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Introduction

Finite math is both difficult and easy to describe. When I’m asked what finite 
math is, I launch into a listing of the different topics that are usually covered 
and then refer to all the applications that are possible to perform using the 

techniques. It isn’t a quick and easy explanation.

Finite math isn’t one thing, and it isn’t restricted to one area of interest or discov-
ery. You may be a finance buff or a gambler (or both). You may want to organize 
your life more or organize others (or both). You may like to play games or instruct 
others on game-like situations (or both). Are you getting my drift? Finite math is 
many things to many types of people with many interests. You may find yourself 
loving all the topics covered here or just some of them. This is entirely your 
preference.

About This Book
You were brave enough to pick up this book so you could discover its secrets. Or 
you’re going to read the book because you want some insight into or help with 
some math topics that have come your way. In either case, you’re in luck.

I wrote the chapters of this book with specific goals in mind. You, the reader, may 
be planning on a career in business or finance. Or, if you don’t want finance as a 
career, perhaps you just want to be able to manage your own financial situation 
and not depend on others. You’ll find many examples leaning toward these topics. 
The mathematics presented will help your understanding and aid you in various 
computations that are necessary to get the right answers.

Some of the material may not be of interest to you right now, but don’t discard it 
yet. As you read on and discover more, you can backtrack and find the basis of 
premises or computation techniques. Some of the material is sequential, for 
instance, recognizing linear equations before you start solving systems of such 
equations, but most of what you find can stand alone. The topics you find here 
complement one another.
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When I introduce a word and think it needs some explanation, I place the word in 
italics. Mathematics has a way of kidnapping normal, everyday words and giving 
them a special meaning. For example, take the word set. Are you playing tennis? 
Do you have dishes to put on the table? Neither works here, but set has its own 
meaning, as you see in Chapter 9.

So much mathematics nowadays is performed on calculators and in spreadsheets. 
And many of the calculations that you find in this book can and will be done using 
such technology. In these chapters, you find the basics behind the math that’s 
performed, and then you’re free to use whatever technology you have at your dis-
posal. One chapter in the Part of Tens is devoted to some processes that you can 
perform using a graphing calculator.

Foolish Assumptions
You’ve picked up this book on finite math, and you open it to the chapter or page 
of your choice. I’m assuming that you’re interested in that particular topic or, 
perhaps, are just jumping into anything that pops up. This is fine. It will work.

What I do have to assume is that you have some basic understanding of algebra 
and its processes. Many of the topics presented assume that you understand that 
letters can represent numerical values and that the numerical values can be used 
to answer questions.

Many of the topics covered use matrices and matrix-like formats. Even if you’ve 
never seen matrices at work before this experience, you should be able to dive in 
and appreciate their value and versatility.

Icons Used in This Book
As you read this book, you’ll see icons in the margins that indicate material in 
support of what is being discussed. You aren’t expected to know all about these 
special items or formulas, but they’re presented for your reference. This section 
briefly describes the icons found in this book.

This icon is used to help you along the way. The material presented with this icon 
makes a process easier or gives more of an explanation as to why something is 
done.
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The material following this icon is wonderful mathematics; it’s closely related to 
the topic at hand, but it’s not absolutely necessary for your understanding of the 
material being presented. You can take it or leave it — you’ll be fine just taking 
note and leaving it behind as you proceed through the section.

This icon alerts you to important information or rules needed to solve a problem 
or continue on with the explanation of the topic. The icon serves as a place marker 
so you can refer back to it as you read through the material that follows.

Beyond the Book
In addition to the material in the print or ebook you’re reading right now, this 
product also comes with some access-anywhere goodies on the web. No matter 
how well you understand the concepts of finite math, you’ll likely come across a 
few questions where you don’t have a clue. To get this material, simply go to www.
dummies.com and search for “Finite Math For Dummies Cheat Sheet” in the 
Search box.

Where to Go from Here
It’s time to begin your adventure into finite math. Where should you start? Where 
will you end up? This is really up to you. If your algebra background is all relatively 
recent, then you can jump into the linear programming and maximization prob-
lems in Chapters 6 and 7. If you’re more interested in the financial part of the 
book, then just leap forward to Chapter 11.

But as you’re moving through any particular topic, feel free to review some of the 
operations and processes that are covered throughout the book, such as systems 
of equations in Chapter 3 or matrices in Chapter 5. You’re not expected to remem-
ber every math topic you’ve learned in the past.

Do enjoy. There’s a large enough variety to satisfy every type of reader.

http://www.dummies.com/
http://www.dummies.com/
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IN THIS PART . . .

Discover how to write and solve linear equations in two 
or more variables.

Get familiar with solving systems of inequalities using 
graphing methods.
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Chapter 1
Feeling Fine with 
Finite Math

What is finite mathematics? It seems that there are infinite ways to describe 
this subject or subjects. When applying the processes from the various 
topics in finite mathematics, you consider multiple applications and get 

to solve them in a variety of ways. Finite mathematics has become a gathering spot 
for many applications in business, social sciences, biological sciences, economics, 
finance, and so on. This gives the businessman, social scientist, biologist, econo-
mist, financial officer, and others many options for dealing with their everyday 
decisions.

Finite mathematics starts with the basic mathematical processes and draws in all 
the applications that make the processes interesting, usable, and valuable. And 
this is just the beginning. In addition to the basic mathematical topics and proce-
dures, you also have all the possibilities for using modern technology to solve a 
particular problem or organize a situation.

IN THIS CHAPTER

»» Lining up the lingo

»» Introducing multiple ways to describe 
mathematical situations

»» Looking at applications for 
probability

»» Linking logic logically

»» Taking on games with new vigor
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Getting in Line with Linear Statements
Most of the applications in finite mathematics that involve mathematical state-
ments are of the linear variety. A linear equation or linear inequality has only 
first-degree variables. You don’t find curves like parabolas or shapes like circles 
or ellipses in the study of linear algebra.

In Table 1-1, you find some linear statements and their descriptions. A common 
practice is to have the variables be letters from the end of the alphabet and the 
constants and coefficients come from the beginning of the alphabet.

Note that the power of each variable in a linear statement is equal to 1. The power 
isn’t showing. You don’t usually write an equation as 4 71 1x y ; the preferred 
format is 4 7x y . When there’s no exponent showing, you assume that the 
exponent is 1.

Making the Most with Matrices
What is a matrix? In the movie The Matrix, the characters dealt with computers, so 
you may find a bit of a tie-in there, because matrices provide formats that are 
conducive to being entered into computer programs and graphing calculators. But 
matrices are actually very simple structures.

TABLE 1-1	 Linear Statements
Algebraic Statement Description

ax by c Linear equation in two variables in standard form

y mx b Linear equation in two variables in slope-intercept form

ax by cz d Linear equation in three variables in standard form

a x a x a x a x bn n1 1 2 2 3 3  Linear equation in n variables in standard form

ax by c Linear inequality, less than

ax by c Linear inequality, greater than or equal to

a bx c d Compound linear inequality
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A matrix is a rectangular array of numbers or other elements. By rectangular, this 
means that every row is the same size (making the length uniform) and every 
column is the same size (making the width uniform). For example, the following 
matrix A has four rows and two columns, so it’s a 4 2 matrix.

A

1 1

8 7

2 5

3 0

The matrix A has eight elements, and the elements are all integers. The elements 
are inside brackets, and the matrix has a capital letter as its name. In Chapter 5, 
you find even more details about matrices and the processes that go along 
with them.

Most graphing calculators have built-in matrix apps so you can enter the ele-
ments in the matrix and perform operations on a matrix or multiple matrices. 
Excel spreadsheets also lend themselves nicely to matrix processes; and the added 
benefit of using computer spreadsheets is that you can easily view and print them.

You can solve systems of linear equations by the tried-and-true methods from 
algebra: substitution and elimination. But matrix mathematics also includes 
methods that you can use to solve systems of linear equations. Matrices also help 
by changing the format of mathematical statements to make them more usable 
and understandable. The results are easily read after performing matrix computa-
tions. You just have to follow steps provided in Chapter 6.

Staying with the Program
Finite mathematics involves quite a bit of linear programming, in one form or 
another. Basically, this means that the topics covered take applications that 
involve linear statements and find a solution. Typically, the solution is in the form 
of finding the maximum or minimum value possible.

For example, say that you’re trying to take care of some dietary problems and 
don’t want to spend too much money while doing this. You’re trying to minimize 
the cost. You need to add just so much vitamin A, some vitamin D, some iron, and 
some potassium to your diet. Pill I has certain amounts of each, Pill II has three 
out of four of those elements, and Pill III has a different three out of four. And, of 
course, they each cost a different amount of money.

A linear programming process associated with this situation has you write state-
ments that represent the amounts of the vitamins, iron, and potassium and their 
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relative cost. Then you write inequalities expressing that you want at least the 
minimum of each added to your diet. Finally, you write the statement that you 
want to minimize — the total cost.

Yes, this may seem very complicated, but all this becomes clear in Chapters  7 
and  8. The steps are spelled out and the options for solving the problem 
presented.

Getting Set with Sets
A set can be many things, and it can be used in many ways. In mathematics, a set 
is a grouping or collection of objects. Yes, the objects are usually numbers, but 
they really can be anything.

When you describe a set in mathematics, you usually name the set with a capital 
letter, and you list the objects or elements of the set in braces, with the elements 
separated by commas.

The set of states starting with the letter i can be described with 
I Iowa Idaho, Indiana, Illinois, . This set has four elements. And this isn’t the only 
way to describe the set. You can also say that I Idaho, Illinois, Indiana, Iowa .  
The order in which you list the elements doesn’t matter.

If the set is very large and you don’t want to list all the elements, then you can use 
a rule or an ellipsis. For example, if the set H contains all the positive integers 
smaller than 100, then you can use one of the following formats:

H positive integers smaller than 

H

H  

100

1 2

1 100x x|

, ,         3 98 99, . . . , ,

Each description of the set H means the same thing — that is, creates the same 
elements. The positive integers smaller than 100 are 1, 2, 3, 4, .  .  ., 98, 99. You 
don’t want to list all those numbers, so you can use an alternate form for the set 
of numbers.

How many elements are there in the set H? You answer that question with the 
notation n H 99. This says that set H has 99 elements. And, again, they don’t 
have to be listed in order, if you choose to list all the elements.

You can accomplish many operations and other calculations using sets. One of the 
most popular processes involves Venn diagrams. A Venn diagram usually involves 
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a geometric figure (most often, a circle) that represents a set and its elements, and 
it shows where the set intersects (shares) with another set or two. Figure  1-1 
shows you a Venn diagram illustrating the relationship between sets M and F.

Set M States starting with the letter 

      Mai e,    

M

n MMaryland, Massachusetts, Michigan, Minnesota, Mississippi,,

Missouri, Montana

States with five or fewer le

and

Set F ttters in their name

  Idaho, Maine, Texas, Iowa,       OOhio, Utah .

From both the figure and the set listings, you see that n M 8 and n F 6. The 
intersection of the two sets is what they share, and that contains one element. The 
union of the two sets is the combination of the two sets put together. There are 
8 6 1 13 elements in the union, because you don’t count Maine twice.

Sets provide a great way of organizing information and making conclusions about 
how they relate to one another.

Posing the Probability
What is the probability that it will rain tomorrow? What is the probability 
that  you’ll land on Park Place in the game Monopoly? Each of these answers 
or  predictions is based on the numbers 0 through 100. If something has 0%  

FIGURE 1-1: 
States starting 

with M and 
states with 

five or fewer 
letters.



12      PART 1  Getting Started with Finite Math

probability, then it isn’t supposed to happen, and 100% probability is a sure thing. 
If you’re four spaces away from Park Place, then the probability is about 11% that 
you’ll land on that spot with its hotel!

You write probability amounts as percentages, decimals, or fractions. Each has an 
equivalence to the other two, and the use of one or another form is usually just a 
preference or whatever works best in the situation.

To change a fraction to a percentage, you first change the fraction to its equivalent 
decimal form and then that decimal to a percent. For example, the fraction 
5
8

0 625. . Changing the decimal to a percentage, you move the decimal point two 

places to the right and get 62.5%.

What is the big advantage of using percentages? They’re much easier to compare 

to one another. If you wanted to know which is the greater probability, 5
8

 or 14
25

, 

you get a better idea by comparing their percentages. The fraction 5
8

 is equal to 

62.5%, and the fraction 14
25

0 56.  or 56%, so 5
8

 represents the greater probability.

What do you do about decimals that don’t end? Some don’t even repeat! The short 
answer is to shorten them or round to a certain number of decimal places. If you 

want the decimal equivalent of 11
12

, you divide 12 into 11 and get 0.9166666 . . . with 

the digit 6 repeating forever. Choosing to round the percentage to the nearer  

hundredth, you first change the decimal to a percent, getting 91.6666 . . . % and 

then round to the nearest hundredth by changing the second 6 to a 7. The fraction 
11
12

 is about 91.67%.

To change a percentage to a fraction, you go backward. Change the percentage to 
a decimal, and then put the digits of the decimal over a power of ten that has the 
same number of zeros as decimal places.

The percentage 13.25% becomes 0.1325. Putting 1,325 over 10,000 and reducing 

the fraction, you have 1 325
10 000

53
400

,
,

.

Which version do you use? It’s whichever version is most helpful and informative 
in the circumstances. For example, the three circles in Figure 1-2 show you the 
same circle labelled with fractions, decimals, and percentages. Each is valuable in 
some format or application. Your choice.
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Figuring in Financial Factors
A big application area in finite mathematics is that involving financial topics. 
There’s interest, dividends, amortized loans, continuous compounding, and more. 
And each of these topics comes with its own, special formula for performing the 
computations needed.

In real life, if you end up working with all this financial figuring, you’ll have all 
sorts of apps and programs to do all the hard work. But you still need to under-
stand what you’re figuring and whether the result you get makes any sense. You 
need to know what number or form of the number needs to be input into what 
value. The financial overview in Chapter 11 will give you much more confidence.

But what if you’re not going into the field of finance? You still want to know 
what’s going on in that area. For example, when determining how much money 
you’ll have in your savings account after a certain number of years, you need to 
know that the initial deposit is entered as a decimal number, the rate of interest is 
entered as a decimal, the compounding value is in terms of how often each year, 
and the time is a number of years. So how much will you have after ten years if you 
deposit $50,000 at an interest rate of 4.75% compounded monthly? Here’s the 
computation:

A 50 000 1 0 0475
12

50 000 1 003958333

80 325 36

10 12

120

, .

, .

, .

You’ll have more than $80,000 — or your investment will have earned more than 
$30,000. You want to do better than that? Then try out some other institutions or 
investigate into what other processes or investment forms are available.

FIGURE 1-2: 
Comparing 

fractions, 
decimals, and 
percentages.
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Finding Statistical Satisfaction
Statistical figures are part of everyone’s life. What is the average daily tempera-
ture? What does she need on the next test to get an A in the course? Does your IQ 
score put you in the genius category? What is the median price of a house in that 
lovely neighborhood?

Statistics provide a way of explaining situations, but you have to understand what 
is being presented and understand the possible misunderstandings or misuses 
when statistics are used.

One of the basic measures studied in statistics is the average. The average can be 
the mean, the median, or the mode. And the mean can be arithmetic or geometric. 
In Figure 1-3, you see a graph representing the salaries, in thousands of dollars, 
of the employees at a certain firm. Just looking at the figure, you can determine 
one of the measures for average: the mode.

The mode is the most frequently occurring score. In this case, the mode is $50,000. 
So the owner of the company can say that the average salary is $50,000. Is this a 
good representation?

FIGURE 1-3: 
The salaries 

at XYZ 
Manufacturing.
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You can also quickly find the median from this graph. The median is the middle 
score, when you line up all the numbers in order. Looking at the graph, how many 
people or salaries are represented here? You see that one person is earning 
$10,000, two people are earning $20,000, and so on. Add them all up, and you’ll 
find 20 salaries listed. The middle is really between the 10th and the 11th numbers. 
So adding up the numbers associated with the salaries, you have 1 2 5 3, and 
you can stop there. The three people represented in the $40,000 column are the 
9th, 10th, and 11th in an ordered list. The middle is between the 10th and 11th, 
which are both $40,000, so the salary $40,000 is the median. Is this a better rep-
resentation than the mode of $50,000?

There’s one more average to check — the one you’re probably most familiar with 
when talking average scores  — and that’s the arithmetic mean. The arithmetic 
mean is what you get when you add up all the scores or salaries and divide by how 
many there are. Adding up the 20 salaries and dividing by 20, you get

1 10 000 2 20 000 5 30 000 3 40 000 6 50 000 3 60 000( , ) ( , ) ( , ) ( , ) ( , ) ( , ))

, ,

1 2 5 3 6 3
800 000

20
40 000

The mean average is $40,000. This is the same as the median, so it looks like this 
salary is the better representation of what the employees earn, on average. But 
someone reporting that the average is $50,000 wouldn’t be lying — they just may 
be misrepresenting for one reason or another. If you know what is going on, you 
can make a better judgment based on the statistics given.

There’s a lot more to investigate in terms of the statistics of a situation, and you 
get much more information in Chapter 12, to help satisfy your statistical cravings.

Considering the Logical  
Side of Mathematics

You hear someone make the following argument:

All cats have four legs.

All cats are mammals.

Therefore, all mammals have four legs.
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You can probably do some convincing reasoning, with examples, to show why this 
argument is false, but what is basically wrong here? Are the assumptions wrong? 
Is the structure of the argument wrong? What structures work?

Aristotle is usually credited with being the first person to use — or at least record 
his use  — of a formal logic system. Many others followed him, tweaking the 
subject and format and applying it to the sciences and other areas of endeavor.

Mathematics has long been a part of logic, coming from both directions. Principles 
of logic have been applied and incorporated into mathematical systems, and, 
going the other way, some mathematical findings have been utilized in further 
developments in logic.

In Chapter  13, you find the basics of logic, truth tables, and some applications 
of  logic. And then perhaps, you can weigh in on Mr. Spock’s quote: “You may 
find that having is not so pleasing a thing as wanting. This is not logical, but it is 
often true.”

Unlocking the Chains
The study of Markov chains has helped in many applications in the real world. 
When making a prediction about a coming event, using a Markov chain, you con-
sider only the present state, not the history of events or any other outside influ-
ences. Not all situations are appropriate for the use of these chains, but they still 
have been important enough to continue to study.

Consider a situation where a diet enthusiast has decided to limit her lunches to 
either broccoli, carrots, or kale. Each lunch consists of that vegetable, only, and 
nothing else. Figure 1-4 shows her choices after eating one of those vegetables 
and the percentage of the time she makes that choice.

If the dieter eats broccoli on one day, then 40% of the time she’ll have broccoli the 
next day, 40% of the time she’ll have carrots, and 20% of the time she’ll have 
kale. If she has carrots one day, then the next day her two choices are only carrots 
again (70% of the time) or broccoli the other 30% of the time.

The diagram gives you lots of information about her eating habits, and a picture 
is often very helpful when trying to figure out patterns and make predictions, but 
there’s another format that’s even more useful for the predictions part.
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You can put the information from the diagram into a rectangular format — yes, a 
matrix. To read the matrix that corresponds to Figure 1-4, you read from the left 
side, representing the current state or what was eaten today, and then down from 
the top, representing the next day’s choice.

broccoli carrots kale

broccoli

carrots

kale

40 40 20

30 70 0

40 6

% % %

% %

% 00 0%

Reading from the matrix, if the dieter eats kale one day, there’s a 60% chance 
she’ll eat carrots the next day and a 0% chance she’ll repeat the kale. You see that 
each row adds up to 100% — covering all the possibilities for the next day’s choice. 
Also, what you find in the long run is that when the dieter uses this particular 
pattern of choices, she ends up eating broccoli 34% of the time, carrots 59% of the 
time, and kale 7% of the time. This is useful information when planning on future 
purchases. How were these percentages determined? You find all you need to 
create the same figures and matrices and the resulting patterns in Chapter 14.

FIGURE 1-4: 
What is she 

having for lunch 
tomorrow?
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Getting into Gaming
When you hear or read the words game theory, you may dismiss them as being 
something to do with gambling or with video games or with some of those fun 
apps on your tablet or phone. You wouldn’t be completely incorrect, but there’s so 
much more to game theory than just fun and games.

Game theory is applied to adversarial situations, which can be wars, competing for 
business, gaining votes in an election, making money, and much more.

When studying game theory, you see many of the mathematical structures and 
processes that are also used for other topics — matrices and sketches and solving 
equations are all incorporated into the study of game theory.

You can use some game theory when deciding how to invest that $100,000 you 
inherited from your great-aunt Lucy. You go to an investment firm and are given 
some figures on what may happen if you invested all the money into either a 
money market, some bonds, or some growth stocks for about five years. Of course, 
the gain (or loss) will depend on whether the economy is stable or inflationary. 
Here’s what you’re shown:

Stable Inflationary

Money Market

Bonds

$ , $ ,

$ ,

2 500 3 000

17 000 $$ ,

$ , $ ,

10 000

50 000 20 000Growth Stocks

So what’s the game here? How would you play it? Safe or risky? In Chapter 16, you 
find different strategies and net results. This still doesn’t guarantee success, but 
it gives you important information.
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Chapter 2
Lining Up Linear 
Functions

Linear function is just a fancy way of saying line. Yes, a function is something 
special, so not just any line can represent a function. But some lines are 
functions and can be very useful. And the basic rule that it takes just two 

points to determine one special line still holds with a linear function. Those points 
on the line are in the form of coordinates, (x, y). Those points are also considered 
to be solutions of the equation representing the line.

When performing computations or investigations in finite mathematics, you usu-
ally want one of two different forms of the equation of a line: the slope-intercept 
form or the standard form. One form is helpful when graphing and solving sys-
tems, and the other works better when using matrices.

The graph of a line is helpful in many ways. It gives you a visual answer to a ques-
tion, such as, is it rising quickly? It also helps you determine how different values 
are grouped or limited. Graphing more than one line allows for comparisons and 
the creation of areas that you can look at for an answer. Lines can be drawn in a 
solid form or with dashes; these are subtle differences that have distinctive 
meanings.

IN THIS CHAPTER

»» Writing equations of lines in several 
different forms

»» Graphing lines for visual satisfaction

»» Comparing one line to another

»» Rewriting equations for convenience
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Creating the graphs of lines is also a way of doing quick comparisons: Are they rising 
or falling? Are they parallel or perpendicular? Is this just the same line? For those 
who like a picture to look at to better understand, graphing the lines is your method.

Equations of linear functions crop up throughout the chapters of this book, so it’s 
good to get these important things covered right here and now.

Recognizing Equations of Lines
The equation of a line can take on many forms. The same line is represented by the 
equations 4 11x y , y x11 4 , 4 11x y , and so on. So what’s the big deal? 
Compare the form of a linear equation to a picture you’ve copied and are now edit-
ing. Do you need to crop the picture to focus on one part of it? Does it need to be 
rotated in one direction or another? Will you be changing the contrast to illustrate 
something better? These are all about the same picture, but you’re changing it to 
suit your particular purposes.

Identifying slope and its scope
One of the more recognizable and popular forms of the equation of a line is the 
slope-intercept form.

The slope-intercept form of the equation of a line is y mx b. The letter m is the 
value of the slope; it can be positive or negative or even zero. The letter b repre-
sents the y-intercept, where the line crosses the y-axis. The y-intercept can also 
be positive, negative, or zero.

The line y x4 3 has a slope of 4 and a y-intercept of (0, –3). Because the slope 
is a positive number, the line rises as you move from left to right. The negative 
y-intercept tells you that the line comes up from the lower left of the graph, 
crosses both axes, and continues on through the upper right of the graph.

What about the line y 2? What is its slope? The equation is in the slope-intercept 
form, but you don’t see the slope because it’s 0. Another way to write the equation 
of this line is y x0 2. Now the slope is obvious! But what does a slope of 0 mean? 
Any line with an equation of the form y k, where k is some number, is a horizon-
tal line. Horizontal lines are important and come in handy.

The same thing can happen with the y-intercept. If it’s 0, then the number doesn’t 
show in the equation. An equation with a y-intercept of 0 has the form y mx .  

So the lines y x3 , y x4 , and y x2
3

 all have a y-intercept of 0. They all go 

through the origin of the coordinate plane, the point (0, 0).
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Creating different forms of the equation
Another very handy form of the equation of a line is the standard form.

The standard form of the equation of a line is Ax By C . You can determine the 

slope and both intercepts from this form. The slope is A
B

, the y-intercept is C
B

, 

and the x-intercept is C
A

. This isn’t as handy as finding the slope and y-intercept 

in the slope-intercept form, but it saves you from having to change the equation 
into that form.

The standard form is very useful when working with matrices. You put all the 
equations in the same form and then have to use the numbers only when doing 
matrix work. You can see how all this works in Part 2 of this book. For now, you 
get to use the whole equation, letters and all.

You can change from one form of a linear equation to another by using basic alge-
bra. The choice of the form of the line just depends on the particular process being 
performed.

Changing to slope-intercept form
To change the equation 4 5 20x y  to the slope-intercept form, you first isolate 
the y-term on the left side. To do that, subtract 4x from each side, and you get 

5 4 20y x . Then divide each term by –5; the final equation is y x4
5

4. You 

can immediately tell that the slope is 4
5

 and the y-intercept is at –4; the coordinates 
of the y-intercept are (0, –4).

Changing to the standard form
In order to change the equation y x3

8
7 to the standard form, the first thing 

to do is to multiply each term by 8. This gives you 8 3 56y x . To put it in stan-
dard form, you add 3x to each side; the standard form is 3 8 56x y . The slope of 

3
8

 and y-intercept of 7 were more obvious in the original form, but you can pick 

up the x-intercept by using C
A

; the x-intercept is at the point 56
3

0, .

Writing the equation of a line
You can write the equation of a line if you have the slope and a point on the line or 
if you have any two points on the line. Either of those choices creates the equation 
of the line. The equation represents those points and none other.
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Using the slope and a point
You want to write the equation of a line when you know that the slope is, say, 3 
and a point on the line is (–2, 6). A nice, easy way to do this is to start with the 
slope-intercept form, substitute in the values that you know, and then solve the 
new equation for the value of b.

Using y mx b, you have that m 3, y 6 and x 2. Substituting in, you get 
6 3 2( ) b, which simplifies to 6 6 b. Adding 6 to each side, b 12. So you can 
now write the equation using the slope of 3 and intercept of 12: y x3 12.

What if the slope is 0? Does that mess things up? Not a bit. Consider the situation 
where the slope is 0 and the line goes through (–3, –7). Using the same procedure 
as with the previous example, let m 0, y 7, and x 2. In the slope-intercept 
form, this becomes 7 0 2( ) b. This then simplifies to 7 b . Putting this into 
the slope-intercept form, you get y x0 7 or y 7.

Using two points
When the two points, for example (4, 3) and (–2, 5), both lie on the same line, you 
can write an equation of the line through those points. First, you find the slope of 
the line.

The formula for the slope of a line through the points x y1 1,  and x y2 2,  

is m y y
x x

2 1

2 1
.

Substituting the coordinates of the two points, (4, 3) and (–2, 5), into the slope 

formula, you get m 5 3
2 4

2
6

1
3

.

Now, just choose one of the points and use its coordinates and the slope you just 
found in the slope-intercept form. Using the coordinates (4, 3), you have 

3 1
3

4( ) b, which simplifies to 3 4
3

b. Adding 4
3

 to each side of the equation, 

you get b 13
3

, so the equation of the line through the points is y x1
3

13
3

.  

To write this in the standard form, just multiply each term by 3 to get 3 13y x ,  
which becomes x y3 13.

Graphing Lines on the Coordinate Plane
To graph a line from its equation, you need to either find two points using the 
equation or use the y-intercept and the slope from that form. Either way gives you 
a nice representation of the line. The choice is usually dependent on which version 
of the equation you’ve been given or what your personal preference is.
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Graphing a line using two points
Say that you want to graph the line 2 5 15x y . The two simplest points to use are 

the two intercepts. The x-intercept is 15
2

0, , and the y-intercept is (0, –3). If you 

don’t want to deal with the fractional coordinate, you can find another point with 
nicer numbers. For example, if you let y = 1, then the equation reads 2 5 1 15x .  
Adding 5 to each side, 2 20x , so x 10. The point you find is (10, 1).

Plotting the two points on a coordinate plane, and drawing the line through them, 
you get the line shown in Figure 2-1.

As you can see, the graph of the line also goes through 15
2

0,  on the x-axis. This 
is always a nice way to find a third point on the line.

FIGURE 2-1: 
The line through 

(0, –3) and (10, 1).
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Using the slope and y-intercept 
to graph a line
When you’re given the slope-intercept form of the equation of a line, you have a 
nice, quick way to sketch the line’s graph. You just plot the y-intercept and then 
count to the right, followed by counting up or down.

For instance, to graph y x3
2

4, you first plot the intercept, (0, –4). Then you 

use the denominator of the slope followed by the numerator of the slope. Starting 
at the intercept, you count two units to the right, and then, from there, you count 
three units up. Where you end up after both moves is a second point on the line. 
Draw your line through the intercept and that second point you found. This is 
shown in Figure 2-2.

If the slope had been negative, you would have moved downward after that first 
move to the right from the intercept.

FIGURE 2-2: 
Starting at (0,–4), 

count two right 
and three up.
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Graphing special lines
Yes, all lines are special in that they’re linear functions, they have a steady increase 
or decrease or no change at all, and they’re rather predictable. That’s why lines 
and their equations are so popular in the world of mathematical applications. Two 
rather special lines are those that are horizontal and those that go through the 
origin.

Horizontal lines
Horizontal lines have a slope of 0. And horizontal lines all have equations in the 
form y k, where k is some real number. The number k is actually the y-intercept, 
if you think of it as replacing the b in the slope-intercept form y mx b. The 
number k is also the y value of every point on the line; you can think of it as its 
height. In Figure 2-3, you find the lines y 3, y 1, and y 2 5.  all graphed, each 
with a slope of 0.

FIGURE 2-3: 
Three horizontal 

lines.
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Horizontal lines never touch one another. They are parallel and are the same dis-
tance apart throughout their entire domain.

Lines through the origin
A line going through the origin has a y-intercept of 0. In the slope-intercept form, 

you’ll always see an equation looking like y mx . The lines y x4 , y x2 , y x1
3

, 

y x7  and y x all go through the origin. You see these lines graphed in Figure 2-4.

You can see how the slopes of lines affect the steepness. The greater the absolute 
value of the number representing the slope, the steeper the line.

FIGURE 2-4: 
Lines through the 
origin all intersect 

at (0, 0).
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Vertical lines
Vertical lines are useful, but they aren’t functions, and they won’t be used to 
model some particular happening. They help define stopping and starting points, 
though, and are usually shown as segments going from the top to the bottom of a 
particular area of interest.

Determining Relationships between Lines
Lines have no weight or age or height. If you want to compare lines, you talk about 
other features that they can have. When describing lines, you can compare their 
slope — which is steeper or flatter? But other things to consider include the fol-
lowing: Do the lines intersect? Are the lines parallel or perpendicular to one 
another? Or are two different-looking equations actually just two different names 
for the same line?

Parallel and perpendicular lines
When two lines are parallel, they never touch. You can extend them forever and 
ever and they’ll never meet or have a point in common. When two lines are per-
pendicular, they have to meet somewhere. And that somewhere is a place where a 
right angle is formed.

When two lines are parallel, their slopes are exactly the same: m m1 2. When two 
lines are perpendicular, their slopes are negative reciprocals of one another: 

m
m1

2

1 . Another way of saying that they’re negative reciprocals is to say that 

the product of their slopes is equal to –1: if m
m1

2

1 , and m
m2

1

1 , then 

 m
m1

1

1 1 or m m1 2 1.

The lines y x2 3, y x2 11 and 6 3 1x y  are all parallel to one another. 

They all have a slope of –2. The lines y x2 3 and y x1
2

7 are perpendicular 

to one another. The product of their slopes 2 1
2

1.

The lines 12 2 7x y  and y x6 3 are parallel to one another. You can graph 
them to check this out, or you can determine the slopes from the equations. First, 
check out their graphs in Figure 2-5.
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How can you be sure that parallel lines don’t touch? You check out their slopes. 
The equation y x6 3 is already in slope-intercept form. You see that the slope 
is 6. Changing the equation 12 2 7x y  to the slope-intercept form, you get 

y x6 7
2

. You have a match! Each line has a slope of 6.

The lines 4 3 7x y  and 6 8 11x y  are perpendicular to one another. First, find 
their respective slopes. When you write the line 4 3 7x y  in the slope-intercept 

form, it becomes y x4
3

7
3

, and the line 6 8 11x y  reads y x3
4

11
8

. The 

product of their slopes, 4
3

 and 3
4

, equals –1. You can see their graphs in 
Figure 2-6.

When two lines are perpendicular, they form a right angle at their point of 
intersection.

FIGURE 2-5: 
Parallel lines 
never touch.
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Intersecting versus coincidental lines
When two lines intersect, the first thing you note is that they’re not parallel. The 
second thing that always happens is that they intersect in one and only one point. 
This is the rule. There are no exceptions.

But there are lines that intersect everywhere. No, this isn’t an exception, because 
you aren’t dealing with two different lines. When lines intersect everywhere, it’s 
because the two equations you’ve been graphing represent the same line.

For example, if you take the equation x y6 11 and multiply each term by 2, you 
get 2 12 22x y . The second line isn’t two times “bigger” than the first. In the 
world of lines, these multiples of one another just represent the same line. They 
have all the same points in common and have the same graph.

When you have different forms of the equations of lines, then it isn’t always quite 
as evident that the equations represent the same line. For example, 6 42 21x y 

FIGURE 2-6: 
The slopes of 

perpendicular 
lines are negative 

reciprocals of  
one another.
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and y x2
7

2 are two different equations representing the same line. How can 

you prove that? Just change them to the same form. The second equation is already 
in slope-intercept form, so change the first to that form. Subtract 42 from both 

sides to get 6 42 21x y. Then divide each term by 21, and you get 6
21

42
21

21
21

x y  

or y x2
7

2.

Solving for a Variable
Many times, changing a linear function to another form of the equation is advan-
tageous. You can change from slope-intercept form to standard form and back 
again. But another situation involves nothing but convenience. If you have to 
repeat the same process over and over, using a linear formula and solving for a 
variable, then you can accomplish the same task in a much easier way by changing 
the formula to another form.

For example, you know the formula for changing degrees Fahrenheit into degrees 

Celsius, right? It’s C F5
9

32 . Say that you’re in Europe and have a Celsius/

Centigrade thermometer and you want to know the Celsius equivalent to 98.6 degrees 
Fahrenheit. So you use the formula, and in this case, it’s

C 5
9

98 6 32 5
9

66 6 37. ( . )

So 98.6 degrees is equivalent to 37 degrees on the Celsius scale.

But what if you want to change from degrees Celsius to degrees Fahrenheit? What 
is 13 degrees Celsius in degrees Fahrenheit? You can put the Celsius measure in for 

the C and solve for F, 13 5
9

32F . First, multiply each side by 9
5

, and then 
add 32:

9
5

13 9
5

5
9

32

117
5

32

32 117
5

32 23 2
5

55 2
5

F

F

F

But if you have many measures to change, then repeating this over and over can 
get tedious. Instead, you solve for F once, in terms of C. To do this, start by mul-

tiplying each side of the equation by 9
5

. You get 9
5

9
5

5
9

32C F , which sim-

plifies to 9
5

32C F . Then just add 32 to each side: 9
5

32C F .
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Or what if you make an investment earning simple interest and want to solve for the 
rate of interest? This equation reads A P rt1 . What is that all about? Here’s how 
it works. If you invest $4,000, the principal, at a rate of 2% for 10 years, then the total 
amount in your account at the end of 10 years is A 4 000 1 0 02 10 4 800, . $ , . But 
sometimes you have an amount in mind and need to shop around for a good 
enough rate of interest.

Say that you want the total amount in your account, A, to be $13,200. You plan on 
investing $10,000, the P, and letting it sit for 8 years, t. You want a simple equa-
tion to do your hunting for a good rate.

Take the formula A P rt1  and solve for r. To do this, first divide both sides 
by P:

A
P

P rt
P

rt
1

1

Now, subtract 1 from each side and divide by t:

A
P

rt1  becomes 
A
P
t

r t
t

1
 or r

A
P
t

1

The right side is a bit complex, but you can rewrite it by multiplying both the 
numerator and denominator by P:

r

A
P

P

t P
A P
Pt

1

You can put in the $13,200 for A and 8 for the t. Then r P
P

13 200
8

, . You can play 

around with the amount you’ll be investing, P, to get the best rate that you can 
find.

What if the amount you’re investing is $10,000? Letting P be $10,000 in the for-
mula, you get:

r P
P

r

r

r

r

13200
8

13200 10000
8 10000

3200
80000
0 04

4

.

%



32      PART 1  Getting Started with Finite Math

If you want your investment of $10,000 to become $13,200 in 8 years, then you 
need to find an institution that provides 4% interest.

Many formulas start out appearing to be linear expressions but take other forms 
when solving for one variable or another. The interest formula became a rational 
expression (with fractions) when solving for particular values. This also happens 
with geometric and other financial formulas. The process of solving for a partic-
ular variable has the same theme, though: to perform proper algebraic processes 
to change the formula to something useful.



CHAPTER 3  Solving Systems of Linear Equations      33

Chapter 3
Solving Systems of 
Linear Equations

When you first studied algebra, you had the treat of solving systems of 
equations by graphing two lines and determining where they crossed. It 
probably wasn’t put quite in those words — that you were solving a 

system — but that’s what it was all about; you were determining the only pair of 
values of x and y that would work in both equations at the same time.

You likely found that it was rather difficult to find the intersections of lines by 
using this method. When the solution involved fractions, you had a hard time 
telling — if you could tell at all — what the values at the intersection were. So you 
got to perform algebraic processes that made finding the solution more precise 
and accurate.

When two lines cross, they cross at one point only. When three lines cross, they 
may all intersect at one point, or they may form a sort of triangle with three dif-
ferent intersections, pairing up the points two at a time. The situation that is most 
helpful when working with applications is when you have a single point where 
two or three, or even more, lines may intersect.

IN THIS CHAPTER

»» Comparing elimination and 
substitution methods

»» Recognizing when you have the right 
solution

»» Dealing with too few or too many 
solutions

»» Applying solutions of linear equations 
to practical matters
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And what’s the point of all this solution-searching? It’s to answer questions about 
life, of course. With solutions of systems, you can determine the break-even point 
in a business situation, the amount of one liquid to add to another, and a host of 
other interesting applications, some of which I explore in this chapter.

Solving Systems Using Elimination
The process of solving systems of equations using elimination is just what the 
name describes: You eliminate one of the variables and solve for the other. No, you 
can’t just erase that variable. The elimination has to follow precise rules and 
procedures.

Solving a system of two linear equations  
using elimination
Say that you have two linear equations: 5 8 14x y  and 4 2 7x y . You want to 
know what point they share. What values of x and y will work for both of them at 
the same time?

First, write the equations, one on top of the other with terms matching:

5 8 14

4 2 7

x y

x y

You see that, by multiplying the second equation by 4, the two y terms will be 
opposites. That’s what you want. Adding opposites results in 0, and you eliminate 
the term. So multiply each term in the second equation by 4 and add the two equa-
tions together.

5 8 14

16 8 28

21 42

x y

x y

x

Now, dividing each side of the resulting equation by 21, you get that x 2. Substi-
tute that back into the first equation (substituting back into either would work, 
actually) to get 5 2 8 14y , which simplifies to 10 8 14y  or 8 4y . Dividing 

both sides by 8, you get y 1
2

. You have the solution, which can also be written as 

the point 2 1
2

, . You see the point of intersection in Figure 3-1.
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In the previous example, you multiplied one of the equations by a convenient 
number. Sometimes, it’s more like a double-header, and you have to multiply 
both equations.

Consider the equations 4 11 5x y and 7 12 9y x . To solve them, first rewrite 
with the like terms above and below one another:

4 5 11

9 7 12

x y

x y

You want either the x terms or the y terms to have opposite coefficients. Okay, flip 
a coin; the x terms win. You decide to multiply 4x by 9 and multiply 9x by –4. Then 
add the two equations together to eliminate the x terms:

36 45 99

36 28 48

17 51

x y

x y

y

FIGURE 3-1: 
Two lines 

intersect at 
exactly one point.



36      PART 1  Getting Started with Finite Math

Divide both sides by 17, and you get y 3. Substitute that into the first equation, 
and you get 4 5 3 11x , which simplifies to 4 15 11x  or 4 4x . Divide each 
side by 4, and x 1. The solution, as a point, is (–1, 3). Figure 3-2 shows you how 
these two lines meet.

Using elimination to solve a system 
of three linear equations
You don’t want to even consider solving a system of three linear equations in 
three unknowns using graphing. In the first place, you’d need a three-dimensional 
coordinate system. That would be like having laser lights coming from three dif-
ferent people in a room and trying to get them all cross at the same point — and 
then measure where that point is. No, you should use elimination.

FIGURE 3-2: 
Two lines 

intersecting  
at (–1, 3).
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To solve the following system using elimination, you have to pick which variable 
to eliminate first. This system has three variables.

4 10

3 12

3 2 4 8

x y z

x y z

x y z

A convenient variable to eliminate is z. You see that opposite z terms appear in the 
first and second equations. And to deal with the last equation, you use a multiplier 
of 4, multiplied through the second equation, making that equation’s z term the 
opposite of the z term in the last equation.

First, add the first and second equations together:

4 10

3 12

5 4 22

x y z

x y z

x y

Next, multiply the middle equation by 4 and add it to the last equation:

4 12 4 48

3 2 4 8

7 14 56

x y z

x y z

x y

You’ve created two new equations that have just two variables: 5 4 22x y  and 
7 14 56x y . Because the second equation has all numbers divisible by 7, you 
divide each term by 7 to make the numbers smaller, giving you x y2 8.

Now write the two new equations, one under the other:

5 4 22

2 8

x y

x y

If you multiply the terms in the bottom equation by –2, you can eliminate the 
y terms when you add the two equations together.

5 4 22

2 4 16

3 6

x y

x y

x

Dividing both sides by 3, you get that x 2. Substituting 2 for x in the equation 
5 4 22x y , you get that y 3. And substituting both the x and y values into the 
first original equation, you have 4 2 3 10( ) z , simplifying to 11 10z  or 
z 1. The solution, as a point, is (2, –3, –1).



38      PART 1  Getting Started with Finite Math

As much fun as this is, you can find an even nicer way to solve these systems of 
equations by using matrices in Chapter 6.

Solving Systems Using Substitution
Another way to solve systems of equations is to use substitution. This process is 
also exactly how it sounds. You substitute part of one equation into the other 
equation.

Solving a system of two linear equations  
using substitution
When using substitution, you identify a variable to solve for in one of the equa-
tions, solve for that variable, and then substitute that expression into the other 
equation. Deciding what to solve for in which equation is often pretty easy and 
obvious, but sometimes you just have to bite the bullet and go for what looks best.

To solve the system 3 4 5x y  and x y3 5, for example, you note that the coef-
ficient of x in the second equation is 1. You always want, when possible, a variable 
whose coefficient is 1 or –1 so you can avoid fractions in the substitution. Follow 
these steps:

1.	 Solve the second equation for x by adding 3y to each side:

x y3 5

2.	 Substitute 3y + 5 in for x in the first equation:

3 3 5 4 5y y

3.	 Simplify:

9 15 4 5y y

to 5 15 5y ,

which becomes 5 10y .

4.	 Divide each side by 5:

y 2

You can solve for x by using your equation x y3 5. Putting the –2 in for y, you 
get x 3 2 5 6 5 1( ) . Your solution, as coordinates of a point, is (–1, –2). 
These lines intersect, as shown in Figure 3-3.
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Taking on a system of three linear 
equations using substitution
When you’re working with a system of three or more linear equations, you’ll find 
that using substitution to solve the system involves one variable in terms of 
another in terms of another, and so on. The main thing to remember is your target 
variable. You want to substitute equivalences of one of the variables into all the 
others — pick a variable and stick with it.

To solve the system of equations, which variable would you choose?

3 2 4 1

3 5 14

4 4 3 1

x y z

x y z

x y z

FIGURE 3-3: 
An intersection of 

two lines in the 
third quadrant.
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None of them looks particularly inviting at first, but the x variable does have a 
coefficient of 1 in the second equation, so take that as your choice.

First, solving for x in the second equation, you subtract 3y from each side and add 
5z to each side, giving you x y z14 3 5 . Then substitute that expression into 
the first and third equations.

Substituting into the first equation: 3 14 3 5 2 4 1y z y z . This simplifies 
first to 11 19 41y z , which becomes 11 19 41y z .

In the third equation, 4 14 3 5 4 3 1y z y z  simplifies to 16 23 55y z .

So the new system of equations, in just two variables, is

11 19 41

16 23 55

y z

y z

The choices of variable to solve for aren’t great, but the smallest number is 11, so 
the first equation is the easiest choice. Solving for y in the first equation, you get 

y z1
11

19 41 . Put that into the second equation and solve for z following these 

steps:

1.	 Substitute in for y:

16 1
11

19 41 23 55z z

2.	 Multiply each term by 11 to get rid of the fraction:

16 19 41 253 605z z

3.	 Simplify:

304 656 253 605z z

which becomes 51 51z

4.	 Divide each side by 51:

z 1

Now solve for y by putting z 1 into y z1
11

19 41 . You get  

y 1
11

19 1 41 1
11

22 2( ) ( ) .
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And now, armed with y 2 and z 1, you can put those values in one of the origi-
nal equations to solve for x. A good choice would be the second original equation, 
x y z3 5 14, because the coefficient of x is 1. Using that equation, you get 
x 3 2 5 1 14( ) , which simplifies to x 3. The solution of the system as the 
coordinates of a point is (3, 2, –1).

Dealing with Too Many or No Solutions
If the question is, “How many cookies do you have?” then the answer, “Too many 
cookies,” is never an option. How can there be too many cookies? But in the world 
of finite mathematics and solutions of equations, you want a bit more control of 
the situation.

When you’re solving a system of equations and come across the situation where 
the equations of the lines are actually two different versions of the same line, then 
that’s the too many case. And if the lines are parallel, then there’s no solution. How 
do you recognize this from your work? It’s just a matter of finding an equation 
that’s either always true or never true.

Too many solutions
You’re asked to find the solution of the system 2 8 6x y  and 12 3 9y x . Lining 
up the equations, you have

2 8 6

3 12 9

x y

x y

Multiplying the first equation by 3 and the second equation by –2, you can then 
add them together:

6 24 18

6 24 18

0 0 0

x y

x y

Look what happened! Yes, 0 0. That’s a true statement; it’s always true, no 
matter what x is. What this indicates is that any solution of the first equation is 
also a solution of the second equation. Every point on the first line is on the second 
line. They’re the same line. (See Figure 3-4.)
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When you end up with always true statements like this, such as 0 0 or 3 3 and so 
on, you know that the equations are just different versions of one another. This 
situation of 0 0 comes up again when using matrices to solve systems of equa-
tions. It’s a big indicator of this special situation.

No solution at all
The other scenario is that you have two equations that have no solution at all. That 
happens when lines are parallel. But you want to be able to spot this situation 
without having to graph the lines.

Consider the equations 3 7 5x y and 10 9 6y x. Line them up first:

3 5 7

6 10 9

x y

x y

Multiplying the first equation by –2 and then adding them together, you get

6 10 14

6 10 9

0 0 5

x y

x y

This final statement says that 0 5. Not true. This is your signal that no possible 
solution exists. The lines must be parallel. Figure  3-5 shows you that this is, 
indeed, the situation.

When dealing with systems of linear equations, the choices are always either one 
solution, no solution, or infinitely many solutions.

FIGURE 3-4: 
One line with 

more than 
one name
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Making Linear Equations Work for You
Creating a linear equation to model a particular situation can be very helpful when 
trying to get organized and determine answers to questions. Here are some of the 
more familiar linear equations that are actually formulas:

»» Perimeter of rectangle: P l w2 2

»» Converting Fahrenheit to Centigrade: C F5
9

32

»» Cost: C = Fixed + Variable = Fixed + (cost per)(number of)

And there are many, many more formulas. What you find in this section, though, 
is how to use systems of linear equations. You find a solution to answer a question.

FIGURE 3-5: 
The lines never 

meet; there is no 
solution.
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Determining the profit
If you’re in a business, then you’re all about profit. You have to sell what you cre-
ate, and the price you sell the items at has to more than pay for what it costs you 
to make the items.

The basic business model is Profit = Revenue – Cost. When revenue is equal to 
cost, then the profit is 0. That’s called the break-even point.

Consider the We Are Jeans store. It costs the business $29 to make a pair of jeans. 
This includes materials and labor. There’s also the fixed cost amount to consider. 
Fixed costs can include salaries of employees, insurance, mortgage payments, 
equipment, and so on. The fixed costs are shared by all the different products sold. 
In this case, for the jeans, the fixed costs come to $1,000. The store sells the jeans 
for $49 per pair. How many pairs of jeans do they have to sell to start making a 
profit on them? What is the break-even point?

First, write equations to model the situation. For the cost function, you have 
C x x29 1 000, , where x is the number of pairs of jeans. And the revenue func-
tion is R x x49 .

To put this in terms of equations in a coordinate plane, just write the functions  
as y x29 1 000,  and y x49 . What do these look like when graphed? See 
Figure 3-6.

To find the solution of the system of equations y x29 1 000,  and y x49 , the 
simplest thing to do is to use substitution, because they’re both already solved  
for y. Setting the two y’s equal to one another, you get 29 1 000 49x x, . Subtract-
ing 29x from each side, you then get 1 000 20, x . Dividing each side by 20, you 
have that x 50.

Because x is the number of pairs of jeans, it takes the sale of 50 pairs of jeans to 
break even. The cost to produce 50 pairs of jeans is $2,450, and the revenue from 
50 pairs of jeans is $2,450. Selling more than 50 pairs of jeans results in a profit.

Mixing it up with a solution
Say that you’re planning to fertilize your lawn and need 12 quarts of some 50% 
solution to put in your sprayer. You have a good amount of some 60% solution, but 
that’s too strong. And you have lots of 20% solution, but that’s too weak. So you 
decide to mix them together. How much of each do you mix together to get 12 quarts 
of the 50% solution? Figure 3-7 shows what you’re trying to accomplish.
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To solve this problem, you write equations that depict what’s going on. Let x 
represent the number of quarts of 60% solution and y represent the number of 
quarts of 20% solution. If they have to add up to 12 quarts, then the equation you 
want is x y 12.

FIGURE 3-6: 
Cost and revenue 

functions 
intersect at the 

break-even point.

FIGURE 3-7: 
Mixing 60% 

solution and  
20% solution to 

get 50% solution.
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To write about the strengths of each solution, change the percentages to decimals. 
You want x quarts of 60% solution, so that’s 0.60x; and y quarts of 20% solution 
is 0.20y. Together, they are to be equal to 50% solution, so you write that as 
0 50. x y . But x y 12, so the equation you want is 0 60 0 20 0 50 12 6. . .x y .

The system of equations that needs to be solved is

x y

x y

12

0 6 0 2 6. .

One way to find the solution is to solve the first equation for y and substitute into 
the second equation. Using this method, you first find that y x12 .

First, substitute to get 0 6 0 2 12 6. .x x . Next, simplify: 0 6 2 4 0 2 6. . .x x , 
which becomes 0 4 3 6. .x . And finally, divide each side by 0.4 to get x 9. So you 
need 9 quarts of 60% solution. That leaves 12 – 9 or 3 quarts of the 20% solution 
to give you the desired 50% solution.

Counting on change
Here’s another example. Say that you have 38 coins in your pocket. They’re all 
either nickels, dimes, or quarters. You know that you have twice as many dimes as 
nickels and two more nickels than quarters. How much money do you have?

Okay, I know that you can just take it out and count it, but what fun is that? You 
prefer to make this a system of equations problem and solve it!

First, let n represent the number of nickels, d be the number of dimes, and q be the 
number of quarters. If you have 38 coins in all, then n d q 38. That’s the first 
equation. You just need two more equations to be able to solve the system.

You know that you have twice as many dimes as nickels, so you can represent that 
with 2n d . And two more nickels than quarters is q n2 .

Your three equations then are n d q 38, 2n d, and q n2 . If you write the 
three equations in a format where the different variables are lined up above and 
below each other, then you have

n d q

n d

n q

38

2 0

2
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Because the third equation has only n and q terms in it, you take advantage of that 
situation and add the first two equations together, creating another equation in 
only n and q.

n d q

n d

n q

38

2 0

3 38

Now, write the system using this result and the equation n q 2. You add the two 
together to solve for n.

3 38

2

4 40

n q

n q

n

Dividing each side of the equation by 4, you have that n 10. Substitute n 10 into 
the equation n q 2, and you get 10 2q  or q 8. And, because the total number 
of coins is 38, you put the values of n and q in the equation and solve 
for d: n d q d10 8 38

The number of dimes, d, is 38 – 18 or 20.

The original question was, “How much money do you have?” Multiplying 
each  number of coins times the value of the coin, you have 
10 0 05 20 0 10 8 0 25 0 50 2 00 2 00 4 50. . . . . . . . You have $4.50  in your 
pocket.
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Chapter 4
Taking on Systems 
of Inequalities

Solving linear equations and graphing linear functions have their place in the 
world of finite mathematics. You use them when answering questions about 
personal, business, and professional situations. Another very important 

arena is that of linear inequalities. Whereas the solution of a system of linear equa-
tions ends up being just one point, you find that inequalities have solutions involv-
ing many points. The solutions are designated by greater than or less than notation.

The graphs of systems of inequalities also have many solutions, and their solu-
tions aren’t always easy to describe. This is where the graph of the solution is so 
valuable and informative.

Ruling with Inequalities
A linear inequality statement may read something like x 7 or x 2. Expressed 
in words, these statements are “x is greater than 7” and “x is less than or equal to 
–2.” The graphs of these statements are done on a single line, with an open circle 
indicating that the endpoint isn’t included in the solution and a solid circle indi-
cating that the endpoint is included. Figure 4-1 shows you how the two state-
ments are graphed.

IN THIS CHAPTER

»» Recognizing the rules of inequalities

»» Making sense of linear inequalities
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When solving linear inequalities, you use most of the same rules that are used 
when solving linear equations. Two huge exceptions are noted here.

The rules for operations on inequalities are as follows. (Only < is shown, but these 
same rules apply to any inequality: >, <, and >.)

»» If a b, then a c b c. Adding the same number to each side of an 
inequality does not change the direction of the inequality symbol.

»» If a b, then a c b c . Subtracting the same number from each side of an 
inequality does not change the direction of the inequality symbol.

»» If a b and if c is a positive number, then a c b c. Multiplying each side of an 
inequality by a positive number does not change the direction of the inequal-
ity symbol.

»» If a b and if c is a positive number, then a
c

b
c

. Dividing each side of an 
inequality by a positive number does not change the direction of the inequal-
ity symbol.

»» If a b and if c is a negative number, then a c b c. Multiplying each side of 
an inequality by a negative number reverses the direction of the inequality 
symbol.

»» If a b and if c is a negative number, then a
c

b
c

. Dividing each side of an 
inequality by a negative number reverses the direction of the inequality 
symbol.

For example, if you want to simplify the linear inequality 4 3 21x  and solve for 
x, first add 3 to each side, and then divide each side by 4. The inequality symbol 
remains in the same direction.

4 3 21

4 3 3 21 3

4
4

24
4

6

x

x

x

x

Any number 6 or greater is a solution of the inequality 4 3 21x .

FIGURE 4-1: 
Graphing x 7 

and x 2.
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Next, solving 16 5 11x  for x, you first subtract 16 from each side and then divide 
by –5. Dividing by a negative number means you reverse the inequality symbol.

16 5 11

16 16 5 11 16

5
5

5
5

1

x

x

x

x

Any number greater than 1 is a solution of the inequality 16 5 11x .

Graphing Linear Inequalities
A linear inequality in just one variable is graphed on a single number line. When 
you have a linear inequality in two variables, such as x y3 6, then you use the 
coordinate plane.

To graph an inequality of the form ax by c (also applies to inequalities with >, 
<, or >), use the following steps:

1.	 Graph the equation of the corresponding line, ax by c.

Use a solid line if the inequality is < or >. Use a dashed line if the inequality is < or >.

2.	 Use a test point to determine which side of the line contains all the 
solutions of the inequality.

The preferred test point is (0, 0), if it’s clearly on one side of the line or the other.

3.	 Shade in the side of the line determined after using the test point.

To graph the inequality x y3 6, for example, you first graph the line x y3 6. 
The two intercepts of the line are (0, –2) and (6, 0). Then you draw a solid line 
through the points. The line is shown in Figure 4-2.

The point (0, 0) can be the test point, because it’s clearly above the line. Substitute 
the coordinates of the point into the inequality x y3 6 to see whether it’s a 
solution:

0 3 0 6 0 6( ) ,
?

Yes

So the point (0, 0) and every point on that side of the line or on the line is a solu-
tion of the inequality x y3 6. To indicate this solution, shade in the top part of 
the graph, as shown in Figure 4-3.
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FIGURE 4-2: 
The graph of 

x y3 6 has a 
solid line.

FIGURE 4-3: 
All the points 

above the line 
and on the line 

are solutions.
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Creating graphs of systems
A system of inequalities contains lots of points — each of them satisfying the 
statement of one or more inequalities. You can test different points to see which 
system is satisfied, often one at a time. Or you can look at a graph that gives you 
the overall view of the solutions.

For example, you know that you can fit up to 16 ounces of a mixture of peanuts 
and almonds in your travel cup. An almond weighs twice as much as a peanut. So 
what can you put in the cup? You can do 12 ounces of peanuts and 1 ounce of 
almonds, but there’s still room left. You can do 10 ounces of peanuts and 3 ounces 
of almonds. That should fit. Also, you can do 4 ounces of peanuts and 6 ounces of 
almonds, with room to spare. Many different combinations either fill the cup or 
leave room for more.

To examine this situation in a more orderly fashion, let x represent the number of 
ounces of peanuts and y represent the number of ounces of almonds. Remember 
that almonds weigh twice as much as peanuts.

The system of inequalities representing this situation is

x y

x

y

2 16

0

0

The two inequalities x 0 and y 0 are what keep the graph of the system in the 
first quadrant. The values of x and y are never negative in a system with this 
requirement; they have to be positive or zero. In this almond-and-peanut situa-
tion, you can’t have a negative number of ounces, so the inequalities fit. Figure 4-4 
shows you the graph of the system.

You can’t possibly label all the points that fit the situation, so you just shade in the 
area that contains all the solutions. Figure 4-5 shows you the infinite number of 
choices. Of course, if you keep to sets of numbers lying on the line, you’ll have a 
full cup — the rest leave some room for more.

Now, starting with a completely new situation working toward a system of 
inequalities, the graphs used in this new system show the graphs of the separate 
inequalities and then intersection of those inequalities. The graph of the system

x y

y x

12

7

consists of all the points in the intersection of the graphs of the two separate 
inequalities.
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When graphing x y 12, if you use the test point (0, 0), you see that it doesn’t 
satisfy the inequality because 0 0 12. So the shading is all above the line. When 
graphing y x 7, the test point (0, 0) does work because 0 7; so you graph below 
the line to include the test point.

The two graphs, in Figure 4-6 and Figure 4-7, show the graphs of x y 12 and 
y x 7, respectively.

FIGURE 4-4: 
All the points in 
the solution are 
in the triangular 

area.

FIGURE 4-5: 
Graph showing 

many ways to fill 
the cup.
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FIGURE 4-7: 
. . . And this is the 
graph of y x 7.

FIGURE 4-6: 
Two inequalities 

overlap when 
drawn together. 
This is the graph 

of x y 12.
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When both inequalities are graphed on the same coordinate axes, you can see what 
points they share. For example, in Figure 4-8, you see that the points are all com-
mon solutions of the two inequalities. They are all solutions of the system.

Making graphs work for you
You can graph systems of two, three, or even more inequalities. Their graphs can 
get pretty messy, if you try to show both the full graph of each inequality and the 
intersection of all of them at the same time. Sometimes it’s just more efficient to 
put arrows on the lines to show which side to shade and then just eyeball where 
the intersection goes. Consider the system of three inequalities, all intersecting in 
the first quadrant.

When you graph the system of inequalities

x y

x y

x y

2 170

2 10

5 2 290

FIGURE 4-8: 
The two 

inequalities 
intersect and 
share points/

solutions.
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you see three inequalities are present. One of them, the middle inequality, has > 
for the inequality symbol. This means that the line used for this portion will be 
dashed, to show that the points on the line are not included in the solution.

In Figure 4-9, you see the three lines corresponding to the inequalities graphed, 
with arrows pointing to which side of the line is to be shaded. How were the 
arrows determined? This is done using a test point. Using the test point (0, 0), the 
following are the results when testing the inequalities:

»» Inserting (0, 0) in x y2 170, 0 0 170, so the origin is in the solution set.

»» Inserting (0, 0) in x y2 10, 0 0 10, so the origin is in the solution set.

»» Inserting (0, 0) in 5 2 290x y , 0 0 290, so the origin is not in the solution set.

You see the arrows all pointing to the triangle in the middle of the graph. Shading 
in the triangle shows you all the points in the solution of the system of inequali-
ties. Some points you can easily pick out are (50, 15) and (70, 5). You can also 
quickly find the points of intersection of the pairs of lines at (50, 20), (90, 40) and 
(30, 70). The points of intersection are actually the most important of all the solu-
tions, because they are where you’ll find the answers to maximization and mini-
mization problems  — a big quest in the world of finite mathematics. In this 
problem, you actually can’t use the intersections (90, 40) and (50, 20) because the 
line they lie on is dashed. It’s a border line, which is handy, but its points can’t be 
used; they aren’t a part of the solution.

FIGURE 4-9: 
Showing which 
side of the line 

to shade.
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In Figure  4-10, you see the shaded area indicating the intersection and a few 
labeled points.

Now to create a system of equations that can solve a problem that’s been bugging 
you for a long time. You are the proud owner of a hamster who eats as much as you 
give him. You are watching his diet so that he will have enough grams of protein 
and fat to keep him well and happy. But you don’t want to spend any more money 
than necessary — as much as you love that furry beast. Here are the requirements 
your hamster needs:

At least 30 grams of protein per day

At least 20 grams of fat per day

You buy Happy Hamster food that contains 2 grams of protein and 4 grams of fat 
per serving. You also buy Rambling Rodent food that contains 6 grams of protein 
and 2 grams of fat per serving. Happy Hamster costs 40 cents per serving, and 
Rambling Rodent costs 30 cents per serving. And you’ve found that it’s best to 
give your hamster at least two servings of Rambling Rodent every day to keep him 
from complaining.

How do you solve this problem? You write some inequalities, solve the system, 
and determine the most cost-efficient situation! I walk you through the process in 
the following sections.

FIGURE 4-10: 
The intersection 

of three 
inequalities 

indicates the 
solution.



CHAPTER 4  Taking on Systems of Inequalities      59

Making a chart of the ingredients
There’s a lot of information here. A great way to organize what you have is to 
make a chart, something like this:

Happy Hamster Rambling Rodent Requirement

Protein 2 grams/serving 6 grams/serving At least 30 grams

Fat 4 grams/serving 2 grams/serving At least 20 grams

Cost 40¢/serving 30¢/serving

At least 2 servings

Writing the inequalities

Now use the information in the chart to write inequalities representing the 
requirements in terms of the number of servings and the respective amount of 
each ingredient. Using x for the number of servings of Happy Hamster and y for 
the number of servings of Rambling Rodent, you get

Protein: 2 6 30x y

Fat: 4 2 20x y

Rambling Rodent: y 2

You also need to add the inequality x 0 to keep the number of servings of Happy 
Hamster a positive number. Your system of inequalities reads

2 6 30

4 2 20

2

0

x y

x y

y

x

Graph the inequalities
Now you can graph the inequalities and determine where all the requirements 
overlap. Figure 4-11 shows you the end result. Notice that the solution or intersec-
tion goes on forever to the right and upward. You can feed that hamster boxes and 
boxes of food and meet the minimum requirements. That’s not what you’re aim-
ing for, though.

Notice three recognizable points of intersection of the lines representing the 
inequalities. These are special, as you’ll see with the last part of this problem.
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Determine the most economical purchase
You want to keep your hamster happy and well fed. The graph of the system of 
inequalities gives you many options of amounts to feed him and keep to the daily 
requirements. But which amount or amounts cost the least?

You can determine the cost by putting in coordinates from the graph that fall into 
the shaded area or lie on one of the lines. The table shows you six possibilities; 
some are just random points from the shaded area, and the others lie on the lines. 
See what you think about the relative costs.

x: servings of 
Happy Hamster

y: servings of 
Rambling Rodent

Cost: 0.40x + 0.30y

5 6 $3.80

4 4 $2.80

1 8 $2.80

0 10 $3.00

3 4 $2.40

9 2 $4.20

FIGURE 4-11: 
Many solutions 

meet the 
requirements.
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The lowest cost is $2.40, which happens when you give your hamster three serv-
ings of Happy Hamster and four servings of Rambling Rodent. The amounts meet 
the minimum requirements:

Protein: 2 6 30x y  becomes 2 3 6 4 30

Fat: 4 2 20x y  becomes 4 3 2 4 20

Rambling Rodent: y 2 becomes 4 2

And no other choice is less expensive. How do you know that? It’s because of that 
wonderful property that the answer to a maximization or minimization problem 
always falls on one of the points of intersection of the lines forming the border.

Solving problems using these systems of inequalities is very helpful and makes 
you feel sure about your answer. Using matrices is even more fun, though, as you 
see in Chapter 6.





2Making Use of 
Available 
Methods



IN THIS PART . . .

Discover how to represent data sets with matrices.

Make things simpler with matrix operations.

Find out how to solve linear programming problems 
graphically.

Understand the benefits of using the simplex method.
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Chapter 5
Making Way for Matrices

A matrix is nothing more (or nothing less) than a rectangular arrangement 
of numbers or letters or other items. A matrix is a great way to organize 
information. You can organize by month, person, age group, company, 

and so on. You then use that information to make decisions and solve problems.

Matrices have operations that are special to these structures, but you’ll find the 
familiar addition, subtraction, and multiplication to be a part of the matrix opera-
tions. How to use the matrix operations involves very specific rules, but they 
aren’t complicated — and they even make sense!

This chapter provides all the basics of using matrices. These basic properties and 
operations will serve you well as you delve even further into solving systems of 
linear equations and inequalities, using this valuable new tool.

Squaring Off with Matrix Basics
Matrices come in all sorts of sizes, but their shapes are always the same: They are 
rectangular arrays of objects called elements of a matrix. The rectangular arrays 
can be as small as 1 × 1 and as large as you can handle on a spreadsheet or on your 
wall! They can be square, such as 2 2, or rectangular, such as 4 7. Their size is 
called their dimension.

IN THIS CHAPTER

»» Starting out with matrices and their 
properties

»» Operating on matrices

»» Using matrices to organize 
information and solve problems
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The dimension of a matrix is indicated with R C , where R is the number of rows 
in the matrix and C is the number of columns.

When a matrix has the same number of rows as columns, then it’s a square matrix. 
Matrices with just one row are called row matrices, and those with only one col-
umn are column matrices. In Figure 5-1, you find a sampling of matrices, different 
ways of identifying them, and their respective dimensions.

You’re probably wondering what good a zero matrix can do you. It really does 
come in handy when you need a target of “nothing left” or if you want to subtract 
a matrix to create opposites.

Identity matrices are always square matrices. They can be 2 2, 3 3, 4 4, and so 
on. Their characteristic is in having a diagonal of 1s and all 0s otherwise. Identity 
matrices play a huge role in the work with matrix applications.

Identifying matrices and their components
Naming matrices when you’re working with more than one at a time is handy so 
you can quickly draw attention to the one you’re talking about or referring to. The 
standard practice is to use capital letters for the names.

K  M
2 4 0

3 3 7

2 6 1

0 7 0
,

You can refer to the two matrices K and M, say that their dimensions are both 2 3,  
and compare or perform operations on the respective elements.

FIGURE 5-1: 
Matrix sampler.
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When referring to elements in a matrix, you can say, “The element in the first 
row, second column of matrix M,” and everyone knows to look at the matrix M 
and the number –6. But mathematicians never say in 12 words what they can 
write in one symbol. Instead of describing the position of an element in words, 
you use a lowercase letter that’s the same as the name of the matrix, and you use 
two subscripts: The first is the row number, and the second is the column number. 
Here is matrix M with all the elements designated by their positions.

M
m m m

m m m
11 12 13

21 22 23

Don’t worry about matrices that have more than ten rows or columns. You won’t 
see any here, and the subscripts can be written with commas to make the posi-
tions clear.

Equalizing and transposing matrices
Two matrices are equal to one another if they are exactly the same size and have 
exactly the same elements in exactly the same places. You can’t get much more 
equal than that. And when a matrix is transposed, it keeps all its elements, but 
most switch positions.

Equal matrices
The two matrices X and Y are equal to one another. They’re the same size, and 
their respective elements are equal.

X  Y

x

y

b

c

f

1

2

3 4

3

0

3

,

Because X = Y, you can deduce, from the matrices shown, that x 3, b 1, c 2, 
y 0, and f 4. This may not seem like a huge deal, but the property comes in very 
handy when dealing with matrix applications.

Matrix transpose
When you transpose a rectangular matrix, you usually change its shape. A square 
matrix keeps the same shape. But, in both cases, most of the elements change 
positions. The element that used to be in the second row, third column, gets moved 
to the third row, second column. A matrix that used to be 4 × 2 becomes 2 × 4  
in the transformation.
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The symbol to indicate a matrix transpose is a capital T at the upper-right corner 
of the matrix. The matrix M is transposed:

M

M

3 4

2 0

1 6

5 1

3 4

2 0

1 6

5 1

3 2T

T

11 5

4 0 6 1

The rows become columns, and the columns become rows.

With a square matrix, the dimension stays the same, and all the elements on the 
main diagonal, running from the top left to the bottom right, stay in their original 
position.

N

N

1 3 2

5 4 3

6 0 7

1 3 2

5 4 3

6 0 7

1 5 6

3 4 0

2

t

T

33 7

The matrix transpose comes in handy when you need to change the dimension of 
a matrix. You change it to perform certain matrix operations or to better organize 
your data.

Performing matrix operations 
and processes
The basic matrix operations are addition, subtraction, scalar multiplication, and 
multiplication, and a basic process is to create an inverse. You don’t see division 
in the list because that operation can’t be performed using the division operation. 
Instead of dividing, you multiply by the inverse of a matrix.

Addition and subtraction of matrices
You can add to or subtract two matrices from one another only if they have the 
exact same dimension. You have to be able to pair up the elements in the same 
positions in the matrices and perform the operation on each pair.
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To add or subtract matrices A and B, you add or subtract, respectively, the match-
ing elements.

A B

a a

a a

a a

b b

b b

b b

11 12

21 22

31 32

11 12

21 22

31 32

a b a b

a b a b

a b a b

11 11 12 12

21 21 22 22

31 31 32 32

and

A B

a a

a a

a a

b b

b b

b b

11 12

21 22

31 32

11 12

21 22

31 32

a b a b

a b a b

a b a b

11 11 12 12

21 21 22 22

31 31 32 32

For example, you can add matrix C to matrix D and subtract matrix E, because they 
all have the same dimension.

C  D  E
3 9 4 1

5 3 1 0

2 10 4 1

6 5 1 0

6 2 8 2

4 2 0 0
, ,

C D E
3 2 6 9 10 2 4 4 8 1 1 2

5 6 4 3 5 2

( ) ( ) ( )

( ) ( ) ( ) 1 1 0 0 0 0

5 3 0 4

7 4 2 0

( )

Scalar multiplication
When working with matrices, a scalar is a single number, not in matrix form (that 
is, not a matrix), that can be applied to every element in the matrix.

The product of matrix A and the scalar k is the matrix kA, where every element in 
A is multiplied by k.

k k

a a

a a

a a

k a k a

k a k a

k a

A
11 12

21 22

31 32

11 12

21 22

331 32k a

So if you multiply matrix G by the scalar 4, you get

G   G

0 7

3 4

1 2

5 3

4 4

0 7

3 4

1 2

5 3

,

0 28

12 16

4 8

20 12
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Multiplying matrices
When adding or subtracting matrices, you need the matrices involved to be the 
same dimension. This is not the case in multiplication of matrices. In fact, many 
matrices that are the same size do not multiply together. The only way two matri-
ces can be multiplied together is if the number of columns in the first matrix 
matches the number of rows in the second matrix.

Let matrix Q have dimension m n and matrix R have dimension n p. Think of the 
multiplication in terms of the dimensions: m n n p* . The product of the two 
matrices, Q R, has dimension m p.

Look at how the dimensions line up. The product of matrices Q and R, written 
Q R or Q*R, gives you m n n p* . The two n’s represent the same number; 
the number of columns in Q is equal to the number of rows in R. The two n’s are 
next to one another, and the m and p are on the outer part of the expression. They 
give you the dimension of the resulting matrix.

But how does the multiplication get accomplished? With matrix multiplication, 
you have the columns in the first matrix lined up with the rows in the second 
matrix. That’s so you can do paired-up multiplications and then addition.

To multiply matrix Q R, follow these steps:

1.	 Line up the elements in the first row of Q, multiply them times the elements in 
the first column of R, and then add up all the products. This gives you the 
element in the first row, first column of the product matrix.

2.	 Line up the elements in the first row of Q, multiply them times the elements in 
the second column of R, and then add up all the products. This gives you the 
element in the first row, second column of the product matrix.

3.	 Line up the elements in the first row of Q, multiply them times the elements in 
the third column of R, and then add up all the products. This gives you the 
element in the first row, third column of the product matrix.

⋮

P.	 Line up the elements in the first row of Q, multiply them times the elements in 
the pth column of R, and then add up all the products. This gives you the 
element in the first row, pth column of the product matrix.

Do the same for the second row, third row, all the way through the last or mth row 
of the first matrix. This gives you the resulting m p matrix.
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For example, look at matrices Q and R:

Q  R

1 2

3 4

5 6

7 8

9 10
,

Matrix Q has dimension 3 2, and matrix R is 2 2. The number of columns in Q is 
2, and the number of rows in R is 2, so you can multiply them together. The 
resulting matrix, Q R, has dimension 3 2. Just use the two outer numbers of the 
two dimensions.

To perform the multiplication, you line up the two elements in the first row of Q , 
the 1 and 2, and multiply them times the two elements in the first column of R, the 
7 and 9. Adding the products 1 7 2 9 , you get 7 18 25. This is the number 
that goes in the first row and first column of the answer matrix. Here are all the 
computations:

Q  R

1 2

3 4

5 6

7 8

9 10
,

Q R

1 7 2 9 1 8 2 10

3 7 4 9 3 8 4 10

5 7 6 99 5 8 6 10

7 18 8 20

21 36 24 40

35 54 40 60

i

25 28

57 64

89 100

Next, consider multiplying the matrices V and W.

V   and  W

4

2

0

3

6

2 3 6 1 4

You see that matrix V has dimension 5 × 1 and matrix W has dimension 1 5. If you 
multiply V W, you have a resulting matrix that’s 5 5, and if you multiply W V,  
the dimension of the product is 1 1.
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Multiplying V W, you get

V W

4

2

0

3

6

2 3 6 1 4

4 2 4 3 4 6 4 1( ) 44 4

2 2 2 3 2 6 2 1 2 4

0 2 0 3 0 6 0 1 0 4

3 2 3 3

( )

( ) ( )

( ) ( )

33 6 3 1 3 4

6 2 6 3 6 6 6 1 6 4

8

( ) ( )

( ) ( )

12 24 4 16

4 6 12 2 8

0 0 0 0 0

6 9 18 3 12

12 18 36 6 24

And then multiplying W V, you get

W V 2 3 6 1 4

4

2

0

3

6

2 4 3 2 6 0( ) 1 3 4 6

8 6 0 3 24

23

( )

( )

Unlike multiplication of real numbers, multiplication of matrices is not 
commutative — the order in which you multiply matrices matters.

Making use of inverses
Only some matrices have inverses. To have an inverse, a matrix has to be square. 
But not all square matrices have inverses! So you see that having an inverse is a 
very special feature of a matrix. But what is this all about? What is the inverse of 
a matrix?

The best way to explain this is to start with other operations and the numbers that 
are associated with the operations. Real numbers have additive inverses. Nonzero 
real numbers have multiplicative inverses. Squaring a positive number and finding 
a root are inverse operations. Here are some examples:
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»» The additive inverse of 3 is –3, because 3 3 0( ) . They add up to the 
additive identity, 0.

»» The additive inverse of 4
9

 is 4
9

, because 4
9

4
9

0. They add up to the 
additive identity, 0.

»» The multiplicative inverse of 3 is 1
3

, because 3 1
3

1. Their product is the 
multiplicative identity, 1.

»» The multiplicative inverse of 4
9

 is 9
4

, because 4
9

9
4

1. Their product 
is the multiplicative identity, 1.

Now that the scene has been set, I can introduce the idea of the inverse of a matrix.

The inverse of matrix A, denoted A 1, is the matrix such that A A I1 , where I is 
the identity matrix. The identity matrix I will have the same dimension as the 
square matrices A and A 1.

The matrix A and A 1, shown next, are inverses of one another. So are the matrices 
B and B 1.

A   A
5 3

3 2

2 3

3 5
1,

because

A A 1 10 9 15 15

6 6 9 10

1 0

0 1

( ) ( )

and

B   B

7 3 3

1 1 0

1 0 1

1 3 3

1 4 3

1 3 4

1,

because

B B 1

7 3 3 21 12 9 21 9 12

1 1 0 3 4 0 3

( ) ( ) ( ) ( ) ( ) ( )

33 0

1 0 1 3 0 3 3 0 4

1 0 0

0 1 0

0 0 1

Note that, in both cases, the two matrices are square and their products are equal 
to the identity matrix. That makes them inverses of one another. How do you find 
that inverse of a matrix? See the later section “Creating inverses.”
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And even though matrix multiplication is not usually commutative, when you 
multiply a matrix and its inverse together, it doesn’t matter what the order is. 
Either order gives you the identity matrix.

Performing division of matrices
The division of one matrix by another is actually accomplished using multiplica-
tion. You’ve done this type of thing before — that is, changing division to multi-
plication. When you divide fractions, you actually multiply by an inverse. 

Remember, back in grade school, when you did a problem like 4
15

8
25

? You 

changed the division to multiplication by using the reciprocal (multiplicative 
inverse) of the second number.

4
15

8
25

4
15

25
8

4
15

25
8

5
6

1

3

5

2

The same technique applies when dividing matrices. Consider the problem of 
dividing matrix C by matrix A:

C
A

4 7

1 6
5 3

3 2

To divide one matrix by another, they both have to be square matrices, and the 
divisor (bottom) matrix must have an inverse. The dividing matrix in this example 
is the same matrix A, from the later section “Finding inverses,” so the equivalent 
multiplication problem is

C
A

C
A

C A

4 7

1 6
5 3

3 2

4 7

1 6

2 3

3 5
1

4 2 7 3 4 3 7 5

1 2 6 3 1 3 6

( ( )) ( ( ))

( ( )) ( ( 55

8 21 12 35

2 18 3 30
13

))

( ) ( )

( ) ( )
23

20 33

If you don’t have the inverse already, then you do have to find that before you can 
do the division problem.
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Investigating Row Operations
When performing a row operation on a matrix, you change how it looks, but you 
don’t really change what it represents. These row operations are what you apply 
when using matrices to solve systems of equations and other applications. When 
applying a row operation, you can create a more useful version of the original 
matrix.

The row operations that can be performed on a matrix representing a system of 
equations are

»» Interchanging two rows

»» Multiplying all the elements in a row by any number (except 0)

»» Adding the elements of one row to the corresponding elements of another

»» Adding the multiples of the elements of one row to the corresponding 
elements (or multiples of those elements) of another

Performing the row operations
The matrix A, shown below, represents the system of equations to its right; it 
contains only the coefficients of the variables and the constants. Row operations 
are performed on the matrix to change it to a form in which the solution of the 
system is read. You find more on this entire process in the section “Applying 
Matrices and Their Operations.” For now, I concentrate on how the row opera-
tions work.

A

1 2 4 1

3 1 1 9

1 1 5 5

2 4 1

3 9

5 5

x y z

x y z

x y z

The first row operation is to interchange rows 2 and 3. I want the –1 right under 
the 1 in the first row, first column. But now it’s time to introduce some notation. 
Instead of saying “interchange rows 2 and 3,” I write “R R2 3.” The notation is 
very precise and quick. The subscripts indicate the row number, and the double-
pointed arrow indicates that they are to be switched. And here’s what the process 
looks like:

1 2 4 1

3 1 1 9

1 1 5 5

1 2 4 1

1 1 5 5

3 1 1 9
2 3    R R
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Next, I want to add row 1 and row 2, and I want the results to be placed in row 2. 
The notation for this is R R R1 2 2. Again, the subscripts indicate the rows 
involved. The arrow pointing toward row 2 tells you that the result of the addition 
of rows 1 and 2 will replace what was originally in row 2.

And, performing the operation, you get

1 2 4 1

1 1 5 5

3 1 1 9

1 2 4 1

1 1 2 1 4 51 2 2    R R R ( ) ( ) 11 5

3 1 1 9

1 2 4 1

0 1 1 6

3 1 1 9

You may be thinking that I’m just coming up with these steps willy-nilly or 
helter-skelter, but there’s a method to my method. Just bear with me. The reasons 
behind these steps are apparent in “Applying Matrices and Their Operations.”

Next, I want to multiply each term in the first row by –3 and add the product to 
the corresponding term in row 3. I don’t change the elements in row 1; I just use 
their multiples. The elements in row 3 are the ones that change, because that’s 
where the results go. The notation for this is 3 1 3 3R R R .

1 2 4 1

0 1 1 6

3 1 1 9

3

1 2 4 1

0 1 1 6

3 1 3 3
1 3 3

  

  R R R

22 1 3 4 1 3 1 9

1 2 4 1

0 1 1 6

0 5 13 6

( ) ( )

Now the matrix is looking pretty good! In case you’re wondering why I’m so 
pleased, just notice that, in the first column, a 1 is at the top and all 0s are below. 
Very nice.

My next goal is to get a 0 below that 1 in the second element of the second row, a22.  
To accomplish that, I multiply the second row by 5 and add it to the third row, 
like so:
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1 2 4 1

0 1 1 6

0 5 13 6

5

1 2 4 1

0 1 1 6

0 0 18 36
2 3 3    R R R

And, a final step is to multiply the third row by 1
18

.

1 2 4 1

0 1 1 6

0 0 18 36

1
18

1 2 4 1

0 1 1 6

0 0 1 2
3 3    R R

Notice that a diagonal of 1s run from the upper left downward. And, under two of 
the 1s, there are only 0s. This is called the row-echelon form. It is good! When 
working with a system of equations, you choose your row operations so that a 
form like this can be accomplished.

Creating inverses
One of the things that you can do with row operations is to create the inverse of a 
matrix — if that matrix has an inverse! Only square matrices have inverses, and 
not all of them do. By using row operations, you can find the inverse of a square 
matrix, when it exists.

The steps for finding the inverse of a matrix are as follows:

1.	 Write the matrix in a double-wide format, with an identity matrix of the same 
dimension on the right. Separate the original matrix and identity matrix with a 
vertical bar.

2.	 Perform row operations on the original matrix until it looks like the identity 
matrix; extend any row operations performed on the left matrix to the matrix 
on the right.

Finding the inverse — when it exists
To find the inverse of a matrix, you go through the steps given in the preceding 
section and end up with an answer when there is an inverse. There is a definite 
sign when there is no inverse. You just don’t know what you’ll get ahead of time. 
The following example illustrates how this is done. Find the inverse of the 
matrix B:

B

1 2 3

1 1 4

2 5 4
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First, write the matrix in a double-wide format, with an identity matrix of the 
same dimension on the right. Separate the original matrix and identity matrix 
with a vertical bar.

1 2 3 1 0 0

1 1 4 0 1 0

2 5 4 0 0 1

Then, perform row operations on the original matrix until it looks like the identity 
matrix; extend any row operations performed on the left matrix to the matrix on 
the right.

To get 0s below the 1 in the b11 position, you multiply row 1 by –1 and add it to the 
second row. Then you multiply row 1 by –2 and add it to the third row. You, of 
course, leave row 1 the way it now is.

1 2 3 1 0 0

1 1 4 0 1 0

2 5 4 0 0 1

1

2

1 2 3 1 0 0
1 2 2

1 3 3

    
R R R

R R R
00 1 1 1 1 0

0 1 2 2 0 1

You want that element in the middle of the second row of the left matrix, element 
b22, to be +1, so multiply the elements in the second row by –1.

1 2 3 1 0 0

0 1 1 1 1 0

0 1 2 2 0 1

1

1 2 3 1 0 0

0 1 1 1 1 0

0
2 2    R R

11 2 2 0 1

 

Next, you want 0s above and below that middle 1, the element b22. So multiply the 
second row by –2 and add it to the first row. Then multiply the second row by –1 
and add it to the third row.

1 2 3 1 0 0

0 1 1 1 1 0

0 1 2 2 0 1

2

1

1 0
2 1 1

2 3 3

    
R R R

R R R

55 1 2 0

0 1 1 1 1 0

0 0 1 3 1 1

The –1  in the third row, element b33, needs to be +1, so multiply the third row 
by –1.

1 0 5 1 2 0

0 1 1 1 1 0

0 0 1 3 1 1

1

1 0 5 1 2 0

0 1 1 1 13 3    R R 00

0 0 1 3 1 1

 

And, finally, you get 0s above that 1, element b33, by doing the following: Multiply 
row 3 by –5 and add it to row 1, and then just add row 3 to row 2.
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1 0 5 1 2 0

0 1 1 1 1 0

0 0 1 3 1 1

5
1 0 0

3 1 1

3 2 2

    
R R R

R R R

16 7 5

0 1 0 4 2 1

0 0 1 3 1 1

 

Voilà! The inverse of matrix B has been discovered! It’s the matrix on the right. 
You changed the matrix on the left to an identity matrix, which made the matrix 
on the right the inverse of the original left matrix. So

B

1 2 3

1 1 4

2 5 4

 and B 1

16 7 5

4 2 1

3 1 1

To prove that these two matrices are inverses, you multiply them together and see 
if you get the identity matrix.

B B 1

1 2 3

1 1 4

2 5 4

16 7 5

4 2 1

3 1 1

1 16( )) ( ) ( ) ( ( )) ( ( )) ( ( )) ( (2 4 3 3 1 7 2 2 3 1 1 5 2 1 3 1

1 16 1 4 4 3 1 7 1 2 4 1 1 5 1

))

( ) ( ) ( ) ( ( )) ( ( )) ( (( )) ( ( ))

( ) ( ) ( ) ( ( )) ( ( )

1 4 1

2 16 5 4 4 3 2 7 5 2 4 1 )) ( ( )) ( ( ))

( ) ( ) (

2 5 5 1 4 1

16 8 9 7 4 3 5 22 3

16 4 12 7 2 4 5 1 4

32 20 12 14 10

) ( )

( ) ( ) ( ) ( )

( ) ( 44 10 5 4

1 0 0

0 1 0

0 0 1) ( ) ( )

Whew! It worked!

Looking for an inverse that isn’t there
Not all square matrices have inverses. You don’t know ahead of time which situa-
tion you have. But there’s a definite signal that you have no inverse, if that’s the 
case. Start with matrix C and work toward finding its inverse.

C

1 3 1

2 4 2

1 1 3

First, write the matrix in a double-wide format, with an identity matrix of the 
same dimension on the right. Separate the original matrix and identity matrix 
with a vertical bar.

1 3 1 1 0 0

2 4 2 0 1 0

1 1 3 0 0 1
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Then, perform row operations on the original matrix until it looks like the identity 
matrix; extend any row operations performed on the left matrix to the matrix on 
the right.

To get 0s below the 1 in the c11 position, you multiply the first row by –2 and add 
it to the second row. You also multiply the first row by –1 and add it to the 
third row.

1 3 1 1 0 0

2 4 2 0 1 0

1 1 3 0 0 1

2

1

1 3 1 1
1 2 2

1 3 3

    
R R R

R R R

00 0

0 2 4 2 1 0

0 2 4 1 0 1

You notice something peculiar: The second and third rows on the left-hand side 
are the same. Will that be a problem? Proceed with the steps, and you’ll see.

You want a 1 where the –2 is, for the element in the c22 position, so you multiply 

the second row through by 1
2

.

1 3 1 1 0 0

0 2 4 2 1 0

0 2 4 1 0 1

1
2

1 3 1 1 0 0

0 1 2 12 2    R R 11
2

0

0 2 4 1 0 1

You want 0s above and below the 1 at c22, so you multiply the second row by –3 and 
add it to the first row. Then you multiply the second row by 2 and add it to the 
third row.

1 3 1 1 0 0

0 1 2 1 1
2

0

0 2 4 1 0 1

3

2
2 1 1

2 3 3

   
R R R

R R R
  

1 0 5 2 3
2

0

0 1 2 1 1
2

0

0 0 0 1 1 1

Your next step is to get a 1 at c33, the bottom of the diagonal. But there’s currently 
a 0 for that element. There’s no way to multiply through by a number and change 
a 0 to a 1. The three 0s in that row tell you that this matrix has no inverse. You can 
think of it as being the same as trying to find a reciprocal for the number 0 — 
there is no such thing. You can’t divide by 0. This matrix has no inverse, so you 
can’t divide by it or perform several other processes using that matrix.

Applying Matrices and Their Operations
In this chapter, you find information on what matrices are, what you can do to 
them, and how they work. Matrices are a great way of organizing data and making 
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information available and predictions possible. This section explores how some of 
this works for you.

Matrices and motorcycles
Say that you own a motorcycle dealership and have three full-time salespeople 
working for you. Your main emphasis is on street bikes, cruisers, sportsters, soft 
tails, wide glides, and custom models. In January, Arlo sold four street bikes, three 
cruisers, six sportsters, two soft tails, zero wide glides, and one custom model. 
Also, in January, Ben sold three street bikes, zero cruisers, six sportsters, five soft 
tails, one wide glide, and three custom models. And, finally, in January, Cassidy 
sold four street bikes, six cruisers, seven sportsters, two soft tails, zero wide 
glides, and four custom models.

That’s a lot of information to try to wrap your head around. You decide to put this 
information in a matrix. The rows contain the number of motorcycles by type, and 
the columns have the numbers sold by each salesperson.

The January matrix showing Arlo, Ben, and Cassidy’s sales is

January:

A B C

Street

Cruiser

Sportster

Soft Tail

Wide Glide

Custom

4 3 4

3 0 6

6 6 77

2 5 2

0 1 0

1 3 4

You also have the figures for the rest of the first quarter: February and March:

February:

A B C

Street

Cruiser

Sportster

Soft Tail

Wide Glide

Custom

5 2 0

1 1 1

3 3 55

0 4 0

2 1 0

2 2 7
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March:

A B C

Street

Cruiser

Sportster

Soft Tail

Wide Glide

Custom

5 4 4

5 2 5

3 8 55

3 3 4

0 0 0

2 4 6

If you want the total sales by salesperson for the first three months, then you add 
the matrices: January + February + March.

A B C A B C A B C A B C

Street

Cruiser

Sportster

Soft Tail

Wide Glide

Customm

4 3 4

3 0 6

6 6 7

2 5 2

0 1 0

1 3 4

5 2 0

1 1 1

3 3 5

0 4 0

2 1 0

2 2 77

5 4 4

5 2 5

3 8 5

3 3 4

0 0 0

2 4 6

14 9 8

9 3 12

12 17 17

5 12 6

2 2 0

5 9 17

You can easily determine that Arlo sold a total of 14 street bikes, 9 cruisers, 
12 sportsters, and so on. The person who sold the most custom models during 
those three months was Cassidy. Lots of information is available here.

And now you want some totals. How many motorcycles did each person sell? Well, 
sure, you can just add up the columns under each sales person, but wouldn’t it be 
nice to assign some matrix operation to do it for you? Think about how matrix 
multiplication sums up products. If you take the matrix representing the total for 
the first quarter (the sum of the sales for the first three months) and multiply the 
matrix [1 1 1 1 1 1] times that total, you’ll be multiplying a 1 6 matrix times a 6 3 
matrix, and the result will be the sum you want. The two 6s match up; they both 
represent the six different types of motorcycles. The three columns still represent 
Arlo, Ben, and Cassidy.

1 1 1 1 1 1

14 9 8

9 3 12

12 17 17

5 12 6

2 2 0

5 9 17

47 522 60
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Arlo sold a total of 47, Ben a total of 52, and Cassidy a total of 60 motorcycles dur-
ing that three-month time period.

Now look at a different total. You want to know how many of each cycle was sold. 
This time, multiply the matrix with the totals for the three months times a col-
umn matrix with all 1s. The product involves a 6 3 matrix times a 3 1 matrix. The 
two 3s in the dimensions pair up the three people, and the resulting matrix is a 
column matrix with the totals of all the styles.

Street

Cruiser

Sportster

Soft Tail

Wide Glide

Custom

14 9 8

9 3 12

12 177 17

5 12 6

2 2 0

5 9 17

1

1

1

31

24

46

23

44

31

Again, you could have just added across the rows, but this gives you a quick, accu-
rate accounting.

Next, you need to figure out the commission owed each of these salespeople. You 
have a standard amount that you pay your employees. If the commissions are $150 
for street bikes, $200 for cruisers, $250 for sportsters, $175 for soft tails, $300 for 
wide glides, and $400 for custom models, then you can figure out the total com-
mission for each salesperson each month. Just to show how this works, consider 
the respective commissions for the month of January. Use the matrix for the sales 
in January and multiply it by a row matrix with the commissions listed. Your mul-
tiplication has a 1 6 matrix times a 6 3 matrix.

A B C

150 200 250 175 300 400

4 3 4

3 0 6

6 6 7

2 5 2

0 1 0

1 3 4

Street

Cruiser

Sportster

Soft Tail

Wide Glide

Custom

The resulting matrix is

[3,450 4,325 5,500]

Arlo’s commission is $3,450; Ben’s is $4,325; and Cassidy’s is $5,500.
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Taking matrices to the zoo
Here’s another example. Your local zoo has many animals, but the ones you’re 
most interested in are the monkeys, seals, and bears. That’s because you’re in 
charge of their care.

At the beginning of this year, there were 44 monkeys, 20 seals, and 8 bears; that’s 
a total of 72 animals. The monkey population tends to grow at the rate of an addi-
tional 10% per year. The seal population grows by 15% per year. And the bear 
population grows by about 25% per year.

You need to plan for larger facilities — places to house the animals, if you’re plan-
ning to keep them. You write a matrix describing the number of animals and a 
second matrix giving their projected growth.

                  M    S    B  

Animals 44 20 8

                  M       S       B  

Growth 1 10 1 15 1 25. . .

You want to multiply the number of animals times the growth expected, but both 
matrices are 1 3. You can’t multiply these two matrices together. The number of 
columns in the first matrix has to match the number of columns in the second 
matrix. But there’s a fix! You can use the transpose of the second matrix, making 
it 3 1.

1 10 1 15 1 25

1 10

1 15

1 25

. . .

.

.

.

T

Now you can multiply the two matrices:

44 20 8

1 10

1 15

1 25

81 4

.

.

.

.

This tells you that the animal population would go up from the original 72 to 
about 82 (you don’t want 0.4 of an animal).

With all these animals, you also have to consider the food. The monkeys, seals, 
and bears all eat some of the same foods: F1, F2, F3, and F4. They each are given a 
certain number of servings of each of these foods per day. Rather than list the 
animals and their respective daily servings, I put it in a handy-dandy matrix:
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F F F F1 2 3 4

2 3 1 12

4 6 7 3

5 10 13 8

monkey

seal

bear

You see that a monkey gets two servings of food F1, a seal gets seven servings of 
food F3, and so on.

You need to order enough of these different foods for a month. So each of these 
daily amounts needs to be multiplied by 31. Using scalar multiplication, you can 
quickly get the monthly amounts.

F F F F F F F F1 2 3 4 1 2 3 4

31

2 3 1 12

4 6 7 3

5 10 13 8

62 93 31 372

124 1886 217 93

155 310 403 248

That multiplication gives you the total number of servings per animal of each of 
the four foods. Now you need to total up the servings of each food, because you 
purchase it in boxes of 100 servings. To compute the total of the different foods, 
multiply the matrix by the row matrix, [1 1 1]. When you multiply the 1 3 row 
matrix times the 3 × 4 food matrix, the resulting matrix is a 1 4  row with the 
totals of the different foods given.

F F F F1 2 3 4

1 1 1

62 93 31 372

124 186 217 93

155 310 403 248

3441 589 651 713

For the month, you need 341 servings of F1, 589 servings of F2, 651 servings of F3, 
and 713 servings of F4. Because you purchase these foods in boxes of 100, you end 
up with extra servings, but that isn’t a problem. You’ll be ordering four boxes of 
F1, six boxes of F2, seven boxes of F3, and eight boxes of F4.

You can use matrix operations to give you all sorts of information. Just pick the 
correct operation and order, and you’re in business.
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Chapter 6
Making Matrices 
Work for You

Matrices are very handy to have around. These rectangular arrays of num-
bers have many uses in the world of transportation, finance, game the-
ory, and so on. The basic operations and properties of matrices endure, 

no matter what the application. You just concentrate on the additional processes 
and rules involved when tackling a new task.

When solving systems of equations algebraically, you use elimination or substitu-
tion to find the values of the variables involved. When using matrices to solve 
these systems, you do many of the same steps, but you’re involved with only the 
coefficients and constant numbers; you don’t have to drag along the variable 
names as you work. The process is very neat. And an added benefit is that when 
you set up your problem with matrices, it’s an easy segue into using a graphing 
calculator to solve the same problem.

IN THIS CHAPTER

»» Seeing how to use matrices to solve 
systems

»» Refining matrix processes

»» Using matrices for input-output 
problems

»» Recognizing special formulas for 
inverses
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Solving Systems of Equations 
Using Matrices

In Chapter 3, you find techniques that you can use to solve a system of equations 
for its solution. The solution consists of the values of the variables that satisfy all 
the equations in the system, all at the same time. For example, in the system

x y

x y

3 10

3 2 8

the solution is (4, –2), or you say x 4 and y 2.

In this section, I show you a technique for solving systems of equations using 
matrices. You use only the coefficients of the variables and the constants; this 
means that you need to be organized and write each equation in the same order.

One requirement necessary for a unique solution to a system of linear equations is 
that there has to be as many equations as there are variables. This doesn’t guar-
antee a unique solution, but it’s needed before proceeding with this method.

To solve a system of linear equations using an augmented matrix, follow these 
steps:

1.	 Write each equation in the same format, with variables in the same order 
in each, and all set equal to the constant.

2.	 Write an augmented matrix with the coefficients of the variables as 
elements, the coefficients of the same variables under one another, and 
the constants in a column to the right, separated by a vertical bar. 
Replace any missing variables in an equation with 0.

3.	 Perform row operations until the matrix consists of an identity matrix on 
the left of the vertical bar.

4.	 Read the solution from the numbers in the vertical column on the right; 
each value corresponds to the position of the 1 in the matrix to the left.

See Chapter 5 for a review of working with matrices and a reminder about some of 
the special notation needed.

In the next two sections, you see how these steps are used when solving a system 
with an augmented matrix.
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Solving a linear system in two variables
Now, to use this method with matrices to solve a system. I start with the system 
of two equations shown at the beginning of the chapter. You already know the 
answer, so this will be a good check.

x y

x y

3 10

3 2 8

1.	 Write each equation in the same format, with variables in the same order 
in each, and all set equal to the constant.

Subtracting 3y from each side of the first equation puts the system into “x, y 
equals constant” order.

x y

x y

3 10

3 2 8

2.	 Write an augmented matrix with the coefficients of the variables as 
elements, the coefficients of the same variables under one another, and 
the constants in a column to the right, separated by a vertical bar. 
Replace any missing variables in the equation with 0.

1 3 10

3 2 8

3.	 Perform row operations until the matrix consists of an identity matrix on 
the left of the vertical bar.

Create a 0 below the 1 in the upper-left corner.

1 3 10

3 2 8
3

1 3 10

0 11 221 2 2     R R R

Multiply by the reciprocal of 11 to make the element in the second row, second 
column a 1.

1
11

1 3 10

0 1 22 2R R   

And, finally, create a 0 above the 1.

3
1 0 4

0 1 23 1 1R R R   
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4.	 Read the solution from the numbers in the vertical column on the right; 
each value corresponds to the position of the 1 in the matrix to the left.

The 1 in the first row corresponds to the x variable, and the value in the right 
column is 4, so this tells you that x 4. The 1 in the second row corresponds to 
the variable y, and the number in the right column is –2, so y 2. The answer, 
written as the coordinates of a point, is (4, –2).

Forging ahead with four variables
So far, you’ve seen systems mainly in two or three variables. Now that you have 
matrix methods at your disposal, it’s time to expand your horizon and jump to a 
system of four linear equations in four unknowns.

x y z w

x z w

x y z

y z w

3 2 2

2 3 4 17

2 2 7

1 2 0

1.	 Write each equation in the same format, with variables in the same order 
in each, and all set equal to the constant.

x y z w

x z w

x y z

y z w

3 2 2

2 3 4 17

2 2 7

2 1

2.	 Write an augmented matrix with the coefficients of the variables as 
elements, the coefficients of the same variables under one another, and 
the constants in a column to the right, separated by a vertical bar. 
Replace any missing variables in the equation with 0.

1 3 2 1 2

2 0 3 4 17

1 2 2 0 7

0 2 1 1 1

3.	 Perform row operations until the matrix consists of an identity matrix on 
the left of the vertical bar.

First, create 0s below the 1 in the upper-left corner.

1 3 2 1 2

2 0 3 4 17

1 2 2 0 7

0 2 1 1 1

2

1
1 2 2

1

   
R R R

R R R3 3

1 3 2 1 2

0 6 1 6 13

0 1 0 1 5

0 2 1 1 1
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Next, multiply by the reciprocal of –6 to create a 1 for the element in the 
second row, second column.

1
6

1 3 2 1 2

0 1 1
6

1 13
6

0 1 0 1 5

0 2 1 1 1

2 2R R    

Now perform row operations to create 0s above and below the 1 in the second 
row, second column.

3

2

1 0 3
2

2 17
2

0 1 1
6

1 13
6

0 0 1
6

0 17

2 1 1

2 3 3

2 4 4

R R R

R R R

R R R

   

66

0 0 2
3

1 16
3

You want a 1 for the element in the third row, third column, so multiply by the 

reciprocal of 1
6

.

6

1 0 3
2

2 17
2

0 1 1
6

1 13
6

0 0 1 0 17

0 0 2
3

1 16
3

3 3R R    

Create 0s above the 1 in the third row, third column.

3
2
1
6
2
3

1 0 0 2 17

0 1 0 1 5

0 0 1 0 17

0 0 0

3 1 1

3 2 2

3 4 4

R R R

R R R

R R R

   

1 6

Make that –1 on the diagonal a +1 by multiplying the row through by –1.

1

1 0 0 2 17

0 1 0 1 5

0 0 1 0 17

0 0 0 1 6

4 4R R    
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And now create 0s above that element in the fourth row, fourth column.

2

1 0 0 0 5

0 1 0 0 11

0 0 1 0 17

0 0 0 1 6

4 1 1

4 2 2

R R R

R R R
   

4.	 Then, read the solution from the numbers in the vertical column on the 
right; each value corresponds to the position of the 1 in the matrix to 
the left.

From the matrix, you have x 5, y 11, z 17, and w 6.

Stopping up short
As much fun as it is to perform all the row operations needed to have the solution 
of a system just pop out at you, you can solve the system without carrying the 
process quite as far. The downside is that you have to do some substitutions to 
find the values of all the variables.

When you carry the process all the way through, creating the identity matrix on 
the left, this is called the Gauss-Jordan method. With the Gauss-Jordan method, 
you take the matrix to its reduced echelon form. The shortened version is referred 
to as changing the matrix to its row-echelon form.

To solve a system of linear equations using the echelon method, follow these steps:

1.	 Write each equation in the same format, with variables in the same order 
in each, and all set equal to the constant.

2.	 Write an augmented matrix with the coefficients of the variables as 
elements, the coefficients of the same variables under one another, and 
the constants in a column to the right, separated by a vertical bar. 
Replace any missing variables in an equation with 0.

3.	 Perform row operations until the matrix consists of a main diagonal of 1s 
with 0s under the 1s on the left of the vertical bar.

4.	 Read the value of the last variable from the bottom line. Substitute that 
value into an equation corresponding to the numbers in the second- 
from-bottom line to determine the value of the next variable. Repeat 
until all the variables are identified.
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Here’s how to use the echelon method to solve the system of equations

2 2

2 2 15

3 3 13

x y z

x y z

x y z

First, note that each equation is already in the same format, with variables in the 
same order in each, and all sets equal to the constant, but you may want to switch 
the first and second equations to avoid having to do a row transformation to get 
the coefficient of 1 in the first row.

x y z

x y z

x y z

2 2 15

2 2

3 3 13

Next, write an augmented matrix with the coefficients of the variables as elements, 
the coefficients of the same variables under one another, and the constants in a 
column to the right, separated by a vertical bar. Replace any missing variables in 
the equation with 0.

1 2 2 15

2 1 1 2

3 1 3 13

Perform row operations until the matrix consists of a main diagonal of 1s with 0s 
under the 1s on the left of the vertical bar.

First, create 0s under the 1 in the upper-left corner.

1 2 2 15

2 1 1 2

3 1 3 13

2

3

1 2 2 15

01 2 2

1 3 3

      
R R R

R R R
5 3 28

0 7 3 32

Change the –5 in the second row, second column to a 1 by multiplying by its recip-

rocal, 1
5

.

1
5

1 2 2 15

0 1 3
5

28
5

0 7 3 32

2 2R R    

Create a 0 under the 1 in the second row, second column.
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7

1 2 2 15

0 1 3
5

28
5

0 0 6
5

36
5

2 3 3R R R    

Now, change the number in the third row, third column to a 1 by multiplying by 
its reciprocal, 5

6
.

5
6

1 2 2 15

0 1 3
5

28
5

0 0 1 6

3 3R R    

Then, read the value of the last variable from the bottom line. Substitute that 
value into an equation corresponding to the numbers in the second-from-bottom 
line to determine the value of the next variable. Repeat until all the variables are 
identified.

From the last row, you have that z 6. Create an equation from the elements in 

the second row: y z3
5

28
5

. Now substitute z 6 for the z variable.

y

y

y

3
5

6 28
5

18
5

28
5

10
5

2

( )

So now you have z 6 and y 2. Substitute both those values into the equation 
x y z2 2 15, and you have

x

x

x

2 2 2 6 15

4 12 15

1

The solution of the system is x 1, y 2, z 6. In coordinate form, you write that 
as (–1, 2, 6).

Multiplying by the inverse
And just when you thought it couldn’t get any better, I offer yet another way to 
solve a system of linear equations. This particular method isn’t one that I employ 
or recommend for everyday use. But I bring it to your attention because you’ll find 
it most helpful if you have a graphing calculator. In Chapter 18, you find calculator 
uses listed, and this method is included in its quick-and-easy version. You’ll need 
just the first part of this process.
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The basic idea when using this method is that you create a matrix of all the coef-
ficients and a separate matrix of the constants. Then you find the inverse of the 
matrix of coefficients and multiply that inverse times the matrix of constants, 
giving you a matrix of all the answers.

For a review of finding the inverse of a matrix, see Chapter 5.

To solve a system of linear equations using the inverse matrix method, follow these 
steps:

1.	 Write each equation in the same format, with variables in the same order 
in each, and all set equal to the constant.

2.	 Write a square matrix consisting of the coefficients of the variables as 
elements, the coefficients of the same variables under one another. 
Replace any missing variables in an equation with 0.

3.	 Write a column matrix of the constants.

4.	 Write the square matrix in a double-wide format, with an identity matrix 
of the same dimension on the right. Separate the original matrix and 
identity matrix with a vertical bar.

5.	 Perform row operations on the original matrix until it looks like the 
identity matrix; extend any row operations performed on the left matrix 
to the matrix on the right.

6.	 Multiply the inverse of the coefficient matrix times the column matrix of 
constants. The resulting matrix will contain all the values of the 
variables.

Solve the following system using the inverse matrix method:

x y z

x y

x y z

2 3 2

2 7

4 5 11 1

First, note that each equation is in the same format, with variables in the same 
order in each, and all sets equal to the constant.

Next, write a square matrix consisting of the coefficients of the variables as ele-
ments, the coefficients of the same variables under one another. Replace any 
missing variables in the equation with 0.

1 2 3

2 1 0

4 5 11



96      PART 2  Making Use of Available Methods

Then, write a column matrix of the constants.

2

7

1

Write the square matrix in a double-wide format, with an identity matrix of the 
same dimension on the right. Separate the original matrix and identity matrix 
with a vertical bar, like so:

1 2 3 1 0 0

2 1 0 0 1 0

4 5 11 0 0 1

Perform row operations on the original matrix until it looks like the identity 
matrix; extend any row operations performed on the left matrix to the matrix on 
the right.

First, create 0s under the 1 in the upper-left corner:

1 2 3 1 0 0

2 1 0 0 1 0

4 5 11 0 0 1

2

4
1 2 2

1 3 3

      
R R R

R R R

11 2 3 1 0 0

0 3 6 2 1 0

0 3 1 4 0 1

Multiply the second row by the reciprocal of 3:

1
3

1 2 3 1 0 0

0 1 2 2
3

1
3

0

0 3 1 4 0 1

2 2R R    

Create 0s above and below the 1 in the second row, second column:

2

3

1 0 1 1
3

2
3

0

0 1 2 2
3

1
3

0

0 0 5 2 1 1

2 1 1

2 3 3

R R R

R R R
   

Multiply the third row by the reciprocal of 5:
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1
5

1 0 1 1
3

2
3

0

0 1 2 2
3

1
3

0

0 0 1 2
5

1
5

1
5

3 3R R   

And, finally, create 0s above the 1 in the lower-right corner:

R R R

R R R
3 1 1

3 2 22

1 0 0 11
15

7
15

1
5

0 1 0 22
15

1
15

2
5

0 0 1 2
5

1
5

1
5

  

So the inverse of the original matrix is

 

11
15

7
15

1
5

22
15

1
15

2
5

2
5

1
5

1
5

Then, multiply the inverse of the coefficient matrix times the column matrix of 
constants. The resulting matrix will contain all the values of the variables.

  

11
15

7
15

1
5

22
15

1
15

2
5

2
5

1
5

1
5

2

7

1

2

3

2

Reading from the resulting matrix, x 2, y 3, and z 2. Again, I wouldn’t rec-
ommend doing this method by hand, but the process, in a graphing calculator, is 
quick and slick and uses exactly the beginning and ending steps. Also, there’s even 
an operation in most graphing calculators that finds the inverse immediately, by 
just pushing a button.

Discovering Multiple Solutions
A system of linear equations doesn’t always have a unique solution. Sometimes, 
there’s no solution at all, and other times, there may be an infinite number of 
solutions — all with a particular format. The way that you recognize that you have 
many, many solutions is when you perform row operations and end up with a row 
of zeros. This jibes with the “always true” statement, 0 = 0, found in Chapter 3. 
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What I show you here is how to recognize the situation with multiple solutions 
and deal with it to create a statement about the answers.

You really don’t know ahead of time when these multiple solutions are going to 
show up. The system of equations here looks like just so many others.

x y z

x z

x y z

3 12

3 5 27

2 3

Using the echelon method, start with the augmented matrix:

1 1 3 12

3 0 5 27

1 2 1 3

Now, create 0s under the 1 in the upper-left corner:

1 1 3 12

3 0 5 27

1 2 1 3

3

1

1 1 3 12

01 2 2

1 3 3

      
R R R

R R R
3 4 9

0 3 4 9

You see that the second and third lines are exactly the same. If you multiply the 
second row by –1 and add it to the third, you get all 0s.

1 1 3 12

0 3 4 9

0 3 4 9

1

1 1 3 12

0 3 4 9

0
2 3 3   +    R R R

00 0 0

This row of 0s is the indication that the system has an infinite number of solu-
tions. You can describe the solutions by doing the following:

1.	 Write the equation corresponding to the second row:

3 4 9y z

2.	 Solve for y in the equation:

y z3 4
3

3.	 Substitute that expression for y into the equation corresponding to the 
first row:

x y z3 12
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And you get

x z9 5
3

So the solutions of the system of equations are all of the form x z9 5
3

, 

y z3 4
3

, and z. In coordinate form, that’s 9 5
3

3 4
3

z z z, , . The solutions 

are all dependent on the value of z.

4.	 Pick some values for z and substitute in to find the values of x and y.

Because of the fraction in two of the coordinates, you want to pick z values that 
are multiplies of 3.

If z 3, then x 9 5 4, and y 3 4 1. That’s the solution (4, –1, 3).

If z 6, then x 9 10 19, and y 3 8 11. That’s written as the point 
(19, 11, –6).

This can go on forever, and you don’t have to stick to multiples of 3, if you don’t 
mind fractions.

Applying Matrices to Tasks
Matrices are wonderful tools to use when solving practical problems. Some of the 
more common uses are for input-output models, heat on a surface, and transpor-
tation of goods. You can find examples of all these models in this section.

Considering input and output
One important matrix method is used to study the economy of a country. Specifi-
cally, there’s an input-output expression, a demand expression, and a production 
result. A typical economic model to investigate involves just three commodities: 
agriculture, manufacturing, and transportation. This is a hugely simplified ver-
sion of an actual economy, but you’ll get a pretty good idea of what may be 
involved when the model is expanded to an actual situation.

What is assumed here is that to create agricultural products, you also need some 
manufacturing and transportation assistance. To come up with manufacturing 
products, you have to draw from agriculture and transportation. And, of course, 
transportation needs support from agriculture and manufacturing. So the more 
agricultural products you want to provide, the more you have to tap into the other 
two entities — and likewise with the others.
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You start out by assuming that everything can be measured in units. Say, for 
example, that an economy you’re investigating needs 1

4
 unit of manufacturing 

and 1
3

 unit of transportation for every unit of agriculture that it produces. The 

manufacturing portion requires 1
8

 unit of agriculture and 1
4

 unit of transportation 

for each unit it produces. And the transportation requires 1
4

 unit of agriculture and 

1
3

 unit of manufacturing for each unit it produces. All this information is put into 

an input-output matrix. The columns of the matrix represent how much of each 
other commodity is needed in the production of a unit of that commodity. For 
example:

Agr Mfg Trp

Agr

Mfg

Trp

0 1
8

1
4

1
4

0 1
3

1
3

1
4

0

Another part of this model is how much of each of the commodities is produced. 
Within this production expression, for each commodity, you count how much is 
used to produce the other commodities and subtract that from the total produced 
to see what the net gain or the amount that can be sold is.

For this example, there are 60 units of agriculture, 84 units of manufacturing, and 

72 units of transportation produced. Of the 60 units of agriculture, 1
8

 of a unit is 

used for each unit of manufacturing, so 1
8

84 10 5.  units of the agriculture pro-

duced is used in manufacturing. Similarly, 1
4

72 18 units of agriculture are used 

for transportation. That’s 60 10 5 18 31 5. .  units of agriculture left to sell.

Rather than compute each of these separately, it’s wise to create a column matrix 
of the production amounts, like so:

Agr

Mfg

Trp

60

84

72
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Then, multiply the input-output matrix times the production matrix:

Agr Mfg Trp

Agr

Mfg

Trp

0 1
8

1
4

1
4

0 1
3

1
3

1
4

0

60

84

72

28 5

39

41

.

The resulting matrix shows how much of each commodity is being used in the 
manufacture of the others. If you subtract the amount used from the total pro-
duced, you have

Agr

Mfg

Trp

60

84

72

28 5

39

41

31 5

45

31

. .

So there are 31.5 units of agriculture, 45 units of manufacturing, and 31 units of 
transportation available to be sold and benefit the economy.

What happens quite often, though, is that the difference or the net amount is 
decided upon. In other words, you decide how much you want to sell and then 
figure out the total production so that much will be available.

For example, someone in the government says that the economy must have 
432 units of agriculture, 360 units of manufacturing, and 540 units of transporta-
tion available to sell to keep up with the world society. These are the demands —  
what the net results should be. In a column matrix, called the demand matrix, this 
looks like the following:

Agr

Mfg

Trp

432

360

540

These values are the net amount, but what is the total amount needed to fulfill 
this demand plus have enough for the contributions to the production of the other 
commodities?

You have two equations:

Demand Total Production Input Output Amounts  

Total Production Demand Input Output Amounts  
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Agr Mfg Trp

Agr

Mfg

Trp

Agr

 Total Production

432

360

540

MMfg

Trp

Agr

Mfg

Trp

0 1
8

1
4

1
4

0 1
3

1
3

1
4

0

432

360

540

The total production equation can be simplified and boiled down to a formula:

Total Production Identity Input-Output Demand
1

To use this formula, you subtract the input-output matrix from the same-size 
identity matrix, find the inverse of that result, and then multiply the inverse times 
the demand matrix.

In this case, you first find the difference:

1 0 0

0 1 0

0 0 1

0 1
8

1
4

1
4

0 1
3

1
3

1
4

0

1 1
8

11
4

1
4

1 1
3

1
3

1
4

1

Then you find the inverse of the difference:

1 1
8

1
4

1
4

1 1
3

1
3

1
4

1

1 187 0 243 0 378

0 4

1

. . .

. 667 1 187 0 512

0 512 0 378 1 254

. .

. . .

This inverse was found using the operation available on a graphing calculator. It’s 
so much easier to use a calculator when fractions and decimals are involved.

Note: The decimals in this inverse have been rounded to the nearest thousandth.

Now the inverse multiplies the demand matrix:

1 187 0 243 0 378

0 467 1 187 0 512

0 512 0 378 1 254

43. . .

. . .

. . .

22

360

540

804

906

1034

Note: The units have been rounded to the nearest whole number.
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So to meet the demand of 432 units of agriculture, 360 units of manufacturing, 
and 540 units of transportation, a total of 804, 906, and 1,034 units, respectively, 
of the different commodities have to be produced.

Distributing temperatures
A classic problem that can be handled with matrices involves temperature 
distribution — how the different temperatures at points on a surface are affected 
by the temperatures closest to them. This is especially important when you can’t 
take all the temperature measurements throughout the surface.

Say that you have a large, flat, aluminum roof and want to know the approximate 
temperatures at different positions on the roof. You can’t go out on the roof (ouch, 
hot, wobbly), but you can measure along the edges. You also know of a property 
that says the temperature at a point on the surface is the average of the four clos-
est points on a grid drawn over the surface. Figure 6-1 represents the points on 
your roof.

The temperature at spot x is the average of the temperatures of the four closest 
points. To the left, the temperature is 120 degrees; above the point, the tempera-
ture is 80 degrees; to the right, it’s y degrees; and below, it’s z degrees. So the 
temperature at point x is the average of the four measures.

x
y z120 80

4

FIGURE 6-1: 
How hot are the 

spots on the roof?
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Creating the temperatures at the other three points, you have

y w x80 90
4

, z x w100 120
4

, w z y90 100
4

Multiplying each equation by 4 and arranging the terms in the same order, 
you have

4 200

4 170

4 220

4 190

x y z

x y w

x z w

y z w

Now, solve the system for x, y, z, and w. Using an augmented matrix, you get

4 1 1 0 200

1 4 0 1 170

1 0 4 1 220

0 1 1 4 190

You go through the steps to put it in reduced-echelon form and get

1 0 0 0 98 75

0 1 0 0 91 25

0 0 1 0 103 75

0 0 0 1 96 25

.

.

.

.

So the temperature at x 98 75. , at y 91 25. , at z 103 75. , and at w 96 25.  degrees, 
as shown in Figure 6-2.

FIGURE 6-2: 
The average 

temperatures on 
the roof.
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Taking Advantage of Special Formulas
Many times, the successful solution of a system of equations involves using a 
matrix and multiplying by the inverse of the matrix. Using the inverse isn’t always 
the easiest way to solve a system, but the technique of finding the inverse using 
row operations is accurate and gives you an answer — or at least tells you whether 
the matrix has no inverse. However, there are cases where you can just move 
things along a little more rapidly. And that’s what this section is all about. There 
are two very nice (well, one of them is nice) formulas for finding the inverse of a 
matrix. One is for a 2 × 2 matrix, and the other is for a 3 × 3 matrix.

Inverses of 2 × 2 matrices
Consider the 2 × 2 matrix with the following general elements:

a b

c d

To find the inverse using the double-wide matrix (see the earlier section “Multi-
plying by the inverse”), you start with

a b

c d

1 0

0 1

Remember, you want to create an identity matrix on the left. So you multiply the 
first row by the reciprocal of a:

a b

c d a
R R

b
a a

c d

1 0

0 1
1 1 1 0

0 1
1 1      

Create a 0 under the 1 in the upper-left corner.

cR R R

b
a a

ad bc
a

c
a

1 2 2

1 1 0

0 1
   

Now, multiply the second row, second column element by the element’s 
reciprocal.

a
ad bc

R R

b
a a

c
ad bc

a
ad bc

2 2

1 1 0

0 1
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And, finally, create a 0 for the first row, second column element.

b
a
R R R

d
ad bc

b
ad bc

c
ad bc

a
ad bc

2 1 1

1 0

0 1
   

(Note: There’s a lot of algebra I’m not showing you, but I didn’t think you’d mind.)

This formula gives you the inverse of the matrix:

a b

c d

d
ad bc

b
ad bc

c
ad bc

a
ad bc

1

Other ways of writing the formula use a scalar multiplier to factor out the frac-
tions, like so:

a b

c d ad bc
d b

c a

d b

c a
ad bc

1

1

The formula says that, to find the inverse, you switch the two elements in the 
upper left and lower right. You negate (change to the opposite) the two elements 
in the upper right and lower left. And then you divide each of the elements by the 
difference between the cross products ad and bc.

When a matrix doesn’t have an inverse, you’ll catch that right away, because the 
difference ad – bc will come out to be 0.

Here’s how the formula works. Find the inverse of the matrix

2 3

4 5

First, find that difference of the cross-product, to be sure there’s even an inverse: 

2 5 3 4 10 12 2( ) . So each term, after the switching and negating, will be 

divided by –2.
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Switching the –2 and –5 and negating the 3 and 4, and then dividing by –2, 
you have

5
2

3
2

4
2

2
2

5
2

3
2

2 1

So

2 3

4 5

5
2

3
2

2 1

1

Inverses of 3 × 3 matrices
The inverse of the following 3 × 3 matrix can be developed pretty much the same 
way as the 2 × 2 matrix in the previous section, but with a lot more steps and a lot 
more algebra.

a b c

d e f

g h i

It would be best to just show you the formula and an example of how to use it. It’s 
almost a toss-up as to whether it’s easier to just use the echelon method to find 
such an inverse rather than dig up this formula and put in the numbers. That’s 
your call; you get to choose.

a b c

d e f

g h i

ei fh ch bi bf ce

fg di ai cg cd af

dh eg b
1

gg ah ae bd
a ei fh b di fg c dh eg( ) ( ) ( )

Are you ready to give it a try? How about finding the inverse of the matrix M?

M

1 1 2

5 4 3

4 3 2
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M 1

8 9 6 2 3 8

12 10 2 8 10 3

15 16 4 3 4

( ) ( )

( ) ( )

( ) ( ) 5
1 8 9 1 10 12 2 15 16

1 4 5

2 6

( ) ( ) ( )

77

1 1 1
1 1 1 2 2 1

1 4 5

2 6 7

1 1 1
1

M

1 1 2

5 4 3

4 3 2

1 4 5

2 6 7

1 1 1

1

It’s wonderful that the divisor is a 1.
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Chapter 7
Getting Lined Up with 
Linear Programming

What is linear programming? Is it different from systems of linear equa-
tions? Is it all about lines? Is it computer programming? Actually linear 
programming is not quite any of those things, but it’s all of those 

things — in bits and pieces. Linear programming uses many of the processes from 
systems of equations. And it can use technology to speed up solutions. Just think 
of linear programming as a grand scheme to solve problems in business, engi-
neering, economics, scheduling, and so on.

The biggest difference between the problems in linear programming and systems 
of linear equations is that in linear programming you see inequalities at work. The 
constraints or specifications contain large portions of the coordinate plane defined 
by inequalities. You aren’t restricted to the points on a line — the line is just the 
dividing structure, separating the points you want to consider from those that 
don’t apply. And then you find a maximum or minimum value by using the restric-
tions specified.

In this chapter, you find the solutions you need by using graphs. The problems are 
set up with a specific design in mind, and you work through the steps toward the 
solution. Many of these same techniques are used when determining solutions by 
using matrices and matrix algebra.

IN THIS CHAPTER

»» Solving linear programming problems 
graphically

»» Visualizing three dimensions
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Setting Up Linear Programming Problems
The best kind of linear programming problem is one that has an answer that 
works for you. Linear programming problems provide a method for answering the 
question, “How many of each should I purchase?” If you have unlimited funds 
and unlimited space, then there’s no limit to the answer. But most problems 
involve saving money and making efficient use of the resources.

A linear programming problem has basically two components: an objective func-
tion and constraints. The objective function is the whole point of the process — 
finding the greatest or the least (maximum or minimum). The constraints are the 
restrictions or the requirements that the problem has to meet to be successful.

In this chapter, you see how to solve linear programming problems by using 
graphs. In Chapter 8, the process is extended to using matrices. Both methods use 
objective functions and constraints. What differs is how these are used.

To solve a linear programming problem graphically, follow these steps:

1.	 Choose variables to represent the quantities involved.

2.	 Write an expression for the objective function using the variables.

3.	 Write constraints in terms of inequalities using the variables.

4.	 Graph the feasible region using the constraint statements.

5.	 Identify the corner points of the feasible region.

6.	 Find and compare the values at the corner points to determine the 
solution.

The next sections walk you through these steps with specific example problems.

Making the problem structure work
Consider the following linear program problem: You can get 5 dollars for item A 
and 2 dollars for item B. You only have 20 units of a required ingredient, and it 
takes twice as much to create each item A as it does to create item B. Two times 
item A has to be less than or equal to 15 plus item B. And, to clear inventory, 
three times item A plus four times item B has to be greater than or equal to 
28 items. You have to sell at least 2 of item A. And, of course, you want to maxi-
mize your profit.
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Use the steps listed in the previous section to solve the problem graphically:

1.	 Choose variables to represent the quantities involved.

When choosing what the variables represent, always be sure that they 
represent a number of things, not people or places.

Let x = number of item A, and y = number of item B.

2.	 Write an expression for the objective function using the variables.

The objective function is always the largest (maximum) or smallest (minimum) 
choice.

Maximize: 5 2x y

3.	 Write constraints in terms of inequalities using the variables.

The constraints are the restrictions or requirements to be met; they are written 
in terms of the variables.

x y2 20, 2 15x y , 3 4 28x y , x 2

4.	 Graph the feasible region using the constraint statements.

The feasible region, shown in Figure 7-1, contains all the possible solutions. 
You choose your answer from the points in the graph. See Chapter 4 if you 
need more information on graphing inequalities.

FIGURE 7-1: 
The feasible 

region contains 
all the possible 

solutions.
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5.	 Identify the corner points of the feasible region.

The corner points are where the lines defining the region intersect. All 
solutions occur at one of the corner points or along one of the segments.

The corner points are (2, 9), (10, 5), (8, 1), and (2, 5.5)

6.	 Find and compare the values at the corner points to determine the 
solution.

Substitute the coordinates of the corner points into the objective function to 
see which is largest/smallest.

Corner Point Objective Function: 5 2x y

(2, 9) 5 2 2 9 28

(10, 5) 5 10 2 5 60

(8, 1) 5 8 2 1 42

(2, 5.5) 5 2 2 5 5 21.

The objective function is to maximize 5 2x y. The point (10, 5) gives the 
greatest result when the coordinates are substituted into the function. So the 
maximum value is 60 when x 10 and y 5.

Solving a maximization problem
When faced with a situation where you want to optimize the amount of money 
earned or optimize the number of fish that will fit in a tank, you consider all 
the  requirements or constraints and determine which situation gives you the 
greatest value.

Say that you have a new 60-gallon aquarium and want to stock it with tetras and 
marbled headstanders. Each tetra requires two gallons of water, and each head-
stander requires four gallons of water. You need at least seven headstanders, 
because they tend to fight in small groups. You want at least four tetras so they’ll 
have nice company. The tetras cost $6 each, and the headstanders cost $10 each; 
you have a budget dictating that you’ll spend no more than $120 on the fish. What 
is the maximum number of fish you can put in your new tank?

To solve this problem, you set up a linear programming problem, following the 
steps listed in the earlier section “Setting Up Linear Programming Problems.”
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1.	 Choose variables to represent the quantities involved.

Let t represent the number of tetras and h represent the number of  
headstanders.

2.	 Write an expression for the objective function using the variables.

You want the largest number of fish possible, so you’re looking for the 
maximum.

Maximize: t h

3.	 Write constraints in terms of inequalities using the variables.

Use the information given in the problem.

•	 Because each tetra requires two gallons of water, and each headstander 
requires four gallons of water, and you’re limited by a 60-gallon aquarium, 
you have 2 4 60t h .

•	 You need at least seven headstanders: h 7.

•	 You want at least four tetras: t 4.

•	 Finally, the tetras cost $6 each, and the headstanders cost $5 each, and 
you can spend no more than $120 on the fish, so that means 6 5 120t h .

4.	 Graph the feasible region using the constraint statements.

Graph the system of inequalities (see Chapter 4). In Figure 7-2 you see the lines 
representing the constraints and the shading representing greater than or 
less than.

FIGURE 7-2: 
Graphing the 

constraints.
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5.	 Identify the corner points of the feasible region.

The corner points are at the intersections of the four lines and are indicated in 
Figure 7-3.

•	 Intersection of t 4 and h 7: (4, 7)

•	 Intersection of t 4 and 2 4 60t h : (4, 13)

•	 Intersection of 6 5 120t h  and 2 4 60t h : 12 6
7

8 4
7

,

•	 Intersection of 6 5 120t h  and h 7: 14 1
6

7,

6.	 Find and compare the values at the corner points to determine the 
solution.

Corner Point Objective Function: t + h

(4, 7) 4 7 11

(4, 13) 4 13 17

12 6
7

8 4
7

, 12 6
7

8 4
7

21 3
7

14 1
6

7, 14 1
6

7 211
6

FIGURE 7-3: 
The four corner 

points are the 
candidates for 

the answer.
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The greatest value is 21 3
7

 when there are 12 6
7

 tetras and 8 4
7

 headstanders, but 
that would involve fractions of fish. You don’t want to do that, so you round 
each number back and make it 12 tetras and 8 headstanders, a total of 20 fish. 
Looking at the “runner up,” you round back to 14 tetras and 7 headstanders, a 
total of 21 fish. Now the choice is yours — which fish do you prefer?

Going for a minimum
When you’re dealing with money, you want a maximum value if you’re receiving 
cash. But if you’re on a tight budget and have to watch those pennies, then you’re 
concerned with minimizing your expenses. The following is a minimization prob-
lem dealing with saving money on supplements.

You’re on a special diet and know that your daily requirement of five nutrients is 
60 milligrams of vitamin C, 1,000 milligrams of calcium, 18 milligrams of iron,  
20 milligrams of niacin, and 360 milligrams of magnesium. You have two supple-
ments to choose from: Vega Vita and Happy Health. Vega Vita costs 20 cents per 
tablet, and Happy Health costs 30 cents per tablet. Vega Vita contains 20 milligrams 
of vitamin C, 500 milligrams of calcium, 9 milligrams of iron, 2 milligrams of  
niacin, and 60 milligrams of magnesium. Happy Health contains 30 milligrams  
of vitamin C, 250 milligrams of calcium, 2 milligrams of iron, 10 milligrams of 
niacin, and 90 milligrams of magnesium. How many of each tablet should you 
take each day to meet your minimum requirements while spending the least 
amount of money?

First, this is a lot of information all jumbled together in a paragraph. A good way 
to organize this is to make a chart or table listing the requirements, costs, and 
amount of nutrients in each tablet.

Minimum Total Requirement Vega Vita Happy Health

Vitamin C 60 mg 20 30

Calcium 1000 mg 500 250

Iron 18 mg 9 2

Niacin 20 mg 2 10

Magnesium 360 mg 60 90

Cost per tablet $0.20 $0.30

With all the information organized into the table, it’s time to solve for the number 
of tablets that will minimize your cost using linear programming.
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1.	 Choose variables to represent the quantities involved.

The quantities here are the number of tablets. Let a tablet of Vega Vita be 
represented by v and a tablet of Happy Health be represented by h.

2.	 Write an expression for the objective function using the variables.

The goal is to spend the smallest amount of money necessary (so you want  
the minimum). Vega Vita costs 20 cents per tablet, and Happy Health costs  
30 cents per tablet.

Minimize: $ . $ .0 20 0 30v h

3.	 Write constraints in terms of inequalities using the variables.

The constraints are all in terms of meeting the daily requirements. Each 
requirement has at least in its form, so you use > in your equations.

•	 At least 60 milligrams of vitamin C: 20 30 60v h

•	 At least 1,000 milligrams of calcium: 500 250 1 000v h ,

•	 At least 18 milligrams of iron: 9 2 18v h

•	 At least 20 milligrams of niacin: 2 10 20v h

•	 At least 350 milligrams of magnesium: 60 90 360v h

It makes no sense to have a negative number of tablets, so you add the two 
constraints v 0 and h 0. This keeps the graph in the first quadrant.

4.	 Graph the feasible region using the constraint statements.

The graph will be completely in the first quadrant and will be boundless; the 
solution area extends forever upward and to the right, as shown in Figure 7-4. 
You’re more concerned with the points closer to the axes, though.

5.	 Identify the corner points of the feasible region.

There are four corner points. Two of the corner points are where lines 
corresponding to the constraints intersect, and the other two lie on the axes.

•	 Intersection of 9 2 18v h  and 60 90 360v h : 1 7
23

3 3
23

,

•	 Intersection of 60 90 360v h  and 2 10 20v h : 4 2
7

11
7

,

•	 Intercept on vertical axis: (0, 9)

•	 Intercept on horizontal axis: (10, 0)

Figure 7-5 shows the feasible with the corner points labeled.
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FIGURE 7-4: 
Graphing the 

combinations of 
nutrients in the 

two tablets.

FIGURE 7-5: 
Some of the 

intersections 
involve fractions.
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6.	 Find and compare the values at the corner points to determine the 
solution.

You see that two of the intersections contain fractions of tablets. Yes, you can 
buy one of those handy-dandy pill cutters, but these are pretty strange 
fractions. It’s best to just round the numbers up to a whole number (a whole 
tablet). So the corner points you’ll consider are (2, 4), (5, 2), (0, 9), and (10, 0).

Corner Point Objective Function: $0.20v + $0.30h

(2, 4) 0 20 2 0 30 4 0 40 1 20 1 60. . . . $ .

(5, 2) 0 20 5 0 30 2 1 00 0 60 1 60. . . . $ .

(0, 9) 0 20 0 0 30 9 0 2 70 2 70. . . $ .

(10, 0) 0 20 10 0 2 00 0 2 00. . $ .

It appears that you have two choices. You can either take two Vega Vita and 
four Happy Health each day or five Vega Vita and two Happy Health each day. 
They cost the same amount. Of course, the first choice is fewer pills, but the 
Vega Vita may be easier to swallow. It’s up to you.

Going Three-Dimensional
Linear programming problems can have any number of variables. You’re used to 
seeing just two variables, because that’s what you can put on a graph in a 
coordinate plane. But you’re about to emulate Captain Kirk and go one more 
dimension — and beyond. When writing constraints in three variables, those con-
straints can be graphed in three dimensions.

The standard format for graphing in three dimensions is that the x- and y-axes 
both lie flat; think of the xy-lane as lying on the floor. It’s the z-axis that goes up, 
perpendicular to the other two axes. Figure 7-6 shows you the axes and planes. 
The positive x-axis comes out at you, and the negative x-axis goes to the back. The 
positive y-axis goes to the right, and the negative y-axis to the left. And, of course, 
the positive z-axis goes upward. They all meet at the origin, the point (0, 0, 0), 
where the coordinates are (x, y, z). When comparing this to the corner of a 
room, the xy-plane is the floor, the xz-plane is the left wall, and the yz-plane is 
the right wall.
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Maximizing in three dimensions
You have to deal with a lot of issues when trying to determine the maximum 
amount of money you can make or the maximum number of coins you can fit in a 
jar. Identify the restrictions or constraints, and determine the best you can do. 
Work through the following example.

Stella makes clothing to sell in a local boutique. It takes her three hours to make a 
shirt, two hours to make a dress, and four hours to make a pair of slacks. She does 
embroidery on the shirts and dresses, taking four hours per shirt and two hours 
per dress. She can devote just 40 hours during the next week and has decided that 
24 of those hours should go to making the shirts, dresses, and slacks, and the 
other 16 hours should go to the embroidery. Her profit on shirts is $40 each; the 
dresses earn her a profit of $50 each; and the slacks earn her $45 each. How many 
of each item should Stella make to earn the greatest profit?

The steps needed to solve this linear programing problem are exactly the same as 
with two variables (see the earlier section “Setting Up Linear Programming 
Problems”) — you just add the one dimension.

1.	 Choose variables to represent the quantities involved.

Let x be the number of shirts, y the number of dresses, and z the number of 
pairs of slacks.

2.	 Write an expression for the objective function using the variables.

Maximize: $ $ $40 50 45x y z

FIGURE 7-6: 
The 3-D plane —  

picture the corner 
of a room.
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3.	 Write constraints in terms of inequalities using the variables.

Stella has 24 hours set aside when it takes 3 hours to make a shirt, 2 hours to 
make a dress, and 4 hours to make a pair of slacks:

3 2 4 24x y z

For the embroidery, she has 16 hours when it takes 4 hours per shirt and  
2 hours per dress:

4 2 16x y

Because negative values don’t make sense, you write x 0, y 0, and z 0.

4.	 Graph the feasible region using the constraint statements.

First, create the graph of 3 2 4 24x y z .

This is a plane (flat surface) that extends in all directions, but you keep it to 
the first octant, where all the values are positive. To graph this part of the 
plane, find the three intercepts — where the plane crosses the axes. The three 
intercepts are (8, 0, 0), (0, 12, 0), and (0, 0, 12). Figure 7-7 shows the graph of the 
plane 3 2 4 24x y z  in the first octant.

Next, graph the plane 4 2 16x y . This plane is perpendicular to the xy-plane. 
You just graph the line 4 2 16x y  and extend it above and below the plane. 
See Figure 7-8.

FIGURE 7-7: 
The graph of  

the plane  
3 2 4 24x y z .
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Now, find all the points that satisfy the five inequalities. You need to worry 
about only those points that have positive coordinates. Figure 7-9 shows 
you how the inequalities 4 2 16x y  and 3 2 4 24x y z  intersect, and 
Figure 7-10 shows the region that is described by all five inequalities. You have 
what appears to be a solid figure with a triangular base and slanted top. The 
sides are all perpendicular to the base. There are a lot of points in that figure!

5.	 Identify the corner points of the feasible region.

The corner points are the six points defining the region: (0, 0, 6), (0, 8, 2), (0, 8, 0), 
(4, 0, 0), (4, 0, 3), and the origin (0, 0, 0).

FIGURE 7-8: 
The graph of 

4 2 16x y  
extends up 

and down 
perpendicularly.

FIGURE 7-9: 
The region with 
all the feasible 

solutions.
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6.	 Find and compare the values at the corner points to determine the 
solution.

Corner Point Objective Function: $ $ $40 50 45x y z

(0, 0, 6) $ $ $ $40 0 50 0 45 6 270

(0, 8, 2) $ $ $ $40 0 50 8 45 2 490

(0, 8, 0) $ $ $ $40 0 50 8 45 0 400

(4, 0, 0) $ $ $ $40 4 50 0 45 0 160

(4, 0, 3) $ $ $ $40 4 50 0 45 3 295

(0, 0, 0) $ $ $ $40 0 50 0 45 0 0

It looks like Stella will do the best if she makes eight dresses and two pairs of 
slacks.

Going for the minimum
Minimization problems in linear programming are usually of the form: Spend the 
least amount of money, take the least amount of time, prepare the least amount 
of food, and so on. The process is pretty much the same. You identify the restric-
tions or constraints and determine which of the options is the best choice.

Say that you need to supplement your pet’s daily diet with at least 60 milligrams 
of calcium, 72 milligrams of iron, and 90 milligrams of vitamin C.  Tablet x 
contains  5 milligrams of calcium, 2 milligrams of iron, and 6 milligrams of 
vitamin C. Tablet y contains 2 milligrams of calcium, 4 milligrams of iron, and 
2 milligrams of vitamin C. And tablet z contains 6 milligrams of vitamin C. The 
costs per tablet are $0.05 for x, $0.10 for y, and $0.03 for z. How many of each 
tablet should you buy to minimize your cost?

Set up the problem using the numbered steps from the earlier section “Setting Up 
Linear Programming Problems”:

1.	 Choose variables to represent the quantities involved.

Just use the x, y, and z to represent the number of each of the respective 
tablets.

2.	 Write an expression for the objective function using the variables.

Minimize: $ . $ . $ .0 05 0 10 0 03x y z
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3.	 Write constraints in terms of inequalities using the variables.

•	 Tablet x contains 5 milligrams of calcium, and tablet y contains  
2 milligrams; you need at least 60 milligrams: 5 2 60x y .

•	 Tablet x contains 2 milligrams of iron, and tablet y contains 4 milligrams; 
you want at least 72 milligrams: 2 4 72x y .

•	 Tablet x contains 6 milligrams of vitamin C, tablet y contains  
2 milligrams, and tablet z contains 6 milligrams; the goal is at least  
90 milligrams: 6 2 6 90x y z .

4.	 Graph the feasible region using the constraint statements.

The graph of the feasible region consists of all the points outside a given 
structure. In Figure 7-10, the feasible region is defined by the three planes on 
the top and two sides facing you. You have to think outside the box (literally) 
and consider all the points in the first quadrant that are farther away from the 
origin than those on the three planes.

5.	 Identify the corner points of the feasible region.

The corner points are (0, 18, 9), (6, 15, 4), and (12, 0, 3).

FIGURE 7-10: 
The feasible 

region is 
everything 

farther from  
(0, 0, 0) than 

the structure 
in Quadrant I.
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6.	 Find and compare the values at the corner points to determine the 
solution.

Corner Point Objective Function: $ . $ . $ .0 05 0 10 0 03x y z

(0, 18, 9) $ . $ . $ . $ .0 05 0 0 10 18 0 03 9 2 07

(6, 15, 4) $ . $ . $ . $ .0 05 6 0 10 15 0 03 4 1 92

(12, 0, 3) $ . $ . $ . $ .0 05 12 0 10 0 0 03 3 0 69

The best bargain is to use 12 of tablet x and 3 of tablet z.

You see how difficult it is to try to graph some of these constraints. You need to 
see where the corner points lie to determine whether they’re part of the set of 
possible solutions. And what if you have more than three variables to consider? 
Graphing in three dimensions is enough of a challenge; you can’t go higher than 
that. You find out how to avoid all the graphing business when you use matrices 
in Chapter 8.
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Chapter 8
Simply the Simplex 
Method

George Dantzig developed the simplex method in the late 1940s. Linear 
programming had been introduced as a way to solve problems involving 
distribution of goods and maximizing profits, but a more efficient solution 

method was needed to make the problems more doable and expand the types of 
problems that could be handled. Working out some of these problems with paper 
and pencil and algebra was becoming a bit too much.

The simplex method is basically a way of moving from corner to corner in a feasible 
region — the structure containing all the possible options — to determine which 
corner has the optimal answer. The simplex method allows you to solve problems 
without having to graph the regions. This is important when you get beyond two 
or three variables.

In this chapter, I show you the steps necessary to solve a maximization problem, 
and then I provide the adjustments needed to solve a minimization problem, using 
the simplex method. One great feature of using the simplex method is that it 
quickly converts into a setup that you can do on an Excel spreadsheet — eliminating 
having to do all those pesky arithmetic computations on paper.

IN THIS CHAPTER

»» Working step by step through the 
simplex method

»» Using the simplex method to solve 
both maximization and minimization 
problems
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Delineating Simplex Method  
Steps for Maximization

When you use the simplex method to solve a linear programming problem involv-
ing maximization, you must follow the process in a certain sequence of steps. You 
can’t jump around, picking your favorite step and trying to do that one before 
another in the list. The steps in the simplex method all start out with a problem 
statement such as

Maximize: 

Subject to: 

3 2

10

2 25

3

1 2 3

1 3

1 2 3

2 3

x x x

x x

x x x

x x 15

0 0 01 2 3x x x, ,

Right away, you may notice something different from the linear programming 
problems you’ve seen before, where the variables are x, y, z, and so on. With the 
familiar variables x, y, and even z, you can graph them on the coordinate plane or 
even the three-dimensional plane. But what are these subscripts on the x’s all 
about? Actually, they make a lot of sense because they number the different vari-
ables that you use. If you wanted to solve a problem with five variables, you’d have 
to use x, y, z — and then what? What do you use next? What if you have a problem 
with more than 26 variables? You run out of letters! So numbering with subscripts 
allows you to have as many variables as you want — the subscripts just get bigger 
and bigger.

Setting up for the simplex method
Referring to the stated problem in the previous section, the simplex method 
includes the following steps. (Note: When using the simplex method to solve a 
maximization problem, all the constraints have to start out in the  format.)

1.	 Write each inequality in the constraints as an equation by adding 
another term, called a slack variable.

2.	 Write the objective function as an equation in the form: 
c x c x c x c x zn n1 1 2 2 3 3  , where the c’s are all coefficients  
of the variables.

3.	 Write all the constraints and objective function in a matrix — called a 
tableau. Put the opposites of the coefficients of the objective function in 
the bottom row. Assume the value of z is 0.
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4.	 Determine a pivot column in the tableau by finding the most negative 
(smallest) number in the bottom row.

5.	 Determine a pivot row by using the numbers in the pivot column.

The pivot row is the row whose ratio is the smallest when you divide the 
number in that column into the number in the last column. The number in 
both the pivot row and pivot column is called the pivot.

6.	 If necessary, change the pivot to 1 by dividing the entire row by that 
number (multiplying by the reciprocal).

7.	 Perform row operations to create 0s above and below the pivot.

8.	 Repeat Steps 4 through 7 until there are no negative elements in the 
last row.

9.	 Read the answer from the final tableau.

The values of the variables are in the right-most column, and the maximum 
value is at the bottom, in the right-hand column.

Now you’re ready to tackle the posed problem using the simplex method.

Maximize: 

Subject to: 

3 2

10

2 25

3

1 2 3

1 3

1 2 3

2 3

x x x

x x

x x x

x x 15

0 0 01 2 3x x x, ,

1.	 Write each inequality in the constraints as an equation by adding a slack 
variable.

To write x x1 3 10 as an equation, you add a new term, x4, to the left side. 
This term has a value great enough to change the statement from < to =. So 
the inequality x x1 3 10 becomes x x x1 3 4 10. Do the same thing with 
the other two inequalities, adding new terms to change them from < to =. The 
inequality 2 251 2 3x x x  becomes 2 251 2 3 5x x x x , and the inequal-
ity x x2 33 15 becomes x x x2 3 63 15. Note that a different variable is 
added to the different inequalities, because it takes different amounts being 
added in each situation to make them inequalities.

The constraints are now

x x x

x x x x

x x x

1 3 4

1 2 3 5

2 3 6

10

2 25

3 15
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2.	 Write the objective function as an equation in the form: 
z c x c x c x c xn n1 1 2 2 3 3  , where the c’s are all coefficients of the 
variables.

The objective function 3 21 2 3x x x  becomes the equation z x x x3 21 2 3.

3.	 Write all the constraints and objective function in a tableau. Put the 
opposites of the coefficients of the objective function in the bottom row. 
The starting value of z is 0.

Draw a matrix with seven columns and four rows. The coefficients of all the 
variables — the original variables and the slack variables — go in the first six 
columns, and the constants go in the last or right-most column with a vertical 
line separating them from the coefficients. Write the objective function in the 
last row with all the coefficients negated. Draw a horizontal line above these 
negated entries. Put 0s for all elements that don’t occur in a particular equa-
tion. The initial tableau for this problem is

x x x x x x1 2 3 4 5 6

1 0 1 1 0 0 10

2 1 1 0 1 0 25

0 1 3 0 0 1 15

3 2 1 0 0 0 0

4.	 Determine a pivot column in the tableau by finding the most negative 
(smallest) number in the bottom row.

The most negative number in the bottom row is 3, so the pivot column is the 
first column.

x x x x x x1 2 3 4 5 6

0 1 1 0 0 10

1 1 0 1 0 25

1 3 0 0 1 15

2 1 0 0 0 0

1

2

0

3

5.	 Determine a pivot row by using the numbers in the pivot column.

The two ratios to consider are 10
1

 from the first row and 25
2

 from the second 

row. The ratio 10
1

 is smaller, so the pivot is in the first row.

x x x x x x1 2 3 4 5 6

0 1 1 0 0 10

2 1 1 0 1 0 25

0 1 3 0 0 1 15

3 2 1 0 0 0 0

1
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6.	 If necessary, change the pivot to 1 by dividing the entire row by that 
number (multiplying by the reciprocal).

The pivot is already a 1, so you can skip this step.

7.	 Perform row operations to create 0s above and below the pivot.

If you need a refresher on performing row operations in matrices, see 
Chapter 5.

1 0 1 1 0 0 10

2 1 1 0 1 0 25

0 1 3 0 0 1 15

3 2 1 0 0 0 0

2 1 2   
R R R

R R R
2

1 4 43

1 0 1 1 0 0 10

0 1 1 2 1 0 5

0 1 3 0 0 1 15

0 2 2 3 0 0 30

   

8.	 Repeat Steps 4 through 7 until there are no negative elements in the 
last row.

The new pivot column is the second column, with 2 at the bottom.

1 1 1 0 0 10

0 1 2 1 0 5

0 3 0 0 1 15

0 2 3 0 0 30

0

1

1

2

The smaller ratio is in the second row, where 5
1

 is smaller than the ratio 15
1

 in 

the third row. So the pivot is the 1 in the second row, second column.

1 0 1 1 0 0 10

0 1 2 1 0 5

0 1 3 0 0 1 15

0 2 2 3 0 0 30

1

Perform row operations to create 0s below the 1.

1 0 1 1 0 0 10

0 1 2 1 0 5

0 1 3 0 0 1 15

0 2 2 3 0 0 30

1 2 31
   

R R R

R R R
3

2 4 42

1 0 1 1 0 0 10

0 1 1 2 1 0 5

0 0 4 2 1 1 10

0 0 0 1 2 0 40

   

There’s still a negative number in the bottom row. The 1 in the fourth column 
indicates a new pivot in the fourth column. The smaller ratio is in the third row, 

because 10
2

 is smaller than 10
1

. To make the pivot equal to 1, multiply the entire 

row by 1
2

.
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1 0 1 1 0 0 10

0 1 1 2 1 0 5

0 0 4 1 1 10

0 0 0 1 2 0 40

1
2 32

   R R33

1 0 1 1 0 0 10

0 1 1 2 1 0 5

0 0 2 1
2

1
2

5

0 0 0 1 2 0 40

1
    

Create 0s above and below the pivot by performing row operations.

1 0 1 1 0 0 10

0 1 1 2 1 0 5

0 0 2 1
2

1
2

5

0 0 0 1 2 0 40

1 3

1
 

R RR R

R R R

R R R

1 1

3 2 2

3 4 4

2

1 0 1 0 1
2

1
2

5

0 1 3 0 0 1 15

0 0 2 1 1
2

1
2

5

0 0 2 0 3

 

22
1
2

45

There are no more negative numbers in the last row, so you can move on to 
the next step.

9.	 Read the answer from the final tableau.

x x x x x x1 2 3 4 5 6

1 0 1 0 1
2

1
2

5

0 1 3 0 0 1 15

0 0 2 1 1
2

1
2

5

0 0 2 0 3
2

1
2

45

The three variables in the objective function are x x x1 2 3, , , and they are the 
values you’re looking for — as well as the maximum for the objective function. 
You look for columns under x x x1 2 3, , , which contain a single 1 and the rest 0s. 
This occurs in the columns under x1 and x2. You find the 1 under the x1 
column and go all the way to the right-most column, where the number 5 
appears. This tells you that x1 5. Now do the same with the x2 column. The 1 
is in the second row, and the number 15 appears at the end of the row. This 
tells you that x2 15. Because x3 doesn’t have the 1 and 0s beneath, it’s equal 
to 0. The maximum value appears in the last row, last column: z = 45. So the 
maximum is 45 when x1 5, x2 15, and x3 0.

Does this check with the constraints?

x x

x x x
1 3

1 2 3

10 0 10

2 25

 with the values reads: 5  true

 w

;

iith the values reads: 2(5)  true

 with th

15 0 25

3 152 3

;

x x ee values reads: 15  true3 0 15( ) ;
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Solving a maximization application
The whole point of doing the simplex method is to solve an important problem, 
such as assigning tasks in your lawn ornament business.

For example, say that you produce four different types of lawn ornaments: 
flamingos, flapping eagles, bunny rabbits, and raccoons. Each of them needs to be 
assembled, spray painted, and packaged for sale. The flamingos take ten minutes 
to assemble, five minutes to paint, and two minutes to package. The eagles take 
ten minutes to assemble, ten minutes to paint, and two minutes to package. The 
rabbits take 20 minutes to assemble, 10 minutes to paint, and 5 minutes to pack-
age. And the raccoons take 15 minutes to assemble, 20 minutes to paint, and 
3 minutes to package. You’ve allotted 1,000 minutes for assemblies, 800 minutes 
for painting, and 600 minutes for packaging. The profit on the flamingos is 
$5 each, the eagles are $10, the rabbits are $18, and the raccoons are $5. How 
many of each ornament should you make to maximize your profit?

Before starting the simplex method, you need to write all the constraints; the 
objective function is pretty clear — to maximize the profit. To organize all this 
information, create a table involving the various ornaments and the activities that 
it takes to create them. Also, assign a variable to the number of each ornament.

Flamingos Eagles Rabbits Raccoons Total

Assembly 10 min 10 min 20 min 15 min 1,000 min

Painting 5 min 10 min 10 min 20 min 800 min

Packaging 2 min 2 min 5 min 3 min 600 min

Profit $5 $10 $18 $5

Total number x1 x2 x3 x4

The objective function is to maximize: $ $ $ $5 10 18 51 2 3 4x x x x .

The constraints are

10 10 20 15 1000

5 10 10 20 800

2 2 5

1 2 3 4

1 2 3 4

1 2 3

x x x x

x x x x

x x x 33 600

0 0 0 0
4

1 2 3 4

x

x x x x, , ,
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Now, prepare this information for the simplex method.

1.	 Write each inequality in the constraints as an equation by adding slack 
variables.

10 10 20 15 1 000 10 10 20 15 1 01 2 3 4 1 2 3 4 5x x x x x x x x x, ,becomes 000

5 10 10 20 800 5 10 10 20 801 2 3 4 1 2 3 4 6x x x x x x x x x becomes 00

2 2 5 3 600 2 2 5 3 6001 2 3 4 1 2 3 4 7x x x x x x x x x becomes 

2.	 Write the objective function as an equation.

$ $ $ $5 10 18 51 2 3 4x x x x z

3.	 Write all the constraints and objective function in a tableau. Put the 
opposites of the coefficients of the objective function in the bottom 
row. The starting value of z is 0.

x x x x x x x1 2 3 4 5 6 7

10 10 20 15 1 0 0 1 000

5 10
Assembly

Painting

Packaging

,

110 20 0 1 0 800

2 2 5 3 0 0 1 600

5 10 18 5 0 0 0 0

4.	 Determine a pivot column in the tableau by finding the most negative 
(smallest) number in the bottom row.

The smallest number in the bottom row is 18.

5.	 Determine a pivot row by using the numbers in the pivot column.

The ratios in the column above the –18 are 1 000
20

50, , 800
10

80, and 600
5

120. 

The smallest ratio is the 50, so the pivot is the 20 in the first row.

6.	 If necessary, change the pivot to 1 by dividing the entire row by that 
number (multiplying by the reciprocal).

Multiply each element in the first row by 1
20

.

10 10 15 1 0 0 1 000

5 10 10 20 0 1 0 800

2 2 5 3 0 0 1 600

5 10 18 5 0 0 0 0

20 ,

   

                   1
20

1
2

1
2

3
4

1
20

0 0 50

5 10 1
1 1R R

1

00 20 0 1 0 800

2 2 5 3 0 0 1 600

5 10 18 5 0 0 0 0
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7.	 Perform row operations to create 0s above and below the pivot.

1
2

1
2

3
4

1
20

0 0 50

5 10 10 20 0 1 0 800

2 2 5 3 0 0 1 600

5 10 18 5 0 0 0 0

1

 

                

10

5

18

1 2 2

1 3 3

1 4 4

R R R

R R R

R R R

    

1
2

1
2

1 3
4

1
20

0 0 50

0 5 0 25
2

1
2

1 0 300

1
2

1
2

0 3
4

1
4

0 1 350

4 1 0 17
2

9
110

0 0 900

 

8.	 Repeat Steps 4 through 7 until there are no negative elements in the 
last row.

There’s a –1 in the last row. This means that the second column is a pivot 

column, and the smaller ratio comes from 300
5

60. The new pivot is the 5 in 

the second row, second column.

1
2

1
2

1 3
4

1
20

0 0 50

0 0 25
2

1
2

1 0 300

1
2

1
2

0 3
4

1
4

0 1 350

4 1 0 17
2

9
10

0 0

5

9900

 

Multiply each element in the second row by 1
5

.

1
5

1
2

1
2

1 3
4

1
20

0 0 50

0 0 5
2

1
10

1
5

0 60

1
2

1
2

0 3
4

1
4

0 1 350

4

1 1R R    
1

11 0 17
2

9
10

0 0 900
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Create 0s above and below the pivot by using row operations.

1
2

1
2

1
2

0 1 1
2

1
10

1
10

0 20

0 1 0 5
2

1
10

2 1 1

2 3 3

2 4 4

R R R

R R R

R R R

   

11
5

0 60

1
2

0 0 1
2

3
10

1
10

1 380

4 0 0 11 4
5

1
5

0 960

 

9.	 Read the answer from the final tableau.

x x x x x x x1 2 3 4 5 6 7

1
2

0 1 1
2

1
10

1
10

0 20

0 1 0 5
2

1
10

1
5

0 60

1
2

0 0 1
2

3
10

1
100

1 380

4 0 0 11 4
5

1
5

0 960

Only the second and third columns have a single 1 with the rest 0s, so only the 
variables x2 and x3 have nonzero values. Reading from the last column 
corresponding to the 1s in the columns, x2 60 and x3 20. The other two 
variables are x1 0 and x4 0. The maximum profit is read from the last row, 
last column: z = $960.

The objective function is to maximize: z $ $ $ $5 10 18 51 2 3 4x x x x .  
When x2 60 and x3 20, you have z $ ( ) $ ( ) $ ( ) $ ( )5 0 10 60 18 20 5 0   
$ $ $600 360 960.

Does all this fit the constraints?

10 10 20 15 10001 2 3 4x x x x  becomes 0 600 400 0 1 000,

5 10 10 20 8001 2 3 4x x x x  becomes 0 600 200 0 800

2 2 5 3 6001 2 3 4x x x x  becomes 0 120 100 0 220

The constraints/requirements are all met.
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Making the Most of Minimization
When solving a minimization problem using graphing, you’re usually looking at 
constraints that are unbounded. They go on forever, and you need to find the least 
amount of money, the smallest amount of food, the fewest number of hours, and 
so on. The situation is the same when performing the simplex method to solve a 
minimization problem — you’re still looking for the smallest — but the procedure 
has several differences from that used when solving maximization problems (see 
the earlier sections of this chapter).

Spelling out the format
The tableau used for minimization problems has many of the same features 
as that used in maximization problems. But you see some significant differences, 
beginning with the third step, where only the constraints are entered into a 
matrix first.

When solving a minimization problem using the simplex method, follow these 
steps:

1.	 Determine that all the variables are non-negative, and each constraint is 
in the  form.

2.	 Write the objective function as an equation in the form: 
c x c x c x c x zn n1 1 2 2 3 3  , where the c’s are all coefficients of the 
variables and all of the coefficients are positive.

3.	 Write all the constraints and the objective function in a matrix, using 
both the coefficients and constants of the constraints.

4.	 Perform a matrix transpose of the matrix of coefficients and constants.

The operation matrix transpose is discussed in Chapter 5.

5.	 Rewrite the problem as a maximization problem using the elements as 
they appear in the transposed matrix, introducing slack variables in the 
constraints.

6.	 Complete the new tableau, introducing the negated coefficients of the 
objective function in the bottom row.

Then proceed with the same steps used in a maximization problem until the 
very last step.
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7.	Determine a pivot column in the tableau by finding the most negative 
(smallest) number in the bottom row.

8.	Determine a pivot row using the numbers in the pivot column.

The pivot row is the row whose ratio is the smallest when you divide the 
number in that column into the number in the last column. The number in 
both the pivot row and pivot column is called the pivot.

9.	If necessary, change the pivot to 1 by dividing the entire row by that 
number (multiplying by the reciprocal).

10.	Perform row operations to create 0s above and below the pivot.

11.	Repeat Steps 4 through 10 until there are no negative elements in the 
last row.

12.	Read the answer from the final tableau.

The values of the variables are found in the bottom row, and the minimum 
value is in the bottom, right-hand corner.

Stepping through minimization
The following minimization problem has variables that are all positive.

Minimize: 

Subject to:

3 2

60

2 40

4 2

1 2 3

1 2 3

1 2

1 2

x x x

x x x

x x

x x x

x x x
3

1 2 3

90

0 0 0, ,

Solve the minimization problem using the simplex method:

1.	 Determine that all the variables are non-negative, and each constraint is 
in the  form.

This requirement has been met.

2.	 Write the objective function as an equation in the form: 
c x c x c x c x zn n1 1 2 2 3 3  , where the c’s are all coefficients of the 
variables and all of the coefficients are positive.

3 21 2 3x x x z
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3.	 Write all the constraints and the objective function in a matrix, using 
both the coefficients and constants of the constraints.

x x x1 2 3

1 1 1 60

2 1 0 40

4 2 1 90

3 1 2 0

4.	 Perform a matrix transpose of the matrix of coefficients and constants.

1 1 1 60

2 1 0 40

4 2 1 90

3 1 2 0

1 2 4 3

1 1 2 1

1 0 1 2

60 40 90 0

T

5.	 Rewrite the problem as a maximization problem using the elements as 
they appear in the transposed matrix, introducing slack variables in the 
constraints.

x x x x x x1 2 3 4 5 6

1 2 4 1 0 0 3

1 1 2 0 1 0 1

1 0 1 0 0 1 2

60 40 90 0 0 0 0

6.	 Complete the new tableau, introducing the negated coefficients of the 
objective function in the bottom row.

1 2 4 1 0 0 3

1 1 2 0 1 0 1

1 0 1 0 0 1 2

60 40 90 0 0 0 0

7.	 Determine a pivot column in the tableau by finding the most negative 
(smallest) number in the bottom row.

The smallest number in the bottom row is –90, so the pivot column is the third 
column.
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8.	Determine a pivot row by using the numbers in the pivot column.

The smallest ratio is 1
2

, which is what you get when you divide the 1 in the last 

column by the 2 in the second row.

1 2 4 1 0 0 3

1 1 0 1 0 1

1 0 1 0 0 1 2

60 40 90 0 0 0 0

2

9.	If necessary, change the pivot to 1 by dividing the entire row by that 
number (multiplying by the reciprocal).

Multiply the second row by 1
2

 to create a pivot of 1.

1 2 4 1 0 0 3

1 1 0 1 0 1

1 0 1 0 0 1 2

60 40 90 0 0 0 0

2

                                   1
2

1 2 4 1 0 0 3

1
2

1
2

0 1
2

0 1
2

1 0 1 0 0 1 2
2 2R R

1

660 40 90 0 0 0 0

10.	Perform row operations to create 0s above and below the pivot.

1 2 4 1 0 0 3

1
2

1
2

0 1
2

0 1
2

1 0 1 0 0 1 2

60 40 90 0 0 0 0

1

                              

4

1

90

2 1 1

2 3 3

2 4 4

R R R

R R R

R R R

  

1 0 0 1 2 0 1

1
2

1
2

1 0 1
2

0 1
2

1
2

1
2

0 0 1
2

1 3
2

15 5 0 0 45 0 45

11.	Repeat Steps 4 through 10 until there are no negative elements in 
the last row.

The last row contains one negative number, which indicates that the first 
column is now the pivot column. The smallest ratio between the last column 
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and first column (that’s positive) is 1, from the second row, when you divide 1
2

 

by 1
2

. Because the pivot isn’t a 1, multiply the second row by 2.

1 0 0 1 2 0 1

1
2

1 0 1
2

0 1
2

1
2

1
2

0 0 1
2

1 3
2

15 5 0 0 45 0 45

1
2

                                           2

1 0 0

2 2R R

11 2 0 1

1 2 0 1 0 1

1
2

1
2

0 0 1
2

1 3
2

15 5 0 0 45 0 45

1

Now create 0s above and below the pivot by using row operations.

1 0 0 1 2 0 1

1 2 0 1 0 1

1
2

1
2

0 0 1
2

1 3
2

15 5 0 0 45 0 45

1

                                       

R R R

R R R

2 1 1

2 3 3
1
2

15RR R R2 4 4

0 1 2 1 1 0 2

1 1 2 0 1 0 1

0 1 1 0 1 1 1

0 20 30 0 60 0 60

   

There are no more negative values in the last row, so the row operations are 
completed.

12.	Read the answer from the final tableau.

0 1 2 1 1 0 2

1 1 2 0 1 0 1

0 1 1 0 1 1 1

0 20 30 0 60 0 60

1 2 3x x x z

The solution is read from the bottom row, under the slack variables that you 
added when setting up the tableau. This says that x x x1 2 30 60 0, ,  
and z 60.

The objective is to minimize 3 21 2 3x x x . Substituting, you 
have z 3 0 60 2 0 60( ) ( ) .
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Are the constraints met?

x x x

x x

x x x

x x x

1 2 3

1 2

1 2 3

1 2 3

60

2 40

4 2 90

0 0 0, ,

Yes, each inequality reads as a true statement when replacing x2 with 60.

Giving minimization meaning
A very common concern of distributors is how to get goods to the different stores 
in the most economical way. The goods are stored in warehouses that are posi-
tioned in centralized locations with direct access along interstates. But which 
warehouse should supply which stores, and which stores should receive goods 
from which warehouses?

A distributor receives orders for some new side-by-side refrigerators from stores 
X and Y. Those refrigerators are available in warehouses A and B. Store X needs at 
least 100 refrigerators, and Store Y needs at least 150 refrigerators. Warehouse A can 
supply at least 200 refrigerators, and Warehouse B can supply at least 100 refrig-
erators. It costs $50 per refrigerator to ship from A to X, $60 per refrigerator to ship 
from A to Y, $50 per refrigerator to ship from B to X, and $40 per refrigerator to 
ship from B to Y. How many refrigerators does the distributor send to the different 
stores from which warehouse to fulfill the orders and minimize the total cost?

All this information needs to be put in a table; this takes a bit of organization. 
Also, the number of refrigerators going from the warehouses to particular stores 
have to be identified, so let x1 be the number of refrigerators going from A to X, x2 
be the number of refrigerators going from A to Y, x3 be the number of refrigerators 
from B to X, and x4 be the number of refrigerators from B to Y.

Store X Store Y

Warehouse A $50 1x $60 2x 200

Warehouse B $50 3x $40 4x 100

100 150

The objective function is to minimize 50 60 50 401 2 3 4x x x x .
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Subject to:

x x

x x

x x

x x

x x x x

1 2

3 4

1 3

2 4

1 2 3 4

200

100

100

150

0 0 0 0, , ,

Now, set up the simplex tableau and solve the problem.

1.	 Determine that all the variables are non-negative, and each constraint is 
in the  form.

This is the case.

2.	 Write the objective function as an equation in the 
form: c x c x c x c x zn n1 1 2 2 3 3  .

The objective function is 50 60 50 401 2 3 4x x x x z.

3.	 Write all the constraints and the objective function in a matrix, using 
both the coefficients and constants of the constraints.

x x x x1 2 3 4

1 1 0 0 200

0 0 1 1 100

1 0 1 0 100

0 1 0 1 150

50 60 50 40 0

4.	 Perform a matrix transpose of the matrix of coefficients and constants.

1 1 0 0 200

0 0 1 1 100

1 0 1 0 100

0 1 0 1 150

50 60 50 40 0

1 0 1
T

00 50

1 0 0 1 60

0 1 1 0 50

0 1 0 1 40

200 100 100 150 0

5.	 Rewrite the problem as a maximization problem using the elements as 
they appear in the transposed matrix, introducing slack variables in the 
constraints.

x x x x x x x x1 2 3 4 5 6 7 8

1 0 1 0 1 0 0 0 50

1 0 0 1 0 1 0 0 60

0 1 1 0 0 0 1 0 50

0 1 0 1 0 0 0 1 40

2000 100 100 150 0 0 0 0 0
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6.	Complete the new tableau, introducing the negated coefficients of the 
objective function in the bottom row.

x x x x x x x x1 2 3 4 5 6 7 8

1 0 1 0 1 0 0 0 50

1 0 0 1 0 1 0 0 60

0 1 1 0 0 0 1 0 50

0 1 0 1 0 0 0 1 40

2000 100 100 150 0 0 0 0 0

7.	Determine a pivot column in the tableau by finding the most negative 
(smallest) number in the bottom row.

The smallest number in the last row is 200, so the first column is the pivot 
column.

8.	Determine a pivot row using the numbers in the pivot column.

The smallest ratio occurs in the first row, when 50 is divided by 1.

1 0 1 0 1 0 0 0 50

1 0 0 1 0 1 0 0 60

0 1 1 0 0 0 1 0 50

0 1 0 1 0 0 0 1 40

200 100 100 150 0 0 00 0 0

9.	If necessary, change the pivot to 1 by dividing the entire row by that 
number (multiplying by the reciprocal).

The pivot is already a 1.

10.	Perform row operations to create 0s above and below the pivot.

1 0 1 0 1 0 0 0 50

1 0 0 1 0 1 0 0 60

0 1 1 0 0 0 1 0 50

0 1 0 1 0 0 0 1 40

200 100 100 150 0 0 00 0 0

1

200
1 2 2

1

       

              
R R R

R R R5 5

1 0 1 0 1 0 0 0 50

0 0 1 1 1 1 0 0 10

0 1 1 0 0 0 1 0 50

0 1 0 1 0 0 0 1 40

0 100 100 1150 200 0 0 0 10 000,
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11.	Repeat Steps 4 through 10 until there are no negative elements in the 
last row.

The new pivot column is the fourth column, because 150 is the smallest 
number in the last row. The pivot row is the second row, because it has the 
smaller ratio of 10. The pivot is already a 1, so the tableau is ready for row 
operations.

1 0 1 0 1 0 0 0 50

0 0 1 1 1 0 0 10

0 1 1 0 0 0 1 0 50

0 1 0 1 0 0 0 1 40

0 100 100 150 200 0

1

00 0 10 000

1

150

1 0 1 0 1 0

2 4 4

2 5 5

,

      
R R R

R R R

00 0 50

0 0 1 1 1 1 0 0 10

0 1 1 0 0 0 1 0 50

0 1 1 0 1 1 0 1 30

0 100 50 0 50 150 0 0 11 5, 000

  

Now, the new pivot is in the second column, because 100 is the smallest 
number in that row. The pivot row is the fourth row, with a ratio of 30.

1 0 1 0 1 0 0 0 50

0 0 1 1 1 1 0 0 10

0 1 1 0 0 0 1 0 50

0 1 0 1 1 0 1 30

0 100 50 0 50 150 0

1

00 11 500

1

100

1 0 1 0 1 0 0 0

4 3 3

4 5 5

,

     
R R R

R R R

550

0 0 1 1 1 1 0 0 10

0 0 0 0 1 1 1 1 20

0 1 1 0 1 1 0 1 30

0 0 50 0 150 50 0 100 14 500,

All the numbers in the last row are positive, so the row operations are done.

12.	Read the answer from the final tableau.

1 0 1 0 1 0 0 0 50

0 0 1 1 1 1 0 0 10

0 0 0 0 1 1 1 1 20

0 1 1 0 1 1 0 1 30

0 0 50 0 150 50 0 1000 14 500

1 2 3 4

,

x x x x
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The solution is x x x x1 2 3 4150 50 0 100, , , , and the minimum cost is 
$14,500. This says that 150 refrigerators should be shipped from warehouse 
A to store X, 50 refrigerators shipped from warehouse A to store Y, and 
100 refrigerators shipped from warehouse B to store Y.

The constraint x x1 2 200 is met, because x x1 2 200; the constraint 
x x3 4 100 is met, because x x3 4 100; the constraint x x1 3 100 is 
met, because x x1 3 150; and the constraint x x2 4 150 is met, because 
x x2 4 150. The objective function, z x x x x50 60 50 401 2 3 4, gives 
the minimum cost of z $ ( ) $ ( ) $ ( ) $ ( )50 150 60 50 50 0 40 100   

$ $ $ $ ,7500 3000 4000 14 500.
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Get familiar with sets and set notations to organize and 
compare groups of numbers.

Find the probability that an event can occur.

Delve into financial formulas to solve money problems.

Discover how to speak statistically and understand what 
other statisticians are saying.

Determine whether statements and conclusions are 
logical.
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Chapter 9
Setting Up Sets

You’re probably too young to remember the bestselling book Everything You 
Always Wanted to Know About Sex * But Were Afraid to Ask. It was popular for a 
while and then just forgotten. But here’s a subject that you’ve always won-

dered about, will get lots of information on, and will continue to find intriguing 
and helpful. The interest will stay. Here’s everything you’ve ever wanted to know 
about sets!

Sets and set notation are a great way of organizing data. The notation and vocab-
ulary are specific and special. But when both are used correctly, you’ll find the 
notation and vocabulary and processes very helpful when considering situations 
involving probability, statistics, finance, and so on.

Introducing Set Notation
A set is a collection of items. It can be a collection of letters, numbers, people, 
states, animals, and so on. The objects in a set, called its elements, usually have 
something in common, but that isn’t really necessary. For example, I could decide 
to create a set containing Elliott, Fiona, Wolf, and Blake. I’ll name it set G. Sets are 
usually given a name, using a capital letter, to make them easier to talk about and 
identify when you’re referring to more than one in a discussion.

G = {Elliott, Fiona, Wolf, Blake}

IN THIS CHAPTER

»» Becoming acquainted with set 
notation and set vocabulary

»» Performing basic operations 
using sets

»» Using Venn diagrams to organize 
information
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Notice that the four elements in set G are separated by commas. Braces are used 
to contain the elements. And the order of the elements doesn’t matter. For exam-
ple, I could also say that

G = {Blake, Fiona, Wolf, Elliott}

When the order of the elements changes, the set stays the same.

Sets can be finite or infinite. A finite set has a finite number of elements. Consider 
sets G, H, and J. Yes, this sounds like double-speak, but it just means that there is 
a determinable number of elements. When counting the elements in the set, there 
is an end.

G Blake Fiona Wolf Elliott, , ,   

H 1 3 5 7 9 11 15 17 19 21 23, , , , , , , , , ,          

J a b c d e x y z( }, , , , , . . . , , , .           

Set G contains 4 elements; set H contains 11 elements, and set J contains 26 ele-
ments. Notice that the three dots, ellipses, indicate a pattern that continues on, 
but not all the elements are listed; this is very handy when you don’t want to list 
all the elements and are sure the pattern is clear. The sets G, H and J are all finite, 
because you can count the exact number of elements in them.

Describing large and small sets
An infinite set contains an uncountable number of elements. Sets W and E are infi-
nite sets.

W 0 1 2 3 4 5 6 7 8, , , , , , , , ,         

E 0 2 4 6 8 10, , , , , ,      

The sets W and E are described here by listing some of the elements and using the 
ellipses to show that they go on forever. You want to show enough elements to 
make the pattern clear. Listing the elements like this, as well as in the finite sets, 
is called the roster method. You list all or some of the elements to make it clear 
what the set contains. Another way of indicating the elements in a set is the rule 
method, where you give a description of the elements in words.

J the letters of the English alphabet     

W whole numbers 

H first positive odd integers    11
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And, just to make it even more interesting, there’s yet another format for describ-
ing the elements of a set called set builder notation. The set builder notation involves 
a variable and then some mathematical notation to indicate what that variable can 
represent. Set E contains the nonnegative even integers. In set builder notation, you 
write

E x x n n W| ,2

which is read: “E is the set of all elements x such that x is equal to two times n, 
where n is an element in the set of whole numbers.”

Which notation do you use when describing a set? It’s pretty much your choice —  
considering the different circumstances. You just want to be able to read and 
understand what someone else has written when working on sets.

Sometimes you want to count the number of elements in a set — when the set is 
finite and the number of elements is has an end number. The way to indicate how 
many elements are in a set is to use n(A) or n(X) and so on. The n in front indicates 
that you’re giving the number of elements in the set named.

For example, if you have A 1 3 5 8, , ,    and X 1 2 3 4 99 100, , , , . . . , ,         , you can 
say n A 4 and n X 100. Another notation used to indicate the number of ele-
ments in a set is with two vertical bars: A  and X .

Special types of sets
Sets of elements come in all sizes and with different descriptions. Four special 
types of sets are defined here. The sets still use the standard notation and naming 
method, but these sets come up frequently when performing operations on sets 
and describing the results of the operations.

One such special set is the universal set. The word universal is a great description, 
but this needs to be defined and refined a bit. Yes, the universal set contains 
everything but only everything that you’re considering at the time. For example, 
if you’re working on a problem involving the states in the United States, then the 
universal set is U = {states of the United States}. It contains exactly 50 elements. 
You keep all your discussion and investigation centered around just those 50 items.

Another example of a universal set is I  , , , , , , , ,3 2 1 0 1 2 3 , where I is the set 
of all integers. This is an infinite set. It contains only the positive and negative 
whole numbers and 0. A lot of numbers are missing  — all the fractions and 
decimals — but this is a pretty large set, even with the restrictions. The set I is 
found quite a bit when working with set applications.
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The opposite of the universal set is the empty set, also called the null set. This set 
contains nothing! Listing the elements, you have { }; there’s nothing in the set. It 
acts somewhat like the number 0 in our number system. There’s nothing in it, but 
it’s very important as an answer or a place holder. Another notation for the empty 
or null set is . You can use either { } or ; they mean the same, and the choice 
is yours.

The complement of a set is denoted with an apostrophe or a line over the set name, 
such as A  or A , and consists of all the elements in the universal set that aren’t in 
the original set.

For example, if set B        2 3 5 7 11 13 17 19, , , , , , ,  and the universal set is 
U           0 1 2 3 4 5 20, , , , , , . . . , , then the complement is B       0 1 4 6 8 9 10, , , , , , ,

12 14 15 16 18 20, , , , ,     . The number of elements in a set and its complement 
always  add up to the number of elements in the universal set. In this 
case, n n nB B U .

And one more special type of set is a subset. One set is a subset of another set if 
every element in the first is also in the second. The sets W, X, Y, and Z are all sub-
sets of the set T.

T         1 2 3 4 5 6 7 8 9, , , , , , , ,

W    2 3 4 8, , ,

X 9

Y         1 3 5 7 9 2 4 6 8, , , , , , , ,

Z  

»» The set W has four of the elements from T. The notation for W being a subset 
of T is W T.

»» The set X has just one element from T, but that still qualifies X as a subset 
of T: X T.

»» The set Y has all the elements of T. It still qualifies as a subset, but it’s a special 
subset: an improper subset. So you write Y T. Because the sets are exactly 
the same, you can also say that they’re equal: Y T.

»» The set Z is technically a subset of T. No, it doesn’t have any of the same 
elements as T, but it doesn’t have any elements that aren’t in T. Yes, that’s a 
technicality, but it works with the math that is performed on sets. The empty 
set is a subset of any other set.
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The number of subsets of a set is equal to 2n, where n is the number of elements 
in the set.

For example, let the set A   a b c, , . Now, to list all the subsets of A, you have {a}, 
{b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, { }. Three subsets have one element each, 
three have two elements each, the improper subset has all the elements from A, 
and the empty set has no elements. That’s a total of eight subsets, which fits the 
formula 2n, where the three elements in A make the number of subsets 2 83 .

So a set with five elements has 2 325  subsets, and a set with 26 elements has 
2 67 108 86426 , , . You don’t want to have to list all those subsets!

Performing Basic Operations
The two basic operations that are performed on sets are union, , and inter­
section, . And a very nice feature of these operations is that their names pretty 
much describe what the operation accomplishes.

The union of two sets is the combination or gathering of all the elements in the 
sets having the operation performed on them. If any of the elements appear in 
both sets, you don’t list them twice. For example, if you want the union of  
sets A and K, where A Alabama, Alaska, Arizona, Arkansas  and K Alaska,
Arkansas, Kansas, Kentucky, New York, North Dakota, Oklahomma, South Dakota , 
then A K Alabama, Alaska, Arizona, Arkansas, Kansas, Kentucky, NNew York,
North Dakota, Oklahoma, South Dakota . The states of Alaska and Arkansas are 
elements in both sets but are listed only once in the union.

The intersection of two sets consists of all the elements the two sets have in com-
mon. So if  H antelope, elephant, giraffe   and  F cat, dog, elephant, fox, giraffe , 
then H F elephant, giraffe .

If two sets have nothing in common, which means that their intersection is the 
empty set, then they are called disjoint sets. The sets R red, white, blue  and 
T orange, yellow, green, purple, brown  are disjoint sets.

R T

Two important relationships between sets and their complements are

»» The union of a set and its complement is the universal set: A A U.

»» The intersection of a set and its complement is the empty set: A A .
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It’s often very helpful to know ahead of time how many elements you’ll find in the 
union of two sets, and there is help for you here. To find the number of elements 
in the union of two sets, you add up the number of elements in each of the indi-
vidual sets and then subtract the number of elements in their intersection.

n n n nA B A B A B

For example, if A b, c, d, e, g, p, t, v, z  and V a, e, i, o, u , you see that 
n A 9 and n V 5. The intersection of A and V, A V e{ }. Using the formula, 
you get

n n n nA V A V A V

9 5 1 13

Using Venn Diagrams for Better Views
A Venn diagram is a picture or figure that shows the relationships between differ-
ent sets. Venn diagrams usually involve two or three different sets, but a Venn 
diagram involving four sets can be constructed also.

Elements shown
One type of Venn diagram lists or shows all the elements in each of the sets 
involved. For example, let the universal set U          2 3 5 7 11 13 17 19 23 29, , , , , , , , , ,
31 37, , set A     11 13 17 19 31, , , , , and set B   7 17 37, , . The Venn diagram in 
Figure 9-1 shows the universal set, U, as all the elements in the rectangle. The 
elements in set A are found in the left circle, and the elements in set B are in the 
right circle.

FIGURE 9-1: 
The first 12 prime 

numbers sorted 
by digits.
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Using the Venn diagram, you can see that the union of the sets A and B has seven 
elements, A B       7 11 13 17 19 31 37, , , , , , , and the intersection of A and B has one 
element, A B 17 . Some other relationships that can be quickly determined are

»» Elements in B but not A: B A  7 37, .

»» Elements in neither A nor B: A B     2 3 5 23 29, , , , .

If you want to show the relationships among three different sets, you can use 
three intersecting circles. In Figure 9-2, you see three circles representing sets X, 
Y, and Z.  Each circle intersects with the other two circles. The shaded area  
contains the elements of set X, and the horizontal lines are in the circle for set Y. 
The intersection of sets X and Y is where it’s both shaded and lined.

The Venn diagram that has three intersecting circles actually has eight different 
regions or areas delineated. Figure 9-3 is numbered with those regions, and they 
depict the relations between the sets as follows:

1: Set X only

2: Sets X and Y but not set Z

3: Set Y only

4: Sets X and Z but not set Y

5: Sets X, Y, and Z

FIGURE 9-2: 
Intersecting 

circles.
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6: Sets Y and Z but not set X

7: Set Z only

8: Not in sets X, Y, or Z but in the universal set

Now consider a situation where you’re told that a universal set consists of the 
letters of the alphabet, set E contains the letters in encyclopedia, set O consists of 
the letters in the word opportunity, and set P has the letters in principle. You’re 
asked the following questions:

»» Which letters occur in all three sets?

»» Which letters are shared by opportunity and principle?

»» Which letters are in both encyclopedia and principle but not in opportunity?

This isn’t too difficult, but there’s a good chance that you’ll miss a letter or two 
when working from the list of elements. Using a Venn diagram makes things 
much easier and gives more accuracy.

The Venn diagram in Figure 9-4 shows the three different sets with the respective 
letters.

FIGURE 9-3: 
Three circles 

intersect defining 
eight different 

regions.
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Now you can quickly answer:

»» Which letters occur in all three sets? The letters i, n, and p.

»» Which letters are shared by opportunity and principle? The letters i, n, p, and r.

»» Which letters are in both encyclopedia and principle but not in opportunity? The 
letters c, e, and l.

And, lastly, I show you a Venn diagram with four sets nestled into a universal set. 
This will be the last and largest to show, because the intersections are getting 
rather numerous.

The local Pizza For Dummies establishment features four special pizzas: Supremo, 
Delecto, Imperio, and Mucho Macho. Figure 9-5 illustrates the pizzas and their 
main ingredients.

Reading from the Venn diagram, you can see the main ingredients for the 
Supremo pizza: sausage, American cheese, parmesan, mozzarella, salami, green 
peppers, olives, and jalapeño peppers. All the pizzas have mozzarella cheese, and 
Mucho Macho is the only one with ham. A figure like this helps when you’re 
ordering pizza, and it helps the manager of the establishment when ordering 
supplies.

FIGURE 9-4: 
How do 

encyclopedia, 
opportunity,  

and principle 
interact?
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The number of elements shown
Rather than list all the elements in a Venn diagram by name, sometimes it’s more 
helpful to just show how many elements are in a section.

The Venn diagram in Figure  9-6 shows the results of a survey of 200 people 
determining how many had blue eyes or brown hair.

As you can see, you wouldn’t want to have to list all the names of the people with 
blue eyes, brown hair, or both. But there’s a lot of information to be gleaned from 
the diagram when considering just the number of people involved.

»» What percentage of those surveyed have blue eyes? You add 36 18 54. 
So 54 out of the 200 surveyed have blue eyes. Computing the percentage,  
54
200

0 27 27. %.

FIGURE 9-5: 
Lots of 

ingredients  
on the pizzas.

FIGURE 9-6: 
Some people 

have blue eyes, 
some have brown 

hair, and some 
have both.
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»» What percentage of those surveyed have brown hair but not blue eyes? That’s 

64 out of 200: 64
200

0 32 32. %.

»» What percentage of those surveyed have either both blue eyes and brown 
hair or neither of those characteristics? You add the 18 that have both to the 
82 that have neither. 18 82 100 and 100

200
0 50 50. %.

Using this number-of-elements format in a Venn diagram with three different 
sets, consider the situation where 200 people were interviewed about what they’d 
do if they won the lottery.

Referring to Figure 9-7, you see that a number is possibly missing. There’s no 
indication that any of those interviewed didn’t want any of the choices. If you 
know that 200 people were interviewed, then you can figure out how many 
wanted  none of the prizes listed. Adding up the numbers, you have 
45 10 60 15 10 5 20 165. If 200 were people interviewed, then 200 165 35 
of them wouldn’t buy a house, a car, or a boat.

You can answer other questions with the information from Figure 9-7, such as the 
following.

»» How many of those interviewed said that they would buy a house and a car? 
You look at the intersection of the two sets and see 10 10 20 would buy both.

FIGURE 9-7: 
Lottery winners 

and their wishes.
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»» How many would buy a house or a boat but not both? You add up 
45 10 20 5 80 would buy one or the other.

»» And how many would buy only a boat? That’s the 20 in the bottom section.

You can see that many, many more questions can be answered about these lottery 
hopefuls.

In the next Venn diagram, this particular information would be helpful for those 
in the news business. A marketing firm wants to determine what media people 
use to keep up with the daily news. It decides to limit the main concerns to news-
papers, television, Facebook, and phone apps. Figure  9-8 shows how you can 
construct a Venn diagram using these media.

The reports start coming in, and the firm sees that, of the people surveyed, 
40 use all four media, 100 use newspapers and television only (neither of the 
other two), 300 use Facebook only, and 130 use Facebook and television. The firm 
starts filling in the Venn diagram by inserting the 40, the 100, and the 300, as 
you see in Figure 9-9. But wait! The 130 people who use Facebook and television 
cover three different regions. There’s a 40 in the middle, but how do you break 
up the rest?

If the firm is told that 60 people use both Facebook and television but don’t use 
phone apps, then that would leave 130 40 60 30 for the last region in that 
intersection.

FIGURE 9-8: 
The world 

receives the daily 
news in many 

different 
fashions.
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As you can see, the construction of such a Venn diagram can get pretty compli-
cated, but the end result is well worth it when you need the information to make 
decisions. In Figure 9-10, you see the final Venn diagram constructed with all the 
information that was finally available.

FIGURE 9-9: 
Filling in the 

numbers.

FIGURE 9-10: 
Results of the 

survey on 
receiving the 

daily news.
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What can the marketing firm tell from this diagram?

»» How many people were contacted? Add them up, and you get 2,000.

»» What percentage of people used television? Add up the numbers in that circle 
and 100 300 20 90 60 40 30 640. So 640

2000
0 32 32. %. (Is that 

where advertisers want to concentrate their attention?)

»» Which medium has the greatest number of participants? Newspapers have a 
total of 550, television has a total of 640, Facebook totals 960, and phone apps 
have a total of 810. This is good information to have and use when making 
decisions.

Most of us (yes, another survey) are visual learners. Having Venn diagrams avail-
able helps with conclusions, decisions, and accuracy.
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Chapter 10
Processing the 
Probability

The concept of the probability or chance of something happening has been 
around for a long time. Early man pondered: “What are the chances of me 
outrunning that saber-toothed tiger?” and Columbus wondered: “What is 

the possibility of me finding India by tomorrow?”

Probability and the various properties and techniques involved in the subject were 
developed over the centuries. As more information was found and techniques were 
needed, more were discovered and shared.

In this chapter, you find methods for counting how many ways a chore can be 
accomplished and then how to use the totals you come up with to answer a ques-
tion about the probability of accomplishing that chore.

Introducing Counting Methods
When Elizabeth Barrett Browning said, “How do I love thee? Let me count the 
ways,” she probably wasn’t thinking about anything involving mathematics. But 
maybe some of the math techniques would have helped her!

IN THIS CHAPTER

»» Comparing the counting methods

»» Computing the probability of an 
event

»» Applying probability methods to the 
real world
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If you want to count the number of ways to create a pizza, the number of arrange-
ments possible when lining people up for a picture, or the number of committees 
that can be formed from the members of a club, then you may or may not need to 
know the exact details of each of those totals. You may just be concerned with the 
question of how many are possible.

Multiplication method of counting
The multiplication property of counting is used in situations where you take one item 
from this group, one item from the next group, one item from the next, and so on.

The multiplication property of counting says that if you can make your first  
choice n1 ways, the second choice n2 ways, the third choice n3 ways, and so on, 
then  the total number of ways that the entire project can be accomplished is  
n n n1 2 3 ways. You just multiply all the numbers together.

For example, consider signing up to attend a conference. During the first time 
period, you have a choice of one of the two opening sessions. During the second 
time period, three different workshops are offered. During the third time period, 
ten different classes are held. During the fourth time period, you have five differ-
ent lunch venues where you can participate. And during the fifth time period, you 
have six different mini-courses to choose from. So how many different ways are 
there that you can participate in this conference?

First time period: 2

Second time period: 3

Third time period: 10

Fourth time period: 5

Fifth time period: 6

Using the multiplication property, you have 2 3 10 5 6 1 800,  different possibili-
ties for your schedule.

A very common situation any more is when you have to come up with a password 
for a new account. You’re told that your password has to consist of four letters 
followed by three digits, followed by three symbols. How many possibilities are 
there, if you’re allowed to repeat the characters in any of the categories?

First four characters: 26 letters to choose from for each

Next three characters: 10 digits to choose from for each

Last three characters: 30 symbols to choose from (using shift key or not and not 
including period or comma)
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Using the multiplication property, you have 26 26 26 26 10 10 10 30 30 30
12 338 352 000 000, , , ,  possibilities. Is this enough to deter hackers?

Using permutations for counting
A permutation is an arrangement of items; when you count the permutations of a 
set of objects, you determine how many ways that group of objects can be arranged.

For example, you and two friends are getting in line for lunch. If you and your 
friends are A, B and C, then the different orders in which you can line up are ABC, 
ACB, BAC, BCA, CAB, CBA. There are six different ways to line up for lunch — six 
different permutations.

When the number of items to be put in some order gets larger, it gets a bit harder to 
find all the different arrangements. Consider the situation where you’re sampling 
two out of four different brands of coffee. The order in which you sample them mat-
ters because of the after-taste from the first sampling. How many different ways 
can you sample from Caribou Coffee, Dunkin’ Donuts, Gloria Jean’s, and Peet’s?

To list all the ways, an efficient method is to make a tree. In Figure 10-1, the first 
column contains all the possibilities for the first tasting, and the second column 
contains all the possibilities for the second tasting, following the first tasting. 
You don’t taste the same coffee twice.

FIGURE 10-1: 
Sampling coffee 

brands.
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As you see, there are 12 different possibilities for sampling: Caribou Coffee and 
then Dunkin’ Donuts, Caribou Coffee and then Gloria Jean’s, Caribou Coffee and 
then Peet’s, Dunkin’ Donuts and then Caribou Coffee, and so on.

Knowing how many arrangements there are ahead of time helps you determine 
whether you really did find all of them. With a tree, you’re pretty sure you’ve 
completed the task, but even creating a tree can get a bit cumbersome. When 
the number of choices gets to be larger, the task gets to be more complicated. 
There’s a formula that helps you out that tells you how many ways — you aren’t 
told what they are, just how many.

The number of permutations of n things taken k at a time is found with n kP
n

n k
!

( )!
.

The factorial operation, !, tells you to multiply the number preceding the excla-
mation by every positive integer smaller than that number.

n n n n n! ( )( )( )1 2 3 3 2 1

Here’s an example putting this formula to use. You thought you remembered the 
five-digit code for your garage entry, but now you aren’t so sure. You know that it 
starts with 987, but the last two numbers seem to escape you. The only thing you 
know is that they aren’t the same as any of the first three, and they’re two differ-
ent numbers. You’re going to try punching in numbers and hope you get it right 
before the system kicks you out after the 20th try. How many different codes could 
there be altogether?

You try 98701, 98712, 98723, 98734, and so on. So how many different codes are 
we talking about? You can use permutations to count them. You’ll pick from the 
digits 0, 1, 2, 3, 4, 5, and 6, and you’ll want two at a time, in both orders (23 and 
32, for example). Using the formula for a permutation, you have n 7 for the seven 
digits you can choose from, and k 2, because you’ll choose two at a time.

7 2
7

7 2
7
5

7 6 5 4 3 2 1
5 4 3 2 1

7 6 42P !
( )!

!
!

You can try 42 different codes. You’d better be pretty lucky with your first tries or 
just remember the code, if you don’t want to be kicked out of the system before 
trying all those possibilities.

Here’s another example. You found a new game to put on your tablet, and it 
involves creating words from a certain number of letters. For example, you see 
how many four-letter words you can make out of the letters A, R, S, and T. You list 
all the possible arrangements so you’re sure you don’t miss any. How many 
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arrangements are there? That’s four letters taken four at a time. Using the for-
mula for permutations, plug in the numbers:

4 4
4

4 4
P !

( )!

Oops. Right away you think you’re in trouble, because 4 4 0, and you can’t 
divide by 0. But, wait, things are just fine. It’s true that 4 4 0, but 0 1! .

The value of 0! is 1. How can that be, you ask? It’s a mathematical rule. For all the 
factorial formulas to work correctly, 0! has to be equal to 1. Just trust me.

So to continue . . .

4 4
4

4 4
4
0

4 3 2 1
1

24P !
( )!

!
!

You can arrange the letters A, R, S, and T in 24 different ways. Now that you know 
how many variations there are, you can list them and be sure you haven’t 
missed any.

ARST ARTS ASRT ASTR ATRS ATSR

RAST RATS RSAT RSTA RTAS RTSA

SART SATR SRAT SRTA STAR STRA

TARS TASR TRAS TRSA TSAR TSRA

Those are the 24 possible combinations. Now, how many of them are actually 
words? I see ARTS, RATS, SART, STAR, TARS, and TSAR. Are there any others?

Counting with combinations
A combination is different from a permutation in that the order doesn’t matter. In 
other words, when you want the number of combinations possible as you’re 
choosing a certain number of items from the total available, you just want to know 
how many groups can be found, and the items can be in any order, just like the 
elements listed in a set. (See Chapter 9 for details about listing elements in a set.)

For example, you belong to a club that has ten members. Four of the members will 
have their names drawn at random and get to represent the rest of the club at a 
convention. How many different groupings of the four members are there? Letting 
the members be A, B, C, D, E, F, G, H, I, and J, you can start listing: ABCD, ABCE, 
ABCF, ABCG, and so on. Had enough? You can use the formula for the number of 
combinations, instead.
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The number of combinations of n things taken k at a time is found 

with n kC
n

k n k
!

!( )!
.

Does this look a bit familiar? Well, it should. It’s nothing more than the formula 
for permutations with an added factor in the denominator. Increasing the size of 
the denominator decreases the size of the answer. When the order doesn’t matter, 
you don’t have as many arrangements to consider.

So using the formula for a combination, the number of combinations for the club 
members is

10 4
10

4 10 4
10
4 6

10 9 8 7 6 5 4 3 2 1
4 3 2 1 6 5

C !
!( )!

!
! ! 44 3 2 1

10 9 8 7 6 5 4 3 2 1
4 3 2 1 6 5 4 3 2 1

5040
24

2100

There are 210 different ways that the 4 representatives can be chosen — or 210 
different delegations that can be sent to the convention.

One important example to discuss when dealing with combinations has to do with 
a popular pastime: a lottery. You read about how many millions of dollars can be 
won if you just purchase a one-dollar ticket. Pick your five favorite numbers from 
those between 1 and 70 and then a “magic” number from those between 1 and 30. 
How many different tickets would be possible? Is it for sure that someone will win?

Counting the total number of different tickets possible involves three different 
steps: finding the number of combinations of five numbers out of a possible 70, 
finding the number of ways to pick one number out of 30, and then using the 
multiplication property by multiplying those two results together.

First, selecting five numbers from 1 through 70:

70 5
70

5 70 5
70

5 65
70 69 68 67 66 65

5 4 3 2 1 65
C !

!( )!
!

! !
!

!

70 69 68 67 66 65
5 4 3 2 1 65

1 452 361 680
120

12 103

!
!

, , , , ,0014

Then, selecting one number from 1 through 30, you have just 30 choices. So mul-
tiply 12,103,014 times 30 and you have 12 103 014 30 363 090 420, , , , , or more than 
360 million different tickets possible. If you bought 180 million tickets, you’d still 
have just a 50% chance of winning. Ouch.



CHAPTER 10  Processing the Probability      167

Determining the Probability of an Event
What is the likelihood that it will rain today? What are the chances that your team 
will win the game? What is the probability that you’ll land on a property with a 
hotel when playing Monopoly?

Probability has been under investigation for a very long time, but it wasn’t until 
the mid-1600s that a written record of research and results was made and kept. 
And, of course, it all got inspired by questions about gambling. There are so many 
more applications of probability theory around nowadays.

What is the probability that, if you randomly select a family with three children, 
two of the children will be boys?

First, consider the formula for finding the probability of an event.

The probability that an event, E, will occur is found with

P E( )
the number of ways the chosen event can occur

the totall number of outcomes possible

The probability of an event always comes out to be a number between 0 and 1, 
including the 0 and the 1. You’ll see the probability written as a fraction, a deci-
mal, or a percent. The values of these numbers will always be between 0 and 1, 
inclusive. To compute the probability of an event, you count the total number of 
possibilities and determine how many of them are the event you want.

So now going back to the family with three children and the probability that two 
of the children are boys. First, list all the possibilities for a family with three chil-
dren. Of course, you know that there can be one, two, three, or no boys, but there’s 
more to the counting than that; the total number of outcomes isn’t just the num-
ber of boys. You have to consider the order in which they arrived. Make a chart of 
first child, second child, and third child.

First Second Third

B B B

B B G

B G B

B G G

G B B
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First Second Third

G B G

G G B

G G G

You see that there are eight different possibilities. One possibility has all boys, and 
one has all girls. Three possibilities have two boys, and three possibilities have 
one boy. So applying the rule for the probability that there will be two boys, you 
put 3 in the numerator and 8 in the denominator.

P( ) . %two boys  or 3
8

37 5

T H H H

T H H T

T H T H

T H T T

T T H H

T T H T

T T T H

T T T T

Now consider flipping a coin. If you flip a fair coin four times, what is the proba-
bility that you’ll get heads each time? You know that there’s only one way to get 
all heads — and that’s when each flip is a head. But what are all the possibilities? 
Set up a chart to find out.

H H H H

H H H T

H H T H

H H T T

H T H H

H T H T

H T T H

H T T T
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As you see, there are 16 different possibilities, and only one of them has all four 
heads. So the probability is

P( ) . %all four heads  or 1
16

6 25

Binomial distributions
A binomial distribution provides the number of occurrences of a desired result in an 
experiment performed a specific number of times when there are exactly two pos-
sible results.

Examples of binomial distributions include the boy-girl and heads-tails problems 
given in the previous section. There’s also yea-nay, on-off, even-odd, negative-
positive, red-black, and so on. The properties of binomial distributions are used to 
determine the probability of events, such as

»» What is the chance of drawing four red cards from a standard deck of cards 
(and returning the drawn card each time)?

»» What is the probability that when rolling a die six times the numbers you get 
are four even and two odd?

»» What is the probability that a person with seven siblings comes from a family 
of four boys and four girls?

With the boy-girl and heads-tails examples, I constructed tables to determine all 
the possibilities. This gets a bit cumbersome when you’re talking about a large 
number of trials or occurrences. That’s where Pascal’s triangle comes in handy. In 
Figure 10-2, you see the first ten rows of Pascal’s triangle. The numbers in each 
row are found by adding the two numbers diagonally closest in the row above.

FIGURE 10-2: 
Pascal’s triangle.
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How does Pascal’s triangle help out? You use the numbers in a selected row to tell 
you the number of times a certain thing happens. Go to the problem about boys 
and girls in a family of three (in the previous section) and look at the chart. You see

1 (all boys), 3(two boys, one girl), 3(one boy, two girls), 1 (all girls)

This 1-3-3-1 pattern corresponds to the fourth row of Pascal’s triangle. Note that 
the sum of the numbers in that row is 8, the same as the number of possibilities 
for arrangements of three children in a family.

Next, look at the problem involving tossing a coin four times. In the table created, 
you see

1 (all heads), 4 (3 heads, 1 tails), 6 (2 of each), 4 (1 heads, 3 tails), 1 (all tails)

This 1-4-6-4-1 pattern is in the fifth row of Pascal’s triangle.

So Pascal’s triangle is used to quickly determine how many times a particular 
arrangement or combination occurs in a binomial distribution.

The first chore is to determine which row of Pascal’s triangle to use. And the 
choice comes from the second number in the row. If you’re looking at a situation 
that is repeated three times (like three children in a family), then go to the row 
where the second number is a 3. If you’re tossing a coin four times, then go to the 
row where the second number is a 4. And when tossing a die six times, go to the 
row where the second number is a 6. The numbers in the row in question are 
1-6-15-20-15-6-1. Interpreting the results of whether the die face is even or odd, 
you have

1: all even

6: 5 even and 1 odd

15: 4 even and 2 odd

20: 3 even and 3 odd

15: 2 even and 4 odd

6: 1 even and 5 odd

1: all odd

That’s a total of 1 6 15 20 15 6 1 64 possibilities, if you were making a 
table. And the 64 is the number you’ll use in the denominator when doing a prob-
ability problem. If the problem asks, “When rolling a die six times, what is the 
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probability that it’ll come up even four times and odd two times?” you see that 
it’ll occur 15 out of the 64 times:

P( ) %four even and two odd  or about  of the time15
64

23

Another nice property of Pascal’s triangle is how the sums of the numbers in the 
rows work out. They’re all powers of 2 (see Figure 10-3).

Using the property that the numbers in the rows of Pascal’s triangle add up to 
powers of 2, you can quickly and easily count how many possibilities exist for any 
binomial distribution. What is the probability that a person chosen at random 
from those with eight children comes from a family of four boys and four girls? 
With eight children, that’s 2 2568  different arrangements possible. How many of 
them are four girls and four boys? Look at the row of Pascal’s triangle that has 8 
for the second number: 1-8-28-56-70-56-28-8-1. Moving from left to right, 
that’s 1: eight girls; 8: seven girls; 28: six girls; 56: five girls; and 70: four girls. 
That’s the four-girls-four-boys number. So the probability of four girls and four 

boys is 70
256

 or about 27%.

Using probability trees
Say that you’re doing a market survey concerning pizza establishments and the 
preferences of consumers. You went to Dominick’s Den, Pizza House, and Mama 
Joe’s interviewing an equal number of people at each establishment. You’ve deter-
mined that someone who has eaten at Dominick’s Den is 60% likely to return 
there and 30% likely next time to go to the Pizza House instead. (That leaves 10% 
likelihood of going to Mama Joe’s.) Someone who has eaten at the Pizza House is 
70% likely to return there and 15% likely to go to Dominick’s Den the next time. 
And a customer at Mama Joe’s is 40% likely to return and would be 50% likely to 
go to Pizza House.

FIGURE 10-3: 
The numbers in 

the rows of 
Pascal’s triangle 

add up to 
powers of 2.
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This is a lot of information that is tricky to sort through in this format. You can 
put all this information in a tree to help with your study and conclusions. 
In Figure 10-4, you see the pizza establishment that was visited, with one-third 
of the interviewees in each, followed by the percent chance of a visit to that same 
place or another. Note that the percentages in each section all add up to 100%. 
No other eateries are in the survey.

With the probability tree in place, you can make all sorts of conclusions — all 
based on the dependability of your research, of course. Some questions that might 
be posed are

FIGURE 10-4: 
What’s the 

chance someone 
will go to 

Dominick’s Den, 
Pizza House, or 

Mama Joe’s?
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»» What is the probability that, if you choose a person surveyed at random, that 
person has gone to Dominick’s Den three times in a row? First, look at the DD 
line and follow the probability segment that takes you to DD again, and then 
again. Multiply the three percentages together:

33 1
3

60 60 0 33 1
3

0 60 0 60 0 12% % % . . . .

Answer: 12%.

»» What is the probability that a person will visit all three establishments? For 
this question, you have to track six different visit patterns: DD-PH-MJ and 
DD-MJ-PH in the top grouping, PH-DD-MJ and PH-MJ-DD in the middle 
grouping, and MJ-DD-PH and MJ-PH-DD in the bottom grouping. Multiply the 
two percentages together in each of those lines and add them together; and 

they each get multiplied by 33 1
3

% for the starter:

33 1
3

30 15 10 50 15 10 15 10

10 30

% % % % % % % % %

% %

[

50 15

0 33 1
3

0 30 0 15 0 10 0 50 0 15 0

% %

. . ( . ) . ( . ) . ( .

]

[ 110 0 15 0 10

0 10 0 30 0 50 0 15

0 33 1
3

0 045

) . ( . )

. ( . ) . ( . )

. .

]

[ 00 05 0 015 0 015 0 03 0 075

0 07 2
3

. . . . .

.

]

Answer: 7 2
3

%.

»» What is the probability that a person never went to Pizza House? To compute 
this answer, you look at the top section and track the DD-DD-DD, DD-DD-MJ, 
DD-MJ-DD, and DD-MJ-MJ choices. Then go to the bottom section and track 
the MJ-DD-DD, MJ-DD-MJ, MJ-MJ-DD and MJ-MJ-MJ choices. Multiplying the 
decimals corresponding to the percentages, you have

0 33 1
3

0 60 0 60 0 60 0 10 0 10 0 10 0 10 0 40. . ( . ) . ( . ) . ( . ) . ( . )[

0 10 0 60 0 10 0 10 0 40 0 10 0 40 0 40

0 3

. ( . ) . ( . ) . ( . ) . ( . )

.

]

33 1
3

0 36 0 06 0 01 0 04 0 06 0 01 0 04 0 16

0 24 2
3

[ ]. . . . . . . .

.

Answer: 24 2
3

%.
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»» What is the probability that, if you pick a surveyed person at random, that 
person will have visited a particular pizza place more than once? To get this 
answer, you can find all the listings that have two of the same or three of the 
same, or you can take the easy way out and eliminate those choices. Because 
the probability of all the possibilities has to add up to 1, you can subtract the 
instances where they went to all three establishments (no repeats); you 

already have that answer from a previous problem, and it’s 7 2
3

%. Subtracting, 

you get 100 7 2
3

92 1
3

% % %.

Applying Probability Techniques
The concept of probability or chance comes up frequently in everyday life. What is 
the probability that you’ll be audited? What is the probability you’ll get all green 
lights during your morning drive? What is the probability that the triplets you’re 
expecting will be all girls? Sometimes it’s important to know the answer, and 
sometimes it just doesn’t matter. But it’s still great to be able to figure out the 
probability.

Games of chance
There are many opportunities to play a game that involves chance — where you 
can’t control the play results, but you can be informed about the possibilities. The 
following sections explore these opportunities and their probabilities.

Bunco
Consider the game of Bunco, where you roll three dice. What is the probability that 
you roll the three dice and get all fours?

The probability of rolling a four is 1
6

. You have three dice involved, so to find the 

probability of all three rolls resulting in a four, use the multiplication property 

and get 1
6

1
6

1
6

1
216

. This is about 0.5%. The chance is slight. If you’d be happy 

with having the three dice be the same, not caring about which number, then you 
add the six possibilities: either three ones, three twos, three threes, and so 

on: 1
216

1
216

1
216

1
216

1
216

1
216

6
216

1
36

.

This is about 3% — better than just fours but still not very likely.
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Lottery
Your state has a weekly lottery, and you really want to win the big prize. All you 
have to do is come up with the same six numbers that the machine on television 
does. You choose from the numbers 1 through 60. Your choice is based on your 
birthday: December 24, 1960, at 6:52 a.m. Your numbers will be 12, 24, 19, 60, 6, 
and 52. What are the chances you’ll win?

First, you count up how many different ways the six numbers can be chosen. The 
order doesn’t matter — they put them in order after they’re drawn. To count the 
number of ways to choose 6 numbers from 60, you use the formula for 
combinations:

n kC
n

k n k
C!

!( )!
!

!( )!
!, where, in this case  60 6

60
6 60 6

60
6!!( )!54

This comes out to be 50,063,860 different ways to choose the six numbers. Your 
chance of winning:

1
50 063 860

0 000002
, ,

. % or about 

Not looking good . . .

Being dealt a flush
If you’re a poker player, then you know that a flush is a good hand to have. If you 
don’t know anything about poker, don’t worry. This is fairly easy to describe.

A poker player is dealt five cards. If all five are the same suit, then she has a flush. 
What is the chance of being dealt a flush? A deck of cards has four different suits 
(spades, hearts, diamonds, and clubs), and each suit has 13 different cards. So a 
flush could be five spades, five hearts, five diamonds, or five clubs. This sounds 
much easier than six out of 60 numbers!

To find the probability of being dealt a flush, you count how many ways you can 
be dealt a flush and then divide that by how many different five-card hands are 
possible. The order doesn’t matter, so you use combinations.

To be dealt a flush in a suit, you need to have five of those 13 cards. So, using 
combinations,

13 5
13

5 13 5
13
5 8

1 287C !
!( )!

!
! !

,

There are four different suits to choose from, so multiply that result by 4 and get 
5,148 different ways you can get a flush.
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Now, determine how many different five-card hands can be dealt. That’s a com-
bination of 52 cards taken five at a time.

52 5
52

5 52 5
13

5 47
2 598 960C !

!( )!
!

! !
, ,

Divide the number of ways you can get a flush by the total number of hands and 

you have 5 148
2 598 960

0 00198,
, ,

.  or about 0.2% chance of being dealt a flush. Of 

course, with draw poker, you can try to improve your original hand if it isn’t what 
you want at first.

The Monty Hall Problem
Almost everyone is familiar with the game show Let’s Make a Deal, where you can 
choose from Door 1, Door 2, or Door 3. The problem described here has been 
making the rounds for many years; when someone asked Marilyn Vos Savant 
what the best thing to do was, her answer was to switch doors; this got all sorts 
of amazement and questions. Here’s the problem; Figure  10-5 depicts what’s 
happening.

Suppose that you’re on a game show and you’re given the choice of three doors. 
Behind one door is a car, and behind the other two doors are goats. You pick 
Door 1. The host, of course, knows what’s behind the doors (and will always show 
the goat), so he shows you what’s behind Door 3 — a goat! Should you stick with 
Door 1 or switch to Door 2? You may be surprised by the answer. The following 
shows you the options and the results. It shows Door 1 as being the only winning 
door, but the same scenario occurs, no matter which door is picked first.

FIGURE 10-5: 
What’s behind 

Door 1?
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Door 1 Door 2 Door 3 You Pick Host Shows You Stay You Switch

Car Goat Goat Door 1 Door 2 or 3 Win Lose

Goat Car Goat Door 1 Door 3 Lose Win

Goat Goat Car Door 1 Door 2 Lose Win

So 2
3

 of the time, you’ll win if you switch. Looks like switching is the choice.

Probability of being chosen
Many situations involve choices. There’s choosing the best toothpaste from all 
those on the shelves to choosing who should be on your team. Sometimes the 
choices are from equally weighted options, and sometimes one counts more than 
another.

Winning the prize for obedience
You enter your dog into a dog-obedience contest where 100 dogs are competing 
for prizes. Three dogs will be named finalists, and then the winner, first 
runner-up, and second runner-up will be selected from those three. Unfortu-
nately, the judges just can’t decide who should win, so they’re resorting to draw-
ing names and positions at random. Using this silly method, what is the probability 
that your dog will be chosen as a finalist? And what is the probability that he will 
be the winner?

First, address finding the three finalists, so you count how many three-dog 
groupings are possible. Don’t worry about the order yet. You just want your dog 
to be a finalist. So use combinations to determine the number of groupings of 
three dogs.

100 3
100

3 100 3
100
3 97

161 700C !
!( )!

!
! !

,

Next, how many of these groupings could include your dog? Think of it as putting 
him in as a finalist and then choosing two more dogs. Once he’s chosen, there are 
99 others to choose from for the other two positions. Use a combination with 
99 dogs to be chosen two at a time.

99 2
99

2 99 2
99

2 97
4 851C !

!( )!
!

! !
,
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Then, to figure the probability of your dog being chosen as a finalist, you divide 
the number of three-dog groupings your dog could be in by the total number of 
groupings:

4 851
161 700

3,
,

, % which is 

Now, with 3% chance that he’ll be a finalist, what is the chance that he’ll get first 
place? If you put the three dogs chosen in order of winner, first runner-up, then 
second runner-up, that’s a permutation of three things taken three at a time.

3 3
3

3 3
3
0

3 2 1
1

6P !
( )!

!
!

Of those six ways to put the dogs in order, he would be winner in two of them. So 

the probability that he wins is 1
3

. Multiply this fraction times the probability of 

him being a finalist, and you get

1
3

4 851
161 700

0 01 1,
,

. % or 

Would your dog do better if they really judged by obedience, or would this be his 
best shot?

Being audited
Everyone prepares her tax returns carefully and honestly, but there’s always the 
threat of an audit hanging over you as you put the stamp on the envelope or 
hit the Send button on your computer. Consider the situation where it’s deter-
mined that the chance of you being audited during any one year is 7.5%. What is 
the chance that you won’t be audited for the next five years?

First, if the chance of you being audited is 7.5%, then the chance of you not being 
audited is 1 7 5 92 5. % . %. You get the answer to this problem by using the multi-
plication principle. Think of each year as providing a chance of being audited or 
not being audited. You use the 92.5% as a percentage for each choice to determine 
the probability of not being audited.

92 5 92 5 92 5 92 5 92 5

0 925 0 925 0 925

. % . % . % . % . %

( . )( . )( . )(00 925 0 925

0 677187

. )( . )

.

So the chance of not being audited for the next five years is about 67.7%. Gulp.
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Banking on blood types
There are eight different blood types found in human beings. The types and their 
relative percentage are O Positive, 38%; A Positive, 34%; B Positive, 9%; AB Posi-
tive, 3%; O Negative, 7%; A Negative, 6%; B Negative, 2%; AB Negative, 1%.

At a recent blood drive, there were 64 donors. If a donor is selected at random, 
what is the probability that the donor’s blood has the B antigen? On average, how 
many of the donors would that involve?

The blood types containing the B antigen are B Positive, AB Positive, B Negative, 
and AB Negative. Add up the percentages and multiply the sum by 64 to get the 
number of donors.

9 3 2 1 15% % % % %

And 15% of 64 is 0 15 64 9 6. . . You round up or down, depending on whether 
you’re being cautious with your estimate or not; so either nine or ten donors have 
the B antigen.

Probability is useful in many situations. It’s also very helpful to understand the 
various applications involving probability when they’re presented to you. I just 
love hearing the weatherman say, “There’s a 37.5% chance of rain today.” Come 
on, now!
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Chapter 11
Counting on the 
Mathematics of Finance

The world of finance can sometimes seem intimidating, but it’s something 
we all need to be familiar with and comfortable working with its features. 
You can invest money and borrow money. Your commitments can be short 

term and long term. Choices, choices! The wise investor will be happier with the 
end results, and the smart investing consultant will have happy clients when they 
understand how this works.

The key to understanding financial processes is to be familiar with the terminol-
ogy and comfortable with the formulas. Some of the financial equations can get 
pretty complex, so you need to be sure you understand what the formula is doing. 
That way, if the computing mechanism you’re using acts up or if you enter some-
thing incorrectly, you’ll quickly recognize the problem and correct the error. You 
no longer have to crunch the numbers like the accountants of old; technology has 
come to the rescue.

Considering Simple Interest
Giving the word interest the descriptor simple really tells it like it is. Simple interest 
is the money that your money earns. If you deposit $10,000  in the bank, you 

IN THIS CHAPTER

»» Computing interest with simple and 
compound interest formulas

»» Investigating annuities and 
amortization
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expect your account to have more than $10,000 at the end of the month or the 
quarter year — depending on the institution and its policies.

The formula for simple interest is I Prt, where I is the amount of interest earned, 
P is the principal (amount deposited), r is the rate of interest (written as a deci-
mal), and t is the time in years that the money is invested.

Determining the amount of interest on a deposit of $10,000, earning simple 

interest for five years at 2 1
4

%, you do the following computation: 

I 10 000 0 0225 5 1 125, . , . So the investment of $10,000 has earned $1,125  in 
interest. This is simple interest, but most institutions offer compound interest on 
your savings. You find details about compound interest in the next section. But 
simple interest comes up in various situations. For example, you may purchase a 
piece of furniture where the merchant offers a plan involving simple interest.

The formula for simple interest gives you the money earned from the investment; 
you then add the interest to the original amount to determine the total now avail-
able in the account. Another way to do this is to use a formula that adds the 
deposit and earnings and gives you the total amount.

You find the total amount in an account earning simple interest with the formula 
A P rt1 , where A is the total amount in the account (principal plus interest), 
P is the amount deposited, r is the rate of interest, and t is the number of years the 
money is invested.

So if you invest $20,000 for six months using simple interest at a rate of 4%, at 
the end of six months, you have

A 20 000 1 0 04 1
2

20 000 1 02 20 400, . , . ,

You see that the six months is represented by 1
2

 year. This formula added the 
interest earned to the original amount invested.

Compounding Things with 
Compound Interest

When making an investment, you tend to shop around and see where you can get 
the best rate. Or, sometimes, you’ll settle for a slightly lower rate because the 
institution is handier or has better support staff or offers free goodies. In any case, 
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compound interest is what banks and other financial institutions typically use 
when investing or borrowing money.

The formula for compound interest is A P r
n

nt

1 , where A is the total amount 

of money accumulated, P is the principal (amount deposited), r is the rate of inter-
est (written as a decimal), n is the number of times each year the interest is com-
puted, and t is the number of years.

For example, say that you invest $10,000 at 2 1
4

% compounded quarterly for five 

years. How much will you have at the end of that five years — assuming that you 
don’t take any money out of the account or do any more adding of funds? By com-
pounding quarterly, it means that the interest is compounded four times each year. 
Using the formula and plugging in the numbers, you have

A 10 000 1 0 0225
4

10 000 1 005625

10 000 1 118719

4 5
20

, . , .

, ( .

( )

5553 11 187 19553) , .

The total amount of the investment is now about $11,187. Some institutions will 
round the 0.19553 up to 0.20, making the account worth $11,187.20. Others will 
just crop off the fraction of a cent and give you $11,187.19. That doesn’t seem too 
big a deal, but it makes you wonder where all those fractions of cents go when it 
happens to many, many accounts!

Something worth noting: When $10,000 is invested at simple interest for five 
years at this same rate, the total in the account is $11,125. The difference in earn-
ings is $ , . $ , $ .11 187 19 11 125 62 19. That’s not much or a lot — depending on your 
perspective.

Interest can be compounded annually, biannually, quarterly, monthly, daily, and 
continuously. Before looking at continuous compounding, first consider an invest-

ment of $10,000 that’s compounded daily for five years at that rate of 2 1
4

%.

A 10 000 1 0 0225
365

10 000 1 000061644

10 000

365 5
1825

, . , .

,

( )

(( . ) , .1 119068377 11 190 68377

That’s a total of $11,190.68 in the account, which is $3.49 more than would be 
there if the amount was compounded quarterly.

Why is there such a deal about how many times the compounding occurs? It’s 
really more important when you have lots and lots of money or when you can get 
bigger interest rates or when the investment is for a long period of time.
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Continuous compounding
The interest on an account can be compounded quarterly, monthly, and daily. The 
more often the compounding occurs, the more interest is earned, because the 
newest earnings are always figured on the original plus previous interest.

Another frequently used compounding formula is for continuous compounding. This 
means that the interest is constantly being computed. So what number can you 
use to indicate how many times when you’re doing continuous compounding? Do 
you multiply 365 days times 24 hours times 60 minutes times 60 seconds? Even 
that isn’t continuous, if you consider half-seconds. Instead of a set number, the 
Euler number, e, is used in a new formula.

To compute interest that is compounded continuously, use A Pert, where A is the 
total amount accumulated, P is the principal, e is the Euler number (about 2.71828), 
r is the rate of interest as a decimal, and t is the number of years.

Determining the total amount in an account where $10,000 is deposited for five 

years at 2 1
4

% compounded continuously, you have

A e e10 000 10 000

10 000 1 119072257 11

0 0225 5 0 1125, ,

, ( . ) ,

( . )( ) .

1190 72257.

This total of $11,190.72 is a whole $0.04 greater than the amount earned when 
compounding daily. Although not much seems to be gained here, the continuous 
compounding formula is used in many applications — many of them because the 
formula is much easier to use than the traditional compound interest formula, and 
the results are about the same.

THE EFFECTS OF COMPOUNDING
There’s an urban legend or old wives’ tale about how one of Christopher Columbus’s 
crew members deposited one dollar (well, its equivalent) in the Bank of the West Indies 
when stopping there in 1492. He sailed off and was, unfortunately, on the ship that 
sank. He had surviving family, though, who got a letter from the bank just recently. The 
letter said that the deposit was in a “nuisance account,” and they wanted to deal with it. 
The surviving relations could have the money in the account, which had been earning 
3% interest compounded quarterly, but they’d have to pay the $50 per year service 
fee — retroactively. What should the family members do? Should they ignore the letter 
and hope the problem went away? Well, someone got out his handy-dandy calculator 
and figured out what one dollar was worth after being deposited and earning interest 
for about 525 years at 3% compounded quarterly. The amount in the account should 
be more than $6.5 million. The service fees came to only a little more than $26,000, so 
that’s nothing in comparison. Take the money!
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Effective interest rate
When you go into the bank, you often see a sign announcing opportunities for 
investments and other information such as the effective interest rate. When interest 
is compounded monthly, weekly, quarterly, or some other time, then the quoted 
rate of 4% or 2.5% isn’t really the interest rate you’re receiving. The effective 
interest rate is what you’re actually getting, figuring in the compounding.

The formula for finding the effective interest rate is E r
n

n

1 1, where E is the 

effective rate, r is the stated rate, and n is the number of times each year that 
compounding occurs.

If you’re currently earning 6% compounded monthly, then the effective interest 
rate is

E 1 0 06
12

1 1 005 1 1 061677812 1 0 061677812
12

12. . . .

What you see on that sign in the bank is that the effective interest is about 6.168%. 
That’s so much more impressive than a measly 6%.

Presenting present value
The compound interest formula has many versions — all depending on how fre-
quently the compounding occurs and how long the money will be invested. But 
what if you have a goal in mind, say, a certain amount of money that you want to 

e IS FOR EULER
The number e is a mathematical constant used as the base of the natural logarithm. 
It’s named for the Swiss mathematician Leonhard Euler. The numerical value for e was 
actually discovered by Jacob Bernoulli in 1683 when he worked on continuous com-
pounding problems. He was computing compound interest using something like our 

A P r
n

nt

1  and determined that there was a pattern because the value of n got 

larger and larger. Using limits at infinity, the value of e is equal to

lim
n

n

n
1 1

Computed to the first 50 decimal places, the value of e is 2.71828182845904523536028
747135266249775724709369995. . .
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have at the end of a time period, and want to know how much has to be invested 
today to have that much money later. In other words, you want to find the present 
value of an investment.

What will have more of an effect: the amount of money invested, the interest rate, 
or the amount of time the money is in the account? These are all questions that 
you can research before making your choice.

You find the present value of a target amount of money with P A
i

m
1

, where P 

is the amount of money that has to be invested now, A is the target amount that you 
want, i is the interest rate during each time period when compounding occurs, and 
m is the total number of time periods that will occur during the investment time.

You may recognize some of this formula, because it looks very much like the com-
pound interest formula. If you multiply each side of this present value formula by 
the denominator, you have

1
1

1
1

1

i P A

i

i

P i A

m

m

m

m

The main difference between this equation and the compound interest formula is 

that there’s an i for interest where there’s usually r
n

, and there’s an m for the 

number of times compounding occurs where you usually find nt. As long as you 
realize that the i represents the rate during each time period, then you don’t have 
to change the formula for the present value to

P A
r
n

nt

1

These formulas do the same computation, but having the fraction in the denomi-
nator tends to cause some data entry errors.

For example, say that you want to have $20,000 in your account at the end of ten 
years. You’re ready to make a deposit today and willing to leave that money in the 
account until the end of the time period. How much do you put in the account 
today? How will the interest rate affect the amount? You do some sleuthing and 
find several different options that sound reasonable. One institution offers 
5%  interest compounded monthly. Another institution offers 6% compounded 
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quarterly. And the third option is 5 1
2

% compounded weekly. What you’re looking 

for is the option that requires the smallest deposit today.

»» Option 1: 5% interest compounded monthly

1.	 Find the interest rate, i, by dividing 5% by 12. The rate for each time period 
is about 0.0041666667.

2.	 Determine the number of time periods, m, by multiplying 12 times 
10 (compounding times years) to get 120.

3.	 Use the formula and A 20 000,  to find the present value:

P 20 000
1 0 0041666667

20 000
1 647009498

12 143 22120
,

.
,

.
, .

You have to deposit a little more than $12,000 to have $20,000 in ten years.

»» Option 2: 6% interest compounded quarterly

1.	 Find the interest rate, i, by dividing 6% by 4. The rate for each time period 
is 0.015.

2.	 Determine the number of time periods, m, by multiplying 4 times 
10 (compounding times years) to get 40.

3.	 Use the formula and A 20 000,  to find the present value:

P 20 000
1 0 015

20 000
1 814018409

11 025 2540
,
.

,
.

, .

You have to deposit a little more than $11,000 to have $20,000 in ten years. 
This looks better than the first option.

»» Option 3: 5 1
2

% interest compounded weekly

1.	 Find the interest rate, i, by dividing 5 1
2

% by 52. The rate for each time period 
is about 0.0010576923.

2.	 Determine the number of time periods, m, by multiplying 52 times 
10 (compounding times years) to get 520.

3.	 Use the formula and A 20 000,  to find the present value:

P 20 000
1 0 0010576923

20 000
1 732749303

11 542 35520
,

.
,

.
, .

You have to deposit about $11,500 to have $20,000 in ten years. This is more 
than the option at 6%. In general, the higher interest rate usually wins when 
the number of years is the same.
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Analyzing Annuities
When you start your new job, you have the option of signing up for a tax-sheltered 
annuity. What is an annuity? An annuity consists of regular payments into an 
account that earns interest. A big benefit to saving money this way, when it’s con-
nected to your salary payments, is that you never see the money in your monthly 
check. It’s automatically deducted from your gross pay and deposited for you. 
A  tax-sheltered annuity is especially nice, because you don’t pay taxes on those 
earnings until you start withdrawing the money — usually at retirement age.

Future value of an annuity
How much are you going to contribute to your annuity, and how long will you be 
doing this? And, the bigger question, how much will be in your account when you 
want to start using the money?

You find the total amount accumulated in an annuity with

A P
i
i

m( )1 1

where P is the regular payment being made into the account, i is the interest rate 

per pay period (found with r
n

), and m is the number of pay periods (found with nt). 

Recall that r is the stated interest rate, n is the number of times each year that 
payments are made and interest is compounded, and t is the number of years.

You decide to participate in the annuity plan and commit to depositing $300 of 
your gross pay each month. The plan offers 7% interest on your investment. How 
much will you have in your account if you continue with this program for 30 years?

First, think about how much you’ll have contributed in 30 years. That’s $300 each 
month, 12 months each year, for 30 years, or $ $ ,300 12 30 108 000. That’s a lot 
of money to contribute, but how far will $108,000 go toward expenses 30 years 
from now? Before deciding to contribute more, you find out what the interest on 
the investment will do. Using the formula,

A P
i
i

m( )1 1
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you need to determine i by dividing 7% by 12. The value of i is about 0.00583333333. 
And the number of payments made or time periods is found by multiplying 
12 times 30, which is 360. Substituting these values into the formula, you get

A 300
1 0 00583333333 1

0 00583333333
300 8 116497

360( . )
.

. 4475 1
0 00583333333

300 1219 970996 365 991 2989

.

. , .

So the interest takes your investment of $108,000 and more than triples it during 
the 30 years. But, again, you may think about increasing the amount contributed 
over the years of employment as you’re making more money.

Present value of an annuity
When you’re making plans for retirement  — or maybe just planning on an 
around-the-world-trip — your big concern is how to fund this adventure. When 
making regular contributions to an annuity fund, you can predict how much 
money will be available at the end of a selected time period.

But what about going in the opposite direction? Consider the possibility of having 
a fund from which you can withdraw a certain amount of money at regular inter-
vals and have just enough money when you’re finished — the fund goes down to 
zero. You’ll be withdrawing instead of depositing, but the money still in the 
account continues to earn interest.

So say that you’re planning for that trip. You’re going to sail around the world on 
your 40-foot sloop. You’re estimating it will take seven years, with all the visiting, 
sightseeing, and other activities. You need to set up an annuity from which you 
can withdraw monthly amounts to help with the expenses. You want to have 
$2,000 available each month and have the balance be zero at the end of the seven 
years. How much should you put in your annuity account?

The present value of an annuity is determined with

V P
i

i

m1 1( )

where V is the value or amount needed to be deposited into the account, P is the 
payment or amount withdrawn periodically, i is the interest each time period, and 
m is the number of time periods.

You find a broker who can get you 9% interest on your deposit. You want to 
withdraw monthly, so that will be 7 times 12, or 84 payments or time periods. 
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The interest rate each time period is found with r
n

, which is 9% divided by 12, or 

0.0075%. Using the formula for the present value, that comes to

V 2 000
1 1 0 0075

0 0075
2 000 1 0 5338452658

0 00

84

,
( . )

.
, .

. 775

2 000 0 4661547342
0 0075

124 307 9291, .
.

, .

You need to deposit more than $124,000 to be able to make your regular with-
drawals and have a balance of zero at the end of seven years. What is $2,000 per 
month for seven years, if you aren’t withdrawing from an annuity? Multiply 
$ , $ ,2 000 12 7 168 000. Sounds like a good deal — if you can come up with that 
initial deposit.

Sinking funds
A sinking fund is usually used to accumulate money to fund a future expense or a 
way to retire a debt. You can use a sinking fund to pay off a loan in one lump sum 
at the end of a set amount of time while making just interest payments in the 
meantime.

For example, a friend borrows $10,000 to purchase a boat and agrees to pay the 
full amount back in one payment, ten years from now. In the meantime, he agrees 
to pay interest monthly on the $10,000 at an annual rate of 12%. He also sets up a 
sinking fund to accumulate the lump-sum payment. The sinking fund earns 9% 
interest, compounded monthly. How much does he pay monthly? The monthly 
amount is both the interest to the lender and a deposit into the sinking fund.

The interest to the lender is based on an annual rate of 12%. Using the simple 
interest formula, I Prt, you have I 10 000 0 12 1 1 200, ( . )( ) ,  per year. Because he 
plans to make monthly payments, you divide by 12 so $100 per month goes for the 
interest payments.

Next, you compute the amount to be deposited in the sinking fund each month.

The formula for a sinking fund payment is

P Ai
i n( )1 1



CHAPTER 11  Counting on the Mathematics of Finance      191

where P is the amount of the payment, A is the amount to be accumulated, i is the 
interest rate per time period, and n is the number of time periods.

Using the formula to determine the monthly payment into the sinking fund, the 
amount, A, is $10,000, and the interest per pay period is 9% divided by 12, because 
it’s compounded monthly. The number of time periods over the ten years is 120.

P
10 000 0 0075
1 0 0075 1

75
2 451357078 1

75
1 451357120

, ( . )
( . ) . . 0078

51 67577375.

So the monthly payment into the sinking fund is about $51.68 Add that to the 
interest payments, and the monthly commitment is $151.68. In ten years, the 
monthly payments will end.

Amortization
A loan is amortized when you pay both the amount borrowed and the interest on 
that amount in equal, periodic payments. After the payment amount is deter-
mined, only a portion of the payment is applied to the loan balance. The amount 
applied to the balance increases over time as the balance decreases.

Creating an amortization schedule
To show the effects of amortization, Table  11-1 shows how a loan of $1,000 is 
repaid when the interest rate is 15%, compounded monthly, over a period of one 
year.

First, you determine the monthly payment using the formula

R Pi
i n1 1( )

where R is the amount of the payment, P is the amount borrowed, i is the periodic 
interest payment, and n is the number of payments.

Using the formula, where i is 15% divided by 12 and there are 12 payments,

R
1000 0 0125

1 1 0125
12 5

1 0 861509
12 5

0 138491
912

.

.
.

.
.

.
00 2586.
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Now, look at Table 11-1 to see how the amount owed changes as the payments are 
made. The interest for each period is 1.25% of the principal remaining at the end 
of the previous period.

A total of $1,083.12 was paid, so $83.12 of that was interest. The amount of interest 
paid each period decreased, because the interest is figured on what is owed at that 
time. This is where you can make a good case for paying just a little more at each 
payment period to reduce the amount of interest paid, decrease the total amount 
paid, and finish paying off the loan even earlier.

Consider the homeowner who took out a $200,000 loan at 4% interest to be paid 
off in 30 years with regular monthly payments. The amount to be paid each month 

is calculated by letting P = 200,000, i 0 04
12

0 003333. . , and n 30 12 360.

R
200 000 0 003333

1 1 0 003333
666 60

1 0 301832
666

360

, ( . )
( . )

.
.

..
.

.60
0 698168

954 785

TABLE 11-1	 Amortization of a $1,000 Loan

Payment Number Amount
Interest for  
Period

Applied to  
Principal

Principal at End  
of Period

$1,000.00

1 $90.26 $12.50 $77.76 $922.24

2 $90.26 $11.53 $78.73 $843.51

3 $90.26 $10.54 $79.72 $763.79

4 $90.26 $9.55 $80.71 $683.08

5 $90.26 $8.54 $81.72 $601.36

6 $90.26 $7.52 $82.74 $518.62

7 $90.26 $6.48 $83.78 $434.84

8 $90.26 $5.44 $84.82 $350.02

9 $90.26 $4.38 $85.88 $264.14

10 $90.26 $3.30 $86.96 $177.18

11 $90.26 $2.21 $88.05 $89.13

12 $90.26 $1.11 $89.15 $0
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That results in payments of about $954.79 each month for 36 years. Actually, 
because of the rounding, the payment would need to be $954.87, to make the last 
payment slightly smaller. Table 11-2 shows you how the balance decreases. You 
don’t want to see the entire 360 payments, so you see the beginning and end of 
the table to give you a general idea of what’s going on.

You see the pattern of the interest amounts decreasing and amount applied to the 
principal increasing. The interest is always computed using the current balance 
owed. The total interest paid during those 30 years is $143,725.85.

Accelerating to payoff
Now consider the situation where a homeowner with a $200,000 loan decides to 
increase the amount of the payments. He’s obligated to pay the $954.87 but 
decides to pay the loan off more quickly. He wants to pay an extra $100 each 
month. How much more quickly will the loan be paid, and how much will he save 
in interest payments?

TABLE 11-2	 Paying Off a Home Loan
Pay Period Payment Interest Principal Balance

0 $200,000.00

1 $954.87 $666.67 $288.20 $199,711.80

2 $954.87 $665.71 $289.16 $199,422.64

3 $954.87 $664.74 $290.13 $199,132.51

4 $954.87 $663.78 $291.09 $198,841.42

5 $954.87 $662.80 $292.07 $198,549.35

    

356 $954.87 $15.67 $939.20 $3,760.87

357 $954.87 $12.54 $942.33 $2,818.54

358 $954.87 $9.40 $945.47 $1873.07

359 $954.87 $6.24 $948.63 $924.44

360 $927.52 $3.08 $924.44 $0.00
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Table 11-3 shows the effect of paying the extra $100.

The loan is paid off in 25 years instead of 30. And the total interest paid is 
$116,875.58, which is $26,850.27 less than that when paying the set amount each 
month.

It’s good to be well informed about your investment and borrowing options. 
Do the math!

TABLE 11-3	 Paying More Each Month for Fewer Years
Pay Period Payment Interest Principal Balance

0 $200,000.00

1 $1,054.87 $666.67 $388.20 $199,611.80

2 $1,054.87 $665.37 $389.50 $199,222.30

3 $1,054.87 $664.07 $390.80 $198,831.50

4 $1,054.87 $662.77 $392.10 $198,439.40

5 $1,054.87 $661.46 $393.41 $198,045.99

    

297 $1,054.87 $15.31 $1,039.56 $3,552.72

298 $1,054.87 $11.84 $1,043.03 $2,509.69

299 $1,054.87 $8.37 $1,046.50 $1,463.19

300 $1,054.87 $4.88 $1,049.99 $413.20

301 $414.58 $1.38 $413.20 $0.00
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Chapter 12
Telling the Truth 
with Statistics

Statistics tells you where it is. It tells you what to expect and how far spread 
the possibilities are in a situation. You can use statistics to summarize, 
inform, predict, and make your next move.

To use statistics properly, you need to become familiar with the terms and formu-
las and how to use them. Statistics got a bad rap when the book How to Lie with 
Statistics became available. It’s not that people don’t always use the statistical 
results fairly, but they can misrepresent them. That’s why you need to be informed.

In this chapter, you find the basics about statistics — what you need to know 
before doing an in-depth study or just all you need to know, period.

Presenting Data Graphically
You can display information in many ways. A picture or some graphical figure is 
informative. A good depiction can get a lot of information across in a quick and 
easy fashion. Some of the types of graphs used in statistics are bar graphs, histo-
grams, pie charts, and stem-and-leaf graphs.

IN THIS CHAPTER

»» Looking at statistical information in 
graph form

»» Measuring central tendency

»» Finding the spread and variability

»» Determining what’s normal about the 
normal distribution
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The whole point of graphs is to get a message across quickly, efficiently, and 
clearly. The four types of graphs shown in this section are some of the more popu-
lar graph formats used in statistics.

Barring none with a bar graph
A bar graph is exactly what the name implies. You use bars or rectangular figures 
to display how often an event occurs. The more frequently an item appears, the 
longer or larger the bar relating to that item is. In Figure 12-1, you see a bar graph 
showing the results of a survey asking 120 Star Wars fans who their favorite 
character is.

Just looking at the figure, you can tell which character is the most popular, which 
is the least popular, the rankings from least to greatest, and who is not included. 
If you wanted to, you could determine what percentage of votes each character 
received. Viewing such a graph opens many possibilities for interpretations and 
conclusions.

FIGURE 12-1: 
Survey results 

of favorite 
characters from 

Star Wars.
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Histograms
A histogram is a special type of bar graph. When you first look at a histogram, you 
may not notice that all the heights of the bars are in terms of percentages. 
The  widths of the bars are all the same, and the total of all the heights adds 
up to 100%.

Recently, students scored from 9 to 20 points on a 20-point statistics quiz. 
Looking at Figure  12-2, what conclusions can you draw from the students’ 
performance?

The graph gives you the percentage of the students receiving each score on the 
20-point quiz. You see that 20% of the students received 14 points. This is the 
highest percent and indicates the mode, or most scores. The mean, median, and 
mode are all covered later in this chapter.

You can quickly determine that more than half of the students received scores of 
13, 14, or 15, because their percentages are 15 20 16 51% % % %. And another 
quick observation involves the actual scores. If you need 14 points to get a C, 
16 points for a B, and 18 points for an A, then half of the students scored below a 
C: 5 10 9 11 15 50% % % % % %. That tells the teacher something about the quiz 
or the class or both.

FIGURE 12-2: 
Scores on a 

statistics quiz.
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Baking up a pie chart
A pie chart is a figure that acts something like a histogram because it represents 
percentages of the entire graph, which is a circle. It’s fairly easy to tell which slice 
is the largest and how much larger it is than the next largest or the smallest. To 
create a pie chart, you need to figure out how many of the 360 degrees in a circle 
you’re going to use to describe the relative worth or value of an object in a data set.

For example, a family wants to see how the monthly household expenses compare 
to each other. Looking at the numbers just doesn’t do it. A picture is worth a thou-
sand words (or a thousand dollars). The family has determined that 25% of the 
monthly expenses are mortgage payments, 5% are for insurance, 2% for taxes, 
15% for utilities, 20% for food, 3% for clothing, 5% for entertainment, 5% for 
household supplies, 5% for repairs, and 15% for miscellaneous. To create a pie 
chart, you multiply each of the percentages by 360. Table 12-1 shows you the dif-
ferent categories and the number of degrees representing each.

You divide up the circle using a protractor or some technology to show the relative 
impact of the different expenses. Figure 12-3 shows the different expenses and 
their percentage of the household’s total.

With the pie chart in hand, the members of the household can see where their 
money is going and determine where they may need to make changes.

TABLE 12-1	 The Number of Degrees Totals 360
Expense Percent Degrees

Mortgage 25% 90°

Insurance 5% 18°

Taxes 2% 7.2°

Utilities 15% 54°

Food 20% 72°

Clothing 3% 10.8°

Entertainment 5% 18°

Supplies 5% 18°

Repairs 5% 18°

Other 15% 54°
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Stem-and-leaf graphs
A stem-and-leaf graph is a helpful way to organize data. It resembles a histogram 
turned on its side, but it really gives more information than a histogram because 
it gives the actual numbers.

A stem-and-leaf graph consists of the first or first and second digits of the num-
bers in a data set on the left side of a vertical line. On the right side of the line, you 
find the last digit. The left side is the stem, and on the right side are all the leaves.

A survey asked 40 commuters how far it was from their home to their place of 
work. The answers, in order, were 5, 6, 6, 8, 10, 10, 11, 12, 24, 25, 38, 38, 38, 38, 38, 
38, 38, 39, 40, 41, 41, 42, 43, 43, 45, 48, 49, 49, 49, 50, 51, 53, 58, 59, 61, 62, 67, 
70, 71, and 71.

FIGURE 12-3: 
The relative 

expenses 
incurred by a 

household.
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To put these numbers in a stem-and-leaf graph, you put the first digits (0, 1, 2, 3, 
4, 5, 6, and 7) on the left and the second digits on the other side.

0 5 6 6 8

1 0 0 1 2

2 4 5

3 8 8 8 8 8 8 8 9

4 0 1 1 2 3 3 5 8 9 9 9

5 0 1 3 8 9

6 1 2 7

7 0 1 1

A nice feature of the stem-and-leaf graph is that you get a quick picture of the 
situation. You can see where much of the data is clustered. You can do a quick look 
for the mode (most often occurring) and the median (middle score), which I dis-
cuss in the next section. But, just for fun, can you find the most frequently occur-
ring mileage? Do you see the seven 8s in 3’s stem? The most frequent number of 
miles for these commuters is 38 miles.

Measures of Central Tendency
In statistics, a measure of central tendency tells you what’s in the middle or what’s 
expected or what’s most common. It’s usually referred to as the average. What’s 
the average salary at that company? What was the average score on the test? What 
is the average waiting time for the pizza? You can answer all these questions using 
the mean, median, or mode of the set of numbers associated with the data.

The mean, median and mode don’t necessarily come out to be the same for a 
particular set. That’s why it’s necessary to pick the measure that gives the best 
picture or best answer to what’s to be expected.

Meaning it with the mean
The mean average of a data set is the value obtained by adding all the numbers in 
the set and dividing by how many numbers there are.

The mean average of the set of numbers x x x x xn1 2 3 4, , , , ,  is  

x x x x x x
n

n1 2 3 4  .

The mean is indicated with the variable x with a bar across the top, x , or with the 
Greek letter mu, .
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Putting this to practice, what is the average number of letters in the names of 
the states of the United States? First, count the letters in the name of each state: 
Three states have 4 letters, three states have 5 letters, five states have 6 letters, 
nine states have 7 letters, eleven states have 8 letters, five states have 9 letters, 
three states have 10 letters, five states have 11 letters, three states have 12 letters, 
and three states have 13 letters. So add them up and divide by 50.

3 4 3 5 5 6 9 7 11 8 5 9 3 10 5 11 3 12 3 13
3 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
55 9 11 5 3 5 3 3

12 15 30 63 88 45 30 55 36 39
50

413
50

8.226

When using a weighted average to compute the mean average, you don’t have to 
list all the numbers in the list. You group the repeats and multiply by the num-
ber of times that they occur. Then divide by the sum of how many are in each 
group.

The average number of letters in the names of the states is a little more than eight. 
This seems to be reasonable. Eleven of the states have names with eight letters, 
and that number of letters seems to be in the middle of the ordered list. With that 
in mind, consider the next situation.

A company owner claims that his employees earn an average salary of $76,000. 
This is true. But does it represent the expected value or a fair representation of 
what people make at his business? The 30 salaried people earn the following 
amounts:

$ , $ , $ , $ , $ , $ ,

$ , $ , $

20 000 30 000 40 000 40 000 50 000 60 000

20 000 30 000 400 000 50 000 60 000 70 000

30 000 30 000 40 000 50 000 60

, $ , $ , $ ,

$ , $ , $ , $ , $ ,, $ ,

$ , $ , $ , $ , $ , $ ,

$ ,

000 70 000

30 000 30 000 40 000 50 000 60 000 70 000

30 0000 30 000 40 000 50 000 60 000 1 000 000$ , $ , $ , $ , $ , ,

Adding all the salaries together and dividing by 30, you get

Average salary 2 280 000
30

76 000, , ,

Yes, the math is correct, but this is not a good representation of what people are 
making there. Only one person is earning more than $70,000  — and you can 
probably guess who. The $1,000,000 salary is an outlier — it distorts the picture 
when the mean average is used.
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Riding down the middle with the median
The median is another measure of central tendency. It’s the middle number in a 
data list that has been put in order either smallest to largest or largest to smallest.

The median of the set of numbers x x x x xn1 2 3 4, , , , ,  is the middle number in in 
the list if n is an odd number. If n is even, then find the mean average of the two 
numbers in the middle.

Consider the set of numbers: {2, 3, 3, 3, 3, 4, 4, 4, 5, 6, 7}. This set has 11 numbers, 
so the sixth number is in the middle:

2, 3, 3, 3, 3, 4, 4, 4, 5, 6, 7

The median is 4.

Now look at the same set after deleting the number 7; there are now ten numbers 
in the set: {2, 3, 3, 3, 3, 4, 4, 4, 5, 6}. The fifth and sixth numbers are in the middle.

2, 3, 3, 3, 3, 4, 4, 4, 5, 6

You find the mean average of 3 and 4: 3 4
2

7
2

3 5. . The median is 3.5. This num-

ber doesn’t appear in the list, but a particular measure of central tendency is often 
not listed in the data set being considered.

Making the most of the mode
The mode, if there is one, is the number that occurs most often in a data set. There 
can be one mode, no mode, or many modes. The mode is another measure of 
central tendency. Unlike the mean and median, the mode can be used in non-
numerical sets. For example, if you were to survey the families who had a child 
last year and asked for the name of their new infant, you would find the most 
popular name by finding the mode.

The mode of a data set is the number or numbers that occur most frequently.

The mode of each of the three sets listed here is the same number.

A 1 2 3 4 4 4 5 5 5 5 5 5 5 6 7 8, , , , , , , , , , , , , , ,               

B 5 5 6 7 8 9 10 11 12 13 14 15 16, , , , , , , , , , , ,            

C 1 1 2 2 3 3 4 4 5 5 5, , , , , , , , , ,          
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The mode of 5 in set A is a pretty good measure of central tendency. The median 
is also 5.

The mode of 5 in sets B and C is not a good measure of central tendency. In both 
cases, it occurs most frequently but isn’t a good representation of the average.

Recognizing the geometric mean
The geometric mean is a measure of central tendency that is used when comparing 
items that are rather different from one another. One item may come from a much 
larger range or have different weight than another. To compute the geometric 
mean of a set of numbers, you multiply all the numbers and then take a root of the 
product.

The geometric mean of a set of n numbers, x x x x xn1 2 3 4, , , , , , is the nth root of the 
product of the numbers.

geometric mean x x x xnn
1 2 3

The geometric mean of the numbers 1, 1, 2, 8 is found by multiplying the four 
numbers together and then finding the fourth root of that result.

1 1 2 8 16 24 4

The geometric mean is frequently used when finding averages involving percent-
ages. For example, to find the geometric mean of the percentages 1%, 1%, 1%, 9%, 
27%, you change the percentages to decimals, multiply them together, and then 
find the fifth root of the product.

0 01 0 01 0 01 0 09 0 27 0 0000000243 0 035 5. . . . . . .  or 3%

The two examples shown here were designed to come out as nice numbers. When 
taking roots of numbers, that is seldom the case; you usually end up with a deci-
mal value that needs to be rounded — and scientific calculators are so very helpful 
with these problems.

Comparing measures of central tendency
You have several options when trying to find the average or expected value of a 
data set. When the mean, median, and mode all come out to be the same number, 
you’re most happy with the conclusions you can draw from the data. But not 
all  data sets behave that nicely. You have to choose which measure of central 
tendency acts as the best representative.
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Agreement in measures of central tendency
In Figure 12-4, you see a graph of the number of points scored each game by a star 
soccer player. You see the percentage of games where each number of goals is 
achieved.

The percentage of time each number of goals is scored is shown. You can deter-
mine the total number of points if you know how many games this represents. 
And you can determine the mean, median, and mode using this histogram  — 
without even knowing the exact number of games.

To find the mean number of goals, you multiply each number of goals by its 
respective percentage. You’re actually dividing by 1, the sum of the percentage of 
times each score occurs. The computation will show you where the 1 comes from 
when using this formula for the mean.

Mean number of goals
14 18 2 32 3 24 4 12% % ( ) % ( ) % ( ) % ( )

% % % % %

. ( ) . ( ) . ( ) .

5
14 18 32 24 12

0 14 1 0 18 2 0 32 3 0 244 4 0 12 5
0 14 0 18 0 32 0 24 0 12

0 14 0 36 0 96 0

( ) . ( )
. . . . .

. . . .. . .96 0 60
1

3 02

FIGURE 12-4: 
Super soccer 
player scores 

goals each game.
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The mean number of goals is slightly greater than 3.

The median is the score in the middle. Because each number of goals is given as a 
percentage, you can just determine which score is in the grouping including 50%.

The player scored 1 goal in 14% of the games. The next 18% include all the games 
where she scored 2 points. That’s a total of 32% of the games. The player scored 
three points in the next 32% of the games — a total now of 64%. The halfway 
mark, 50%, lies in that grouping, so the median is 3 goals.

If you’re not comfortable using the percentages to find the median, you can 
convert the percentages to numbers if you know the total number of games. 
For instance, if the games played is 50, then multiply each percentage by 50 to get 
the number of games each number of goals was scored.

1 Goal: 14% of 50 = 7 games

2 Goals: 18% of 50 = 9 games

3 Goals: 32% of 50 = 16 games

4 Goals: 24% of 50 = 12 games

5 Goals: 12% of 50 = 6 games

The middle score will lie between the 25th and 26th number in the list.

List the number of goals in order: 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5.

No averaging is necessary. The median is 3 goals.

The mode is the easiest to find. You see that the score that occurs the most fre-
quently is 3 goals; it occurs 32% of the time or during 16 games, if 50 games were 
played.

All three measures of central tendency are the same. You can be assured that the 
average for this player is 3 goals per game.

Disagreements in the measures  
of central tendency
Even when the measures of central tendency aren’t the same, you can draw some 
decent conclusions from what you find from your computations. You just have to 
be careful to indicate which measure you’re using when reporting your result or 
expected value.
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In Figure 12-5, you see the results of a memory test performed on 50 subjects. 
They were given a list of 15 words to memorize and then had to recall as many as 
possible after a five-minute break.

Compute the mean, median, and mode of the data shown in the graph.

»» Mean:

12 6 10 7 8 8 4 9 4 10 4 11 2 12 2 13 2 14 2 15
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
22 10 8 4 4 4 2 2 2 2

72 70 64 36 40 44 24 26 28 30
50

434
500

8 68.

»» Median: There are 12 10 22 scores for those remembering 6 or 7 words. 
The 25th and 26th scores will lie in the next eight scores, which are for 
8 words. So the median is 8.

»» Mode: The most frequent score is 6 words, so this is the mode.

FIGURE 12-5: 
Results of 

memory test.



CHAPTER 12  Telling the Truth with Statistics      207

When reporting the average number of words remembered, you could use 8.68 or 
8 or 6. Each of these is “correct.” Which is the best representation?

Box-and-whisker plots
A box-and-whisker plot is a figure that gives you several bits of information about 
a data set, all with a picture that resembles two teeth and whiskers (the box and 
the whiskers). Figure 12-6 gives an example of just such an illustration.

The information available from a box-and-whisker plot are the range, the first 
and third quartiles, and the median.

»» Range: The range is the difference between the lowest score or number in the 
set and the highest score or number. In the case presented in Figure 12-6, the 
range is 65 5 60.

»» Quartiles: An ordered set of numbers can be arranged into four quartiles. 
The first quartile contains the first 25% of the numbers, the second contains 
the next 25%, and so on. So the lower quartile shows where the first 25% ends, 
and the third quartile shows where the first 75% ends. In the box-and-whisker 
plot shown in Figure 12-6, the first quartile is 30, and the third quartile is 55. 
The median is actually the second quartile, which is 40.

»» Median: The median is the middle score. In Figure 12-6, the median is 40.

The box-and-whisker plot doesn’t give information like the mode or what the 
others scores actually are, but it’s a relatively good representation of how the 
scores lie in a data set.

FIGURE 12-6: 
Box-and- 

whisker plot.
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Variance and Standard Deviation
The measures of central tendency tell you the average or middle or expected value 
of a data set. Another important bit of information is the spread or how far from 
the average those other values are located.

The range of a data set is one indication of the spread. You subtract the smallest 
number from the largest number, and you have the range. But the variance and 
standard deviation tell you just a bit more than the range. They tell you about how 
the values are clustered or arranged around the average.

The variance and standard deviation are closely related, because the standard 
deviation is the square root of the variance.

Variance
The variance of a set of numbers is the quotient found by dividing the sum of the 
squares of some differences by the number of numbers. Whew! The formula will 
make this clearer.

The variance of a set of numbers is the mean of the squares of the deviations of 
each number from the mean. For a set of numbers, x x x x xn1 2 3 4, , , , , , let x  rep-
resent the mean and s2 the variance; the formula for the variance is

s
x x x x x x x x

n

x x

n
n i

i

n

2 1

2

2

2

3

2 2 2

1


You notice that each term being added is a square. By squaring all the differences, 
all the terms will be positive, so no cancelling out occurs.

The summation notation x xi
i

n 2

1
 reads that you’re adding up n terms, num-

bered from 1 through n. And each term is the square of a difference. You find the 
difference when you subtract the mean, x , from each of the numbers in the set —  
each number indicated by the subscript i on xi .

The set of numbers {1, 1, 3, 3, 4, 4, 4, 6, 6, 8} has a mean of 4, a median of 4, and 
a mode of 4. Using the formula for variance,

s2

2 2 2 2 22 1 4 2 3 4 3 4 4 2 6 4 8 4
10

2 9 2 1 3 0

( )

( ) ( ) ( ) 2 4 16
10

44
10

4 4
( )

.
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The variance is 4.4, and variance is about spread. So look at another set of num-
bers with a mean of 4, median of 4 and modes of both 1 and 7 and compute its 
variance. The set is {1, 1, 1, 1, 4, 4, 7, 7, 7, 7}.

s2

2 2 2
4 1 4 2 4 4 4 7 4

10
4 9 2 0 4 9

10
72
10

7 2
( ) ( ) ( )

.

The variance this time is 7.2. In the second set of numbers, more of the numbers 
are farther from the mean. This is what the spread is all about.

Standard deviation
The standard deviation also represents the spread of a set of numbers. A nice 
feature of this measure is that it can be related to a certain standard, making the 
numbers representing the deviation more understandable and usable. You find 
more on that in the section on the normal distribution.

The standard deviation is the square root of the variance, so, even though its 
formula looks even more complicated than that of the variance, it’s just one 
step more.

The standard deviation, s, is the square root of the variance, s2.

s s
x x x x x x x x

n

x x

n
n i

i

n

2 1

2

2

2

3

2 2 2

1


For example, a student’s 16 test scores were {75, 75, 76, 78, 80, 80, 80, 80, 82, 82, 
82, 82, 82, 86, 88, 88}, which have an average of 81. Therefore, the variance is

s2

2 2 2 2 22 75 81 76 81 78 81 4 80 81 5 82 81
16

86

( )

(




81 2 88 81

2 36 25 9 4 1 5 1 25 2 49
16

238
16

14

2 2) ( )

( ) ( ) ( ) ( )
.8875

The standard deviation is the square root of the variance: s 14 875 3 86. . . What 
the standard deviation of 3.86 tells you is that about 68% of the scores are within 
about four units of the mean. You expect to find about 68% of the scores clustered 
on either side of 81. Looking at the set of numbers, four units above 81 is 85 and 
four units below 81 is 77:

75  75  76 78  8  8  8  8  82  82  82  82  82, , , , , , , , , , , , ,0 0 0 01 244444444 34444444 86  88  88, ,

See the next section for more about standard deviation.
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Investigating the Normal Distribution
The normal distribution describes how a data set behaves when it acts “normally.” 
With a normal distribution, you see values clustering around the mean and 
spreading in a relatively symmetric pattern on either side of that center. The 
normal curve, in Figure 12-7, is a great illustration of the behavior of a normal 
distribution.

The total area under the curve is 100%, evenly distributed on either side of the 
mean, in the center. With 50% of the area on either side of the mean, there are also 
the designations 3 standard deviations from the mean, 2 standard deviations 
from the mean, 1, 0, +1, +2, and +3 standard deviations from the mean. Between 

1 and +1 standard deviations, you find 68% of the area under the curve. Between 
2 and +2 standard deviations, there is 95% of the area under the curve, and 

between 3 and +3, there is 99.7% of the area under the curve. Where is the other 
0.3% of the area, you ask? It’s evenly distributed to the very left and very right of 
the curve. You don’t expect to find many scores that far from the mean.

The ages of the first 45 U.S. presidents at the time of their inauguration range 
from 42 to 70 years of age. The mean and median ages are both 55, and there are 
two modes, 51 and 54, with five presidents inaugurated at each of those ages. The 
standard deviation of the ages is about 6.6 years.

Using this information, Figure 12-8 illustrates how the ages distribute in a normal 
distribution.

FIGURE 12-7: 
The normal 

distribution.
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With the normal distribution modeling the ages of the presidents, you could ask: 
“If I choose a president at random, what is the probability that he’ll have been 
younger than 68 at the time of his inauguration?”

The age 68 is very close to 2 standard deviations above the mean. The area between 
2 and +2 standard deviations is 95%. Half of that, from 0 to +2 is 47.5%. Add the 

lower half, 50%, and you get a total of 97.5%.

If you choose a president at random, the chances are 97.5% that the person you 
chose was younger than 68.

Another question could be: “If I choose a president at random, what is the prob-
ability that he would have been older than 62 at the time of his inauguration?”

The age 61.6 is pretty close to 62, so, using that and its position at +1 standard 
deviation above the mean, you can figure the percentage. The area between 1 and 
+1 is 68%. Half of that is 34%. So the area above the +1 standard deviation is 
50 34 16% % %. There’s a 16% chance that your choice was older than 62 at the 
time of inauguration.

In this example, I used only those ages that came close to integer standard 
deviations. In a full course of statistics, you use tables or technology that give you 
more exact numbers and percentages; you don’t have to round to the nearest 
whole number. This is just an illustration of how applying the normal distribution 
can be done.

Statistics can be a powerful tool. You want to know how to use it effectively and 
how to understand conclusions that others make using these tools.

FIGURE 12-8: 
The first 45 U.S. 
presidents’ ages 
at inauguration.
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Chapter 13
Logic

The study of logic has been going on for centuries. And who would 
have  thought that a portion of logic would be a basis for computer 
programming?

Even though logic is much about words, symbolic logic uses letters to represent 
statements and symbols to represent connectors — making the analyzing of a 
statement simpler to analyze and applicable to other situations. And one of the 
main tools used when studying logic is truth tables.

Every day, you’re in a position where you try to determine the truth value of a 
statement or opinion or the validity of an argument. You have to consider so many 
aspects and questions and trust situations when deciding the worth of a state-
ment. The truth value studied in logic is based on the supposition that what is 
stated is, indeed, a fact. It’s sometimes hard to judge right upfront.

Logically Presenting the Vocabulary
When studying logic and its many aspects and tools, you need to become familiar 
with the terminology. The words used are precise; the definitions have to hold up 
to any and all studies of logic.

IN THIS CHAPTER

»» Getting familiar with statements and 
quantifiers

»» Working through truth tables and 
equivalent statements

»» Considering conditions with 
conditional statements

»» Analyzing arguments with Euler 
diagrams

»» Passing through logic gates
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In logic, a statement is a declarative sentence that is either true or false.

When you use a statement in logic, you need to be able to determine whether it’s 
true or false. For example, the following are statements:

A cat is a mammal.

I do not like green eggs and ham.

All cows have seven legs.

3 4 12

The statements listed are either true or false. But if a sentence can’t be determined 
to be true or false, then it isn’t a statement in the study of logic. The following are 
not statements:

Go to the store.

Is she happy?

2 r h

A compound statement is formed by combining two or more statements using 
connectives with words, such as and, or, not, and if . . . then.

Take the two statements (1) “My dog has fleas,” and (2) “It is summer.” 
Compound statements that can be made using those two statements include the 
following:

My dog has fleas, and it is summer.

My dog has fleas, or it is summer.

My dog does not have fleas.

If my dog has fleas, then it is summer.

Even though the connective not doesn’t create a statement from two different 
component statements, using it is still considered to be making a compound 
statement.

The symbols for the connectives are

: and This is called the conjunction.

: or This is called the disjunction.

 : not This is called the negation.

: if . . . then This is called the conditional.
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Statements can have universal or existential quantifiers. The universal quantifiers 
are all, each, every, no, and none. The existential quantifiers are some, there exists, 
and at least one.

Finding the Truth with Truth Tables
A truth table is a visual representation of all the possible combinations of truth 
values for a given compound statement. The individual statements are repre-
sented by letters, usually beginning with p, q, r, and so on. The connectives are 
represented by their symbols , , , and .

Considering the conjunction
The conjunction, p q, puts the word and between two statements to create a 
compound statement.

Consider the following statements:

(1) Chicago is a city in Illinois.

(2) Red is a color in the American flag.

(3) 7 3 11.

(4) San Francisco is a city in Florida.

Statements (1) and (2) are true, and Statements (3) and (4) are false.

Next, you construct a truth table for the conjunction p q.

p q p q

T T T

T F F

F T F

F F F

Referring to the first line of Ts and Fs in the table, when both statements are 
true, their conjunction p q is true. For example, using Statements (1) and (2), 
the  conjunction reads: “Chicago is a city in Illinois, and red is a color in the 
American flag.”
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The second line of Ts and Fs says that when the first statement is true and the 
second is false, their conjunction p q is false. Using Statements (1) and (3), the 
conjunction reads: “Chicago is a city in Illinois, and 7 3 11.”

In the third line, when the first statement is false and the second statement is 
true, their conjunction p q is false. Using Statements (4) and (2), the conjunction 
reads: “San Francisco is a city in Florida, and red is a color in the American flag.”

And, finally, when both statements are false, their conjunction is false. Using 
Statements (3) and (4), the conjunction reads: “7 3 11, and San Francisco is a 
city in Florida.”

Basically, what you see here is that for a conjunction to be true, both of the com-
ponent statements have to be true.

Displaying the disjunction
The disjunction, p q, uses the word or to create a compound statement.

The truth table for the disjunction is shown here:

p q p q

T T T

T F T

F T T

F F F

For a disjunction to be true, only one of the component statements needs to be 
true. Consider the following compound statements representing the four rows.

TT: “It rains in Hawaii, or 10 5 2.” Both are true; the compound statement 
is true.

TF: “It rains in Hawaii, or all cows have seven legs.” The first statement is true, 
so the compound statement is true.

FT: “All cows have seven legs, or 10 5 2.” The second statement is true, so the 
compound statement is true.

FF: “All cows have seven legs, or pigs can fly.” Both statements are false, so the 
compound statement is false. (At least I hope the second statement is false!)
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Looking into negativity
The negation connective, , changes a statement that was true to a statement that 
was false, and it changes a statement that was false to a statement that was true. 
The truth table for negation is relatively simple and looks like this:

p p

T F

F T

Consider these statements:

A true statement: Four quarters equal a dollar.

Negating it: Four quarters do not equal a dollar.

A false statement: Elephants make good house pets.

Negating it: Elephants do not make good house pets.

What about the negation of negation? Is   p  equivalent to p? Consider this 
question in a truth table. First, start with the negation truth table and add a third 
column.

p p p  

T F

F T

Then fill in the truth values:

p p p  

T F T

F T F

The negation of false is true, and the negation of true is false. The two negations 
cancel each other out.

Conditionally making statements
The conditional connective, , introduces the if . . . then format into a statement. 
For example, consider the following statements, where p = “I do my job.” and q = 
“I get paid.”

If I do my job, then I get paid.

If I do my job, then I don’t get paid.

If I don’t do my job, then I get paid.

If I don’t do my job, then I don’t get paid.
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The truth table for the if . . . then statement is shown here:

p q p q

T T T

T F F

F T T

F F T

Do the statements seem “fair” or “good” for you when the result is true? Of 
course, you want to be paid if you do the job; it’s not fair to do the job and not be 
paid. And you shouldn’t expect to be paid if you don’t do your job. If you don’t do 
the job but get paid anyway, then that’s not really “fair” — but you’ll take it! And, 
if you don’t do the job and don’t get paid, then that’s how it should be.

Analyzing compound statements
Sometimes discussions can get so complicated when words get twisted and rea-
soning seems to be off a bit. Not every topic in a discussion can be turned into a 
compound statement and analyzed for its truth that way, but using logic and truth 
values is a good technique to use when possible. Consider the compound state-
ment p q p  . When constructing a truth table, you start with the basic p 
and q columns. Then you add a  q column followed by a column p q . Before 
you can perform the conjunction, , you need a  p column. Here’s a step-by-step 
procedure.

1.	 Start with a basic p and q and then add  q.

p q

T T

T F

F T

F F  

p q q

T T F

T F T

F T F

F F T

2.	 When adding the p q  column, perform the disjunction, , on the first 
and third columns.

Remember, with disjunctions, the statement is false only when both compo-
nent statements are false.

p q q p q 

T T F T

T F T T

F T F F

F F T T
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3.	 Add the  p column.

p q q p q p  

T T F T F

T F T T F

F T F F T

F F T T T

4.	 Add the p q p   column, which shows the conjunction of the fourth 
and fifth columns.

p q q p q p p q p    

T T F T F F

T F T T F F

F T F F T F

F F T T T T

The conjunction is true only when the two component statements are true. This 
complex statement is only true when both original statements are false.

Equivalent Statements
Compound statements are equivalent when they have the same exact truth 
values  — that is, when each true-false possibility has the same result. The 
statement, “I won’t wear my black slacks and I won’t wear my brown shoes,” is 
equivalent to, “It’s not true that I will wear my black slacks or my brown shoes.” 
In case you aren’t convinced, take a look at truth tables for the statements.

Let p stand for “I’ll wear my black slacks” and q for “I’ll wear my brown shoes.” 
Then the disjunction table for “I won’t wear my black slacks and I won’t wear my 
brown shoes” is as follows:

p q p q p q   

T T F F F

T F F T F

F T T F F

F F T T T
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Now, creating a table for “It’s not true that I will wear my black slacks or my 
brown shoes,” the whole disjunction is negated.

p q p q p q

T T T F

T F T F

F T T F

F F F T

You see that the two truth tables have exactly the same result. You write the 
equivalence of two compound statements using “ ” between the state-
ments:   p q p q .

The conditional compound statement p q has a negation and an equivalence 
that doesn’t even contain the if . . . then statement.

First, the negation of the conditional statement is  p q p q.

A truth table shows you the equivalence:

p q p q p q q p q  

T T T F F F

T F F T T T

F T T F F F

F F T F T F

You see that the fourth and sixth columns are the same, so  p q p q.

DEMORGAN’S LAWS
The two equivalences   p q p q  and   p q p q  are called De 
Morgan’s Laws after Augustus De Morgan, a 19th-century British mathematician. Even 
though De Morgan is given credit for stating the laws in terms of modern-day logic, it 
seems that these laws actually go back to the time of Aristotle and was known to the 
Greek mathematicians and logicians of his time.
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Next, the conditional compound statement is equivalent to a disjunction: 
p q p q . See how the truth table confirms this equivalence.

p q p q p p q 

T T T F T

T F F F F

F T T T T

F F T T T

Studying the Conditional
The conditional statement p q consists of an antecedent, p, and a consequent, q. 
You can create new conditional statements by negating, interchanging, or both 
negating and interchanging.

Consider the statement p q: If it’s raining, then I get wet.

The related conditional statements are

»» Inverse of p q is a negation:  p q.

 p q: If it isn’t raining, then I don’t get wet.

»» Converse of p q is an interchange: q p.

q p: If I get wet, then it’s raining.

»» Contrapositive of p q is both negation and interchange:  q p.

 q p: If I don’t get wet, then it isn’t raining.

The inverse and converse of a true conditional statement aren’t necessarily true, 
but they’re equivalent to each other. Also, the original statement and the contra-
positive are always equivalent.

p q p q p q p q q p q p     

T T F F T T T T

T F F T F T T F

F T T F T F F T

F F T T T T T T
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One other conditional situation is the biconditional. This is used in if-and-only-if 
situations.

You will be paid if and only if you do the work.

A number is divisible by 6 if and only if it’s divisible by 2 and 3 both.

You can go ice skating if and only if the water on the lake is frozen.

The biconditional, p q, is the conjunction of p q and q p. The truth table 
illustrates this property.

p q p q q p p q q p

T T T T T

T F F T F

F T T F F

F F T T T

The biconditional, p q, is true if both p and q are true or if both p and q are false.

Analyzing Arguments
An argument can be classified as either valid or invalid. A valid argument occurs in 
situations where if the premises are true, then the conclusion must also be true. 
And an argument can be valid even if the conclusion is false.

You can analyze arguments with truth tables or with a visual approach using an 
Euler diagram. This pictorial technique is named after the Swiss mathematician 
and is used to check to see whether an argument is valid.

The following argument has two premises: (1) “All dogs have fleas.” (2) “Hank is 
a dog.” The conclusion is that, therefore, Hank has fleas.

These arguments usually have the following format with the premises listed first 
and the conclusion under a horizontal line:

First premise: All dogs have fleas.

Second premise: Hank is a dog.

Conclusion:  Hank has fleas.
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Using an Euler diagram to analyze this argument, draw a circle to contain all 
objects that have fleas. Inside the circle, put another circle to contain all dogs. And 
inside the circle of dogs, put Hank. See Figure 13-1.

The argument isn’t necessarily true, because you know that not all dogs have 
fleas. All this shows is that the argument is valid. If the two premises are true, then 
the conclusion must be true.

Now consider an argument involving rectangles and triangles. A polygon is a 
figure made up of line segments connected at their endpoints.

All rectangles are polygons.

All triangles are polygons.

 All rectangles are triangles.

When analyzing the validity of this argument, the Euler diagram starts with a 
circle containing all polygons (see Figure 13-2). Two circles are drawn inside the 
larger circle — one containing rectangles and the other triangles. The two circles 
don’t overlap, because rectangles have four sides, and triangles have three sides.

The argument is invalid. Rectangles are not triangles — not even sometimes.

FIGURE 13-1: 
Poor Hank 

has fleas.
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Arguments can have more than two premises. For example:

Abraham Lincoln was president of the United States.

Lincoln was born in Kentucky.

Lincoln practiced law in Illinois.

 Presidents born in Kentucky practice law in Illinois.

One Euler diagram that can represent this situation has three intersecting circles, 
as in Figure 13-3.

FIGURE 13-3: 
President 
Abraham 

Lincoln and 
other Illinois 

lawyers.

FIGURE 13-2: 
Two types of 

polygons.
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As you can see from the diagram, there can be presidents born in Kentucky 
who were not lawyers in Illinois and there can be presidents who were lawyers in 
Illinois but not born in Kentucky. The argument is invalid. To be valid, it must 
always be true.

Applying Logic to Circuits
A breakthrough development in the design of computers came in 1937 when 
Claude Shannon showed how logic could be incorporated into the design of elec-
trical circuits. Computer scientists quickly caught on to the additional use in com-
puters and their circuits. The circuits use logic gates, which are basic to digital 
electronics. Logic gates have one or more input or statement resulting in just one 
output or conclusion.

The basics gates are and, or, and not. These are directly related to the connectives 
in logic: , , . The two states or results in the computer circuits are 0 and 1, 
which correspond to F and T or off and on.

The compound statement p q and its truth table can be written as the circuit 
involving gates A or B. Replace the T and F with the corresponding binary num-
bers 1 and 0, and replace the disjunction, , with or. When looking at Figure 13-4 
depicting the circuit, think of 1 as signifying “on” and 0 as being “off.”

p q p q

T T T

T F T

F T T

F F F   

A B A or B

1 1 1

1 0 1

0 1 1

0 0 0

The circuit is complete if either A or B is closed (connected); they both don’t have 
to be closed.

CLAUDE E. SHANNON
Claude E. Shannon introduced the use of logic and Boolean algebra in the design of 
switching circuits in his master’s thesis. Using this property of electrical switches and 
incorporating the properties of logic provided the basis for electronic digital computers. 
And, showing what a small world it is that we live in, Shannon’s sister, Catherine Kay, 
is largely responsible for your author becoming a mathematics major after Mrs. Kay 
showed the class how beautiful calculus could be.
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The compound statement p q and its truth table can be written as the circuit A 
and B with the corresponding binary numbers.

p q p q

T T T

T F F

F T F

F F F   

A B A and B

1 1 1

1 0 0

0 1 0

0 0 0

A diagram of this circuit in Figure 13-5 shows that both A and B have to be con-
nected for the circuit to be complete.

You can graph all sorts of compound statements to illustrate their truth or false 
values in terms of being complete or not. The statement p q r  can be inter-
preted in a circuit as A or both B and not C, as shown in Figure 13-6.

FIGURE 13-5: 
Both A and B 

need to be 
closed.

FIGURE 13-6: 
Compound 
statements  

create  
compound 

circuits.

FIGURE 13-4: 
Current flow 
through the 

circuit.
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p q r r q r p q r  

T T T F F T

T T F T T T

T F T F F T

T F F T F T

F T T F F F

F T F T T T

F F T F F FF

F F F T F F

A B C C B C A B C

1 1 1 0 0 1

1 1 0 1 1 1

1 0 1 0 0 1

1 0 0 1 0 1

0 1 1 0 0 0

0 1 0 1 1 1

0 0 1 0 0

  

00

0 0 0 1 0 0

The diagram of this circuit in Figure 13-6 shows that either A has to be connected 
or both B and ~C need to be connected for the circuit to be complete.

It’s hard to comprehend that some very complex computer programs are based on 
such a simple idea as on and off.





4Employing the 
Tools of Finite 
Math to Expand 
and Investigate



IN THIS PART . . .
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Chapter 14
Markov Chains

What is a Markov chain? Is it an elegant piece of jewelry? Is it a collection 
of Pacific islands? Or could it be a new type of technology for commu-
nicating and distributing information? A Markov chain is none of these 

choices, but the closest is the description involving information.

Markov chains are named after Russian mathematician Andrei A. Markov. They’re 
found in models of random processes, such as consumer trends, weather, animal 
behavior, and population growth or decline. What’s special about a Markov chain 
is that it models a sequence of trials in an experiment or observed happenings. In 
this process, a result is dependent only on the stage that comes right before, and 
predictions of future results are made from the current state of the situation.

Recognizing a Markov Chain
An example of a Markov chain modeling a situation could be in a person’s cereal 
purchasing habits. Say, for example, that a particular consumer buys three differ-
ent brands of cereal: Kicks, Cheery A’s, and Corn Flecks. Right now, if she buys 
Kicks, there’s a 30% chance that she’ll buy them the next time, a 30% chance 
she’ll buy Cheery A’s, and a 40% chance it’ll be Corn Flecks. If she purchases 

IN THIS CHAPTER

»» Getting familiar with Markov chains

»» Constructing and reading a transition 
matrix

»» Using a probability vector

»» Creating and interpreting Markov 
chains

»» Predicting what happens in the 
long term
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Cheery A’s, there’s a 45% chance she’ll buy them the next time and a 25% chance 
she’ll buy Corn Flecks. And if she buys Corn Flecks, there’s a 10% chance she’ll 
purchase them the next time and a 50% chance it’ll be Kicks.

What will this consumer do the third time around? Is there any pattern emerging? 
Can you predict anything in the long term?

First, it’s helpful to put all this information in some sort of useable format, such 
as the following chart.

Next Purchase

This

Purchase

Kicks Cheery A’s Corn Flecks

Kicks 30%% % %

% % %

% % %

30 40

30 45 25

50 40 10

Cheery A’s

Corn Flecks

This chart gives you a better picture of the consumer’s next move. Note that each 
row adds up to 100%. The next step is to put this situation into a format that you 
can further investigate and analyze. Instead of a chart showing all the details, 
you’ll move to a matrix that allows for the mathematical processes.

Coming to Terms with Markov Chains
As with any study of a particular topic or area, you find terms and definitions that 
are special to that subject. Markov chains are no exception. Become acquainted 
with these terms, or just note where to find them for future reference.

»» State: A state in a Markov chain is one of the categories available. In the case 
of the consumer in the previous section, the three states are the three types 
of cereal. She purchases either Kicks, Cheery A’s, or Corn Flecks.

»» Probability distribution: A probability distribution describes the percentage 
of time spent in each state. You don’t always know the probability distribution, 
but you can often find it.

»» Transition matrix: The transition matrix gives the probabilities of going from 
one state to another in the next move. In the cereal purchasing example, the 
percentages given in the chart are used to create the elements in the transi-
tion matrix.

»» Future state: By applying a transition matrix repeatedly — which means 
multiplying by that matrix — you can determine a future state.
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»» Equilibrium: After repeated multiplications of the transition matrix, the 
elements can cease to change and cause equilibrium.

»» Absorbing state: A state or line in a vector containing a single 1 on the main 
diagonal and the rest of the elements 0.

»» Probability vector: An initial vector setting a distribution of the states in a 
transition matrix.

A Markov chain is the process that forms the different stages of a transition 
matrix; those stages are the results of multiplying the transition matrix times 
itself repeatedly. The transition matrix has to be a square matrix, and each ele-
ment has to be some number between 0 and 1, including both the 0 and 1. These 
elements are probabilities. The sum of the elements in any row has to be equal 
to 1, corresponding to the 100% probability.

Working with Transition Matrices
A transition matrix consists of a square matrix that gives the probabilities of the 
different states going from one to another. With a transition matrix, you can per-
form matrix multiplication and determine trends, if there are any, and make 
predications.

Using charts and trees
Consider the table showing the purchasing patterns involving different cereals. 
You see all the percentages showing the probability of going from one state to 
another, but which of the cereals does the consumer actually end up buying most 
frequently in the long run?

Next Purchase

This

Purchase

Kicks Cheery A’s Corn Flecks

Kicks 30%% % %

% % %

% % %

30 40

30 45 25

50 40 10

Cheery A’s

Corn Flecks

One way to look at continued purchasing is to create a tree diagram. In Figure 14-1, 
you see two consecutive “rounds” of purchases.
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If you want the probability that the consumer purchases Kicks first, tries it again 
or something else, and then purchases Kicks the next time, add up the K K K, 
K CA K, and K CF K  branches: 0 09 0 09 0 20 0 38. . . . , or 38% of the time. If 
you want the probability that the consumer purchases Cheery A’s first, tries 
something else or repeats Cheery A’s, and then tries Corn Flecks, add up the 
CA K CF, CA CA CF, and CA CF CF  branches. This comes out to 
0 12 0 1125 0 025 0 2575. . . . , or almost 26% of the time.

The tree is helpful in that it shows you what the choices are and how the percent-
ages work in determining patterns, but there’s a much easier and neater way to 
compute these values.

To perform computations and study this further, create a transition matrix, refer-
ring back to the chart showing purchases and using the decimal values of the 
percentages. Name it matrix C.

C

0 30 0 30 0 40

0 30 0 45 0 25

0 50 0 40 0 10

. . .

. . .

. . .

Next, use matrix multiplication to find C2. I discuss matrix multiplication in 
Chapter 5, but, as a quick hint, when multiplying matrices, you find the element 
in the first row, first column of the product, labeled c11, when you multiply the 
elements in the first row of the first matrix times the corresponding elements in 
the first column of the second matrix and then add up the products.

FIGURE 14-1: 
Which kind of 
cereal will the 

consumer buy?
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In a matrix A, the element in the nth row, kth column is labeled ank. See Chapter 5 
for more on matrices.

The element in the first row and second column of the product, c12, uses the ele-
ments in the first row of the first matrix and second column of the second matrix, 
and so on for the rest of the elements.

C C

0 30 0 30 0 40

0 30 0 45 0 25

0 50 0 40 0 10

0 30 0 3. . .

. . .

. . .

. . 00 0 40

0 30 0 45 0 25

0 50 0 40 0 10

.

. . .

. . .

So you take the first row of the left matrix times the first column of the second 
matrix to get

0 30 0 30 0 30 0 30 0 40 0 50

0 09 0 09 0 20 0 38

. ( . ) . ( . ) . ( . )

. . . .

Yes. This is the same computation as was done using the tree to find the probabil-
ity that a consumer starting with Kicks would return to it in two more 
purchases.

Performing the matrix multiplication, you have

C2

0 38 0 385 0 235

0 35 0 3925 0 2575

0 32 0 37 0 31

. . .

. . .

. . .

Continuing this multiplication process, by the time C6 appears (the chances of 
buying a particular cereal at the fifth purchase time after the initial purchase), a 
pattern emerges.

C6

0 352792 0 383963 0 263245

0 352689 0 383933 0 263378

0 35251

. . .

. . .

. 22 0 383875 0 263613. .

Notice that the numbers in each column round to the same three decimal places. 
This is going to become even clearer, using higher powers of C, until some nth 
matrix power becomes

Cn

0 353 0 384 0 263

0 353 0 384 0 263

0 353 0 384 0 263

. . .

. . .

. . .
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The matrix shows you the pattern or trend.

K CA CF

Kicks

Cheery A’s

Corn Flecks

0 353 0 384 0 263

0 353 0 384 0

. . .

. . .2263

0 353 0 384 0 263. . .

No matter which cereal the consumer bought first, in the long run there’s a 35.3% 
chance that she’ll purchase Kicks, a 38.4% chance that she’ll purchase Cheery A’s, 
and a 26.3% chance that she’ll purchase Corn Flecks. This transition matrix has 
reached an equilibrium, where it won’t change with more repeated multiplication. 
You can write this situation with a single-line matrix:

K CA CF

0 353 0 384 0 263. . .

Dealing with diagrams
A very nice way to illustrate transitions from one state to another when you’re 
trying to communicate what is happening is to use a transition diagram. The dif-
ferent states are represented by circles, and the probability of going from one 
state to another is shown by using curves with arrows.

Going from diagram to matrix
The transition diagram in Figure 14-2 shows how an insurance company classifies 
its drivers: no accidents, one accident, or two or more accidents. This information 
could help the company determine the insurance premium rates.

You see that 80% of the drivers who haven’t had an accident aren’t expected to 
have an accident the next year. Fifteen percent of those drivers have one accident, 
and 5% have two or more accidents. Seventy percent of those who have had one 
accident aren’t expected to have an accident the next year but have to stay in the 
one-accident classification. And those in the two-or-more accident class have 
to stay there.

To create a transition matrix representing the drivers, use the percentages to 
show going from one state to another.

None One Two

No Accident

One Accident

Two or more

0 80 0 15 0 05

0 0

. . .

.. .70 0 30

0 0 1
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What is the long-term expectation for these drivers? First, let the transition 
matrix be D.

D

0 80 0 15 0 05

0 0 70 0 30

0 0 1

. . .

. .

Then, some of the powers of D are

D2

0 64 0 225 0 135

0 0 49 0 51

0 0 1

. . .

. . ,

 

D3

0 512 0 2535 0 2345

0 0 343 0 657

0 0 1

. . .

. . ,

D4

0 4096 0 25425 0 33615

0 0 2401 0 7599

0 0 1

. . .

. . ,

 

D10

0 107374 0 11869 0 773936

0 0 028248 0 971752

0 0 1

. . .

. .

At the end of ten years, using the drivers in the initial study, you have

None One Two

No Accident

One Accident

Two or More

11 12 77

0 3 97

% % %

% %%

0 0 1

FIGURE 14-2: 
Eighty percent of 

the no-accident 
drivers don’t have 

an accident.
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What this tells the insurance company is that, in ten years, about 11% of the 
original no-accident drivers will still not have had an accident. Only 3% of the 
one-accident drivers will still have had only that one accident. This situation 
doesn’t allow for the drivers to move back or earn forgiveness; a one-accident 
driver can’t be a no-accident driver using this model. Of course, different insur-
ance agencies have different policies, putting drivers in better standing after a set 
number of accident-free years. And new policyholders are added to make this 
picture rosier. This just shows the pattern for a particular set of drivers after a 
certain number of years. What you also see here is a matrix with an absorbing 
state. You find more on this type state in the later section “Absorbing Chains.”

Creating a diagram from a matrix
Some of the political parties are quite interested in how their membership is 
affected by congressional actions. After tracking the number of voters in the last 
spring’s elections, it was observed that Republicans, Democrats, Libertarians, 
Green Party members, and Independents showed the following changes.

Rep Dem Lib GrP Ind

Rep

Dem

Lib

GrP

Ind

0 40 0 20 0 10 0 10 0 20

0 20 0 60

. . . . .

. . 00 10 0 05 0 05

0 05 0 05 0 60 0 10 0 20

0 0 10 0 10 0 75 0 05

0 10 0 30

. . .

. . . . .

. . . .

. . 00 0 10 0 50. .

The matrix indicates that 40% of the Republican membership will stay Republi-
can, 20% will switch to the Democratic Party, and so on. Does this transition 
matrix tell the story effectively, or would a diagram work better, as in 
Figure 14-3?

The diagram is pretty busy and complex, with all the arrows pointing from one 
direction to another, but it quickly gives some interesting information:

»» You can see what percentage of each of the parties are expected to stay 
with their original party: 60% Democrat, 40% Republican, 50% Independent, 
75% Green Party, and 60% Libertarian.

»» Some parties will do an equal trade-off: 20% Republicans to Democrats and 
vice versa, and 10% Green Party and Libertarian trading equally.

»» Looking at the incoming arrows, you see that the Libertarians and Republicans 
have only four arrows coming in while they have five going out.

Neither the matrix nor diagram tell the whole story. You need the number of vot-
ers, also. But both formats give information that you can work with and analyze.
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Probability Vectors
A transition matrix allows you to follow the progress of a situation through the 
prescribed changes. Sometimes the transition matrix results in some set patterns, 
and other times it does not.

You often start out with a set situation or a beginning distribution. This initial 
matrix is called the probability vector. For example, if you’re tracking the probabil-
ity of people choosing particular rides at a theme park, you may start out by hand-
ing out an equal number of free tickets to a set number of particular rides to get 
the participants started.

At the Seven Pennants Theme Park, the four rides being researched for popularity 
are the roller coaster, Ferris wheel, drop line, and flying theater experience. One 
thousand free tickets are handed out — 250 for each ride. You use a probability 
vector to describe the spread of the initial riders. A probability vector is just a row 
matrix with the probabilities of each event given as the elements. For this situa-
tion, the probability matrix is named T, showing that each ride gets one-fourth of 
the free tickets.

RC FW DL FT

T 0 25 0 25 0 25 0 25. . . .

FIGURE 14-3: 
Tracking political 

affiliation.
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Next, you need a transition matrix based on an initial survey of the thousand par-
ticipants. They indicated their usual riding habits. Name this transition matrix R.

RC FW DL FT

R

0 50 0 30 0 15 0 05

0 40 0 10 0 40 0 10

0 20 0 05 0 05 0 70

. . . .

. . . .

. . . .

00 60 0 10 0 20 0 10

0 50 0 30 0 1

. . . .

. . .

  from  

RC

FW

DL

FT

55 0 05

0 40 0 10 0 40 0 10

0 20 0 05 0 05 0 70

0 60 0 10 0 20 0 10

.

. . . .

. . . .

. . . .

So, according to the participants, if they just rode the roller coaster, there’s a 50% 
chance that they’ll ride it the next time. But if they’ve done the drop line, there’s 
only a 15% chance they’ll repeat that immediately.

Now to see what happens to the participants after they’ve been given their free 
tickets and follow their usual habits, you multiply the probability vector times the 
transition matrix.

When multiplying matrices, the number of columns in the first matrix has to 
match the number of rows in the second matrix. And the resulting matrix has the 
number of rows from the first and the number of columns of the second.

T R 0 25 0 25 0 25 0 25

0 50 0 30 0 15 0 05

0 40 0 10 0 40 0 10

0 2
. . . .

. . . .

. . . .

. 00 0 05 0 05 0 70

0 60 0 10 0 20 0 10

0 425 0 1375 0

. . .

. . . .

. . .220 0 2375.

It looks like 42.5% of those who rode the roller coaster made that their next ride. 
And 23.75% of those who went to the flying theater liked it and went back the next 
time.

But what happens in the long run? You see the initial preferences and how the free 
tickets affected the choices at first.

Equilibrium will be achieved in both cases. The equilibrium is achieved after seven 
multiplications:

R7

0 445 0 180 0 186 0 189

0 445 0 180 0 186 0 189

0 445 0 180 0 186

. . . .

. . . .

. . . 00 189

0 445 0 180 0 186 0 189

.

. . . .
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When repeating the pattern in the transition matrix, it becomes the equilibrium 
matrix after just seven repeats. When repeating the pattern in the transition 
matrix after first applying the probability matrix, the equilibrium is also reached 
after seven repeats.

T R7 0 25 0 25 0 25 0 25

0 445 0 180 0 186 0 189

0 445 0 180 0 18
. . . .

. . . .

. . . 66 0 189

0 445 0 180 0 186 0 189

0 445 0 180 0 186 0 189

.

. . . .

. . . .

It looks like the roller coaster is the most popular of the rides, with the other three 
pretty close to being equal in popularity.

RC FW DL FT

44 5 18 18 6 18 9. % % . % . %

But now consider what would happen if those tickets had not been given out so 
that an equal number went for each ride. The manager of the drop line may be 
concerned about low ridership and want to give the ride a better number. So he 
sees to it that 70% of the tickets handed out are for the drop line and the rest 
evenly distributed to the other lines.

This changes the initial probability vector to a new matrix named C:

RC FW DL FT

C 0 10 0 10 0 70 0 10. . . .

How does this change the equilibrium matrix? First, look at the product of the 
probability vector that evenly distributes the tickets times the seventh power of 
the transition matrix.

R7

0 445 0 180 0 186 0 189

0 445 0 180 0 186 0 189

0 445 0 180 0 186

. . . .

. . . .

. . . 00 189

0 445 0 180 0 186 0 189

.

. . . .

Now multiply the new probability vector times the seventh power.

C R7 0 10 0 10 0 70 0 10

0 445 0 180 0 186 0 189

0 445 0 180 0 18
. . . .

. . . .

. . . 66 0 189

0 445 0 180 0 186 0 189

0 445 0 180 0 186 0 189

.

. . . .

. . . .
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The end results haven’t changed. The initial matrices are a bit different, but the 
transition matrix creates the same result.

An initial probability vector, P0, transforms to a new probability, or the equilib-
rium, E, after n repetitions of the transition vector, V: E P V0

n.

Some initial probability vectors will have more influence or effect than others, but 
equilibrium will be reached, even if it takes longer.

Absorbing Chains
Markov chains describe what repeated trials or events are predicted to create. You 
can start with a particular situation, apply the transition matrix, and find what the 
eventual spread will be.

In some cases, you find that a particular state is absorbing. When that particular 
state is achieved, a subsequent trial will not allow another choice to be made. You 
can never leave that state.

An absorbing state in matrix A occurs when the element aii  is a 1 and the rest of the 
elements in that row are 0s. The element aii  lies on the main diagonal.

For example, in matrix A, the first row, with a11 equal to 1 and all the other ele-
ments in the row equal to 0, is an absorbing state.

A

1 0 0

0 15 0 55 0 30

0 4 0 1 0 5

. . .

. . .

Let the matrix represent choices being made in terms of coffee brands.

S M F

Starboard

Maxgood

Fogie’s

1 0 0

0 15 0 55 0 30

0 4 0 1 0 5

. . .

. . .

If you drink Maxgood coffee, there’s a 55% chance you’ll drink it the next time, a 
15% chance you’ll go to Starboard, and a 30% chance you’ll switch to Fogie’s. But 
once you drink Starboard, there’s a 100% chance that you’ll stick with that brand. 
The elements representing a change are 0, so you’re in an absorbing state.
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Next, here’s a situation involving a rat and a maze. The rat is placed in one of the 
compartments, at random, to begin. Figure 14-4 shows what the maze looks like, 
with the connecting doors. But the doors are deceiving because once the rat enters 
compartment 1, it can’t leave that compartment. Either the food is too good to 
leave or its feet get glued to the floor.

If the rat is in compartment 2, there’s a 10% chance it’ll move to compartment 1, 
a 40% chance it’ll move to compartment 3, and a 50% chance it’ll move to 
compartment 5. If it’s in compartment 3, there’s a 30% chance it’ll move to com-
partment 2 and a 70% chance it’ll move to compartment 4. If it’s in compart-
ment 4, there’s a 60% chance it’ll move to compartment 3 and a 40% chance it’ll 
move to compartment 5. If it’s in compartment 5, there’s a 30% chance it’ll move 
to compartment 1, a 30% chance it’ll move to compartment 2, and a 40% chance 
it’ll move to compartment 4. If the rat is in compartment 1, it stays there — it 
never leaves. Here’s the transition matrix representing these moves in the maze.

1 2 3 4 5

1

2

3

4

5

1 0 0 0 0

0 10 0 0 40 0 0 50

0 0 30 0 0 70 0

0 0 0 60 0 0 40

0 30 0 3

. . .

. .

. .

. . 00 0 0 40 0.

At the fifth move of the rat, the following are the probabilities of it moving to the 
particular compartments. The rat can’t really move from compartment 3 to 

FIGURE 14-4: 
Which door will 
the rat choose?
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compartment 1, but if it made it to compartment 1 in any of those moves, it wasn’t 
able to move out.

1 2 3 4 5

1

2

3

4

5

1 0 0 0 0

0 40 0 0 33 0 0 27

0 30 0 24 0 0 46 0

0 29 0 0 39 0 0 32

0

. . .

. . .

. . .

.. . .52 0 17 0 0 31 0

And at the 60th move, the rat has reached equilibrium. The probability is that, 
after all these moves, the rat must be in compartment 1.

1 2 3 4 5

1

2

3

4

5

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

Making Long-Term Predictions
The Markov process has many possibilities for application and study. One recur-
ring theme for its use is in making predictions based on prior actions. You find 
some matrices absorbing and some settling into an alternating pattern.

Avoiding ruin
A classic example of long-term predictions and absorbing states is the Gambler’s 
Ruin. Everyone has a favorite movie or movie character who has beat the odds 
when playing poker and won a handsome pot of money — and then had to fight 
off the bad guy who wants revenge. Gambling is just what it suggests — taking 
chances when you don’t have a sure thing, or even a decent chance!

The basics of the Gambler’s Ruin are that there’s a game where a set amount of 
money is bet at each turn, and a certain probability of winning is established. The 
probability is usually against the player winning at any particular turn, for exam-
ple it could be 30% for winning and 70% for losing (and those are pretty good in 
the world of chance). Also, the assumption is that, with the probability against 
him, the player will eventually lose all his money. But if the gambler sets some 
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constraints — for example, quits when he wins enough or quits when he loses a 
set amount — the end result may change for the better.

Consider the situation where a gambler starts out with $50 and bets $10 on each 
play. He’ll stop when he reaches $80, and, of course, he stops when he has no 
money left. His chance of winning at each play is 30%.

The transition matrix, G, models what can happen in this particular situation.

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

1 0 0 0 0 0

$ $ $ $ $ $ $ $

$

$

$

$

$

$

$

$

G

00 0 0

0 7 0 0 3 0 0 0 0 0 0

0 0 7 0 0 3 0 0 0 0 0

0 0 0 7 0 0 3 0 0 0 0

0 0 0 0 7 0 0 3 0 0 0

0 0

. .

. .

. .

. .

00 0 0 7 0 0 3 0 0

0 0 0 0 0 0 7 0 0 3 0

0 0 0 0 0 0 0 7 0 0 3

0 0 0 0 0 0 0 0 1

. .

. .

. .

You see from the matrix that there are two absorbing states. When the gambler 
has no money, he can’t bet and stays at 0. When the gambler reaches $80, he quits 
betting and stays at that amount.

Starting out with $50, the gambler has a 70% chance that he’ll have only $40 at 
the end of the first play and a 30% chance that he’ll go up to $60. When the gam-
bler has $40, there’s a 70% chance that he’ll have only $30 at the end of his next 
turn and a 30% chance of having $50 at the next turn. All the possibilities and 
percentages are shown here for this particular game.

Where does the gambler stand after a few plays of the game? The next two matri-
ces show you the picture.

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

1 0 0 0 0

3

$ $ $ $ $ $ $ $

$

$

$

$

$

$

$

$

G

00 0 0 0

0 847 0 0 126 0 0 027 0 0 0 0

0 49 0 294 0 0 189 0 0 027 0 0 0

0 343 0 0

. . .

. . . .

. .4441 0 0 189 0 0 027 0 0

0 0 343 0 0 441 0 0 189 0 0 027 0

0 0 0 343 0 0 441 0 0

. .

. . . .

. . .. .

. . . .

. . .

189 0 0 027

0 0 0 0 343 0 0 441 0 0 126 0 09

0 0 0 0 0 343 0 0 294 0 0 363

0 0 00 0 0 0 0 0 1
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Reading from the matrix product, you see that, if the gambler started with $50, 
after three plays, there’s a 34.4% chance he’ll have only $20 left and a 2.7% 
chance he’ll have $80 (he won all three times).

And now, after 24 rounds:

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

1 0 0 0

24

$ $ $ $ $ $ $ $

$

$

$

$

$

$

$

$

G

00 0 0 0 0

0 995 0 001 0 0 001 0 0 0 0 0 001

0 987 0 0 005 0 0 003 0 0 0 0 005

0

. . . .

. . . .

.9968 0 008 0 0 008 0 0 003 0 0 0 013

0 941 0 0 015 0 0 009 0 0 002 0 0 032

0

. . . .

. . . . .

.. . . . . .

. . . .

878 0 018 0 0 018 0 0 0087 0 0 001 0 076

0 774 0 0 025 0 0 015 0 0 005 0 00 181

0 530 0 017 0 0 018 0 0 008 0 0 001 0 426

0 0 0 0 0 0 0 0 1

.

. . . . . .

Starting with $50, there’s an 87.8% chance he’ll be down to nothing and a 7.6% 
chance he’ll quit (or already have quit) after hitting $80.

In any case, gambling is a risky business.

Alternating even and odd
An interesting model that can be used to explain the diffusion of gases is the 
Ehrenfest model. A transition matrix used to illustrate this model begins very 
much like most others, but its equilibrium or end result is not really the stable 
type you’ve come to expect.

To create this model, consider that you have two jars. Between them, the jars con-
tain four balls. Each trial consists of choosing one ball at random and moving it 
from the jar it’s currently in to the other jar. If one or the other jar currently con-
tains all four balls, then one of those balls moves to the empty jar. If neither jar is 
empty, then the random choice is a draw from either jar and any ball in that jar. 
Here’s the transition matrix; it describes the number of balls in the first jar.

0 1 2 3 4

0

1

2

3

4

0 1 0 0 0

0 25 0 0 75 0 0

0 0 5 0 0 5 0

0 0 0 75 0 0 25

0 0 0 1 0

Jar 1  

. .

. .

. .
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If Jar 1 currently has two balls, then there’s a 50% chance it’ll have just one ball 
and a 50% chance it’ll have three at the end of the draw. If it has all four balls at 
the beginning, then there’s a 100% chance there will be just three after the draw.

Now look at the second power of the transition matrix.

0 1 2 3 4

0

1

2

3

4

0 25 0 0 75 0 0

0 0 625 0 0 375 0

0 125 0 0 75 0 0 125

0 0

2Jar  

. .

. .

. . .

.. .

. .

375 0 0 625 0

0 0 0 75 0 0 25

At the end of two draws or trials, if the jar had been empty to begin with, there’s 
a 25% chance it will still be empty and a 75% chance it will contain two balls. Note 
that where there were non-zero numbers in the first matrix, there are now 0s for 
elements in the second matrix.

But what’s even more interesting is the eventual alternating aspect of this model. 
The matrix never reaches a true equilibrium, but it reaches a point where it alter-
nates between two different matrices.

0 1 2 3 4

0

1

2

3

4

0 125 0 0 75 0 0 125

0 0 5 0 0 5 0

0 125 0 0 75 0 0 1Jar  Even

. . .

. .

. . . 225

0 0 5 0 0 5 0

0 125 0 0 75 0 0 125

. .

. . .

0 1 2 3 4

0

1

2

3

4

0 0 5 0 0 5 0

0 125 0 0 75 0 0 125

0 0 5 0 0 5 0

0 125 0

Jar  Odd

. .

. . .

. .

. 00 75 0 0 125

0 0 5 0 0 5 0

. .

. .

After about the 12th power, these two matrices are the alternating forms that 
appear — one with even powers and the other with odd powers of the transition 
matrix.

This model was proposed by Tatiana and Paul Ehrenfest to explain a law of ther-
modynamics involving an isolated system where neither energy nor matter can 
enter or leave. Using the jars and the four balls is a simplified but, hopefully, 
understandable example.
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Chapter 15
Playing Games with 
Game Theory

Game theory has been evolving over the past centuries and is used today to 
analyze competitive situations. Game theory can be applied to real-life 
situations, not just to play rock-paper-scissors. Game theory is used in 

business, politics, economics, and even biology. The goal in game theory is to find 
a good strategy when competing with an opponent or when making certain life 
decisions.

Playing Fairly
Say that you challenge a friend to play your favorite game: Red versus Blue. You 
each have two cards that are the same on the top, but you each have one card 
that’s red and one that’s blue on the face side. On the count of three, you each hold 
up a card to see who wins. How is winning or losing determined? The following 
are the payoffs:

»» You show red and your friend shows red; you pay your friend $1.

»» You show red and your friend shows blue; your friend pays you $4.

IN THIS CHAPTER

»» Finding two-person games in 
everyday life

»» Determining strictly determined 
games

»» Working out the optimal strategy

»» Mixing it up with mixed strategies

»» Making games work for you
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»» You show blue and your friend shows red: your friend pays you $7.

»» You show blue and your friend shows blue; you pay your friend $10.

Is this a fair game? The amounts you’d have to pay total $11, and the amounts you 
may win total $11, so it looks fair enough.

An easier way to keep track of the winning and losing is to assign positive and 
negative signs to the payoffs for one of the players. For example, when you win, 
the amount is positive, and when you lose, the amount is negative. And, assuming 
that the card choices are random and equally likely to be picked, Figure 15-1 gives 
a graphic to keep track of the play possibilities. The probabilities shown are those 
that occur when the choices are random.

As you see, the sum of all the probabilities times the payoffs is 0. You lose in 
two  possibilities and win in two. The sum of the losses and wins is 

1
4

1 7
4

10
4

1 4 7 10
4

0
4

0. This is a fair game. It means that, over a 

period of time, your wins should equal your losses. You should come out even.

But what if you notice that your friend tends to pick blue more often than red? In 
fact, blue seems to be chosen two-thirds of the time! How does this effect the 
outcome? Figure 15-2 shows what happens if your friend chooses blue two-thirds 
of the time and you stick to your 50/50 results.

This time, the payoffs add up to 1
6

4
3

7
6

10
3

1 8 7 20
6

6
6

1. This 

means that the game is not fair if you had agreed ahead of time to show the cards 
at random and hadn’t arbitrarily chosen one card more often than another. The 
result is $1, which means that, on average, you’re going to lose a dollar every 
time you play.

FIGURE 15-1: 
The payoffs for 

red versus blue.
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Because your friend changed the rules, you decide to make a change, also. You’re 
going to play red three-fourths of the time. You assume that your friend will keep 
playing blue more often, too. How does this change the potential outcomes? 
Figure 15-3 gives the new payoff amounts.

The payoffs now add up to 1
4

2 7
12

10
6

3 24 7 20
12

8
12

2
3

. So in the 

long run, you’ll win $ 2
3

, or about $0.67 every time you play. You’ve improved your 
outcomes.

Now, this type of game playing can go on for a long time, with you and your friend 
changing strategies to improve your payoffs. This is part of game theory: analyz-
ing the situation and making choices to improve your outcomes.

FIGURE 15-2: 
The payoffs 

change when 
blue is picked 

more often.

FIGURE 15-3: 
You play red 
more often.



252      PART 4  Employing the Tools of Finite Math to Expand and Investigate

Playing by the Rules
As with every mathematical topic, there is vocabulary and notation special to the 
particular area. Game theory is no exception, so this section acquaints you with 
what words and procedures are special to the subject of game theory.

Matrix representation
Even though tree-like graphics are helpful in showing you what is happening 
probability-wise, a table and then a matrix are much more useful in the actual 
analysis and decision process.

The payoffs in the Red versus Blue game in the previous section can be written in 
the following table format:

Friend

You  

R B

R

B

$ $

$ $

1 4

7 10

The payoffs are positive and negative, indicating the results for you. And the 
payoff table can then be written as a matrix. In a two-person game, like the one 
described, the two players are usually denoted R, for row, and C, for column. The 
payoffs are in terms of what R earns or loses. So the payoff matrix for this 
situation is

C

R 
1 4

7 10

The payoffs are in terms of rows, so you see that if R plays row 1 and C plays 
column 1, then R loses 1. If R plays row 2 and C plays column 1, then R wins 7.

Vocabulary
As with many areas and topics in mathematics, there is a very special and specific 
vocabulary that goes along with the subject. The words and expressions given here 
are found throughout the discussion in this chapter. Using the precise words helps 
shorten a long explanation. Refer back to this listing as needed.

»» Payoff matrix: A matrix whose elements represent all the amounts won or 
lost by the row player.
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»» Payoff: An amount showing as an element in the payoff matrix, which 
indicates the amount gained or lost by row player.

»» Saddle point: The element in a payoff matrix that is the smallest in a particu-
lar row while, at the same time, the largest in its column. Not all matrices have 
saddle points.

»» Strictly determined game: A game that has a saddle point.

»» Strategy: A move or moves chosen by a player.

»» Optimal strategy: The strategy that most benefits a player.

»» Value (expected value) of game: The amount representing the result when 
the best possible strategy is played by each player.

»» Zero-sum game: A game where what one player wins, the other loses; no 
money comes in from the outside or leaves.

»» Fair game: A game with a value of 0.

»» Pure strategy: A player always chooses the same row or column.

»» Mixed strategy: A player changes the choice of row or column with different 
plays or turns.

»» Dominated strategy: A strategy that is never considered because another 
play is always better. For row player, a row is dominated by another row if all 
the corresponding elements are all larger. For column player, a column is 
dominated by another column if all the corresponding elements are all 
smaller.

Vocabulary illustrated
Consider the following two-person game involving congressional members R and 
C. After polling constituents, it has been determined how many votes each will 
gain or lose if the constituents vote a certain way on a particular issue. The results 
are written in terms of a payoff matrix with the results reflecting the wins or 
losses of R.

C

Yea Nay Abst

R

Yea

Nay

Abstain

100 200 50

200 100 40

50 250 0

If R votes Yea, and C votes Nay, then R gains 200 votes. If R votes Nay, and C votes 
Yea, then R loses 200 votes. If R Abstains and C votes Yea, then R loses 50 votes.
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This payoff matrix has a saddle point. The element in the first row, third column 
is the smallest number in the row but the largest in the column.

C

Yea Nay Abst

R

Yea

Nay

Abstain

100 200 50

200 100 40

50 250 0

This element, +50, is the value of the game. It’s the best strategy for both players, 
because it guarantees R that he will always win votes, and it cuts the losses to C, 
who doesn’t have to worry about losing more than 50 votes. This is the optimal 
strategy. R can take his chances and hope to win more votes, but R will probably 
play it safe and always vote Yea. It’s a pure strategy when a player doesn’t change 
the choice in repeated plays. Because the game has a saddle point, it is strictly 
determined.

The game is not fair, because it favors R; the value of the game isn’t 0.

This game has two dominated strategies:

»» The first row dominates the second row, because every element in the first 
row is larger than the corresponding element in the second row. The second 
row can be eliminated. R will never vote Nay.

»» The first column dominates the second column, because every element in the 
first column is smaller than that in the second column. The second column 
can be eliminated. C will never vote Nay.

Crossing out the second row and second column, you create a new payoff matrix 
that is much simpler.

C

Yea Nay Abst

R

Yea

Nay

Abstain

100 200 50

200 100 40

50 250 0

Y A

becomes 
Y

A

100 50

50 0
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The only reasonable choices are for the candidates either to vote Yea or to abstain. 
Don’t want to lose those votes!

Finally, this is a zero-sum game, because what R wins, C loses, and vice versa.

Now for a fair game that most people are familiar with: rock-paper-scissors. It 
doesn’t favor one player or the other, and players use mixed strategies. But, just 
to jazz this up a bit, consider the version played by the characters in a popular tel-
evision show who play rock-paper-scissors-lizard-Spock. With the two new 
choices, the payoffs are as follows:

Rock crushes lizard. Scissors decapitates lizard.

Lizard eats paper. Lizard poisons Spock.

Paper disapproves Spock. Spock vaporizes rock.

Spock bends scissors. Rock breaks scissors.

Scissors cut paper. Paper covers rock.

This game has a 5 5 game matrix with +1 indicating that player R wins, 1 indi-
cating that player R loses, and 0 indicating a tie — that is, both players choose the 
same thing.

R P Sc L Sp

Rock

Paper

Scissors

Lizard

Spock

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

This is a fair game. It isn’t strictly determined, because it has no saddle point. The 
players will use mixed strategies, watching for patterns in the opponents’ play.

Getting Strategic
When a game isn’t strictly determined — that is, when there is no saddle point — 
then the players try to find some strategy for their play. They determine that 
they’ll play a certain way a percentage of the time and the other way or ways the 
rest of the percentages of time.
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For example, the following game matrix shows the payoffs to Row.

3 4

2 3

The game matrix is fair, but there’s no saddle point. Both Row and Column need 
to determine how often they want to play which option.

For starters, Row decides to play row 1 two-thirds of the time, and Column decides 
to play column 1 three-fourths of the time. Figure 15-4 shows the tree for figuring 
the results.

The value of the game, when the strategies are applied, is the sum of the end 

results: 3
2

2
3

1
2

1
4

7
12

. This play favors Column, because the value of the 

game, which is Row’s result, is a negative number. But before going on and trying 
other strategies, it’s time to start using a simpler method for finding the value of 
the game. Write payoffs in the form of a matrix so you can also write the strategies 
in the form of matrices and multiply.

When multiplying matrices, the number of columns in the first matrix must 
match the number of rows in the second matrix. You can find a complete descrip-
tion of matrix multiplication in Chapter 5.

The matrix multiplication used to find the expected value has the form

[row probabilities in row matrix] times [payoff matrix] times [column probabilities 
in column matrix]

FIGURE 15-4: 
Initial plays favor 

Column.
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For this problem, you have

Row Payoff Column

2
3

1
3

3 4

2 3

3
4
1
4

* * 44
3

5
3

3
4
1
4

7
12

*

The first matrix times the second matrix results in a 1 2 matrix, and the product 
of that 1 2 matrix and the third matrix is a 1 1 matrix containing the value of the 
game.

As you can imagine, Row decides to change tactics and see whether playing row 1 
more frequently will help. This time, Row will play row 1 five-sixths of the time. 
How does this change the result?

5
6

1
6

3 4

2 3

3
4
1
4

13
6

17
6

3
4
1
4

11
12

The result is even worse! What should Row do? Instead of just guessing, you need 
to use a formula that gives the best strategies for Row and Column in a two- 
person game where the payoff matrix is a 2 × 2 matrix.

Before I give you the formulas, though, first consider some general matrices for 
the payoff and the strategies of Row and Column using the notation for elements 
of a matrix.

P
p p

p p
11 12

21 22

, R r r11 12 , C
c

c
11

21

Given the matrices as shown, the formulas for the best strategies and value of the 
game are

r r p p
p p p p

p p
p p p p11 12

22 21

11 21 12 22

11 12

11 21 12 22

c

c

p p
p p p p

p p
p p p p

11

21

22 12

11 21 12 22

11 21

11 21 12 22

Value of game p p p p
p p p p

11 22 12 21

11 21 12 22
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Using these formulas to find the best strategies for Row and Column and the value 
of the game, you get

r r11 12
3 2

3 2 4 3
3 4

3 2 4 3
5

12
7

12( ) ( )

c

c
11

21

3 4
3 2 4 3

3 2
3 2 4 3

7
1( )

( )

22
5

12

Value of game
3 3 4 2

3 2 4 3
1

12
( ) ( )

( )

The best strategy for Row is to play row 1 five-twelfths of the time, because this 
lessens the possible losses. And the best strategy for Column is to play column 1 
seven-twelfths of the time. This creates the best chance for winning. Row may be 
able to win if Column changes strategies, but if both are aware of the best tactics, 
then Row just has to accept that this is a losing game.

Yielding to Domination
When dominated strategies appear, it’s to the players’ advantage to eliminate 
those strategic choices and make the game and the eventual results easier to 
analyze.

Consider the software distributor who wants to take part in as many conferences 
as possible. In February, he plans on having a booth in two different technology 
conferences — one on the first weekend and the other on the third weekend of the 
month.

From past experience, he has found that doing a conference in Arizona on the first 
weekend and then staying there and doing a second conference on the third week-
end, he’ll gross $111,000 in sales. But if he does the Arizona conference on the first 
weekend and goes to Bermuda on the third weekend, he grosses $112,000. Also, 
Arizona on the first weekend followed by California on the third weekend results 
in $107,000 in gross sales. If he goes to Bermuda that first weekend and Arizona 
for the third weekend, he grosses $109,000; if he goes to Bermuda for both con-
ferences, he grosses $110,000; and a Bermuda-then-California gig usually gives 
him $112,000. Finally, California followed by Arizona grosses $110,000, California 
followed by Bermuda grosses $111,000, and staying in California for both confer-
ences grosses $112,000.
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This is a lot of information to wade through, so a payoff matrix is a handy way to 
look at the figures. Also, to keep the numbers smaller, each element represents 
the difference of the gross dollars from $110,000.

Third

A B C

First

A

B

C

1 000 2 000 3 000

1 000 0 2 000

0 1 000 2 0

, , ,

, ,

, , 000

This matrix has two dominated strategies. Each element in the first column is 
smaller than that in the second column, so the first column dominates; the second 
column is eliminated. Also, in the third row, the first two elements are both larger 
than the corresponding elements in the second row. The third element in each is 
the same, but that still works for domination. The third row dominates the second 
row, so the second row is eliminated. The new playoff matrix is

Third

A C

First
A

C
 

1 000 3 000

0 2 000

, ,

,

There’s no need to use a formula to find the best play. It looks like going to 
California and then staying in California is the best plan.

Determining the Moves
A game is strictly determined if there is a saddle point. The saddle point repre-
sents the best move for each player. The saddle point may favor one player over 
the other, but it still represents the best possible decision for both players.

Finding no saddle point
If a payoff matrix has no saddle point, then the players need to find the optimum 
play — whatever benefits each the most.

The following game matrix is a fair game, but it has no saddle point and no domi-
nated strategies that can be removed to make a simpler game.
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2 1 0

2 0 2

0 1 2

If you’re Row, how do you play it? Do you go for row 3, because the greatest loss 
is 1? And if you’re Column, do you go for column 2, because the most you can lose 
is 1 (because the positive elements are your losses)? If Row plays only row 3 and 
Column plays only column 2, then Row will lose every time. The value of the game 
in this case is

0 0 1

2 1 0

2 0 2

0 1 2

0

1

0

1

So, just making a guess, let Row play row 3 two-thirds of the time and the other 
two rows one-sixth each. And let Column play column 2 two-thirds of the time 
and the other columns one-sixth each. What is the value of the game? You multi-
ply the Row matrix times the payoff matrix times the Column matrix.

1
6

1
6

2
3

2 1 0

2 0 2

0 1 2

1
6
2
3
1
6

1
6

Row is doing a little better, but there’s still a loss at every play.

What is the best strategy for each player? You can determine this by using a little 
algebra.

Determining the best for Row
For Row player, let the matrix of Row probabilities be r r r11 12 13 . Then multiply 
the Row matrix times the payoff matrix.

r r r r r r r r11 12 13 11 12 11 13 12

2 1 0

2 0 2

0 1 2

2 2 2 22 13r

When multiplying matrices, the elements in the row multiply the corresponding 
elements in the column, and then you find the sum of the products.

You want to find the intersection of the three elements in the product, where their 
respective planes would all meet in three dimensions. Three planes? Think about 
the corner of a room, where the front wall, side wall, and floor meet in one point. 
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Also, the front wall and side wall meet in many, many points. The process involves 
solving some systems of equations.

After performing the matrix multiplication, you create several equations by set-
ting the elements in the product equal to one another. To make the construction 
of the equations clearer, I refer to the elements in the product as q11, q12, and q13, 
so q r r11 11 122 2 , q r r12 11 13, and q r r13 12 132 2 .

Now, creating the equations, first, set the expression (all the terms and opera-
tions) in q11 equal to the expression (all the terms and operations) in q12; then set 
the expression in q11 equal to that in q13.

Setting q11 equal to q12, you have 2 211 12 11 13r r r r . There are three variables in 
this equation. You can reduce this to two variables by replacing element r13 with 
1 11 12r r . This is possible, because the sum of the three probabilities has to be 1, 
so r r r11 12 13 1 is equivalent to r r r13 11 121 .

The equation now reads 2 2 111 12 11 11 12r r r r r , which simplifies to

2 2 1

2 2 1

2 2

11 12 11 11 12

11 12 11 11 12

11

r r r r r

r r r r r

r r112 11 12

11 12

2 1

4 1

r r

r r

Now, setting the product elements q11 equal to q13 and doing the same type substi-
tution, you get

2 2 2 2

2 2 2 2 1

2 2

11 12 12 13

11 12 12 11 12

11

r r r r

r r r r r

r r112 12 11 12

12

12

2 2 2 2

6 2

1
3

r r r

r

r

Substitute that value for r12 into the equation 4 111 12r r , and you get

4 1
3

1

4 4
3

1
3

11

11

11

r

r

r

With both r11 and r12 equaling 1
3

, then that leaves 1
3

 for r13, and the best strategy for 

Row is 1
3

1
3

1
3

.
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Figuring out Column’s best plays
For Column, let the matrix of Column probabilities be

c

c

c

11

12

13

Then multiply the payoff matrix times the Column matrix:

2 1 0

2 0 2

0 1 2

2

2 2
11

12

13

11 12

11

c

c

c

c c

c cc

c c
13

12 132

This time, name the elements in the product matrix d11, d12 and d131.

Creating equations formed by setting expressions equal to one another, you first 
set the expression in d11 equal to that in d12.

2 2 2

2 2 2 1

2 2

11 12 11 13

11 12 11 11 12

11 12

c c c c

c c c c c

c c c111 11 12

11 12

11 12

2 2 2

6 2

6 2

c c

c c

c c

Now do the same with expressions from the expressions in d11 and d13.

2 2

2 2 1

2

11 12 12 13

11 12 12 11 12

11 12

c c c c

c c c c c

c c c112 11 12

12

12

2 2 2

4 2

1
2

c c

c

c

Substituting this into 6 211 12c c , you have

6 1
2

2

6 3
2
1
4

11

11

11

c

c

c



CHAPTER 15  Playing Games with Game Theory      263

With c12
1
2

 and c11
1
4

, that means c13
1
4

, and the best strategy for Column is

1
4
1
2
1
4

Finding the value of the game, you get

1
3

1
3

1
3

2 1 0

2 0 2

0 1 2

1
4
1
2
1
4

0

When both players use their best strategy, the value of the game is 0. It’s essen-
tially a fair game.

Getting down to business
It’s fine to play games using matrices and matrix theory, but many real-life appli-
cations use the same processes to solve problems.

Two pharmacies, Walred’s and Cee’s, are considering building their competing 
establishments in an area dominated by three small cities. The percentage of the 
local area population living in each of the cities is shown in Figure 15-5.

After doing some research using random polling, they found that if both pharma-
cies locate in the same city, then Walred’s will get 70% of the total business. If the 
pharmacies locate in different cities, each will get 80% of the business in the city 
it’s in, and Walred’s will get 60% of the business in the city not containing Cee’s. 
Also, if they’re both in the same city, Walred’s gets 60% of the business of both of 
the other cities – those that Cee’s is not in, either.

To begin constructing a payoff matrix, insert the percentages (the percentage of 
the business and city where located). These are all in terms of the business going 
to Walred’s.

Cee’s

X Y Z

Walred’s 

X

Y

Z

X Y Z X Y Z X Y70 60 60 80 20 60 80 60% % % % % % % % 220

20 80 60 60 70 60 60 80 20

20 60 8

%

% % % % % % % % %

% %

Z

X Y Z X Y+ Z X Y Z

X Y 00 60 20 80 60 60 70% % % % % % %Z X Y Z X Y Z
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From this matrix, you see that if Walred’s is in City X and Cee’s is in City Y, 
then Walred’s gets 80% of the business it’s in (City X) plus 20% of the business 
from City Y (the city Cee’s is in) plus 60% of the business from City Z (the city 
neither is in).

Next, you insert the percentages for each city: 30% for X, 50% for Y, and 20%  
for Z.  Then, changing all the percentages to decimals and doing the addition, 
you have

 
.20(0.50)0 70 0 30 0 60 0 50 0 60 0 20 0 80 0 30 0 0 6. ( . ) . ( . ) . ( . ) . ( . ) . 00 0 30 0 60 0

0 30 0

(0.20) 0.80 (0.50) .20(0.20)

0.20 .80(0.

( . ) .

( . ) 550) (0.20) (0.50) + 0.60(0.20)0 60 0 60 0 30 0 70 0 60 0 30. . ( . ) . . ( . ))

( . ) . .

0 0

0 30 0 60 0 0

.80(0.50) .20(0.20)

0.20 (0.50) .80(0.20) 660 0 30 0 0 0 60 0 30 0 60 0 50 0 70( . ) . ( . ) . ( . ) ..20(0.50) .80(0.20) (00.20)

0.

0.58

0.

0 63 0 46 58

0 65 0 62

52 0 44 0 62

. .

. .

. .

These are the percentages Walred’s expects. They’re all in terms of the total pop-
ulation in the area and the percentage of the business. If both Walred’s and Cee’s 
set up business in City X, Walred’s gets 63% of all the local business. If Walred’s 
settles in City Z and Cee’s chooses City Y, then Walred’s has 44% of the business 
in the area.

FIGURE 15-5: 
Percentage of 
population in 

neighboring 
cities.
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Now, to put them into a payoff matrix, write each element as a percentage either 
above or below 50%.

Cee’s

X Y Z

Walred’s  

X

Y

Z

13 4 8

8 15 12

2 6 12

% % %

% % %

% % %

Is this game strictly determined? Is there a situation where the lowest value in the 
row is equal to the highest in the column? In this case, the answer is no.

But there is a dominated strategy. Walred’s should never choose City Z, because 
each of the percentages in that row is smaller than or the same as that in the row 
above. Crossing out the last row, the game matrix becomes

Cee’s

X Y Z

Walred’s  
X

Y

13 4 8

8 15 12

% % %

% % %

There’s still no saddle point, and there’s no unique solution for the strategies, but 
the pharmacies can use this information to make an informed decision. If Walred’s 
chooses City Y, then it looks like it will have the greater percentage of business, 
whichever Cee’s chooses. Of course, this is assuming that both pharmacies choose 
at exactly the same time — which may not work in the actual business world.
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Chapter 16
Applications of Matrices 
and Game Theory

Matrices  — linked with game theory and Markov chains and other 
applications  — make for interesting and informative investigations. 
Even before the processes of game theory were formalized, some of the 

principles behind games were studied and utilized. Some historical decisions were 
made using these principles, such as some naval decisions during World War II. 
The principles are applied today as engineers try to have the traffic lights behave.

Traffic Flow
Have you ever had to stop at traffic light after traffic light? They’ve all turned red 
with no pass-through in sight! What happened to the days when the lights were 
always green and you just sailed on through? Supposedly, the traffic engineers 
have this all covered, making traffic move as quickly and efficiently as possible. 
I’m sure that that’s the case, and we’re just experiencing the few glitches. So how 
do the traffic control people plan the light sequences? With matrices, of course!

IN THIS CHAPTER

»» Controlling traffic

»» Planning an attack

»» Playing chicken

»» Dealing with dilemmas

»» Going Blotto and getting Nimble
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Consider four one-way city streets, one going north, one south, one east, and the 
last west. Traffic engineers set some traffic-counting cables across the streets to 
determine what the usual traffic flow is at certain times of the day. Figure 16-1 
shows the number of cars entering and leaving this particular city area at a 
certain time.

The traffic engineers see how many vehicles are entering and leaving the city 
center, but they need to know how many vehicles are using the portions of the 
streets surrounding the city square and the respective intersections. In Figure 16-2, 
you see the intersections labeled A, B, C, D and the street portions labeled 
x x x x1 2 3 4, , , , representing the number of cars traveling along those sections.

Using this information, you can set up a system of equations describing the 
number of cars entering and leaving the four intersections.

IN OUT

A:

B:

C:

D:

300 350

200 350

300 400

1 4

1 2

2 3

4 3

x x

x x

x x

x x 5500 300

FIGURE 16-1: 
Traffic flowing in 
and out around 
the city square.
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Now, rewrite the system of equations so that all the variables are on one side, and 
then create a corresponding matrix.

x x

x x

x x

x x

1 4

1 2

2 3

3 4

650

550

700

800

1 0 0 1 650

1 1 0 0 550

0 1 1 0 700

00 0 1 1 800

Next, you perform row operations, and then you rewrite the matrix in reduced 
echelon form (see Chapter 6). Then you rewrite the equations to get

Performing reductions :

1 0 0 1 650

0 1 0 1 100

0 0 1 1 800

0 0 0 0 0  

x x

x x

x x

1 4

2 4

3 4

650

100

800

The bottom row of 0s tells you that the system of equations doesn’t have a unique 
solution. So there is no one right answer. Each variable is dependent on the values 
of the others.

Now comes the tricky part — and may explain why the lights don’t work exactly 
as you anticipate. Because there isn’t a single, unique solution, the engineers 
make an assumption about one of the streets and solve for the rest. They put one 
of those counters in the middle of x4 and found that 250 cars went along that 
street. Replacing x4 with 250  in the first equation, you have x1 250 650 or 
x1 400. Using 250 for x4 in the third equation, x3 250 800 or x3 550. And 
using 250 for x4 in the middle equation, x2 250 100, giving you x2 150.

FIGURE 16-2: 
Street sections 

and intersections 
labeled for 
equations.
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Put those values into the street sketch. With the traffic flow established, the traffic 
controllers can set the timing of the lights to make things move more quickly and 
efficiently.

Battle of the Bismarck Sea
A classic war game comes from military strategy employed during March 1943. 
U.S. intelligence determined that a Japanese convoy was planning on moving from 
New Britain to New Guinea. It was decided that General MacArthur’s forces would 
try to intercept the convoy and attack. The Japanese commander could send his 
convoy either north or south of New Britain. In either case, it would take three 
days for the convoy to make the trip. Weather predictions were that the northern 
route would experience rain with poor visibility, but the southern route would be 
clear. MacArthur’s forces could concentrate most of their search efforts on either 
the northern or southern route. The goal of the United States, of course, was to 
have as many opportunities to bomb the convoy as possible. And the Japanese 
commander wanted to limit his exposure. The following represents the reasoning 
of the commanders.

Japanese Convoy

    U.S.

Aircraft

Goes North Goes South

Goes

No


rrth

Weather interferes, but two

days of bombing possible 

witth greater concentration

Convoy in clear, but most of

 searcch was to North; only 

two days of bombing

Goes

South

Poor vissibility and loss of time

with original misdirection; 

bombiing time one day

Convoy in clear and 

concentration of searcch in

 right area yields three 

 days of bombing

A payoff matrix shows the number of days of bombing as entries, so it’s in terms 
of the U.S. results. Is there a best strategy? What is the value of the game?

Japanese

U.S. 
2 2

1 3

There’s a saddle point in the first row, first column, because the element is the 
lowest (well, it’s tied) in the row while being highest in the column. So the value 
of the game is 2, meaning two days of bombing. What actually happened, you 
wonder? Both forces went to the north.
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The Game of Chicken
Have you ever been called a “chicken” for not being willing to jump off the diving 
board or stick your finger in the hot cocoa? You probably didn’t realize that this is 
a classic in game theory and has been immortalized in the movie Rebel without a 
Cause.

A basic illustration of the game of chicken is having two cars on a deserted road, 
heading directly at one another. Whoever swerves out of the way is deemed a 
chicken. And, yes, you know the other consequences. The following shows the 
results of the game in terms of the results for R.

C

Swerves Straight

Swerves Tie; both unharmed C wins; R is a c
R

hhicken

Straight R wins; C is a chicken Crash

And how do you put this into a game payoff matrix? With the payoffs in terms of 
R, the following would work. Note the value of the crash!

C

R  
0 1

1 10

The lowest value in the first row is the highest value in that column, so that would 
be the saddle point. Also, the second column dominates the first column, so you 
would adjust the matrix to a column matrix, where the first row is still the best 
choice.

A row dominates another row if every entry in the row is larger than the corre-
sponding entry in the other row. But a column dominates if its corresponding 
entries are all smaller than those in the other row.

What happened in Rebel without a Cause? The characters play a game of chicken 
when they steal cars and drive them off a seaside cliff. The idea was that you’re a 
chicken if you jump out of the car unless it’s just before it goes over the cliff. In 
the movie, one of the characters tries to jump out, but his jacket gets caught on 
the door, so he goes over, anyway. Also, an even sadder note is that the star, James 
Dean, later died in a car crash at the age of 24.
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The Prisoner’s Dilemma
The classic prisoner’s dilemma has many other applications, but it is probably 
best described with the following situation.

Two gang members are arrested and put into two separate rooms for questioning. 
The prosecutor has enough evidence to convict both of them on a minor charge 
but not enough to convict them on a major felony. The gang members hope to get 
away with just being convicted of the minor charge and get a short sentence.

During questioning, the prosecutor makes each gang member an offer. The offer 
is that the prisoner being questioned would be set free if he testifies that the other 
committed the major felony. But there are consequences. Here are the conse-
quences, naming the two prisoners Ron and Cal.

»» If Ron betrays Cal and Cal remains silent, then Ron will be set free, and Cal will 
serve ten years.

»» If Cal betrays Ron and Ron remains silent, then Cal will be set free, and Ron 
will serve ten years.

»» If both betray the other, then both will serve five years.

»» If both remain silent, both will serve just one year for the minor charge.

How does this play out?

Cal

Ron
     

Betrays Silent

Betrays Each get 5 years Cal 10 yearss; Ron free

Silent Ron 10 years; Cal free Both 1 year

Now, putting this in a payoff matrix with the “consequences” in terms of what 
happens to Ron, you get the following (the negative numbers indicate years 
served):

Cal

Betray Silent

Ron 
Betray

Silent

5 0

10 1

So how is this played? Do you see the optimum play? The saddle point is the 5 in 
the first row, first column. Also, the first column dominates the second column, 
and the first row dominates the second row. According to the game, the best 
option is for both prisoners to “sing.” Doesn’t say much for loyalty.
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The Traveler’s Dilemma
If you’ve traveled by airplane, you’re probably familiar with the great feeling of 
relief when you see your luggage coming out of the unloading area and onto the 
conveyor belt. Whew! Also, you may be able to understand, somewhat, how the 
travelers may act in the following dilemma.

An airline loses the suitcases of two travelers. The suitcases are identical and con-
tain identical electronics equal in value. The baggage manager needs to settle the 
travelers’ claims and informs them that the airline is liable for a maximum of 
$200 per suitcase (not knowing the value of the electronics).

The manager meets with the travelers separately and has them write down the 
amount representing the value of the electronics; the value has to be between $10 
and $200. The manager says that if they both write down the same number, then 
he’ll figure that that’s the true value and reimburse both that amount. If they 
write down different numbers, then he’ll assume that the smaller is the true value 
and he’ll reimburse both that smaller amount plus he’ll give the traveler who 
stated that amount a bonus of $10 and deduct $10 from the traveler giving the 
larger value. What should the travelers do? Does the following payoff matrix help? 
The matrix indicates what each traveler wrote down for the value, and the ele-
ments in the matrix describe the payoff to the traveler named R.

C

R

200 199 198 197 13 12 11 10

200

199

198

197

13

12

11

10

200 189 188 187 1

L

M

L 33 12 11 10

209 199 188 187 3 2 1 0

208 208 198 187 3 2 1 0

207 207 207 197 3 2 1

L

L

L 00

23 23 23 23 13 2 1 0

22 22 22 22 22 12 1 0

21 21 21 21 21 21 11 0

20

L L L L L L L L L

L

L

L

220 20 20 20 20 20 10L

If R claims $199 and C claims $197, then the manager assumes that $197 is the 
true value. He gives C $207, but he deducts $10 from R’s amount, giving him $187. 
Remember, the payoff matrix is in terms of R.

Even with all the missing values, do you see the equilibrium? If both write down 
$10, then they’re both guaranteed $10. Bummer.
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Blotto’s Rules
The traditional Blotto game is played by having the contestants distribute their 
forces or resources over several battlefields. The payoffs involve capturing posi-
tions and enemy forces. This game has applications in the political arena, where 
parties direct their resources to win votes.

Consider the two armies led by Generals Blotto and Cassidy. General Blotto has 
five regiments, while General Cassidy has only four regiments. Each decides how 
many of his regiments he’ll be sending to Battlefields I and II. The scoring for the 
resulting battles goes as follows:

»» If a general sends more regiments to a battlefield than the other, then that 
general wins the battle.

»» When a general wins a battle, then he also captures all the regiments sent by 
his opponent.

»» If the number of regiments sent by both generals is the same, then there is no 
winner and no loser — it’s a draw.

»» The winning general gets 1 point for the win and 1 point for each regiment he 
captures.

The scoring involves what happens on both battlefields; any points won or lost are 
added together. In the following chart, the scores are all those of General Blotto 
with the number of regiments sent to Battlefields I and II shown in parentheses 
(I, II).

Cassidy

Blotto 

I, II)( ( , ) ( , ) ( , ) ( , ) ( , )

( , )

4 0 3 1 2 2 1 3 0 4

5 0 5 0 4 1 3 1 2 1 1 1

4 1 0 1 4 0 3 2 2 2 1 2

3 2 4 1 0 2 3 0 2 3 1 3

2 3 3

( , )

( , )

( , ) 11 3 2 0 3 2 0 1 4

1 4 2 1 2 2 2 3 0 4 1 0

0 5 1 1 1 2 1 3 1

( , )

( , ) 44 0 5

Reading from the chart, you see that if General Blotto sends four regiments to 
Battlefield I and one regiment to Battlefield II, (4, 1), while General Cassidy sends 
two regiments to each battlefield, (2, 2), then General Blotto wins on Battlefield I 
because it’s four regiments against two regiments. He gets 1 point for the win and 
2 points for the two regiments he captures. At the same time, Blotto loses on 
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Battlefield II, because Cassidy’s two regiments beat Blotto’s one. Blotto loses 1 
point for losing the battle and 1 point for the regiment that gets captured. The 
score 3 2 has a net result of +1.

Putting all the computations into a payoff matrix, with the results showing Gen-
eral Blotto’s scores as row, you have

Cassidy

Blotto  

( , ) ( , ) ( , ) ( , ) ( , )

( , )

( , )

( , )

( ,

4 0 3 1 2 2 1 3 0 4

5 0

4 1

3 2

2 33

1 4

0 5

5 3 2 1 0

1 4 1 0 1

3 2 3 1 2

2 1 3 2 3

1 0 1 4 1

0 1 2 3 5

)

( , )

( , )

Can you see what General Blotto’s best strategies should be? If he sends all his 
regiments to one battlefield or the other, then he doesn’t lose any points. At the 
worst, it’s a “draw.” General Cassidy doesn’t have quite such clear-cut options, 
but he’ll probably want to stay away from sending half of his regiments to each 
battlefield. He just can’t win.

Jack Be Nimble
The game of Nim has been around for centuries. There are different versions of it, 
and new iterations keep getting more interesting and complicated. But, basically, 
the game may have two different goals: One is to be the last person to make a play, 
and the other is to not have to be the last person to make a play. The game of Nim 
described here involves being able to make the final play — this seems more in 
line with the usual activity creating a win.

Nim with two heaps
Consider the game of Nim where you have two stacks of buttons. At each turn, a 
player has to remove at least one button from a stack, and any buttons removed 
during a turn must be from the same stack. The goal is to be the last player — the 
one who takes all the remaining buttons from the remaining stack. Figure 16-3 
illustrates this scenario.
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What would you do if you were playing the game shown, where the left stack has 
six buttons and the right stack has five? You could take the entire left stack, but 
then your opponent would win by taking the entire right stack. You want to force 
your opponent to take all of a remaining stack so you can take the other. Table 16-1 
shows some possible plays for the game with six buttons on the left and five on the 
right. You’re playing against an opponent named Why.

You win! You are so clever! Do you have a secret plan? Is there a way to guarantee 
a win?

First, look at the second-to-last play. You reduced the two piles to one button in 
each. Why didn’t have any other option than to take one button from one of the 
piles. So you want to create the situation where there’s one button in each. How 
did you get there?

Look at the fourth line in the table, where Why is looking at two buttons in each 
pile. He can make one of two choices:

»» Take two buttons from one pile, leaving the other pile. That guarantees that 
you’ll win, because you’ll then take the other pile and be the last player.

TABLE 16-1	 Playing Nim with Two Stacks
Left Stack Right Stack Player and Move New Left New Right

6 5 You take 1 from Left. 5 5

5 5 Why takes 3 from Right. 5 2

5 2 You take 3 from Left. 2 2

2 2 Why takes 1 from Left. 1 2

1 2 You take 1 from Right. 1 1

1 1 Why takes 1 from Left. 0 1

0 1 You take 1 from Right. 0 0

FIGURE 16-3: 
Playing Nim with 

two stacks of 
buttons.
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»» Take one button from either pile. That would leave one button on the left and 
two buttons on the right or two on the left and one on the right. In either case, 
you just take one button from the pile that has two buttons and create the 
situation where there’s just one button in each. You win, again!

Now look at the second line in the table, where Why is looking at five buttons in 
each pile. You have several choices, and in response to any of them, you’re going 
to respond by creating an equal number of buttons in each pile. For example:

»» Why takes one button from the left pile, leaving four and five buttons.

»» You take one button from the right pile, leaving four and four buttons.

»» Why takes one button from the right pile, leaving four and three buttons.

»» You take one button from the left pile, leaving three and three buttons.

»» Why takes two buttons from the right pile, leaving three and one buttons.

»» You take two buttons from the left pile, leaving one and one buttons.

»» Why has to take one button from one of the piles; you win!

This could play in other ways, but if you keep responding by making the piles 
equal in size, then you’ll win — that is, if you don’t make any mistakes!

When playing Nim with two stacks and when the goal is to be the last player (to 
pick up the last buttons), then you want to create the situation where the two 
stacks have an equal number of buttons for the opponent to choose from.

Upping the Nim stacks to three
You can play Nim with any number of stacks of objects and any number of buttons 
in each stack to start off the play. Just as an example, consider the game where you 
have three stacks of buttons labeled A, B, and C, and they start out with four, six, 
and three buttons, respectively. You get to start, and Table 16-2 shows how it can 
play out.

TABLE 16-2	 Playing Nim with Three Stacks
A B C Player and Move New A New B New C

4 6 3 You take 1 from C. 4 6 2

4 6 2 Why takes all 4 from A. 0 6 2

0 6 2 You take 4 from B. 0 2 2
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You’ve just created the two-stack situation where the stacks are equal in size, so 
you win!

Why wants another chance. This didn’t work out well for him. So you start, again, 
with the stacks of four, six, and three buttons and let Why go first. (This is taking 
a chance, but you’re figuring on winning, anyway.)

Table 16-3 shows how this game plays out.

At this point, you have won. A configuration of 1, 2, 3, or any other order of those 
three numbers guarantees you a win. Don’t believe it? Look at Why’s options:

»» Why takes one button from A, leaving two, one, and two. You take one button 
from B, creating your winning two stacks of twos.

»» Why takes two buttons from A, leaving one, one, and two. You take two 
buttons from C, creating your winning stacks of ones.

»» Why takes three buttons from A, leaving zero, one, and two. You take one 
from C, creating your winning stacks of ones.

»» Why takes one button from B, leaving three, zero, and two. You take one from 
A, creating your winning stacks of twos.

»» Why takes one button from C, leaving three, one, and one. You take all three 
buttons from A, creating your winning stacks of ones.

How do you know that a configuration containing one, two, and three will always 
win? It’s not the only winning set of numbers. Others are one, four, and five; one, 
six, and seven; one, eight, and nine; two, four, and six; three, five, and six; and so 
on. These sets of three numbers are all chosen based on special sums using base 
two. If you memorize these sets or investigate further the topic of Nim-sum, then 
you’ll be practically unbeatable at Nim. You can use matrices, of course, to aid in 
the process.

TABLE 16-3	 Playing Nim with Three Stacks, Game 2
A B C Player and Move New A New B New C

4 6 3 Why takes 5 from B. 4 1 2

4 1 2 You take 1 from A. 3 1 2
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IN THIS PART . . .

Find ten financial formulas to further your figuring.

Discover ten functions you can use on a graphing 
calculator.
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Chapter 17
Ten Financial Formulas

In Chapter 11, you find many formulas and examples using those formulas. The 
main emphasis in that chapter is on earning interest  — either simple or 
compound  — determining present and future values of investments, and 

checking out annuities and amortization.

There are so many more financial formulas and processes to discover. I introduce 
only ten more here, but you can always seek out others if this type of computation 
really floats your boat.

The Rule of 72
Would you like to double your money? This sounds like something a dealer in a 
casino would say. Because you likely aren’t willing to take that kind of risk with 
your money, instead, here’s a quick-and-easy way to figure out how long it would 
take to double your money when you have it safely invested. The Rule of 72 says 
that the approximate number of years it would take to double your investment is 
72 divided by the rate of interest:

t
I

72

where t is the number of years, and I is the rate of interest given as a percent, not 
as a decimal.
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So if your rate of interest is 6%, it’ll take 72
6

12 years to double your investment. 

At 8%, it’ll be 9 years. And if you can find 18%, it’ll be only 4 years.

Leverage Ratio
When you apply for a car loan or mortgage on a house, one thing the lenders con-
sider is your leverage ratio. A rule of thumb is that your leverage ratio shouldn’t be 
more than 33%. So what is this ratio? It’s your debt divided by your income.

L.R.
Monthly payments

Monthly income

So if you have monthly payments (rent, car loan, school loans, and so on) of 
$1,200 and your monthly income is $4,200, then your leverage ratio is

L.R. 1200
4200

2
7

0 285714. . . .

That is just between 28 and 29%. Looking good.

Gains and Losses
When buying stock or making other investments, you want to determine how 
you’re doing in terms of gains or losses  — not just how much, but by what 
percentage.

When figuring a percent increase or decrease, you subtract the purchase price 
from the current price and divide by the purchase price.

% Change Current price Purchase price
Purchase price

So if you bought 100 shares of stock last year for $1,400 and it’s now worth $1,260, 
then your percent loss is

1 260 1 400
1 400

140
1 400

0 10 10, ,
, ,

. %or

But if the bonds you bought for $4,000 are now worth $5,000, then your gain is

5000 4000
4000

1000
4000

0 25.

You had a 25% gain.



CHAPTER 17  Ten Financial Formulas      283

Determining Depreciation
When you purchased that $80,000 boat, you knew that it would be worth only 
$20,000 at the end of 12 years. These figures help you when determining how 
much the boat depreciates each year.

You can use many types of depreciation, but the most recognizable and easiest to 
compute is straight-line depreciation. The boat depreciates the same amount each 
year.

Straight-line depreciation Initial cost Salvage value
Numberr of years

So your $80,000 boat depreciates by

Yearly Depreciation  or $5,080 000 20 000
12

60 000
12

5 000, , , , 000 each year

Other methods include double-declining balance and sum-of-the-years digits. Both 
these and other methods are well worth investigating if you want to claim more 
depreciation toward the beginning of the life of the item.

Total Return on Investments
When you make an investment, you should consider two things when determining 
your total return: the capital appreciation of your investment and the income 
earned by the investment over the time period involved. This time period is 
referred to as the holding period.

The total holding period return equals the capital appreciation plus income.

R R RT CA I

You find the capital appreciation by subtracting the original price, P0, of the 
investment from the current price, P1, and dividing by the original price. And you 
find the income by dividing the cash flow, CF, by the original price.

R P P
PCA

1 0

0

R CF
PI

0
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So the total return on an investment over some holding period is

R R R P P
P

CF
PT CA I

1 0

0 0

Consider the situation where you purchased some stock at $53.30 one year ago, 
and it is now worth $60.20 per share. Over the past year, each share paid a  
dividend of $1.50. What is your total percent return on this investment?

R T
60 20 53 30

54 30
1 50
54 30

6 90 1 50
54 30

8 40
54 30

0 1. .
.

.
.

. .
.

.
.

. 554696

The total return on this investment is more than 15%.

Expected Return
You can’t control the economy, but you can make some assumptions and shrewd 
guesses and try to calculate the possible returns from investments. The expected 
return is a weighted average of all the possible returns; each return is weighted by 
the probability that it will occur. So let ER represent the expected return and 
p represent the probability of a particular return, R. Then

ER R R R Rp p p pn n1 1 2 2 3 3 

The probabilities have to add up to 1, of course. So here’s a possible scenario. The 
probability of a return of 0.07 is 30%, the probability of a return of 0.10 is 40%, 
the probability of a return of 0.25 is 20%, and the probability of losing money or a 
return of 0 05.  is 10%. The expected return is

ER 0 30 0 07 0 40 0 10 0 20 0 25 0 10 0 05

0 02

. . . . . . . ( . )

. 11 0 04 0 05 0 005 0 106. . . .

The expected return is 10.6%.

Inflation-Adjusted Return
You can make all sorts of predictions about possible returns, and you can compute 
total return amounts, but what does inflation do to the actual return amount? If 
you’ve computed a total return of 15% but the rate of inflation over the same time 
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period is 3%, what does that say about your actual return rate? The formula for an 
inflation-adjusted return is

Real return investment return
inflation rate

1
1

1

So with the return of 15% and inflation at 3%, you have

Real return 1 0 15
1 0 03

1 1 15
1 03

1 1 116505 1 0 116505.
.

.

.
. .

The real return is about 11.65%.

Remaining Balance
Say that you’ve taken out a loan and are making regular payments. If you want to 
pay off the whole thing at the end of the year, when you get your bonus check, 
what will that remaining balance be?

First, the formula for the remaining balance is

Balance P
1 1 i

i

n x( )

The P represents the regular payment, the i stands for the interest during each 
payment period, n is the total number of payments you need to make, and x is the 
number of payments already made.

In your case, you took out a loan and are paying $400 monthly. The annual loan 
rate is 12%, and you originally intended to pay it back in five years. At the  
end of the year, you’ll have made three years’ worth of payments. The payment, 

P, is $400. The interest rate per month is 0 12
12

0 01. . . The total number of pay-

ments, n, is 60; and the number of payments that will have been made is 36. So 
the remaining balance at the end of the year will be

Balance 400
1 1 0 01

0 01
400 1 1 01

0 01

60 36
24.

.
.
.

( )

400 1 0 787566
0 01

400 0 212434
0 01

400 2

.
.

.
.

11 2434 8 497 36. , .

That’s a pretty decent end-of-year bonus, if you’re planning on paying it off!
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Future Value of Annuity Due
In Chapter 11, you find formulas for ordinary annuities, where the payments begin 
at the end of a time period. There are other annuities where the cash payments 
start immediately; they’re called annuity due. To find the future value — the total 
amount paid out — of such an annuity due, you use this formula:

FV P
( )1 1

1
i
i

i
n

The P represents the amount of each payment, i is the interest rate per pay period, 
and n is the number of pay periods.

So if a monthly payment is $4,000 and interest rate per pay period is 0.8%, and 
this will continue for 10 years, or 120 pay periods, the future value is

FV 4 000
1 0 008 1

0 008
1 0 008

4 000
1 008

120

12

,
( . )

.
.

,
( . ) 00 1

0 008
1 008 4 000 1 601740

0 008
1 008

4

.
. , .

.
.

,, . , .000 201 819209 807 276 8367

So the future value is more than $800,000.

Bond Pricing Formula
The bond pricing formula has a geometric series buried in the computation. But 
the number of pay periods usually doesn’t require using a sum-of-the-geometric 
series formula to solve it. The bond pricing formula is

P C C C C C F
B

1 2
2

3
3

1
11 1 1 1 1i i i i i

n
n

n
n

PB represents the price of the bond, the Cs represent the payments in each period, 
F is the face value that is paid at maturity, i is the interest rate, and n is the 
number of periods to maturity.
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So a bond worth $1,000 with payments of $60 each pay period, interest at 6%, and 
10 pay periods would have the following:

PB
60

1 06
60

1 06
60

1 06
60

1 06
60

1 06
60

1 06
2 3 4 5. . . . . .

66

7 8 9 10
60

1 06
60

1 06
60

1 06
60

1 06

56 60 53

. . . .

. .

1000

440 50 38 47 53 44 84 42 30

39 90 37 64 35 51 591 90 1 000

. . . .

. . . . ,

The payments total the value of the bond.
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Chapter 18
Ten Important Graphing 
Calculator Functions

The study of mathematics began long before the advent of computers, graph-
ing calculators, or even abaci. And gone are the days of the handwritten 
ledgers and counting on your fingers. You now have hand-held calculators 

to aid you with your computations — for whenever you need to determine some-
thing more involved than what you can do on your phone or watch or in your head.

The calculator functions listed in this chapter are mainly those that will be most 
helpful when working through the topics found in finite mathematics. The keys 
and instructions indicated are those used by some of the more popular calculators, 
but they can be adapted to many other types.

Graphing Lines for Intersections
You can find the point of intersection of two lines by graphing the lines on the 
same screen and then asking for the point of intersection.

For example, to find the intersection of the lines y x3 4 and 2 1 0x y , you 
first need to change the second equation into the function form; in the case of a 
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line, this is the slope-intercept form. Then you enter the two equations using the 
y  key, as shown in Figure 18-1a.

Next, use Graph , and you see the graphs of the two lines, as shown in 
Figure 18-1b.

Be sure that your window is in the standard setting, from 10 to 10 both horizon-
tally and vertically.

Looking at the graph, you can estimate the intersection is at about 1 1, , but you 
need to be exact. Use Calc  on your calculator, which is the second function of 
Trace , to get the intersection. Select Intersect , and then choose or mark the two 
lines. There’s only one intersection, so hit Enter , and the coordinates of the point 
appear: x y1 1, . See Figure 18-1c.

Adjusting the Window
When graphing lines or other functions using a graphing calculator, be sure you 
have the screen set so you can see the functions you’ve entered. If two lines inter-
sect at the point (50, 100), for example, you won’t see the intersection if your 
window goes from 10 to 10 both horizontally and vertically.

Make a calculated guess as to where the intersection occurs. Then, you can change 
the window yourself by using Window  and then entering the values for Xmin, 
Xmax, Xscl, Ymin, Ymax, and Yscl. The Xscl and Yscl refer to the scale or amount 
of space between tick marks. After setting the window, just enter Graph .

FIGURE 18-1. 
Entering 

functions (a), 
graphing lines (b), 

and noting the 
intersection (c).
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You can also use a shortcut if you want the window to go from 10 to 10 both 
horizontally and vertically. Use Zoom  and then 6:ZStandard.

Entering Matrices
A matrix is a rectangular array of numbers, and you can create matrices of any 

shape and size using a graphing calculator. The Matrix  function is a second func-

tion of the x 1  key. When using Matrix , you see three choices across the top of the 

screen: NAMES, MATH, and EDIT, as shown in Figure 18-2a.

To enter a new matrix, decide what you want its name to be. The choices range 
from [A] through [J]. Your calculator will have some pre-set dimensions already 
entered, but you can change them to suit your needs.

To enter a new matrix, C
3 2 0

1 4 4
, first scroll over to EDIT, and then scroll 

down to choice 3:[C] and hit Enter .

Change the dimension to a 2 3 matrix, entering the numbers across the top of the 
screen.

You see a matrix like the one in Figure 18-2b. If you’ve never used this function 
before, you may see 0s or other numbers. Just change the elements to what you 
want by typing over the current entries.

When you’re finished, quit the screen by using 2nd  Quit . The Quit  button is a 

second function of Mode . To call up the matrix, go to the Matrix  menu, as before, 
and enter or go to 3:[C]. You see the matrix you created, such as in Figure 18-2c.

FIGURE 18-2: 
Editing (a) and 

entering 
elements of a 

new matrix (b) 
and the result (c).
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Adding, Subtracting, and  
Multiplying Matrices

When adding or subtracting matrices, the matrices must have the same dimen-
sion. Your calculator will tell you if you haven’t followed that particular rule with 
the warning DIM MISMATCH.

When you’ve chosen which matrices you want to add or subtract, you call the 
matrices up by name (see the previous section) and put the desired operation 
between them.

For example, if you want to add matrices [A] and [C], the keys to use are

2nd , Matrix  , 1:[A], ENTER  ,  , 2nd , Matrix  , 3 :[C] , ENTER

So if you have two matrices entered, A
5 3 2

1 0 3
 and C

3 2 0

1 4 4
, your 

screen shows the matrix sum (see Figure 18-3a).

Subtraction follows the same steps, except, of course, you insert  for the opera-
tion. The result of the subtraction is shown in Figure 18-3b.

When multiplying matrices, you have to follow a very specific format and order. 
The matrices don’t have to have — and usually don’t — the same dimensions. So 
to multiply matrix B times matrix D, the number of columns in matrix B must be 
equal to the number of rows in matrix D.

For example, you can multiply the following two matrices because B has two col-
umns and D has two rows:

B D and  
3 2

1 4

0 3 2

1 1 5

FIGURE 18-3: 
Adding (a), 

subtracting (b), 
and multiplying 

(c) matrices.
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To multiply the matrices, use these keys:

2nd , Matrix  , 2 :[B], ENTER ,  , 2nd , Matrix  , 4 :[D], ENTER

The resulting matrix is shown in Figure 18-3c.

Powering Up Matrices
You can raise some matrices to some powers. However, there are qualifiers as to 
which matrices and which powers. The qualifiers are that only square matrices 
can be raised to powers, and the powers have to be positive integers. For example, 
you can compute the following powers on the two selected matrices:

E10

10
3 4

1 2
 

F3

3
0 5 2 2

2 1 0 1

0 0 5 1

.

.

.

To raise matrix E to the tenth power, use the following keys:

2nd , Matrix  , 5 :[E],   , 10, ENTER

You see the results in Figure 18-4a.

Then, to raise matrix F to the third power, use these keys:

2nd , Matrix  , 6 :[F],  , 3, ENTER

As you see in Figure 18-4b, the elements are decimal numbers that are too long to 
fit on the screen, so you have to scroll to the right to see the last column of the 
result.

FIGURE 18-4: 
Raising matrices 

to the tenth (a) 
and third (b) 

powers.
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Finding Matrix Inverses
You can’t really divide matrices, but you can get around this by multiplying by the 
inverse of the second matrix. This matches the process you use when dividing 
fractions — you multiply by the inverse of the second fraction.

First, though, note that only square matrices have inverses, so they’re the only 
candidates for being the divisors in this process. And not all square matrices have 
inverses, so this is a very special operation involving very special participants.

The inverse of a square matrix is a square matrix of the same size as the original. 
And when you multiply a matrix times its inverse, you always get an identity 
matrix, which is a square matrix with a main diagonal of 1s and all the other ele-
ments 0s.

Consider the matrix G, a 4 4 matrix.

G

1 1 1 2

0 2 1 3

1 2 0 1

1 1 2 6

After entering G, to find the inverse of a matrix G using your calculator, use the 
following keys:

2nd , Matrix  , 7 :[G] ,  x
1
 , ENTER

Note that you must use the x 1  key; you can’t use , 1.

So you end up with

G 1

3 1 3 1

1 1 1 0

5 2 2 3

1 1 0 1

You may question why there’s a negative integer for the exponent when I told you 
in the previous section that only positive integers can be used as powers. This is 
because x 1  is considered to be the inverse key. Just think of it as the inverse in 
this situation.
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Solving Systems of Equations  
Using Matrices

Solving systems of linear equations algebraically is always loads of fun, but, espe-
cially when the numbers get very large or the number of equations is greater than 
two, it’s nice to have the option to employ your calculator to do all the work.

To solve a system of linear equations using your calculator, you first have to put 
the equations in the same format — that is, the variables have to be in the same 
order. The variable terms are on one side of the equations, and the constants are 
on the other side. And to have any chance at an answer, you have to have as many 
equations as there are variables.

You create a square matrix using all the coefficients of the variables. And then you 
create a column matrix using all the constants. To find the values of the variables, 
you multiply the inverse of the coefficient matrix times the column matrix. Your 
result is a column matrix with the values of each variable.

To solve the following system, write a coefficient matrix H and the column 
matrix I.

x y z w

x y z w

x y z w

x y z w

2 3 6

2 4 3 13

3 3 1

2 3 4 8

H  I and  

1 2 3 1

2 1 4 3

3 3 1 1

1 2 3 4

6

13

1

8

Enter the two matrices into your calculator. Then, to multiply the inverse of H 
times I, use the following keys:

2nd , Matrix  , 8 :[H],  x 1
 ,  , 2nd , Matrix  , 9 :[I], ENTER

The result is a column matrix with the values of variables.

[ [ ]

[ ]

[ ]

[ ] ]

. .

. .

1

1

1

2

1

1

1

2

which means  nd  a rrepresents   

x

y

z

w

1

1

1

2
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Be sure to use 0s as placeholders if any variables are missing in any of the 
equations.

Decimals to Fractions
Many operations performed on a graphing calculator result in decimal answers. 
The decimals may be terminating or repeating. And the decimals for irrational 
numbers don’t do either — that is, they don’t end, and they don’t repeat in a 
pattern.

In some instances, you want to change the decimal result to its equivalent frac-
tion. You can do this by hand when you put the decimal digits over powers of 10 or 
repeated 9s or when you solve a system of two linear equations. As much fun as 
that is, you often prefer the quick, down-and-dirty method of using your 
calculator.

The MATH  button has choices: MATH, NUM, CPX, and PRB. You want the first 
option in the MATH menu, 1: . Frac. This tells the calculator to change the deci-
mal value currently on the screen to its reduced fractional equivalent.

»» Entering 0.0185, MATH, 1: . Frac results in 37/2000.

»» Entering 0.363636363636, MATH, 1: . Frac results in 4/11.

»» Entering 0.142857142857, MATH, 1: . Frac results in 1/7.

»» Entering 0.0045857536, MATH, 1: . Frac just gives a response of 
0.0045857536, even though it’s equivalent to 15/3271.

This happens when there aren’t enough repeating patterns to work with in the 
calculator. You either have to go back to the pencil-and-paper method or just 
round off the decimal to a desired number of places.

The calculator can’t do all decimals, but it certainly helps save time with the num-
bers that it can do.

Counting with Permutations  
and Combinations

Some probability and statistics problems require that you determine how many 
ways an event can occur or how many different ways things can be arranged. 
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For example, if you’re planning on tasting 10 of the 20 new flavors of fudge at a 
candy shop, how many different ways can you do this? The order doesn’t matter; 
you just want to know how many different groupings of ten different hunks of 
fudge there could be.

To solve this type of problem, where order doesn’t matter, you use a combination 
of n things taken r at a time. You often see the notation n rC  representing this com-
putation. You can find the formula for computing a combination in Chapter 10, but 
a graphing calculator can do this very quickly and efficiently. The Permutation 
and Combination keys are under MATH , then PRB, then 2 : nPr or 3 : n rC .

In this problem, n is 20, because there are 20 different choices, and r is 10, because 
you’re going to take 10 of them.

To find 20 10C , you first enter the 20 and then the calculator functions.

20, MATH, PRB, 3:nCr, 10, ENTER

You see:

20 10

184756

  nCr  

There are 184,756 different ways to choose 10 of those 20 flavors. Whew!

But what if the order matters? What if you not only choose ten flavors, but you 
also need to put the ten flavors in as many different orders as possible and then 
choose one of them? How many different ways can this be done? You use a per-
mutation of 20 things taken 10 at a time.

To find 20 10P , you first enter the 20 and then the calculator functions.

20, MATH, PRB, 2:nPr, 10, ENTER

You see:

20 10

6 704425728

  nPr  

11E.

The number is so large that it had to be written in scientific notation. What’s 
shown here is more commonly written as 6 704425728 1011. , which is more than 
67 billion. That’s way too many choices. Just eat the fudge!
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Making Statistical Statements
Much of the study of statistics has to do with averages and spread. The formulas 
for mean, median, mode, variance, and standard deviation are all covered in 
Chapter 12. But a graphing calculator can determine many of these values very 
quickly and easily.

Under the STAT  button, you find EDIT, CALC, and TESTS. When looking for the 
averages or spread of a list of numbers, you first enter the numbers in the list 
using EDIT, and then you find those values using CALC.

For example, you want to find out more about the following list of numbers: 10, 
15, 20, 20, 20, 20, 35, and 40. Enter them using these keys:

STAT , EDIT, (and under the heading L1) enter the numbers onne at a time, 

2nd, Quit

What can be determined? Just have your calculator do the calculations:

STAT , CALC, Var Stats, ENTER1 1:

You see the following statistics:

1

22 5

180

4750

10

9 354143467

8

2

Var Stats

x

x

x

Sx

x

n

.

.

1

8

10

17 5

20

27 5

40

1

3

Var Stats

n

minX

Q

Med

Q

maxX

.

.

Here’s what each symbol means:

»» x is the mean of the numbers.

»» x  is the sum of the numbers.

»» x 2 is sum of the square of the numbers.

»» Sx  is the sample standard deviation.

»» x is the population standard deviation.

»» n is how many numbers in the list.
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»» minX is the smallest number in the list.

»» Q1 is the first quartile.

»» med is the median.

»» Q3 is the third quartile

»» maxX is the largest number in the list.

You don’t find the mode, but a quick look at the list tells you which number 
appears most frequently. And the variance is the square of the standard deviation, 
so that computation is a quick step away.
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Glossary
The following words and expressions are presented with their definitions to help 
you when reading through the various portions of Finite Math For Dummies. Not all 
mathematical words and expressions are defined here. Some have been omitted, 
because it is assumed that their meaning is clear in the presentation. And others 
have been omitted if they are found in only one context and fully defined in that 
situation.

absorbing state: Markov chain with element on main diagonal, aii 1, and all other 
elements in the row equal to 0.

amortization: Repayment of a loan in equal installments where both the principal and 
interest are included in each payment.

antecedent: In logic, the p statement in the conditional p q.

augmented matrix: Representation of a system of linear equations with the coefficients 
separated from the constants by a vertical bar.

balance: Amount of money in an account after an addition or subtraction of funds.

binomial: Expression with two terms; process with two results.

central tendency: Measure of the middle, center, or average.

coefficient: Symbol representing a constant value that multiplies a variable.

coincidental: Lines that are the same; lines with equations producing the same set of 
numbers.

combination: Subset of a given set where order does not matter.

compound inequality: Three or more expressions separated by inequality symbols.

compound statement: In logic, a statement made up of two or more expressions joined 
by a connective, such as and, or, and if . . . then.

conjunction: In logic, a compound statement, p q, read “p and q,” implying “both.”

consequent: In logic, the q statement in the conditional p q.
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constant: Symbol representing a value that never changes.

constraint: A restriction or standard to be met.

denominator: Bottom value in a fraction.

depreciation: Decrease in the initial value of an object.

dimension: In matrixes, the number of rows and columns, denoted m n.

disjunction: In logic, a compound statement, p q, read “p or q,” implying “either 
or both.”

echelon form: A matrix whose main diagonal is 1s with 0s below each 1.

echelon form, reduced: A matrix whose main diagonal is 1s with 0s both above and 
below each 1.

effective rate: The actual rate of interest when compounding is considered.

element (matrix): One of the values found in the rectangular array of objects.

element (set): One of the objects in a set.

elimination: Technique used when solving systems of equations where one variable is 
mathematically removed from an equation.

equilibrium: Vector of a Markov chain that no longer changes.

equivalent: Statements that have the same truth value; equations that have the same 
solutions.

factorial: Operation in which the input number is multiplied by every positive integer 
smaller than that number; denoted n!

feasible region: Values that satisfy all the constraints.

finite: A countable number.

formula: Mathematical expression used to calculate quantities by inserting values for 
variables and performing computations.

function: Algebraic equation in which there is exactly one output for every input.

horizontal: Parallel to the x-axis; line with slope 0.

identity (matrix): Square matrix with main diagonal all 1s and other elements all 0s.

identity (real number): Number that doesn’t change the value of another when the 
identity’s operation is performed; additive identity is 0; multiplicative identity is 1.

infinite: Uncountable; never ends.
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intersection (lines): Point shared by two or more lines.

intersection (sets): All elements shared by two or more sets.

invalid: In logic, an argument for which true premises do not force a true conclusion.

inverse: Number that creates the identity when performed with the operation associated 
with that identity.

linear equation or inequality: All variables have exponents of 1.

matrix: Rectangular array of elements delineated by brackets.

matrix transpose: Operation in which each row of a matrix becomes a column and each 
column becomes a row.

mean: Average found by dividing the sum of the values given by the number of values.

median: Middle of a set of ordered numbers.

mode: Most frequently occurring number or numbers in a data set.

numerator: Top value in a fraction.

objective function: In linear programming, the object of the maximization or minimiza-
tion process.

permutation: Subset of a given set where order matters.

pivot: In linear programming, the element in the row and column determining which row 
operations will be performed.

premise: In logic, an assumption or rule or law.

principal: Beginning or initial amount of a deposit or investment.

quadrant: One of four equal divisions of the coordinate plane.

quantifier: In logic, universal quantifiers all, each, every, and none.

range: Difference between largest and smallest number in a data set.

reciprocal: Multiplicative inverse of a fraction; fraction formed by reversing the numera-
tor and denominator.

roster: Listing of all the elements in a set.

scalar: In matrix mathematics, a real number.

set: Grouping of elements with something in common.

set (empty): Set with no elements.
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set (universal): Set with all the elements under discussion.

simplex method: Process used to solve linear programming problems with matrixes.

slack variable: Variable added to an inequality to make it an equation.

slope: Measure of the average rate of change between two points or coordinates.

standard deviation: Measure of distribution of data around the mean using the same 
units as the data.

statement (algebraic): Equation or inequality that is either true or false.

statement (logic): A declarative sentence that is either true or false.

strategy: Plan used to create a desired outcome.

subset (improper): Set containing all the elements of the set under consideration 
and no others.

subset (proper): Set containing a portion of the elements of the set under consideration 
and no elements not in the set being considered.

substitution: Technique used when solving systems of equations where one variable is 
replaced by an expression involving another variable or variables.

summation notation: Capital letter sigma used to indicate the sum of terms of a 
sequence.

tableau: Matrix written in a format to be used in linear programming.

union: Collection of all elements found in two or more sets.

valid: In logic, an argument for which true premises force a true conclusion.

value (future): Amount of money expected to be in an account at a later time.

value (present): Amount of money currently in an account.

variable: Symbol representing an unknown or changing value.

variance: Measure of distribution or spread using the squares of differences from 
the mean.

vertical: Parallel to the y-axis; perpendicular to the horizontal axis.
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Symbols
, (commas), 148
{} (braces), 148
. . . (ellipsis), in sets, 10, 148

A
absorbing state

defined, 233
Markov chains, 242–244

accelerating payoff, 193–194
adding matrices, 68–69, 292–293
additive inverses, 72–73
adjusting

decimals to fractions, 296
fractions to percentages, 12
percentages to fractions, 12
to slope-intercept form, 21
to standard form, 21
windows, 290–291

amortization
about, 191
accelerating payoff, 193–194
creating a schedule for, 191–193

analyzing
arguments, 222–225
compound statements, 218–219

annuities
about, 188
future value of, 188–189
present value of, 189–190
sinking funds, 190–191

annuity due, 286
apostrophe, 150
applying

logic to circuits, 225–227
matrices, 80–85, 99–104
matrices to tasks, 99–104
probability techniques, 174–179

arguments, analyzing, 222–225
arithmetic formulas

about, 281
bond pricing formula, 286–287
compound interest, 183
determining depreciation, 283
determining monthly payment, 191
effective interest rate, 185
expected return, 284
future value of annuities, 188
future value of annuity due, 286
gains, 282
geometric mean, 203
inflation-adjusted return, 284–285
leverage ratio, 282
losses, 282
mean, 200
permutations, 164
present value, 186
present value of annuities, 189
probability of events, 167
remaining balance, 285
Rule of 72, 281–282
simple interest, 182

Index
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arithmetic formulas (continued)
sinking funds, 190
special, 105–108
standard deviation, 209
total return on investments, 283–284
variance, 208

arithmetic mean, 15
average, 14

B
balance, remaining, 285
bar graph, 196
Battle of the Bismarck Sea example, 270
biconditional, 222
binomial distributions, 169–171
Blotto’s Rules example, 274–275
bond pricing formula, 286–287
box-and-whisper plot, 207
braces ({}), 148
break-even point, 44
building

amortization schedules, 191–193
graphs of systems, 53–56
inverses, 77–80
long-term predictions, 244–247
statistical statements, 298–299

Bunco, 174

C
calculating

depreciation, 283
linear equations using echelon method, 

92–94
linear systems in four variables, 90–92
linear systems in two variables, 89–90
matrix inverses, 294

maximization applications, 131–134
maximization problems, 112–115
median, 15
minimization problems, 115–118
moves in game theory, 259–265
no saddle point, 259–263
probability of events, 167–174
profit, 44
relationships between lines, 27–30
systems of equations using matrices, 

88–97, 295–296
systems of linear equations. See systems 

of linear equations
for variables, 30–32

capital appreciation, 283
capitalization, in sets, 10
central tendency, measures of, 200–207
changing

decimals to fractions, 296
fractions to percentages, 12
percentages to fractions, 12
to slope-intercept form, 21
to standard form, 21
windows, 290–291

charts, 233–236
Cheat Sheet (website), 3
circuits, applying logic to, 225–227
coincidental lines, 29–30
column matrix, 66, 96
combinations, counting with, 165–166, 

296–297
commas (,), 148
comparing measures of central tendency, 

203–207
complement, of sets, 150
compound interest, 182–187
compound statements
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analyzing, 218–219
defined, 214

compounding
continuous, 184
quarterly, 183–184

conditional, 214
conditional statements, 217–218, 221–222
conjunction, 214–216
continuous compounding, 184
contrapositive, 221
converse, 221
coordinate plane, graphing lines on, 22–27
counting

change, 46–47
with combinations, 165–166, 296–297
multiplication property of, 162–163
with permutations, 163–165, 296–297

counting methods, 161–166
creating

amortization schedules, 191–193
graphs of systems, 53–56
inverses, 77–80
long-term predictions, 244–247
statistical statements, 298–299

D
Dantzig, George (mathematician), 125
data, presenting graphically, 195–200
De Morgan’s Laws, 220
decimals, changing to fractions, 296
depreciation, determining, 283
determining

depreciation, 283
linear equations using echelon method, 

92–94

linear systems in four variables, 90–92
linear systems in two variables, 89–90
matrix inverses, 294
maximization applications, 131–134
maximization problems, 112–115
median, 15
minimization problems, 115–118
moves in game theory, 259–265
no saddle point, 259–263
probability of events, 167–174
profit, 44
relationships between lines, 27–30
systems of equations using matrices, 

88–97, 295–296
systems of linear equations. See systems 

of linear equations
for variables, 30–32

diagrams, 236–239
dimension, of matrices, 66
disjunction, 214, 216
division, of matrices, 74
dominated strategy

about, 258–259
defined, 253

double-declining balance, 283
double-wide format, 78, 96

E
e (number), 185
echelon method, solving linear equations 

using, 92–94
effective interest rate, 185
Ehrenfest, Paul (physicist), 247
Ehrenfest, Tatiana (mathematician), 247
Ehrenfest model, 246–247
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elements
defined, 147
of matrices, 65
Venn diagrams and, 152–160

elimination, solving systems of linear 
equations using, 34–38

ellipsis (. . .), in sets, 10, 148
empty sets, 150
entering matrices on calculators, 291
equalizing matrices, 67
equations, systems of linear

about, 33–34
examples of, 43–47
handling solutions, 41–43
solving using elimination, 34–38
using substitution, 38–41

equations of lines
about, 20
slope-intercept form, 20, 21
standard form, 21
writing, 21–22

equilibrium, 233
equivalent statements, 219–221
Euler diagram, 223
events, determining probability of, 167–174
examples

Battle of the Bismarck Sea, 270
Blotto’s Rules, 274–275
The Game of Chicken, 271
Jack Be Nimble, 275–278
minimization, 140–144
The Prisoner’s Dilemma, 272
systems of linear equations, 43–47
Traffic Flow, 267–270
The Traveler’s Dilemma, 273

existential quantifiers, 215
expected return, 284

F
fair game, 253
figuring

depreciation, 283
linear equations using echelon method, 

92–94
linear systems in four variables, 90–92
linear systems in two variables, 89–90
matrix inverses, 294
maximization applications, 131–134
maximization problems, 112–115
median, 15
minimization problems, 115–118
moves in game theory, 259–265
no saddle point, 259–263
probability of events, 167–174
profit, 44
relationships between lines, 27–30
systems of equations using matrices, 

88–97, 295–296
systems of linear equations. See systems 

of linear equations
for variables, 30–32

finance
about, 181
amortization, 191–194
annuities, 188–191
compound interest, 182–187
simple interest, 181–182

financial factors, 13
financial formulas

about, 281
bond pricing formula, 286–287
compound interest, 183
determining depreciation, 283
determining monthly payment, 191
effective interest rate, 185
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expected return, 284
future value of annuities, 188
future value of annuity due, 286
gains, 282
geometric mean, 203
inflation-adjusted return, 284–285
leverage ratio, 282
losses, 282
mean, 200
permutations, 164
present value, 186
present value of annuities, 189
probability of events, 167
remaining balance, 285
Rule of 72, 281–282
simple interest, 182
sinking funds, 190
special, 105–108
standard deviation, 209
total return on investments, 283–284
variance, 208

finding
depreciation, 283
linear equations using echelon method, 

92–94
linear systems in four variables, 90–92
linear systems in two variables, 89–90
matrix inverses, 294
maximization applications, 131–134
maximization problems, 112–115
median, 15
minimization problems, 115–118
moves in game theory, 259–265
no saddle point, 259–263
probability of events, 167–174
profit, 44
relationships between lines, 27–30

systems of equations using matrices, 
88–97, 295–296

systems of linear equations. See systems 
of linear equations

for variables, 30–32
finite mathematics. See also specific topics

about, 7
financial factors, 13
game theory, 18
linear programming, 9–10
linear statements, 8
logic, 15–16
Markov chains, 16–17
matrices, 8–9
probability, 11–13
sets, 10–11
statistics, 14–15

finite sets, 148
flush (poker), 175–176
format, minimization, 135–136
formulas

about, 281
bond pricing formula, 286–287
compound interest, 183
determining depreciation, 283
determining monthly payment, 191
effective interest rate, 185
expected return, 284
future value of annuities, 188
future value of annuity due, 286
gains, 282
geometric mean, 203
inflation-adjusted return, 284–285
leverage ratio, 282
losses, 282
mean, 200
permutations, 164
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formulas (continued)
present value, 186
present value of annuities, 189
probability of events, 167
remaining balance, 285
Rule of 72, 281–282
simple interest, 182
sinking funds, 190
special, 105–108
standard deviation, 209
total return on investments, 283–284
variance, 208

fractions
changing decimals to, 296
changing percentages to, 12
changing to percentages, 12

functions, graphing calculators, 289–299
functions, linear

about, 19–20
determining relationships between lines, 

27–30
equations of lines, 20–22
graphing lines on coordinate plane, 

22–27
solving for variables, 30–32

future state, 232
future value

of annuities, 188–189
of annuity due, 286
defined, 286

G
gains, formula for, 282
Gambler’s Ruin, 244–246
game theory

about, 18, 249
applications of, 267–278

Battle of the Bismarck Sea  
example, 270

Blotto’s Rules example, 274–275
determining moves, 259–265
dominated strategies, 258–259
The Game of Chicken example, 271
Jack Be Nimble example,  

275–278
playing by the rules, 252–255
playing fair, 249–251
The Prisoner’s Dilemma example, 272
strategy, 255–258
Traffic Flow example, 267–270
The Traveler’s Dilemma example, 273

games of chance, 174–177
The Game of Chicken example, 271
gates, 225
Gauss-Jordan method, 92
generating

amortization schedules,  
191–193

graphs of systems, 53–56
inverses, 77–80
long-term predictions, 244–247
statistical statements, 298–299

geometric mean, 203
graphing calculators, 289–299
graphs/graphing

bar graph, 196
box-and-whisper plot, 207
creating of systems, 53–56
histograms, 197
linear inequalities, 51–61
lines for intersections, 289–290
lines on coordinate plane, 22–27
lines using slope, 24
lines using two points, 23
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lines using y-intercept, 24
pie charts, 198–199
special lines, 25–27
stem-and-leaf graphs, 199–200

H
handling solutions, 41–43
histogram, 197
holding period, 283
horizontal lines, 25–26

I
icons, explained, 2–3
identifying

matrices, 66–67
slope, 20

identity matrices, 66
improper subset, 150
inequalities, systems of

about, 49
graphing linear inequalities,  

51–61
rules, 49–51

infinite sets, 148
inflation-adjusted return, 284–285
input, 99–103
interest

compound, 182–187
effective interest rate, 185
simple, 181–182

intersecting lines, 29–30
intersections

graphing lines for, 289–290
of sets, 151–152

invalid argument, 222
inverse matrix method, 95

inverses
of 2x2 matrices, 105–107
of 3x3 matrices, 107–108
additive, 72–73
creating, 77–80
defined, 221
of matrices, 72–74, 294
multiplicative, 72–73
multiplying by the, 94–97

J
Jack Be Nimble example, 275–278

L
Leonhard Euler (mathematician), 185
leverage ratio, 282
linear equations, systems of

about, 33–34
examples of, 43–47
handling solutions, 41–43
solving using elimination, 34–38
using substitution, 38–41

linear functions
about, 19–20
determining relationships between lines, 

27–30
equations of lines, 20–22
graphing lines on coordinate plane, 

22–27
solving for variables, 30–32

linear inequalities, graphing, 51–61
linear programming

about, 9–10, 109
setting up problems, 110–118
structure of, 110–112
three-dimensional, 118–124
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linear statements, 8
lines

coincidental, 29–30
determining relationships between, 

27–30
graphing for intersections,  

289–290
graphing on coordinate plane,  

22–27
graphing using slope, 24
graphing using two points, 23
graphing using y-intercept, 24
horizontal, 25–26
intersecting, 29–30
parallel, 27–29
perpendicular, 27–29
special, 25–27
through the origin, 26
vertical, 27

lines, equations of
about, 20
slope-intercept form, 20–21
standard form, 21
writing, 21–22

logic
about, 15–16, 213
analyzing arguments, 222–225
applying to circuits, 225–227
conditional statements, 221–222
equivalent statements, 219–221
truth tables, 215–219
vocabulary for, 213–215

long-term predictions, creating,  
244–247

losses, formula for, 282
lottery, 175

M
Markov chains

about, 16–17, 231
absorbing state, 242–244
making long-term predictions,  

244–247
probability vectors, 239–242
recognizing, 231–232
terminology for, 232–233
transition matrices, 233–239

mathematical formulas
about, 281
bond pricing formula, 286–287
compound interest, 183
determining depreciation, 283
determining monthly payment, 191
effective interest rate, 185
expected return, 284
future value of annuities, 188
future value of annuity due, 286
gains, 282
geometric mean, 203
inflation-adjusted return, 284–285
leverage ratio, 282
losses, 282
mean, 200
permutations, 164
present value, 186
present value of annuities, 189
probability of events, 167
remaining balance, 285
Rule of 72, 281–282
simple interest, 182
sinking funds, 190
special, 105–108
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standard deviation, 209
total return on investments, 283–284
variance, 208

mathematics, finite. See also specific topics
about, 7
financial factors, 13
game theory, 18
linear programming, 9–10
linear statements, 8
logic, 15–16
Markov chains, 16–17
matrices, 8–9
probability, 11–13
sets, 10–11
statistics, 14–15

matrices
about, 8–9, 65, 87
adding, 68–69, 292–293
applications of, 267–278
applying, 80–85, 99–104
applying to tasks, 99–104
basics of, 65–74
column, 66, 96
dimension of, 66
division of, 74
elements of, 65
entering on calculators, 291
equalizing, 67
finding inverses, 294
in game theory, 252
identifying, 66–67
identity, 66
inverses of, 72–74, 294
multiple solutions for, 97–99
multiplying, 70–72, 292–293
powering up, 293

row operations, 75–80
scalar multiplication of, 69
solving systems of equations using, 

88–97, 295–296
special formulas, 105–108
subtracting, 68–69, 292–293
transposing, 67–68

matrices, transition
charts, 233–236
defined, 232
diagrams, 236–239
trees, 233–236
working with, 233–239

maximization
simplex method steps for, 126–134
solving applications, 131–134
solving problems with, 112–115
in three dimensions, 119–122

mean
about, 200–201
defined, 14
geometric, 203

measures of central tendency, 200–207
median

in box-and-whisper plots, 207
calculating, 15
defined, 202

methods, counting, 161–166
minimization

about, 135
example of, 140–144
format, 135–136
solving problems with, 115–118
steps for, 136–140
in three dimensions, 122–124

mixed strategy, 253
mixing solutions, 44–46
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mode
about, 202–203
defined, 14

modifying
decimals to fractions, 296
fractions to percentages, 12
percentages to fractions, 12
to slope-intercept form, 21
to standard form, 21
windows, 290–291

Monty Hall problem, 176–177
multiplication property, of counting, 

162–163
multiplicative inverses, 72–73
multiplying

by the inverse, 94–97
matrices, 70–72, 292–293

N
negation, 214
negativity, 217
normal distribution, 210–211
notation, for sets, 147–151
null set, 150
number e, 185

O
operations, for sets, 151–152
optimal strategy, 253
origin, lines through the, 26
output, 99–103

P
parallel lines, 27–29
Pascal’s triangle, 169–171
payoff

accelerating, 193–194
defined, 253

payoff matrix, 252
percentages, 12
performing row operations, 75–77
permutations

counting with, 296–297
using for counting, 163–165

perpendicular lines, 27–29
pie chart, 198–199
points

graphing lines using two, 23
writing equations of lines using, 22

poker, 175–176
powering up matrices, 293
present value

of annuities, 189–190
defined, 185–187

presenting data graphically, 195–200
The Prisoner’s Dilemma example, 272
probability

about, 11–13, 161
applying techniques, 174–179
of being chosen, 177–179
counting methods, 161–166
determining of events, 167–174

probability distribution, 232
probability trees, 171–174
probability vectors, 233, 239–242
problems, linear programming, 110–118
profit, determining, 44
programming, linear

about, 9–10, 109
setting up problems, 110–118
structure of, 110–112
three-dimensional, 118–124

pure strategy, 253
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Q
quantifiers, 215
quarterly compounding, 183–184
quartiles, in box-and-whisper plots, 207

R
range, in box-and-whisper plots, 207
recognizing Markov chains, 231–232
reduced echelon form, 92
remaining balance, 285
Remember icon, 3
roster method, 148
row operations

about, 75
performing, 75–77

row-echelon form, 77, 92
rule method, 148
Rule of 72, 281–282
rules

in sets, 10
for systems of inequalities, 49–51

S
saddle point

defined, 253
finding no, 259–263

scalar multiplication, of matrices, 69
set builder notation, 149
sets

about, 10–11, 147
defined, 147
notation for, 147–151
performing basic operations, 151–152
size of, 148–149
special, 149–151
using Venn diagrams, 152–160

setup
linear programming problems,  

110–118
for simplex method, 126–127

Shannon, Catherine Kay (teacher), 225
Shannon, Claude (computer scientist), 225
simple interest, 181–182
simplex method

about, 125
minimization, 135–144
steps for maximization, 126–134

sinking funds, 190–191
size, of sets, 148–149
slack variable, 127
slope-intercept form, 20, 21
slopes

graphing lines using, 24
writing equations of lines using, 22

solutions
handling, 41–43
mixing, 44–46
multiple, 97–99

solving
depreciation, 283
linear equations using echelon method, 

92–94
linear systems in four variables, 90–92
linear systems in two variables, 89–90
matrix inverses, 294
maximization applications, 131–134
maximization problems, 112–115
median, 15
minimization problems, 115–118
moves in game theory, 259–265
no saddle point, 259–263
probability of events, 167–174
profit, 44
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solving (continued)
relationships between lines, 27–30
systems of equations using matrices, 

88–97, 295–296
systems of linear equations. See systems 

of linear equations
for variables, 30–32

special formulas, 105–108
special lines, graphing, 25–27
square matrix, 66, 95, 96
standard deviation, 208–209
standard form, 21
statements

compound, 214, 218–219
conditional, 217–218, 221–222
defined, 214, 232
equivalent, 219–221
linear, 8
statistical, 298–299

statistical statements, 298–299
statistics

about, 14–15, 195
measures of central tendency, 200–207
normal distribution, 210–211
presenting data graphically, 195–200
standard deviation, 208–209
variance, 208–209

stem-and-leaf graphs, 199–200
straight-line depreciation, 283
strategies

defined, 253
dominated, 258–259
game theory, 255–258

strictly determined game, 253
structure, of linear programming,  

110–112

subset, 150–151
substitution, solving systems of linear 

equations using, 38–41
subtracting matrices, 68–69, 292–293
summation notation, 208
sum-of-the-years digits, 283
systems of equations, solving using 

matrices, 88–97, 295–296
systems of inequalities

about, 49
graphing linear inequalities, 51–61
rules, 49–51

systems of linear equations
about, 33–34
examples of, 43–47
handling solutions, 41–43
solving using elimination, 34–38
using substitution, 38–41

T
tables, truth

about, 215
conditional statements, 217–218
conjunction, 215–216
disjunction, 216
negativity, 217

tasks, applying matrices to, 99–104
Technical Stuff icon, 3
techniques, probability, 174–179
temperatures, 103–104
theory, game

about, 18, 249
applications of, 267–278
Battle of the Bismarck Sea example, 270
Blotto’s Rules example, 274–275
determining moves, 259–265



Index      317

dominated strategies, 258–259
The Game of Chicken example, 271
Jack Be Nimble example, 275–278
playing by the rules, 252–255
playing fair, 249–251
The Prisoner’s Dilemma example, 272
strategy, 255–258
Traffic Flow example, 267–270
The Traveler’s Dilemma example, 273

3x3 matrices, inverses of, 107–108
three-dimensional linear programming, 

118–124
total return on investments, 283–284
Traffic Flow example, 267–270
transition matrices

charts, 233–236
defined, 232
diagrams, 236–239
trees, 233–236
working with, 233–239

transposing matrices, 67–68
The Traveler’s Dilemma example, 273
trees, 233–236
truth tables

about, 215
conditional statements, 217–218
conjunction, 215–216
disjunction, 216
negativity, 217

2x2 matrices, inverses of, 105–107

U
union, of sets, 151–152
universal quantifiers, 215
universal sets, 149

V
valid argument, 222
value of game, 253
variables

slack, 127
solving for, 30–32
solving linear systems in four, 90–92
solving linear systems in two, 89–90

variance, 208–209
Venn diagrams

about, 10–11
using, 152–160

vertical lines, 27

W
weighted average, 201
windows, adjusting, 290–291
writing equations of lines, 21–22

Y
y-intercept, graphing lines using, 24

Z
zero-sum game, 253
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