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Preface

At one time, computational chemistry techniques were used only by experts
extremely experienced in using tools that were for the most part difficult to
understand and apply. Today, advances in software have produced programs
that are easily used by any chemist. Along with new software comes new
literature on the subject. There are now books that describe the fundamental
principles of computational chemistry at almost any level of detail. A number
of books also exist that explain how to apply computational chemistry tech-
niques to simple calculations appropriate for student assignments. There are, in
addition, many detailed research papers on advanced topics that are intended
to be read only by professional theorists.

The group that has the most difficulty finding appropriate literature are
working chemists, not theorists. These are experienced researchers who know
chemistry and now have computational tools available. These are people who
want to use computational chemistry to address real-world research problems
and are bound to run into significant difficulties. This book is for those chemists.

We have chosen to cover a large number of topics, with an emphasis on
when and how to apply computational techniques rather than focusing on
theory. Each chapter gives a clear description with just the amount of technical
depth typically necessary to be able to apply the techniques to computational
problems. When possible, the chapter ends with a list of steps to be taken for
difficult cases.

There are many good books describing the fundamental theory on which
computational chemistry is built. The description of that theory as given here in
the first few chapters is very minimal. We have chosen to include just enough
theory to explain the terminology used in later chapters.

The core of this book is the description of the many computation techniques
available and when to use them. Prioritizing which techniques work better or
worse for various types of problems is a double-edged sword. This is certainly
the type of information that is of use in solving practical problems, but there is
no rigorous mathematical way to prove which techniques work better than
others. Even though this prioritization cannot be proven, it is better to have an
approximate idea of what works best than to have no idea at all. These sug-
gestions are obtained from a compilation of information based on lessons from
our own experience, those of colleagues, and a large body of literature covering
chemistry from organic to inorganic, from polymers to drug design. Unfortu-
nately, making generalizations from such a broad range of applications means

xvii
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that there are bound to be exceptions to many of the general rules of thumb
given here.

The reader is advised to start with this book and to then delve further into
the computational literature pertaining to his or her specific work. It is impos-
sible to reference all relevant works in a book such as this. The bibliography
included at the end of each chapter primarily lists textbooks and review articles.
These are some of the best sources from which to begin a serious search of the
literature. It is always advisable to run several tests to determine which tech-
niques work best for a given project.

The section on applications examines the same techniques from the stand-
point of the type of chemical system. A number of techniques applicable to
biomolecular work are mentioned, but not covered at the level of detail pre-
sented throughout the rest of the book. Likewise, we only provide an intro-
duction to the techniques applicable to modeling polymers, liquids, and solids.
Again, our aim was to not repeat in unnecessary detail information contained
elsewhere in the book, but to only include the basic concepts needed for an
understanding of the subjects involved.

We have supplied brief reviews on the merits of a number of software pack-
ages in the appendix. Some of these were included due to their widespread use.
Others were included based on their established usefulness for a particular type
of problem discussed in the text. Many other good programs are available, but
space constraints forced us to select a sampling only. The description of the
advantages and limitations of each software package is again a generalization
for which there are bound to be exceptions. The researcher is advised to care-
fully consider the research task at hard and what program will work best in
addressing it. Both software vendors and colleagues doing similar work can
provide useful suggestions.

Although there are now many problems that can be addressed by occasional
users of computational tools, a large number of problems exist that only career
computational chemists, with the time and expertise, can effectively solve. Some
of the readers of this book will undoubtedly decide to forego using computa-
tional chemistry, thus avoiding months of unproductive work that they cannot
afford. Such a decision in and of itself is a valuable reason for doing a bit of
reading rather than blindly attempting a difficult problem.

This book was designed to aid in research, rather than as a primary text
on the subject. However, students may find some sections helpful. Advanced
undergraduate students and graduate students will find the basic topics and
applications useful. Beginners are advised to first become familiar with the use
of computational chemistry software before delving into the advanced topics
section. It may even be best to come back to this book when problems arise
during computations. Some of the information in the advanced topics section is
not expected to be needed until postgraduate work.

The availability of easily used graphic user interfaces makes computational
chemistry a tool that can now be used readily and casually. Results may be
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obtained often with a minimum amount of work. However, if the methods used
are not carefully chosen for the project at hand, these results may not in any
way reflect reality. We hope that this book will help chemists solve the real-
world problems they face.

Davip C. YouNG
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Note: A few symbols are duplicated. Although this is at times confusing, it does
reflect common usage in the literature. Thus, it is an important notation for the
reader to understand. Acronyms are defined in the glossary at the end of the

book.
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expectation value

Angstroms

Laplacian operator

a constant, or polarizability

a constant, or hyperpolarizability
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vacuum permitivity constant

relative permitivity

electrostatic potential

a point in phase space, or a point in k-space

overlap between orbitals, or second hyperpolarizability
Hamiltonian operator

dielectric constant

frequency of light

electron density, also called the charge density

density of states

surface tension
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wave function
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exponent of a basis function

number of active space orbitals, preexponential factor, a con-
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molecular orbital coefficient, contraction coefficient, or a constant
weight of the HF reference determinant in the CI

heat capacity

a constant

a derminant, bond dissociation energy, or number of degrees of
freedom
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1 Introduction

Anyone can do calculations nowadays.
Anyone can also operate a scalpel.
That doesn’t mean all our medical problems are solved.
—XKarl Irikura

Recent years have witnessed an increase in the number of people using com-
putational chemistry. Many of these newcomers are part-time theoreticians
who work on other aspects of chemistry the rest of the time. This increase has
been facilitated by the development of computer software that is increasingly
easy to use. It is now so easy to do computational chemistry that calculations
can be performed with no knowledge of the underlying principles. As a result,
many people do not understand even the most basic concepts involved in a
calculation. Their work, as a result, is largely unfocused and often third-rate.

The term theoretical chemistry may be defined as the mathematical descrip-
tion of chemistry. The term computational chemistry is generally used when a
mathematical method is sufficiently well developed that it can be automated for
implementation on a computer. Note that the words “exact” and “perfect” do
not appear in these definitions. Very few aspects of chemistry can be computed
exactly, but almost every aspect of chemistry has been described in a qualitative
or approximately quantitative computational scheme. The biggest mistake a
computational chemist can make is to assume that any computed number is
exact. However, just as not all spectra are perfectly resolved, often a qualitative
or approximate computation can give useful insight into chemistry if the re-
searcher understands what it does and does not predict.

Most chemists want to avoid the paper-and-pencil type of work that theo-
retical chemistry in its truest form entails. However, keep in mind that it is
precisely for this kind of painstaking and exacting research that many Nobel
prizes have been awarded. This book will focus almost exclusively on the
knowledge needed to effectively use existing computer software for molecular
modeling.

1.1 MODELS, APPROXIMATIONS, AND REALITY

By the end of their college career, most chemistry students have noticed that the
information being disseminated in their third- and fourth-year chemistry
classes-level seems to conflict with what was taught in introductory courses.

1



2 1 INTRODUCTION

The course instructors or professors have not tried to intentionally deceive their
students. Most individuals cannot grasp the full depth and detail of any chem-
ical concept the first time that it is presented to them. It has been found that
most people learn complex subjects best when first given a basic description of
the concepts and then left to develop a more detailed understanding over time.
Despite the best efforts of educators, a few misconceptions are at times possibly
introduced in the attempt to simplify complex material for freshmen students.
The part of this process that perpetuates any confusion is the fact that texts and
instructors alike often do not acknowledge the simplifications being presented.

The scientific method is taught starting in elementary school. The first step in
the scientific method is to form a hypothesis. A hypothesis is just an educated
guess or logical conclusion from known facts. It is then compared against all
available data and its details developed. If the hypothesis is found to be con-
sistent with known facts, it is called a theory and usually published. The char-
acteristics most theories have in common are that they explain observed phe-
nomena, predict the results of future experiments, and can be presented in
mathematical form. When a theory is found to be always correct for many
years, it is eventually referred to as a scientific law. However useful this process
is, we often use constructs that do not fit in the scientific method scheme as it is
typically described.

One of the most commonly used constructs is a model. A model is a simple
way of describing and predicting scientific results, which is known to be an in-
correct or incomplete description. Models might be simple mathematical de-
scriptions or completely nonmathematical. Models are very useful because they
allow us to predict and understand phenomena without the work of performing
the complex mathematical manipulations dictated by a rigorous theory. Expe-
rienced researchers continue to use models that were taught to them in high
school and freshmen chemistry courses. However, they also realize that there
will always be exceptions to the rules of these models.

A very useful model is the Lewis dot structure description of chemical
bonding. It is not a complete description of the molecules involved since it
does not contain the kinetic energies of the particles or Coulombic interactions
between the electrons and nuclei. The theory of quantum mechanics, which
accounts correctly for these factors, does predict that only two electrons can
have the same spatial distribution (one of o spin and one of B spin). The Lewis
model accounts for this pairing and for the number of energy levels likely to be
occupied in the electronic ground state. This results in the Lewis model being
able to predict chemical bonding patterns and give an indication of the strength
of the bonds (single bonds, double bonds, etc.). However, none of the quantum
mechanics equations are used in applying this technique. An example of a
quantitative model would be Troutan’s rule for predicting the boiling points of
normal liquids. Group additivity methods would be another example.

Approximations are another construct that is often encountered in chemis-
try. Even though a theory may give a rigorous mathematical description of
chemical phenomena, the mathematical difficulties might be so great that it is
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just not feasible to solve a problem exactly. If a quantitative result is desired,
the best technique is often to do only part of the work. One approximation is to
completely leave out part of the calculation. Another approximation is to use
an average rather than an exact mathematical description. Some other common
approximation methods are variations, perturbations, simplified functions, and
fitting parameters to reproduce experimental results.

Quantum mechanics gives a mathematical description of the behavior of
electrons that has never been found to be wrong. However, the quantum me-
chanical equations have never been solved exactly for any chemical system
other than the hydrogen atom. Thus, the entire ficld of computational chemis-
try is built around approximate solutions. Some of these solutions are very
crude and others are expected to be more accurate than any experiment that has
yet been conducted. There are several implications of this situation. First,
computational chemists require a knowledge of each approximation being used
and how accurate the results are expected to be. Second, obtaining very accu-
rate results requires extremely powerful computers. Third, if the equations can
be solved analytically, much of the work now done on supercomputers could be
performed faster and more accurately on a PC.

This discussion may well leave one wondering what role reality plays in
computation chemistry. Only some things are known exactly. For example, the
quantum mechanical description of the hydrogen atom matches the observed
spectrum as accurately as any experiment ever done. If an approximation is
used, one must ask how accurate an answer should be. Computations of the
energetics of molecules and reactions often attempt to attain what is called
chemical accuracy, meaning an error of less than about 1 kcal/mol. This is suf-
ficient to describe van der Waals interactions, the weakest interaction consid-
ered to affect most chemistry. Most chemists have no use for answers more
accurate than this.

A chemist must realize that theories, models, and approximations are pow-
erful tools for understanding and achieving research goals. The price of having
such powerful tools is that not all of them are perfect. This may not be an ideal
situation, but it is the best that the scientific community has to offer. Chemists
are advised to develop an understanding of the nature of computational chem-
istry approximations and what results can be trusted with any given degree of
accuracy.

1.2 HOW COMPUTATIONAL CHEMISTRY IS USED

Computational chemistry is used in a number of different ways. One particu-
larly important way is to model a molecular system prior to synthesizing that
molecule in the laboratory. Although computational models may not be perfect,
they are often good enough to rule out 90% of possible compounds as being
unsuitable for their intended use. This is very useful information because syn-
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thesizing a single compound could require months of labor and raw materials,
and generate toxic waste.

A second use of computational chemistry is in understanding a problem
more completely. There are some properties of a molecule that can be obtained
computationally more easily than by experimental means. There are also insights
into molecular bonding, which can be obtained from the results of computa-
tions, that cannot be obtained from any experimental method. Thus, many ex-
perimental chemists are now using computational modeling to gain additional
understanding of the compounds being examined in the laboratory.

As computational chemistry has become easier to use, professional compu-
tational chemists have shifted their attention to more difficult modeling prob-
lems. No matter how easy computational chemistry becomes, there will always
be problems so difficult that only an expert in the field can tackle them.
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2 Fundamental Principles

This chapter is in no way meant to impart a thorough understanding of the
theoretical principles on which computational techniques are based. There are
many texts available on these subjects, a selection of which are listed in the
bibliography. This book assumes that the reader is a chemist and has already
taken introductory courses outlining these fundamental principles. This chapter
presents the notation and terminology that will be used in the rest of the book.
It will also serve as a reminder of a few key points of the theory upon which
computation chemistry is based.

2.1 ENERGY

Energy is one of the most useful concepts in science. The analysis of energetics
can predict what molecular processes are likely to occur, or able to occur. All
computational chemistry techniques define energy such that the system with the
lowest energy is the most stable. Thus, finding the shape of a molecule corre-
sponds to finding the shape with the lowest energy.

The amount of energy in a system is often broken down into kinetic energy
and potential energy. The kinetic energy may be further separated into vibra-
tional, translational and rotational motion. A distinction is also made between
the kinetic energy due to nuclear motion versus that due to electron motion.
The potential energy may be expressed purely as Coulomb’s law, or it might be
broken down into energies of bond stretching, bond bending, conformational
energy, hydrogen bonds, and so on.

Chemical processes, such as bond stretching or reactions, can be divided into
adiabatic and diabatic processes. Adiabatic processes are those in which the
system does not change state throughout the process. Diabatic, or nonadiabatic,
processes are those in which a change in the electronic state is part of the pro-
cess. Diabatic processes usually follow the lowest energy path, changing state as
necessary.

In formulating a mathematical representation of molecules, it is necessary to
define a reference system that is defined as having zero energy. This zero of
energy is different from one approximation to the next. For ab initio or density
functional theory (DFT) methods, which model all the electrons in a system,
zero energy corresponds to having all nuclei and electrons at an infinite distance
from one another. Most semiempirical methods use a valence energy that cor-

7
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responds to having the valence electrons removed and the resulting ions at an
infinite distance. A few molecular mechanics methods use chemical standard
states as zero energy, but most use a strainless molecule as zero energy. For
some molecular mechanics methods, the zero of energy is completely arbitrary.

Even within a particular approximation, total energy values relative to the
method’s zero of energy are often very inaccurate. It is quite common to find
that this inaccuracy is almost always the result of systematic error. As such, the
most accurate values are often relative energies obtained by subtracting total
energies from separate calculations. This is why the difference in energy be-
tween conformers and bond dissociation energies can be computed extremely
accurately.

2.2 ELECTROSTATICS

Electrostatics is the study of interactions between charged objects. Electro-
statics alone will not described molecular systems, but it is very important to
the understanding of interactions of electrons, which is described by a wave
function or electron density. The central pillar of electrostatics is Coulombs
law, which is the mathematical description of how like charges repel and unlike
charges attract. The Coulombs law equations for energy and the force of
interaction between two particles with charges ¢; and ¢, at a distance ri; are

g - 192 (2.1)
2
9192
12

Note that these equations do not contain the constants that are typically in-
cluded in introductory texts, such as the vacuum permitivity constant. Theo-
reticians, and thus software developers, work with a system of units called
atomic units. Within this unit system, many of the fundamental constants are
defined as having a value of 1. Atomic units will be used throughout this book
unless otherwise specified.

Another very useful function from electrostatics is the electrostatic potential
¢. The electrostatic potential is a function that is defined at every point in three-
dimensional real space. If a charged particle is added to a system, without dis-
turbing the system, the energy of placing it at any point in space is the electro-
static potential times the charge on the particle. The requirement that there is
no movement of existing charges (polarization of electron density) is sometimes
described by stating that the electrostatic potential is the energy of placing an
infinitesimal point charge in the system. The application of electrostatic poten-
tials to chemical systems will be discussed further in Chapter 13.

The statement of Coulombs law above assumes that the charges are sepa-
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TABLE 2.1 Conversion Factors for Atomic Units

Property Atomic Unit Conversion

Length Bohr 1 Bohr = 0.529177249 A

Weight atomic mass unit (amu) 1 amu = 1.6605402 x 10727 kg

Charge electron charge 1 electron = 1.602188 x 10~'? Coulombs
Energy Hartree 1 Hartree = 27.2116 eV

Charge separation Bohr electron 1 Bohr electron = 2.541765 Debye

rated by a vacuum. If the charges are separated by some continuum medium,
this interaction will be modified by the inclusion of a dielectric constant for that
medium. For the description of molecules, it is correct to assume that the nuclei
and electrons are in a vacuum. However, dielectric effects are often included in
the description of solvent effects as described in Chapter 24.

The Poisson equation relates the electrostatic potential ¢ to the charge den-
sity p. The Poisson equation is

Vip=—p (2.3)

This may be solved numerically or within some analytic approximation. The
Poisson equation is used for obtaining the electrostatic properties of molecules.

2.3 ATOMIC UNITS

The system of atomic units was developed to simplify mathematical equations
by setting many fundamental constants equal to 1. This is a means for theorists
to save on pencil lead and thus possible errors. It also reduces the amount
of computer time necessary to perform chemical computations, which can be
considerable. The third advantage is that any changes in the measured values of
physical constants do not affect the theoretical results. Some theorists work
entirely in atomic units, but many researchers convert the theoretical results
into more familiar unit systems. Table 2.1 gives some conversion factors for
atomic units.

2.4 THERMODYNAMICS

Thermodynamics is one of the most well-developed mathematical descriptions
of chemistry. It is the field of thermodynamics that defines many of the concepts
of energy, free energy and entropy. This is covered in physical chemistry text
books.

Thermodynamics is no longer a subject for an extensive amount of research.
The reasons for this are two-fold: the completeness of existing or previous work
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and the general inability to provide detailed insight into chemical processes.
Very often, any thermodynamic treatment is left for trivial pen-and-paper work
since many aspects of chemistry are so accurately described with very simple
mathematical expressions.

Computational results can be related to thermodynamics. The result of
computations might be internal energies, free energies, and so on, depending on
the computation done. Likewise, it is possible to compute various contributions
to the entropy. One frustration is that computational software does not always
make it obvious which energy is being listed due to the differences in terminol-
ogy between computational chemistry and thermodynamics. Some of these
differences will be noted at the appropriate point in this book.

2.5 QUANTUM MECHANICS

Quantum mechanics (QM) is the correct mathematical description of the
behavior of electrons and thus of chemistry. In theory, QM can predict any
property of an individual atom or molecule exactly. In practice, the QM equa-
tions have only been solved exactly for one electron systems. A myriad collec-
tion of methods has been developed for approximating the solution for multiple
electron systems. These approximations can be very useful, but this requires
an amount of sophistication on the part of the researcher to know when each
approximation is valid and how accurate the results are likely to be. A signifi-
cant portion of this book addresses these questions.

Two equivalent formulations of QM were devised by Schrédinger and
Heisenberg. Here, we will present only the Schrédinger form since it is the basis
for nearly all computational chemistry methods. The Schrodinger equation is

HY = E¥Y (2.4)

where H is the Hamiltonian operator, ¥ a wave function, and E the energy. In
the language of mathematics, an equation of this form is called an eigen equa-
tion. W is then called the eigenfunction and E an eigenvalue. The operator and
eigenfunction can be a matrix and vector, respectively, but this is not always the
case.

The wave function W is a function of the electron and nuclear positions. As
the name implies, this is the description of an electron as a wave. This is a
probabilistic description of electron behavior. As such, it can describe the
probability of electrons being in certain locations, but it cannot predict exactly
where electrons are located. The wave function is also called a probability am-
plitude because it is the square of the wave function that yields probabilities.
This is the only rigorously correct meaning of a wave function. In order to obtain
a physically relevant solution of the Schrodinger equation, the wave function
must be continuous, single-valued, normalizable, and antisymmetric with respect
to the interchange of electrons.
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The Hamiltonian operator H is, in general,

R particles V2 particles 445
TS @s
 2m; i< Fij

, 2 @

Vi= ox? * oy? + 0z2 (2.6)
where Vi2 is the Laplacian operator acting on particle i. Particles are both elec-
trons and nuclei. The symbols m; and ¢; are the mass and charge of particle i,
and r; is the distance between particles. The first term gives the kinetic energy
of the particle within a wave formulation. The second term is the energy due
to Coulombic attraction or repulsion of particles. This formulation is the time-
independent, nonrelativistic Schrodinger equation. Additional terms can appear
in the Hamiltonian when relativity or interactions with electromagnetic radia-
tion or fields are taken into account.

In currently available software, the Hamiltonian above is nearly never used.
The problem can be simplified by separating the nuclear and electron motions.
This is called the Born—Oppenheimer approximation. The Hamiltonian for a
molecule with stationary nuclei is

electrons 72 nuclei electrons electrons
A V: Z; 1
A== 7’—§ P S (2.7)
i i L i<j Ty

Here, the first term is the kinetic energy of the electrons only. The second term
is the attraction of electrons to nuclei. The third term is the repulsion between
electrons. The repulsion between nuclei is added onto the energy at the end of
the calculation. The motion of nuclei can be described by considering this entire
formulation to be a potential energy surface on which nuclei move.

Once a wave function has been determined, any property of the individual
molecule can be determined. This is done by taking the expectation value of the
operator for that property, denoted with angled brackets < >. For example, the
energy is the expectation value of the Hamiltonian operator given by

(E> = J Y HY (2.8)

For an exact solution, this is the same as the energy predicted by the Schro-
dinger equation. For an approximate wave function, this gives an approxima-
tion of the energy, which is the basis for many of the techniques described in
subsequent chapters. This is called variational energy because it is always
greater than or equal to the exact energy. By substituting different operators, it
is possible to obtain different observable properties, such as the dipole moment
or electron density. Properties other than the energy are not variational, because
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only the Hamiltonian is used to obtain the wave function in the widely used
computational chemistry methods.

Another way of obtaining molecular properties is to use the Hellmann—
Feynman theorem. This theorem states that the derivative of energy with respect

to some property P is given by
dE  [0H
== 2.
dP < 6P> (29)

This relationship is often used for computing electrostatic properties. Not all
approximation methods obey the Hellmann—Feynman theorem. Only varia-
tional methods obey the Hellmann—Feynman theorem. Some of the variational
methods that will be discussed in this book are denoted HF, MCSCF, CI, and
CC.

2.6 STATISTICAL MECHANICS

Statistical mechanics is the mathematical means to calculate the thermody-
namic properties of bulk materials from a molecular description of the materi-
als. Much of statistical mechanics is still at the paper-and-pencil stage of theory.
Since quantum mechanicians cannot exactly solve the Schrédinger equation
yet, statistical mechanicians do not really have even a starting point for a truly
rigorous treatment. In spite of this limitation, some very useful results for bulk
materials can be obtained.

Statistical mechanics computations are often tacked onto the end of ab initio
vibrational frequency calculations for gas-phase properties at low pressure. For
condensed-phase properties, often molecular dynamics or Monte Carlo calcu-
lations are necessary in order to obtain statistical data. The following are the
principles that make this possible.

Consider a quantity of some liquid, say, a drop of water, that is composed of
N individual molecules. To describe the geometry of this system if we assume
the molecules are rigid, each molecule must be described by six numbers: three
to give its position and three to describe its rotational orientation. This 6/N-
dimensional space is called phase space. Dynamical calculations must addi-
tionally maintain a list of velocities.

An individual point in phase space, denoted by I', corresponds to a particu-
lar geometry of all the molecules in the system. There are many points in this
phase space that will never occur in any real system, such as configurations with
two atoms in the same place. In order to describe a real system, it is necessary
to determine what configurations could occur and the probability of their
occurrence.

The probability of a configuration occurring is a function of the energy of
that configuration. This energy is the sum of the potential energy from inter-
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molecular attractive or repulsive forces and the kinetic energy due to molecular
motion. For an ideal gas, only the kinetic energy needs to be considered. For a
molecular gas, the kinetic energy is composed of translational, rotational, and
vibrational motion. For a monatomic ideal gas, the energy is due to the trans-
lational motion only. For simplicity of discussion, we will refer to the energy of
the system or molecule without differentiating the type of energy.

There is a difference between the energy of the system, composed of all
molecules, and the energy of the individual molecules. There is an amount of
energy in the entire system that is measurable as the temperature of the system.
However, not all molecules will have the same energy. Individual molecules will
have more or less energy, depending on their motion and interaction with other
molecules. There is some probability of finding molecules with any given energy.
This probability depends on the temperature 7" of the system. The function that
gives the ratio of the number of molecules, N;, with various energies, E;, to the
number of molecules in state j is the Boltzmann distribution, which is expressed
as

N;
L= o B E)/ksT 2.10
N~ 210

where kp is the Boltzmann constant, 1.38066 x 10=2* J/K.

Equation (2.10) is valid if there are an equal number of ways to put the
system in both energy states. Very often, there are more states available with
higher energies due to there being an increasing number of degenerate states.
When this occurs, the percentage of molecules in each state is determined by
multiplying the equation above by the number of states available. Thus, there is
often a higher probability of finding high-energy molecules at higher temper-
atures as shown in Figure 2.1. Note that the ground state may be a very poor
approximation to the average.

When some property of a system is measured experimentally, the result is an
average for all of the molecules with their respective energies. This observed
quantity is a statistical average, called a weighted average. It corresponds to the
result obtained by determining that property for every possible energy state of
the system, A(T"), and multiplying by the probability of finding the system in
that energy state, w(I"). This weighted average must be normalized by a parti-
tion function Q, where

<4) ZW(BA(F) (2.11)
0=> w) (2.12)

This technique for finding a weighted average is used for ideal gas properties
and quantum mechanical systems with quantized energy levels. It is not a con-
venient way to design computer simulations for real gas or condensed-phase
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FIGURE 2.1 Fraction of molecules that will be found at various energies above the
ground-state energy for two different temperatures.

systems, because determining every possible energy state is by no means a triv-
ial task. However, a result can be obtained from a reasonable sampling of
states. This results in values having a statistical uncertainty o that is related to
the number of states sampled M by

I
VM

There could also be systematic errors that are not indicated by this relationship.

Another way of formulating this problem is to use derivatives of the parti-
tion function without a weight function. This is done with the following rela-
tionships:

a (2.13)

B ,(0In Q
U=kgT ( - >V (2.14)
A=—kgTIn Q (2.15)
B 0ln Q
P—kBT< = )T (2.16)

B oln 0 ,(?InQ
cyszT( 5T >V+kBT < o ) (2.17)
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dln Q oln Q

_ 2

H = kT < - >V+kBTV( - )T (2.18)

S—kBT<aln Q) tkyln O (2.19)
or ),

G:kBTV<aln Q) —ksTn O (2.20)
v ),

Other thermodynamic functions can be computed from these quantities. This is
still not an ideal way to compute properties due to the necessity of accounting
for all energy states of the system in order to obtain Q.

It is hardest to obtain precise values for the enthalpic values 4, S, and G
because they depend more heavily on high-energy states, which the system
achieves infrequently. These functions depend on the actual value of Q, not just
its derivatives.

There are several other, equivalent ways to obtain a statistical average. One
of these is to use a time average. In this formulation, a calculation is designed to
simulate the motion of molecules. At every step in the simulation, the property
is computed for one molecule and averaged over all the time steps equally. This
is equivalent to the weighted average because the molecule will be in more
probable energy states a larger percentage of the time. The accuracy of this
result depends on the number of time steps and the ability of the simulation to
correctly describe how the real system will behave.

Another averaging technique is an ensemble average. Simulations often
include thousands of molecules. A value can be averaged by including the result
for every molecule in the simulation. This corresponds to the concept of an
ensemble of molecules and is thus called an ensemble average. It is often most
efficient to combine time averages and ensemble averages, thus averaging all
molecules over many time steps.

Another type of property to examine is the geometric orientation of mole-
cules. A set of Cartesian coordinates will describe a point in phase space, but it
does not convey the statistical tendency of molecules to orient in a certain way.
This statistical description of geometry is given by a radial distribution func-
tion, also called a pair distribution function. This is the function that gives the
probability of finding atoms various distances apart. The radial distribution
function gives an indication of phase behavior as shown in Figure 2.2. More
detail can be obtained by using atom-specific radial distribution functions, such
as the probability of finding a hydrogen atom various distances from an oxygen
atom.

The connections between simulation and thermodynamics can be carried
further. Simulations can be set up to be constant volume, pressure, tempera-
ture, and so on. Some of the most sophisticated simulations are those involving
multiple phases or phase changes. These techniques are discussed further in
Chapter 7.
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FIGURE 2.2 Radial distribution functions for (a) a hard sphere fluid, (b) a real gas, (c)
a liquid, (d) a crystal.
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3 Ab initio Methods

The term ab initio is Latin for “from the beginning.” This name is given to
computations that are derived directly from theoretical principles with no in-
clusion of experimental data. This is an approximate quantum mechanical cal-
culation. The approximations made are usually mathematical approximations,
such as using a simpler functional form for a function or finding an approxi-
mate solution to a differential equation.

3.1 HARTREE-FOCK APPROXIMATION

The most common type of ab initio calculation is called a Hartree—Fock cal-
culation (abbreviated HF), in which the primary approximation is the central
field approximation. This means that the Coulombic electron—electron repul-
sion is taken into account by integrating the repulsion term. This gives the av-
erage effect of the repulsion, but not the explicit repulsion interaction. This is a
variational calculation, meaning that the approximate energies calculated are
all equal to or greater than the exact energy. The energies are calculated in units
called Hartrees (1 Hartree = 27.2116 eV). Because of the central field approxi-
mation, the energies from HF calculations are always greater than the exact
energy and tend to a limiting value called the Hartree—Fock limit as the basis
set is improved.

One of the advantages of this method is that it breaks the many-electron
Schrédinger equation into many simpler one-electron equations. Each one-
electron equation is solved to yield a single-electron wave function, called an
orbital, and an energy, called an orbital energy. The orbital describes the be-
havior of an electron in the net field of all the other electrons.

The second approximation in HF calculations is due to the fact that the
wave function must be described by some mathematical function, which is
known exactly for only a few one-electron systems. The functions used most
often are linear combinations of Gaussian-type orbitals exp(—ar?), abbreviated
GTO. The wave function is formed from linear combinations of atomic orbitals
or, stated more correctly, from linear combinations of basis functions. Because
of this approximation, most HF calculations give a computed energy greater
than the Hartree—Fock limit. The exact set of basis functions used is often
specified by an abbreviation, such as STO—3G or 6—311++g**. Basis sets are
discussed further in Chapters 10 and 28.

19
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The Gaussian functions are multiplied by an angular function in order to
give the orbital the symmetry of a s, p, d, and so on. A constant angular term
yields s symmetry. Angular terms of x, y, z give p symmetry. Angular terms of
Xy, xz, yz, x>—y?, 4z2—2x>—2y? yield d symmetry. This pattern can be con-
tinued for the other orbitals.

These orbitals are then combined into a determinant. This is done to satisfy
two requirements of quantum mechanics. One is that the electrons must be in-
distinguishable. By having a linear combination of orbitals in which each elec-
tron appears in each orbital, it is only possible to say that an electron was put in
a particular orbital but not which electron it is. The second requirement is that
the wave function for fermions (an electron is a fermion) must be antisymmetric
with respect to interchanging two particles. Thus, if electron 1 and electron 2
are switched, the sign of the total wave function must change and only the sign
can change. This is satisfied by a determinant because switching two electrons is
equivalent to interchanging two columns of the determinant, which changes its
sign.

The functions put into the determinant do not need to be individual GTO
functions, called Gaussian primitives. They can be a weighted sum of basis
functions on the same atom or different atoms. Sums of functions on the same
atom are often used to make the calculation run faster, as discussed in Chapter
10. Sums of basis functions on different atoms are used to give the orbital a
particular symmetry. For example, a water molecule with C,, symmetry will
have orbitals that transform as A;, 4, By, B2, which are the irreducible repre-
sentations of the Cy, point group. The resulting orbitals that use functions from
multiple atoms are called molecular orbitals. This is done to make the calcula-
tion run much faster. Any overlap integral over orbitals of different symmetry
does not need to be computed because it is zero by symmetry.

The steps in a Hartree—Fock calculation start with an initial guess for the
orbital coefficients, usually using a semiempirical method. This function is used
to calculate an energy and a new set of orbital coefficients, which can then be
used to obtain a new set, and so on. This procedure continues iteratively until
the energies and orbital coefficients remain constant from one iteration to the
next. This is called having the calculation converge. There is no guarantee the
calculation will converge. In cases where it does not, some technical expertise is
required to fix the problem, as discussed in Chapter 22. This iterative procedure
is called a self-consistent field procedure (SCF). Some researchers refer to these
as SCF calculations to distinguish them from the earlier method created by
Hartree, but HF is used more widely.

A variation on the HF procedure is the way that orbitals are constructed to
reflect paired or unpaired electrons. If the molecule has a singlet spin, then the
same orbital spatial function can be used for both the a and f spin electrons in
each pair. This is called the restricted Hartree—Fock method (RHF).

There are two techniques for constructing HF wave functions of molecules
with unpaired electrons. One technique is to use two completely separate sets of
orbitals for the a and P electrons. This is called an unrestricted Hartree—Fock
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wave function (UHF). This means that paired electrons will not have the same
spatial distribution. This introduces an error into the calculation, called spin
contamination. Spin contamination might introduce an insignificant error or
the error could be large enough to make the results unusable depending on the
chemical system involved. Spin contamination is discussed in more detail in
Chapter 27. UHF calculation are popular because they are easy to implement
and run fairly efficiently.

Another way of constructing wave functions for open-shell molecules is the
restricted open shell Hartree—Fock method (ROHF). In this method, the paired
electrons share the same spatial orbital; thus, there is no spin contamination.
The ROHF technique is more difficult to implement than UHF and may require
slightly more CPU time to execute. ROHF is primarily used for cases where
spin contamination is large using UHF.

For singlet spin molecules at the equilibrium geometry, RHF and UHF
wave functions are almost always identical. RHF wave functions are used for
singlets because the calculation takes less CPU time. In a few rare cases, a
singlet molecule has biradical resonance structures and UHF will give a better
description of the molecule (i.e., ozone).

The RHF scheme results in forcing electrons to remain paired. This means
that the calculation will fail to reflect cases where the electrons should uncou-
ple. For example, a series of RHF calculations for H, with successively longer
bond lengths will show that H, dissociates into H" and H™, rather than two H
atoms. This limitation must be considered whenever processes involving pairing
and unpairing of electrons are modeled. This is responsible for certain system-
atic errors in HF results, such as activation energies that are too high, bond
lengths slightly too short, vibrational frequencies too high, and dipole moments
and atomic charges that are too large. UHF wave functions usually dissociate
correctly.

There are a number of other technical details associated with HF and other
ab initio methods that are discussed in other chapters. Basis sets and basis set
superposition error are discussed in more detail in Chapters 10 and 28. For open-
shell systems, additional issues exist: spin polarization, symmetry breaking, and
spin contamination. These are discussed in Chapter 27. Size—consistency and
size—extensivity are discussed in Chapter 26.

3.2 CORRELATION

One of the limitations of HF calculations is that they do not include electron
correlation. This means that HF takes into account the average affect of elec-
tron repulsion, but not the explicit electron—electron interaction. Within HF
theory the probability of finding an electron at some location around an atom is
determined by the distance from the nucleus but not the distance to the other
electrons as shown in Figure 3.1. This is not physically true, but it is the con-
sequence of the central field approximation, which defines the HF method.



22 3 AB INITIO METHODS

6>

FIGURE 3.1 Two arrangements of electrons around the nucleus of an atom having the
same probability within HF theory, but not in correlated calculations.

A number of types of calculations begin with a HF calculation and then
correct for correlation. Some of these methods are Maller—Plesset perturbation
theory (MPn, where n is the order of correction), the generalized valence bond
(GVB) method, multi-configurational self-consistent field (MCSCF), configu-
ration interaction (CI), and coupled cluster theory (CC). As a group, these
methods are referred to as correlated calculations.

Correlation is important for many different reasons. Including correlation
generally improves the accuracy of computed energies and molecular geome-
tries. For organic molecules, correlation is an extra correction for very-high-
accuracy work, but is not generally needed to obtain quantitative results. One
exception to this rule are compounds exhibiting Jahn-Teller distortions, which
often require correlation to give quantitatively correct results. An extreme case
is transition metal systems, which often require correlation in order to obtain
results that are qualitatively correct.

3.3 MOLLER-PLESSET PERTURBATION THEORY

Correlation can be added as a perturbation from the Hartree—Fock wave func-
tion. This is called Moller—Plesset perturbation theory. In mapping the HF wave
function onto a perturbation theory formulation, HF becomes a first-order per-
turbation. Thus, a minimal amount of correlation is added by using the second-
order MP2 method. Third-order (MP3) and fourth-order (MP4) calculations
are also common. The accuracy of an MP4 calculation is roughly equivalent to
the accuracy of a CISD calculation. MPS and higher calculations are seldom
done due to the high computational cost (N time complexity or worse).
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FIGURE 3.2 Possible results of increasing the order of Meller—Plesset calculations.
The circles show monotonic convergence. The squares show oscillating convergence. The
triangles show a diverging series.

Moller—Plesset calculations are not variational. In fact, it is not uncommon
to find MP2 calculations that give total energies below the exact total energy.
Depending on the nature of the chemical system, there seem to be two patterns
in using successively higher orders of perturbation theory. For some systems,
the energies become successively lower and closer to the total energy in going
from MP2 to MP3, to MP4, and so on, as shown in Figure 3.2. For other sys-
tems, MP2 will have an energy lower than the exact energy, MP3 will be higher,
MP4 will be lower, and so on, with each having an error that is lower in mag-
nitude but opposite in sign. If the assumption of a small perturbation is not
valid, the MPn energies may diverge as shown in Figure 3.2. This might happen
if the single determinant reference is a poor qualitative description of the system.
One advantage of Moller—Plesset is that it is size extensive.

There is also a local MP2 (LMP2) method. LMP2 calculations require less
CPU time than MP2 calculations. LMP2 is also less susceptible to basis set
superposition error. The price of these improvements is that about 98% of the
MP2 energy correction is recovered by LMP2.

3.4 CONFIGURATION INTERACTION

A configuration interaction wave function is a multiple-determinant wave
function. This is constructed by starting with the HF wave function and making
new determinants by promoting electrons from the occupied to unoccupied or-
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bitals. Configuration interaction calculations can be very accurate, but the cost
in CPU time is very high (N® time complexity or worse).

Configuration interaction calculations are classified by the number of exci-
tations used to make each determinant. If only one electron has been moved
for each determinant, it is called a configuration interaction single-excitation
(CIS) calculation. CIS calculations give an approximation to the excited states
of the molecule, but do not change the ground-state energy. Single-and double-
excitation (CISD) calculations yield a ground-state energy that has been cor-
rected for correlation. Triple-excitation (CISDT) and quadruple-excitation
(CISDTQ) calculations are done only when very-high-accuracy results are
desired.

The configuration interaction calculation with all possible excitations is
called a full CI. The full CI calculation using an infinitely large basis set will
give an exact quantum mechanical result. However, full CI calculations are
very rarely done due to the immense amount of computer power required.

CI results can vary a little bit from one software program to another for
open-shell molecules. This is because of the HF reference state being used.
Some programs, such as Gaussian, use a UHF reference state. Other programs,
such as MOLPRO and MOLCAS, use a ROHF reference state. The difference
in results is generally fairly small and becomes smaller with higher-order cal-
culations. In the limit of a full CI, there is no difference.

3.5 MULTI-CONFIGURATIONAL SELF-CONSISTENT FIELD

MCSCEF calculations also use multiple determinants. However, in an MCSCF
calculation the orbitals are optimized for use with the multiple-determinant
wave function. These calculations can often give the most accurate results for a
given amount of CPU time. Compared to a CI calculation, an MCSCF gives
more of the correlation energy with fewer configurations. However, CI calcu-
lations usually give more correlation energy in total because so many more
configurations are included.

It is particularly desirable to use MCSCF or MRCI if the HF wave function
yield a poor qualitative description of the system. This can be determined
by examining the weight of the HF reference determinant in a single-reference
CI calculation. If the HF determinant weight is less than about 0.9, then it is
a poor description of the system, indicating the need for either a multiple-
reference calculation or triple and quadruple excitations in a single-reference
calculation.

Unfortunately, these methods require more technical sophistication on the
part of the user. This is because there is no completely automated way to
choose which configurations are in the calculation (called the active space). The
user must determine which molecular orbitals to use. In choosing which orbitals
to include, the user should ensure that the bonding and corresponding anti-
bonding orbitals are correlated. The orbitals that will yield the most correlation
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energy can be determined by running an unrestricted or correlated calculation,
then using the “virtual” natural orbitals with the highest occupation numbers
along with their corresponding “occupied” orbitals. If the orbitals are chosen
poorly, as is almost always the case without manual intervention, the results
will not only fail to improve, but also they may actually become less accurate
with the addition of more orbitals.

An MCSCEF calculation in which all combinations of the active space orbitals
are included is called a complete active space self-consistent field (CASSCF)
calculation. This type of calculation is popular because it gives the maximum
correlation in the valence region. The smallest MCSCF calculations are two-
configuration SCF (TCSCF) calculations. The generalized valence bond (GVB)
method is a small MCSCEF including a pair of orbitals for each molecular bond.

3.6 MULTI-REFERENCE CONFIGURATION INTERACTION

It is possible to construct a CI wave function starting with an MCSCF calcu-
lation rather than starting with a HF wave function. This starting wave func-
tion is called the reference state. These calculations are called multi-reference
configuration interaction (MRCI) calculations. There are more CI determinants
in this type of calculation than in a conventional CI. This type of calculation
can be very costly in terms of computing resources, but can give an optimal
amount of correlation for some problems.

The notation for denoting this type of calculation is sometimes more specific.
For example, the acronym MCSCF+1+42 means that the calculation is a
MRCI calculation with single and double CI excitations out of an MCSCF
reference space. Likewise, CASSCF+1+2 and GVB+1+2 calculations are
possible.

3.7 COUPLED CLUSTER

Coupled cluster calculations are similar to configuration interaction calcula-
tions in that the wave function is a linear combination of many determinants.
However, the means for choosing the determinants in a coupled cluster calcu-
lation is more complex than the choice of determinants in a CI. Like CI, there
are various orders of the CC expansion, called CCSD, CCSDT, and so on. A
calculation denoted CCSD(T) is one in which the triple excitations are included
perturbatively rather than exactly.

Coupled cluster calculations give variational energies as long as the excita-
tions are included successively. Thus, CCSD is variational, but CCD is not.
CCD still tends to be a bit more accurate than CID.

The accuracy of these two methods is very similar. The advantage of doing
coupled cluster calculations is that it is a size extensive method (see chapter 26).
Often, coupled-cluster results are a bit more accurate than the equivalent
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size configuration interaction calculation results. When all possible configu-
rations are included, a full coupled-cluster calculation is equivalent to a full CI
calculation.

Quadratic configuration interaction calculations (QCI) use an algorithm that
is a combination of the CI and CC algorithms. Thus, a QCISD calculation is an
approximation to a CCSD calculation. These calculations are popular since
they often give an optimal amount of correlation for high-accuracy calculations
on organic molecules while using less CPU time than coupled cluster calcula-
tions. Most popular is the single- and double-excitation calculation, QCISD.
Sometimes, triple excitations are included as well, QCISD(T). The T in paren-
theses indicates that the triple excitations are included perturbatively.

There is a variation on the coupled cluster method known as the symmetry
adapted cluster (SAC) method. This is also a size consistent method. For excited
states, a CI out of this space, called a SAC-CI, is done. This improves the ac-
curacy of electronic excited-state energies.

Another technique, called Brueckner doubles, uses orbitals optimized to
make single excitation contributions zero and then includes double excitations.
This is essentially equivalent to CCSD in terms of both accuracy and CPU
time.

3.8 QUANTUM MONTE CARLO METHODS

A method that avoids making the HF mistakes in the first place is called
quantum Monte Carlo (QMC). There are several types of QMC: variational,
diffusion, and Greens function Monte Carlo calculations. These methods work
with an explicitly correlated wave function. This is a wave function that has a
function of the electron—electron distance (a generalization of the original work
by Hylleraas).

The wave function for a variational QMC calculation might take the func-
tional form

¥ = D0y [ () (3.1)

i<j

where D, and Dy are determinants of o and f spin electrons. The use of two
determinants in this way does not introduce any additional error as long as
there are not any spin terms in the Hamiltonian (i.e., spin coupling). The f(r;)
term is the term that accounts for electron correlation. This correlation function
could include three body terms, denoted f(r;,r;,r;). The general shape of the
correlation function is known, but there is not yet a consensus on the best
mathematical function to use and new functions are still being proposed.

The diffusion and Greens function Monte Carlo methods use numerical
wave functions. In this case, care must be taken to ensure that the wave func-
tion has the nodal properties of an antisymmetric function. Often, nodal sur-
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faces from HF wave functions are used. In the most sophisticated calculations,
the nodal surfaces are “relaxed,” meaning that they are allowed to shift to opti-
mize the wave function.

The integrals over the wave function are evaluated numerically using a Monte
Carlo integration scheme. These calculations can be extremely time-consuming,
but they are probably the most accurate methods known today. Because these
calculations scale as N3 and are extremely accurate, it is possible they could
become important in the future if they can be made faster. At this current stage
of development, most of the researchers using quantum Monte Carlo calcula-
tions are those writing their own computer codes and inventing the methods
contained therein.

3.9 NATURAL ORBITALS

Once an energy and wave function has been found, it is often necessary to com-
pute other properties of the molecule. For the multiple-determinant methods
(MCSCF, CI, CC, MRCI), this is done most efficiently using natural orbitals.
Natural orbitals are the eigenfunctions of the first-order reduced density matrix.
The details of density matrix theory are beyond the scope of this text. Suffice it
to say that once the natural orbitals have been found, the information in the
wave function has been compressed from a many-determinant function down to
a set of orbitals and occupation numbers. The occupation numbers are the
number of electrons in each natural orbital. This is a real number, which is
close to one or two electrons for those considered to be occupied orbitals. Many
of the higher-energy orbitals have a small amount of electron occupation,
which is roughly analogous to the excited-configuration weights in the wave
function, but not mathematically equivalent.

Properties can be computed by finding the expectation value of the property
operator with the natural orbitals weighted by the occupation number of each
orbital. This is a much faster way to compute properties than trying to use the
expectation value of a multiple-determinant wave function. Natural orbitals are
not equivalent to HF or Kohn—Sham orbitals, although the same symmetry
properties are present.

3.10 CONCLUSIONS

In general, ab initio calculations give very good qualitative results and can yield
increasingly accurate quantitative results as the molecules in question become
smaller. The advantage of ab initio methods is that they eventually converge to
the exact solution once all the approximations are made sufficiently small in
magnitude. In general, the relative accuracy of results is

HF « MP2 < CISD =~ MP4 =~ CCSD < CCSD(T) < CCSDT < Full CI
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However, this convergence is not monotonic. Sometimes, the smallest calcula-
tion gives a very accurate result for a given property. There are four sources of
error in ab initio calculations:

1. The Born—Oppenheimer approximation
2. The use of an incomplete basis set

3. Incomplete correlation

4. The omission of relativistic effects

The disadvantage of ab initio methods is that they are expensive. These
methods often take enormous amounts of computer CPU time, memory, and
disk space. The HF method scales as N*, where N is the number of basis
functions. This means that a calculation twice as big takes 16 times as long (24)
to complete. Correlated calculations often scale much worse than this. In prac-
tice, extremely accurate solutions are only obtainable when the molecule con-
tains a dozen electrons or less. However, results with an accuracy rivaling that
of many experimental techniques can be obtained for moderate-size organic
molecules. The minimally correlated methods, such as MP2 and GVB, are
often used when correlation is important to the description of large molecules.
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4 Semiempirical Methods

Semiempirical calculations are set up with the same general structure as a HF
calculation in that they have a Hamiltonian and a wave function. Within this
framework, certain pieces of information are approximated or completely
omitted. Usually, the core electrons are not included in the calculation and only
a minimal basis set is used. Also, some of the two-electron integrals are omitted.
In order to correct for the errors introduced by omitting part of the calculation,
the method is parameterized. Parameters to estimate the omitted values are
obtained by fitting the results to experimental data or ab initio calculations.
Often, these parameters replace some of the integrals that are excluded.

The advantage of semiempirical calculations is that they are much faster
than ab initio calculations. The disadvantage of semiempirical calculations is
that the results can be erratic and fewer properties can be predicted reliably. If
the molecule being computed is similar to molecules in the database used to
parameterize the method, then the results may be very good. If the molecule
being computed is significantly different from anything in the parameterization
set, the answers may be very poor. For example, the carbon atoms in cyclo-
propane and cubane have considerably different bond angles from those in
most other compounds; thus, these molecules may not be predicted well unless
they were included in the parameterization. However, semiempirical methods
are not as sensitive to the parameterization set as are molecular mechanics
calculations.

Semiempirical methods are parameterized to reproduce various results. Most
often, geometry and energy (usually the heat of formation) are used. Some re-
searchers have extended this by including dipole moments, heats of reaction,
and ionization potentials in the parameterization set. A few methods have been
parameterized to reproduce a specific property, such as electronic spectra or
NMR chemical shifts. Semiempirical calculations can be used to compute prop-
erties other than those in the parameterization set.

Many semiempirical methods compute energies as heats of formation. The
researcher should not add zero-point corrections to these energies because the
thermodynamic corrections are implicit in the parameterization.

CIS calculations from the semiempirical wave function can be used for
computing electronic excited states. Some software packages allow CI calcu-
lations other than CIS to be performed from the semiempirical reference space.
This is a good technique for modeling compounds that are not described prop-
erly by a single-determinant wave function (see Chapter 26). Semiempirical CI

32
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calculations do not generally improve the accuracy of results since they include
correlation twice: once by CI and once by parameterization.

Semiempirical calculations have been very successful in the description of
organic chemistry, where there are only a few elements used extensively and the
molecules are of moderate size. Some semiempirical methods have been devised
specifically for the description of inorganic chemistry as well. The following are
some of the most commonly used semiempirical methods.

4.1 HUCKEL

The Hiickel method and is one of the earliest and simplest semiempirical
methods. A Hiickel calculation models only the 7 valence electrons in a planar
conjugated hydrocarbon. A parameter is used to describe the interaction be-
tween bonded atoms. There are no second atom affects. Hiickel calculations do
reflect orbital symmetry and qualitatively predict orbital coefficients. Hiickel
calculations can give crude quantitative information or qualitative insight into
conjugated compounds, but are seldom used today. The primary use of Hiickel
calculations now is as a class exercise because it is a calculation that can be
done by hand.

4.2 EXTENDED HUCKEL

An extended Hiickel calculation is a simple means for modeling the valence
orbitals based on the orbital overlaps and experimental electron affinities and
ionization potentials. In some of the physics literature, this is referred to as a
tight binding calculation. Orbital overlaps can be obtained from a simplified
single STO representation based on the atomic radius. The advantage of ex-
tended Hiickel calculations over Hiickel calculations is that they model all the
valence orbitals.

The primary reason for interest in extended Hiickel today is because the
method is general enough to use for all the elements in the periodic table. This
is not an extremely accurate or sophisticated method; however, it is still used
for inorganic modeling due to the scarcity of full periodic table methods with
reasonable CPU time requirements. Another current use is for computing band
structures, which are extremely computation-intensive calculations. Because of
this, extended Hiickel is often the method of choice for band structure calcu-
lations. It is also a very convenient way to view orbital symmetry. It is known
to be fairly poor at predicting molecular geometries.

4.3 PPP

The Pariser—Parr—Pople (PPP) method is an extension of the Hiickel method
that allows heteroatoms other than hydrogen. It is still occasionally used when
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very minimal amounts of electronic effects are required. For example, PPP-
based terms have been incorporated in molecular mechanics calculations to
describe aromaticity. This method is also popular for developing simple para-
meterized analytic expressions for molecular properties.

44 CNDO

The complete neglect of differential overlap (CNDO) method is the simplest of
the neglect of differential overlap (NDO) methods. This method models valence
orbitals only using a minimal basis set of Slater type orbitals. The CNDO
method has proven useful for some hydrocarbon results but little else. CNDO
is still sometimes used to generate the initial guess for ab initio calculations on
hydrocarbons.

Practically all CNDO calculations are actually performed using the CNDO/
2 method, which is an improved parameterization over the original CNDO/1
method. There is a CNDO/S method that is parameterized to reproduce elec-
tronic spectra. The CNDO/S method does yield improved prediction of excita-
tion energies, but at the expense of the poorer prediction of molecular geome-
try. There have also been extensions of the CNDO/2 method to include
elements with occupied d orbitals. These techniques have not seen widespread
use due to the limited accuracy of results.

4.5 MINDO

There are three modified intermediate neglect of differential overlap (MINDO)
methods: MINDO/1, MINDO/2, and MINDO/3. The MINDO/3 method is
by far the most reliable of these. This method has yielded qualitative results for
organic molecules. However its use today has been superseded by that of more
accurate methods such as Austin model 1 (AM1) and parameterization method
3 (PM3). MINDO;/3 is still sometimes used to obtain an initial guess for ab
initio calculations.

4.6 MNDO

The modified neglect of diatomic overlap (MNDO) method has been found to
give reasonable qualitative results for many organic systems. It has been incor-
porated into several popular semiempirical programs as well as the MNDO
program. Today, it is still used, but the more accurate AM1 and PM3 methods
have surpassed it in popularity.

There are a some known cases where MNDO gives qualitatively or quanti-
tatively incorrect results. Computed electronic excitation energies are under-
estimated. Activation barriers tend to be too high. The correct conformer is not
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always computed to be lowest in energy. Barriers to bond rotation are often
computed to be too small. Hypervalent compounds and sterically crowded
molecules are computed to be too unstable. Four-membered rings are predicted
to be too stable. Oxygenated functional groups on aromatic rings are predicted
to be out-of-plane. The peroxide bond is too short by about 0.17 A. The ether
C—-0O-C bond angle is too large by about 9°. Bond lengths between electro-
negative elements are too short. Hydrogen bonds are too weak and long.

A variation on MNDO is MNDO/d. This is an equivalent formulation in-
cluding d orbitals. This improves predicted geometry of hypervalent molecules.
This method is sometimes used for modeling transition metal systems, but its
accuracy is highly dependent on the individual system being studied. There is
also a MNDOC method that includes electron correlation.

4.7 INDO

The intermediate neglect of differential overlap (INDO) method was at one
time used for organic systems. Today, it has been superseded by more accurate
methods. INDO is still sometimes used as an initial guess for ab initio calcu-
lations.

4.8 ZINDO

The Zerner’s INDO method (ZINDO) is also called spectroscopic INDO
(INDO/S). This is a reparameterization of the INDO method specifically for
the purpose of reproducing electronic spectra results. This method has been
found to be useful for predicting electronic spectra. ZINDO is also used for
modeling transition metal systems since it is one of the few methods para-
meterized for metals. It predicts UV transitions well, with the exception of
metals with unpaired electrons. However, its use is generally limited to the type
of results for which it was parameterized. ZINDO often gives poor results when
used for geometry optimization.

4.9 SINDO1

The symmetrically orthogonalized intermediate neglect of differential overlap
method (SINDOI) is both a semiempirical method and a computer program
incorporating that method. It is another variation on INDO. SINDOI is de-
signed for the prediction of the binding energies and geometries of the Ist and
2nd row elements as well as the 3rd row transition metals. Some of the param-
eters were taken directly from experimental or ab initio results, whereas the rest
were parameterized to reproduce geometry and heats of formation. The method
was originally designed for modeling ground states of organic molecules. More
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recently, it has been extended to predict photochemistry and transition metal
results.

4.10 PRDDO

The PRDDO (partial retention of diatomic differential overlap) method is an
attempt to get the optimal ratio of accuracy to CPU time. It has been para-
meterized for the periodic elements through Br, including the 3rd row transition
metals. It was parameterized to reproduce ab initio results. PRDDO has been
used primarily for inorganic compounds, organometallics, solid-state calcula-
tions, and polymer modeling. This method has seen less use than other methods
of similar accuracy mostly due to the fact that it has not been incorporated into
the most widely used semiempirical software.

There are several variations of this method. The PRDDO/M method is
parameterized to reproduce electrostatic potentials. The PRDDO/M/FCP
method uses frozen core potentials. PRDDO/M/NQ uses an approximation
called “not quite orthogonal orbitals” in order to give efficient calculations
on very large molecules. The results of these methods are fairly good overall,
although bond lengths involving alkali metals tend to be somewhat in error.

411 AM1

The Austin Model 1 (AM1) method is still popular for modeling organic com-
pounds. AM1 generally predicts the heats of formation (AH;) more accurately
than MNDO, although a few exceptions involving Br atoms have been docu-
mented. Depending on the nature of the system and information desired, either
AMI1 or PM3 will often give the most accurate results obtainable for organic
molecules with semiempirical methods.

There are some known strengths and limitations in the results obtained from
these methods. Activation energies are improved over MNDO. AMI1 tends to
predict results for aluminum better than PM3. It tends to poorly predict nitrogen
paramidalization. AM1 tends to give O—Si—O bonds that are not bent enough.
There are some known limitations to AM1 energies, such as predicting rota-
tional barriers to be one-third the actual barrier and predicting five-membered
rings to be too stable. The predicted heat of formation tends to be inaccurate
for molecules with a large amount of charge localization. Geometries involving
phosphorus are predicted poorly. There are systematic errors in alkyl group
energies predicting them to be too stable. Nitro groups are too positive in energy.
The peroxide bond is too short by about 0.17 A. Hydrogen bonds are predicted
to have the correct strength, but often the wrong orientation. On average, AM1
predicts energies and geometries better than MNDO, but not as well as PM3.
Computed bond enthalpies are consistently low.
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412 PM3

Parameterization method 3 (PM3) uses nearly the same equations as the
AMI1 method along with an improved set of parameters. The PM3 method is
also currently extremely popular for organic systems. It is more accurate than
AM1 for hydrogen bond angles, but AMI1 is more accurate for hydrogen bond
energies. The PM3 and AM1 methods are also more popular than other semi-
empirical methods due to the availability of algorithms for including solvation
effects in these calculations.

There are also some known strengths and limitations of PM3. Overall heats
of formation are more accurate than with MNDO or AM1. Hypervalent mol-
ecules are also predicted more accurately. PM3 tends to predict that the barrier
to rotation around the C—N bond in peptides is too low. Bonds between Si and
the halide atoms are too short. PM3 also tends to predict incorrect electronic
states for germanium compounds. It tends to predict sp> nitrogen as always
being pyramidal. Some spurious minima are predicted. Proton affinities are not
accurate. Some polycyclic rings are not flat. The predicted charge on nitrogen is
incorrect. Nonbonded distances are too short. Hydrogen bonds are too short by
about 0.1 A, but the orientation is usually correct. On average, PM3 predicts
energies and bond lengths more accurately than AM1 or MNDO.

413 PM3|TM

PM3/TM is an extension of the PM3 method to include d orbitals for use with
transition metals. Unlike the case with many other semiempirical methods,
PM3/TM’s parameterization is based solely on reproducing geometries from
X-ray diffraction results. Results with PM3/TM can be either reasonable or not
depending on the coordination of the metal center. Certain transition metals
tend to prefer a specific hybridization for which it works well.

4.14 FENSKE-HALL

The Fenske—Hall method is a modification of crystal field theory. This is done
by using a population analysis scheme, then replacing orbital interactions with
point charge interactions. This has been designed for the description of inor-
ganic metal-ligand systems. There are both parameterized and unparameterized
forms of this method.

4.15 TNDO

The typed neglect of differential overlap (TNDO) method is a semiempirical
method parameterized specifically to reproduce NMR chemical shifts. This



38 4 SEMIEMPIRICAL METHODS

parameterization goes one step further than other semiempiricals in that the
method must distinguish between atoms of the same element but different
hybridizations. For example, different parameters are used to describe an sp?
carbon than are used for an sp> carbon. There are two versions of this method:
TNDO/1 and TNDO/2. The prediction of NMR chemical shifts is discussed in
Chapter 31.

4.16 SAMI1

Semi-ab initio method 1 (SAM]) is different from the rest of the methods just
discussed. It still neglects some of the integrals included in HF calculations, but
includes more than other semiempirical methods, including d orbitals. Thus, the
amount of CPU time for SAMI calculations is more than for other semi-
empiricals but still significantly less than for a minimal basis set HF calculation.
The method uses a parameterization to estimate the correlation effects. For
organic molecules too large for correlated ab initio calculations, this is a rea-
sonable way to incorporate correlation effects. Results tend to be slightly more
accurate than with AM1 or PM3, but with the price of an increased amount of
CPU time necessary. Vibrational frequencies computed with SAM1 are signifi-
cantly more accurate than with other semiempiricals.

4.17 GAUSSIAN THEORY

The Gaussian methods (G1, G2, and G3) are also unique types of computa-
tions. These methods arose from the observation that certain ab initio methods
tended to show a systematic error for predicting the energies of the ground
states of organic molecules. This observation resulted in a correction equation
that uses the energies from several different ab initio calculations in order to
extrapolate to a very-high-accuracy result. All the calculations that go into this
extrapolation are ab initio methods. However, the extrapolation equation itself
is an empirically defined equation parameterized to reproduce results from a
test set of molecules as accurately as possible. The extrapolation to complete
correlation is based on the number of electrons times an empirically determined
constant. For this reason, these methods show the same strengths and weak-
nesses as other semiempirical methods. The accuracy can be extremely good for
systems similar to those for which they were parameterized, the ground state of
organic molecules. However, for other systems, such as transition structures or
clusters, these methods often are less accurate than some less computationally
intensive ab initio methods. J. A. Pople once referred to this as a “slightly em-
pirical theory.”

The G1 method is seldom used since G2 yields an improved accuracy of
results. G2 has proven to be a very accurate way to model small organic
molecules, but gives poor accuracy when applied to chlorofluorocarbons. At
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the time this book was written, the G3 method had just been published. The
initial results from G3 show some improvement in accuracy especially for
chlorofluorocarbons.

There have been a number of variations on the G2 method proposed. The
G2(MP2) and G2(MP2,SVP) methods are designed to require less CPU time,
with a slight loss of accuracy. The G2(B3LYP/MP2/CC) method uses an
amount of CPU similar to G2(MP2) with slightly better results. Some varia-
tions designed for improved accuracy over G2 are G2(COMPLETE), G2(BD),
G2(CCSD), and G2M(RCC). Based on the improved accuracy of results, it is
likely that the future will see more publications using G3, G2(COMPLETE),
and G2M(RCC). The complete basis set method discussed in Chapter 10 is
similar in application to Gaussian theory, but significantly different in the the-
oretical derivation. These issues are discussed in more detail in the references
listed at the end of this chapter.

4.18 RECOMMENDATIONS

Semiempirical methods can provide results accurate enough to be useful, par-
ticularly for organic molecules with computation requirements low enough to
make them convenient on PC or Macintosh computers. These methods are
generally good for predicting molecular geometry and energetics. Semiempiri-
cal methods can be used for predicting vibrational modes and transition struc-
tures, but do so less reliably than ab initio methods. Semiempirical calculations
generally give poor results for van der Waals and dispersion intermolecular
forces, due to the lack of diffuse basis functions.
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5 Density Functional Theory

Density functional theory (DFT) has become very popular in recent years. This
is justified based on the pragmatic observation that it is less computationally
intensive than other methods with similar accuracy. This theory has been de-
veloped more recently than other ab initio methods. Because of this, there are
classes of problems not yet explored with this theory, making it all the more
crucial to test the accuracy of the method before applying it to unknown
systems.

5.1 BASIC THEORY

The premise behind DFT is that the energy of a molecule can be determined
from the electron density instead of a wave function. This theory originated
with a theorem by Hoenburg and Kohn that stated this was possible. The
original theorem applied only to finding the ground-state electronic energy of a
molecule. A practical application of this theory was developed by Kohn and
Sham who formulated a method similar in structure to the Hartree—Fock
method.

In this formulation, the electron density is expressed as a linear combination
of basis functions similar in mathematical form to HF orbitals. A determinant
is then formed from these functions, called Kohn—Sham orbitals. It is the elec-
tron density from this determinant of orbitals that is used to compute the energy.
This procedure is necessary because Fermion systems can only have electron
densities that arise from an antisymmetric wave function. There has been some
debate over the interpretation of Kohn—Sham orbitals. It is certain that they
are not mathematically equivalent to either HF orbitals or natural orbitals from
correlated calculations. However, Kohn—Sham orbitals do describe the behav-
ior of electrons in a molecule, just as the other orbitals mentioned do. DFT
orbital eigenvalues do not match the energies obtained from photoelectron
spectroscopy experiments as well as HF orbital energies do. The questions still
being debated are how to assign similarities and how to physically interpret the
differences.

A density functional is then used to obtain the energy for the electron den-
sity. A functional is a function of a function, in this case, the electron density.
The exact density functional is not known. Therefore, there is a whole list of
different functionals that may have advantages or disadvantages. Some of these

42
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functionals were developed from fundamental quantum mechanics and some
were developed by parameterizing functions to best reproduce experimental
results. Thus, there are in essence ab initio and semiempirical versions of DFT.
DFT tends to be classified either as an ab initio method or in a class by itself.

The advantage of using electron density is that the integrals for Coulomb re-
pulsion need be done only over the electron density, which is a three-dimensional
function, thus scaling as N3. Furthermore, at least some electron correlation
can be included in the calculation. This results in faster calculations than HF
calculations (which scale as N*) and computations that are a bit more accurate
as well. The better DFT functionals give results with an accuracy similar to that
of an MP2 calculation.

Density functionals can be broken down into several classes. The simplest is
called the Xa method. This type of calculation includes electron exchange but
not correlation. It was introduced by J. C. Slater, who in attempting to make an
approximation to Hartree—Fock unwittingly discovered the simplest form of
DFT. The Xa method is similar in accuracy to HF and sometimes better.

The simplest approximation to the complete problem is one based only on
the electron density, called a local density approximation (LDA). For high-spin
systems, this is called the local spin density approximation (LSDA). LDA cal-
culations have been widely used for band structure calculations. Their perfor-
mance is less impressive for molecular calculations, where both qualitative and
quantitative errors are encountered. For example, bonds tend to be too short
and too strong. In recent years, LDA, LSDA, and VWN (the Vosko, Wilks,
and Nusair functional) have become synonymous in the literature.

A more complex set of functionals utilizes the electron density and its gradi-
ent. These are called gradient-corrected methods. There are also hybrid methods
that combine functionals from other methods with pieces of a Hartree—Fock
calculation, usually the exchange integrals.

In general, gradient-corrected or hybrid calculations give the most accurate
results. However, there are a few cases where Xo and LDA do quite well. LDA
is known to give less accurate geometries and predicts binding energies sig-
nificantly too large. The current generation of hybrid functionals are a bit more
accurate than the present gradient-corrected techniques. Some of the more
widely used functionals are listed in Table 5.1.

5.2 LINEAR SCALING TECHNIQUES

One recent development in DFT is the advent of linear scaling algorithms.
These algorithms replace the Coulomb terms for distant regions of the molecule
with multipole expansions. This results in a method with a time complexity of
N for sufficiently large molecules. The most common linear scaling techniques
are the fast multipole method (FMM) and the continuous fast multipole
method (CFMM).

DFT is generally faster than Hartree—Fock for systems with more than 10—
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TABLE 5.1 Density Functionals

Acronyms Name Type

Xa X alpha Exchange only

HFS Hartree—Fock Slater HF with LDA exchange
VWN Vosko, Wilks, and Nusair LDA

BLYP Becke correlation functional with Gradient-corrected

Lee, Yang, Parr exchange
B3LYP, Becke3LYP  Becke 3 term with Lee, Yang, Parr Hybrid

exchange
PWI1 Perdue and Wang 1991 Gradient-corrected
G96 Gill 1996 Exchange
P86 Perdew 1986 Gradient-corrected
B96 Becke 1996 Gradient-corrected
B3P86 Becke exchange, Perdew correlation ~ Hybrid
B3PWI1 Becke exchange, Perdew and Wang  Hybrid
correlation

15 nonhydrogen atoms, depending on the numeric integral accuracy and basis
set. Linear scaling algorithms do not become advantageous until the number of
heavy atoms exceeds 30 or more, depending on the general shape of the mole-
cule.

The linear scaling DFT methods can be the fastest ab initio method for
large molecules. However, there has been a lot of misleading literature in this
field. The literature is ripe with graphs indicating that linear scaling methods
take an order of magnitude less CPU time than conventional algorithms for
some test systems, such as n-alkanes or graphite sheets. However, calculations
with commercial software often indicate speedups of only a few percent or
perhaps a slightly slower calculation. There are a number of reasons for these
inconsistencies.

The first factor to note is that most software packages designed for efficient
operation use integral accuracy cutoffs with ab initio calculations. This means
that integrals involving distant atoms are not included in the calculation if they
are estimated to have a negligible contribution to the final energy, usually less
than 0.00001 Hartrees or one-hundredth the energy of a van der Waals inter-
action. In the literature, many of the graphs showing linear scaling DFT per-
formance compare it to an algorithm that does not use integral accuracy cut-
offs. Cases where the calculation runs faster without the linear scaling method
are due to the integral accuracy cutoffs being more time-efficient than the linear
scaling method.

The second consideration is the geometry of the molecule. The multipole
estimation methods are only valid for describing interactions between distant
regions of the molecule. The same is true of integral accuracy cutoffs. Because
of this, it is common to find that the calculated CPU time can vary between
different conformers. Linear systems can be modeled most efficiently and
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folded, globular, or planar systems less efficiently. In our test calculations on
the C4oHg, n-alkane, the energy calculation on a folded conformation took four
times as much CPU time as the calculation on the linear conformation.

The bottom line is that linear scaling methods can use less CPU time than
conventional methods, but the speedup is not as great as is indicated by some of
the literature. We ran test calculations on a Cy4 n-alkane in various con-
formations and a Cyy graphite sheet with two software packages. These calcu-
lations showed that linear scaling methods required 60—80% of the amount of
CPU time required for the conventional calculation. It is possible to obtain
better performance than this by manually setting the multipole order used by
the algorithm, but researchers have advised extreme caution about doing this
because it can affect the accuracy of results.

5.3 PRACTICAL CONSIDERATIONS

As mentioned above, DFT calculations must use a basis set. This raises the
question of whether DFT-optimized or typical HF-optimized basis sets should
be used. Studies using DFT-optimized basis sets have shown little or no im-
provement over the use of a similar-size conventional basis sets. Most DFT
calculations today are being done with HF-optimized GTO basis sets. The
accuracy of results tends to degrade significantly with the use of very small basis
sets. For accuracy considerations, the smallest basis set used is generally
6—31G* or the equivalent. Interestingly, there is only a small increase in accu-
racy obtained by using very large basis sets. This is probably due to the fact that
the density functional is limiting accuracy more than the basis set limitations.

Since DFT calculations use numerical integrals, calculations using GTO
basis sets are no faster than those using other types of basis sets. It is reasonable
to expect that STO basis sets or numeric basis sets (e.g., cubic splines) would be
more accurate due to the correct representation of the nuclear cusp and expo-
nential decay at long distances. The fact that so many DFT studies use GTO
basis sets is not a reflection of accuracy or computation time advantages. It is
because there were a large number of programs written for GTO HF calcu-
lations. HF programs can be easily turned into DFT programs, so it is very
common to find programs that do both. There are programs that use cubic
spline basis sets (e.g., the dMol and Spartan programs) and STO basis sets (e.g.,
ADF).

The accuracy of results from DFT calculations can be poor to fairly good,
depending on the choice of basis set and density functional. The choice of
density functional is made more difficult because creating new functionals is
still an active area of research. At the time of this book’s publication, the
B3LYP hybrid functional (also called Becke3LYP) was the most widely used
for molecular calculations by a fairly large margin. This is due to the accuracy
of the B3LYP results obtained for a large range of compounds, particularly
organic molecules. However, it would not be surprising if this functional’s
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dominance changed within a few years. Table 5.1 lists a number of commonly
used functionals.

Due to the newness of DFT, its performance is not completely known and
continues to change with the development of new functionals. The bibliography
at the end of this chapter includes references for studies comparing the accuracy
of results. At the present time, DFT results have been very good for organic
molecules, particularly those with closed shells. Results have not been so en-
couraging for heavy elements, highly charged systems, or systems known to be
very sensitive to electron correlation. Also, the functionals listed in Table 5.1 do
not perform well for problems dominated by dispersion forces.

54 RECOMMENDATIONS

Given the fact that DFT is newer than the other ab initio methods, it is quite
likely that conventional wisdom over which technique works best will shift with
the creation of new techniques in the not too distant future. DFT’s recent heavy
usage has been due to the often optimal accuracy versus CPU time. At the time
of this book’s publication, the B3LYP method with basis sets of 6—31G* or
larger is the method of choice for many organic molecule calculations. Un-
fortunately, there is no systematic way to improve DFT calculations, thus
making them unusable for very-high-accuracy work. Researchers are advised to
look for relevant literature and run test calculations before using these methods.
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6 Molecular Mechanics

The most severe limitation of ab initio methods is the limited size of the molecule
that can be modeled on even the largest computers. Semiempirical calculations
can be used for large organic molecules, but are also too computation-intensive
for most biomolecular systems. If a molecule is so big that a semiempirical
treatment cannot be used effectively, it is still possible to model its behavior
avoiding quantum mechanics totally by using molecular mechanics.

6.1 BASIC THEORY

The molecular mechanics energy expression consists of a simple algebraic
equation for the energy of a compound. It does not use a wave function or total
electron density. The constants in this equation are obtained either from spec-
troscopic data or ab initio calculations. A set of equations with their associated
constants is called a force field. The fundamental assumption of the molecular
mechanics method is the transferability of parameters. In other words, the en-
ergy penalty associated with a particular molecular motion, say, the stretching
of a carbon—carbon single bond, will be the same from one molecule to the
next. This gives a very simple calculation that can be applied to very large
molecular systems. The performance of this technique is dependent on four
factors:

1. The functional form of the energy expression

2. The data used to parameterize the constants

3. The technique used to optimize constants from that data
4.

The ability of the user to apply the technique in a way consistent with its
strengths and weaknesses

In order for the transferability of parameters to be a good description of the
molecule, force fields use atom types. This means that a sp* carbon will be de-
scribed by different parameters than a sp> carbon, and so on. Usually, atoms in
aromatic rings are treated differently from sp? atoms. Some force fields even
parameterize atoms for specific functional groups. For example, the carbonyl
oxygen in a carboxylic acid may be described by different parameters than the
carbonyl oxygen in a ketone.

The energy expression consists of the sum of simple classical equations.
These equations describe various aspects of the molecule, such as bond
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stretching, bond bending, torsions, electrostatic interactions, van der Waals
forces, and hydrogen bonding. Force fields differ in the number of terms in the
energy expression, the complexity of those terms, and the way in which the
constants were obtained. Since electrons are not explicitly included, electronic
processes cannot be modeled.

Terms in the energy expression that describe a single aspect of the molecular
shape, such as bond stretching, angle bending, ring inversion, or torsional mo-
tion, are called valence terms. All force fields have at least one valence term and
most have three or more.

Terms in the energy expression that describe how one motion of the mole-
cule affects another are called cross terms. A cross term commonly used is a
stretch-bend term, which describes how equilibrium bond lengths tend to shift
as bond angles are changed. Some force fields have no cross terms and may
compensate for this by having sophisticated electrostatic functions. The MM4
force field is at the opposite extreme with nine different types of cross terms.

Force fields may or may not include an electrostatic term. The electrostatic
term most often used is the Coulombs law term for the energy of attraction or
repulsion between charged centers. These charges are usually obtained from
non-orbital-based algorithms designed for use with molecular mechanics. These
charges are meant to be the partial charges on the nuclei. The modeling of
molecules with a net charge is described best by using atom types parameterized
for describing charged centers. A dielectric constant is sometimes included to
model solvation effects. These charge calculation methods are described further
in Chapter 12.

Bond stretching is most often described by a harmonic oscillator equation. It
is sometimes described by a Morse potential. In rare cases, bond stretching will
be described by a Leonard—Jones or quartic potential. Cubic equations have
been used for describing bond stretching, but suffer from becoming completely
repulsive once the bond has been stretched past a certain point.

Bond bending is most often described by a harmonic equation. Bond rota-
tion is generally described by a cosine expression (Figure 6.1). Intermolecular
forces, such as van der Waals interactions and hydrogen bonding, are often
described by Leonard—Jones equations. Some force fields also use a combined
stretch-bend term. The choice of equation functional forms is particularly im-
portant for computing energies of molecules distorted from the equilibrium
geometry, as evidenced by the difference between a harmonic potential and a
Morse potential shown in Figure 6.2.

Table 6.1 gives the mathematical forms of energy terms often used in popular
force fields. The constants may vary from one force field to another according
to the designer’s choice of unit system, zero of energy, and fitting procedure.

All the constants in these equations must be obtained from experimental
data or an ab initio calculation. The database of compounds used to parame-
terize the method is crucial to its success. A molecular mechanics method may
be parameterized against a specific class of molecules, such as proteins or nu-
cleotides. Such a force field would only be expected to have any relevance in
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FIGURE 6.2 Harmonic, cubic, and Morse potential curves used to describe the energy
due to bond stretching in molecular mechanics force fields.
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TABLE 6.1 Common Force Field Terms

Name Use Energy Term
Harmonic Bond stretch k(I —1)?

Harmonic Angle bend k(6 —0)*

Cosine Torsion k[1 + cos(nf)]

Leonard—Jones 6-12

Leonard—Jones 10-12

van der Waals

van der Waals

G
(i)

Coulomb Electrostatic 4192
dnegr
Taylor Stretch-bend k(0 —60)[(h — 1))l — by)]
Morse Bond stretch D,[1 — e~el=h))?
I-bond length.

0-bond angle.

k, a, A, B-constants particular to the elements in a certain hybridization state.
n-an integer.

r-nonbond distance.

g-charge.

D,-dissociation energy.

describing other proteins or nucleotides. Other force fields are parameterized to
give a reasonable description of a wide variety of organic compounds. A few
force fields have even been parameterized for all the elements.

Some force fields simplify the complexity of the calculations by omitting
most of the hydrogen atoms. The parameters describing each backbone atom
are then modified to describe the behavior of the atoms with the attached
hydrogens. Thus, the calculation uses a CH, group rather than a sp? carbon
bonded to two hydrogens. These are called united atom force fields or intrinsic
hydrogen methods. This calculation is most often employed to describe very
large biomolecules. It is not generally applied if the computer hardware avail-
able is capable of using the more accurate explicit hydrogen force fields. Some
force fields have atom types for use with both implicit and explicit hydrogens.

The way in which the force field parameters are obtained from this original
data is also important. Bond stretching and bending are relatively stiff motions.
Thus, they can often be described very well by using equilibrium values obtained
from X-ray diffraction results and force constants from vibrational spectros-
copy. On the other hand, torsional behavior is sensitive to both the torsional
behavior of the isolated bond and the nonbonded interactions between distant
sections of the molecule and surrounding molecules. The choice of fitting pro-
cedure becomes important because it determines how much of the energy is
from each contributing process. A force field can also be parameterized to best
predict vibrational motion or intermolecular forces.
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The energies computed by molecular mechanics are usually conformational
energies. This means that the energy computed is meant to be an energy that
will reliably predict the difference in energy from one conformation to the next.
The effect of strained bond lengths or angles is also included in this energy. This
is not the same as the total energies obtained from ab initio programs or the
heat of formation from semiempirical programs. The actual value of the con-
formational energy does not necessarily have any physical meaning and is not
comparable between different force fields. Molecular mechanics methods can be
modified to compute heats of formation by including a database or computa-
tion scheme to yield bond energies that might be added to the conformational
energy and account for the zero of energy.

Molecular mechanics methods are not generally applicable to structures very
far from equilibrium, such as transition structures. Calculations that use alge-
braic expressions to describe the reaction path and transition structure are
usually semiclassical algorithms. These calculations use an energy expression
fitted to an ab initio potential energy surface for that exact reaction, rather than
using the same parameters for every molecule. Semiclassical calculations are
discussed further in Chapter 19.

6.2 EXISTING FORCE FIELDS

Most researchers do not parameterize force fields because many good force
fields have already been developed. On rare occasions, a researcher will add an
additional atom as described in Chapter 29. The following are some commonly
used molecular mechanics force fields. Many of these have been implemented in
more than one software package. There tend to be minor differences in the im-
plementation leading to small differences in results from one software package
to another.

6.2.1 AMBER

Assisted model building with energy refinement (AMBER) is the name of both
a force field and a molecular mechanics program. It was parameterized specifi-
cally for proteins and nucleic acids. AMBER uses only five bonding and non-
bonding terms along with a sophisticated electrostatic treatment. No cross
terms are included. Results are very good for proteins and nucleic acids, but can
be somewhat erratic for other systems.

6.2.2 CHARMM

Chemistry at Harvard macromolecular mechanics (CHARMM) is the name of
both a force field and a program incorporating that force field. The academic
version of this program is designated CHARMM and the commercial version is
called CHARMm. It was originally devised for proteins and nucleic acids. It has
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now been applied to a range of biomolecules, molecular dynamics, solvation,
crystal packing, vibrational analysis, and QM/MM studies. CHARMM uses
five valence terms, one of which is an electrostatic term.

6.2.3 CFF

The consistent force field (CFF) was developed to yield consistent accuracy of
results for conformations, vibrational spectra, strain energy, and vibrational
enthalpy of proteins. There are several variations on this, such as the Ure—
Bradley version (UBCFF), a valence version (CVFF), and Lynghy CFF. The
quantum mechanically parameterized force field (QMFF) was parameterized
from ab initio results. CFF93 is a rescaling of QMFF to reproduce experimen-
tal results. These force fields use five to six valence terms, one of which is an
electrostatic term, and four to six cross terms.

6.2.4 CHEAT

Carbohydrate hydroxyls represented by external atoms (CHEAT) is a force
field designed specifically for modeling carbohydrates.

6.2.5 DREIDING

DREIDING is an all-purpose organic or bio-organic molecule force field. It
has been most widely used for large biomolecular systems. It uses five valence
terms, one of which is an electrostatic term. The use of DREIDING has been
dwindling with the introduction of improved methods.

6.2.6 ECEPP

Empirical conformational energy program for peptides (ECEPP) is the name of
both a computer program and the force field implemented in that program.
This is one of the earlier peptide force fields that has seen less use with the
introduction of improved methods. It uses three valence terms that are fixed, a
van der Waals term, and an electrostatic term.

6.2.7 EFF

Empirical force field (EFF) is a force field designed just for modeling hydro-
carbons. It uses three valence terms, no electrostatic term and five cross terms.

6.2.8 GROMOS

Gronigen molecular simulation (GROMOS) is the name of both a force field
and the program incorporating that force field. The GROMOS force field is
popular for predicting the dynamical motion of molecules and bulk liquids. It is
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also used for modeling biomolecules. It uses five valence terms, one of which
is an electrostatic term.

6.29 MMI, MM2, MM3, MM4

MMI1, MM2, MM3, and MM4 are general-purpose organic force fields. There
have been many variants of the original methods, particularly MM2. MMI is
seldom used since the newer versions show measurable improvements. The
MM3 method is probably one of the most accurate ways of modeling hydro-
carbons. At the time of this book’s publication, the MM4 method was still too
new to allow any broad generalization about the results. However, the initial
published results are encouraging. These are some of the most widely used force
fields due to the accuracy of representation of organic molecules. MMX and
MM+ are variations on MM2. These force fields use five to six valence terms,
one of which is an electrostatic term and one to nine cross terms.

6.2.10 MMFF

The Merck molecular force field (MMFF) is one of the more recently published
force fields in the literature. It is a general-purpose method, particularly popu-
lar for organic molecules. MMFF94 was originally intended for molecular
dynamics simulations, but has also seen much use for geometry optimization. It
uses five valence terms, one of which is an electrostatic term, and one cross
term.

6.2.11 MOMEC

MOMEC is a force field for describing transition metal coordination com-
pounds. It was originally parameterized to use four valence terms, but not an
electrostatic term. The metal-ligand interactions consist of a bond-stretch term
only. The coordination sphere is maintained by nonbond interactions between
ligands. MOMEC generally works reasonably well for octahedrally coordinated
compounds.

6.2.12 OPLS

Optimized potentials for liquid simulation (OPLS) was designed for modeling
bulk liquids. It has also seen significant use in modeling the molecular dynamics
of biomolecules. OPLS uses five valence terms, one of which is an electrostatic
term, but no cross terms.

6.2.13 Tripos

Tripos is a force field created at Tripos Inc. for inclusion in the Alchemy and
SYBYL programs. It is sometimes called the SYBYL force field. Tripos is
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designed for modeling organic and bio-organic molecules. It is also often used
for CoMFA analysis, a 3D QSAR technique. Tripos uses five valence terms,
one of which is an electrostatic term.

6.2.14 UFF

UFF stands for universal force field. Although there have been a number of
universal force fields, meaning that they include all elements, there has only
been one actually given this name. This is the most promising full periodic table
force field available at this time. UFF is most widely used for systems contain-
ing inorganic elements. It was designed to use four valence terms, but not an
electrostatic term.

UFF was originally designed to be used without an electrostatic term. The
literature accompanying one piece of software recommends using charges
obtained with the Q-equilibrate method. Independent studies have found the
accuracy of results to be significantly better without charges.

6.2.15 YETI

YETI is a force field designed for the accurate representation of nonbonded
interactions. It is most often used for modeling interactions between biomole-
cules and small substrate molecules. It is not designed for molecular geometry
optimization so researchers often optimize the molecular geometry with some
other force field, such as AMBER, then use YETI to model the docking pro-
cess. Recent additions to YETT are support for metals and solvent effects.

6.3 PRACTICAL CONSIDERATIONS

Force fields for describing inorganic elements have not yet seen as much de-
velopment as organic molecule force fields. A number of organic methods have
been extended to full periodic table applicability, but the results have been less
than spectacular. The best available force field for inorganics is probably the
UFF force field. Many inorganic studies in the past have not used preexisting
force fields, such as UFF. What has often been done is parameterizing a new
atom to describe the behavior of the inorganic element in an organic force field.
It is usually parameterized to describe that element in a specific compound or
class of compounds. It is too soon to predict whether these specifically para-
meterized techniques will be replaced by full periodic force fields. Inorganic
compound modeling is discussed more thoroughly in Chapters 37 and 41.
Molecular mechanics calculations are deceptively simple to perform. Many
software packages now make molecular mechanics as easy as specifying a
molecular structure and saying “go,”” at which point the calculation will run
and very soon give a result. The difficulty is in knowing which results to trust.
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The most reliable results are energy differences between conformers. Another
popular usage is to examine intermolecular binding. The difference in binding
energy between two sites or two orientations is usually fairly reliable. The ab-
solute binding energy (separating the molecules to infinite distance) is not so
reliably predicted. Computing properties other than energy and geometry is
discussed in Chapter 13.

6.4 RECOMMENDATIONS

The advantage of molecular mechanics is that it allows the modeling of enor-
mous molecules, such as proteins and segments of DNA. This is why it is the
primary tool of computational biochemists. It also models intermolecular
forces well.

The disadvantage of molecular mechanics is that there are many chemical
properties that are not even defined within the method, such as electronic ex-
cited states. Since chemical bonding terms are explicitly included in the force
field, it is not possible without some sort of mathematical manipulation to
examine reactions in which bonds are formed or broken. In order to work with
extremely large and complicated systems, molecular mechanics software pack-
ages often have powerful and easy-to-use graphic interfaces. Because of this,
mechanics is sometimes used because it is an easy, but not necessarily a good,
way to describe a system.

Due to their sensitivity to parameterization, the best technique for choosing
a force field is to look for similar studies in the literature and validate test
results against experimental results. The references listed in the bibliography at
the end of this chapter and in Chapter 16 give some excellent starting points for
finding relevant accuracy comparisons. A generalization of the results for
studies comparing force field accuracies is as follows:

1. The MM2, MM3, and Merck (MMFF) force fields perform best for a
wide range of organic molecules.

2. The AMBER and CHARMM force fields are best suited for protein and
nucleic acid studies.

3. Most existing molecular mechanics studies of inorganic molecules re-
quired careful customization of force field parameters.

4. UFF is the most reliable force field to be used without modification for
inorganic systems.

5. Molecular dynamics studies are best done with a force field designed for
that purpose.

6. The rings in sugars pose a particular problem to general-purpose force
fields and should be modeled using a force field designed specifically for
carbohydrates.
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Molecular Dynamics and Monte
Carlo Simulations

In Chapter 2, a brief discussion of statistical mechanics was presented. Statisti-
cal mechanics provides, in theory, a means for determining physical properties
that are associated with not one molecule at one geometry, but rather, a macro-
scopic sample of the bulk liquid, solid, and so on. This is the net result of the
properties of many molecules in many conformations, energy states, and the
like. In practice, the difficult part of this process is not the statistical mechanics,
but obtaining all the information about possible energy levels, conformations,
and so on. Molecular dynamics (MD) and Monte Carlo (MC) simulations are
two methods for obtaining this information

7.1 MOLECULAR DYNAMICS

Molecular dynamics is a simulation of the time-dependent behavior of a molec-
ular system, such as vibrational motion or Brownian motion. It requires a way
to compute the energy of the system, most often using a molecular mechanics
calculation. This energy expression is used to compute the forces on the atoms
for any given geometry. The steps in a molecular dynamics simulation of an
equilibrium system are as follows:

1. Choose initial positions for the atoms. For a molecule, this is whatever
geometry is available, not necessarily an optimized geometry. For liquid
simulations, the molecules are often started out on a lattice. For solvent—
solute systems, the solute is often placed in the center of a collection of
solvent molecules, with positions obtained from a simulation of the neat
solvent.

2. Choose an initial set of atom velocities. These are usually chosen to obey
a Boltzmann distribution for some temperature, then normalized so that
the net momentum for the entire system is zero (it is not a flowing system).

3. Compute the momentum of each atom from its velocity and mass.

4. Compute the forces on each atom from the energy expression. This is
usually a molecular mechanics force field designed to be used in dy-
namical simulations.

5. Compute new positions for the atoms a short time later, called the time
step. This is a numerical integration of Newton’s equations of motion
using the information obtained in the previous steps.

60
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6. Compute new velocities and accelerations for the atoms.

7. Repeat steps 3 through 6.

8. Repeat this iteration long enough for the system to reach equilibrium. In
this case, equilibrium is not the lowest energy configuration; it is a con-
figuration that is reasonable for the system with the given amount of
energy.

9. Once the system has reached equilibrium, begin saving the atomic coor-
dinates every few iterations. This information is typically saved every 5
to 25 iterations. This list of coordinates over time is called a trajectory.

10. Continue iterating and saving data until enough data have been col-
lected to give results with the desired accuracy.

11. Analyze the trajectories to obtain information about the system. This
might be determined by computing radial distribution functions, diffu-
sion coefficients, vibrational motions, or any other property computable
from this information.

In order for this to work, the force field must be designed to describe inter-
molecular forces and vibrations away from equilibrium. If the purpose of the
simulation is to search conformation space, a force field designed for geometry
optimization is often used. For simulating bulk systems, it is more common to
use a force field that has been designed for this purpose, such as the GROMOS
or OPLS force fields.

There are several algorithms available for performing the numerical inte-
gration of the equations of motion. The Verlet algorithm is widely used because
it requires a minimum amount of computer memory and CPU time. It uses the
positions and accelerations of the atoms at the current time step and posi-
tions from the previous step to compute the positions for the next time step.
The velocity Verlet algorithm uses positions, velocities, and accelerations at the
current time step. This gives a more accurate integration than the Verlet algo-
rithm. The Verlet and velocity Verlet algorithms often have a step in which the
velocities are rescaled in order to correct for minor errors in the integration,
thus simulating a constant-temperature system. Beeman’s algorithm uses posi-
tions, velocities, and accelerations from the previous time step. It gives better
energy conservation at the expense of computer memory and CPU time. A
Gear predictor-corrector algorithm predicts the next set of positions and accel-
erations, then compares the accelerations to the predicted ones to compute a
correction for the step. Each step can thus be refined iteratively. Predictor-
corrector algorithms give an accurate integration but are seldom used due to
their large computational needs.

The choice of a time step is also important. A time step that is too large will
cause atoms to move too far along a given trajectory, thus poorly simulating
the motion. A time step that is too small will make it necessary to run more
iterations, thus taking longer to run the simulation. One general rule of thumb
is that the time step should be one order of magnitude less than the timescale of



62 7 MOLECULAR DYNAMICS AND MONTE CARLO SIMULATIONS

the shortest motion (vibrational period or time between collisions). This gives a
time step on the order of tens of femtoseconds for simulating a liquid of rigid
molecules and tenths of a femtosecond for simulating vibrating molecules.

It is important to verify that the simulation describes the chemical system
correctly. Any given property of the system should show a normal (Gaussian)
distribution around the average value. If a normal distribution is not obtained,
then a systematic error in the calculation is indicated. Comparing computed
values to the experimental results will indicate the reasonableness of the force
field, number of solvent molecules, and other aspects of the model system.

The algorithm described above is for a system with a constant volume,
number of particles, and temperature. It is also possible to set up a calculation
in which the velocities are rescaled slightly at each step to simulate a changing
temperature. For solvent—solute systems, this can lead to the problem of having
a “hot solvent, cold solute” situation because energy transfer takes many colli-
sions, thus a relatively long time. Raising the temperature very slowly fixes this
problem but leads to extremely long simulation times. A slightly artificial, but
more efficient solution to this problem is to scale solvent and solute velocities
separately. Constant pressure calculations can be obtained by automatically
varying the box size to maintain the pressure.

7.2 MONTE CARLO SIMULATIONS

There are many types of calculations that are referred to as Monte Carlo
calculations. All Monte Carlo methods are built around some sort of a random
sampling, which is simulated with a random-number-generating algorithm. In
this context, a Monte Carlo simulation is one in which the location, orientation,
and perhaps geometry of a molecule or collection of molecules are chosen ac-
cording to a statistical distribution. For example, many possible conformations
of a molecule could be examined by choosing the conformation angles randomly.
If enough iterations are done and the results are weighted by a Boltzmann dis-
tribution, this gives a statistically valid result. The steps in a Monte Carlo sim-
ulation are as follows:

1. Choose an initial set of atom positions. The same techniques used for
molecular dynamics simulations are applicable.

2. Compute the energy for the system.

3. Randomly choose a trial move for the system. This could be moving all
atoms, but it more often involves moving one atom or molecule for effi-
clency reasons.

4. Compute the energy of the system in the new configuration.

5. Decide whether to accept the new configuration. There is an acceptance
criteria based on the old and new energies, which will ensure that the re-
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sults reproduce a Boltzmann distribution. Either keep the new configura-
tion or restore the atoms to their previous positions.

6. Iterate steps 3 through 5 until the system has equilibrated.

7. Continue iterating and collecting data to compute the desired property.
The expectation value of any property is its average value (sum divided
by the number of iterations summed). This is correct as long as the accep-
tance criteria in step 5 ensured that the probability of a configuration being
accepted is equal to the probability of it being included in a Boltzmann
distribution. If one atom is moved at a time, summing configurations
into the average every few iterations will prevent the average from over-
representing some configurations.

There are a few variations on this procedure called importance sampling or
biased sampling. These are designed to reduce the number of iterations required
to obtain the given accuracy of results. They involve changes in the details of
how steps 3 and 5 are performed. For more information, see the book by Allen
and Tildesly cited in the end-of-chapter references.

The size of the move in step 3 of the above procedure will affect the efficiency
of the simulation. In this case, an inefficient calculation is one that requires
more iterations to obtain a given accuracy result. If the size is too small, it will
take many iterations for the atom locations to change. If the move size is too
large, few moves will be accepted. The efficiency is related to the acceptance
ratio. This is the number of times the move was accepted (step 5 above) divided
by the total number of iterations. The most efficient calculation is generally
obtained with an acceptance ratio between 0.5 and 0.7.

Monte Carlo simulations require less computer time to execute each itera-
tion than a molecular dynamics simulation on the same system. However, Monte
Carlo simulations are more limited in that they cannot yield time-dependent
information, such as diffusion coefficients or viscosity. As with molecular dy-
namics, constant NVT simulations are most common, but constant NPT sim-
ulations are possible using a coordinate scaling step. Calculations that are not
constant N can be constructed by including probabilities for particle creation
and annihilation. These calculations present technical difficulties due to having
very low probabilities for creation and annihilation, thus requiring very large
collections of molecules and long simulation times.

7.3 SIMULATION OF MOLECULES

In order to analyze the vibrations of a single molecule, many molecular dynamics
steps must be performed. The data are then Fourier-transformed into the fre-
quency domain to yield a vibrational spectrum. A given peak can be selected
and transformed back to the time domain. This results in computing the vibra-
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tional motion at that frequency. Such a technique is one of the most reliable ways
to obtain the very-low-frequency or anharmonic motions of large molecules.

Another reason for simulating molecules with these techniques is as a con-
formation search technique. Many Monte Carlo iterations can be run, with the
lowest-energy conformation being saved because it will likely be near a very-
low-energy minimum. In some cases, a few optimization steps are performed
after each Monte Carlo step. Likewise, a molecular dynamics simulation with a
sufficiently high temperature will allow the molecule to pass over energy bar-
riers with a statistical preference for lower-energy conformations. Molecular
dynamics is often used for conformation searching by employing an algorithm
called simulated annealing, in which the temperature is slowly decreased over
the course of the simulation. These techniques are discussed further in Chapter
21.

7.4 SIMULATION OF LIQUIDS

The application of molecular dynamics to liquids or solvent—solute systems
allows the computation of properties such as diffusion coefficients or radial
distribution functions for use in statistical mechanical treatments. A liquid is
simulated by having a number of molecules (perhaps 1000) within a specific
volume. This volume might be cube, a parallelepiped, or a hexagonal cylinder.
Even with 1000 molecules, a significant fraction would be against the wall of
the box. In order to avoid such severe edge effects, periodic boundary conditions
are used to make it appear as though the fluid is infinite. Actually, the mole-
cules at the edge of the next box are a copy of the molecules at the opposite
edge of the box. These simulations are discussed in more detail in Chapter 39.

7.5 PRACTICAL CONSIDERATIONS

Running molecular dynamics and Monte Carlo calculations is often more diffi-
cult than running single-molecule calculations. The input must specify not only
the molecular structure, but also the temperature, pressure, density, boundary
conditions, time steps, annealing schedule, and more. The actual calculations
can be easily as computationally intensive as ab initio calculations due to the
large amount of information being simulated and the large number of iterations
needed to obtain a good statistical description of the system.

There is a big difference in the software packages available for performing
these computations. The most complex software packages require an input
specifying many details of the computation and may require the use of multiple
input files and executable programs. The advantage of this scheme is that a
knowledgeable researcher can run very sophisticated simulations. The most
user-friendly software packages require little more work than a molecular me-
chanics calculation. The price for this ease of use is that the program uses many
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defaults, which may not be the most appropriate for the needs of a given re-
search project.

Recently, molecular dynamics and Monte Carlo calculations with quantum
mechanical energy computation methods have begun to appear in the litera-
ture. These are probably some of the most computationally intensive simu-
lations being done in the world at this time.

Multiphase and nonequilibrium simulations are extremely difficult. These
usually entail both a large amount of computing resources and a lot of technical
expertise on the part of the researcher. Readers of this book are urged to refer
such projects to specialists in this area.
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8 Predicting Molecular Geometry

Computing the geometry of a molecule is one of the most basic functions of a
computational chemistry program. However, it is not trivial process. The user
of the program will be able to get their work done more quickly if they have
some understanding of the various algorithms within the software. The user
must first describe the geometry of the molecule. Then the program computes
the energies and gradients of the energy to find the molecular geometry corre-
sponding to the lowest energy. This chapter discusses the merits of various
algorithms to be used at each of these steps.

8.1 SPECIFYING MOLECULAR GEOMETRY

One way of defining the geometry of a molecule is by using a list of bond dis-
tances, angles, and conformational angles, called a Z-matrix. A Z-matrix is a
convenient way to specify the geometry of a molecule by hand. This is because
it corresponds to the way that most chemists think about molecular structure:
in terms of bonds, angles, and so on as shown in Figure 8.1. Constructing a
Z-matrix is addressed in detail in the next chapter.

Another way to define the geometry of a molecule is as a set of Cartesian
coordinates for each atom as shown in Figure 8.2. Graphic interface programs
often generate Cartesian coordinates since this is the most convenient way to
write those programs.

A somewhat different way to define a molecule is as a simplified molecular
input line entry specification (SMILES) structure. It is a way of writing a single
text string that defines the atoms and connectivity. It does not define the exact
bond lengths, and so forth. Valid SMILES structures for ethane are CC, C2,
and H3C-CH3. SMILES is used because it is a very convenient way to describe
molecular geometry when large databases of compounds must be maintained.
There is also a very minimal version for organic molecules called SSMILES.

8.2 BUILDING THE GEOMETRY

In most programs, it is still possible to input a geometry manually in an ASCII
input file. If the geometry is already in a file but of the wrong format, there are
several utilities for converting molecular structure files. The most popular of
these is the Babel program, which is described in Appendix A.

67
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C

C 1 CClength

H 1 CHlength 2 CCHangle

H 1 CHlength 2 CCHangle 3 120.0
H 1 CHlength 2 CCHangle 4 120.0
H 2 CHlength 1 CCHangle 3 60.0
H 2 CHlength 1 CCHangle 4 60.0
H 2 CHlength 1 CCHangle 5 60.0
CClength 1.5

CHlength 1.0

CCHangle 109.5

FIGURE 8.1 Z-matrix for ethane. The first column is the element, the second column
the atom to which the length refers, the third column the length, the fourth column the
atom to which the angle refers, the fifth column the angle, the sixth column the atom to
which the conformation angle refers, and the seventh column the conformation angle.

C 0.000000 0.000000 0.750000
C 0.000000 0.000000 -0.750000
H 0.000000 0.942641 1.083807
H -0.816351 -0.471321 1.083807
H 0.816351 -0.471321 1.083807
H 0.816351  0.471321 -1.083807
H -0.816351  0.471321 -1.083807
H 0.000000 -0.942641 -1.083807

FIGURE 8.2 Cartesian coordinate representation of ethane. The first column is the
element, the other columns are the x, y, and z Cartesian coordinates.

It is becoming more common to uses programs that have a graphical builder
in which the user can essentially draw the molecule. There are several ways in
which such programs work. Some programs allow the molecule to be built as a
two-dimensional stick structure and then convert it into a three-dimensional
structure. Some programs have the user draw the three-dimensional backbone
and then automatically add the hydrogens. This works well for organic mole-
cules. Some programs build up the molecule in three dimensions starting from a
list of elements and hybridizations, which can be most convenient for inorganic
molecules. Many programs include a library of commonly used functional
groups, which is convenient if it has the functional groups needed for a partic-
ular project. A number of programs have specialized building modes for certain
classes of molecules, such as proteins, nucleotides, or carbohydrates. Appendix
A discusses specific software packages.

8.3 COORDINATE SPACE FOR OPTIMIZATION

The way in which geometry was specified is not necessarily the coordinate
system that will be used by the algorithm which optimizes the geometry. For
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FIGURE 8.3 Example of paths taken when an angle changes in a geometry opti-

mization. (a) Path taken by an optimization using a Z-matrix or redundant internal
coordinates. (b) Path taken by an optimization using Cartesian coordinates.

example, it is very simple for a program to convert a Z-matrix into Cartesian
coordinates and then use that space for the geometry optimization.

Many ab initio and semiempirical programs optimize the geometry of the
molecule by changing the parameters in the Z-matrix. In general, this can be a
very good way to change the geometry because these parameters correspond to
molecular motions similar to those seen in the vibrational modes. However, if
the geometry is specified in such a way that changing one of the parameters
slightly could result in a large distortion to some portion of the molecule, then
the geometry optimization is less efficient. Thus, a poorly constructed Z-matrix
can result in a very inefficient geometry optimization. The construction of Z-
matrices is addressed in Chapter 9.

Many computational chemistry programs will do the geometry optimization
in Cartesian coordinates. This is often the only way to optimize geometry in
molecular mechanics programs and an optional method in orbital-based pro-
grams. A Cartesian coordinate optimization may be more efficient than a
poorly constructed Z-matrix. This is often seen in ring systems, where a badly
constructed Z-matrix will perform very poorly. Cartesian coordinates can be
less efficient than a well constructed Z-matrix as shown in Figure 8.3. Cartesian
coordinates are often preferable when simulating more than one molecule since
they allow complete freedom of motion between separate molecules.

In order to have the advantages of a well-constructed Z-matrix, regardless of
how the geometry was defined, a system called redundant internal coordinates
was created. When redundant internal coordinates are used, the input geometry
is first converted to a set of Cartesian coordinates. The algorithm then checks
the distances between every pair of atoms to determine which are within a rea-
sonable bonding distance. The program then generates a list of atom distances
and angles for nearby atoms. This way, the algorithm does the job of con-
structing a sort of Z-matrix that has more coordinates than are necessary to
completely specify the geometry. This is usually the most efficient way to opti-
mize geometry. The exception is when the automated algorithm did not include
a critical coordinate. This can happen with particularly long bonds, such as
when the bond is formed or broken in a transition state calculation or inter-
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molecular interactions. In this case, the calculation will run very poorly unless
the user has manually defined the extra coordinate. Geometry optimizations
that run poorly either take a large number of iterations or fail to find an opti-
mized geometry.

84 OPTIMIZATION ALGORITHM

There are many different algorithms for finding the set of coordinates corre-
sponding to the minimum energy. These are called optimization algorithms
because they can be used equally well for finding the minimum or maximum of
a function.

If only the energy is known, then the simplest algorithm is one called the
simplex algorithm. This is just a systematic way of trying larger and smaller
variables for the coordinates and keeping the changes that result in a lower
energy. Simplex optimizations are used very rarely because they require the
most CPU time of any of the algorithms discussed here. A much better algo-
rithm to be used when only energy is known is the Fletcher—Powell (FP) algo-
rithm. This algorithm builds up an internal list of gradients by keeping track of
the energy changes from one step to the next. The Fletcher—Powell algorithm is
usually the method of choice when energy gradients cannot be computed.

If the energy and the gradients of energy can be computed, there are a
number of different algorithms available. Some of the most efficient algorithms
are the quasi-Newton algorithms, which assume a quadratic potential surface.
One of the most efficient quasi-Newton algorithms is the Berny algorithm,
which internally builds up a second derivative Hessian matrix. Steepest decent
and scaled steepest decent algorithms can be used if this is not a reasonable
assumption. Another good algorithm is the geometric direct inversion of the
iterative subspace (GDIIS) algorithm. Molecular mechanics programs often use
the conjugate gradient method, which finds the minimum by following each
coordinate in turn, rather than taking small steps in each direction. The Polak—
Ribiere algorithm is a specific adaptation of the conjugate gradient for molec-
ular mechanics problems. The details of these procedures are discussed in the
sources listed in the bibliography of this chapter.

Algorithms using both the gradients and second derivatives (Hessian matrix)
often require fewer optimization steps but more CPU time due to the time nec-
essary to compute the Hessian matrix. In some cases, the Hessian is computed
numerically from differences of gradients. These methods are sometimes used
when the other algorithms fail to optimize the geometry. Some of the most
often used are eigenvector following (EF), Davidson—Fletcher—Powell (DFP),
and Newton—Raphson.

8.5 LEVEL OF THEORY

The entire discussion thus far has focused on the efficient specification and
computation of molecular geometries. Regardless of whether or not this process
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is efficient, the final geometry obtained will be what is predicted by the level of
theory being used to compute the energy. The accuracy of various levels of
theory is discussed in the sections of this book addressing the individual levels
of theory and in Chapter 16. In general, there tends to be a trade-off between
methods that are faster and more approximate and methods that are very accu-
rate, but also very computationally intensive. In addition, there are methods that
are both fast and accurate, but only applicable to limited classes of molecules.

In order to obtain the best accuracy results as quickly as possible, it is often
advantageous to do two geometry optimizations. The first geometry optimiza-
tion should be done with a faster level of theory, such as molecular mechanics
or a semiempirical method. Once a geometry close to the correct geometry has
been obtained with this lower level of theory, it is used as the starting geometry
for a second optimization at the final, more accurate level of theory.

8.6 RECOMMENDATIONS

There is no one best way to specify geometry. Usually, a Z-matrix is best for
specifying symmetry constraints if properly constructed. Cartesian coordinate
input is becoming more prevalent due to its ease of generation by graphical user
interface programs.

For the coordinate system used for optimization, redundant internal coor-
dinates are usually best, followed by a well constructed Z-matrix, then Carte-
sian coordinates, then a poorly constructed Z-matrix. For simulating multiple
molecules, Cartesian coordinates are often best. Most programs that generate a
Z-matrix automatically from Cartesian coordinates make a poorly constructed
Z-matrix.

The choice of a geometry optimization algorithm has a very large influence
on the amount of computer time necessary to optimize the geometry. The gra-
dient-based methods are most efficient, with quasi-Newton methods usually a
bit better than GDIIS. The exception is for molecular mechanics calculations
where the conjugate gradient algorithm can be implemented very efficiently.
The Fletcher—Powell algorithm usually works best when gradients are not
available.
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9 Constructing a Z-Matrix

The previous chapter discussed the merits of specifying the molecular geometry
using a Z-matrix versus Cartesian coordinates. This chapter describes the con-
struction of a Z-matrix. The use of a Z-matrix geometry specification is slowly
declining with the increasing availability of graphic user input programs and
the increasing availability of redundant internal coordinate algorithms. How-
ever, Z-matrix geometry specification is a skill still necessary for using some
software programs and it remains the best way of incorporating symmetry
constraints. Furthermore, a well-constructed Z-matrix can often help a pro-
gram run more efficiently, thus allowing more work to be done in a given
amount of time. The examples in this chapter show the construction of a
Z-matrix in the format used by the Gaussian program. Other programs may
require slightly different formats.

9.1 Z-MATRIX FOR A DIATOMIC MOLECULE

Here is a Z-matrix for a carbon monoxide molecule:

line 1 (o]

line 2 O1lR
line 3

line 4 R 0.955

Line 1: “C” specifies that the first atom is a carbon atom.

Line 2: “O 1 R” specifies that an oxygen atom occurs at a distance R from
the first atom (the carbon).

Line 3: There must be a blank line between the list of atoms and the list of
variables.

Line 4: R is defined (in Angstroms or A).

9.2 Z-MATRIX FOR A POLYATOMIC MOLECULE

Here is a Z-matrix for a formaldehyde molecule:

line 1 C
line 2 01l o0C
line 3 H1HC2A
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FIGURE 9.1 Illustration of the formaldehyde Z-matrix example. (@) First three atoms
and associated variables. (b) Dihedral angle.

line

H1lHC 2 A 3 180.0

line

line

A 120.0

line

line

4
5
line 6 oC 1.2
7
8
9

HC 1.08

Line 1: “C” indicates that the first atom is a carbon.

Line 2: “O 1 OC” indicates that the second atom is an oxygen with a dis-
tance of OC to the first atom.

Line 3: “H 1 HC 2 A” indicates that the third atom is a hydrogen with a
distance of HC to the first atom and an angle between the third, first, and
second atoms of A (in degrees).

Line 4: “H 1 HC 2 A 3 180.0” indicates that the fourth atom is a hydrogen
with a distance of HC to the first atom and an angle between the third,
first, and second atoms of A. The dihedral angle between the first, second,
third, and fourth atoms is 180° (see Figure 9.1).

Line 5: There must be a blank line between the list of atoms and the list of
variables.

Line 8: The second blank line sets aside variables that are not to be opti-
mized in the geometry optimization.

If an optimization were being done, the parameters OC and A would be

optimized, but HC would be held fixed and the molecule would be kept planar.
Note that parameters can be used more than once in the Z-matrix. This makes
the geometry optimization run more quickly because fewer parameters are being
optimized. Additional atoms are added by appending lines like line 4 consisting
of distance, angle, and dihedral angle specifications.

9.3 LINEAR MOLECULES

A linear molecule, such as CO,, presents an additional difficulty. If an angle of
180° is specified, then the dihedral angle referenced to that angle will be math-
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FIGURE 9.2 Illustration of the geometry formed from the CO, Z-matrix example.

ematically undefined. This is avoided by using a dummy atom, denoted by an
element of X type. A dummy atom is not an atom at all. It is a way of defining
a point in space from which geometry can be specified. A dummy atom does
not have any associated nucleus or basis functions. Here is a carbon dioxide
input with two dummy atoms, which is also shown in Figure 9.2:

Cc

X11.0
X11.0 2 90.0
010C 2 90.03 90.0
0OloC 2 90.0 3 -90.0
ocC 1.2

Note that the distance to the dummy atoms is held fixed at 1.0 A. This value
was chosen arbitrarily. The calculation would likely fail if told to optimize this
distance because there is no energy associated with it.

Enforcing the molecular symmetry will also help orbital-based calculations
run more quickly. This is because some of the integrals are equivalent by sym-
metry and thus need be computed only once and used several times.

9.4 RING SYSTEMS

It is possible to specify a ring system by specifying the atoms sequentially. Each
atom can be referenced to the previous atom. In this case, a small change in
angle between, say, the 3rd and 4th atoms specified would result in a significant
change in the distance between the first and last atoms specified. This makes the
calculation run inefficiently if it is successful at all.

Molecules with rings should always be given a dummy atom in the center of
the ring. The atoms in the ring should then be referenced to the central dummy
atom rather than each other. Here is a Z-matrix for a benzene molecule enforcing
D¢ symmetry:
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FIGURE 9.3

X

X11.0
cl1cx 2
clcx 2
clcx 2
cl1cx 2
cl1cx 2
clcx 2
H1HX 2
H1lHX 2
H1lHX 2
H1lHX 2
H1lHX 2
H1HX 2
CX 1.3

HX 2.3

9 CONSTRUCTING A Z-MATRIX

H9
1
Hx
1
H14 < - H10
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~ o I -
c8 1 . C4
~ -,
~\\\:;: | c/;
o X1 60°
/ | \\\
” ~
* I ~
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~
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H13 - H11
C6
1
1
H12

Illustration of the geometry formed from the benzene Z-matrix example.

90.0

90.0 3 60.0
90.0 4 60.0
90.0 5 60.0
90.0 6 60.0
90.0 7 60.0
90.0 3 0.0
90.0 4 0.0
90.0 5 0.0
90.0 6 0.0
90.0 7 0.0
90.0 8 0.0

It is often convenient to use two dummy atoms: one in the center of the ring
and one perpendicular to the ring as shown here and in Figure 9.3. Even if the
actual optimization is being done in redundant internal coordinates, the pres-
ence of a dummy atom in the center of the ring can give the redundant internals
a better point from which to reference bond lengths and angles. Note that only
two parameters need be optimized when the symmetry is used correctly.
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10 Using Existing Basis Sets

A Dbasis set is a set of functions used to describe the shape of the orbitals in an
atom. Molecular orbitals and entire wave functions are created by taking linear
combinations of basis functions and angular functions. Most semiempirical
methods use a predefined basis set. When ab initio or density functional theory
calculations are done, a basis set must be specified. Although it is possible to
create a basis set from scratch, most calculations are done using existing basis
sets. The type of calculation performed and basis set chosen are the two biggest
factors in determining the accuracy of results. This chapter discusses these
standard basis sets and how to choose an appropriate one.

10.1 CONTRACTION SCHEMES

The orbitals mentioned in Chapter 3 almost always have the functional form
given in Eq. (10.1):

0=Ym> G Cyeo" (10.1)
i J

The Y, function gives the orbital the correct symmetry (s, p, d, etc.). exp(—r?)
is called a Gaussian primitive function. The contraction coefficients C;; and
exponents ; are read from a database of standard functions and do not change
over the course of the calculation. This predefined set of coefficients and expo-
nents is called a basis set. An enormous amount of work is involved in opti-
mizing a basis set to obtain a good description of an individual atom. By using
such a predefined basis set, the program must only optimize the molecular
orbital coefficients C;. As seen above, each C; may weigh a sum of typically one
to nine primitive Gaussian functions, called a contraction. Basis sets of con-
tracted functions are called segmented basis sets.

Before computational chemists started employing segmented basis sets, cal-
culations were done without using contractions. These uncontracted basis
functions are called generally contracted basis functions. The danger with seg-
mented basis sets is that having too few contractions will result in a function
with too little flexibility to properly describe the change in electron density from
an individual atom to the atom in a molecule. Compared to a segmented basis
set with a reasonable number of contractions, generally contracted basis set
calculations require more computer resources to run in exchange for an ex-

78
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tremely slight improvement in the accuracy of results. Also having the orbitals
closest to the nucleus uncontracted often leads to SCF convergence problems.
Thus, it is rare to see generally contracted calculations in the current literature.

A second issue is the practice of using the same set of exponents for several
sets of functions, such as the 2s and 2p. These are also referred to as general
contraction or more often split valence basis sets and are still in widespread use.
The acronyms denoting these basis sets sometimes include the letters “SP” to
indicate the use of the same exponents for s and p orbitals. The disadvantage of
this is that the basis set may suffer in the accuracy of its description of the wave
function needed for high-accuracy calculations. The advantage of this scheme is
that integral evaluation can be completed more quickly. This is partly respon-
sible for the popularity of the Pople basis sets described below.

An issue affecting calculation runtime is how the integrals are evaluated.
There are several common methods: conventional, direct, in core, and semi-
direct. A conventional calculation is one in which all the integrals are evaluated
at the beginning of the calculation and stored in a file on the computer hard
drive. This file is then accessed as the integrals are needed on each iteration of
the self-consistent field calculation. Over time, the speed of computer processors
has increased more than the size and access speed of hard drives. In order to
obtain the best overall performance, many calculations are now done with a
direct algorithm in which the integrals are evaluated as they are needed and not
stored at all. Direct calculations are not hindered by slow disk access or limited
disk space. However, direct calculations often take more CPU time than con-
ventional calculations because the program must do extra work to evaluate the
same integral every time it is needed. Some programs use a semidirect algo-
rithm that stores some of the integrals on disk to decrease disk use without
increasing CPU time as much as is the case with direct calculations. An “in
core” algorithm is one that computes all the needed integrals and then keeps
them in RAM memory rather than in a disk file. In-core calculations are always
the fastest calculations because RAM memory can be accessed much faster
than disk files and there is no extra work. However, the higher price and sub-
sequently smaller size of RAM compared to hard drive space mean that in core
calculations can be done only for much smaller molecular systems than can be
computed using the other algorithms.

The choice of basis set also has a large effect on the amount of CPU time
required to perform a calculation. In general, the amount of CPU time for
Hartree—Fock calculations scales as N*. This means that making the calcula-
tion twice as large will make the calculation take 16 times (2%) as long to run.
Making the calculation twice as large can occur by switching to a molecule with
twice as many electrons or by switching to a basis set with twice as many
functions. Disk use for conventional calculations scales as N* and the amount
of RAM use scales as N2 for most algorithms. Some of the largest CI calcu-
lations scale as N® or worse. Computer resource use is covered in more detail in
Chapter 15.

The orbitals in Eq. (10.1) are referred to as Gaussian type orbitals, or GTO,
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STO function —

GTO functions

FIGURE 10.1 Approximating a Slater-type orbital with several Gaussian-type orbitals.

since they incorporate Gaussian functions, exp(—{r?). The exact solution to the
Schrédinger equation for the hydrogen atom is a Slater type orbital, or STO, of
the form exp(—Cr). GTO basis sets require more primitives to describe the wave
function than are needed for STO calculations, as shown in Figure 10.1. How-
ever, the integrals over GTO primitives can be computed analytically, which is
so much faster than the numeric integrals over STO functions that any given
accuracy can be obtained most quickly using GTO functions. As such, STO
basis sets are sometimes used for high-accuracy work, but most calculations are
now done with GTO basis sets.

A complication arises for functions of d or higher symmetry. There are five
real d orbitals, which transform as xy, xz, yz, x>—y?, and z2, that are called
pure d functions. The orbital commonly referred to as z> is actually
2z2—x?—y?. An alternative scheme for the sake of fast integral evaluation is to
use the six Cartesian orbitals, which are xy, xz, yz, x?, 2, and z2. These six
orbitals are equivalent to the five pure d functions plus one additional spheri-
cally symmetric function (x>+y%+z2). Calculations using the six ¢ functions
often yield a very slightly lower energy due to this additional function. Some ab
initio programs give options to control which method is used, such as 5d, 6d,
pure-d, or Cartesian. Pure-d is equivalent to 54 and Cartesian is equivalent to
6d. Similarly, 7f and 10f are equivalent to pure-f and Cartesian f functions,
respectively.

Choosing a standard GTO basis set means that the wave function is being
described by a finite number of functions. This introduces an approximation
into the calculation since an infinite number of GTO functions would be needed
to describe the wave function exactly. Differences in results due to the quality of
one basis set versus another are referred to as basis set effects. In order to avoid
the problem of basis set effects, some high-accuracy work is done with numeric
basis sets. These basis sets describe the electron distribution without using
functions with a predefined shape. A typical example of such a basis set might
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be a cubic spline set in which a large number of third-order polynomials are
used. Each polynomial would describe the wave function for just a small range
of distances from the nucleus. The coefficients of these polynomials are then
chosen so that the wave function and its derivatives will be continuous as well
as describing the shape of the wave function.

10.2 NOTATION

Most calculations today are done by choosing an existing segmented GTO basis
set. These basis sets are identified by one of a number of notation schemes.
These abbreviations are often used as the designator for the basis set in the input
to ab initio computational chemistry programs. The following is a look at the
notation for identifying some commonly available contracted GTO basis sets.

The smallest basis sets are called minimal basis sets. The most popular min-
imal basis set is the STO—3G set. This notation indicates that the basis set
approximates the shape of a STO orbital by using a single contraction of three
GTO orbitals. One such contraction would then be used for each orbital, which
is the definition of a minimal basis. Minimal basis sets are used for very large
molecules, qualitative results, and in certain cases quantitative results. There
are STO—nG basis sets for n = 2—6. Another popular minimal basis set is the
MINT set described below.

Another family of basis sets, commonly referred to as the Pople basis sets, are
indicated by the notation 6—31G. This notation means that each core orbital is
described by a single contraction of six GTO primitives and each valence shell
orbital is described by two contractions, one with three primitives and the other
with one primitive. These basis sets are very popular, particularly for organic
molecules. Other Pople basis sets in this set are 3—21G, 4-31G, 4-22G,
6-21G, 6-311G, and 7-41G.

The Pople basis set notation can be modified by adding one or two asterisks,
such as 6—31G* or 6—31G**. A single asterisk means that a set of d primitives
has been added to atoms other than hydrogen. Two asterisks mean that a set of
p primitives has been added to hydrogen as well. These are called polarization
functions because they give the wave function more flexibility to change shape.
Adding polarization functions usually decreases the variational total energy by
about the same amount as adding another contraction. However, this energy
change is almost completely systematic, so it changes the relative energies very
little. Polarization functions are used because they often result in more accurate
computed geometries and vibrational frequencies.

The 3—21G* basis is an exception to the notation above. In this particular
case, the d functions are added only to 2nd row atoms, Al through Ar. In order
to indicate this difference, this basis is sometimes given the notation 3—21G(¥).

One or two plus signs can also be added, such as 6—314+G* or 6—31++G*.
A single plus sign indicates that diffuse functions have been added to atoms
other than hydrogen. The second plus sign indicates that diffuse functions are
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being used for all atoms. These diffuse functions are primitives with small ex-
ponents, thus describing the shape of the wave function far from the nucleus.
Diffuse functions are used for anions, which have larger electron density distri-
butions. They are also used for describing interactions at long distances, such
as van der Waals interactions. The effect of adding diffuse functions is usually
to change the relative energies of the various geometries associated with these
systems. Basis sets with diffuse functions are also called augmented basis sets.
Very diffuse orbitals are called Rydberg orbitals since they are used to describe
Rydberg states of molecules.

As the Pople basis sets have further expanded to include several sets of
polarization functions, f functions and so on, there has been a need for a new
notation. In recent years, the types of functions being added have been indicated
in parentheses. An example of this notation is 6—31G(dp,p) which means that
extra sets of p and d functions have been added to nonhydrogens and an extra
set of p functions have been added to hydrogens. Thus, this example is syno-
nymous with 6—31+G**,

Many basis sets are just identified by the author’s surname and the number
of primitive functions. Some examples of this are the Huzinaga, Dunning, and
Duijneveldt basis sets. For example, D95 and D95V are basis sets created by
Dunning with nine s primitives and five p primitives. The V implies one partic-
ular contraction scheme for the valence orbitals. Another example would be a
basis set listed as “Duijneveldt 13s8p™.

In order to describe the number of primitives and contractions more directly,
the notation (6s,5p)—(1s,3p) or (6s,5p)/(1s,3p) is sometimes used. This example
indicates that six s primitives and five p primitives are contracted into one s
contraction and three p contractions. Thus, this might be a description of the
6—311G basis set. However, this notation is not precise enough to tell whether
the three p contractions consist of three, one, and one primitives or two, two,
and one primitives. The notation (6,311) or (6,221) is used to distinguish these
cases. Some authors use round parentheses ( ) to denote the number of primi-
tives and square brackets [ | to denote the number of contractions.

An older, but still used, notation specifies how many contractions are present.
For example, the acronym TZV stands for triple-zeta valence, meaning that
there are three valence contractions, such as in a 6—311G basis. The acronyms
SZ and DZ stand for single zeta and double zeta, respectively. A P in this
notation indicates the use of polarization functions. Since this notation has been
used for describing a number of basis sets, the name of the set creator is usually
included in the basis set name (i.e., Ahlrichs VDZ). If the author’s name is not
included, either the Dunning—Hay set is implied or the set that came with the
software package being used is implied.

An extension of this last notation is aug—cc—pVDZ. The “aug” denotes that
this is an augmented basis (diffuse functions are included). The “cc” denotes
that this is a correlation-consistent basis, meaning that the functions were
optimized for best performance with correlated calculations. The “p” denotes
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that polarization functions are included on all atoms. The “VDZ” stands for
valence double zeta, meaning that the valence orbitals are described by two
contractions. There is a family of correlation consistent basis sets created by
Dunning and coworkers. These sets have become popular for high-accuracy
correlated calculations. They have shown that large basis sets with high-angular-
momentum polarization functions have a greater effect on the accuracy of cor-
related calculations than HF calculations. Because this family of basis sets was
developed in a systematic way, many properties converge asymptotically as
larger basis sets are chosen. This fact has been exploited by fitting the results of
the same calculation with several basis sets to an exponential decay to predict
the infinite basis set limit for HF calculations. A similar procedure has been
used to predict the full CI limit from multireference valence CI calculations. This
extrapolation has only been tested for total energies and a few other properties.
The technique should be applicable to any property showing asymptotic con-
vergence, but there is not yet a sufficient volume of literature to predict how
accurate this extrapolation will be.

The Gaussian theories Gaussian-1 and Gaussian-2, abbreviated as G1 and
G2, are not basis sets, but they are similar to the basis set extrapolation
mentioned in the previous paragraph. These model chemistries arose from the
observation that certain levels of theory with certain basis sets tended always to
give results with systematic errors for the equilibrium geometries of main group
compounds. The procedure for obtaining these results consists of running a
series of calculations with different basis sets and levels of theory and then
plugging the energies into an equation that is meant to correct for systematic
errors so energies are closer to the exact energy than with any of the individual
methods. The results from this procedure have been good for equilibrium geo-
metries of main group compounds. Results for other calculations such as transi-
tion structures or nonbonded interactions have been less encouraging. Gaussian
theory is discussed in more detail in Chapter 4.

The complete basis set (CBS) scheme is a series of basis sets designed to
extrapolate energies to the infinite basis set limit. The earlier methods used
Pople basis sets or modifications of them. CBS calculations are actually a set of
calculations with different numbers of basis functions and levels of theory. The
results from these calculations are used to give an extrapolation to the complete
basis set, fully correlated limit. The extrapolation equations were derived using
perturbation theory. The extrapolation to complete correlation uses a summa-
tion of wave function coefficients and overlaps times an empirically determined
scaling factor. Some of the CBS methods correct for spin contamination in open-
shell calculations using the amount of spin contamination times an empirically
determined constant. They have applied this technique to energies, but do not
address molecular properties other than those directly related to energies, such as
the ionization potential. The smaller CBS methods give accuracy comparable
to the G1 method with one-tenth of the CPU time. The CBS—APNO method
yields results significantly more accurate than those with the G2 method.
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10.3 TREATING CORE ELECTRONS

Unlike semiempirical methods that are formulated to completely neglect the core
electrons, ab initio methods must represent all the electrons in some manner.
However, for heavy atoms it is desirable to reduce the amount of computation
necessary. This is done by replacing the core electrons and their basis functions
in the wave function by a potential term in the Hamiltonian. These are called
core potentials, effective core potentials (ECP), or relativistic effective core
potentials (RECP). Core potentials must be used along with a valence basis set
that was created to accompany them. As well as reducing the computation
time, core potentials can include the effects of the relativistic mass defect and
spin coupling terms that are significant near the nuclei of heavy atoms. This is
often the method of choice for heavy atoms, Rb and up.

The energy obtained from a calculation using ECP basis sets is termed
valence energy. Also, the virial theorem no longer applies to the calculation.
Some molecular properties may no longer be computed accurately if they are
dependent on the electron density near the nucleus.

There are several issues to consider when using ECP basis sets. The core
potential may represent all but the outermost electrons. In other ECP sets, the
outermost electrons and the last filled shell will be in the valence orbital space.
Having more electrons in the core will speed the calculation, but results are
more accurate if the n—1 shell is outside of the core potential. Some ECP sets
are designated as shape-consistent sets, which means that the shape of the
atomic orbitals in the valence region matches that for all electron basis sets.
ECP sets are usually named with an acronym that stands for the authors’ names
or the location where it was developed. Some common core potential basis sets
are listed below. The number of primitives given are those describing the valence
region.

+ CREN Available for SC(4s) through Hs(0s6p6d), this is a shape-
consistent basis set developed by Ermler and coworkers that has a large
core region and small valence. This is also called the CEP—4G basis set.
The CEP—31G and CEP—121G sets are related split valence sets.

SBKJC VDZ Available for Li(4s4p) through Hg(7s7p5d), this is a rela-
tivistic basis set created by Stevens and coworkers to replace all but the
outermost electrons. The double-zeta valence contraction is designed to
have an accuracy comparable to that of the 3—21G all-electron basis set.

Hay—Wadt MB Available for K(5s5p) through Au(S5s6p5d), this basis
set contains the valence region with the outermost electrons and the pre-
vious shell of electrons. Elements beyond Kr are relativistic core potentials.
This basis set uses a minimal valence contraction scheme. These sets are
also given names starting with “LA” for Los Alamos, where they were
developed.

* Hay—Wadt VDZ Available for K(5s5p) through Au(5s6p5d), this basis
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set is similar to Hay—Wadt MB, but it has a double-zeta valence contrac-
tion. This set is popular for transition metal modeling.

« LANL2DZ Available for H(4s) through Pu(7s6p2d2f’), this is a collection
of double-zeta basis sets, which are all-electron sets prior to Na.

+ CRENBL Available for H(4s) through Hs(0s3p6d5f), this is a collection
of shape-consistent sets, which use a large valence region and small core
region.

+ Dolg Also called Stuttgart sets, this is a collection of ECP sets currently
under development by Dolg and coworkers. These sets are popular for
heavy main group elements.

104 COMMON BASIS SETS

This section gives a listing of some basis sets and some notes on when each
is used. The number of primitives is listed as a simplistic measure of basis set
accuracy (bigger is always slower and usually more accurate). The contraction
scheme is also important since it determines the basis set flexibility. Even two
basis sets with the same number of primitives and the same contraction scheme
are not completely equivalent since the numerical values of the exponents and
contraction coefficients determine how well the basis describes the wave
function.

There are several types of basis functions listed below. Over the past several
decades, most basis sets have been optimized to describe individual atoms at the
HF level of theory. These basis sets work very well, although not optimally, for
other types of calculations. The atomic natural orbital, ANO, basis sets use
primitive exponents from older HF basis sets with coefficients obtained from
the natural orbitals of correlated atom calculations to give a basis that is a bit
better for correlated calculations. The correlation-consistent basis sets have
been completely optimized for use with correlated calculations. Compared to
ANO basis sets, correlation consistent sets give a comparable accuracy with
significantly fewer primitives and thus require less CPU time.

There have been a few basis sets optimized for use with DFT calculations,
but these give little if any increase in efficiency over using HF optimized basis
sets for these calculations. In general, DFT calculations do well with moderate-
size HF basis sets and show a significant decrease in accuracy when a minimal
basis set is used. Other than this, DFT calculations show only a slight improve-
ment in results when large basis sets are used. This seems to be due to the ap-
proximate nature of the density functional limiting accuracy more than the lack
of a complete basis set.

Several basis schemes are used for very-high-accuracy calculations. The
highest-accuracy HF calculations use numerical basis sets, usually a cubic spline
method. For high-accuracy correlated calculations with an optimal amount of
computing effort, correlation-consistent basis sets have mostly replaced ANO



86

10 USING EXISTING BASIS SETS

basis sets. Complete basis set, or CBS, calculations go a step beyond this in esti-
mating the infinite basis set limit. STO basis sets (Slater orbitals, not STO—nG)
are now most often used for the extremely high-accuracy calculations done with
quantum Monte Carlo methods, which use a correlation function in addition to
an STO basis to describe the wave function.

Below is a listing of commonly used basis sets. The few most widely used are
listed at the end of this section.

.

.

.

.

STO—nG (n =2-6) n primitives per shell per occupied angular momen-
tum (s,p,d). STO—3G is heavily used for large systems and qualitative
results. The STO—3G functions have been made for H with three primi-
tives (3s) through Xe(15s12p6d). STO—2G is seldom used due to the poor
quality of its results. The larger STO—nG sets are seldom used because
they have too little flexibility.

MINI—i (i =1—-4) These four sets have different numbers of primitives
per contraction, mostly three or four. These are minimal basis sets with one
contraction per orbital. Available for Li through Rn.

MIDI—i Same primitives as the MINI basis sets with two contractions to
describe the valence orbitals for greater flexibility.

MAXI—i and MIDI Are higher-accuracy basis sets derived from the
MIDI basis set.

3—21G Same number of primitives as STO—3G, but more flexibility in
the valence orbitals. Available for H through Cs. Popular for qualitative
and sometimes quantitative results for organic molecules.

6—31G Available for H(4s) through Ar(16s10p). Very popular for quan-
titative results for organic molecules.

6—311G Available for H(5s) through Kr(14s12p5d). Very popular for
quantitative results for organic molecules.

DET Created by Koga, Tatewaki, and Thakkar, available for He(4s)
through Xe(13s12p8d).

D95 and D95V  Available for H(4s) and B through F(9s5p). Used for
quantitative results.

Dunning—Hay SV  Available for H(4s) through Ne(9s5p). SVP adds one
polarization function. If this notation is used without an author’s name,
this is the set that is usually implied.

Dunning—Hay DZ  Available for H(4s) through CI(11s7p). DZP adds one
polarization function. If this notation is used without an author’s name,
this is the set that is usually implied.

Dunning—Hay TZ Available for H(5s) through Ne(10s6p). If this nota-
tion is used without an author’s name, this is the set that is usually implied.
Duijneveldt A range of sets for H through Ne. H sets range from (2s) to
(10s) and Ne sets range from (4s2p) to (14s9p). The larger sets are used for
accurate work on organic systems.
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* Huzinaga A range of sets for Li through Ne. Li sets range from (6s) to
(11s) and Ne sets range from (6s3p) to (11s7p). The larger sets are used for
accurate work on organic systems.

+ Sadlej pVTZ Available for H(6s4p) through Ca(15s13p4d), Br, Rb
through Sr, 1(19s15p12d4f). Optimized to reproduce experimental
polarizabilities.

* Chipman DZP+diffuse Available for H(6s1p) through F(10s6p2d). Opti-
mized to reproduce high-accuracy spin density results.

* Roos & Sieghahn  Available for Na through Ar(10s6p).

* GAMESS VTZ Auvailable for H(Ss) through Ar(1259p). PVTZ adds one
polarization function. This is a combination of the Dunning and McClean/
Chandler sets.

* Koga, Saito, Hoffmeyer, Thakkar Available for Na through Ar(12s8p)
and (12s9p).

* McLean/Chandler VTZ Available for Na through Ar(12s8p) and (1259p)
with several contraction schemes.

* Veillard Available for Na through Ar(12s9p).

* Roos, Veillard, Vinot ~Available for Sc through Cu(12s6p4d).

« STD—SET(1) Available for Sc through Zn(12s6p3d). Seldom used due
to a poor description of the core.

* DZC—SET(1) Available for Sc through Zn(12s6p4d). Seldom used due
to a poor description of the core.

* Hay Available for Sc through Cu(12s6p4d) and (14s9p5d). The larger set
is popular for transition metal calculations.

« Ahlrichs VDZ, pVDZ, VTZ Available for Li(4s) to (lls) through
Kr(14s10p5d) to (17s13p6d). These have been used for many high-
accuracy calculations.

* Binning/Curtiss SV, VDZ, SVP, VTZP, VTZ Available for Ga through
Kr(14s11p5d).

* Huzinaga Available for K(14s9p) through Cd(17s11p8d). Balch, Baus-
chlicker, and Nein have published additional functions to augment the Y
through Ag functions in this sets.

* Basch Available for Sc through Cu(15s8p5d) with several contraction
schemes. The transition metal set yields slightly higher energy than
Wachters’ set.

* Wachters Available for K through Zn(14s9p5d). Often used for transi-
tion metals.

« Stromberg Available for In through Xe(15s11p6d).

« WTBS Well-tempered basis set for high-accuracy results. Available for
He(17s) through Rn(28524p18d12f").

* Partridge uncontracted sets 1-3 Available for Li(14s) to (18s) through
Sr(24s16p10d). The larger sets only go up to V or Zn.
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Castro & Jorge universal Available for H(20s) through Lr(32525p20d15f).
For actually reaching the infinite basis set limit to about seven digits of
accuracy.

Almlof, Taylor ANO Available for H(8s), (8s56p), and (8s6p4d); N and
O(13s8p6d) and (1358p6d4f); Ne(9s5p) and (13s8p); S(20s16p10d).

Roos augmented double- and triple-zeta ANO Available for H(8s4p) to
(8s4p3d) through Zn(21s15p10d6f") to (21s15p10d6f4g).

NASA Ames ANO  Available for H(8s56p4d3f’) through P(18s13p6d4f2g).
Ti, Fe, and Ni functions are available. Collection of functions from various
authors.

Bauschlicker ANO  Available for Sc through Cu (205s15p10d6f4g).
cc—pVnZ (n=D,T,Q,5,6) Correlation-consistent basis sets that always
include polarization functions. Atoms H through Ar are available. The 6Z
set goes up to Ne only. The various sets describe H with from (2s1p) to
(5s4p3d2f1g) primitives. The Ar atoms is described by from (4s3pld) to
(7s6p4d3f2g1h) primitives. One to four diffuse functions are denoted by
prepending the notation with “aug-" or “‘n-aug-"’, where n = d, t, q.
cc—pCVnZ (n=D,T,Q,5) Correlation-consistent basis set designed to
describe the correlation of the core electrons as well as the valence elec-
trons. Available for H through Ne. These basis sets were created from the
cc—pVnZ sets by adding from 2 to 14 additional primitives starting at the
inner shells. Augmented in the same manner as the cc—pVnZ sets.

CBS—n (n=4, Lq, O, APNO) Auvailable for H through Ne. For esti-
mating the infinite basis set limit. This implies a series of calculations with
different basis sets, some of which are large sets.

DZVP, DZVP2, TZVP DFT-optimized functions. Available for H(5s)
through Xe(18s14p9d) plus polarization functions.

Dgauss A1 DFT Coulomb and exchange fitting. Available for H(4s)
through Xe(10s5p5d).

Dgauss A2 DFT Coulomb and exchange fitting. Available for H(4s1p1d)
through Zn(10s5p5d).

DeMon Coulomb fitting Available for H(4slp) through Xe(10s5p5d) for
DFT calculations.

ADF AE SZ, DZ, & TZ STO sets for DFT. Available for H(1Ls) to (3s)
through Lr(7s5p4d2f") to (13s10p9d5f).

ADF IV Fixed-core STO sets for DFT. Available for H(ls) to (3slpld)
through Kr(12510p4d) to (14s12p5dlf).

DN Numerical, cubic spline, DFT set.

Froese—Fischer HF numerical sets for He through Rn.

Bange, Barrientos, Bunge, Cogordan STO Available for He(4s) through
Xe(13s12p8d).
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+ Koga, Watanabe, Kanayama, Yasuda, Thakkar STO Available for He(4s)
through Xe(13s12p8d).

« Koga, Tatewaki, Thakkar STO Available for He(5s) through
Xe(11s9p5d).
+ Clementi STO Available for He(5s) through Kr(10s9p5d).

* Clementi & Roetti STO Available for He(5s) through Xe(11s9p5d). Often
used when STO functions are desired, such as accurate descriptions of the
wave function very near the nucleus.

There have been many more basis sets developed, but the list above
enumerates the most widely used ones. Some of these sets were the work of
many different authors and later improved. This sometimes results in different
programs using the same name for two slightly different sets. It is also possible
to combine basis sets or modify them, which can result in either poor or excel-
lent results, depending on how expertly it is done. How to customize basis sets
is discussed in Chapter 28.

Some of the basis sets discussed here are used more often than others. The
STO-3G set is the most widely used minimal basis set. The Pople sets, partic-
ularly, 3—21G, 6—31G, and 6—311G, with the extra functions described pre-
viously are widely used for quantitative results, particularly for organic mole-
cules. The correlation consistent sets have been most widely used in recent years
for high-accuracy calculations. The CBS and G2 methods are becoming popu-
lar for very-high-accuracy results. The Wachters and Hay sets are popular for
transition metals. The core potential sets, particularly Hay—Wadt, LANL2DZ,
Dolg, and SBKIJC, are used for heavy elements, Rb and heavier.

Experience has shown that is better to obtain basis sets in electronic form than
paper form since even slight errors in transposition will affect the calculation
results. Some basis sets are included with most computer programs that require
them. There is also a form page on the Web that allows a user to choose a basis
and specify a format consistent with the input of several popular computational
chemistry programs at http:[/[www.emsl.pnl.gov:2080/forms/basisform.htm. The
basis set is then sent to the user in the form of an e-mail message.

10.5 STUDIES COMPARING RESULTS

For many projects, a basis set cannot be chosen based purely on the general
rules of thumb listed above. There are a number of places to obtain a much
more quantitative comparison of basis sets. The paper in which a basis set is
published often contains the results of test calculations that give an indication
of the accuracy of results. Several books, listed in the references below, contain
extensive tabulations of results for various methods and basis sets. Every year, a
bibliography of all computational chemistry papers published in the previous
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year is printed in the Journal of Molecular Structure and indexed by molecular
formula. Using this bibliography, it will be fairly easy to find all previous com-
putational work on a given compound.
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1 1 Molecular Vibrations

The vibrational states of a molecule are observed experimentally via infrared
and Raman spectroscopy. These techniques can help to determine molecular
structure and environment. In order to gain such useful information, it is nec-
essary to determine what vibrational motion corresponds to each peak in the
spectrum. This assignment can be quite difficult due to the large number of
closely spaced peaks possible even in fairly simple molecules. In order to aid
in this assignment, many workers use computer simulations to calculate the
vibrational frequencies of molecules. This chapter presents a brief description of
the various computational techniques available.

Different motions of a molecule will have different frequencies. As a general
rule of thumb, bond stretches are the highest energy vibrations. Bond bends are
somewhat lower energy vibrations and torsional motions are even lower. The
lowest frequencies are usually torsions between substantial pieces of large mol-
ecules and breathing modes in very large molecules.

11.1 HARMONIC OSCILLATOR APPROXIMATION

The simplest description of a vibration is a harmonic oscillator, which describes
springs exactly and pendulums with small amplitudes fairly well. A harmonic
oscillator is defined by the potential energy proportional to the square of the
distance displaced from an equilibrium position. In a classical treatment of a
vibrating object, the motion is fastest at the equilibrium position and comes to
a complete stop for an instant at the turning points, where all the energy is
potential energy. The probability of finding the object is highest at the turning
point and lowest at the equilibrium point.

A quantum mechanical description of a harmonic oscillator uses the same
potential energy function, but gives radically different results. In a quantum
description, there are no turning points. There is some probability of finding the
object at any displacement, but it becomes very small (decreasing exponentially)
at large distances. The energy is quantized, with a quantum number describing
each possible energy state and only certain possible energies. Very small objects,
such as atoms, behave according to the quantum description with low quantum
numbers.

The vibration of molecules is best described using a quantum mechanical
approach. A harmonic oscillator does not exactly describe molecular vibra-
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TABLE 11.1 Vibrational Frequency Correction Factors

Correction Method
0.86-0.9 HF

0.9085 HF/3-12G
0.8953 HF/6-31G*

0.893 ROHF/6-31G*
0.8970 HF/6-314+G*
0.8992 HF/6-31G**
0.9051 HF/6-311G**

0.9 HF/aug—cc—pVTZ
0.9 MNDO

0.95 AM1

0.993 SAM1

0.92 MP2

0.9434, 0.95 MP2/6-31G*
0.9427, 0.9370 MP2/6-31G**
0.9496 MP2/6-311G**
0.96 DFT

0.9945 BLYP/6-31G*
0.9914 BP86/6—31G*
0.9558 B3P86/6—31G*
0.9573 B3PW91/6—31G*
0.9614, 1.0 B3LYP/6-31G*
0.976 B3LYP/cc—pVDZ
None CC with large basis sets

tions. Bond stretching is better described by a Morse potential and conforma-
tional changes have sine-wave-type behavior. However, the harmonic oscillator
description is very useful as an approximate treatment for low vibrational
quantum numbers. A harmonic oscillator approximation is most widely used for
computing molecular vibrational frequencies because more accurate methods
require very large amounts of CPU time.

Frequencies computed with the Hartree—Fock approximation and a quan-
tum harmonic oscillator approximation tend to be 10% too high due to the har-
monic oscillator approximation and lack of electron correlation. The exception
is the very low frequencies, below about 200 cm~!, which are often quite far
from the experimental values. Many studies are done using ab initio methods
and multiplying the resulting frequencies by about 0.9 to obtain a good esti-
mate of the experimental results. A list of correction factors is given in Table
11.1. Some researchers take this idea one step further by using different cor-
rection factors for stretching modes, angle bends, and so on.

Vibrational frequencies from semiempirical calculations tend to be qualita-
tive in that they reproduce the general trend mentioned in the introduction here.
However, the actual values are erratic. Some values will be close, whereas oth-
ers are often too high. SAMI is generally the most accurate semiempirical
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method for predicting frequencies. PM3 is generally more accurate than AM1
with the exception of S—H and P—H bonds, for which AM1 is superior.

Some density functional theory methods occasionally yield frequencies with
a bit of erratic behavior, but with a smaller deviation from the experimental
results than semiempirical methods give. Overall systematic error with the better
DFT functionals is less than with HF.

A molecular mechanics force field can be designed to describe the geometry
of the molecule only or specifically created to describe the motions of the atoms.
Calculation of the vibrational frequencies using a harmonic oscillator approxi-
mation can yield usable results if the force field was designed to reproduce the
vibrational frequencies. Note that many of the force fields in use today were
not designed to reproduce vibrational frequencies in this manner. When using
this method, there is not necessarily a systematic error between the results and
the experiments. This is because the parameters may have been created by de-
termining what harmonic parameters would reproduce the experimental results,
thus building in the correction. As a general rule of thumb, mechanics methods
give qualitatively reasonable frequencies if the compound being examined is
similar to those used to create the parameters. Molecular mechanics does not
do so well if the structure is significantly different from the compounds in the
parameterization set.

Some computer programs will output a set of frequencies containing six
values near zero for the three degrees of translation and three degrees of rota-
tion of the molecule. Any number within a range of about —20 to 20 cm™! is
essentially zero within the numerical accuracy of typical software packages.
This range is larger if second derivatives are computed numerically. Other
programs will use a more sophisticated technique to avoid computing these
extra values, thus reducing the computation time.

Before frequencies can be computed, the program must compute the geom-
etry of the molecule because the normal vibrational modes are centered at the
equilibrium geometry. Harmonic frequencies have no relevance to the vibra-
tional modes of the molecule, unless computed at the exact same level of theory
that was used to optimize the geometry.

Orbital-based methods can be used to compute transition structures. When a
negative frequency is computed, it indicates that the geometry of the molecule
corresponds to a maximum of potential energy with respect to the positions of
the nuclei. The transition state of a reaction is characterized by having one
negative frequency. Structures with two negative frequencies are called second-
order saddle points. These structures have little relevance to chemistry since it is
extremely unlikely that the molecule will be found with that structure.

11.2  ANHARMONIC FREQUENCIES

For very-high-accuracy ab initio calculations, the harmonic oscillator approxi-
mation may be the largest source of error. The harmonic oscillator frequencies
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are obtained directly from the Hessian matrix, which contains the second de-
rivative of energy with respect to the movement of the nuclei. One of the most
direct ways to compute anharmonic corrections to the vibrational frequencies is
to compute the higher-order derivatives (3rd, 4th, etc.). The frequency for a
potential represented by a polynomial of this order can then be computed. This
requires considerably more computer resources than harmonic oscillator calcu-
lations; thus, it is much more seldom done.

Both harmonic oscillator and higher-order derivative calculations represent
the potential energy surface near the optimized geometry only. It is possible to
compute vibrational frequencies taking the entire potential energy surface into
account. For a diatomic molecule, this requires computing the entire bond dis-
sociation curve, which requires far more computer time than computing higher-
order derivatives. Likewise, computing anharmonic frequencies for any mole-
cule requires computing at least a sampling of all possible nuclear positions.
Due to the enormous amount of time necessary to compute all these energies,
this sort of calculation is very seldom done. The advantage of this technique is
that it is applicable to very anharmonic vibrational modes and also high-energy
modes.

A technique built around molecular mechanics is a dynamics simulation.
The vibrational motion seen in molecular dynamics is a superposition of all the
normal modes of vibration so frequencies cannot be determined directly from
this simulation. However, the spectrum can be determined by applying a
Fourier transform to these motions. The motion corresponding to a peak in this
spectrum is determined by taking just that peak and doing the inverse Fourier
transform to see the motion. This technique can be used to calculate anhar-
monic modes, very low frequencies, and frequencies corresponding to con-
formational transitions. However, a fairly large amount of computer time may
be necessary to obtain enough data from the dynamics simulation to get a good
spectrum.

11.3 PEAK INTENSITIES

Another related issue is the computation of the intensities of the peaks in the
spectrum. Peak intensities depend on the probability that a particular wave-
length photon will be absorbed or Raman-scattered. These probabilities can be
computed from the wave function by computing the transition dipole moments.
This gives relative peak intensities since the calculation does not include the
density of the substance. Some types of transitions turn out to have a zero
probability due to the molecules’ symmetry or the spin of the electrons. This is
where spectroscopic selection rules come from. Ab initio methods are the pre-
ferred way of computing intensities. Although intensities can be computed using
semiempirical methods, they tend to give rather poor accuracy results for many
chemical systems.

There have been a few studies comparing ab initio intensities. In nearly all
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cases, the addition of polarization functions to the basis set leads to a significant
improvement in results. HF-computed intensities are usually scaled by a con-
stant factor prior to making comparisons. In general, results from scaled HF,
DFT, and MP2 all give similar accuracies. Out of this group, some of the
hybrid DFT functionals seem to perform best. Higher-level correlated calcu-
lations, such as CISD and CCSD, give an improvement in results. Intensities
also improve with higher orders of perturbation theory.

114 ZERO-POINT ENERGIES AND THERMODYNAMICS
CORRECTIONS

The total energy computed by a geometry optimization is the minimum on the
potential energy curve. However, a molecule can never actually have this en-
ergy because it must always have some vibrational motion. Many programs
compute the zero-point energy correction due to being in the lowest-energy
vibrational mode along with the vibrational frequencies. For accurate work, the
zero-point energy correction will be added to the total energy for the optimized
geometry. This corrected value can then be used for computing the relative en-
ergies of various conformers, isomers, and the like and should be slightly closer
to the experimental results.

Molecular enthalpies and entropies can be broken down into the contri-
butions from translational, vibrational, and rotational motions as well as the
electronic energies. These values are often printed out along with the results of
vibrational frequency calculations. Once the vibrational frequencies are known,
a relatively trivial amount of computer time is needed to compute these. The
values that are printed out are usually based on ideal gas assumptions.

11.5 RECOMMENDATIONS

It is possible to use computational techniques to gain insight into the vibra-
tional motion of molecules. There are a number of computational methods
available that have varying degrees of accuracy. These methods can be power-
ful tools if the user is aware of their strengths and weaknesses. The user is
advised to use ab initio or DFT calculations with an appropriate scale factor
if at all possible. Anharmonic corrections should be considered only if very-
high-accuracy results are necessary. Semiempirical and molecular mechanics
methods should be tried cautiously when the molecular system prevents using
the other methods mentioned.
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12 Population Analysis

Chemists are able to do research much more efficiently if they have a model
for understanding chemistry. Population analysis is a mathematical way of
partitioning a wave function or electron density into charges on the nuclei,
bond orders, and other related information. These are probably the most widely
used results that are not experimentally observable.

Atomic charges cannot be observed experimentally because they do not
correspond to any unique physical property. In reality, atoms have a positive
nucleus surrounded by negative electrons, not partial charges on each atom.
However, condensing electron density and nuclear charges down to partial
charges on the nucleus results in an understanding of the electron density dis-
tribution. These are not integer formal charges, but rather fractions of an elec-
tron corresponding to the percentage of time an electron is near each nucleus.
Although this is an artificial assignment, it is very effective for predicting sites
susceptible to nucleophilic or electrophilic attack and other aspects of molecu-
lar interaction. These partial charges correspond well to the chemist’s view of
ionic or covalent bonds, polarity, and so on. Only the most ionic compounds,
such as alkali metal halides, will have nearly whole number charges. Organo-
metallics typically have charges on the order of +0.5. Organic compounds
often have charges around +0.2 or less.

12.1 MULLIKEN POPULATION ANALYSIS

One of the original and still most widely used population analysis schemes is
the Mulliken population analysis. The fundamental assumption used by the
Mulliken scheme for partitioning the wave function is that the overlap between
two orbitals is shared equally. This does not completely reflect the electro-
negativity of the individual elements. However, it does give one a means for
partitioning a wave function and has been found to be very effective for small
basis sets. For large basis sets, results can be very unreasonable. This is due to
diffuse functions describing adjacent atoms more than they describe the atom
on which they are centered. In some cases, Mulliken analysis can assign an
electron population to an orbital that is negative or more than two electrons. It
also tends to underestimate the charge separation in ionic bonded systems.

In spite of its deficiencies, the Mulliken population scheme is very popular.
One reason is that it is very easy to implement so it is available in many soft-
ware packages. Probably the most important reason for its popularity is the fact
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that the method is easy to understand. This is a great advantage because pop-
ulation analysis is often used for the purpose of understanding chemistry rather
than quantitatively predicting experimental results.

There is some ambiguity about Mulliken population analysis in the litera-
ture. This is because various software packages print different portions of the
analysis and may name them slightly differently. The description here follows
some of the more common conventions.

A molecular orbital is a linear combination of basis functions. Normaliza-
tion requires that the integral of a molecular orbital squared is equal to 1. The
square of a molecular orbital gives many terms, some of which are the square of
a basis function and others are products of basis functions, which yield the
overlap when integrated. Thus, the orbital integral is actually a sum of integrals
over one or two center basis functions.

In Mulliken analysis, the integrals from a given orbital are not added.
Instead, the contribution of a basis function in all orbitals is summed to give the
net population of that basis function. Likewise, the overlaps for a given pair of
basis functions are summed for all orbitals in order to determine the overlap
population for that pair of basis functions. The overlap populations can be zero
by symmetry or negative, indicating antibonding interactions. Large positive
overlaps between basis functions on different atoms are one indication of a
chemical bond.

Gross populations are determined by starting with the net populations for a
basis function, then adding half of every overlap population to which that basis
function contributes. The Gross populations for all orbitals centered on a given
atom can be summed in order to obtain the gross atomic population for that
atom. The gross atomic population can be subtracted from the nuclear charge
in order to obtain a net charge. Further analysis of overlap populations can
yield bond orders.

122 LOWDIN POPULATION ANALYSIS

The Lowdin population analysis scheme was created to circumvent some of the
unreasonable orbital populations predicted by the Mulliken scheme, which it
does. It is different in that the atomic orbitals are first transformed into an
orthogonal set, and the molecular orbital coefficients are transformed to give
the representation of the wave function in this new basis. This is less often used
since it requires more computational work to complete the orthogonalization
and has been incorporated into fewer software packages. The results are still
basis-set-dependent.

12.3 NATURAL BOND-ORDER ANALYSIS

Natural bond order analysis (NBO) is the name of a whole set of analysis
techniques. One of these is the natural population analysis (NPA) for obtaining
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occupancies (how many electrons are assigned to each atom) and charges.
Some researchers use the acronyms NBO and NPA interchangeably.

Rather than using the molecular orbitals directly, NBO uses the natural or-
bitals. Natural orbitals are the eigenfunctions of the first-order reduced density
matrix. These are then localized and orthogonalized. The localization procedure
allows orbitals to be defined as those centered on atoms and those encompass-
ing pairs of atoms. These can be integrated to obtain charges on the atoms.
Analysis of the basis function weights and nodal properties allows these trans-
formed orbitals to be classified as bonding, antibonding, core, and Rydberg
orbitals. Further decomposition into three-body orbitals will yield a character-
ization of three center bonds. There is also a procedure that searches for the n
bonding patterns typical of a resonant system. This is not a rigorous assignment
as there may be some electron occupancy of antibonding orbitals, which a
simple Lewis model would predict to be unoccupied.

This results in a population analysis scheme that is less basis set dependent
than the Mulliken scheme. However, basis set effects are still readily apparent.
This is also a popular technique because it is available in many software pack-
ages and researchers find it convenient to use a method that classifies the type of
orbital.

124 ATOMS IN MOLECULES

A much less basis set dependent method is to analyze the total electron density.
This is called the atoms in molecules (AIM) method. It is designed to examine
the small effects due to bonding in the primarily featureless electron density.
This is done by examining the gradient and Laplacian of electron density. AIM
analysis incorporates a number of graphic analysis techniques as well as popu-
lation analysis. The population analysis will be discussed here and the graphic
techniques in the next chapter.

The first step in this process is to examine the total electron density to find
the critical point in the middle of each bond. This is the point of minimum
electron density along the line connecting the atoms. It reflects atomic sizes by
being closer to the smaller atom. From the critical point, the gradient vector
path (path of fastest electron density decrease) can be followed in all directions,
which is nearly perpendicular to the line connecting atoms at the critical point.
The gradient vector path defines surfaces in three-dimensional space, which will
separate that space into regions around each nucleus. The number of electrons
in this region can be integrated in order to find an electron population and thus
an atomic charge. The bond order can be predicted, based on the magnitude of
the electron density at the bond critical point.

The AIM scheme is popular due to its reliability with large basis sets for which
some other schemes fail. Unfortunately, the numerical surface finding and inte-
gration involved in this scheme are not completely robust. For example, non-
nuclear attractor compounds like Li; and Na clusters have maxima in the middle
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of the bonds, which the AIM method does not assign to either atom. Thus, the
analysis sometimes fails to give a result. Also, the amount of charge separation
in polar bonds is greater than what is generally accepted as reasonable.

12.5 ELECTROSTATIC CHARGES

If one is to choose a chemically relevant set of partial charges on the nuclei, it
would probably be those that most reflect the way that the electron density
distribution interacts with other molecules. Electrostatic charges, also called
ESP charges, are computed from the electrostatic potential. The electrostatic
potential is evaluated at a series of points, usually on the van der Waals surface
around the molecule. A curve-fitting procedure is then used to determine the
set of partial charges on the nuclei that would most closely result in generating
that electrostatic potential. This gives a very good description of charge inter-
actions with other species. Because of this, electrostatic charges are often used as
point charges for more approximate calculations, such as molecular mechanics
calculations.

Several electrostatic charge calculation methods have been devised. These
vary primarily in how the electrostatic potential points are chosen. Some soft-
ware packages include the ability to further constrain the charge calculation
procedure to only compute charges that reproduce the dipole moment. Some of
the common algorithms are Merz—Singh—Kollman (MK), Chelp, and ChelpG.
Perhaps the most popular electrostatic charge computational scheme is the
ChelpG method.

ESP charges are not without problems, particularly when they are to be used
for molecular mechanics calculations. The charges predicted by ESP methods
will vary as the conformation of the molecule changes. This results in atoms
that should be equivalent within a molecular mechanics methodology having
different charges, such as the three hydrogens in a methyl group. This can be
corrected by averaging atoms that should be equivalent. This average can be
determined either for one conformer or it can be an average over multiple
conformations.

12.6 CHARGES FROM STRUCTURE ONLY

Molecular mechanics methods often include a Coulombic interaction term.
However, a molecular mechanics model does not have a wave function or
electron density from which to compute charges. Sometimes, these charges are
obtained from the types of calculations above, particularly electrostatic
charges. When this is done, molecular mechanics is usually used to optimize the
molecular geometry without charges included and then an orbital-based calcu-
lation is done without geometry optimization to obtain the charges, which can
be used in subsequent molecular mechanics calculations. Sometimes, the mole-
cule is too big for any type of orbital-based calculation of charges. There are
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several methods for determining charges without any type of orbital-based
calculation.

The Del Re charge calculation method uses several parameters for each ele-
ment and for describing interactions between various elements. A simple set of
equations incorporating these parameters and the distance between atoms is
used to compute charges. The method was only designed to describe molecules
with ¢ bonds, but describes n-bonded molecules fairly reasonably. The dis-
advantage of the Del Re scheme is that it cannot be used if parameters are not
available for the elements. It is parameterized for describing organic com-
pounds. Since it is a parameterized method, it only works well for systems
similar to those used for the parameterization: typical organic molecules.

The Pullman method is a combination of the Del Re method for computing
the o component of the charge and a semiempirical Hiickel calculation for the «
portion. It has been fairly successful in describing dipole moments and atomic
charges for nucleic acids and proteins.

The Gasteiger charge calculation method is based on a simple relationship
between charge and electronegativity. It still has parameters for each element,
but not parameters for interactions between elements. The original method has
been extended to describe aromatic compounds by optimizing first ¢ and then «
charges. This is used for organic molecules only.

The Q-equilibrate method is applicable to the widest range of chemical
systems. It is based on atomic electronegativities only. An iterative procedure is
used to adjust the charges until all charges are consistent with the electroneg-
ativities of the atoms. This is perhaps the most often used of these methods.

12.7 RECOMMENDATIONS

There are cases where each of these methods excels. However, the literature
does indicate a preference for certain methods that obtain the most consistent
results. Below are some of the suggestions based on a review of the literature:

* For molecular mechanics, the charge calculation method used in parameter-
izing the force field should be used if possible. Otherwise, use Q-equilibrate
or electrostatic charges.

+ For examining the interactions between molecules, use electrostatic
charges.

+ For gaining a detailed understanding of orbital interactions, use the Mul-
liken analysis with a minimal basis set.

+ For large basis sets, use AIM, NBO, or electrostatic charges.
+ Mulliken analysis is most often used with semiempirical wave functions.

Table 12.1 gives the partial charges for the atoms in acetic acid computed with
a number of different methods and basis sets. All calculations use the molecular
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TABLE 12.1 Charges For Acetic Acid

Wave function Method Cl 02 C3 04 H5 H6
AMI1 Mulliken 0.35 -0.38 -0.38 —-0.36 0.27 0.17
PM3 Mulliken 039 -040 -036 —-031 024 0.15
HF/STO-3G Mulliken 0.33 -0.27 -021 -0.30 0.21 0.08
HF/6—-31G* Mulliken 0.74 -0.56 -0.57 -0.70 0.47 0.21
HF/6-3114+G** Mulliken 0.33 -0.39 -0.52 -0.25 0.31 0.16
B3LYP/STO-3G Mulliken 024 -024 -025 -0.25 022 0.10
B3LYP/6-31G* Mulliken 0.56 —-045 -0.51 -0.56 041 0.19
B3LYP/6-3114++G** Mulliken 0.15 -0.31 -048 —-0.17 0.28 0.17
HF/STO-3G NBO 042 -0.31 -020 -0.34 0.23 0.07
HF/6—-31G* NBO 099 -0.70 -0.75 -0.80 0.51 0.25
HF/6-3114+G** NBO 096 -0.69 -0.62 —-0.76 049 0.21
B3LYP/STO-3G NBO 0.31 -026 -0.24 -0.27 0.23 0.08
B3LYP/6-31G* NBO 0.82 -0.60 -0.78 —0.72 0.50 0.26
B3LYP/6-3114++G** NBO 0.80 —-0.60 —-0.68 —0.70 0.48 0.23
AMI1 CHELPG 0.19 -020 -1.01 -0.31 0.26 0.34
PM3 CHELPG -0.61 0.52 —-444 0.11 0.39 1.35
HF/STO-3G CHELPG 0.80 —-046 —-0.50 —-0.56 0.33 0.12
HF/6-31G* CHELPG 0.86 —-0.62 -0.34 -0.67 044 0.09
HF/6—-311++G** CHELPG 092 -0.66 -0.35 -0.69 045 0.10
B3LYP/STO-3G CHELPG 0.65 —-040 -0.52 —-0.47 0.33 0.13
B3LYP/6-31G* CHELPG 0.71 -0.53 -0.32 -0.58 041 0.09
B3LYP/6-311++G** CHELPG 0.82 -0.59 -0.34 -0.63 042 0.10
HF/STO-3G AIM 1.47 —1.05 0.17 —-098 047 -0.02
HF/6-31G* AIM 1.84 —1.38 0.07 1.28 0.62 0.04
HF/6-311++G** AIM 1.75 -1.32 0.13 —-1.27 0.64 0.02
B3LYP/STO-3G AIM 1.38 —1.00 0.08 —-091 046 —0.003
B3LYP/6-31G* AIM 1.61 —-1.22 -0.02 -1.12 0.58 0.05
B3LYP/6-3114++G** AIM 1.50 —1.14 0.01 —-1.08 0.58 0.04

geometry predicted by a B3LYP/6—31G* calculation. This is a molecule with
some charge separation, but not an extreme case as ionic molecules would be.
The assignment of atom numbers is shown in Figure 12.1. Charges on hydro-
gens 7 and 8§ are nearly identical to those on hydrogen 6.

02
H6 Cc1 H5
\..03/ ~u7

N
H7Y /
H8

FIGURE 12.1 Acetic acid atom assignments for Table 12.1.
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For large molecules, computation time becomes a consideration. Orbital-
based techniques, such as Mulliken, Léwdin, and NBO, take a negligible amount
of CPU time relative to the time required to obtain the wave function. Tech-
niques based on the charge distribution, such as AIM and ESP, require a sig-
nificant amount of CPU time. The GAPT method, which was not mentioned
above, requires a second derivative evaluation, which can be prohibitively
expensive.
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13 Other Chemical Properties

This chapter covers a number of concepts or properties that did not relate to
material discussed in earlier chapters. Some of these techniques are seldom
needed. Others just do not merit a chapter of their own because they are easy to
apply.

The first section of this chapter discusses various ways that chemical prop-
erties are computed. Then a number of specific properties are addressed. The
final section is on visualization, which is not so much a property as a way of
gaining additional insight into the electronic structure and motion of molecules.

13.1 METHODS FOR COMPUTING PROPERTIES

The reliability and accuracy of property results vary greatly. There is no gen-
eralization that says any given method will compute every property best.
However, there are some generalizations to be made. One of these general-
izations is that a given type of algorithm will tend to have certain strengths and
weaknesses in spite of the type of property being computed. Below are the most
common techniques.

13.1.1 From the Energy

Some of the most important information about chemistry is the energy or rel-
ative energetics associated with various species or processes. A few of these are
mentioned specifically in this chapter. The accuracy of computed energies is
mentioned many other places in this book. Energy is an integral part of most
computational techniques. However, some energies are easier to compute than
others. For example, the difference in energy between two conformers is one of
the easiest energies to compute, whereas reaction barriers are much more diffi-
cult to compute accurately.

13.1.2 From Molecular Geometry

Some properties, such as the molecular size, can be computed directly from the
molecular geometry. This is particularly important, because these properties are
accessible from molecular mechanics calculations. Many descriptors for quan-
titative structure activity or property relationship calculations can be computed
from the geometry only.
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13.1.3 From the Wave Function or Electron Density

Many molecular properties can be related directly to the wave function or total
electron density. Some examples are dipole moments, polarizability, the elec-
trostatic potential, and charges on atoms.

13.1.4 Group Additivity

Group additivity methods have been developed specifically because they can be
applied to a simple pen-and-paper calculation. Many of these methods have
been incorporated in software packages also. These methods all involve adding
up weights from a table of various functional groups in order to obtain an
estimate of some property of a molecule. These also have the advantage of
quantifying some intuitive understanding of molecular behavior.

Group additivity methods must be derived as a consistent set. It is not cor-
rect to combine fragments from different group additivity techniques, even for
the same property. This additivity approximation essentially ignores effects due
to the location of one functional group relative to another. Some of these
methods have a series of corrections for various classes of compounds to correct
for this. Other methods use some sort of topological description.

13.1.5 QSAR or QSPR

Quantitative structure property relationships (QSPR) and, when applied to
biological activity, quantitative structure activity relationships (QSAR) are
methods for determining properties due to very sophisticated mechanisms
purely by a curve fit of that property to aspects of the molecular structure. This
allows a property to be predicted independent of having a complete knowledge
of its origin. For example, drug activity can be predicted without knowing the
nature of the binding site for that drug. QSPR is covered in more detail in
Chapter 30.

13.1.6 Database Searching

There are now extensive databases of molecular structures and properties.
There are some research efforts, such as drug design, in which it is desirable to
find all molecules that are very similar to a molecule which has the desired
property. Thus, there are now techniques for searching large databases of
structures to find compounds with the highest molecular similarity. This results
in finding a collection of known structures that are most similar to a specific
compound.

Molecular similarity is also useful in predicting molecular properties. Pro-
grams that predict properties from a database usually first search for com-
pounds in the database that are similar to the unknown compound. The prop-
erty of the unknown is probably close in value to the property for the known
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compounds. The software will then have some scheme for correcting for the
effect of differences in structure between the known and unknown compounds,
or it may use the exact structure if it is found in the database. This can often be
viewed as a group additivity method, which is reparameterized from the most
similar compounds in the database. This has proven to be a very reliable
method for predicting NMR spectra and works well for partition coefficients,
boiling points, and other properties for organic compounds. This method may
give poor results if the unknown is unlike any of the structures in the database.

13.1.7 Artificial Intelligence

Algorithms originally designed by artificial intelligence (AI) researchers have
been used for predicting molecular properties. These programs are not neces-
sarily “intelligent” in the way that a person is, but they incorporate some of the
characteristics of intelligence, such as learning from new data or developing
some type of understanding. These techniques are in their infancy now and may
become much more developed in the future.

Some Al-based programs are qualitative. These are usually rule-based deci-
sion systems. For example, one program will ask the user about the character-
istics of the polymer to be designed. After obtaining enough information, the
program will suggest that the polymer should be a condensation or thermoset-
ting or block copolymer, and so on. This determination is based on qualitative
descriptions rather than numerical computations.

One variation of rule-based systems are fuzzy logic systems. These programs
use statistical decision-making processes in which they can account for the fact
that a specific piece of data has a certain chance of indicating a particular
result. All these probabilities are combined in order predict a final answer.

Some systems can give quantitative results from known pieces of data com-
plete with proper units. For example, these systems can take all the starting
information and then determine a set of equations from the available list that
can yield the desired result. The program could subsequently convert units or
algebraically solve the equations if necessary.

Neural networks are programs that simulate a brain’s structure: With their
many simple units (functions) that can communicate with each other and do
very simple jobs, they work similarly to the way that neurons in the brain do.
The neural network is trained by giving it data on systems for which the results
are known. Then the network can be given unknown data to make a prediction.
This is a sort of curve-fitting technique and is good for the interpolation of
existing data, but generally poor for the extrapolation of results. Neural net-
works can predict nonlinear data well. Neural networks can be overtrained,
thus fitting to anomalies in the training set at the expense of poorer perfor-
mance when predicting properties of unknowns.

One class of Al-based computational chemistry programs are de novo pro-
grams. These programs generally try to efficiently automate tedious tasks by
using some rational criteria to guide a trial-and-error process. For example,
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finding a molecule that will bind well in a particular binding site requires testing
many molecules in many orientations within that site. A de novo program will
examine the binding site to determine that it is only reasonable to try molecular
orientations in which a nucleophilic group is oriented in a certain way, and so
forth.

13.1.8 Statistical Processes

It is important to realize that many important processes, such as retention times
in a given chromatographic column, are not just a simple aspect of a molecule.
These are actually statistical averages of all possible interactions of that mole-
cule and another. These sorts of processes can only be modeled on a molecular
level by obtaining many results and then using a statistical distribution of those
results. In some cases, group additivities or QSPR methods may be substituted.

13.2 MULTIPOLE MOMENTS

The unique multipole moment of a molecule gives a description of the separa-
tion of charge of the molecule. Which multipole is unique depends on both the
charge and the geometry of the molecule. For a charged ion, the charge, its
monopole, is the only unique multipole. The higher-order multipoles, such as
the dipole moment, the quadrupole moment, and the like, can still be computed
but will be dependent on the origin used for that computation.

Many molecules, such as carbon monoxide, have unique dipole moments.
Molecules with a center of inversion, such as carbon dioxide, will have a dipole
moment that is zero by symmetry and a unique quadrupole moment. Molecules
of T,; symmetry, such as methane, have a zero dipole and quadrupole moment
and a unique octupole moment. Likewise, molecules of octahedral symmetry
will have a unique hexadecapole moment.

Multipole moments are most accurately computed from ab initio calcula-
tions. HF calculations with minimal basis sets often give good results. Corre-
lated calculations can yield high-accuracy results. Some semiempirical methods
also give reasonable results. For very large molecules, the multipoles can be
computed from atomic charges used by molecular mechanics calculations.
Computed multipoles can be very sensitive to the geometry at which they are
computed, particularly if the value is fairly small in magnitude. It is generally
advisable to use multipole moments that were computed with the same level of
theory used to optimize the molecular geometry.

13.3 FERMI CONTACT DENSITY

The Fermi contact density is defined as the electron density at the nucleus of an
atom. This is important due to its relationship to analysis methods dependent
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on electron density at the nucleus, such as EPR and NMR spectroscopy. Fermi
contact densities are computed with ab initio methods.

13.4 ELECTRONIC SPATIAL EXTENT AND MOLECULAR
VOLUME

The electronic spatial extent is a single number that attempts to describe the
size of a molecule. This number is computed as the expectation value of elec-
tron density times the distance from the center of mass of a molecule. Because
the information is condensed down to a single number, it does not distinguish
between long chains and more globular molecules.

Molecular volumes are usually computed by a nonquantum mechanical
method, which integrates the area inside a van der Waals or Connolly surface
of some sort. Alternatively, molecular volume can be determined by choosing
an isosurface of the electron density and determining the volume inside of that
surface. Thus, one could find the isosurface that contains a certain percentage
of the electron density. These properties are important due to their relationship
to certain applications, such as determining whether a molecule will fit in the
active site of an enzyme, predicting liquid densities, and determining the cavity
size for solvation calculations.

The solvent-excluded volume is a molecular volume calculation that finds the
volume of space which a given solvent cannot reach. This is done by determining
the surface created by running a spherical probe over a hard sphere model of
molecule. The size of the probe sphere is based on the size of the solvent
molecule.

A convex hull is a molecular surface that is determined by running a planar
probe over a molecule. This gives the smallest convex region containing the
molecule. It also serves as the maximum volume a molecule can be expected to
reach.

13.5 ELECTRON AFFINITY AND IONIZATION POTENTIAL

The electron affinity (EA) and ionization potential (IP) can be computed as the
difference between the total energies for the ground state of a molecule and for
the ground state of the appropriate ion. The difference between two calcula-
tions such as this is often much more accurate than either of the calculations
since systematic errors will cancel. Differences of energies from correlated
quantum mechanical techniques give very accurate results, often more accurate
than might be obtained by experimental methods.

The electron affinity and ionization potential can be either for vertical exci-
tations or adiabatic excitations. For adiabatic potentials, the geometry of both
ions is optimized. For vertical transitions, both energies are computed for the
same geometry, optimized for the starting state.
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Another technique for obtaining an ionization potential is to use the nega-
tive of the HOMO energy from a Hartree—Fock calculation. This is called
Koopman’s theorem; it estimates vertical transitions. This does not apply to
methods other than HF but gives a good prediction of the ionization potential
for many classes of compounds.

13.6 HYPERFINE COUPLING

Traditional wisdom has been that correlated ab initio calculations with large
basis sets are necessary to accurately predict hyperfine coupling constants.
More recently, some researchers have begun using the B3LYP functional with a
moderate-size basis set (6—31G* or larger). UHF semiempirical calculations
were used at one time, but have now been mostly replaced by more accurate
methods. The most rigorous calculations include vibronic coupling in order to
determine the average of the results for the expected vibrational level occupa-
tion at some temperature.

13.7 DIELECTRIC CONSTANT

The dielectric constant is a property of a bulk material, not an individual mole-
cule. It arises from the polarity of molecules (static dipole moment), and the
polarizability and orientation of molecules in the bulk medium. Often, it is the
relative permitivity g, that is computed rather than the dielectric constant «,
which is the constant of proportionality between the vacuum permitivity €y and
the relative permitivity.

€ = K& (13.1)

For fluids, this is computed by a statistical sampling technique, such as Monte
Carlo or molecular dynamics calculations. There are a number of concerns that
must be addressed in setting up these calculations, such as

+ The choice of boundary conditions

* Whether an adequate sampling of phase space is obtained

* Whether the system size is large enough to represent the bulk material
* Whether the errors in calculation have been estimated correctly

Another way to obtain a relative permitivity is using some simple equations
that relate relative permitivity to the molecular dipole moment. These are de-
rived from statistical mechanics. Two of the more well-known equations are the
Clausius—Mossotti equation and the Kirkwood equation. These and others are
discussed in the review articles referenced at the end of this chapter. The com-
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putation of dielectric constants is also discussed in the books by Leach, and
Allen and Tildesley.

13.8 OPTICAL ACTIVITY

Molecular chirality is most often observed experimentally through its optical
activity, which is the effect on polarized light. The spectroscopic techniques for
measuring optical activity are optical rotary dispersion (ORD), circular di-
chroism (CD), and vibrational circular dichroism (VCD).

The measurements are predicted computationally with orbital-based tech-
niques that can compute transition dipole moments (and thus intensities) for
transitions between electronic states. VCD is particularly difficult to predict due
to the fact that the Born—-Oppenheimer approximation is not valid for this
property. Thus, there is a choice between using the wave functions computed
with the Born—Oppenheimer approximation giving limited accuracy, or very
computationally intensive exact computations. Further technical difficulties are
encountered due to the gauge dependence of many techniques (dependence on
the coordinate system origin).

The most reliable results are obtained using ab initio methods with moderate-
to large-sized polarized basis sets. The use of gauge-independent atomic orbitals
(GIAO) removes gauge dependency problems.

For transition metal complexes, techniques derived from a crystal-field
theory or ligand-field theory description of the molecules have been created.
These tend to be more often qualitative than quantitative.

Recent progress in this field has been made in predicting individual atoms’
contribution to optical activity. This is done using a wave-functioning, parti-
tioning technique roughly analogous to Mulliken population analysis.

13.9 BIOLOGICAL ACTIVITY

There is great commercial interest in predicting the activity of a compound in a
biological system. This includes both desired properties, such as drug activity,
and undesired properties, such as toxicity. Such a prediction poses some very
difficult problems due to the complexity of biological systems. No method in
existence is capable of automatically computing all the interactions between a
given molecule and every molecule found in a single cell, let alone an entire
organism. Such an attempt is completely beyond the capabilities of any com-
puter hardware available today by many orders of magnitude.

Molecular simulation techniques can be used to predict how a compound
will interact with a particular active site of a biological molecule. This is still
not trivial because the molecular orientation must be considered along with
whether the active site shifts geometry as it approaches.

One very popular technique is to use QSAR. It is, in essence, a curve-fitting
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technique for creating an equation that predicts biological activity from the
properties of the individual molecule only. Once this equation has been created
using many compounds of known activity, it can be used to predict the activity
of new compounds. QSAR is discussed further in Chapter 30.

Another technique is to use pattern recognition routines. Whereas QSAR
relates activity to properties such as the dipole moment, pattern recognition
examines only the molecular structure. It thus attempts to find correlations be-
tween the functional groups and combinations of functional groups and the
biological activity.

Expert systems have also been devised for predicting biological activity.
Predicting biological activity is discussed further in Chapter 38.

13.10 BOILING POINT AND MELTING POINT

Several methods have been successfully used to predict the normal boiling point
of liquids. Group additivity methods give an approximate estimate. Some
group additivity methods gain accuracy at the expense of being applicable to a
narrow range of chemical systems. Techniques that use a database to parame-
terize a group additivity method are significantly more accurate.

QSPR methods have yielded the most accurate results. Most often, they use
large expansions of parameters obtainable from semiempirical calculations
along with other less computationally intensive properties. This is often the
method of choice for small molecules.

Molecular dynamics and Monte Carlo simulations can be used, but these
methods involve very complex calculations. They are generally only done when
more information than just the boiling point is desired and they are not calcu-
lations for a novice.

Melting points are much more difficult to predict accurately. This is because
of their dependence on crystal structure. Seemingly similar compounds can
have significantly different melting points due to one geometry being able to
pack into a crystal with stronger intermolecular interactions. Some group
additivity methods have been designed to give a rough estimate of the melting
point.

13.11 SURFACE TENSION

Surface tension is usually predicted using group additivity methods for neat
liquids. It is much more difficult to predict the surface tension of a mixture,
especially when surfactants are involved. Very large molecular dynamics or
Monte Carlo simulations can also be used. Often, it is easier to measure surface
tension in the laboratory than to compute it.
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13.12 VAPOR PRESSURE

Different compounds can display a very large difference in vapor pressure,
depending on what type of intermolecular forces is present. Because of this,
different prediction schemes are used, depending on whether the molecule is
nonpolar, polar, or hydrogen-bonding. These methods are usually derived from
thermodynamics with an empirical correction factor incorporated. The correc-
tion factors usually depend on the type of compound, that is, alcohol, keytone,
and, and so forth. These methods are applicable to a wide range of temper-
atures so long as they are not too close to the temperature at which a phase
change occurs. Constants for Henry’s law are computed from vapor pressure,
log P, and group additivity methods.

13.13 SOLUBILITY

A significant amount of research has focused on deriving methods for predict-
ing log P, where P is the octanol-water partition coefficient. Other solubility
and adsorption properties are generally computed from the log P value. There
are some group additivity methods for predicting log P, some of which have
extremely complex rules. QSPR techniques are reliably applicable to the widest
range of compounds. Neural network based methods are very accurate so long
as the unknown can be considered an interpolation between compounds in the
training set. Database techniques are very accurate for organic compounds.
The solvation methods discussed in chapter 24 can also be used.

13.14 DIFFUSIVITY

The rate of chemical diffusion in a nonflowing medium can be predicted. This is
usually done with an equation, derived from the diffusion equation, that incor-
porates an empirical correction parameter. These correction factors are often
based on molar volume. Molecular dynamics simulations can also be used.

Diffusion in flowing fluids can be orders of magnitude faster than in non-
flowing fluids. This is generally estimated from continuum fluid dynamics
simulations.

13.15 VISUALIZATION

Data visualization is the process of displaying information in any sort of pic-
torial or graphic representation. A number of computer programs are available
to apply a colorization scheme to data or to work with three-dimensional rep-
resentations. In recent years, this functionality has been incorporated in many
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FIGURE 13.1 Graphs that have a one-dimensional data space. (¢) Radial portion of
the wave function for the hydrogen atom in the 1s ground state and 2p excited state.
(b) Hypothetical salary chart.

of the graphic user interface programs used to set up and run chemical calcu-
lations. The term “visualization” usually refers to the graphic display of numer-
ical results of experimental data, or computational chemistry results, not an
artist’s representations of the molecule.

13.15.1 Coordinate Space

A typical plot of x vs. f(x) is considered to have one coordinate dimension, the
x, and one data dimension, f(x). These data sets are plotted as line graphs, bar
graphs, and so forth. These types of plots are readily made with most spread-
sheet programs as well as dedicated graphing programs. Figure 13.1 shows two
graphs that are considered to have a one-dimensional data space.

There are also plots that have two coordinate dimensions and one data di-
mension. Examples of this would be a topographical map or the electron den-
sity in one plane. These data sets can be displayed as colorizations (Figure 13.2)
or contour plots (Figure 13.3). Colorizations assign a color to each point in the
plane according to the value at that point. Contour plots connect all the points
having a particular value. Contour plots are perhaps more quantitative in their
ability to show the shape of regions with various values. Colorizations are more
complete in that no spots are left out. Another technique is to use the third di-
mension to plot the data values. This is called a mesh plot (Figure 13.4).

Many functions, such as electron density, spin density, or the electrostatic
potential of a molecule, have three coordinate dimensions and one data dimen-
sion. These functions are often plotted as the surface associated with a particular
data value, called an isosurface plot (Figure 13.5). This is the three-dimensional
analog of a contour plot.
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FIGURE 13.2 Colorizaton of the HOMO-1 orbital of H,O. Colorizations often use a
rainbow palette of colors.

13.15.2 Data Space

There are ways to plot data with several pieces of data at each point in space.
One example would be an isosurface of electron density that has been colorized
to show the electrostatic potential value at each point on the surface (Figure
13.6). The shape of the surface shows one piece of information (i.e., the electron
density), whereas the color indicates a different piece of data (i.e., the electro-
static potential). This example is often used to show the nucleophilic and elec-
trophilic regions of a molecule.

Vector quantities, such as a magnetic field or the gradient of electron density,
can be plotted as a series of arrows. Another technique is to create an anima-
tion showing how the path is followed by a hypothetical test particle. A third
technique is to show flow lines, which are the path of steepest descent starting
from one point. The flow lines from the bond critical points are used to parti-
tion regions of the molecule in the AIM population analysis scheme.
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FIGURE 13.3 Contour plot of the HOMO-1 orbital of H,O.

One technique for high dimensional data is to reduce the number of dimen-
sions being plotted. For example, one slice of a three-dimensional data set can
be plotted with a two-dimensional technique. Another example is plotting the
magnitude of vectors rather than the vectors themselves.

13.15.3 Software Concerns

The quality of a final image depends on a number of things. Most visualization
techniques draw a continuous surface or line by interpolating between data
points in the input data. This rendering will be smoother and more accurate if
a larger set of input data is used. Most three-dimensional rendering algorithms
used in the chemistry field incorporate a smoothing algorithm that assumes
surfaces are essentially smooth curves, rather than the disjoint set of points
implied by a grid of input data. Figures 13.1 through 13.6 were produced using
the default grid sizes, which are usually sufficient to show the shape while min-
imizing the drain on computational resources. These images were created with
the programs UniChem, Spartan, and MOLDEN, all of which are discussed
further in Appendix A. A few programs compute the molecular properties from
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FIGURE 13.4 Mesh plot of the HOMO-1 orbital of H,O.

€) (b)

FIGURE 13.5 Isosurface plots. (¢) Region of negative electrostatic potential around
the water molecule. (b) Region where the Laplacian of the electron density is negative.
Both of these plots have been proposed as descriptors of the lone-pair electrons. This
example is typical in that the shapes of these regions are similar, but the Laplacian
region tends to be closer to the nucleus.
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FIGURE 13.6 A plot showing two data values. The shape is an isosurface of the total
electron density. The color applied to the surface is based on the magnitude of the elec-
trostatic potential at that point in space.

the wave function and use them to create a graphical representation without the
intermediate step of storing the data.

Some limitations are purely a matter of the functionality of the program.
For example, some programs will not render images with a white background
(generally best for publication on white paper) or include a function to save the
image in a format that can be used by typical word processing software. Some
programs give the user a large amount of control over the rendering settings,
whereas others force the user to use a default set of options.

There is often a fundamental disparity between the graphic ability of com-
puter monitors and that of printers. Monitors may use anywhere from 8-bit
color (256 colors) to 24-bit color (16 million colors). Printers, except for dye
sublimation models, use four colors, which are printed in a pattern that tricks
the eye into seeing all colors. Monitors generally use about a 72-dpi (dots per
inch) screen resolution, as compared to printer resolutions of 300 dpi or better.

There are also two ways to store and use image data. A raster-drawn (or bit-
mapped) image is one composed of many evenly spaced dots, each given a
particular color. A vector-drawn image is described by lines and curves with
various lengths and curvatures. Raster-drawn images are very common because
they most readily created by almost any type of software. Files with gif, jpg,
jpeg, and bmp extensions are raster-drawn image files. The advantage of using
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vector-drawn images is that they give the best possible line quality on both the
computer monitor and printer. The ChemDraw program uses vector-drawn
images. Postscript supports both raster and vector formats.

13.16 CONCLUSIONS

Completely ab initio predictions can be more accurate than any experimental
result currently available. This is only true of properties that depend on the
behavior of isolated molecules. Colligative properties, which are due to the
interaction between molecules, can be computed more reliably with methods
based on thermodynamics, statistical mechanics, structure-activity relation-
ships, or completely empirical group additivity methods.

Empirical methods, such as group additivity, cannot be expected to be any
more accurate than the uncertainty in the experimental data used to parame-
terize them. They can be much less accurate if the functional form is poorly
chosen or if predicting properties for compounds significantly different from
those in the training set.

Researchers must be particularly cautious when using one estimated prop-
erty as the input for another estimation technique. This is because possible error
can increase significantly when two approximate techniques are combined.
Unfortunately, there are some cases in which this is the only available method
for computing a property. In this case, researchers are advised to work out the
error propagation to determine an estimated error in the final answer.

An example of using one predicted property to predict another is predicting
the adsorption of chemicals in soil. This is usually done by first predicting an
octanol water partition coefficient and then using an equation that relates this
to soil adsorption. This type of property—property relationship is most reli-
able for monofunctional compounds. Structure—property relationships, and to
a lesser extent group additivity methods, are more reliable for multifunctional
compounds than this type of relationship.
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14 The Importance of Symmetry

This chapter discusses the application of symmetry to orbital-based computa-
tional chemistry problems. A number of textbooks on symmetry are listed in
the bibliography at the end of this chapter.

The symmetry of a molecule is defined by determining how the nuclei can be
exchanged without changing its identity, conformation, or chirality. For exam-
ple, a methane molecule can be turned about the axis connecting the carbon
and one of the hydrogens by 120° and it is indistinguishable from the original
orientation. Alternatively, symmetry can be considered a way of determining
which regions of space around the molecule are completely equivalent. This
second description is important because it indicates a means for calculations to
be performed more quickly.

In order to obtain this savings in the computational cost, orbitals are
symmetry-adapted. As various positive and negative combinations of orbitals
are used, there are a number of ways to break down the total wave function.
These various orbital functions will obey different sets of symmetry constraints,
such as having positive or negative values across a mirror plane of the molecule.
These various symmetry sets are called irreducible representations.

Molecular orbitals are not unique. The same exact wave function could be
expressed an infinite number of ways with different, but equivalent orbitals.
Two commonly used sets of orbitals are localized orbitals and symmetry-
adapted orbitals (also called canonical orbitals). Localized orbitals are some-
times used because they look very much like a chemist’s qualitative models of
molecular bonds, lone-pair electrons, core electrons, and the like. Symmetry-
adapted orbitals are more commonly used because they allow the calculation to
be executed much more quickly for high-symmetry molecules. Localized orbi-
tals can give the fastest calculations for very large molecules without symmetry
due to many long-distance interactions becoming negligible.

Another reason that symmetry helps the calculations is that the Hamiltonian
matrix will become a block diagonal matrix with one block for each irreducible
representation. It is not necessary for the program to compute overlap integrals
between orbitals of different irreducible representations since the overlap inte-
grals will be zero by symmetry. Some computer programs go to the length of
actually completing an SCF calculation as a number of small Hamiltonian
matrices for each irreducible representation rather than one large Hamiltonian
matrix. When this is done, the number of orbitals of each irreducible represen-
tation that are occupied must be defined at the beginning of the calculation

125



126 14 THE IMPORTANCE OF SYMMETRY

(a) B2 orbital (b) A1 orbital

(0) Bz + Ay (d) B2~ A

FIGURE 14.1 An illustration of symmetry-adapted vs. localized orbitals for water.
(a, b) B, and A, symmetry-adapted orbitals. (¢) Sum of these orbitals, which gives a
localized orbital that is the bond between the oxygen and the hydrogen on the right.
(d) Difference between these orbitals, which gives a localized orbital that is the bond
between the oxygen and the hydrogen on the left.

either by the user or the program. Electrons will not be able to shift from one
symmetry to another. Thus, the ground-state wave function cannot be deter-
mined unless the correct electron symmetry assignments were chosen originally.
This can be an advantage since it is a way of obtaining excited-state wave func-
tions, and fewer SCF convergence problems arise with this algorithm. The dis-
advantage is that the automated assignment algorithm may not find the correct
ground state.

There is always a transformation between symmetry-adapted and localized
orbitals that can be quite complex. A simple example would be for the bonding
orbitals of the water molecule. As shown in Figure 14.1, localized orbitals can
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be constructed from positive and negative combinations of symmetry-adapted
orbitals. Some computer programs have localization algorithms that are more
sophisticated than this.

14.1 WAVE FUNCTION SYMMETRY

In SCF problems, there are some cases where the wave function must have a
lower symmetry than the molecule. This is due to the way that the wave func-
tion is constructed from orbitals and basis functions. For example, the carbon
monoxide molecule might be computed with a wave function of Cy4, symmetry
even though the molecule has a C,,, symmetry. This is because the orbitals
obey Cy, constraints.

Most programs that employ symmetry-adapted orbitals only use Abelian
symmetry groups. Abelian groups are point groups in which all the symmetry
operators commute. Often, the program will first determine the molecules’
symmetry and then use the largest Abelian subgroup. To our knowledge, the
only software package that can utilize non-Abelian symmetry groups is Jaguar.

14.2 TRANSITION STRUCTURES

Transition structures can be defined by nuclear symmetry. For example, a sym-
metric Sy2 reaction will have a transition structure that has a higher symmetry
than that of the reactants or products. Furthermore, the transition structure is
the lowest-energy structure that obeys the constraints of higher symmetry.
Thus, the transition structure can be calculated by forcing the molecule to have
a particular symmetry and using a geometry optimization technique.

BIBLIOGRAPHY

T. Bally, W. T. Borden, Rev. Comput. Chem. 13, 1 (1999).

J. Rosen, Symmetry in Science Springer-Verlag, New York (1996).

G. Davidson, Group Theory for Chemists MacMillan, Hampshire (1991).

A. Cotton, Chemical Applications of Group Theory John Wiley and Sons, New York
(1990).

J. R. Ferraro, J. S. Ziomek, Introductory Group Theory Plenum, New York (1975).

D. M. Bishop, Group Theory and Chemistry Clarendon, Oxford (1973).

M. Tinkham, Group Theory and Quantum Mechanics McGraw-Hill, New York (1964).

R. McWeeny, Symmetry; An Introduction to Group Theory and its Applications
Pergamon, New York (1963).



Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems.

David C. Young

Copyright © 2001 John Wiley & Sons, Inc.
ISBNs: 0-471-33368-9 (Hardback); 0-471-22065-5 (Electronic)

Efficient Use of Computer
15 Resources

Many computational chemistry techniques are extremely computer-intensive.
Depending on the type of calculation desired, it could take anywhere from
seconds to weeks to do a single calculation. There are many calculations, such
as ab initio analysis of biomolecules, that cannot be done on the largest com-
puters in existence. Likewise, calculations can take very large amounts of
computer memory and hard disk space. In order to complete work in a rea-
sonable amount of time, it is necessary to understand what factors contribute to
the computer resource requirements. Ideally, the user should be able to predict
in advance how much computing power will be needed.

There are often trade-offs between equivalent ways of doing the same cal-
culation. For example, many ab initio programs use hard disk space to store
numbers that are computed once and used several times during the course of the
calculation. These are the integrals that describe the overlap between various
basis functions. Instead of the above method, called conventional integral
evaluation, it is possible to use direct integral evaluation in which the numbers
are recomputed as needed. Direct integral evaluation algorithms use less disk
space at the expense of requiring more CPU time to do the calculation. An in-
core algorithm is one that stores all the integrals in RAM memory, thus saving
on disk space at the expense of requiring a computer with a very large amount
of memory. Many programs use a semidirect algorithm, which uses some disk
space and a bit more CPU time to obtain the optimal balance of both.

151 TIME COMPLEXITY

Time complexity is a way of denoting how the use of computer resources (CPU
time, memory, etc.) changes as the size of the problem changes. For example,
consider a HF calculation with N orbitals. At the end of the calculation, the
orbital energies must be added. Since there are N orbitals, there will be N ad-
dition operations. There are a certain number of operations, which we will call
C, which have to be done regardless of the size of calculation, such as initializ-
ing variables and allocating memory. The standard matrix inversion algorithm
requires N> operations. Computing the two-electron Coulomb and exchange
integrals for a HF calculation takes N* operations. Thus, the total amount of
CPU time required to do a HF calculation scales as N* + N3 + N + C. How-
ever for sufficiently large N, the N3, N, and C terms are insignificant compared
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to the size of the N* term (if N = 10, then N3 is 10% of N*, and for N = 100,
N3 is 1% of N*#, etc.). Computer scientists described this type of algorithm as
one that has a time complexity of N4, denoted with the notation O(N*4). A
similar analysis could be done for memory use, disk use, network communica-
tion volume, and so on.

These relationships can be used to estimate the amount of CPU time, disk
space, or memory needed to run calculations. Let us take the example of a re-
searcher, Jane Chemist, who would like to compute some property of a poly-
mer. She first examines the literature to determine that an ab initio method with
a moderately large basis set will give the desired accuracy of results. She then
runs both single point and geometry optimization calculations on the mono-
mer, which take 2 and 20 minutes, respectively. Since the calculation scales as
N*, a geometry optimization for the trimer, which has three times as many
atoms, will take approximately 3% * 20 minutes or about 27 hours. Jane would
like to model up to a 15-unit chain, which would require 154 * 20 minutes or
about 2 years. Obviously, the use of ab initio methods for geometry optimiza-
tion is not acceptable. Jane then wisely decides to stop at the 10-unit chain and
use geometries optimized with molecular mechanics methods, which takes under
an hour for the optimization. She then obtains the desired results with single-
point ab initio calculations, which take 10% x 2 minutes or 2 weeks for the larg-
est molecule. This final calculation is still rather large, but it is feasible since
Jane has her own work station with an uninterruptable power supply.

There are many different algorithms that can be programmed in a more
or less efficient manner to obtain the exact same result. Because of this, a given
method will have slightly different time complexities from one program to
another. Table 15.1 gives some common time complexities. M is the number
of atoms, L the length of one side of the box containing the molecules in a
calculation using periodic boundary conditions, 4 the number of active space
orbitals, and N the number of orbitals in the calculation. Thus, N can increase
either by including more atoms or using a larger basis set.

Geometry optimization calculations take much longer than single-energy
calculations. The reasons are two-fold: First, many calculations must be done
as the geometry is changed. Second, each iteration takes longer in order to
compute energy gradients. The amount of CPU time required for a geometry
optimization, T,p;, depends on the number of degrees of freedom, denoted as
D. Degrees of freedom are the geometric variables being optimized, such as
bond lengths, angles, and the like. As a general rule of thumb, the amount of
time for a geometry optimization can be estimated from the single-point energy
CPU time, Tingle, With the equation

Topt = 5 % D? % Tyingle (15.1)
For ab initio, semiempirical, or molecular dynamics calculations, the amount

of CPU time necessary is generally the factor of greatest concern to researchers.
For very large molecules, memory use is of concern for molecular mechanics
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TABLE 15.1 Method Time Complexities

Method Scaling Comments

DFT N With linear scaling algorithms (very large molecules)

MM M?

MD M? or LS

Semiempiricals N? For small- to medium-size molecules (limited by
integrals)

HF N2-N* Depending on use of symmetry and integral accuracy
cutoffs

Semiempiricals N3 For very large molecules (limited by matrix inversion)

HF N3 Pseudospectral method

DFT N3

QMC N3 With inverse slater matrix

MP2 N3

CcC2 N3

MP3, MP4(SDQ) N°

CCSD N©

CISD NS

MP4 N7

CC3, CCSD(T) N7

MP5 N8

CISDT N8

CCSDT N8

MP6 N?

MP7 N0

CISDTQ N0

CASSCF Al A is the number of active space orbitals.

Full CI N!

QMC N! Without inverse slater matrix

calculations. Table 15.2 lists the memory requirements of a number of geome-
try optimization algorithms.

The time complexity only indicates how CPU time increases with larger
systems. Even for a small job, more complex algorithms will take more CPU
time. As a general rule of thumb, methods with a larger time complexity will
also require more memory and disk storage space. However, from one software
package to another, there are trade-offs between the amount of memory, CPU
time, and disk space required. A few exceptions should be mentioned. HF algo-
rithms usually have N2 memory use, except for in-core algorithms that have N*
memory use. QMC calculations require extremely large amounts of CPU time
for even very small molecules, but require very little memory or disk space.

Because geometry optimization is so much more time-consuming than a
single geometry calculation, it is common to use different levels of theory for
the optimization and computing final results. For example, an ab initio method
with a moderate-size basis set and minimal correlation may be used for opti-
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TABLE 15.2 Optimization Algorithm Memory Use

Algorithm Memory Use
Conjugate gradient D
Fletcher—Reeves D
Polak—Ribiere D
Simplex D?
Powell D?
quasi-Newton D?
Fletcher—Powell D?
BFGS D?

mization and then a single point calculation with more correlation and a larger
basis can be used for the final energy computation. This would be denoted with
a notation like MP2/6—31G*//ccsd(t)/cc—pVTZ. In some cases, molecular
mechanics or semiempirical calculations may be used to determine a geometry
for an ab initio calculation. Molecular mechanics is nearly always used for
conformation searching. One exception to this is that vibrational frequencies
must be computed with the same level of theory used to optimize the geometry.

Note that many programs are now optimized for direct integral performance
to the point that it outperforms conventional methods on current hardware
configurations. An example of this is seen in Table 15.3, which was generated
using the Gaussian 98 program. This program uses the available memory so the
memory use is a function of the execution queue rather than the minimum

TABLE 15.3 Benzene Single Point Calculation Tests Using the cc—pVTZ Basis Set
(run on a Cray SV1 configured with J90 CPUs computed with Gaussian 98 revision A.7)

Method CPU (seconds) Memory (megawords) File Space (megabytes)
PM3 11 14.9 11
HF direct 586 14.9 42
HF nosym 3394 14.9 42
HF conv 8783 30.4 1165
HF incore — >1000 —
HF QC 6747 14.9 20
MP2 1921 30.4 43
MP3 6413 30.4 1465
MP4 131,363 30.4 2146
CISD 26,143 59.2 1923
CCSD 40,393 59.2 2604
G2 132,812 60.9 2462
CBS-APNO 225,079 60.9 6505
QCISD 35,527 59.2 1923

G3 73,401 60.9 1574
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needed, provided that it is above a minimum size. Please note that Table 15.3
gives an example for one molecule only, not an average or expected performance.

15.2 LABOR COST

Another important consideration is the amount of labor necessary on the part
of the user. One major difference between different software packages is the
developer’s choices between ease of use and efficiency of operation. For exam-
ple, the Spartan program is extremely easy to use, but the price for this is that
the algorithms are not always the most efficient available. Many chemistry
users begin with software that is very simple, but when more sophisticated
problems need to be solved, it is often easier to learn to use more complicated
software than to purchase a supercomputer to solve a problem that could be
done by a workstation with different software.

15.3 PARALLEL COMPUTERS

Mass-produced workstation-class CPUs are much cheaper than traditional
supercomputer processors. Thus, a larger amount of computing power for the
dollar can be purchased by buying a parallel supercomputer that might have
hundreds of workstation CPUs.

Software written for single-processor computers will not automatically use
multiple CPUs. At the present time, there are compilers that will attempt to
parallelize computer algorithms, but these compilers are usually inefficient for
sophisticated computer programs. In time, such compilers will become so good
that any program will be parallelized with no additional work, just as optimiz-
ing compilers have completely eliminated the need to write applications entirely
in machine node. Until that day comes, the person using computational chem-
istry programs will have to understand the performance of parallel software in
order to efficiently do his or her work.

Ideally, a calculation that takes an hour on a single CPU would take half an
hour on two CPUs. This is called linear speed-up. In practice, this is not possi-
ble because the two CPU calculations must do extra work to divide the work-
load between the two processors and combine results to obtain the final answer.
There are a few types of algorithms that give nearly perfectly linear scaling be-
cause of the nature of the algorithm and the amount of work that the developer
did to parallelize the code. Many Monte Carlo algorithms can be parallelized
very efficiently. There are also a few programs for which our hypothetical hour
calculation would take 1% hours on a two-CPU machine due to the incredibly
inefficient way that the parallelization was implemented. Some of the correlated
ab initio algorithms are very difficult to parallelize efficiently. Most parallelized
programs fall somewhere between these two extremes. Different methods within
a given software package are often parallelized to different degrees of efficiency.
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Some software packages can be run on a networked cluster of workstations
as though they were a multiple-processor machine. However, the speed of data
transfer across a network is not as fast as the speed of data transfer between the
CPUs of a parallel computer. Some algorithms break down the work to be
done into very large chunks with a minimal amount of communication between
processors. These are called large-grained algorithms, and they work as well on
a cluster of workstations as on a parallel computer. Fine-grained algorithms
require a significant amount of frequent communication between CPUs and run
slowly on a cluster of workstations because the network speed limits the calcu-
lation more than the performance of the CPUs. There are also differences in
communication speed between parallel computers made by various vendors,
which can sometimes have a significant effect on how quickly calculations run.
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How to Conduct a Computational
16 Research Project

When using computational chemistry to answer a chemical question, the ob-
vious problem is that the researcher needs to know how to use the software.
The difficulty sometimes overlooked is that one must estimate how accurate the
answer will be in advance. The sections below provide a checklist to follow.

16.1 WHAT DO YOU WANT TO KNOW? HOW ACCURATELY?
WHY?

If you cannot specifically answer these questions, then you have not formulated
a proper research project. The choice of computational methods must be based
on a clear understanding of both the chemical system and the information to be
computed. Thus, all projects start by answering these fundamental questions in
full. The statement “To see what computational techniques can do.” is not a
research project. However, it is a good reason to purchase this book.

16.2 HOW ACCURATE DO YOU PREDICT THE ANSWER WILL
BE?

In analytical chemistry, a number of identical measurements are taken and then
an error is estimated by computing the standard deviation. With computational
experiments, repeating the same step should always give exactly the same result,
with the exception of Monte Carlo techniques. An error is estimated by com-
paring a number of similar computations to the experimental answers or much
more rigorous computations.

There are numerous articles and references on computational research
studies. If none exist for the task at hand, the researcher may have to guess
which method to use based on its assumptions. It is then prudent to perform a
short study to verify the method’s accuracy before applying it to an unknown.
When an expert predicts an error or best method without the benefit of prior
related research, he or she should have a fair amount of knowledge about
available options: A savvy researcher must know the merits and drawbacks
of various methods and software packages in order to make an informed
choice. The bibliography at the end of this chapter lists sources for reviewing
accuracy data. Appendix A of this book provides short reviews of many soft-
ware packages.

135
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There are many studies that examine the accuracy of computational tech-
niques for modeling a particular compound or set of related compounds. It is
far less often that a study attempts to quantify the accuracy of a method as a
whole. This is usually done by giving some sort of average error for a large
collection of molecules. Most studies of this type have focused on collections of
organic and light main group compounds. Table 16.1 lists some of the accuracy
data that have been published from such large studies. The sources of this data
are listed in the bibliography for this chapter. Some of the online databases
allow the user to specify individual molecules, or select a set of molecules and
then retrieve accuracy data.

16.3 HOW LONG DO YOU PREDICT THE RESEARCH WILL
TAKE?

If the world were perfect, a researcher could tell her PC to calculate the exact
solution to the Schrédinger equation and continue with the rest of her work.
However, the exact solution to the Schrédinger equation has not yet been found
and ab initio calculations approaching it for moderate-size molecules would be
so time-consuming that it might take a decade to do a single calculation, if a
machine with enough memory and disk space were available. However, many
methods exist because each is best for some situation. The trick is to determine
which one is best for a given project. The first step is to predict which method
will give an acceptable accuracy. If timing information is not available, use the
scaling information as described in the previous chapter to predict how long the
calculation will take.

164 WHAT APPROXIMATIONS ARE BEING MADE? WHICH ARE
SIGNIFICANT?

This is a check on the reasonableness of the method chosen. For example, it
would not be reasonable to select a method to investigate vibrational motions
that are very anharmonic with a calculation that uses a harmonic oscillator
approximation. To avoid such mistakes, it is important the researcher under-
stand the method’s underlying theory.

Once all these questions have been answered, the calculations can begin.
Now the researcher must determine what software is available, what it costs,
and how to properly use it. Note that two programs of the same type (i.e.,
ab initio) may calculate different properties so the user must make sure the
program does exactly what is needed.

When learning how to use a program, dozens of calculations may fail be-
cause the input was constructed incorrectly. Do not use the project molecule to
do this. Make mistakes with something inconsequential, like a water molecule.



164 WHAT APPROXIMATIONS ARE BEING MADE?

TABLE 16.1 Accuracies of Computational Chemistry Methods Relative to

Experimental Results

137

Method Property Accuracy
MM2 AH} 0.5 kcal/mol std. dev.
Bond length 0.01 A std. dev.
Bond angle 1.0° std. dev.
Dihedral angle 8.0° std. dev.
Dipole 0.1 D std. dev.
MM3 AH} 0.6 kcal/mol std. dev.
Bond length 0.01 A std. dev.
Bond angle 1.0° std. dev.
Dihedral angle 5.0° std. dev.
Dipole 0.07 D std. dev.
CFF AH} 2 kcal/mol std. dev.
Bond length 0.01 A std. dev.
Bond angle 1.0° std. dev.
Sorption energy 5 kcal/mol std. dev.
CNDO AH} 200 kcal/mol std. dev.
INDO/1 AH} 100 kcal/mol std. dev.
MINDO/3 AH} 5 kcal/mol std. dev.
MNDO AH) 11 keal/mol std. dev.
Bond angle 4.3° RMS error
Bond length 0.048 A RMS error
Dipole 0.3 D std. dev.
IP 0.8 eV std. dev.
MNDO/d AH} 5 kcal/mol std. dev.
Dipole 0.4 D std. dev.
IP 0.6 eV std. dev.
AM1 AH} 8 kcal/mol std. dev.
Total energy 18.8 kcal/mol mean abs. dev.
Bond angle 3.3° RMS error
Bond length 0.048 A RMS error
Dipole 0.5 D std. dev.
1P 0.6 eV std. dev.
PM3 AH} 8 kcal/mol std. dev.
Total energy 17.2 kcal/mol mean abs. dev.
Bond angle 3.9° RMS error
Bond length 0.037 A RMS error
Dipole 0.6 D std. dev.
1P 0.7 eV std. dev.
SAM1 AH} 8 kcal/mol std. dev.
IP 0.4 eV std. dev.
SVWN Dipole 0.1 D std. dev.
SVWN/3-21G(¥) Bond angle 2.0° RMS error
Bond length 0.033 A RMS error
SVWN/6-31G* Bond angle 1.4° RMS error

Bond length

0.023 A RMS error
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TABLE 16.1 (Continued)

Method

Property

Accuracy

SVWN/6-311+G(2d, p)

SVWN/6—311+G(3df2p)
SVWN5/6—311+G(2d,p)
BLYP/6—31G**
BLYP/6—31+G(d,p)
BLYP/6—3114+G(2d,p)
BLYP/6—311+G(3df.2p)

BLYP/DZVP
BP86/6—311+G(3df.2p)

BP91/6—31G**
BP91/DZVP
BPW91/6—311+G(3df,2p)

B3LYP
B3LYP/3-21G(*)

B3LYP/6—31G(d)

B3LYP/6—31+G(d,p)
B3LYP/6—311+G(2d,p)

B3LYP/6—311+G(3df,2p)
B3PW91/6—311+G(3df,2p)

HF/STO-3G

HF/3-21G

HF/3-21G(d)

HF/6-31G*

Total energy
Bond angle
Bond length
1P

EA

Total energy
Reaction energy
Total energy
Total energy
1P

EA
Reaction energy
1P

EA
Reaction energy
Reaction energy
1P

EA

AH}

Bond angle
Bond length
Total energy
Bond angle
Bond length
Total energy
Total energy
Bond angle
Bond length
1P

EA

1P

EA

Dipole
Total energy
Bond angle
Bond length
AH}

Dipole
Total energy
Bond angle
Bond length
AH}

Total energy
Dipole
Bond angle
Bond length

19.2 kcal/mol std. dev.

1.4° RMS error

0.021 A RMS error

0.594 eV mean abs. dev.
0.697 eV mean abs. dev.

18.1 kcal/mol mean abs. dev.
9.95 kcal/mol mean abs. dev.
3.9 kcal/mol mean abs. dev.
3.9 kcal/mol mean abs. dev.
0.260 eV mean abs. dev.
0.113 eV mean abs. dev.

7.73 kcal/mol mean abs. dev.
0.198 eV mean abs. dev.
0.193 eV mean abs. dev.

9.35 kcal/mol mean abs. dev.
6.91 kcal/mol mean abs. dev.
0.220 eV mean abs. dev.
0.121 eV mean abs. dev.

2 kcal/mol std. dev.

2.0° RMS error

0.035A RMS error

7.9 kcal/mol mean abs. dev.
1.4° RMS error

0.020 A RMS error

3.9 kcal/mol mean abs. dev.
3.1 kcal/mol mean abs. dev.
1.4° RMS error

0.017 A RMS error

0.177 eV mean abs. dev.
0.131 eV mean abs. dev.
0.191 eV mean abs. dev.
0.145 eV mean abs. dev.

0.5 D std. dev.

93.3 kcal/mol mean abs. dev.
1.7° RMS error

0.055A RMS error

7 kcal/mol std. dev.

0.4 D std. dev.

58.4 kcal/mol mean abs. dev.
1.7° RMS error

0.032 A RMS error

4 kcal/mol std. dev.

51.0 kcal/mol mean abs. dev.
0.2 D std. dev.

1.4° RMS error

0.032 A RMS error
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Method

Property

Accuracy

HF/6-31G**
HF/6—31+G(d,p)
HF/6-311+G(2d,p)

HF/aug—cc—pVDZ

HF/aug—cc—pVTZ

HF/aug—cc—pVQZ

MP2/3-21G(*)
MP2/6—31G*

MP2/6-31G**
MP2/6—31+G(d, p)

MP2/6-311+G(2d,p)
MP2/aug—cc—pVDZ

MP2/aug—cc—pVTZ

Reaction energy
Total energy

Bond angle

Bond length
Atomization energy
Proton affinity

EA

1P

Bond length

Bond angle

Scaled frequencies
Atomization energy
Proton affinity

EA

1P

Bond length

Bond angle

Scaled frequencies
Atomization energy
Proton affinity

EA

1P

Bond length

Bond angle

Scaled frequencies
Bond angle

Bond length

Bond angle

Bond length
Reaction energy
Total energy

Total energy
Atomization energy
Proton affinity

EA

1P

Bond length

Bond angle
Frequencies
Atomization energy
Proton affinity

EA

1P

Bond length

Bond angle
Frequencies

54.2 kcal/mol mean abs. dev.
46.7 kcal/mol mean abs. dev.
1.3° RMS error

0.035A RMS error

85 kcal/mol mean abs. dev.
3.5 kcal/mol mean abs. dev.
26 kcal/mol mean abs. dev.
20 kcal/mol mean abs. dev.
0.01, 0.03 A mean abs. dev.
1.2° mean abs. dev.

70, 90, 110 cm~! mean abs. dev.
67 kcal/mol mean abs. dev.
2.5 kcal/mol mean abs. dev.
28 kcal/mol mean abs. dev.
22 kcal/mol mean abs. dev.
0.015, 0.03 A mean abs. dev.
1.6° mean abs. dev.

80, 50, 110 cm~! mean abs. dev.
63 kcal/mol mean abs. dev.
3.5 kcal/mol mean abs. dev.
28 kcal/mol mean abs. dev.

21 kcal/mol mean abs. dev.
0.015, 0.035 A mean abs. dev.
1.7° mean abs. dev.

40, 110 cm~! mean abs. dev.
2.2° RMS error

0.044 A RMS error

1.5° RMS error

0.048 A RMS error

11.86 kcal/mol mean abs. dev.
11.4 kcal/mol mean abs. dev.
8.9 kcal/mol mean abs. dev.
15 kcal/mol mean abs. dev.
3.8 kcal/mol mean abs. dev.

4 kcal/mol mean abs. dev.

5.5 kcal/mol mean abs. dev.
0.012, 0.038 A mean abs. dev.
0.5° mean abs. dev.

50, 40, 180 cm~! mean abs. dev.
5 kcal/mol mean abs. dev.

2 kcal/mol mean abs. dev.

3 kcal/mol mean abs. dev.

4 kcal/mol mean abs. dev.
0.012, 0.021 A mean abs. dev.
0.3° mean abs. dev.

60, 30, 120 cm~! mean abs. dev.
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TABLE 16.1 (Continued)

Method

Property

Accuracy

MP2/aug—cc—pVQZ

MP4(STDQ)/aug—cc—pVDZ

MP4(STDQ)/aug—cc—pVTZ

MP4(STDQ)/aug—cc—pVQZ

CCSD/aug—cc—pVDZ

CCSD/aug—cc—pVTZ

atomization energy
Proton affinity

EA

1P

Bond length

Bond angle
Frequencies
Atomization energy
Proton affinity

EA

1P

Bond length

Bond angle
Frequencies
Atomization energy
Proton affinity

EA

1P

Bond length

Bond angle
Frequencies
Atomization energy
Proton affinity

EA

1P

Bond length

Bond angle
Frequencies
Atomization energy
Proton affinity

EA

1P

Bond length

Bond angle
Frequencies
Atomization energy
Proton affinity

EA

1P

Bond length

Bond angle
Frequencies

5 kcal/mol mean abs. dev.

1.8 kcal/mol mean abs. dev.

3 kcal/mol mean abs. dev.

3 kcal/mol mean abs. dev.
0.008, 0.015 A mean abs. dev.
0.3° mean abs. dev.

40, 110 cm™! mean abs. dev.
16 kcal/mol mean abs. dev.
2.1 kcal/mol mean abs. dev.
4 kcal/mol mean abs. dev.
5.5 kcal/mol mean abs. dev.
0.018, 0.042 A mean abs. dev.
0.4° mean abs. dev.

60, 40, 110 cm~! mean abs. dev.
4 kcal/mol mean abs. dev.

1.2 kcal/mol mean abs. dev.
2 kcal/mol mean abs. dev.

2 kcal/mol mean abs. dev.
0.008, 0.03 A mean abs. dev.
0.3° mean abs. dev.

40, 30, 110 cm~! mean abs. dev.
2 kcal/mol mean abs. dev.

1 kcal/mol mean abs. dev.

2 kcal/mol mean abs. dev.

1 kcal/mol mean abs. dev.
0.008, 0.015 A mean abs. dev.
0.3° mean abs. dev.

30, 110 cm~! mean abs. dev.
21 kcal/mol mean abs. dev.
1.1 kcal/mol mean abs. dev.
5.5 kcal/mol mean abs. dev.
5.8 kcal/mol mean abs. dev.
0.017, 0.033 A mean abs. dev.
0.5° mean abs. dev.

60, 40, 80 cm~! mean abs. dev.
11 kcal/mol mean abs. dev.
0.9 kcal/mol mean abs. dev.
4 kcal/mol mean abs. dev.

3 kcal/mol mean abs. dev.
0.008, 0.01 A mean abs. dev.
0.3° mean abs. dev.

40, 30, 70 cm~! mean abs. dev.
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TABLE 16.1 (Continued)

Method

Property

Accuracy

CCSD/aug—cc—pVQZ

CCSD(T)/aug—cc—pVDZ

CCSD(T)/aug—cc—pVTZ

CCSD(T)/aug—cc—pVQZ

Gl
G2

G2(MP2)

CBS-4
CBS-Q
CBS-APNO

Atomization energy
Proton affinity

EA

1P

Bond length

Bond angle
Frequencies
Atomization energy
Proton affinity

EA

1P

Bond length

Bond angle
Frequencies
Atomization energy
Proton affinity

EA

IP

Bond length

Bond angle
Frequencies
Atomization energy
Proton affinity

EA

1P

Bond length

Bond angle
Frequencies

Total energy

Total energy

1P

1P

EA

EA

Atomization energy
Proton affinity
Total energy

1P

EA

Total energy

Total energy

Total energy

7 kcal/mol mean abs. dev.
0.9 kcal/mol mean abs. dev.
3.3 kcal/mol mean abs. dev.
2 kcal/mol mean abs. dev.
0.008, 0.01 A mean abs. dev.
0.2° mean abs. dev.

30, 60 cm~! mean abs. dev.
18 kcal/mol mean abs. dev.
1.6 kcal/mol mean abs. dev.
4.5 kcal/mol mean abs. dev.
5.5 kcal/mol mean abs. dev.
0.018, 0.03 A mean abs. dev.
0.5° mean abs. dev.

55, 40, 70 cm~! mean abs. dev.
5 kcal/mol mean abs. dev.

1 kcal/mol mean abs. dev.

2 kcal/mol mean abs. dev.

2 kcal/mol mean abs. dev.
0.009, 0.015 A mean abs. dev.
0.3° mean abs. dev.

40, 30, 50 cm~! mean abs. dev.
2 kcal/mol mean abs. dev.
0.8 kcal/mol mean abs. dev.
1 kcal/mol mean abs. dev.

1 kcal/mol mean abs. dev.
0.008, 0.009 A mean abs. dev.
0.2° mean abs. dev.

25, 40 cm~! mean abs. dev.
1.6 kcal/mol mean abs. dev.
1.2 kcal/mol mean abs. dev.
0.063 eV mean abs. dev.

1.8 kcal/mol mean abs. dev.
0.061 eV mean abs. dev.

1.4 kcal/mol mean abs. dev.
1.5 kcal/mol mean abs. dev.
1 kcal/mol mean abs. dev.
1.5 kcal/mol mean abs. dev.
0.076 eV mean abs. dev.
0.084 eV mean abs. dev.

2.0 kcal/mol mean abs. dev.
1.0 kcal/mol mean abs. dev.
0.5 kcal/mol mean. abs. dev.
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That way, enormous amounts of time are not wasted (both yours and the
computer’s).
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17 Finding Transition Structures

17.1 INTRODUCTION

A transition structure is the molecular species that corresponds to the top of the
potential energy curve in a simple, one-dimensional, reaction coordinate dia-
gram. The energy of this species is needed in order to determine the energy
barrier to reaction and thus the reaction rate. A general rule of thumb is that
reactions with a barrier of 21 kcal/mol or less will proceed readily at room
temperature. The geometry of a transition structure is also an important piece
of information for describing the reaction mechanism.

Short of determining an entire reaction coordinate, there are a number of
structures and their energies that are important to defining a reaction mecha-
nism. For the simplest single-step reaction, there would be five such structures:

The reactants separated by large distances

The van der Waals complex between the reactants
The transition structure

The van der Waals complex between the products

A

The products separated by large distances

This is illustrated in Figure 17.1. The energies of the van der Waals complexes
are a better description of the separated species for describing liquid-phase re-
actions. The energies of the products separated by large distances are generally
more relevant to gas-phase reactions.

A transition structure is mathematically defined as the geometry that has a
zero derivative of energy with respect to moving every one of the nuclei and has
a positive second derivative of energy for all but one geometric movement,
which has a negative curvature. Unfortunately, this description describes many
structures other than a reaction transition. Other structures at energy maxima
are an eclipsed conformation, the intermediate point in a ring flip, or any
structure with a higher symmetry than the compound should have.

Predicting what a transition structure will look like (without the aid of a
computer) is difficult for a number of reasons. Such a prediction might be based
on a proposed mechanism that is incorrect. The potential energy surface around
the transition structure is often much more flat than the surface around a stable
geometry. Thus, there may be large differences in the transition-structure geom-
etry between two seemingly very similar reactions with similar energy barriers.

147
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transition
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reaction coordinate

FIGURE 17.1 Points on a simple reaction coordinate.

It has been possible to determine transition structures computationally for
many years, although not always easy. Experimentally, it has only recently be-
come possible to examine reaction mechanisms directly using femtosecond
pulsed laser spectroscopy. It will be some time before these techniques can be
applied to all the compounds that are accessible computationally. Furthermore,
these experimental techniques yield vibrational information rather than an
actual geometry for the transition structure.

17.2 MOLECULAR MECHANICS PREDICTION

Traditionally, molecular mechanics has not been the method of choice for pre-
dicting transition structures. However, since it is the only method viable for
many large molecules, some efforts have been made to predict transition struc-
tures. Since the bonds are explicitly defined in molecular mechanics methods, it
is not possible to simply find a point that is an energy maximum, except for
conformational intermediates.

Some force fields, such as MMX, have atom types designated as transition-
structure atoms. When these are used, the user may have to define a fractional
bond order, thus defining the transition structure to exist where there is a
bond order of % or % Sometimes, parameters are available for common organic
reactions. Other times, default values are available, based on general rules or
assumptions. The geometry is then optimized to yield a bond length similar to
that of the true transition structure. With the correct choice of parameters, this
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can give a reasonable transition-state geometry and differences in strain energy.
This technique has only limited predictive value since it is dependent on an a
priori knowledge of the transition structure.

The technique most often used (i.e., for an atom transfer) is to first plot the
energy curve due to stretching a bond that is to be broken (without the new
bond present) and then plot the energy curve due to stretching a bond that is
to be formed (without the old bond present). The transition structure is next
defined as the point at which these two curves cross. Since most molecular
mechanics methods were not designed to describe bond breaking and other
reaction mechanisms, these methods are most reliable when a class of reactions
has been tested against experimental data to determine its applicability and
perhaps a suitable correction factor.

Results using this technique are better for force fields made to describe geo-
metries away from equilibrium. For example, it is better to use Morse poten-
tials than harmonic potentials to describe bond stretching. Some researchers
have created force fields for a specific reaction. These are made by fitting to the
potential energy surface obtained from ab initio calculations. This is useful for
examining dynamics on the surface, but it is much more work than simply using
ab initio methods to find a transition structure.

This technique has been applied occasionally to orbital-based methods,
where it is called seam searching. The rest of the techniques mentioned in this
chapter are applicable to semiempirical, density functional theory (DFT), and
ab initio techniques.

17.3 LEVEL OF THEORY

Transition structures are more difficult to describe than equilibrium geometries.
As such, lower levels of theory such as semiempirical methods, DFT using a
local density approximation (LDA), and ab initio methods with small basis sets
do not generally describe transition structures as accurately as they describe
equilibrium geometries. There are, of course, exceptions to this, but they must
be identified on a case-by-case basis. As a general rule of thumb, methods that
are empirically defined, such as semiempirical methods or the G1 and G2
methods, describe transition structures more poorly than completely ab initio
methods do.

If the transition structure is the point where two electronic states cross, the
single-determinant wave function approximation breaks down at that point.
In this case, it may be impossible to find a transition structure using a single-
determinant wave function, such as semiempiricals, HF, and single-determinant
DFT calculations. If the two states have the same symmetry, single-determinant
calculations will exhibit an avoided crossing, lowering the reaction barrier
slightly as shown in Figure 17.2. If the two states do not have the same symme-
try, a single-determinant calculation will often fail to find a transition structure.
Multiple-determinant calculations with both states in the configuration space
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(a) reaction with a state change

energy

reaction coordinate

(b) avoided crossing in place of a state change

energy

reaction coordinate

FIGURE 17.2 Illustration of the reaction coordinate for a reaction with a change in
the electronic state. (a) Potential energy curves for the two electronic states of the system.

(b) Avoided crossing that can be seen in single-determinant calculations.
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tend to follow the reaction surface correctly. Hybrid and gradient-corrected
DFT methods are unable to describe some transition structures due to their
inability to adequately localize spin.

A few studies have found potential surfaces with a stable minimum at the
transition point, with two very small barriers then going toward the reactants
and products. This phenomenon is referred to as “Lake Eyring”: Henry Eyring,
one of the inventors of transition state theory, suggested that such a situation,
analogous to a lake in a mountain cleft, could occur. In a study by Schlegel and
coworkers, it was determined that this energy minimum can occur as an artifact
of the MP2 wave function. This was found to be a mathematical quirk of the
MP2 wave function, and to a lesser extent MP3, that does not correspond to
reality. The same effect was not observed for MP4 or any other levels of theory.

The best way to predict how well a given level of theory will describe a
transition structure is to look up results for similar classes of reactions. Tables
of such data are provided by Hehre in the book referenced at the end of this
chapter.

17.4 USE OF SYMMETRY

As mentioned above, a structure with a higher symmetry than is obtained for
the ground state may satisfy the mathematical criteria defining a reaction
structure. In a few rare (but happy) cases, the transition structure can be rigor-
ously defined by the fact that it should have a higher symmetry. An example of
this would be the symmetric Sy2 reaction:

F + CH3F — FCH; + F

In this case, the transition structure must have D3, symmetry, with the two F
atoms arranged axially and the H atoms being equatorial. In fact, the transition
structure is the lowest energy compound that satisfies this symmetry criteria.

Thus, the transition structure can be found by forcing the structure to have
the correct symmetry and then optimizing the geometry. This means geometry
optimization rather than transition structure finding algorithms are used. This
is a benefit because geometry optimization algorithms are generally more stable
and reliable than transition structure optimization algorithms.

For systems where the transition structure is not defined by symmetry, it
may be necessary to ensure that the starting geometry does not have any sym-
metry. This helps avoid converging to a solution that is an energy maximum of
some other type.

17.5 OPTIMIZATION ALGORITHMS

If a program is given a molecular structure and told to find a transition struc-
ture, it will first compute the Hessian matrix (the matrix of second derivatives
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of energy with respect to nuclear motion). The nuclei are then moved in a
manner that increases the energy in directions corresponding to negative values
of the Hessian and decreases energy where there are positive values of the
Hessian. This procedure has several implications, as follows.

This is most often done using a quasi-Newton technique, which implicitly
assumes that the potential energy surface has a quadratic shape. Thus, the
optimization will only be able to find the correct geometry if the starting ge-
ometry is sufficiently close to the transition structure geometry to make this a
valid assumption. The starting geometry must also be closer to the reaction
transition than to any other structure satisfying the same mathematical criteria,
such as an eclipsed conformation. Quasi-Newton techniques are generally more
sensitive to the starting geometry than the synchronous transit methods dis-
cussed below.

Simplex optimizations have been tried in the past. These do not assume
a quadratic surface, but require far more computer time and thus are seldom
incorporated in commercial software. Due to the unavailability of this method
to most researchers, it will not be discussed further here.

The optimization of a transition structure will be much faster using methods
for which the Hessian can be analytically calculated. For methods that in-
crementally compute the Hessian (i.e., the Berny algorithm), it is fastest to start
with a Hessian from some simpler calculation, such as a semiempirical calcu-
lation. Occasionally, difficulties are encountered due to these simpler methods
giving a poor description of the Hessian. An option to compute the initial
Hessian at the desired level of theory is often available to circumvent this
problem at the expense of additional CPU time.

When a transition structure is determined by starting from a single initial
geometry, the calculation is very sensitive to the starting geometry. One excel-
lent technique is to start with the optimized transition structure of another
reaction that is expected to proceed by the same mechanism and then replace
the functional groups to give the desired reactants without changing the ar-
rangement of the atoms near the reaction site. This is sometimes called the
template method.

If no known transition structure is available, try setting the lengths of bonds
being formed or broken intermediate to their bonding and van der Waals
lengths. Often, it is necessary for the starting geometry to have no symmetry.
Ignoring wave function symmetry is usually not sufficient.

17.6 FROM STARTING AND ENDING STRUCTURES

Since transition-structure calculations are so sensitive to the starting geometry,
a number of automated techniques for finding reasonable starting geometries
have been proposed. One very useful technique is to start from the reactant and
product structures.

The simplest way to guess the shape of a transition structure is to assume
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FIGURE 17.3 Illustration of the linear synchronous transit method for generating a
starting point for a transition-structure optimization.

that each atom is directly between the position where it starts and the position
where it ends. This linear motion approximation is called linear synchronous
transit (LST). This is a good first approximation, but it has its failings. Con-
sider the motion of an atom that is changing bond angle with respect to the rest
of the molecule. The point half-way between its starting and ending positions
on the line connecting those positions will give a shorter than expected bond
length as shown in Figure 17.3 and thus be (perhaps significantly) higher in
energy.

The logical extension of this technique is the quadratic synchronous transit
method (QST). These methods assume that the coordinates of the atoms in the
transition structure will lie along a parabola connecting the reactant and prod-
uct geometries. QST generally gives some improvement over LST although the
improvement may be very slight.

The QST3 technique requires the user to supply structures for the complex
of reactants and the complex of products, and a guess of the transition state
geometry. This helps assure that the desired path is examined, but the calcula-
tion is also biased by the user’s predicted mechanism, which may be incorrect.

Many programs allow the user to input a weighting factor (i.e., to give a
structure that is 70% of the way from reactants to products). This allows the
application of the Hammond postulate: that the transition structure will look
more like the reactants for an exothermic reaction and more like the products
for an endothermic reaction.

These techniques have been very useful for simple reactions, but they do
have limitations. The biggest limitation is that each of these is designed around
the assumption that the reaction is a single step with a concerted motion of all
atoms. For multistep reactions, these techniques can be used individually for
each step. For a reaction that has only one transition structure but the motion is
not concerted (i.e., breaking one bond and then forming another), it may be
better to use starting geometries created by hand or to use eigenvalue following.

There are distinct differences in the way these methods are implemented in
specific software packages. Some software packages will require the user to
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choose a transit method to obtain a starting geometry and then run a separate
calculation with a quasi-Newton method. Other software packages will have an
automated way of running the transit method calculation, followed by a quasi-
Newton calculation. There have even been algorithms proposed for allowing
the program to make decisions concerning which method to use at each step of
the optimization.

17.7 REACTION COORDINATE TECHNIQUES

A transition structure is, of course, a maximum on the reaction pathway. One
well-defined reaction path is the least energy or intrinsic reaction path (IRC).
Quasi-Newton methods oscillate around the IRC path from one iteration to the
next. Several researchers have proposed methods for obtaining the IRC path
from the quasi-Newton optimization based on this observation.

Likewise, a transition structure can be obtained by following the reaction
path from the equilibrium geometry to the transition structure. This technique
is known as eigenvalue following because the user specifies which vibrational
mode should lead to the desired reaction given sufficient kinetic energy. This is
not the best way to obtain an IRC, nor is it the fastest or most reliable way to
find a transition structure. However, it has the advantage of not making as-
sumptions about concerted motions of atoms or what the transition structure
will look like. When this algorithm fails, it is often because it began following a
different motion on the potential energy surface or the potential surface for a
different sate of the molecule. More information is provided in the chapter on
reaction coordinates.

Another technique is to use a pseudo reaction coordinate. This can be quite a
bit of work for the user and requires more computer time than most of the other
techniques mentioned. However, it has the advantage of being very reliable and
thus will work when all other techniques have failed. A pseudo reaction coor-
dinate is calculated by first choosing a geometric parameter intimately involved
in the reaction (such as the bond length for a bond that is being formed or
broken). A series of calculations is then run in which this parameter is held fixed
at various values, from the value in the reactants to the value in the products,
and all other geometric parameters are optimized. This does not give a true re-
action coordinate but an approximation to it, which matches the true intrinsic
reaction coordinate perfectly only at the equilibrium geometries and transition
structure. Typically, the highest-energy calculation from this set is used as the
starting geometry for a quasi-Newton optimization. In a few rare cases involv-
ing very flat potential surfaces, the quasi-Newton optimization may still fail. In
this case, the transition structure can be calculated to any desired accuracy
(within the theoretical model) by varying the chosen geometric parameter in
successively smaller increments to find the energy maximum. Some software
packages have an automated algorithm for finding a pseudo reaction coordi-
nate, called a coordinate driving algorithm.
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17.8 RELAXATION METHODS

Algorithms have been devised for determining the reaction coordinate, transi-
tion structure, and optimized geometry all in a single calculation. The calcula-
tion simultaneously optimizes a whole set of geometries along the reaction co-
ordinate. This has been found to be a reliable way of finding the transition
structure and an overall improvement in the amount of computer time neces-
sary for obtaining all this information. There are several algorithms following
this general idea of computing the transition structure from the reaction coor-
dinate, such as the chain method, locally updated planes method, and conjugate
peak refinement method. These methods do require a significant amount of
CPU time and are thus not used often.

17.9 POTENTIAL SURFACE SCANS

The reaction coordinate is one specific path along the complete potential energy
surface associated with the nuclear positions. It is possible to do a series of
calculations representing a grid of points on the potential energy surface. The
saddle point can then be found by inspection or more accurately by using
mathematical techniques to interpolate between the grid points.

This type of calculation does reliably find a transition structure. However, it
requires far more computer time than any of the other techniques. As such, this
is generally only done when the research requires obtaining a potential energy
surface for reasons other than just finding the transition structure.

17.10  SOLVENT EFFECTS

It is well known that reaction rates can be affected by the choice of solvent.
Solvent interactions can significantly affect the energy of the transition structure
and generally only slightly change the transition-structure geometry. All the
techniques for finding transition structures can be used when solvent effects are
being included in the calculation. The presence of solvent interactions does not
change the manner in which transition structures are found, although it might
change the results. These methods are discussed in more detail in the Chapter
24.

17.11 VERIFYING THAT THE CORRECT GEOMETRY WAS
OBTAINED

The primary means of verifying a transition structure is to compute the vibra-
tional frequencies. A saddle point should have one negative frequency. The
vibrational motion associated with this negative frequency is the motion going
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toward reactants in one direction and products in the other direction. Various
programs may or may not print the six frequencies that are essentially zero
for the three degrees of translational motion and three degrees of vibrational
motion.

It is also important to always examine the transition structure geometry to
make sure that it is the reaction transition and not the transition in the middle
of a ring flip or some other unintended process. If it is not clear from the geom-
etry that the transition structure is correct, displaying an animation of the tran-
sition vibrational mode should clarify this. If still unclear, a reaction coordinate
can be computed.

It is possible that a transition structure calculation will give two negative
frequencies (a second-order saddle point) or more. This gives a little bit of
information about the potential energy surface, but it is extremely unlikely that
such a structure has any significant bearing on how the reaction occurs. This
type of structure will often be found if the starting geometry had a higher
symmetry than the transition structure should have.

17.12 CHECKLIST OF METHODS FOR FINDING TRANSITION
STRUCTURES

Many techniques for finding transition structures are discussed above. The fol-
lowing is a listing of each of these starting with those that are easiest to use and
most often successful. In other words, start with number 1 and continue down
the list until you find one that works.

1. If the system can only be modeled feasibly by molecular mechanics,
use the potential energy curve-crossing technique or a force field with
transition-structure atom types.

2. If the transition state can be defined by symmetry, do a normal geometry
optimization calculation with the symmetry constrained.

3. If the structure of the intermediate for a very similar reaction is avail-
able, use that structure with a quasi-Newton optimization.

4. Quadratic synchronous transit followed by quasi-Newton.
Linear synchronous transit followed by quasi-Newton.

> »

. Try quasi-Newton calculations starting from structures that look like
what you expect the transition structure to be and that have no symme-
try. This is a skill that improves as you become more familiar with the
mechanisms involved, but requires some trial-and-error work even for
the most experienced researchers.

7. Eigenvalue-following.
8. Relaxation algorithms.
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9. Use a pseudo reaction coordinate with one parameter constrained fol-
lowed by a quasi-Newton optimization.

10. Use a pseudo reaction coordinate with one parameter constrained using
successively smaller steps for the constrained parameter until the desired
accuracy is reached.

11. Go back to options 9 and 10 and constrain a different parameter.

12. Consider the fact that some reactions have no barrier. You might also be
making incorrect assumptions about the reaction mechanism. Consider
these possibilities and start over.

13. Switch to a higher level of theory and start all over again.

14. Obtain the transition structure from the entire potential energy surface.
It is questionable that there will be any case where this is the only
option, but it should work as a desperate last resort.

Once you are experienced at finding transition structures for a particular
class of reactions, you will probably go directly to the technique that has been
most reliable for those reactions. Until that time, the checklist above is our best
advice for finding a transition structure with the least amount of work for the
researcher and the computer. Regardless of experience, it is common to expe-
rience quite a bit of trial and error in finding transition structures. Even expe-
rienced researchers find that the way they have been regarding a reaction is
often much more simplistic than the molecular motions actually involved.

All the techniques discussed in this chapter are applicable to single-step
reaction mechanism. For multiple-step mechanisms, it is necessary to work
through this process for each step in the reaction.
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18 Reaction Coordinates

In order to define how the nuclei move as a reaction progresses from reactants
to transition structure to products, one must choose a definition of how a re-
action occurs. There are two such definitions in common use. One definition is
the minimum energy path (MEP), which defines a reaction coordinate in which
the absolute minimum amount of energy is necessary to reach each point on the
coordinate. A second definition is a dynamical description of how molecules
undergo intramolecular vibrational redistribution until the vibrational motion
occurs in a direction that leads to a reaction. The MEP definition is an intuitive
description of the reaction steps. The dynamical description more closely de-
scribes the true behavior molecules as seen with femtosecond spectroscopy.

18.1 MINIMUM ENERGY PATH

The MEP is defined as the path of steepest descent in mass-weighted Cartesian
coordinates. This is also called intrinsic reaction coordinate (IRC). In reality,
we know that many other paths close to the IRC path would also lead to a re-
action and the percentage of the time each path is taken could be described by
the Boltzmann distribution.

There are several algorithms for finding a MEP. The most reliable of these
algorithms are the current generation of methods that start from the transition
structure. Simply using a steepest-descent method does not give a good descrip-
tion of the MEP. This is because the points chosen by steepest-descent algorithms
tend to oscillate around the reaction coordinate as shown in Figure 18.1. The
algorithms incorporated in most software packages correct for this problem.

The reaction coordinate is calculated in a number of steps. If too few steps
are used, then the points that are computed will follow the reaction coordinate
less closely. Usually, the default number of points computed by software pack-
ages will give reasonable results. More points may be required for complex
mechanisms. This algorithm is sometimes called the IRC algorithm, thus cre-
ating confusion over the definition of IRC.

Alternatively, an eigenvalue following algorithm can be used. This is a
shallowest-ascent technique for following the motion of one of the vibrational
modes. The primary advantage of this method is that it can follow the reaction
coordinate energetically uphill from the reactants or products. This eliminates
the need to compute a transition-structure geometry. The eigenvalue following
path from a minimum to the transition structure gives an approximation to the
reaction coordinate. The path from transition structure to a minimum found by
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steepest descent /

algorith path \

FIGURE 18.1 [Illustration of how the steepest descent algorithm follows a path that
oscillates around the minimum energy path.

this algorithm gives a better approximation of the MEP, but is not as accurate
as the approximation of the IRC algorithms.

A pseudo reaction coordinate can be obtained by fixing one of the parame-
ters and allowing the rest of the geometry to optimize. The fixed parameter is
then stepped along the path and the rest of the structure reoptimized at each
step. This is also called a trial reaction coordinate. This algorithm does not
yield a rigorously correct MEP. This is because the chosen parameter may be
the one moving the farthest at some points along the path, but not at others.
The resulting MEP will look reasonable when the parameter gives a good de-
scription. When the parameter poorly describes the MEP, a very small change
in the parameter value might result in a very large change in energy and geome-
try. Thus, the pseudo reaction coordinate will find energies on the MEP, but
will locate them at an incorrect distance along reaction route. A poorly chosen
reaction coordinate will sometimes result in a hysteresis in which a different
IRC is obtained by increasing the reaction coordinate rather than by decreasing
it. In this case, the geometries obtained will not be exactly those along the true
IRC, although they are often close. Some software packages have an auto-
mated version of this algorithm called a coordinate driving algorithm.

18.2 LEVEL OF THEORY

The types of algorithms described above can be used with any ab initio or
semiempirical Hamiltonian. Generally, the ab initio methods give better results
than semiempirical calculations. HF and DFT calculations using a single deter-
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minant are not able to correctly describe mechanisms involving the uncoupling
of electrons. The MP2 method, and occasionally MP3, are known to sometimes
incorrectly predict a tiny energy minimum where the transition structure should
be. Unrestricted DFT calculations give reasonable results as long as they are
not combined with a spin projection method, in contrast to unrestricted HF
that is improved by spin projection. The G1 and G2 methods also predict
reaction coordinates more poorly than they predict equilibrium geometry. The
reasonable list of methods to use, in order of ascending accuracy, is as follows:

1. Semiempirical calculations, particularly PM3 or AMI1, for cases where ab
initio calculations are too expensive

2. HF or DFT where no uncoupling of electrons is involved; which is the
better method is still a matter of debate

MP4

Cl

MCSCF, CASSCF

MRCI

CC, which is superior to CI because it is rigorously size consistent

N Rw

The way in which the calculation is performed is also important. Unre-
stricted calculations will allow the system to shift from one spin state to
another. It is also often necessary to run the calculation without using wave
function symmetry. The calculation of geometries far from equilibrium tends to
result in more SCF convergence problems, which are discussed in Chapter 22.

If the complete potential energy surface has already been computed, a reac-
tion coordinate can be determined using an adaptation of the IRC algorithm.
The IRC computation requires very little computer time, but obtaining the
potential energy surface is far more computation-intensive than an ab initio
IRC calculation. Thus, this is only done when the potential energy surface is
being computed for another reason.

18.3 LEAST MOTION PATH

Some early studies were done by computing energies as a molecule was pulled
apart into fragments without allowing the fragments to change geometry or
orientation. The resulting reaction path is called a least motion path. These
types of calculations are now generally assigned as introductory-level class
exercises. The energetics of the least motion path are very poor. In some cases,
the least motion path even shows energy barriers where none should exist.

18.4 RELAXATION METHODS

An algorithm has been proposed for determining the reaction coordinate,
transition structure, and optimized geometry all in a single calculation. The
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calculation simultaneously optimizes a whole set of geometries along the reac-
tion coordinate. This has been found to be a reliable way of finding the transi-
tion structure and represents an overall improvement in the amount of com-
puter time necessary for obtaining all this information. The CHAIN algorithm
is a relaxation method used with semiempirical calculations.

18.5 REACTION DYNAMICS

Both molecular dynamics studies and femtosecond laser spectroscopy results
show that molecules with a sufficient amount of energy to react often vibrate
until the nuclei follow a path that leads to the reaction coordinate. Dynamical
calculations, called trajectory calculations, are an application of the molecular
dynamics method that can be performed at semiempirical or ab initio levels of
theory. See Chapter 19 for further details.

18.6 WHICH ALGORITHMS TO USE

Listing the available algorithms, starting with the best results and most reliable
algorithm, and working to the lowest-quality results, we arrive at the following
list:

1. If vibrational information is desired, use a trajectory calculation as de-
scribed in Chapter 19.

2. If an entire potential energy surface has been computed, use an IRC
algorithm with that surface.

Use an IRC algorithm starting from the transition structure.
Use an eigenvalue following algorithm.

Use a relaxation method.

Use a pseudo reaction coordinate algorithm.

N o kW

As a last resort, compute the entire potential energy surface and then
obtain a reaction coordinate from it.

An ensemble of trajectory calculations is rigorously the most correct descrip-
tion of how a reaction proceeds. However, the MEP is a much more under-
standable and useful description of the reaction mechanism. These calculations
are expected to continue to be an important description of reaction mechanism
in spite of the technical difficulties involved.
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19 Reaction Rates

The calculation of reaction rates has not seen as the widespread use as the cal-
culation of molecular geometries. In recent years, it has become possible to
compute reaction rates with reasonable accuracy. However, these calculations
require some expertise on the part of the researcher. This is partly because of
the difficulty in obtaining transition structures and partly because reaction rate
algorithms have not been integrated into major computational chemistry pro-
grams and thus become automated.

19.1 ARRHENIUS EQUATION

The rate of a reaction r is dependent on the reactant concentrations. For ex-
ample, a bimolecular reaction between the reactants B and C could have a rate
expression, such as

r = k[B][C] (19.1)

The simplest expression for the temperature dependence of the rate constant
k is given by the Arrhenius equation

k = Ae E/RT (19.2)

where E, is the activation energy and A is called the pre-exponential factor.
These can be obtained from experimentally determined reaction rates, ab initio
calculations, trajectory calculations, or some simple theoretical method such as
a hard-sphere collision description.

Although the Arrhenius equation does not predict rate constants without
parameters obtained from another source, it does predict the temperature de-
pendence of reaction rates. The Arrhenius parameters are often obtained from
experimental kinetics results since these are an easy way to compare reaction
kinetics. The Arrhenius equation is also often used to describe chemical kinetics
in computational fluid dynamics programs for the purposes of designing
chemical manufacturing equipment, such as flow reactors. Many computa-
tional predictions are based on computing the Arrhenius parameters.

Some reactions, such as ion-molecule association reactions, have no energy
barrier. These reactions cannot be described well by the Arrhenius equation or
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the transition state theory discussed below. These reactions can be modeled as a
trajectory for a capture process.

19.2 RELATIVE RATES

There are a few cases where the rate of one reaction relative to another is
needed, but the absolute rate is not required. One such example is predicting
the regioselectivity of reactions. Relative rates can be predicted from a ratio of
Arrhenius equations if the relative activation energies are known. Reasonably
accurate relative activation energies can often be computed with HF wave
functions using moderate-size basis sets.

An example of this would be examining a reaction in which there are two
possible products, such as ortho or para addition products. The activation en-
ergy is computed for each reaction by subtracting the energy of reactants from
the transition-state energy. The difference in activation energies can then be
computed. For this example, let us assume that the ortho product has an acti-
vation energy which is 2.6 kcal/mol larger than the activation energy for the
para product. The ratio of Arrhenius equations would be

kpara Apara€” (Okeal/mol)/RT
Kortho  Aortnoe (SRl /moll /KT (19.3)

Since the reactions are very similar, we will assume that the pre-exponential
factors A are the same, thus giving.

kpara _ p(26keal/mol)/RT (19.4)

ortho

Substituting 7" = 298 K and the gas constant gives a ratio of about 81. Thus, we
expect there will be 80 times as much para product as ortho product, assuming
that the kinetic product is obtained.

19.3 HARD-SPHERE COLLISION THEORY

The simplest approach to computing the pre-exponential factor is to assume
that molecules are hard spheres. It is also necessary to assume that a reaction
will occur when two such spheres collide in order to obtain a rate constant k for
the reactants B and C as follows:

8KT (mp + 2 /_E,
k= Nyn(rg+rc)? {T <%>] exp (kB—T> (19.5)

where rg and r¢ are radii of molecules with masses mg and m.
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To a first approximation, the activation energy can be obtained by sub-
tracting the energies of the reactants and transition structure. The hard-sphere
theory gives an intuitive description of reaction mechanisms; however, the pre-
dicted rate constants are quite poor for many reactions.

19.4 TRANSITION STATE THEORY

Simply using the activation energy assumes that the only way a reaction occurs
is along the minimum energy path (MEP). The transition structure is the max-
imum along this path, which is used to obtain the activation energy. It would be
more correct to consider that reactions may occur by going through a geometry
very similar to the transition structure. Transition state theory calculations
(TST) take this into account. Eyring originally referred to this as the absolute
rate theory.

Transition state theory is built on several mathematical assumptions. The
theory assumes that Maxwell-Boltzmann statistics will predict how many
molecular collisions should have an energy greater than or equal to the activa-
tion energy. This is called a quasi-equilibrium because it is equivalent to as-
suming that the molecules at the transition structure are in equilibrium with the
reactant molecules, even though molecules do not stay at the transition struc-
ture long enough to achieve equilibrium. Furthermore, it assumes that the
molecules reaching the transition point react irreversibly.

Taking into account paths near the saddle point in a statistically valid way
requires an integral over the possible energies. This may be formulated for
practical purposes as an integral over reactant partition functions and the den-
sity of states. These calculations require information about the shape of the
potential energy surface around the transition structure, frequently using the
reaction coordinate or an analytic function describing the entire potential en-
ergy surface. When making ab initio calculations, reactant and transition struc-
ture vibrational frequencies are often used.

19.5 VARIATIONAL TRANSITION STATE THEORY

Examining transition state theory, one notes that the assumptions of Maxwell—
Boltzmann statistics are not completely correct because some of the molecules
reaching the activation energy will react, lose excess vibrational energy, and not
be able to go back to reactants. Also, some molecules that have reacted may go
back to reactants again.

Variational transition state theory (VTST) is formulated around a varia-
tional theorem, which allows the optimization of a hypersurface (points on the
potential energy surface) that is the effective point of no return for reactions.
This hypersurface is not necessarily through the saddle point. Assuming that
molecules react without a reverse reaction once they have passed this surface
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corrects for the statistical effects of molecules being drawn out of the ensemble
and molecules going back to reactants. This is referred to as calculating the
one-way equilibrium flux in the product direction. This results in VTST taking
both energy and entropy into account, whereas TST is based on energy only.

Several VIST techniques exist. Canonical variational theory (CVT), im-
proved canonical variational theory (ICVT), and microcanonical variational
theory (uVT) are the most frequently used. The microcanonical theory tends
to be the most accurate, and canonical theory the least accurate. All these
techniques tend to lose accuracy at higher temperatures. At higher temper-
atures, excited states, which are more difficult to compute accurately, play an
increasingly important role, as do trajectories far from the transition structure.
For very small molecules, errors at room temperature are often less than 10%.
At high temperatures, computed reaction rates could be in error by an order of
magnitude.

For reactions between atoms, the computation needs to model only the
translational energy of impact. For molecular reactions, there are internal en-
ergies to be included in the calculation. These internal energies are vibrational
and rotational motions, which have quantized energy levels. Even with these
corrections included, rate constant calculations tend to lose accuracy as the
complexity of the molecular system and reaction mechanism increases.

These calculations can also take into account tunneling through the reaction
barrier. This is most significant when very light atoms are involved (i.e., hy-
drogen transfer). Tunneling effects are often included via an approximation
method called a semiclassical tunneling calculation. This is an effective one-
dimensional description of tunneling. This approximation results in the cal-
culation requiring less CPU time without introducing a significant amount of
error compared to other ways of including tunneling.

The calculation must be given a description of the potential energy surface
either as an analytic function or as the output from molecular orbital calcu-
lations. Analytic functions are generally used in order to compare the results of
trajectory calculations and VTST calculations for the same surface. Informa-
tion from molecular calculations might be either a potential energy surface scan
or a series of points along the reaction coordinate with their associated gradient
and Hessian matrices. Information about the reactants, products, and transition
structure, such as geometries and vibrational and rotational excited states, must
also be provided. Electronic excited-state information may be necessary if the
reaction involves a state crossing. These energy surfaces must be very accurate,
often requiring correlated methods with polarized basis sets.

19.6 TRAJECTORY CALCULATIONS

Molecular dynamics studies can be done to examine how the path and orien-
tation of approaching reactants lead to a chemical reaction. These studies re-
quire an accurate potential energy surface, which is most often an analytic
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function fitted to results from ab initio calculations. Accurate potential energy
surfaces have also been obtained from femtosecond spectroscopy results. The
amount of work necessary to study a reaction with these techniques may be far
more than the work required to obtain the potential energy surface, which was
not a trivial task in itself.

A classical trajectory calculation will use this potential energy function in
order to run a molecular dynamics simulation. The cross section for reaction
can be computed by solving the equations of motion. The rate constants can
then be obtained from many trajectories weighted by the appropriate distribu-
tion function. Classical trajectory calculations are most accurate for reactions
involving heavy atoms at high temperatures. These calculations are sensitive
to a number of technical details, such as the choice of the dynamics time step
and the choice of numerical integration schemes (see the Karplus, Porter, and
Sharma article in the bibliography). Technical details affecting molecular dy-
namics results are discussed further in Chapter 7.

Quasiclassical calculations are similar to classical trajectory calculations
with the addition of terms to account for quantum effects. The inclusion of
tunneling and quantized energy levels improves the accuracy of results for light
atoms, such as hydrogen transfer, and lower-temperature reactions.

Ab initio trajectory calculations have now been performed. However, these
calculations require such an enormous amount of computer time that they have
only been done on the simplest systems. At the present time, these calculations
are too expensive to be used for computing rate constants, which require many
trajectories to be computed. Semiempirical methods have been designed spe-
cifically for dynamics calculations, which have given insight into vibrational
motion, but they have not been the methods of choice for computing rate con-
stants since they are generally inferior to analytic potential energy surfaces
fitted from ab initio results.

19.7 STATISTICAL CALCULATIONS

Rather than using transition state theory or trajectory calculations, it is possible
to use a statistical description of reactions to compute the rate constant. There
are a number of techniques that can be considered variants of the statistical
adiabatic channel model (SACM). This is, in essence, the examination of many
possible reaction paths, none of which would necessarily be seen in a trajectory
calculation. By examining paths that are easier to determine than the trajectory
path and giving them statistical weights, the whole potential energy surface is
accounted for and the rate constant can be computed.

This technique has not been used as widely as transition state theory or
trajectory calculations. The accuracy of results is generally similar to that given
by UTST. There are a few cases where SACM may be better, such as for the
reactions of some polyatomic polar molecules.
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19.8 ELECTRONIC STATE CROSSINGS

A simple method for predicting electronic state crossing transitions is Fermi’s
golden rule. It is based on the electromagnetic interaction between states and is
derived from perturbation theory. Fermi’s golden rule states that the reaction
rate can be computed from the first-order transition matrix H!) and the density
of states at the transition frequency p as follows:

r:2h—”|H<1>|2p (19.6)

The golden rule is a reasonable prediction of state-crossing transition rates
when those rates are slow. Crossings with fast rates are predicted poorly due to
the breakdown of the perturbation theory assumption of a small interaction.

There are reaction rates that depend on radiationless transitions between
electronic states. For example, photochemically induced reactions often consist
of an initial excitation to an excited electronic state, followed by a geometric
rearrangement to lower the energy. In the course of this geometric rearrange-
ment, there may be one or more radiationless transitions from one electronic
state to another. The rate for these transitions can be obtained from a transition
dipole moment calculation, analogous to the transition dipole calculations that
give electronic spectrum intensities. For some reactions, spin-orbit coupling is a
significant factor in determining the state crossing. A more empirical approach
is to use an adiabatic coupling term. It is still a matter of debate which of these
techniques is most accurate or most conceptually correct.

19.9 RECOMMENDATIONS

Computing reaction rates is not as simple as choosing one more option in an
electronic structure program. Deciding to compute reaction rates will require a
significant investment of the researchers time in order to understand the various
input options. These calculations can give good results, but are very sensitive to
subtle details like using a mass-scaled (isoinertial) coordinate system to specify
the geometry. Most ab initio programs use center-of-mass or center-of-nuclear-
charge coordinates. The computational requirements for completing a reaction-
rate calculation are fairly modest. The typical calculation will require less than
20 MB of memory and only minutes of CPU time. The POLYRATE software
program is the most widely used for performing variational transition state
calculations.

For relative reaction rates, ab initio calculations with moderate-size basis sets
usually give sufficient accuracy.

For the accurate, a priori calculation of reaction rates, variational transition
state calculations are now the method of choice. These calculations are capable
of giving the highest-accuracy results, but can be technically difficult to perform
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correctly. They can be done for moderate-size organic molecules. Even with the
best of these methods, relative rates are more accurate than absolute rate con-
stants. Absolute rate constants can be in error by as much as a factor of 10 even
when the barrier height has been computed to within 1 kcal/mol.

Transition state theory calculations present slightly fewer technical diffi-
culties. However, the accuracy of these calculations varies with the type of re-
action. With the addition of an empirically determined correction factor, these
calculations can be the most readily obtained for a given class of reactions.

Quasiclassical trajectory calculations are the method of choice for deter-
mining the dynamics of intramolecular vibrational energy redistribution leading
to a chemical reaction. If this information is desired, an accurate reaction rate
can be obtained at little extra expense.
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20 Potential Energy Surfaces

In the chapter on reaction rates, it was pointed out that the perfect description
of a reaction would be a statistical average of all possible paths rather than just
the minimum energy path. Furthermore, femtosecond spectroscopy experiments
show that molecules vibrate in many different directions until an energetically
accessible reaction path is found. In order to examine these ideas computa-
tionally, the entire potential energy surface (PES) or an approximation to it
must be computed. A PES is either a table of data or an analytic function,
which gives the energy for any location of the nuclei comprising a chemical
system.

20.1 PROPERTIES OF POTENTIAL ENERGY SURFACES

Once a PES has been computed, it can be analyzed to determine quite a bit of
information about the chemical system. The PES is the most complete descrip-
tion of all the conformers, isomers, and energetically accessible motions of a
system. Minima on this surface correspond to optimized geometries. The
lowest-energy minimum is called the global minimum. There can be many local
minima, such as higher-energy conformers or isomers. The transition structure
between the reactants and products of a reaction is a saddle point on this sur-
face. A PES can be used to find both saddle points and reaction coordinates.
Figure 20.1 illustrates these topological features. One of the most common
reasons for doing a PES computation is to subsequently study reaction dy-
namics as described in Chapter 19. The vibrational properties of the molecule
can also be obtained from the PES.

In describing PES, the terms adiabatic and diabatic are used. In the older
literature, these terms are used in confusing and sometimes conflicting ways.
For the purposes of this discussion, we will follow the conventions described by
Sidis; they are both succinct and reflective of the most common usage. The term
adiabatic originated in thermodynamics, where it means no heat transfer
(d; = 0). An adiabatic PES is one in which a particular electronic state is fol-
lowed; thus no transfer of electrons between electronic states occurs. Only in a
few rare cases is this distinction noted by using the term electronically adiabatic.
A diabatic surface is the lowest-energy state available for each set of nuclear
positions, regardless of whether it is necessary to switch from one electronic
state to another. These are illustrated in Figure 20.2.
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FIGURE 20.1 Points on a potential energy surface.

The mathematical definition of the Born—Oppenheimer approximation
implies following adiabatic surfaces. However, software algorithms using this
approximation do not necessarily do so. The approximation does not reflect
physical reality when the molecule undergoes nonradiative transitions or two

=

adiabatic
paths

diabatic
"""" path

FIGURE 20.2 Adiabatic paths for bond dissociation in two different electronic states
and the diabatic path.
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electronic states are intimately involved in a process, such as Jahn—Teller dis-
tortions or vibronic coupling effects.

Depending on the information desired, the researcher might wish to have
a calculation follow either an adiabatic path or a diabatic path, as shown in
Figure 20.2. Which potential energy surface is followed depends on both the
construction of the wave function and the means by which wave function sym-
metry is used by the software. A single-determinant wave function in which
wave function symmetry is imposed will follow the adiabatic surface where two
states of different symmetry cross. When two states of the same symmetry cross,
a single-determinant wave function will exhibit an avoided crossing, as shown
in Figure 17.2. A multiple-determinant wave function, in which both states are
in the configuration space, will have the flexibility to follow the diabatic path. It
is sometimes possible to get a multiple-determinant calculation (particularly
MCSCEF) to follow the adiabatic path by moving in small steps and using the
optimized wave function from the previous point as the initial guess for each
successive step.

20.2 COMPUTING POTENTIAL ENERGY SURFACES

Computing a complete PES for a molecule with N atoms requires computing
energies for geometries on a grid of points in 3N-6 dimensional space. This is
extremely CPU-intensive because it requires computing a set of X points in
each dimension, resulting in X3V~ single point computations. Because of this,
PES’s are typically only computed for systems with a fairly small number of
atoms.

Some software packages have an automated procedure for computing all the
points on a PES, but a number of technical problems commonly arise. Some
programs have a function that halts the execution when two nuclei are too close
together; this function must be disabled. SCF procedures often exhibit conver-
gence problems far from equilibrium. Methods for fixing SCF convergence
problems are discussed in Chapter 22. At different points on the PES, the mol-
ecule may have different symmetries. This often results in errors when using
software packages that use molecular symmetry to reduce computation time.
The use of symmetry by a program can often be turned off. Computation of the
PES for electronic excited states can lead to additional technical difficulties as
described in Chapter 25.

The level of theory necessary for computing PES’s depends on how those
results are to be used. Molecular mechanics calculations are often used for
examining possible conformers of a molecule. Semiempiricial calculations can
give a qualitative picture of a reaction surface. Ab initio methods must often be
used for quantitatively correct reaction surfaces. Note that size consistent
methods must be used for the most accurate results. The specific recom-
mendations given in Chapter 18 are equally applicable to PES calculations.
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20.3 FITTING PES RESULTS TO ANALYTIC EQUATIONS

Once a PES has been computed, it is often fitted to an analytic function. This is
done because there are many ways to analyze analytic functions that require
much less computation time than working directly with ab initio calculations.
For example, the reaction can be modeled as a molecular dynamics simulation
showing the vibrational motion and reaction trajectories as described in Chap-
ter 19. Another technique is to fit ab initio results to a semiempirical model de-
signed for the purpose of describing PES’s.

Of course, the analytic surface must be fairly close to the shape of the true
potential in order to obtain physically relevant results. The criteria on fitting
PES results to analytic equations have been broken down into a list of 10 spe-
cific items, all of which have been discussed by a number of authors. Below is
the list as given by Schatz:

1. The analytic function should accurately characterize the asymptotic
reactant and product molecules.

2. Tt should have the correct symmetry properties of the system.

3. It should represent the true potential accurately in the interaction
regions for which experimental or nonempirical theoretical data are
available.

4. Tt should behave in a physically reasonable manner in those parts of the
interaction regions for which no experimental or theoretical data are
available.

5. It should smoothly connect the asymptotic and interaction regions in a
physically reasonable way.

6. The interpolating function and its derivatives should have as simple an
algebraic form as possible consistent with the desired goodness of fit.

7. It should require as small a number of data points as possible to achieve
an accurate fit.

8. It should converge to the true surface as more data become available.

9. It should indicate where it is most meaningful to compute the data
points.

10. It should have a minimal amount of “ad hoc” or “patched up”
character.

Criteria 1 through 5 must be obeyed in order to obtain reasonable results in
subsequent calculations using the function. Criteria 6 through 10 are desirable
for practical reasons. Finding a function that meets these criteria requires skill
and experience, and no small amount of patience.

The analytic PES function is usually a summation of two- and three-body
terms. Spline functions have also been used. Three-body terms are often poly-
nomials. Some of the two-body terms used are Morse functions, Rydberg
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functions, Taylor series expansions, the Simons—Parr—Finlan (SPF) expansion,
the Dunham expansion, and a number of trigonometric functions. Ermler &
Hsieh, Hirst, Isaacson, and Schatz have all discussed the merits of these func-
tions. Their work is referenced in the bibliography at the end of this chapter.

20.4 FITTING PES RESULTS TO SEMIEMPIRICAL MODELS

The most commonly used semiempirical for describing PES’s is the diatomics-
in-molecules (DIM) method. This method uses a Hamiltonian with parameters
for describing atomic and diatomic fragments within a molecule. The func-
tional form, which is covered in detail by Tully, allows it to be parameterized
from either ab initio calculations or spectroscopic results. The parameters must
be fitted carefully in order for the method to give a reasonable description of
the entire PES. Most cases where DIM yielded completely unreasonable results
can be attributed to a poor fitting of parameters. Other semiempirical methods
for describing the PES, which are discussed in the reviews below, are LEPS,
hyperbolic map functions, the method of Agmon and Levine, and the mole-
cules-in-molecules (MIM) method.

BIBLIOGRAPHY

Introductory discussions can be found in
J. B. Foresman, A&. Frisch, Exploring Chemistry with Electronic Structure Methods
Second Edition Gaussian, Pittsburgh (1996).
A. R. Leach Molecular Modelling Principles and Applications Longman, Essex (1996).
I. N. Levine, Physical Chemistry Fourth Edition McGraw Hill, New York (1995).
P. W. Atkins, Quanta Oxford, Oxford (1991).

T. Clark, 4 Handbook of Computational Chemistry John Wiley & Sons, New York
(1985).

Books on potential energy surfaces are

V. I. Minkin, B. Y. Simkin, R. M. Minyaev, Quantum Chemistry of Organic Com-
pounds; Mechanisms of Reactions Springer-Verlag, Berlin (1990).

P. G. Mezey, Potential Energy Hypersurfaces Elsevier, Amsterdam (1987).

J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, A. J. C. Varandas, Molecular
Potential Energy Functions John Wiley & Sons, New York (1984).

Potential Energy Surfaces and Dynamics Calculations D. G. Truhlar, Ed., Plunum, New
York (1981).
Review articles are

M. L. McKee, M. Page, Rev. Comput. Chem. 4, 35 (1993).
Adv. Chem. Phys. M. Baer, C.-Y. Ng, Eds., 82 (1992).



178 20 POTENTIAL ENERGY SURFACES

L. B. Harding, Advances in Molecular Electronic Structure Theory 1,45, T. H. Dunning,
Jr., Ed., JAI, Greenwich (1990).

K. Balasubramanian, Chem. Rev. 90, 93 (1990).

Advances in Molecular Electronic Structure Theory, Calculation and Characterization of
Molecular Potential Energy Surfaces T. H. Dunning, Jr., Ed., JAI, Greenwich (1990).

New Theoretical Concepts for Understanding Organic Reactions J. Bertran, I. G. Csiz-
madia, Eds., Kluwer, Dordrecht (1988).

D. G. Truhlar, R. Steckler, M. S. Gordon, Chem. Rev. 87, 217 (1987).
P. J. Bruna, S. D. Peyerimhoff, Adv. Chem. Phys. 67, 1 (1987).

T. H. Dunning, Jr., L. B. Harding, Theory of Chemical Reaction Dynamics Vol 1
M. Baer Ed. 1, CRC (1985).

P. J. Kuntz, Theory of Chemical Reaction Dynamics Vol I M. Baer Ed. 71, CRC (1985).

D. M. Hirst, Adv. Chem. Phys. 50, 517 (1982).

Adv. Chem. Phys. K. P. Lawley, Ed., 42 (1980).

J. N. Murrell, Gas Kinetics and Energy Transfer, Volume 3 P. G. Ashmore, R. J. Do-
novan (Eds.) 200, Chemical Society, London (1978).

W. A. Lester, Jr., Adv. Quantum Chem. 9, 199 (1975).

G. G. Balint-Kurti, Adv. Chem. Phys. 30, 137 (1975).

Reactions involving crossing between excited state surfaces are discussed in

M. Klessinger, Theoretical Organic Chemistry C. Parkani Ed., 581, Elsevier (1998).
F. Bernardi, M. Olivucci, M. A. Robb, Chem. Soc. Rev. 25, 321 (1996).

V. Sidis, Adv. Chem. Phys. 82, 73 (1992).

J. J. Kaufman, Adv. Chem. Phys. 28, 113 (1975).

Fitting to analytic functions is reviewed in

A. D. Isaacson, J. Phys. Chem. 96, 531 (1992).

W. C. Ermler, H. C. Hsieh, Advances in Molecular Electronic Structure Theory T. H.
Dunning, Jr., Ed., 1, JAI, Greenwich (1990).

G. C. Schatz, Advances in Molecular Electronic Structure Theory T. H. Dunning, Jr.,
Ed., 85, JAI, Greenwich (1990).
The DIM method is reviewed in

J. C. Tully, Potential Energy Surfaces K. P. Lawly, Ed., 63 John Wiley & Sons, New
York (1980).



Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems.

David C. Young

Copyright © 2001 John Wiley & Sons, Inc.
ISBNs: 0-471-33368-9 (Hardback); 0-471-22065-5 (Electronic)

21 Conformation Searching

Geometry optimization methods start with an initial geometry and then change
that geometry to find a lower-energy shape. This usually results in finding a
local minimum of the energy as depicted in Figure 21.1. This local minimum
corresponds to the conformer that is closest to the starting geometry. In order
to find the most stable conformer (a global minimum of the energy), some type
of algorithm must be used and then many different geometries tried to find the
lowest-energy one.

For any given molecule, this is important because the lowest-energy con-
formers will have the largest weight in the ensemble of energetically accessible
conformers. This is particularly important in biochemical research in order to
determine a protein structure from its sequence. A protein sequence is much
easier to determine than an experimental protein structure by X-ray diffraction
or neutron diffraction. Immense amounts of work have gone into attempting
to solve this protein-folding problem computationally. This is very difficult due
to the excessively large number of conformers for such a big molecule. This
problem is complicated by the fact that even molecular mechanics calculations
require a finite amount of computer time, which may be too long to spend on
each trial conformer of a large protein.

Which conformation is most important falls into one of three categories.
First, simply asking what shape a molecule has corresponds to the lowest-
energy conformer. Second, examining a reaction corresponds to asking about
the conformer that is in the correct shape to undergo the reaction. Since the
difference in energy between conformers is often only a few kcal/mole, it is not
uncommon to find reactions in which the active conformer is not necessarily the
lowest-energy one. Third, predicting an observable property of the system may
require using the statistical weights of that property for all the energetically
accessible conformers of the system.

Conformation search algorithms are an automated means for generating
many different conformers and then comparing them based on their relative
energies. Due to the immensely large number of possible conformers of a large
molecule, it is desirable to do this with a minimum amount of CPU time. Quite
often, all bond lengths are held fixed in the course of the search, which is a very
reasonable approximation. Frequently, bond angles are held fixed also, which is
a fairly reasonable approximation.

Algorithms that displace the Cartesian coordinates of atoms have also been
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FIGURE 21.1 A one-dimensional representation of the energy of all possible con-
formers of a simple molecule.

devised. This is usually one of the less efficient methods for exploring con-
formers of flexible molecules. It can also have the unintended side effect of
changing the stereochemistry of the compound. This can be an efficient way to
find conformers of nonaromatic ring systems.

From geometry optimization studies, it is known that energy often decreases
quite rapidly in the first few steps of the optimization. This is particularly
common when using conjugate gradient algorithms, which are often employed
with molecular mechanics methods. Because of this, geometry minimization is
sometimes incorporated in conformation search algorithms. Some algorithms
do one or two minimization steps after generating each trial conformer. Other
algorithms will perform a minimization only for the lowest-energy conformers.
It is advisable to do an energy minimization for a number of the lowest-energy
structures found by a conformation search, not just the single lowest-energy
structure.

The sections below describe the most commonly used techniques. There are
many variations and permutations for all of these. The reader is referred to the
software documentation and original literature for clarification of the details.

21.1 GRID SEARCHES

The simplest way to search the conformation space is by simply choosing a set
of conformers, each of which is different by a set number of degrees from the
previous one. If each bond is divided into M different angles and N bonds are
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FIGURE 21.2 Sampling of conformation space using a grid search. (a) Sampling with
a fine grid. (b) Sampling with a coarse grid.

rotated, this results in M possible conformers. In order to search the confor-
mation space adequately, these points must be fairly close together as depicted
in Figure 21.2. Although very slow, a grid search with a fairly small step size is
the only way to be completely sure that the absolute global minimum has been
found. The number of steps can be best limited by checking only the known
staggered conformations for each bond, but this can still give a large number of

conformers.
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FIGURE 21.3 Sampling of conformation space using a Monte Carlo search (with a
small number of iterations).

21.2 MONTE CARLO SEARCHES

Monte Carlo methods, which randomly choose the conformer angles, are a
more efficient way to sample the entire conformation space. For the same
amount of CPU time, a Monte Carlo method has a better chance of finding a
lower-energy conformer than a grid search. However, unlike a grid search with
a small step size, the results from a Monte Carlo optimization will not be
guaranteed rigorously as the goal minimum, but rather as a near-optimum
solution. This is because the Monte Carlo algorithm may search some regions
more thoroughly than others, as shown in Figure 21.3. As illustrated in this
figure, the lowest-energy conformer found may not lead to the global minimum
even after an optimization is performed. Monte Carlo searches can be efficient
in finding conformers that are very close in energy although much different in
shape. This is because the entire conformation space is being searched. There is
no way to predict how many iterations will be necessary to completely search
the entire conformation space.

Monte Carlo searching becomes more difficult for large molecules. This is
because a small change in the middle of the molecule can result in a large dis-
placement of the atoms at the ends of the molecule. One solution to this prob-
lem is to hold bond lengths and angles fixed, thus changing conformations only,
and to use a small maximum displacement.

A second option is to displace all atoms in Cartesian coordinates and then
run an optimization. This second option works well for ring systems, but is not
so efficient for long chains. This may also result in changing the stereochemistry
of the molecule.
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Several general rules of thumb can be given for doing very thorough Monte
Carlo searches. The first is to run 1000 to 2000 Monte Carlo steps for each
degree of freedom in the molecule. It is best to perform a couple of minimiza-
tion steps at each point in the search. The lowest-energy structures should be
saved and minimized fully. This should be done with anywhere from a few to
a few hundred of the lowest-energy conformers, depending on the complexity of
the molecule. Combine the results of several searches, keeping the unique
structures. This process is continued until no more unique structures are found.

21.3 SIMULATED ANNEALING

A simulated annealing calculation has a greater level of sophistication than a
Monte Carlo simulation. This algorithm is based on the observation that crys-
tals are global energy minima for very complex systems. Crystals are typically
formed by slowly decreasing the temperature. This is because the system will
start out with enough energy to cross energy barriers from less favorable to
more favorable configurations. As the temperature is lowered, the least favor-
able configurations are rendered energetically inaccessible and an increasingly
larger number of molecules must populate the lowest-energy orientations.

A simulated annealing algorithm is a molecular dynamics simulation, in
which the amount of kinetic energy in the molecule (the simulation tempera-
ture) slowly decreases over the course of the simulation. At the beginning of the
simulation, many high-energy structures are being examined and high-energy
barriers can be crossed. At the end of the calculation, only structures that are
close to the best-known low-energy structures are examined, as depicted in
Figure 21.4. This is generally an improvement over Monte Carlo methods in
terms of the number of low-energy conformers found for a given amount of
computation time.

There are similar algorithms, also called simulated annealing, that are Monte
Carlo algorithms in which the choice conformations obey a Gaussian distribu-
tion centered on the lowest-energy value found thus far. The standard deviation
of this distribution decreases over the course of the simulation.

In practice, simulated annealing is most effective for finding low-energy
conformers that are similar in shape to the starting geometry. A simulated an-
nealing algorithm starts from a given geometry and has the ability to cross
barriers to other conformers. If the global minimum is reasonably similar to
this geometry, a simulated annealing algorithm will have a good chance of
finding it. If there are a number of high-energy barriers between the starting
geometry and global minimum, a simulated annealing algorithm will not be the
most efficient way to find the global minimum. This is because it will require a
long computation time, starting from a high temperature and cooling slowly in
order to adequately cross those barriers and search all the conformation space.
Monte Carlo methods will be a better choice when there are a large number of
nearly equivalent minima with significantly different structures. If the simula-
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FIGURE 21.4 Sampling of conformation space using a simulated annealing algorithm:
Looks like the Monte Carlo sampling in Figure 21.3 at the beginning of the simulation
and like the sampling shown here at the end of the simulation.

tion is being run long enough with a sufficiently slow decrease in temperature,
multiple runs starting from different geometries should give the same ending
structure most of the time. Thus, the results of several identical simulations are
examined to determine if the simulation was large enough to yield results that
can be trusted.

21.4 GENETIC ALGORITHMS

Genetic algorithms stem from the observation that the evolution process tends
to produce increasingly well-adapted populations. In keeping with this model,
there must be some set of numbers representing the conformation of the mole-
cule that are referred to collectively as a “chromosome.” There must also be a
criteria for measuring fitness that is generally the conformational energy. At the
start of the simulation, a ““population” consisting of many different conformers
is chosen randomly. Over the course of the simulation, these are combined to
produce new conformers using algorithms that represent reproduction, replace-
ment, and mutation.

The reproduction process includes functions for selection, replacement,
crossover, mutation, and elitism. Selection ensures that individuals in one gen-
eration have a higher probability of being included in the reproduction process
if they have a higher fitness. Replacement is the copying of some individuals
from one generation to another, thus resulting in some overlap between gen-
erations. Crossover is the process of individuals acquiring parts of their chro-
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mosomes from each parent. Mutation is accomplished by randomly changing a
small percentage of the chromosomes in a generation. Elitism is the unnatural
choice of copying the very best individual in the population into the next gen-
eration without mutation. All these operations can be defined as occurring on
an array of numbers or a string of binary bits. As this process continues, the
population becomes better adapted, as indicated by the fact that most of the
population has the same value for one of its “genes,” which has converged.
Once most of the genes have converged, the simulation is stopped and the most
fit individual is accepted as the global optimum.

There are a number of known problems with genetic algorithms, most of
which can be somewhat corrected by more sophisticated variations on the basic
algorithm. A few very fit individuals can force the population to a premature
convergence on a local minimum. Premature convergence can be prevented by
requiring a certain amount of diversity in the population. All the conforma-
tional space will be sampled even if some of it is physically unreasonable. A
well-constructed fitness function can minimize this. The genetic algorithm only
works well with multiple tests of many individuals and many generations; thus,
these are inherently large simulations. The exact crossover algorithm can also
have a significant bearing on the final results.

A genetic algorithm is generally an effective way of generating a large num-
ber of low-energy conformers. However, there is no guarantee that a global
minimum will be found. A number of tests have shown genetic algorithms to be
superior to simulated annealing and grid searches.

21.5 DISTANCE-GEOMETRY ALGORITHMS

The amount of computation necessary to try many conformers can be greatly
reduced if a portion of the structure is known. One way to determine a portion
of the structure experimentally is to obtain some of the internuclear distances
from two-dimensional NMR experiments, as predicted by the nuclear Over-
hauser effect (NOE). Once a set of distances are determined, they can be used
as constraints within a conformation search. This has been particularly effective
for predicting protein structure since it is very difficult to obtain crystallo-
graphic structures of proteins. It is also possible to define distance constraints
based on the average bond lengths and angles, if we assume these are fairly
rigid while all conformations are accessible.

The experimentally determined correct distances are incorporated into the
energy expression by defining a penalty function, which is zero for a reasonable
range of correct distances and then increases outside of that range. Once this
energy penalty has been defined, other search techniques such as Monte Carlo
simulation and simulated annealing can be used. This technique has the added
advantage of searching a space of conformers that are relevant to the experi-
mental results, even when that might not be the global minimum.

If the molecular motion is faster than the NMR timescale, the distance pre-
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dicted by an NOE measurement will be a time average only. In this case, it
might be necessary to use a wider range of acceptable distances in order to
incorporate all conformers consistent with the NOE data. Time-averaged con-
straint algorithms have been proposed, but these are difficult to use effectively.

21.6 THE FRAGMENT APPROACH

One way to reduce computation time is to optimize one part of a molecule at
a time. For example, the conformation of a z-butyl group is well known; thus,
there is no need to expend computation time searching conformations of
that group. This concept of fragmentation can be automated by constructing
a database of molecular fragments in their lowest-energy conformation. An
algorithm can then be designed to use those fragments as they appear in the
database, thus only optimizing the conformations between fragments.

Another variation on this technique is to first optimize the side chains and
then keep the side chains fixed while optimizing the backbone. In an extreme
case, representing these fixed side chains as large polygons with some net inter-
action potential can increase the calculation speed even more.

21.7 CHAIN GROWTH

The fragment approach has sometimes been combined with a chain growth or
buildup algorithm. The chain growth algorithm is one in which the full mole-
cule is built up one unit at a time. As each unit (monomer or functional group)
is added, its conformation is searched without changing the rest of the chain.
This results in a CPU time requirement that is directly proportional to the
number of units and is thus much faster than some of the other algorithms.

This is a fairly reasonable way to describe man-made amorphous polymers,
which had not been given time to anneal. For polymers that form very quickly,
a quick Monte Carlo search on addition can insert an amount of nonoptimal
randomness, as is expected in the physical system.

This is not a good way to describe polymers that have been annealed to give
a crystalline form or some crystalline domains. The chain growth algorithm as
described above is a fairly poor way to describe biomolecules. This is because
the core regions of biomolecules will not be solvent-accessible while the outer
regions are solvent-accessible, something which is not taken into account by
this simple algorithm. More sophisticated chain growth algorithms have been
applied to biomolecular systems.

21.8 RULE-BASED SYSTEMS

Rule-based systems try to identify certain subsequences of amino acids that tend
to have a particular secondary structure, such as sheets, a-helices, p-strands,
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and so on. These sections can then be held rigid while the conformations of the
connecting fragments are searched. The most successful way of doing this is by
analyzing many known structures to determine which amino acids or sequences
of amino acids have a statistical tendency to adopt each type of secondary
structure. The known structures are also analyzed to determine which tend to
initiate or terminate regions of a particular secondary structure. The drawback
of this method is that there are exceptions to every rule, which can lead to false
results.

21.9 USING HOMOLOGY MODELING

Homology algorithms are based on finding similar molecules. These are most
often applied to proteins since it is easy to automate the step of comparing
the sequence of a protein with the sequences of known proteins. For example,
the same protein from several different species will often have a very similar
sequence and conformation. Once the similarity algorithm has been used to
identify the most similar sequence, the geometry of the previously determined
structure (called the template) can be used with the necessary substitutions to
generate a very reasonable starting geometry (called the model). From this
starting geometry, minimization algorithms or very limited conformation
searches can be used. Homology techniques can also be applied to nucleic
acids.

There are several significant advantages to homology modeling compared to
other conformation search techniques. Homology techniques are less computer-
intensive than the alternatives (but still not trivial). They can give high-quality
results. Homology is also good at obtaining the tertiary structure.

There are also some disadvantages to homology modeling. It is still a rela-
tively new technique. Manual intervention is necessary. The result is never
perfect. Side chains and loops are difficult to position. Worst of all is that
homology cannot always be used since it depends on finding a known structure
with a similar sequence. Overall, the advantages outweigh the disadvantages,
making homology a very important technique in the pharmaceutical industry.

The degree of sequence similarity determines how much work is involved in
homology modeling and how accurate the results can be expected to be. If
similarity is greater than 90%, homology can match crystallography within the
experimental error, with the biggest difference in side chain rotations. A simi-
larity of 75 to 90% can still result in very good results. At this point, the accu-
racy of the final results is limited by the computer power available, mostly for
model optimization. A similarity of 50 to 75% can be expected to result in an
RMS error of about 1.5 A, with large errors in some sections of the molecule.
A case with a similarity of 25 to 50% can give adequate results with manual
intervention. These cases are limited by the alignment algorithm. With a simi-
larity of less than 25%, the homology is unreliable, and distance-geometry
usually gives superior results.
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The homology process consists of eight steps:

Template recognition
Alignment
Alignment correction
Backbone generation
Generation of loops
Side-chain generation
Model optimization

Nk LD =

Model verification

Template recognition is the process of finding the most similar sequence.
The researcher must choose how to compute similarity. It is possible to run a
fast, approximate search of many sequences or a slow, accurate search of a
few sequences. Sequences that should be analyzed more carefully are the same
protein from a different species, proteins with a similar function or from the
same metabolic pathway, or a library of commonly observed substructures if
available.

The alignment algorithm scores how well pairs match: high scores for iden-
tical pairs, medium scores for similar pairs (i.e., both hydrophobic), low scores
for dissimilar pairs. Alignment is difficult for low-similarity sequences, thus re-
quiring manual alignment. Multiple-sequence alignment is the process of using
sections from several template compounds.

Alignment correction is used to compensate for limitations of the alignment
procedure. Alignment algorithms are based on primary structure only. Deci-
sions between two options with medium scores are not completely reliable.
Alignment correction reexamines these marginal cases by looking at the sec-
ondary and tertiary structure in that localized region. This may be completely
manual, or at the very least it may require visual examination.

Backbone generation is the first step in building a three-dimensional model
of the protein. First, it is necessary to find structurally conserved regions (SCR)
in the backbone. Next, place them in space with an orientation and conforma-
tion best matching those of the template. Single amino acid exchanges are as-
sumed not to affect the tertiary structure. This often results in having sections of
the model compound that are unconnected.

The generation of loops is necessary because disconnected regions are often
separated by a section where a few amino acids have been inserted or omitted.
These are often extra loops that can be determined by several methods. One
method is to perform a database search to find a similar loop and then use
its geometric structure. Often, other conformation search methods are used.
Manual structure building may be necessary in order to find a conformation
that connects the segments. Visual inspection of the result is recommended in
any case.



21.10  HANDLING RING SYSTEMS 189

Side chain generation is often a source of error. It will be most reliable if
certain rules of thumb are obeyed. Start with structurally conserved side chains
and hold them fixed. Then look at the energy and entropy of rotamers for the
remaining side chains. Conventional conformation search techniques are often
used to place each side chain.

Model optimization is a further refinement of the secondary and tertiary
structure. At a minimum, a molecular mechanics energy minimization is done.
Often, molecular dynamics or simulated annealing are used. These are fre-
quently chosen to search the region of conformational space relatively close to
the starting structure. For marginal cases, this step is very important and larger
simulations should be run.

Model verification provides a common-sense check of results. One quick
check is to compare the minimized energy to that of similar proteins. It is also
important to examine the structure to ensure that hydrophobic groups point
inward and hydrophilic groups point outward.

An ideal case would be one with high similarity, in which most differences
are single amino acid exchanges and the entire tertiary structure can be deter-
mined from the template. A good case is one in which sections of 10 to 30 pairs
are conserved, and conserved regions are separated by short strings of inserted,
omitted, or exchanged amino acids (to be examined in the loop generation
phase). An acceptable case is one in which many small regions are identical and
separated by single or double exchanges, or one in which larger sections are
taken from different templates. Thus, alignment may be difficult for automated
algorithms and should be examined by hand. A poor case would be one in
which there is low similarity, causing alignment algorithms to fail and requiring
extensive model optimization. For this poor case, results are expected to be
marginal even with considerable manual intervention.

21.10 HANDLING RING SYSTEMS

Ring systems present a particular difficulty because many of the structures
generated by a conformation search algorithm will correspond to a broken ring.
Grid searches and Monte Carlo searches of ring systems are often done by first
breaking the ring and then only accepting conformations that put the two ends
within a reasonable distance. Monte Carlo searches are also sometimes done in
Cartesian coordinates.

Simulated annealing searches will find conformations corresponding to ring
changes, without unreasonably breaking the ring. There are also good algo-
rithms for randomly displacing the atoms and then performing a minimization
of the geometry. If the ring is one well understood, such as cyclohexane, it is
sometimes most efficient to simply try all the known chair and boat forms of the
base compound.
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21.11 LEVEL OF THEORY

It is quite common to do the conformation search with a very fast method and
to then optimize a collection of the lowest-energy conformers with a more ac-
curate method. In some cases, single geometry calculations with more accurate
methods are also performed. Solvent effects may also be important as discussed
in Chapter 24.

The simplest and most quickly computed models are those based solely on
steric hindrance. Unfortunately, these are often too inaccurate to be trusted.
Molecular mechanics methods are often the method of choice due to the large
amount of computation time necessary. Semiempirical methods are sometimes
used when molecular mechanics does not properly represent the molecule. A4b
initio methods are only viable for the very smallest molecules. These are dis-
cussed in more detail in the applicable chapters and the sources mentioned in
the bibliography.

21.12 RECOMMENDED SEARCH ALGORITHMS

Since computation time is the most important bottleneck to conformation
searching, the following list starts with the methods most amenable to the
largest molecular systems:

Homology-based starting structures
Distance-geometry algorithms
Fragment-based algorithms

Chain growth algorithms where applicable
Rule-based systems

Genetic algorithms

Simulated annealing

Monte Carlo algorithms

Grid searches

XNk wh =
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Fixing Self-Consistent Field
22 Convergence Problems

The self-consistent field (SCF) procedure is in its simplest description an equa-
tion of the form

x=f(x) (22.1)

This means that an initial set of orbitals x is used to generate a new set of
orbitals following a prescribed mathematical procedure f(x). The procedure is
repeated until some convergence criteria are met. These criteria may be slightly
different from one software package to another. They are usually based on
several aspects of the calculation. Two of the most common criteria are the
change in total energy and the change in density matrix.

A mathematician would classify the SCF equations as nonlinear equations.
The term ‘“‘nonlinear” has different meanings in different branches of mathe-
matics. The branch of mathematics called chaos theory is the study of equations
and systems of equations of this type.

22.1 POSSIBLE RESULTS OF AN SCF PROCEDURE

In an SCF calculation, the energies from one iteration to the next can follow
one of several patterns:

1. After a number of iterations, the energy from one iteration may be the
same as from the previous iteration. This is what chemists desire: a con-
verged solution.

2. The energies from one iteration to the next may oscillate between two
values, four values, or any other power of 2. (The author is not aware of
any examples other than powers of 2.)

3. The values could be almost repeating but not quite so. In chaos theory,
these are called Lorenz attractor systems.

4. The energies may be random within some fixed range. Random-number
generators use this property intentionally.

5. The values produced may be random and not bounded within any upper
or lower limits. This may happen if the boundary conditions on the total
wave function are violated.
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We have encountered oscillating and random behavior in the convergence of
open-shell transition metal compounds, but have never tried to determine if the
random values were bounded. A Lorenz attractor behavior has been observed
in a hypervalent system. Which type of nonlinear behavior is observed depends
on several factors: the SCF equations themselves, the constants in those equa-
tions, and the initial guess.

22.2 HOW TO SAFELY CHANGE THE SCF PROCEDURE

Changing the constants in the SCF equations can be done by using a different
basis set. Since a particular basis set is often chosen for a desired accuracy and
speed, this is not generally the most practical solution to a convergence prob-
lem. Plots of results vs. constant values are the bifurcation diagrams that are
found in many explanations of chaos theory.

Another way of changing the constants in an SCF calculation is to alter the
geometry. Often, making a bond length a bit shorter than expected is effective
(say, adjusting the length to 90% of its expected value). Lengthening bond
lengths a bit and avoiding eclipsed or gauche conformations are the second
and third best options. Once a converged wave function is obtained, move the
geometry back where it should be and use the converged wave function as the
initial guess or just complete an optimization from that point.

The initial value of variables can be changed by using a different initial guess
in an SCF calculation. The best initial guess is usually a converged SCF calcu-
lation for a different state of the same molecule or a slightly different geometry
of the same molecule. This can be a very effective way to circumvent conver-
gence problems. In the worst case, it may be necessary to construct an initial
guess by hand in order to ensure that the nodal properties of all the orbitals are
correct for the desired electronic state of the molecule. The construction of the
virtual orbitals as well as the occupied orbitals can have a significant effect on
convergence. Multiconfiguration self-consistent field (MCSCEF) calculations can
be particularly sensitive to the initial guess.

There are quite a number of ways to effectively change the equation in an
SCF calculation. These include switching computation methods, using level
shifting, and using forced convergence methods.

Switching between Hartree—Fock (HF), DFT, semiempirical, generalized
valence bond (GVB), MCSCF, complete active-space self-consistent field
(CASSCF), and Moller—Plesset calculations (MPn) will change the convergence
properties. Configuration interaction (CI) and coupled-cluster (CC) calcu-
lations usually start with an SCF calculation and thus they will not circumvent
problems with an SCF. In general, higher levels of theory tend to be harder
to converge. Ease of convergence as well as calculation speed are why lower-
level calculations are usually used to generate the initial guess for higher-level
calculations.

Oscillating convergence in an SCF calculation is usually an oscillation be-



22.3 WHAT TO TRY FIRST 195

tween wave functions that are close to different states or a mixing of states.
Thus, oscillating convergence can often be aided by using a level-shifting algo-
rithm. This artificially raises the energies of the virtual orbitals. Level shifting
may or may not help in cases of random convergence.

Most programs will stop trying to converge a problem after a certain num-
ber of iterations. In a few rare cases, the wave function will converge if given
more than the default number of iterations.

Most SCF programs do not actually compute orbitals from the previous
iteration orbitals in the way that is described in introductory descriptions of the
SCF method. Most programs use a convergence acceleration method, which is
designed to reduce the number of iterations necessary to converge to a solution.
The method of choice is usually Pulay’s direct inversion of the iterative sub-
space (DIIS) method. Some programs also give the user the capability to mod-
ify the DIIS method, such as adding a dampening factor. These modifications
can be useful for fixing convergence problems, but a significant amount of ex-
perience is required to know how best to modify the procedure. Turning off the
DIIS extrapolation can help a calculation converge, but usually requires many
more iterations.

Some convergence problems are due to numerical accuracy problems. Many
programs use reduced accuracy integrals at the beginning of the calculation to
save CPU time. However, this can cause some convergence problems for diffi-
cult systems. A course DFT integration grid can also lead to accuracy prob-
lems, as can an incremental Fock matrix formation procedure.

Some programs contain alternative convergence methods that are designed
to force even the most difficult problems to converge. These methods are called
direct minimization or quadratic convergence methods. Although these methods
almost always work, they often require a very large number of iterations and
thus a significant amount of CPU time.

22.3 WHAT TO TRY FIRST

If you have an SCF calculation that failed to converge, which of the techniques
outlined here should you try first? Here are our suggestions, with the preferred
techniques listed first:

1. Try a different initial guess. Many programs have several different initial
guess procedures, often based on semiempirical calculations.

2. For an open-shell system, try converging the closed-shell ion of the same
molecule and then use that as an initial guess for the open-shell calcula-
tion. Adding electrons may give more reasonable virtual orbitals, but as
a general rule, cations are easier to converge than anions.

3. Another initial guess method is to first run the calculation with a small
basis set and then use that wave function as the initial guess for a larger
basis set calculation.
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. Try level shifting. This will usually work with the default parameters or

not at all.

. If the SCF is approaching but not reaching the convergence criteria,

relax or ignore the convergence criteria. This is usually done for geom-
etry optimizations that do not converge at the initial geometry. Geome-
try optimizations often converge better as they approach the equilibrium
geometry.

. Some programs use reduced-accuracy integrals to speed the SCF. Using

full integral accuracy may be necessary for systems with diffuse func-
tions, long-range interactions, or low-energy excited states. Turning off
incremental Fock matrix formation may also be necessary for these
systems.

7. For DFT calculations, use a finer integration grid.

11.

12.

13.

14.

. Try changing the geometry. First, slightly shorten a bond length. Then,

slightly extend a bond length and next shift the conformation a bit.

. Consider trying a different basis set.
10.

Consider doing the calculation at a different level of theory. This is not
always practical, but beyond this point the increased number of iter-
ations may make the computation time as long as that occurring with a
higher level of theory anyway.

Turn off the DIIS extrapolation. Give the calculation more iterations
along with this.

Give the calculation (with DIIS) more SCF iterations. This seldom
helps, but the next option often uses so many iterations that it is worth
atry.

Use a forced convergence method. Give the calculation an extra thou-
sand iterations or more along with this. The wave function obtained by
these methods should be tested to make sure it is @ minimum and not
just a stationary point. This is called a stability test.

See if the software documentation suggests any other ways to change the
DIIS method. You may have to run hundreds of calculations to become
experienced enough with the method to know what works when and by
how much to adjust it.
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23 omMm

Various computational methods have strengths and weaknesses. Quantum me-
chanics (QM) can compute many properties and model chemical reactions.
Molecular mechanics (MM) is able to model very large compounds quickly. It
is possible to combine these two methods into one calculation, which models a
very large compound using MM and one crucial section of the molecule with
QM. This calculation is designed to give results that have very good speed when
only one region needs to be modeled quantum mechanically. It can also be used
to model a molecule surrounded by solvent molecules. This type of calculation
is called a QM/MM calculation.

23.1 NONAUTOMATED PROCEDURES

The earliest combined calculations were done simply by modeling different
parts of the system with different techniques. For example, some crucial part of
the system could be modeled by using an ab initio geometry-optimized calcula-
tion. The complete system could then be modeled using MM, by holding the
geometry of the initial region fixed and optimizing the rest of the molecule.
This procedure yields a geometry for the whole system, although there is no
energy expression that reflects nonbonded interactions between the regions. One
use is to compute the conformational strain in ligands around a metal atom,
which is important in determining the possibility of binding. In order to do this,
the metal atom is removed from the calculation, leaving just the ligands in the
geometry from the complete system. Two energy calculations on these ligands
are then performed: one without geometry optimization and one with geometry
optimization. The difference between these two energies is the conformational
strain that must be introduced into the ligands in order to form the compound.
Another technique is to use an ab initio method to parameterize force field
terms specific to a single system. For example, an ab initio method can be used to
compute the reaction coordinate for a model system. An analytic function can
then be fitted to this reaction coordinate. A MM calculation can then be per-
formed, with this analytic function describing the appropriate bonds, and so on.

23.2 PARTITIONING OF ENERGY

Quantitative energy values are one of the most useful results from computa-
tional techniques. In order to develop a reasonable energy expression when two
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calculations are combined, it is necessary to know not only the energy of the
two regions, but also the energy of interaction between those regions. There
have been a number of energy computation schemes proposed. Most of these
schemes can be expressed generally as

E = EQM + Evum + EQM/MM + Epol + Eboundary (23'1)

The first two terms are the energies of the individual computations. The
Eqgm/mm term is the energy of interaction between these regions, if we assume
that both regions remain fixed. It may include van der Waals terms, electro-
static interactions, or any term in the force field being used. Ey; is the effect of
either region changing as a result of the presence of the other region, such as
electron density polarization or solvent reorganization. Epoundary 1S @ way of
representing the effect of the rest of the surroundings, such as the bulk solvent.
The individual terms in Equm/mm, Epol, and Epoundary are discussed in more detail
in the following sections.

23.2.1 van der Waals

Most of the methods proposed include a van der Waals term for describing
nonbonded interactions between atoms in the two regions. This is usually rep-
resented by a Leonard—Jones 6—12 potential of the form

A B

The parameters 4 and B are those from the force field being used. A few studies
have incorporated a hydrogen-bonding term also.
23.2.2 Charge

The other term that is very widely used is a Coulombic charge interaction of the
form

Ecoulomb = 7 (233)

The subscripts i and j denote two nuclei: one in the QM region and one in the
MM region. The atomic charges for the MM atoms are obtained by any of the
techniques commonly used in MM calculations. The atomic charges for the
QM atoms can be obtained by a population analysis scheme. Alternatively,
there might be a sum of interactions with the QM nuclear charges plus the in-
teraction with the electron density, which is an integral over the electron density.

23.2.3 Describing Bonds between Regions

If the QM and MM regions are separate molecules, having nonbonded inter-
actions only might be sufficient. If the two regions are parts of the same mole-
cule, it is necessary to describe the bond connecting the two sections. In most
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cases, this is done using the bonding terms in the MM method. This is usually
done by keeping every bond, angle, or torsion term that incorporates one atom
from the QM region. Alternatively, a few studies have been done in which a
separate orbital-based calculation was used to describe each bond connecting
the regions.

23.2.4 Polarization

The energy terms above allow the shape of one region to affect the shape of the
other and include the energy of interaction between regions. However, these
nonbonded energy terms assume that the electron density in each region is held
fixed. This can be a reasonable approximation for covalent systems. It is a poor
approximation when the QM region is being stabilized by its environment, as is
the case with polar solvent effects.

Polarization is usually accounted for by computing the interaction between
induced dipoles. The induced dipole is computed by multiplying the atomic
polarizability by the electric field present at that nucleus. The electric field used
is often only that due to the charges of the other region of the system. In a few
calculations, the MM charges have been included in the orbital-based calcula-
tion itself as an interaction with point charges.

23.2.5 Solvent Reorientation

Many of the methods define an energy function and then use that function for
the geometry optimization. However, there are some methods that use a mini-
mal coupling between techniques for the geometry optimization and then add
additional energy corrections to the single point energy. In the latter case, some
researchers have included a correction for the effect of the solvent molecules
reorienting in response to the solute. This is not a widespread technique mostly
because there is not a completely rigorous way to know how to correct for
solvent reorientation.

23.2.6 Boundary Terms

It is sometimes desirable to include the effect of the rest of the system, outside of
the QM and MM regions. One way to do this is using periodic boundary con-
ditions, as is done in liquid-state simulations. Some researchers have defined
a potential that is intended to reproduce the effect of the bulk solvent. This
solvent potential may be defined just for this type of calculation, or it may be a
continuum solvation model as described in the next chapter. For solids, a set of
point charges, called a Madelung potential, is often used.

23.3 ENERGY SUBTRACTION

An alternative formulation of QM/MM is the energy subtraction method. In
this method, calculations are done on various regions of the molecule with
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various levels of theory. Then the energies are added and subtracted to give
suitable corrections. This results in computing an energy for the correct number
of atoms and bonds analogous to an isodesmic strategy.

Three such methods have been proposed by Morokuma and coworkers. The
integrated MO + MM (IMOMM ) method combines an orbital-based technique
with an MM technique. The integrated MO + MO method (IMOMO) inte-
grates two different orbital-based techniques. The our own n-layered integrated
MO and MM method (ONIOM) allows for three or more different techniques
to be used in successive layers. The acronym ONIOM is often used to refer to
all three of these methods since it is a generalization of the technique.

This technique can be used to model a complete system as a small model
system and the complete system. The complete system would be computed using
only the lower level of theory. The model system would be computed with both
levels of theory. The energy for the complete system, combining both levels of
theory, would then be

E= Elowmomplete + Ehigh.model - Elow,model (234)

Likewise, a three-layer system could be broken down into small, medium, and
large regions, to be computed with low, medium, and high levels of theory
(L, M, and H respectively). The energy expression would then be

E = EHA,small + EM,medium - EM,smal] + EL,large - EL.medium (235)

This method has the advantage of not requiring a parameterized expression to
describe the interaction of various regions. Any systematic errors in the way that
the lower levels of theory describe the inner regions will be canceled out. The
geometry of one region will affect the geometry of the other because interaction
between regions is not a systematic effect. If we assume transferability of pa-
rameters, this method avoids any overcounting of the nonbonded interactions.

One disadvantage is that the lower levels of theory must be able to describe
all atoms in the inner regions of the molecule. Thus, this method cannot be used
to incorporate a metal atom into a force field that is not parameterized for it.
The effect of one region of the molecule causing polarization of the electron
density in the other region of the molecule is incorporated only to the extent
that the lower levels of theory describe polarization. This method requires more
CPU time than most of the others mentioned. However, the extra time should
be minimal since it is due to lower-level calculations on smaller sections of the
system.

23.4 SELF-CONSISTENT METHOD

Bersuker and coworkers have proposed a technique whereby the atoms on the
boundary between regions are included in both calculations. In this procedure,
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optimizations are done with each method, using the boundary atom charge
from the other method, and this is repeated until the geometry is consistent
between the levels of theory. They specify that the boundary atom cannot be
part of a m bridge between regions.

23.5 TRUNCATION OF THE QM REGION

MM methods are defined atom by atom. Thus, having a carbon atom without
all its bonds does not have a significant affect on other atoms in the system. In
contrast, QM calculations use a wave function that can incorporate second
atom effects. An atom with a nonfilled valence will behave differently than with
the valence filled. Because of this, the researcher must consider the way in which
the QM portion of the calculation is truncated.

A few of the earliest methods did truncate the atom on the dividing line
between regions. Leaving this unfilled valence is reasonable only for a few of
the very approximate semiempirical methods that were used at that time.

A number of methods fill the valence of the interface atoms with an extra
orbital, sometimes centered on the connecting MM atom. This results in filling
out the valence while requiring a minimum amount of additional CPU time.
The concern, which is difficult to address, is that this might still affect the
chemical behavior of the interface atom or even induce a second atom affect.

The other popular solution is to fill out the valence with atoms. Usually, H
atoms are used as shown in Figure 23.1. Pseudohalide atoms have been used

r u
| | ||4| Ph
I

F C C-'—CHZ—CHZ—CHZ—CH2—CH—CH2—CH3
| : !

/ - H |
Lo tr
(b) H

| !

I

F c cC—H

L

- H

H H

FIGURE 23.1 Example of a QM/MM region partitioning for a Sy2 reaction. («) Entire
molecule is shown with a dotted line denoting the QM region. (b) Molecule actually used
for the QM calculation.
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also. These pseudohalide atoms are parameterized to mimic the behavior of the
MM atom for which they are substituted, such as a CH, group. These extra
atoms are called link atoms or junction dummy atoms. The link atoms are not
included in the energy expression used to describe the interaction between the
regions of the system. The use of link atoms is somewhat questionable since
they are often not subtracted from the final energy expression and may polarize
the QM region incorrectly.

23.6 REGION PARTITIONING

The choice of where to locate the boundary between regions of the system is
important. A number of studies have shown that very poor end results will be
obtained if this is chosen improperly. There is no rigorous way to choose the
best partitioning, but some general rules of thumb can be stated:

1. Any bonds that are being formed or broken must reside entirely in the
QM region of the calculation.

2. Any section changing hybridization should be entirely in the QM region.

3. Keep conjugated or aromatic sections of the system completely in one
region.

4. Where the second or third atom’s effects are expected to be important,
those atoms should be in the same region of the calculation.

5. QM/MM methods do not allow for charge transfer between different
regions of the system. Thus, partitioning should not divide sections
expected to have a charge separation.

Even with all these criteria met, researchers are advised to compare results from
several different choices of boundary locations.

23.7 OPTIMIZATION

The more recently developed methods define an energy expression for the
combined calculation and then use that expression to compute gradients for a
geometry optimization. Some of the earlier methods would use a simpler level
of theory for the geometry optimization and then add additional energy cor-
rections to a final single point calculation. The current generation is considered
to be the superior technique.

23.8 INCORPORATING QM TERMS IN FORCE FIELDS

Rather than doing several complete calculations with an additional interface,
it is possible to incorporate orbital-based terms in a MM method. The first
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methods for doing this incorporated simple Hiickel or PPP semiempirical
models to help describe © system conjugation and aromaticity. There are also
techniques for incorporating crystal field theory or ligand field theory descrip-
tions of transition metals, which have proven difficult to model entirely with
MM.

23.9 RECOMMENDATIONS

To date, there have not been any large-scale comparisons of QM/MM methods
in which many different techniques were compared against experimental results
for a large variety of chemical systems. There does tend to be some preference
for the use of link atoms in order to ensure the correct chemical behavior of the
QM region. Researchers are advised to consider the physical consequences of
the effects that are included or excluded from various methods, as applied to
their specific system. It is also prudent to verify results against experimental
evidence when possible.
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24 Solvation

Most of the modeling methods discussed in this text model gas-phase molecular
behavior, in which it is reasonable to assume that there is no interaction with
other molecules. However, most laboratory chemistry is done in solution where
the interaction between the species of interest and the solvent is not negligible.

The simulation of molecules in solution can be broken down into two cate-
gories. The first is a list of effects that are not defined for a single molecule, such
as diffusion rates. These types of effects require modeling the bulk liquid as
discussed in Chapters 7 and 39. The other type of effect is a solvation effect,
which is a change in the molecular behavior due to the presence of a solvent.
This chapter addresses this second type of effect.

24.1 PHYSICAL BASIS FOR SOLVATION EFFECTS

There is an energy of interaction between solute and solvent. Because of this,
the solute properties dependent on energy, such as geometry, vibrational fre-
quencies, total energy, and electronic spectrum, depend on the solvent. The
presence of a solvent, particularly a polar solvent, can also stabilize charge
separation within the molecule. This not only changes the energy, but also re-
sults in a shift in the electron density and associated properties. In reality, this is
the result of the quantum mechanical interaction between solute and solvent,
which must be averaged over all possible arrangements of solvent molecules
according to the principles of statistical mechanics.

The energy of solvation can be further broken down into terms that are a
function of the bulk solvent and terms that are specifically associated with the
first solvation shell. The bulk solvent contribution is primarily the result of
dielectric shielding of electrostatic charge interactions. In the simplest form, this
can be included in electrostatic interactions by including a dielectric constant «,
as in the following Coulombic interaction equation:

g =29 (24.1)
Krij

This modification of the charge interaction is responsible for shifts in the elec-
tron density as permitted by the polarizability of the molecule.

There are several effects present in the region where the molecule meets
the solvent shell. The first is referred to as a cavitation energy, which is the
energy required to push aside the solvent molecules, thus making a cavity in

206
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which to place a solute molecule. The second is the force attracting the solute
molecule to the solvent, which are the van der Waals, dispersion, and hydrogen-
bonding interactions. Finally, the solvent molecules in the first shell can rear-
range in order to maximize interactions with the solute. The largest amount
of hydrogen-bonding energy is usually due to the solvent rearranging to the
preferred hydrogen-bonding orientation. Methods modeling solvation energy
based on breaking solvent—solvent ““‘bonds’ and forming solvent—solute “bonds”
are called linear solvent energy relationships (LSER).

24.2 EXPLICIT SOLVENT SIMULATIONS

The most rigorously correct way of modeling chemistry in solution would be to
insert all the solvent molecules explicitly and then run molecular dynamics or
Monte Carlo calculations to give a time-averaged, ensemble average of the
property of interest. This can be done using molecular-mechanics-style force
fields, but even that is not a trivial amount of computational work. Further-
more, there are many properties that must be computed with orbital-based
techniques. At present, there have been a few rare dynamics simulations at
semiempirical or ab initio levels of theory, but most researchers do not have
access to computing resources sufficient to complete quantum dynamics studies
of molecules of interest. These calculations are often done using periodic
boundary conditions so that long-range interactions will be accounted for.

In order to reduce the amount of computation time, some studies are con-
ducted with a smaller number of solvent geometries, each optimized from a
different starting geometry. The results can then be weighted by a Boltzmann
distribution. This reduces computation time, but also can affect the accuracy of
results.

In a few cases, where solvent effects are primarily due to the coordination of
solute molecules with the solute, the lowest-energy solvent configuration is suf-
ficient to predict the solvation effects. In general, this is a poor way to model
solvation effects.

The primary problem with explicit solvent calculations is the significant
amount of computer resources necessary. This may also require a significant
amount of work for the researcher. One solution to this problem is to model the
molecule of interest with quantum mechanics and the solvent with molecular
mechanics as described in the previous chapter. Other ways to make the com-
putational resource requirements tractable are to derive an analytic equation
for the property of interest, use a group additivity method, or model the solvent
as a continuum.

24.3 ANALYTIC EQUATIONS

It is reasonable to expect that the effect of a solvent on the solute molecule is, at
least in part, dependent on the properties of the solute molecule, such as its size,
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dipole moment, polarizability, and so on. The earliest theoretical treatments
were aimed at deriving analytic equations in which the molecular properties
could be plugged in and the solvent effect computed. These equations are usu-
ally derived on theoretical grounds and by simply finding the parameters that
give the best fit to experimental results. This type of scheme has been greatly
improved and automated in recent years. Its current incarnation is quantitative
structure property relationships (QSPR) and this method is discussed in Chap-
ter 30.

Some molecular dynamics calculations use a potential of mean force (PMF).
This requires reparameterization of the force field to give energetics reflecting
the statistical weights found in solution. For example, the ratio of trans to gauche
conformers in solution is actually due to both energetics and the dynamic effects
of how the molecule can move most readily in solution, but PMF assumes that
it is entirely energetic. These ratios can be determined either experimentally or
from explicit solvent simulations. PMF calculations also incorporate a fric-
tional drag term to simulate how the motion of the solute is dampened by the
solvent. PMF calculations can provide dynamical information with a minimum
amount of CPU time, but require that a new parameterization be done for each
class of molecules and solvent.

24.4 GROUP ADDITIVITY METHODS

A similar technique is to derive a group additivity method. In this method, a
contribution for each functional group must be determined. The contributions
for the functional groups composing the molecule are then added. This is usu-
ally done from computations on a whole list of molecules using a fitting tech-
nique, similar to that employed in QSPR.

24.5 CONTINUUM METHODS

Another common approach is to do a calculation with the solvent included in
some approximate manner. The simplest way to do this is to include the solvent
as a continuum with a given dielectric constant. There are quite a few variations
on this technique, only the most popular of which are included in the following
sections.

24.5.1 Solvent Accessible Surface Area

The solvent accessible surface area (SASA) method is built around the assump-
tion that the greatest amount of interaction with the solvent is in the area very
close to the solute molecule. This is accounted for by determining a surface area
for each atom or group of atoms that is in contact with the solvent. The free
energy of solvation AGY is then computed by
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AG® = Z 0iA; (24.2)

where o; is the surface tension associated with region i and A; the surface area
for that region.

This method does not attempt to distinguish between the various energy
contributions. The surface tension parameter acts to include all interactions as
much as possible. There are a number of algorithms for implementing this
method, most of which differ in the means for determining the surface area
associated with a particular group. This method is particularly popular for very
large molecules, which can only be modeled by molecular mechanics.

24.5.2 Poisson Equation

The Poisson equation describes the electrostatic interaction between an arbi-
trary charge density p(r) and a continuum dielectric. It states that the electro-
static potential ¢ is related to the charge density and the dielectric permitivity €
by

_ —dmp()

2
Vo .

(24.3)
This can be solved analytically only for a few simplified systems. The Onsager
model uses one of the known analytic solutions.

The Onsager model describes the system as a molecule with a multipole
moment inside of a spherical cavity surrounded by a continuum dielectric. In
some programs, only a dipole moment is used so the calculation fails for mole-
cules with a zero dipole moment. Results with the Onsager model and HF cal-
culations are usually qualitatively correct. The accuracy increases significantly
with the use of MP2 or hybrid DFT functionals. This is not the most accurate
method available, but it is stable and fast. This makes the Onsager model a
viable alternative when PCM calculations fail.

The Poisson equation has been used for both molecular mechanics and
quantum mechanical descriptions of solvation. It can be solved directly using
numerical differential equation methods, such as the finite element or finite
difference methods, but these calculations can be CPU-intensive. A more effi-

cient quantum mechanical formulation is referred to as a self-consistent reac-
tion field calculation (SCRF) as described below.

24.5.3 Poisson—Boltzmann Method

The Poisson equation assumes that the solvent is completely homogeneous.
However, a solvent can have a significant amount of charge separation. An
example of a heterogeneous solution would be a polar solute molecule sur-
rounded by water with NaCl in solution. The positive sodium and negative



210 24 SOLVATION

chlorine ions will have a statistical tendency to migrate toward the negative and
positive regions of the solute molecule.

The Poisson—Boltzmann equation is a modification of the Poisson equation.
It has an additional term describing the solvent charge separation and can also
be viewed mathematically as a generalization of Debye—Hiickel theory.

24.5.4 Born Model

The Born model is based on electrostatic interactions, dielectric permitivity,
and orbital overlaps. It has the advantage of being fairly straightforward and
adaptable to computational methods. The free energy for the polarization of
the solute is expressed as

1 1
Gp=—3 (1 - g) > qgrvy (24.4)
ij

where ¢; is the charge on center i and vy, the overlap between orbitals. Unlike
the Poisson equation, this method is applicable to charged solutes also. It can
be further simplified by approximating the overlap integrals. This allows it to
be incorporated into molecular mechanics methods.

One very popular technique is an adaptation of the Born model for orbital-
based calculations by Cramer and Truhlar, et. al. Their solvation methods
(denoted SM1, SM2, and so on) are designed for use with the semiempirical
and ab initio methods. Some of the most recent of these methods have a few
parameters that can be adjusted by the user in order to customize the method
for a specific solvent. Such methods are designed to predict AGs,, and the ge-
ometry in solution. They have been included in a number of popular software
packages including the AMSOL program, which is a derivative of AMPAC
created by Cramer and Truhlar.

The SM1-SM3 methods model solvation in water with various degrees of
sophistication. The SM4 method models solvation in alkane solvents. The SM5
method is generalized to model any solvent. The SM5.42R method is designed
to work with HF, DFT or hybrid HF/DFT calculations, as well as with AM1
or PM3. SM5.42R is implemented using a SCRF algorithm as described below.
A description of the differences between these methods can be found in the
manual accompanying the AMSOL program and in the reviews listed at the
end of this chapter. Available Hamiltonians and solvents are summarized in
Table 24.1.

The accuracy of these methods is tested by finding the mean absolute error
between the computed and experimental free energies of solvation. The SM4
method does well for neutral molecules in alkane solvents with a mean absolute
error of 0.3 kcal/mol. For neutral molecules, the SM5 methods do very well
with mean absolute errors in the 0.3 to 0.6 kcal/mol range, depending on the
method and solvent. For ions, the SM1 method seems to be most accurate with
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TABLE 24.1 Cramer and Truhlar Semiempirical Solvation Methods

Hamiltonian Solvant
Method AM1 PM3 Water Alkane Organic Custom

SM1

SMla

SM2

SM2.1
SM2.2
SM2.2PDA
SM3

SM3.1

SM4
SMS5.0R
SM5.05R
SM5.2PDA
SM5.2PDP
SM5.2R*
SM5.4PDA
SM5.4PDP
SM5.4PDU
SM5.4U
SM5.4A
SM5.4P
SM5.42R?

“MNDO also.
b Also for HF, DFT, or hybrid DFT functionals.

XK KK XA
ool
KRR R KK XA
olie

ool
ol

XX XX XX

XX XXX XX

T T B e e e i e
ol

ool
ool

a mean absolute error of 2.9 kcal/mol. Accuracy test results are summarized in
more detail in the manual for the AMSOL program and in the review articles
listed in the bibliography of this chapter.

2455 GBJSA

The generalized Born/surface area (GB/SA) model is a combination of the
Born and SASA models. This method has been effective in describing the sol-
vation of biomolecular molecules. It is incorporated in the MacroModel soft-
ware package.

24.5.6 Self-consistent Reaction Field

The self-consistent reaction field (SCRF) method is an adaptation of the
Poisson method for ab initio calculations. There are quite a number of varia-
tions on this method. One point of difference is the shape of the solvent cavity.
Various models use spherical cavities, spheres for each atom, or an isosurface
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of electron density. The second difference is the description of the solute, which
could be a dipole, multipole expansion, or numerical integration over the
charge density.

There are many technical details involved in SCRF calculations, many of
which the user can control. Readers of this book are advised to use the default
values as much as possible unless they have carefully examined the original
literature and tested their modifications. PCM methods are generally more
accurate than the Onsager and COSMO methods.

The most popular of the SCRF methods is the polarized continuum method
(PCM) developed by Tomasi and coworkers. This technique uses a numerical
integration over the solute charge density. There are several variations, each of
which uses a nonspherical cavity. The generally good results and ability to
describe the arbitrary solute make this a widely used method. However, it is
sensitive to the choice of a basis set. Some software implementations of this
method may fail for more complex molecules.

The original PCM method uses a cavity made of spherical regions around
each atom. The isodensity PCM model (IPCM) uses a cavity that is defined by
an isosurface of the electron density. This is defined iteratively by running SCF
calculations with the cavity until a convergence is reached. The self-consistent
isodensity PCM model (SCI-PCM) is similar to IPCM in theory, but different in
implementation. SCI-PCM calculations embed the cavity calculation in the
SCF procedure to account for coupling between the two parts of the calculation.

2457 COSMO

The conductor-like screening model (COSMO) is a continuum method designed
to be fast and robust. This method uses a simpler, more approximate equation
for the electrostatic interaction between the solvent and solute. Line the SMx
methods, it is based on a solvent accessible surface. Because of this, COSMO
calculations require less CPU time than PCM calculations and are less likely to
fail to converge. COSMO can be used with a variety of semiempirical, ab initio,
and DFT methods. There is also some loss of accuracy as a result of this
approximation.

An improved version, called COSMO for realistic solvents (COSMO-RS),
has also been created. This method has an improved scheme for modeling
nonelectrostatic effects. It can be adapted for modeling the behavior of mole-
cules in any solvent and, gives increased accuracy of results as compared to
COSMO.

24.6 RECOMMENDATIONS

The most accurate calculations are those that use a layer of explicit solvent
molecules surrounded, in turn, by a continuum model. This adds the additional
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complexity of having to try various configurations of solvent molecules in order
to obtain a statistical average. In some cases, biomolecules fold with solvent
molecules locked into the folded structure, which is also represented well by
this technique. The drawback of this technique is the large amount of work
required.

There is no one best method for describing solvent effects. The choice of
method is dependent on the size of the molecule, type of solvent effects being
examined, and required accuracy of results. Many of the continuum solvation
methods predict solvation energy more accurately for neutral molecules than
for ions. The following is a list of preferred methods, with those resulting in
the highest accuracy and the least amount of computational effort appearing
first:

1. A layer of explicit solvent molecules surrounded by a continuum de-
scription for the highest possible accuracy.

N

SMx semiempirical methods for very modest computational demands.

W

PCM when quantum mechanics is necessary, but explicit solvent simu-
lations are too CPU-intensive.

COSMO.

Onsager.

SASA or GB/SA for very large molecules.

Other continuum methods.

Analytic equations or group additivity techniques when applicable.

R S A

Potential of mean force for dynamics simulations.

10. Explicit solvent methods. Monte Carlo methods are somewhat more
popular than molecular dynamics methods.
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25 Electronic Excited States

This is an introduction to the techniques used for the calculation of electronic
excited states of molecules (sometimes called eximers). Specifically, these are
methods for obtaining wave functions for the excited states of a molecule from
which energies and other molecular properties can be calculated. These calcu-
lations are an important tool for the analysis of spectroscopy, reaction mecha-
nisms, and other excited-state phenomena.

These same techniques may also be necessary to find the ground-state wave
function. Although most software packages attempt to compute the ground-
state wave function, there is no way to guarantee that the algorithm will find
the ground state even if the calculation does converge. Thus, it is sometimes
necessary to attempt to find the first few states of a molecule just to ensure that
the ground state has been found. Determining the ground-state electron con-
figuration can be particularly difficult for compounds with low-energy excited
states (i.e., transition metal systems).

Depending on the needs of the researcher, either vertical or adiabatic exci-
tation energies may be desired. Vertical excitation energies are those in which
the ground-state geometry is used, thus assuming that a fast process is being
modeled. This is appropriate for electronic processes such as UV absorption or
photo-electron spectroscopy. Adiabatic excitation energies are those in which
the excited-state geometry has been optimized. Adiabatic excitations are more
likely to reflect experimental results when the excited state is long lived relative
to the time required for nuclear motion.

25.1 SPIN STATES

Ab initio programs attempt to compute the lowest-energy state of a specified
multiplicity. Thus, calculations for different spin states will give the lowest-
energy state and a few of the excited states. This is most often done to deter-
mine singlet-triplet gaps in organic molecules.

25.2 CIS

A single-excitation configuration interaction (CIS) calculation is probably the
most common way to obtain excited-state energies. This is because it is one of
the easiest calculations to perform.

216
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A configuration interaction calculation uses molecular orbitals that have
been optimized typically with a Hartree—-Fock (HF) calculation. Generalized
valence bond (GVB) and multi-configuration self-consistent field (MCSCF)
calculations can also be used as a starting point for a configuration interaction
calculation.

A CIS calculation starts with this initial set of orbitals and moves a single
electron to one of the virtual orbitals from the original calculation. This gives a
description of one of the excited states of the molecule, but does not change the
quality of the description of the ground state as do double-excitation CIs. This
gives a wave function of somewhat lesser quality than the original calculation
since the orbitals have been optimized for the ground state. Often, this results in
the ground-state energy being a bit low relative to the other states. The inclu-
sion of diffuse basis functions can improve the accuracy somewhat.

The extended CIS method (XCIS) is a version of CIS for examining states
that are doubly excited from the reference state. It does not include correlation
and is thus similar in accuracy to CIS.

The CIS(D) method is designed to include some correlation in excited states.
Initial results with this method show that it is stable and reliable and gives ex-
citation energies significantly more accurate than those of CIS.

25.3 INITIAL GUESS

If the initial guess for a calculation is very close to an excited-state wave func-
tion, the calculation may converge to that excited state. This is typically done
by doing an initial calculation and then using its wave function, with some of
the orbitals switched as the initial guess for another calculation. This works best
with HF calculations. It can work with MCSCF calculations too, but will not
work with CI, CC, or MPn calculations. This is a very good way to find the
ground state, or to at least verify that the state found was indeed the ground
state.

The advantage of this method is that the orbitals have been optimized for
the excited state. The disadvantage is that there is no guarantee it will work.
If there is no energy barrier between the initial guess and the ground-state
wave function, the entire calculation will converge back to the ground state.
The convergence path may take the calculation to an undesired state in any
case.

A second disadvantage of this technique applies if the excited state has the
same wave function symmetry as a lower-energy state. There is no guarantee
that the state obtained is completely orthogonal to the ground state. This means
that the wave function obtained may be some mix of the lower-energy state and
a higher-energy state. In practice, this type of calculation only converges to a
higher state if a fairly reasonable description of the excited-state wave function
is obtained. Mixing tends to be a significant concern if the orbital energies are
very close together or the system is very sensitive to correlation effects.
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254 BLOCK DIAGONAL HAMILTONIANS

Most ab initio calculations use symmetry-adapted molecular orbitals. Under
this scheme, the Hamiltonian matrix is block diagonal. This means that every
molecular orbital will have the symmetry properties of one of the irreducible
representations of the point group. No orbitals will be described by mixing
different irreducible representations.

Some programs such as COLUMBUS, DMOL, and GAMESS actually use
a separate matrix for each irreducible representation and solve them separately.
Such programs give the user the option of defining how many electrons are of
each irreducible representation. This defines the symmetry of the total wave
function. In this case, the resulting wave function is the lowest-energy wave
function of a particular symmetry. This is a very good way to calculate excited
states that differ in symmetry from the ground state and are the lowest-energy
state within that symmetry.

25.5 HIGHER ROOTS OF A (I

For configuration interaction calculations of double excitations or higher, it is
possible to solve the CI super-matrix for the 2nd root, 3rd root, 4th root, and so
on. This is a very reliable way to obtain a high-quality wave function for the
first few excited states. For higher excited states, CPU times become very large
since more iterations are generally needed to converge the CI calculation. This
can be done also with MCSCF calculations.

25.6 NEGLECTING A BASIS FUNCTION

Some programs, such as COLUMBUS, allow a calculation to be done with some
orbitals completely neglected from the calculation. For example, in a transition
metal compound, four d functions could be used so that the calculation would
have no way to occupy the function that was left out.

This is a reliable way to obtain an excited-state wave function even when it is
not the lowest-energy wave function of that symmetry. However, it might take
a bit of work to construct the input.

25.7 IMPOSING ORTHOGONALITY: DFT TECHNIQUES

Traditionally, excited states have not been one of the strong points of DFT.
This is due to the difficulty of ensuring orthogonality in the ground-state wave
function when no wave functions are being used in the calculation.

The easiest excited states to find using DFT techniques are those that are the
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lowest state of a given symmetry, thus using a ground-state calculation. A
promising technique is one that uses a variational bound for the average of the
first M states of a molecule. A few other options have also been examined.
However, there is not yet a large enough volume of work applying DFT to
excited states to predict the reliability of any of these techniques.

25.8 IMPOSING ORTHOGONALITY: QMC TECHNIQUES

Quantum Monte Carlo (QMC) methods are computations that use a statistical
integration to calculate integrals which could not be evaluated analytically.
These calculations can be extremely accurate, but often at the expense of enor-
mous CPU times. There are a number of methods for obtaining excited-state
energies from QMC calculations. These methods will only be mentioned here
and are explained more fully in the text by Hammond, Lester, and Reynolds.

Computations done in imaginary time can yield an excited-state energy by a
transformation of the energy decay curve. If an accurate description of the
ground state is already available, an excited-state description can be obtained by
forcing the wave function to be orthogonal to the ground-state wave function.

Diffusion and Green’s function QMC calculations are often done using a
fixed-node approximation. Within this scheme, the nodal surfaces used define
the state that is obtained as well as ensuring an antisymmetric wave function.

Matrix QMC procedures, similar to configuration interaction treatments,
have been devised in an attempt to calculate many states concurrently. These
methods are not yet well developed, as evidenced by oscillatory behavior in the
excited-state energies.

25.9 PATH INTEGRAL METHODS

There has been some initial success at computing excited-state energies using
the path integral formulation of quantum mechanics (Feynman’s method). In
this formulation, the energies are computed using perturbation theory. There
has not yet been enough work in this area to give any general understanding of
the reliability of results or relative difficulty of performing the calculations.
However, the research that has been done indicates this may in time be a viable
alternative to the other methods mentioned here.

25.10 TIME-DEPENDENT METHODS

Time-dependent calculations often result in obtaining a wave function that
oscillates between the ground and first excited states. From this solution, it is
possible to extract both these states.
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25.11 SEMIEMPIRICAL METHODS

Most of the semiempirical methods are not designed to correctly predict the
electronic excited state. Although excited-state calculations are possible, partic-
ularly using a CIS formulation, the energetics are not very accurate. However,
the HOMO-LUMO gap is reasonably reproduced by some of the methods.

The one exception to this is the INDO/S method, which is also called
ZINDO. This method was designed to describe electronic transitions, particu-
larly those involving transition metal atoms. ZINDO is used to describe elec-
tronic excited-state energies and often transition probabilities as well.

25.12 STATE AVERAGING

State averaging gives a wave function that describes the first few electronic
states equally well. This is done by computing several states at once with the
same orbitals. It also keeps the wave functions strictly orthogonal. This is nec-
essary to accurately compute the transition dipole moments.

25.13 ELECTRONIC SPECTRAL INTENSITIES

Intensities for electronic transitions are computed as transition dipole moments
between states. This is most accurate if the states are orthogonal. Some of the
best results are obtained from the CIS, MCSCF, and ZINDO methods. The
CASPT2 method can be very accurate, but it often requires some manual ma-
nipulation in order to obtain the correct configurations in the reference space.

25.14 RECOMMENDATIONS

Methods for obtaining electronic excited-state energies could be classified by
their accuracy, ease of use, and computational resource requirements. Such a
list, in order of preferred method, would be as follows:

Spin-state transitions

CIS, XCIS, CIS(D)

Block diagonal Hamiltonians
ZINDO

Higher roots of a CI
Time-dependent calculations
Choice of initial guess

PN R LD

Neglecting basis functions
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9. DFT with orthogonality
10. Path integral techniques
11. QMC methods

Note that trying different initial guesses is usually best for verifying that the
correct ground state has been found.

Regardless of the choice of method, excited-state modeling usually requires a
multistep process. The typical sequence of steps is:

1. Find which excited states exist and which are of interest.

2. Do a geometry optimization for the excited state.

3. Complete a frequency calculation to verify that the geometry is correct.
4. Compute excited-state properties.
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26 Size-Consistency

It is a well-known fact that the Hartree—Fock model does not describe bond
dissociation correctly. For example, the H, molecule will dissociate to an H*
and an H™ atom rather than two H atoms as the bond length is increased.
Other methods will dissociate to the correct products; however, the difference in
energy between the molecule and its dissociated parts will not be correct. There
are several different reasons for these problems: size-consistency, size-extensivity,
wave function construction, and basis set superposition error.

The above problem with H, dissociation is a matter of wave function con-
struction. The functional form of a restricted single-determinant wave function
will not allow a pair of electrons in an orbital to separate into two different
orbitals. Wave function construction issues were addressed in greater detail in
Chapters 3 through 6.

An even more severe example of a limitation of the method is the energy of
molecular mechanics calculations that use harmonic potentials. Although har-
monic potentials are very reasonable near the equilibrium geometry, they are
not even qualitatively correct for bond dissociation. These methods are very
reasonable for comparing the energies of conformers but not for bond disso-
ciation processes. Molecular mechanics methods using Morse potentials will
give reasonable dissociation energies only if the method was parameterized to
describe dissociation.

The literature contains some conflicting terminology regarding size-
consistency and size-extensivity. A size-consistent method is one in which the
energy obtained for two fragments at a sufficiently large separation will be
equal to the sum of the energies of those fragments computed separately. A
size—extensive method is one that gives an energy that is a linear function of the
number of electrons. Some authors use the term size-consistent to refer to both
criteria. Another error in the energy of separated fragments is basis set super-
position error (BSSE), which is discussed in Chapter 28.

A mathematical analysis can be done to show whether a particular method is
size-consistent. Strictly speaking, this analysis is only applicable to the behavior
at infinite separation. However, methods that are size-consistent tend to give
reasonable energetics at any separation. Some methods are approximately size-
consistent, meaning that they fail the mathematical test but are accurate
enough to only exhibit very small errors. Size-consistency is of primary impor-
tance for correctly describing the energetics of a system relative to the separated
pieces of the system (i.e., bond dissociation or van der Waals bonding in a given
system).

223
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TABLE 26.1 Size Properties of Methods

Method Size-consistent Size-extensive
HF YD Y
Full CI Y Y
Limited CI N N
CISDTQ A A
MPn YD Y
Other MBPT — N
CC YD Y
SAC YD Y
MRCI AD A
MRPT AD A
Semiempiricals AD A
Y = yes.

N = no.

D = true only if the reference space dissociates to the correct state for that system.
A = approximately.

Size-extensivity is of importance when one wishes to compare several similar
systems with different numbers of atoms (i.e., methanol, ethanol, etc.). In all
cases, the amount of correlation energy will increase as the number of atoms
increases. However, methods that are not size-extensive will give less correla-
tion energy for the larger system when considered in proportion to the number
of electrons. Size-extensive methods should be used in order to compare the
results of calculations on different-size systems. Methods can be approximately
size—extensive. The size-extensivity and size-consistency of various methods are
summarized in Table 26.1.

26.1 CORRECTION METHODS

It is possible to make a method approximately size—extensive by adding a cor-
rection to the final energy. This has been most widely used for correcting CISD
energies. This is a valuable technique because a simple energy correction for-
mula is easier to work with than full CI calculations, which require an immense
amount of computational resources. The most widely used correction is the
Davidson correction:

AEpc = Esp(1 — C7) (26.1)

where A Epc is the energy lowering, Esp the CISD energy, and Cj the weight of
the HF reference determinant in the CI expansion. This was designed to give
the additional energy lowering from a CISD energy to a CISDTQ energy. This
results in both a more accurate energy and in making the energy approximately
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size-extensive. The method is based on perturbation theory and thus may per-
form poorly if the HF wave function has a low weight in the CI expansion.

A slightly improved form of this equation is the renormalized Davidson
correction, which is also called the Brueckner correction:

1 -2

AErp = Esp c2

(26.2)

This generally gives a slight improvement over the Davidson correction, al-
though it does not reach the full CI limit.

A more detailed perturbation theory analysis leads to an improved correc-
tion formula. This method, known as the Davidson and Silver or Siegbahn
correction, is

1-C2

AEps = Esp —5——
DS SD2C02—1

(26.3)

This correction does approximate the full CI energy, although it may over-
correct the energy.

There are many more error correction methods, which are reviewed in detail
by Duch and Diercksen. They also discuss the correction of other wave func-
tions, such as multireference methods. In their tests with various numbers of Be
atoms, the correction most closely reproducing the full CI energy is

1—/1—-4C2(1+ C3)(1—2/N)
(2C2 = 1)+ /1 —4C2(1 — C3)(1 —2/N)

AEpc = Esp (26.4)

where N is the number of electrons in the system.

Another method for making a method size-extensive is called the self-
consistent dressing of the determinant energies. This is a technique for modify-
ing the CI superdeterminant in order to make a size-extensive limited CI. The
accuracy of this technique is generally comparable to the Davidson correction.
It performs better than the Davidson correction for calculations in which the
HF wave function has a low weight in the CI expansion.

26.2 RECOMMENDATIONS

Size-consistency and size-extensivity are issues that should be considered at the
outset of any study involving multiple molecules or dissociated fragments. As
always, the choice of a computational method is dependent on the accuracy
desired and computational resource requirements. Correction formulas are so
simple to use that several of them can readily be tried to see which does best for
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the system of interest. The Davidson, Brueckner, and Siegbahn corrections are
commonly compared. There is not a large enough collection of results to make
any general comments on the merits of the other correction methods.
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27 Spin Contamination

Introductory descriptions of Hartree—Fock calculations [often using Rootaan’s
self-consistent field (SCF) method] focus on singlet systems for which all elec-
tron spins are paired. By assuming that the calculation is restricted to two
electrons per occupied orbital, the computation can be done more efficiently.
This is often referred to as a spin-restricted Hartree—Fock calculation or RHF.

For systems with unpaired electrons, it is not possible to use the RHF
method as is. Often, an unrestricted SCF calculation (UHF) is performed. In
an unrestricted calculation, there are two complete sets of orbitals: one for the
alpha electrons and one for the beta electrons. These two sets of orbitals use the
same set of basis functions but different molecular orbital coefficients.

The advantage of unrestricted calculations is that they can be performed
very efficiently. The alpha and beta orbitals should be slightly different, an effect
called spin polarization. The disadvantage is that the wave function is no longer
an eigenfunction of the total spin (S>)». Thus, some error may be introduced
into the calculation. This error is called spin contamination and it can be con-
sidered as having too much spin polarization.

27.1 HOW DOES SPIN CONTAMINATION AFFECT RESULTS?

Spin contamination results in a wave function that appears to be the desired
spin state, but is a mixture of some other spin states. This occasionally results in
slightly lowering the computed total energy because of greater variational free-
dom. More often, the result is to slightly raise the total energy since a higher-
energy state is mixed in. However, this change is an artifact of an incorrect
wave function. Since this is not a systematic error, the difference in energy be-
tween states will be adversely affected. A high spin contamination can affect the
geometry and population analysis and significantly affect the spin density. Ex-
actly how these results are changed depends on the nature of the state being
mixed with the ground state. Spin contamination can also result in the slower
convergence of MPn calculations. Transition states and high-spin transition
metal compounds tend to be particularly susceptible to spin contamination.

As a check for the presence of spin contamination, most ab initio programs
will print out the expectation value of the total spin (S>). If there is no spin
contamination, this should equal s(s + 1), where s equals § times the number of
unpaired electrons. One rule of thumb, which was derived from experience with
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TABLE 27.1 Spin Eigenfunctions

Number of unpaired electrons S (8%
0 0 0

1 0.5 0.75
2 1 2.0
3 1.5 3.75
4 2 6.0
5 2.5 8.75

organic molecule calculations, is that the spin contamination is negligible if the
value of {(S?) differs from s(s + 1) by less than 10%. Although this provides a
quick test, it is always advisable to doublecheck the results against experimental
evidence or more rigorous calculations. Expected values of (S?) are listed in
Table 27.1.

Spin contamination is often seen in unrestricted Hartree—Fock (UHF) cal-
culations and unrestricted Moller—Plesset (UMP2, UMP3, UMP4) calculations.
UMP?2 is often the most sensitive to spin contamination, followed by UHF,
UMP3, and UMP4. Local MP2 (LMP2) usually has less spin contamination
than MP2. It is less common to find any significant spin contamination in DFT
calculations, even when unrestricted Kohn—Sham orbitals are used. Spin con-
tamination has little effect on CC and CI calculations, in which the variational
principle will result in correcting for spin contamination in the reference wave
function.

Unrestricted calculations often incorporate a spin annihilation step, which
removes a large percentage of the spin contamination from the wave function.
This helps minimize spin contamination but does not completely prevent it. The
final value of {S?) is always the best check on the amount of spin contamina-
tion present. In the Gaussian program, the option “iop(5/14=2)" tells the pro-
gram to use the annihilated wave function to produce the population analysis.

27.2 RESTRICTED OPEN-SHELL CALCULATIONS

It is possible to run spin-restricted open-shell calculations (ROHF). The advan-
tage of this is that there is no spin contamination. The disadvantage is that
there is an additional cost in the form of CPU time required in order to cor-
rectly handle both singly occupied and doubly occupied orbitals and the inter-
action between them. As a result of the mathematical method used, ROHF
calculations give good total energies and wave functions but the singly occupied
orbital energies do not rigorously obey Koopman’s theorem.

ROHF does not include spin polarization. Thus, it is not useful for some
purposes, such as predicting EPR spectra. Also because of this, it cannot reli-
ably predict spin densities.
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ROHEF calculations can also exhibit symmetry breaking. Symmetry breaking
is due to the calculation converging to one of the resonance structures instead
of the correct ground state, which is a superposition of possible resonance
structures. This causes the molecule to distort to a lower-symmetry geometry.
How much symmetry breaking affects the geometry of a molecule is difficult to
determine because there are many examples in which a low symmetry is the
correct shape of a molecule. In cases where the symmetry breaking is a non-
physical artifact of the calculation, the wave function often exhibits an abnor-
mally pronounced localization of the spin density to one atom or bond.

Within some programs, the ROMPn methods do not support analytic gra-
dients. Thus, the fastest way to run the calculation is as a single point energy
calculation with a geometry from another method. If a geometry optimization
must be done at this level of theory, a non-gradient-based method such as the
Fletcher—Powell optimization should be used.

When it has been shown that the errors introduced by spin contamination
are unacceptable, restricted open-shell calculations are often the best way to
obtain a reliable wave function.

27.3 SPIN PROJECTION METHODS

Another approach is to run an unrestricted calculation and then project out the
spin contamination after the wave function has been obtained (PUHF, PMP2).
This gives a correction to the energy but does not affect the wave function. Spin
projection nearly always improves ab initio results, but may seriously harm the
accuracy of DFT results.

A spin projected result does not give the energy obtained by using a restricted
open-shell calculation. This is because the unrestricted orbitals were optimized
to describe the contaminated state, rather than the spin-projected state. In cases
of very-high-spin contamination, the spin projection may fail, resulting in an
increase in spin contamination.

A similar effect is obtained by using the spin-constrained UHF method
(SUHF). In this method, the spin contamination error in a UHF wave function
is constrained by the use of a Lagrangian multiplier. This removes the spin
contamination completely as the multiplier goes to infinity. In practice, small
positive values remove most of the spin contamination.

27.4 HALF-ELECTRON APPROXIMATION

Semiempirical programs often use the half-electron approximation for radical
calculations. The half-electron method is a mathematical technique for treat-
ing a singly occupied orbital in an RHF calculation. This results in consistent
total energy at the expense of having an approximate wave function and or-
bital energies. Since a single-determinant calculation is used, there is no spin
contamination.
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The consistent total energy makes it possible to compute singlet-triplet gaps
using RHF for the singlet and the half-electron calculation for the triplet.
Koopman’s theorem is not followed for half-electron calculations. Also, no spin
densities can be obtained. The Mulliken population analysis is usually fairly
reasonable.

27.5 RECOMMENDATIONS

If spin contamination is small, continue to use unrestricted methods, preferably
with spin-annihilated wave functions and spin projected energies. Do not use
spin projection with DFT methods. When the amount of spin contamination is
more significant, use restricted open-shell methods. If all else fails, use highly
correlated methods.
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28 Basis Set Customization

Chapter 10 represented a wave function as a linear combination of Gaussian
basis functions. Today, there are so many basis sets available that many re-
searchers will never need to modify a basis set. However, there are occasionally
times when it is desirable to extend an existing basis set in order to obtain more
accurate results. The savvy researcher also needs to be able to understand the
older literature, in which basis sets were customized routinely.

28.1 WHAT BASIS FUNCTIONS DO

The tight functions in the basis set are those having large Gaussian exponents.
These functions described the shape of the electron density near the nucleus;
they are responsible for a very large amount of total energy due to the high
kinetic and potential energy of electrons near the nucleus. However, the tight
functions have very little effect on how well the calculation describes chemical
bonding. Altering the tight basis functions may result in slightly shifting the
atomic size. Although it is, of course, possible to add additional tight functions
to an existing basis, this is very seldom done because it is difficult to do cor-
rectly and it makes very little difference in the computed chemical properties. It
is advisable to completely switch basis sets if the description of the core region
is of concern.

Diffuse functions are those functions with small Gaussian exponents, thus
describing the wave function far from the nucleus. It is common to add addi-
tional diffuse functions to a basis. The most frequent reason for doing this is to
describe orbitals with a large spatial extent, such as the HOMO of an anion or
Rydberg orbitals. Adding diffuse functions can also result in a greater tendency
to develop basis set superposition error (BSSE), as described later in this chapter.

Polarization functions are functions of a higher angular momentum than
the occupied orbitals, such as adding d orbitals to carbon or f orbitals to
iron. These orbitals help the wave function better span the function space. This
results in little additional energy, but more accurate geometries and vibrational
frequencies.

28.2 CREATING BASIS SETS FROM SCRATCH

Creating completely new basis sets is best left to professionals because it requires
a very large amount of technical expertise. To be more correct, anyone could
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create a new basis set, but it is extremely difficult to create one better than the
existing sets. Creating a basis set requires first obtaining an initial set of func-
tions and then optimizing both coefficients and exponents in order to get the best
variational energy. An initial set of functions can be created by using a known
approximate mathematical relationship between basis functions or fitting to
high-accuracy results, such as numerical basis set calculations. Even once a low
variational energy has been obtained, that does not mean it is a good basis set.
A good description of the core electrons will yield a low energy. It is also nec-
essary to give a good description of the valence region, where bonding occurs.
In order to describe the valence region well, the basis must have both basis
functions in the correct region of space and enough flexibility (uncontracted
functions) to describe the shift in electron density as bonds are being formed.
Then the issues of polarization and diffuse functions must be addressed.

28.3 COMBINING EXISTING BASIS SETS

It is possible to mix basis sets by choosing the functions for different elements
from different existing basis sets. This can be necessary if the desired basis set
does not have functions for a particular element. It can result in very good
results as long as basis sets being combined are of comparable accuracy. Mixing
very large and very small basis sets can result in inaccurate calculations due to
uneven spanning of the function space, called an unbalanced basis.

How does one tell if two basis sets have the same accuracy? If the two were
defined for the same atom, then they would be expected to have a similar
number of Gaussian primitives, similar number of valence contractions, and
similar total energy’s for the atom-only calculation. If they are not defined for
the same elements, then a similar number of valence contractions is a crude
indicator. In this case, the number of primitives should follow typical trends.
For example, examining a basis set that has been defined for a large number of
elements will show general trends, such as having more primitives for the heavier
elements and more primitives for the lower-angular-momentum orbitals. These
patterns have been defined based on studies in which the variational energy
lowering for each additional primitive was examined. A well-balanced basis set
is one in which the energy contribution due to adding the final primitive to each
orbital is approximately equivalent.

What if an unbalanced basis is used? This is tantamount to asking what
would happen if the calculation contains two nearby atoms: one of which is
described by a large basis and the other by a small basis. In this case, the energy
of the atom with a small basis can be variationally lowered if the basis functions
of the other atom are weighted in order to describe the electron density around
the first atom. This leads to an extreme case of basis set superposition error.
The energy of the atom with the smaller basis can be lowered even more if it
moves closer to the atom with the large basis. Thus, this leads to errors in both
energy and geometry. An unbalanced basis can give results of a poorer accu-
racy than a small but balanced basis.
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FIGURE 28.1 Uncontracted basis input.

28.4 CUSTOMIZING A BASIS SET

The most difficult part of creating a basis set from scratch is optimizing the
exponents. In customizing a basis, one must start with a set of exponents at
the very least. The steps involved then consist of creating contractions, adding
additional functions to the valence contractions, adding polarization functions,
and adding diffuse functions. It is possible to add outer primitives (low expo-
nents) that are nearly optimal. It is more difficult to add near-optimal inner
functions (large exponents). Thus, the description of the core region provided
by the starting exponents must be acceptable.

Determining contraction coefficients is something that occasionally must be
done. Early calculations did not use contracted basis functions and so older
basis sets do not include contraction coefficients. The user must determine the
contractions in order to make optimal use of these basis sets with the current
generation of software, which is designed to be used with contracted basis sets.
If no contraction coefficients are available, the first step is to run a calculation
on the atom with the basis set completely uncontracted. For example, Figure
28.1 shows a 6s2p nitrogen atom basis created by Duijneveldt and formatted
for input in the Gaussian program.

Figure 28.2 shows the molecular orbitals from the uncontracted atom cal-
culation. A reasonable set of contractions will be obtained by using the largest-
weight primitives from each of these orbitals. There is not a specific value that is
considered a large weight. However, some guidance can be obtained by exam-
ining established basis sets. In this example, the basis will be partitioned into
two s and one p contracted functions. Our choice of coefficients are those
printed in bold in Figure 28.2. The p, and p. orbitals show some mixing to give
an arbitrary orientation in the xz plane, which does not change the energy of a
single atom. The p, orbitals were used since they mix very little with the x and
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1 2 3 4 5

O o O o (o]
EIGENVALUES -- -15.67268 -1.15465 -0.49434 -0.49434 -0.49434
11 N 1S 0.01725 -0.00401 0.00000 0.00000 0.00000
2 28 0.12052 -0.02888 0.00000 0.00000 0.00000
3 38 0.42594 -0.11729 0.00000 0.00000 0.00000
4 4S8 0.54719 -0.23494 0.00000 0.00000 0.00000
5 58 0.05956 0.47481 0.00000 0.00000 0.00000
6 6S -0.01658 0.64243 0.00000 0.00000 0.00000
7 7PX 0.00000 0.00000 0.25850 0.21951 -0.06145
8 7PY 0.00000 0.00000 0.00343 0.08916 0.33289
9 7PZ 0.00000 0.00000 -0.22792 0.25029 -0.06469
10 8PX 0.00000 0.00000 0.60087 0.51024 -0.14284
11 8PY 0.00000 0.00000 0.00796 0.20725 0.77381
12 8PZ 0.00000 0.00000 -0.52980 0.58180 -0.15037

FIGURE 28.2 Uncontracted orbitals.

z. If all the p orbitals were mixed, it would be necessary to orthogonalize the
orbitals or enforce some symmetry in the wave function.

The contracted basis set created from the procedure above is listed in Figure
28.3. Note that the contraction coefficients are not normalized. This is not
usually a problem since nearly all software packages will renormalize the co-
efficients automatically. The atom calculation rerun with contracted orbitals is
expected to run much faster and have a slightly higher energy.

Likewise, a basis set can be improved by uncontracting some of the outer
basis function primitives (individual GTO orbitals). This will always lower
the total energy slightly. It will improve the accuracy of chemical predictions if
the primitives being uncontracted are those describing the wave function in the
middle of a chemical bond. The distance from the nucleus at which a basis
function has the most significant effect on the wave function is the distance at
which there is a peak in the radial distribution function for that GTO primitive.
The formula for a normalized radial GTO primitive in atomic units is

NO
S 4 1.00
6.7871900000E+02 1.7250000000E-02
1.0226600000E+02 1.2052000000E-01
2.2906600000E+01 4.2594000000E-01
6.1064900000E+00 5.4719000000E-01
S 21.00
8.3954000000E-01 4.7481000000E-01
2.5953000000E-01 6.4243000000E-01
P 2 1.00
2.3379500000E+00 3.3289000000E-01
4.1543000000E-01  7.7381000000E-01

*kkk

FIGURE 28.3 Contracted basis.
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27 3 1/4
R(r) = [—C] eV (28.1)
T
where { is the Gaussian exponent. The formula for the radial distribution

function of a GTO primitive is

1/2
7#3
RDF = r2R%(r) = l%} e % (28.2)

The maximum in this function occurs at

Fo (28.3)

N3

Thus, a primitive with an exponent of 0.2 best describes the wave function at a
distance of 0.79 Bohrs.

The contracted basis in Figure 28.3 is called a minimal basis set because
there is one contraction per occupied orbital. The valence region, and thus
chemical bonding, could be described better if an additional primitive were
added to each of the valence orbitals. This is almost always done using the
“even-tempered’’ method. This method comes from the observation that energy-
optimized exponents tend to nearly follow an exponential pattern given by

6 = op’ (28.4)

where {; is the ith exponent and a and B are fitted parameters. This equation
can be used to generate additional primitive from the two outer primitives. An
additional s primitive would be generated from the last two primitives as fol-
lows. First, divide to obtain 3:

Lo op® 0.25957
& ap’ 0.83954 0309 (28:5)
Rearrange and substitute to get a:
g 0.25957
B 0.309° o8 (28.6)

Then use the original formula to get ¢,

¢, = ap’ =298 -0.3097 = 0.0802 (28.7)
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NO

S 4 1.00
6.7871900000E+02
1.0226600000E+02
2.2906600000E+01
6.1064900000E+00
S 2 1.00
8.3954000000E-01
2.5953000000E-01

1.7250000000E-02
1.2052000000E-01
4.2594000000E-01
5.4719000000E-01

4.7481000000E-01
6.4243000000E-01

S 11.00
8.0200000000E-02 1.0000000000E+00
P 2 1.00

2.3379500000E+00
4.1543000000E-01

3.3289000000E-01
7.7381000000E-01

P 11.00
7.3880000000E-02 1.0000000000E+00
D 11.00

8.0000000000E-01

*kkk

1.0000000000E+00

FIGURE 28.4 Final basis.

Note that the answers have been rounded to three significant digits. Since the
even-tempered formula is only an approximation, this does not introduce any
significant additional error.

Although the even tempered function scheme is fairly reasonable far from the
nucleus, each function added is slightly further from the energy-optimized value.
Generally, two or three additional functions at the most will be added to a basis
set. Beyond this point, it is most efficient to switch to a different, larger basis.

A different scheme must be used for determining polarization functions and
very diffuse functions (Rydberg functions). It is reasonable to use functions
from another basis set for the same element. Another option is to use functions
that will depict the electron density distribution at the desired distance from the
nucleus as described above.

Having polarization functions of higher angular momentum than the highest
occupied orbitals is usually the most polarization that will benefit HF or DFT
results. Higher-angular-momentum functions are important for very-high-
accuracy configuration interaction and coupled-cluster calculations. As a gen-
eral rule of thumb, uncontracting a valence primitive generally lowers the
variational energy by about as much as adding a set of polarization functions.

A new basis for the element can now be created by combining these tech-
niques. The basis in Figure 28.4 was created from the contracted set illustrated
in Figure 28.3. Additional even-tempered exponents have been added to both
the s and p functions. A polarization function of d symmetry was obtained from
the 6—31G(d) basis set. In a realistic scenario, a certain amount of trial-and-
error work, based on obtaining low variational energies and stronger
chemical bonds, would be involved in this process. This nitrogen example is
somewhat artificial because there are many high-quality basis functions avail-
able for nitrogen that would be preferable to customizing a basis set.
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The final step is to check the performance of the basis set. This can be done
by first doing a single-atom calculation to check the energy and virial theorem
value. The UHF calculation for this basis gave a virial theorem check of
—1.9802, which is in reasonable agreement with the correct value of —2. The
UHF atom energy is —54.10814 Hartrees for this example. This is really not a
very good total energy for nitrogen due to the fact that the example started with
a fairly small basis set. The 6—31G(d) basis gives a total energy of —54.38544
Hartrees for nitrogen. The basis in this example should probably not be ex-
tended any more than has been done here, since it would lead to having a dis-
proportionately well-described valence region and poorly described core.

The final test of the basis quality, particularly in the valence region, is the
result of molecular calculations. This basis gave an N, bond length of 1.1409 A
at the HF level of theory and 1.1870 at the CCSD Ilevel of theory, in only
moderate agreement with the experimental value of 1.0975A. The larger
6—31G(d) basis set gives a bond length of 1.0783 A at the HF level of theory.
The experimental bond energy for N, is 225.9 kcal/mol. The HF calculation
with this example basis yields 89.9 kcal/mol, compared to the HF 6—31G(d)
bond energy of 108.6 kcal/mol. At the CCSD level of theory, the sample basis
gives a bond energy of 170.3 kcal/mol.

28.5 BASIS SET SUPERPOSITION ERROR

Basis set superposition error (BSSE) is an energy lowering of a complex of
two molecules with respect to the sum of the individual molecule energies. This
results in obtaining van der Waals and hydrogen bond energies that are too
large because the basis functions on one molecule act to describe the electron
density of the other molecule. In the limit of an exact basis set, there would be
no superposition error. The error is also small for minimal basis sets, which do
not have functions diffuse enough to describe an adjacent atom. The largest
errors occurred when using moderate-size basis sets.

The procedure for correcting for BSSE is called a counterpoise correction.
In this procedure, the complex of molecules is first computed. The individual
molecule calculations are then performed using all the basis functions from
the complex. For this purpose, many ab initio software programs contain a
mechanism for defining basis functions that are centered at a location which
is not on one of the nuclei. The interaction energy is expressed as the energy
for the complex minus the individual molecule energies computed in this way.
In equation form, this is given as

Einteraction = E4(AB) — E4p(A) — E45(B) (28.8)
where the subscripts denote the basis functions being used and the letters in

parentheses denote the molecules included in each calculation.
Counterpoise correction should, in theory, be unnecessary for large basis
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sets. However, practical applications have shown that it yields a significant
improvement in results even for very large basis sets. The use of a counterpoise
correction is recommended for the accurate computation of molecular interac-
tion energies by ab initio methods.
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