four more cookies than Bert, then e can be 
replaced with b + 4.

 ✓ Look at the end of the question or problem statement. This often gives 
a big clue as to what’s being asked for and what the variables should 
represent. It can also give a clue as to what formula to use, if a formula is 
appropriate. For example:

  Marilee and Scott ran in a race. Marilee finished 2 minutes before 
Scott, but she ran one less kilometer than Scott did. If they ran at 
the same rate and the total distance they ran (added together) was 
9 kilometers, then how long did it take them?
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  Just look at all those words. Go to the last sentence — and even the 
last phrase of the last sentence. It tells you that you’re looking for the 
amount of time it took. The formula that the last sentence suggests is 
d = rt (distance = rate × time).

 ✓ Translate the words into an equation. Replace

 • and, more than, and exceeded by with the plus sign (+)

 • less than, less, and subtract from with the minus sign (–)

 • of and times as much with the multiplication sign (×)

 • twice with two times (2 ×)

 • divided by with the division sign (÷)

 • half as much with one-half times 

 • the verb (is or are, for example) with the equal sign (=)

 ✓ Plug in a standard formula, if the problem lends itself to one. When 
possible, use a formula as your equation or as part of your equation. 
Formulas are a good place to start to set up relationships. Be familiar 
with what the variables in the formula stand for.

 ✓ Check to see if the answer makes any sense. When you get an answer, 
decide whether it makes sense within the context of the problem. If 
you’re solving for the height of a man, and your answer comes out to be 
40 feet, you probably made an error somewhere. Having an answer make 
sense doesn’t guarantee that it’s a correct answer, but it’s the first check 
to tell if it isn’t correct.

 ✓ Check the algebra. Do that by putting the solution back into the original 
equation and checking. If that works, then work your answer through 
the written story problem to see if it works out with all the situations 
and relationships.

Working around Perimeter, 
Area, and Volume

Perimeter, area, and volume problems are some of the most practical of all 
story problems. It’s hard to avoid situations in life where you have to deal 
with one or more of these measures. For example, someday you may want to 
put up a fence and need to find the perimeter of your yard to help determine 
how much material you need to buy. Maybe you’re expecting a baby and you 
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want to add a room to your home; you can use an area formula to figure how 
much space your new room will take up. Finding a box to contain your 
present for your Aunt Bea’s 80th birthday may require calculating the volume 
of standard box sizes and then constructing your own box for that special 
gift. Lucky for you, standard formulas to deal with all these situations are 
available, and many of them are in this section.

Parading out perimeter 
and arranging area
Perimeter is the measure around the outside of a region or area. Perimeter 
is used when you want to put a fence around a yard or some baseboards 
around a room. The police put yellow crime-scene tape around the perimeter 
of an accident or crime.

 To find the perimeter of a rectangle, add twice the length, l, and twice the 
width, w. The formula for the perimeter of a rectangle is P = 2l + 2w. To find 
the area, A, of a rectangle, multiply the length times the width: A = l × w. 
(You can find these formulas and many more in Chapters 16 and 17.)

 Juan wants to fence in a rectangular field along the river for his flock of sheep. 
He won’t need any fence along the side of the field next to the river, just the 
other three sides. Juan wants his field to be twice as long as it is wide, and 
he’d like it to have a total area of 80,000 square feet. What should the 
dimensions of his field be, and how much fencing will he need?

This problem is a classic example of needing a picture. Figure 18-1 shows a 
possible sketch of the situation. Juan is assuming that sheep don’t swim, so 
he thinks he can save money by not fencing along the river. (Have you ever 
smelled wet wool?)

 

Figure 18-1: 
Fencing 

three sides 
of the field.

 

80,000 sq. feet

River

w

l
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The first issue has to do with the area. The formula for the area of a rectangle 
is A = lw. The area is to be 80,000 square feet, so 80,000 = lw.

There are two variables. To change the equation so that it has one variable, 
go back to the problem where it says Juan wants the length to be twice the 
width. That means l = 2w. Replacing the l with 2w in the area formula, you get

80,000 = 2w · w

80,000 = 2w2

Solve the equation for w:

First divide by 2:

40,000 = w2

Then take the square root of each side:

w = 200

The width is 200. The length is twice that, or 400. If the three sides that need 
fencing are 200 + 400 + 200, then the amount of fencing needed is 800 feet.

Adjusting the area
You may want to buy an area rug. You may meet someone who lives in your 
area. In both cases, area can be interpreted as some measured-off region or 
surface that has a shape or size. When doing area problems, you can find the 
area if you know what the shape is because there are so many nice formulas 
to use. You just have to match the shape with the formula.

 Eli and Esther are thinking of enlarging their family room. Right now, it’s a 
rectangle with an area of 120 square feet. If they increase the length by 4 feet 
and the width by 5 feet, the new family room will have an area of 240 square 
feet. What are the dimensions of the family room now, and what will the new 
dimensions be?

Draw a rectangle, labeling the shorter sides as w and the longer sides as l. 
The area of a rectangle is A = lw, so, in this case, because you know the area, 
you write the equation 120 = lw.

The length is going to increase by 4 feet, so you write l + 4 to represent the 
new length; and the width is increasing by 5 feet, so write w + 5 for the new 
width.

25_559642-ch18.indd   29525_559642-ch18.indd   295 4/16/10   11:12 AM4/16/10   11:12 AM



296 Part IV: Applying Algebra 

The new area is 240 square feet, so 240 = (l + 4)(w + 5).

In the original room, 120 = lw, so you can solve for l and substitute that into 
the new equation. Then you’ll have just one variable in the equation.

Using FOIL (refer to Chapter 9) to simplify the left side,

To solve this, get rid of the fraction by multiplying both sides by w:

600 + 4w2 = 100w

Now you have a quadratic equation that can be solved:

4w2 – 100w + 600 = 0

Divide through by 4 to make the coefficients and constant smaller:

w2 – 25w + 150 = 0

The quadratic factors using unFOIL:

(w – 15)(w – 10) = 0

Now use the multiplication property of zero (MPZ), where w – 15 = 0 or 
w – 10 = 0, to get the solutions w = 15 and w = 10:

 ✓ If w = 15, then ; the width is increased by 5 and the length by 4, 

  giving you the new dimensions of 20 by 12.

 ✓ If w = 10, then ; the width is increased by 5 and the length by 

  4, giving you new dimensions of 15 by 16.

Technically, these both work. Both are acceptable answers if you can accept 
a width that is greater than the length. In the case of w = 15, the width is 15 
and the length 8. If you’re going to hold fast to width being less than length, 
then only the second solution works: original dimensions of 10 by 12 and new 
dimensions of 15 by 16.
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Pumping up the volume
An area is a flat measurement. It can be shown on a floor or sports field, in 
two dimensions. Volume adds a third dimension, as Figure 18-2 shows. Take 
a room 10 by 12 feet and make the ceiling 8 feet high. You’re talking about an 
area of 10 × 12, or 120 square feet and, with the height, a volume of 120 × 8, or 
960 cubic feet. Volume is measured in cubic measures. The amount of gas in 
a balloon is a cubic measure. The amount of cement in a sidewalk is a cubic 
measure.

A cube is a box that has equal length, width, and height. Picture a sugar cube, 
or a pair of dice. The volume of a cube is the cube (third power) of the length 
of a side: V = s3.

 

Figure 18-2: 
Volume is 

determined 
by multiply-
ing length, 
width, and 

height.
 

w
l

h

 Aunt Sadie got a wonderful deal on some chocolate candies. You’re the favorite 
of all her nieces and nephews, so Aunt Sadie wants to send all the candies to 
you. The candies came in a huge plastic bag, but she wants to ship them in a 
box. The candies take up 900 cubic inches of space. If the box she’s going to 
use to ship them must have a 9-x-9-inch bottom, then how high does the box 
have to be to fit the candy?

 The volume of a prism (in this case, the box) is found by multiplying the 
length of the box times its width times its height: V = lwh.

In this case, the bottom is square, and each side of the bottom is 9 inches, so, 
substituting into the formula,

900 = 9(9)(h)

Simplifying, you get:

900 = 81h
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Solving for h, divide each side by 81 to get

Building a pyramid
Pyramids are among the more recognizable geometric figures. Children are 
introduced to the pyramids of Egypt early in their schooling. You see the 
pyramid shape in everything from tents to meditation sites to Figure 18-3. If 
your tent has a pyramid shape, you can find its volume to see if you and your 
three friends can all fit. You’ll want breathing room.

 

Figure 18-3: 

Some 
people 
believe 

pyramids 
have 

preservation 
powers.

 

 The formula for the volume of a pyramid with a square base is . The

 x2 represents the area of the base. In general, the volume of a pyramid is 
one-third of the product of the area of the base and the height.

 The Great Pyramid of Cheops is a solid mass of limestone blocks. It’s 
estimated to contain 2.3 million blocks of stone. Originally, the pyramid had a 
square base of 756 feet by 756 feet and was 480 feet high, but wind and sand 
have eroded it over time. Pretend it still has its original dimensions. If each of 
the blocks is a cube, what are the dimensions of the cubes?

You have only one measure to name — the measure of each edge — so call it 
x. First find the volume of the Great Pyramid in cubic feet:

If each block were a cube 1 foot by 1 foot by 1 foot, there would be over 91 
million of them. But, according to the estimate, there are 2.3 million blocks of 
stone, not 91 million, so

91,445,760 ÷ 2,300,000 ≈ 39.759
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That means that each of the 2.3 million blocks of stone measures more than 
39 cubic feet. To find the measure of an edge, which gives you the dimensions, 
look at the formula for the volume of a cube, V = s3. In this case, assign s to be 
the length of a side of any of the cubes. So, if V = 39.759 = s3, then

So each cube would be about  feet on each edge.

Picture a huge block of stone longer than a yardstick on each side (some of 
the stones are reportedly larger than this). Now picture lifting that stone up 
to the top of the Great Pyramid.

Circling Jupiter
Figuring out how much air you have to expel to blow up a 9-inch balloon 
involves cubic inches of air, force, propulsion, and all sorts of complicated 
physics, and in the end, do you really care? You just blow until the balloon is 
full. But that’s not to say that you may not want to figure out how many 
balloons you need to fill up the big balloon net you rented for your 
5-year-old’s party.

The example in this section involves much larger spheres — a couple of 
planets, in fact — but I do my best to keep your feet on the ground. Figure 18-4 
shows you a sphere.

 

Figure 18-4: 
Basketballs, 

globes, 
planets, and 

sometimes 
oranges are 

spheres.
 

 The volume of a sphere is found with the formula . The only dimension 
you need is the radius, r.
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 Dan’s fraternity is planning on an elaborate prank — to impress the ladies of 
the neighboring sorority. They plan on filling a spherical balloon with water 
and then bursting the balloon at an appropriate moment. The balloon they 
bought expands to a diameter of 20 feet. How many gallons of water will it take 
to fill the balloon? (Disregard the possible warping of the balloon’s shape and 
the weight of the water — Dan is just dreaming that this will work, anyway.)

Using the formula for the volume of a sphere, you replace the r with 10; if the 
diameter is 20 feet, then the radius is 10 feet.

You now need the conversion equation from cubic feet to gallons. One cubic 
foot is equal to approximately 7.481 gallons. To find the total number of 
gallons necessary, multiply the number of cubic feet by the number of 
gallons and you get (4188.790)(7.481) = 31,336.33799 gallons of water. I think 
they’d best scrap this bright idea.

Making Up Mixtures
Mixture problems can take on many different forms. There are the traditional 
types, in which you can actually mix one solution and another, such as water 
and antifreeze. There are the types in which different solid ingredients are 
mixed, such as in a salad bowl or candy dish. Another type is where different 
investments at different interest rates are mixed together. I lump all these 
types of problems together because you use basically the same process to 
solve them.

Drawing a picture helps with all mixture problems. The same picture can 
work for all: liquid, solid, and investments. Figure 18-5 shows three sample 
containers — two added together to get a third (the mixture). In each case, 
the containers are labeled with the quality and quantity of the contents. 
These two values get multiplied together before adding. The quality is the 
strength of the antifreeze or the percentage of the interest or the price of the 
ingredient. The quantity is the amount in quarts or dollars or pounds. You 
can use the same picture for the containers in every mixture problem, or you 
can change to bowls or boxes. It doesn’t matter — you just want to visualize 
the way the mixture is going together.
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Figure 18-5: 

Visualizing 
containers 

can help 
with mixture 

problems.
 

+ =

Mixing up solutions
A traditional solutions-type problem is where you mix water and antifreeze. 
When the liquids are mixed, the strengths of the two liquids average out.

 How many quarts of 80 percent antifreeze have to be added to 8 quarts of 20 
percent antifreeze to get a mixture of 60 percent antifreeze?

First, label your containers. The first would be labeled 80 percent on the top 
and x on the bottom. (I don’t know yet how many quarts have to be added.) 
The second container would be labeled with 20 percent on the top and 8 
quarts on the bottom. The third container, which represents the final 
mixture, would be labeled 60 percent on top and x + 8 quarts on the bottom. 
To solve this, multiply each “quality” or percentage strength of antifreeze 
times its “quantity” and put these in the equation:

80 percent(x quarts) + 20 percent(8 quarts) = 60 percent(x + 8) quarts

(0.8)x + 0.2(8) = 0.6(x + 8)

0.8x + 1.6 = 0.6x + 4.8

Subtracting 0.6x from each side and subtracting 1.6 from each side, I get

0.2x = 3.2

Dividing each side of the equation by 0.2, I get

x = 16

So 16 quarts of 80 percent antifreeze have to be added.

You can use the liquid mixture rules with salad dressings, mixed drinks, and 
all sorts of sloshy concoctions.
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Tossing in some solid mixtures
You also have many opportunities for mixing solids: mixing the dry ingredients 
for a cake, tossing a green salad, and making that good old raisins-and-
peanuts mixture, gorp. (I fear I’m in a food frenzy.) This section demonstrates 
how to mix solid objects using algebra.

Do you ever buy a can of mixed nuts? I always pick out and eat the cashews 
first. Do you wonder why there seems to be so few of your favorite type and 
so many peanuts? Well, some types of nuts are more expensive than others, 
and some are more popular than others. The nut folks take these factors into 
account when they devise the proportions for a mixture that is both desirable 
and affordable.

 How many pounds of cashews that cost $5.50 per pound should be mixed 
with 3 pounds of peanuts that cost $2 per pound to create a mixture that costs 
$3 per pound? (You can use this formula to save your budget for your next big 
party.)

Using containers makes sense here. Let x represent the number of pounds of 
cashews. The quality is the cost of the nuts and the quantity is the number of 
pounds. The first container should have $5.50 on the top and x pounds on the 
bottom. The second container should be $2 on the top and 3 pounds on 
the bottom. The third container, with the mixture, should have $3 on the top 
and x + 3 on the bottom.

5.5x + 2(3) = 3(x + 3)

5.5x + 6 = 3x + 9

Subtracting 3x from each side and 6 from each side, I get

2.5x = 3

You mix that with 3 pounds of peanuts to create a mixture of 4.2 pounds of 
nuts that costs $3 per pound.

Investigating investments and interest
You can invest your money in a safe CD or savings account and get one 
interest rate. You can also invest in riskier ventures and get a higher interest 
rate, but you risk losing money. Most financial advisors suggest that you 
diversify — put some money in each type of investment — to take advantage 
of each investment’s good points.
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Use the simple interest formula in each of these problems to simplify the 
process. With simple interest, the interest is figured on the beginning amount 
only.

 In practice, financial institutions are more likely to use the compound interest 
formula. Compound interest is figured on the changing amounts as the 
interest is periodically added into the original investment.

 Khalil had $20,000 to invest last year. He invested some of this money at  
percent interest and the rest at 8 percent interest. His total earnings in 
interest, for both of the investments, were $970. How much did he have 
invested at each rate?

Use containers again. Let x represent the amount of money invested at  

percent. The first container has  percent on top and x on the bottom. The 

second container has 8 percent on top and 20,000 – x on the bottom. The 
third container, the mixture, has $970 right in the middle. That’s the result of 
multiplying the mixture percentage times the total investment of $20,000. You 
don’t need to know the mixture percentage — just the result.

0.035(x) + 0.08(20,000 – x) = 970

0.035x + 1,600 – 0.08x = 970

Subtract 1,600 from each side and simplify on the left side:

–0.045x = –630

Dividing each side by –0.045, you get

x = 14,000

That means that $14,000 was invested at  percent and the other $6,000 was 
invested at 8 percent.

 Kathy wants to withdraw only the interest on her investment each year. 
She’s going to put money into the account and leave it there, just taking the 
interest earnings. She wants to take out and spend $10,000 each year. If she 
puts two-thirds of her money where it can earn 5 percent interest and the 
rest at 7 percent interest, how much should she put at each rate to have the 
$10,000 spending money?
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Let x represent the total amount of money Kathy needs to invest. The first 

container has 5 percent on top and  on the bottom. The second container 

has 7 percent on top and  on the bottom. The third container, or mixture, 

has $10,000 in the middle; this is the result of the “mixed” percentage and the 
total amount invested.

Change the decimals to fractions and multiply:

Find a common denominator and add the coefficients of x:

Divide each side by :

x ≈ 176,470.59

Kathy needs over $176,000 in her investment account. Two-thirds of it, about 
$117,647, has to be invested at 5 percent and the rest, about $58,824, at 7 
percent.

Going for the green: Money
Money is everyone’s favorite topic. It’s something everyone can relate to. It’s 
a blessing and a curse. When you’re combining money and algebra, you have 
to consider the number of coins or bills and their worth or denomination. 
Other situations involving money can include admission prices, prices of 
different pizzas in an order, or any commodity with varying prices.

For the purposes of this book, U.S. coins and bills are used in the examples 
in this section. I don’t want to get fancy by including other countries’ 
currencies.

 Chelsea has five times as many quarters as dimes, three more nickels than 
dimes, and two fewer than nine times as many pennies as dimes. If she has 
$15.03 in coins, how many of them are quarters?
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The containers work here, too. There will be four of them added together: 
dimes, quarters, nickels, and pennies. The quality is the value of each coin. 
Every coin count refers to dimes in this problem, so let the number of dimes 
be represented by x and compare everything else to it.

The first container would contain dimes; put 0.10 on top and x on the bottom. 
The second container contains quarters; put 0.25 on top and 5x on the 
bottom. The third container contains nickels; so put 0.05 on top and x + 3 on 
the bottom. The fourth container contains pennies; put 0.01 on top and 9x – 2 
on the bottom. The mixture container, on the right, has $15.03 right in the 
middle.

0.10(x) + 0.25(5x) + 0.05(x + 3) + 0.01(9x – 2) = 15.03

0.10x + 1.25x + 0.05x + 0.15 + 0.09x – 0.02 = 15.03

Simplifying on the left, you get

1.49x + 0.13 = 15.03.

Subtracting 0.13,

1.49x = 14.90

And, after dividing by 1.49,

x = 10

Because x is the number of dimes, there are 10 dimes, 5 times as many or 
50 quarters, 3 more or 13 nickels and 2 less than 9 times or 88 pennies. The 
question was, “How many quarters?” There were 50 quarters; use the other 
answers to check to see if this comes out correctly.

Going the Distance
You travel, I travel, everybody travels, and at some point everybody asks, 
“Are we there yet?” Algebra can’t answer that question for you, but it can 
help you estimate how long it takes to get there — wherever “there” is.

The distance formula, d = rt, says that distance is equal to the rate of speed 
multiplied by the time it takes to get from the starting point to the destination. 
You can apply this formula and its variations to determine how long, how far, 
and how fast you travel.
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Figuring distance plus distance
One of the two basic distance problems involves one object traveling a 
certain distance, a second object traveling another distance, and the two 
distances getting added together. There could be two kids on walkie-talkies, 
going in opposite directions to see how far apart they’d have to be before 
they couldn’t communicate anymore. Another instance would be when two 
cars leave different cities heading toward each other on the same road and 
you figure out where they meet.

 Deirdre and Donovan are in love and will be meeting in Kansas City to get 
married. Deirdre boarded a train at noon traveling due east toward Kansas 
City. Two hours later, Donovan boarded a train traveling due west, also 
heading for Kansas City, and going at a rate of speed 20 mph faster than 
Deirdre. At noon, they were 1,100 miles apart. At 9 p.m., they both arrived in 
Kansas City. How fast were they traveling?

distance of Deirdre from Kansas City + distance of Donovan from Kansas 
City = 1,100

(rate × time) + (rate × time) = 1,100

Let the speed (rate) of Deirdre’s train be represented by r. Donovan’s train 
was traveling 20 mph faster than Deirdre’s, so the speed of Donovan’s 
train is r + 20.

Let the time traveled by Deirdre’s train be represented by t. Donovan’s train 
left two hours after Deirdre’s, so the time traveled by Donovan’s train is t – 2. 
Substituting the expressions into the first equation,

rt + (r + 20)(t – 2) = 1,100

Deirdre left at noon and arrived at 9, so t = 9 hours for Deirdre’s travels and 
t – 2 = 7 hours for Donovan’s. Replacing these values in the equation,

r (9) + (r + 20)(7) = 1,100

Now distribute the 7:

9r + 7r + 140 = 1,100

Combine the two terms with r:

16r = 960
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Divide each side by 16:

r = 60

Deirdre’s train is going 60 mph; Donovan’s is going r + 20 = 80 mph.

Figuring distance and fuel
My son, Jim, sent me this problem when he was stationed in Afghanistan with 
the Marines. He was always a whiz at story problems — doing them in his 
head and not wanting to show any work. He must have been listening to me, 
because, at the end of his contribution, he added, “Don’t forget to show your 
work!”

 A CH-47 troop-carrying helicopter can travel 300 miles if there aren’t any 
passengers. With a full load of passengers, it can travel 200 miles before 
running out of fuel. If Camp Tango is 120 miles away from Camp Sierra, can the 
CH-47 carry a full load of Special Forces members from Tango to Sierra, drop 
off the troops, and return safely to Tango before running out of fuel? If so, 
what percentage of fuel will it have left?

I felt a little nervous, working on this problem, with so much at stake. So I 
took my own advice and drew a picture, tried some scenarios with numbers, 
and assigned a variable to an amount.

Let x represent the number of gallons of fuel available in the helicopter, and 
write expressions for the amount used during each part of the operation.

When the helicopter is loaded, it can travel 200 miles on a full tank of fuel. 
The camps are 120 miles apart, so the helicopter uses  gallons for that 
part of the trip.

When there are no passengers, the helicopter can travel 300 miles on a full 

tank. So it uses  gallons for the return flight.

Adding the two amounts together,

It looks like there’s no room for a scenic side trip. And I haven’t figured in the 
fuel needed for landing and taking off. Hopefully, there’s a reserve tank.
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Going ’Round in Circles
The circle, as Figure 18-6 shows, is a very nice, efficient figure, although using 
a circular shape isn’t always practical in buildings. Circles don’t fit together 
well. There are always gaps between them, so they don’t make good shapes 
for fields, yards, or areas shared with other circles. But even though circles 
don’t fit in, circles are useful, letting you consider situations involving their 
area: circular rugs and race tracks, fields and swimming pools.

 

Figure 18-6: 
The 

diameter is 
the longest 

distance 
across a 

circle.
 

The area of a circle can be determined if you know the radius or the diameter.

 Grace decided to get an 18-foot-diameter, aboveground pool instead of a 
12-foot-diameter pool. How much more area (of her yard) will this bigger pool 
cover?

The area of a circle is found with: A = πr2.

The diameter of a circle is twice the radius, so an 18-foot-diameter pool has a 
radius of 9 feet, and the 12-foot-diameter pool has a 6-foot radius.

difference in area = area of bigger pool – area of smaller pool

difference = π(9)2 – π(6)2 = 81π – 36π = 45π ≈ 141.4 square feet

 If you have a certain amount of fencing, you can enclose more area with a 
circular shape than you can with any other shape. To prove this point, let me 
show you how much bigger a circular yard enclosed by 314 feet of fencing is 
than a square yard enclosed in the same amount of fencing.

The area of a circle is found with A = πr2, and the area of a square is found 
with A = s2. It looks like this will be fairly simple; you just have to find the 
difference between the two values.

difference = area of circle – area of square
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The challenge comes in when you need the value of r, the radius of the circle 
and the value of s, the length of a side of the square. You don’t have the value 
of r or the value of s. You just have the distance around the outside called the 
perimeter or, in the case of a circle, the circumference, and there’s a 
formula for each figure.

The circumference of a circle is found with C = 2πr, and the perimeter of a 
square is found with P = 4s.

If 314 is the circumference of the circle, then 314 = 2πr, or .

So the area of the circle is A = π502 = 2,500π ≈ 7,854 square feet.

The perimeter of a square is just four times the measure of the side. Because 
314 is the perimeter of the square, then 314 = 4s, or s = 78.5. That means that 
the area of the square is 78.52 = 6,162.25.

difference = 7,854 – 6,162.25 = 1,691.75 square feet

That’s quite a bit more area in the circle than in the square.
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Chapter 19

Going Visual: Graphing
In This Chapter
▶ Pointing at points and calling them by name

▶ Graphing formulas and equations

▶ Working with U-shaped parabolas

A picture is worth a thousand words. This saying is especially true in 
algebra. Pictures or graphs give you an instant impression of what’s 

happening in a situation or what an equation is representing in space. A 
graph is a drawing that illustrates an algebraic operation, equation, or 
formula in a two-dimensional plane (like a piece of graph paper). A graph 
allows you to see the characteristics of an algebraic statement immediately, 
compared to the many words needed to describe what you see in a graph.

Most people are familiar with bar graphs and their rectangles standing on 
end, which often depict test scores. Pie graphs (circles with wedges of 
varying sizes) are good for showing relationships between pieces of a whole, 
such as how money is spent, and line graphs are great for showing the ups 
and downs of the stock market or how your weight is changing over time.

The graphs in algebra are unique because they reveal relationships that you 
can use to model a situation: A line can model the depreciation of the value 
of your boat; parabolas can model daily temperature; and a flat, S-shaped 
curve can model the number of people infected with the flu. All these and 
other models are useful for illustrating what’s happening and predicting what 
can happen in the future.

Algebraic equations match up with their graphs. With algebraic operations 
and techniques applied to equations to make them more usable, the 
equations can be used to predict, project, and figure out various problems.
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Graphing Is Good
Consider the three ways of expressing the same thing in each of the following 
examples:

 ✓ In words: All the pairs of numbers that add up to 10

 ✓ In an algebraic equation: x + y = 10

 ✓ In a graph: See Figure 19-1.

 

Figure 19-1: 
All the 

possibilities 
for 

x + y = 10.
 

y

x

5

10

-5

-10

5 10-5-10

And, again:

 ✓ In words: All the pairs of numbers you get when you choose the first 
number and then get the second number by subtracting the first number 
from its square

 ✓ In an algebraic equation: y = x2 – x

 ✓ In a graph: See Figure 19-2.

The algebraic equation describes the situation in a more concise manner 
than the wordy description. The graph, however, gives you a better idea of 
what’s being described than the words or the equation.
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Figure 19-2: 

All the 
possibilities 

for y = x2 – x.
 

y

x

1

-1

1-1

Grappling with Graphs
The cartoons in the newspaper often show a worried businessperson pointing 
to a graph full of ups and downs — usually the punch line involves a huge 
drop in sales. As entertaining as these cartoons may be, they also cut right to 
a major usefulness of graphs: Graphs give instant recognition to the lowest 
value and the highest value. They give information on trends, patterns, and 
the current status. And you can put two graphs in the same picture to compare 
them.

In almost all cases, a graph of a function or equation in algebra is drawn on a 
coordinate plane — two lines that cross one another at right angles to form 
four sections or quadrants. The two lines, or axes (pronounced ax-eez), are 
number lines usually marked with the integers (positive and negative whole 
numbers and 0). The positives go upward on the vertical axis and to the right 
on the horizontal axis. Figure 19-3 shows a coordinate plane. The line going 
left and right — the horizontal line — is the x-axis; the line going up and 
down — the vertical line — is the y-axis.

The little marks on the axes are called tick marks. They’re all uniformly 
spaced (like the tick-tocks of a clock are the same time apart) and are usually 
labeled with the integers, negative to positive, left to right, and downward to 
upward, with 0 in the middle, at the point where the axes meet.
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Figure 19-3: 
A graph 

showing the 
x-axis, the 

y-axis, and 
the point of 

origin.
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x -axis
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y

x
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5 10-5-10

The four quadrants are numbered I, II, III, and IV, with capital roman numerals 
starting with the upper-right quadrant and going counterclockwise. The 
reason for this numbering is simple: It’s tradition.

Making a point
You do the type of point-finding needed to do graphing when you find the 
whereabouts of Peoria, Illinois, at G7 on a road atlas. You move your finger so 
it’s down from the G and across from the 7. Graphing in algebra is just a bit 
different because numbers replace the letters, and you start in the middle at 
a point called the origin.

Points are dots on a piece of paper or blackboard that represent positions or 
places with respect to the axes — vertical and horizontal lines — of a graph. 
The coordinates of a point tell you its exact position on the graph (unlike 
maps, where G7 is a big area and you have to look around for the city).

The axes of an algebraic graph are usually labeled with integers, but they can 
be labeled with any rational numbers, as long as the numbers are the same 
distance apart from each other, such as the one-quarter distance between , 

, and .
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Ordering pairs, or coordinating coordinates
To actually put a point in a graph, you need information on where to put that 
point. That’s where ordered pairs come in.

An ordered pair is a set of two numbers called coordinates that are written 
inside parentheses with a comma separating them. Some examples are 
(2, 3), (–1, 4), and (5, 0). When using particular notation, the order matters: 
The first number, or x-coordinate, tells you the point’s position with respect 
to the x-axis — how far to the left or right from the origin — and the second 
number, or y-coordinate, tells you the point’s position with respect to the 
y-axis — how far up or down from the origin.

For example, the point for the ordered pair (3, 2) is 3 units to the right of the 
origin, and 2 units up from there. Look at Figure 19-4 to see where the points 
are for several ordered pairs.

 

Figure 19-4: 

Coordinates 
and their 

points on a 
graph.
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x
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5 10-5-10 (2,0)

(3,2)
(1,4)

(5,5)

Everything starts at the origin — the intersection of the two axes. The 
ordered pair for the origin is (0, 0). The numbers in this ordered pair tell you 
that the point didn’t go left, right, up, or down. Its position is at the starting 
place.
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 Notice that point (2, 0) lies right on the x-axis. Whenever 0 is a coordinate 
within the ordered pair, the point must be located on an axis.

Table 19-1 gives you the names of the quadrants, their positions in the 
coordinate plane, and the characteristics of coordinate points in the various 
quadrants. Table 19-2 describes what’s happening on the axes as they radiate 
out from the origin.

Table 19-1 Quadrants

Quadrant Position Coordinate Signs How to Plot

Quadrant I Upper-right side (positive, positive) Move right and up

Quadrant II Upper-left side (negative, positive) Move left and up

Quadrant III Lower-left side (negative, negative) Move left and down

Quadrant IV Lower-right side (positive, negative) Move right and down

Table 19-2 Axes

Position Coordinate Signs How to Plot

Right axis (positive, 0) Move right and sit on the x-axis

Left axis (negative, 0) Move left and sit on the x-axis.

Upper axis (0, positive) Move up and sit on the y-axis.

Lower axis (0, negative) Move down and sit on the y-axis.

Actually Graphing Points
To plot a point, look at the coordinates — the numbers in the parentheses. 
The first number tells you which way to move, horizontally, from the origin. 
Place your pencil on the origin and move right if the first number is positive; 
move left if the first number is negative. Next, from that position, move your 
pencil up or down — up if the second number is positive and down if it’s 
negative.

The following points are graphed in Figure 19-5. The letters serve as names of 
the points so you can compare their coordinates.
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A (9, 0) B (7, 4)

C (3, 8) D (0, 7)

E (–2, 2) F (–8, 0)

G (–5, –3) H (0, –3)

J (3, –2) K (8, –7)

 

Figure 19-5: 

Points A 
through K 

graphed in 
the coordi-
nate plane.
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 If you have an eagle eye, you may have noticed that I skip from H to J in 
Figure 19-5. When labeling points on a graph, try to avoid using the letters I 
and O — these letters are easily mistaken for 1 and 0.

Graphing Formulas and Equations
An algebraic graph is a picture of the relationship between the two numbers 
forming the coordinates of a point. The relationship between the coordinates 
may come in the form of a simple equation such as: y = x + 3, which says that 
whatever the x coordinate is, the y coordinate is 3 bigger. Another relationship 
or equation might state that the sum of the squares of the two coordinates 
has to be exactly 25: x2 + y2 = 25. The relationships are many and varied. I 
show you several examples of the graphs of the equations or formulas in this 
section.
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Lining up a linear equation
The graph of a linear equation in two variables is a line. For example, the 
graph of the linear equation y = x + 3 is a line that appears to move upward as 
the x-coordinates increase. I talk more about lines in Chapter 20. For now, I 
just show you how to do a basic graph.

The graph of y = x + 3 goes through all the points in the coordinate plane that 
make the equation a true statement. For example, if x = 2, then y = 2 + 3 = 5, 
and you have the point (2, 5). Here are some of the points that make the 
equation true:

(–4, –1) (–3, 0) (–2, 1) (–1, 2)

(0, 3) (1, 4) (2, 5) (3, 6)

The number of points that satisfy the equation is infinitely large. You just 
need a few to draw a decent graph. (Actually, you only need two points to 
draw a particular line, but I like to graph more than that for accuracy’s sake.) 
Figure 19-6 shows you the points graphed and then connected to form the 
line.

 

Figure 19-6: 
Graphing 
y = x + 3.

 

(–4,1)

(–3,0)
(–2,1)

(–1,2)

(0,3)

(1,4)
(2,5)

(3,6)
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Going around in circles 
with a circular graph
An example of an equation of a circle is x2 + y2 = 25. The circle representing 
this equation goes through an infinite number of points. Here are just some 
of those points:

(0, 5) (0, –5) (5, 0) (–5, 0) (3, 4) (–3, 4)

(4, 3) (4, –3) (–3,4) (–3, –4) (–4, –3)

I haven’t finished all the possible points with integer coordinates, let alone 

points with fractional coordinates, such as .

 When graphing an equation, you don’t expect to find all the points. You just 
want to find enough points to help you sketch in all the others without naming 
them.

In Figure 19-7, I show you the graph of the circle and some of the named 
points that make up the graph of the circle.

 

Figure 19-7: 

The circle 
has a radius 

of 5.
 

(0, 5)

(–4, –3)
(3, –4)

(3, 4)
(25/13, 60/13)

Throwing an object into the air
The equation for the height of an object that’s tossed into the air with an 
initial velocity of v0 and an initial height of h0 is h(t) = –16t2 + v0t + h0 where t 
is the amount of time since the launching of an object. Replacing the t with x 
and the h(t) with y, I can graph the equation on the coordinate axes.
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 A ball is thrown into the air at an initial velocity of 132 feet per second. 
The person throwing the ball is standing on a building 40 feet tall. So the 
equation representing the height of the ball is h(t) = –16t2 + 132t + 40 or 
y = –16x2 + 132x + 40. Graph the equation.

First, compute some of the points by putting in values for x. Starting with 0, 
and going up by 1, you get the following points:

(0, 40) (1, 156) (2, 240) (3, 292) (4, 312)

(5, 300) (6, 256) (7, 180) (8, 72) (9, –68)

Figure 19-8 shows you the graph and some of the points labeled.

 

Figure 19-8: 
He shot an 
arrow into 

the air, and 
where it 

landed. . . .
 

100

2 4 6 8

200

300 (3, 292)

(1, 156)

(5, 300)

(8, 72)
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Curling Up with Parabolas
Parabolas are nice, U-shaped curves. They’re the graphs of quadratic 
equations where either an x term is squared or a y term is squared, but 
not both are squared at the same time. The reflectors in headlights have 
parabola-like curves running through them. McDonald’s golden arches 
are parabolas. The abundance of manufactured parabolas points to the fact 
that the properties responsible for creating a parabola often occur naturally. 
Mathematicians are able to put an equation to this natural phenomenon.

Parabolas have a highest point or a lowest point (or the farthest left or the 
farthest right) called the vertex. The curve is lower on the left and right of a 
vertex that is the highest point, and it’s higher to the left and right of a vertex 
that is the lowest point.

Trying out the basic parabola
My favorite equation for the parabola is y = x2, the basic parabola. Figure 
19-9 shows a graph of this formula. This equation says that the y-coordinate 
of every point on the parabola is the square of the x-coordinate. Notice that 
whether x is positive or negative, the y is a square of it and is positive.

The vertex of the parabola in Figure 19-9 is at the origin, (0, 0), and it curves 
upward.

 

Figure 19-9: 

The simplest 
parabola.
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You can make this parabola steeper or flatter by multiplying the x2 by certain 
numbers. If you multiply the squared term by numbers bigger than 1, it 
makes the parabola steeper. If you multiply by numbers between 0 and 1 
(proper fractions), it makes the parabola flatter (as shown in Figure 19-10). 
Making it steeper or flatter than the basic parabola helps the parabola fit 
different applications. The flatter ones are more like the curve of a headlight 
reflector. The steeper ones could be models for the time it takes to swim a 
certain distance, depending on your age.

 

Figure 19-10: 

A steeper 
parabola 

and a flatter 
parabola.
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y =     x21
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You can make the parabola open downward by multiplying the x2 by a 
negative number, and make it steeper or flatter than the basic parabola — 
in a downward direction.

Putting the vertex on an axis
The basic parabola, y = x2, can be slid around — left, right, up, down — 
placing the vertex somewhere else on an axis and not changing the general 
shape.

If you change the basic equation by adding a constant number to the x2 — 
such as y = x2 + 3, y = x2 + 8, y = x2 – 5, or y = x2 – 1 — then the parabola moves 
up and down the y-axis. Note that adding a negative number is also part of 
this rule. These manipulations help make a parabola fit the model of a certain 
situation.

Note: Not everything starts at 0. Figure 19-11 shows several parabolas, only 
one of which starts at 0.

If you change the basic parabolic equation by adding a number to the x first 
and then squaring the expression — such as y = (x + 3)2, y = (x + 8)2, y = (x – 
5)2, or y = (x – 1)2 — you move the graph to the left or right of where the basic 
parabola lies. Using +3 as in the equation y = (x + 3)2 moves the graph to the 
left, and using –3 as in the equation y = (x – 3)2 moves the graph to the right. 
It’s the opposite of what you might expect, but it works this way consistently 
(see Figure 19-12).
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Figure 19-11: 
Parabolas 
spooning.
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Figure 19-12: 
Pretty 

parabolas 
all in a row.
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Sliding and multiplying
You can combine the two operations of changing the steepness of a parabola 
and moving the vertex. These change the basic parabola to suit your purposes.

The equation used to model a situation may require a steep parabola 
because the changes happen rapidly, and it may require that the starting 
point be at 8 feet, not 0 feet. By moving the parabola around and changing 
the shape, you can get a better fit for the info you want to demonstrate.

The following equations and their graphs are shown in Figure 19-13:

 ✓ y = 3x2 – 2: The 3 multiplying the x2 makes the parabola steeper, and the 
–2 moves the vertex down to (0, –2).

 ✓ : The  multiplying the x2 makes the parabola flatter, and the 

  +1 moves the vertex up to (0, 1).

 ✓ y = –5x2 + 3: The –5 multiplying the x2 makes the parabola steeper and 
causes it to go downward, and the +3 moves the vertex to (0, 3).

 ✓ y = 2(x – 1)2: The 2 multiplier makes the parabola steeper, and subtracting 
1 moves the vertex right to (1, 0).

 ✓ : The  makes the parabola flatter and causes it to go 

  downward, and adding 4 moves the vertex left to (–4, 0).

 ✓ : The  multiplying the x2 makes the parabola flatter and 

  causes it to go downward, and the +5 moves the vertex to (0, 5).
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Figure 19-13: 

Parabolas 
galore.
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y = 3x2 – 2

y = –5x2 + 3
y = 2(x – 1)2

y =     x2 + 11
4

y = –     x2 + 51
20

y = –     (x + 4)2 1
3

26_559642-ch19.indd   32526_559642-ch19.indd   325 4/20/10   8:59 AM4/20/10   8:59 AM



326 Part IV: Applying Algebra 

26_559642-ch19.indd   32626_559642-ch19.indd   326 4/20/10   8:59 AM4/20/10   8:59 AM



Chapter 20

Lining Up Graphs of Lines
In This Chapter
▶ Graphing lines

▶ Sliding down the slippery slope with the slope formula

▶ Putting perpendicular and parallel lines in the picture

▶ Finding intersections of lines

Lines are found all around you: “Get in line!” and “Toe the line.” You have 
mental pictures of lines when you hear those commands. But a line is 

more than a geometric figure and a place to put your feet. Lines are good 
representations of some activities that go on around you and affect your life. 
The formulas for determining how much income tax you pay are represented 
by pieces of lines. The depreciation of goods is often represented by the 
equation of a line — and its graph shows the decreasing value very vividly.

In this chapter, I present the basics for working with lines and their equations. 
You find lines determined by two points and then other lines determined by 
a slope and a point. You see lines that meet and lines that avoid one another 
forever. The equations of lines are quite straightforward. (Sorry — I couldn’t 
help myself.)

Graphing a Line
A straight line is the set of all the points on a graph that satisfy a linear 
equation. When any two points on a line are chosen, the slope (see “Sighting 
the Slope,” later in this chapter) of the segment between those two points is 
always the same number.

Lines are among the most basic and most useful things to graph in algebra. 
You can use them to represent how your income is growing or how a distance 
from a point changes. They can represent how a piece of machinery depreciates. 
So, lines are useful, and they’re easy to deal with, too. What more could 
you ask?
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Dots or points scattered all over the place with no apparent shape don’t 
usually mean anything. In algebra, it’s more common to see points arranged 
with an equation that gives them something in common. The simplest pattern 
is a straight line. Line up those points!

The following points are graphed in Figure 20-1:

(–2, 12) (–1, 11) (0, 10) (1, 9) (2, 8) (3, 7) (4, 6) (5, 5)

(6, 4) (7, 3) (8, 2) (9, 1) (10, 0) (11, –1) (12, –2) (13, –3)

 

Figure 20-1: 
Points lined 

up like 
blackbirds, 
all in a row.
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Instead of listing all the millions of points that seem to lie along the same line, 
you can write an equation that expresses the relation between the points. In 
the case of Figure 20-1, the relation is x + y = 10. The coordinates in each pair 
add up to 10. But what the graph doesn’t show is that not all the points have 

coordinates that are integers — points such as  that fit the pattern 

(equation) and lie on the line. By connecting all the points to form a line, 
you’re actually including all the fractional coordinates between the integer 
coordinate points.

The equation x + y = 10 says that any two numbers adding up to 10 give 
you a point on the graph. This includes fractions, decimals, positives, and 
negatives. What were at first many points or values that worked in the 
equation are now an infinite number of points.
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Figure 20-2 shows you how points look when they’re connected to form a 
line.

 

Figure 20-2: 

Connect the 
dots and get 

a line.
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x + y = 10

To graph a line, you need only two points. A rule in geometry says that only 
one line can go through two particular points. Even though only two points 
are needed to graph a line, it’s usually a good idea to graph at least three 
points to be sure that you graphed the line correctly.

 In graphing, three is much better than two. If you get one of two points in the 
wrong place in a graph, you probably won’t notice that the line is wrong. But 
if you get one of three points in the wrong place, you’re more likely to notice 
that your line isn’t straight. Plotting three points is a good check.

Graphing the equation of a line
An equation whose graph is a straight line is said to be linear. A linear 
equation has a standard form of ax + by = c, where x and y are variables and 
a, b, and c are real numbers. The equation of a line usually has an x or a y 
(often both), which refer to all the points (x, y) that make the equation true. 
The x and y both have a power of 1. (If the powers were higher or lower than 
1, the graph would curve.)

When graphing a line, you can find some pairs of numbers that make the 
equation true and then connect them. Connect the dots!
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What does the equation of a line look like? It looks like any of the following 
examples. Notice that the first three equations are written in the standard 
form, and the fourth has you solve for y. The last two have only one variable; 
this situation happens with horizontal and vertical lines.

x + y = 10 2x + 3y = 4 –5x + y = 7

 x = 3  y = –2

 Whenever you have an equation where y equals a constant number, you have 
a horizontal line going through all those y values. Conversely, if you have an 
equation where x equals a constant number, all the x values are the same, 
and you have a vertical line. Horizontal lines are all parallel to the x-axis. Their 
equations look like y = 3 or y = –2. Vertical lines are all parallel to the y-axis. 
Their equations all look like x = 5 or x = –11. Figure 20-3 shows a graph of y = 4, 
using four points: (–4, 4), (0, 4), (1, 4), and (3, 4).

 

Figure 20-3: 
Horizontal 

lines are 
parallel to 
the x-axis.
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(1,4)(0,4)
(-4,4) (3,4) y = 4

Graphing lines from their equations just takes finding enough points on the 
line to convince you that you’ve done the graph correctly.

 Find a point on the line x – y = 3.

 1. Choose a random value for one of the variables, either x or y.

  To make the arithmetic easy for yourself, pick a large-enough number 
so that, when you subtract y from that number, you get a positive 3. In 
x – y = 3, you can let x = 8, so 8 – y = 3.
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 2. Solve for the value of the other variable.

  Subtract 8 from each side to get –y = –5.

  Multiply each side by –1 to get y = 5.

  You can change the looks of the equation without changing the graph 
of the line by multiplying or dividing each side by the number –1. (For a 
review of solving linear equations, turn to Chapter 12.)

 3. Write an ordered pair for the coordinates of the point.

  You chose 8 for x and solved to get y = 5, so your first ordered pair is 
(8, 5).

You can find more ordered pairs by choosing another number to substitute 
for either x or y.

For more of a challenge, find points that lie on a line with coefficients on x 
and y other than 1. The multipliers (2 and 3 in the next example) make this 
just a little trickier. You may find one or two points fairly easily, but others 
could be more difficult because of fractions. A good plan in a case like this is 
to solve for x or y and then plug in numbers.

 Find points that lie on the line 2x + 3y = 12.

 1. Solve the equation for one of the variables.

  Solving for y in the sample problem 2x + 3y = 12 you get 3y = 12 – 2x.

  

  With multipliers involved, you often get a fraction.

 2. Choose a value for the other variable and solve the equation.

  Try to pick values so that the result in the numerator is divisible by the 
3 in the denominator — giving you an integer.

  For example, let x = 3. Solving the equation,

  

  So, the point (3, 2) lies on the line.

Finding the points that lie on the line x = 4 may look like a really tough 
assignment, with only an x showing in the equation. But this actually makes 
the whole thing much easier. You can write down anything for the y value, as 
long as x is equal to 4. Some points are: (4, 9), (4, –2), (4, 0), (4, 3.16), (4, –11), 
and (4, 4).
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 Notice that the 4 is always the first number. The point (4, 9) is not the same as 
the point (9, 4). The order counts in ordered pairs.

Graphing these points gives you a nice, vertical line, as Figure 20-4 shows. On 
the other hand, if all the y-coordinates are the same point, the line is — you 
guessed it — horizontal.

 

Figure 20-4: 
When all 

the x-coor-
dinates are 

the same, 
you get a 

vertical line.
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Investigating Intercepts
An intercept of a line is a point where the line crosses an axis. Unless a line 
is vertical or horizontal, it crosses both the x and y axes, so it has two 
intercepts: an x-intercept and a y-intercept. Horizontal lines have just a 
y-intercept, and vertical lines have just an x-intercept. The exceptions are 
when the horizontal line is actually the x-axis or the vertical line is the y-axis.

Intercepts are quick and easy to find and can be a big help when graphing. 
The reason they’re so useful is that one of the coordinates of every intercept 
is a 0. Zeros in equations cut down on the numbers and the work, and it’s 
nice to take advantage of zeros when you can.

 The x-intercept of a line is where the line crosses the x-axis. To find the 
x-intercept, let the y in the equation equal 0 and solve for x.
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 Find the x-intercept of the line 4x – 7y = 8.

First, let y = 0 in the equation. Then

4x – 0 = 8

4x = 8

x = 2

The x-intercept of the line is (2, 0): The line goes through the x-axis at that 
point.

 The y-intercept of a line is where the line crosses the y-axis. To find the 
y-intercept, let the x in the equation equal 0 and solve for y.

 Find the y-intercept of the line 3x – 7y = 28. Let x = 0 in the equation. Then

0 – 7y = 28

– 7y = 28

y = –4

The y-intercept of the line is (0, –4).

 As long as you’re careful when graphing the x- and y-intercepts and get them 
on the correct axes, the intercepts are sometimes all you need to graph a line.

Sighting the Slope
The slope of a line is a number that describes the steepness and direction of 
the graph of the line. The slope is a positive number if the line moves upward 
from left to right; the slope is a negative number if the line moves downward 
from left to right. The steeper the line, the greater the absolute value of the 
slope (the farther the number is from 0).

Knowing the slope of a line beforehand helps you graph the line. You can find 
a point on the line and then use the slope and that point to graph it. A line 
with a slope of 6 goes up steeply. If you know what the line should look like 
(that is, whether it should go up or down) — information you get from the 
slope — you’ll have an easier time graphing it correctly.
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The value of the slope is important when the equation of the line is used in 
modeling situations. For example, in equations representing the cost of so 
many items, the value of the slope is called the marginal cost. In equations 
representing depreciation, the slope is the annual depreciation.

Figure 20-5 shows some lines with their slopes. The lines are all going 
through the origin just for convenience.

 

Figure 20-5: 
Pick a line — 
see its slope.
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What about a horizontal line — one that doesn’t go upward or downward? 
A horizontal line has a 0 slope. A vertical line has no slope; the slope of a 
vertical line (it’s so steep) is undefined. Figure 20-6 shows graphs of lines that 
have a 0 slope or undefined slope.
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Figure 20-6: 
Horizontal 
lines have 
a 0 slope. 

Vertical 
lines have an 

undefined 
slope.
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 One way of referring to the slope, when it’s written as a fraction, is rise over 

 run. If the slope is , it means that for every 2 units the line runs along the 

 x-axis, it rises 3 units along the y-axis. A slope of  indicates that as the line 

 runs 8 units horizontally, parallel to the x-axis, it drops (negative rise) 1 unit 
vertically.

Formulating slope
If you know two points on a line, you can compute the number representing 
the slope of the line.

 The slope of a line, denoted by the small letter m, is found when you know the 
coordinates of two points on the line, (x1, y1) and (x2, y2):
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Subscripts are used here to identify which is the first point and which is the 
second point. There’s no rule as to which is which; you can name the points 
any way you want. It’s just a good idea to identify them to keep things in 
order. Reversing the points in the formula gives you the same slope (when 
you subtract in the opposite order):

You just can’t mix them and do (x1 – y2) over (x2 – y1).

Now, you can see how to compute slope with the following examples.

 Find the slope of the line going through (3, 4) and (2, 10).

Let (3, 4) be (x1, y1) and (2, 10) be (x2, y2). Substitute into the formula

Simplify:

This line is pretty steep as it falls from left to right.

 Find the slope of the line going through (4, 2) and (–6, 2).

Let (4, 2) be (x1, y1) and (–6, 2) be (x2, y2). Substitute into the formula

Simplify:

These points are both 2 units above the x-axis and form a horizontal line. 
That’s why the slope is 0.

 Find the slope of the line going through (2, 4) and (2, –6).

Let (2, 4) be (x1, y1) and (2, –6) be (x2, y2). Substitute into the formula
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Simplify

Oops! You can’t divide by 0. There is no such number. The slope doesn’t 
exist or is undefined. These two points are on a vertical line.

 Watch out for these common errors when working with the slope formula:

 ✓ Be sure that you subtract the y values on the top of the division 
formula. A common error is to subtract the x values on the top.

 ✓ Be sure to keep the numbers in the same order when you subtract. 
Decide which point is first and which point is second. Then take the 
second y minus the first y and the second x minus the first x. Don’t do 
the top subtraction in a different order from the bottom.

Combining slope and intercept
An equation of a single line can take many forms. Just as you can solve for 
one variable or another in a formula, you can solve for one of the variables in 
the equation of a line. This change of format can help you find the points to 
graph the line or find the slope of a line.

A common and popular form of the equation of a line is the slope-intercept 
form. It’s given this name because the slope of the line and the y-intercept of 
the line are obvious on sight. When a line is written 6x + 3y = 5, you can find 
points by plugging in numbers for x or y and solving for the other coordinate. 
But, by using methods for solving linear equations (see Chapter 12), the same 

equation can be written , which tells you that the slope is –2 and 

the place the line crosses the y-axis (the y-intercept) is .

 Where y and x represent points on the line, m is the slope of the line, and b is 
the y-intercept of the line; the slope-intercept form is y = mx + b.

In every case shown next, the equation is written in the slope-intercept form. 
The coefficient of x is the slope of the line and the constant is the y-intercept.

 ✓ y = 2x + 3: The slope is 2; the y-intercept is (0, 3).

 ✓ : The slope is ; the y-intercept is (0, –2).

 ✓ y = 7: The slope is 0; the y-intercept is (0, 7). You can read this equation 
as being y = 0 × x + 7.
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Getting to the slope-intercept form
If the equation of the line isn’t already in the slope-intercept form, solving for 
y changes the equation to slope-intercept form.

 Put the equation 5x – 2y = 10 in slope-intercept form.

 1. Get the y term by itself on the left.

  Subtract 5x from each side to get the y term alone: –2y = –5x +10.

 2. Solve for y.

  Divide each side by –2 and simplify the two terms on the right.

  

  

  

  The slope is  and the y-intercept is at (0, –5).

Graphing with slope-intercept
One advantage to having an equation in the slope-intercept form is that 
graphing the line can be a fairly quick task, as the following examples show.

 Graph .

The slope of this line is , and the y-intercept is the point (0, 1). First, graph 

the y-intercept (see Figure 20-7). Then use the rise-over-run interpretation 
of slope to count spaces to another point on the line. To do this, do the run, 
or bottom, movement first. In this sketch, move 2 units to the right of (0, 1). 
From there, rise or go up 3 units, which should get you to (2, 4).

 

Figure 20-7: 
The 

y-intercept 
is located; 

use run and 
rise to find 

another 
point.
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It’s sort of like going on a treasure hunt: “Two steps to the east; three steps 
to the north; now dig in!” Only our “dig in” is to put a point there and connect 
that point with the starting point — the intercept. Look at the right-hand side 
(the b side) of Figure 20-7 to see how it’s done.

Using a point and the slope is a quick-and-easy way to sketch a line, so I’ll 
show it to you one more time.

 Graph y = –3x + 2.

First, graph the y-intercept (0, 2). Think of the slope –3 as being the fraction 

. This way, you have a run of 1. The rise isn’t a rise in this case. The 3 is 
negative, so it’s a fall. Connect the intercept (0, 2) with the point that you 
find by moving 1 unit to the right and 3 units down, which should be (1, –1). 
Figure 20-8 shows the line y = –3x + 2, which has a slope of –3.

 

Figure 20-8: 
The graph of 

y = –3x + 2.
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Marking Parallel and 
Perpendicular Lines

The slope of a line gives you information about a particular characteristic of 
the line. It tells you if it’s steep or flat and if it’s rising or falling as you read 
from left to right. The slope of a line can also tell you if one line is parallel or 
perpendicular to another line. Figure 20-9 shows parallel and perpendicular 
lines.
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Figure 20-9: 
Parallel 

lines are 
like railroad 

tracks; 
perpen-

dicular lines 
meet at a 

right angle.
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Parallel lines never touch. They’re always the same distance apart and never 
share a common point. They have the same slope.

Perpendicular lines form a 90-degree angle (a right angle) where they cross. 
They have slopes that are negative reciprocals of one another. The x and y 
axes are perpendicular lines.

 Two numbers are reciprocals if their product is the number 1. The numbers  

 and  are reciprocals. Two numbers are negative reciprocals if their product 
 is the number –1. The numbers  and  are negative reciprocals.

 If line y1 has a slope of m1, and if line y2 has a slope of m2, then the lines are 
parallel if m1 = m2. If line y1 has a slope of m1, and if line y2 has a slope of m2, 

 then the lines are perpendicular if .

 The following examples show you how to determine whether lines are parallel 
or perpendicular by just looking at their slopes:

 ✓ The line y = 3x + 2 is parallel to the line y = 3x – 7 because their slopes 
are both 3.

 ✓ The line  is parallel to the line  because their slopes 

  are both .
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 ✓ The line 3x + 2y = 8 is parallel to the line 6x + 4y = 7 because their slopes 

  are both . Write each line in the slope-intercept form to see this: 

  3x + 2y = 8 can be written  and 6x + 4y = 7 can be written 

  .

 ✓ The line  is perpendicular to the line  because their 
  slopes are negative reciprocals of one another.

 ✓ The line y = –3x + 4 is perpendicular to the line  because their 
slopes are negative reciprocals of one another.

Intersecting Lines
If two lines intersect, or cross one another, then they intersect exactly once 
and only once. The place they cross is the point of intersection and that 
common point is the only one both lines share. Careful graphing can 
sometimes help you to find the point of intersection.

The point (5, 1) is the point of intersection of the two lines x + y = 6 and 
2x – y = 9 because the coordinates make each equation true:

 ✓ If x + y = 6, then substituting the values x = 5 and y = 1 give you 5 + 1 = 6, 
which is true.

 ✓ If 2x – y = 9, then substituting the values x = 5 and y = 1 give 
2 × 5 – 1 = 10 –1 = 9, which is also true.

This is the only point that works for both the lines.

Graphing for intersections
Careful graphing can give you the intersection of two lines. The only problem 
is that if your graph is even a little off, you can get the wrong answer. Also, if 
the answer has a fraction in it, it’s difficult to figure out what that fraction is.

 Find the intersection of the lines 3x – y = 5 and x + y = –1.

Look at the graphs in Figure 20-10. The lines appear to cross at the point 
(1, –2). Replace the coordinates in the equations to check this out:

 ✓ If 3x – y = 5, then substituting the values gives 3 × 1 – (–2) = 3 + 2 = 5, 
which is true.
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 ✓ If x + y = –1, then substituting the values gives 1 + (–2) = –1, which is also 
true.

 

Figure 20-10: 

The inter-
section of 

two lines at 
a point 
(1, –2).
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 Graphing is an inexact way to find the intersection of lines. You have to be 
super-careful when plotting the points and lines.

Substituting to find intersections
Another way to find the point where two lines intersect is to use a technique 
called substitution — you substitute the y value from one equation for the 
y value in the other equation and then solve for x. Because you’re looking 
for the place where x and y of each line are the same — that’s where they 
intersect — then you can write the equation y = y, meaning that the y from 
the first line is equal to the y from the second line. Replace the ys with what 
they’re equal to in each equation, and solve for the value of x that works.

 Find the intersection of the lines 3x – y = 5 and x + y = –1. (This is the same 
problem graphed in the preceding section.)

 1. Put each equation in the slope-intercept form, which is a way of 
solving each equation for y.

  3x – y = 5 is written as y = 3x – 5, and x + y = –1 is written as y = –x – 1. 
The lines are not parallel, and their slopes are different, so there will be 
a point of intersection.
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 2. Set the y points equal and solve.

  From y = 3x – 5 and y = –x – 1, you substitute what y is equal to in the 
first equation with the y in the second equation: 3x – 5 = –x – 1.

 3. Solve for the value of x.

  Add x to each side and add 5 to each side:

  3x + x – 5 + 5 = –x + x – 1 + 5

  4x = 4

  x = 1

  Substitute that 1 for x into either equation to find that y = –2. The lines 
intersect at the point (1, –2).

 This technique is how the solution can be found without even graphing. If the 
lines are parallel, it’s apparent immediately because their slopes are the same. 
If that’s the case, stop — there’s no solution. Also, if the two equations are just 
two different ways of naming the same line, then this will be apparent: The 
equations will be exactly the same in the slope-intercept form.
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The Part of Tens
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In this part . . .

Sorry, I can’t tell you how to avoid that boring lecture 
or bad blind date or speed trap. But in this part, I do 

show you how to avoid falling prey to algebraic situations 
that could get a bit sticky.

In this part, I also give you my take on the best of the best 
equations. Feel free to throw in a couple of your favorites. 
(I keep meaning to send these to David Letterman, but I 
just haven’t had the courage yet.)
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Chapter 21

The Ten Best Ways 
to Avoid Pitfalls

In This Chapter
▶ Watching out for the pickle in the middle

▶ Distributing evenly and fairly for all concerned

▶ Making lemonade by putting a positive spin on subtraction

▶ Making it to first base with exponents

▶ Reducing fractions: Not a new diet

So much algebra is done in the world: Just about everyone who advances 
beyond elementary school takes an algebra class, so the sheer number 

of people who use algebra means that a large number of errors are unavoidable. 
Forgetting some of the more obscure rules or confusing one rule with another 
is easy to do when you’re in the heat of the battle with an algebra problem. 
But some errors occur because that error seems to be an easier way to do 
the problem. Not right, but easier — the path of least resistance. These errors 
usually occur when a rule isn’t the same as your natural inclination. 
Most algebra rules seem to make sense, so they aren’t hard to remember. 
Some, though, go against the grain.

The main errors in algebra occur while performing expanding-type operations: 
distributing, squaring binomials, breaking up fractions, or raising to powers. 
The other big error area is in dealing with negatives. Watch out for those 
negative vibes.

Keeping Track of the Middle Term
A squared binomial has three terms in the answer. The term that often gets 
left out is the middle term: the part you get when multiplying the two outer 
terms together and the two inner terms together and finding their sum. The 
error occurs when just the first and last separate terms are squared, and the 
middle term is just forgotten.
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Right Wrong

(a + b)2 = a2 + 2ab + b2 (a + b)2 ≠ a2 + b2

Turn to Chapter 7 for more information on squaring binomials.

Distributing: One for You and One for Me
Distributing a number or a negative sign over two or more terms in paren-
theses can cause problems if you forget to distribute the outside value over 
every single term in the parentheses. The errors come in when you stop mul-
tiplying the terms in the parentheses before you get to the end.

Right Wrong

x – 2(y + z – w) = x – 2y – 2z + 2w x – 2(y + z – w) ≠ x – 2y + z – w

You can find more on distributing in Chapter 7.

Breaking Up Fractions (Breaking 
Up Is Hard to Do)

Splitting a fraction into several smaller pieces is all right as long as each 
piece has a term from the numerator (top) and the entire denominator 
(bottom). You can’t split up the denominator.

Right Wrong

Go to Chapter 3 for more on dealing with fractions.
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Renovating Radicals
If the expression under a radical has values multiplied together or divided, 
then the radical can be split up into radicals that multiply or divide. You 
can’t split up addition or subtraction, however, under a radical.

Right Wrong

Note: The radical expression is unchanged because the sum has to be 
performed before applying the radical operation.

For more on radicals, turn to Chapter 4.

Order of Operations
The order of operations instructs you to raise the expression to a power 
before you add or subtract. A negative in front of a term acts the same as 
subtracting, so the subtracting has to be done last. If you want the negative 
raised to the power, too, then include it in parentheses with the rest of the 
value.

Right Wrong

–32 = –9 –32 ≠ 9

(–3)2 = 9

I fully discuss the order of operations in Chapter 5.

Fractional Exponents
A fractional exponent has the power on the top of the fraction and the root 
on the bottom.
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 When writing  as a term with a fractional exponent, . A fractional 
exponent indicates that there’s a radical involved in the expression. The 2 in 
the fractional exponent is on the bottom — the root always is the bottom 
number.

Right Wrong

Check out Chapter 4 for more on fractional exponents.

Multiplying Bases Together
When you’re multiplying numbers with exponents, and those numbers have 
the same base, you add the exponents and leave the base as it is. The bases 
never get multiplied together.

Right Wrong

23 · 24 = 27 23 · 24 ≠ 47

Turn to Chapter 4 for more on multiplying numbers with exponents and the 
same base.

A Power to a Power
To raise a value that has a power (exponent) to another power, multiply the 
exponents to raise the whole term to a new power. Don’t raise the exponent 
itself to a power — it’s the base that’s being raised, not the exponent.

Right Wrong

(x2)4 = x8 (x2)4 ≠ x16

Chapter 4 is the place to go for more on powers.

29_559642-ch21.indd   35029_559642-ch21.indd   350 4/16/10   11:11 AM4/16/10   11:11 AM



351 Chapter 21: The Ten Best Ways to Avoid Pitfalls

Reducing for a Better Fit
When reducing fractions with a numerator that has more than one term 
separated by addition or subtraction, then whatever you’re reducing the 
fraction by has to divide every single term evenly in both the numerator and 
the denominator.

Right Wrong

Go to Chapter 3 if you want more information on fractions.

Negative Exponents
When changing fractions to equivalent expressions with negative exponents, 
give every single factor in the denominator a negative exponent.

Right Wrong

You can find more on negative exponents in Chapter 4.
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Chapter 22

The Ten Most Famous Equations
In This Chapter
▶ Introducing Mr. Einstein to Mr. Pythagoras

▶ Flying high with gravitational forces

▶ Making loan payments

▶ Squaring off with the quadratic formula

Many formulas and equations have been discovered over the past 
few thousand years. Some formulas were determined by simple 

observations of natural phenomena. Other formulas or equations were 
arrived at after an extensive number of computations and verifications. 
Everyone has a favorite equation. I have a friend who keeps spouting that 
1 + 1 = 3 (when building membership in a club or organization). I can’t 
include this “fuzzy math” in a list of most-famous equations, but you may 
want to add some of your own favorites after looking at my list.

Albert Einstein’s Theory of Relativity
This formula is probably one of the most recognizable and most frequently 
quoted:

E = mc2

But, just because it’s recognized, that doesn’t necessarily mean that people 
know what the letters in the formula represent.

The formula for the equivalence between mass and energy was proposed in 
1905 by Albert Einstein. Others had proposed somewhat similar equivalences, 
but Einstein was the first to get it right. The letter E represents energy. The 
letter m is mass. And c is the speed of light in a vacuum — almost 300 million 
meters per second. So energy is equal to the product of mass times the 
square of the speed of light. That clears it all up, right?
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 If you want to read up on Einstein’s life and career, check out Einstein For 
Dummies, by Carlos I. Calle, PhD (Wiley).

The Pythagorean Theorem
Most people who have been in a geometry class remember the equation for 
the relationship between the sides of a right triangle:

a2 + b2 = c2

Pythagoras is credited with determining that if you square the lengths of 
the two shorter sides, a and b, of a right triangle, the sum of the squares of 
those lengths is equal to the square of the length of the longer side (called 
the hypotenuse). For example, a right triangle with sides measuring 3, 4, and 
5 units satisfies 32 + 42 = 52 or 9 + 16 = 25.

The Value of e
Almost as famous as the value of π is the value of e:

e = 2.71828182845904523536 . . .

You even find buttons on any scientific or graphing calculator that give you e 
and allow you to compute its powers. The letter e is sometimes referred to as 
the Euler number, named after the Swiss mathematician Leonhard Euler. A 

formula for e is . Go ahead — try successively larger values of x 

and see how the resulting number gets closer and closer to the value of e in 
your calculator.

Diameter and Circumference 
Related with Pi

The Greek letter π represents a number that is approximately 3.141592654 . . . 
with a decimal value that never ends and never repeats. If you divide the 
circumference (the distance around the outside) of any circle by the circle’s 
diameter (the distance from one side to the other through the center), then 
you always get π:
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The value π is tied to another famous formula, for the area of a circle: A = πr2. 
Of course, you know that pie are not squared — pie are round! (Sorry — I 
couldn’t help but insert a little math humor.)

Isaac Newton’s Formula 
for the Force of Gravity

Isaac Newton is best known for falling apples and for his formula for the force 
of gravity:

Newton realized that the acceleration of the apple falling toward earth was 
dependent on both the mass of the apple and the mass of the earth. In this 
formula, F is the force of gravity, m1 is the mass of the first object (the apple), 
m2 is the mass of the second object (the earth), and d is the distance 
separating the centers of the two objects.

Euler’s Identity
Euler’s identity involves e, Euler’s number; the letter i, the imaginary unit 
whose square is –1; and π, the ratio of the circumference of a circle to its 
diameter:

eiπ + 1 = 0

What a fabulous formula — putting the irrational with the imaginary to create 
an equation. Another way of writing the equation is eiπ = –1. So, if you raise 
the unending decimal value of e to the power of an imaginary number times 
another unending decimal, you get –1. Amazing!

Fermat’s Last Theorem
The mathematician Fermat, in the famous, newly proven Fermat’s last theorem, 
stated that if a, b, and c are positive integers, then the equation an + bn = cn 
cannot be solved if n is an integer greater than 2. You know that there are 
an infinite number of solutions when n = 2 (as found in the Pythagorean 
theorem — see “The Pythagorean Theorem,” earlier in this chapter). Fermat 
made this claim but supplied no proof for it. It wasn’t until the late 20th 
century that the theorem was actually considered to be proven.

30_559642-ch22.indd   35530_559642-ch22.indd   355 4/20/10   9:00 AM4/20/10   9:00 AM



356 Part V: The Part of Tens 

Monthly Loan Payments
This formula may not look like anything you’ve ever seen or used, but, if you 
haven’t already “taken part” in it, you probably will in the future:

The value of M is the monthly payment that is to be made on an amortized 
loan. When you borrow money to buy a house or car or boat, you can take 
out a loan and make periodic (usually monthly) payments. P represents the 
total amount of the loan — what you’re borrowing. The n is the number of 
payments that are to be made; for example, if you intend to make monthly 
payments for ten years, that’s 12 · 10 = 120 payments, so n = 120. The i is the 
rate of interest per period; so, if the rate of interest is 9 percent annually, 
then you divide by 12 payments per year and i = 0.75 percent.

The Absolute-Value Inequality
The absolute-value inequality says that the absolute value of the sum of two 
numbers is always less than or equal to the sum of the absolute values:

Absolute value is a very important function used in most mathematical and 
scientific arenas. The absolute value of a number can be thought of as the 
number’s distance from 0. Both 3 and –3 are three units away from 0, so their 
absolute values are the same.

The Quadratic Formula
One of the most famous formulas found in the algebra classroom is the 
quadratic formula:

The quadratic formula allows you to find the solutions of the quadratic 
equation ax2 + bx + c = 0. Other methods for finding the values of x in a 
quadratic equation include factoring, completing the square, or just by-guess-
or-by-golly. The quadratic formula is the standard fallback — the surefire way 
of solving the equation for the solutions — whether the answers are real 
numbers or complex.
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• Symbols •
≈ (approximately equal), rounding 

numbers, 53
* (asterisk), multiplication, 14
[ and ] (bracket)

grouping symbols, 14, 15, 76–78
interval notation, 245

{ and } (curly braces), grouping symbols, 
14, 15, 76–78

÷ (division), 15
· (dot), multiplication, 14
= (equal), relationships, 16
! (exclamation point), factorial operation, 

23–24
— (fraction line), grouping symbols, 
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> (greater than) inequality statements, 
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positive/negative number comparisons, 
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≥ (greater than or equal to), inequality 
statements, 244–245

∞ (infi nity), interval notation, 244–245
< (less than) inequality statements, 244–245

positive/negative number comparisons, 
21–22

relationships, 16
≤ (less than or equal to), inequality 

statements, 244–245
– (minus)

distributions, 111–112
subtraction, 14
variable operation interpretation, 82–83

 ( and ) (parentheses) grouping symbols, 
14, 15, 76–78

interval notation, 245
π (pi)

circle relationships, 15
circular formulas, 354–355

irrational number, 12
+ (plus)

addition, 14
distributions, 110–111
variable-operation interpretation, 

82–83
/ (slash), division, 15

 (square root), 15, 76–78
 (absolute value)

absolute-value inequalities, 258–261
grouping symbols, 15, 23, 76–78
non-binary operations, 23

• A •
absolute-value inequalities

solving methods, 258–261
formulas, 356

absolute value ( )
absolute-value inequalities, 258–261
grouping symbols, 15, 23, 76–78
non-binary operations, 23

addition operations
associative property, 32–33
commutative property, 31–32
different signed numbers, 26–27
equation balancing, 173
fractions, 46–47
inequalities, 247–248
order of operations, 75
plus sign (+), 14
radical expressions, 70
S rule, 25–26
same signed numbers, 25–26
solving three-term linear equations, 

189–191
variables, 83–86
zero, 30

additive inverses
integers, 11
number types, 20
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algebra
development, history, 10
problem-solving purpose, 181
relationships, 16
symbols, 14–15

annual depreciation, slope graphing, 334
approximately equal (≈), rounding 

numbers, 53
areas, story problems, 294–296
associative property, expression 

associations, 32–33
asterisk (*), multiplication, 14
axes

graphs, 313–314, 316
line intercepts, 332–333

• B •
binary operations

equation balancing, 172–174
two-number requirement, 22

binomials
defi ned, 117
distributions, 118
factoring methods, 157–164
FOIL (fi rst, outer, inner, last), 142–147
term tracking, 347–348

boxes, volume formula, 277–278, 297
brackets ([ and ])

grouping symbols, 14, 15, 76–78
interval notation, 245

• C •
circles

area formula, 276–277, 308
circular graph, 319
circumference formula, 271–273, 309
pi relationships, 15
story problems, 308–309
value of pi, 354–355

coeffi cient
defi ned, 128
variable attachments, 82

combinations, formulas, 287–290

common denominators, fractions, 43–44
commutative property, reordering 

operations, 31–32
comparison operations

exponents, 57–58
scientifi c notation, 58–59

composite numbers
divisibility issues, 13
factoring, 131–133
prime factorization, 95–96

compound interest, formulas, 285–286
computation checking, equations, 180–181
cones, volume formula, 279
constants, defi ned, 13, 128
coordinate planes, graphs, 313–314
coordinates, graphs, 315–316
counting numbers, natural numbers, 11
cubes

distributions, 123–125
factoring binomials, 159–162
volume formula, 297

cubic equations
equation type, 172
greatest common factor (GCF), 226–227
grouping, 228
solution requirement, 223–224
solving non-perfect cubes, 225
solving perfect cubes, 224
solving with integers, 228–230
square-root rule, 225
synthetic division, 239–241

curly braces ({ and }), grouping symbols, 
14, 15, 76–78

cylinders, volume formula, 278

• D •
decimal point, scientifi c notation, 58–59
decimals

fraction conversions, 38, 51–54
negative exponents, 67–68
repeating, 54
rounding numbers, 53
terminating, 53–54
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denominator
common, 43–44
fraction element, 36
prime factorization, 100–102

discounts, formulas, 286–287
distance operations

exponential expressions, 60–64
formulas, 282–283
story problems, 305–307

distributions
binomials, 118
cubes, 123–125
equal shares, 107–110
fractional powers, 116–117
hidden processes, 111
linear equations, 192–196
multiple terms, 117–120
multiplication operations, 107–110
negative exponents, 115–116
negative signs, 111–112
polynomials, 119–120
positive signs, 110–111
reverse order, 112–113
squared binomials, 120–122
term sign changes, 122–123
terms, 348
trinomials, 119
variables, 113–117
versus factoring, 128

division operations
division sign (÷), 15
equation balancing, 173–174
equivalent fractions, 40
exponents, 66
factoring, 128–129, 133–134
fractions, 50–51
inequalities, 248–249
order of operations, 75
prime factorization, 96–98
radical expressions, 70
remainders, 42
signed numbers, 29–30
solving two-term linear equations, 185–186
synthetic division, 239–241
variables, 86–88
zero, 31

dot (·), multiplication, 14
double root, quadratic equations, 204

• E •
equal shares, distribution method, 107–110
equal sign (=), relationships, 16
equations

absolute value, 259–260
binary-operation balancing, 172–174
circular graph, 319
computation checking, 180–181
cubic, 172
defi ned, 13
general polynomial, 172
greatest common factor (GCF), 102–105
linear, 172
object height, 319–320
opposite operation solving method, 176
order of operations, 184
proportions, 196–199
quadratic, 172
quadratic-like, 230–234
radical, 172
radical conversions, 234–238
rational, 172
reality checks, 178–180
reciprocals, 176–178
square roots, 175–176
squaring both sides when solving, 174–175
story-problem element, 293
symmetric property, 190
synthetic division, 239–241
system of linear, 172
variable solving formulas, 199–200

equivalent fractions
common denominators, 43–44
everyday items, 39–40

Euler number (e), value of e formula, 354
Euler’s identity, formula, 355
exclamation point (!), factorial operation, 

23–24
exponential expressions, distance 

operations, 60–64
exponential notation, real numbers, 56–57
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exponents. See also powers
base multiplication, 350
defi ned, 14
division operations, 66
exponential expressions, 60–64
exponential notation, 56–57
fractional, 349–350
multiplication operations, 65
negative numbers, 67–68, 351
number comparisons, 57–58
raising a power, 68–69
superscripted numbers, 55
zero, 66–67

expressions
associative property, 32–33
defi ned, 13
greatest common factor (GCF), 102–105
multiple-expression inequalities, 251–252
quadratic (second-degree), 139–141
radical operations, 69–71

• F •
factorials

formulas, 288
non-binary operation, 23–24

factoring
algebraic task, 16–17
binomials, 157–164
cubic equations, 226–227
division operations, 133–134
divisions, 128–129
grouping terms, 134–137
number/variable combinations, 131–133
quadratic equations, 208–211
rational-root theorem, 167–168
real-life uses, 130
remainder theorem, 165–166
repeated-division method, 129
synthetic division, 166–168
trinomial equations, 213–216
variables, 130–133
versus distributions, 128

factors
defi ned, 13, 128
variable attachments, 82

Fermat’s last theorem, 355
FOIL (fi rst, outer, inner, last), quadratic 

expressions, 142–147
force of gravity, Newton’s formula, 355
formulas

absolute-value inequality, 356
box volume, 277–278
Carl Fiedrich Gauss, 147
circle area, 276–277, 308
circle circumference, 271–273, 309
combinations, 287–290
compound interest, 285–286
cone volume, 279
cylinder volume, 278
discounts, 286–287
distance, 282–283
Einstein’s theory of relativity, 353–354
Euler’s identity, 355
factorials, 288
Fermat’s last theorem, 355
force of gravity, 355
geometric sequence, 64
Heron’s, 275–276
interest, 283–287
monthly loan payments, 356
negative exponent to fraction 

conversion, 115
percentages, 283–287
permutations, 290
pi, 354–355
polygons, 271
pyramid volume, 279, 298
Pythagorean theorem, 267–269, 354
quadratic equations, 219–221
quadratic formula, 356
raising a power, 68–69
rectangle area, 273–274, 294–296
rectangle perimeters, 270–271, 294
rectangular-prism volume, 277–278
simple interest, 284
slope, 335–337
solving for variables, 199–200
sphere volume, 280
spherical volume, 299
square area, 273–274
square perimeters, 270–271
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story-problem element, 293
taxes, 286–287
triangle area, 274–276
triangle perimeters, 269–270
units of length, 266–267
value of e (Euler number), 354

fraction line (—), grouping symbols, 
15, 76–78

fractional inequalities, solving methods, 
257–258

fractional values, greatest integer 
function, 24

fractions
addition operations, 46–47
common denominators, 43–44
decimal conversions, 38, 51–54
denominator, 36
division operations, 50–51
equation solving, 196–199
equivalent fractions, 39–40
exponent distributions, 116–117
fractional exponents, 349–350
improper, 37, 45
lowest-term reduction, 38–42
mixed numbers, 37–38
multiplication operations, 47–50
negative exponents, 67–68, 115–116
numerator element, 36
prime factorization, 100–102
proper, 36–37
proportion conversions, 198–199
radical conversion, 71
rational numbers, 12
reciprocals, 50–51
reducing, 351
repeating decimals, 54
splitting, 348
subtraction operations, 46–47
terminating decimals, 53–54

• G •
general polynomial, equation type, 172
geometric sequences, distance 

operations, 62–63

graphs
axes, 313–314, 316
circular, 319
coordinate planes, 313–314
coordinates, 315–316
inequalities, 245–247
intercepts, 332–333
interval notation, 246–247
line intersects, 341–343
linear equations, 318
lines, 327–332
object height, 319–320
ordered pairs, 315–316
origins, 314
parabolas, 321–325
parallel lines, 339–341
perpendicular lines, 339–341
plotting points, 316–317
points (dots), 314
quadrants, 313–314, 316
relationship illustration, 311–313
slope, 333–339
tick marks, 313–314

Great Internet Mersenne Prime 
Search, 95

greater than (>)
inequality statements, 244–245
positive/negative number comparisons, 

21–22
relationships, 16

greater than or equal to (≥), inequality 
statements, 244–245

greatest common factor (GCF)
cubic equations, 226–227
factoring binomials, 157–158
grouping terms, 134–137
prime factorization, 102–105
quadratic expressions, 141

greatest integer, non-binary operation, 24
group operations

cubic equations, 228
factoring, 134–137

grouping symbols. See also symbols
absolute value, 76–78
brackets, 76–78
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grouping symbols (continued)

curly braces, 76–78
fraction line, 76–78
multiplication, 14, 15
parentheses, 76–78
square root, 76–78

• H •
height, object graphing, 319–320
Heron’s formula, area of a triangle, 275–276
hidden processes, distributions, 111
horizontal lines

linear equation graphing, 330
slope graphing, 334–335

• I •
i (imaginary number), quadratic equations, 

221–222
improper fractions

division operations, 50–51
mixed-number conversion, 45
multiplication operations, 47–50
value greater than one, 37

inequalities
absolute value, 258–261
absolute-value inequality formula, 356
addition operations, 247–248
defi ned, 13
division operations, 248–249
fractional, 257–258
graphing, 245–247
interval notation, 244–245
multiple expression, 251–252
multiplication operations, 248–249
quadratic, 252–258
subtraction operations, 247–248

infi nite geometric sequence, distance 
operations, 62–63

infi nity (∞), interval notation, 244–245
integers

positive and negative whole numbers, 
11–12

solving cubic equations, 228–230

intercepts
line graphs, 332–333
slope graphing, 337–339

interest
formulas, 283–287
story problems, 302–305

intersections, line graphing, 341–343
interval notation

graphing, 246–247
inequalities, 244–245

investments, story problems, 302–305
irrational numbers

fractionless numbers, 12
pi, 15

• L •
less than (<)

inequality statements, 244–245
positive/negative number comparisons, 

21–22
relationships, 16

less than or equal to (≤), inequality 
statements, 244–245

letters, number representations, 81–82
linear equations

distributions, 192–196
graphing, 318
line graphing, 329–332
nested expressions, 192
simplifying methods, 191–196
three terms, 189–191
two terms, 184–188

linear inequalities, solution methods, 
250–251

lines
graphing, 327–332
intercepts, 332–333
intersect graphing, 341–343
parallel, 339–341
perpendicular, 339–341
slope graphing, 333–339

loan payments, monthly formula, 356
lowest term, fraction reduction, 38–42
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• M •
marginal cost, slope graphing, 334
Mersenne primes, defi ned, 95
minus sign (–)

distributions, 111–112
subtraction, 14
variable operation interpretation, 82–83

mixed numbers
division operations, 50–51
improper-fraction conversion, 45
multiplication operations, 47–50
whole number plus a fraction, 37–38

mixtures, story problems, 300–305
monthly loan payments, formula, 356
multiplication operations

associative property, 32–33
bases, 350
commutative property, 31–32
equal-share distributions, 107–110
equation balancing, 173
equivalent fractions, 40
exponents, 65
FOIL (fi rst, outer, inner, last), 142–147
fractions, 47–50
inequalities, 248–249
order of operations, 75
polynomials, 119–120
radical expressions, 70
signed numbers, 29–30
solving two-term linear equations, 186–188
variables, 86–88
zero, 31

multiplication property of zero (MPZ), 
quadratic equations, 209–211

• N •
natural numbers, counting numbers, 11
negative exponents, distributions, 115–116
negative numbers

exponents, 67–68, 351
less than zero, 20–21

minus sign (–), 14
positive comparisons, 21–22

negative signs, distributions, 111–112
nested expressions, linear equations, 192
non-binary operations

absolute values, 23
factorials, 23–24
greatest integer, 24
radicals, 69–71

notation
exponential, 56–57
scientifi c, 58–59

number types
additive inverses, 11, 20
composite, 13
exponents, 14
imaginary numbers, 221–222
integers, 11–12
irrational, 12
natural, 11
palindromes, 112
prime, 12–13
rational, 12
real, 11
whole, 11

numbers
letter representations, 81–82
principal square root, 207

numerator
fraction element, 36
prime factorization, 100–102

• O •
object height, graphing, 319–320
operations

absolute values, 23
answer-checking levels, 78–80
associative property, 32–33
binary, 22
commutative property, 31–32
defi ned, 13
factorials, 23–24
greatest integer, 24
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operations (continued)

grouping symbols, 76–78
non-binary, 23–24
ordering, 74–76
signed numbers, 24–31
variable interpretation, 82–83

order of operations
defi ned, 73, 75
equation solving, 184
powers, 349

ordered pairs, graphs, 315–316
origin, graphs, 314

• P •
palindromes, number types, 112
parabolas, graphing, 321–325
parallel lines, graphing, 339–341
parentheses

grouping, 14, 15, 76–78
interval notation, 245

percentages, formulas, 283–287
perfect cubes, factoring binomials, 159–162
perfect squares, factoring binomials, 

158–159
perimeters, story problems, 293–295
permutations, formulas, 290
perpendicular lines, graphing, 339–341
pi (π)

circle relationships, 15
circular formulas, 354–355
irrational number, 12

pictures, story-problem element, 292
plus sign (+)

addition, 14
distributions, 110–111
variable-operation interpretation, 82–83

points (dots)
graphs, 314
plotting, 316–317

polygons, perimeter formula, 271
polynomial

defi ned, 117
multiplication operations, 119–120
remainder theorem, 165–166
synthetic division, 166–168

positive numbers
greater than zero, 20
negative comparisons, 21–22
plus sign (+), 14

positive signs, distributions, 110–111
power of the value. See exponents
powers. See also exponents

adding/subtracting variables, 85–86
fractional distributions, 116–117
order of operations, 75, 349
quadratic-like equations, 230–231
radical equations, 234–237
raising, 68–69, 350

prime numbers
composite-number factorization, 95–96
defi ned, 93, 94
divisibility issues, 12–13
encryption role, 93
greatest common factor (GCF), 102–105
Mersenne, 95
reducing fractions, 100–102
rules of divisibility, 99–100
tree factorization method, 98
upside-down division, 96–98

prisms, volume formula, 277–278
problem solving, algebra purpose, 181
problem statement, story-problem 

element, 292–293
proper fractions, value less than one, 

36–37
proportions, equation solving, 196–199
pyramids

story problems, 298–299
volume formula, 279, 298

Pythagorean theorem, 267–269, 354

• Q •
quadrants, graphs, 313–314, 316
quadratic equations

double root, 204
equation type, 172
factoring, 208–211
formula, 219–221
imaginary number (i), 221–222
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multiplication property of zero (MPZ), 
209–211

parabolas, 321–325
quadratic formula, 356
rational numbers, 12
solution applications, 217–218
solution examples, 204–206
squaring, 206–208
three-term solutions, 211–216

quadratic expressions
FOIL (fi rst, outer, inner, last), 142–147
greatest common factor (GCF), 141
standard form, 139–141
unFOIL/GCF combination, 153–154
unFOIL/grouping combination, 154–155
unFOILing, 147–152

quadratic formula, quadratic equations, 356
quadratic inequalities

multiple factors, 256
solving methods, 252–255
variable term/second-degree power, 252
zero, 255

quadratic-like equations
powers, 230–231
recognizing, 230–231
solving methods, 231–234

questions, story-problem element, 292–293

• R •
radical ( )  symbol

grouping symbols, 76–78
square roots, 15, 69–71

radicals
equation conversions, 234–238
equation type, 172
fractional-exponent conversion, 71
fractional-power conversions, 116–117
powers, 234–237
splitting, 349
squaring, 237–238

raising a power, exponents, 68–69
rational, equation type, 172
rational inequalities, solving methods, 

257–258

rational numbers
fractional equivalents, 12
rational-root theorem, 167–168
quadratic equations, 12

rational root theorem, rational numbers, 
167–168

real numbers
exponential expressions, 56–57
value representations, 11

reality checks, equations, 178–180
reciprocals

equation solving, 176–178
fractions, 50–51
solving two-term linear equations, 188

rectangles
area formula, 273–274, 294–296
perimeter formula, 270–271, 294

regular polygon, perimeter formula, 271
relationships

algebraic symbols, 16
graphic illustration, 311–313
story-problem element, 292

relatively prime, defi ned, 128
remainder theorem, polynomials, 165–166
remainders, division operations, 42
repeated division, factoring method, 129
repeating decimals, fraction conversions, 54
right triangles, Pythagorean theorem, 

267–269, 354
roman numerals, graphs, 314
root power, defi ned, 70
roots, order of operations, 75
rounding numbers, approximately equal 

symbol, 53
rules of divisibility, prime factorization, 

99–100

• S •
S rule, addition operations, 25–26
scientifi c notation, number comparisons, 

58–59
signed numbers

different sign addition, 26–27
division operations, 29–30
multiplication operations, 29–30
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signed numbers (continued)

same-sign addition, 25–26
subtraction operations, 27–28
zero operations, 30–31

simple interest, formulas, 284
simplify, algebraic task, 16–17
slash (/), division, 15
slopes, line graphing, 333–339
solve, algebraic task, 16–17
spheres, volume formula, 280
spherical volume, story problems, 299–300
square root ( ), 15
square-root rule, cubic equations, 225
square roots

equation solving, 175–176
principal square root, 207
quadratic equations, 206–208
radical symbol, 69–71

squared binomials
distributions, 120–122
term tracking, 347–348

squares
area formula, 273–274
factoring binomials, 158–159
perimeter formula, 270–271
radicals, 237–238

squaring operations, equation solving, 
174–175

story problems
areas, 294–296
circles, 308–309
distance, 305–307
interest, 302–305
investments, 302–305
mixtures, 300–305
perimeters, 293–295
planning elements, 292–293
pyramids, 298–299
spherical volume, 299–300
volumes, 297–300

substitutions, intersect graphing, 342–343
subtraction operations

equation balancing, 173–174
fractions, 46–47

inequalities, 247–248
minus sign (–), 14
order of operations, 75
radical expressions, 70
signed numbers, 27–28
solving three-term linear equations, 

189–191
variables, 83–86
zero, 30

superscripted numbers, exponents, 55
symbols, relationships, 16
symbols. See also grouping symbols

≈ (approximately equal), rounding 
numbers, 53

* (asterisk), multiplication, 14
[ and ] (brackets), 14, 15, 76–78, 245
{ and } (curly braces), grouping, 14, 15, 

76–78
÷ (division), 15
· (dot), multiplication, 14
= (equal), relationships, 16
! (exclamation point), factorial operation, 

23–24
— (fraction line), grouping, 15, 76–78
> (greater than), 16, 21–22,  

244–245
≥ (greater than or equal to), inequality 

statements, 244–245
∞ (infi nity), interval notation, 244–245
< (less than), 16, 21–22, 244–245
≤ (less than or equal to), inequality 

statements, 244–245
– (minus), 14, 82–83, 111–112
( and ) (parentheses), 14–15, 76–78, 245
π (pi), 12, 15, 354–355
+ (plus), 14, 82–83, 119–111
/ (slash), division, 15

 (square root), 15
 (absolute value), 15, 23, 76–78, 258–261

symmetric property, equations, 190
synthetic division

cubic equations, 239–241
polynomials, 166–168

system of linear, equation type, 172
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• T •
taxes, formulas, 286–287
terminating decimals, fraction conversions, 

53–54
terms

binomial distributions, 118
defi ned, 13, 108, 128
distributions, 348
grouping, 134–137
multiple distributions, 117–120
negative-sign distributions, 111–112
polynomial distributions, 119–120
positive-sign distributions, 110–111
sign changing, 122–123
tracking, 347–348
trinomial distributions, 119

theory of relativity, formula, 353–354
tick marks, graphs, 313–314
tree system, prime-factorization 

method, 98
triangles

area formula, 274–276
perimeter formula, 269–270
Pythagorean theorem, 267–269, 354

trinomial
defi ned, 119
distributions, 119
solving quadratic equations, 211–216

• U •
units of length, formulas, 266–267
U-shaped curves, parabolas, 321–325

• V •
value of e (Euler number), 354
variables

addition operations, 83–86
coeffi cients, 82
combining operations, 88–89
defi ned, 13

distribution methods, 113–117
division operations, 86–88
equation-solving formulas, 199–200
exponents, 14
factoring, 130–133
factors, 82
interpreting operations, 82–83
multiplication operations, 86–88
number/letter representations, 9, 81–82
restrictions, 80–81
story-problem element, 292
subtraction operations, 83–86

vertex, parabolas, 321–325
vertical lines

linear-equation graphing, 330
slope graphing, 334–335

volumes, story problems, 297–300

• W •
Web sites, Great Internet Mersenne Prime 

Search, 95
whole numbers, fractionless numbers, 11

• X •
x-axis, graphs, 313–314

• Y •
y-axis, graphs, 313–314

• Z •
zero

exponential expressions, 66–67
multiplication properties, 209–211
positive/negative number separator, 22
quadratic inequalities, 255
signed-number operations, 30–31
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