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This book is designed for use as a textbook for a first course in circuit analysis or as a supplement to

standard texts and can be used by electrical engineering students as well as other engineereing and

technology students. Emphasis is placed on the basic laws, theorems, and problem-solving techniques

which are common to most courses.

The subject matter is divided into 17 chapters covering duly-recognized areas of theory and study.

The chapters begin with statements of pertinent definitions, principles, and theorems together with

illustrative examples. This is followed by sets of solved and supplementary problems. The problems

cover a range of levels of difficulty. Some problems focus on fine points, which helps the student to better

apply the basic principles correctly and confidently. The supplementary problems are generally more

numerous and give the reader an opportunity to practice problem-solving skills. Answers are provided

with each supplementary problem.

The book begins with fundamental definitions, circuit elements including dependent sources, circuit

laws and theorems, and analysis techniques such as node voltage and mesh current methods. These

theorems and methods are initially applied to DC-resistive circuits and then extended to RLC circuits by

the use of impedance and complex frequency. Chapter 5 on amplifiers and op amp circuits is new. The op

amp examples and problems are selected carefully to illustrate simple but practical cases which are of

interest and importance in the student’s future courses. The subject of waveforms and signals is also

treated in a new chapter to increase the student’s awareness of commonly used signal models.

Circuit behavior such as the steady state and transient response to steps, pulses, impulses, and

exponential inputs is discussed for first-order circuits in Chapter 7 and then extended to circuits of

higher order in Chapter 8, where the concept of complex frequency is introduced. Phasor analysis,

sinuosidal steady state, power, power factor, and polyphase circuits are thoroughly covered. Network

functions, frequency response, filters, series and parallel resonance, two-port networks, mutual induc-

tance, and transformers are covered in detail. Application of Spice and PSpice in circuit analysis is

introduced in Chapter 15. Circuit equations are solved using classical differential equations and the

Laplace transform, which permits a convenient comparison. Fourier series and Fourier transforms and

their use in circuit analysis are covered in Chapter 17. Finally, two appendixes provide a useful summary

of the complex number system, and matrices and determinants.

This book is dedicated to our students from whom we have learned to teach well. To a large degree it

is they who have made possible our satisfying and rewarding teaching careers. And finally, we wish to

thank our wives, Zahra Nahvi and Nina Edminister for their continuing support, and for whom all these

efforts were happily made.

MAHMOOD NAHVI

JOSEPH A. EDMINISTER
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1

Introduction

1.1 ELECTRICAL QUANTITIES AND SI UNITS

The International System of Units (SI) will be used throughout this book. Four basic quantities
and their SI units are listed in Table 1-1. The other three basic quantities and corresponding SI units,
not shown in the table, are temperature in degrees kelvin (K), amount of substance in moles (mol), and
luminous intensity in candelas (cd).

All other units may be derived from the seven basic units. The electrical quantities and their symbols
commonly used in electrical circuit analysis are listed in Table 1-2.

Two supplementary quantities are plane angle (also called phase angle in electric circuit analysis)
and solid angle. Their corresponding SI units are the radian (rad) and steradian (sr).

Degrees are almost universally used for the phase angles in sinusoidal functions, for instance,
sinð!tþ 308Þ. Since !t is in radians, this is a case of mixed units.

The decimal multiples or submultiples of SI units should be used whenever possible. The symbols
given in Table 1-3 are prefixed to the unit symbols of Tables 1-1 and 1-2. For example, mV is used for
millivolt, 10�3 V, and MW for megawatt, 106 W.

1.2 FORCE, WORK, AND POWER

The derived units follow the mathematical expressions which relate the quantities. From ‘‘force
equals mass times acceleration,’’ the newton (N) is defined as the unbalanced force that imparts an
acceleration of 1 meter per second squared to a 1-kilogram mass. Thus, 1N ¼ 1 kg �m=s2.

Work results when a force acts over a distance. A joule of work is equivalent to a newton-meter:
1 J ¼ 1N �m. Work and energy have the same units.

Power is the rate at which work is done or the rate at which energy is changed from one form to
another. The unit of power, the watt (W), is one joule per second (J/s).

Table 1-1

Quantity Symbol SI Unit Abbreviation

length L; l meter m

mass M;m kilogram kg

time T; t second s

current I; i ampere A

Copyright 2003, 1997, 1986, 1965 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



EXAMPLE 1.1. In simple rectilinear motion a 10-kg mass is given a constant acceleration of 2.0m/s2. (a) Find the

acting force F . (b) If the body was at rest at t ¼ 0, x ¼ 0, find the position, kinetic energy, and power for t ¼ 4 s.

F ¼ ma ¼ ð10 kgÞð2:0m=s2Þ ¼ 20:0 kg �m=s2 ¼ 20:0NðaÞ

x ¼ 1
2
at2 ¼ 1

2
ð2:0m=s2Þð4 sÞ2 ¼ 16:0mðbÞ At t ¼ 4 s;

KE ¼ Fx ¼ ð20:0NÞð16:0mÞ ¼ 3200N �m ¼ 3:2 kJ

P ¼ KE=t ¼ 3:2 kJ=4 s ¼ 0:8 kJ=s ¼ 0:8 kW

1.3 ELECTRIC CHARGE AND CURRENT

The unit of current, the ampere (A), is defined as the constant current in two parallel conductors of
infinite length and negligible cross section, 1 meter apart in vacuum, which produces a force between the
conductors of 2:0� 10�7 newtons per meter length. A more useful concept, however, is that current
results from charges in motion, and 1 ampere is equivalent to 1 coulomb of charge moving across a fixed
surface in 1 second. Thus, in time-variable functions, iðAÞ ¼ dq=dtðC/s). The derived unit of charge,
the coulomb (C), is equivalent to an ampere-second.

The moving charges may be positive or negative. Positive ions, moving to the left in a liquid or
plasma suggested in Fig. 1-1(a), produce a current i, also directed to the left. If these ions cross the
plane surface S at the rate of one coulomb per second, then the resulting current is 1 ampere. Negative
ions moving to the right as shown in Fig. 1-1(b) also produce a current directed to the left.

2 INTRODUCTION [CHAP. 1

Table 1-2

Quantity Symbol SI Unit Abbreviation

electric charge Q; q coulomb C

electric potential V; v volt V

resistance R ohm �

conductance G siemens S

inductance L henry H

capacitance C farad F

frequency f hertz Hz

force F; f newton N

energy, work W;w joule J

power P; p watt W

magnetic flux � weber Wb

magnetic flux density B tesla T

Table 1-3

Prefix Factor Symbol

pico 10�12 p

nano 10�9 n

micro 10�6 m
milli 10�3 m

centi 10�2 c

deci 10�1 d

kilo 103 k

mega 106 M

giga 109 G

tera 1012 T



Of more importance in electric circuit analysis is the current in metallic conductors which takes place
through the motion of electrons that occupy the outermost shell of the atomic structure. In copper, for
example, one electron in the outermost shell is only loosely bound to the central nucleus and moves
freely from one atom to the next in the crystal structure. At normal temperatures there is constant,
random motion of these electrons. A reasonably accurate picture of conduction in a copper conductor
is that approximately 8:5� 1028 conduction electrons per cubic meter are free to move. The electron
charge is �e ¼ �1:602� 10�19 C, so that for a current of one ampere approximately 6:24� 1018 elec-
trons per second would have to pass a fixed cross section of the conductor.

EXAMPLE 1.2. A conductor has a constant current of five amperes. How many electrons pass a fixed point on

the conductor in one minute?

5A ¼ ð5C=sÞð60 s=minÞ ¼ 300C=min

300C=min

1:602� 10�19 C=electron
¼ 1:87� 1021 electrons=min

1.4 ELECTRIC POTENTIAL

An electric charge experiences a force in an electric field which, if unopposed, will accelerate the
particle containing the charge. Of interest here is the work done to move the charge against the field as
suggested in Fig. 1-2(a). Thus, if 1 joule of work is required to move the charge Q, 1 coulomb from
position 0 to position 1, then position 1 is at a potential of 1 volt with respect to position 0; 1V ¼ 1 J=C.
This electric potential is capable of doing work just as the mass in Fig. 1-2(b), which was raised against
the gravitational force g to a height h above the ground plane. The potential energy mgh represents an
ability to do work when the mass m is released. As the mass falls, it accelerates and this potential energy
is converted to kinetic energy.

CHAP. 1] INTRODUCTION 3
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EXAMPLE 1.3. In an electric circuit an energy of 9.25 mJ is required to transport 0.5mC from point a to point b.

What electric potential difference exists between the two points?

1 volt ¼ 1 joule per coulomb V ¼
9:25� 10�6 J

0:5� 10�6 C
¼ 18:5V

1.5 ENERGY AND ELECTRICAL POWER

Electric energy in joules will be encountered in later chapters dealing with capacitance and induc-
tance whose respective electric and magnetic fields are capable of storing energy. The rate, in joules per
second, at which energy is transferred is electric power in watts. Furthermore, the product of voltage
and current yields the electric power, p ¼ vi; 1W ¼ 1V � 1A. Also, V �A ¼ ðJ=CÞ � ðC=sÞ ¼ J=s ¼ W.
In a more fundamental sense power is the time derivative p ¼ dw=dt, so that instantaneous power p is
generally a function of time. In the following chapters time average power Pavg and a root-mean-square
(RMS) value for the case where voltage and current are sinusoidal will be developed.

EXAMPLE 1.4. A resistor has a potential difference of 50.0V across its terminals and 120.0C of charge per minute

passes a fixed point. Under these conditions at what rate is electric energy converted to heat?

ð120:0C=minÞ=ð60 s=minÞ ¼ 2:0A P ¼ ð2:0AÞð50:0VÞ ¼ 100:0W

Since 1W ¼ 1 J/s, the rate of energy conversion is one hundred joules per second.

1.6 CONSTANT AND VARIABLE FUNCTIONS

To distinguish between constant and time-varying quantities, capital letters are employed for the
constant quantity and lowercase for the variable quantity. For example, a constant current of 10
amperes is written I ¼ 10:0A, while a 10-ampere time-variable current is written i ¼ 10:0 f ðtÞA. Exam-
ples of common functions in circuit analysis are the sinusoidal function i ¼ 10:0 sin!t ðAÞ and the
exponential function v ¼ 15:0 e�at (V).

Solved Problems

1.1 The force applied to an object moving in the x direction varies according to F ¼ 12=x2 (N).
(a) Find the work done in the interval 1m � x � 3m. (b) What constant force acting over the
same interval would result in the same work?

dW ¼ F dx so W ¼

ð3
1

12

x2
dx ¼ 12

�1

x

� �3
1

¼ 8 JðaÞ

8 J ¼ Fcð2mÞ or Fc ¼ 4NðbÞ

1.2 Electrical energy is converted to heat at the rate of 7.56kJ/min in a resistor which has 270C/min
passing through. What is the voltage difference across the resistor terminals?

From P ¼ VI ,

V ¼
P

I
¼

7:56� 103 J=min

270C=min
¼ 28 J=C ¼ 28V
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1.3 A certain circuit element has a current i ¼ 2:5 sin!t (mA), where ! is the angular frequency in
rad/s, and a voltage difference v ¼ 45 sin!t (V) between terminals. Find the average power Pavg

and the energy WT transferred in one period of the sine function.

Energy is the time-integral of instantaneous power:

WT ¼

ð2�=!
0

vi dt ¼ 112:5

ð2�=!
0

sin2 !t dt ¼
112:5�

!
ðmJÞ

The average power is then

Pavg ¼
WT

2�=!
¼ 56:25mW

Note that Pavg is independent of !.

1.4 The unit of energy commonly used by electric utility companies is the kilowatt-hour (kWh).
(a) How many joules are in 1 kWh? (b) A color television set rated at 75W is operated from
7:00 p.m. to 11:30 p.m. What total energy does this represent in kilowatt-hours and in mega-
joules?

(a) 1 kWh ¼ ð1000 J=sÞð3600 s=hÞ ¼ 3:6MJ

(b) ð75:0WÞð4:5 hÞ ¼ 337:5Wh ¼ 0:3375 kWh

ð0:3375 kWhÞð3:6MJ=kWhÞ ¼ 1:215MJ

1.5 An AWG #12 copper wire, a size in common use in residential wiring, contains approximately
2:77� 1023 free electrons per meter length, assuming one free conduction electron per atom.
What percentage of these electrons will pass a fixed cross section if the conductor carries a
constant current of 25.0 A?

25:0C=s

1:602� 10�19 C=electron
¼ 1:56� 1020 electron=s

ð1:56� 1020 electrons=sÞð60 s=minÞ ¼ 9:36� 1021 electrons=min

9:36� 1021

2:77� 1023
ð100Þ ¼ 3:38%

1.6 How many electrons pass a fixed point in a 100-watt light bulb in 1 hour if the applied constant
voltage is 120 V?

100W ¼ ð120VÞ � IðAÞ I ¼ 5=6A

ð5=6C=sÞð3600 s=hÞ

1:602� 10�19 C=electron
¼ 1:87� 1022 electrons per hour

1.7 A typical 12 V auto battery is rated according to ampere-hours. A 70-A � h battery, for example, at
a discharge rate of 3.5 A has a life of 20 h. (a) Assuming the voltage remains constant, obtain the
energy and power delivered in a complete discharge of the preceding batttery. (b) Repeat for a
discharge rate of 7.0 A.

(a) ð3:5AÞð12VÞ ¼ 42:0W (or J/s)

ð42:0 J=sÞð3600 s=hÞð20 hÞ ¼ 3:02MJ

(b) ð7:0AÞð12VÞ ¼ 84:0W
ð84:0 J=sÞð3600 s=hÞð10 hÞ ¼ 3:02MJ

CHAP. 1] INTRODUCTION 5



The ampere-hour rating is a measure of the energy the battery stores; consequently, the energy trans-

ferred for total discharge is the same whether it is transferred in 10 hours or 20 hours. Since power is the

rate of energy transfer, the power for a 10-hour discharge is twice that in a 20-hour discharge.

Supplementary Problems

1.8 Obtain the work and power associated with a force of 7:5� 10�4 N acting over a distance of 2 meters in an

elapsed time of 14 seconds. Ans. 1.5mJ, 0.107mW

1.9 Obtain the work and power required to move a 5.0-kg mass up a frictionless plane inclined at an angle of 308
with the horizontal for a distance of 2.0m along the plane in a time of 3.5 s. Ans. 49.0 J, 14.0W

1.10 Work equal to 136.0 joules is expended in moving 8:5� 1018 electrons between two points in an electric

circuit. What potential difference does this establish between the two points? Ans. 100V

1.11 A pulse of electricity measures 305V, 0.15A, and lasts 500 ms. What power and energy does this represent?

Ans. 45.75W, 22.9mJ

1.12 A unit of power used for electric motors is the horsepower (hp), equal to 746 watts. How much energy does

a 5-hp motor deliver in 2 hours? Express the answer in MJ. Ans. 26.9MJ

1.13 For t � 0, q ¼ ð4:0� 10�4
Þð1� e�250t

Þ (C). Obtain the current at t ¼ 3ms. Ans. 47.2mA

1.14 A certain circuit element has the current and voltage

i ¼ 10e�5000t
ðAÞ v ¼ 50ð1� e�5000t

Þ ðVÞ

Find the total energy transferred during t � 0. Ans. 50mJ

1.15 The capacitance of a circuit element is defined as Q=V , where Q is the magnitude of charge stored in the

element and V is the magnitude of the voltage difference across the element. The SI derived unit of

capacitance is the farad (F). Express the farad in terms of the basic units.

Ans. 1 F ¼ 1A2
� s4=kg �m2

6 INTRODUCTION [CHAP. 1



7

Circuit Concepts

2.1 PASSIVE AND ACTIVE ELEMENTS

An electrical device is represented by a circuit diagram or network constructed from series and
parallel arrangements of two-terminal elements. The analysis of the circuit diagram predicts the perfor-
mance of the actual device. A two-terminal element in general form is shown in Fig. 2-1, with a single
device represented by the rectangular symbol and two perfectly conducting leads ending at connecting
points A and B. Active elements are voltage or current sources which are able to supply energy to the
network. Resistors, inductors, and capacitors are passive elements which take energy from the sources
and either convert it to another form or store it in an electric or magnetic field.

Figure 2-2 illustrates seven basic circuit elements. Elements (a) and (b) are voltage sources and (c)

and (d) are current sources. A voltage source that is not affected by changes in the connected circuit is an

independent source, illustrated by the circle in Fig. 2-2(a). A dependent voltage source which changes in

some described manner with the conditions on the connected circuit is shown by the diamond-shaped

symbol in Fig. 2-2(b). Current sources may also be either independent or dependent and the correspond-

ing symbols are shown in (c) and (d). The three passive circuit elements are shown in Fig. 2-2(e), ( f ), and

(g).

The circuit diagrams presented here are termed lumped-parameter circuits, since a single element in

one location is used to represent a distributed resistance, inductance, or capacitance. For example, a coil

consisting of a large number of turns of insulated wire has resistance throughout the entire length of the

wire. Nevertheless, a single resistance lumped at one place as in Fig. 2-3(b) or (c) represents the dis-

tributed resistance. The inductance is likewise lumped at one place, either in series with the resistance as

in (b) or in parallel as in (c).

Fig. 2-1
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In general, a coil can be represented by either a series or a parallel arrangement of circuit elements.
The frequency of the applied voltage may require that one or the other be used to represent the device.

2.2 SIGN CONVENTIONS

A voltage function and a polarity must be specified to completely describe a voltage source. The
polarity marks, þ and �, are placed near the conductors of the symbol that identifies the voltage source.
If, for example, v ¼ 10:0 sin!t in Fig. 2-4(a), terminal A is positive with respect to B for 0 > !t > �, and
B is positive with respect to A for � > !t > 2� for the first cycle of the sine function.

Similarly, a current source requires that a direction be indicated, as well as the function, as shown in
Fig. 2-4(b). For passive circuit elements R, L, and C, shown in Fig. 2-4(c), the terminal where the current
enters is generally treated as positive with respect to the terminal where the current leaves.

The sign on power is illustrated by the dc circuit of Fig. 2-5(a) with constant voltage sources
VA ¼ 20:0V and VB ¼ 5:0V and a single 5-� resistor. The resulting current of 3.0A is in the clockwise
direction. Considering now Fig. 2-5(b), power is absorbed by an element when the current enters the
element at the positive terminal. Power, computed by VI or I2R, is therefore absorbed by both the
resistor and the VB source, 45.0W and 15W respectively. Since the current enters VA at the negative
terminal, this element is the power source for the circuit. P ¼ VI ¼ 60:0W confirms that the power
absorbed by the resistor and the source VB is provided by the source VA.
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2.3 VOLTAGE-CURRENT RELATIONS

The passive circuit elements resistance R, inductance L, and capacitance C are defined by the

manner in which the voltage and current are related for the individual element. For example, if the

voltage v and current i for a single element are related by a constant, then the element is a resistance,

R is the constant of proportionality, and v ¼ Ri. Similarly, if the voltage is the time derivative of the

current, then the element is an inductance, L is the constant of proportionality, and v ¼ Ldi=dt.
Finally, if the current in the element is the time derivative of the voltage, then the element is a

capacitance, C is the constant of proportionality, and i ¼ C dv=dt. Table 2-1 summarizes these rela-

tionships for the three passive circuit elements. Note the current directions and the corresponding

polarity of the voltages.
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Table 2-1

Circuit element Units Voltage Current Power

Resistance

ohms (�) v ¼ Ri

(Ohms’s law)
i ¼

v

R
p ¼ vi ¼ i2R

Inductance

henries (H) v ¼ L
di

dt
i ¼

1

L

ð
v dtþ k1 p ¼ vi ¼ Li

di

dt

Capacitance

farads (F) v ¼
1

C

ð
i dtþ k2 i ¼ C

dv

dt
p ¼ vi ¼ Cv

dv

dt



2.4 RESISTANCE

All electrical devices that consume energy must have a resistor (also called a resistance) in their
circuit model. Inductors and capacitors may store energy but over time return that energy to the source
or to another circuit element. Power in the resistor, given by p ¼ vi ¼ i2R ¼ v2=R, is always positive as
illustrated in Example 2.1 below. Energy is then determined as the integral of the instantaneous power

w ¼

ðt2
t1

p dt ¼ R

ðt2
t1

i2 dt ¼
1

R

ðt2
t1

v2 dt

EXAMPLE 2.1. A 4.0-� resistor has a current i ¼ 2:5 sin!t (A). Find the voltage, power, and energy over one

cycle. ! ¼ 500 rad/s.

v ¼ Ri ¼ 10:0 sin!t ðVÞ

p ¼ vi ¼ i2R ¼ 25:0 sin2 !t ðWÞ

w ¼

ðt
0

p dt ¼ 25:0
t

2
�
sin 2!t

4!

� �
ðJÞ

The plots of i, p, and w shown in Fig. 2-6 illustrate that p is always positive and that the energy w, although a

function of time, is always increasing. This is the energy absorbed by the resistor.
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2.5 INDUCTANCE

The circuit element that stores energy in a magnetic field is an inductor (also called an inductance).

With time-variable current, the energy is generally stored during some parts of the cycle and then

returned to the source during others. When the inductance is removed from the source, the magnetic

field will collapse; in other words, no energy is stored without a connected source. Coils found in electric

motors, transformers, and similar devices can be expected to have inductances in their circuit models.

Even a set of parallel conductors exhibits inductance that must be considered at most frequencies. The

power and energy relationships are as follows.

p ¼ vi ¼ L
di

dt
i ¼

d

dt

1

2
Li2

� �

wL ¼

ðt2
t1

p dt ¼

ðt2
t1

Li dt ¼
1

2
L½i22 � i21�

Energy stored in the magnetic field of an inductance is wL ¼ 1
2
Li2.

EXAMPLE 2.2. In the interval 0 > t > ð�=50Þ s a 30-mH inductance has a current i ¼ 10:0 sin 50t (A). Obtain the

voltage, power, and energy for the inductance.

v ¼ L
di

dt
¼ 15:0 cos 50t ðVÞ p ¼ vi ¼ 75:0 sin 100t ðWÞ wL ¼

ðt
0

p dt ¼ 0:75ð1� cos 100tÞ ðJÞ

As shown in Fig. 2-7, the energy is zero at t ¼ 0 and t ¼ ð�=50Þ s. Thus, while energy transfer did occur over the

interval, this energy was first stored and later returned to the source.
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2.6 CAPACITANCE

The circuit element that stores energy in an electric field is a capacitor (also called capacitance).
When the voltage is variable over a cycle, energy will be stored during one part of the cycle and
returned in the next. While an inductance cannot retain energy after removal of the source because the
magnetic field collapses, the capacitor retains the charge and the electric field can remain after the
source is removed. This charged condition can remain until a discharge path is provided, at which
time the energy is released. The charge, q ¼ Cv, on a capacitor results in an electric field in the
dielectric which is the mechanism of the energy storage. In the simple parallel-plate capacitor there
is an excess of charge on one plate and a deficiency on the other. It is the equalization of these charges
that takes place when the capacitor is discharged. The power and energy relationships for the capa-
citance are as follows.

p ¼ vi ¼ Cv
dv

dt
¼

d

dt

1

2
Cv2

� �

wC ¼

ðt2
t1

p dt ¼

ðt2
t1

Cv dv ¼
1

2
C½v22 � v21�

The energy stored in the electric field of capacitance is wC ¼ 1
2
Cv2.

EXAMPLE 2.3. In the interval 0 > t > 5�ms, a 20-mF capacitance has a voltage v ¼ 50:0 sin 200t (V). Obtain the

charge, power, and energy. Plot wC assuming w ¼ 0 at t ¼ 0.

q ¼ Cv ¼ 1000 sin 200t ðmCÞ

i ¼ C
dv

dt
¼ 0:20 cos 200t ðAÞ

p ¼ vi ¼ 5:0 sin 400t ðWÞ

wC ¼

ðt2
t1

p dt ¼ 12:5½1� cos 400t� ðmJÞ

In the interval 0 > t > 2:5�ms the voltage and charge increase from zero to 50.0V and 1000mC, respectively.
Figure 2-8 shows that the stored energy increases to a value of 25mJ, after which it returns to zero as the energy

is returned to the source.

2.7 CIRCUIT DIAGRAMS

Every circuit diagram can be constructed in a variety of ways which may look different but are in

fact identical. The diagram presented in a problem may not suggest the best of several methods of

solution. Consequently, a diagram should be examined before a solution is started and redrawn if

necessary to show more clearly how the elements are interconnected. An extreme example is illustrated

in Fig. 2-9, where the three circuits are actually identical. In Fig. 2-9(a) the three ‘‘junctions’’ labeled A

12 CIRCUIT CONCEPTS [CHAP. 2

Fig. 2-8



are shown as two ‘‘junctions’’ in (b). However, resistor R4 is bypassed by a short circuit and may be

removed for purposes of analysis. Then, in Fig. 2-9(c) the single junction A is shown with its three

meeting branches.

2.8 NONLINEAR RESISTORS

The current-voltage relationship in an element may be instantaneous but not necessarily linear. The
element is then modeled as a nonlinear resistor. An example is a filament lamp which at higher voltages
draws proportionally less current. Another important electrical device modeled as a nonlinear resistor is
a diode. A diode is a two-terminal device that, roughly speaking, conducts electric current in one
direction (from anode to cathode, called forward-biased) much better than the opposite direction
(reverse-biased). The circuit symbol for the diode and an example of its current-voltage characteristic
are shown in Fig. 2-25. The arrow is from the anode to the cathode and indicates the forward direction
ði > 0Þ. A small positive voltage at the diode’s terminal biases the diode in the forward direction and can
produce a large current. A negative voltage biases the diode in the reverse direction and produces little
current even at large voltage values. An ideal diode is a circuit model which works like a perfect switch.
See Fig. 2-26. Its ði; vÞ characteristic is

v ¼ 0 when i � 0
i ¼ 0 when v � 0

�

The static resistance of a nonlinear resistor operating at ðI;VÞ is R ¼ V=I . Its dynamic resistance is
r ¼ �V=�I which is the inverse of the slope of the current plotted versus voltage. Static and dynamic
resistances both depend on the operating point.

EXAMPLE 2.4. The current and voltage characteristic of a semiconductor diode in the forward direction is

measured and recorded in the following table:

v (V) 0.5 0.6 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75

i (mA) 2� 10�4 0.11 0.78 1.2 1.7 2.6 3.9 5.8 8.6 12.9 19.2 28.7 42.7

In the reverse direction (i.e., when v < 0), i ¼ 4� 10�15 A. Using the values given in the table,
calculate the static and dynamic resistances (R and r) of the diode when it operates at 30mA, and
find its power consumption p.

From the table
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R ¼
V

I
�

0:74

28:7� 10�3
¼ 25:78�

r ¼
�V

�I
�

0:75� 0:73

ð42:7� 19:2Þ � 10�3
¼ 0:85�

p ¼ VI � 0:74� 28:7� 10�3W ¼ 21:238mW

EXAMPLE 2.5. The current and voltage characteristic of a tungsten filament light bulb is measured and recorded

in the following table. Voltages are DC steady-state values, applied for a long enough time for the lamp to reach

thermal equilibrium.

v (V) 0.5 1 1.5 2 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

i (mA) 4 6 8 9 11 12 13 14 15 16 17 18 18 19 20

Find the static and dynamic resistances of the filament and also the power consumption at the operating points

(a) i ¼ 10mA; (b) i ¼ 15mA.

R ¼
V

I
; r ¼

�V

�I
; p ¼ VI

ðaÞ R �
2:5

10� 10�3
¼ 250�; r �

3� 2

ð11� 9Þ � 10�3
¼ 500�; p � 2:5� 10� 10�3 W ¼ 25mW

ðbÞ R �
5

15� 10�3
¼ 333�; r �

5:5� 4:5

ð16� 14Þ � 10�3
¼ 500�; p � 5� 15� 10�3 W ¼ 75mW

Solved Problems

2.1 A 25.0-� resistance has a voltage v ¼ 150:0 sin 377t (V). Find the corresponding current i and
power p.

i ¼
v

R
¼ 6:0 sin 377t ðAÞ p ¼ vi ¼ 900:0 sin2 377t ðWÞ

2.2 The current in a 5-� resistor increases linearly from zero to 10A in 2ms. At t ¼ 2þ ms the
current is again zero, and it increases linearly to 10A at t ¼ 4ms. This pattern repeats each 2ms.
Sketch the corresponding v.

Since v ¼ Ri, the maximum voltage must be ð5Þð10Þ ¼ 50V. In Fig. 2-10 the plots of i and v are shown.

The identical nature of the functions is evident.

2.3 An inductance of 2.0mH has a current i ¼ 5:0ð1� e�5000t
Þ (A). Find the corresponding voltage

and the maximum stored energy.

v ¼ L
di

dt
¼ 50:0e�5000t

ðVÞ

In Fig. 2-11 the plots of i and v are given. Since the maximum current is 5.0A, the maximum stored energy

is

Wmax ¼
1

2
LI2max ¼ 25:0mJ
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2.4 An inductance of 3.0mH has a voltage that is described as follows: for 0 > t > 2ms, V ¼ 15:0V
and, for 2 > t > 4ms, V ¼ �30:0V. Obtain the corresponding current and sketch vL and i for
the given intervals.

For 0 > t > 2ms,

i ¼
1

L

ðt
0

v dt ¼
1

3� 10�3

ðt
0

15:0 dt ¼ 5� 103t ðAÞ

For t ¼ 2ms,

i ¼ 10:0 A

For 2 > t > 4ms,

i ¼
1

L

ðt
2�10�3

v dtþ 10:0þ
1

3� 10�3

ðt
2�10�3

�30:0 dt

¼ 10:0þ
1

3� 10�3
½�30:0tþ ð60:0� 10�3

Þ� ðAÞ

¼ 30:0� ð10� 103tÞ ðAÞ

See Fig. 2-12.

2.5 A capacitance of 60.0 mF has a voltage described as follows: 0 > t > 2ms, v ¼ 25:0� 103t (V).
Sketch i, p, and w for the given interval and find Wmax.

For 0 > t > 2ms,
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i ¼ C
dv

dt
¼ 60� 10�6 d

dt
ð25:0� 103tÞ ¼ 1:5A

p ¼ vi ¼ 37:5� 103t ðWÞ

wC ¼

ðt
0

p dt ¼ 1:875� 104t2 ðmJÞ

See Fig. 2-13.

Wmax ¼ ð1:875� 104Þð2� 10�3
Þ
2
¼ 75:0mJ

Wmax ¼
1

2
CV2

max ¼
1

2
ð60:0� 10�6

Þð50:0Þ2 ¼ 75:0mJor

2.6 A 20.0-mF capacitance is linearly charged from 0 to 400 mC in 5.0ms. Find the voltage function
and Wmax.

q ¼
400� 10�6

5:0� 10�3

 !
t ¼ 8:0� 10�2t ðCÞ

v ¼ q=C ¼ 4:0� 103t ðVÞ

Vmax ¼ ð4:0� 103Þð5:0� 10�3
Þ ¼ 20:0V Wmax ¼

1

2
CV2

max ¼ 4:0mJ

2.7 A series circuit with R ¼ 2�, L ¼ 2mH, and C ¼ 500 mF has a current which increases linearly
from zero to 10A in the interval 0 � t � 1ms, remains at 10A for 1ms � t � 2ms, and decreases
linearly from 10A at t ¼ 2ms to zero at t ¼ 3ms. Sketch vR, vL, and vC.

vR must be a time function identical to i, with Vmax ¼ 2ð10Þ ¼ 20V.

For 0 < t < 1ms,

di

dt
¼ 10� 103 A=s and vL ¼ L

di

dt
¼ 20V

When di=dt ¼ 0, for 1ms < t < 2ms, vL ¼ 0.
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Assuming zero initial charge on the capacitor,

vC ¼
1

C

ð
i dt

For 0 � t � 1ms,

vC ¼
1

5� 10�4

ðt
0

104 t dt ¼ 107t2 ðVÞ

This voltage reaches a value of 10V at 1ms. For 1ms < t < 2ms,

vC ¼ ð20� 103Þðt� 10�3
Þ þ 10 ðVÞ

See Fig. 2-14.

2.8 A single circuit element has the current and voltage functions graphed in Fig. 2-15. Determine
the element.
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The element cannot be a resistor since v and i are not proportional. v is an integral of i. For

2ms < t < 4ms, i 6¼ 0 but v is constant (zero); hence the element cannot be a capacitor. For 0 < t < 2ms,

di

dt
¼ 5� 103 A=s and v ¼ 15V

Consequently,

L ¼ v

�
di

dt
¼ 3mH

(Examine the interval 4ms < t < 6ms; L must be the same.)

2.9 Obtain the voltage v in the branch shown in Fig. 2-16 for (a) i2 ¼ 1A, (b) i2 ¼ �2A,
(c) i2 ¼ 0A.

Voltage v is the sum of the current-independent 10-V source and the current-dependent voltage source

vx. Note that the factor 15 multiplying the control current carries the units �.

v ¼ 10þ vx ¼ 10þ 15ð1Þ ¼ 25VðaÞ

v ¼ 10þ vx ¼ 10þ 15ð�2Þ ¼ �20VðbÞ

v ¼ 10þ 15ð0Þ ¼ 10VðcÞ

2.10 Find the power absorbed by the generalized circuit element in Fig. 2-17, for (a) v ¼ 50V,
(b) v ¼ �50V.

Since the current enters the element at the negative terminal,

p ¼ �vi ¼ �ð50Þð8:5Þ ¼ �425WðaÞ

p ¼ �vi ¼ �ð�50Þð8:5Þ ¼ 425WðbÞ

2.11 Find the power delivered by the sources in the circuit of Fig. 2-18.

i ¼
20� 50

3
¼ �10A

The powers absorbed by the sources are:
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pa ¼ �vai ¼ �ð20Þð�10Þ ¼ 200W

pb ¼ vbi ¼ ð50Þð�10Þ ¼ �500W

Since power delivered is the negative of power absorbed, source vb delivers 500W and source va absorbs

200W. The power in the two resistors is 300W.

2.12 A 25.0-� resistance has a voltage v ¼ 150:0 sin 377t (V). Find the power p and the average power
pavg over one cycle.

i ¼ v=R ¼ 6:0 sin 377t ðAÞ

p ¼ vi ¼ 900:0 sin2 377t ðWÞ

The end of one period of the voltage and current functions occurs at 377t ¼ 2�. For Pavg the

integration is taken over one-half cycle, 377t ¼ �. Thus,

Pavg ¼
1

�

ð�
0

900:0 sin2ð377tÞdð377tÞ ¼ 450:0 ðWÞ

2.13 Find the voltage across the 10.0-� resistor in Fig. 2-19 if the control current ix in the dependent
source is (a) 2A and (b) �1A.

i ¼ 4ix � 4:0; vR ¼ iR ¼ 40:0ix � 40:0 ðVÞ

ix ¼ 2; vR ¼ 40:0 V

ix ¼ �1; vR ¼ �80:0 V

Supplementary Problems

2.14 A resistor has a voltage of V ¼ 1:5mV. Obtain the current if the power absorbed is (a) 27.75 nW and

(b) 1.20mW. Ans. 18.5mA, 0.8mA
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2.15 A resistance of 5.0� has a current i ¼ 5:0� 103t (A) in the interval 0 � t � 2ms. Obtain the instantaneous

and average power. Ans. 125.0t2 (W), 167.0 (W)

2.16 Current i enters a generalized circuit element at the positive terminal and the voltage across the element is

3.91V. If the power absorbed is �25:0mW, obtain the current. Ans. �6:4mA

2.17 Determine the single circuit element for which the current and voltage in the interval 0 � 103t � � are given

by i ¼ 2:0 sin 103t (mA) and v ¼ 5:0 cos 103t (mV). Ans. An inductance of 2.5mH

2.18 An inductance of 4.0mH has a voltage v ¼ 2:0e�103t (V). Obtain the maximum stored energy. At t ¼ 0,

the current is zero. Ans. 0.5mW

2.19 A capacitance of 2.0 mF with an initial charge Q0 is switched into a series circuit consisting of a 10.0-�

resistance. Find Q0 if the energy dissipated in the resistance is 3.6mJ. Ans. 120.0mC

2.20 Given that a capactance of C farads has a current i ¼ ðVm=RÞe
�t=ðRcÞ (A), show that the maximum stored

energy is 1
2
CV2

m. Assume the initial charge is zero.

2.21 The current after t ¼ 0 in a single circuit element is as shown in Fig. 2-20. Find the voltage across the

element at t ¼ 6:5ms, if the element is (a) 10 k�, (b) 15mH, (c) 0.3 nF with Qð0Þ ¼ 0.

Ans. (a) 25V; (b) �75V; (c) 81.3V

2.22 The 20.0-mF capacitor in the circuit shown in Fig. 2-21 has a voltage for t > 0, v ¼ 100:0e�t=0:015 (V). Obtain

the energy function that accompanies the discharge of the capacitor and compare the total energy to that

which is absorbed by the 750-� resistor. Ans. 0.10 ð1� e�t=0:0075
Þ (J)

2.23 Find the current i in the circuit shown in Fig. 2-22, if the control v2 of the dependent voltage source has the

value (a) 4V, (b) 5V, (c) 10V. Ans. (a) 1A; (b) 0A; (c) �5A

2.24 In the circuit shown in Fig. 2-23, find the current, i, given (a) i1 ¼ 2A, i2 ¼ 0; (b) i1 ¼ �1A; i2 ¼ 4A;

(c) i1 ¼ i2 ¼ 1A. Ans. (a) 10A; (b) 11A; (c) 9A

2.25 A 1-mF capacitor with an initial charge of 10�4 C is connected to a resistor R at t ¼ 0. Assume discharge

current during 0 < t < 1ms is constant. Approximate the capacitor voltage drop at t ¼ 1ms for
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(a) R ¼ 1M�; (b) R ¼ 100 k�; (c) R ¼ 10 k�. Hint: Compute the charge lost during the 1-ms period.

Ans. (a) 0.1V; (b) 1V; (b) 10V

2.26 The actual discharge current in Problem 2.25 is i ¼ ð100=RÞe�106t=R A. Find the capacitor voltage drop at

1ms after connection to the resistor for (a) R ¼ 1M�; (b) R ¼ 100 k�; (c) R ¼ 10 k�.

Ans. (a) 0.1V; (b) 1V; (c) 9.52V

2.27 A 10-mF capacitor discharges in an element such that its voltage is v ¼ 2e�1000t. Find the current and power

delivered by the capacitor as functions of time.

Ans. i ¼ 20e�1000t mA, p ¼ vi ¼ 40e�1000t mJ

2.28 Find voltage v, current i, and energyW in the capacitor of Problem 2.27 at time t ¼ 0, 1, 3, 5, and 10ms. By

integrating the power delivered by the capacitor, show that the energy dissipated in the element during the

interval from 0 to t is equal to the energy lost by the capacitor.

t v i W

0 2V 20mA 20 mJ

1ms 736mV 7.36mA 2.7 mJ

3ms 100mV 1mA 0.05 mJ

5ms 13.5mV 135 mA � 0:001 mJ

10ms 91mV 0.91 mA � 0

2.29 The current delivered by a current source is increased linearly from zero to 10A in 1-ms time and then is

decreased linearly back to zero in 2ms. The source feeds a 3-k� resistor in series with a 2-H inductor (see

Fig. 2-24). (a) Find the energy dissipated in the resistor during the rise time ðW1Þ and the fall time

ðW2Þ. (b) Find the energy delivered to the inductor during the above two intervals. (c) Find the energy

delivered by the current source to the series RL combination during the preceding two intervals. Note:

Series elements have the same current. The voltage drop across their combination is the sum of their

individual voltages.

Ans. ðaÞ W1 ¼ 100;W2 ¼ 200; (b) W1 ¼ 200;W2 ¼ �200; (c) W1 ¼ 300;W2 ¼ 0, all in joules

2.30 The voltage of a 5-mF capacitor is increased linearly from zero to 10V in 1ms time and is then kept at that

level. Find the current. Find the total energy delivered to the capacitor and verify that delivered energy is

equal to the energy stored in the capacitor.

Ans. i ¼ 50mA during 0 < t < 1ms and is zero elsewhere, W ¼ 250 mJ.
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2.31 A 10-mF capacitor is charged to 2V. A path is established between its terminals which draws a constant

current of I0. (a) For I0 ¼ 1mA, how long does it take to reduce the capacitor voltage to 5 percent of its

initial value? (b) For what value of I0 does the capacitor voltage remain above 90 percent of its initial value

after passage of 24 hours?

Ans. (a) 19ms, (b) 23.15pA

2.32 Energy gained (or lost) by an electric charge q traveling in an electric field is qv, where v is the electric

potential gained (or lost). In a capacitor with charge Q and terminal voltage V, let all charges go from one

plate to the other. By way of computation, show that the total energy W gained (or lost) is not QV but

QV=2 and explain why. Also note that QV=2 is equal to the initial energy content of the capacitor.

Ans. W ¼
Ð
qvdt ¼ Q V�0

2

� �
¼ QV=2 ¼ 1

2CV
2. The apparent discrepancy is explained by the following.

The starting voltage vetween the two plates is V. As the charges migrate from one plate of the capacitor to

the other plate, the voltage between the two plates drops and becomes zero when all charges have moved.

The average of the voltage during the migration process is V=2, and therefore, the total energy is QV=2.

2.33 Lightning I. The time profile of the discharge current in a typical cloud-to-ground lightning stroke is

modeled by a triangle. The surge takes 1 ms to reach the peak value of 100 kA and then is reduced to

zero in 99mS. (a) Find the electric charge Q discharged. (b) If the cloud-to-ground voltage before the

discharge is 400MV, find the total energy W released and the average power P during the discharge. (c) If

during the storm there is an average of 18 such lightning strokes per hour, find the average power released in

1 hour. Ans. (a) Q ¼ 5C; (b) W ¼ 109 J;P ¼ 1013 W; (c) 5MW

2.34 Lightning II. Find the cloud-to-ground capacitance in Problem 2.33 just before the lightning stroke.

Ans. 12.5 mF

2.35 Lightning III. The current in a cloud-to-ground lightning stroke starts at 200 kA and diminishes linearly to

zero in 100 ms. Find the energy released W and the capacitance of the cloud to ground C if the voltage

before the discharge is (a) 100MV; (b) 500MV.

Ans. (a) W ¼ 5� 108 J;C ¼ 0:1mF; (b) W ¼ 25� 108 J;C ¼ 20 nF

2.36 The semiconductor diode of Example 2.4 is placed in the circuit of Fig. 2-25. Find the current for

(a) Vs ¼ 1V, (b) Vs ¼ �1V. Ans. (a) 14mA; (b) 0

2.37 The diode in the circuit of Fig. 2-26 is ideal. The inductor draws 100mA from the voltage source. A 2-mF
capacitor with zero initial charge is also connected in parallel with the inductor through an ideal diode such

that the diode is reversed biased (i.e., it blocks charging of the capacitor). The switch s suddenly disconnects

with the rest of the circuit, forcing the inductor current to pass through the diode and establishing 200V at

the capacitor’s terminals. Find the value of the inductor. Ans. L ¼ 8H

2.38 Compute the static and dynamic resistances of the diode of Example 2.4 at the operating point v ¼ 0:66V.

Ans: R �
0:66

1:2� 10�3
¼ 550� and r �

0:67� 0:65

ð1:7� 0:78Þ � 10�3
¼ 21:7�
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2.39 The diode of Example 2.4 operates within the range 10 < i < 20mA. Within that range, approximate its

terminal characteristic by a straight line i ¼ �vþ �, by specifying � and �.
Ans. i ¼ 630 v� 4407mA, where v is in V

2.40 The diode of Example 2.4 operates within the range of 20 < i < 40mA. Within that range, approximate its

terminal characteristic by a straight line connecting the two operating limits.

Ans. i ¼ 993:33 v� 702:3mA, where v is in V

2.41 Within the operating range of 20 < i < 40mA, model the diode of Example 2.4 by a resistor R in series with

a voltage source V such that the model matches exactly with the diode performance at 0.72 and 0.75V. Find

R and V . Ans. R ¼ 1:007�;V ¼ 707mV
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Circuit Laws

3.1 INTRODUCTION

An electric circuit or network consists of a number of interconnected single circuit elements of the
type described in Chapter 2. The circuit will generally contain at least one voltage or current source.
The arrangement of elements results in a new set of constraints between the currents and voltages.
These new constraints and their corresponding equations, added to the current-voltage relationships
of the individual elements, provide the solution of the network.

The underlying purpose of defining the individual elements, connecting them in a network, and
solving the equations is to analyze the performance of such electrical devices as motors, generators,
transformers, electrical transducers, and a host of electronic devices. The solution generally answers
necessary questions about the operation of the device under conditions applied by a source of energy.

3.2 KIRCHHOFF’S VOLTAGE LAW

For any closed path in a network, Kirchhoff’s voltage law (KVL) states that the algebraic sum of the
voltages is zero. Some of the voltages will be sosurces, while others will result from current in passive
elements creating a voltage, which is sometimes referred to as a voltage drop. The law applies equally
well to circuits driven by constant sources, DC, time variable sources, vðtÞ and iðtÞ, and to circuits driven
by sources which will be introduced in Chapter 9. The mesh current method of circuit analysis
introduced in Section 4.2 is based on Kirchhoff’s voltage law.

EXAMPLE 3.1. Write the KVL equation for the circuit shown in Fig. 3-1.

Fig. 3-1
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Starting at the lower left corner of the circuit, for the current direction as shown, we have

�va þ v1 þ vb þ v2 þ v3 ¼ 0

�va þ iR1 þ vb þ iR2 þ iR3 ¼ 0

va � vb ¼ iðR1 þ R2 þ R3Þ

3.3 KIRCHHOFF’S CURRENT LAW

The connection of two or more circuit elements creates a junction called a node. The junction
between two elements is called a simple node and no division of current results. The junction of three or
more elements is called a principal node, and here current division does take place. Kirchhoff’s current
law (KCL) states that the algrebraic sum of the currents at a node is zero. It may be stated alternatively
that the sum of the currents entering a node is equal to the sum of the currents leaving that node. The
node voltage method of circuit analysis introduced in Section 4.3 is based on equations written at the
principal nodes of a network by applying Kirchhoff’s current law. The basis for the law is the con-
servation of electric charge.

EXAMPLE 3.2. Write the KCL equation for the principal node shown in Fig. 3-2.

i1 � i2 þ i3 � i4 � i5 ¼ 0

i1 þ i3 ¼ i2 þ i4 þ i5

3.4 CIRCUIT ELEMENTS IN SERIES

Three passive circuit elements in series connection as shown in Fig. 3-3 have the same current i. The

voltages across the elements are v1, v2, and v3. The total voltage v is the sum of the individual voltages;

v ¼ v1 þ v2 þ v3.

If the elements are resistors,
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v ¼ iR1 þ iR2 þ iR3

¼ iðR1 þ R2 þ R3Þ

¼ iReq

where a single equivalent resistance Req replaces the three series resistors. The same relationship
between i and v will pertain.

For any number of resistors in series, we have Req ¼ R1 þ R2 þ � � �.
If the three passive elements are inductances,

v ¼ L1

di

dt
þ L2

di

dt
þ L3

di

dt

¼ ðL1 þ L2 þ L3Þ
di

dt

¼ Leq

di

dt

Extending this to any number of inductances in series, we have Leq ¼ L1 þ L2 þ � � �.
If the three circuit elements are capacitances, assuming zero initial charges so that the constants of

integration are zero,

v ¼
1

C1

ð
i dtþ

1

C2

ð
i dtþ

1

C3

ð
i dt

¼
1

C1

þ
1

C2

þ
1

C3

� � ð
i dt

¼
1

Ceq

ð
i dt

The equivalent capacitance of several capacitances in series is 1=Ceq ¼ 1=C1 þ 1=C2 þ � � �.

EXAMPLE 3.3. The equivalent resistance of three resistors in series is 750.0�. Two of the resistors are 40.0 and

410.0�. What must be the ohmic resistance of the third resistor?

Req ¼ R1 þ R2 þ R3

750:0 ¼ 40:0þ 410:0þ R3 and R3 ¼ 300:0�

EXAMPLE 3.4. Two capacitors, C1 ¼ 2:0mF and C2 ¼ 10:0mF, are connected in series. Find the equivalent

capacitance. Repeat if C2 is 10.0 pF.

Ceq ¼
C1C2

C1 þ C2

¼
ð2:0� 10�6

Þð10:0� 10�6
Þ

2:0� 10�6 þ 10:0� 10�6
¼ 1:67 mF

If C2 ¼ 10:0 pF,

Ceq ¼
ð2:0� 10�6

Þð10:0� 10�12
Þ

2:0� 10�6 þ 10:0� 10�12
¼

20:0� 10�18

2:0� 10�6
¼ 10:0 pF

where the contribution of 10:0� 10�12 to the sum C1 þ C2 in the denominator is negligible and therefore it can be

omitted.

Note: When two capacitors in series differ by a large amount, the equivalent capacitance is essen-
tially equal to the value of the smaller of the two.

3.5 CIRCUIT ELEMENTS IN PARALLEL

For three circuit elements connected in parallel as shown in Fig. 3-4, KCL states that the current i
entering the principal node is the sum of the three currents leaving the node through the branches.
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i ¼ i1 þ i2 þ i3

If the three passive circuit elements are resistances,

i ¼
v

R1

þ
v

R2

þ
v

R3

¼
1

R1

þ
1

R2

þ
1

R3

� �
v ¼

1

Req

v

For several resistors in parallel,

1

Req

¼
1

R1

þ
1

R2

þ � � �

The case of two resistors in parallel occurs frequently and deserves special mention. The equivalent
resistance of two resistors in parallel is given by the product over the sum.

Req ¼
R1R2

R1 þ R2

EXAMPLE 3.5. Obtain the equivalent resistance of (a) two 60.0-� resistors in parallel and (b) three 60.0-�

resistors in parallel.

Req ¼
ð60:0Þ2

120:0
¼ 30:0�ðaÞ

1

Req

¼
1

60:0
þ

1

60:0
þ

1

60:0
Req ¼ 20:0�ðbÞ

Note: For n identical resistors in parallel the equivalent resistance is given by R=n.
Combinations of inductances in parallel have similar expressions to those of resistors in parallel:

1

Leq

¼
1

L1

þ
1

L2

þ � � � and, for two inductances, Leq ¼
L1L2

L1 þ L2

EXAMPLE 3.6. Two inductances L1 ¼ 3:0mH and L2 ¼ 6:0mH are connected in parallel. Find Leq.

1

Leq

¼
1

3:0mH
þ

1

6:0mH
and Leq ¼ 2:0mH

With three capacitances in parallel,

i ¼ C1

dv

dt
þ C2

dv

dt
þ C3

dv

dt
¼ ðC1 þ C2 þ C3Þ

dv

dt
¼ Ceq

dv

dt

For several parallel capacitors, Ceq ¼ C1 þ C2 þ � � �, which is of the same form as resistors in series.
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3.6 VOLTAGE DIVISION

A set of series-connected resistors as shown in Fig. 3-5 is referred to as a voltage divider. The

concept extends beyond the set of resistors illustrated here and applies equally to impedances in series, as

will be shown in Chapter 9.

Since v1 ¼ iR1 and v ¼ iðR1 þ R2 þ R3Þ,

v1 ¼ v
R1

R1 þ R2 þ R3

� �

EXAMPLE 3.7. A voltage divider circuit of two resistors is designed with a total resistance of the two resistors

equal to 50.0�. If the output voltage is 10 percent of the input voltage, obtain the values of the two resistors in the

circuit.

v1
v
¼ 0:10 0:10 ¼

R1

50:0� 103

from which R1 ¼ 5:0� and R2 ¼ 45:0�.

3.7 CURRENT DIVISION

A parallel arrangement of resistors as shown in Fig. 3-6 results in a current divider. The ratio of the
branch current i1 to the total current i illustrates the operation of the divider.

i ¼
v

R1

þ
v

R2

þ
v

R3

and i1 ¼
v

R1
i1
i
¼

1=R1

1=R1 þ 1=R2 þ 1=R3

¼
R2R3

R1R2 þ R1R3 þ R2R3

Then
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For a two-branch current divider we have

i1
i
¼

R2

R1 þ R2

This may be expressed as follows: The ratio of the current in one branch of a two-branch parallel circuit
to the total current is equal to the ratio of the resistance of the other branch resistance to the sum of the
two resistances.

EXAMPLE 3.8. A current of 30.0mA is to be divided into two branch currents of 20.0mA and 10.0mA by a

network with an equivalent resistance equal to or greater than 10.0�. Obtain the branch resistances.

20mA

30mA
¼

R2

R1 þ R2

10mA

30mA
¼

R1

R1 þ R2

R1R2

R1 þ R2

� 10:0�

Solving these equations yields R1 � 15:0� and R2 � 30:0�.

Solved Problems

3.1 Find V3 and its polarity if the current I in the circuit of Fig. 3-7 is 0.40A.

Assume that V3 has the same polarity as V1. Applying KVL and starting from the lower left corner,

V1 � Ið5:0Þ � V2 � Ið20:0Þ þ V3 ¼ 0

50:0� 2:0� 10:0� 8:0þ V3 ¼ 0

V3 ¼ �30:0V

Terminal b is positive with respect to terminal a.

3.2 Obtain the currents I1 and I2 for the network shown in Fig. 3-8.

a and b comprise one node. Applying KCL,

2:0þ 7:0þ I1 ¼ 3:0 or I1 ¼ �6:0A

Also, c and d comprise a single node. Thus,

4:0þ 6:0 ¼ I2 þ 1:0 or I2 ¼ 9:0A

3.3 Find the current I for the circuit shown in Fig. 3-9.
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The branch currents within the enclosed area cannot be calculated since no values of the resistors are

given. However, KCL applies to the network taken as a single node. Thus,

2:0� 3:0� 4:0� I ¼ 0 or I ¼ �5:0A

3.4 Find the equivalent resistance for the circuit shown in Fig. 3-10.

The two 20-� resistors in parallel have an equivalent resistance Req ¼ ½ð20Þð20Þ=ð20þ 20Þ� ¼ 10�. This

is in series with the 10-� resistor so that their sum is 20�. This in turn is in parallel with the other 20-�

resistor so that the overall equivalent resistance is 10�.

3.5 Determine the equivalent inductance of the three parallel inductances shown in Fig. 3-11.
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The two 20-mH inductances have an equivalent inductance of 10mH. Since this is in parallel with the

10-mH inductance, the overall equivalent inductance is 5mH. Alternatively,

1

Leq

¼
1

L1

þ
1

L2

þ
1

L3

¼
1

10mH
þ

1

20mH
þ

1

20mH
¼

4

20mH
or Leq ¼ 5mH

3.6 Express the total capacitance of the three capacitors in Fig. 3-12.

For C2 and C3 in parallel, Ceq ¼ C2 þ C3. Then for C1 and Ceq in series,

CT ¼
C1Ceq

C1 þ Ceq

¼
C1ðC2 þ C3Þ

C1 þ C2 þ C3

3.7 The circuit shown in Fig. 3-13 is a voltage divider, also called an attenuator. When it is a single
resistor with an adjustable tap, it is called a potentiometer, or pot. To discover the effect of
loading, which is caused by the resistance R of the voltmeter VM, calculate the ratio Vout=Vin for
(a) R ¼ 1, (b) 1M�, (c) 10 k�, (d) 1 k�.

Vout=Vin ¼
250

2250þ 250
¼ 0:100ðaÞ
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(b) The resistance R in parallel with the 250-� resistor has an equivalent resistance

Req ¼
250ð106Þ

250þ 106
¼ 249:9� and Vout=Vin ¼

249:9

2250þ 249:9
¼ 0:100

Req ¼
ð250Þð10 000Þ

250þ 10 000
¼ 243:9� and Vout=Vin ¼ 0:098ðcÞ

Req ¼
ð250Þð1000Þ

250þ 1000
¼ 200:0� and Vout=Vin ¼ 0:082ðdÞ

3.8 Find all branch currents in the network shown in Fig. 3-14(a).

The equivalent resistances to the left and right of nodes a and b are

ReqðleftÞ ¼ 5þ
ð12Þð8Þ

20
¼ 9:8�

ReqðrightÞ ¼
ð6Þð3Þ

9
¼ 2:0�

Now referring to the reduced network of Fig. 3-14(b),

I3 ¼
2:0

11:8
ð13:7Þ ¼ 2:32A

I4 ¼
9:8

11:8
ð13:7Þ ¼ 11:38A

Then referring to the original network,

I1 ¼
8

20
ð2:32Þ ¼ 0:93A I2 ¼ 2:32� 0:93 ¼ 1:39A

I5 ¼
3

9
ð11:38Þ ¼ 3:79A I6 ¼ 11:38� 3:79 ¼ 7:59A

Supplementary Problems

3.9 Find the source voltage V and its polarity in the circuit shown in Fig. 3-15 if (a) I ¼ 2:0A and

(b) I ¼ �2:0A. Ans. (a) 50V, b positive; (b) 10V, a positive.

3.10 Find Req for the circuit of Fig. 3-16 for (a) Rx ¼ 1, (b) Rx ¼ 0, (c) Rx ¼ 5�.

Ans. (a) 36�; (b) 16�; (c) 20�
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3.11 An inductance of 8.0mH is in series with two inductances in parallel, one of 3.0mH and the other 6.0mH.

Find Leq. Ans. 10.0mH

3.12 Show that for the three capacitances of equal value shown in Fig. 3-17 Ceq ¼ 1:5C:

3.13 Find RH and RO for the voltage divider in Fig. 3-18 so that the current I is limited to 0.5A when

VO ¼ 100V. Ans: RH ¼ 2M�;RO ¼ 200�

3.14 Using voltage division, calculate V1 and V2 in the network shown in Fig. 3-19. Ans. 11.4V, 73.1V

3.15 Obtain the source current I and the total power delivered to the circuit in Fig. 3-20.

Ans. 6.0A, 228W

3.16 Show that for four resistors in parallel the current in one branch, for example the branch of R4, is related to

the total current by

I4 ¼ IT
R 0

R4 þ R 0

� �
where R 0

¼
R1R2R3

R1R2 þ R1R3 þ R2R3
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Note: This is similar to the case of current division in a two-branch parallel circuit where the other resistor

has been replaced by R 0.

3.17 A power transmission line carries current from a 6000-V generator to three loads, A, B, and C. The loads

are located at 4, 7, and 10 km from the generator and draw 50, 20, and 100A, respectively. The resistance of

the line is 0.1�/km; see Fig. 3-21. (a) Find the voltage at loads A, B, C. (b) Find the maximum percentage

voltage drop from the generator to a load.

Ans. (a) vA ¼ 5928V; vB ¼ 5889V; vC ¼ 5859V; (b) 2.35 percent

3.18 In the circuit of Fig. 3-22, R ¼ 0 and i1 and i2 are unknown. Find i and vAC .

Ans. i ¼ 4A; vAC ¼ 24V

3.19 In the circuit of Fig. 3-22, R ¼ 1� and i1 ¼ 2A. Find, i, i2, and vAC.

Ans. i ¼ 5A; i2 ¼ �16A; vAC ¼ 27V

3.20 In the circuit of Fig. 3-23, is1 ¼ vs2 ¼ 0, vs1 ¼ 9V, is2 ¼ 12A. For the four cases of (a) R ¼ 0,

(b) R ¼ 6�, (c) R ¼ 9�, and (d) R ¼ 10 000�, draw the simplified circuit and find iBA and vAC.

Hint: A zero voltage source corresponds to a short-circuited element and a zero current source corresponds

to an open-circuited element.

Ans:

ðaÞ iBA ¼ 7; vAC ¼ 30

ðbÞ iBA ¼ 4:2; vAC ¼ 21:6

ðcÞ iBA ¼ 3:5; vAC ¼ 19:5

ðdÞ iBA ¼ 0:006 � 0; vAC ¼ 9:02 � 9

8>>><
>>>:

ðAll in A and V)

3.21 In the circuit of Fig. 3-23, vs1 ¼ vs2 ¼ 0; is1 ¼ 6 A; is2 ¼ 12 A: For the four cases of (a)

R ¼ 0; ðbÞ R ¼ 6�; ðcÞ R ¼ 9�; and ðdÞ R ¼ 10 000 �; draw the simplified circuit and find iBA and vAC.

Ans:

ðaÞ iBA ¼ 6; vAC ¼ 36

ðbÞ iBA ¼ 3:6; vAC ¼ 28:8

ðcÞ iBA ¼ 3; vAC ¼ 27

ðdÞ iBA ¼ 0:005 � 0; vAC � 18

8>>><
>>>:

ðAll in A and V)
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3.22 In the circuit Fig. 3-23, vs1 ¼ 0, vs2 ¼ 6V, is1 ¼ 6A, is2 ¼ 12A. For the four cases of (a) R ¼ 0,

(b) R ¼ 6�, (c) R ¼ 9�, and (d) R ¼ 10 000�, draw the simplified circuit and find iBA and vAC.

Ans:

ðaÞ iBA ¼ 5:33; vAC ¼ 34

ðbÞ iBA ¼ 3:2; vAC ¼ 27:6

ðcÞ iBA ¼ 2:66; vAC ¼ 26

ðdÞ iBA ¼ 0:005 � 0; vAC ¼ 18:01 � 18

8>>><
>>>:

(All in A and V)

3.23 In the circuit of Fig. 3-24, (a) find the resistance seen by the voltage source, Rin ¼ v=i, as a function of a,

and (b) evaluate Rin for a ¼ 0; 1; 2. Ans. (a) Rin ¼ R=ð1� aÞ; (b) R;1;�R

3.24 In the circuit of Fig. 3-24, (a) find power P delivered by the voltage source as a function of a, and

(b) evaluate P for a ¼ 0; 1; 2. Ans. (a) P ¼ v2ð1� aÞ=R; (b) v2=R; 0;�v2=R

3.25 In the circuit of Fig. 3-24, let a ¼ 2. Connect a resistor Rx in parallel with the voltage source and adjust it

within the range 0 � Rx � 0:99R such that the voltage source delivers minimum power. Find (a) the value

of Rx and (b) the power delivered by the voltage source.

Ans. (a) Rx ¼ 0:99R, (b) P ¼ v2=ð99RÞ
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3.26 In the circuit of Fig. 3-25, R1 ¼ 0 and b ¼ 100. Draw the simplified circuit and find v for R ¼ 1 k� and

10 k�. Ans. v ¼ 1; 10V

3.27 In the circuit of Fig. 3-25, R1 ¼ 0 and R ¼ 1 k�. Draw the simplified circuit and find v for b ¼ 50; 100; 200.
Note that v changes proportionally with b. Ans. v ¼ 0:5; 1; 2V

3.28 In the circuit of Fig. 3-25, R1 ¼ 100� and R ¼ 11 k�. Draw the simplified circuit and find v for

b ¼ 50; 100; 200. Compare with corresponding values obtained in Problem 3.27 and note that in the present

case v is less sensitive to variations in b. Ans. v ¼ 0:90; 1; 1:04V

3.29 A nonlinear element is modeled by the following terminal characteristic.

i ¼
10v when v � 0
0:1v when v � 0

�

Find the element’s current if it is connected to a voltage source with (a) v ¼ 1þ sin t and (b) v ¼ �1þ sin t.

See Fig. 3-26(a). Ans. (a) i ¼ 10ð1þ sin tÞ; (b) i ¼ 0:1ð�1þ sin tÞ

3.30 Place a 1-� linear resistor between the nonlinear element of Problem 3.29 and the voltage source. See Fig.

3-26(b). Find the element’s current if the voltage source is (a) v ¼ 1þ sin t and (b) v ¼ �1þ sin t.

Ans. (a) i ¼ 0:91ð1þ sin tÞ; (b) i ¼ 0:091ð�1þ sin tÞ
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Analysis Methods

4.1 THE BRANCH CURRENT METHOD

In the branch current method a current is assigned to each branch in an active network. Then
Kirchhoff’s current law is applied at the principal nodes and the voltages between the nodes employed to
relate the currents. This produces a set of simultaneous equations which can be solved to obtain the
currents.

EXAMPLE 4.1 Obtain the current in each branch of the network shown in Fig. 4-1 using the branch current

method.

Currents I1; I2, and I3 are assigned to the branches as shown. Applying KCL at node a,

I1 ¼ I2 þ I3 ð1Þ

The voltage Vab can be written in terms of the elements in each of the branches; Vab ¼ 20� I1ð5Þ, Vab ¼ I3ð10Þ and

Vab ¼ I2ð2Þ þ 8. Then the following equations can be written

20� I1ð5Þ ¼ I3ð10Þ ð2Þ

20� I1ð5Þ ¼ I2ð2Þ þ 8 ð3Þ

Solving the three equations (1), (2), and (3) simultaneously gives I1 ¼ 2A, I2 ¼ 1A, and I3 ¼ 1A.

Other directions may be chosen for the branch currents and the answers will simply include the
appropriate sign. In a more complex network, the branch current method is difficult to apply because it
does not suggest either a starting point or a logical progression through the network to produce the
necessary equations. It also results in more independent equations than either the mesh current or node
voltage method requires.

Fig. 4-1
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4.2 THE MESH CURRENT METHOD

In the mesh current method a current is assigned to each window of the network such that the
currents complete a closed loop. They are sometimes referred to as loop currents. Each element and
branch therefore will have an independent current. When a branch has two of the mesh currents, the
actual current is given by their algebraic sum. The assigned mesh currents may have either clockwise or
counterclockwise directions, although at the outset it is wise to assign to all of the mesh currents a
clockwise direction. Once the currents are assigned, Kirchhoff’s voltage law is written for each loop to
obtain the necessary simultaneous equations.

EXAMPLE 4.2 Obtain the current in each branch of the network shown in Fig. 4-2 (same as Fig. 4-1) using the

mesh current method.

The currents I1 and I2 are chosen as shown on the circuit diagram. Applying KVL around the left loop,

starting at point �,

�20þ 5I1 þ 10ðI1 � I2Þ ¼ 0

and around the right loop, starting at point �,

8þ 10ðI2 � I1Þ þ 2I2 ¼ 0

Rearranging terms,

15I1 � 10I2 ¼ 20 ð4Þ

�10I1 þ 12I2 ¼ �8 ð5Þ

Solving (4) and (5) simultaneously results in I1 ¼ 2A and I2 ¼ 1A. The current in the center branch, shown dotted,

is I1 � I2 ¼ 1A. In Example 4.1 this was branch current I3.

The currents do not have to be restricted to the windows in order to result in a valid set of
simultaneous equations, although that is the usual case with the mesh current method. For example,
see Problem 4.6, where each of the currents passes through the source. In that problem they are called
loop currents. The applicable rule is that each element in the network must have a current or a
combination of currents and no two elements in different branches can be assigned the same current
or the same combination of currents.

4.3 MATRICES AND DETERMINANTS

The n simultaneous equations of an n-mesh network can be written in matrix form. (Refer to
Appendix B for an introduction to matrices and determinants.)

EXAMPLE 4.3 When KVL is applied to the three-mesh network of Fig. 4-3, the following three equations are

obtained:
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ðRA þ RBÞI1 � RBI2 ¼ Va

�RBI1 þ ðRB þ RC þ RDÞI2 � RDI3 ¼ 0

�RDI2 þ ðRD þ REÞI3 ¼ �Vb

Placing the equations in matrix form,

RA þ RB �RB 0
�RB RB þ RC þ RD �RD

0 �RD RD þ RE

2
4

3
5 I1

I2
I3

2
4

3
5 ¼

Va

0
�Vb

2
4

3
5

The elements of the matrices can be indicated in general form as follows:

R11 R12 R13

R21 R22 R23

R31 R32 R33

2
4

3
5 I1

I2
I3

2
4

3
5 ¼

V1

V2

V3

2
4

3
5 ð6Þ

Now element R11 (row 1, column 1) is the sum of all resistances through which mesh current I1 passes. In Fig.

4-3, this is RA þ RB. Similarly, elements R22 and R33 are the sums of all resistances through which I2 and I3,

respectively, pass.

Element R12 (row 1, column 2) is the sum of all resistances through which mesh currents I1 and I2 pass. The

sign of R12 is þ if the two currents are in the same direction through each resistance, and � if they are in opposite

directions. In Fig. 4-3, RB is the only resistance common to I1 and I2; and the current directions are opposite in RB,

so that the sign is negative. Similarly, elements R21, R23, R13, and R31 are the sums of the resistances common to

the two mesh currents indicated by the subscripts, with the signs determined as described previously for R12. It

should be noted that for all i and j, Rij ¼ Rji. As a result, the resistance matrix is symmetric about the principal

diagonal.

The current matrix requires no explanation, since the elements are in a single column with subscripts 1, 2, 3, . . .

to identify the current with the corresponding mesh. These are the unknowns in the mesh current method of

network analysis.

Element V1 in the voltage matrix is the sum of all source voltages driving mesh current I1. A voltage is

counted positive in the sum if I1 passes from the � to the þ terminal of the source; otherwise, it is counted

negative. In other words, a voltage is positive if the source drives in the direction of the mesh current. In Fig.

4.3, mesh 1 has a source Va driving in the direction of I1; mesh 2 has no source; and mesh 3 has a source Vb driving

opposite to the direction of I3, making V3 negative.

The matrix equation arising from the mesh current method may be solved by various techniques.
One of these, the method of determinants (Cramer’s rule), will be presented here. It should be stated,
however, that other techniques are far more efficient for large networks.

EXAMPLE 4.4 Solve matrix equation (6) of Example 4.3 by the method of determinants.

The unknown current I1 is obtained as the ratio of two determinants. The denominator determinant has the

elements of resistance matrix. This may be referred to as the determinant of the coefficients and given the symbol

�R. The numerator determinant has the same elements as �R except in the first column, where the elements of the

voltage matrix replace those of the determinant of the coefficients. Thus,

I1 ¼
V1 R12 R13

V2 R22 R23

V3 R32 R33

������
������
,

R11 R12 R13

R21 R22 R23

R31 R32 R33

������
������ �

1

�R

V1 R12 R13

V2 R22 R23

V3 R32 R33

������
������
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Similarly,

I2 ¼
1

�R

R11 V1 R13

R21 V2 R23

R31 V3 R33

������
������ I3 ¼

1

�R

R11 R12 V1

R21 R22 V2

R31 R32 V3

������
������

An expansion of the numerator determinants by cofactors of the voltage terms results in a set of equations

which can be helpful in understanding the network, particularly in terms of its driving-point and transfer resistances:

I1 ¼ V1

�11

�R

� �
þ V2

�21

�R

� �
þ V3

�31

�R

� �
ð7Þ

I2 ¼ V1

�12

�R

� �
þ V2

�22

�R

� �
þ V3

�32

�R

� �
ð8Þ

I3 ¼ V1

�13

�R

� �
þ V2

�23

�R

� �
þ V3

�33

�R

� �
ð9Þ

Here, �ij stands for the cofactor of Rij (the element in row i, column j) in �R. Care must be taken with the

signs of the cofactors—see Appendix B.

4.4 THE NODE VOLTAGE METHOD

The network shown in Fig. 4-4(a) contains five nodes, where 4 and 5 are simple nodes and 1, 2, and 3
are principal nodes. In the node voltage method, one of the principal nodes is selected as the reference
and equations based on KCL are written at the other principal nodes. At each of these other principal
nodes, a voltage is assigned, where it is understood that this is a voltage with respect to the reference
node. These voltages are the unknowns and, when determined by a suitable method, result in the
network solution.

The network is redrawn in Fig. 4-4(b) and node 3 selected as the reference for voltages V1 and V2.
KCL requires that the total current out of node 1 be zero:

V1 � Va

RA

þ
V1

RB

þ
V1 � V2

RC

¼ 0

Similarly, the total current out of node 2 must be zero:

V2 � V1

RC

þ
V2

RD

þ
V2 � Vb

RE

¼ 0

(Applying KCL in this form does not imply that the actual branch currents all are directed out of either
node. Indeed, the current in branch 1–2 is necessarily directed out of one node and into the other.)
Putting the two equations for V1 and V2 in matrix form,
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1

RA

þ
1

RB

þ
1

RC

�
1

RC

�
1

RC

1

RC

þ
1

RD

þ
1

RE

2
664

3
775

V1

V2

2
664

3
775 ¼

Va=RA

Vb=RE

2
664

3
775

Note the symmetry of the coefficient matrix. The 1,1-element contains the sum of the reciprocals of
all resistances connected to note 1; the 2,2-element contains the sum of the reciprocals of all resistances
connected to node 2. The 1,2- and 2,1-elements are each equal to the negative of the sum of the
reciprocals of the resistances of all branches joining nodes 1 and 2. (There is just one such branch
in the present circuit.)

On the right-hand side, the current matrix contains Va=RA and Vb=RE , the driving currents. Both
these terms are taken positive because they both drive a current into a node. Further discussion of the
elements in the matrix representation of the node voltage equations is given in Chapter 9, where the
networks are treated in the sinusoidal steady state.

EXAMPLE 4.5 Solve the circuit of Example 4.2 using the node voltage method.

The circuit is redrawn in Fig. 4-5. With two principal nodes, only one equation is required. Assuming the

currents are all directed out of the upper node and the bottom node is the reference,

V1 � 20

5
þ
V1

10
þ
V1 � 8

2
¼ 0

from which V1 ¼ 10V. Then, I1 ¼ ð10� 20Þ=5 ¼ �2A (the negative sign indicates that current I1 flows into node

1); I2 ¼ ð10� 8Þ=2 ¼ 1A; I3 ¼ 10=10 ¼ 1A. Current I3 in Example 4.2 is shown dotted.

4.5 INPUT AND OUTPUT RESISTANCES

In single-source networks, the input or driving-point resistance is often of interest. Such a network
is suggested in Fig. 4-6, where the driving voltage has been designated as V1 and the corresponding
current as I1. Since the only source is V1, the equation for I1 is [see (7) of Example 4.4]:

I1 ¼ V1

�11

�R

� �

The input resistance is the ratio of V1 to I1:

Rinput;1 ¼
�R

�11

The reader should verify that �R=�11 actually carries the units �.

A voltage source applied to a passive network results in voltages between all nodes of the network.
An external resistor connected between two nodes will draw current from the network and in general will
reduce the voltage between those nodes. This is due to the voltage across the output resistance (see
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Thévenin too). The output resistance is found by dividing the open-circuited voltage to the short-
circuited current at the desired node. The short-circuited current is found in Section 4.6.

4.6 TRANSFER RESISTANCE

A driving voltage in one part of a network results in currents in all the network branches. For
example, a voltage source applied to a passive network results in an output current in that part of the
network where a load resistance has been connected. In such a case the network has an overall transfer
resistance. Consider the passive network suggested in Fig. 4-7, where the voltage source has been
designated as Vr and the output current as Is. The mesh current equation for Is contains only one
term, the one resulting from Vr in the numerator determinant:

Is ¼ ð0Þ
�1s

�R

� �
þ � � � þ 0þ Vr

�rs

�R

� �
þ 0þ � � �

The network transfer resistance is the ratio of Vr to Is:

Rtransfer;rs ¼
�R

�rs

Because the resistance matrix is symmetric, �rs ¼ �sr, and so

Rtransfer;rs ¼ Rtransfer;sr

This expresses an important property of linear networks: If a certain voltage in mesh r gives rise to a
certain current in mesh s, then the same voltage in mesh s produces the same current in mesh r.

Consider now the more general situation of an n-mesh network containing a number of voltage
sources. The solution for the current in mesh k can be rewritten in terms of input and transfer
resistances [refer to (7), (8), and (9) of Example 4.4]:

Ik ¼
V1

Rtransfer;1k

þ � � � þ
Vk�1

Rtransfer;ðk�1Þk

þ
Vk

Rinput;k

þ
Vkþ1

Rtransfer;ðkþ1Þk

þ � � � þ
Vn

Rtransfer;nk

There is nothing new here mathematically, but in this form the current equation does illustrate the
superposition principle very clearly, showing how the resistances control the effects which the voltage
sources have on a particular mesh current. A source far removed from mesh k will have a high transfer
resistance into that mesh and will therefore contribute very little to Ik. Source Vk, and others in meshes
adjacent to mesh k, will provide the greater part of Ik.

4.7 NETWORK REDUCTION

The mesh current and node voltage methods are the principal techniques of circuit analysis. How-
ever, the equivalent resistance of series and parallel branches (Sections 3.4 and 3.5), combined with the
voltage and current division rules, provide another method of analyzing a network. This method is
tedious and usually requires the drawing of several additional circuits. Even so, the process of reducing
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the network provides a very clear picture of the overall functioning of the network in terms of voltages,
currents, and power. The reduction begins with a scan of the network to pick out series and parallel
combinations of resistors.

EXAMPLE 4.6 Obtain the total power supplied by the 60-V source and the power absorbed in each resistor in the

network of Fig. 4-8.

Rab ¼ 7þ 5 ¼ 12�

Rcd ¼
ð12Þð6Þ

12þ 6
¼ 4�

These two equivalents are in parallel (Fig. 4-9), giving

Ref ¼
ð4Þð12Þ

4þ 12
¼ 3�

Then this 3-� equivalent is in series with the 7-� resistor (Fig. 4-10), so that for the entire circuit,

Req ¼ 7þ 3 ¼ 10�

The total power absorbed, which equals the total power supplied by the source, can now be calculated as

PT ¼
V2

Req

¼
ð60Þ2

10
¼ 360W

This power is divided between Rge and Ref as follows:

Pge ¼ P7� ¼
7

7þ 3
ð360Þ ¼ 252W Pef ¼

3

7þ 3
ð360Þ ¼ 108W

Power Pef is further divided between Rcd and Rab as follows:

Pcd ¼
12

4þ 12
ð108Þ ¼ 81W Pab ¼

4

4þ 12
ð108Þ ¼ 27W
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Finally, these powers are divided between the individual resistances as follows:

P12� ¼
6

12þ 6
ð81Þ ¼ 27W P7� ¼

7

7þ 5
ð27Þ ¼ 15:75W

P6� ¼
12

12þ 6
ð81Þ ¼ 54W P5� ¼

5

7þ 5
ð27Þ ¼ 11:25W

4.8 SUPERPOSITION

A linear network which contains two or more independent sources can be analyzed to obtain the
various voltages and branch currents by allowing the sources to act one at a time, then superposing the
results. This principle applies because of the linear relationship between current and voltage. With
dependent sources, superposition can be used only when the control functions are external to the network
containing the sources, so that the controls are unchanged as the sources act one at a time. Voltage
sources to be suppressed while a single source acts are replaced by short circuits; current sources are
replaced by open circuits. Superposition cannot be directly applied to the computation of power,
because power in an element is proportional to the square of the current or the square of the voltage,
which is nonlinear.

As a further illustration of superposition consider equation (7) of Example 4.4:

I1 ¼ V1

�11

�R

� �
þ V2

�21

�R

� �
þ V3

�31

�R

� �

which contains the superposition principle implicitly. Note that the three terms on the right are added
to result in current I1. If there are sources in each of the three meshes, then each term contributes to the
current I1. Additionally, if only mesh 3 contains a source, V1 and V2 will be zero and I1 is fully
determined by the third term.

EXAMPLE 4.7 Compute the current in the 23-� resistor of Fig. 4-11(a) by applying the superposition principle.

With the 200-V source acting alone, the 20-A current source is replaced by an open circuit, Fig. 4-11(b).
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Req ¼ 47þ
ð27Þð4þ 23Þ

54
¼ 60:5�

IT ¼
200

60:5
¼ 3:31A

I 0
23� ¼

27

54

� �
ð3:31Þ ¼ 1:65A

When the 20-A source acts alone, the 200-V source is replaced by a short circuit, Fig. 4-11(c). The equivalent

resistance to the left of the source is

Req ¼ 4þ
ð27Þð47Þ

74
¼ 21:15�

I 00
23� ¼

21:15

21:15þ 23

� �
ð20Þ ¼ 9:58AThen

The total current in the 23-� resistor is

I23� ¼ I 0
23� þ I 00

23� ¼ 11:23A

4.9 THÉVENIN’S AND NORTON’S THEOREMS

A linear, active, resistive network which contains one or more voltage or current sources can be
replaced by a single voltage source and a series resistance (Thévenin’s theorem), or by a single current
source and a parallel resistance (Norton’s theorem). The voltage is called the Thévenin equivalent
voltage, V 0, and the current the Norton equivalent current, I 0. The two resistances are the same,
R 0. When terminals ab in Fig. 4-12(a) are open-circuited, a voltage will appear between them.

From Fig. 4-12(b) it is evident that this must be the voltage V 0 of the Thévenin equivalent circuit. If
a short circuit is applied to the terminals, as suggested by the dashed line in Fig. 4-12(a), a current will
result. From Fig. 4-12(c) it is evident that this current must be I 0 of the Norton equivalent circuit.
Now, if the circuits in (b) and (c) are equivalents of the same active network, they are equivalent to each
other. It follows that I 0

¼ V 0=R 0. If both V 0 and I 0 have been determined from the active network,
then R 0

¼ V 0=I 0.

EXAMPLE 4.8 Obtain the Thévenin and Norton equivalent circuits for the active network in Fig. 4-13(a).

With terminals ab open, the two sources drive a clockwise current through the 3-� and 6-� resistors

[Fig. 4-13(b)].

I ¼
20þ 10

3þ 6
¼

30

9
A

Since no current passes through the upper right 3-� resistor, the Thévenin voltage can be taken from either active

branch:
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Vab ¼ V 0
¼ 20�

30

9

� �
ð3Þ ¼ 10V

Vab ¼ V 0
¼

30

9

� �
6� 10 ¼ 10Vor

The resistance R 0 can be obtained by shorting out the voltage sources [Fig. 4.13(c)] and finding the equivalent

resistance of this network at terminals ab:

R 0
¼ 3þ

ð3Þð6Þ

9
¼ 5�

When a short circuit is applied to the terminals, current Is:c: results from the two sources. Assuming that it

runs through the short from a to b, we have, by superposition,

Is:c: ¼ I 0
¼

6

6þ 3

� �
20

3þ
ð3Þð6Þ

9

2
64

3
75�

3

3þ 3

� �
10

6þ
ð3Þð3Þ

6

2
64

3
75 ¼ 2A

Figure 4-14 shows the two equivalent circuits. In the present case, V 0, R 0, and I 0 were obtained

independently. Since they are related by Ohm’s law, any two may be used to obtain the third.

The usefulness of Thévenin and Norton equivalent circuits is clear when an active network is to be

examined under a number of load conditions, each represented by a resistor. This is suggested in
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Fig. 4-15, where it is evident that the resistors R1;R2; . . . ;Rn can be connected one at a time, and the

resulting current and power readily obtained. If this were attempted in the original circuit using, for

example, network reduction, the task would be very tedious and time-consuming.

4.10 MAXIMUM POWER TRANSFER THEOREM

At times it is desired to obtain the maximum power transfer from an active network to an external
load resistor RL. Assuming that the network is linear, it can be reduced to an equivalent circuit as in
Fig. 4-16. Then

I ¼
V 0

R 0 þ RL

and so the power absorbed by the load is

PL ¼
V 02RL

ðR 0 þ RLÞ
2
¼

V 02

4R 0
1�

R 0
� RL

R 0 þ RL

� �2
" #

It is seen that PL attains its maximum value, V 02=4R 0, when RL ¼ R 0, in which case the power in R 0 is
also V 02=4R 0. Consequently, when the power transferred is a maximum, the efficiency is 50 percent.

It is noted that the condition for maximum power transfer to the load is not the same as the
condition for maximum power delivered by the source. The latter happens when RL ¼ 0, in which
case power delivered to the load is zero (i.e., at a minimum).

Solved Problems

4.1 Use branch currents in the network shown in Fig. 4-17 to find the current supplied by the 60-V
source.
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KVL and KCL give:

I2ð12Þ ¼ I3ð6Þ ð10Þ

I2ð12Þ ¼ I4ð12Þ ð11Þ

60 ¼ I1ð7Þ þ I2ð12Þ ð12Þ

I1 ¼ I2 þ I3 þ I4 ð13Þ

Substituting (10) and (11) in (13),

I1 ¼ I2 þ 2I2 þ I2 ¼ 4I2 ð14Þ

Now (14) is substituted in (12):

60 ¼ I1ð7Þ þ
1
4
I1ð12Þ ¼ 10I1 or I1 ¼ 6A

4.2 Solve Problem 4.1 by the mesh current method.

Applying KVL to each mesh (see Fig. 4-18) results in

60 ¼ 7I1 þ 12ðI1 � I2Þ

0 ¼ 12ðI2 � I1Þ þ 6ðI2 � I3Þ

0 ¼ 6ðI3 � I2Þ þ 12I3

Rearranging terms and putting the equations in matrix form,

19I1 � 12I2 ¼ 60
�12I1 þ 18I2 � 6I3 ¼ 0

� 6I2 þ 18I3 ¼ 0
or

19 �12 0
�12 18 �6

0 �6 18

2
4

3
5 I1

I2
I3

2
4

3
5 ¼

60
0
0

2
4

3
5

Using Cramer’s rule to find I1,

I1 ¼
60 �12 0
0 18 �6
0 �6 18

������
�������

19 �12 0
�12 18 �6

0 �6 18

������
������ ¼ 17 280� 2880 ¼ 6A
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4.3 Solve the network of Problems 4.1 and 4.2 by the node voltage method. See Fig. 4-19.

With two principal nodes, only one equation is necessary.

V1 � 60

7
þ
V1

12
þ
V1

6
þ
V1

12
¼ 0

from which V1 ¼ 18V. Then,

I1 ¼
60� V1

7
¼ 6A

4.4 In Problem 4.2, obtain Rinput;1 and use it to calculate I1.

Rinput;1 ¼
�R

�11

¼
2880

18 �6
�6 18

����
����
¼

2880

288
¼ 10�

I1 ¼
60

Rinput;1

¼
60

10
¼ 6AThen

4.5 Obtain Rtransfer;12 and Rtransfer;13 for the network of Problem 4.2 and use them to calculate I2 and
I3.

The cofactor of the 1,2-element in �R must include a negative sign:

�12 ¼ ð�1Þ1þ2 �12 �6
0 18

����
���� ¼ 216 Rtransfer;12 ¼

�R

�12

¼
2880

216
¼ 13:33�

Then, I2 ¼ 60=13:33 ¼ 4:50A:

�13 ¼ ð�1Þ1þ3 �12 18
0 �6

����
���� ¼ 72 Rtransfer;13 ¼

�R

�13

¼
2880

72
¼ 40�

Then, I3 ¼ 60=40 ¼ 1:50A:

4.6 Solve Problem 4.1 by use of the loop currents indicated in Fig. 4-20.

The elements in the matrix form of the equations are obtained by inspection, following the rules of

Section 4.2.
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19 7 7
7 13 7
7 7 19

2
4

3
5 I1

I2
I3

2
4

3
5 ¼

60
60
60

2
4

3
5

�R ¼

19 7 7

7 13 7

7 7 19

2
64

3
75 ¼ 2880Thus,

Notice that in Problem 4.2, too, �R ¼ 2880, although the elements in the determinant were different. All

valid sets of meshes or loops yield the same numerical value for �R. The three numerator determinants are

N1 ¼

60 7 7
60 13 7
60 7 19

������
������ ¼ 4320 N2 ¼ 8642 N3 ¼ 4320

Consequently,

I1 ¼
N1

�R

¼
4320

2880
¼ 1:5A I2 ¼

N2

�R

¼ 3A I3 ¼
N3

�R

¼ 1:5A

The current supplied by the 60-V source is the sum of the three loop currents, I1 þ I2 þ I3 ¼ 6A.

4.7 Write the mesh current matrix equation for the network of Fig. 4-21 by inspection, and solve for
the currents.

7 �5 0
�5 19 �4
0 �4 6

2
4

3
5 I1

I2
I3

2
4

3
5 ¼

�25
25
50

2
4

3
5

Solving,

I1 ¼
�25 �5 0
25 19 �4
50 �4 6

������
�������

7 �5 0
�5 19 �4
0 �4 6

������
������ ¼ ð�700Þ � 536 ¼ �1:31A
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Similarly,

I2 ¼
N2

�R

¼
1700

536
¼ 3:17A I3 ¼

N3

�R

¼
5600

536
¼ 10:45A

4.8 Solve Problem 4.7 by the node voltage method.

The circuit has been redrawn in Fig. 4-22, with two principal nodes numbered 1 and 2 and the third

chosen as the reference node. By KCL, the net current out of node 1 must equal zero.

V1

2
þ
V1 � 25

5
þ
V1 � V2

10
¼ 0

Similarly, at node 2,
V2 � V1

10
þ
V2

4
þ
V2 þ 50

2
¼ 0

Putting the two equations in matrix form,

1

2
þ
1

5
þ

1

10
�

1

10

�
1

10

1

10
þ
1

4
þ
1

2

2
664

3
775

V1

V2

2
664

3
775 ¼

5

�25

��������

��������
The determinant of coefficients and the numerator determinants are

� ¼
0:80 �0:10

�0:10 0:85

����
���� ¼ 0:670

N1 ¼
5 �0:10

�25 0:85

����
���� ¼ 1:75 N2 ¼

0:80 5
�0:10 �25

����
���� ¼ �19:5

From these,

V1 ¼
1:75

0:670
¼ 2:61V V2 ¼

�19:5

0:670
¼ �29:1V

In terms of these voltages, the currents in Fig. 4-21 are determined as follows:

I1 ¼
�V1

2
¼ �1:31A I2 ¼

V1 � V2

10
¼ 3:17A I3 ¼

V2 þ 50

2
¼ 10:45A

4.9 For the network shown in Fig. 4-23, find Vs which makes I0 ¼ 7:5mA.

The node voltage method will be used and the matrix form of the equations written by inspection.
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1

20
þ
1

7
þ
1

4
�
1

4

�
1

4

1

4
þ
1

6
þ
1

6

2
664

3
775

V1

V2

2
664

3
775 ¼

Vs=20

0

2
664

3
775

Solving for V2,

V2 ¼

0:443 Vs=20
�0:250 0

����
����

0:443 �0:250
�0:250 0:583

����
����
¼ 0:0638Vs

7:5� 10�3
¼ I0 ¼

V2

6
¼

0:0638Vs

6
Then

from which Vs ¼ 0:705V.

4.10 In the network shown in Fig. 4-24, find the current in the 10-� resistor.

The nodal equations in matrix form are written by inspection.

1

5
þ

1

10
�
1

5

�
1

5

1

5
þ
1

2

2
664

3
775

V1

V2

2
664

3
775 ¼

2

�6

2
664

3
775

V1 ¼

2 �0:20
�6 0:70

����
����

0:30 �0:20
�0:20 0:70

� ����
¼ 1:18V
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Then, I ¼ V1=10 ¼ 0:118A.

4.11 Find the voltage Vab in the network shown in Fig. 4-25.

The two closed loops are independent, and no current can pass through the connecting branch.

I1 ¼ 2A I2 ¼
30

10
¼ 3A

Vab ¼ Vax þ Vxy þ Vyb ¼ �I1ð5Þ � 5þ I2ð4Þ ¼ �3V

4.12 For the ladder network of Fig. 4-26, obtain the transfer resistance as expressed by the ratio of Vin

to I4.

By inspection, the network equation is

15 �5 0 0
�5 20 �5 0
0 �5 20 �5
0 0 �5 5þ RL

2
664

3
775

I1
I2
I3
I4

2
664

3
775 ¼

Vin

0
0
0

2
664

3
775

�R ¼ 5125RL þ 18 750 N4 ¼ 125Vin

I4 ¼
N4

�R

¼
Vin

41RL þ 150
ðAÞ

Rtransfer;14 ¼
Vin

I4
¼ 41RL þ 150 ð�Þand

4.13 Obtain a Thévenin equivalent for the circuit of Fig. 4-26 to the left of terminals ab.

The short-circuit current Is:c: is obtained from the three-mesh circuit shown in Fig. 4-27.
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15 �5 0

�5 20 �5

0 �5 15

2
64

3
75

I1

I2

Is:c:

2
64

3
75 ¼

Vin

0

0

2
64

3
75

Is:c: ¼

Vin

�5 20

0 �5

����
����

�R

¼
Vin

150

The open-circuit voltage Vo:c: is the voltage across the 5-� resistor indicated in Fig. 4-28.

15 �5 0

�5 20 �5

0 �5 20

2
64

3
75

I1

I2

I3

2
64

3
75 ¼

Vin

0

0

2
64

3
75

I3 ¼
25Vin

5125
¼

Vin

205
ðAÞ

Then, the Thévenin source V 0
¼ Vo:c: ¼ I3ð5Þ ¼ Vin=41, and

RTh ¼
Vo:c:

Is:c:
¼

150

41
�

The Thévenin equivalent circuit is shown in Fig. 4-29. With RL connected to terminals ab, the output

current is

I4 ¼
Vin=41

ð150=41Þ þ RL

¼
Vin

41RL þ 150
ðAÞ

agreeing with Problem 4.12.

4.14 Use superposition to find the current I from each voltage source in the circuit shown in Fig. 4-30.

Loop currents are chosen such that each source contains only one current.

54 ANALYSIS METHODS [CHAP. 4

Fig. 4-27

Fig. 4-28



54 �27
�27 74

� �
I1
I2

� �
¼

¼

�460
200

� �

From the 460-V source,

I 0
1 ¼ I 0

¼
ð�460Þð74Þ

3267
¼ �10:42A

and for the 200-V source

I 00
1 ¼ I 00

¼
�ð200Þð�27Þ

3267
¼ 1:65A

I ¼ I 0
þ I 00

¼ �10:42þ 1:65 ¼ �8:77AThen,

4.15 Obtain the current in each resistor in Fig. 4-31(a), using network reduction methods.

As a first step, two-resistor parallel combinations are converted to their equivalents. For the 6� and

3�, Req ¼ ð6Þð3Þ=ð6þ 3Þ ¼ 2�. For the two 4-� resistors, Req ¼ 2�. The circuit is redrawn with series

resistors added [Fig. 4-31(b)]. Now the two 6-� resistors in parallel have the equivalent Req ¼ 3�, and this

is in series with the 2�. Hence, RT ¼ 5�, as shown in Fig. 4-31(c). The resulting total current is
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IT ¼
25

5
¼ 5A

Now the branch currents can be obtained by working back through the circuits of Fig. 4-31(b) and

4-31(a)

IC ¼ IF ¼ 1
2
IT ¼ 2:5 A

ID ¼ IE ¼ 1
2
IC ¼ 1:25 A

IA ¼
3

6þ 3
IT ¼

5

3
A

IB ¼
6

6þ 3
IT ¼

10

3
A

4.16 Find the value of the adjustable resistance R which results in maximum power transfer across the
terminals ab of the circuit shown in Fig. 4-32.

First a Thévenin equivalent is obtained, with V 0
¼ 60V and R 0

¼ 11�. By Section 4.10, maximum

power transfer occurs for R ¼ R 0
¼ 11�, with

Pmax ¼
V 02

4R 0
¼ 81:82 W

Supplementary Problems

4.17 Apply the mesh current method to the network of Fig. 4-33 and write the matrix equations by inspection.

Obtain current I1 by expanding the numerator determinant about the column containing the voltage sources

to show that each source supplies a current of 2.13A.
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4.18 Loop currents are shown in the network of Fig. 4-34. Write the matrix equation and solve for the three

currents. Ans. 3.55A, �1:98A, �2:98A

4.19 The network of Problem 4.18 has been redrawn in Fig. 4-35 for solution by the node voltage method. Ob-

tain node voltages V1 and V2 and verify the currents obtained in Problem 4.18.

Ans. 7.11V, �3:96V

4.20 In the network shown in Fig. 4-36 current I0 ¼ 7:5mA. Use mesh currents to find the required source

voltage Vs. Ans. 0.705V

4.21 Use appropriate determinants of Problem 4.20 to obtain the input resistance as seen by the source voltage

Vs. Check the result by network reduction. Ans: 23:5�
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4.22 For the network shown in Fig. 4-36, obtain the transfer resistance which relates the current I0 to the source

voltage Vs. Ans: 94:0�

4.23 For the network shown in Fig. 4-37, obtain the mesh currents. Ans. 5.0A, 1.0A, 0.5A

4.24 Using the matrices from Problem 4.23 calculate Rinput;1, Rtransfer;12, and Rtransfer;13.

Ans: 10�; 50�; 100�

4.25 In the network shown in Fig. 4-38, obtain the four mesh currents.

Ans. 2.11A, �0:263A, �2:34A, 0.426A

4.26 For the circuit shown in Fig. 4-39, obtain Vo:c:, Is:c:, and R 0 at the terminals ab using mesh current or node

voltage methods. Consider terminal a positive with respect to b. Ans: � 6:29V;�0:667A; 9:44�
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4.27 Use the node voltage method to obtain Vo:c: and Is:c: at the terminals ab of the network shown in Fig. 4-

40. Consider a positive with respect to b. Ans: � 11:2V;�7:37A

4.28 Use network reduction to obtain the current in each of the resistors in the circuit shown in Fig. 4-41.

Ans. In the 2.45-� resistor, 3.10A; 6.7�, 0.855A; 10.0�, 0.466A; 12.0�, 0.389A; 17.47�, 0.595A;

6.30�, 1.65A

4.29 Both ammeters in the circuit shown in Fig. 4-42 indicate 1.70A. If the source supplies 300W to the circuit,

find R1 and R2. Ans: 23:9�; 443:0�
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4.30 In the network shown in Fig. 4-43 the two current sources provide I 0 and I 00 where I 0
þ I 00

¼ I . Use

superposition to obtain these currents. Ans. 1.2A, 15.0A, 16.2A

4.31 Obtain the current I in the network shown in Fig. 4.44. Ans: � 12A

4.32 Obtain the Thévenin and Norton equivalents for the network shown in Fig. 4.45.

Ans: V 0
¼ 30V; I 0

¼ 5A;R 0
¼ 6�

4.33 Find the maximum power that the active network to the left of terminals ab can deliver to the adjustable

resistor R in Fig. 4-46. Ans. 8.44W

4.34 Under no-load condition a dc generator has a terminal voltage of 120V. When delivering its rated current

of 40A, the terminal voltage drops to 112V. Find the Thévenin and Norton equivalents.

Ans: V 0
¼ 120V; I 0

¼ 600A;R 0
¼ 0:2�

4.35 The network of Problem 4.14 has been redrawn in Fig. 4-47 and terminals a and b added. Reduce the

network to the left of terminals ab by a Thévenin or Norton equivalent circuit and solve for the current I .

Ans: � 8:77A
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4.36 Node Voltage Method. In the circuit of Fig. 4-48 write three node equations for nodes A, B, and C, with

node D as the reference, and find the node voltages.

Ans:

Node A: 5VA � 2VB � 3VC ¼ 30

Node B: �VA þ 6VB � 3VC ¼ 0 from which VA ¼ 17;VB ¼ 9;VC ¼ 12:33 all in V

Node C: �VA � 2VB þ 3VC ¼ 2

8><
>:

4.37 In the circuit of Fig. 4-48 note that the current through the 3-� resistor is 3A giving rise to

VB ¼ 9V. Apply KVL around the mesh on the upper part of the circuit to find current I coming out of

the voltage source, then find VA and VC. Ans: I ¼ 1=3A;VA ¼ 17V;VC ¼ 37=3V

4.38 Superposition. In the circuit of Fig. 4-48 find contribution of each source to VA, VB, VC, and show that they

add up to values found in Problems 4.36 and 4.37.

Ans. (All in V)

4.39 In the circuit of Fig. 4-48 remove the 2-A current source and then find the voltage Vo:c: between the open-

circuited nodes C and D. Ans: Vo:c: ¼ 3V

4.40 Use the values for VC and Vo:c: obtained in Problems 4.36 and 4.39 to find the Thévenin equivalent of the

circuit of Fig. 4-48 seen by the 2-A current source. Ans: VTh ¼ 3V;RTh ¼ 14=3�

4.41 In the circuit of Fig. 4-48 remove the 2-A current source and set the other two sources to zero, reducing the

circuit to a source-free resistive circuit. Find R, the equivalent resistance seen from terminals CD, and note

that the answer is equal to the Thévenin resistance obtained in Problem 4.40. Ans: R ¼ 14=3�
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Contribution of the voltage source: VA ¼ 3 VB ¼ 0 VC ¼ �1

Contribution of the 1A current source: VA ¼ 6 VB ¼ 3 VC ¼ 4

Contribution of the 2 A current source: VA ¼ 8 VB ¼ 6 VC ¼ 28=3

Contribution of all sources: VA ¼ 17 VB ¼ 9 VC ¼ 37=3



4.42 Find Thévenin equivalent of the circuit of Fig. 4-49 seen from terminals AB.

ans: VTh ¼ 12V;RTh ¼ 17�

4.43 Loop Current Method. In the circuit of Fig. 4-50 write three loop equations using I1, I2, and I3. Then find

the currents.

Ans:

Loop 1: 4I1 þ 2I2 þ I3 ¼ 3

Loop 2: 2I1 þ 5I2 � I3 ¼ 2 From which I1 ¼ 32=51; I2 ¼ 9=51; I3 ¼ 7=51 all in A

Loop 3: �I1 þ 2I2 þ 2I3 ¼ 0

8><
>:

4.44 Superposition. In the circuit of Fig. 4-50 find the contribution of each source to I1, I2, I3, and show that

they add up to values found in Problem 4.43.

Ans. (All in A)

4.45 Node Voltage Method. In the circuit of Fig. 4-51 write three node equations for nodes A, B, and C, with

node D as the reference, and find the node voltages.

Ans:

Node A: 9VA � 7VB � 2VC ¼ 42

Node B: �3VA þ 8VB � 2VC ¼ 9 From which VA ¼ 9;VB ¼ 5;VC ¼ 2 all in V

Node C: �3VA � 7VB þ 31VC ¼ 0

8><
>:
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From the source on the left: I1 ¼ 36=51 I2 ¼ �9=51 I3 ¼ 27=51

From the source on the right: I1 ¼ �4=51 I2 ¼ 18=51 I3 ¼ �20=51

From both sources: I1 ¼ 32=51 I2 ¼ 9=51 I3 ¼ 7=51
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4.46 Loop Current Method. In the circuit of Fig. 4-51 write two loop equations using I1 and I2 as loop currents,

then find the currents and node voltages.

Ans:
Loop 1: 4I1 � I2 ¼ 2

Loop 2: �I1 þ 2I2 ¼ 3
from which,

I1 ¼ 1A; I2 ¼ 2A

VA ¼ 9V; VB ¼ 5V; VC ¼ 2V

��

4.47 Superposition. In the circuit of Fig. 4-51 find the contribution of each source to VA, VB, VC, and show that

they add up to values found in Problem 4.45.

Ans. (all in V)

4.48 Verify that the circuit of Fig. 4-52(a) is equivalent to the circuit of Fig. 4-51.

Ans. Move node B in Fig. 4-51 to the outside of the loop.

4.49 Find VA and VB in the circuit of Fig. 4-52(b). Ans: VA ¼ 9;VB ¼ 5, both in V

4.50 Show that the three terminal circuits enclosed in the dashed boundaries of Fig. 4-52(a) and (b) are equivalent

(i.e., in terms of their relation to other circuits). Hint: Use the linearity and superposition properties, along

with the results of Problems 4.48 and 4.49.
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From the current source: VA ¼ 7:429 VB ¼ 3:143 VC ¼ 1:429

From the voltage source: VA ¼ 1:571 VB ¼ 1:857 VC ¼ 0:571

From both sources: VA ¼ 9 VB ¼ 5 VC ¼ 2
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64

Amplifiers and
Operational Amplifier

Circuits

5.1 AMPLIFIER MODEL

An amplifier is a device which magnifies signals. The heart of an amplifier is a source controlled by
an input signal. A simplified model of a voltage amplifier is shown in Fig. 5-1(a). The input and output
reference terminals are often connected together and form a common reference node. When the output
terminal is open we have v2 ¼ kv1, where k, the multiplying factor, is called the open circuit gain.
Resistors Ri and Ro are the input and output resistances of the amplifier, respectively. For a better
operation it is desired that Ri be high and Ro be low. In an ideal amplifier, Ri ¼ 1 and Ro ¼ 0 as in Fig.
5-1(b). Deviations from the above conditions can reduce the overall gain.

Fig. 5-1
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EXAMPLE 5.1 A practical voltage source vs with an internal resistance Rs is connected to the input of a voltage

amplifier with input resistance Ri as in Fig. 5-2. Find v2=vs.

The amplifier’s input voltage, v1, is obtained by dividing vs between Ri and Rs.

v1 ¼
Ri

Ri þ Rs

vs

The output voltage v2 is

v2 ¼ kv1 ¼
kRi

Ri þ Rs

vs

from which

v2
vs

¼
Ri

Ri þ Rs

k ð1Þ

The amplifier loads the voltage source. The open-loop gain is reduced by the factor Ri=ðRi þ RsÞ.

EXAMPLE 5.2 In Fig. 5-3 a practical voltage source vs with internal resistance Rs feeds a load Rl through an

amplifier with input and output resistances Ri and Ro, respectively. Find v2=vs.

By voltage division,

v1 ¼
Ri

Ri þ Rs

vs

Similarly, the output voltage is

v2 ¼ kv1
Rl

Rl þ Ro

¼ k
RiRl

ðRi þ RsÞðRl þ RoÞ
vs or

V2

vs
¼

Ri

Ri þ Rs

�
Rl

Rl þ Ro

k ð2Þ

Note that the open-loop gain is further reduced by an additional factor of Rl=ðRl þ RoÞ, which also makes the output

voltage dependent on the load.

5.2 FEEDBACK IN AMPLIFIER CIRCUITS

The gain of an amplifier may be controlled by feeding back a portion of its output to its input as
done for the ideal amplifier in Fig. 5-4 through the feedback resistor R2. The feedback ratio
R1=ðR1 þ R2Þ affects the overall gain and makes the amplifier less sensitive to variations in k.
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EXAMPLE 5.3 Find v2=vs in Fig. 5-4 and express it as a function of the ratio b ¼ R1=ðR1 þ R2Þ.

From the amplifier we know that

v2 ¼ kv1 or v1 ¼ v2=k ð3Þ

Applying KCL at node A,

v1 � vs
R1

þ
v1 � v2
R2

¼ 0 ð4Þ

Substitute v1 in (3) into (4) to obtain

v2
vs

¼
R2k

R2 þ R1 � R1k
¼ ð1� bÞ

k

1� bk
where b ¼

R1

R1 þ R2

ð5Þ

EXAMPLE 5.4 In Fig. 5-5, R1 ¼ 1 k� and R2 ¼ 5 k�. (a) Find v2=vs as a function of the open-loop gain k.

(b) Compute v2=vs for k ¼ 100 and 1000 and discuss the results.

(a) Figures 5-4 and 5-5 differ only in the polarity of the dependent voltage source. To find v2=vs, use the results of
Example 5.3 and change k to �k in (5).

v2
vs

¼ ð1� bÞ
�k

1þ bk
where b ¼

R1

R1 þ R2

¼
1

6

v2
vs

¼
�5k

6þ k

(b) At k ¼ 100, v2=vs ¼ �4:72; at k ¼ 1000, v2=vs ¼ �4:97. Thus, a tenfold increase in k produces only a 5.3

percent change in v2=vs; i.e., ð4:97� 4:72Þ=4:72 ¼ 5:3 percent.

Note that for very large values of k, v2=vs approaches �R2=R1 which is independent of k.

5.3 OPERATIONAL AMPLIFIERS

The operational amplifier (op amp) is a device with two input terminals, labeled þ and � or non-
inverting and inverting, respectively. The device is also connected to dc power supplies (þVcc and
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�Vcc). The common reference for inputs, output, and power supplies resides outside the op amp and is

called the ground (Fig. 5-6).

The output voltage vo depends on vd ¼ vþ � v�. Neglecting the capacitive effects, the transfer

function is that shown in Fig. 5-7. In the linear range, vo ¼ Avd . The open-loop gain A is generally

very high. vo saturates at the extremes of þVcc and �Vcc when input vd exceeds the linear range

jvd j > Vcc=A.

Figure 5-8 shows the model of an op amp in the linear range with power supply connections omitted
for simplicity. In practice, Ri is large, Ro is small, and A ranges from 105 to several millions. The
model of Fig. 5-8 is valid as long as the output remains between þVcc and �Vcc. Vcc is generally from 5
to 18V.

EXAMPLE 5.5 In the op amp of Fig. 5-8, Vcc ¼ 15V, A ¼ 105, and v� ¼ 0. Find the upper limit on the magni-

tude of vþ for linear operation.

jvoj ¼ j105vþj < 15V jvþj < 15� 10�5 V ¼ 150 mV

EXAMPLE 5.6 In the op amp of Fig. 5-8, Vcc ¼ 5V, A ¼ 105, v� ¼ 0 and vþ ¼ 100 sin 2�t ðmVÞ. Find and sketch

the open-loop output vo.

The input to the op amp is vd ¼ vþ � v� ¼ ð100 sin 2�tÞ10�6 (V). When the op amp operates in the linear

range, vo ¼ 105vd ¼ 10 sin 2�t (V). The output should remain between þ5 and �5V (Fig. 5-9). Saturation starts

when vo ¼ 10 sin 2�t reaches the 5-V level. This occurs at t ¼ 1=12 s. The op amp comes out of 5-V saturation at
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t ¼ 5=12. Similarly, the op amp is in �5-V saturation from t ¼ 7=12 to 11/12 s. One full cycle of the output, given

in volts, from t ¼ 0 to 1 s is

vo ¼
5 1=12 < t < 5=12

�5 7=12 < t < 11=12
10 sin 2�t otherwise

8<
:

EXAMPLE 5.7 Repeat Example 5.6 for v� ¼ 25mV and vþ ¼ 50 sin 2�t ðmV).

vd ¼ vþ � v� ¼ ð50 sin 2�tÞ10�6
� 25� 10�6

¼ 50� 10�6
ðsin 2�t� 1=2Þ ðVÞ

When the op amp is within linear range, its output is

vo ¼ 105vd ¼ 5ðsin 2�t� 1=2Þ ðVÞ

vo saturates at the �5-V level when 5ðsin 2�t� 1=2Þ < �5, 7=12 < t < 11=12 (see Fig. 5-10). One cycle of vo, in

volts, from t ¼ 0 to 1 s is
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vo ¼
�5 7=12 < t < 11=12

5ðsin 2�t� 1=2Þ otherwise

�

EXAMPLE 5.8 In Fig. 5-11, R1 ¼ 10 k�, R2 ¼ 50 k�, Ri ¼ 500 k�, Ro ¼ 0, and A ¼ 105. Find v2=v1. Assume

the amplifier is not saturated.

The sum of currents arriving at node B is zero. Note that vA ¼ 0 and vB ¼ �vd . Therefore,

v1 þ vd
10

þ
vd
500

þ
v2 þ vd

50
¼ 0 ð6Þ

Since Ro ¼ 0, we have

v2 ¼ Avd ¼ 105vd or vd ¼ 10�5v2 ð7Þ
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Substituting vd in (7) into (6), the ratio v2=v1 is found to be

v2
v1

¼
�5

1þ 10�5 þ 5� 10�5 þ 0:1� 10�5
¼ �5

5.4 ANALYSIS OF CIRCUITS CONTAINING IDEAL OP AMPS

In an ideal op amp, Ri and A are infinite and Ro is zero. Therefore, the ideal op amp draws zero
current at its inverting and noninverting inputs, and if it is not saturated these inputs are at the same
voltage. Throughout this chapter we assume op amps are ideal and operate in the linear range unless
specified otherwise.

EXAMPLE 5.9 The op amp in Fig. 5-12 is ideal and not saturated. Find (a) v2=v1; (b) the input resistance v1=i1;
and (c) i1; i2; p1 (the power delivered by v1), and p2 (the power dissipated in the resistors) given v1 ¼ 0:5V.

(a) The noninverting terminal A is grounded and so vA ¼ 0. Since the op amp is ideal and not saturated, vB ¼ 0.

Applying KCL at nodes B and C and noting that the op amp draws no current, we get

Node B:
v1
5
þ
vC
10

¼ 0 or vC ¼ �2v1 (8)

Node C:
vC
10

þ
vC
1
þ
vC � v2

2
¼ 0 or v2 ¼ 3:2vC (9)

Substituting vC in (8) into (9),

v2 ¼ �6:4v1 or v2=v1 ¼ �6:4

(b) With VB ¼ 0, i1 ¼ v1=5000 and so

input resistance ¼ v1=i1 ¼ 5 k�

(c) The input current is i1 ¼ v1=5000. Given that v1 ¼ 0:5V, i1 ¼ 0:5=5000 ¼ 0:1mA.

To find i2, we apply KCL at the output of the op amp;

i2 ¼
v2

8000
þ
v2 � vC
2000

From part (a), v2 ¼ �3:2V and vC ¼ �1V. Therefore, i2 ¼ 1:5mA.

The power delivered by v1 is

p1 ¼ v1i1 ¼ v21=5000 ¼ 50� 10�6 W ¼ 50mW

Powers in the resistors are
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p1 k� ¼ v2C=1000 ¼ 0:001W ¼ 1000mW1k�:

p2 k� ¼ ðv2 � vCÞ
2=2000 ¼ 0:00242W ¼ 2420 mW2k�:

p5 k� ¼ v21=5000 ¼ 0:00005W ¼ 50 mW5k�:

p8 k� ¼ v22=8000 ¼ 0:00128W ¼ 1280 mW8k�:

p10 k� ¼ v2C=10 000 ¼ 0:0001W ¼ 100 mW10k�:

The total power dissipated in the resistors is

p2 ¼ p1 k� þ p2 k� þ p5 k� þ p8 k� þ p10 k� ¼ 1000þ 2420þ 50þ 1280þ 100 ¼ 4850 mW

5.5 INVERTING CIRCUIT

In an inverting circuit, the input signal is connected through R1 to the inverting terminal of the op
amp and the output terminal is connected back through a feedback resistor R2 to the inverting terminal.
The noninverting terminal of the op amp is grounded (see Fig. 5-13).

To find the gain v2=v1, apply KCL to the currents arriving at node B:

v1
R1

þ
v2
R2

¼ 0 and
v2
v1

¼ �
R2

R1

ð10Þ

The gain is negative and is determined by the choice of resistors only. The input resistance of the circuit
is R1.

5.6 SUMMING CIRCUIT

The weighted sum of several voltages in a circuit can be obtained by using the circuit of Fig. 5-14.
This circuit, called a summing circuit, is an extension of the inverting circuit.

To find the output, apply KCL to the inverting node:

v1
R1

þ
v2
R2

þ � � � þ
vn
Rn

þ
vo
Rf

¼ 0

from which

vo ¼ �
Rf

R1

v1 þ
Rf

R2

v2 þ � � � þ
Rf

Rn

vn

� �
ð11Þ

EXAMPLE 5.10 Let the circuit of Fig. 5-14 have four input lines with R1 ¼ 1;R2 ¼
1
2
;R3 ¼

1
4
;R4 ¼

1
8
, and Rf ¼ 1,

all values given in k�. The input lines are set either at 0 or 1V. Find vo in terms of v4, v3, v2, v1, given the

following sets of inputs:

(a) v4 ¼ 1V v3 ¼ 0 v2 ¼ 0 v1 ¼ 1V
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(b) v4 ¼ 1V v3 ¼ 1V v2 ¼ 1V v1 ¼ 0

From (11)

vo ¼ �ð8v4 þ 4v3 þ 2v2 þ v1Þ

Substituting for v1 to v4 we obtain

ðaÞ vo ¼ �9V

ðbÞ vo ¼ �14V

The set fv4; v3; v2; v1g forms a binary sequence containing four bits at high (1V) or low (0V) values. Input sets

given in (a) and (b) correspond to the binary numbers ð1001Þ2 ¼ ð9Þ10 and ð1110Þ2 ¼ ð14Þ10, respectively. With the

inputs at 0V (low) or 1V (high), the circuit converts the binary number represented by the input set fv4; v3; v2; v1g to
a negative voltage which, when measured in V, is equal to the base 10 representation of the input set. The circuit is

a digital-to-analog converter.

5.7 NONINVERTING CIRCUIT

In a noninverting circuit the input signal arrives at the noninverting terminal of the op amp. The
inverting terminal is connected to the output through R2 and also to the ground through R1 (see
Fig. 5-15).

To find the gain v2=v1, apply KCL at node B. Note that terminals A and B are both at v1 and the
op amp draws no current.

v1
R1

þ
v1 � v2
R2

¼ 0 or
v2
v1

¼ 1þ
R2

R1

ð12Þ
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The gain v2=v1 is positive and greater than or equal to one. The input resistance of the circuit is infinite
as the op amp draws no current.

EXAMPLE 5.11 Find v2=v1 in the circuit shown in Fig. 5-16.

First find vA by dividing v1 between the 10-k� and 5-k� resistors.

vA ¼
5

5þ 10
v1 ¼

1

3
v1

From (12) we get

v2 ¼ 1þ
7

2

� �
vA ¼

9

2
vA ¼

9

2

1

3
v1

� �
¼ 1:5v1 and

v2
v1

¼ 1:5

Another Method

Find vB by dividing v2 between the 2-k� and 7-k� resistors and set vB ¼ vA.

vB ¼
2

2þ 7
v2 ¼

2

9
v2 ¼

1

3
v1 and

v2
v1

¼ 1:5

EXAMPLE 5.12 Determine vo in Fig. 5-17 in terms of v1; v2; v3; and the circuit elements.

First, vA is found by applying KCL at node A.

v1 � vA
R

þ
v2 � vA

R
þ
v3 � vA

R
¼ 0 or vA ¼

1

3
ðv1 þ v2 þ v3Þ ð13Þ

From (12) and (13) we get

vo ¼ 1þ
R2

R1

� �
vA ¼

1

3
1þ

R2

R1

� �
ðv1 þ v2 þ v3Þ ð14Þ
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5.8 VOLTAGE FOLLOWER

The op amp in the circuit of Fig. 5-18(a) provides a unity gain amplifier in which v2 ¼ v1 since

v1 ¼ vþ, v2 ¼ v� and vþ ¼ v�. The output v2 follows the input v1. By supplying il to Rl , the op amp

eliminates the loading effect of Rl on the voltage source. It therefore functions as a buffer.

EXAMPLE 5.13 (a) Find is; vl; v2; and il in Fig. 5-18(a). (b) Compare these results with those obtained when

source and load are connected directly as in Fig. 5-18(b).

(a) With the op amp present [Fig. 5-18(a)], we have

is ¼ 0 v1 ¼ vs v2 ¼ v1 ¼ vs il ¼ vs=Rl

The voltage follower op amp does not draw any current from the signal source vs. Therefore, vs reaches the

load with no reduction caused by the load current. The current in Rl is supplied by the op amp.

(b) With the op amp removed [Fig. 5-18(b)], we have

is ¼ il ¼
vs

Rl þ Rs

and v1 ¼ v2 ¼
Rl

Rl þ Rs

vs

The current drawn by Rl goes through Rs and produces a drop in the voltage reaching it. The load voltage v2
depends on Rl .
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5.9 DIFFERENTIAL AND DIFFERENCE AMPLIFIERS

A signal source vf with no connection to ground is called a floating source. Such a signal may be
amplified by the circuit of Fig. 5-19.

Here the two input terminals A and B of the op amp are at the same voltage. Therefore, by writing
KVL around the input loop we get

vf ¼ 2R1i or i ¼ vf =2R1

The op amp inputs do not draw any current and so current i also flows through the R2 resistors.
Applying KVL around the op amp, we have

vo þ R2i þ R2i ¼ 0 vo ¼ �2R2i ¼ �2R2vf =2R1 ¼ �ðR2=R1Þvf ð15Þ

In the special case when two voltage sources v1 and v2 with a common ground are connected to the
inverting and noninverting inputs of the circuit, respectively (see Fig. 5-20), we have vf ¼ v1 � v2 and

vo ¼ ðR2=R1Þðv2 � v1Þ ð16Þ

EXAMPLE 5.14 Find vo as a function of v1 and v2 in the circuit of Fig. 5-20.

Applying KCL at nodes A and B,

vA � v2
R3

þ
vA
R4

¼ 0Node A:

vB � v1
R1

þ
vB � vo
R2

¼ 0Node B:

Set vA ¼ vB and eliminate them from the preceding KCL equations to get
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vo ¼
R4ðR1 þ R2Þ

R1ðR3 þ R4Þ
v2 �

R2

R1

v1 ð17Þ

When R3 ¼ R1 and R2 ¼ R4, (17) is reduced to (16).

5.10 CIRCUITS CONTAINING SEVERAL OP AMPS

The analysis and results developed for single op amp circuits can be applied to circuits containing
several ideal op amps in cascade or nested loops because there is no loading effect.

EXAMPLE 5.15 Find v1 and v2 in Fig. 5-21.

The first op amp is an inverting circuit.

v1 ¼ �ð3=1Þð�0:6Þ ¼ 1:8V

The second op amp is a summing circuit.

v2 ¼ �ð2=1Þð0:5Þ � ð2=2Þð1:8Þ ¼ �2:8V

EXAMPLE 5.16 Let Rs ¼ 1 k� in the circuit of Fig. 5-22, find v1; v2; vo; is; i1; and if as functions of vs for

(a) Rf ¼ 1 and (b) Rf ¼ 40 k�

(a) Rf ¼ 1. The two inverting op amps are cascaded, with vþ ¼ 0. By voltage division in the input loop we have

v1 ¼
5

5þ 1
vs ¼

5

6
vs ð18Þ

From the inverting amplifiers we get
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v2 ¼ �ð9=5Þv1 ¼ �ð9=5Þ
5

6
vs

� �
¼ �1:5vs

vo ¼ �ð6=1:2Þv2 ¼ �5ð�1:5vsÞ ¼ 7:5vs

is ¼ i1 ¼
vs

6000
ðAÞ ¼ 0:166vs ðmAÞ

if ¼ 0

(b) Rf ¼ 40 k�. From the inverting op amps we get vo ¼ �5v2 and v2 ¼ �ð9=5Þv1 so that vo ¼ 9v1. Apply KCL

to the currents leaving node B.

v1 � vs
1

þ
v1
5
þ
v1 � vo
40

¼ 0 ð19Þ

Substitute vo ¼ 9v1 in (19) and solve for v1 to get

v1 ¼ vs

v2 ¼ �ð9=5Þv1 ¼ �1:8vs

vo ¼ �ð6=1:2Þv2 ¼ �5ð�1:8vsÞ ¼ 9vs

is ¼
vs � v1
1000

¼ 0

Apply KCL at node B.

if ¼ i1 ¼
v1

5000
ðAÞ ¼

vs
5000

ðAÞ ¼ 0:2vs ðmAÞ

The current i1 in the 5-k� input resistor of the first op amp is provided by the output of the second op amp

through the 40-k� feedback resistor. The current is drawn from vs is, therefore, zero. The input resistance of

the circuit is infinite.

5.11 INTEGRATOR AND DIFFERENTIATOR CIRCUITS

Integrator

By replacing the feedback resistor in the inverting amplifier of Fig. 5-13 with a capacitor, the basic
integrator circuit shown in Fig. 5-23 will result.

To obtain the input-output relationship apply KCL at the inverting node:

v1
R

þ C
dv2
dt

¼ 0 from which
dv2
dt

¼ �
1

RC
v1

and v2 ¼ �
1

RC

ðt
�1

v1 dt (20)

In other words, the output is equal to the integral of the input multiplied by a gain factor of �1=RC.

EXAMPLE 5.17 In Fig. 5-23 let R ¼ 1 k�, C ¼ 1 mF, and v1 ¼ sin 2000t. Assuming v2ð0Þ ¼ 0, find v2 for t > 0.
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v2 ¼ �
1

103 � 10�6

ðt
0

sin 2000t dt ¼ 0:5ðcos 2000t� 1Þ

Leaky Integrator

The circuit of Fig. 5-24 is called a leaky integrator, as the capacitor voltage is continuously dis-
charged through the feedback resistor Rf . This will result in a reduction in gain jv2=v1j and a phase
shift in v2. For further discussion see Section 5.13.

EXAMPLE 5.18 In Fig. 5-24, R1 ¼ Rf ¼ 1 k�, C ¼ 1mF, and v1 ¼ sin 2000t. Find v2.

The inverting node is at zero voltage, and the sum of currents arriving at it is zero. Thus,

v1
R1

þ C
dv2
dt

þ
v2
Rf

¼ 0 or v1 þ 10�3 dv2
dt

þ v2 ¼ 0

10�3 dv2
dt

þ v2 ¼ � sin 2000t ð21Þ

The solution for v2 in (21) is a sinusoidal with the same frequency as that of v1 but different amplitude and phase

angle, i.e.,

v2 ¼ A cosð2000tþ BÞ ð22Þ

To find A and B, we substitute v2 and dv2=dt in (22) into (21). First dv=dt ¼ �2000A sinð2000tþ BÞ. Thus,

10�3dv2=dtþ v2 ¼ �2A sinð2000tþ BÞ þ A cosð2000tþ BÞ ¼ � sin 2000t

2A sinð2000tþ BÞ � A cosð2000tþ BÞ ¼ A
ffiffiffi
5

p
sinð2000tþ B� 26:578Þ ¼ sin 2000tBut

Therefore, A ¼
ffiffiffi
5

p
=5 ¼ 0:447, B ¼ 26:578 and

v2 ¼ 0:447 cosð2000tþ 26:578Þ ð23Þ

Integrator-Summer Amplifier

A single op amp in an inverting configuration with multiple input lines and a feedback capacitor as
shown in Fig. 5-25 can produce the sum of integrals of several functions with desired gains.

EXAMPLE 5.19 Find the output vo in the integrator-summer amplifier of Fig. 5-25, where the circuit has three

inputs.

Apply KCL at the inverting input of the op amp to get
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v1
R1

þ
v2
R2

þ
v3
R3

þ C
dvo
dt

¼ 0

vo ¼ �

ðt
�1

v1
R1C

þ
v2
R2C

þ
v3
R3C

� �
dt ð24Þ

Initial Condition of Integration

The desired initial condition, vo, of the integration can be provided by a reset switch as shown in Fig.
5-26. By momentarily connecting the switch and then disconnecting it at t ¼ to, an initial value of vo is
established across the capacitor and appears at the output v2. For t > to, the weighted integral of input
is added to the output.

v2 ¼ �
1

RC

ðt
to

v1 dtþ vo ð25Þ

Differentiator

By putting an inductor in place of the resistor in the feedback path of an inverting amplifier, the

derivative of the input signal is produced at the output. Figure 5-27 shows the resulting differentiator

circuit.

To obtain the input-output relationship, apply KCL to currents arriving at the inverting node:

v1
R

þ
1

L

ðt
�1

v2 dt ¼ 0 or v2 ¼ �
L

R

dv1
dt

ð26Þ
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5.12 ANALOG COMPUTERS

The inverting amplifiers, summing circuits, and integrators described in the previous sections are
used as building blocks to form analog computers for solving linear differential equations. Differentia-
tors are avoided because of considerable effect of noise despite its low level.

To design a computing circuit, first rearrange the differential equation such that the highest existing
derivative of the desired variable is on one side of the equation. Add integrators and amplifiers in
cascade and in nested loops as shown in the following examples. In this section we use the notations
x 0

¼ dx=dt, x 00
¼ d2x=dt2 and so on.

EXAMPLE 5.20 Design a circuit with xðtÞ as input to generate output yðtÞ which satisfies the following equation:

y 00
ðtÞ þ 2y 0

ðtÞ þ 3yðtÞ ¼ xðtÞ ð27Þ

Step 1. Rearrange the differential equation (27) as follows:

y 00
¼ x� 2y 0

� 3y ð28Þ

Step 2. Use the summer-integrator op amp #1 in Fig. 5-28 to integrate (28). Apply (24) to find R1;R2;R3 and

C1 such that output of op amp #1 is v1 ¼ �y 0. We let C1 ¼ 1 mF and compute the resistors accordingly:

R1C1 ¼ 1 R1 ¼ 1M�

R2C1 ¼ 1=3 R2 ¼ 333 k�

R3C1 ¼ 1=2 R3 ¼ 500 k�

v1 ¼ �

ð
ðx� 3y� 2y 0

Þ dt ¼ �

ð
y 00 dt ¼ �y 0

ð29Þ

Step 3. Integrate v1 ¼ �y 0 by op amp #2 to obtain y. We let C2 ¼ 1mF and R4 ¼ 1M� to obtain v2 ¼ y at the

output of op amp #2.

v2 ¼ �
1

R4C2

ð
v2 dt ¼

ð
y 0 dt ¼ y ð30Þ

Step 4. Supply inputs to op amp #1 through the following connections. Feed v1 ¼ �y 0 directly back to the R3

input of op amp #1. Pass v2 ¼ y through the unity gain inverting op amp #3 to generate �y, and then feed it to the

R2 input of op amp #1. Connect the voltage source xðtÞ to the R1 input of op amp #1. The complete circuit is

shown in Fig. 5-28.

EXAMPLE 5.21 Design an op amp circuit as an ideal voltage source vðtÞ satisfying the equation v 0
þ v ¼ 0 for

t > 0, with vð0Þ ¼ 1V.

Following the steps used in Example 5.20, the circuit of Fig. 5-29 with RC ¼ 1 s is assembled. The initial

condition is entered when the switch is opened at t ¼ 0. The solution vðtÞ ¼ e�t, t > 0, is observed at the output of

the op amp.
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5.13 LOW-PASS FILTER

A frequency-selective amplifier whose gain decreases from a finite value to zero as the frequency of

the sinusoidal input increases from dc to infinity is called a low-pass filter. The plot of gain versus

frequency is called a frequency response. An easy technique for finding the frequency response of filters

will be developed in Chapter 13. The leaky integrator of Fig. 5-24 is a low-pass filter, as illustrated in

the following example.

EXAMPLE 5.22 In Example 5.18 let v1 ¼ sin! t. Find jv2j for ! ¼ 0; 10; 100; 103; 104, and 105 rad/s.

By repeating the procedure of Example 5.18, the frequency response is found and given in Table 5-1. The

response amplitude decreases with frequency. The circuit is a low-pass filter.
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Table 5-1. Frequency Response of the Low-pass Filter

!, rad/s 0 10 100 103 104 105

f , Hz 0 1.59 15.9 159 1:59� 103 15:9� 103

jv2=v1j 1 1 0.995 0.707 0.1 0.01



5.14 COMPARATOR

The circuit of Fig. 5-30 compares the voltage v1 with a reference level vo. Since the open-loop gain
is very large, the op amp output v2 is either at þVcc (if v1 > vo) or at �Vcc (if v1 < vo). This is shown by
v2 ¼ Vcc sgn½v1 � vo� where ‘‘sgn’’ stands for ‘‘sign of.’’ For vo ¼ 0, we have

v2 ¼ Vcc sgn½v1� ¼
þVcc v1 > 0
�Vcc v1 < 0

�

EXAMPLE 5.23 In Fig. 5-30, let Vcc ¼ 5V, vo ¼ 0, and v1 ¼ sin!t. Find v2.

For 0 < t < �=!,

v1 ¼ sin!t > 0 v2 ¼ 5V

For �=! < t < 2�=!,

v1 ¼ sin!t < 0 v2 ¼ �5V

The output v2 is a square pulse which switches between þ5V and �5V with period of 2�=!. One cycle of v2 is

given by

v2 ¼
5V 0 < t < �=!

�5V �=! < t < 2�=!

�

EXAMPLE 5.24 The circuit of Fig. 5-31 is a parallel analog-to-digital converter. The þVcc and �Vcc connections

are omitted for simplicity. Let Vcc ¼ 5V, vo ¼ 4V, and vi ¼ t (V) for 0 < t < 4 s. Find outputs v3; v2; and v1.

Interpret the answer.

The op amps have no feedback, and they function as comparators. The outputs with values at þ5 or �5V are

given in Table 5-2.

The binary sequences fv3; v2; v1g in Table 5-2 uniquely specify the input voltage in discrete domain. How-

ever, in their present form they are not the binary numbers representing input amplitudes. Yet, by using a

coder we could transform the above sequences into the binary numbers corresponding to the values of analog

inputs.
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Table 5-2

time, s input, V outputs, V

0 < t < 1 0 < vi < 1 v3 ¼ �5 v2 ¼ �5 v1 ¼ �5

1 < t < 2 1 < vi < 2 v3 ¼ �5 v2 ¼ �5 v1 ¼ þ5

2 < t < 3 2 < vi < 3 v3 ¼ �5 v2 ¼ þ5 v1 ¼ þ5

3 < t < 4 3 < vi < 4 v3 ¼ þ5 v2 ¼ þ5 v1 ¼ þ5



Solved Problems

5.1 In Fig. 5-3, let vs ¼ 20V, Rs ¼ 10�, Ri ¼ 990�, k ¼ 5, and Ro ¼ 3�. Find (a) the Thévenin
equivalent of the circuit seen by Rl and (b) v2 and the power dissipated in Rl for Rl ¼ 0:5, 1, 3, 5,
10, 100, and 1000�.

(a) The open-circuit voltage and short-circuit current at A–B terminal are vo:c: ¼ 5v1 and is:c: ¼ 5v1=3,
respectively.

We find v1 by dividing vs between Rs and Ri. Thus,

v1 ¼
Ri

Rs þ Ri

vs ¼
990

10þ 990
ð20Þ ¼ 19:8V
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Therefore,

vo:c: ¼ 5ð19:8Þ ¼ 99V vTh ¼ vo:c: ¼ 99V

is:c: ¼ 99=3 ¼ 33A RTh ¼ vo:c:=is:c: ¼ 3�

The Thévenin equivalent is shown in Fig. 5-32.

(b) With the load Rl connected, we have

v2 ¼
Rl

Rl þ RTh

vTh ¼
99Rl

Rl þ 3
and p ¼

v22
Rl

Table 5-3 shows the voltage across the load and the power dissipated in it for the given seven values of

Rl . The load voltage is at its maximum when Rl ¼ 1. However, power delivered to Rl ¼ 1 is zero.

Power delivered to Rl is maximum at Rl ¼ 3�, which is equal to the output resistance of the amplifier.

5.2 In the circuits of Figs. 5-4 and 5-5 let R1 ¼ 1 k� and R2 ¼ 5 k�. Find the gains Gþ
¼ v2=vs in

Fig. 5-4 and G�
¼ v2=vs in Fig. 5-5 for k ¼ 1, 2, 4, 6, 8, 10, 100, 1000, and 1. Compare the

results.

From (5) in Example 5.3, at R1 ¼ 1 k� and R2 ¼ 5 k� we have

Gþ
¼

v2
vs

¼
5k

6� k
ð31Þ

In Example 5.4 we found

G�
¼

v2
vs

¼ �
5k

6þ k
ð32Þ

The gains G� and Gþ are calculated for nine values of k in Table 5-4. As k becomes very large, Gþ and

G� approach the limit gain of �5, which is the negative of the ratio R2=R1 and is independent of k. The

circuit of Fig. 5-5 (with negative feedback) is always stable and its gain monotonically approaches the limit

gain. However, the circuit of Fig. 5-4 (with positive feedback) is unstable. The gain Gþ becomes very

large as k approaches six. At k ¼ 6, Gþ
¼ 1.
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Table 5-3

Rl;� v2;V p;W

0.5 14.14 400.04

1 24.75 612.56

3 49.50 816.75

5 61.88 765.70

10 76.15 579.94

100 96.12 92.38

1000 98.70 9.74

Table 5-4

k Gþ G�

1 1:0 �0:71
2 2:5 �1:25
4 10:0 �2:00
6 1 �2:50
8 �20:0 �2:86
10 �12:5 �3:12
100 �5:32 �4:72
1000 �5:03 �4:97
1 �5:00 �5:00



5.3 Let R1 ¼ 1 k�, R2 ¼ 5 k�, and Ri ¼ 50 k� in the circuit of Fig. 5-33. Find v2=vs for k ¼ 1, 10,
100, 1000, 1 and compare the results with the values of G� in Table 5-4.

This problem is solved by application of KCL at node A (another approach which uses the Thévenin

equivalent is suggested in Problem 5.30). Thus,

v1 � vs
1

þ
v1 � v2

5
þ

v1
50

¼ 0 ð33Þ

From the amplifier we obtain

v2 ¼ �kv1 or v1 ¼ �v2=k ð34Þ

Replacing v1 in (34) into (33) and rearranging terms, we obtain

v2
vs

¼
�50k

61þ 10k
¼

�5k

6:1þ k
ð35Þ

Values of v2=vs in (35) are shown in Table 5-5 as functions of k. The 50-k� input resistance of the amplifier

reduces the overall gain very slightly, as seen by comparing Tables 5-4 and 5-5. The feedback has made the

input resistance of the amplifier less effective in changing the overall gain.

5.4 Let again R1 ¼ 1 k� and R2 ¼ 5 k� in the circuit of Fig. 5-33.

ðaÞ Find v2=vs as a function of k and Ri:
ðbÞ Let Ri ¼ 1 k�. Find v2=v1 for k ¼ 1; 10; 100; 1000;1. Repeat for Ri ¼ 1:
ðcÞ Discuss the effects of Ri and k on the overall gain. Show that, for k ¼ 1 and Ri 6¼ 0;

the gain of the amplifier is independent of Ri and is equal to � R2=R1:

(a) Apply KCL to currents leaving node A to obtain

v1 � vs
1

þ
v1 � v2

5
þ

v1
Ri

¼ 0

From the amplifier we get v2 ¼ �kv1 or v1 ¼ �v2=k. Substituting for v1 in the KCL equation and

rearranging terms we get
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Table 5-5

k v2=vs

1 �0:704
10 �3:106
100 �4:713
1000 �4:97
1 �5:00



v2
vs

¼ �5
ck

1þ ck
where c ¼

Ri

5þ 6Ri

ð36Þ

(b) For Ri ¼ 1 k�, c ¼ 1=11 which, substituted into (36), gives

v2
vs

¼
�5k

11þ k
ð37Þ

For Ri ¼ 1 we get c ¼ 1=6 and so

v2
vs

¼
�5k

6þ k
ð38Þ

Table 5-6 gives values of v2=vs in (37) and (38) versus k. Note that (38) is identical with (32).

(c) Comparing the two columns in Table 5-6 we see that the smaller Ri reduces the overall gain G�.

However, as the open-loop gain k increases, the effect of Ri is diminished. As k becomes very

large, v2=v1 approaches �5 unless Ri ¼ 0.

5.5 Let again R1 ¼ 1 k� and R2 ¼ 5 k� in the circuit of Fig. 5-33. Replace the circuit to the left of
node A including vs, R1, and Ri by its Thévenin equivalent. Then use (5) to derive (36).

The Thévenin equivalent is given by

vTh ¼
Rivs

R1 þ Ri

¼
Rivs
1þ Ri

RTh ¼
R1Ri

R1 þ Ri

¼
Ri

1þ Ri

where the resistors are in k�:
From (5),

v2 ¼ ð1� bÞ
�k

1þ bk
vTh

b ¼
RTh

RTh þ R2

¼
Ri

6Ri þ 5
and 1� b ¼

5ð1þ RiÞ

6Ri þ 5
where

Therefore,

v2 ¼
5ð1þ RiÞ

6Ri þ 5
�

�k

1þ Rik=ð6Ri þ 5Þ
�

Ri

1þ Ri

vs ¼
�5Rik

6Ri þ 5þ Rik
vs

which is identical with (36).

5.6 Find the output voltage of an op amp with A ¼ 105 and Vcc ¼ 10V for v� ¼ 0 and vþ ¼ sin t (V).
Refer to Figs. 5-7 and 5-8.
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Table 5-6

k

v2=vs

Ri ¼ 1 k� Ri ¼ 1

1

10

100

1000

1

�0:31
�2:38
�4:51
�4:95
�5:00

�0:71
�3:12
�4:72
�4:97
�5:00



Because of high gain, saturation occurs quickly at

jv2j ¼ 105jvd j ¼ 10V or jvd j ¼ 10�4 V

We may ignore the linear interval and write

v2 ¼
þ10V vd > 0
�10V vd < 0

�

where vd ¼ vþ � v� ¼ sin t (V). One cycle of the output is given by

v2 ¼
þ10V 0 < t < �
�10V � < t < 2�

�

For a more exact v2, we use the transfer characteristic of the op amp in Fig. 5-7.

v2 ¼
�10 vd < �10�4 V
105vd �10�4 < vd < 10�4 V

þ10 vd > 10�4 V

8<
:

Saturation begins at jvd j ¼ j sin tj ¼ 10�4 V. Since this is a very small range, we may replace sin t by t. The

output v2 is then given by

v2 ¼ 105t � 10�4 < t < 10�4 s
v2 ¼ 10 10�4 < t < �� 10�4 s
v2 ¼ �105ðt� �Þ �� 10�4 < t < �þ 10�4 s
v2 ¼ �10 �þ 10�4 < t < 2�� 10�4 s

To appreciate the insignificance of error in ignoring the linear range, note that during one period of 2� s

the interval of linear operation is only 4� 10�4 s, which gives a ratio of 64� 10�6.

5.7 Repeat Problem 5.6 for vþ ¼ sin 2�t (V) and v� ¼ 0:5V.

The output voltage is

v2 ¼ 10V when vþ > v�

v2 ¼ �10V when vþ < v�

Switching occurs when sin 2�t ¼ 1=2. This happens at t ¼ 1=12, 5/12, 13/12, and so on. Therefore, one

cycle of v2 is given by

v2 ¼ 10V 1=12 < t < 5=12 s

v2 ¼ �10V 5=12 < t < 13=12 s

Figure 5-34 shows the graphs of vþ, v�, and v2.

5.8 In the circuit of Fig. 5-35 vs ¼ sin 100t. Find v1 and v2.

At nodes B and A, vB ¼ vA ¼ 0. Then,

v1 ¼
30

20þ 30
vs ¼ 0:6 sin 100t ðVÞ

v2 ¼ �
100

30
v1 ¼ �

100

30
ð0:6 sin 100tÞ ¼ �2 sin 100t ðVÞ

v2 ¼ �
100

20þ 30
vs ¼ �2 sin 100t ðVÞAlternatively,

5.9 Saturation levels for the op amps in Fig. 5-31 are þVcc ¼ 5V and �Vcc ¼ �5V. The reference
voltage is vo ¼ 1V. Find the sequence of outputs corresponding to values of vi from 0 to 1V in
steps of 0.25V.
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See Table 5-7 where L ¼ �5V and H ¼ þ5V.

5.10 Find v in the circuit of Fig. 5-36.

Apply KCL at node A,
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Fig. 5-34

Fig. 5-35

Table 5-7

vi, V v3 v2 v1

0 to 0.25� L L L

0.25þ to 0:5� L L H

0.5þ to 0.75� L H H

0.75þ to 1 H H H



ðv� v1Þg1 þ ðv� v2Þg2 þ ðv� v3Þg3 ¼ 0

v ¼
v1g1 þ v2g2 þ v3g3

g1 þ g2 þ g3
¼

v1R2R3 þ v2R1R3 þ v3R2R1

R1R2 þ R2R3 þ R3R1

Then

5.11 In the circuit of Fig. 5-37 find vC (the voltage at node C), i1, Rin (the input resistance seen by the
9-V source), v2, and i2.

At nodes B and A, vB ¼ vA ¼ 0. Applying KCL at node C, we get

ðvC � 9Þ=4þ vC=6þ vC=3 ¼ 0 from which vC ¼ 3V

i1 ¼ ð9� vCÞ=4 ¼ 1:5A and Rin ¼ v1=i1 ¼ 9=1:5 ¼ 6�Then

From the inverting amplifier circuit we have

v2 ¼ �ð5=3ÞvC ¼ �5V and i2 ¼ �5=10 ¼ �0:5A

5.12 Find v2 in Problem 5.11 by replacing the circuit to the left of nodes A-B in Fig. 5-37 by its
Thévenin equivalent.

RTh ¼ 3þ
ð6Þð4Þ

6þ 4
¼ 5:4� and vTh ¼

6

4þ 6
ð9Þ ¼ 5:4V

Then v2 ¼ �ð5=5:4Þð5:4Þ ¼ �5V.

5.13 Find vC, i1, v2, and Rin, the input resistance seen by the 21-V source in Fig. 5-38.

From the inverting amplifier we get

v2 ¼ �ð5=3ÞvC ð39Þ

Note that vB ¼ vA ¼ 0 and so KCL at node C results in

CHAP. 5] AMPLIFIERS AND OPERATIONAL AMPLIFIER CIRCUITS 89

Fig. 5-36

Fig. 5-37



vC � 21

3
þ
vC
6
þ
vC
3

þ
vC � v2

8
¼ 0 ð40Þ

Substituting vC ¼ �ð3=5Þv2 from (39) into (40) we get v2 ¼ �10V. Then

vC ¼ 6V

i1 ¼ ð21� vCÞ=3000 ¼ 0:005A ¼ 5mA

Rin ¼ 21=i1 ¼ 21=0:005 ¼ 4200� ¼ 4:2 k�

5.14 In the circuit of Fig. 5-38 change the 21-V source by a factor of k. Show that vC, i1, v2 in
Problem 5.13 are changed by the same factor but Rin remains unchanged.

Let vs ¼ 21k (V) represent the new voltage source. From the inverting amplifier we have [see (39)]

v2 ¼ �ð5=3ÞvC

Apply KCL at node C to obtain [see (40)]

vC � vs
3

þ
vC
6

þ
vC
3
þ
vC � v2

8
¼ 0

Solving for vC and v2, we have

vC ¼ ð6=21Þvs ¼ 6k ðVÞ and v2 ¼ �ð10=21Þvs ¼ �10k ðVÞ

i1 ¼ ðvs � vCÞ=3000 ¼ ð21� 6Þk=3000 ¼ 0:005k A

Rin ¼ vs=i1 ¼ 21k=0:005k ¼ 4200�

These results are expected since the circuit is linear.

5.15 Find v2 and vC in Problem 5.13 by replacing the circuit to the left of node C in Fig. 5-38
(including the 21-V battery and the 3-k� and 6-k� resistors) by its Thévenin equivalent.

We first compute the Thévenin equivalent:

RTh ¼
ð6Þð3Þ

6þ 3
¼ 2 k� and vTh ¼

6

3þ 6
ð21Þ ¼ 14V

Replace the circuit to the left of node C by the above vTh and RTh and then apply KCL at C:

vC � 14

2
þ
vC
3
þ
vC � v2

8
¼ 0 ð41Þ

For the inverting amplifier we have v2 ¼ �ð5=3ÞvC or vC ¼ �0:6 v2, which results, after substitution in (41),

in v2 ¼ �10V and vC ¼ 6V.
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5.16 (a) Find the Thévenin equivalent of the circuit to the left of nodes A-B in Fig. 5-39(a) and then
find v2 for Rl ¼ 1 k�, 10 k�, and 1. (b) Repeat for Fig. 5-39(c) and compare with part (a).

(a) The Thévenin equivalent of the circuit in Fig. 5-39(a) is shown in Fig. 5-39(b).

vTh ¼
6

6þ 3
ð15Þ ¼ 10V and RTh ¼

ð3Þð6Þ

3þ 6
¼ 2 k�

By dividing vTh between RTh and Rl we get

v2 ¼
Rl

Rl þ 2
ð10Þ

For Rl ¼ 1 k�, v2 ¼ 3:33V
For Rl ¼ 10 k�, v2 ¼ 8:33V

For Rl ¼ 1 v2 ¼ 10V

The output v2 depends on Rl . The operation of the voltage divider is also affected by Rl .

(b) The Thévenin equivalent of the circuit in Fig. 5-39(c) is shown in Fig. 5-12(d). Here we have

vTh ¼ 10V and RTh ¼ 0

and v2 ¼ vTh ¼ 10V for all values of Rl , that is, the output v2 depends on R1, R2, and vs only and is

independent of Rl .
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5.17 Find v2 as a function of i1 in the circuit of Fig. 5-40(a).

Current i1 goes through resistor R producing a voltage �Ri1 across it from right to left. Since the

inverting terminal B is zero potential, the preceding voltage appears at the output as v2 ¼ �Ri1 [see Fig. 5-

40(b)]. Therefore, the op amp converts the current i1 to a voltage v2 with a gain of jv2=i1j ¼ R. The

current source i1 delivers no power as the voltage vAB across it is zero.

5.18 A transducer generates a weak current i1 which feeds a load Rl and produces a voltage v1 across
it. It is desired that v1 follow the signal with a constant gain of 108 regardless of the value of Rl.
Design a current-to-voltage converter to accomplish this task.

The transducer should feed Rl indirectly through an op amp. The following designs produce

v1 ¼ 108i1 independently of Rl .

Design 1: Choose R ¼ 100M� in Fig. 5-40. However, a resistor of such a large magnitude is expensive and

not readily available.

Design 2: The conversion gain of 108V=A is also obtained in the circuit of Fig. 5-41. The first op amp with

R ¼ 106 converts i1 to v1 ¼ �106i1. The second amplifier with a gain of �100 (e.g., R1 ¼ 1 k� and

R2 ¼ 100 k�) amplifies v1 to v2 ¼ �100v1 ¼ 108i1. The circuit requires two op amps and three resistors

(1M�, 100 k�, and 1 k�) which are less expensive and more readily available.

Design 3: See Fig. 5-42 and Problem 5.19.

5.19 Determine the resistor values which would produce a current-to-voltage conversion gain of
v2=i1 ¼ 108 V=A in the circuit of Fig. 5-42.
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Apply KCL at node C. Note that vB ¼ vA ¼ 0. Thus,

vC
R

þ
vC
R1

þ
vC � v2

R2

¼ 0

Substituting vC ¼ �Ri1 and solving for v2 we get

v2 ¼ �Reqi1 where Req ¼ R 1þ
R2

R1

þ
R2

R

� �

For a conversion gain of v2=i1 ¼ Req ¼ 108 V=A ¼ 100M�, we need to find resistor values to satisfy the

following equation:

R 1þ
R2

R1

þ
R2

R

� �
¼ 108 �

One solution is to choose R ¼ 1M�, R1 ¼ 1 k�, and R2 ¼ 99 k�. The design of Fig. 5-42 uses a single op

amp and three resistors which are not expensive and are readily available.

5.20 Find i2 as a function of v1 in the circuit of Fig. 5-43.

We have

vB ¼ vA ¼ 0 i1 ¼ v1=R1 i2 ¼ i1 ¼ v1=R1

The op amp converts the voltage source to a floating current source. The voltage-to-current conversion

ratio is R1 and is independent of R2.

5.21 A practical current source (is in parallel with internal resistance Rs) directly feeds a load Rl as in
Fig. 5-44(a). (a) Find load current il . (b) Place an op amp between the source and the load as
in Fig. 5-44(b). Find il and compare with part (a).
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(a) In the direct connection, Fig. 5-44(a), il ¼ isRs=ðRs þ RlÞ, which varies with Rl . (b) In Fig. 5-44(b), the

op amp forces vB to zero causing the current in Rs to become zero. Therefore, il ¼ is which is now

independent of Rl . The op amp circuit converts the practical current source to an ideal current source.

See Figure 5-44(c).

5.22 Find vo in the circuit of Fig. 5-45.

The first op amp is a unity gain inverter with v3 ¼ �v2. The second op amp is a summing circuit with a

gain of �R2=R1 for both inputs v1 and v3. The output is

vo ¼ �
R2

R1

ðv1 þ v3Þ ¼
R2

R1

ðv2 � v1Þ
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The circuit is a difference amplifier.

5.23 Find vo in the circuit of Fig. 5-46.

Apply KCL at node B. Note that vB ¼ vA ¼ v2. Thus,

v2 � v1
R1

þ
v2 � vo
R2

¼ 0

Solving for vo, we get vo ¼ v2 þ ðR2=R1Þðv2 � v1Þ.

5.24 Find vo in the circuit of Fig. 5-47.

The left part of the circuit has a gain of ð1þ R1=R2Þ. Therefore, v3 ¼ ð1þ R1=R2Þv1. Using results of

Problem 5.23 and substituting for v3 results in

vo ¼ v2 þ
R2

R1

ðv2 � v3Þ ¼ 1þ
R2

R1

� �
v2 �

R2

R1

1þ
R1

R2

� �
v1 ¼ 1þ

R2

R1

� �
ðv2 � v1Þ

5.25 In Fig. 5-48 choose resistors for a differential gain of 106 so that vo ¼ 106ðv2 � v1Þ.

The two frontal op amps are voltage followers.

vA ¼ v1 and vB ¼ v2

From (16), Sec. 5.9, we have

vo ¼
R2

R1

ðvB � vAÞ ¼
R2

R1

ðv2 � v1Þ

To obtain the required differential gain of R2=R1 ¼ 106, choose R1 ¼ 100� and R2 ¼ 100M�.
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The circuit of Fig. 5-48 can have the same gain as that of Fig. 5-45, but its input resistance is infinite.

However, it employs two small and large resistors which are rather out of ordinary range.

5.26 Resistors having high magnitude and accuracy are expensive. Show that in the circuit of Fig. 5-
49 we can choose resistors of ordinary range so that vo ¼ 106ðv2 � v1Þ.

The two frontal op amps convey the input voltages v1 and v2 to the terminals of RG, creating an upward

current i ¼ ðv2 � v1Þ=RG in the resistor. The current also goes through the two R3 resistors, creating

voltage drops iR3 across them. Therefore,

vA ¼ v1 � R3i ¼ v1 �
R3

RG

ðv2 � v1Þ vB ¼ v2 þ R3i ¼ v2 þ
R3

RG

ðv2 � v1Þ

vB � vA ¼ 1þ
2R3

RG

� �
ðv2 � v1Þ

vo ¼
R2

R1

ðvB � vAÞ ¼
R2

R1

1þ
2R3

RG

� �
ðv2 � v1Þand

For a differential gain of 106 we must have

vo
v2 � v1

¼
R2

R1

1þ
2R3

RG

� �
¼ 106

Choose R1 ¼ RG ¼ 1 k�, R2 ¼ 100 k, and R3 ¼ 5M�.
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The circuit of Fig. 5-49 has an infinite input resistance, employs resistors within ordinary range, and

uses three op amps.

5.27 Show that in the circuit of Fig. 5-50 i1 ¼ i2, regardless of the circuits of N1 and N2.

Nodes A and B are at the same voltage vA ¼ vB. Since the op amp draws no current, i1 and i2 flow

through the two resistors and KVL around the op amp loop ABC gives Ri1 � Ri2 ¼ 0. Therefore, i1 ¼ i2.

5.28 Let N1 be the voltage source v1 and N2 be the resistor R2 in the circuit of Fig. 5-50. Find the
input resistance Rin ¼ v1=i1.

From the op amp we obtain vA ¼ vB and i1 ¼ i2. From connections to N1 and N2 we obtain

v1 ¼ vB ¼ v2 ¼ vA and v2 ¼ �i2R2, respectively. The input resistance is v1=i1 ¼ �i2R2=i2 ¼ �R2 which is

the negative of the load. The op amp circuit is a negative impedance converter.

5.29 A voltage follower is constructed using an op amp with a finite open-loop gain A and Rin ¼ 1

(see Fig. 5-51). Find the gain G ¼ v2=v1. Defining sensitivity s as the ratio of percentage
change produced in G to the percentage change in A, find s.

From Fig. 5-51 we have v2 ¼ Avd . Applying KVL around the amplifier, obtain

v1 ¼ vd þ v2 ¼ vd þ Avd ¼ vd ð1þ AÞ ¼ v2ð1þ AÞ=A

G ¼
v2
v1

¼
A

1þ A
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The rate of change of G with respect to A is

dG

dA
¼

1

ð1þ AÞ2
from which dG ¼

dA

ð1þ AÞ2

The percentage change produced in G is 100ðdG=GÞ.

dG

G
¼

dA

ð1þ AÞ2
�

1þ A

A
¼

1

1þ A
�

dA

A

and the sensitivity is

s ¼
dG=G

dA=A
¼

1

1þ A

The percentage change in G depends on A. Samples of dG=dA and s are shown in Table 5-8.

For high values of A, the gain G is not sensitive to changes in A.

Supplementary Problems

5.30 Repeat Problem 5.3 by replacing the circuit to the left of node B (including vs, R1, and Ri) by its Thévenin

equivalent (see Fig. 5-33) Solve the problem by applying the results of Example 5.4.

5.31 Find the Thévenin equivalent of the circuit to the left of nodes A-B in Fig. 5-52 with k ¼ 10 for (a) R2 ¼ 1

and (b) R2 ¼ 50 k�. Ans: ðaÞ vTh ¼ �100V;RTh ¼ 100�; (bÞ vTh ¼ �31:22V;RTh ¼ 37:48�

5.32 Repeat Problem 5.31 for R2 ¼ 50 k� and k ¼ 100. Ans: vTh ¼ �47:16V;RTh ¼ 5:66�

5.33 Determine the relationship between R, R1, and R2 in Fig. 5-41 such that the circuit has a gain of

v2=i1 ¼ 106 V/A. Ans: RR2=R1 ¼ 106
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A G ¼ v2=v1 dG=dA s

10 0.909 0.008 0.091

11 0.917 0.007 0.083

100 0.990 0.0001 0.01

1000 0.999 0 0

Fig. 5-52



5.34 In the circuit of Fig. 5-13, Vcc ¼ 10V, R1 ¼ 2 k� and v1 ¼ 1V. Find the maximum value of R2 before the

op amp is saturated. Ans: R2 ¼ 20 k�

5.35 Let the summing circuit of Fig. 5-14 have two inputs with v1 ¼ 1 and v2 ¼ sin t (V). Let R1 ¼ 3 k�,

R2 ¼ 5 k�, and Rf ¼ 8 k�. Apply superposition to find vo. Ans: vo ¼ �ð8
3
þ 8

5
sin tÞ

5.36 In Fig. 5-17 let R1 ¼ 4 k� and R2 ¼ 8 k�. Apply superposition to find vo in terms of the input voltages.

Ans: vo ¼ v1 þ v2 þ v3

5.37 Find the input resistance seen by vf in Fig. 5-19. Ans: Rin ¼ 2R1

5.38 Use superposition to find vo in Fig. 5-20 for R1 ¼ 2, R2 ¼ 7, R3 ¼ 10, R4 ¼ 5, all values in k�.

Ans: vo ¼ 1:5v2 � 3:5v1

5.39 In the circuit of Fig. 5-20 find (a) v0 for R1 ¼ 1, R2 ¼ 3, R3 ¼ 2, and R4 ¼ 2, all values in k�; (b) the input

resistance R2 in seen by v2; (c) i1 as a function of v1 and v2 and show that v1 sees a variable load which

depends on v2. Ans: ðaÞ vo ¼ 2v2 � 3v1; ðbÞ R2 in ¼ 4 k�; ðcÞ i1 ¼ v1 � v2=2

5.40 Using a single op amp, design an amplifier with a gain of v2=v1 ¼ 3=4, input resistance of 8 k�, and zero

output resistance. Ans: See Fig. 5-53.

5.41 Show that, given R1 ¼ 1 and R2 ¼ 0, the noninverting op amp circuit of Fig. 5-15 and (12) is reduced to a

voltage follower.

5.42 In the circuit of Fig. 5-22 let Rs ¼ 10 k�. (a) Find Rf such that is ¼ 0. (b) Is Rf independent of Rs?

Discuss. Ans: ðaÞ 40 k�; ðbÞ yes

5.43 The input to the circuit of Fig. 5-23 with RC ¼ 1 is v1 ¼ sin!t. Write KCL at node B and solve for v2.

Ans: v2 ¼ �ð1=!Þ cos!tþ C

5.44 Show that the output v2 in Fig. 5.54 is the same as the output of the integrator in Fig. 5-23.
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5.45 Find v2 in the leaky integrator of Fig. 5-24 with R1 ¼ Rf ¼ 1 k�, C ¼ 1 mF, and v1 ¼
1V t > 0
0 t < 0

�
.

Ans: v2ðtÞ ¼
�1þ e�1000t

ðVÞ t > 0

0 t < 0

(

5.46 Repeat Problem 5.45 for v1 ¼
1V t < 0
0 t > 0

�
. Ans: v2ðtÞ ¼

�e�1000t
ðVÞ t > 0

�1V t < 0

�

5.47 In the differential equation 10�2dv2=dtþ v2 ¼ vs, vs is the forcing function and v2 is the response. Design

an op amp circuit to obtain v2 from vs. Ans: See Fig. 5-24, with R1 ¼ Rf ;RC ¼ 10�2, and v1 ¼ �vs.

5.48 Design a circuit containing op amps to solve the following set of equations:

y 0
þ x ¼ vs1

2yþ x 0
þ 3x ¼ �vs2

Ans. See Fig. 5-55, with R1C ¼ R4C ¼ 1 s, R2C ¼ 1
3
s, R3C ¼ 1

2
s.
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101

Waveforms and Signals

6.1 INTRODUCTION

The voltages and currents in electric circuits are described by three classes of time functions:

(i) Periodic functions

(ii) Nonperiodic functions

(iii) Random functions

In this chapter the time domain of all functions is �1 < t < 1 and the terms function, waveform, and
signal are used interchangeably.

6.2 PERIODIC FUNCTIONS

A signal vðtÞ is periodic with period T if

vðtÞ ¼ vðtþ TÞ for all t

Four types of periodic functions which are specified for one period T and corresponding graphs are
as follows:

(a) Sine wave:

v1ðtÞ ¼ V0 sin 2�t=T ð1Þ

See Fig. 6-1(a).

Fig. 6-1(a)
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(b) Periodic pulse:

v2ðtÞ ¼
V1 for 0 < t < T1

�V2 for T1 < t < T

�
ð2Þ

See Fig. 6-1(b).

(c) Periodic tone burst:

v3ðtÞ ¼
V0 sin 2�t=� for 0 < t < T1

0 for T1 < t < T

�
ð3Þ

where T ¼ k� and k is an integer. See Fig. 6-1(c).

(d) Repetition of a recording every T seconds:

v4ðtÞ ð4Þ

See Fig. 6-1(d).

Periodic signals may be very complex. However, as will be seen in Chapter 17, they may be

represented by a sum of sinusoids. This type of function will be developed in the following sections.
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6.3 SINUSOIDAL FUNCTIONS

A sinusoidal voltage vðtÞ is given by

vðtÞ ¼ V0 cos ð!tþ �Þ

where V0 is the amplitude, ! is the angular velocity, or angular frequency, and � is the phase angle.
The angular velocity ! may be expressed in terms of the period T or the frequency f, where f � 1=T .

The frequency is given in hertz, Hz, or cycles/s. Since cos!t ¼ cos tð!tþ 2�Þ, ! and T are related by
!T ¼ 2�. And since it takes T seconds for vðtÞ to return to its original value, it goes through 1=T cycles
in one second.

In summary, for sinusoidal functions we have

! ¼ 2�=T ¼ 2�f f ¼ 1=T ¼ !=2� T ¼ 1=f ¼ 2�=!

EXAMPLE 6.1 Graph each of the following functions and specify period and frequency.

ðaÞ v1ðtÞ ¼ cos t ðbÞ v2ðtÞ ¼ sin t ðcÞ v3ðtÞ ¼ 2 cos 2�t

ðdÞ v4ðtÞ ¼ 2 cos ð�t=4� 458Þ ¼ 2 cos ð�t=4� �=4Þ ¼ 2 cos½�ðt� 1Þ=4�

ðeÞ v5ðtÞ ¼ 5 cos ð10tþ 608Þ ¼ 5 cos ð10tþ �=3Þ ¼ 5 cos 10ðtþ �=30Þ

(a) See Fig. 6-2(a). T ¼ 2� ¼ 6:2832 s and f ¼ 0:159Hz.

(b) See Fig. 6-2(b). T ¼ 2� ¼ 6:2832 s and f ¼ 0:159Hz.

(c) See Fig. 6-2(c). T ¼ 1 s and f ¼ 1Hz.

(d) See Fig. 6-2(d). T ¼ 8 s and f ¼ 0:125Hz.

(e) See Fig. 6-2(e). T ¼ 0:2� ¼ 0:62832 s and f ¼ 1:59Hz.

EXAMPLE 6.2 Plot vðtÞ ¼ 5 cos!t versus !t.
See Fig. 6.3.

6.4 TIME SHIFT AND PHASE SHIFT

If the function vðtÞ ¼ cos!t is delayed by � seconds, we get vðt� �Þ ¼ cos!ðt� �Þ ¼ cos ð!t� �Þ,
where � ¼ !�. The delay shifts the graph of vðtÞ to the right by an amount of � seconds, which
corresponds to a phase lag of � ¼ !� ¼ 2�f �. A time shift of � seconds to the left on the graph produces
vðtþ �Þ, resulting in a leading phase angle called an advance.

Conversely, a phase shift of � corresponds to a time shift of �. Therefore, for a given phase shift the
higher is the frequency, the smaller is the required time shift.

EXAMPLE 6.3 Plot vðtÞ ¼ 5 cos ð�t=6þ 308Þ versus t and �t=6.
Rewrite the given as

vðtÞ ¼ 5 cos ð�t=6þ �=6Þ ¼ 5 cos½�ðtþ 1Þ=6�

This is a cosine function with period of 12 s, which is advanced in time by 1 s. In other words, the graph is shifted to

the left by 1 s or 308 as shown in Fig. 6-4.

EXAMPLE 6.4 Consider a linear circuit with the following input-output pair valid for all ! and A:

Input: viðtÞ ¼ A cos!t Output: v0ðtÞ ¼ A cosð!t� �Þ

Given viðtÞ ¼ cos!1tþ cos!2t, find v0ðtÞ when

(a) � ¼ 10�6! [phase shift is proportional to frequency, Fig. 6-5(a)]

(b) � ¼ 10�6 [phase shift is constant, Fig. 6-5(b)]

The output is v0ðtÞ ¼ cos ð!1t� �1Þ þ cos ð!2t� �2Þ.
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(a) �1 ¼ 10�6!1, �2 ¼ 10�6!2. Then

v0ðtÞ ¼ cos ð!1t� 10�6!1Þ þ cos ð!2t� 10�6!2Þ

¼ cos!1ðt� 10�6
Þ þ cos!2ðt� 10�6

Þ ¼ viðt� 10�6
Þ ¼ viðt� �Þ

where � ¼ 10�6 s ¼ 1 ms. Thus a phase shift proportional to ! [Fig. 6-5(a)] delays all frequency components of

the input signal by 1ms. The output follows the input with no distortion.

(b) �1 ¼ �2 ¼ 10�6. Then

v0ðtÞ ¼ cos ð!1t� 10�6
Þ þ cos ð!2t� 10�6

Þ

¼ cos!1ðt� 10�6=!1Þ þ cos!2ðt� 10�6=!2Þ

A constant phase shift [Fig. 6-5(b)] delays different frequency components of the input signal by different

amounts. The output is a distorted form of the input.
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6.5 COMBINATIONS OF PERIODIC FUNCTIONS

The sum of two periodic functions with respective periods T1 and T2 is a periodic function if a
common period T ¼ n1T1 ¼ n2T2, where n1 and n2 are integers, can be found. This requires
T1=T2 ¼ n2=n1 to be a rational number. Otherwise, the sum is not a periodic function.

EXAMPLE 6.5 Find the period of vðtÞ ¼ cos 5tþ 3 sinð3tþ 458Þ.
The period of cos 5t is T1 ¼ 2�=5 and the period of 3 sinð3tþ 458Þ is T2 ¼ 2�=3. Take T ¼ 2� ¼ 5T1 ¼ 3T2

which is the smallest common integral multiple of T1 and T2. Observe that vðtþ TÞ ¼ vðtÞ since

vðtþ TÞ ¼ cos 5ðtþ 2�Þ þ 3 sin½3ðtþ 2�Þ þ 458� ¼ cos 5tþ 3 sinð3tþ 458Þ ¼ vðtÞ

Therefore, the period of vðtÞ is 2�.

EXAMPLE 6.6 Is vðtÞ ¼ cos tþ cos 2�t periodic? Discuss.

The period of cos t is T1 ¼ 2�. The period of cos 2�t is T2 ¼ 1. No common period T ¼ n1T1 ¼ n2T2 exists

because T1=T2 ¼ 2� is not a rational number. Therefore, vðtÞ is not periodic.

EXAMPLE 6.7 Given p ¼ 3:14, find the period of vðtÞ ¼ cos tþ cos 2pt.

The period of cos t is T1 ¼ 2� and the period of cos 2pt is T2 ¼ �=3:14. The ratio T1=T2 ¼ 6:28 is a rational

number. The integer pair n1 ¼ 25 and n2 ¼ 157 satisfies the relation n2=n1 ¼ T1=T2 ¼ 628=100 ¼ 157=25. There-

fore, vðtÞ is periodic with period T ¼ n1T1 ¼ n2T2 ¼ 50� s.

Trigonometric Identities

The trigonometric identities in Table 6-1 are useful in the study of circuit analysis.

EXAMPLE 6.8 Express vðtÞ ¼ cos 5t sinð3tþ 458Þ as the sum of two cosine functions and find its period.

vðtÞ ¼ cos 5t sinð3tþ 458Þ ¼ ½sinð8tþ 458Þ � sinð2t� 458Þ�=2 [Eq. ð9bÞ�

¼ ½cos ð8t� 458Þ þ cos ð2tþ 458Þ�=2 [Eq. (5cÞ�

The period of vðtÞ is �.
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Table 6-1

sin a ¼ � sinð�aÞ (5a)

cos a ¼ cos ð�aÞ (5b)

sin a ¼ cos ða� 908Þ (5c)

cos a ¼ sinðaþ 908Þ (5d)

sin 2a ¼ 2 sin a cos a (6a)

cos 2a ¼ cos2 a� sin2 a ¼ 2 cos2 a� 1 ¼ 1� 2 sin2 a (6b)

sin2 a ¼
1� cos 2a

2

(7a)

cos2 a ¼
1þ cos 2a

2

(7b)

sinðaþ bÞ ¼ sin a cos bþ cos a sin b (8a)

cosðaþ bÞ ¼ cos a cos b� sin a sin b (8b)

sin a sin b ¼ 1
2
cos ða� bÞ � 1

2
cos ðaþ bÞ (9a)

sin a cos b ¼ 1
2 sin ðaþ bÞ þ 1

2 sin ða� bÞ (9b)

cos a cos b ¼ 1
2
cos ðaþ bÞ þ 1

2
cos ða� bÞ (9c)

sin aþ sin b ¼ 2 sin 1
2
ðaþ bÞ cos 1

2
ða� bÞ (10a)

cos aþ cos b ¼ 2 cos 1
2
ðaþ bÞ cos 1

2
ða� bÞ (10b)



6.6 THE AVERAGE AND EFFECTIVE (RMS) VALUES

A periodic function f ðtÞ, with a period T , has an average value Favg given by

Favg ¼ h f ðtÞi ¼
1

T

ðT
0

f ðtÞ dt ¼
1

T

ðt0þT

t0

f ðtÞ dt ð11Þ

The root-mean-square (rms) or effective value of f ðtÞ during the same period is defined by

Feff ¼ Frms ¼
1

T

ðt0þT

t0

f 2ðtÞ dt

� �1=2
ð12Þ

It is seen that F2
eff ¼ h f 2ðtÞi.

Average and effective values of periodic functions are normally computed over one period.

EXAMPLE 6.9 Find the average and effective values of the cosine wave vðtÞ ¼ Vm cos ð!tþ �Þ.
Using (11),

Vavg ¼
1

T

ðT
0

Vm cos ð!tþ �Þ dt ¼
Vm

!T
½sinð!tþ �Þ�T0 ¼ 0 ð13Þ

and using (12),

V2
eff ¼

1

T

ðT
0

V2
m cos2ð!tþ �Þ dt ¼

1

2T

ðT
0

V2
m½1þ cos 2ð!tþ �Þ� dt ¼ V2

m=2

from which Veff ¼ Vm=
ffiffiffi
2

p
¼ 0:707Vm (14)

Equations (13) and (14) show that the results are independent of the frequency and phase angle �. In other words,

the average of a cosine wave and its rms value are always 0 and 0.707Vm, respectively.

EXAMPLE 6.10 Find Vavg and Veff of the half-rectified sine wave

vðtÞ ¼
Vm sin!t when sin!t > 0
0 when sin!t < 0

�
ð15Þ

From (11),

Vavg ¼
1

T

ðT=2

0

Vm sin!t dt ¼
Vm

!T
½� cos!t�T=2

0 ¼ Vm=� ð16Þ

and from (12),

V2
eff ¼

1

T

ðT=2

0

V2
m sin2 !t dt ¼

1

2T

ðT=2

0

V2
mð1� cos 2!tÞ dt ¼ V2

m=4

from which Veff ¼ Vm=2 (17)

EXAMPLE 6.11 Find Vavg and Veff of the periodic function vðtÞ where, for one period T ,

vðtÞ ¼
V0 for 0 < t < T1

�V0 for T1 < t < 3T1
Period T ¼ 3T1

�
ð18Þ

We have Vavg ¼
V0

3T
ðT1 � 2T1Þ ¼

�V0

3
(19)

and V2
eff ¼

V2
0

3T
ðT1 þ 2T1Þ ¼ V2

0

from which Veff ¼ V0 (20)

The preceding result can be generalized as follows. If jvðtÞj ¼ V0 then Veff ¼ V0.
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EXAMPLE 6.12 Compute the average power dissipated from 0 to T in a resistor connected to a voltage vðtÞ.

Replace vðtÞ by a constant voltage Vdc. Find Vdc such that the average power during the period remains the same.

p ¼ vi ¼ v2=R

Pavg ¼
1

RT

ðT
0

v2ðtÞ dt ¼
1

R
V2

eff ¼
V2

dc

R
or Vdc ¼ Veff

EXAMPLE 6.13 The current iðtÞ shown in Fig. 6-6 passes through a 1-mF capacitor. Find (a) vac the voltage

across the capacitor at t ¼ 5k ms (k ¼ 0; 1; 2; 3; . . .Þ and (b) the value of a constant current source Idc which can

produce the same voltage across the above capacitor at t ¼ 5kms when applied at t > 0. Compare Idc with hiðtÞi, the

average of iðtÞ in Fig. 6-6, for a period of 5ms after t > 0.

(a) At t ¼ 5ms

vac ¼
1

C

ð5�10�3

0

iðtÞ dt ¼ 106ð10�3
Þ

ð3�10�3

0

4 dt�

ð5�10�3

3�10�3

2 dt

" #
¼ 12� 4 ¼ 8V

This is the net charging effect of iðtÞ during each 5-ms interval. Every 5ms the above amount is added to the

capacitor voltage. Therefore, at t ¼ 5k ms, v ¼ 8k (V).

(b) With a constant current Idc, the capacitor voltage vdc at t ¼ 5k ms is

vdc ¼
1

C

ð5k�10�3

0

Idc dt ¼ 106ðIdcÞð5k� 10�3
Þ ¼ 103ð5kÞðIdcÞ ðVÞ

Since vdc ¼ vac at 5k ms, we obtain

103ð5kÞðIdcÞ ¼ 8k or Idc ¼ 8k=ð5k� 103Þ ¼ 1:6� 10�3 A ¼ 1:6mA

Note that Idc ¼ hiðtÞi of Fig. 6-6 for any period of 5ms at t > 0.

6.7 NONPERIODIC FUNCTIONS

A nonperiodic function cannot be specified for all times by simply knowing a finite segment.

Examples of nonperiodic functions are

(a) v1ðtÞ ¼
0 for t < 0
1 for t > 0

�
(21)

(b) v2ðtÞ ¼
0 for t < 0
1=T for 0 < t < T
0 for t > T

8<
: (22)

(c) v3ðtÞ ¼
0 for t < 0
e�t=� for t > 0

�
(23)
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(d) v4ðtÞ ¼
0 for t < 0
sin!t for t > 0

�
(24)

(e) v5ðtÞ ¼
0 for t < 0
e�t=� cos!t for t > 0

�
(25)

( f ) v6ðtÞ ¼ e�t=� for all t (26)

(g) v7ðtÞ ¼ e�ajtj for all t (27)

(h) v8ðtÞ ¼ e�ajtj cos!t for all t (28)

Several of these functions are used as mathematical models and building blocks for actual signals in
analysis and design of circuits. Examples are discussed in the following sections.

6.8 THE UNIT STEP FUNCTION

The dimensionless unit step function, is defined by

uðtÞ ¼
0 for t < 0
1 for t > 0

�
ð29Þ

The function is graphed in Fig. 6-7. Note that the function is undefined at t ¼ 0.

To illustrate the use of uðtÞ, assume the switch S in the circuit of Fig. 6-8(a) has been in position 1 for

t < 0 and is moved to position 2 at t ¼ 0. The voltage across A-B may be expressed by vAB ¼ V0uðtÞ.

The equivalent circuit for the voltage step is shown in Fig. 6-8(b).

EXAMPLE 6.14 The switch in the circuit of Fig. 6-8(a) is moved to position 2 at t ¼ t0. Express vAB using the

step function.

The appearance of V0 across A-B is delayed until t ¼ t0. Replace the argument t in the step function by t� t0
and so we have vAB ¼ V0uðt� t0Þ:
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EXAMPLE 6.15 If the switch in Fig. 6-8(a) is moved to position 2 at t ¼ 0 and then moved back to position 1 at

t ¼ 5 s, express vAB using the step function.

vAB ¼ V0½uðtÞ � uðt� 5Þ�

EXAMPLE 6.16 Express vðtÞ, graphed in Fig. 6-9, using the step function.

vðtÞ ¼ ½uðtÞ � uðt� 2�Þ� sin t

6.9 THE UNIT IMPULSE FUNCTION

Consider the function sT ðtÞ of Fig. 6-10(a), which is zero for t < 0 and increases uniformly from 0 to
1 in T seconds. Its derivative dT ðtÞ is a pulse of duration T and height 1=T , as seen in Fig. 6-10(b).

dT ðtÞ ¼
0 for t < 0
1=T for 0 < t < T
0 for t > T

8<
: ð30Þ

If the transition time T is reduced, the pulse in Fig. 6-10(b) becomes narrower and taller, but the
area under the pulse remains equal to 1. If we let T approach zero, in the limit function sT ðtÞ becomes
a unit step uðtÞ and its derivative dT ðtÞ becomes a unit pulse �ðtÞ with zero width and infinite
height. The unit impulse �ðtÞ is shown in Fig. 6-10(c). The unit impulse or unit delta function is defined
by

�ðtÞ ¼ 0 for t 6¼ 0 and

ð1
�1

�ðtÞ dt ¼ 1 ð31Þ

An impulse which is the limit of a narrow pulse with an area A is expressed by A�ðtÞ. The
magnitude A is sometimes called the strength of the impulse. A unit impulse which occurs at t ¼ t0
is expressed by �ðt� t0Þ.

EXAMPLE 6.17 The voltage across the terminals of a 100-nF capacitor grows linearly, from 0 to 10V, taking the

shape of the function sT ðtÞ in Fig. 6-10(a). Find (a) the charge across the capacitor at t ¼ T and (b) the current

iCðtÞ in the capacitor for T ¼ 1 s, T ¼ 1ms, and T ¼ 1ms.

(a) At t ¼ T , vC ¼ 10V. The charge across the capacitor is Q ¼ CvC ¼ 10�7
� 10 ¼ 10�6.

icðtÞ ¼ C
dvC
dt

ðbÞ
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From Fig. 6-10,

iCðtÞ ¼
0 for t < 0
I0 ¼ 10�6=T ðAÞ for 0 < t < T
0 for t > T

8<
: ð32Þ

For T ¼ 1 s, I0 ¼ 10�6 A; for T ¼ 1ms, I0 ¼ 10�3 A; and for T ¼ 1ms, I0 ¼ 1A.

In all the preceding cases, the charge accumulated across the capacitor at the end of the transition period is

Q ¼

ðT
0

iCðtÞ dt ¼ I0T ¼ 10�6 C

The amount of charge at t ¼ T is independent of T . It generates a voltage vC ¼ 10V across the capacitor.

EXAMPLE 6.18 Let dT ðt� t0Þ denote a narrow pulse of width T and height 1=T , which starts at t ¼ t0. Consider

a function f ðtÞ which is continuous between t0 and t0 þ T as shown in Fig. 6-11(a). Find the limit of integral I in

(33) when T approaches zero.

I ¼

ð1
�1

dT ðt� t0Þ f ðtÞ dt ð33Þ

dT ðt� t0Þ ¼
1=T t0 < t < t0 þ T
0 elsewhere

�

Substituting dT in (33) we get

I ¼
1

T

ðt0þT

t0

f ðtÞ dt ¼
S

T
ð34aÞ

where S is the hatched area under f ðtÞ between t0 and t0 þ T in Fig. 6.11(b). Assuming T to be small, the function

f ðtÞ may be approximated by a line connecting A and B. S is the area of the resulting trapezoid.

S ¼ 1
2
½ f ðt0Þ þ f ðt0 þ TÞ�T ð34bÞ

I ¼ 1
2
½ f ðt0Þ þ f ðt0 þ TÞ� ð34cÞ

As T ! 0, dT ðt� t0Þ ! �ðt� t0Þ and f ðt0 þ TÞ ! f ðt0Þ and from (34c) we get
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lim
T!0

I ¼ lim
T!0

1
2 ½ f ðt0Þ þ f ðt0 þ TÞ� ð34dÞ

We assumed f ðtÞ to be continuous between t0 and t0 þ T . Therefore,

lim
T!0

I ¼ f ðt0Þ ð34eÞ

But lim
T!0

I ¼

ð1
�1

�ðt� t0Þ f ðtÞ dt (34f)

and so

ð1
�1

�ðt� t0Þ f ðtÞ dt ¼ f ðt0Þ (34g)

The identity (34g) is called the sifting property of the impulse function. It is also used as another definition for

�ðtÞ.

6.10 THE EXPONENTIAL FUNCTION

The function f ðtÞ ¼ est with s a complex constant is called exponential. It decays with time if the
real part of s is negative and grows if the real part of s is positive. We will discuss exponentials eat in
which the constant a is a real number.

The inverse of the constant a has the dimension of time and is called the time constant � ¼ 1=a. A
decaying exponential e�t=� is plotted versus t as shown in Fig. 6-12. The function decays from one at
t ¼ 0 to zero at t ¼ 1. After � seconds the function e�t=� is reduced to e�1

¼ 0:368. For � ¼ 1, the
function e�t is called a normalized exponential which is the same as e�t=� when plotted versus t=�.

EXAMPLE 6.19 Show that the tangent to the graph of e�t=� at t ¼ 0 intersects the t axis at t ¼ � as shown in

Fig. 6-12.

The tangent line begins at point A ðv ¼ 1; t ¼ 0Þ with a slope of de�t=�=dtjt¼0 ¼ �1=�. The equation of the line

is vtanðtÞ ¼ �t=� þ 1. The line intersects the t axis at point B where t ¼ �. This observation provides a convenient

approximate approach to plotting the exponential function as described in Example 6.20.

EXAMPLE 6.20 Draw an approximate plot of vðtÞ ¼ e�t=� for t > 0.

Identify the initial point A (t ¼ 0; v ¼ 1Þ of the curve and the intersection B of its tangent with the t axis at t ¼ �.
Draw the tangent line AB. Two additional points C and D located at t ¼ � and t ¼ 2�, with heights of 0.368 and
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0.3682 ¼ 0:135, respectively, also belong to the curve. Using the preceding indicators, the curve may be drawn with

a rather good approximation (see Fig. 6-12).

EXAMPLE 6.21 (a) Show that the rate of change with respect to time of an exponential function v ¼ Aest is at any

moment proportional to the value of the function at that moment. (b) Show that any linear combination of an

exponential function and its n derivatives is proportional to the function itself. Find the coefficient of proportion-

ality.

(a) The rate of change of a function is equal to the derivative of the function, which, for the given exponential

function, is

dv

dt
¼ sAest ¼ sv

(b) Using the result of (a) we get

dnv

dtn
¼ snAest ¼ snv

a0vþ a1
dv

dt
þ � � � þ an

dnv

dtn
¼ ða0 þ a1sþ � � � þ ans

n
Þv ¼ Hv ð35Þ

where H ¼ a0 þ a1sþ � � � þ ans
n (36)

Specifying and Plotting f ðtÞ ¼ Ae�at
þ B

We often encounter the function

f ðtÞ ¼ Ae�at
þ B ð37Þ

This function is completely specified by the three numbers A, B, and a defined as

A ¼ initial value� final value B ¼ final value a ¼ inverse of the time constant

or, in another form,

Initial value f ð0Þ ¼ Aþ B Final value f ð1Þ ¼ B Time constant ¼ 1=a

EXAMPLE 6.22 Find a function vðtÞ which decays exponentially from 5V at t ¼ 0 to 1V at t ¼ 1 with a time

constant of 3 s. Plot vðtÞ using the technique of Example 6.20.

From (37) we have vðtÞ ¼ Ae�t=�
þ B. Now vð0Þ ¼ Aþ B ¼ 5, vð1Þ ¼ B ¼ 1, A ¼ 4, and � ¼ 3. Thus

vðtÞ ¼ 4e�t=3
þ 1

The preceding result can be generalized in the following form:

vðtÞ ¼ ðinitial value� final valueÞe�t=�
þ ðfinal valueÞ

The plot is shown in Fig. 6-13.
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EXAMPLE 6.23 The voltage v ¼ V0e
�jtj=� , � > 0, is connected to a capacitor. Find the current i in the capacitor.

Sketch v and i for V0 ¼ 10V, C ¼ 1mF, and � ¼ 1ms.

Using i ¼ C dv=dt,

v ¼ V0e
t=� and i ¼ I0e

t=�for t < 0;

v ¼ V0e
�t=� and i ¼ �I0e

�t=�for t > 0;

where I0 ¼ CV0=�.

For V0 ¼ 10V, C ¼ 1mF, and � ¼ 10�3 s, we get I0 ¼ 10mA. Graphs of v and i are shown in Figs. 6-14(a) and

(b), respectively.

6.11 DAMPED SINUSOIDS

A damped sinusoid, with its amplitude decaying exponentially has the form

vðtÞ ¼ Ae�at cos ð!tþ �Þ ð38Þ

This function will be discussed in more detail in Chapter 8.

EXAMPLE 6.24 The current i ¼ I0e
�at cos!t passes through a series RL circuit. (a) Find vRL, the voltage across

this combination. (b) Compute vRL for I0 ¼ 3A, a ¼ 2, ! ¼ 40 rad/s, R ¼ 5� and L ¼ 0:1H. Sketch i as a

function of time.
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(a) We have

vR ¼ Ri ¼ RI0e
�at cos!t

vL ¼ L
di

dt
¼ �LI0e

�at
ða cos!tþ ! sin!tÞ

vRL ¼ vR þ vL ¼ I0e
�at

½ðR� LaÞ cos!t� L! sin!t� ¼ V0e
�at cos ð!tþ �Þ

where V0 ¼ I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� LaÞ2 þ L2!2

q
and � ¼ tan�1

½L!=ðR� LaÞ� (39)

(b) Substituting the given data into (39), V0 ¼ 18:75V and � ¼ 39:88. Current i and voltage vRL are then given by

i ¼ 3e�2t cos 40t and vRL ¼ 18:75e�2t cos ð40tþ 39:88Þ

The current i is graphed in Fig. 6-15.

6.12 RANDOM SIGNALS

So far we have dealt with signals which are completely specified. For example, the values of a
sinusoidal waveform, such as the line voltage, can be determined for all times if its amplitude, frequency,
and phase are known. Such signals are called deterministic.

There exists another class of signals which can be specified only partly through their time averages,
such as their mean, rms value, and frequency range. These are called random signals. Random signals
can carry information and should not be mistaken with noise, which normally corrupts the information
contents of the signal.

The voltage recorded at the terminals of a microphone due to speech utterance and the signals
picked up by an antenna tuned to a radio or TV station are examples of random signals. The future
course and values of such signals can be predicted only in average and not precisely. Other examples of
random signals are the binary waveforms in digital computers, image intensities over the area of a
picture, and the speech or music which modulates the amplitude of carrier waves in an AM system.

It may not seem useful to discuss signals whose values are specified only in average. However,
through harmonic analysis we can still find much about the average effect of such signals in electric
circuits.

EXAMPLE 6.25 Samples from a random signal xðtÞ are recorded every 1ms and designated by xðnÞ. Approx-

imate the mean and rms values of xðtÞ from samples given in Table 6-2.
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The time averages of xðtÞ and x2ðtÞ may be approximated from xðnÞ.

Xavg ¼ ð2þ 4þ 11þ 5þ 7þ 6þ 9þ 10þ 3þ 6þ 8þ 4þ 1þ 3þ 5þ 12Þ=16 ¼ 6

X2
eff ¼ ð22 þ 42 þ 112 þ 52 þ 72 þ 62 þ 92 þ 102 þ 33 þ 62 þ 82 þ 42 þ 12 þ 32 þ 52 þ 122Þ=16 ¼ 46

Xeff ¼ 6:78

EXAMPLE 6.26 A binary signal vðtÞ is either at 0.5 or �0:5V. It can change its sign at 1-ms intervals. The sign

change is not known a priori, but it has an equal chance for positive or negative values. Therefore, if measured for a

long time, it spends an equal amount of time at the 0.5-V and �0:5-V levels. Determine its average and effective

values over a period of 10 s.

During the 10-s period, there are 10,000 intervals, each of 1-ms duration, which on average are equally divided

between the 0.5-V and �0:5-V levels. Therefore, the average of vðtÞ can be approximated as

vavg ¼ ð0:5� 5000� 0:5� 5000Þ=10,000 ¼ 0

The effective value of vðtÞ is

V2
eff ¼ ½ð0:5Þ2 � 5000þ ð�0:5Þ2 � 5000�=10,000 ¼ ð0:5Þ2 or Veff ¼ 0:5V

The value of Veff is exact and independent of the number of intervals.

Solved Problems

6.1 Find the maximum and minimum values of v ¼ 1þ 2 sinð!tþ �Þ, given ! ¼ 1000 rad/s and � ¼ 3
rad. Determine if the function v is periodic, and find its frequency f and period T . Specify the
phase angle in degrees.

Vmax ¼ 1þ 2 ¼ 3 Vmin ¼ 1� 2 ¼ �1

The function v is periodic. To find the frequency and period, we note that ! ¼ 2�f ¼ 1000 rad/s.

Thus,

f ¼ 1000=2� ¼ 159:15Hz and T ¼ 1=f ¼ 2�=1000 ¼ 0:00628 s ¼ 6:28ms

Phase angle ¼ 3 rad ¼ 1808� 3=� ¼ 171:98

6.2 In a microwave range measurement system the electromagnetic signal v1 ¼ A sin 2�ft, with
f ¼ 100MHz, is transmitted and its echo v2ðtÞ from the target is recorded. The range is com-
puted from �, the time delay between the signal and its echo. (a) Write an expression for v2ðtÞ
and compute its phase angle for time delays �1 ¼ 515 ns and �2 ¼ 555 ns. (b) Can the distance
be computed unambiguously from the phase angle in v2ðtÞ? If not, determine the additional
needed information.

(a) Let v2ðtÞ ¼ B sin 2�f ðt� �Þ ¼ B sinð2�ft� �Þ.
For f ¼ 100MHz ¼ 108 Hz, � ¼ 2�f � ¼ 2� 108�� ¼ 2�kþ � where 0 < � < 2�.
For �1 ¼ 515� 10�9, �1 ¼ 2�108 � 515� 10�9

¼ 103� ¼ 51� 2�þ �1 or k1 ¼ 51 and �1 ¼ �.
For �2 ¼ 555� 10�9, �2 ¼ 2�108 � 555� 10�9

¼ 111� ¼ 55� 2�þ �2 or k2 ¼ 55 and �2 ¼ �.
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(b) Since phase angles �1 and �2 are equal, the time delays �1 and �2 may not be distinguished from each

other based on the corresponding phase angles �1 and �2. For unambiguous determination of the

distance, k and � are both needed.

6.3 Show that if periods T1 and T2 of two periodic functions v1ðtÞ and v2ðtÞ have a common multiple,
the sum of the two functions, vðtÞ ¼ v1ðtÞ þ v2ðtÞ, is periodic with a period equal to the smallest
common multiple of T1 and T2. In such case show that Vavg ¼ V1;avg þ V2;avg.

If two integers n1 and n2 can be found such that T ¼ n1T1 ¼ n2T2, then v1ðtÞ ¼ v1ðtþ n1T1Þ and

v2ðtÞ ¼ v2ðtþ n2T2Þ. Consequently,

vðtþ TÞ ¼ v1ðtþ TÞ þ v2ðtþ TÞ ¼ v1ðtÞ þ v2ðtÞ ¼ vðtÞ

and vðtÞ is periodic with period T .

The average is

Vavg ¼
1

T

ðT
0

½v1ðtÞ þ v2ðtÞ� dt ¼
1

T

ðT
0

v1ðtÞ dtþ
1

T

ðT
0

v2ðtÞ dt ¼ V1;avg þ V2;avg

6.4 Show that the average of cos2 ð!tþ �Þ is 1/2.

Using the identity cos2 ð!tþ �Þ ¼ 1
2
½1þ cos 2ð!tþ �Þ�, the notation h f i ¼ Favg, and the result of

Problem 6.3, we have

h1þ cos 2ð!tþ �Þi ¼ h1i þ hcos 2ð!tþ �Þi

But hcos 2ð!tþ �Þi ¼ 0. Therefore, hcos2ð!tþ �Þi ¼ 1=2.

6.5 Let vðtÞ ¼ Vdc þ Vac cos ð!tþ �Þ. Show that V2
eff ¼ V2

dc þ
1
2
V2

ac.

V2
eff ¼

1

T

ðT
0

½Vdc þ Vac cos ð!tþ �Þ�2 dt

¼
1

T

ðT
0

½V2
dc þ V2

ac cos
2
ð!tþ �Þ þ 2VdcVac cos ð!tþ �Þ� dt

¼ V2
dc þ

1
2
V2

ac

Alternatively, we can write

V2
eff ¼ hv2ðtÞi ¼ h½Vdc þ Vac cos ð!tþ �Þ�2i

¼ hV2
dc þ V2

ac cos
2
ð!tþ �Þ þ 2VdcVac cos ð!tþ �Þi

¼ V2
dc þ V2

achcos
2
ð!tþ �Þi þ 2VdcVachcos ð!tþ �Þi

¼ V2
dc þ

1
2
V2

ac

6.6 Let f1 and f2 be two different harmonics of f0. Show that the effective value of

vðtÞ ¼ V1 cosð2�f1tþ �1Þ þ V2 cos ð2�f2tþ �2Þ is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðV2

1 þ V2
2 Þ

q
.

v2ðtÞ ¼ V2
1 cos

2
ð2�f1tþ �1Þ þ V2

2 cos
2
ð2�f2tþ �2Þ

þ 2V1V2 cos ð2�f1tþ �1Þ cos ð2�f2tþ �2Þ

V2
eff ¼ hv2ðtÞi ¼ V2

1 hcos
2
ð2�f1tþ �1Þi þ V2

2 hcos
2
ð2�f2tþ �2Þi

þ 2V1V2hcos ð2�f1tþ �1Þ cos ð2�f2tþ �2Þi

But hcos2 ð2�f1tþ �1Þi ¼ hcos2 ð2�f2tþ �2Þi ¼ 1=2 (see Problem 6.4) and

CHAP. 6] WAVEFORMS AND SIGNALS 117



hcos ð2�f1tþ �1Þ cos ð2�f2tþ �2Þi ¼
1

2
hcos ½2�ð f1 þ f2Þtþ ð�1 þ �2Þ�i

þ
1

2
hcos ½2�ð f1 � f2Þtþ ð�1 � �2Þ�i ¼ 0

Therefore, V2
eff ¼

1
2
ðV2

1 þ V2
2 Þ and Veff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðV2

1 þ V2
2 Þ

q
:

6.7 The signal vðtÞ in Fig. 6-16 is sinusoidal. Find its period and frequency. Express it in the form
vðtÞ ¼ Aþ B cos ð!tþ �Þ and find its average and rms values.

The time between two positive peaks, T ¼ 20 s, is one period corresponding to a frequency f ¼ 0:05Hz.

The signal is a cosine function with amplitude B added to a constant value A.

B ¼ 1
2
ðVmax � VminÞ ¼

1
2
ð8þ 4Þ ¼ 6 A ¼ Vmax � B ¼ Vmin þ B ¼ 2

The cosine is shifted by 2 s to the right, which corresponds to a phase lag of ð2=20Þ3608 ¼ 368. Therefore,

the signal is expressed by

vðtÞ ¼ 2þ 6 cos
�

10
t� 368

� �
The average and effective values are found from A and B:

Vavg ¼ A ¼ 2; V2
eff ¼ A2

þ B2=2 ¼ 22 þ 62=2 ¼ 22 or Veff ¼
ffiffiffiffiffi
22

p
¼ 4:69

6.8 Let v1 ¼ cos 200�t and v2 ¼ cos 202�t. Show that v ¼ v1 þ v2 is periodic. Find its period, Vmax,
and the times when v attains its maximum value.

The periods of v1 and v2 are T1 ¼ 1=100 s and T2 ¼ 1=101 s, respectively. The period of v ¼ v1 þ v2 is

the smallest common multiple of T1 and T2, which is T ¼ 100T1 ¼ 101T2 ¼ 1 s. The maximum of v occurs

at t ¼ k with k an integer when v1 and v2 are at their maxima and Vmax ¼ 2.

6.9 Convert vðtÞ ¼ 3 cos 100tþ 4 sin 100t to A sinð100tþ �Þ.

Note that 3=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 42

p
¼ 3=5 ¼ sin 36:878 and 4=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 42

p
¼ 4=5 ¼ cos 36:878. Then,

vðtÞ ¼ 3 cos 100tþ 4 sin 100t ¼ 5ð0:6 cos 100tþ 0:8 sin 100tÞ

¼ 5ðsin 36:878 cos 100tþ cos 36:878 sin 100tÞ ¼ 5 sinð100tþ 36:878Þ
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6.10 Find the average and effective value of v2ðtÞ in Fig. 6-1(b) for V1 ¼ 2, V2 ¼ 1, T ¼ 4T1.

V2;avg ¼
V1T1 � V2ðT � T1Þ

T
¼

V1 � 3V2

4
¼ �0:25

V2
2;eff ¼

V2
1T1 þ V2

2 ðT � T1Þ

T
¼

7

4
or V2;eff ¼

ffiffiffi
7

p
=2 ¼ 1:32

6.11 Find V3;avg and V3;eff in Fig. 6-1(c) for T ¼ 100T1.

From Fig. 6-1(c), V3;avg ¼ 0. To find V3;eff , observe that the integral of v
2
3 over one period is V2

0T1=2.
The average of v23 over T ¼ 100T1 is therefore

hv23ðtÞ i ¼ V2
3;eff ¼ V2

0T1=200T1 ¼ V2
0=200 or V3;eff ¼ V0

ffiffiffi
2

p
=20 ¼ 0:0707V0

The effective value of the tone burst is reduced by the factor
ffiffiffiffiffiffiffiffiffiffiffiffi
T=T1

p
¼ 10.

6.12 Referring to Fig. 6-1(d), let T ¼ 6 and let the areas under the positive and negative sections of
v4ðtÞ be þ5 and �3, respectively. Find the average and effective values of v4ðtÞ.

V4;avg ¼ ð5� 3Þ=6 ¼ 1=3

The effective value cannot be determined from the given data.

6.13 Find the average and effective value of the half-rectified cosine wave v1ðtÞ shown in Fig. 6-17(a).

V1;avg ¼
Vm

T

ðT=4

�T=4

cos
2�t

T
dt ¼

VmT

2�T
sin

2�t

T

� �T=4

�T=4

¼
Vm

�

V2
1;eff ¼

V2
m

T

ðT=4

�T=4

cos2
2�t

T
dt ¼

V2
m

2T

ðT=4

�T=4

1þ cos
4�t

T

� �
dt

¼
V2

m

2T
tþ

T

4�
sin

4�t

T

� �T=4

�T=4

¼
V2

m

2T

T

4
þ
T

4

� �
¼

V2
m

4

from which V1;eff ¼ Vm=2.

6.14 Find the average and effective value of the full-rectified cosine wave v2ðtÞ ¼ Vmj cos 2�t=T j shown
in Fig. 6-17(b).

Use the results of Problems 6.3 and 6.13 to find V2;avg. Thus,

v2ðtÞ ¼ v1ðtÞ þ v1ðt� T=2Þ and V2;avg ¼ V1;avg þ V1;avg ¼ 2V1;avg ¼ 2Vm=�

Use the results of Problems 6.5 and 6.13 to find V2;eff . And so,

V2
2;eff ¼ V2

1;eff þ V2
1;eff ¼ 2V2

1;eff ¼ V2
m=2 or V2;eff ¼ Vm=

ffiffiffi
2

p
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The rms value of v2ðtÞ can also be derived directly. Because of the squaring operation, a full-rectified

cosine function has the same rms value as the cosine function itself, which is Vm=
ffiffiffi
2

p
.

6.15 A 100-mH inductor in series with 20-� resistor [Fig. 6-18(a)] carries a current i as shown in
Fig. 6-18(b). Find and plot the voltages across R, L, and RL.

i ¼

10

10ð1� 103tÞ ðAÞ

0

and
di

dt
¼

0 for t < 0

�104 A=s for 0 < t < 10�3 s

0 for t > 10�3 s

8><
>:

8><
>:

vR ¼ Ri ¼

200V

200ð1� 103tÞ ðVÞ

0

and vL ¼ L
di

dt
¼

0 for t < 0

�1000V for 0 < t < 10�3 s

0 for t > 10�3 s

8><
>:

8><
>:

Since the passive elements are in series, vRL ¼ vR þ vL and so

vRL ¼

200V for t < 0
�2ð105tÞ � 800 ðVÞ for 0 < t < 10�3 s
0 for t > 10�3 s

8<
:

The graphs of vL and vRL are given in Fig. 6-18(c) and (d), respectively. The plot of the resistor

voltage vR has the same shape as that of the current [see Fig. 6-18(b)], except for scaling by a factor of þ20�.
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6.16 A radar signal sðtÞ, with amplitude Vm ¼ 100V, consists of repeated tone bursts. Each tone
burst lasts Tb ¼ 50 ms. The bursts are repeated every Ts ¼ 10ms. Find Seff and the average
power in sðtÞ.

Let Veff ¼ Vm

ffiffiffi
2

p
be the effective value of the sinusoid within a burst. The energy contained in a single

burst is Wb ¼ TbV
2
eff . The energy contained in one period of sðtÞ is Ws ¼ TsS

2
eff . SinceWb ¼ Ws ¼ W , we

obtain

TbV
2
eff ¼ TsS

2
eff S2

eff ¼ ðTb=TsÞV
2
eff Seff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tb=Ts

p
Veff ð40Þ

Substituting the values of Tb, Ts, and Veff into (40), we obtain

Seff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð50� 10�6Þ=ð10� 10�3Þ

q
ð100=

ffiffiffi
2

p
Þ ¼ 5V

Then W ¼ 10�2
ð25Þ ¼ 0:25 J. The average power in sðtÞ is

P ¼ W=Ts ¼ TsS
2
eff=Ts ¼ S2

eff ¼ 25W

The average power of sðtÞ is represented by S2
eff and its peak power by V2

eff . The ratio of peak power to

average power is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ts=Tb

p
. In this example the average power and the peak power are 25W and 5000W,

respectively.

6.17 An appliance uses Veff ¼ 120V at 60Hz and draws Ieff ¼ 10A with a phase lag of 608. Express
v, i, and p ¼ vi as functions of time and show that power is periodic with a dc value. Find the
frequency, and the average, maximum, and minimum values of p.

v ¼ 120
ffiffiffi
2

p
cos!t i ¼ 10

ffiffiffi
2

p
cosð!t� 608Þ

p ¼ vi ¼ 2400 cos!t cos ð!t� 608Þ ¼ 1200 cos 608þ 1200 cos ð2!t� 608Þ ¼ 600þ 1200 cos ð2!t� 608Þ

The power function is periodic. The frequency f ¼ 2� 60 ¼ 120Hz and Pavg ¼ 600W, pmax ¼ 600 þ

1200 ¼ 1800W, pmin ¼ 600� 1200 ¼ �600W.

6.18 A narrow pulse is of 1-A amplitude and 1-ms duration enters a 1-mF capacitor at t ¼ 0, as shown
in Fig. 6-19. The capacitor is initially uncharged. Find the voltage across the capacitor.

The voltage across the capacitor is

VC ¼
1

C

ðt
�1

i dt ¼
0 for t < 0
106t ðVÞ for 0 < t < 1 ms (charging period)
1V for t > 1 ms

8<
:

If the same amount of charge were deposited on the capacitor in zero time, then we would have v ¼ uðtÞ

(V) and iðtÞ ¼ 10�6�ðtÞ (A).

6.19 The narrow pulse is of Problem 6.18 enters a parallel combination of a 1-mF capacitor and a
1-M� resistor (Fig. 6-20). Assume the pulse ends at t ¼ 0 and that the capacitor is initially
uncharged. Find the voltage across the parallel RC combination.
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Let v designate the voltage across the parallel RC combination. The current in R is iR ¼ v=R ¼ 10�6v.

During the pulse, iR remains negligible because v cannot exceed 1V and iR remains under 1mA. Therefore,

it is reasonable to assume that during the pulse, iC ¼ 1A and consequently vð0þÞ ¼ 1V. For t > 0, from

application of KVL around the RC loop we get

vþ
dv

dt
¼ 0; vð0þÞ ¼ 1V ð41Þ

The only solution to (41) is v ¼ e�t for t > 0 or vðtÞ ¼ e�tuðtÞ for all t. For all practical purposes, is can be

considered an impulse of size 10�6 A, and then v ¼ e�tuðtÞ (V) is called the response of the RC combination

to the current impulse.

6.20 Plot the function vðtÞ which varies exponentially from 5V at t ¼ 0 to 12V at t ¼ 1 with a time
constant of 2 s. Write the equation for vðtÞ.

Identify the initial point A (t ¼ 0 and v ¼ 5Þ and the asymptote v ¼ 12 in Fig. 6-21. The tangent at A

intersects the asymptote at t ¼ 2, which is point B on the line. Draw the tangent line AB. Identify point C

belonging to the curve at t ¼ 2. For a more accurate plot, identify point D at t ¼ 4. Draw the curve as

shown. The equation is vðtÞ ¼ Ae�t=2
þ B. From the initial and final conditions, we get vð0Þ ¼ Aþ B ¼ 5

and vð1Þ ¼ B ¼ 12 or A ¼ �7, and vðtÞ ¼ �7e�t=2
þ 12.

6.21 The voltage v ¼ V0e
�ajtj for a > 0 is connected across a parallel combination of a resistor and a

capacitor as shown in Fig. 6-22(a). (a) Find currents iC, iR, and i ¼ iC þ iR. (b) Compute and
graph v, iC, iR, and i for V0 ¼ 10V, C ¼ 1 mF, R ¼ 1M�, and a ¼ 1.

(a) See (a) in Table 6-3 for the required currents.

(b) See (b) in Table 6-3. Figures 6-22(b)–(e) show the plots of v, iC, iR, and i, respectively, for the given

data. During t > 0, i ¼ 0, and the voltage source does not supply any current to the RC combination.

The resistor current needed to sustain the exponential voltage across it is supplied by the capacitor.
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Supplementary Problems

6.22 Let v1 ¼ 8 sin 100�t and v2 ¼ 6 sin 99�t. Show that v ¼ v1 þ v2 is periodic. Find the period, and the

maximum, average, and effective values of v. Ans: T ¼ 2;Vmax ¼ 14;Vavg ¼ 0;Veff ¼ 5
ffiffiffi
2

p

6.23 Find period, frequency, phase angle in degrees, and maximum, minimum, average, and effective values of

vðtÞ ¼ 2þ 6 cos ð10�tþ �=6Þ.
Ans: T ¼ 0:2 s; f ¼ 5Hz;phase ¼ 308;Vmax ¼ 8;Vmin ¼ �4;Vavg ¼ 2;Veff ¼

ffiffiffiffiffi
22

p

6.24 Reduce vðtÞ ¼ 2 cos ð!tþ 308Þ þ 3 cos!t to vðtÞ ¼ A sin ð!tþ �Þ. Ans: A ¼ 4:84; � ¼ 1028

6.25 Find V2;avg and V2;eff in the graph of Fig. 6-1(b) for V1 ¼ V2 ¼ 3, and T ¼ 4T1=3.
Ans: V2;avg ¼ 1:5;V2;eff ¼ 3

6.26 Repeat Problem 6.25 for V1 ¼ 0, V2 ¼ 4, and T ¼ 2T1. Ans: V2;avg ¼ �2;V2;eff ¼ 2
ffiffiffi
2

p

6.27 Find V3;avg and V3;eff in the graph of Fig. 6-1(c) for V0 ¼ 2 and T ¼ 200T1.

Ans: V3;avg ¼ 0;V3;eff ¼ 0:1

6.28 The waveform in Fig. 6-23 is sinusoidal. Express it in the form v ¼ Aþ B sin ð!tþ �Þ and find its mean and

rms values. Ans: vðtÞ ¼ 1þ 6 sin ð�t=12þ 1208Þ;Vavg ¼ 1;Veff ¼
ffiffiffiffiffi
19

p
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Table 6-3

Time v iC ¼ C dv=dt iR ¼ v=R i ¼ iC þ iR

(a)

t < 0

t > 0

v ¼ V0e
at

v ¼ V0e
�at

iC ¼ CV0ae
at

iC ¼ �CV0ae
�at

iR ¼ ðV0=RÞe
at

iR ¼ ðV0=RÞe
�at

i ¼ v0ðCaþ 1=RÞeat

i ¼ V0ð�Caþ 1=RÞe�at

(b)

t < 0

t > 0

v ¼ 10et

v ¼ 10e�t
iC ¼ 10�5et

iC ¼ �10�5e�t
iR ¼ 10�5et

iR ¼ 10�5e�t
i ¼ 2ð10�5etÞ

i ¼ 0

Fig. 6-23



6.29 Find the average and effective values of v1ðtÞ in Fig. 6-24(a) and v2ðtÞ in Fig. 6-24(b).

Ans: V1;avg ¼ �
1

3
;V1;eff ¼

ffiffiffiffiffi
17

3

r
; V2;avg ¼ �

1

2
;V2;eff ¼

ffiffiffiffiffi
13

2

r

6.30 The current through a series RL circuit with R ¼ 5� and L ¼ 10H is given in Fig. 6-10(a) where T ¼ 1 s.

Find the voltage across RL.

Ans: v ¼

0 for t < 0

10þ 5t for 0 < t < 1

5 for t > 1

8><
>:

6.31 Find the capacitor current in Problem 6.19 (Fig. 6-20) for all t. Ans: iC ¼ 10�6
½�ðtÞ � e�tuðtÞ�

6.32 The voltage v across a 1-H inductor consists of one cycle of a sinusoidal waveform as shown in Fig. 6-25(a).

(a) Write the equation for vðtÞ. (b) Find and plot the current through the inductor. (c) Find the amount

and time of maximum energy in the inductor.

Ans: ðaÞ v ¼ ½uðtÞ � uðt� TÞ� sin
2�t

T
ðVÞ

ðbÞ i ¼ ðT=2�Þ½uðtÞ � uðt� TÞ� 1� cos
2�t

T

� �
ðAÞ: See Fig. 6-25ðbÞ:

ðcÞ Wmax ¼
1

2�2
T2

ðJÞ at t ¼ T=2

6.33 Write the expression for vðtÞ which decays exponentially from 7 at t ¼ 0 to 3 at t ¼ 1 with a time constant of

200ms. Ans: vðtÞ ¼ 3þ 4e�5t for t > 0

6.34 Write the expression for vðtÞ which grows exponentially with a time constant of 0.8 s from zero at t ¼ �1 to

9 at t ¼ 0. Ans: vðtÞ ¼ 9e5t=4 for t < 0

6.35 Express the current of Fig. 6-6 in terms of step functions.

Ans: iðtÞ ¼ 4uðtÞ þ 6
X1
k¼1

½uðt� 5kÞ � uðt� 5kþ 2Þ�

6.36 In Fig. 6-10(a) let T ¼ 1 s and call the waveform s1ðtÞ. Express s1ðtÞ and its first two derivatives ds1=dt and
d2s1=dt

2, using step and impulse functions.

Ans: s1ðtÞ ¼ ½uðtÞ � uðt� 1Þ�tþ uðt� 1Þ; ds1=dt ¼ uðtÞ � uðt� 1Þ; d2s1=dt
2
¼ �ðtÞ � �ðt� 1Þ
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6.37 Find an impulse voltage which creates a 1-A current jump at t ¼ 0 when applied across a 10-mH inductor.

Ans: vðtÞ ¼ 10�2�ðtÞ (V)

6.38 (a) Given v1 ¼ cos t, v2 ¼ cos ðtþ 308Þ and v ¼ v1 þ v2, write v in the form of a single cosine function

v ¼ A cosðtþ �Þ. (b) Find effective values of v1, v2, and v. Discuss why V2
eff > ðV2

1;eff þ V2
2;eff Þ.

Ans. (a) v ¼ 1:93 cos ðtþ 158Þ; ðbÞ V1;eff ¼ V2;eff ¼ 0:707;Veff ¼ 1:366 Veff is found from the following

derivation

V2
eff ¼ hv2i ¼ hðv1 þ v2Þ

2
i ¼ hv21 þ v22 þ 2v1v2i ¼ hv21i þ hv22i þ 2hv1v2i

Since v1 and v2 have the same frequency and are 308 out of phase, we get hV1V2i ¼
1
2
cos 308 ¼

ffiffiffi
3

p
=4,

which is positive. Therefore, V2
eff > ðV2

1;eff þ V2
2;eff Þ:

6.39 (a) Show that v1 ¼ cos tþ cos
ffiffiffi
2

p
t is not periodic. (b) Replace

ffiffiffi
2

p
by 1.4 and then show that

v2 ¼ cos tþ cos 1:4t is periodic and find its period T2. (c) Replace
ffiffiffi
2

p
by 1.41 and find the period T3 of

v3 ¼ cos tþ cos 1:41t. (d) Replace
ffiffiffi
2

p
by 1.4142 and find the period T4 of v4 ¼ cos tþ cos 1:4142t.

Ans. (a)
ffiffiffi
2

p
is not a rational number. Therefore, v1 is not periodic. (b) T2 ¼ 10� s. (c) T3 ¼ 200� s.

(d) T4 ¼ 10 000� s.

6.40 A random signal sðtÞ with an rms value of 5V has a dc value of 2V. Find the rms value of s0ðtÞ ¼ sðtÞ � 2,

that is, when the dc component is removed. Ans: S0;eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
52 � 4

p
¼

ffiffiffiffiffi
21

p
¼ 4:58V
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127

First-Order Circuits

7.1 INTRODUCTION

Whenever a circuit is switched from one condition to another, either by a change in the applied
source or a change in the circuit elements, there is a transitional period during which the branch currents
and element voltages change from their former values to new ones. This period is called the transient.
After the transient has passed, the circuit is said to be in the steady state. Now, the linear differential
equation that describes the circuit will have two parts to its solution, the complementary function (or the
homogeneous solution) and the particular solution. The complementary function corresponds to the
transient, and the particular solution to the steady state.

In this chapter we will find the response of first-order circuits, given various initial conditions and
sources. We will then develop an intuitive approach which can lead us to the same response without
going through the formal solution of differential equations. We will also present and solve important
issues relating to natural, force, step, and impulse responses, along with the dc steady state and the
switching behavior of inductors and capacitors.

7.2 CAPACITOR DISCHARGE IN A RESISTOR

Assume a capacitor has a voltage difference V0 between its plates. When a conducting path R is
provided, the stored charge travels through the capacitor from one plate to the other, establishing a
current i. Thus, the capacitor voltage v is gradually reduced to zero, at which time the current also
becomes zero. In the RC circuit of Fig. 7-1(a), Ri ¼ v and i ¼ �C dv=dt. Eliminating i in both
equations gives

dv

dt
þ

1

RC
v ¼ 0 ð1Þ

The only function whose linear combination with its derivative can be zero is an exponential
function of the form Aest. Replacing v by Aest and dv=dt by sAest in (1), we get

sAest þ
1

RC
Aest ¼ A sþ

1

RC

� �
est ¼ 0

from which sþ
1

RC
¼ 0 or s ¼ �

1

RC
(2)

Given vð0Þ ¼ A ¼ V0, vðtÞ and iðtÞ are found to be
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vðtÞ ¼ V0e
�t=RC; t > 0 ð3Þ

iðtÞ ¼ �C
dv

dt
¼

V0

R
e�t=RC; t > 0 ð4Þ

The voltage and current of the capacitor are exponentials with initial values of V0 and V0=R, respecti-
vely. As time increases, voltage and current decrease to zero with a time constant of � ¼ RC. See
Figs. 7-1(b) and (c).

EXAMPLE 7.1 The voltage across a 1-mF capacitor is 10V for t < 0. At t ¼ 0, a 1-M� resistor is connected

across the capacitor terminals. Find the time constant �, the voltage vðtÞ, and its value at t ¼ 5 s.

� ¼ RC ¼ 106ð10�6
Þ s ¼ 1 s vðtÞ ¼ 10e�t

ðVÞ; t > 0 vð5Þ ¼ 10e�5
¼ 0:067V

EXAMPLE 7.2 A 5-mF capacitor with an initial voltage of 4V is connected to a parallel combination of a 3-k� and

a 6-k� resistor (Fig. 7-2). Find the current i in the 6-k� resistor.
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The equivalent resistance of the two parallel resistors is R ¼ 2 k�. The time constant of the circuit is

RC ¼ 10�2 s. The voltage and current in the 6-k� resistor are, respectively,

v ¼ 4e�100t
ðVÞ and i ¼ v=6000 ¼ 0:67e�100t

ðmAÞ

7.3 ESTABLISHING A DC VOLTAGE ACROSS A CAPACITOR

Connect an initially uncharged capacitor to a battery with voltage V0 through a resistor at t ¼ 0.
The circuit is shown in Fig. 7-3(a).

For t > 0, KVL around the loop gives Ri þ v ¼ V0 which, after substituting i ¼ Cðdv=dtÞ, becomes

dv

dt
þ

1

RC
v ¼

1

RC
V0 t > 0 ð5aÞ

with the initial condition

vð0þÞ ¼ vð0�Þ ¼ 0 ð5bÞ

The solution should satisfy both (5a) and (5b). The particular solution (or forced response) vpðtÞ ¼ V0

satisfies (5a) but not (5b). The homogeneous solution (or natural response) vhðtÞ ¼ Ae�t=RC can be added
and its magnitude A can be adjusted so that the total solution (6a) satisfies both (5a) and (5b).

vðtÞ ¼ vpðtÞ þ vhðtÞ ¼ V0 þ Ae�t=RC
ð6aÞ

From the initial condition, vð0þÞ ¼ V0 þ A ¼ 0 or A ¼ �V0. Thus the total solution is
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vðtÞ ¼ V0ð1� e�t=RC
ÞuðtÞ [see Fig. 7-3ðbÞ� ð6bÞ

iðtÞ ¼
V0

R
e�t=RCuðtÞ [see Fig. 7-3ðcÞ� ð6cÞ

EXAMPLE 7.3 A 4-mF capacitor with an initial voltage of vð0�Þ ¼ 2V is connected to a 12-V battery through a

resistor R ¼ 5 k� at t ¼ 0. Find the voltage across and current through the capacitor for t > 0.

The time constant of the circuit is � ¼ RC ¼ 0:02 s. Following the analysis of Example 7.2, we get

vðtÞ ¼ 12þ Ae�50t

From the initial conditions, vð0�Þ ¼ vð0þÞ ¼ 12þ A ¼ 2 or A ¼ �10. Thus, for t > 0,

vðtÞ ¼ 12� 10e�50t
ðVÞ

iðtÞ ¼ ð12� vÞ=5000 ¼ 2� 10�3e�50tA ¼ 2e�50t
ðmAÞ

The current may also be computed from i ¼ Cðdv=dtÞ. And so the voltage increases exponentially from an

initial value of 2V to a final value of 12V, with a time constant of 20ms, as shown in Fig. 7-4(a), while the current

decreases from 2mA to zero as shown in Fig. 7-4(b).

7.4 THE SOURCE-FREE RL CIRCUIT

In the RL circuit of Fig. 7-5, assume that at t ¼ 0 the current is I0. For t > 0, i should satisfy
Ri þ Lðdi=dtÞ ¼ 0, the solution of which is i ¼ Aest. By substitution we find A and s:

AðRþ LsÞest ¼ 0; Rþ Ls ¼ 0; s ¼ �R=L

The initial condition ið0Þ ¼ A ¼ I0. Then

iðtÞ ¼ I0e
�Rt=L for t > 0 ð7Þ

The time constant of the circuit is L=R.

EXAMPLE 7.4 The 12-V battery in Fig. 7-6(a) is disconnected at t ¼ 0. Find the inductor current and voltage v

for all times.
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Assume the switch S has been closed for a long time. The inductor current is then constant and its voltage is

zero. The circuit at t ¼ 0� is shown in Fig. 7-6(b) with ið0�Þ ¼ 12=4 ¼ 3A. After the battery is disconnected, at

t > 0, the circuit will be as shown in Fig. 7-6(c). For t > 0, the current decreases exponentially from 3A to zero.

The time constant of the circuit is L=R ¼ ð1=100Þ s. Using the results of Example 7.3, for t > 0, the inductor

current and voltage are, respectively,

iðtÞ ¼ 3e�100t

vðtÞ ¼ Lðdi=dtÞ ¼ �30e�100t
ðVÞ

iðtÞ and vðtÞ are plotted in Figs. 7-6(d) and (e), respectively.
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7.5 ESTABLISHING A DC CURRENT IN AN INDUCTOR

If a dc source is suddenly applied to a series RL circuit initially at rest, as in Fig. 7-7(a), the current

grows exponentially from zero to a constant value with a time constant of L=R. The preceding result is

the solution of the first-order differential equation (8) which is obtained by applying KVL around the

loop. The solution follows.

Ri þ L
di

dt
¼ V0 for t > 0; ið0þÞ ¼ 0 ð8Þ

Since i ¼ ihðtÞ þ ipðtÞ, where ihðtÞ ¼ Ae�Rt=L and ipðtÞ ¼ V0=R, we have

i ¼ Ae�Rt=L
þ V0=R

The coefficient A is found from ið0þÞ ¼ Aþ V0=R ¼ 0 or A ¼ �V0=R. The current in the inductor
and the voltage across it are given by (9) and (10) and plotted in Fig. 7-7(b) and (c), respectively.

iðtÞ ¼ V0=Rð1� e�Rt=L
Þ for t > 0 ð9Þ

vðtÞ ¼ L
di

dt
¼ V0e

�Rt=L for t > 0 ð10Þ

7.6 THE EXPONENTIAL FUNCTION REVISITED

The exponential decay function may be written in the form e�t=�, where � is the time constant (in s).
For the RC circuit of Section 7.2, � ¼ RC; while for the RL circuit of Section 7.4, � ¼ L=R. The general
decay function

f ðtÞ ¼ Ae�t=�
ðt > 0Þ

is plotted in Fig. 7-8, with time measured in multiples of �. It is seen that

f ð�Þ ¼ Ae�1
¼ 0:368A
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that is, at t ¼ � the function is 36.8 percent of the initial value. It may also be said that the function has
undergone 63.2 percent of the change from f ð0þÞ to f ð1Þ. At t ¼ 5�, the function has the value
0.0067A, which is less than 1 percent of the initial value. From a practical standpoint, the transient
is often regarded as over after t ¼ 5�.

The tangent to the exponential curve at t ¼ 0þ can be used to estimate the time constant. In fact,
since

slope ¼ f 0
ð0þÞ ¼ �

A

�

the tangent line must cut the horizontal axis at t ¼ � (see Fig. 7-9). More generally, the tangent at t ¼ t0
has horizontal intercept t0 þ �. Thus, if the two values f ðt0Þ and f 0

ðt0Þ are known, the entire curve can
be constructed.

At times a transient is only partially displayed (on chart paper or on the face of an oscilloscope), and
the simultaneous values of function and slope needed in the preceding method are not available. In
that case, any pair of data points, perhaps read from instruments, may be used to find the equation of the
transient. Thus, referring to Fig. 7-10,

f1 ¼ Ae�t1=� f2 ¼ Ae�t2=�

which may be solved simultaneously to give

� ¼
t2 � t1

ln f1 � ln f2

and then A in terms of � and either f1 or f2.
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7.7 COMPLEX FIRST-ORDER RL AND RC CIRCUITS

A more complex circuit containing resistors, sources, and a single energy storage element may be
converted to a Thévenin or Norton equivalent as seen from the two terminals of the inductor or
capacitor. This reduces the complex circuit to a simple RC or RL circuit which may be solved accord-
ing to the methods described in the previous sections.

If a source in the circuit is suddently switched to a dc value, the resulting currents and voltages are
exponentials, sharing the same time constant with possibly different initial and final values. The time
constant of the circuit is either RC or L=R, where R is the resistance in the Thévenin equivalent of the
circuit as seen by the capacitor or inductor.

EXAMPLE 7.5 Find i, v, and i1 in Fig. 7-11(a).

The Thévenin equivalent of the circuit to the left of the inductor is shown in Fig. 7-11(b) with RTh ¼ 4� and

vTh ¼ 3uðtÞ (V). The time constant of the circuit is � ¼ L=RTh ¼ 5ð10�3
Þ=4 s ¼ 1:25ms. The initial value of the

inductor current is zero. Its final value is

ið1Þ ¼
vTh
RTh

¼
3V

4�
¼ 0:75A

Therefore,

i ¼ 0:75ð1� e�800t
ÞuðtÞ ðAÞ v ¼ L

di

dt
¼ 3e�800tuðtÞ ðVÞ i1 ¼

9� v

12
¼

1

4
ð3� e�800t

ÞuðtÞ ðAÞ

v can also be derived directly from its initial value vð0þÞ ¼ ð9� 6Þ=ð12þ 6Þ ¼ 3V, its final value vð1Þ ¼ 0 and the

circuit’s time constant.
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EXAMPLE 7.6 In Fig. 7-12 the 9-mF capacitor is connected to the circuit at t ¼ 0. At this time, capacitor voltage

is v0 ¼ 17V. Find vA, vB, vC, iAB, iAC, and iBC for t > 0:

Apply KCL at nodes A, B, and C for t > 0 to find voltages in term of i:

Node A:
1

2
þ
1

3
þ
1

6

� �
vA �

1

2
vB �

1

6
vC ¼ 0 or 6vA � 3vB � vC ¼ 0 (11)

Node B: �
1

2
vA þ

1

2
þ
1

4

� �
vB � 103i �

1

4
vC ¼ 0 or � 2vA þ 3vB � vC ¼ ð4� 103Þi (12)

Node C: �
1

6
vA �

1

4
vB þ

1

4
þ
1

6
þ

1

12

� �
vC ¼ 0 or � 2vA � 3vB þ 6vC ¼ 0 (13)

Solving (11), (12), and (13) simultaneously,

vA ¼ 7
3
ð103Þi vB ¼ 34

9
ð103Þi vC ¼ 8

3
ð103Þi

The circuit as seen by the capacitor is equivalent to a resistor R ¼ vB=i ¼ 34=9 k�. The capacitor discharges

its initial voltage V0 in an exponential form with a time constant � ¼ RC ¼ 34
9
ð103Þð9� 10�6

Þ ¼ 0:034 s. For t > 0,

the voltages and currents are

vB ¼ V0e
�t=�

¼ 17e�1000t=34
ðVÞ

i ¼ �C
dvB
dt

¼ ð9� 17� 10�3=34Þe�1000t=34
¼ ð4:5� 10�3

Þe�1000t=34
ðAÞ

vA ¼ 7
3
ð103Þi ¼ 10:5e�1000t=34

ðVÞ vC ¼ 8
3
ð103Þi ¼ 12e�1000t=34

ðVÞ

vAB ¼ vA � vB ¼ �6:5e�1000t=34
ðVÞ iAB ¼ vAB=2000 ¼ ð�3:25� 10�3

Þe�1000t=34
ðAÞ

vAC ¼ vA � vC ¼ �1:5e�1000t=34
ðVÞ iAC ¼ vAC=6000 ¼ ð�0:25� 10�3

Þe�1000t=34
ðAÞ

vBC ¼ vB � vC ¼ 5e�1000t=34
ðVÞ iBC ¼ vBC=4000 ¼ ð1:25� 10�3

Þe�1000t=34
ðAÞ

All voltages and currents are exponential functions and have the same time constant. For simplicity, it is custom-

ary to use units of V, mA, k�, and ms for voltage, current, resistance, and time, respectively, so that the multipliers

1000 and 10�3 can be omitted from the equations as summarized below.

vA ¼ 10:5e�t=34
ðVÞ vAB ¼ �6:5e�t=34

ðVÞ iAB ¼ �3:25e�t=34
ðmAÞ

vB ¼ 17e�t=34
ðVÞ vAC ¼ �1:5e�t=34

ðVÞ iAC ¼ �0:25e�t=34
ðmAÞ

vC ¼ 12e�t=34
ðVÞ vBC ¼ 5e�t=34

ðVÞ iBC ¼ 1:25e�t=34
ðmAÞ

i ¼ 4:5e�t=34
ðmAÞ
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7.8 DC STEADY STATE IN INDUCTORS AND CAPACITORS

As noted in Section 7.1, the natural exponential component of the response of RL and RC circuits to
step inputs diminishes as time passes. At t ¼ 1, the circuit reaches steady state and the response is
made of the forced dc component only.

Theoretically, it should take an infinite amount of time for RL or RC circuits to reach dc steady
state. However, at t ¼ 5�, the transient component is reduced to 0.67 percent of its initial value. After
passage of 10 time constants the transient component equals to 0.0045 percent of its initial value, which
is less than 5 in 100,000, at which time for all practical purposes we may assume the steady state has been
reached.

At the dc steady state of RLC circuits, assuming no sustained oscillations exist in the circuit, all
currents and voltages in the circuit are constants. When the voltage across a capacitor is constant, the
current through it is zero. All capacitors, therefore, appear as open circuits in the dc steady state.
Similarly, when the current through an inductor is constant, the voltage across it is zero. All inductors
therefore appear as short circuits in the dc steady state. The circuit will be reduced to a dc-resistive case
from which voltages across capacitors and currents through inductors can be easily found, as all the
currents and voltages are constants and the analysis involves no differential equations.

The dc steady-state behavior presented in the preceding paragraph is valid for circuits containing
any number of inductors, capacitors, and dc sources.

EXAMPLE 7.7 Find the steady-state values of iL, vC1, and vC2 in the circuit of Fig. 7-13(a).

When the steady state is reached, the circuit will be as shown in Fig. 7-13(b). The inductor current and

capacitor voltages are obtained by applying KCL at nodes A and B in Fig. 7-13(b). Thus,

Node A:
vA
3
þ
vA � vB

6
þ
vA þ 18� vB

6
¼ 3 or 2vA � vB ¼ 0

Node B:
vB
12

þ
vB � vA

6
þ
vB � 18� vA

6
¼ 0 or � 4vA þ 5vB ¼ 36

Solving for vA and vB we find vA ¼ 6V and vB ¼ 12V. By inspection of Fig. 7-13(b), we have iL ¼ 2mA, vC1 ¼ 8V,

and vC2 ¼ 6V.

EXAMPLE 7.8 Find i and v in the circuit of Fig. 7-14.

At t ¼ 0, the voltage across the capacitor is zero. Its final value is obtained from dc analysis to be �2V. The

time constant of the circuit of Fig. 7-14, as derived in Example 7.6, is 0.034 s. Therefore,

v ¼ �2ð1� e�1000t=34
ÞuðtÞ ðVÞ

i ¼ C
dv

dt
¼ �

ð9� 10�6
Þð2� 103Þ

34
e�1000t=34uðtÞ ðAÞ ¼ �0:53e�1000t=34uðtÞ ðmAÞ

7.9 TRANSITIONS AT SWITCHING TIME

A sudden switching of a source or a jump in its magnitude can translate into sudden jumps in
voltages or currents in a circuit. A jump in the capacitor voltage requires an impulse current. Simi-
larly, a jump in the inductor current requires an impulse voltage. If no such impulses can be present,
the capacitor voltages and the inductor currents remain continuous. Therefore, the post-switching
conditions of L and C can be derived from their pre-switching conditions.

EXAMPLE 7.9 In Fig. 7-15(a) the switch S is closed at t ¼ 0. Find i and v for all times.

At t ¼ 0�, the circuit is at steady state and the inductor functions as a short with vð0�Þ ¼ 0 [see Fig. 7-15(b)].

The inductor current is then easily found to be ið0�Þ ¼ 2A. After S is closed at t ¼ 0, the circuit will be as shown in

Fig. 7-15(c). For t > 0, the current is exponential with a time constant of � ¼ L=R ¼ 1=30 s, an initial value of

ið0þÞ ¼ ið0�Þ ¼ 2A, and a final value of 12=3 ¼ 4A. The inductor’s voltage and current are
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For t < 0; i ¼ 2A and v ¼ 0

For t > 0; i ¼ 4� 2e�30t
ðAÞ and v ¼ L

di

dt
¼ 6e�30t

ðVÞ

and plotted in Figs. 7-15(d) and (e).

EXAMPLE 7.10 Find i and v for t ¼ 0� and t ¼ 0þ in the circuit of Fig. 7-16, given R ¼ 5�, L ¼ 10mH, and

vs ¼
5 V for t < 0
5 sin!t ðVÞ for t > 0

�
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At t ¼ 0�, ið0�Þ ¼ 5=5 ¼ 1A and vð0�Þ ¼ 0. During the transition time t ¼ 0� to t ¼ 0þ, the inductor

current is continuous as there exists no voltage impulse to produce a discontinuity in it. Therefore,

ið0þÞ ¼ ið0�Þ ¼ 1A. To find vð0þÞ, write KVL at t ¼ 0þ : vs ¼ RI þ v and note that vsð0
þ
Þ ¼ 0. Therefore,

vð0þÞ ¼ vsð0
þ
Þ � rið0þÞ ¼ �5V.
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7.10 RESPONSE OF FIRST-ORDER CIRCUITS TO A PULSE

In this section we will derive the response of a first-order circuit to a rectangular pulse. The
derivation applies to RC or RL circuits where the input can be a current or a voltage. As an example,
we use the series RC circuit in Fig. 7-17(a) with the voltage source delivering a pulse of duration T and
height V0. For t < 0, v and i are zero. For the duration of the pulse, we use (6b) and (6c) in Section
7.3:

v ¼ V0ð1� e�t=RC
Þ ð0 < t < TÞ ð14aÞ

i ¼
V0

R
e�t=RC

ð0 < t < TÞ ð14bÞ

When the pulse ceases, the circuit is source-free with the capacitor at an initial voltage VT .

VT ¼ V0ð1� e�T=RC
Þ ð14cÞ

Using (3) and (4) in Section 7.2, and taking into account the time shift T , we have

v ¼ VTe
�ðt�TÞ=RC

ðt > TÞ ð15aÞ

i ¼ �ðVT=RÞe
�ðt�TÞ=RC

ðt > TÞ ð15bÞ

The capacitor voltage and current are plotted in Figs. 7-17(b) and (c).

EXAMPLE 7.11 In the circuit of Fig. 7-17(a), let R ¼ 1 k� and C ¼ 1 mF and let the voltage source be a pulse of

height V0 and duration T . Find i and v for (a) V0 ¼ 1V and T ¼ 1ms, (b) V0 ¼ 10V and T ¼ 0:1ms, and

(c) V0 ¼ 100V and T ¼ 0:01ms.

We use (14) and (15) with the time constant of � ¼ RC ¼ 1ms. For convenience, time will be expressed in ms,

voltages in V , and currents in mA. We also use the approximation e�t
¼ 1� t when t � 1.

(a) V0 ¼ 1V, T ¼ 1ms.

For 0 < t < 1ms,

v ¼ ð1� e�t
Þ; i ¼ e�t, and VT ¼ ð1� e�1

Þ ¼ 0:632V
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For t > 1ms,

v ¼ 0:632e�ðt�1Þ
¼ 1:72e�t, and i ¼ �1:72e�t

(b) V0 ¼ 10V, T ¼ 0:1ms.

For 0 < t < 0:1ms,

v ¼ 10ð1� e�t
Þ; i ¼ 10e�t, and VT ¼ 10ð1� e�0:1

Þ ¼ 0:95V

For t > 0:1ms,

v ¼ 0:95e�ðt�0:1Þ
¼ 1:05e�t, and i ¼ �1:05e�t

(c) V0 ¼ 100V, T ¼ 0:01ms.

For 0 < t < 0:01ms,

v ¼ 100ð1� e�t
Þ � 100t; i ¼ 100e�t

� 100ð1� tÞ, and VT ¼ 100ð1� e�0:01
Þ ¼ 0:995V

For t > 0:01ms,

v ¼ 0:995e�ðt�0:01Þ
¼ 1:01e�t and i ¼ �1:01e�t

As the input voltage pulse approaches an impulse, the capacitor voltage and current approach v ¼ e�tuðtÞ (V)

and i ¼ �ðtÞ � e�tuðtÞ.

7.11 IMPULSE RESPONSE OF RC AND RL CIRCUITS

A narrow pulse can be modeled as an impulse with the area under the pulse indicating its strength.
Impulse response is a useful tool in analysis and synthesis of circuits. It may be derived in several ways:
take the limit of the response to a narrow pulse, to be called limit approach, as illustrated in Examples
7-11 and 7-12; take the derivative of the step response; solve the differential equation directly. The
impulse response is often designated by hðtÞ.

EXAMPLE 7.12 Find the limits of i and v of the circuit Fig. 7-17(a) for a voltage pulse of unit area as the pulse

duration is decreased to zero.

We use the pulse responses in (14) and (15) with V0 ¼ 1=T and find their limits as T approaches zero. From

(14c) we have

lim
T!0

VT ¼ lim
T!0

ð1� e�T=RC
Þ=T ¼ 1=RC

From (15) we have:

hv ¼ 0 and hi ¼ 0For t < 0;

0 � hv �
1

RC
and hi ¼

1

R
�ðtÞFor 0� < t < 0þ;

hvðtÞ ¼
1

RC
e�t=RC and hiðtÞ ¼ �

1

R2C
e�t=RCFor t > 0;

Therefore,

hvðtÞ ¼
1

RC
e�t=RCuðtÞ and hiðtÞ ¼

1

R
�ðtÞ �

1

R2C
e�t=RCuðtÞ

EXAMPLE 7.13 Find the impulse responses of the RC circuit in Fig. 7-17(a) by taking the derivatives of its unit

step responses.

A unit impulse may be considered the derivative of a unit step. Based on the properties of linear differential

equations with constant coefficients, we can take the time derivative of the step response to find the impulse

response. The unit step responses of an RC circuit were found in (6) to be

vðtÞ ¼ ð1� e�t=RC
ÞuðtÞ and iðtÞ ¼ ð1=RÞe�t=RCuðtÞ

We find the unit impulse responses by taking the derivatives of the step responses. Thus
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hvðtÞ ¼
1

RC
e�t=RCuðtÞ and hiðtÞ ¼

1

R
�ðtÞ �

1

R2C
e�t=RCuðtÞ

EXAMPLE 7.14 Find the impulse responses hiðtÞ; hvðtÞ; and hi1ðtÞ of the RL circuit of Fig. 7-11(a) by taking the

derivatives of its unit step responses.

The responses of the circuit to a step of amplitude 9 were already found in Example 7.5. Taking their

derivatives and scaling them down by 1/9, we find the unit impulse responses to be

hiðtÞ ¼
1

9

d

dt
½0:75ð1� e�800t

ÞuðtÞ� ¼
200

3
e�800tuðtÞ

hvðtÞ ¼
1

9

d

dt
½3e�800tuðtÞ� ¼ �

800

3
e�800tuðtÞ þ

1

3
�ðtÞ

hi1ðtÞ ¼
1

9

d

dt

1

4
ð3� e�800t

ÞuðtÞ

� �
¼

200

9
e�800tuðtÞ þ

1

18
�ðtÞ

7.12 SUMMARY OF STEP AND IMPULSE RESPONSES IN RC AND RL CIRCUITS

Responses of RL and RC circuits to step and impulse inputs are summarized in Table 7-1. Some of
the entries in this table have been derived in the previous sections. The remaining entries will be derived
in the solved problems.

7.13 RESPONSE OF RC AND RL CIRCUITS TO SUDDEN EXPONENTIAL EXCITATIONS

Consider the first-order differential equation which is derived from an RL combination in series with
a sudden exponential voltage source vs ¼ V0e

stuðtÞ as in the circuit of Fig. 7-18. The circuit is at rest for
t < 0. By applying KVL, we get

Ri þ L
di

dt
¼ V0e

stuðtÞ ð16Þ

For t > 0, the solution is

iðtÞ ¼ ihðtÞ þ ipðtÞ and ið0þÞ ¼ 0 ð17aÞ

CHAP. 7] FIRST-ORDER CIRCUITS 141

Table 7-1(a) Step and Impulse Responses in RC Circuits

RC circuit Unit Step Response Unit Impulse Response

vs ¼ uðtÞ

v ¼ ð1� e�t=Rc
ÞuðtÞ

i ¼ ð1=RÞe�t=RcuðtÞ

( vs ¼ �ðtÞ

hv ¼ ð1=RCÞe�t=RCuðtÞ

hi ¼ �ð1=R2CÞe�t=RCuðtÞ þ ð1=RÞ�ðtÞ

(

is ¼ uðtÞ

v ¼ Rð1� e�t=RC
ÞuðtÞ

i ¼ e�t=RCuðtÞ

(
is ¼ �ðtÞ

hv ¼ ð1=CÞe�t=RCuðtÞ

hi ¼ �ð1=RCÞe�t=RCuðtÞ þ �ðtÞ

(



The natural response ihðtÞ is the solution of Ri þ Lðdi=dtÞ ¼ 0; i.e., the case with a zero forcing
function. Following an argument similar to that of Section 7.4 we obtain

ihðtÞ ¼ Ae�Rt=L
ð17bÞ

The forced response ipðtÞ is a function which satisfies (16) for t > 0. The only such function is

ipðtÞ ¼ I0e
st

ð17cÞ

After substituting ip in (16), I0 is found to be I0 ¼ V0=ðRþ LsÞ. By choosing A ¼ �V0= ðRþ LsÞ, the
boundary condition ið0þÞ ¼ 0 is also satisfied. Therefore,

iðtÞ ¼
V0

Rþ Ls
ðest � e�Rt=L

ÞuðtÞ ð17dÞ

Special Case. If the forcing function has the same exponent as that of the natural response ðs ¼ �R=LÞ,
the forced response needs to be ipðtÞ ¼ I0te

�Rt=L. This can be verified by substitution in (16), which also
yields I0 ¼ V0=L The natural response is the same as (17b). The total response is then

iðtÞ ¼ ipðtÞ þ ihðtÞ ¼ ðI0tþ AÞe�Rt=L

From ið0�Þ ¼ ið0þÞ ¼ 0 we find A ¼ 0, and so iðtÞ ¼ I0te
�Lt=RuðtÞ, where I0 ¼ V0=L.
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Table 7-1(b) Step and Impulse Responses in RL Circuits

RL circuit Unit Step Response Unit Impulse Response

vs ¼ uðtÞ

v ¼ e�Rt=LuðtÞ

i ¼ ð1=RÞð1� e�Rt=L
ÞuðtÞ

( vs ¼ �ðtÞ

hv ¼ ðR=LÞe�Rt=LuðtÞ þ �ðtÞ

hi ¼ �ð1=LÞe�Rt=LuðtÞ

(

is ¼ uðtÞ

v ¼ Re�Rt=LuðtÞ

i ¼ ð1� e�Rt=L
ÞuðtÞ

( is ¼ �ðtÞ

hv ¼ �ðR2=LÞe�Rt=LuðtÞ þ R�ðtÞ

hi ¼ ðR=LÞe�Rt=LuðtÞ

(
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7.14 RESPONSE OF RC AND RL CIRCUITS TO SUDDEN SINUSOIDAL EXCITATIONS

When a series RL circuit is connected to a sudden ac voltage vs ¼ V0 cos!t (Fig. 7-19), the equation
of interest is

Ri þ L
di

dt
¼ V0ðcos!tÞuðtÞ ð18Þ

The solution is

iðtÞ ¼ ih þ ip where ihðtÞ ¼ Ae�Rt=L and ipðtÞ ¼ I0 cos ð!t� �Þ

By inserting ip in (18), we find I0:

I0 ¼
V0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ L2!2
p and � ¼ tan�1 L!

R

iðtÞ ¼ Ae�Rt=L
þ I0 cos ð!t� �Þ t > 0Then

From ið0þÞ ¼ 0, we get A ¼ �I0 cos �. Therefore,

iðtÞ ¼ I0½cos ð!t� �Þ � cos �ðe�Rt=L
Þ�

7.15 SUMMARY OF FORCED RESPONSE IN FIRST-ORDER CIRCUITS

Consider the following differential equation:

dv

dt
ðtÞ þ avðtÞ ¼ f ðtÞ ð19Þ

The forced response vpðtÞ depends on the forcing function f ðtÞ. Several examples were given in the
previous sections. Table 7-2 summarizes some useful pairs of the forcing function and what should be
guessed for vpðtÞ. The responses are obtained by substitution in the differential equation. By weighted
linear combination of the entries in Table 7-2 and their time delay, the forced response to new functions
may be deduced.

7.16 FIRST-ORDER ACTIVE CIRCUITS

Active circuits containing op amps are less susceptible to loading effects when interconnected with
other circuits. In addition, they offer a wider range of capabilities with more ease of realization than
passive circuits. In our present analysis of linear active circuits we assume ideal op amps; that is; (1) the
current drawn by the op amp input terminals is zero and (2) the voltage difference between the inverting
and noninverting terminals of the op amp is negligible (see Chapter 5). The usual methods of analysis
are then applied to the circuit as illustrated in the following examples.

CHAP. 7] FIRST-ORDER CIRCUITS 143

Fig. 7-19



EXAMPLE 7.15 Highpass filter. The op amp in the circuit of Fig. 7-44 is ideal. Find the unit-step response of

the circuit; that is, v2 for v1 ¼ uðtÞ:
The inverting input terminal of the op amp is at virtual ground and the capacitor has zero voltage at t ¼ 0þ.

The 1-V step input therefore generates an exponentially decaying current i through R1C (from left to right, with a

time constant R1C and initial value of 1=R1).

i ¼
1

R1

e�t=ðR1CÞuðtÞ

All of the preceding current passes through R2 (the op amp draws no current), generating v2 ¼ �R2i at the output

terminal. The unit-step response is therefore

v2 ¼ �
R2

R1

e�t=ðR1CÞuðtÞ

EXAMPLE 7.16 In the circuit of Fig. 7-44 derive the differential equation relating v2 to v1. Find its unit-step

response and compare with the answer in Example 7.15.

Since the inverting input terminal of the op amp is at virtual ground and doesn’t draw any current, the current i

passing through C, R1, and R2 from left to right is �v2=R2. Let vA be the voltage of the node connecting R1 and C.

Then, the capacitor voltage is v1 � vA (positive on the left side). The capacitor current and voltage are related by

�
v2
R2

¼
dðv1 � vAÞ

dt

To eliminate vA, we note that the segment made of R1, R2, and the op amp form an inverting amplifier with

v2 ¼ �ðR2=R1ÞvA, from which vA ¼ �ðR1=R2Þv2. Substituting for vA, we get

v2 þ R1C
dv2
dt

¼ �R2C
dv1
dt

To find the unit-step response, we first solve the following equation:

v2 þ R1C
dv2
dt

¼
�R2C t > 0
0 t < 0

�

The solution of the preceding equation is �R2Cð1� e�t=ðR1CÞÞuðtÞ. The unit-step response of the circuit is the time-

derivative of the preceding solution.
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Table 7-2

f ðtÞ vpðtÞ

1 1

a

t
t

a
�

1

a2

est; ðs 6¼ �aÞ
est

sþ a

e�at
te�at

cos!t A cos ð!t� �Þ where A ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ !2
p and tan � ¼

!

a

e�bt cos!t Ae�bt cos ð!t� �Þ where A ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða� bÞ2 þ !2

q and tan � ¼
!

a� b



v2ðtÞ ¼ �
R2

R1

e�t=ðR1CÞuðtÞ

Alternate Approach

The unit step response may also be found by the Laplace transform method (see Chapter 16).

EXAMPLE 7.17 Passive phase shifter. Find the relationship between v2 and v1 in the circuit of Fig. 7-45(a).

Let node D be the reference node. Apply KCL at nodes A and B to find

KCL at node A: C
dvA
dt

þ
ðvA � v1Þ

R
¼ 0

KCL at node B: C
dðvB � v1Þ

dt
þ
vB
R

¼ 0

Subtracting the second equation from the first and noting that v2 ¼ vA � vB we get

v2 þ RC
dv2
dt

¼ v1 � RC
dv1
dt

EXAMPLE 7.18 Active phase shifter. Show that the relationship between v2 and v1 in the circuit of Fig. 7-45(b) is

the same as in Fig. 7-45(a).

Apply KCL at the inverting (node A) and non-inverting (node B) inputs of the op amp.

KCL at node A:
ðvA � v1Þ

R1

þ
ðvA � v2Þ

R1

¼ 0

KCL at node B:
ðvB � v1Þ

R
þ C

dvB
dt

¼ 0

From the op amp we have vA ¼ vB and from the KCL equation for node A, we have vA ¼ ðv1 þ v2Þ=2. Substituting

the preceding values in the KCL at node B, we find

v2 þ RC
dv2
dt

¼ v1 � RC
dv1
dt

Solved Problems

7.1 At t ¼ 0�, just before the switch is closed in Fig. 7-20, vC ¼ 100V. Obtain the current and
charge transients.

With the polarities as indicated on the diagram, vR ¼ vC for t > 0, and 1=RC ¼ 62:5 s�1. Also,

vCð0
þ
Þ ¼ vCð0

�
Þ ¼ 100V. Thus,

vR ¼ vC ¼ 100e�62:5t
ðVÞ i ¼

vR
R

¼ 0:25e�62:5t
ðAÞ q ¼ CvC ¼ 4000e�62:5t

ðmCÞ
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7.2 In Problem 7.1, obtain the power and energy in the resistor, and compare the latter with the initial
energy stored in the capacitor.

pR ¼ vRi ¼ 25e�125t
ðWÞ

wR ¼

ðt
0

pR dt ¼

ðt
0

25e�125t dt ¼ 0:20ð1� e�125t
Þ ðJÞ

The initial stored energy is

W0 ¼
1
2
CV2

0 ¼ 1
2
ð40� 10�6

Þð100Þ2 J ¼ 0:20 ¼ wRð1Þ

In other words, all the stored energy in the capacitor is eventually delivered to the resistor, where it is

converted into heat.

7.3 An RC transient identical to that in Problems 7.1 and 7.2 has a power transient

pR ¼ 360e�t=0:00001
ðWÞ

Obtain the initial charge Q0, if R ¼ 10�.

pR ¼ P0e
�2t=RC or

2

RC
¼ 105 or C ¼ 2mF

wR ¼

ðt
0

pR dt ¼ 3:6ð1� e�t=0:00001
Þ ðmJÞ

Then, wRð1Þ ¼ 3:6mJ ¼ Q2
0=2C, from which Q0 ¼ 120 mC.

7.4 The switch in the RL circuit shown in Fig. 7-21 is moved from position 1 to position 2 at t ¼ 0.
Obtain vR and vL with polarities as indicated.

The constant-current source drives a current through the inductance in the same direction as that of the

transient current i. Then, for t > 0,

i ¼ I0e
�Rt=L

¼ 2e�25t
ðAÞ

vR ¼ Ri ¼ 200e�25t
ðVÞ

vL ¼ �vR ¼ �200e�25t
ðVÞ

7.5 For the transient of Problem 7.4 obtain pR and pL.

pR ¼ vRi ¼ 400e�50t
ðWÞ

pL ¼ vLi ¼ �400e�50t
ðWÞ

Negative power for the inductance is consistent with the fact that energy is leaving the element. And, since

this energy is being transferred to the resistance, pR is positive.
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7.6 A series RC circuit with R ¼ 5 k� and C ¼ 20 mF has a constant-voltage source of 100V applied
at t ¼ 0; there is no initial charge on the capacitor. Obtain i, vR, vC, and q, for t > 0.

The capacitor charge, and hence vC, must be continuous at t ¼ 0:

vCð0
þ
Þ ¼ vCð0

�
Þ ¼ 0

As t ! 1, vC ! 100V, the applied voltage. The time constant of the circuit is � ¼ RC ¼ 10�1 s. Hence,

from Section 6.10,

vC ¼ ½vCð0
þ
Þ � vCð1Þ�e�t=�

þ vCð1Þ ¼ �100e�10t
þ 100 ðVÞ

The other functions follow from this. If the element voltages are both positive where the current

enters, vR þ vC ¼ 100V , and so

vR ¼ 100e�10t
ðVÞ

i ¼
vR
R

¼ 20e�10t
ðmAÞ

q ¼ CvC ¼ 2000ð1� e�10t
Þ ðmCÞ

7.7 The switch in the circuit shown in Fig. 7-22(a) is closed at t ¼ 0, at which moment the capacitor
has charge Q0 ¼ 500 mC, with the polarity indicated. Obtain i and q, for t > 0, and sketch the
graph of q.

The initial charge has a corresponding voltage V0 ¼ Q0=C ¼ 25V, whence vCð0
þ
Þ ¼ �25V. The sign

is negative because the capacitor voltage, in agreement with the positive direction of the current, would be þ

on the top plate. Also vCð1Þ ¼ þ50V and � ¼ 0:02 s. Thus, as in Problem 7.6,

vC ¼ �75e�50t
þ 50 ðVÞ

from which

q ¼ CvC ¼ �1500e�50t
þ 1000 ðmCÞ i ¼

dq

dt
¼ 75e�50t

ðmAÞ

The sketch in Fig. 7-22(b) shows that the charge changes from 500 mC of one polarity to 1000 mC of the

opposite polarity.

7.8 Obtain the current i, for all values of t, in the circuit of Fig. 7-23.

For t < 0, the voltage source is a short circuit and the current source shares 2A equally between the two

10-� resistors:
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iðtÞ ¼ ið0�Þ ¼ ið0þÞ ¼ 1A

For t > 0, the current source is replaced by an open circuit and the 50-V source acts in the RL series

circuit ðR ¼ 20�Þ. Consequently, as t ! 1, i ! �50=20 ¼ �2:5A. Then, by Sections 6.10 and 7.3,

iðtÞ ¼ ½ðið0þÞ � ið1Þ�e�Rt=L
þ ið1Þ ¼ 3:5e�100t

� 2:5 ðAÞ

By means of unit step functions, the two formulas may be combined into a single formula valid for all t:

iðtÞ ¼ uð�tÞ þ ð3:5e�100t
� 2:5ÞuðtÞ ðAÞ

7.9 In Fig. 7-24(a), the switch is closed at t ¼ 0. The capacitor has no charge for t < 0. Find iR, iC,
vC, and vs for all times if is ¼ 2mA.

For t < 0, iR ¼ 2mA, iC ¼ vC ¼ 0, and vs ¼ ð2mAÞð5000�Þ ¼ 10V.

For t > 0, the time constant is � ¼ RC ¼ 10ms and

iRð0
þ
Þ ¼ 0; iRð1Þ ¼ 2mA, and iR ¼ 2ð1� e�100t

Þ ðmAÞ [See Fig. 7-24ðbÞ:�

vCð0
þ
Þ ¼ 0; vCð1Þ ¼ ð2mAÞð5 k�Þ ¼ 10V, and vC ¼ 10ð1� e�100t

Þ ðVÞ [See Fig. 7-24ðcÞ:�

iCð0
þ
Þ ¼ 2mA; iCð1Þ ¼ 0, and iC ¼ 2e�100t

ðmAÞ [See Fig. 7-24ðdÞ:�

vsð0
þ
Þ ¼ 0; vsð1Þ ¼ ð2mAÞð5 k�Þ ¼ 10V, and vs ¼ 10ð1� e�100t

Þ ðVÞ [See Fig. 7-24ðeÞ:�

7.10 In Fig. 7-25, the switch is opened at t ¼ 0. Find iR, iC, vC, and vs.

For t < 0, the circuit is at steady state with iR ¼ 6ð4Þ=ð4þ 2Þ ¼ 4mA, iC ¼ 0, and vC ¼ vs ¼ 4ð2Þ ¼ 8V.

During the switching at t ¼ 0, the capacitor voltage remains the same. After the switch is opened, at

t ¼ 0þ, the capacitor has the same voltage vCð0
þ
Þ ¼ vCð0

�
Þ ¼ 8V.

For t > 0, the capacitor discharges in the 5-k� resistor, produced from the series combination of the

3-k� and 2-k� resistors. The time constant of the circuit is � ¼ ð2þ 3Þð103Þð2� 10�6
Þ ¼ 0:01 s. The

currents and voltages are

vC ¼ 8e�100t
ðVÞ

iR ¼ �iC ¼ vC=5000 ¼ ð8=5000Þe�100t
¼ 1:6e�100t

ðmAÞ

vs ¼ ð6mAÞð4 k�Þ ¼ 24V

since, for t > 0, all of the 6mA goes through the 4-k� resistor.

7.11 The switch in the circuit of Fig. 7-26 is closed on position 1 at t ¼ 0 and then moved to 2 after one
time constant, at t ¼ � ¼ 250 ms. Obtain the current for t > 0.

It is simplest first to find the charge on the capacitor, since it is known to be continuous (at t ¼ 0 and at

t ¼ �), and then to differentiate it to obtain the current.

For 0 � t � �, q must have the form

q ¼ Ae�t=�
þ B
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From the assumption qð0Þ ¼ 0 and the condition

ið0þÞ ¼
dq

dt 0þ
¼

20V

500�
¼ 40mA

����
we find that A ¼ �B ¼ �10mC, or

q ¼ 10ð1� e�4000t
Þ ðmCÞ ð0 � t � �Þ ð20Þ

From (20), qð�Þ ¼ 10ð1� e�1
Þ mC; and we know that qð1Þ ¼ ð0:5mFÞð�40VÞ ¼ �20mC.

Hence, q, is determined for t � � as

q ¼ ½qð�Þ � qð1Þ�e�ðt��Þ=�
þ qð1Þ ¼ 71:55e�4000t

� 20 ðmCÞ ð21Þ

Differentiating (20) and (21),

i ¼
dq

dt
¼

40e�4000t
ðmAÞ ð0 < t < �Þ

�286:2e�4000t
ðmAÞ ðt > �Þ

�

See Fig. 7-27.

7.12 A series RL circuit has a constant voltage V applied at t ¼ 0. At what time does vR ¼ vL?

The current in an RL circuit is a continuous function, starting at zero in this case, and reaching the final

value V=R. Thus, for t > 0,

i ¼
V

R
ð1� e�t=�

Þ and vR ¼ Ri ¼ Vð1� e�t=�
Þ

where � ¼ L=R is the time constant of the circuit. Since vR þ vL ¼ V , the two voltages will be equal when

vR ¼ 1
2
V

Vð1� e�t=�
Þ ¼ 1

2
V

e�t=�
¼ 1

2

t

�
¼ ln 2

that is, when t ¼ 0:693�. Note that this time is independent of V.

7.13 A constant voltage is applied to a series RL circuit at t ¼ 0. The voltage across the inductance is
20V at 3.46ms and 5V at 25ms. Obtain R if L ¼ 2 H.

Using the two-point method of Section 7-6.
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� ¼
t2 � t1

ln v1 � ln v2
¼

25� 3:46

ln 20� ln 5
¼ 15:54ms

R ¼
L

�
¼

2

15:54� 10�3
¼ 128:7�and so

7.14 In Fig. 7-28, switch S1 is closed at t ¼ 0. Switch S2 is opened at t ¼ 4ms. Obtain i for t > 0.

As there is always inductance in the circuit, the current is a continuous function at all times. In the

interval 0 � t � 4ms, with the 100� shorted out and a time constant � ¼ ð0:1HÞ=ð50�Þ ¼ 2ms, i starts at

zero and builds toward

100V

50�
¼ 2A

even though it never gets close to that value. Hence, as in Problem 7.12

i ¼ 2ð1� e�t=2
Þ ðAÞ ð0 � t � 4Þ ð22Þ

wherein t is measured in ms. In particular,

ið4Þ ¼ 2ð1� e�2
Þ ¼ 1:729A

In the interval t � 4ms, i starts at 1.729A and decays toward 100=150 ¼ 0:667A, with a time constant

0:1=150 ¼ 2
3
ms. Therefore, with t again in ms,

i ¼ ð1:729� 0:667Þe�ðt�4Þ=ð2=3Þ
þ 0:667 ¼ 428:4e�3t=2

þ 0:667 ðAÞ ðt � 4Þ ð23Þ

7.15 In the circuit of Fig. 7-29, the switch is closed at t ¼ 0, when the 6-mF capacitor has charge
Q0 ¼ 300 mC. Obtain the expression for the transient voltage vR.

The two parallel capacitors have an equivalent capacitance of 3 mF. Then this capacitance is in series

with the 6mF, so that the overall equivalent capacitance is 2 mF. Thus, � ¼ RCeq ¼ 40ms.
At t ¼ 0þ, KVL gives vR ¼ 300=6 ¼ 50V; and, as t ! 1, vR ! 0 (since i ! 0). Therefore,

vR ¼ 50 e�t=�
¼ 50e�t=40

ðVÞ

in which t is measured in ms.
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7.16 In the circuit shown in Fig. 7-30, the switch is moved to position 2 at t ¼ 0. Obtain the current i2
at t ¼ 34:7ms.

After the switching, the three inductances have the equivalent

Leq ¼
10

6
þ
5ð10Þ

15
¼ 5H

Then � ¼ 5=200 ¼ 25ms, and so, with t in ms,

i ¼ 6e�t=25
ðAÞ i2 ¼

5

15

� �
i ¼ 2e�t=25

ðAÞ

i2ð34:7Þ ¼ 2e�34:7=25 A ¼ 0:50Aand

7.17 In Fig. 7-31, the switch is closed at t ¼ 0. Obtain the current i and capacitor voltage vC, for
t > 0.

As far as the natural response of the circuit is concerned, the two resistors are in parallel; hence,

� ¼ ReqC ¼ ð5�Þð2mFÞ ¼ 10 ms

By continuity, vCð0
þ
Þ ¼ vCð0

�
Þ ¼ 0. Furthermore, as t ! 1, the capacitor becomes an open circuit, leav-

ing 20� in series with the 50V. That is,

ið1Þ ¼
50

20
¼ 2:5 A vCð1Þ ¼ ð2:5AÞð10�Þ ¼ 25V

Knowing the end conditions on vC, we can write

vC ¼ ½vCð0
þ
Þ � vCð1Þ�e�t=�

þ vCð1Þ ¼ 25ð1� e�t=10
Þ ðVÞ

wherein t is measured in ms.
The current in the capacitor is given by

iC ¼ C
dvC
dt

¼ 5e�t=10
ðAÞ

and the current in the parallel 10-� resistor is

i10� ¼
vC
10�

¼ 2:5ð1� e�t=10
Þ ðAÞ

i ¼ iC þ i10 � ¼ 2:5ð1þ e�t=10
Þ ðAÞHence,

The problem might also have been solved by assigning mesh currents and solving simultaneous differ-

ential equations.

7.18 The switch in the two-mesh circuit shown in Fig. 7-32 is closed at t ¼ 0. Obtain the currents i1
and i2, for t > 0.
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10ði1 þ i2Þ þ 5i1 þ 0:01
di1
dt

¼ 100 ð24Þ

10ði1 þ i2Þ þ 5i2 ¼ 100 ð25Þ

From (25), i2 ¼ ð100� 10i1Þ=15. Substituting in (24),

di1
dt

þ 833i1 ¼ 3333 ð26Þ

The steady-state solution (particular solution) of (26) is i1ð1Þ ¼ 3333=833 ¼ 4:0A; hence

i1 ¼ Ae�833t
þ 4:0 ðAÞ

The initial condition i1ð0
�
Þ ¼ i1ð0

þ
Þ ¼ 0 now gives A ¼ �4:0A, so that

i1 ¼ 4:0ð1� e�833t
Þ ðAÞ and i2 ¼ 4:0þ 2:67e�833t

ðAÞ

Alternate Method

When the rest of the circuit is viewed from the terminals of the inductance, there is equivalent resistance

Req ¼ 5þ
5ð10Þ

15
¼ 8:33�

Then 1=� ¼ Req=L ¼ 833 s�1. At t ¼ 1, the circuit resistance is

RT ¼ 10þ
5ð5Þ

10
¼ 12:5�

so that the total current is iT ¼ 100=12:5 ¼ 8A. And, at t ¼ 1, this divides equally between the two 5-�

resistors, yielding a final inductor current of 4A. Consequently,

iL ¼ i1 ¼ 4ð1� e�833t
Þ ðAÞ

7.19 A series RL circuit, with R ¼ 50� and L ¼ 0:2H, has a sinusoidal voltage

v ¼ 150 sin ð500tþ 0:785Þ ðVÞ

applied at t ¼ 0. Obtain the current for t > 0.

The circuit equation for t > 0 is

di

dt
þ 250i ¼ 750 sin ð500tþ 0:785Þ ð27Þ

The solution is in two parts, the complementary function (ic) and the particular solution ðipÞ, so that

i ¼ ic þ ip. The complementary function is the general solution of (27) when the right-hand side is replaced

by zero: ic ¼ ke�250t. The method of undetermined coefficients for obtaining ip consists in assuming that

ip ¼ A cos 500tþ B sin 500t

since the right-hand side of (27) can also be expressed as a linear combination of these two functions. Then
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dip

dt
¼ �500A sin 500tþ 500B cos 500t

Substituting these expressions for ip and dip=dt into (27) and expanding the right-hand side,

�500A sin 500tþ 500B cos 500tþ 250A cos 500tþ 250B sin 500t ¼ 530:3 cos 500tþ 530:3 sin 500t

Now equating the coefficients of like terms,

�500Aþ 250B ¼ 530:3 and 500Bþ 250A ¼ 530:3

Solving these simultaneous equations, A ¼ �0:4243A, B ¼ 1:273A.

ip ¼ �0:4243 cos 500tþ 1:273 sin 500t ¼ 1:342 sin ð500t� 0:322Þ ðAÞ

i ¼ ic þ ip ¼ ke�250t
þ 1:342 sin ð500t� 0:322Þ ðAÞand

At t ¼ 0, i ¼ 0. Applying this condition, k ¼ 0:425A, and, finally,

i ¼ 0:425e�250t
þ 1:342 sin ð500t� 0:322Þ ðAÞ

7.20 For the circuit of Fig. 7-33, obtain the current iL, for all values of t.

For t < 0, the 50-V source results in inductor current 50=20 ¼ 2:5A. The 5-A current source is applied

for t > 0. As t ! 1, this current divides equally between the two 10-� resistors, whence iLð1Þ ¼ �2:5A.

The time constant of the circuit is

� ¼
0:2� 10�3 H

20�
¼

1

100
ms

and so, with t in ms and using iLð0
þ
Þ ¼ iLð0

�
Þ ¼ 2:5A,

iL ¼ ½iLð0
þ
Þ � iLð1Þ�e�t=�

þ iLð1Þ ¼ 5:0e�100t
� 2:5 ðAÞ

Finally, using unit step functions to combine the expressions for t < 0 and t > 0,

iL ¼ 2:5uð�tÞ þ ð5:0e�100t
� 2:5ÞuðtÞ ðAÞ

7.21 The switch in Fig. 7-34 has been in position 1 for a long time; it is moved to 2 at t ¼ 0. Obtain
the expression for i, for t > 0.

With the switch on 1, ið0�Þ ¼ 50=40 ¼ 1:25A. With an inductance in the circuit, ið0�Þ ¼ ið0þÞ. Long

after the switch has been moved to 2, ið1Þ ¼ 10=40 ¼ 0:25A. In the above notation,

B ¼ ið1Þ ¼ 0:25A A ¼ ið0þÞ � B ¼ 1:00A

and the time constant is � ¼ L=R ¼ ð1=2000Þ s. Then, for t > 0,

i ¼ 1:00e�2000t
þ 0:25 ðAÞ
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7.22 The switch in the circuit shown in Fig. 7-35 is moved from 1 to 2 at t ¼ 0. Find vC and vR, for
t > 0.

With the switch on 1, the 100-V source results in vCð0
�
Þ ¼ 100V; and, by continuity of charge,

vCð0
þ
Þ ¼ vCð0

�
Þ. In position 2, with the 50-V source of opposite polarity, vCð1Þ ¼ �50V. Thus,

B ¼ vCð1Þ ¼ �50V A ¼ vCð0
þ
Þ � B ¼ 150V

� ¼ RC ¼
1

200
s

vC ¼ 150e�200t
� 50 ðVÞand

Finally, KVL gives vR þ vC þ 50 ¼ 0, or

vR ¼ �150e�200t
ðVÞ

7.23 Obtain the energy functions for the circuit of Problem 7.22.

wC ¼ 1
2
Cv2C ¼ 1:25ð3e�200t

� 1Þ2 ðmJÞ

wR ¼

ðt
0

v2R
R

dt ¼ 11:25ð1� e�400t
Þ ðmJÞ

7.24 A series RC circuit, with R ¼ 5 k� and C ¼ 20 mF, has two voltage sources in series,

v1 ¼ 25uð�tÞ ðVÞ v2 ¼ 25uðt� t 0Þ ðVÞ

Obtain the complete expression for the voltage across the capacitor and make a sketch, if t 0 is
positive.

The capacitor voltage is continuous. For t � 0, v1 results in a capacitor voltage of 25V.

For 0 � t � t 0, both sources are zero, so that vC decays exponentially from 25V towards zero:

vC ¼ 25e�t=RC
¼ 25e�10t

ðVÞ ð0 � t � t 0Þ

In particular, vCðt
0
Þ ¼ 25e�10t 0 (V).

For t � t 0, vC builds from vCðt
0
Þ towards the final value 25V established by v2:

vC ¼ ½vCðt
0
Þ � vCð1Þ�e�ðt�t 0 Þ=RC

þ vCð1Þ

¼ 25½1� ðe10t
0

� 1Þe�10t
� ðVÞ ðt � t 0Þ

Thus, for all t,

vC ¼ 25uð�tÞ þ 25e�10t
½uðtÞ � uðt� t 0Þ� þ 25½1� ðe10t

0

� 1Þe�10t
�uðt� t 0Þ ðVÞ

See Fig. 7-36.
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Supplementary Problems

7.25 The capacitor in the circuit shown in Fig. 7-37 has initial charge Q0 ¼ 800mC, with polarity as indicated. If

the switch is closed at t ¼ 0, obtain the current and charge, for t > 0.

Ans: i ¼ �10e�25 000t
ðAÞ; q ¼ 4� 10�4

ð1þ e�25 000t
Þ ðCÞ

7.26 A 2-mF capacitor, with initial charge Q0 ¼ 100 mC, is connected across a 100-� resistor at t ¼ 0. Calculate

the time in which the transient voltage across the resistor drops from 40 to 10 volts. Ans: 0:277ms

7.27 In the RC circuit shown in Fig. 7-38, the switch is closed on position 1 at t ¼ 0 and then moved to 2 after the

passage of one time constant. Obtain the current transient for (a) 0 < t < �; ðbÞ t > �.
Ans: ðaÞ 0:5e�200t

ðAÞ; ðbÞ � 0:516e�200ðt��Þ (A)

7.28 A 10-mF capacitor, with initial charge Q0, is connected across a resistor at t ¼ 0. Given that the power

transient for the capacitor is 800e�4000t (W), find R, Q0, and the initial stored energy in the capacitor.

Ans: 50�; 2000 mC; 0:20 J

7.29 A series RL circuit, with R ¼ 10� and L ¼ 1H, has a 100-V source applied at t ¼ 0. Find the current for

t > 0. Ans: 10ð1� e�10t
Þ (A)

7.30 In Fig. 7-39, the switch is closed on position 1 at t ¼ 0, then moved to 2 at t ¼ 1ms. Find the time at which

the voltage across the resistor is zero, reversing polarity. Ans: 1:261ms

7.31 A series RL circuit, with R ¼ 100� and L ¼ 0:2H, has a 100-V source applied at t ¼ 0; then a second

source, of 50V with the same polarity, is switched in at t ¼ t 0, replacing the first source. Find t 0 such that

the current is constant at 0.5A for t > t 0. Ans: 1:39ms
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7.32 The circuit of Problem 7.31 has a 50-V source of opposite polarity switched in at t ¼ 0:50ms, replacing the

first source. Obtain the current for (a) 0 < t < 0:50ms; ðbÞ t > 0:50ms.

Ans: ðaÞ 1� e�500t
ðAÞ; ðbÞ 0:721e�500ðt�0:0005Þ

� 0:50 ðAÞ

7.33 A voltage transient, 35e�500t (V), has the value 25V at t1 ¼ 6:73� 10�4 s. Show that at t ¼ t1 þ � the

function has a value 36.8 percent of that at t1:

7.34 A transient that increases from zero toward a positive steady-state magnitude is 49.5 at t1 ¼ 5:0 ms, and 120

at t2 ¼ 20:0ms. Obtain the time constant �. Ans: 12:4ms

7.35 The circuit shown in Fig. 7-40 is switched to position 1 at t ¼ 0, then to position 2 at t ¼ 3�. Find the

transient current i for (a) 0 < t < 3�; ðbÞ t > 3�.
Ans: ðaÞ 2:5e�50 000t

ðAÞ; ðbÞ � 1:58e�66 700ðt�0:00006Þ (A)

7.36 An RL circuit, with R ¼ 300� and L ¼ 1H, has voltage v ¼ 100 cos ð100tþ 458Þ (V) applied by closing a

switch at t ¼ 0. [A convenient notation has been used for the phase of v, which, strictly, should be indicated

as 100tþ ð�=4Þ (rad).] Obtain the resulting current for t > 0.

Ans: � 0:282e�300t
þ 0:316 cos ð100tþ 26:68Þ (A)

7.37 The RC circuit shown in Fig. 7-41 has an initial charge on the capacitor Q0 ¼ 25 mC, with polarity as

indicated. The switch is closed at t ¼ 0, applying a voltage v ¼ 100 sin ð1000tþ 308Þ (V). Obtain the

current for t > 0. Ans: 153:5e�4000t
þ 48:4 sin ð1000tþ 1068Þ (mA)

7.38 What initial charge on the capacitor in Problem 7.37 would cause the current to go directly into the steady

state without a transient? Ans: 13:37mC (þ on top plate)

7.39 Write simultaneous differential equations for the circuit shown in Fig. 7-42 and solve for i1 and i2. The

switch is closed at t ¼ 0 after having been open for an extended period of time. (This problem can also be

solved by applying known initial and final conditions to general solutions, as in Problem 7-17.)

Ans: i1 ¼ 1:67e6:67t þ 5 ðAÞ; i2 ¼ �0:555e�6:67t
þ 5 ðAÞ
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7.40 For the RL circuit shown in Fig. 7-43, find the current iL at the following times: (a) �1ms, (b) 0þ,

(c) 0.3ms, (d) 1. Ans: ðaÞ 2:00A; ðbÞ 2:00A; ðcÞ 2:78A; ðdÞ 3:00A

7.41 A series RC circuit, with R ¼ 2 k� and C ¼ 40 mF, has two voltage sources in series with each other,

v1 ¼ 50V and v2 ¼ �100uðtÞ (V). Find (a) the capacitor voltage at t ¼ �, (b) the time at which the capa-

citor voltage is zero and reversing polarity. Ans: ðaÞ � 13:2V; ðbÞ 55:5ms

7.42 Find the unit-impulse response of the circuit of Fig. 7-44; i.e., v2 for v1 ¼ �ðtÞ (a unit-area narrow voltage

pulse).

Ans: v2 ¼ �
R2

R1

�ðtÞ �
1

R1C
e�t=ðR1CÞuðtÞ

� �

7.43 In the circuits of Fig. 7-45, RC ¼ 5� 10�7 and v1ðtÞ ¼ 10þ cos ð1000tÞ þ 3 cos ð2000tÞ. Find v2ðtÞ.

Assume tan � � � when � < 18. Ans: v2ðtÞ � 10 þ cos ½1000ðt� 10�6
Þ� þ 3 cos ½2000ðt� 10�6

Þ� ¼

v1ðt� 10�6
Þ
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7.44 The input voltage in the circuits of 7-45 is a weighted sum of sinusoids with the highest frequency f0 Hz.

Assuming that RC < 1=ð360 f0Þ, find v2ðtÞ. Ans: v2ðtÞ � v1ðt� 2RCÞ

7.45 Find the relationship between v2 and v1 in the circuit of Fig. 7-46.

Ans: v2 þ RC
dv2
dt

¼ 2v1

7.46 In the circuit of Fig. 7-47, find the differential equation relating v2 to v1. Compare with the circuit of

Fig. 7-45(a) of Example 7.17.

Ans: v2 þ RC
dv2
dt

¼
1

2
v1 � RC

dv1
dt

� �

7.47 In the circuit of Fig. 7-48, find the relationship between v2 and v1.

Ans: v2 þ R1C1

dv2
dt

¼ �
C1

C2

v1 � R2C2

dv1
dt

� �
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7.48 In the circuit of Fig. 7-49, let k ¼ 0. Find v and i after the switch is closed at t ¼ 0.

Ans: v ¼ e�t; i ¼ 1� 0:5e�t

7.49 Show that the segment of the circuit enclosed by the dashed box in the circuit of Fig. 7-49 is equivalent to an

inductor with value L ¼ 1=ð1� kÞ H. Hint: Write KVL between terminals AB of the dashed box.

7.50 The switch in the circuit of Fig. 7-49 is closed at t ¼ 0. Find v at t > 0 for the following values of k:

(a) 0.5, (b) 1, (c) 2. Ans: ðaÞ v ¼ e�t=2; ðbÞ v ¼ 1; ðcÞ v ¼ et

7.51 Find i, the current drawn from the battery, in Problem 7.50.

Ans: ðaÞ i ¼ 1� 0:5e�t=2; ðbÞ i ¼ 0:5; ðcÞ i ¼ 1� 0:5et
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161

Higher-Order Circuits
and Complex Frequency

8.1 INTRODUCTION

In Chapter 7, RL and RC circuits with initial currents or charge on the capacitor were examined and

first-order differential equations were solved to obtain the transient voltages and currents. When two

or more storage elements are present, the network equations will result in second-order differential

equations. In this chapter, several examples of second-order circuits will be presented. This will

then be followed by more direct methods of analysis, including complex frequency and pole-zero plots.

8.2 SERIES RLC CIRCUIT

The second-order differential equation, which will be examined shortly, has a solution that can take

three different forms, each form depending on the circuit elements. In order to visualize the three

possibilities, a second-order mechanical system is shown in Fig. 8-1. The mass M is suspended by a

spring with a constant k. A damping device D is attached to the mass M. If the mass is displaced

from its rest position and then released at t ¼ 0, its resulting motion will be overdamped, critically

damped, or underdamped (oscillatory). Figure 8-2 shows the graph of the resulting motions of the

mass after its release from the displaced position z1 (at t ¼ 0).

Fig. 8-1
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The series RLC circuit shown in Fig. 8-3 contains no voltage source. Kirchhoff’s voltage law for
the closed loop after the switch is closed is

vR þ vL þ vC ¼ 0

Ri þ L
di

dt
þ

1

C

ð
i dt ¼ 0or

Differentiating and dividing by L yields

d2i

dt2
þ
R

L

di

dt
þ

1

LC
i ¼ 0

A solution of this second-order differential equation is of the form i ¼ A1e
s1t þ A2e

s2t. Substituting this
solution in the differential equation obtains

A1e
s1t s21 þ

R

L
s1 þ

1

LC

� �
þ A2e

s2t s22 þ
R

L
s2 þ

1

LC

� �
¼ 0

that is, if s1 and s2 are the roots of s2 þ ðR=LÞsþ ð1=LCÞ ¼ 0,

s1 ¼ �
R

2L
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

�
1

LC

s
� � �þ � s2 ¼ �

R

2L
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

�
1

LC

s
� ��� �

where � � R=2L, � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � !2

0

q
, and !0 � 1=

ffiffiffiffiffiffiffi
LC

p
.

162 HIGHER-ORDER CIRCUITS AND COMPLEX FREQUENCY [CHAP. 8

Fig. 8-2

Fig. 8-3



Overdamped Case ð� > !0Þ

In this case, both � and � are real positive numbers.

i ¼ A1e
ð��þ�Þt

þ A2e
ð����Þt

¼ e��tðA1e
�t
þ A2e

��t
Þ

EXAMPLE 8.1 A series RLC circuit, with R ¼ 200�, L ¼ 0:10H, and C ¼ 13:33 mF, has an initial charge on the

capacitor of Q0 ¼ 2:67� 10�3 C. A switch is closed at t ¼ 0, allowing the capacitor to discharge. Obtain the

current transient. (See Fig. 8-4.)

For this circuit,

� ¼
R

2L
¼ 103 s�1; !2

0 ¼
1

LC
¼ 7:5� 105 s�2; and � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � !2

0

q
¼ 500 s�1

i ¼ e�1000t
ðA1e

500t
þ A2e

�500t
ÞThen,

The values of the constants A1 and A2 are obtained from the initial conditions. The inductance requires that

ið0þÞ ¼ ið0�Þ. Also the charge and voltage on the capacitor at t ¼ 0þ must be the same as at t ¼ 0�, and

vCð0
�
Þ ¼ Q0=C ¼ 200V. Applying these two conditions,

0 ¼ A1 þ A2 and � 2000 ¼ �500A1 � 1500A2

from which A1 ¼ �2;A2 ¼ �2, and, taking A1 positive,

i ¼ 2e�500t
� 2e�1500t

ðAÞ

If the negative value is taken for A1, the function has simply flipped downward but it has the same shape. The signs

of A1 and A2 are fixed by the polarity of the initial voltage on the capacitor and its relationship to the assumed

positive direction for the current.

Critically Damped Case ð� ¼ !0Þ

With � ¼ !0, the differential equation takes on a different form and the two exponential terms
suggested in the preceding will no longer provide a solution. The equation becomes

d2i

dt2
þ 2�

di

dt
þ �2i ¼ 0

and the solution takes the form i ¼ e��tðA1 þ A2tÞ.

EXAMPLE 8.2 Repeat Example 8.1 for C ¼ 10mF, which results in � ¼ !0.

As in Example 8.1, the initial conditions are used to determine the constants. Since ið0�Þ ¼ ið0þÞ,

0 ¼ ½A1 þ A2ð0Þ� and A1 ¼ 0. Then,

di

dt
¼

d

dt
ðA2te

��t
Þ ¼ A2ð��te

�at
þ e��tÞ

from which A2 ¼ ðdi=dtÞj0þ ¼ �2000. Hence, i ¼ �2000te�103t (A) (see Fig. 8-5).

Once again the polarity is a matter of the choice of direction for the current with respect to the polarity of the

initial voltage on the capacitor.
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The responses for the overdamped and critically damped cases plotted in Figs. 8-4 and 8-5, respec-
tively, are quite similar. The reader is encouraged to examine the results, selecting several values for t,
and comparing the currents. For example, find the time at which the current in each of the two cases
reaches the values of 1.0mA and 1.0 mA. Also, in each case, find t1 for the maximum current.

Underdamped or Oscillatory Case ð� < !0Þ

When � < !0, s1 and s2 in the solution to the differential equation suggested in the preceding are

complex conjugates s1 ¼ �þ j� and s2 ¼ �� j�, where � is now given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
0 � �

2
q

. The solution can

be written in the exponential form

i ¼ e��tðA1e
j�t

þ A2e
�j�t

Þ

or, in a readily derived sinusoidal form,

i ¼ e��tðA3 cos�tþ A4 sin �tÞ

EXAMPLE 8.3 Repeat Example 8.1 for C ¼ 1 mF.
As before,

� ¼
R

2L
¼ 1000 s�1 !2

0 ¼
1

LC
¼ 107 s�2 � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
107 � 106

p
¼ 3000 rad=s

i ¼ e�1000t
ðA3 cos 3000tþ A4 sin 3000tÞThen,

The constants A3 and A4 are obtained from the initial conditions as before, ið0þÞ ¼ 0 and vcð0
þ
Þ ¼ 200V. From

this A3 ¼ 0 and A4 ¼ �0:667. Thus,

i ¼ �0:667e�1000t
ðsin 3000tÞ ðAÞ

See Fig. 8-6. The function �0:667e�1000t, shown dashed in the graph, provides an envelope within which the

sine function is confined. The oscillatory current has a radian frequency of � (rad/s), but is damped by the expo-

nential term e��t.

8.3 PARALLEL RLC CIRCUIT

The response of the parallel RLC circuit shown in Fig. 8-7 will be similar to that of the series RLC
circuit, since a second-order differential equation can be expected. The node voltage method gives

v

R
þ

1

L

ðt
0

v dtþ C
dv

dt
¼ 0 ð1Þ

Differentiating and dividing by C yields

d2v

dt2
þ

1

RC

dv

dt
þ

v

LC
¼ 0

A solution is of the form
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v ¼ A1e
s1t þ A2e

s2t ð2Þ

s1 ¼ �
1

2RC
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2RC

� �2

�
1

LC

s
¼ ��þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � !2

0

q
where

s2 ¼ �
1

2RC
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2RC

� �2

�
1

LC

s
¼ ���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � !2

0

q

where � ¼ 1=2RC and !0 ¼ 1=
ffiffiffiffiffiffiffi
LC

p
. Note that �, the damping factor of the transient, differs from � in

the series RLC circuit.

The transient response is easiest to visualize by assuming an initial charge Q0 on the capacitor and a
switch that closes at t ¼ 0. However, a step function voltage applied to the circuit will initiate the same
transient response.

Overdamped Case ð�2 > !2
0Þ

In this case, the solution (2) applies.

EXAMPLE 8.4 A parallel RLC circuit, with R ¼ 1000�, C ¼ 0:167mF, and L ¼ 1:0H, has an initial voltage

V0 ¼ 50:0V on the capacitor. Obtain the voltage vðtÞ when the switch is closed at t ¼ 0.

We have

� ¼
1

2RC
¼ 2994 �2 ¼ 8:96� 106 !2

0 ¼
1

LC
¼ 5:99� 106
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Since �2 > !2
0, the circuit is overdamped and from (2) we have

s1 ¼ ��þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � !2

0

q
¼ �1271 and s2 ¼ ���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � !2

0

q
¼ �4717

V0 ¼ A1 þ A2 and
dv

dt

����
t¼0

¼ s1A1 þ s2A2At t ¼ 0;

From the nodal equation (1), at t ¼ 0 and with no initial current in the inductance L,

V0

R
þ C

dv

dt
¼ 0 or

dv

dt t¼0
¼ �

V0

RC

����
Solving for A1,

A1 ¼
V0ðs2 þ 1=RCÞ

s2 � s1
¼ 155:3 and A1 ¼ V0 � A1 ¼ 50:0� 155:3 ¼ �105:3

Substituting into (2)

v ¼ 155:3e�1271t
� 105:3e�4717t

ðVÞ

See Fig. 8-8.

Underdamped (Oscillatory) Case ð!2
0 > �2Þ

The oscillatory case for the parallel RLC circuit results in an equation of the same form as that of
the underdamped series RLC circuit. Thus,

v ¼ e��tðA1 cos!dtþ A2 sin!dtÞ ð3Þ

where � ¼ 1=2RC and !d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
0 � �

2
q

. !d is a radian frequency just as was the case with sinusoidal
circuit analysis. Here it is the frequency of the damped oscillation. It is referred to as the damped
radian frequency.

EXAMPLE 8.5 A parallel RLC circuit, with R ¼ 200�, L ¼ 0:28H, and C ¼ 3:57mF, has an initial voltage

V0 ¼ 50:0V on the capacitor. Obtain the voltage function when the switch is closed at t ¼ 0.

� ¼
1

2RC
¼

1

2ð200Þð3:57� 10�6Þ
¼ 700 �2 ¼ 4:9� 105 !2

0 ¼
1

LC
¼

1

ð0:28Þð3:57� 10�6Þ
¼ 106

Since !2
0 > �2, the circuit parameters result in an oscillatory response.
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!d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
0 � �

2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
106 � ð4:9� 105Þ

q
¼ 714

At t ¼ 0, V0 ¼ 50:0; hence in (3) A1 ¼ V0 ¼ 50:0. From the nodal equation

V0

R
þ

1

L

ðt
0

v dtþ C
dv

dt
¼ 0

dv

dt t¼ 0
¼ �

V0

RC

����
at t ¼ 0,

Differentiating the expression for v and setting t ¼ 0 yields

dv

dt
t¼0 ¼ !dA2 � �A1 or !dA2 � �A1 ¼ �

V0

RC

����
Since A1 ¼ 50:0,

A2 ¼
�ðV0=RCÞ þ V0�

!d

¼ �49:0

v ¼ e�700t
ð50:0 cos 714t� 49:0 sin 714tÞ ðVÞand so

The critically damped case will not be examined for the parallel RLC circuit, since it has little or no
real value in circuit design. In fact, it is merely a curiosity, since it is a set of circuit constants whose
response, while damped, is on the verge of oscillation.

8.4 TWO-MESH CIRCUIT

The analysis of the response for a two-mesh circuit which contains two storage elements results in
simultaneous differential equation as shown in the following.

For the circuit of Fig. 8-9, choose mesh currents i1 and i2, as indicated. KVL yields the two first-
order differential equations

R1i1 þ L1

di1
dt

þ R1i2 ¼ V ð4Þ

R1i1 þ ðR1 þ R2Þi2 þ L2

di2
dt

¼ V ð5Þ

which must be solved simultaneously. To accomplish this, take the time derivative of (4),

R1

di1
dt

þ L1

d2i1
dt2

þ R1

di2
dt

¼ 0 ð6Þ

and then eliminate i2 and di2=dt between (4), (5), and (6). The following result is a second-order
equation for i1, of the types treated in Sections 8.2 and 8.3, except for the constant term on the right:
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d2i1
dt2

þ
R1L1 þ R2L1 þ R1L2

L1L2

di1
dt

þ
R1R2

L1L2

i1 ¼
R2V

L1L2

ð7Þ

The steady-state solution of (7) is evidently i1ð1Þ ¼ V=R1; the transient solution will be determined
by the roots s1 and s2 of

s2 þ
R1L1 þ R2L1 þ R1L2

L1L2

sþ
R1R2

L1L2

¼ 0

together with the initial conditions

i1ð0
þ
Þ ¼ 0

di1
dt 0þ

¼
V

L1

����
(both i1 and i2 must be continuous at t ¼ 0). Once the expression for i1 is known, that for i2 follows
from (4).

There will be a damping factor that insures the transient will ultimately die out. Also, depending
on the values of the four circuit constants, the transient can be overdamped or underdamped, which is
oscillatory. In general, the current expression will be

i1 ¼ ðtransientÞ þ
V

R1

The transient part will have a value of �V=R1 at t ¼ 0 and a value of zero as t ! 1.

8.5 COMPLEX FREQUENCY

We have examined circuits where the driving function was a constant (e.g., V ¼ 50:0V), a sinusoidal
function (e.g., v ¼ 100:0 sin ð500tþ 308Þ (V), or an exponential function, e.g., v ¼ 10e�5t (V). In this
section, we introduce a complex frequency, s, which unifies the three functions and will simplify the
analysis, whether the transient or steady-state response is required.

We begin by expressing the exponential function in the equivalent cosine and sine form:

e jð!tþ�Þ ¼ cos ð!tþ �Þ þ j sin ð!tþ �Þ

We will focus exclusively on the cosine term cos ð!tþ �Þ ¼ Re e jð!tþ�Þ and for convenience drop the
prefix Re. Introducing a constant A and the factor e�t,

Ae�te jð!tþ�Þ ) Ae�t cos ð!tþ �Þ Ae j�eð�þj!Þt
¼ Ae j�est where s ¼ � þ j!

The complex frequency s ¼ � þ j! has units s�1, and !, as we know, has units rad/s. Consequently,
the units on � must also be s�1. This is the neper frequency with units Np/s. If both � and ! are

168 HIGHER-ORDER CIRCUITS AND COMPLEX FREQUENCY [CHAP. 8

Fig. 8-10



nonzero, the function is a damped cosine. Only negative values of � are considered. If � and ! are zero,

the result is a constant. And finally, with ! ¼ 0 and � nonzero, the result is an exponential decay

function. In Table 8-1, several functions are given with corresponding values of s for the expressionAest.

When Fig. 8-10 is examined for various values of s, the three cases are evident. If � ¼ 0, there is no
damping and the result is a cosine function with maximum values of �Vm (not shown). If ! ¼ 0, the
function is an exponential decay with an initial value Vm. And finally, with both ! and � nonzero, the
damped cosine is the result.

8.6 GENERALIZED IMPEDANCE (R;L;C) IN s-DOMAIN

A driving voltage of the form v ¼ Vme
st applied to a passive network will result in branch currents

and voltages across the elements, each having the same time dependence est; e.g., Iae
j est, and Vbe

j�est.
Consequently, only the magnitudes of currents and voltages and the phase angles need be determined
(this will also be the case in sinusoidal circuit analysis in Chapter 9). We are thus led to consider the
network in the s-domain (see Fig. 8-11).

A series RL circuit with an applied voltage v ¼ Vme
j�est will result in a current i ¼ Ime

j est ¼ Ime
st,

which, substituted in the nodal equation

Ri þ L
di

dt
¼ Vme

j�est

will result in

RIme
st
¼ sLIme

st
¼ Vme

j�est from which Im ¼
Vme

j�

Rþ sL

Note that in the s-domain the impedance of the series RL circuit is Rþ sL. The inductance there-
fore has an s-domain impedance sL.
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f ðtÞ s A

10e�5t
�5þ j� 10

5 cos ð500tþ 308Þ 0þ j500 5

2e�3t cos ð100t� 458Þ �3þ j100 2

100:0 0þ j0 100.0
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EXAMPLE 8.6 A series RL circuit, with R ¼ 10� and L ¼ 2H, has an applied voltage v ¼ 10 e�2t cos ð10tþ 308Þ.
Obtain the current i by an s-domain analysis.

v ¼ 10 308 est ¼ Ri þ L
di

dt
¼ 10i þ 2

di

dt

Since i ¼ Iest,

10 308 est ¼ 10Iest þ 2sIest or I ¼
10 308
10þ 2s

Substituting s ¼ �2þ j10,

I ¼
10 308

10þ 2ð�2þ j10Þ
¼

10 308
6þ j20

¼ 0:48 �43:38

Then, i ¼ Iest ¼ 0:48e�2t cos ð10t� 43:38Þ (A).

EXAMPLE 8.7 A series RC circuit, with R ¼ 10� and C ¼ 0:2F, has the same applied voltage as in Example 8.6.

Obtain the current by an s-domain analysis.

As in Example 8.6,

v ¼ 10 308 est ¼ Ri þ
1

C

ð
i dt ¼ 10i þ 5

ð
i dt

Since i ¼ Iest,

10 308 est ¼ 10Iest þ
5

s
Iest from which I ¼

10 308
10þ 5=s

¼ 1:01 32:88

Then, i ¼ 1:01e�2t cos ð10tþ 32:88Þ (A).

Note that the s-domain impedance for the capacitance is 1=ðsCÞ. Thus the s-domain impedance of
a series RLC circuit will be ZðsÞ ¼ Rþ sLþ 1=ðsCÞ

8.7 NETWORK FUNCTION AND POLE-ZERO PLOTS

A driving voltage of the form v ¼ Vest applied to a passive network will result in currents and
voltages throughout the network, each having the same time function est; for example, Ie j est. There-
fore, only the magnitude I and phase angle  need be determined. We are thus led to consider an
s-domain where voltages and currents are expressed in polar form, for instance, V �, I  , and so on.
Figure 8-12 suggests the correspondence between the time-domain network, where s ¼ � þ j!, and the
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s-domain where only magnitudes and phase angles are shown. In the s-domain, inductances are
expressed by sL and capacitances by 1=ðsCÞ. The impedance in the s-domain is ZðsÞ ¼ VðsÞ=IðsÞ.

A network function HðsÞ is defined as the ratio of the complex amplitude of an exponential output
YðsÞ to the complex amplitude of an exponential input XðsÞ If, for example, XðsÞ is a driving voltage
and YðsÞ is the output voltage across a pair of terminals, then the ratio YðsÞ=XðsÞ is nondimensional.

The network function HðsÞ can be derived from the input-output differential equation

an
dny

dtn
þ an�1

dn�1y

dtn�1
þ � � � þ a1

dy

dt
þ a0y ¼ bm

dmx

dtm
þ bm�1

dm�1x

dtm�1
þ � � � þ b1

dx

dt
þ b0x

When xðtÞ ¼ Xest and yðtÞ ¼ Yest,

ðans
n
þ an�1s

n�1
þ � � � þ a1sþ a0Þe

st
¼ ðbms

m
þ bm�1s

m�1
þ � � � þ b1sþ b0Þe

st

Then,

HðsÞ ¼
YðsÞ

XðsÞ
¼

ans
n
þ an�1s

n�1
þ � � � þ a1sþ a0

bms
m þ bm�1s

m�1 þ � � � þ b1sþ b0

In linear circuits made up of lumped elements, the network function HðsÞ is a rational function of s
and can be written in the following general form

HðsÞ ¼ k
ðs� z1Þðs� z2Þ � � � ðs� z�Þ

ðs� p1Þðs� p2Þ � � � ðs� p�Þ

where k is some real number. The complex constants zm ðm ¼ 1; 2; . . . ; �Þ, the zeros of HðsÞ, and the
pn ðn ¼ 1; 2; . . . ; �Þ the poles of HðsÞ, assume particular importance when HðsÞ is interpreted as the ratio
of the response (in one part of the s-domain network) to the excitation (in another part of the network).
Thus, when s ¼ zm, the response will be zero, no matter how great the excitation; whereas, when s ¼ pn,
the response will be infinite, no matter how small the excitation.

EXAMPLE 8.8 A passive network in the s-domain is shown in Fig. 8-13. Obtain the network function for the

current IðsÞ due to an input voltage VðsÞ.

HðsÞ ¼
IðsÞ

VðsÞ
¼

1

ZðsÞ

ZðsÞ ¼ 2:5þ

5s

3

� �
20

s

� �
5s

3
þ
20

s

¼ ð2:5Þ
s
2
þ 8sþ 12

s2 þ 12
Since

we have

HðsÞ ¼ ð0:4Þ
s
2
þ 12

ðsþ 2Þðsþ 6Þ

CHAP. 8] HIGHER-ORDER CIRCUITS AND COMPLEX FREQUENCY 171

Fig. 8-13



The numerator of HðsÞ in Example 8.8 is zero when s ¼ � j
ffiffiffiffiffi
12

p
. Consequently, a voltage function

at this frequency results in a current of zero. In Chapter 12 where series and parallel resonance are

discussed, it will be found that the parallel LC circuit is resonant at ! ¼ 1=
ffiffiffiffiffiffiffi
LC

p
. With L ¼ 5

3
H and

C ¼ 1
20
F, ! ¼

ffiffiffiffiffi
12

p
rad/s.

The zeros and poles of a network function HðsÞ can be plotted in a complex s-plane. Figure 8-14

shows the poles and zeros of Example 8.8, with zeros marked 8 and poles marked �. The zeros occur

in complex conjugate pairs, s ¼ � j
ffiffiffiffiffi
12

p
, and the poles are s ¼ �2 and s ¼ �6.

8.8 THE FORCED RESPONSE

The network function can be expressed in polar form and the response obtained graphically. Be-
fore starting the development, it is helpful to recall that HðsÞ is merely a ratio such as V0ðsÞ=ViðsÞ,
I2ðsÞ=V1ðsÞ, or I2ðsÞ=I1ðsÞ. With the polynomials factored,

HðsÞ ¼ k
ðs� z1Þðs� z2Þ � � � ðs� z�Þ

ðs� p1Þðs� z2Þ � � � ðs� p�Þ

Now setting ðs� zmÞ ¼ Nm �mðm ¼ 1; 2; . . . ; �Þ and ðs� pnÞ ¼ Dn �nðn ¼ 1; 2; . . . ; �Þ, we have

HðsÞ ¼ k
ðN1 �1ÞðN2 �2Þ � � � ðN ��Þ

ðD1 �1ÞðD2 �2Þ � � � ðD ��Þ
¼ k

N1N2 � � �N�

D1D2 � � �D�

ð�1 þ � � � þ ��Þ � ð�1 þ � � � þ ��Þ

It follows that the response of the network to an excitation for which s ¼ � þ j! is determined by
measuring the lengths of the vectors from the zeros and poles to s as well as the angles these vectors make
with the positive � axis in the pole-zero plot.

EXAMPLE 8.9 Test the response of the network of Example 8.8 to an exponential voltage excitation v ¼ 1est,

where s ¼ 1Np/s:

Locate the test point 1þ j0 on the pole-zero plot. Draw the vectors from the poles and zeros to the test point

and compute the lengths and angles (see Fig. 8-15). Thus,

N1 ¼ N2 ¼
ffiffiffiffiffi
13

p
;D1 ¼ 3;D2 ¼ 7; �1 ¼ �2 ¼ 0; and �1 ¼ ��2 ¼ tan�1

ffiffiffiffiffi
12

p
¼ 73:98

Hð1Þ ¼ ð0:4Þ
ð

ffiffiffiffiffi
13

p
Þð

ffiffiffiffiffi
13

p
Þ

ð3Þð7Þ
08� 08 ¼ 0:248Hence,
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The result implies that, in the time domain, iðtÞ ¼ 0:248vðtÞ, so that both voltage and current become
infinite according to the function e1t. For most practical cases, � must be either negative or zero.

The above geometrical method does not seem to require knowledge of the analytic expression for
HðsÞ as a rational function. It is clear, however, that the expression can be written, to within the
constant factor k, from the known poles and zeros of HðsÞ in the pole-zero plot. See Problem 8.37.

8.9 THE NATURAL RESPONSE

This chapter has focused on the forced or steady-state response, and it is in obtaining that response
that the complex-frequency method is most helpful. However, the natural frequencies, which charac-
terize the transient response, are easily obtained. They are the poles of the network function.

EXAMPLE 8.10 The same network as in Example 8.8 is shown in Fig. 8-16. Obtain the natural response when a

source VðsÞ is inserted at xx 0.

The network function is the same as in Example 8.8:

HðsÞ ¼ ð0:4Þ
s2 þ 12

ðsþ 2Þðsþ 6Þ

The natural frequencies are then �2Np/s and �6Np/s. Hence, in the time domain, the natural or transient current

is of the form

in ¼ A1e
�2t

þ A2e
�6t
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where the constants A1 and A2 are determined by applying the initial conditions to the complete response, i ¼ in þ if ,

where if indicates the forced response.

EXAMPLE 8.11 The network of Fig. 8-16 is driven by current IðsÞ across terminals yy 0. The network function is

HðsÞ ¼ VðsÞ=IðsÞ ¼ ZðsÞ. The three branches are in parallel so that

HðsÞ ¼ ZðsÞ ¼
1

1

2:5
þ

3

5s
þ

s

20

¼
20s

ðsþ 2Þðsþ 6Þ

Again the poles are at �2Np/s and �6Np/s, which is the same result as that obtained in Example 8.10.

8.10 MAGNITUDE AND FREQUENCY SCALING

Magnitude Scaling

Let a network have input impedance function ZinðsÞ, and let Km be a positive real number. Then, if
each resistance R in the network is replaced by KmR, each inductance L by KmL, and each capacitance C
by C=Km, the new input impedance function will be KmZinðsÞ. We say that the network has been
magnitude-scaled by a factor Km.

Frequency Scaling

If, instead of the above changes, we preserve each resistance R, replace each inductance L by L=Kf

ðKf > 0Þ, and replace each capacitance C by C=Kf , then the new input impedance function will be
Zinðs=Kf Þ. That is, the new network has the same impedance at complex frequency Kf s as the old
had at s. We say that the network has been frequency-scaled by a factor Kf .

EXAMPLE 8.12 Express ZðsÞ for the circuit shown in Fig. 8-17 and observe the resulting magnitude scaling.

ZðsÞ ¼ KmLsþ
ðKmRÞ

Km

Cs

KmRþ
Km

Cs

¼ Km Lsþ
Rð1=CsÞ

Rþ ð1=CsÞ

� �

There are practical applications suggested by this brief exposure to magnitude scaling. For

example, if the input current to a network were greater than it should be, a factor Km ¼ 10 would reduce

the current to 1/10 of the former value.
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8.11 HIGHER-ORDER ACTIVE CIRCUITS

Application of circuit laws to circuits which contain op amps and several storage elements produces,
in general, several first-order differential equations which may be solved simultaneously or be reduced to
a higher-order input-output equation. A convenient tool for developing the equations is the complex
frequency s (and generalized impedance in the s-domain) as used throughout Sections 8.5 to 8.10.
Again, we assume ideal op amps (see Section 7.16). The method is illustrated in the following examples.

EXAMPLE 8.13 Find HðsÞ ¼ V2=V1 in the circuit of Fig. 8-41 and show that the circuit becomes a noninverting

integrator if and only if R1C1 ¼ R2C2.

Apply voltage division, in the phasor domain, to the input and feedback paths to find the voltages at the

terminals of the op amp.

At terminal A: VA ¼
1

1þ R1C1s
V

1

At terminal B: VB ¼
R2C2s

1þ R2C2s
V2

But VA ¼ VB. Therefore,

V2

V1

¼
1þ R2C2s

ð1þ R1C1sÞR2C2s

Only if R1C1 ¼ R2C2 ¼ RC do we get an integrator with a gain of 1=RC

V2

V1

¼
1

RCs
; v2 ¼

1

RC

ðt
�1

v1 dt

EXAMPLE 8.14 The circuit of Fig. 8-42 is called an equal-component Sallen-Key circuit. Find HðsÞ ¼ V2=V1

and convert it to a differential equation.

Write KCL at nodes A and B.

At node A:
VA � V1

R
þ
VA � VB

R
þ ðVA � V2ÞCs ¼ 0

At node B:
VB � VA

R
þ VBCs ¼ 0

Let 1þ R2=R1 ¼ k, then V2 ¼ kVB. Eliminating VA and VB between the above equations we get

V2

V1

¼
k

R2C2s2 þ ð3� kÞRCsþ 1

R2C2 d2v2
dt2

þ ð3� kÞRC
dv2
dt

þ v2 ¼ kv1

EXAMPLE 8.15 In the circuit of Fig. 8-42 assume R ¼ 2 k�, C ¼ 10 nF , and R2 ¼ R1. Find v2 if v1 ¼ uðtÞ.

By substituting the element values in HðsÞ found in Example 8.14 we obtain

V2

V1

¼
2

4� 10�10s2 þ 2� 10�5sþ 1

d2v2
dt2

þ 5� 104
dv2
dt

þ 25� 108v2 ¼ 5� 109v1

The response of the preceding equation for t > 0 to v1 ¼ uðtÞ is

v2 ¼ 2þ e��tð2 cos!t� 2:31 sin!tÞ ¼ 2þ 3:055e��t cos ð!tþ 130:98Þ

where � ¼ 25 000 and ! ¼ 21 651 rad/s.

EXAMPLE 8.16 Find conditions in the circuit of Fig. 8-42 for sustained oscillations in v2ðtÞ (with zero input) and

find the frequency of oscillations.

In Example 8.14 we obtained

V2

V1

¼
k

R2C2s2 þ ð3� kÞRCsþ 1
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For sustained oscillations the roots of the characteristic equation in Example 8.14 should be imaginary numbers.

This happens when k ¼ 3 or R2 ¼ 2R1, in which case ! ¼ 1=RC.

Solved Problems

8.1 A series RLC circuit, with R ¼ 3 k�, L ¼ 10H, and C ¼ 200 mF, has a constant-voltage source,
V ¼ 50V, applied at t ¼ 0. (a) Obtain the current transient, if the capacitor has no initial
charge. (b) Sketch the current and find the time at which it is a maximum.

� ¼
R

2L
¼ 150 s�1 !2

0 ¼
1

LC
¼ 500 s�2 � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � !2

0

q
¼ 148:3 s�1

ðaÞ

The circuit is overdamped ð� > !0Þ.

s1 ¼ ��þ � ¼ �1:70 s�1 s2 ¼ ��� � ¼ �298:3 s�1

i ¼ A1e
�1:70t

þ A2e
�298:3tand

Since the circuit contains an inductance, ið0þÞ ¼ ið0�Þ ¼ 0; also, Qð0þÞ ¼ Qð0�Þ ¼ 0. Thus, at t ¼ 0þ,

KVL gives

0þ 0þ L
di

dt 0þ
¼ V or

di

dt 0þ
¼

V

L
¼ 5A=s

����
����

Applying these initial conditions to the expression for i,

0 ¼ A1ð1Þ þ A2ð1Þ

5 ¼ �1:70A1ð1Þ � 298:3A2ð1Þ

from which A1 ¼ �A2 ¼ 16:9mA.

i ¼ 16:9ðe�1:70t
� e�298:3t

Þ ðmAÞ

(b) For the time of maximum current,

di

dt
¼ 0 ¼ �28:73e�1:70t

þ 5041:3e�298:3t

Solving by logarithms, t ¼ 17:4ms. See Fig. 8-18.
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8.2 A series RLC circuit, with R ¼ 50�;L ¼ 0:1H; and C ¼ 50 mF, has a constant voltage V ¼ 100V
applied at t ¼ 0. Obtain the current transient, assuming zero initial charge on the capacitor.

� ¼
R

2L
¼ 250 s�1 !2

0 ¼
1

LC
¼ 2:0� 105 s�2 � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � !2

0

q
¼ j370:8 rad=s

This is an oscillatory case ð� < !0Þ, and the general current expression is

i ¼ e�250t
ðA1 cos 370:8 tþ A2 sin 370:8tÞ

The initial conditions, obtained as in Problem 8.1, are

ið0þÞ ¼ 0
di

dt

����
0þ
¼ 1000A=s

and these determine the values: A1 ¼ 0, A2 ¼ 2:70A. Then

i ¼ e�250t
ð2:70 sin 370:8tÞ ðAÞ

8.3 Rework Problem 8.2, if the capacitor has an initial charge Q0 ¼ 2500 mC.

Everything remains the same as in Problem 8.2 except the second initial condition, which is now

0þ L
di

dt

�����
0þ

þ
Q0

C
¼ V or

di

dt

�����
0þ

¼
100� ð2500=50Þ

0:1
¼ 500A=s

The initial values are half those in Problem 8.2, and so, by linearity,

i ¼ e�250t
ð1:35 sin 370:8tÞ ðAÞ

8.4 A parallel RLC network, with R ¼ 50:0�, C ¼ 200 mF, and L ¼ 55:6mH, has an initial charge
Q0 ¼ 5:0mC on the capacitor. Obtain the expression for the voltage across the network.

� ¼
1

2RC
¼ 50 s�1 !2

0 ¼
1

LC
¼ 8:99� 104 s�2

Since !2
0 > �2, the voltage function is oscillatory and so !d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
0 � �

2
q

¼ 296 rad/s. The general voltage

expression is

v ¼ e�50t
ðA1 cos 296tþ A2 sin 296tÞ

With Q0 ¼ 5:0� 10�3 C, V0 ¼ 25:0V. At t ¼ 0, v ¼ 25:0V. Then, A1 ¼ 25:0.

dv

dt
¼ �50e�50t

ðA1 cos 296tþ A2 sin 296tÞ þ 296e�50t
ð�A1 sin 296tþ A2 cos 296tÞ

At t ¼ 0, dv=dt ¼ �V0=RC ¼ !dA2 � �A1, from which A2 ¼ �4:22. Thus,

v ¼ e�50t
ð25:0 cos 296t� 4:22 sin 296tÞ ðVÞ

8.5 In Fig. 8-19, the switch is closed at t ¼ 0. Obtain the current i and capacitor voltage vC, for
t > 0.

As far as the natural response of the circuit is concerned, the two resistors are in parallel; hence,

� ¼ ReqC ¼ ð5�Þð2mFÞ ¼ 10ms

By continuity, vCð0
þ
Þ ¼ vCð0

�
Þ ¼ 0. Furthermore, as t ! 1, the capacitor becomes an open circuit, leav-

ing 20� in series with the 50V. That is,

ið1Þ ¼
50

20
¼ 2:5A vCð1Þ ¼ ð2:5AÞð10�Þ ¼ 25V
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Knowing the end conditions on vC, we can write

vC ¼ ½vCð0
þ
Þ � vCð1Þ�e�t=�

þ vCð1Þ ¼ 25ð1� e�t=10
Þ ðVÞ

wherein t is measured in ms.
The current in the capacitor is given by

iC ¼ C
dvC
dt

¼ 5e�t=10
ðAÞ

and the current in the parallel 10-� resistor is

i10� ¼
vC
10�

¼ 2:5ð1� e�t=10
Þ ðAÞ

i ¼ iC þ i10� ¼ 2:5ð1þ e�t=10
Þ ðAÞHence,

The problem might also have been solved by assigning mesh currents and solving simultaneous differ-

ential equations.

8.6 For the time functions listed in the first column of Table 8-2, write the corresponding amplitude
and phase angle (cosine-based) and the complex frequency s.

See columns 2 and 3 of the table.

8.7 For each amplitude and phase angle in the first column and complex frequency s in the second
column in Table 8-3, write the corresponding time function.

See column 3 of the table.
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Table 8-2

Time Function A �8 s

iðtÞ ¼ 86:6A 86:6 08 A 0

iðtÞ ¼ 15:0e�2�103t
ðAÞ 15:0 08 A �2� 103 Np/s

vðtÞ ¼ 25:0 cos ð250t� 458Þ ðVÞ 25:0 �458 V � j250 rad/s

vðtÞ ¼ 0:50 sin ð250tþ 308Þ ðVÞ 0:50 �608 V � j250 rad/s

iðtÞ ¼ 5:0e�100t sin ð50tþ 908Þ ðAÞ 5:0 08 A �100� j50 s�1

iðtÞ ¼ 3 cos 50tþ 4 sin 50t ðAÞ 5 �53:138 A � j50 rad/s

Table 8-3

A �8 s Time Function

10 08 þj120	 10 cos 120	t
2 458 �j120	 2 cos ð120	tþ 458Þ
5 �908 �2� j50 5e�2t cos ð50t� 908Þ
15 08 �5000� j1000 15e�5000t cos 1000t

100 308 0 86.6



8.8 An amplitude and phase angle of 10
ffiffiffi
2

p
458V has an associated complex frequency

s ¼ �50þ j 100 s�1. Find the voltage at t ¼ 10ms.

vðtÞ ¼ 10
ffiffiffi
2

p
e�50t cos ð100tþ 458Þ ðVÞ

At t ¼ 10�2 s, 100t ¼ 1 rad ¼ 57:38, and so

v ¼ 10
ffiffiffi
2

p
e�0:5 cos 102:38 ¼ �1:83V

8.9 A passive network contains resistors, a 70-mH inductor, and a 25-mF capacitor. Obtain the
respective s-domain impedances for a driving voltage (a) v ¼ 100 sin ð300tþ 458Þ ðVÞ,
(b) v ¼ 100e�100t cos 300t ðVÞ.

(a) Resistance is independent of frequency. At s ¼ j300 rad/s, the impedance of the inductor is

sL ¼ ð j300Þð70� 10�3
Þ ¼ j21

and that of the capacitor is

1

sC
¼ �j133:3

(b) At s ¼ �100þ j300 s�1,

sL ¼ ð�100þ j300Þð70� 10�3
Þ ¼ �7þ j21

1

sC
¼

1

ð�100þ j300Þð25� 10�6Þ
¼ �40� j120

8.10 For the circuit shown in Fig. 8-20, obtain v at t ¼ 0:1 s for source current ðaÞ i ¼ 10 cos 2t (A),
(b) i ¼ 10e�t cos 2t (A).

ZinðsÞ ¼ 2þ
2ðsþ 2Þ

sþ 4
¼ ð4Þ

sþ 3

sþ 4

(a) At s ¼ j2 rad/s, Zinð j2Þ ¼ 3:22 7:138�. Then,

V ¼ IZin ¼ ð10 08Þð3:22 7:138Þ ¼ 32:2 7:138 V or v ¼ 32:2 cos ð2tþ 7:138Þ ðVÞ

and vð0:1Þ ¼ 32:2 cos ð18:598Þ ¼ 30:5V.

(b) At s ¼ �1þ j2 s�1, Zinð�1þ j2Þ ¼ 3:14 11:318�. Then

V ¼ IZin ¼ 31:4 11:318 V or v ¼ 31:4e�t cos ð2tþ 11:318Þ ðVÞ

and vð0:1Þ ¼ 31:4e�0:1 cos 22:778 ¼ 26:2V.

8.11 Obtain the impedance ZinðsÞ for the circuit shown in Fig. 8-21 at (a) s ¼ 0, (b) s ¼ j4 rad/s,
(c) jsj ¼ 1.
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ZinðsÞ ¼ 2þ

2ðsþ 1Þ
4

s

� �

2ðsþ 1Þ þ
4

s

¼ ð2Þ
s
2
þ 3sþ 4

s2 þ sþ 2

(a) Zinð0Þ ¼ 4�, the impedance offered to a constant (dc) source in the steady state.

Zinð j4Þ ¼ 2
ð j4Þ2 þ 3ð j4Þ þ 4

ð j4Þ2 þ j4þ 2
¼ 2:33 �29:058 �ðbÞ

This is the impedance offered to a source sin 4t or cos 4t.

(c) Zinð1Þ ¼ 2�. At very high frequencies the capacitance acts like a short circuit across the RL branch.

8.12 Express the impedance ZðsÞ of the parallel combination of L ¼ 4H and C ¼ 1F. At what
frequencies s is this impedance zero or infinite?

ZðsÞ ¼
ð4sÞð1=sÞ

4sþ ð1=sÞ
¼

s

s2 þ 0:25

By inspection, Zð0Þ ¼ 0 and Zð1Þ ¼ 0, which agrees with our earlier understanding of parallel LC circuits at

frequencies of zero (dc) and infinity. For jZðsÞj ¼ 1,

s
2
þ 0:25 ¼ 0 or s ¼ � j0:5 rad=s

A sinusoidal driving source, of frequency 0.5 rad/s, results in parallel resonance and an infinite impedance.

8.13 The circuit shown in Fig. 8-22 has a voltage source connected at terminals ab. The response to
the excitation is the input current. Obtain the appropriate network function HðsÞ.

HðsÞ ¼
response

excitation
¼

IðsÞ

VðsÞ
�

1

ZðsÞ

ZðsÞ ¼ 2þ
ð2þ 1=sÞð1Þ

2þ 1=sþ 1
¼

8sþ 3

3sþ 1
from which HðsÞ ¼

1

ZðsÞ
¼

3sþ 1

8sþ 3

8.14 Obtain HðsÞ for the network shown in Fig. 8-23, where the excitation is the driving current IðsÞ
and the response is the voltage at the input terminals.

Applying KCL at junction a,

IðsÞ þ 2IðsÞ ¼
s

5
V

0
ðsÞ or V

0
ðsÞ ¼

15

s
IðsÞ
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At the input terminals, KVL gives

VðsÞ ¼ 2sIðsÞ þ V
0
ðsÞ ¼ 2sþ

15

s

� �
IðsÞ

HðsÞ ¼
VðsÞ

IðsÞ
¼

2s2 þ 15

s
Then

8.15 For the two-port network shown in Fig. 8-24 find the values of R1, R2, and C, given that the
voltage transfer function is

HvðsÞ �
VoðsÞ

ViðsÞ
¼

0:2

s2 þ 3sþ 2

The impedance looking into xx 0 is

Z
0
¼

ð1=sCÞðR1 þ R2Þ

ð1=sCÞ þ R1 þ R2

¼
R1 þ R2

1þ ðR1 þ R2ÞCs

Then, by repeated voltage division,

Vo

Vi

¼
Vo

Vxx 0

� �
Vxx 0

Vi

� �
¼

R2

R1 þ R2

� �
Z

0

Z 0 þ s1

� �
¼

R2=ðR1 þ R2ÞC

s2 þ 1
ðR1 þ R2ÞC

sþ 1
C

Equating the coefficients in this expression to those in the given expression for HvðsÞ, we find:

C ¼
1

2
F R1 ¼

3

5
� R2 ¼

1

15
�

8.16 Construct the pole-zero plot for the transfer admittance function

HðsÞ ¼
IoðsÞ

ViðsÞ
¼

s
2
þ 2sþ 17

s2 þ 3sþ 2

In factored form,

HðsÞ ¼
ðsþ 1þ j4Þðsþ 1� j4Þ

ðsþ 1Þðsþ 2Þ

Poles exist at �1 and �2; zeros at �1� j4. See Fig. 8-25.
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8.17 Obtain the natural frequencies of the network shown in Fig. 8-26 by driving it with a conveniently
located current source.

The response to a current source connected at xx 0 is a voltage across these same terminals; hence the

network function HðsÞ ¼ VðsÞ=IðsÞ ¼ ZðsÞ. Then,

1

ZðsÞ
¼

1

1
þ

1

2=s
þ

1

2þ 4s
¼

1

2

� �
s
2
þ 2:5sþ 1:5

sþ 0:5

ZðsÞ ¼ ð2Þ
sþ 0:5

s2 þ 2:5sþ 1:5
¼ ð2Þ

sþ 0:5

ðsþ 1Þðsþ 1:5Þ
Thus,

The natural frequencies are the poles of the network function, s ¼ �1:0 Np=s ¼ 2 and s ¼ �1:5 Np/s.

8.18 Repeat Problem 8.17, now driving the network with a conveniently located voltage source.

The conductor at yy 0 in Fig. 8-26 can be opened and a voltage source inserted. Then,

HðsÞ ¼ IðsÞ=VðsÞ ¼ 1=ZðsÞ:
The impedance of the netework at terminals yy 0 is

ZðsÞ ¼ 2þ 4sþ
1ð2=sÞ

1þ 2=s
¼ ð4Þ

s
2
þ 2:5sþ 1:5

sþ 2

HðsÞ ¼
1

ZðsÞ
¼

1

4

� �
sþ 2

s2 þ 2:5sþ 1:5
Then;
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The denominator is the same as that in Problem 8.17, with the same roots and corresponding natural

frequencies.

8.19 A 5000-rad/s sinusoidal source, V ¼ 100 08V in phasor form, is applied to the circuit of
Fig. 8-27. Obtain the magnitude-scaling factor Km and the element values which will limit the
current to 89mA (maximum value).

At ! ¼ 5000 rad/s,

Zin ¼ j!L1 þ

ð j!L2Þ Rþ
1

j!C

� �

j!L2 þ Rþ
1

j!C

¼ j0:250þ
ð j0:500Þð0:40� j0:80Þ

0:40� j0:30
¼ 1:124 69:158 �

For jVj ¼ 100V, jIj ¼ 100=1:124 ¼ 89:0A. Thus, to limit the current to 89� 10�3 A, the impedance must

be increased by the factor Km ¼ 103.

The scaled element values are as follows: R ¼ 103ð0:4�Þ ¼ 400�, L1 ¼ 103ð50mHÞ ¼ 50mH,

L2 ¼ 103ð100mHÞ ¼ 100mH, and C ¼ ð250mFÞ=103 ¼ 0:250mF.

8.20 Refer to Fig. 8-28. Obtain HðsÞ ¼ Vo=Vi for s ¼ j4� 106 rad/s. Scale the network with
Km ¼ 10�3 and compare HðsÞ for the two networks.

At ! ¼ 4� 106 rad/s, XL ¼ ð4� 106Þð0:5� 10�3
Þ ¼ 2000�. Then,

HðsÞ ¼
Vo

Vi

¼
j2000

2000þ j2000
¼

1ffiffiffi
2

p 458

After magnitude scaling, the inductive reactance is 10�3
ð2000�Þ ¼ 2� and the resistance is

10�3
ð2 k�Þ ¼ 2�. Thus

HðsÞ ¼
j2

2þ j2
¼

1ffiffiffi
2

p 458

CHAP. 8] HIGHER-ORDER CIRCUITS AND COMPLEX FREQUENCY 183

Fig. 8-27

Fig. 8-28



The voltage transfer function remains unchanged by magnitude scaling. In general, any dimensionless

transfer function is unaffected by magnitude scaling; a transfer function having units � is multiplied by Km;

and a function having units S is multiplied by 1=Km.

8.21 A three-element series circuit contains R ¼ 5�, L ¼ 4H, and C ¼ 3:91mF. Obtain the series
resonant frequency, in rad/s, and then frequency-scale the circuit with Kf ¼ 1000. Plot jZð!Þj
for both circuits.

Before scaling,

!0 ¼
1ffiffiffiffiffiffiffi
LC

p ¼ 8 rad=s and Zð!0Þ ¼ R ¼ 5�

After scaling,

R ¼ 5� L ¼
4H

1000
¼ 4mH C ¼

3:91mF

1000
¼ 3:91mF

!0 ¼ 1000ð8 rad=sÞ ¼ 8000 rad=s Zð!0Þ ¼ R ¼ 5�

Thus, frequency scaling by a factor of 1000 results in the 5-� impedance value being attained at 8000 rad/s

instead of 8 rad/s. Any other value of the impedance is likewise attained, after scaling, at a frequency 1000

times that at which it was attained before scaling. Consequently, the two graphs of jZð!Þj differ only in the

horizontal scale—see Fig. 8-29. (The same would be true of the two graphs of �Zð!Þ.)

Supplementary Problems

8.22 In the RLC circuit of Fig. 8-30, the capacitor is initially charged to V0 ¼ 200V. Find the current transient

after the switch is closed at t ¼ 0. Ans: � 2e�1000t sin 1000t ðAÞ

8.23 A series RLC circuit, with R ¼ 200�, L ¼ 0:1H, and C ¼ 100mF, has a voltage source of 200V applied at

t ¼ 0. Find the current transient, assuming zero initial charge on the capacitor.

Ans: 1:055ðe�52t
� e�1948t

Þ ðAÞ

8.24 What value of capacitance, in place of the 100 mF in Problem 8.23, results in the critically damped case?

Ans: 10mF
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8.25 Find the natural resonant frequency, j�j, of a series RLC circuit with R ¼ 200�, L ¼ 0:1H, C ¼ 5 mF.
Ans: 1000 rad/s

8.26 A voltage of 10V is applied at t ¼ 0 to a series RLC circuit with R ¼ 5�, L ¼ 0:1H, C ¼ 500 mF. Find the

transient voltage across the resistance. Ans: 3:60e�25t sin 139t ðVÞ

8.27 In the two-mesh circuit shown in Fig. 8-31, the switch is closed at t ¼ 0. Find i1 and i2, for t > 0.

Ans: i1 ¼ 0:101e�100t
þ 9:899e�9950t

ðAÞ; i2 ¼ �5:05e�100t
þ 5:00þ 0:05e�9950t

ðAÞ

8.28 A voltage has the s-domain representation 100 308V. Express the time function for (a) s ¼ �2Np/s,

(b) s ¼ �1þ j5 s�1. Ans: ðaÞ 86:6 e�2t
ðVÞ; ðbÞ 100 e�t cos ð5tþ 308Þ ðVÞ

8.29 Give the complex frequencies associated with the current iðtÞ ¼ 5:0þ 10e�3t cos ð50tþ 908Þ ðAÞ.

Ans: 0;�3� j50 s�1

8.30 A phasor current 25 408A has complex frequency s ¼ �2þ j3 s�1. What is the magnitude of iðtÞ at

t ¼ 0:2 s? Ans: 4:51A

8.31 Calculate the impedance ZðsÞ for the circuit shown in Fig. 8-32, at (a) s ¼ 0; ðbÞ s ¼ j1 rad/s,

(c) s ¼ j2 rad/s, (d) jsj ¼ 1. Ans: ðaÞ 1�; ðbÞ 1:58 18:438�; ðcÞ 1:84 12:538�; ðdÞ 2�

8.32 The voltage source in the s-domain circuit shown in Fig. 8-33 has the time-domain expression

viðtÞ ¼ 10e�t cos 2t ðVÞ

Obtain ioðtÞ. Ans: 7:07e�t cos ð2tþ 98:138Þ ðAÞ

8.33 In the time domain, a series circuit of R, L, and C has an applied voltage vi and element voltages vR, vL, and

vC. Obtain the voltage transfer functions (a) VRðsÞ=ViðsÞ, (b) VCðsÞ=ViðsÞ:
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Ans: ðaÞ
Rs=L

s2 þ
R

L
sþ

1

LC

; ðbÞ
1=LC

s2 þ
R

L
sþ

1

LC

8.34 Obtain the network function HðsÞ for the circuit shown in Fig. 8-34. The response is the voltage ViðsÞ.

Ans:
ðsþ 7� j2:65Þðsþ 7þ j2:65Þ

ðsþ 2Þðsþ 4Þ

8.35 Construct the s-plane plot for the transfer function of Problem 8.34. Evaluate Hð j3Þ from the plot.

Ans: See Fig. 8-35.

ð7:02Þð9:0Þ 2:86þ 38:918

ð3:61Þð5:0Þ 56:318þ 36:878
¼ 3:50 �51:418 �

8.36 Obtain HðsÞ ¼ ViðsÞ=IiðsÞ for the circuit shown in Fig. 8-36 and construct the pole-zero plot.

Ans: HðsÞ ¼
sðs

2
þ 1:5Þ

s2 þ 1
: See Fig. 8-37.

8.37 Write the transfer function HðsÞ whose pole-zero plot is given in Fig. 8-38.

Ans: HðsÞ ¼ k
s
2
þ 50sþ 400

s2 þ 40sþ 2000
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8.38 The pole-zero plot in Fig. 8-39 shows a pole at s ¼ 0 and zeros at s ¼ �50� j50. Use the geometrical

method to evaluate the transfer function at the test point j100.

Ans: Hð j100Þ ¼ 223:6 26:578

8.39 A two-branch parallel circuit has a resistance of 20� in one branch and the series combination of R ¼ 10�

and L ¼ 0:1H in the other. First, apply an excitation, IiðsÞ, and obtain the natural frequency from the

denominator of the network function. Try different locations for applying the current source. Second,

insert a voltage source, ViðsÞ, and obtain the natural frequency. Ans: � 300Np/s in all cases

8.40 In the network shown in Fig. 8-40, the switch is closed at t ¼ 0. At t ¼ 0þ, i ¼ 0 and

di

dt
¼ 25A=s

Obtain the natural frequencies and the complete current, i ¼ in þ if .

Ans: � 8:5Np/s, �23:5Np/s; i ¼ �2:25e�8:5t
� 0:25e�23:5t

þ 2:5 ðAÞ
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8.41 A series RLC circuit contains R ¼ 1�, L ¼ 2H, and C ¼ 0:25F. Simultaneously apply magnitude and

frequency scaling, with Km ¼ 2000 and Kf ¼ 104. What are the scaled element values?

Ans: 2000�; 0:4H; 12:5 mF

8.42 At a certain frequency !1, a voltage V1 ¼ 25 08 V applied to a passive network results in a current

I1 ¼ 3:85 �308 (A). The network elements are magnitude-scaled with Km ¼ 10. Obtain the current

which results from a second voltage source, V2 ¼ 10 458 V, replacing the first, if the second source fre-

quency is !2 ¼ 103!1. Ans: 0:154 158 A

8.43 In the circuit of Fig. 8-41 let R1C1 ¼ R2C2 ¼ 10�3. Find v2 for t > 0 if: (a) v1 ¼ cos ð1000tÞuðtÞ,

(b) v1 ¼ sin ð1000tÞuðtÞ. Ans: ðaÞ v2 ¼ sin ð1000tÞ; ðbÞ v2 ¼ 1� cos ð1000tÞ

8.44 In the circuit of Fig. 8-42 assume R ¼ 2 k�, C ¼ 10 nF , and R2 ¼ R1 and v1 ¼ cos!t. Find v2 for the

following frequencies: (a) !0 ¼ 5� 104 rad/s, (b) !1 ¼ 105 rad/s.

Ans: ðaÞ v2 ¼ 2 sin!0t; ðbÞ v2 ¼ 0:555 cos ð!1t� 146:38Þ

8.45 Noninverting integrators. In the circuits of Fig. 8-43(a) and 8-43(b) find the relationship between v2 and v1.

Ans: ðaÞ v1 ¼ ðRC=2Þdv2=dt; ðbÞ v1 ¼ 2RCdv2=dt

8.46 In the circuit of Fig. 8-44 find the relationship between v2 and v1. Show that for R1C1 ¼ R2C2 we obtain

v2 ¼ R2v1=ðR1 þ R2Þ.

Ans: R1R2ðC1 þ C2Þ
dv2
dt

þ ðR1 þ R2Þv2 ¼ R1R2C1

dv1
dt

þ R2v1
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8.47 In the circuit of Fig. 8-44 let R1 ¼ 9 k� ¼ 9R2, C2 ¼ 100 pF ¼ 9C1, and v1 ¼ 104t V. Find i at 1ms after

the switch is closed. Ans: i ¼ 1:0001mA

8.48 Lead network. The circuit of Fig. 8-45(a) is called a lead network. (a) Find the differential equation

relating v2 to v1. (b) Find the unit-step response of the network with R1 ¼ 10 k�, R2 ¼ 1 k�, and

C ¼ 1mF. (c) Let v1 ¼ cos!t be the input and v2 ¼ A cos ð!tþ �Þ be the output of the network of Part

(b). Find A and � for ! at 1, 100, 331.6, 1100, and 105, all in rad/s. At what ! is the phase at a maximum?

Ans: ðaÞ
dv2
dt

þ
R1 þ R2

R1R2C

� �
v2 ¼

dv1
dt

þ
1

R1C
v1; ðbÞ v2 ¼

1

11
ð1þ 10e�1100t

ÞuðtÞ

(c)
! 1 100 331.6 1100 105

A 0.091 0.128 0.3015 0.71 1

� 0.58 39:88 56.48 39.88 0.58

Phase is maximum at ! ¼ 100
ffiffiffiffiffi
11

p
¼ 331:6 rad/s

8.49 Lag network. The circuit of Fig. 8-45(b) is called a lag network. (a) Find the differential equation relating

v2 to v1. (b) Find the unit-step response of the network with R1 ¼ 10 k�, R2 ¼ 1 k�, and C ¼ 1 mF.
(c) Let v1 ¼ cos!t be the input and v2 ¼ A cosð!t� �Þ be the output of the network of Part (b). Find A

and � for ! at 1, 90.9, 301.5, 1000, and 105, all in rad/s. At what ! is the phase at a minimum?

Ans: ðaÞ v2 þ ðR1 þ R2ÞC
dv2
dt

¼ v1 þ R2C
dv1
dt
; ðbÞ v2 ¼ 1�

10

11
e�90:91t

� �
uðtÞ

CHAP. 8] HIGHER-ORDER CIRCUITS AND COMPLEX FREQUENCY 189

Fig. 8-43

Fig. 8-44



(c) ! 1 90.9 301.5 1000 105

A 1 0.71 0.3015 0.128 0.091

� 0.58 39.88 56.48 39.88 0.58

Phase is minimum at ! ¼ 1000=
ffiffiffiffiffi
11

p
¼ 301:5 rad/s

8.50 In the circuit of Fig. 8-46 find the relationship between v2 and v1 for (a) k ¼ 103, (b) k ¼ 105. In each

case find its unit-step response; that is, v2 for v1 ¼ uðtÞ.

Ans: ðaÞ
dv2
dt

þ 4� 106v2 ¼ �4� 107v1; v2 ¼ �10 1� e�4�106t
� �

uðtÞ

ðbÞ
dv2
dt

þ 4� 108v2 ¼ �4� 109v1; v2 ¼ �10 1� e�4�109t
� �

uðtÞ
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191

Sinusoidal Steady-
State Circuit Analysis

9.1 INTRODUCTION

This chapter will concentrate on the steady-state response of circuits driven by sinusoidal sources.
The response will also be sinusoidal. For a linear circuit, the assumption of a sinusoidal source
represents no real restriction, since a source that can be described by a periodic function can be replaced
by an equivalent combination (Fourier series) of sinusoids. This matter will be treated in Chapter 17.

9.2 ELEMENT RESPONSES

The voltage-current relationships for the single elements R, L, and C were examined in Chapter 2
and summarized in Table 2-1. In this chapter, the functions of v and i will be sines or cosines with the
argument !t. ! is the angular frequency and has the unit rad/s. Also, ! ¼ 2�f , where f is the frequency
with unit cycle/s, or more commonly hertz (Hz).

Consider an inductance L with i ¼ I cos ð!tþ 458ÞA [see Fig. 9-1(a)]. The voltage is

vL ¼ L
di

dt
¼ !LI ½� sin ð!tþ 458Þ� ¼ !LI cos ð!tþ 1358Þ ðVÞ

Fig. 9-1
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A comparison of vL and i shows that the current lags the voltage by 908 or �=2 rad. The functions

are sketched in Fig. 9-1(b). Note that the current function i is to the right of v, and since the horizontal

scale is !t, events displaced to the right occur later in time. This illustrates that i lags v. The horizontal

scale is in radians, but note that it is also marked in degrees (�1358; 1808, etc.). This is a case of mixed

units just as with !tþ 458. It is not mathematically correct but is the accepted practice in circuit

analysis. The vertical scale indicates two different quantities, that is, v and i, so there should be two

scales rather than one.

While examining this sketch, it is a good time to point out that a sinusoid is completely defined when

its magnitude ðV or IÞ, frequency (! or f ), and phase (458 or 1358) are specified.

In Table 9-1 the responses of the three basic circuit elements are shown for applied current

i ¼ I cos!t and voltage v ¼ V cos!t. If sketches are made of these responses, they will show that

for a resistance R, v and i are in phase. For an inductance L, i lags v by 908 or �=2 rad. And for a

capacitance C, i leads v by 908 or �=2 rad.

EXAMPLE 9.1 The RL series circuit shown in Fig. 9-2 has a current i ¼ I sin!t. Obtain the voltage v across the

two circuit elements and sketch v and i.

vR ¼ RI sin!t vL ¼ L
di

dt
¼ !LI sin ð!tþ 908Þ

v ¼ vR þ vL ¼ RI sin!tþ !LI sin ð!tþ 908Þ

Since the current is a sine function and

v ¼ V sin ð!tþ �Þ ¼ V sin!t cos � þ V cos!t sin � ð1Þ

we have from the above

v ¼ RI sin!tþ !LI sin!t cos 908þ !LI cos!t sin 908 ð2Þ
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Table 9-1

i ¼ I cos!t v ¼ V cos!t

vr ¼ RI cos!t iR ¼
V

R
cos!t

vL ¼ !LI cos ð!tþ 908Þ iL ¼
V

!L
cosð!t� 908Þ

vC ¼
I

!C
cos ð!t� 908Þ iC ¼ !CV cos ð!tþ 908Þ

Fig. 9-2



Equating coefficients of like terms in (1) and (2),

V sin � ¼ !LI and V cos � ¼ RI

v ¼ I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð!LÞ2

q
sin ½!tþ arctan ð!L=RÞ�Then

V ¼ I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð!LÞ2

q
and � ¼ tan�1 !L

R
and

The functions i and v are sketched in Fig. 9-3. The phase angle �, the angle by which i lags v, lies within the

range 08 � � � 908, with the limiting values attained for !L � R and !L � R, respectively. If the circuit had an

applied voltage v ¼ V sin!t, the resulting current would be

i ¼
Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ ð!LÞ2
q sin ð!t� �Þ

where, as before, � ¼ tan�1
ð!L=RÞ.

EXAMPLE 9.2 If the current driving a series RC circuit is given by i ¼ I sin!t, obtain the total voltage across the

two elements.

vR ¼ RI sin!t vC ¼ ð1=!CÞ sin ð!t� 908Þ

v ¼ vR þ vC ¼ V sin ð!t� �Þ

V ¼ I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð1=!CÞ

2

q
and � ¼ tan�1

ð1=!CRÞwhere

The negative phase angle shifts v to the right of the current i. Consequently i leads v for a series RC circuit. The

phase angle is constrained to the range 08 � � � 908. For ð1=!CÞ � R, the angle � ¼ 08, and for ð1=!CÞ � R, the

angle � ¼ 908. See Fig. 9-4.
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9.3 PHASORS

A brief look at the voltage and current sinusoids in the preceding examples shows that the ampli-

tudes and phase differences are the two principal concerns. A directed line segment, or phasor, such as

that shown rotating in a counterclockwise direction at a constant angular velocity ! (rad/s) in Fig. 9-5,

has a projection on the horizontal which is a cosine function. The length of the phasor or its magnitude

is the amplitude or maximum value of the cosine function. The angle between two positions of the

phasor is the phase difference between the corresponding points on the cosine function.

Throughout this book phasors will be defined from the cosine function. If a voltage or current is
expressed as a sine, it will be changed to a cosine by subtracting 908 from the phase.

Consider the examples shown in Table 9-2. Observe that the phasors, which are directed line
segments and vectorial in nature, are indicated by boldface capitals, for example, V, I. The phase
angle of the cosine function is the angle on the phasor. The phasor diagrams here and all that follow
may be considered as a snapshot of the counterclockwise-rotating directed line segment taken at t ¼ 0.
The frequency f (Hz) and ! (rad/s) generally do not appear but they should be kept in mind, since they
are implicit in any sinusoidal steady-state problem.

EXAMPLE 9.3 A series combination of R ¼ 10� and L ¼ 20mH has a current i ¼ 5:0 cos ð500tþ 108) (A).

Obtain the voltages v and V, the phasor current I and sketch the phasor diagram.

Using the methods of Example 9.1,

vR ¼ 50:0 cos ð500tþ 108Þ vL ¼ L
di

dt
¼ 50:0 cos ð500tþ 1008Þ

v ¼ vR þ vL ¼ 70:7 cos ð500tþ 558Þ ðVÞ

The corresponding phasors are

I ¼ 5:0 108 A and V ¼ 70:7 558 V
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The phase angle of 458 can be seen in the time-domain graphs of i and v shown in Fig. 9-6(a), and the phasor

diagram with I and V shown in Fig. 9-6(b).

Phasors can be treated as complex numbers. When the horizontal axis is identified as the real axis
of a complex plane, the phasors become complex numbers and the usual rules apply. In view of Euler’s
identity, there are three equivalent notations for a phasor.

polar form V ¼ V �

rectangular form V ¼ Vðcos � þ j sin �Þ

exponential form V ¼ Ve j�

The cosine expression may also be written as

v ¼ V cos ð!tþ �Þ ¼ Re ½Ve jð!tþ�Þ
� ¼ Re ½Ve j!t�

The exponential form suggests how to treat the product and quotient of phasors. Since
ðV1e

j�1ÞðV2e
j�2Þ þ V1V2e

jð�1þ�2Þ,

ðV1 �1ÞðV2 �2Þ ¼ V1V2 �1 þ �2
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Table 9-2

Function Phasor Representation

v ¼ 150 cos ð500tþ 458Þ ðVÞ

i ¼ 3:0 sin ð2000tþ 308Þ ðmAÞ

¼ 3:0 cos ð2000t� 608Þ ðmAÞ

Fig. 9-6



and, since ðV1e
j�1 Þ=ðV2e

j�2Þ ¼ ðV1=V2Þe
jð�1��2Þ;

V1 �1

V2 �
¼ V1=V2 �1 � �2

The rectangular form is used in summing or subtracting phasors.

EXAMPLE 9.4 Given V1 ¼ 25:0 143:138 and V2 ¼ 11:2 26:578, find the ratio V1=V2 and the sum V1 þ V2.

V1=V2 ¼
25:0 143:138

11:2 26:578
¼ 2:23 116:568 ¼ �1:00þ j1:99

V1 þ V2 ¼ ð�20:0þ j15:0Þ þ ð10:0þ j5:0Þ ¼ �10:0þ j20:0 ¼ 23:36 116:578

9.4 IMPEDANCE AND ADMITTANCE

A sinusoidal voltage or current applied to a passive RLC circuit produces a sinusoidal response.
With time functions, such as vðtÞ and iðtÞ, the circuit is said to be in the time domain, Fig. 9-7(a); and
when the circuit is analyzed using phasors, it is said to be in the frequency domain, Fig. 9-7(b). The
voltage and current may be written, respectively,

vðtÞ ¼ V cos ð!tþ �Þ ¼ Re ½Ve j!t� and V ¼ V �

iðtÞ ¼ I cos ð!tþ �Þ ¼ Re ½Ie j!t� and I ¼ I �

The ratio of phasor voltage V to phasor current I is defined as impedance Z, that is, Z ¼ V=I. The
reciprocal of impedance is called admittance Y, so that Y ¼ 1=Z (S), where 1 S ¼ 1��1

¼ 1mho. Y and
Z are complex numbers.

When impedance is written in Cartesian form the real part is the resistance R and the imaginary part
is the reactance X. The sign on the imaginary part may be positive or negative: When positive, X is
called the inductive reactance, and when negative, X is called the capacitive reactance. When the
admittance is written in Cartesian form, the real part is admittance G and the imaginary part is suscep-
tance B. A positive sign on the susceptance indicates a capacitive susceptance, and a negative sign
indicates an inductive susceptance. Thus,

Z ¼ Rþ jXL and Z ¼ R� jXC

Y ¼ G� jBL and Y ¼ Gþ jBC

The relationships between these terms follow from Z ¼ 1=Y. Then,

R ¼
G

G2 þ B2
and X ¼

�B

G2 þ B2

G ¼
R

R2 þ X2
and B ¼

�X

R2 þ X2
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These expressions are not of much use in a problem where calculations can be carried out with the
numerical values as in the following example.

EXAMPLE 9.5 The phasor voltage across the terminals of a network such as that shown in Fig. 9-7(b) is

100:0 458 V and the resulting current is 5:0 158 A. Find the equivalent impedance and admittance.

Z ¼
V

I

100:0 458

5:0 158
¼ 20:0 308 ¼ 17:32þ j10:0�

Y ¼
I

V
¼

1

Z
¼ 0:05 �30 ¼ ð4:33� j2:50Þ � 10�2 S

Thus, R ¼ 17:32�, XL ¼ 10:0�, G ¼ 4:33� 10�2 S, and BL ¼ 2:50� 10�2 S.

Combinations of Impedances

The relation V ¼ IZ (in the frequency domain) is formally identical to Ohm’s law, v ¼ iR, for a
resistive network (in the time domain). Therefore, impedances combine exactly like resistances:

impedances in series Zeq ¼ Z1 þ Z2 þ � � �

impedances in parallel
1

Zeq

¼
1

Z1

þ
1

Z2

þ � � �

In particular, for two parallel impedances, Zeq ¼ Z1Z2=ðZ1 þ Z2Þ.

Impedance Diagram

In an impedance diagram, an impedance Z is represented by a point in the right half of the complex
plane. Figure 9-8 shows two impedances; Z1, in the first quadrant, exhibits inductive reactance, while
Z2, in the fourth quadrant, exhibits capacitive reactance. Their series equivalent, Z1 þ Z2, is obtained
by vector addition, as shown. Note that the ‘‘vectors’’ are shown without arrowheads, in order to
distinguish these complex numbers from phasors.

Combinations of Admittances

Replacing Z by 1/Y in the formulas above gives

admittances in series
1

Yeq

¼
1

Y1

þ
1

Y2

þ � � �

admittances in parallel Yeq ¼ Y1 þ Y2 þ � � �

Thus, series circuits are easiest treated in terms of impedance; parallel circuits, in terms of admittance.
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Admittance Diagram

Figure 9-9, an admittance diagram, is analogous to Fig. 9-8 for impedance. Shown are an admit-

tance Y1 having capacitive susceptance and an admittance Y2 having inductive susceptance, together

with their vector sum, Y1 þ Y2, which is the admittance of a parallel combination of Y1 and Y2.

9.5 VOLTAGE AND CURRENT DIVISION IN THE FREQUENCY DOMAIN

In view of the analogy between impedance in the frequency domain and resistance in the time
domain, Sections 3.6 and 3.7 imply the following results.

(1) Impedances in series divide the total voltage in the ratio of the impedances:

Vr

Vs

¼
Zr

Zs

or Vr ¼
Zr

Zeq

VT

See Fig. 9-10.

(2) Impedances in parallel (admittances in series) divide the total current in the inverse ratio of the
impedances (direct ratio of the admittances):

Ir

Is
¼

Zs

Zr

¼
Yr

Ys

or Ir ¼
Zeq

Zr

IT ¼
Yr

Yeq

IT

See Fig. 9-11.

9.6 THE MESH CURRENT METHOD

Consider the frequency-domain network of Fig. 9-12. Applying KVL, as in Section 4.3, or simply
by inspection, we find the matrix equation
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Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

2
4

3
5 I1

I2
I3

2
4

3
5 ¼

V1

V2

V3

2
4

3
5

for the unknown mesh currents I1; I2; I3. Here, Z11 � ZA þ ZB, the self-impedance of mesh 1, is the sum
of all impedances through which I1 passes. Similarly, Z22 � ZB þ ZC þ ZD and Z33 � ZD þ ZE are the
self-impedances of meshes 2 and 3.

The 1,2-element of the Z-matrix is defined as:

Z12 �
X

	 (impedance common to I1 and I2Þ

where a summand takes the plus sign if the two currents pass through the impedance in the same
direction, and takes the minus sign in the opposite case. It follows that, invariably, Z12 ¼ Z21. In
Fig. 9-12, I1 and I2 thread ZB in opposite directions, whence

Z12 ¼ Z21 ¼ �ZB

Similarly,

Z13 ¼ Z31 �
X

	 (impedance common to I1 and I3Þ ¼ 0

Z23 ¼ Z23 �
X

	 (impedance common to I2 and I3 ¼ �ZD

The Z-matrix is symmetric.

In the V-column on the right-hand side of the equation, the entries Vk (k ¼ 1; 2; 3) are defined
exactly as in Section 4.3:

Vk �
X

	 (driving voltage in mesh kÞ

where a summand takes the plus sign if the voltage drives in the direction of Ik, and takes the minus sign
in the opposite case. For the network of Fig. 9-12,

V1 ¼ þVa V2 ¼ 0 V3 ¼ �Vb

Instead of using the meshes, or ‘‘windows’’ of the (planar) network, it is sometimes expedient to
choose an appropriate set of loops, each containing one or more meshes in its interior. It is easy to see
that two loop currents might have the same direction in one impedance and opposite directions in
another. Nevertheless, the preceding rules for writing the Z-matrix and the V-column have been
formulated in such a way as to apply either to meshes or to loops. These rules are, of course, identical
to those used in Section 4.3 to write the R-matrix and V-column.

EXAMPLE 9.6 Suppose that the phasor voltage across ZB, with polarity as indicated in Fig. 9-13 is sought.

Choosing meshes as in Fig. 9-12 would entail solving for both I1 and I2, then obtaining the voltage as

VB ¼ ðI2 � I1ÞZB. In Fig. 9-13 three loops (two of which are meshes) are chosen so as to make I1 the only current

in ZB. Furthermore, the direction of I1 is chosen such that VB ¼ I1ZB. Setting up the matrix equation:
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ZA þ ZB �ZA 0
�ZA ZA þ ZC þ ZD ZD

0 ZD ZD þ ZE

2
4

3
5 I1

I2
I3

2
4

3
5 ¼

�Va

Va

Vb

2
4

3
5

from which

VB ¼ ZBI1 ¼
ZB

�z

�Va �ZA 0
Va ZA þ ZB þ ZC ZD

Vb ZD ZD þ ZE

������
������

where �z is the determinant of the Z-matrix.

Input and Transfer Impedances

The notions of input resistance (Section 4.5) and transfer resistance (Section 4.6) have their exact
counterparts in the frequency domain. Thus, for the single-source network of Fig. 9-14, the input
impedance is

Zinput;r �
Vr

Ir
¼

�z

�rr

where rr is the cofactor of Zrr in �z; and the transfer impedance between mesh (or loop) r and mesh (loop)
s is

Ztransfer;rs �
Vr

Is
¼

�z

�rs

where �rs is the cofactor of Zrs in �z.

As before, the superposition principle for an arbitrary n-mesh or n-loop network may be expressed

as

Ik ¼
V1

Ztransfer;1k

þ � � � þ
Vk�1

Ztransfer;ðk�1Þk

þ
Vk

Zinput;k

þ
Vkþ1

Ztransfer;ðkþ1Þk

þ � � � þ
Vn

Ztransfer;nk
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9.7 THE NODE VOLTAGE METHOD

The procedure is exactly as in Section 4.4, with admittances replacing reciprocal resistances. A
frequency-domain network with n principal nodes, one of them designated as the reference node,
requires n� 1 node voltage equations. Thus, for n ¼ 4, the matrix equation would be

Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

2
4

3
5 V1

V2

V3

2
4

3
5 ¼

I1
I2
I3

2
4

3
5

in which the unknowns, V1, V2, and V3, are the voltages of principal nodes 1, 2, and 3 with respect to
principal node 4, the reference node.

Y11 is the self-admittance of node 1, given by the sum of all admittances connected to node 1.
Similarly, Y22 and Y33 are the self-admittances of nodes 2 and 3.

Y12, the coupling admittance between nodes 1 and 2, is given by minus the sum of all admittances
connecting nodes 1 and 2. It follows that Y12 ¼ Y21. Similarly, for the other coupling admittances:
Y13 ¼ Y31, Y23 ¼ Y32. The Y-matrix is therefore symmetric.

On the right-hand side of the equation, the I-column is formed just as in Section 4.4; i.e.,

Ik ¼
X

(current driving into node kÞ ðk ¼ 1; 2; 3Þ

in which a current driving out of node k is counted as negative.

Input and Transfer Admittances

The matrix equation of the node voltage method,

½Y�½V� ¼ ½I�

is identical in form to the matrix equation of the mesh current method,

½Z�½I� ¼ ½V�

Therefore, in theory at least, input and transfer admittances can be defined by analogy with input and
transfer impedances:

Yinput;r �
Ir

Vr

¼
�Y

�rr

Ytransfer;rs �
Ir

Vs

¼
�Y

�rs

where now �rr and �rs are the cofactors of Yrr and Yrs in �Y. In practice, these definitions are often of
limited use. However, they are valuable in providing an expression of the superposition principle (for
voltages);

Vk ¼
I1

Ytransfer;1k

þ � � � þ
Ik�1

Ytransfer;ðk�1Þk

þ
Ik

Yinput;k

þ
Ikþ1

Ytransfer;ðkþ1Þk

þ � � � þ
In�1

Ytransfer;ðn�IfÞk

for k ¼ 1; 2; . . . ; n� 1. In words: the voltage at any principal node (relative to the reference node) is
obtained by adding the voltages produced at that node by the various driving currents, these currents
acting one at a time.

9.8 THÉVENIN’S AND NORTON’S THEOREMS

These theorems are exactly as given in Section 4.9, with the open-circuit voltage V 0, short-circuit
current I 0, and representative resistance R 0 replaced by the open-circuit phasor voltage V 0, short-circuit
phasor current I 0, and representative impedance Z

0. See Fig. 9-15.
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9.9 SUPERPOSITION OF AC SOURCES

How do we apply superposition to circuits with more than one sinusoidal source? If all sources
have the same frequency, superposition is applied in the phasor domain. Otherwise, the circuit is solved
for each source, and time-domain responses are added.

EXAMPLE 9.7 A practical coil is connected in series between two voltage sources v1 ¼ 5 cos!1t and

v2 ¼ 10 cos ð!2tþ 608Þ such that the sources share the same reference node. See Fig. 9-54. The voltage difference

across the terminals of the coil is therefore v1 � v2. The coil is modeled by a 5-mH inductor in series with a 10-�

resistor. Find the current iðtÞ in the coil for (a) !1 ¼ !2 ¼ 2000 rad/s and (b) !1 ¼ 2000 rad/s, !2 ¼ 2!1.

(a) The impedance of the coil is Rþ jL! ¼ 10þ j10 ¼ 10
ffiffiffi
2

p
458�. The phasor voltage between its terminals is

V ¼ V1 � V2 ¼ 5� 10 608 ¼ �j5
ffiffiffi
3

p
V. The current is

I ¼
V

Z
¼

�j5
ffiffiffi
3

p

10
ffiffiffi
2

p
458



�j8:66

14:14 458
¼ 0:61 �1358 A

i ¼ 0:61 cos ð2000t� 1358Þ

(b) Because the coil has different impedances at !1 ¼ 2000 and !2 ¼ 4000 rad/s, the current may be represented in

the time domain only. By applying superposition, we get i ¼ i1 � i2, where i1 and i2 are currents due to v1 and

v2, respectively.

I1 ¼
V1

Z1

¼
5

10þ j10
¼ 0:35 �458 A; i1ðtÞ ¼ 0:35 cos ð2000t� 458Þ

I2 ¼
V2

Z2

¼
10 608
10þ j20

¼ 0:45 �3:48 A; i2ðtÞ ¼ 0:45 cos ð4000t� 3:48Þ

i ¼ i1 � i2 ¼ 0:35 cos ð2000t� 458Þ � 0:45 cos ð4000t� 3:48Þ

Solved Problems

9.1 A 10-mH inductor has current i ¼ 5:0 cos 2000t (A). Obtain the voltage vL.

From Table 9-1, vL ¼ !LI cos ð!tþ 908Þ ¼ 100 cos ð2000tþ 908Þ (V). As a sine function,

vL ¼ 100 sin ð2000tþ 1808Þ ¼ �100 sin 2000t ðVÞ

9.2 A series circuit, with R ¼ 10� and L ¼ 20mH, has current i ¼ 2:0 sin 500t (A). Obtain total
voltage v and the angle by which i lags v.

202 SINUSOIDAL STEADY-STATE CIRCUIT ANALYSIS [CHAP. 9

Fig. 9-15



By the methods of Example 9.1,

� ¼ arctan
500ð20� 10�3

Þ

10
¼ 458

v ¼ I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð!LÞ2

q
sin ð!tþ �Þ ¼ 28:3 sin ð500tþ 458Þ ðVÞ

It is seen that i lags v by 458.

9.3 Find the two elements in a series circuit, given that the current and total voltage are

i ¼ 10 cos ð5000t� 23:138Þ ðAÞ v ¼ 50 cos ð5000tþ 308Þ ðVÞ

Since i lags v (by 53.138), the elements are R and L. The ratio of Vmax to Imax is 50/10. Hence,

50

10
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð5000LÞ2

q
and tan 53:138 ¼ 1:33 ¼

5000L

R

Solving, R ¼ 3:0�, L ¼ 0:8mH.

9.4 A series circuit, with R ¼ 2:0� and C ¼ 200 pF, has a sinusoidal applied voltage with a frequency
of 99.47MHz. If the maximum voltage across the capacitance is 24V, what is the maximum
voltage across the series combination?

! ¼ 2�f ¼ 6:25� 108 rad=s

From Table 9-1, Imax ¼ !CVC;max ¼ 3:0A. Then, by the methods of Example 9.2,

Vmax ¼ Imax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð1=!CÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6Þ2 þ ð24Þ2

q
¼ 24:74 V

9.5 The current in a series circuit of R ¼ 5� and L ¼ 30mH lags the applied voltage by 808.
Determine the source frequency and the impedance Z.

From the impedance diagram, Fig. 9-16,

5þ jXL ¼ Z 808 XL ¼ 5 tan 808 ¼ 28:4�

Then 28:4 ¼ !ð30� 10�3
Þ, whence ! ¼ 945:2 rad/s and f ¼ 150:4Hz.

Z ¼ 5þ j28:4�
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9.6 At what frequency will the current lead the voltage by 308 in a series circuit with R ¼ 8� and
C ¼ 30 mF?

From the impedance diagram, Fig. 9-17,

8� jXC ¼ Z �308 � XC ¼ 8 tan ð�308Þ ¼ �4:62�

4:62 ¼
1

2�f ð30� 10�6Þ
or f ¼ 1149HzThen

9.7 A series RC circuit, with R ¼ 10�, has an impedance with an angle of �458 at f1 ¼ 500Hz. Find
the frequency for which the magnitude of the impedance is (a) twice that at f1, (b) one-half that
at f1.

From 10� jXC ¼ Z1 458, XC ¼ 10� and Z1 ¼ 14:14�.

(a) For twice the magnitude,

10� jXC ¼ 28:28 �8 or XC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð28:28Þ2 � ð10Þ2

q
¼ 26:45�

Then, since XC is inversely proportional to f ,

10

26:45
¼

f2
500

or f2 ¼ 189Hz

(b) A magnitude Z3 ¼ 7:07� is impossible; the smallest magnitude possible is Z ¼ R ¼ 10�.

9.8 A two-element series circuit has voltage V ¼ 240 08V and current I ¼ 50 �608 A. Determine
the current which results when the resistance is reduced to (a) 30 percent, (b) 60 percent, of its
former value.

Z ¼
V

I
¼

240 08

50 �608
¼ 4:8 608 ¼ 2:40þ j4:16 �

30%� 2:40 ¼ 0:72 Z1 ¼ 0:72þ j4:16 ¼ 4:22 80:28 �ðaÞ

I1 ¼
240 08

4:22 80:28
¼ 56:8 �80:28 A

60%� 2:40 ¼ 1:44 Z2 ¼ 1:44þ j4:16 ¼ 4:40 70:98 �ðbÞ

I2 ¼
240 08

4:40 70:98
¼ 54:5 �70:98 A

9.9 For the circuit shown in Fig. 9-18, obtain Zeq and compute I.

For series impedances,

Zeq ¼ 10 08þ 4:47 63:48 ¼ 12:0þ j4:0 ¼ 12:65 18:438 �

I ¼
V

Zeq

¼
100 08

12:65 18:438
¼ 7:91 �18:438 AThen

9.10 Evaluate the impedance Z1 in the circuit of Fig. 9-19.

Z ¼
V

I
¼ 20 608 ¼ 10:0þ j17:3 �
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Then, since impedances in series add,

5:0þ j8:0þ Z1 ¼ 10:0þ j17:3 or Z1 ¼ 5:0þ j9:3 �

9.11 Compute the equivalent impedance Zeq and admittance Yeq for the four-branch circuit shown in
Fig. 9-20.

Using admittances,

Y1 ¼
1

j5
¼ �j0:20 S Y3 ¼

1

15
¼ 0:067 S

Y2 ¼
1

5þ j8:66
¼ 0:05� j0:087 S Y4 ¼

1

�j10
¼ j0:10 S

Yeq ¼ Y1 þ Y2 þ Y3 þ Y4 ¼ 0:117� j0:187 ¼ 0:221 �58:08 SThen

Zeq ¼
1

Yeq

¼ 4:53 58:08 �and

9.12 The total current I entering the circuit shown in Fig. 9-20 is 33:0 �13:08 A. Obtain the branch
current I3 and the voltage V.

V ¼ IZeq ¼ ð33:0 �13:08Þð4:53 58:08Þ ¼ 149:5 45:08 V

I3 ¼ VY3 ¼ ð149:5 45:08Þ
1

15
08

� �
¼ 9:97 45:08 A

9.13 Find Z1 in the three-branch network of Fig. 9-21, if I ¼ 31:5 24:08 A for an applied voltage
V ¼ 50:0 60:08 V.
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Y ¼
I

V
¼ 0:630 �36:08 ¼ 0:510� j0:370 S

0:510� j0:370 ¼ Y1 þ
1

10
þ

1

4:0þ j3:0
Then

whence Y1 ¼ 0:354 �458 S and Z1 ¼ 2:0þ j2:0 �.

9.14 The constants R and L of a coil can be obtained by connecting the coil in series with a known
resistance and measuring the coil voltage Vx, the resistor voltage V1, and the total voltage VT

(Fig. 9-22). The frequency must also be known, but the phase angles of the voltages are not

known. Given that f ¼ 60Hz, V1 ¼ 20V, Vx ¼ 22:4V, and VT ¼ 36:0V, find R and L.

The measured voltages are effective values; but, as far as impedance calculations are concerned, it

makes no difference whether effective or peak values are used.

The (effective) current is I ¼ V1=10 ¼ 2:0A. Then

Zx ¼
22:4

2:0
¼ 11:2� Zeq ¼

36:0

2:0
¼ 18:0�

From the impedance diagram, Fig. 9-23,

ð18:0Þ2 ¼ ð10þ RÞ2 þ ð!LÞ2

ð11:2Þ2 ¼ R2
þ ð!LÞ2

where ! ¼ 2�60 ¼ 377 rad/s. Solving simultaneously,

R ¼ 4:92� L ¼ 26:7mH

9.15 In the parallel circuit shown in Fig. 9-24, the effective values of the currents are: Ix ¼ 18:0A,
I1 ¼ 15:0A, IT ¼ 30:0A. Determine R and XL.
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The problem can be solved in a manner similar to that used in Problem 9.14 but with the admittance

diagram.

The (effective) voltage is V ¼ I1ð4:0Þ ¼ 60:0V. Then

Yx ¼
Ix
V

¼ 0:300 S Yeq ¼
IT
V

¼ 0:500 S Y1 ¼
1

4:0
¼ 0:250 S

From the admittance diagram, Fig. 9-25,

ð0:500Þ2 ¼ ð0:250þ GÞ2 þ B2
L

ð0:300Þ2 ¼ G2
þ B2

L

which yield G ¼ 0:195 S, BL ¼ 0:228 S. Then

R ¼
1

G
¼ 5:13� and jXL ¼

1

�jBL

¼ j4:39�

i.e., XL ¼ 4:39�.

9.16 Obtain the phasor voltage VAB in the two-branch parallel circuit of Fig. 9-26.

By current-division methods, I1 ¼ 4:64 120:18 A and I2 ¼ 17:4 30:18 A. Either path AXB or path

AYB may be considered. Choosing the former,

VAB ¼ VAX þ VXB ¼ I1ð20Þ � I2ð j6Þ ¼ 92:8 120:18þ 104:4 �59:98 ¼ 11:6 �59:98 V

9.17 In the parallel circuit shown in Fig. 9-27, VAB ¼ 48:3 308 V. Find the applied voltage V.

By voltage division in the two branches:

VAX ¼
�j4

4� j4
V ¼

1

1þ j
V VBX ¼

j8:66

5þ j8:66
V

VAB ¼ VAX � VBX ¼
1

1þ j
�

j8:66

5þ j8:66

� �
V ¼

1

�0:268þ j1
Vand so

V ¼ ð�0:268þ j1ÞVAB ¼ ð1:035 1058Þð48:3 308Þ ¼ 50:0 1358 Vor
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9.18 Obtain the voltage Vx in the network of Fig. 9-28, using the mesh current method.

One choice of mesh currents is shown on the circuit diagram, with I3 passing through the 10-� resistor

in a direction such that Vx ¼ I3ð10Þ (V). The matrix equation can be written by inspection:

7þ j3 j5 5

j5 12þ j3 �ð2� j2Þ

5 �ð2� j2Þ 17� j2

2
4

3
5 I1

I2

I3

2
4

3
5 ¼

10 08
5 308

0

2
64

3
75

Solving by determinants,

I3 ¼

7þ j3 j5 10 08
j5 12þ j3 5 308
5 �2þ j2 0

�������

�������
7þ j3 j5 5

j5 12þ j3 �2þ j2

5 �2þ j2 17� j2

������
������
¼

667:96 �169:098

1534:5 25:068
¼ 0:435 �194:158 A

and Vx ¼ I3ð10Þ ¼ 4:35 �194:158 V.

9.19 In the netwrok of Fig. 9-29, determine the voltage V which results in a zero current through the
2þ j3� impedance.
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Choosing mesh currents as shown on the circuit diagram,

I2 ¼
1

�z

5þ j5 30 08 0

�j5 0 6

0 V 10

�������

�������
¼ 0

Expanding the numerator determinant by cofactors of the second column,

�ð30 08Þ
�j5 6
0 10

����
����� V

5þ j5 0
�j5 6

����
���� ¼ 0 whence V ¼ 35:4 45:08 V

9.20 Solve Problem 9.19 by the node voltage method.

The network is redrawn in Fig. 9-30 with one end of the 2þ j3 impedance as the reference node. By the

rule of Section 9.7 the matrix equation is

1

5
þ

1

j5
þ

1

2þ j3
�

1

5
þ

1

j5

� �

�
1

5
þ

1

j5

� �
1

5
þ

1

j5
þ
1

4
þ
1

6

2
6664

3
7775

V1

V2

2
664

3
775 ¼

30 08
5

�30 08
5

�
V

4

2
664

3
775

For node voltage V1 to be zero, it is necessary that the numerator determinant in the solution for V1 vanish.

N1 ¼

30 08
5

�0:200þ j0:200

�30 08
5

�
V

4
0:617� j0:200

��������

��������
¼ 0 from which V ¼ 35:4 458 V

9.21 Use the node voltage method to obtain the current I in the network of Fig. 9-31.

There are three principal nodes in the network. The reference and node 1 are selected so that the node

1 voltage is the voltage across the j2-� reactance.

1

5
þ

1

j2
þ
1

4
�
1

4

�
1

4

1

4
þ

1

�j2
þ
1

2

2
664

3
775

V1

V2

2
664

3
775 ¼

50 08
5

50 908
2

2
664

3
775

from which
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V1 ¼

10 �0:250

j25 0:750þ j0:500

����
����

0:450� j0:500 �0:250

�0:250 0:750þ j0:500

����
����
¼

13:52 56:318

0:546 �15:948
¼ 24:76 72:258 V

I ¼
24:76 72:258

2 908
¼ 12:38 �17:758 Aand

9.22 Find the input impedance at terminals ab for the network of Fig. 9-32.

With mesh current I1 selected as shown on the diagram.

Zinput;1 ¼
�z

�11

¼

8� j2 �3 0

�3 8þ j5 �5

0 �5 7� j2

������
������

8þ j5 �5

�5 7� j2

����
����

¼
315:5 16:198

45:2 24:868
¼ 6:98 �8:678 �

9.23 For the network in Fig. 9-32, obtain the current in the inductor, Ix, by first obtaining the transfer
impedance. Let V ¼ 10 308 V.

Ztransfer;12 ¼
�z

�12

¼
315:5 16:198

�
�3 �5

0 7� j2

����
����
¼ 14:45 32:148 �

Ix ¼ I2 ¼
V

Ztransfer;12

¼
10 308

14:45 32:148
¼ 0:692 �2:148 AThen

9.24 For the network in Fig. 9-32, find the value of the source voltage V which results in
V0 ¼ 5:0 08 V.

The transfer impedance can be used to compute the current in the 2� j2 � impedance, from which V0

is readily obtained.

Ztransfer;13 ¼
�z

�13

¼
315:5 16:198

15 08
¼ 21:0 16:198 �

V0 ¼ I3ð2� j2Þ ¼
V

Ztransfer;13

ð2� j2Þ ¼ Vð0:135 �61:198Þ
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Thus, if V0 ¼ 5:0 08 V,

V ¼
5:0 08

0:135 �61:198
¼ 37:0 61:198 V

Alternate Method

The node voltage method may be used. V0 is the node voltage V2 for the selection of nodes indicated in

Fig. 9-32.

V0 ¼ V2 ¼

1

5� j2
þ
1

3
þ

1

j5

V

5� j2

�
1

j5
0

��������

��������
1

5� j2
þ
1

3
þ

1

j5
�

1

j5

�
1

j5

1

j5
þ
1

5
þ

1

2� j2

��������

��������

¼ Vð0:134 �61:158Þ

For V0 ¼ 5:0 08 V, V ¼ 37:3 61:158 V, which agrees with the previous answer to within roundoff errors.

9.25 For the network shown in Fig. 9-33, obtain the input admittance and use it to compute node
voltage V1.

Yinput;1 ¼
�Y

�11

¼

1

10
þ

1

j5
þ
1

2
�
1

2

�
1

2

1

2
þ

1

3þ j4
þ

1

�j10

��������

��������
1

2
þ

1

3þ j4
þ

1

�j10

¼ 0:311 �49:978 S

V1 ¼
I1

Yinput;1

¼
5:0 08

0:311 �49:978
¼ 16:1 49:978 V

9.26 For the network of Problem 9.25, compute the transfer admittance Ytransfer;12 and use it to obtain
node voltage V2.

Ytransfer;12 ¼
�Y

�12

¼
0:194 �55:498

�ð�0:50Þ
¼ 0:388 �55:498 S

V2 ¼
I1

Ytransfer;12

¼ 12:9 55:498 V
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9.27 Replace the active network in Fig. 9-34(a) at terminals ab with a Thévenin equivalent.

Z
0
¼ j5þ

5ð3þ j4Þ

5þ 3þ j4
¼ 2:50þ j6:25 �

The open-circuit voltage V
0 at terminals ab is the voltage across the 3þ j4 � impedance:

V
0
¼

10 08
8þ j4

� �
ð3þ j4Þ ¼ 5:59 26:568 V

9.28 For the network of Problem 9.27, obtain a Norton equivalent circuit (Fig. 9-35).

At terminals ab, Isc is the Norton current I 0. By current division,

I
0
¼

10 08

5þ
j5ð3þ j4Þ

3þ j9

3þ j4

3þ j9

� �
¼ 0:830 �41:638 A

The shunt impedance Z
0 is as found in Problem 9.27, Z 0

¼ 2:50þ j6:25 �.

9.29 Obtain the Thévenin equivalent for the bridge circuit of Fig. 9-36. Make V 0 the voltage of a with
respect to b.

By voltage division in either branch,

Vax ¼
12þ j24

33þ j24
ð20 08Þ Vbx ¼

30þ j60

80þ j60
ð20 08Þ

212 SINUSOIDAL STEADY-STATE CIRCUIT ANALYSIS [CHAP. 9

Fig. 9-34

Fig. 9-36Fig. 9-35



Vab ¼ Vax � Vbx ¼ ð20 08Þ
12þ j24

33þ j24
�
30þ j60

80þ j60

� �
¼ 0:326 169:48 V ¼ V

0Hence,

Viewed from ab with the voltage source shorted out, the circuit is two parallel combinations in series, and so

Z
0
¼

21ð12þ j24Þ

33þ j24
þ
50ð30þ j60Þ

80�þj60Þ
¼ 47:35 26:818 �

9.30 Replace the network of Fig. 9-37 at terminals ab with a Norton equivalent and with a Thévenin
equivalent.

By current division,

Isc ¼ I
0
¼

10 08

10þ
ð�j10Þð3þ j4Þ

3� j6

2
664

3
775 3þ j4

3� j6

� �
¼ 0:439 105:268 A

and by voltage division in the open circuit,

Vab ¼ V
0
¼

3þ j4

13þ j4
ð10 08Þ ¼ 3:68 36:038 V

Z
0
¼

V
0

I 0
¼

3:68 36:038

0:439 105:268
¼ 8:37 �69:238 �Then

See Fig. 9-38.
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Supplementary Problems

9.31 Two circuit elements in a series connection have current and total voltage

i ¼ 13:42 sin ð500t� 53:48Þ ðAÞ v ¼ 150 sin ð500tþ 108Þ ðVÞ

Identify the two elements. Ans: R ¼ 5�;L ¼ 20mH

9.32 Two circuit elements in a series connection have current and total voltage

i ¼ 4:0 cos ð2000tþ 13:28Þ ðAÞ v ¼ 200 sin ð2000tþ 50:08Þ ðVÞ

Identify the two elements. Ans: R ¼ 30�;C ¼ 12:5 mF

9.33 A series RC circuit, with R ¼ 27:5� and C ¼ 66:7 mF, has sinusoidal voltages and current, with angular

frequency 1500 rad/s. Find the phase angle by which the current leads the voltage. Ans: 208

9.34 A series RLC circuit, with R ¼ 15�, L ¼ 80mH, and C ¼ 30mF, has a sinusoidal current at angular

frequency 500 rad/s. Determine the phase angle and whether the current leads or lags the total voltage.

Ans: 60:68, leads

9.35 A capacitance C ¼ 35 mF is in parallel with a certain element. Identify the element, given that the voltage

and total current are

v ¼ 150 sin 3000t ðVÞ iT ¼ 16:5 sin ð3000tþ 72:48Þ ðAÞ

Ans: R ¼ 30:1�

9.36 A two-element series circuit, with R ¼ 20� and L ¼ 20mH, has an impedance 40:0 � �. Determine the

angle � and the frequency. Ans: 608; 276Hz

9.37 Determine the impedance of the series RL circuit, with R ¼ 25� and L ¼ 10mH, at (a) 100Hz, (b) 500Hz,

(c) 1000Hz. Ans: ðaÞ 25:8 14:18�; ðbÞ 40:1 51:58 �; ðcÞ 67:6 68:38 �

9.38 Determine the circuit constants of a two-element series circuit if the applied voltage

v ¼ 150 sin ð5000tþ 458Þ ðVÞ

results in a current i ¼ 3:0 sin ð5000t� 158Þ (A). Ans: 25�; 8:66mH

9.39 A series circuit of R ¼ 10� and C ¼ 40mF has an applied voltage v ¼ 500 cos ð2500t� 208Þ (V). Find the

resulting current i. Ans: 25
ffiffiffi
2

p
cos ð2500tþ 258Þ (A)

9.40 Three impedances are in series: Z1 ¼ 3:0 458 �, Z2 ¼ 10
ffiffiffi
2

p
458 �, Z3 ¼ 5:0 �908 �. Find the applied

voltage V, if the voltage across Z1 is 27:0 �108 V. Ans: 126:5 �24:68 V

9.41 For the three-element series circuit in Fig. 9-39, (a) find the current I; (b) find the voltage across each

impedance and construct the voltage phasor diagram which shows that V1 þ V2 þ V3 ¼ 100 08 V.
Ans: ðaÞ 6:28 �9:178 A; (bÞ see Fig. 9-40.
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9.42 Find Z in the parallel circuit of Fig. 9-41, if V ¼ 50:0 30:08 V and I ¼ 27:9 57:88 A.

Ans: 5:0 �308 �

9.43 Obtain the conductance and susceptance corresponding to a voltage V ¼ 85:0 2058V and a resulting

current I ¼ 41:2 �141:08 A. Ans: 0:471 S; 0:117 S (capacitive)

9.44 A practical coil contains resistance as well as inductance and can be represented by either a series or parallel

circuit, as suggested in Fig. 9-42. Obtain Rp and Lp in terms of Rs and Ls.

Ans: Rp ¼ Rs þ
ð!LsÞ

2

Rs

;Lp ¼ Ls þ
R2

s

!2Ls

9.45 In the network shown in Fig. 9-43 the 60-Hz current magnitudes are known to be: IT ¼ 29:9A, I1 ¼ 22:3A,

and I2 ¼ 8:0A. Obtain the circuit constants R and L. Ans: 5:8�; 38:5mH
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9.46 Obtain the magnitude of the voltage VAB in the two-branch parallel network of Fig. 9-44, if XL is (a) 5�,

(b) 15�, ðcÞ 0�. Ans: 50V, whatever XL

9.47 In the network shown in Fig. 9-45, VAB ¼ 36:1 3:188 V. Find the source voltage V.

Ans: 75 �908 V

9.48 For the network of Fig. 9-46 assign two different sets of mesh currents and show that for each,

�z ¼ 55:9 �26:578 �2. For each choice, calculate the phasor voltage V. Obtain the phasor voltage

across the 3þ j4� impedance and compare with V. Ans: V ¼ V3þj4 ¼ 22:36 �10:308 V

9.49 For the network of Fig. 9-47, use the mesh current method to find the current in the 2þ j3� impedance due

to each of the sources V1 and V2. Ans: 2:41 6:458 A; 1:36 141:458 A

9.50 In the network shown in Fig. 9-48, the two equal capacitances C and the shunting resistance R are adjusted

until the detector current ID is zero. Assuming a source angular frequency !, determine the values of Rx and

Lx. Ans: Rx ¼ 1=ð!2C2RÞ;Lx ¼ 1=ð2!CÞ
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9.51 For the network of Fig. 9-49, obtain the current ratio I1=I3. Ans: 3:3 �908

9.52 For the network of Fig. 9-49, obtain Zinput;1 and Ztransfer;13. Show that Ztransfer;31 ¼ Ztransfer;13.

Ans: 1:31 21:88 �; 4:31 �68:28 �

9.53 In the network of Fig. 9-50, obtain the voltage ratio V1=V2 by application of the node voltage method.

Ans:
�11

�12

¼ 1:61 �29:88

9.54 For the network of Fig. 9-50, obtain the driving-point impedance Zinput;1. Ans: 5:59 17:358 �

9.55 Obtain the Thévenin and Norton equivalent circuits at terminals ab for the network of Fig. 9-51. Choose

the polarity such that V 0
¼ Vab. Ans: V

0
¼ 20:0 08 V; I 0 ¼ 5:56 �23:068 A;Z 0

¼ 3:60 23:068 �

9.56 Obtain the Thévenin and Norton equivalent circuits at terminals ab for the network of Fig. 9-52.

Ans: V
0
¼ 11:5 �95:88 V; I 0 ¼ 1:39 �80:68 A;Z 0

¼ 8:26 �15:28 �
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9.57 Obtain the Théveinin and Norton equivalent circuits at terminals ab for the network of Fig. 9-53.

Ans: V
0
¼ 11:18 93:438 V; I 0 ¼ 2:24 56:568 A;Z 0

¼ 5:0 36:878 �

9.58 In the circuit of Fig. 9-54, v1 ¼ 10V and v2 ¼ 5 sin 2000t. Find i.

Ans: i ¼ 1� 0:35 sin ð2000t� 458Þ

9.59 In the circuit of Fig. 9-55, v1 ¼ 6 cos!t and v2 ¼ cos ð!tþ 608). Find vA if ! ¼ 2 rad/sec. Hint: Apply

KCL at node A in the phasor domain. Ans: vA ¼ 1:11 sin 2t

9.60 In the circuit of Problem 9.59 find phasor currents I1 and I2 drawn from the two sources. Hint: Apply

phasor KVL to the loops on the left and right sides of the circuit.

Ans: I1 ¼ 508 �100:48; I2 ¼ 1057 �1458, both in mA

9.61 Find vA in the circuit of Problem 9.59 if ! ¼ 0:5 rad/s. Ans: Va ¼ 0

9.62 In the circuit of Fig. 9-55, v1 ¼ V1 cos ð0:5tþ �1Þ and v2 ¼ V2 cosð0:5tþ �2Þ. Find the current through the

4H inductor. Ans: i ¼ ðV2=4Þ sin ð0:5tþ �2Þ � ðV1=3Þ sin ð0:5tþ �1Þ

9.63 In the circuit of Fig. 9-55, v1 ¼ V1 cos ðtþ �1Þ and v2 ¼ V2 cos ðtþ �2Þ. Find vA.

Ans: vA ¼ 1, unless V1 ¼ V2 ¼ 0, in which case vA ¼ 0

9.64 In the circuit of Fig. 9-55, v1 ¼ V1 cos ð2tÞ and v2 ¼ V2 cos ð0:25tÞ. Find vA.

Ans: vA ¼ �0:816V1 cos ð2tÞ � 0:6V2 cos ð0:25tÞ
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AC Power

10.1 POWER IN THE TIME DOMAIN

The instantaneous power entering a two-terminal circuit N (Fig. 10-1) is defined by

pðtÞ ¼ vðtÞiðtÞ ð1Þ

where vðtÞ and iðtÞ are terminal voltage and current, respectively. If p is positive, energy is delivered to
the circuit. If p is negative, energy is returned from the circuit to the source.

In this chapter, we consider periodic currents and voltages, with emphasis on the sinusoidal steady
state in linear RLC circuits. Since the storage capacity of an inductor or a capacitor is finite, these
passive elements cannot continue receiving energy without returning it. Therefore, in the steady state
and during each cycle, all of the energy received by an inductor or capacitor is returned. The energy
received by a resistor is, however, dissipated in the form of thermal, mechanical, chemical, and/or
electromagnetic energies. The net energy flow to a passive circuit during one cycle is, therefore, positive
or zero.

EXAMPLE 10.1 Figure 10-2(a) shows the graph of a current in a resistor of 1 k�. Find and plot the instanta-

neous power pðtÞ.

From v ¼ Ri, we have pðtÞ ¼ vi ¼ Ri2 ¼ 1000� 10�6
¼ 10�3 W ¼ 1mW. See Fig. 10-2(b).

EXAMPLE 10.2 The current in Example 10.1 passes through a 0.5-mF capacitor. Find the power pðtÞ entering the

capacitor and the energy wðtÞ stored in it. Assume vCð0Þ ¼ 0. Plot pðtÞ and wðtÞ.

Figure 10-2(a) indicates that the current in the capacitor is a periodic function with a period T ¼ 2ms. During

one period the current is given by

i ¼
1mA ð0 < t < 1msÞ

�1mA ð1 < t < 2msÞ

�

Fig. 10-1
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The voltage across the capacitor is also a periodic function with the same period T [Fig. 10-3(a)]. During one

period the voltage is

vðtÞ ¼
1

C

ðt
0

i dt ¼
2000t ðVÞ ð0 < t < 1msÞ

4� 2000t ðVÞ ð1 < t < 2msÞ

�

Finally, the power entering the capacitor and the energy stored in it (both also periodic with period T) are

pðtÞ ¼ vi ¼
2000t ðmWÞ ð0 < t < 1msÞ

2000t� 4 ðmWÞ ð1 < t < 2msÞ

�
½Fig. 10-3ðbÞ�

wðtÞ ¼
1

2
Cv2 ¼

t2 ðJÞ ð0 < t < 1msÞ

t2 þ 4� 10�6
� 4� 10�3t ðJÞ ð1 < t < 2msÞ

(
[Fig. 10-3ðcÞ�

Alternatively, wðtÞ may be obtained by integrating pðtÞ. Power entering the capacitor during one period is equally

positive and negative [see Fig. 10-3(b)]. The energy stored in the capacitor is always positive as shown in Fig. 10-

3(c). The maximum stored energy is Wmax ¼ 10�6 J ¼ 1mJ at t ¼ 1; 3; 4; . . .ms.

10.2 POWER IN SINUSOIDAL STEADY STATE

A sinusoidal voltage v ¼ Vm cos!t, applied across an impedance Z ¼ jZj �, establishes a current
i ¼ Im cos ð!t� �Þ. The power delivered to the impedance at time t is

pðtÞ ¼ vi ¼ VmIm cos !t cos ð!t� �Þ ¼ 1
2
VmIm½cos � þ cos ð2!t� �Þ�

¼ VeffIeff ½cos � þ cos ð2!t� �Þ�

¼ VeffIeff cos � þ VeffIeff cos ð2!t� �Þ ð2Þ

where Veff ¼ Vm=
ffiffiffi
2

p
, Ieff ¼ Im=

ffiffiffi
2

p
, and Ieff ¼ Veff=jZj. The instantaneous power in (2) consists of a

sinusoidal component VeffIeff cos ð2!t� �Þ plus a constant value VeffIeff cos � which becomes the average
power Pavg. This is illustrated in Fig. 10-4. During a portion of one cycle, the instantaneous power
is positive which indicates that the power flows into the load. During the rest of the cycle, the instan-
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taneous power may be negative, which indicates that the power flows out of the load. The net flow
of power during one cycle is, however, nonnegative and is called the average power.

EXAMPLE 10.3 A voltage v ¼ 140 cos!t is connected across an impedance Z ¼ 5 �608. Find pðtÞ.

The voltage v results in a current i ¼ 28 cos ð!tþ 608Þ. Then,

pðtÞ ¼ vi ¼ 140ð28Þ cos!t cos ð!tþ 608Þ ¼ 980þ 1960 cos ð2!tþ 608Þ

The instantaneous power has a constant component of 980W and a sinusoidal component with twice the frequency

of the source. The plot of p vs. t is similar to that in Fig. 10-4 with � ¼ ��=3.

10.3 AVERAGE OR REAL POWER

The net or average power Pavg ¼ hpðtÞi entering a load during one period is called the real power.
Since the average of cos ð2!t� �Þ over one period is zero, from (2) we get

Pavg ¼ VeffIeff cos � ð3Þ
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If Z ¼ Rþ jX ¼ jZj �, then cos � ¼ R=jZj and Pavg may be expressed by

Pavg ¼ VeffIeff
R

jZj
ð4Þ

or Pavg ¼
V2

eff

jZj2
R (5)

or Pavg ¼ RI2eff (6)

The average power is nonnegative. It depends on V , I , and the phase angle between them. When
Veff and Ieff are given, P is maximum for � ¼ 0. This occurs when the load is purely resistive. For a
purely reactive load, j�j ¼ 908 and Pavg ¼ 0. The ratio of Pavg to VeffIeff is called the power factor
pf. From (3), the ratio is equal to cos � and so

pf ¼
Pavg

VeffIeff
0 � pf � 1 ð7Þ

The subscript avg in the average power Pavg is often omitted and so in the remainder of this chapter
P will denote average power.

EXAMPLE 10.4 Find P delivered from a sinusoidal voltage source with Veff ¼ 110V to an impedance of

Z ¼ 10þ j8. Find the power factor.

Z ¼ 10þ j8 ¼ 12:81 38:78

Ieff ¼
Veff

Z
¼

110

12:81 38:78
¼ 8:59 �38:78 A

P ¼ Veff Ieff cos � ¼ 110ð8:59 cos 38:78Þ ¼ 737:43 W

pf ¼ cos 38:78 ¼ 0:78
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Alternative Solution

We have jZj
2
¼ 100þ 64 ¼ 164. Then,

P ¼ V2
effR=jZj

2
¼ 1102ð10Þ=164 ¼ 737:8 W

The alternative solution gives a more accurate answer.

10.4 REACTIVE POWER

If a passive network contains inductors, capacitors, or both, a portion of energy entering it during
one cycle is stored and then returned to the source. During the period of energy return, the power is
negative. The power involved in this exchange is called reactive or quadrature power. Although the
net effect of reactive power is zero, it degrades the operation of power systems. Reactive power,
indicated by Q, is defined as

Q ¼ VeffIeff sin � ð8Þ

If Z ¼ Rþ jX ¼ jZj �, then sin � ¼ X=jZj and Q may be expressed by

Q ¼ VeffIeff
X

jZj
ð9Þ

or Q ¼
V2

eff

jZj2
X (10)

or Q ¼ XI2eff (11)

The unit of reactive power is the volt-amperes reactive (var).
The reactive power Q depends on V, I , and the phase angle between them. It is the product of the

voltage and that component of the current which is 908 out of phase with the voltage. Q is zero for
� ¼ 08. This occurs for a purely resistive load, when V and I are in phase. When the load is purely
reactive, j�j ¼ 908 and Q attains its maximum magnitude for given V and I . Note that, while P is
always nonnegative, Q can assume positive values (for an inductive load where the current lags the
voltage) or negative values (for a capacitive load where the current leads the voltage). It is also
customary to specify Q by it magnitude and load type. For example, 100-kvar inductive means
Q ¼ 100 kvar and 100-kvar capacitive indicates Q ¼ �100 kvar.

EXAMPLE 10.5 The voltage and current across a load are given by Veff ¼ 110V and Ieff ¼ 20 �508 A. Find P

and Q.

P ¼ 110ð20 cos 508Þ ¼ 1414 W Q ¼ 110ð20 sin 508Þ ¼ 1685 var

10.5 SUMMARY OF AC POWER IN R, L, AND C

AC power in resistors, inductors, and capacitors, is summarized in Table 10-1. We use the notation
Veff and Ieff to include the phase angles. The last column of Table 10-1 is S ¼ VI where S is called
apparent power. S is discussed in Section 10.7 in more detail.

EXAMPLE 10.6 Find the power delivered from a sinusoidal source to a resistor R. Let the effective values of

voltage and current be V and I , respectively.

pRðtÞ ¼ viR ¼ ðV
ffiffiffi
2

p
Þ cos!tðI

ffiffiffi
2

p
Þ cos!t ¼ 2VI cos2 !t ¼ VIð1þ cos 2!tÞ

¼ RI2ð1þ cos 2!tÞ ¼
V2

R
ð1þ cos 2!tÞ

PR ¼
V2

R
¼ RI2 Q ¼ 0Thus,
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The instantaneous power entering a resistor varies sinusoidally between zero and 2RI2, with twice the frequency

of excitation, and with an average value of P ¼ RI2. vðtÞ and pRðtÞ are plotted in Fig. 10-5(a).

EXAMPLE 10.7 Find the ac power entering an inductor L.

pLðtÞ ¼ viL ¼ ðV
ffiffiffi
2

p
Þ cos!tðI

ffiffiffi
2

p
Þ cos ð!t� 908Þ ¼ 2VI cos!t sin!t ¼ VI sin 2!t ¼ L!I2 sin 2!t

¼
V2

L!
sin 2!t

P ¼ 0 Q ¼ VI ¼
V2

L!
¼ L!I2Thus,

The instantaneous power entering an inductor varies sinusoidally between Q and �Q, with twice the frequency

of the source, and an average value of zero. See Fig. 10-5(b).

EXAMPLE 10.8 Find the ac power delivered in a capacitor C.

pCðtÞ ¼ viC ¼ ðV
ffiffiffi
2

p
Þ cos!t ðI

ffiffiffi
2

p
Þ cos ð!tþ 908Þ ¼ �2VI cos!t sin!t ¼ �VI sin 2!t ¼ �C!V2 sin 2!t

¼ �
I2

C!
sin 2!t

P ¼ 0 Q ¼ �VI ¼ �
I2

C!
¼ �C!V2Thus,

Like an inductor, the instantaneous power entering a capacitor varies sinusoidally between �Q and Q, with

twice the frequency of the source, and an average value of zero. See Fig. 10-5(c).

10.6 EXCHANGE OF ENERGY BETWEEN AN INDUCTOR AND A CAPACITOR

If an inductor and a capacitor are fed in parallel by the same ac voltage source or in series by
the same current source, the power entering the capacitor is 1808 out of phase with the power
entering the inductor. This is explicitly reflected in the opposite signs of reactive power Q for
the inductor and the capacitor. In such cases, the inductor and the capacitor will exchange some
energy with each other, bypassing the ac source. This reduces the reactive power delivered by the
source to the LC combination and consequently improves the power factor. See Sections 10.8 and
10.9.

EXAMPLE 10.9 Find the total instantaneous power pðtÞ, the average power P, and the reactive power Q, delivered

from v ¼ ðV
ffiffiffi
2

p
Þ cos!t to a parallel RLC combination.

The total instantaneous power is

pT ¼ vi ¼ vðiR þ iL þ iCÞ ¼ pR þ pL þ pC
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Table 10-1

v ¼ ðV
ffiffiffi
2

p
Þ cos!t Veff ¼ V 08

i ¼ ðI
ffiffiffi
2

p
Þ cos ð!t� �Þ Ieff ¼ I ��8

P ¼ VI cos �;Q ¼ VI sin � and S ¼ VI (apparent power)

Z i Ieff pðtÞ P Q S

R R
V

ffiffiffi
2

p

R
cos!t

V

R
08

V2

R
ð1þ cos 2!tÞ

V2

R 0
V2

R

L jL!
V

ffiffiffi
2

p

L!
cos ð!t� 908Þ

V

L!
�908

V2

L!
sin 2!t 0

V2

L!

V2

L!

C
�j

C! V
ffiffiffi
2

p
C! cos ð!tþ 908Þ VC! 908 �V2C! sin 2!t 0 �V2C! V2C!
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Substituting the values of pR, pL, and pC found in Examples 10.6, 10.7, and 10.8, respectively, we get

pT ¼
V2

R
ð1þ cos 2!tÞ þ V2 1

L!
� C!

� �
sin 2!t

The average power is

PT ¼ PR ¼ V2=R

The reactive power is

QT ¼ QL þQC ¼ V2 1

L!
� C!

� �
ð12Þ

For ð1=L!Þ � C! ¼ 0, the total reactive power is zero. Figure 10-5(d) shows pT ðtÞ for a load with a leading power

factor.

10.7 COMPLEX POWER, APPARENT POWER, AND POWER TRIANGLE

The two components P and Q of power play different roles and may not be added together. How-
ever, they may conveniently be brought together in the form of a vector quantity called complex power S
and defined by S ¼ Pþ jQ. The magnitude jSj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þQ2

p
¼ VeffIeff is called the apparent power S

and is expressed in units of volt-amperes (VA). The three scalar quantities S, P, and Q may be
represented geometrically as the hypotenuse, horizontal and vertical legs, respectively, of a right triangle

226 AC POWER [CHAP. 10

Fig. 10-5 (cont.)



(called a power triangle) as shown in Fig. 10-6(a). The power triangle is simply the triangle of the

impedance Z scaled by the factor I2eff as shown in Fig. 10-6(b). Power triangles for an inductive load

and a capacitive load are shown in Figs. 10-6(c) and (d), respectively.

It can be easily proved that S ¼ VeffI
�
eff , where Veff is the complex amplitude of effective voltage and

I
�
eff is the complex conjugate of the amplitude of effective current. An equivalent formula is S ¼ I

2
effZ.

In summary,

Complex Power: S ¼ VeffI
�
eff ¼ Pþ jQ ¼ I2effZ (13)

Real Power: P ¼ Re½S� ¼ VeffIeff cos � (14)

Reactive Power: Q ¼ Im½S� ¼ VeffIeff sin � (15)

Apparent Power: S ¼ VeffIeff (16)

EXAMPLE 10.10 (a) A sinusoidal voltage with Veff ¼ 10V is connected across Z1 ¼ 1þ j as shown in

Fig. 10-7(a). Find i1, I1;eff , p1ðtÞ, P1, Q1, power factor pf1, and S1. (b) Repeat part (a) replacing the load Z1

in (a) by Z2 ¼ 1� j, as shown in Fig. 10-7(b). (c) Repeat part (a) after connecting in parallel Z1 in (a) and Z2 in (b)

as shown in Fig. 10-7(c).

Let v ¼ 10
ffiffiffi
2

p
cos!t.
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(a) See Fig. 10-7(a). (b) See Fig. 10-7(b)

Z1 ¼
ffiffiffi
2

p
458 Z2 ¼

ffiffiffi
2

p
�458

i1 ¼ 10 cos ð!t� 458Þ i2 ¼ 10 cos ð!tþ 458Þ

I1;eff ¼ 5
ffiffiffi
2

p
�458 I2;eff ¼ 5

ffiffiffi
2

p
458

p1ðtÞ ¼ ð100
ffiffiffi
2

p
Þ cos!t cos ð!t� 458Þ p2ðtÞ ¼ ð100

ffiffiffi
2

p
Þ cos!t cos ð!tþ 458Þ

¼ 50þ ð50
ffiffiffi
2

p
Þ cos ð2!t� 458Þ W ¼ 50þ ð50

ffiffiffi
2

p
Þ cos ð2!tþ 458Þ W

P1 ¼ Veff I1;eff cos 458 ¼ 50 W P2 ¼ VeffI2;eff cos 458 ¼ 50 W

Q1 ¼ VeffI1;eff sin 458 ¼ 50 var Q2 ¼ �VeffI2;eff sin 458 ¼ �50 var

S1 ¼ P1 þ jQ1 ¼ 50þ j50 S2 ¼ P2 þ jQ2 ¼ 50� j50

S1 ¼ jS1j ¼ 50
ffiffiffi
2

p
¼ 70:7 VA S2 ¼ jS2j ¼ 50

ffiffiffi
2

p
¼ 70:7 VA

pf1 ¼ 0:707 lagging pf2 ¼ 0:707 leading

(c) See Fig. 10-7(c).

Z ¼ Z1kZ2 ¼
ð1þ jÞð1� jÞ

ð1þ jÞ þ ð1� jÞ
¼ 1

i ¼ 10
ffiffiffi
2

p
cos!t

Ieff ¼ 10

pðtÞ ¼ 200 cos2 !t ¼ 100þ 100 cos 2!t W

P ¼ VeffIeff ¼ 100 W

Q ¼ 0

S ¼ P ¼ 100

S ¼ jSj ¼ 100VA

pf ¼ 1
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The results of part (c) may also be derived from the observation that for the Z1kZ2 combination, i ¼ i1 þ i2
and, consequently,

pðtÞ ¼ p1ðtÞ þ p2ðtÞ

¼ ½50þ ð50
ffiffiffi
2

p
Þ cos ð2!t� 458Þ� þ ½50þ ð50

ffiffiffi
2

p
Þ cos ð2!tþ 458Þ�

¼ 100þ 100 cos 2!t W

P ¼ P1 þ P2 ¼ 50þ 50 ¼ 100 W

Q ¼ Q1 þQ2 ¼ 50� 50 ¼ 0

S ¼ 100 < S1 þ S2

The power triangles are shown in Figs. 10-7(a), (b), and (c). Figure 10-7(d) shows the plots of v, i, and p for the

three loads.

EXAMPLE 10.11 A certain passive network has equivalent impedance Z ¼ 3þ j4� and an applied voltage

v ¼ 42:5 cosð1000tþ 308Þ ðVÞ

Give complete power information.

Veff ¼
42:5ffiffiffi

2
p 308 V

Ieff ¼
Veff

Z
¼

ð42:5=
ffiffiffi
2

p
Þ 308

5 53:138
¼

8:5ffiffiffi
2

p �23:138 A

S ¼ VeffI
�
eff ¼ 180:6 53:138 ¼ 108:4þ j144:5

Hence, P ¼ 108:4 W, Q ¼ 144:5 var (inductive), S ¼ 180:6VA, and pf ¼ cos 53:138 ¼ 0:6 lagging.

10.8 PARALLEL-CONNECTED NETWORKS

The complex power S is also useful in analyzing practical networks, for example, the collection of
households drawing on the same power lines. Referring to Fig. 10-8,

ST ¼ VeffI
�
eff ¼ Veff ðI

�
1;eff þ I

�
2;eff þ � � � þ I

�
n;eff Þ

¼ S1 þ S2 þ � � � þ Sn

from which

PT ¼ P1 þ P2 þ � � � þ Pn

QT ¼ Q1 þQ2 þ � � � þQn

ST ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
T þQ2

T

q
pfT ¼

PT

ST

These results (which also hold for series-connected networks) imply that the power triangle for the
network may be obtained by joining the power triangles for the branches vertex to vertex. In the
example shown in Fig. 10-9, n ¼ 3, with branches 1 and 3 assumed inductive and branch 2 capacitive.
In such diagrams, some of the triangles may degenerate into straight-line segments if the corresponding
R or X is zero.

If the power data for the individual branches are not important, the network may be replaced by its
equivalent admittance, and this used directly to compute ST .

EXAMPLE 10.12 Three loads are connected in parallel to a 6-kVeff ac line, as shown in Fig. 10-8. Given

P1 ¼ 10 kW; pf1 ¼ 1; P2 ¼ 20 kW;pf2 ¼ 0:5 lagging; P3 ¼ 15 kW;pf3 ¼ 0:6 lagging

Find PT , QT , ST , pfT , and the current Ieff .
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We first find the reactive power for each load:

pf1 ¼ cos �1 ¼ 1 tan �1 ¼ 0 Q1 ¼ P1 tan �1 ¼ 0 kvar

pf2 ¼ cos �2 ¼ 0:5 tan �2 ¼ 1:73 Q2 ¼ P2 tan �2 ¼ 34:6 kvar

pf3 ¼ cos �3 ¼ 0:6 tan �3 ¼ 1:33 Q3 ¼ P3 tan �3 ¼ 20 kvar

Then PT , QT , ST , and pfT , are

PT ¼ P1 þ P2 þ P3 ¼ 10þ 20þ 15 ¼ 45 kW

QT ¼ Q1 þQ2 þQ3 ¼ 0þ 34:6þ 20 ¼ 54:6 kvar

ST ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þQ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
452 þ 54:62

p
¼ 70:75 kVA

pfT ¼ PT=ST ¼ 0:64 ¼ cos �; � ¼ 50:58 lagging

Ieff ¼ S=Veff ¼ ð70:75 kVAÞ=ð6 kVÞ ¼ 11:8 A

Ieff ¼ 11:8 �50:58 A

The current could also be found from I ¼ I1 þ I2 þ I3. However, this approach is more time-consuming.

10.9 POWER FACTOR IMPROVEMENT

Electrical service to industrial customers is three-phase, as opposed to the single-phase power
supplied to residential and small commercial customers. While metering and billing practices vary
among the utilities, the large consumers will always find it advantageous to reduce the quadrature
component of their power triangle; this is called ‘‘improving the power factor.’’ Industrial systems
generally have an overall inductive component because of the large number of motors. Each individual
load tends to be either pure resistance, with unity power factor, or resistance and inductive reactance,
with a lagging power factor. All of the loads are parallel-connected, and the equivalent impedance
results in a lagging current and a corresponding inductive quadrature power Q. To improve the power
factor, capacitors, in three-phase banks, are connected to the system either on the primary or secondary
side of the main transformer, such that the combination of the plant load and the capacitor banks
presents a load to the serving utility which is nearer to unit power factor.

CHAP. 10] AC POWER 231

Fig. 10-8

Fig. 10-9



EXAMPLE 10.13 How much capacitive Q must be provided by the capacitor bank in Fig. 10-10 to improve the

power factor to 0.95 lagging?

Before addition of the capacitor bank, pf ¼ cos 258C ¼ 0:906 lagging, and

I1 ¼
240 08

3:5 258
¼ 68:6 �258 A

S ¼ VeffI
�
eff ¼

240ffiffiffi
2

p 08
� �

68:6ffiffiffi
2

p þ258 ¼ 8232 258
� �

¼ 7461þ j3479

After the improvement, the triangle has the same P, but its angle is cos�1 0:95 ¼ 18:198. Then (see Fig. 10-11),

3479�Qc

7461
¼ tan 18:198 or Qc ¼ 1027 var (capacitive)

The new value of apparent power is S 0
¼ 7854VA, as compared to the original S ¼ 8232VA. The decrease,

378VA, amounts to 4.6 percent.

The transformers, the distribution systems, and the utility company alternators are all rated in kVA
or MVA. Consequently, an improvement in the power factor, with its corresponding reduction in
kVA, releases some of this generation and transmission capability so that it can be used to serve
other customers. This is the reason behind the rate structures which, in one way or another, make it
more costly for an industrial customer to operate with a lower power factor. An economic study
comparing the cost of the capacitor bank to the savings realized is frequently made. The results of
such a study will show whether the improvement should be made and also what final power factor
should be attained.

EXAMPLE 10.14 A load of P ¼ 1000 kW with pf ¼ 0:5 lagging is fed by a 5-kV source. A capacitor is added in

parallel such that the power factor is improved to 0.8. Find the reduction in current drawn from the generator.

Before improvement:

P ¼ 1000 kW; cos � ¼ 0:5;S ¼ P= cos � ¼ 2000 kVA; I ¼ 400 A

After improvement:

P ¼ 1000 kW; cos � ¼ 0:8;S ¼ P= cos � ¼ 1250 kVA; I ¼ 250 A
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Hence, for the same amount of real power, the current is reduced by ð400� 250Þ=400 ¼ 0:375 or 37.5 percent.

EXAMPLE 10.15 A fourth load Q4 is added in parallel to the three parallel loads of Example 10.12 such that the

total power factor becomes 0.8 lagging while the total power remains the same. Find Q4 and the resulting S.

discuss the effect on the current.

In Example 10.12 we found total real and reactive powers to be P ¼ P1 þ P2 þ P3 ¼ 45 kW and

Q ¼ Q1 þQ2 þQ3 ¼ 54:6 kvar, respectively. For compensation, we now add load Q4 (with P4 ¼ 0Þ such that

the new power factor is pf ¼ cos � ¼ 0:8 lagging, � ¼ 36:878.

tan 36:878 ¼ ðQþQ4Þ=P ¼ ð54:6þQ4Þ=45 ¼ 0:75 Q4 ¼ �20:85 kvarThen,

The results are summarized in Table 10-2. Addition of the compensating load Q4 reduces the reactive power from

54.6 kvar to 33.75 kvar and improves the power factor. This reduces the apparent power S from 70.75 kVA to

56.25 kVA. The current is proportionally reduced.

10.10 MAXIMUM POWER TRANSFER

The average power delivered to a load Z1 from a sinusoidal signal generator with open circuit

voltage Vg and internal impedance Zg ¼ Rþ jX is maximum when Z1 is equal to the complex conjugate

of Zg so that Z1 ¼ R� jX . The maximum average power delivered to Z1 is Pmax ¼ V2
g=4R.

EXAMPLE 10.16 A generator, with Vg ¼ 100V(rms) and Zg ¼ 1þ j, feeds a load Z1 ¼ 2 (Fig. 10-12). (a) Find

the average power PZ1 (absorbed by Z1), the power Pg (dissipated in Zg) and PT (provided by the generator).

(b) Compute the value of a second load Z2 such that, when in parallel with Z1, the equivalent impedance is

Z ¼ Z1kZ2 ¼ Z�g. (c) Connect in parallel Z2 found in (b) with Z1 and then find the powers PZ;PZ1;PZ2

(absorbed by Z, Z1, and Z2, respectively), Pg (dissipated in Zg) and PT (provided by the generator).

(a) jZ1 þ Zgj ¼ j2þ 1þ jj ¼
ffiffiffiffiffi
10

p
. Thus I ¼ Vg=ðZ1 þ ZgÞ ¼ 100=ð2þ 1þ jÞ and jI j ¼ 10

ffiffiffiffiffi
10

p
A. The required

powers are

PZ1 ¼ Re½Z1� � jI j2 ¼ 2ð10
ffiffiffiffiffi
10

p
Þ
2
¼ 2000 W

Pg ¼ Re½Zg� � jI j2 ¼ 1ð10
ffiffiffiffiffi
10

p
Þ
2
¼ 1000 W

PT ¼ PZ1 þ Pg ¼ 2000þ 1000 ¼ 3000 W
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Table 10-2

Load P, kW pf Q, kvar S, kVA

#1 10 1 0 10

#2 20 0.5 lagging 34:6 40

#3 15 0.6 lagging 20 25

#ð1þ 2þ 3Þ 45 0.64 lagging 54:6 70.75

#4 0 0 leading �20:85 20.85

Total 45 0.8 lagging 33:75 56.25
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(b) Let Z2 ¼ aþ jb. To find a and b, we set Z1kZ2 ¼ Z
�
g ¼ 1� j. Then,

Z1Z2

Z1 þ Z2

¼
2ðaþ jbÞ

2þ aþ jb
¼ 1� j

from which a� b� 2 ¼ 0 and aþ bþ 2 ¼ 0. Solving these simultaneous equations, a ¼ 0 and b ¼ �2; sub-

stituting into the equation above, Z2 ¼ �j2:
(b) Z ¼ Z1kZ2 ¼ 1� j and Zþ Zg ¼ 1� j þ 1þ j ¼ 2. Then, I ¼ Vg=ðZþ ZgÞ ¼ 100=ð1� j þ 1þ jÞ ¼ 100=2 ¼

50 A, and so

PZ ¼ Re½Z� � I
2
¼ 1� 502 ¼ 2500 W Pg ¼ Re½Zg� � I

2
¼ 1� 502 ¼ 2500 W

To find PZ1 and PZ2, we first find VZ across Z: VZ ¼ IZ ¼ 50ð1� jÞ. Then IZ1 ¼ VZ=Z1 ¼ 50ð1� jÞ=2 ¼

ð25
ffiffiffi
2

p
Þ �458, and

PZ1 ¼ Re½Z1� � jIZ1j
2
¼ 2ð25

ffiffiffi
2

p
Þ
2
¼ 2500 W PZ2 ¼ 0 W PT ¼ Pg þ PZ1 ¼ 5000 W

Alternatively, we can state that

PZ2 ¼ 0 and PZ1 ¼ PZ ¼ 2500 W

10.11 SUPERPOSITION OF AVERAGE POWERS

Consider a network containing two AC sources with two different frequencies, !1 and !2. If a
common period T may be found for the sources (i.e., !1 ¼ m!, !2 ¼ n!, where ! ¼ 2�=T and m 6¼ n),
then superposition of individual powers applies (i.e., P ¼ P1 þ P2), where P1 and P2 are average powers
due to application of each source. The preceding result may be generalized to the case of any n number
of sinusoidal sources operating simultaneously on a network. If the n sinusoids form harmonics of a
fundamental frequency, then superposition of powers applies.

P ¼
Xn
k¼1

Pk

EXAMPLE 10.17 A practical coil is placed between two voltage sources v1 ¼ 5 cos!1t and v2 ¼ 10 cos ð!2t ¼ 608Þ,
which share the same common reference terminal (see Fig. 9-54). The coil is modeled by a 5-mH inductor in series

with a 10-� resistor. Find the average power in the coil for (a) !2 ¼ 2!1 ¼ 4000; ðbÞ !1 ¼ !2 ¼ 2000;
ðcÞ !1 ¼ 2000 and !2 ¼ 1000

ffiffiffi
2

p
, all in rad/s.

Let v1 by itself produce i1. Likewise, let v2 produce i2. Then i ¼ i1 � i2. The instantaneous power p and the

average power P are

p ¼ Ri2 ¼ Rði1 � i2Þ
2
¼ Ri21 þ Ri22 � 2Ri1i2

P ¼ hpi ¼ Rhi21i þ Rhi22i � 2Rhi1i2i ¼ P1 þ P2 � 2Rhi1i2i

where hpi indicates the average of p. Note that in addition to P1 and P2, we need to take into account a third term

hi1i2i which, depending on !1 and !2, may or may not be zero.

(a) By applying superposition in the phasor domain we find the current in the coil (see Example 9.7).

I1 ¼
V1

Z1

¼
5

10þ j10
¼ 0:35 � 458 A; i1 ¼ 0:35 cos ð2000t� 458Þ

P1 ¼
RI21
2

¼
10� 0:352

2
¼ 0:625 W

I2 ¼
V2

Z2

¼
10 608
10þ j20

¼ 0:45 � 3:48 A; i2 ¼ 0:45 cos ð4000t� 3:48Þ

P2 ¼
RI22
2

¼
10� 0:452

2
¼ 1 W

i ¼ i1 � i2 ¼ 0:35 cos ð2000t� 458Þ � 0:45 cos ð4000t� 3:48Þ

234 AC POWER [CHAP. 10



In this case hi1i2i ¼ 0 because hcos ð2000t� 458Þ cos ð4000t� 3:48Þi ¼ 0. Therefore, superposition of power

applies and P ¼ P1 þ P2 ¼ 0:625þ 1 ¼ 1:625 W.

(b) The current in the coil is i ¼ 0:61 cos ð2000t� 1358Þ (see Example 9.7). The average power dissipated in the

coil is P ¼ RI2=2 ¼ 5� ð0:61Þ2 ¼ 1:875 W. Note that P > P1 þ P2.

(c) By applying superposition in the time domain we find

i1 ¼ 0:35 cos ð2000t� 458Þ;P1 ¼ 0:625 W

i2 ¼ 0:41 cos ð1000
ffiffiffi
2

p
t� 35:38Þ;P2 ¼ 0:833 W

i ¼ i1 � i2;P ¼ hRi2=2i ¼ P1 þ P2 � 1:44hcos ð2000t� 458Þ cos ð1000
ffiffiffi
2

p
t� 35:38Þi

The term hcos ð2000t� 458Þ cos ð1000
ffiffiffi
2

p
t� 35:38Þi is not determined because a common period can’t be

found. The average power depends on the duration of averaging.

Solved Problems

10.1 The current plotted in Fig. 10-2(a) enters a 0.5-mF capacitor in series with a 1-k� resistor. Find
and plot (a) v across the series RC combination and (b) the instantaneous power p entering
RC. (c) Compare the results with Examples 10.1 and 10.2.

(a) Referring to Fig. 10-2(a), in one cycle of the current the voltages are

vR ¼
1 V ð0 < t < 1msÞ

�1 V ð1 < t < 2msÞ

�

vC ¼
1

C

ðt
0

i dt ¼
2000t ðVÞ ð0 < t < 1msÞ

4� 2000t ðVÞ ð1 < t < 2msÞ

�

v ¼ vR þ vC ¼
1þ 2000t ðVÞ ð0 < t < 1msÞ

3� 2000t ðVÞ ð1 < t < 2msÞ

�
[See Fig. 10-13ðaÞ�

(b) During one cycle,

pR ¼ Ri2 ¼ 1mW

pC ¼ vCi ¼
2000t ðmWÞ ð0 < t < 1msÞ

2000t� 4 ðmWÞ ð1 < t < 2msÞ

�

p ¼ vi ¼ pR þ pC ¼
1þ 2000t ðmWÞ ð0 < t < 1msÞ

2000t� 3 ðmWÞ ð1 < t < 2msÞ

�
[(See Fig. 10-13ðbÞ�

(c) The average power entering the circuit during one cycle is equal to the average power absorbed by the

resistor. It is the same result obtained in Example 10.1. The power exchanged between the source

and the circuit during one cycle also agrees with the result obtained in Example 10.2.

10.2 A 1-V ac voltage feeds (a) a 1-� resistor, (b) a load Z ¼ 1þ j, and (c) a load Z ¼ 1� j. Find P
in each of the three cases.

(a) P ¼ V2=R ¼ 1=1 ¼ 1 W

(b) and (c) jZj ¼ j1� jj ¼
ffiffiffi
2

p
. I ¼ V=jZj ¼ 1=

ffiffiffi
2

p
. P ¼ RI2 ¼ 0:5 W

10.3 Obtain the complete power information for a passive circuit with an applied voltage v ¼

150 cos ð!tþ 108Þ V and a resulting current i ¼ 5:0 cos ð!t� 508Þ A.

Using the complex power
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S ¼ VeffI
�
eff ¼

150ffiffiffi
2

p 108
� �

5:0ffiffiffi
2

p 508
� �

¼ 375 608 ¼ 187:5þ j342:8

Thus, P ¼ 187:5 W, Q ¼ 324:8 var (inductive), S ¼ 375VA, and pf ¼ cos 608 ¼ 0:50 lagging.

10.4 A two-element series circuit has average power 940W and power factor 0.707 leading. Deter-
mine the circuit elements if the applied voltage is v ¼ 99:0 cos ð6000tþ 308Þ V.

The effective applied voltage is 99:0=
ffiffiffi
2

p
¼ 70:0 V. Substituting in P ¼ Veff Ieff cos �,

940 ¼ ð70:0ÞIeff ð0:707Þ or Ieff ¼ 19:0 A

Then, ð19:0Þ2R ¼ 940, from which R ¼ 2:60 �. For a leading pf, � ¼ cos�1 0:707 ¼ �458, and so

Z ¼ R� jXC where XC ¼ R tan 458 ¼ 2:60 �

Finally, from 2:60 ¼ 1=!C, C ¼ 64:1mF.

10.5 Find the two elements of a series circuit having current i ¼ 4:24 cos ð5000tþ 458Þ A, power 180
W, and power factor 0.80 lagging.

The effective value of the current is Ieff ¼ 4:24=
ffiffiffi
2

p
¼ 3:0 A: Then,

180 ¼ ð3:0Þ2R or R ¼ 20:0 �

The impedance angle is � ¼ cos�1 0:80 ¼ þ36:878, wherefore the second element must be an induc-

tor. From the power triangle,

Q

P
¼

I2effXL

180
¼ tan 36:878 or XL ¼ 15:0 �
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Finally, from 15.0=5000L, L ¼ 3:0 mH.

10.6 Obtain the power information for each element in Fig. 10-14 and construct the power triangle.

The effective current is 14.14/
ffiffiffi
2

p
¼ 10 A.

P ¼ ð10Þ23 ¼ 300 W Qj6� ¼ ð10Þ26 ¼ 600 var ðinductiveÞ Q�j2� ¼ ð10Þ22 ¼ 200 var ðcapacitiveÞ

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð300Þ2 þ ð600� 200Þ2

q
¼ 500 VA pf ¼ P=S ¼ 0:6 lagging

The power triangle is shown in Fig. 10-15.

10.7 A series circuit of R ¼ 10 � and XC ¼ 5 � has an effective applied voltage of 120 V. Determine
the complete power information.

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 þ 52

p
¼ 11:18� Ieff ¼

120

11:18
¼ 10:73 A

Then:

P ¼ I2effR ¼ 1152 W Q ¼ I2effXC ¼ 576 var (capacitive) S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1152Þ2 þ ð576Þ2

q
¼ 1288 VA

and pf ¼ 1152=1288 ¼ 0:894 leading

10.8 Impedances Zi ¼ 5:83 �59:08 � and Z2 ¼ 8:94 63:438 � are in series and carry an effective
current of 5.0 A. Determine the complete power information.

ZT ¼ Z1 þ Z2 ¼ 7:0þ j3:0 �

PT ¼ ð5:0Þ2ð7:0Þ ¼ 175 W QT ¼ ð5:0Þ2ð3:0Þ ¼ 75 var (inductive)Hence,

ST ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð175Þ2 þ ð75Þ2

q
¼ 190:4VA pf ¼

175

190:4
¼ 0:919 lagging
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10.9 Obtain the total power information for the parallel circuit shown in Fig. 10-16.

By current division,

I5 ¼ 17:88 18:438 A I4 ¼ 26:05 �12:538 A

PT ¼
17:88ffiffiffi

2
p

� �2

ð5Þ þ
26:05ffiffiffi

2
p

� �2

ð4Þ ¼ 2156 WThen,

QT ¼
17:88ffiffiffi

2
p

� �2

ð3Þ ¼ 480 var (capacitive)

ST ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2156Þ2 þ ð480Þ2

q
¼ 2209VA

pf ¼
2156

2209
¼ 0:976 leading

Alternate Method

Zeq ¼
4ð5� j3Þ

9� j3
¼ 2:40� j0:53 �

Then, P ¼ ð42:4=
ffiffiffi
2

p
Þ
2
ð2:40Þ ¼ 2157 W and Q ¼ ð42:4=

ffiffiffi
2

p
Þ
2
ð0:53Þ ¼ 476 var (capacitive).

10.10 Find the power factor for the circuit shown in Fig. 10-17.

With no voltage or current specified, P, Q, and S cannot be calculated. However, the power factor is

the cosine of the angle on the equivalent impedance.

Zeq ¼
ð3þ j4Þð10Þ

13þ j4
¼ 3:68 36:038 �

pf ¼ cos 36:038 ¼ 0:809 lagging

10.11 If the total power in the circuit Fig. 10-17 is 1100 W, what are the powers in the two resistors?
By current division,

I1;eff
I2;eff

¼
Z2

Z1

¼
10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32 þ 42
p ¼ 2
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P3�

P10�

¼
I21;eff ð3Þ

I22;eff ð10Þ
¼

6

5
and so

Solving simultaneously with P3� þ P10� ¼ 1100 W gives P3� ¼ 600 W, P10� ¼ 500 W.

10.12 Obtain the power factor of a two-branch parallel circuit where the first branch has Z1 ¼ 2þ j4 �,
and the second Z2 ¼ 6þ j0 �. To what value must the 6-� resistor be changed to result in the
overall power factor 0.90 lagging?

Since the angle on the equivalent admittance is the negative of the angle on the equivalent impedance,

its cosine also gives the power factor.

Yeq ¼
1

2þ j4
þ
1

6
¼ 0:334 �36:848 S

pf ¼ cosð�36:848Þ ¼ 0:80 lagging

The pf is lagging because the impedance angle is positive.

Now, for a change in power factor to 0.90, the admittance angle must become cos�1 0:90 ¼

�25:848. Then,

Y
0
eq ¼

1

2þ j4
þ

1

R
¼

1

10
þ

1

R

� �
� j

1

5

1=5

1

10
þ

1

R

¼ tan 25:848 or R ¼ 3:20 �requires

10.13 A voltage, 28.28 608 V, is applied to a two-branch parallel circuit in which Z1 ¼ 4 308 and
Z1 ¼ 5 608 �. Obtain the power triangles for the branches and combine them into the total
power triangle.

I1 ¼
V

Z1

¼ 7:07 308 A I2 ¼
V

Z2

¼ 5:66 08 A

S1 ¼
28:28ffiffiffi

2
p 608

� �
7:07ffiffiffi

2
p �308

� �
¼ 100 308 ¼ 86:6þ j50:0

S2 ¼
28:28ffiffiffi

2
p 608

� �
5:66ffiffiffi

2
p 08

� �
¼ 80:0 608 ¼ 40:0þ j69:3

ST ¼ S1 þ S2 ¼ 126:6þ j119:3 ¼ 174:0 43:38 VA

The power triangles and their summation are shown in Fig. 10-18.
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10.14 Determine the total power information for three parallel-connected loads: load #1, 250VA,
pf ¼ 0:50 lagging; load #2, 180W, pf ¼ 0:80 leading; load #3, 300VA, 100 var (inductive).

Calculate the average power P and the reactive power Q for each load.

Load #1 Given s ¼ 250 VA, cos � ¼ 0:50 lagging. Then,

P ¼ 250ð0:50Þ ¼ 125 W Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð250Þ2 � ð125Þ2

q
¼ 216:5 var (inductive)

Load #2 Given P ¼ 180 W, cos � ¼ 0:80 leading. Then, � ¼ cos�1 0:80 ¼ �36:878 and

Q ¼ 180 tanð�36:878Þ ¼ 135 var (capacitive)

Load #3 Given S ¼ 300 VA, Q ¼ 100 var (inductive). Then,

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð300Þ2 � ð100Þ2

q
¼ 282:8 W

Combining componentwise:

PT ¼ 125þ 180þ 282:8 ¼ 587:8 W

QT ¼ 216:5� 135þ 100 ¼ 181:5 var (inductive)

ST ¼ 587:8þ j181:5 ¼ 615:2 17:168

Therefore, ST ¼ 615:2 VA and pf ¼ cos 17:168 ¼ 0:955 lagging.

10.15 Obtain the complete power triangle and the total current for the parallel circuit shown in Fig. 10-
19, if for branch 2, S2 ¼ 1490 VA.

From S2 ¼ I22;effZ2,

I22;eff ¼
1490ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 62

p ¼ 222 A2

and, by current division,

I1

I2
¼

3þ j6

2þ j3
whence I21;eff ¼

32 þ 62

22 þ 32
I22;eff ¼

45

13
ð222Þ ¼ 768 A2

S1 ¼ I21;effZ1 ¼ 768ð2þ j3Þ ¼ 1536þ j2304Then,

S2 ¼ I22;effZ2 ¼ 222ð3þ j6Þ ¼ 666þ j1332

ST ¼ S1 þ S2 ¼ 2202þ j3636

that is, PT ¼ 2202 W, QT ¼ 3636 var (inductive),

ST ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2202Þ2 þ ð3636Þ2

q
¼ 4251 VA and pf ¼

2202

4251
¼ 0:518 lagging
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Since the phase angle of the voltage is unknown, only the magnitude of IT can be given. By current

division,

I2 ¼
2þ j3

5þ j9
IT or I22;eff ¼

22 þ 32

52 þ 92
I2T;eff ¼

13

106
I2T;eff

and so

I2T;eff ¼
106

13
ð222Þ ¼ 1811 A2 or IT;eff ¼ 42:6 A

10.16 Obtain the complete power triangle for the circuit shown in Fig. 10-20, if the total reactive power
is 2500 var (inductive). Find the branch powers P1 and P2.

The equivalent admittance allows the calculation of the total power triangle.

Yeq ¼ Y1 þ Y2 ¼ 0:2488 �39:578 S

PT ¼ 2500 cot 39:578 ¼ 3025 WThen,

ST ¼ 3025þ j2500 ¼ 3924 39:578 VA

and pf ¼ PT=ST ¼ 0:771 lagging.

The current ratio is I1=I2 ¼ Y1=Y2 ¼ 0:177=0:0745.

P1

P2

¼
I21 ð4Þ

I22 ð12Þ
¼ 1:88 and P1 þ P2 ¼ 3025 W

from which P1 ¼ 1975 W and P2 ¼ 1050 W.

10.17 A load of 300 kW, with power factor 0.65 lagging, has the power factor improved to 0.90 lagging
by parallel capacitors. How many kvar must these capacitors furnish, and what is the resulting
percent reduction in apparent power?

The angles corresponding to the power factors are first obtained:

cos�1 0:65 ¼ 49:468 cos�1 0:90 ¼ 25:848

Then (see Fig. 10-21),

Q ¼ 300 tan 49:468 ¼ 350:7 kvar (inductive)

Q�Qc ¼ 300 tan 25:848 ¼ 145:3 kvar (inductive)

whence Qc ¼ 205:4 kvar (capacitive). Since

S ¼
300

0:65
¼ 461:5 kVA S 0

¼
300

0:90
¼ 333:3 kVA
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the reduction is

461:5� 333:3

461:5
ð100%Þ ¼ 27:8%

10.18 Find the capacitance C necessary to improve the power factor to 0.95 lagging in the circuit shown
in Fig. 10-22, if the effective voltage of 120V has a frequency of 60Hz.

Admittance provides a good approach.

Yeq ¼ j!C þ
1

20 308
¼ 0:0433� jð0:0250� !CÞ ðSÞ

The admittance diagram, Fig. 10-23, illustrates the next step.

� ¼ cos�1 0:95 ¼ 18:198

0:0250� !C ¼ ð0:0433Þðtan 18:198Þ

!C ¼ 0:0108

C ¼ 28:6mF
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10.19 A circuit with impedance Z ¼ 10:0 608 � has the power factor improved by a parallel capacitive
reactance of 20�. What percent reduction in current results?

Since I ¼ VY, the current reduction can be obtained from the ratio of the admittances after and before

addition of the capacitors.

Ybefore ¼ 0:100 �608 S and Yafter ¼ 0:050 908þ 0:100 �608 ¼ 0:062 �36:208 S

Iafter
Ibefore

¼
0:062

0:100
¼ 0:620

so the reduction is 38 percent.

10.20 A transformer rated at a maximum of 25 kVA supplies a 12-kW load at power factor 0.60
lagging. What percent of the transformer rating does this load represent? How many kW in
additional load may be added at unity power factor before the transformer exceeds its rated kVA?

For the 12-kW load, S ¼ 12=060 ¼ 20 kVA. The transformer is at ð20=25Þð100%Þ ¼ 80% of full

rating.

The additional load at unity power factor does not change the reactive power,

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð20Þ2 � ð12Þ2

q
¼ 16 kvar (inductive)

Then, at full capacity,

� 0
¼ sin�1

ð16=25Þ ¼ 39:798

P 0
¼ 25 cos 39:798 ¼ 19:2 kW

Padd ¼ 19:2� 12:0 ¼ 7:2 kW

Note that the full-rated kVA is shown by an arc in Fig. 10-24, of radius 25.

10.21 Referring to Problem 10.20, if the additional load has power factor 0.866 leading, how many kVA
may be added without exceeding the transformer rating?

The original load is S ¼ 12þ j16 kVA and the added load is

S2 ¼ S2 �308 ¼ S2ð0:866Þ � jS2ð0:500Þ ðkVAÞ

The total is St ¼ ð12þ 0:866S2Þ þ jð16� 0:500S2Þ (kVA). Then,

S2
T ¼ ð12þ 0:866S2Þ

2
þ ð16� 0:500S2Þ

2
¼ ð25Þ2

gives S2 ¼ 12:8 kVA.
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10.22 An induction motor with a shaft power output of 1.56 kW has an efficiency of 85 percent. At
this load, the power factor is 0.80 lagging. Give complete input power information.

Pout

Pin

¼ 0:85 or Pin ¼
1:5

0:85
¼ 1:765 kW

Then, from the power triangle,

Sin ¼
1:765

0:80
¼ 2:206 kVA Qin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2:206Þ2 � ð1:765Þ2

q
¼ 1:324 kvar (inductive)

The equivalent circuit of an induction motor contains a variable resistance which is a function of the

shaft load. The power factor is therefore variable, ranging from values near 0.30 at starting to 0.85 at full

load.

Supplementary Problems

10.23 Given a circuit with an applied voltage v ¼ 14:14 cos!t (V) and a resulting current i ¼ 17:1 cos ð!t� 14:058Þ
(mA), determine the complete power triangle.

Ans: P ¼ 117mW;Q ¼ 29:3 mvar (inductive);pf ¼ 0:970 lagging

10.24 Given a circuit with an applied voltage v ¼ 340 sin ð!t� 608Þ (V) and a resulting current i ¼ 13:3
sin ð!t� 48:78Þ (A), determine the complete power triangle.

Ans: P ¼ 2217W;Q ¼ 443 var (capacitive); pf ¼ 0:981 leading

10.25 A two-element series circuit with R ¼ 5:0� and XL ¼ 15:0�, has an effective voltage 31.6V across the

resistance. Find the complex power and the power factor. Ans: 200þ j600Va, 0.316 lagging

10.26 A circuit with impedance Z ¼ 8:0� j6:0� has an applied phasor voltage 70:7 �90:08 V. Obtain the

complete power triangle. Ans: P ¼ 200W;Q ¼ 150 var (capacitive), pf ¼ 0:80 leading

10.27 Determine the circuit impedance which has a complex power S ¼ 5031 �26:578 VA for an applied phasor

voltage 212:1 08 V. Ans: 4:0� j2:0 �

10.28 Determine the impedance corresponding to apparent power 3500VA, power factor 0.76 lagging, and effec-

tive current 18.0A. Ans: 10:8 40:548 �

10.29 A two-branch parallel circuit, with Z1 ¼ 10 08 � and Z2 ¼ 8:0 �30:08 �, has a total current

i ¼ 7:07 cos ð!t� 908Þ (A). Obtain the complete power triangle.

Ans: P ¼ 110W;Q ¼ 32:9 var (capacitive), pf ¼ 0:958 leading

10.30 A two-branch parallel circuit has branch impedances Z1 ¼ 2:0� j5:0 � and Z2 ¼ 1:0þ j1:0 �. Obtain the

complete power triangle for the circuit if the 2.0-� resistor consumes 20W.

Ans: P ¼ 165W;Q ¼ 95 var (inductive), pf ¼ 0:867 lagging

10.31 A two-branch parallel circuit, with impedances Z1 ¼ 4:0 �308 � and Z2 ¼ 5:0 608 �, has an applied

effective voltage of 20V. Obtain the power triangles for the branches and combine them to obtain the

total power triangle. Ans: ST ¼ 128:1VA, pf ¼ 0:989 lagging

10.32 Obtain the complex power for the complete circuit of Fig. 10-25 if branch 1 takes 8.0 kvar.

Ans: S ¼ 8þ j12 kVA, pf ¼ 0:555 lagging

10.33 In the circuit of Fig. 10-26, find Z if ST ¼ 3373Va, pf ¼ 0:938 leading, and the 3-� resistor has an average

power of 666W. Ans: 2� j2 �
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10.34 The parallel circuit in Fig. 10-27 has a total average power of 1500W. Obtain the total power-triangle

information. Ans: S ¼ 1500þ j2471VA, pf ¼ 0:519 lagging

10.35 Determine the average power in the 15-� and 8-� resistances in Fig. 10-28 if the total average power in the

circuit is 2000W. Ans: 723W, 1277W

10.36 A three-branch parallel circuit, with Z1 ¼ 25 158 �, Z2 ¼ 15 608 , and Z3 ¼ 15 908 �, has an applied

voltage V ¼ 339:4 �308 V. Obtain the total apparent power and the overall power factor.

Ans: 4291VA, 0.966 lagging

10.37 Obtain the complete power triangle for the following parallel-connected loads: load #1, 5 kW, pf ¼ 0:80
lagging; load #2, 4 kVA, 2 kvar (capacitive); load #3, 6 kVA, pf ¼ 0:90 lagging.

Ans: 14.535 kVA, pf ¼ 0:954 lagging
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10.38 Obtain the complete power triangle for the following parallel-connected loads: load #1, 200VA, pf ¼ 0:70
lagging; load #2, 350VA, pf ¼ 0:50 lagging; load #3, 275VA, pf ¼ 1:00.
Ans: S ¼ 590þ j444VA, pf ¼ 0:799 lagging

10.39 A 4500-VA load at power factor 0.75 lagging is supplied by a 60-Hz source at effective voltage

240V. Determine the parallel capacitance in microfarads necessary to improve the power factor to

(a) 0.90 lagging, (b) 0.90 leading. Ans: ðaÞ 61:8mF; ðbÞ 212 mF

10.40 In Problem 10.39, what percent reduction in line current and total voltamperes was achieved in part

(a)? What further reduction was achieved in part (b)? Ans: 16.1 percent, none

10.41 The addition of a 20-kvar capacitor bank improved the power factor of a certain load to 0.90 lagging. -

Determine the complex power before the addition of the capacitors, if the final apparent power is

185 kVA. Ans: S ¼ 166:5þ j100:6 kVA

10.42 A 25-kVA load with power factor 0.80 lagging has a group of resistive heating units added at unity power

factor. How many kW do these units take, if the new overall power factor is 0.85 lagging?

Ans: 4:2 kW

10.43 A 500-kVA transformer is at full load and 0.60 lagging power faactor. A capacitor bank is added, improv-

ing the power factor to 0.90 lagging. After improvement, what percent of rated kVA is the transformer

carrying? Ans: 66:7 percent

10.44 A 100-kVA transformer is at 80 percent of rated load at power factor 0.85 lagging. How many kVA in

additional load at 0.60 lagging power factor will bring the transformer to full rated load?

Ans: 21:2 kVA

10.45 A 250-kVA transformer is at full load with power factor 0.80 lagging. ðaÞ How many kvar of capacitors

must be added to improve this power factor to 0.90 lagging? (b) After improvement of the power factor, a

new load is to be added at 0.50 lagging power factor. How many kVA of this new load will bring the

transformer back to rated kVA, and what is the final power factor?

Ans: ðaÞ 53.1 kvar (capacitive); (b) 33.35 kVA, 0.867 lagging

10.46 A 65-kVA load with a lagging power factor is combined with a 25-kVA synchronous motor load which

operates at pf ¼ 0:60 leading. Find the power factor of the 65-kVA load, if the overall power factor is 0.85

lagging. Ans: 0:585 lagging

10.47 An induction motor load of 2000 kVA has power factor 0.80 lagging. Synchronous motors totaling

500 kVA are added and operated at a leading power factor. If the overall power factor is then 0.90 lagging,

what is the power factor of the synchronous motors? Ans: 0:92 leading

10.48 Find maximum energy (E) stored in the inductor of Example 10.17(a) and show that it is greater than the

sum of maximum stored energies when each source is applied alone ðE1 and E2Þ.

Ans: E ¼ 1:6 mJ, E1 ¼ 306 mJ, E2 ¼ 506 mJ

10.49 The terminal voltage and current of a two-terminal circuit are Vrms ¼ 120V and Irms ¼ 30 �608 A at

f ¼ 60Hz. Compute the complex power. Find the impedance of the circuit and its equivalent circuit

made of two series elements.

Ans: S ¼ 1800þ j3117:7 VA, Z ¼ 2þ j3:464 ¼ Rþ jL!, R ¼ 2 �, L ¼ 9:2 mH

10.50 In the circuit of Fig. 10-29 the voltage source has effective value 10V at ! ¼ 1 rad/s and the current source is

zero. (a) Find the average and reactive powers delivered by the voltage source. (b) Find the effective

value of the current in the resistor and the average power absorbed by it and the reactive powers in L and

C. Show the balance sheet for the average and reactive powers between the source and R, L, and C.

Ans: ðaÞ P ¼ 80 W, Q ¼ �60 var, (b) IR ¼ 5
ffiffiffi
2

p
A, PR ¼ 80 W, QC ¼ �160 var, QL ¼ 100 var, PR ¼ P

and QL þQC ¼ Q
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10.51 In the circuit of Fig. 10-29, va ¼ 10
ffiffiffi
2

p
cos t and ib ¼ 10

ffiffiffi
2

p
cos 2t. (a) Find the average power delivered by

each source. (b) Find the current in the resistor and the average power absorbed by it.

Ans: ðaÞ Pa ¼ Pb ¼ 80 W; ðbÞ iR ¼ 2
ffiffiffiffiffi
10

p
cos ðt� 26:58Þ þ 2

ffiffiffiffiffi
10

p
cos ð2t� 63:48Þ, PR ¼ 160 W

10.52 A single-phase AC source having effective value 6 kV delivers 100 kW at a power factor 0.8 lagging to two

parallel loads. The individual power factors of the loads are pf1 ¼ 0:7 lagging and pf2 ¼ 0:1 lea-

ding. (a) Find powers P1 and P2 delivered to each load. (b) Find the impedance of each load and

their combination.

Ans: ðaÞ P1 ¼ 97:54 kW, P2 ¼ 2:46 kW, (b) Z1 ¼ 0:244 �84:26 �, Z2 ¼ 0:043 45:57 �, Z ¼ 0:048 36:87 �

10.53 A practical voltage source is modeled by an ideal voltage source Vg with an open-circuited effective value

of 320V in series with an output impedance Zg ¼ 50þ j100 �. The source feeds a load Z‘ ¼

200þ j100 �. See Fig. 10-30. ða) Find the average power and reactive power delivered by Vg.

(b) Find the average power and reactive power absorbed by the load. (c) A reactive element jX is

added in parallel to Z‘. Find the X such that power delivered to Z‘ is maximized.

Ans: ðaÞ Pg ¼ 250 W and Qg ¼ 200 var, (b) P‘ ¼ 200 W and Q‘ ¼ 100 var, (c) X ¼ �100 �
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Polyphase Circuits

11.1 INTRODUCTION

The instantaneous power delivered from a sinusoidal source to an impedance is

pðtÞ ¼ vðtÞiðtÞ ¼ VpIp cos � þ VpIp cos ð2!t� �Þ ð1Þ

where Vp and Ip are the rms values of v and i, respectively, and � is the angle between them. The power
oscillates between VpIpð1þ cos �Þ and VpIpð�1þ cos �Þ. In power systems, especially at higher levels, it
is desirable to have a steady flow of power from source to load. For this reason, polyphase systems are
used. Another advantage is having more than one voltage value on the lines. In polyphase systems, Vp

and Ip indicate voltage and current, respectively, in a phase which may be different from voltages and
currents in other phases. This chapter deals mainly with three-phase circuits which are the industry
standard. However, examples of two-phase circuits will also be presented.

11.2 TWO-PHASE SYSTEMS

A balanced two-phase generator has two voltage sources producing the same amplitude and fre-
quency but 908 or 1808 out of phase. There are advantages in such a system since it gives the user the
option of two voltages and two magnetic fields. Power flow may be constant or pulsating.

EXAMPLE 11.1 An ac generator contains two voltage sources with voltages of the same amplitude and frequency,

but 908 out of phase. The references of the sources are connected together to form the generator’s reference

terminal n. The system feeds two identical loads [Fig. 11-1(a)]. Find currents, voltages, the instantaneous and

average powers delivered.

Terminal voltages and currents at generator’s terminal are

vaðtÞ ¼ Vp

ffiffiffi
2

p
cos!t vbðtÞ ¼ Vp

ffiffiffi
2

p
cos ð!t� 908Þ ð2Þ

iaðtÞ ¼ Ip
ffiffiffi
2

p
cos ð!t� �Þ ibðtÞ ¼ Ip

ffiffiffi
2

p
cos ð!t� 908� �Þ

In the phasor domain, let Z ¼ jZj � and Ip ¼ Vp=jZj. Then,

VAN ¼ Vp 0 VBN ¼ Vp �908 VAB ¼ VAN � VBN ¼
ffiffiffi
2

p
Vp 458 ð3Þ

IA ¼ Ip �� IB ¼ Ip �908� � IN ¼ IA þ IB ¼ Ip
ffiffiffi
2

p
�458� �

The voltage and current phasors are shown in Fig. 11-1(b).

Instantaneous powers pAðtÞ and pBðtÞ delivered by the two sources are

Copyright 2003, 1997, 1986, 1965 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



paðtÞ ¼ vaðtÞiaðtÞ ¼ VpIp cos � þ VpIp cos ð2!t� �Þ

pbðtÞ ¼ vbðtÞibðtÞ ¼ VpIp cos � � VpIp cos ð2!t� �Þ

The total instantaneous power pT ðtÞ delivered by the generator is

pT ðtÞ ¼ paðtÞ þ pbðtÞ ¼ VpIp cos � þ VpIp cos ð2!t� �Þ þ VpIp cos � � VpIp cos ð2!t� �Þ ¼ 2VpIp cos �

Thus, pT ðtÞ ¼ Pavg ¼ 2VpIp cos � (4)

In the system of Fig. 11-1(a), two voltage values Vp and
ffiffiffi
2

p
Vp are available to the load and the power flow is

constant. In addition, the 908-phase shift between the two voltages may be used to produce a special rotating

magnetic field needed in some applications.

11.3 THREE-PHASE SYSTEMS

Three-phase generators contain three sinusoidal voltage sources with voltages of the same frequency
but a 1208-phase shift with respect to each other. This is realized by positioning three coils at 1208
electrical angle separations on the same rotor. Normally, the amplitudes of the three phases are also
equal. The generator is then balanced. In Fig. 11-2, three coils are equally distributed about the
circumference of the rotor; that is, the coils are displaced from one another by 120 mechanical degrees.
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Coil ends and slip rings are not shown; however, it is evident that counterclockwise rotation results in the

coil sides A, B, and C passing under the pole pieces in the order . . .A-B-C-A-B-C . . . Voltage polarities

reverse for each change of pole. Assuming that the pole shape and corresponding magnetic flux density

are such that the induced voltages are sinusoidal, the result for the three coils is as shown in Fig. 11-3.

Voltage B is 120 electrical degrees later than A, and C is 2408 later. This is referred to as the ABC

sequence. Changing the direction of rotation would result in . . .A-C-B-A-C-B . . . ; which is called the

CBA sequence.

The voltages of a balanced ABC sequence in the time and phasor domains are given in (5) and (6),

respectively. The phasor diagram for the voltage is shown in Fig. 11-4.
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vanðtÞ ¼ ðVp

ffiffiffi
2

p
Þ cos!t vbnðtÞ ¼ ðVp

ffiffiffi
2

p
Þ cos ð!t� 1208Þ vcnðtÞ ¼ ðVp

ffiffiffi
2

p
Þ cos ð!t� 2408Þ ð5Þ

Van ¼ Vp 0 Vbn ¼ Vp �1208 Vcn ¼ Vp �2408 ð6Þ

11.4 WYE AND DELTA SYSTEMS

The ends of the coils can be connected in wye (also designated Y; see Section 11.8), with ends A 0, B 0,
and C 0 joined at a common point designated the neutral, N; and with ends A, B, and C brought out to
become the lines A, B, and C of the three-phase system. If the neutral point is carried along with the
lines, it is a three-phase, four-wire system. In Fig. 11-5, the lines are designated by lowercase a, b, and c
at the supply, which could either be a transformer bank or a three-phase alternator, and by uppercase A,
B, and C at the load. If line impedances must be considered, then the current direction through, for
example, line aA would be IaA, and the phasor line voltage drop VaA.

The generator coil ends can be connected as shown in Fig. 11-6, making a delta-connected (or �-

connected), three-phase system with lines a, b, and c. A delta-connected set of coils has no neutral point

to produce a four-wire system, except through the use of �-Y transformers.

11.5 PHASOR VOLTAGES

The selection of a phase angle for one voltage in a three-phase system fixes the angles of all other

voltages. This is tantamount to fixing the t ¼ 0 point on the horizontal axis of Fig. 11-3, which can be

done quite arbitrarily. In this chapter, an angle of zero will always be associated with the phasor voltage

of line B with respect to line C: VBC � VL 08.
It is shown in Problem 11.4 that the line-to-line voltage VL is

ffiffiffi
3

p
times the line-to-neutral voltage.

All ABC-sequence voltages are shown in Fig. 11-7(a) and CBA voltages in Fig. 11-7(b). These phasor
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voltages, in keeping with the previous chapters, reflect maximum values. In the three-phase, four-wire,
480-volt system, widely used for industrial loads, and the 208-volt system, common in commercial
buildings, effective values are specified. In this chapter, a line-to-line voltage in the former system
would be VBC ¼ 678:8 08 V, making VBC eff ¼ 678:8=

ffiffiffi
2

p
¼ 480 V. People who regularly work in this

field use effective-valued phasors, and would write VBC ¼ 480 08 V.

11.6 BALANCED DELTA-CONNECTED LOAD

Three identical impedances connected as shown in Fig. 11-8 make up a balanced �-connected load.
The currents in the impedances are referred to either as phase currents or load currents, and the three will
be equal in magnitude and mutually displaced in phase by 1208. The line currents will also be equal in
magnitude and displaced from one another by 1208; by convention, they are given a direction from the
source to the load.

EXAMPLE 11.2 A three-phase, three-wire, ABC system, with an effective line voltage of 120V, has three impe-

dances of 5:0 458 � in a �-connection. Determine the line currents and draw the voltage-current phasor diagram.

The maximum line voltage is 120
ffiffiffi
2

p
¼ 169:7 V. Referring to Fig. 11-7(a), the voltages are:

VAB ¼ 169:7 1208 V VBC ¼ 169:7 08 V VCA ¼ 169:7 2408 V

Double subscripts give the phase-current directions; for example, IAB passes through the impedance from line A to

line B. All current directions are shown in Fig. 11-8. Then the phase currents are

IAB ¼
VAB

Z
¼

169:7 1208

5 458
¼ 33:9 758 A

IBC ¼
VBC

Z
¼

169:7 08

5 458
¼ 33:9 �458 A

ICA ¼
VCA

Z
¼

169:7 2408

5 458
¼ 33:9 1958 A
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By KCL, line current IA is given by

IA ¼ IAB þ IAC ¼ 33:9 758� 33:9 1958 ¼ 58:7 458 A

Similarly, IB ¼ 58:7 �758 A and IC ¼ 58:7 1658 A.

The line-to-line voltages and all currents are shown on the phasor diagram, Fig. 11-9. Note particularly the

balanced currents. After one phase current has been computed, all other currents may be obtained through the

symmetry of the phasor diagram. Note also that 33:9�
ffiffiffi
3

p
¼ 58:7; that is, IL ¼

ffiffiffi
3

p
IPh for a balanced delta load.

11.7 BALANCED FOUR-WIRE, WYE-CONNECTED LOAD

Three identical impedances connected as shown in Fig. 11-10 make up a balanced Y-connected load.
the currents in the impedances are also the line currents; so the directions are chosen from the source to
the load, as before.

EXAMPLE 11.3 A three-phase, four-wire, CBA system, with an effective line voltage of 120V, has three impe-

dances of 20 �308 � in a Y-connection (Fig. 11-10). Determine the line currents and draw the voltage-current

phasor diagram.

The maximum line voltage is 169.7 V, and the line-to-neutral magnitude, 169:7=
ffiffiffi
3

p
¼ 98:0 V. From Fig.

11-7(b),

VAN ¼ 98:0 �908 V VBN ¼ 98:0 308 V VCN ¼ 98:0 1508 V

IA ¼
VAN

Z
¼

98:01 �908

20 �308
¼ 4:90 �608 AThen

and, similarly, IB ¼ 4:90 608 A, IC ¼ 4:90 1808 A.
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The voltage-current phasor diagram is shown in Fig. 11-11. Note that with one line current calculated, the

other two can be obtained through the symmetry of the phasor diagram. All three line currents return through the

neutral. Therefore, the neutral current is the negative sum of the line currents:

Since the neutral current of a balanced, Y-connected, three-phase load is always zero, the neutral

conductor may, for computation purposes, be removed, with no change in the results. In actual power

circuits, it must not be physically removed, since it carries the (small) unbalance of the currents, carries

short-circuit or fault currents for operation of protective devices, and prevents overvoltages on the

phases of the load. Since the computation in Example 11.3 proceeded without difficulty, the neutral

will be included when calculating line currents in balanced loads, even when the system is actually three-

wire.

11.8 EQUIVALENT Y- AND �-CONNECTIONS

Figure 11-12 shows three impedances connected in a � (delta) configuration, and three impedances

connected in a Y (wye) configuration. Let the terminals of the two connections be identified in pairs as

indicated by the labels �, �, �. Then Z1 is the impedance ‘‘adjoining’’ terminal � in the Y-connection,

and ZC is the impedance ‘‘opposite’’ terminal � in the �-connection, and so on. Looking into any two

terminals, the two connections will be equivalent if corresponding input, output, and transfer impe-

dances are equal. The criteria for equivalence are as follows:
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Y-to-� Transformation �-to-Y Transformation

ZA ¼
Z1Z2 þ Z1Z3 þ Z2Z3

Z3

Z1 ¼
ZAZB

ZA þ ZB þ ZC

ZB ¼
Z1Z2 þ Z1Z3 þ Z2Z3

Z2

Z2 ¼
ZAZC

ZA þ ZB þ ZC

ZC ¼
Z1Z2 þ Z1Z3 þ Z2Z3

Z1

Z3 ¼
ZBZC

ZA þ ZB þ ZC

It should be noted that if the three impedances of one connection are equal, so are those of the
equivalent connection, with Z�=ZY ¼ 3.

11.9 SINGLE-LINE EQUIVALENT CIRCUIT FOR BALANCED THREE-PHASE LOADS

Figure 11-13(a) shows a balanced Y-connected load. In many cases, for instance, in power
calculations, only the common magnitude, IL, of the three line currents is needed. This may be obtained
from the single-line equivalent, Fig. 11-13(b), which represents one phase of the original system, with the
line-to-neutral voltage arbitrarily given a zero phase angle. This makes IL ¼ IL ��, where � is the
impedance angle. If the actual line currents IA, IB, and IC are desired, their phase angles may be found
by adding �� to the phase angles of VAN , VBN , and VCN as given in Fig. 11-7. Observe that the angle on
IL gives the power factor for each phase, pf ¼ cos �.

The method may be applied to a balanced �-connected load if the load is replaced by its Y-
equivalent, where ZY ¼ 1

3
Z� (Section 11.8).

EXAMPLE 11.4 Rework Example 11.3 by the single-line equivalent method.

Referring to Fig. 11-14 (in which the symbol Y indicates the type of connection of the original load),

IL ¼
VLN

Z
¼

98:0 08

20 �308
¼ 4:90 308 A

From Fig. 11-7(b), the phase angles of VAN , VBN , and VCN are �908, 308, and 1508. Hence,

IA ¼ 4:90 �608 A IB ¼ 4:90 608 A IC ¼ 4:90 1808 A

11.10 UNBALANCED DELTA-CONNECTED LOAD

The solution of the unbalanced delta-connected load consists in computing the phase currents and
then applying KCL to obtain the line currents. The currents will be unequal and will not have the
symmetry of the balanced case.

EXAMPLE 11.5 A three-phase, 339.4-V, ABC system [Fig. 11-15(a)] has a �-connected load, with

ZAB ¼ 10 08 � ZBC ¼ 10 308 � ZCA ¼ 15 �308 �
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Obtain phase and line currents and draw the phasor diagram.

IAB ¼
VAB

ZAB

¼
339:4 1208

10 08
¼ 33:94 1208 A

Similarly, IBC ¼ 33:94 �308 A and ICA ¼ 22:63 2708 A. Then,

IA ¼ IAB þ IAC ¼ 33:94 1208� 22:63 2708 ¼ 54:72 108:18 A

Also, IB ¼ 65:56 �458 A and IC ¼ 29:93 �169:18 A.

The voltage-current phasor diagram is shown in Fig. 11-15(b), with magnitudes and angles to scale.

11.11 UNBALANCED WYE-CONNECTED LOAD

Four-Wire

The neutral conductor carries the unbalanced current of a wye-connected load and maintains the
line-to-neutral voltage magnitude across each phase of the load. The line currents are unequal and the
currents on the phasor diagram have no symmetry.

EXAMPLE 11.6 A three-phase, four-wire, 150-V, CBA system has a Y-connected load, with

ZA ¼ 6 08 � ZB ¼ 6 308 � ZC ¼ 5 458 �

Obtain all line currents and draw the phasor diagram. See Figure 11-16(a).

IA ¼
VAN

ZA

¼
86:6 �908

6 08
¼ 14:43 �908 A

IB ¼
VBN

ZB

¼
86:6 308

6 308
¼ 14:43 08 A

IC ¼
VCN

ZC

¼
86:6 1508

5 458
¼ 17:32 1058 A

IN ¼ �ð14:43 �908þ 14:43 08þ 17:32 1058Þ ¼ 10:21 �167:08 A

Figure 11-16(b) gives the phasor diagram.

256 POLYPHASE CIRCUITS [CHAP. 11

Fig. 11-14

Fig. 11-15



Three-Wire

Without the neutral conductor, the Y-connected impedances will have voltages which vary consid-
erably from the line-to-neutral magnitude.

EXAMPLE 11.7 Figure 11-17(a) shows the same system as treated in Example 11.6 except that the neutral wire is

no longer present. Obtain the line currents and find the displacement neutral voltage, VON .

The circuit is redrawn in Fig. 11-17(b) so as to suggest a single node-voltage equation with VOB as the unknown.

VOB � VAB

ZA

þ
VOB

ZB

þ
VOB þ VBC

ZC

¼ 0

VOB

1

6 08
þ

1

6 308
þ

1

5 458

� �
¼

150 2408

6 08
�
150 08

5 458

from which VOB ¼ 66:76 �152:858 V. Then,

IB ¼ �
VOB

ZB

¼ 11:13 �2:858 A

From VOA þ VAB ¼ VOB, VOA ¼ 100:7 81:088 V, and

IA ¼ �
VOA

ZA

¼ 16:78 �98:928 A

Similarly, VOC ¼ VOB � VCB ¼ 95:58 �18:588 V, and

IC ¼ 19:12 116:48 A
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Point O is displaced from the neutral N by a phasor voltage VON , given by

VON ¼ VOA þ VAN ¼ 100:7 81:088þ
150ffiffiffi
3

p �908 ¼ 20:24 39:538 V

The phasor diagram, Fig. 11-18, shows the shift of point O from the centroid of the equilateral triangle.

See Problem 11-13 for an alternate method.

11.12 THREE-PHASE POWER

The powers delivered by the three phases of a balanced generator to three identical impedances with
phase angle � are

paðtÞ ¼ VpIp cos � þ VpIp cos ð2!t� �Þ

pbðtÞ ¼ VpIp cos � þ VpIp cos ð2!t� 2408� �Þ

pcðtÞ ¼ VpIp cos � þ VpIp cos ð2!t� 4808� �Þ

pT ðtÞ ¼ paðtÞ þ pbðtÞ þ pcðtÞ

¼ 3VpIp cos � þ VpIp½cos ð2!t� �Þ þ cos ð2!t� 2408� �Þ þ cos ð2!t� 4808� �Þ�

But cos ð2!t� �Þ þ cos ð2!t� 2408� �Þ þ cos ð2!t� 4808� �Þ ¼ 0 for all t. Therefore,

pT ðtÞ ¼ 3VpIp cos � ¼ P

The total instantaneous power is the same as the total average power. It may be written in terms of line
voltage VL and line current IL. Thus,

In the delta system, VL ¼ Vp and IL ¼
ffiffiffi
3

p
Ip. Therefore, P ¼

ffiffiffi
3

p
VLIL cos �:

In the wye system, VL ¼
ffiffiffi
3

p
Vp and IL ¼ Ip. Therefore, P ¼

ffiffiffi
3

p
VLIL cos �:

The expression
ffiffiffi
3

p
VLIL cos � gives the power in a three-phase balanced system, regardless of the con-

nection configuration. The power factor of the three-phase system is cos �. The line voltage VL in
industrial systems is always known. If the load is balanced, the total power can then be computed from
the line current and power factor.
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In summary, power, reactive power, apparent power, and power factor in a three-phase system are

P ¼
ffiffiffiffiffiffiffi
3V

p

LIL cos � Q ¼
ffiffiffi
3

p
VLIL sin � S ¼

ffiffiffi
3

p
VLIL pf ¼

P

S

Of course, all voltage and currents are effective values.

11.13 POWER MEASUREMENT AND THE TWO-WATTMETER METHOD

An ac wattmeter has a potential coil and a current coil and responds to the product of the effective
voltage, the effective current, and the cosine of the phase angle between them. Thus, in Fig. 11-19, the
wattmeter will indicate the average power supplied to the passive network,

P ¼ VeffIeff cos � ¼ Re ðVeffI
�
eff Þ

(see Section 10.7).

Two wattmeters connected in any two lines of a three-phase, three-wire system will correctly indicate
the total three-phase power by the sum of the two meter readings. A meter will attempt to go downscale if
the phase angle between the voltage and current exceeds 908. In this event, the current-coil connections
can be reversed and the upscale meter reading treated as negative in the sum. In Fig. 11-20 the meters
are inserted in lines A and C, with the potential-coil reference connections in line B. Their readings will
be

WA ¼ Re ðVAB effI
�
A eff Þ ¼ Re ðVAB effI

�
AB eff Þ þRe ðVAB effI

�
AC eff Þ

WC ¼ Re ðVCB effI
�
C eff Þ ¼ Re ðVCB effI

�
CA eff Þ þRe ðVCB effI

�
CB eff Þ

in which the KCL expressions IA ¼ IAB þ IAC and IC ¼ ICA þ ICB have been used to replace line currents
by phase currents. The first term inWA is recognized as PAB, the average power in phase AB of the delta
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load; likewise, the second term in WC is PCB. Adding the two equations and recombining the middle
terms then yields

WA þWC ¼ PAB þRe ½ðVAB eff � VCB eff ÞI
�
AC eff � þ PCB ¼ PAB þ PAC þ PCB

since, by KVL, VAB � VCB ¼ VAC.
The same reasoning establishes the analogous result for a Y-connected load.

Balanced Loads

When three equal impedances Z � are connected in delta, the phase currents make 308 angles with
their resultant line currents. Figure 11-21 corresponds to Fig. 11-20 under the assumption of ABC
sequencing. It is seen that VAB leads IA by � þ 308, while VCB leads IC by � � 308. Consequently, the
two wattmeters will read

WA ¼ VAB effIA eff cos ð� þ 308Þ WC ¼ VCB effIC eff cos ð� � 308Þ

or, since in general we do not know the relative order in the voltage sequence of the two lines chosen for
the wattmeters,

W1 ¼ VL effIL eff cos ð� þ 308Þ

W2 ¼ VL effIL eff cos ð� � 308Þ

These expressions also hold for a balanced Y-connection.

Elimination of VL effIL eff between the two readings leads to

tan � ¼
ffiffiffi
3

p W2 �W1

W2 þW1

� �

Thus, from the two wattmeter readings, the magnitude of the impedance angle � can be inferred. The
sign of tan � suggested by the preceding formula is meaningless, since the arbitrary subscripts 1 and 2
might just as well be interchanged. However, in the practical case, the balanced load is usually known to
be inductive ð� > 0Þ.

Solved Problems

11.1 The two-phase balanced ac generator of Fig. 11-22 feeds two identical loads. The two voltage
sources are 1808 out of phase. Find (a) the line currents, voltages, and their phase angles, and
(b) the instantaneous and average powers delivered by the generator.
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Let Z ¼ jZj � and Ip ¼ Vp=jZj.

(a) The voltages and currents in phasor domain are

VAN ¼ Vp 0 VBN ¼ Vp �1808 ¼ �Vp 0 VAB ¼ VAN � VBN ¼ 2Vp 0

Now, from Ip and Z given above, we have

IA ¼ Ip �� IB ¼ Ip �1808� � ¼ �Ip �� IN ¼ IA þ IB ¼ 0

(b) The instantaneous powers delivered are

paðtÞ ¼ vaðtÞiaðtÞ ¼ VpIp cos � þ VpIp cos ð2!t� �Þ

pbðtÞ ¼ vbðtÞibðtÞ ¼ VpIp cos � þ VpIp cos ð2!t� �Þ

The total instantaneous power pT ðtÞ is

pT ðtÞ ¼ paðtÞ þ pbðtÞ ¼ 2VpIp cos � þ 2VpIp cos ð2!t� �Þ

The average power is Pavg ¼ 2VPIp cos �.

11.2 Solve Problem 11.1 given Vp ¼ 110Vrms and Z ¼ 4þ j3 �.

(a) In phasor form, Z ¼ 4þ j3 ¼ 5 36:98 �. Then,

VAN ¼ 110 0 V VBN ¼ 110 �1808 V

VAB ¼ VAN � VBN ¼ 110 0� 110 �1808 ¼ 220 0 V

IA ¼ VAN=Z ¼ 22 �36:98 A IB ¼ VBN=Z ¼ 22 �216:98 ¼ �22 �36:98 Aand

IN ¼ IA þ IB ¼ 0

ðbÞ paðtÞ ¼ 110ð22Þ½cos 36:98þ cos ð2!t� 36:98Þ� ¼ 1936þ 2420 cos ð2!t� 36:98Þ ðWÞ

pbðtÞ ¼ 110ð22Þ½cos 36:98þ cos ð2!t� 36:98� 3608Þ� ¼ 1936þ 2420 cos ð2!t� 36:98Þ ðWÞ

pðtÞ ¼ paðtÞ þ pbðtÞ ¼ 3872þ 4840 cos ð2!t� 36:98Þ ðWÞ

Pavg ¼ 3872 W
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11.3 Repeat Problem 11.2 but with the two voltage sources of Problem 11.1 908 out of phase.

(a) Again, Z ¼ 5 36:98. Then,

VAN ¼ 110 0 V VBN ¼ 110 �908 V

VAB ¼ VAN � VBN ¼ 110 0� 110 �908 ¼ 110ð
ffiffiffi
2

p
�458 ¼ 155:6 �458 V

IA ¼ VAN=Z ¼ 22 �36:98 A IB ¼ VBN=Z ¼ 22 �126:98 Aand

IN ¼ IA þ IB ¼ 22 �36:98þ 22 �126:98 ¼ 22ð
ffiffiffi
2

p
�81:98Þ ¼ 31:1 �81:98 A

ðbÞ paðtÞ ¼ 110ð22Þ½cos 36:98þ cos ð2!t� 36:98Þ� ¼ 1936þ 2420 cos ð2!t� 36:98Þ ðWÞ

pbðtÞ ¼ 110ð22Þ½cos 36:98þ cos ð2!t� 36:98� 1808Þ� ¼ 1936� 2420 cos ð2!t� 36:98Þ ðWÞ

pðtÞ ¼ Pa þ Pb ¼ 2ð1936Þ ¼ 3872 W

Pavg ¼ 3872 W

11.4 Show that the line-to-line voltage VL in a three-phase system is
ffiffiffi
3

p
times the line-to-neutral

voltage VPh.

See the voltage phasor diagram (for the ABC sequence), Fig. 11-23.

11.5 A three-phase, ABC system, with an effective voltage 70.7V, has a balanced �-connected load
with impedances 20 458 �. Obtain the line currents and draw the voltage-current phasor
diagram.

The circuit is shown in Fig. 11-24. The phasor voltages have magnitudes Vmax ¼
ffiffiffi
2

p
Veff ¼ 100 V.

Phase angles are obtained from Fig. 11-7(a). Then,

IAB ¼
VAB

Z
¼

100 1208

20 458
¼ 5:0 758 A

Similarly, IBC ¼ 5:0 �458 A and ICA ¼ 5:0 1958 A. The line currents are:

IA ¼ IAB þ IAC ¼ 5 758� 5 1958 ¼ 8:65 458 A

Similarly, IB ¼ 8:65 �758 A, IC ¼ 8:65 1658 A.

The voltage-current phasor diagram is shown in Fig. 11-25.
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11.6 A three-phase, three-wire CBA system, with an effective line voltage 106.1 V, has a balanced Y-
connected load with impedances 5 �308 � (Fig. 11-26). Obtain the currents and draw the
voltage-current phasor diagram.

With balanced Y-loads, the neutral conductor carries no current. Even though this system is three-

wire, the neutral may be added to simplify computation of the line currents. The magnitude of the line

voltage is VL ¼
ffiffiffi
2

p
ð106:1Þ ¼ 150 V. Then the line-to-neutral magnitude is VLN ¼ 150=

ffiffiffi
3

p
¼ 86:6 V.

IA ¼
VAN

Z
¼

86:6 �908

5 �308
¼ 17:32 �608 A
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Similarly, IB ¼ 17:32 608 A, IC ¼ 17:32 1808 A. See the phasor diagram, Fig. 11-27, in which the

balanced set of line currents leads the set of line-to-neutral voltages by 308, the negative of the angle of

the impedances.

11.7 A three-phase, three-wire CBA system, with an effective line voltage 106.1V, has a balanced �-
connected load with impedances Z ¼ 15 308 �. Obtain the line and phase currents by the
single-line equivalent method.

Referring to Fig. 11-28, VLN ¼ ð141:4
ffiffiffi
2

p
Þ=

ffiffiffi
3

p
¼ 115:5 V, and so

IL ¼
115:5 08

ð15=3Þ 308
¼ 23:1 �308 A

The line currents lag the ABC-sequence, line-to-neutral voltages by 308:

IA ¼ 23:1 608 A IB ¼ 23:1 �608 A IC ¼ 23:1 1808 A

The phase currents, of magnitude IPh ¼ IL=
ffiffiffi
3

p
¼ 13:3 A, lag the corresponding line-to-line voltages by 308:

IAB ¼ 13:3 908 A IBC ¼ 13:3 �308 A ICA ¼ 13:3 2108 A

A sketch of the phasor diagram will make all of the foregoing angles evident.

11.8 A three-phase, three-wire system, with an effective line voltage 176.8V, supplies two balanced
loads, one in delta with Z� ¼ 15 08 � and the other in wye with ZY ¼ 10 308 �. Obtain the
total power.

First convert the �-load to Y, and then use the single-line equivalent circuit, Fig. 11-29, to obtain the

line current.
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IL ¼
144:3 08

5 08
þ
144:3 08

10 308
¼ 42:0 �9:98 A

P ¼
ffiffiffi
3

p
VL eff IL eff cos � ¼

ffiffiffi
3

p
ð176:8Þð29:7Þ cos 9:98 ¼ 8959 WThen

11.9 Obtain the readings when the two-wattmeter method is applied to the circuit of Problem 11.8.

The angle on IL, �9:98, is the negative of the angle on the equivalent impedance of the parallel

combination of 5 08 � and 10 308 �. Therefore, � ¼ 9:98 in the formulas of Section 11.13.

W1 ¼ VL eff IL eff cos ð� þ 308Þ ¼ ð176:8Þð29:7Þ cos 39:98 ¼ 4028 W

W2 ¼ VL eff IL eff cos ð� � 308Þ ¼ ð176:8Þð29:7Þ cos ð�20:18Þ ¼ 4931 W

As a check, W1 þW2 ¼ 8959 W, in agreement with Problem 11.8.

11.10 A three-phase supply, with an effective line voltage 240V, has an unbalanced �-connected load
shown in Fig. 11-30. Obtain the line currents and the total power.

The power calculations can be performed without knowledge of the sequence of the system. The

effective values of the phase currents are

IAB eff ¼
240

25
¼ 9:6 A IBC eff ¼

240

15
¼ 16 A ICA eff ¼

240

20
¼ 12 A

Hence, the complex powers in the three phases are

SAB ¼ ð9:6Þ2ð25 908Þ ¼ 2304 908 ¼ 0þ j2304

SBC ¼ ð16Þ2ð15 308Þ ¼ 3840 308 ¼ 3325þ j1920

SCA ¼ ð12Þ2ð20 08Þ ¼ 2880 08 ¼ 2880þ j0
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and the total complex power is their sum,

ST ¼ 6205þ j4224

that is, PT ¼ 6205 W and QT ¼ 4224 var (inductive).

To obtain the currents a sequence must be assumed; let it be ABC. Then, using Fig. 11-7(a),

IAB ¼
339:4 1208

25 908
¼ 13:6 308 A

IBC ¼
339:4 08

15 308
¼ 22:6 �308 A

ICA ¼
339:4 2408

20 08
¼ 17:0 2408 A

The line currents are obtained by applying KCL at the junctions.

IA ¼ IAB þ IAC ¼ 13:6 308� 17:0 2408 ¼ 29:6 46:78 A

IB ¼ IBC þ IBA ¼ 22:6 �308� 13:6 308 ¼ 19:7 �66:78 A

IC ¼ ICA þ ICB ¼ 17:0 2408� 22:6 �308 ¼ 28:3 �173:18 A

11.11 Obtain the readings of wattmeters placed in lines A and B of the circuit of Problem 11.10 (Line C
is the potential reference for both meters.)

WA ¼ Re ðVAC effI
�
A eff Þ ¼ Re ð240 608Þ

29:6ffiffiffi
2

p �46:78
� �� �

¼ Re ð5023 13:38Þ ¼ 4888 W

WB ¼ Re ðVBC effI
�
B eff Þ ¼ Re ð240 08Þ

19:7ffiffiffi
2

p 66:78
� �� �

¼ Re ð3343 66:78Þ ¼ 1322 W

Note that WA þWB ¼ 6210 W, which agrees with PT as found in Problem 11.10.

11.12 A three-phase, four-wire, ABC system, with line voltage VBC ¼ 294:2 08 V, has a Y-connected
load of ZA ¼ 10 08 �, ZB ¼ 15 308 �, and ZC ¼ 10 �308 � (Fig. 11-31). Obtain the line and
neutral currents.
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IA ¼
169:9 908

10 08
¼ 16:99 908 A

IB ¼
169:9 �308

15 308
¼ 11:33 �608 A

IC ¼
169:9 �1508

10 �308
¼ 16:99 �1208 A

IN ¼ �ðIA þ IB þ ICÞ ¼ 8:04 69:58 A

11.13 The Y-connected load impedances ZA ¼ 10 08 �, Z ¼ 15 308 �, and ZC ¼ 10 �308 �, in Fig.
11-32, are supplied by a three-phase, three-wire, ABC system in which VBC ¼ 208 08 V. Obtain
the voltages across the impedances and the displacement neutral voltage VON .

The method of Example 11.7 could be applied here and one node-voltage equation solved. However,

the mesh currents I1 and I2 suggested in Fig. 11-32 provide another approach.

10 08þ 15 308 �15 308
�15 308 15 308þ 10 �308

� �
I1
I2

� �
¼

208 1208
208 08

� �

Solving, I1 ¼ 14:16 86:098 A and I2 ¼ 10:21 52:418 A. The line currents are then

IA ¼ I1 ¼ 14:16 86:098 A IB ¼ I2 � I1 ¼ 8:01 �48:938 A IC ¼ �I2 ¼ 10:21 �127:598 A

Now the phasor voltages at the load may be computed.

VAO ¼ IAZA ¼ 141:6 86:098 V

VBO ¼ IBZB ¼ 120:2 �18:938 V

VCO ¼ ICZC ¼ 102:1 �157:598 V

VON ¼ VOA þ VAN ¼ 141:6 �93:918þ 120:1 908 ¼ 23:3 �114:538 V

The phasor diagram is given in Fig. 11-33.

11.14 Obtain the total average power for the unbalanced, Y-connected load in Problem 11.13, and
compare with the readings of wattmeters in lines B and C.

The phase powers are
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PA ¼ I2A effRA ¼
14:16ffiffiffi

2
p

� �
ð10Þ ¼ 1002:5 W

PB ¼ I2B effRB ¼
8:01ffiffiffi

2
p

� �
ð15 cos 308Þ ¼ 417:0 W

PC ¼ I2C effRC ¼
10:21ffiffiffi

2
p

� �2

ð10 cos 308Þ ¼ 451:4 W

and so the total average power is 1870.9W.

From the results of Problem 11.13, the wattmeter readings are:

WB ¼ Re ðVBA effI
�
B eff Þ ¼ Re

208ffiffiffi
2

p �608
� �

8:01ffiffiffi
2

p 48:938
� �� �

¼ 817:1 W

WC ¼ Re ðVCA effI
�
C eff ¼ Re

208ffiffiffi
2

p 24008
� �

10:21ffiffiffi
2

p 127:598
� �� �

¼ 1052:8 W

The total power read by the two wattmeters is 1869.9W.

11.15 A three-phase, three-wire, balanced, �-connected load yields wattmeter readings of 1154W and
557W. Obtain the load impedance, if the line voltage is 141.4V.

� tan � ¼
ffiffiffi
3

p W2 �W1

W2 þW1

� �
¼

ffiffiffi
3

p 577

1731

� �
¼ 0:577 � ¼ �30:08

and, using PT ¼
ffiffiffi
3

p
VL effIL eff cos �,

Z� ¼
VLeff

IPh eff
¼

ffiffiffi
3

p
VL eff

IL eff

¼
3V2

L eff cos �

PT

¼
3ð100Þ2 cos 30:08

1154þ 577
� ¼ 15:0 �

Thus, Z� ¼ 15:0 �30:08 �.

11.16 A balanced �-connected load, with Z� ¼ 30 308 �, is connected to a three-phase, three-wire,
250-V system by conductors having impedances Zc ¼ 0:4þ j0:3 �. Obtain the line-to-line
voltage at the load.

The single-line equivalent circuit is shown in Fig. 11-34. By voltage division, the voltage across the

substitute Y-load is

VAN ¼
10 308

0:4þ j0:3þ 10 308

� �
250ffiffiffi
3

p 08
� �

¼ 137:4 �0:338 V

whence VL ¼ ð137:4Þð
ffiffiffi
3

p
Þ ¼ 238:0 V.
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Considering the magnitudes only, the line voltage at the load, 238.0V, represents a drop of 12.0V. The

wire size and total length control the resistance in Zc, while the enclosing conduit material (e.g., steel,

aluminum, or fiber), as well as the length, affects the inductive reactance.

Supplementary Problems

In the following, the voltage-current phasor diagram will not be included in the answer, even though the

problem may ask specifically for one. As a general rule, a phasor diagram should be constructed for every

polyphase problem.

11.17 Three impedances of 10:0 53:138 � are connected in delta to a three-phase, CBA system with an affective

line voltage 240V. Obtain the line currents.

Ans: IA ¼ 58:8 �143:138 A; IB ¼ 58:8 �23:138 A; IC ¼ 58:8 96:878 A

11.18 Three impedances of 4:20 �358 � are connected in delta to a three-phase, ABC system having

VBC ¼ 495:0 08 V. Obtain the line currents.

Ans: IA ¼ 20:41 1258 A; IB ¼ 20:41 58 A; IC ¼ 20:41 �1158 A

11.19 A three-phase, three-wire system, with an effective line voltage 100V, has currents

IA ¼ 15:41 �1608 A IB ¼ 15:41 �408 A IC ¼ 15:41 808 A

What is the sequence of the system and what are the impedances, if the connection is delta?

Ans: CBA; 15:9 708 �

11.20 A balanced Y-connected load, with impedances 6:0 458 �, is connected to a three-phase, four-wire CBA

system having effective line voltage 208V. Obtain the four line currents.

Ans: IA ¼ 28:31 �1358 A; IB ¼ 28:31 �158 A; IC ¼ 28:31 1058 A; IN ¼ 0

11.21 A balanced Y-connected load, with impedances 65:0 �208 �, is connected to a three-phase, three-wire,

CBA system, where VAB ¼ 678:8 �1208 V. Obtain the three line currents.

Ans: IA ¼ 6:03 �708 A; IB ¼ 6:03 508 A; IC ¼ 6:03 1708 A

11.22 A balanced �-connected load, with Z� ¼ 9:0 �308 , and a balanced Y-connected load, with

ZY ¼ 5:0 458 �, are supplied by the same three-phase, ABC system, with effective line voltage 480V.

Obtain the line currents, using the single-line equivalent method.

Ans: IA ¼ 168:9 93:368 A; IB ¼ 168:9 �26:648 A; IC ¼ 168:9 �146:648 A

11.23 A balanced �-connected load having impedances 27:0 �258 � and a balanced Y-connected load having

impedances 10:0 �308 � are supplied by the same three-phase, ABC system, with VCN ¼ 169:8 �1508 V.
Obtain the line currents.

Ans: IA ¼ 35:8 117:368 A; IB ¼ 35:8 �2:648 A; IC ¼ 35:8 �122:648 A

CHAP. 11] POLYPHASE CIRCUITS 269

Fig. 11-34



11.24 A balanced �-connected load, with impedances 10:0 �36:98 �, and a balanced Y-connected load are

supplied by the same three-phase, ABC system having VCA ¼ 141:4 2408 V. If IB ¼ 40:44 13:418 A,

what are the impedances of the Y-connected load? Ans: 5:0 �53:38

11.25 A three-phase, ABC system, with effective line voltage 500V, has a �-connected load for which

ZAB ¼ 10:0 308 � ZBC ¼ 25:0 08 � ZCA ¼ 20:0 �308 �

Obtain the line currents.

Ans: IA ¼ 106:1 90:08 A; IB ¼ 76:15 �68:208 A; IC ¼ 45:28 �128:658 A

11.26 A three-phase, ABC system, with VBC ¼ 294:2 08 V, has the �-connected load

ZAB ¼ 5:0 08 � ZBC ¼ 4:0 308 � ZCA ¼ 6:0 �158

Obtain the line currents.

Ans: IA ¼ 99:7 99:78 A; IB ¼ 127:9 �43:3 A; IC ¼ 77:1 �172:18 A

11.27 A three-phase, four-wire, CBA system, with effective line voltage 100V, has Y-connected impedances

ZA ¼ 3:0 08 � ZB ¼ 3:61 56:318 � ZC ¼ 2:24 �26:578 �

Obtain the currents IA; IB; IC; and IN .

Ans: 27:2 �908 A; 22:6 �26:38 A; 36:4 176:68 A; 38:6 65:38 A

11.28 A three-phase, four-wire, ABC system, with VBC ¼ 294:2 08 V, has Y-connected impedances

ZA ¼ 12:0 458 � ZB ¼ 10:0 308 � ZC ¼ 8:0 08 �

Obtain the currents IA; IB; IC; and IN .

Ans: 14:16 458 A; 16:99 �608 A; 21:24 �1508 A; 15:32 90:48 A

11.29 A Y-connected load, with ZA ¼ 10 08 �, ZB ¼ 10 608 , and ZC ¼ 10 �608 �, is connected to a three-

phase, three-wire, ABC system having effective line voltage 141.4V. Find the load voltages VAO, VBO, VCO

and the displacement neutral voltage VON . Construct a phasor diagram similar to Fig. 11-18.

Ans: 173:2 908 V; 100 08 V; 100 1808 V; 57:73 �908 V

11.30 A Y-connected load, with ZA ¼ 10 �608 �, ZB ¼ 10 08 �, and ZC ¼ 10 608 �, is connected to a three-

phase, three-wire, CBA system having effective line voltage 147.1V. Obtain the line currents IA, IB, and IC.

Ans: 20:8 �608 A; 0; 20:8 1208 A

11.31 A three-phase, three-wire, ABC system with a balanced load has effective line voltage 200V and (maximum)

line current IA ¼ 13:61 608 A. Obtain the total power. Ans: 2887 W

11.32 Two balanced �-connected loads, with impedances 20 �608 � and 18 458 , respectively, are connected to a

three-phase system for which a line voltage is VBC ¼ 212:1 08 V. Obtain the phase power of each load.

After using the single-line equivalent method to obtain the total line current, compute the total power, and

compare with the sum of the phase powers.

Ans: 562:3 W; 883:6 W; 4337:5 W ¼ 3ð562:3 WÞ þ 3ð883:6 WÞ

11.33 In Problem 11.5, a balanced �-connected load with Z ¼ 20 458 � resulted in line currents 8.65A for line

voltages 100V, both maximum values. Find the readings of two wattmeters used to measure the total

average power. Ans: 111:9 W; 417:7 W

11.34 Obtain the readings of two wattmeters in a three-phase, three-wire system having effective line voltage 240V

and balanced, �-connected load impedances 20 808 �. Ans: � 1706 W; 3206 W

11.35 A three-phase, three-wire, ABC system, with line voltage VBC ¼ 311:1 08 V, has line currents

IA ¼ 61:5 116:68 A IB ¼ 61:2 �48:08 A IC ¼ 16:1 2188 A
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Find the readings of wattmeters in lines (a) A and B, (b) B and C, and (c) A and C.

Ans: ðaÞ 5266W, 6370W; (b) 9312W, 2322W; (c) 9549W, 1973W

11.36 A three-phase, three-wire, ABC system has an effective line voltage 440V. The line currents are

IA ¼ 27:9 908 A IB ¼ 81:0 �9:98 A IC ¼ 81:0 189:98 A

Obtain the readings of wattmeters in lines (a) A and B, (b) B and C.

Ans: ðaÞ 7.52 kW, 24.8 kW; (b) 16.16 kW, 16.16 kW

11.37 Two wattmeters in a three-phase, three-wire system with effective line voltage 120V read 1500W and 500W.

What is the impedance of the balanced �-connected load? Ans: 16:3 �40:98 �

11.38 A three-phase, three-wire, ABC system has effective line voltage 173.2V. Wattmeters in lines A and B read

�301 W and 1327W, respectively. Find the impedance of the balanced Y-connected load. (Since the

sequence is specified, the sign of the impedance angle can be determined.)

Ans: 10 �708 �

11.39 A three-phase, three-wire system, with a line voltage VBC ¼ 339:4 08 V, has a balanced Y-connected load of

ZY ¼ 15 608 �. The lines between the system and the load have impedances 2:24 26:578 �. Find the line-

voltage magnitude at the load. Ans: 301.1V

11.40 Repeat Problem 11.39 with the load impedance ZY ¼ 15 �608 �. By drawing the voltage phasor diagrams

for the two cases, illustrate the effect of load impedance angle on the voltage drop for a given line

impedance. Ans: 332.9V

11.41 A three-phase generator with an effective line voltage of 6000V supplies the following four balanced loads in

parallel: 16 kW at pf ¼ 0:8 lagging, 24 kW at pf ¼ 0:6 lagging, 4 kW at pf ¼ 1, and 1 kW at pf ¼ 0:1 leading.
(a) Find the total average power (P) supplied by the generator, reactive power (Q), apparent power (S),

power factor, and effective value of line current. (b) Find the amount of reactive load Qc to be added in

parallel to produce an overall power factor of 0.9 lagging, then find apparent power and effective value of

line current.

Ans: ðaÞ P ¼ 45 kW, Q ¼ 34:05 kvar, S ¼ 56:43 kVA, pf ¼ 0:8 lagging, IL ¼ 5:43 A, (b) QC ¼ �12:25
kvar, S ¼ 50 kVA, IL ¼ 5:35 A

11.42 A balanced �-connected load with impedances Z� ¼ 6þ j9 � is connected to a three-phase generator with

an effective line voltage of 400V. The lines between the load and the generator have resistances of 1� each.

Find the effective line current, power delivered by the generator, and power absorbed by the load.

Ans: IL ¼ 54:43 A, Pg ¼ 26666 W, P‘ ¼ 17777 W

11.43 In Problem 11.42, find the effective line voltage at the load.

Ans: VL ¼ 340 V

11.44 A three-phase generator feeds two balanced loads (9 kW at pf ¼ 0:8 and 12 kW at pf ¼ 0:6, both lagging)

through three cables (0.1� each). The generator is regulated such that the effective line voltage at the load is

220V. Find the effective line voltage at the generator. Ans: 230 V

11.45 A balanced �-connected load has impedances 45þ j60 �. Find the average power delivered to it at an

effective line voltage of: (a) 400V, (b) 390V.

Ans: ðaÞ 3:84 kW, (b) 3.65 kW

11.46 Obtain the change in average power delivered to a three-phase balanced load if the line voltage is multiplied

by a factor �. Ans: Power is multiplied by the factor �2

11.47 A three-phase, three-wire source supplies a balanced load rated for 15 kW with pf ¼ 0:8 at an effective line

voltage of 220V. Find the power absorbed by the load if the three wires connecting the source to the load

have resistances of 0.05� each and the effective line voltage at the source is 220V. Use both a simplified
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approximation and also an exact method.

Ans: 14:67 kW (by an approximate method), 14.54 kW (by an exact method)

11.48 In Problem 11.47 determine the effective value of line voltage such that the load operates at its rated values.

Ans: 222.46V (by an approximate method), 221.98V (by an exact method)

11.49 What happens to the quantity of power supplied by a three-phase, three-wire system to a balanced load if

one phase is disconnected? Ans: Power is halved.

11.50 A three-phase, three-wire generator with effective line voltage 6000V is connected to a balanced load by

three lines with resistances of 1� each, delivering a total of 200 kW. Find the efficiency (the ratio of power

absorbed by the load to power delivered by the system) if the power factor of the generator is (a) 0.6,

(b) 0.9 Ans. (a) 98.5 percent (b) 99.3 percent.

11.51 A 60-Hz three-phase, three-wire system with terminals labeled 1; 2; 3 has an effective line voltage of 220V.

To determine if the system is ABC or CBA, the circuit of Fig. 11-35 is tested. Find the effective voltage

between node 4 and line 2 if the system is (a) ABC, (b) CBA.

Ans: ðaÞ 80.5V; (b) 300.5V
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Frequency Response,
Filters, and Resonance

12.1 FREQUENCY RESPONSE

The response of linear circuits to a sinusoidal input is also a sinusoid, with the same frequency but
possibly a different amplitude and phase angle. This response is a function of the frequency. We have
already seen that a sinusoid can be represented by a phasor which shows its magnitude and phase. The
frequency response is defined as the ratio of the output phasor to the input phasor. It is a real function of
j! and is given by

Hð j!Þ ¼ Re ½H� þ j Im ½H� ¼ jHje j� ð1aÞ

where Re [H] and Im [H] are the real and imaginary parts of Hð j!Þ and jHj and � are its magnitude and
phase angle. Re ½H�, Im ½H�, |H|, and � are, in general, functions of !. They are related by

jHj
2
¼ jHð j!Þj2 ¼ Re2 ½H� þ Im2

½H� ð1bÞ

� ¼ Hð j!Þ ¼ tan�1 Im ½H�

Re ½H�
ð1cÞ

The frequency response, therefore, depends on the choice of input and output variables. For
example, if a current source is connected across the network of Fig. 12-1(a), the terminal current is
the input and the terminal voltage may be taken as the output. In this case, the input impedance
Z ¼ V1=I1 constitutes the frequency response. Conversely, if a voltage source is applied to the input and

Fig. 12-1
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the terminal current is measured, the input admittance Y ¼ I1=V1 ¼ 1=Z represents the frequency
response.

For the two-port network of Fig. 12-1(b), the following frequency responses are defined:

Input impedance Zinð j!Þ ¼ V1=I1
Input admittance Yinð j!Þ ¼ 1=Zinð j!Þ ¼ I1=V1

Voltage transfer ratio Hvð j!Þ ¼ V2=V1

Current transfer ratio Hið j!Þ ¼ I2=I1
Transfer impedances V2=I1 and V1=I2

EXAMPLE 12.1 Find the frequency response V2=V1 for the two-port circuit shown in Fig. 12-2.

Let YRC be the admittance of the parallel RC combination. Then, YRC ¼ 10�6j!þ 1=1250. V2=V1 is obtained

by dividing V1 between ZRC and the 5-k� resistor.

Hð j!Þ ¼
V2

V1

¼
ZRC

ZRC þ 5000
¼

1

1þ 5000YRC

¼
1

5ð1þ 10�3j!Þ
ð2aÞ

jHj ¼
1

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10�6!2

p � ¼ � tan�1
ð10�3!Þ ð2bÞ

Alternative solution: First we find the Thévenin equivalent of the resistive part of the circuit, VTh ¼ V1=5 and

RTh ¼ 1 k�, and then divide VTh between RTh and the 1-mF capacitor to obtain (2a).

12.2 HIGH-PASS AND LOW-PASS NETWORKS

A resistive voltage divider under a no-load condition is shown in Fig. 12-3, with the standard two-
port voltages and currents. The voltage transfer function and input impedance are

Hv1ð!Þ ¼
R2

R1 þ R2

Hz1ð!Þ ¼ R1 þ R2

The 1 in subscripts indicates no-load conditions. Both Hv1 and Hz1 are real constants, independent
of frequency, since no reactive elements are present. If the network contains either an inductance or a
capacitance, then Hv1 and Hz1 will be complex and will vary with frequency. If jHv1j decreases as
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frequency increases, the performance is called high-frequency roll-off and the circuit is a low-pass network.

On the contrary, a high-pass network will have low-frequency roll-off, with jHv1j decreasing as the

frequency decreases. Four two-element circuits are shown in Fig. 12-4, two high-pass and two low-

pass.

The RL high-pass circuit shown in Fig. 12-5 is open-circuited or under no-load. The input
impedance frequency response is determined by plotting the magnitude and phase angle of

Hz1ð!Þ ¼ R1 þ j!L2 � jHzj �H

or, normalizing and writing !x � R1=L2,

Hz1ð!Þ

R1

¼ 1þ jð!=!xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð!=!xÞ

2

q
tan�1

ð!=!xÞ

Five values of ! provide sufficient data to plot jHzj=R1 and �H, as shown in Fig. 12-6. The
magnitude approaches infinity with increasing frequency, and so, at very high frequencies, the network
current I1 will be zero.

In a similar manner, the frequency response of the output-to-input voltage ratio can be obtained.
Voltage division under no-load gives

Hv1ð!Þ ¼
j!L2

R1 þ j!L2

¼
1

1� jð!x=!Þ

jHvj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð!x=!Þ
2

q and �H ¼ tan�1
ð!x=!Þso that

CHAP. 12] FREQUENCY RESPONSE, FILTERS, AND RESONANCE 275

Fig. 12-4

Fig. 12-5



The magnitude and angle are plotted in Fig. 12-7. This transfer function approaches unity at high

frequency, where the output voltage is the same as the input. Hence the description ‘‘low-frequency roll-

off’’ and the name ‘‘high-pass.’’

A transfer impedance of the RL high-pass circuit under no-load is

H1ð!Þ ¼
V2

I1
¼ j!L2 or

H1ð!Þ

R1

¼ j
!

!x

The angle is constant at 908; the graph of magnitude versus ! is a straight line, similar to a reactance plot
of !L versus !. See Fig. 12-8.

Interchanging the positions of R and L results in a low-pass network with high-frequency roll-off

(Fig. 12-9). For the open-circuit condition
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! jHzj=R1 �H

0 1 08
0:5!x 0.5

ffiffiffi
5

p
26.68

!x

ffiffiffi
2

p
458

2!x

ffiffiffi
5

p
63.48

1 1 908
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Hv1ð!Þ ¼
R2

R2 þ j!L1

¼
1

1þ jð!=!xÞ

with !x � R2=L1; that is,

jHvj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð!=!xÞ
2

q and �H ¼ tan�1
ð�!=!xÞ

The magnitude and angle plots are shown in Fig. 12-10. The voltage transfer function Hv1 approaches
zero at high frequencies and unity at ! ¼ 0. Hence the name ‘‘low-pass.’’

The other network functions of this low-pass network are obtained in the Solved Problems.

EXAMPLE 12.2 Obtain the voltage transfer function Hv1 for the open circuit shown in Fig. 12-11. At what

frequency, in hertz, does jHvj ¼ 1=
ffiffiffi
2

p
if (a) C2 ¼ 10 nF, (b) C2 ¼ 1 nF?
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Hv1ð!Þ ¼
1=j!C2

R1 þ ð1=j!C2Þ
¼

1

1þ jð!=!xÞ
where !x �

1

R1C2

¼
2� 10�4

C2

ðrad=sÞ

jHvj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð!=!xÞ
2

qðaÞ

and so jHvj ¼ 1=
ffiffiffi
2

p
when

! ¼ !x ¼
2� 10�4

10� 10�9
¼ 2� 104 rad=s

or when f ¼ ð2� 104Þ=2� ¼ 3:18 kHz.

f ¼
10

1
ð3:18Þ ¼ 31:8 kHzðbÞ

Comparing ðaÞ and ðbÞ, it is seen that the greater the value of C2, the lower is the frequency at which
jHvj drops to 0.707 of its peak value, 1; in other words, the more is the graph of jHvj, shown in Fig. 12-
10, shifted to the left. Consequently, any stray shunting capacitance, in parallel with C2, serves to reduce
the response of the circuit.

12.3 HALF-POWER FREQUENCIES

The frequency !x calculated in Example 12.2, the frequency at which

jHvj ¼ 0:707jHvjmax

is called the half-power frequency. In this case, the name is justified by Problem 12.5, which shows that
the power input into the circuit of Fig. 12-11 will be half-maximum when

1

j!C2

����
���� ¼ R1

that is, when ! ¼ !x.

Quite generally, any nonconstant network function Hð!Þ will attain its greatest absolute value at
some unique frequency !x. We shall call a frequency at which

jHð!Þj ¼ 0:707jHð!xÞj

a half-power frequency (or half-power point), whether or not this frequency actually corresponds to
50 percent power. In most cases, 0 < !x < 1, so that there are two half-power frequencies, one
above and one below the peak frequency. These are called the upper and lower half-power
frequencies (points), and their separation, the bandwidth, serves as a measure of the sharpness of
the peak.

12.4 GENERALIZED TWO-PORT, TWO-ELEMENT NETWORKS

The basic RL or RC network of the type examined in Section 12.2 can be generalized with Z1 and
Z2, as shown in Fig. 12-12; the load impedance ZL is connected at the output port.

By voltage division,

V2 ¼
Z

0

Z1 þ Z 0 V1 or Hv ¼
V2

V1

¼
Z

0

Z1 þ Z 0

where Z
0
¼ Z2ZL=ðZ2 þ ZLÞ, the equivalent impedance of Z2 and ZL in parallel. The other transfer

functions are calculated similarly, and are displayed in Table 12-1.
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12.5 THE FREQUENCY RESPONSE AND NETWORK FUNCTIONS

The frequency response of a network may be found by substituting j! for s in its network function.

This useful method is illustrated in the following example.

EXAMPLE 12.3 Find (a) the network function HðsÞ ¼ V2=V1 in the circuit shown in Fig. 12-13, (b) Hð j!Þ for
LC ¼ 2=!2

0 and L=C ¼ R2, and (c) the magnitude and phase angle of Hð j!Þ in (b) for !0 ¼ 1 rad/s.

(a) Assume V2 is known. Use generalized impedances Ls and 1=Cs and solve for V1.

From IR ¼ V2=R,

VA ¼ ðRþ LsÞIR ¼
Rþ Ls

R
V2 ð3Þ

IC ¼ CsVA ¼
CsðRþ LsÞ

R
V2 and I1 ¼ IR þ IC ¼

V2

R
þ
CsðRþ LsÞ

R
V2 ¼

1þ CsðRþ LsÞ

R
V2

V1 ¼ VA þ RI1 ¼
Rþ Ls

R
V2 þ ½1þ CsðRþ LsÞ�V2Then,

and HðsÞ ¼
V2

V1

¼
1

2þ ðL=Rþ CRÞsþ LCs2
(4a)
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Hz ¼
V1

I1
ð�Þ Hv ¼

V2

V1

Hi ¼
I2

I1
HvHz ¼

V2

I1
ð�Þ

Hi

Hz

¼
I2

V1

ðSÞ

Short-circuit,

ZL ¼ 0 Z1 0 �1 0
�

1

Z1

Open-circuit

ZL ¼ 1 Z1 þ Z2

Z2

Z1 þ Z2 0 Z2 0

Load,

ZL Z1 þ Z
0

Z
0

Z1 þ Z 0

�Z2

Z2 þ ZL Z
0

�Z
0

ZLðZ1 þ Z 0Þ

Network
Function

Output
Condition
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(b) From LC ¼ 2=!2
0 and L=C ¼ R2 we get L ¼

ffiffiffi
2

p
R=!0 and C ¼

ffiffiffi
2

p
=R!0. Substituting L and C into (4a) gives

HðsÞ ¼
1

2

1

1þ
ffiffiffi
2

p
ðs=!0Þ þ ðs=!0Þ

2

� �
or Hð j!Þ ¼

1

2

1

1þ j
ffiffiffi
2

p
ð!=!0Þ � ð!=!0Þ

2

� �
ð4bÞ

jHj
2
¼

1

4

1

1þ ð!=!0Þ
4

� �
and � ¼ � tan�1

ffiffiffi
2

p
!0!

!2
0 � !2

 !

Note that Hð j!Þ is independent of R. The network passes low-frequency sinusoids and rejects, or attenuates,

the high-frequency sinusoids. It is a low-pass filter with a half-power frequency of ! ¼ !0 and, in this case, the

magnitude of the frequency response is jHð j!0Þj ¼ jHð0Þj=
ffiffiffi
2

p
¼

ffiffiffi
2

p
=4 and its phase angle is Hð j!0Þ ¼ ��=2.

(c) For !0 ¼ 1,

HðsÞ ¼
1

2

1

1þ
ffiffiffi
2

p
sþ s2

� �
or Hð j!Þ ¼

1

2

1

1þ j
ffiffiffi
2

p
!� !2

� �
ð4cÞ

jHj
2
¼

1

4

1

1þ !4
and � ¼ � tan�1

ffiffiffi
2

p
!

1� !2

 !

The RC network of Fig 12-4ðbÞ was defined as a first-order low-pass filter with half-power frequency
at !0 ¼ 1=R1C2. The circuit of Fig. 12-13 is called a second-order Butterworth filter. It has a sharper cutoff.

12.6 FREQUENCY RESPONSE FROM POLE-ZERO LOCATION

The frequency response of a network is the value of the network function HðsÞ at s ¼ j!. This
observation can be used to evaluate Hð j!Þ graphically. The graphical method can produce a quick
sketch of Hð j!Þ and bring to our attention its behavior near a pole or a zero without the need for a
complete solution.

EXAMPLE 12.4 Find poles and zeros of HðsÞ ¼ 10s=ðs2 þ 2sþ 26Þ. Place them in the s-domain and use the pole-

zero plot to sketch Hð j!Þ.
HðsÞ has a zero at z1 ¼ 0. Its poles p1 and p2 are found from s

2
þ 2sþ 26 ¼ 0 so that p1 ¼ �1þ j5 and

p2 ¼ �1� j5. The pole-zero plot is shown in Fig. 12-14(a). The network function can then be written as

HðsÞ ¼ ð10Þ
s� z1

ðs� p1Þðs� p2Þ

For each value of s, the term ðs� z1Þ is a vector originating from the zero z1 and ending at point s in the s-domain.

Similarly, s� p1 and s� p2 are vectors drawn from poles p1 and p2, respectively, to the point s. Therefore, for any

value of s, the network function may be expressed in terms of three vectors A, B, and C as follows:

HðsÞ ¼ ð10Þ
A

B� C
where A ¼ ðs� z1Þ;B ¼ ðs� p1Þ, and C ¼ ðs� p2Þ

The magnitude and phase angle of HðsÞ at any point on the s-plane may be found from:

jHðsÞj ¼ ð10Þ
jAj

jBj � jCj
ð5aÞ

HðsÞ ¼ A� B� C ð5bÞ

By placing s on the j! axis [Fig. 12-14(a)], varying ! from 0 to1, and measuring the magnitudes and phase angles of

vectors A, B, and C, we can use (5a) and (5b) to find the magnitude and phase angle plots. Figure 12-14(b) shows

the magnitude plot.

12.7 IDEAL AND PRACTICAL FILTERS

In general, networks are frequency selective. Filters are a class of networks designed to possess
specific frequency selectivity characteristics. They pass certain frequencies unaffected (the pass-band)
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and stop others (the stop-band). Ideally, in the pass-band, Hð j!Þ ¼ 1 and in the stop-band, Hð j!Þ ¼ 0.

We therefore recognize the following classes of filters: low-pass [Fig. 12-15(a)], high-pass [Fig. 12-15(b)],

bandpass [Fig. 12-15(c)], and bandstop [Fig. 12-15(d)]. Ideal filters are not physically realizable, but we

can design and build practical filters as close to the ideal one as desired. The closer to the ideal

characteristic, the more complex the circuit of a practical filter will be.

The RC or RL circuits of Section 12.2 are first-order filters. They are far from ideal filters. As

illustrated in the following example, the frequency response can approach that of the ideal filters if we

increase the order of the filter.
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EXAMPLE 12.5 Three network functions H1, H2, and H3 are given by

ðaÞ H1 ¼
1

sþ 1
ðbÞ H2 ¼

1

s2 þ
ffiffiffi
2

p
sþ 1

ðcÞ H3 ¼
1

s3 þ 2s2 þ 2sþ 1
¼

1

ðsþ 1Þðs2 þ sþ 1Þ

Find the magnitudes of their frequency responses. Show that all three functions are low-pass with half-power

frequency at !0 ¼ 1.

jH1j
2
¼

1

ð1þ j!Þð1� j!Þ
¼

1

1þ !2
ðaÞ

jH2j
2
¼

1

ð1� !2 þ j
ffiffiffi
2

p
!Þð1� !2 � j

ffiffiffi
2

p
!Þ

¼
1

1þ !4
ðbÞ

jH3j
2
¼

1

ð1þ !2Þð1� !2 þ j!Þð1� !2 � j!Þ
¼

1

1þ !6
ðcÞ

For all three functions, at ! ¼ 0, 1, and 1, we have jHj
2
¼ 1, 1/2, and 0, respectively. Therefore, the three network

functions are low-pass with the same half-power frequency of !0 ¼ 1. They are first-, second-, and third-order

Butterworth filters, respectively. The higher the order of the filter, the sharper is the cutoff region in the frequency

response.

12.8 PASSIVE AND ACTIVE FILTERS

Filters which contain only resistors, inductors, and capacitors are called passive. Those containing
additional dependent sources are called active. Passive filters do not require external energy sources and
they can last longer. Active filters are generally made of RC circuits and amplifiers. The circuit in Fig.
12-16(a) shows a second-order low-pass passive filter. The circuit in Fig. 12-16(b) shows an active filter
with a frequency response V2=V1 equivalent to that of the circuit in Fig. 12-16(a).

EXAMPLE 12.6 Find the network function V2=V1 in the circuits shown in (a) Fig. 12-16(a) and (b) Fig. 12-16(b).

(a) In Fig. 12-16(a), we find V2 from V1 by voltage division.

V2 ¼
1

Cs

V1

Rþ Lsþ 1=Cs
¼

V1

LCs2 þ RCsþ 1
¼

1

LC

V1

s2 þ ðR=LÞsþ ð1=LCÞ

Substituting for R ¼ 1, L ¼ 1=
ffiffiffi
2

p
, and C ¼

ffiffiffi
2

p
, and dividing by V1, we get

V2

V1

¼
1

s2 þ
ffiffiffi
2

p
sþ 1

(b) In Fig. 12-16(b), we apply KCL at nodes A and B with VB ¼ V2.
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Node A: ðVA � V1Þ
ffiffiffi
2

p
þ ðVA � V2Þ

ffiffiffi
2

p
þ ðVA � V2Þ2s ¼ 0 ð6aÞ

Node B: V2sþ ðV2 � VAÞ
ffiffiffi
2

p
¼ 0 ð6bÞ

By eliminating VA in (6a) and (6b), the network function HðsÞ ¼ V2=V1 is obtained. Thus,

V2

V1

¼
1

s2 þ
ffiffiffi
2

p
sþ 1

Note that the circuits of Figs. 12-16(a) and (b) have identical network functions. They are second-order Butter-

worth low-pass filters with half-power frequencies at ! ¼ 1 rad/s.

12.9 BANDPASS FILTERS AND RESONANCE

The following network function is called a bandpass function.

HðsÞ ¼
ks

s2 þ asþ b
where a > 0; b > 0; k > 0 ð7Þ

The name is especially appropriate when the poles are complex, close to the j! axis, and away from the
origin in the s-domain. The frequency response of the bandpass function is

Hð j!Þ ¼
kj!

b� !2 þ aj!
jHj

2
¼

k2!2

ðb� !2Þ
2
þ a2!2

¼
k2

a2 þ ðb� !2Þ
2=!2

ð8Þ

The maximum of jHj occurs when b� !2
¼ 0 or ! ¼

ffiffiffi
b

p
, which is called the center frequency !0. At the

center frequency, we have jHjmax ¼ jHð!0Þj ¼ k=a. The half-power frequencies are at !l and !h, where

jHð!lÞj
2
¼ jHð!hÞj

2
¼ 1

2
jHð!0Þj

2
ð9aÞ

By applying (8) to (9a), !l and !h are found to be roots of the following equation:

ðb� !2
Þ
2

!2
¼ a2 ð9bÞ

Solving, !l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=4þ b

p
� a=2 (9c)

!h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=4þ b

q
þ a=2 ð9dÞ

From (9c) and (9d) we have

!h � !l ¼ a and !h!l ¼ b ¼ !2
0 ð10aÞ

The bandwidth � is defined by

� ¼ !h � !l ¼ a ð10bÞ

The quality factor Q is defined by

Q ¼ !0=� ¼
ffiffiffi
b

p
=a ð10cÞ

The quality factor measures the sharpness of the frequency response around the center frequency. This
behavior is also called resonance (see Sections 12.11 to 12.15). When the quality factor is high, !l and !h

may be approximated by !0 � �=2 and !0 þ �=2, respectively.

EXAMPLE 12.7 Consider the network function HðsÞ ¼ 10s=ðs2 þ 300sþ 106Þ. Find the center frequency, lower

and upper half-power frequencies, the bandwidth, and the quality factor.

Since !2
0 ¼ 106, the center frequency !0 ¼ 1000 rad/s.

The lower and upper half-power frequencies are, respectively,
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!l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=4þ b

q
� a=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3002=4þ 106

q
� 300=2 ¼ 861:2 rad=s

!h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=4þ b

q
þ a=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3002=4þ 106

q
þ 300=2 ¼ 1161:2 rad=s

The bandwidth � ¼ !h � !l ¼ 1161:2� 861:2 ¼ 300 rad/s.

The quality factor Q ¼ 1000=300 ¼ 3:3.

EXAMPLE 12.8 Repeat Example 12.7 for HðsÞ ¼ 10s=ðs2 þ 30sþ 106Þ. Again, from !2
0 ¼ 106, !0 ¼ 1000 rad/s.

Then,

!l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
302=4þ 106

q
� 30=2 ¼ 985:1 rad=s

!h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
302=4þ 106

q
þ 30=2 ¼ 1015:1 rad=s

� ¼ a ¼ 30 rad=s and Q ¼ 1000=30 ¼ 33:3

Note that !l and !h can also be approximated with good accuracy by

!l ¼ !0 � �=2 ¼ 1000� 30=2 ¼ 985 rad=s and !h ¼ !0 þ �=2 ¼ 1000þ 30=2 ¼ 1015 rad=s

12.10 NATURAL FREQUENCY AND DAMPING RATIO

The denominator of the bandpass function given in (7) may be written as

s
2
þ a sþ b ¼ s

2
þ 2�!0sþ !2

0

where !0 ¼
ffiffiffi
b

p
is called the natural frequency and � ¼ a=ð2

ffiffiffi
b

p
Þ is called the damping ratio. For � > 1,

the circuit has two distinct poles on the negative real axis and is called overdamped. For � ¼ 1, the
circuit has a real pole of order two at �!0 and is critically damped. For � < 1, the circuit has a pair of
conjugate poles at ��!0 þ j!0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
and ��!0 � j!0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
. The poles are positioned on a semicircle

in the left half plane with radius !0. The placement angle of the poles is � ¼ sin�1 � (see Fig. 12-17).
The circuit is underdamped and can contain damped oscillations. Note that the damping ratio is equal
to half of the inverse of the quality factor.
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12.11 RLC SERIES CIRCUIT; SERIES RESONANCE

The RLC circuit shown in Fig. 12-18 has, under open-circuit condition, an input or driving-point
impedance

Zinð!Þ ¼ Rþ j !L�
1

!C

� �



The circuit is said to be in series resonance (or low-impedance resonance) when Zinð!Þ is real (and so
jZinð!Þj is a minimum); that is, when

!L�
1

!C
¼ 0 or ! ¼ !0 �

1ffiffiffiffiffiffiffi
LC

p

Figure 12-19 shows the frequency response. The capacitive reactance, inversely proportional to !,
is higher at low frequencies, while the inductive reactance, directly proportional to !, is greater at the
higher frequencies. Consequently, the net reactance at frequencies below !0 is capacitive, and the angle
on Zin is negative. At frequencies above !0, the circuit appears inductive, and the angle on Zin is
positive.

By voltage division, the voltage transfer function for Fig. 12-18 is

Hv1ð!Þ ¼
R

Zinð!Þ
¼ RYinð!Þ

The frequency response (magnitude only) is plotted in Fig. 12-20; the curve is just the reciprocal of that
in Fig. 12-19(a). Note that roll-off occurs both below and above the series resonant frequency !0. The
points where the response is 0.707, the half-power points (Section 12.3), are at frequencies !l and !h.
The bandwidth is the width between these two frequencies: � ¼ !h � !l .

A quality factor, Q0 ¼ !0L=R, may be defined for the series RLC circuit at resonance. (See Section
12.12 for the general development of Q.) The half-power frequencies can be expressed in terms of the
circuit elements, or in terms of !0 and Q0, as follows:

!h ¼
R

2L
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

þ
1

LC

s
¼ !0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

4Q2
0

s
þ

1

2Q0

 !

!l ¼ �
R

2L
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

þ
1

LC

s
¼ !0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

4Q2
0

s
�

1

2Q0

 !
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See Problem 12.5. Subtraction of the expressions gives

� ¼
R

L
¼

!0

Q0

which suggests that the higher the ‘‘quality,’’ the narrower the bandwidth.

12.12 QUALITY FACTOR

A quality factor or figure of merit can be assigned to a component or to a complete circuit. It is
defined as

Q � 2�
maximum energy stored

energy dissipated per cycle

� �

a dimensionless number. This definition is in agreement with definitions given in Sections 12.9 and
12.11.

A practical inductor, in which both resistance and inductance are present, is modeled in Fig. 12-21.
The maximum stored energy is 1

2
LI2max, while the energy dissipated per cycle is

ðI2effRÞ
2�

!

� �
¼

I2maxR�

!

Qind ¼
!L

R
Hence,

A practical capacitor can be modeled by a parallel combination of R and C, as shown in Fig. 12.22.

The maximum stored energy is 1
2
CV2

max and the energy dissipated per cycle is V2
max�=R!. Thus,

Qcap ¼ !CR.
The Q of the series RLC circuit is derived in Problem 12.6(a). It is usually applied at resonance, in

which case it has the equivalent forms

Q0 ¼
!0L

R
¼

1

!0CR
¼

1

R

ffiffiffiffi
L

C

r
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12.13 RLC PARALLEL CIRCUIT; PARALLEL RESONANCE

A parallel RLC network is shown in Fig. 12-23. Observe that V2 ¼ V1. Under the open-circuit

condition, the input admittance is

Yinð!Þ ¼
1

R
þ

1

j!L
þ j!C ¼

1

Zinð!Þ

The network will be in parallel resonance (or high-impedance resonance) when Yinð!Þ, and thus Zinð!Þ, is
real (and so jYinð!Þj is a minimum and jZinð!Þj is a maximum); that is, when

�
1

!L
þ !C ¼ 0 or ! ¼ !a �

1ffiffiffiffiffiffiffi
LC

p

The symbol !a is now used to denote the quantity 1=
ffiffiffiffiffiffiffi
LC

p
in order to distinguish the resonance from

a low-impedance resonance. Complex series-parallel networks may have several high-impedance reso-
nant frequencies !a and several low-impedance resonant frequencies !0.

The normalized input impedance

Zinð!Þ

R
¼

1

1þ jR !C �
1

!L

� �

is plotted (magnitude only) in Fig. 12-24. Half-power frequencies !l and !h are indicated on the plot.
Analogous to series resonance, the bandwidth is given by

� ¼
!a

Qa

where Qa, the quality factor of the parallel circuit at ! ¼ !a, has the equivalent expressions

Qa ¼
R

!aL
¼ !aRC ¼ R

ffiffiffiffi
C

L

r

See Problem 12.6(b).
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12.14 PRACTICAL LC PARALLEL CIRCUIT

A parallel LC ‘‘tank’’ circuit has frequency applications in electronics as a tuning or frequency
selection device. While the capacitor may often be treated as ‘‘pure C,’’ the losses in the inductor should
be included. A reasonable model for the practical tank is shown in Fig. 12-25. The input admittance is

Yinð!Þ ¼ j!C þ
1

Rþ j!L
¼

R

R2 þ ð!LÞ2
þ j !C �

!L

R2 þ ð!LÞ2

� �

For resonance,

!aC ¼
!aL

R2 þ ð!aLÞ
2

or !a ¼
1ffiffiffiffiffiffiffi
LC

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

R2C

L

r

At the resonant frequency, Yinð!aÞ ¼ RC=L and, from Section 12.11, the Q of the inductance at !a is

Qind ¼
!aL

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

CR2
� 1

r

If Qind � 10, then !a � 1=
ffiffiffiffiffiffiffi
LC

p
and

Zinð!aÞ

R

����
���� � Q2

ind

The frequency response is similar to that of the parallel RLC circuit, except that the high-impedance
resonance occurs at a lower frequency for low Qind. This becomes evident when the expression for !a

above is rewritten as

!a ¼
1ffiffiffiffiffiffiffi
LC

p

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð1=Q2
indÞ

q
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12.15 SERIES-PARALLEL CONVERSIONS

It is often convenient in the analysis of circuits to convert the series RL to the parallel form (see Fig.

12-26). Given Rs, Ls, and the operating frequency !, the elements Rp, Lp of the equivalent parallel circuit

are determined by equating the admittances

Ys ¼
Rs � j!Ls

R2
s þ ð!LsÞ

2
and Yp ¼

1

Rp

þ
1

j!Lp

The results are

Rp ¼ Rs 1þ
!Ls

Rs

� �2
" #

¼ Rsð1þQ2
s Þ

Lp ¼ Ls 1þ
Rs

!Ls

� �2
" #

¼ Ls 1þ
1

Q2
s

� �

If Qs � 10, Rp � RsQ
2
s and Lp � Ls.

There are times when the RC circuit in either form should be converted to the other form (see Fig.
12-27). Equating either the impedances or the admittances, one finds

Rs ¼
Rp

1þ ð!CpRpÞ
2
¼

Rp

1þQ2
p

Cs ¼ Cp 1þ
1

ð!CpRpÞ
2

" #
¼ Cp 1þ

1

Q2
p

 !

as the parallel-to-series transformation, and

Rp ¼ Rs 1þ
1

ð!CsRsÞ
2

� �
¼ Rsð1þQ2

s Þ

Cp ¼
Cs

1þ ð!CsRsÞ
2
¼

Cs

1þ ð1=QsÞ
2

as the series-to-parallel transformation. Again, the equivalence depends on the operating frequency.
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12.16 LOCUS DIAGRAMS

Heretofore, the frequency response of a network has been exhibited by plotting separately the

magnitude and the angle of a suitable network function against frequency !. This same information

can be presented in a single plot: one finds the curve (locus diagram) in the complex plane traced by the

point representing the network function as ! varies from 0 to 1. In this section we shall discuss locus

diagrams for the input impedance or the input admittance; in some cases the variable will not be !, but
another parameter (such as resistance R).

For the series RL circuit, Fig. 12-28(a) shows the Z-locus when !L is fixed and R is variable; Fig. 12-

28(b) shows the Z-locus when R is fixed and L or ! is variable; and Fig. 12-28(c) shows the Y-locus when

R is fixed and L or ! is variable. This last locus is obtained from

Y ¼
1

Rþ j!L
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð!LÞ2

q tan�1
ð�!L=RÞ

Note that for !L ¼ 0, Y ¼ ð1=RÞ 08; and for !L ! 1, Y ! 0 �908. When !L ¼ R,

Y ¼
1

R
ffiffiffi
2

p �458

A few other points will confirm the semicircular locus, with the center at 1/2R and the radius 1/2R.
Either Fig. 12-28(b) or 12-28(c) gives the frequency response of the circuit.

A parallel RC circuit has the Y- and Z-loci shown in Fig. 12-29; these are derived from

Y ¼
1

R
þ j!C and Z ¼

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð!CRÞ2

q tan�1
ð�!CRÞ
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For the RLC series circuit, the Y-locus, with ! as the variable, may be determined by writing

Y ¼ Gþ jB ¼
1

Rþ jX
¼

R� jX

R2 þ X2

G ¼
R

R2 þ X2
B ¼ �

X

R2 þ X2
whence

Both G and B depend on ! via X . Eliminating X between the two expressions yields the equation of the
locus in the form

G2
þ B2

¼
G

R
or G�

1

2R

� �2

þB2
¼

1

2R

� �2

which is the circle shown in Fig. 12-30. Note the points on the locus corresponding to ! ¼ !l, ! ¼ !0,
and ! ¼ !h.

For the practical ‘‘tank’’ circuit examined in Section 12.14, the Y-locus may be constructed by

combining the C-branch locus and the RL-branch locus. To illustrate the addition, the points corre-

sponding to frequencies !1 < !2 < !3 are marked on the individual loci and on the sum, shown in Fig.

12-31(c). It is seen that jYjmin occurs at a frequency greater than !a; that is, the resonance is high-

impedance but not maximum-impedance. This comes about because G varies with ! (see Section 12.14),

and varies in such a way that forcing B ¼ 0 does not automatically minimize G2
þ B2. The separation of
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the resonance and minimum-admittance frequencies is governed by the Q of the coil. Higher Qind

corresponds to lower values of R. It is seen from Fig. 12-31(b) that low R results in a larger semicircle,

which when combined with the YC-locus, gives a higher !a and a lower minimum-admittance frequency.

When Qind � 10, the two frequencies may be taken as coincident.

The case of the two-branch RC and RL circuit shown in Fig. 12-32(a) can be examined by adding

the admittance loci of the two branches. For fixed V ¼ V 08, this amounts to adding the loci of the two

branch currents. Consider C variable without limit, and R1, R2, L, and ! constant. Then current IL is

fixed as shown in Fig. 12-32(b). The semicircular locus of IC is added to IL to result in the locus of IT .

Resonance of the circuit corresponds to �T ¼ 0. This may occur for two values of the real, positive

parameter C [the case illustrated in Fig. 12.32(b)], for one value, or for no value—depending on the

number of real positive roots of the equation Im YT ðCÞ ¼ 0.

12.17 SCALING THE FREQUENCY RESPONSE OF FILTERS

The frequency scale of a filter may be changed by adjusting the values of its inductors and
capacitors. Here we summarize the method (see also Section 8.10). Inductors and capacitors affect
the frequency behavior of circuits through L! and C!; that is, always as a product of element values and
the frequency. Dividing inductor and capacitor values in a circuit by a factor k will scale-up the !-axis
of the frequency response by a factor k. For example, a 1-mH inductor operating at 1 kHz has the same
impedance as a 1-mH inductor operating at 1MHz. Similarly, a 1-mF capacitor at 1MHz behaves
similar to a 1-nF capacitor at 1GHz. This is called frequency scaling and is a useful property of linear
circuits. The following two examples illustrate its application in filter design.

EXAMPLE 12.17 The network function of the circuit of Fig. 8-42 with R ¼ 2 k�, C ¼ 10 nF , and R2 ¼ R1 is

HðsÞ ¼
V2

V1

¼
2

s

!0

� �2

þ
s

!0

� �
þ 1

where !0 ¼ 50, 000 rad/s (see Examples 8.14 and 8.15). This is a low-pass filter with the cutoff frequency at !0. By

using a 1-nF capacitor, !0 ¼ 500,000 and the frequency response is scaled up by a factor of 10.

EXAMPLE 12.18 A voltage source is connected to the terminals of a series RLC circuit. The phasor current is

I ¼ Y � V , where

YðsÞ ¼
Cs

LCs2 þ RCsþ 1

This is a bandpass function with a peak of the resonance frequency of !0 ¼ 1=
ffiffiffiffiffiffiffi
LC

p
. Changing L and C to L=k and

C=k (a reduction factor of k) changes 1=
ffiffiffiffiffiffiffi
LC

p
to k=

ffiffiffiffiffiffiffi
LC

p
and the new resonance frequency is increased to k!0. You

may verify the shift in frequency at which the current reaches its maximum by direct evaluation of Yð j!Þ for the
following two cases: (a) L ¼ 1 mH, C ¼ 10 nF, !0 ¼ 106 rad/s; (b) L ¼ 10 mH, C ¼ 100 nF, !0 ¼ 105 rad/s.
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Solved Problems

12.1 In the two-port network shown in Fig. 12-33, R1 ¼ 7 k� and R2 ¼ 3 k�. Obtain the voltage
ratio V2=V1 (a) at no-load, (b) for RL ¼ 20 k�.

(a) At no-load, voltage division gives

V2

V1

¼
R2

R1 þ R2

¼
3

7þ 3
¼ 0:30

(b) With RL ¼ 20 k�,

Rp ¼
R2RL

R2 þ RL

¼
60

23
k�

V2

V1

¼
Rp

R1 þ Rp

¼
60

221
¼ 0:27and

The voltage ratio is independent of frequency. The load resistance, 20 k�, reduced the ratio from

0.30 to 0.27.

12.2 (a) Find L2 in the high-pass circuit shown in Fig. 12-34, if jHvð!Þj ¼ 0:50 at a frequency of
50MHz. (b) At what frequency is jHvj ¼ 0:90?

(a) From Section 12.2, with !x � R1=L2,

jHvð!Þj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð!x=!Þ
2

q

0:50 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð fx=50Þ
2

q or fx ¼ 50
ffiffiffi
3

p
MHzThen,
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L2 ¼
R1

2�fx
¼

50� 103

2�ð50
ffiffiffi
3

p
� 106Þ

¼ 91:9mHand

0:90 ¼
1

1þ ð50
ffiffiffi
3

p
=f Þ2

or f ¼ 179 MHzðbÞ

12.3 A voltage divider, useful for high-frequency applications, can be made with two capacitors C1

and C2 in the generalized two-port network Fig. 12-2. Under open-circuit, find C2 if
C1 ¼ 0:01 mF and jHvj ¼ 0:20.

From Table 12-1,

Hv ¼
Z2

Z1 þ Z2

¼
1=j!C2

1

j!C1

þ
1

j!C2

¼
C1

C1 þ C2

0:20 ¼
0:01

0:01þ C2

or C2 ¼ 0:04 mFHence,

The voltage ratio is seen to be frequency-independent under open-circuit.

12.4 Find the frequency at which jHvj ¼ 0:50 for the low-pass RC network shown in Fig. 12-35.

Hvð!Þ ¼
1

1þ jð!=!xÞ
where !x �

1

R1C2

ð0:50Þ2 ¼
1

1þ ð!=!xÞ
2

from which
!

!x

¼
ffiffiffi
3

p
Then,

! ¼
ffiffiffi
3

p 1

R1C2

� �
¼ 8660 rad=s or f ¼ 1378 Hzand

12.5 For the series RLC circuit shown in Fig. 12-36, find the resonant frequency !0 ¼ 2�f0. Also
obtain the half-power frequencies and the bandwidth �.

Zinð!Þ ¼ Rþ j !L�
1

!C

� �

At resonance, Zinð!Þ ¼ R and !0 ¼ 1=
ffiffiffiffiffiffiffi
LC

p
.

!0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5ð0:4� 10�6Þ
p ¼ 2236:1 rad=s f0 ¼

!0

2�
¼ 355:9 Hz

The power formula
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P ¼ I2effR ¼
V2

effR

jZinj
2

shows that Pmax ¼ V2
eff=R, achieved at ! ¼ !0, and that P ¼ 1

2
Pmax when jZinj

2
¼ 2R2; that is, when

!L�
1

!C
¼ �R or !2

�
R

L
!�

1

LC
¼ 0

Corresponding to the upper sign, there is a single real positive root:

!h ¼
R

2L
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

þ
1

LC

s
¼ 2338:3 rad=s or fh ¼ 372:1 Hz

and corresponding to the lower sign, the single real positive root

!l ¼ �
R

2L
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

þ
1

LC

s
¼ 2138:3 rad=s or fl ¼ 340:3 Hz

12.6 Derive the Q of (a) the series RLC circuit, (b) the parallel RLC circuit.

(a) In the time domain, the instantaneous stored energy in the circuit is given by

Ws ¼
1

2
Li2 þ

q2

2C

For a maximum,

dWs

dt
¼ Li

di

dt
þ

q

C

dq

dt
¼ i L

di

dt
þ

q

C

� �
¼ iðvL þ vCÞ ¼ 0

Thus, the maximum stored energy is Ws at i ¼ 0 or Ws at vL þ vC ¼ 0, whichever is the larger. Now

the capacitor voltage, and therefore the charge, lags the current by 908; hence, i ¼ 0 implies q ¼ �Qmax

and

Wsji¼0 ¼
Q2

max

2C
¼

1

2
CV2

Cmax ¼
1

2
C

Imax

!C

� �2

¼
I2max

2C!2

On the other hand, vL þ vC ¼ 0 implies vL ¼ vC ¼ 0 and i ¼ �Imax (see the phasor diagram, Fig. 12-

37), so that

WsjvLþvC¼0 ¼
1
2LI

2
max

It follows that

Wsmax ¼

I2max=2C!
2

ð! 	 !0Þ

LI2max=2 ð! � !0Þ

8<
:

The energy dissipated per cycle (in the resistor) is Wd ¼ I2maxR�=!. Consequently,

Q ¼ 2�
Wsmax

Wd

¼
1=!CR ð! 	 !0Þ

!L=R ð! � !0Þ

�
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(b) For the parallel combination with applied voltage vðtÞ,

Ws ¼
1

2
LI2L þ

1

2C
q2C

dWs

dt
¼ LiL

diL
dt

þ
qC
C

iC ¼ vðiL þ iCÞ ¼ 0and

If v ¼ 0, then qC ¼ 0 and

iL ¼ �ILmax ¼ �
Vmax

!L

Wsjv¼0 ¼
V2

max

2L!2
giving

If iL þ iC ¼ 0, then (see Fig. 12-38) iL ¼ iC ¼ 0 and qC ¼ �CVmax, giving

WsjiLþiC¼0 ¼
1
2
CV2

max

Wsmax ¼
V2

max=2L!
2

ð! 	 !aÞ

CV2
max=2 ð! � !aÞ

(
Therefore

The energy dissipated per cycle in R is Wd ¼ V2
max�=R!. Consequently,

Q ¼ 2�
Wsmax

Wd

¼
R=L! ð! 	 !aÞ

!CR ð! � !aÞ

� �

12.7 A three-element series circuit contains R ¼ 10 �, L ¼ 5 mH, and C ¼ 12:5 mF. Plot the magni-
tude and angle of Z as functions of ! for values of ! from 0.8 !0 through 1:2 !0.

!0 ¼ 1=
ffiffiffiffiffiffiffi
LC

p
¼ 4000 rad/s. At !0,

XL ¼ ð4000Þð5� 10�3
Þ ¼ 20 � XC ¼

1

ð4000Þð12:5� 10�6Þ
¼ 20 �

Z ¼ 10þ jðXL � XCÞ ¼ 10þ j0 �
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The values of the reactances at other frequencies are readily obtained. A tabulation of reactances and

impedances appear in Fig. 12-39(a), and Fig. 12-39(b) shows the required plots.

! XL XC Z

3200 16 25 10� j9 13:4 �428

3600 18 22.2 10� j4:2 10:8 �22:88

4000 20 20 10 10 08

4400 22 18.2 10þ j3:8 10:7 20:88

4800 24 16.7 10þ j7:3 12:4 36:28

12.8 Show that !0 ¼
ffiffiffiffiffiffiffiffiffiffi
!l!h

p
for the series RLC circuit.

By the results of Problem 12.5,

!l!h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

þ
1

LC

s
�

R

2L

0
@

1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

þ
1

LC

s
þ

R

2L

0
@

1
A ¼

1

LC
¼ !2

0

12.9 Compute the quality factor of an RLC series circuit, with R ¼ 20 �, L ¼ 50 mH, and C ¼ 1 mF,
using (a) Q ¼ !0L=R, (b) Q ¼ 1=!0CR, and (c) Q ¼ !0=�.

!0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:05� 10�6
p ¼ 4472 rad=s

!l ¼ �
R

2L
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

þ
1

LC

s
¼ 4276:6 rad=s !h ¼

R

2L
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

þ
1

LC

s
¼ 4676:6 rad=s

and � ¼ !h � !l ¼ 400 rad/s.

Q ¼
!0L

R
¼

4472ð0:050Þ

20
¼ 11:2ðaÞ

Q ¼
1

!0CR
¼

1

4472ð10�6Þ20
¼ 11:2ðbÞ

Q ¼
!0

�
¼

4472

400
¼ 11:2ðcÞ

CHAP. 12] FREQUENCY RESPONSE, FILTERS, AND RESONANCE 297

Fig. 12-39

(a)



12.10 A coil is represented by a series combination of L ¼ 50 mH and R ¼ 15 �. Calculate the quality
factor at (a) 10 kHz, (b) 50 kHz.

Qcoil ¼
!L

R
¼

2�ð10� 103Þð50� 10�3
Þ

15
¼ 209ðaÞ

Qcoil ¼ 209
50

10

� �
¼ 1047ðcÞ

12.11 Convert the circuit constants of Problem 12.10 to the parallel form (a) at 10 kHz, (b) at 250Hz.

Rp ¼ Rs 1þ
!Ls

Rs

� �2
" #

¼ Rs½1þQ2
s � ¼ 15½1þ ð209Þ2� ¼ 655 k�ðaÞ

or, since Qs 
 10, Rp � RsQ
2
s ¼ 15ð209Þ2 ¼ 655 k�.

Lp ¼ Ls 1þ
1

Q2
s

� �
� Ls ¼ 50 mH

(b) At 250Hz,

Qs ¼
2�ð250Þð50� 10�3

Þ

15
¼ 5:24

Rp ¼ Rs½1þQ2
s � ¼ 15½1þ ð5:24Þ2� ¼ 426:9 �

Lp ¼ Ls 1þ
1

Q2
s

� �
¼ ð50� 10�3

Þ 1þ
1

ð5:24Þ2

� �
¼ 51:8 mH

Conversion of circuit elements from series to parallel can be carried out at a specific frequency, the

equivalence holding only at that frequency. Note that in (b), where Qs < 10, Lp differs significantly from Ls.

12.12 For the circuit shown in Fig. 12-40, (a) obtain the voltage transfer functionHvð!Þ, and (b) find the
frequency at which the function is real.

(a) Let Z2 and Y2 represent the impedance and admittance of the R2LC parallel tank.

Hvð!Þ ¼
Z2

R1 þ Z2

¼
1

1þ R1Y2

¼
1

1þ R1

1

R2

þ
1

j!L
þ j!C

� �

¼
1

1þ
R1

R2

þ jR1 !C �
1

!L

� �

(b) The transfer function is real when Y2 is real; that is, when

! ¼ !a �
1ffiffiffiffiffiffiffi
LC

p

At ! ¼ !a, not only are jZ2j and jHvjmaximized, but jZinj ¼ jR1 þ Z2| also is maximized (because R1 is

real and positive—see the locus diagram, Fig. 12-41).
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12.13 Obtain the bandwidth � for the circuit of Fig. 12-40 and plot � against the parameter

Rx �
R1R2

R1 þ R2

Here, the half-power frequencies are determined by the condition jHvð!Þj ¼ 0:707jHvjmax, or, from

Problem 12.12(a),

R1 !C �
1

!L

� �
¼ � 1þ

R1

R2

� �
or Rx !C �

1

!L

� �
¼ �1

But (see Section 12.13) this is just the equation for the half-power frequencies of an RxLC parallel circuit.

Hence,

� ¼
!a

Qa

¼
1

CRx

The hyperbolic graph is shown in Fig. 12-42.

12.14 In the circuit of Fig. 12-40, let R1 ¼ R2 ¼ 2 k�, L ¼ 10 mH, and C ¼ 40 nF. Find the
resonant frequency and bandwidth, and compare with the results for R1 ¼ 0 (i.e., a pure
parallel circuit).

!a ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð10� 10�3Þð40� 10�9Þ
p ¼ 5� 104 rad=s

or fa ¼ 7958 Hz. With Rx ¼ 22=4 ¼ 1 k�, Problem 12.13 gives

� ¼
1

ð40� 10�9Þð1� 103Þ
¼ 2:5� 104 rad=s
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The results of Problem 12.12 and 12.13 cannot be applied as R1 ! 0, for, in the limit, the voltage ratio

is identically unity and so cannot provide any information about the residual R2LC parallel circuit. (Note

that � ! 1 as Rx ! 0.) Instead, we must go over to the input impedance function, as in Section 12.13,

whereby

!a ¼
1ffiffiffiffiffiffiffi
LC

p ¼ 5� 104 rad=s

as previously, and

� ¼
1

CR2

¼ 1:25� 104 rad=s

12.15 For the circuit of Fig. 12-40, R1 ¼ 5 k� and C ¼ 10 nF. If V2=V1 ¼ 0:8 08 at 15 kHz, calculate
R2, L, and the bandwidth.

An angle of zero on the voltage ratio Hv indicates that the circuit as a whole, and the parallel rank by

itself, is at resonance (see Problem 12.14). Then,

!a ¼
1ffiffiffiffiffiffiffi
LC

p L ¼
1

!2
aC

¼
1

½2�ð15� 103Þ�2ð10� 10�9Þ
¼ 11:26 mH

From Problem 12.12,

Hvð!aÞ ¼ 0:8 08 ¼
1

1þ ðR1=R2Þ
whence R2 ¼

R1

0:25
¼ 20 k�

Then, Rx ¼ ð5Þð20Þ=25 ¼ 4 k�, and Problem 12.3 gives

� ¼
1

ð10� 10�9Þð4� 103Þ
¼ 2:5� 104 rad=s

12.16 Compare the resonant frequency of the circuit shown in Fig. 12-43 for R ¼ 0 to that for
R ¼ 50 �.

For R ¼ 0, the circuit is that of an LC parallel tank, with

!a ¼
1ffiffiffiffiffiffiffi
LC

p ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:2Þð30� 10�6Þ
p ¼ 408:2 rad=s or fa ¼ 65 Hz

For R ¼ 50 �,

Yin ¼ j!C þ
1

Rþ j!L
¼

R

R2 þ ð!LÞ2
þ j !C �

!L

R2 þ ð!LÞ2

� �

For resonance, Im Yin is zero, so that

!a ¼
1ffiffiffiffiffiffiffi
LC

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

R2C

L

r
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Clearly, as R ! 0, this expression reduces to that given for the pure LC tank. Substituting the numerical

values produces a value of 0.791 for the radical; hence,

!a ¼ 408:2ð0:791Þ ¼ 322:9 rad=s or fa ¼ 51:4 Hz

12.17 Measurements on a practical inductor at 10MHz give L ¼ 8:0 mH and Qind ¼ 40. (a) Find the
ideal capacitance C for parallel resonance at 10MHz and calculate the corresponding bandwidth
�. (b) Repeat if a practical capacitor, with a dissipation factor D ¼ Q�1

cap ¼ 0:005 at 10MHz, is
used instead of an ideal capacitance.

(a) From Section 12.14,

!a ¼
1ffiffiffiffiffiffiffi
LC

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ�2
ind

q
C ¼

1

!2
aLð1þQ�2

indÞ
¼

1

½2�ð10� 106Þ�2ð8:0� 10�6Þ 1þ
1

1600

� � ¼ 31:6 pFor

Using Section 12.15 to convert the series RL branch of Fig. 12-25 to parallel at the resonant

frequency,

Rp ¼ Rð1þQ2
indÞ ¼

!aL

Qind

ð1þQ2
indÞ

Then, from Section 12.13,

� ¼
!a

Qa

¼
!2
aL

Rp

¼
!aQind

1þQ2
ind

¼
2�ð10� 106Þð40Þ

1þ 1600
rad=s

or 0.25MHz.

(b) The circuit is shown in Fig. 12-44; part (a) gives the resistance of the practical inductor as

R ¼
!aL

Qind

¼ 4� �

Also, from the given dissipation factor, it is known that

1

!aCRC

¼ 0:005

The input admittance is

Yin ¼
1

RC

þ j!C þ
1

Rþ j!L
¼

1

RC

þ
R

R2 þ ð!LÞ2

� �
þ j !C �

!L

R2 þ ð!LÞ2

� �

which differs from the input admittance for part (a) only in the real part. Since the imaginary part

involves the same L and the same R, and must vanish at the same frequency, C must be the same as in

part (a); namely, C ¼ 31:6 pF.

For fixed C, bandwidth is inversely proportional to resistance. With the practical capacitor, the

net parallel resistance is

R 0
¼

RpRC

Rp þ RC
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where Rp is as calculated in part (a). Therefore,

�

0:25 MHz
¼

Rp

R 0
¼ 1þ

Rp

RC

¼ 1þ
ð!aL=QindÞð1þQ2

indÞ

1=!aCð0:005Þ

¼ 1þ
ð1þQ2

indÞð0:005Þ

Qindð1þQ�2
indÞ

¼ 1þ
ð1þ 1600Þð0:005Þ

40 1þ
1

1600

� � ¼ 1:2

and so � ¼ 0:30 MHz.

A lossy capacitor has the same effect as any loading resistor placed across the tank; the Qa is

reduced and the bandwidth increased, while fa is unchanged.

12.18 A lossy capacitor, in the series-circuit model, consists of R ¼ 25 � and C ¼ 20 pF. Obtain the
equivalent parallel model at 50 kHz.

From Section 12.15, or by letting L ! 0 in Problem 12.6(a),

Qs ¼
1

!CsRs

¼
1

2�ð50� 103Þð20� 10�12Þð25Þ
¼ 6370

For this large Qs-value,

Rp � RsQ
2
s ¼ 1010 M� Cp � Cs ¼ 20 pF

12.19 A variable-frequency source of V ¼ 100 08 V is applied to a series RL circuit having R ¼ 20 �
and L ¼ 10 mH. Compute I for ! ¼ 0, 500, 1000, 2000, 5000 rad/s. Plot all currents on the
same phasor diagram and note the locus of the currents.

Z ¼ Rþ jXL ¼ Rþ j!L

Table 12-2 exhibits the required computations. With the phasor voltage at the angle zero, the locus of I as !
varies is the semicircle shown in Fig. 12-45. Since I ¼ VY, with constant V, Fig. 12-45 is essentially the same

as Fig. 12-28(c), the admittance locus diagram for the series RL circuit.

12.20 The circuit shown in Fig. 12-46 is in resonance for two values of C when the frequency of the
driving voltage is 5000 rad/s. Find these two values of C and construct the admittance locus
diagram which illustrates this fact.

At the given frequency, XL ¼ 3 �. Then the admittance of this fixed branch is

Y1 ¼
1

5þ j3
¼ 0:147� j0:088 S
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Table 12-2

!, rad/s XL;� R;� Z;� I;A

0 0 20 20 08 5 08

500 5 20 20:6 14:048 4:85 �14:048

1000 10 20 22:4 26:578 4:46 �26:578

2000 20 20 28:3 458 3:54 �458

5000 50 20 53:9 68:208 1:86 �68:208



The semicircular admittance locus of branch 2 has the radius r ¼ 1=2R ¼ 0:125 S. The total admittance is

the sum of the fixed admittance Y1 and the variable admittance Y2. In Fig. 12-47, the semicircular locus is

added to the fixed complex number Y1. The circuit resonance occurs at points a and b, where YT is real.

YT ¼ 0:417� j0:088þ
1

4� jXC

which is real if

X2
C � 11:36XC þ 16 ¼ 0

or XC1
¼ 9:71 �, XC2

¼ 1:65 �. With ! ¼ 5000 rad/s,

C1 ¼ 20:6 mF C2 ¼ 121 mF

12.21 Show by locus diagrams that the magnitude of the voltage between points A and B in Fig. 12-48 is
always one-half the magnitude of the applied voltage V as L is varied.
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Branch-1 current I1 passes through two equal resistors R. Thus A is the midpoint on the phasor V, as

shown in Fig. 12-49.

Branch 2 has a semicircular Y-locus [see Fig. 12-28(c)]. Then the current locus is also semicircular, as

shown in Fig. 12.50(a). The voltage phasor diagram, Fig. 12-50(b), consists of the voltage across the

inductance, VBN , and the voltage across R1, VMB. The two voltages add vectorially,

V ¼ VMN ¼ VBN þ VMB

Because I2 lags VBN by 908, VBN and VMB are perpendicular for all values of L in Fig. 12-50(b). As L varies

from 0 to 1, point B moves from N toward M along the semicircle. Figures 12-49 and 12-50(b) are

superimposed in Fig. 12-50(c). It is clear that VAB is a radius of the semicircle and therefore,

jVABj ¼
1
2
jVj

Further, the angle � by which VAB lags V is equal to 2�, where � ¼ tan�1 !L=R1.

Supplementary Problems

12.22 A high-pass RL circuit has R1 ¼ 50 k� and L2 ¼ 0:2 mH. (a) Find ! if the magnitude of the voltage

transfer function is jHv1j ¼ 0:90. (b) With a load R ¼ 1 M� across L2, find jHvj at ! ¼ 7:5� 108 rad/s.

Ans: ðaÞ 5:16� 108 rad/s; (b) 0.908

12.23 Obtain Hv1 for a high-pass RL circuit at ! ¼ 2:5!x, R ¼ 2 k�, L ¼ 0:05 H. Ans: 0:928 21:808

12.24 A low-pass RC circuit under no-load has R1 ¼ 5 k�. (a) Find C2 if jHvj ¼ 0:5 at 10 kHz. (b) Obtain Hv at

5 kHz. (c) What value of C2 results in jHvj ¼ 0:90 at 8 kHz? (d) With C2 as in (a), find a new value for R1 to

result in jHvj ¼ 0:90 at 8 kHz.

Ans: ðaÞ 5:51 mF; (b) 0:756 �40:898; (c) 1:93 mF; ðdÞ 1749 �

12.25 A simple voltage divider would consist of R1 and R2. If stray capacitance Cs is present, then the divider

would generally be frequency-dependent. Show, however, that V2=V1 is independent of frequency for the

circuit of Fig. 12-51 if the compensating capacitance C1 has a certain value. Ans: C1 ¼ ðR2=R1ÞCs

304 FREQUENCY RESPONSE, FILTERS, AND RESONANCE [CHAP. 12

Fig. 12-49

Fig. 12-50



12.26 Assume that a sinusoidal voltage source with a variable frequency and Vmax ¼ 50 V is applied to the circuit

shown in Fig. 12-52. (a) At what frequency f is jIj a minimum? (b) Calculate this minimum current.

(c) What is jICj at this frequency? Ans: ðaÞ 2:05 kHz; (b) 2.78 mA; (c) 10.8 mA

12.27 A 20-mF capacitor is in parallel with a practical inductor represented by L ¼ 1 mHz in series with R ¼ 7 �.

Find the resonant frequency, in rad/s and in Hz, of the parallel circuit. Ans: 1000 rad/s, 159.2 Hz

12.28 What must be the relationship between the values of RL and RC if the network shown in Fig. 12-53 is to be

resonant at all frequencies? Ans: RL ¼ RC ¼ 5 �

12.29 For the parallel network shown in Fig. 12-54, (a) find the value of R for resonance; (b) convert the RC

branch to a parallel equivalent. Ans: ðaÞ 6:0 �; ðbÞ Rp ¼ 6:67 �;XCp
¼ 20 �

12.30 For the network of Fig. 12-55(a), find R for resonance. Obtain the values of R 0, XL, and XC in the parallel

equivalent of Fig. 12-55(b). Ans: R ¼ 12:25 �;R 0
¼ 7:75 �;XL ¼ 25 �;XC ¼ 25 �

12.31 Branch 1 of a two-branch parallel circuit has an impedance Z1 ¼ 8þ j6 � at ! ¼ 5000 rad/s. Branch 2

contains R ¼ 8:34 � in series with a variable capacitance C. (a) Find C for resonance. (b) Sketch the

admittance locus diagram. Ans: ðaÞ 24 mF ðbÞ See Fig. 12-56
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12.32 Find R for resonance of the network shown in Fig. 12-57. Sketch the admittance locus diagram.

Ans: Resonance cannot be achieved by varying R. See Fig. 12-58.

12.33 In Problem 12.32, for what values of the inductive reactance will it be possible to obtain resonance at some

value of the variable resistance R? Ans: XL 	 8:2 �

12.34 (a) Construct the admittance locus diagram for the circuit shown in Fig. 12-59. (b) For what value of

resistance in the RL branch is resonance possible for only one value of XL?

Ans: ðaÞ See Fig. 12-60. ðbÞ 6:25 �:

12.35 Determine the value(s) of L for which the circuit shown in Fig. 12-61 is resonant at 5000 rad/s.

Ans: 2:43 mH, 66.0 mH

12.36 A three-branch parallel circuit has fixed elements in two branches; in the third branch, one element is

variable. The voltage-current phasor diagram is shown in Fig. 12-62. Identify all the elements if

! ¼ 5000 rad/s.
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Ans: Branch 1: R ¼ 8:05 �;L ¼ 0:431 mH

Branch 2: R ¼ 4:16 �;C ¼ 27:7 mF
Branch 3: L ¼ 2:74 mH, variable R

12.37 Describe the circuit which corresponds to each locus in Fig. 12-63 if there is only one variable element in

each circuit.

Ans: (a) A two-branch parallel circuit. Branch 1: fixed R and XC; branch 2: fixed R and variable XC.

(b) A three-branch parallel circuit. Branch 1: fixed R and XC; branch 2: fixed XC; branch 3: fixed

R and variable XL.

(c) A two-branch parallel circuit. Branch 1: fixed R and XC; branch 2: fixed XL and variable R.

12.38 In the circuit of Fig. 12-64, L ¼ 1 mH. Determine R1, R2, and C such that the impedance between the two

terminals of the circuit is 100 � at all frequencies. Ans: C ¼ 100 nF, R1 ¼ R2 ¼ 100 �

12.39 Given V2=V1 ¼ 10s=ðs2 þ 2sþ 81Þ and v1ðtÞ ¼ cos ð!tÞ, determine ! such that the amplitude of v2ðtÞ attains a

maximum. Find that maximum. Ans: ! ¼ 9 rad/s, V2 ¼ 5 V

12.40 Given HðsÞ ¼ s=ðs2 þ asþ bÞ determine a and b such that the magnitude of the frequency response jHð!Þj
has a maximum at 100 Hz with a half-power bandwidth of 5 Hz. Then find the quality factor Q.

Ans: a ¼ 31:416;b ¼ 394784;Q ¼ 20
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12.41 Given HðsÞ ¼ ðsþ 1Þ=ðs2 þ 2sþ 82Þ, determine where jHð!Þj is at a maximum, its half-power bandwidth and

quality factor. Ans: !0 ¼
ffiffiffiffiffi
82

p
� 9 rad/s, �! ¼ 2 rad/s, Q ¼ 4:53

12.42 In a parallel RLC circuit R ¼ 10 k� and L ¼ 20 mH. (a) Find C so that the circuit resonates at 1 MHz.

Find the quality factor Q and the bandwidth in kHz. (b) Find the terminal voltage of the circuit if an AC

current source of I ¼ 1 mA is applied to it at: (i) 1 MHz, (ii) 1.01 MHz, (iii) 1.006 MHz

Ans: ðaÞ C ¼ 1:267 nF;Q ¼ 79:6;�f ¼ 12:56 kHz; (b) V2 ¼ 10 V at 1 MHz, 5.34 V at 1.01 MHz, and

7.24 V at 1.006 MHz

12.43 A coil is modeled as a 50-mH inductor in series with a 5-� resistor. Specify the value of a capacitor to be

placed in series with the coil so that the circuit would resonate at 600 kHz. Find the quality factor Q and

bandwidth �f in kHz. Ans: C ¼ 1:4 nF;Q ¼ 37:7;�f ¼ 15:9 kHz

12.44 The coil of Problem 12.43 placed in parallel with a capacitor C resonates at 600 kHz. Find C, quality factor

Q, and bandwidth �f in kHz. Hint: Find the equivalent parallel RLC circuit.

Ans: C ¼ 1:4 nF;Q ¼ 37:7;�f ¼ 15:9 kHz

12.45 The circuit in Fig. 12-65(a) is a third-order Butterworth low-pass filter. Find the network function, the

magnitude of the frequency response, and its half-power cutoff frequency !0.

Ans: HðsÞ ¼ 1=ðs3 þ 2s2 þ 2sþ 1Þ; jHð!Þj2 ¼ 1=ð1þ !6
Þ; !0 ¼ 1 rad/s
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12.46 In the circuit of Fig. 12-65(b), let R ¼ 1 �;C1 ¼ 1:394 F;C2 ¼ 0:202 F , and C3 ¼ 3:551 F . Find

HðsÞ ¼ V2=V1 and show that it approximates the passive third-order Butterworth low-pass filter of Fig.

12-65(a). Ans: HðsÞ ¼ 1=ð0:99992s3 þ 1:99778s2 þ 2sþ 1Þ

12.47 Show that the half-power cutoff frequency in the circuit of Fig. 8-42 is !0 ¼ 1=ðRCÞ and, therefore, fre-
quency scaling may be done by changing the value of C or R.

Ans:
V2

V1

¼
2

R2C2s2 þ RCsþ 1
¼

2

s

!0

� �2

þ
s

!0

� �
þ 1

; !0 ¼
1

RC

12.48 Find RLC values in the low-pass filter of Fig. 12-65(a) to move its half-power cutoff frequency to 5 kHz.

Ans: R ¼ 1 �;C ¼ 31:83 mF;L ¼ 63:66 mH
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Two-Port Networks

13.1 TERMINALS AND PORTS

In a two-terminal network, the terminal voltage is related to the terminal current by the impedance
Z ¼ V=I . In a four-terminal network, if each terminal pair (or port) is connected separately to another
circuit as in Fig. 13-1, the four variables i1, i2, v1, and v2 are related by two equations called the terminal
characteristics. These two equations, plus the terminal characteristics of the connected circuits, provide
the necessary and sufficient number of equations to solve for the four variables.

13.2 Z-PARAMETERS

The terminal characteristics of a two-port network, having linear elements and dependent sources,
may be written in the s-domain as

V1 ¼ Z11I1 þ Z12I2

V2 ¼ Z21I1 þ Z22I2
ð1Þ

The coefficients Zij have the dimension of impedance and are called the Z-parameters of the network.
The Z-parameters are also called open-circuit impedance parameters since they may be measured at one
terminal while the other terminal is open. They are

Z11 ¼
V1

I1

����
I2¼0

Z12 ¼
V1

I2

����
I1¼0

Z21 ¼
V2

I1

����
I2¼0

Z22 ¼
V2

I2

����
I1¼0

ð2Þ

Fig. 13-1
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EXAMPLE 13.1 Find the Z-parameters of the two-port circuit in Fig. 13-2.

Apply KVL around the two loops in Fig. 13-2 with loop currents I1 and I2 to obtain

V1 ¼ 2I1 þ sðI1 þ I2Þ ¼ ð2þ sÞI1 þ sI2

V2 ¼ 3I2 þ sðI1 þ I2Þ ¼ sI1 þ ð3þ sÞI2
ð3Þ

By comparing (1) and (3), the Z-parameters of the circuit are found to be

Z11 ¼ sþ 2

Z12 ¼ Z21 ¼ s

Z22 ¼ sþ 3

ð4Þ

Note that in this example Z12 ¼ Z21.

Reciprocal and Nonreciprocal Networks

A two-port network is called reciprocal if the open-circuit transfer impedances are equal;

Z12 ¼ Z21. Consequently, in a reciprocal two-port network with current I feeding one port, the

open-circuit voltage measured at the other port is the same, irrespective of the ports. The voltage is

equal to V ¼ Z12I ¼ Z21I. Networks containing resistors, inductors, and capacitors are generally

reciprocal. Networks that additionally have dependent sources are generally nonreciprocal (see

Example 13.2).

EXAMPLE 13.2 The two-port circuit shown in Fig. 13-3 contains a current-dependent voltage source. Find its

Z-parameters.

As in Example 13.1, we apply KVL around the two loops:

V1 ¼ 2I1 � I2 þ sðI1 þ I2Þ ¼ ð2þ sÞI1 þ ðs� 1ÞI2

V2 ¼ 3I2 þ sðI1 þ I2Þ ¼ sI1 þ ð3þ sÞI2
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The Z-parameters are

Z11 ¼ sþ 2

Z12 ¼ s� 1

Z21 ¼ s

Z22 ¼ sþ 3

ð5Þ

With the dependent source in the circuit, Z12 6¼ Z21 and so the two-port circuit is nonreciprocal.

13.3 T-EQUIVALENT OF RECIPROCAL NETWORKS

A reciprocal network may be modeled by its T-equivalent as shown in the circuit of Fig. 13-4. Za,
Zb, and Zc are obtained from the Z-parameters as follows.

Za ¼ Z11 � Z12

Zb ¼ Z22 � Z21

Zc ¼ Z12 ¼ Z21

ð6Þ

The T-equivalent network is not necessarily realizable.

EXAMPLE 13.3 Find the Z-parameters of Fig. 13-4.

Again we apply KVL to obtain

V1 ¼ ZaI1 þ ZcðI1 þ I2Þ ¼ ðZa þ ZcÞI1 þ ZcI2

V2 ¼ ZbI2 þ ZcðI1 þ I2Þ ¼ ZcI1 þ ðZb þ ZcÞI2
ð7Þ

By comparing (1) and (7), the Z-parameters are found to be

Z11 ¼ Za þ Zc

Z12 ¼ Z21 ¼ Zc

Z22 ¼ Zb þ Zc

ð8Þ

13.4 Y-PARAMETERS

The terminal characteristics may also be written as in (9), where I1 and I2 are expressed in terms of
V1 and V2.

I1 ¼ Y11V1 þ Y12V2

I2 ¼ Y21V1 þ Y22V2

ð9Þ

The coefficients Yij have the dimension of admittance and are called the Y-parameters or short-circuit
admittance parameters because they may be measured at one port while the other port is short-circuited.
The Y-parameters are
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Y11 ¼
I1

V1

����
V2¼0

Y12 ¼
I1

V2

����
V1¼0

Y21 ¼
I2

V1

����
V2¼0

Y22 ¼
I2

V2

����
V1¼0

ð10Þ

EXAMPLE 13.4 Find the Y-parameters of the circuit in Fig. 13-5.

We apply KCL to the input and output nodes (for convenience, we designate the admittances of the three

branches of the circuit by Ya, Yb, and Yc as shown in Fig. 13-6). Thus,

Ya ¼
1

2þ 5s=3
¼

3

5sþ 6

Yb ¼
1

3þ 5s=2
¼

2

5sþ 6

Yc ¼
1

5þ 6=s
¼

s

5sþ 6

ð11Þ

The node equations are

I1 ¼ V1Ya þ ðV1 � V2ÞYc ¼ ðYa þ YcÞV1 � YcV2

I2 ¼ V2Yb þ ðV2 � V1ÞYc ¼ �YcV1 þ ðYb þ YcÞV2

ð12Þ

By comparing (9) with (12), we get
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Y11 ¼ Ya þ Yc

Y12 ¼ Y21 ¼ �Yc

Y22 ¼ Yb þ Yc

ð13Þ

Substituting Ya, Yb, and Yc in (11) into (13), we find

Y11 ¼
sþ 3

5sþ 6

Y12 ¼ Y21 ¼
�s

5sþ 6

Y22 ¼
sþ 2

5sþ 6

ð14Þ

Since Y12 ¼ Y21, the two-port circuit is reciprocal.

13.5 PI-EQUIVALENT OF RECIPROCAL NETWORKS

A reciprocal network may be modeled by its Pi-equivalent as shown in Fig. 13-6. The three
elements of the Pi-equivalent network can be found by reverse solution. We first find the Y-parameters
of Fig. 13-6. From (10) we have

Y11 ¼ Ya þ Yc [Fig. 13.7ðaÞ�

Y12 ¼ �Yc [Fig. 13-7ðbÞ�

Y21 ¼ �Yc [Fig. 13-7ðaÞ�

Y22 ¼ Yb þ Yc [Fig. 13-7ðbÞ�

ð15Þ

from which

Ya ¼ Y11 þ Y12 Yb ¼ Y22 þ Y12 Yc ¼ �Y12 ¼ �Y21 ð16Þ

The Pi-equivalent network is not necessarily realizable.

13.6 APPLICATION OF TERMINAL CHARACTERISTICS

The four terminal variables I1, I2, V1, and V2 in a two-port network are related by the two equations

(1) or (9). By connecting the two-port circuit to the outside as shown in Fig. 13-1, two additional

equations are obtained. The four equations then can determine I1, I2, V1, and V2 without any knowl-

edge of the inside structure of the circuit.
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EXAMPLE 13.5 The Z-parameters of a two-port network are given by

Z11 ¼ 2sþ 1=s Z12 ¼ Z21 ¼ 2s Z22 ¼ 2sþ 4

The network is connected to a source and a load as shown in Fig. 13-8. Find I1, I2, V1, and V2.

The terminal characteristics are given by

V1 ¼ ð2sþ 1=sÞI1 þ 2sI2

V2 ¼ 2sI1 þ ð2sþ 4ÞI2
ð17Þ

The phasor representation of voltage vsðtÞ is Vs ¼ 12 V with s ¼ j. From KVL around the input and output loops

we obtain the two additional equations (18)

Vs ¼ 3I1 þ V1

0 ¼ ð1þ sÞI2 þ V2

ð18Þ

Substituting s ¼ j and Vs ¼ 12 in (17) and in (18) we get

V1 ¼ jI1 þ 2jI2

V2 ¼ 2jI1 þ ð4þ 2jÞI2

12 ¼ 3I1 þ V1

0 ¼ ð1þ jÞI2 þ V2

from which

I1 ¼ 3:29 �10:28 I2 ¼ 1:13 �131:28

V1 ¼ 2:88 37:58 V2 ¼ 1:6 93:88

13.7 CONVERSION BETWEEN Z- AND Y-PARAMETERS

The Y-parameters may be obtained from the Z-parameters by solving (1) for I1 and I2. Applying
Cramer’s rule to (1), we get

I1 ¼
Z22

DZZ

V1 �
Z12

DZZ

V2

I2 ¼
�Z21

DZZ

V1 þ
Z11

DZZ

V2

ð19Þ

where DZZ ¼ Z11Z22 � Z12Z21 is the determinant of the coefficients in (1). By comparing (19) with (9)
we have
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Y11 ¼
Z22

DZZ

Y12 ¼
�Z12

DZZ

Y21 ¼
�Z21

DZZ

Y22 ¼
Z11

DZZ

ð20Þ

Given the Z-parameters, for the Y-parameters to exist, the determinant DZZ must be nonzero. Con-
versely, given the Y-parameters, the Z-parameters are

Z11 ¼
Y22

DYY

Z12 ¼
�Y12

DYY

Z21 ¼
�Y21

DYY

Z22 ¼
Y11

DYY

ð21Þ

where DYY ¼ Y11Y22 � Y12Y21 is the determinant of the coefficients in (9). For the Z-parameters of a
two-port circuit to be derived from its Y-parameters, DYY should be nonzero.

EXAMPLE 13.6 Referring to Example 13.4, find the Z-parameters of the circuit of Fig. 13-5 from its

Y-parameters.

The Y-parameters of the circuit were found to be [see (14)]

Y11 ¼
sþ 3

5sþ 6
Y12 ¼ Y21 ¼

�s

5sþ 6
Y22 ¼

sþ 2

5sþ 6

Substituting into (21), where DYY ¼ 1=ð5sþ 6Þ, we obtain

Z11 ¼ sþ 2

Z12 ¼ Z21 ¼ s

Z22 ¼ sþ 3

ð22Þ

The Z-parameters in (22) are identical to the Z-parameters of the circuit of Fig. 13-2. The two circuits are

equivalent as far as the terminals are concerned. This was by design. Figure 13-2 is the T-equivalent of Fig. 13-5.

The equivalence between Fig. 13-2 and Fig. 13-5 may be verified directly by applying (6) to the Z-parameters given in

(22) to obtain its T-equivalent network.

13.8 h-PARAMETERS

Some two-port circuits or electronic devices are best characterized by the following terminal
equations:

V1 ¼ h11I1 þ h12V2

I2 ¼ h21I1 þ h22V2

ð23Þ

where the hij coefficients are called the hybrid parameters, or h-parameters.

EXAMPLE 13.7 Find the h-parameters of Fig. 13-9.

This is the simple model of a bipolar junction transistor in its linear region of operation. By inspection, the

terminal characteristics of Fig. 13-9 are

V1 ¼ 50I1 and I2 ¼ 300I1 ð24Þ
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By comparing (24) and (23) we get

h11 ¼ 50 h12 ¼ 0 h21 ¼ 300 h22 ¼ 0 ð25Þ

13.9 g-PARAMETERS

The terminal characteristics of a two-port circuit may also be described by still another set of hybrid
parameters given in (26).

I1 ¼ g11V1 þ g12I2

V2 ¼ g21V1 þ g22I2
ð26Þ

where the coefficients gij are called inverse hybrid or g-parameters.

EXAMPLE 13.8 Find the g-parameters in the circuit shown in Fig. 13-10.

This is the simple model of a field effect transistor in its linear region of operation. To find the g-parameters,

we first derive the terminal equations by applying Kirchhoff’s laws at the terminals:

V1 ¼ 109I1At the input terminal:

V2 ¼ 10ðI2 � 10�3
V1ÞAt the output terminal:

or I1 ¼ 10�9
V1 and V2 ¼ 10I2 � 10�2

V1 (28)

By comparing (27) and (26) we get

g11 ¼ 10�9
g12 ¼ 0 g21 ¼ �10�2

g22 ¼ 10 ð28Þ

13.10 TRANSMISSION PARAMETERS

The transmission parameters A, B, C, and D express the required source variables V1 and I1 in terms
of the existing destination variables V2 and I2. They are called ABCD or T-parameters and are defined
by
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V1 ¼ AV2 � BI2

I1 ¼ CV2 �DI2
ð29Þ

EXAMPLE 13.9 Find the T-parameters of Fig. 13-11 where Za and Zb are nonzero.

This is the simple lumped model of an incremental segment of a transmission line. From (29) we have

A ¼
V1

V2

����
I2¼0

¼
Za þ Zb

Zb

¼ 1þ ZaYb

B ¼ �
V1

I2

����
V2¼0

¼ Za

C ¼
I1

V2

����
I2¼0

¼ Yb

D ¼ �
I1

I2

����
V2¼0

¼ 1

ð30Þ

13.11 INTERCONNECTING TWO-PORT NETWORKS

Two-port networks may be interconnected in various configurations, such as series, parallel, or

cascade connection, resulting in new two-port networks. For each configuration, certain set of

parameters may be more useful than others to describe the network.

Series Connection

Figure 13-12 shows a series connection of two two-port networks a and b with open-circuit

impedance parameters Za and Zb, respectively. In this configuration, we use the Z-parameters since

they are combined as a series connection of two impedances. The Z-parameters of the series connection

are (see Problem 13.10):
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Z11 ¼ Z11;a þ Z11;b

Z12 ¼ Z12;a þ Z12;b

Z21 ¼ Z21;a þ Z21;b

Z22 ¼ Z22;a þ Z22;b

ð31aÞ

or, in the matrix form,

½Z� ¼ ½Za� þ ½Zb� ð31bÞ

Parallel Connection

Figure 13-13 shows a parallel connection of two-port networks a and b with short-circuit admittance
parameters Ya and Yb. In this case, the Y-parameters are convenient to work with. The Y-parameters
of the parallel connection are (see Problem 13.11):

Y11 ¼ Y11;a þ Y11;b

Y12 ¼ Y12;a þ Y12;b

Y21 ¼ Y21;a þ Y21;b

Y22 ¼ Y22;a þ Y22;b

ð32aÞ

or, in the matrix form

½Y� ¼ ½Ya� þ ½Yb� ð32bÞ

Cascade Connection

The cascade connection of two-port networks a and b is shown in Fig. 13-14. In this case the

T-parameters are particularly convenient. The T-parameters of the cascade combination are

A ¼ AaAb þ BaCb

B ¼ AaBb þ BaDb

C ¼ CaAb þDaCb

D ¼ CaBb þDaDb

ð33aÞ

or, in the matrix form,

½T� ¼ ½Ta�½Tb� ð33bÞ
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13.12 CHOICE OF PARAMETER TYPE

What types of parameters are appropriate to and can best describe a given two-port network or
device? Several factors influence the choice of parameters. (1) It is possible that some types of
parameters do not exist as they may not be defined at all (see Example 13.10). (2) Some parameters
are more convenient to work with when the network is connected to other networks, as shown in Section
13.11. In this regard, by converting the two-port network to its T- and Pi-equivalent and then applying
the familiar analysis techniques, such as element reduction and current division, we can greatly reduce
and simplify the overall circuit. (3) For some networks or devices, a certain type of parameter produces
better computational accuracy and better sensitivity when used within the interconnected circuit.

EXAMPLE 13.10 Find the Z- and Y-parameters of Fig. 13-15.

We apply KVL to the input and output loops. Thus,

V1 ¼ 3I1 þ 3ðI1 þ I2ÞInput loop:

V2 ¼ 7I1 þ 2I2 þ 3ðI1 þ I2ÞOutput loop:

or V1 ¼ 6I1 þ 3I2 and V2 ¼ 10I1 þ 5I2 (34)

By comparing (34) and (2) we get

Z11 ¼ 6 Z12 ¼ 3 Z21 ¼ 10 Z22 ¼ 5

The Y-parameters are, however, not defined, since the application of the direct method of (10) or the conversion

from Z-parameters (19) produces DZZ ¼ 6ð5Þ � 3ð10Þ ¼ 0.

13.13 SUMMARY OF TERMINAL PARAMETERS AND CONVERSION

Terminal parameters are defined by the following equations

Z-parameters h-parameters T-parameters
V1 ¼ Z11I1 þ Z12I2 V1 ¼ h11I1 þ h12V2 V1 ¼ AV2 � BI2
V2 ¼ Z21I1 þ Z22I2 I2 ¼ h21I1 þ h22V2 I1 ¼ CV2 �DI2
½V� ¼ ½Z�½I�

Y-parameters g-parameters
I1 ¼ Y11V1 þ Y12V2 I1 ¼ g11V1 þ g12I2
I2 ¼ Y21V1 þ Y22V2 V2 ¼ g21V1 þ g22I2
½I� ¼ ½Y�½V�
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Table 13-1 summarizes the conversion between the Z-, Y-, h-, g-, and T-parameters. For the

conversion to be possible, the determinant of the source parameters must be nonzero.

Solved Problems

13.1 Find the Z-parameters of the circuit in Fig. 13-16(a).

Z11 and Z21 are obtained by connecting a source to port #1 and leaving port #2 open [Fig. 13-16(b)].

The parallel and series combination of resistors produces

Z11 ¼
V1

I1

����
I2¼0

¼ 8 and Z21 ¼
V2

I1

����
I2¼0

¼
1

3

Similarly, Z22 and Z12 are obtained by connecting a source to port #2 and leaving port #1 open [Fig.

13-16(c)].

Z22 ¼
V2

I2

����
I1¼0

¼
8

9
Z12 ¼

V1

I2

����
I1¼0

¼
1

3

The circuit is reciprocal, since Z12 ¼ Z21.
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Z Y h g T

Z

Z11 Z12 Y22

DYY

�Y12

DYY

Dhh

h22

h12

h22

1

g11

�g12

g11

A

C

DTT

C

Z21 Z22 �Y21

DYY

Y11

DYY

�h21

h22

1

h22

g21

g11

Dgg

g11

1

C

D

C

Y

Z22

Dzz

�Z12

Dzz

Y11 Y12 1

h11

�h12

h11

Dgg

g22

g12

g22

D

B

�DTT

B

�Z21

Dzz

Z11

Dzz

Y21 Y22 h21

h11

�Dnn

h11

�g21

g22

1

g22

�1

B

A

B

h

Dzz

Z22

Z12

Z22

1

Y11

�Y12

Y11

h11 h12
g22

Dgg

g12

Dgg

B

D

DTT

D

�Z21

Z22

1

Z22

Y21

Y11

Dyy

Y11

h21 h22
g21

Dgg

g11

Dgg

�1

D

C

D

g

1

Z11

�Z12

Z11

DYY

Y22

Y12

Y22

h22

Dhh

�h12

Dhh

g11 g12 C

A

�DTT

A

Z21

Z11

DZZ

Z11

�Y21

Y22

1

Y22

�h21

Dhh

h11

Dhh

g21 g22 1

A

B

A

T

Z11

Z21

DZZ

Z21

�Y22

Y21

�1

Y21

�Dhh

h21

�h11

h21

1

g21

g22

g21

A B

1

Z21

Z22

Z21

�DYY

Y21

�Y11

Y21

�h22

h21

�1

h21

g11

g21

Dgg

g21

C D

DPP ¼ P11P22 � P12P21 is the determinant of Z�; Y�; h�; g�; or T-parameters.



13.2 The Z-parameters of a two-port network N are given by

Z11 ¼ 2sþ 1=s Z12 ¼ Z21 ¼ 2s Z22 ¼ 2sþ 4

(a) Find the T-equivalent of N. (b) The network N is connected to a source and a load as shown
in the circuit of Fig. 13-8. Replace N by its T-equivalent and then solve for i1, i2, v1, and v2.

(a) The three branches of the T-equivalent network (Fig. 13-4) are

Za ¼ Z11 � Z12 ¼ 2sþ
1

s
� 2s ¼

1

s

Zb ¼ Z22 � Z12 ¼ 2sþ 4� 2s ¼ 4

Zc ¼ Z12 ¼ Z21 ¼ 2s

(b) The T-equivalent of N, along with its input and output connections, is shown in phasor domain in Fig.

13-17.
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By applying the familiar analysis techniques, including element reduction and current division, to

Fig. 13-17, we find i1, i2, v1, and v2.

In phasor domain In the time domain:

I1 ¼ 3:29 �10:28 i1 ¼ 3:29 cos ðt� 10:28Þ
I2 ¼ 1:13 �131:28 i2 ¼ 1:13 cos ðt� 131:28Þ
V1 ¼ 2:88 37:58 v1 ¼ 2:88 cos ðtþ 37:58Þ
V2 ¼ 1:6 93:88 v2 ¼ 1:6 cos ðtþ 93:88Þ

13.3 Find the Z-parameters of the two-port network in Fig. 13-18.

KVL applied to the input and output ports obtains the following:

V1 ¼ 4I1 � 3I2 þ ðI1 þ I2Þ ¼ 5I1 � 2I2Input port:

V2 ¼ I2 þ ðI1 þ I2Þ ¼ I1 þ 2I2Output port:

By applying (2) to the above, Z11 ¼ 5, Z12 ¼ �2, Z21 ¼ 1, and Z22 ¼ 2:

13.4 Find the Z-parameters of the two-port network in Fig. 13-19 and compare the results with those
of Problem 13.3.

KVL gives

V1 ¼ 5I1 � 2I2 and V2 ¼ I1 þ 2I2

The above equations are identical with the terminal characteristics obtained for the network of Fig.

13-18. Thus, the two networks are equivalent.

13.5 Find the Y-parameters of Fig. 13-19 using its Z-parameters.

From Problem 13.4,

Z11 ¼ 5; Z12 ¼ �2; Z21 ¼ 1; Z22 ¼ 2
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Since DZZ ¼ Z11Z22 � Z12Z21 ¼ ð5Þð2Þ � ð�2Þð1Þ ¼ 12,

Y11 ¼
Z22

DZZ

¼
2

12
¼

1

6
Y12 ¼

�Z12

DZZ

¼
2

12
¼

1

6
Y21 ¼

�Z21

DZZ

¼
�1

12
Y22 ¼

Z11

DZZ

¼
5

12

13.6 Find the Y-parameters of the two-port network in Fig. 13-20 and thus show that the networks of
Figs. 13-19 and 13-20 are equivalent.

Apply KCL at the ports to obtain the terminal characteristics and Y-parameters. Thus,

I1 ¼
V1

6
þ
V2

6
Input port:

I2 ¼
V2

2:4
�
V1

12
Output port:

Y11 ¼
1

6
Y12 ¼

1

6
Y21 ¼

�1

12
Y22 ¼

1

2:4
¼

5

12
and

which are identical with the Y-parameters obtained in Problem 3.5 for Fig. 13-19. Thus, the two networks

are equivalent.

13.7 Apply the short-circuit equations (10) to find the Y-parameters of the two-port network in Fig.
13-21.

I1 ¼ Y11V1jV2¼0 ¼
1

12
þ

1

12

� �
V1 or Y11 ¼

1

6

I1 ¼ Y12V2jV1¼0 ¼
V2

4
�
V2

12
¼

1

4
�

1

12

� �
V2 or Y12 ¼

1

6

I2 ¼ Y21V1jV2¼0 ¼ �
V1

12
or Y21 ¼ �

1

12

I2 ¼ Y22V2jV1¼0 ¼
V2

3
þ
V2

12
¼

1

3
þ

1

12

� �
V2 or Y22 ¼

5

12
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13.8 Apply KCL at the nodes of the network in Fig. 13-21 to obtain its terminal characteristics and Y-
parameters. Show that two-port networks of Figs. 13-18 to 13-21 are all equivalent.

I1 ¼
V1

12
þ
V1 � V2

12
þ
V2

4
Input node:

I2 ¼
V2

3
þ
V2 � V1

12
Output node:

I1 ¼
1

6
V1 þ

1

6
V2 I2 ¼ �

1

12
V1 þ

5

12
V2

The Y-parameters observed from the above characteristic equations are identical with the Y-parameters of

the circuits in Figs. 13-18, 13-19, and 13-20. Therefore, the four circuits are equivalent.

13.9 Z-parameters of the two-port network N in Fig. 13-22(a) are Z11 ¼ 4s, Z12 ¼ Z21 ¼ 3s, and
Z22 ¼ 9s. (a) Replace N by its T-equivalent. (b) Use part (a) to find input current i1 for
vs ¼ cos 1000t (V).

(a) The network is reciprocal. Therefore, its T-equivalent exists. Its elements are found from (6) and

shown in the circuit of Fig. 13-22(b).

CHAP. 13] TWO-PORT NETWORKS 325

Fig. 13-22



Za ¼ Z11 � Z12 ¼ 4s� 3s ¼ s

Zb ¼ Z22 � Z21 ¼ 9s� 3s ¼ 6s

Zc ¼ Z12 ¼ Z21 ¼ 3s

(b) We repeatedly combine the series and parallel elements of Fig. 13-22(b), with resistors being in k� and s

in krad/s, to find Zin in k� as shown in the following.

ZinðsÞ ¼ Vs=I1 ¼ sþ
ð3sþ 6Þð6sþ 12Þ

9sþ 18
¼ 3sþ 4 or Zinð jÞ ¼ 3j þ 4 ¼ 5 36:98 k�

and i1 ¼ 0:2 cos ð1000t� 36:98Þ (mA).

13.10 Two two-port networks a and b, with open-circuit impedances Za and Zb, are connected in series
(see Fig. 13-12). Derive the Z-parameters equations (31a).

From network a we have

V1a ¼ Z11;aI1a þ Z12;aI2a

V2a ¼ Z21;aI1a þ Z22;aI2a

From network b we have

V1b ¼ Z11;bI1b þ Z12;bI2b

V2b ¼ Z21;bI1b þ Z22;bI2b

From connection between a and b we have

I1 ¼ I1a ¼ I1b V1 ¼ V1a þ V1b

I2 ¼ I2a ¼ I2b V2 ¼ V2a þ V2b

Therefore,

V1 ¼ ðZ11;a þ Z11;bÞI1 þ ðZ12;a þ Z12;bÞI2

V2 ¼ ðZ21;a þ Z21;bÞI1 þ ðZ22;a þ Z22;bÞI2

from which the Z-parameters (31a) are derived.

13.11 Two two-port networks a and b, with short-circuit admittances Ya and Yb, are connected in
parallel (see Fig. 13-13). Derive the Y-parameters equations (32a).

From network a we have

I1a ¼ Y11;aV1a þ Y12;aV2a

I2a ¼ Y21;aV1a þ Y22;aV2a

and from network b we have

I1b ¼ Y11;bV1b þ Y12;bV2b

I2b ¼ Y21;bV1b þ Y22;bV2b

From connection between a and b we have

V1 ¼ V1a ¼ V1b I1 ¼ I1a þ I1b

V2 ¼ V2a ¼ V2b I2 ¼ I2a þ I2b

Therefore,

I1 ¼ ðY11;a þ Y11;bÞV1 þ ðY12;a þ Y12;bÞV2

I2 ¼ ðY21;a þ Y21;bÞV1 þ ðY22;a þ Y22;bÞV2

from which the Y-parameters of (32a) result.
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13.12 Find (a) the Z-parameters of the circuit of Fig. 13-23(a) and (b) an equivalent model which uses
three positive-valued resistors and one dependent voltage source.

(a) From application of KVL around the input and output loops we find, respectively,

V1 ¼ 2I1 � 2I2 þ 2ðI1 þ I2Þ ¼ 4I1

V2 ¼ 3I2 þ 2ðI1 þ I2Þ ¼ 2I1 þ 5I2

The Z-parameters are Z11 ¼ 4, Z12 ¼ 0, Z21 ¼ 2, and Z22 ¼ 5.

(b) The circuit of Fig. 13-23(b), with two resistors and a voltage source, has the same Z-parameters as the

circuit of Fig. 13-23(a). This can be verified by applying KVL to its input and output loops.

13.13 (a) Obtain the Y-parameters of the circuit in Fig. 13-23(a) from its Z-parameters. (b) Find
an equivalent model which uses two positive-valued resistors and one dependent current
source.

(a) From Problem 13.12, Z11 ¼ 4, Z12 ¼ 0, Z21 ¼ 2; Z22 ¼ 5, and so DZZ ¼ Z11Z22 � Z12Z21 ¼ 20.

Hence,

Y11 ¼
Z22

DZZ

¼
5

20
¼

1

4
Y12 ¼

�Z12

DZZ

¼ 0 Y21 ¼
�Z21

DZZ

¼
�2

20
¼ �

1

10
Y22 ¼

Z11

DZZ

¼
4

20
¼

1

5

(b) Figure 13-24, with two resistors and a current source, has the same Y-parameters as the circuit in Fig.

13-23(a). This can be verified by applying KCL to the input and output nodes.

13.14 Referring to the network of Fig. 13-23(b), convert the voltage source and its series resistor to its
Norton equivalent and show that the resulting network is identical with that in Fig. 13-24.

The Norton equivalent current source is IN ¼ 2I1=5 ¼ 0:4I1. But I1 ¼ V1=4. Therefore,

IN ¼ 0:4I1 ¼ 0:1V1. The 5-� resistor is then placed in parallel with IN . The circuit is shown in Fig.

13-25 which is the same as the circuit in Fig. 13-24.
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13.15 The h-parameters of a two-port network are given. Show that the network may be modeled by
the network in Fig. 13-26 where h11 is an impedance, h12 is a voltage gain, h21 is a current gain,
and h22 is an admittance.

Apply KVL around the input loop to get

V1 ¼ h11I1 þ h12V2

Apply KCL at the output node to get

I2 ¼ h21I1 þ h22V2

These results agree with the definition of h-parameters given in (23).

13.16 Find the h-parameters of the circuit in Fig. 13-25.

By comparing the circuit in Fig. 13-25 with that in Fig. 13-26, we find

h11 ¼ 4 �; h12 ¼ 0; h21 ¼ �0:4; h22 ¼ 1=5 ¼ 0:2 ��1

13.17 Find the h-parameters of the circuit in Fig. 13-25 from its Z-parameters and compare with results
of Problem 13.16.

Refer to Problem 13.13 for the values of the Z-parameters and DZZ. Use Table 13-1 for the conversion

of the Z-parameters to the h-parameters of the circuit. Thus,

h11 ¼
DZZ

Z22

¼
20

5
¼ 4 h12 ¼

Z12

Z22

¼ 0 h21 ¼
�Z21

Z22

¼
�2

5
¼ �0:4 h22 ¼

1

Z22

¼
1

5
¼ 0:2

The above results agree with the results of Problem 13.16.

13.18 The simplified model of a bipolar junction transistor for small signals is shown in the circuit of
Fig. 13-27. Find its h-parameters.

The terminal equations are V1 ¼ 0 and I2 ¼ �I1. By comparing these equations with (23), we conclude

that h11 ¼ h12 ¼ h22 ¼ 0 and h21 ¼ �.
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13.19 h-parameters of a two-port device H are given by

h11 ¼ 500 � h12 ¼ 10�4
h21 ¼ 100 h22 ¼ 2ð10�6

Þ ��1

Draw a circuit model of the device made of two resistors and two dependent sources including the
values of each element.

From comparison with Fig. 13-26, we draw the model of Fig. 13-28.

13.20 The device H of Problem 13-19 is placed in the circuit of Fig. 13-29(a). Replace H by its model
of Fig. 13-28 and find V2=Vs.
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The circuit of Fig. 13-29(b) contains the model. With good approximation, we can reduce it to Fig.

13-29(c) from which

I1 ¼ Vs=2000 V2 ¼ �1000ð100I1Þ ¼ �1000ð100Vs=2000Þ ¼ �50Vs

Thus, V2=Vs ¼ �50.

13.21 A load ZL is connected to the output of a two-port device N (Fig. 13-30) whose terminal
characteristics are given by V1 ¼ ð1=NÞV2 and I1 ¼ �NI2. Find (a) the T-parameters of N
and (b) the input impedance Zin ¼ V1=I1.

(a) The T-parameters are defined by [see (29)]
V1 ¼ AV2 � BI2

I1 ¼ CV2 �DI2

The terminal characteristics of the device are

V1 ¼ ð1=NÞV2

I1 ¼ �NI2
By comparing the two pairs of equations we get A ¼ 1=N, B ¼ 0, C ¼ 0, and D ¼ N.

(b) Three equations relating V1, I1, V2, and I2 are available: two equations are given by the terminal

characteristics of the device and the third equation comes from the connection to the load,

V2 ¼ �ZLI2

By eliminating V2 and I2 in these three equations, we get

V1 ¼ ZLI1=N
2 from which Zin ¼ V1=I1 ¼ ZL=N

2

Supplementary Problems

13.22 The Z-parameters of the two-port network N in Fig. 13-22(a) are Z11 ¼ 4s, Z12 ¼ Z21 ¼ 3s, and Z22 ¼ 9s.

Find the input current i1 for vs ¼ cos 1000t (V) by using the open circuit impedance terminal characteristic

equations of N, together with KCL equations at nodes A, B, and C.

Ans: i1 ¼ 0:2 cos ð1000t� 36:98Þ (A)

13.23 Express the reciprocity criteria in terms of h-, g-, and T-parameters.

Ans: h12 þ h21 ¼ 0, g12 þ g21 ¼ 0, and AD� BC ¼ 1

13.24 Find the T-parameters of a two-port device whose Z-parameters are Z11 ¼ s, Z12 ¼ Z21 ¼ 10s, and

Z22 ¼ 100s. Ans: A ¼ 0:1;B ¼ 0;C ¼ 10�1=s, and D ¼ 10

13.25 Find the T-parameters of a two-port device whose Z-parameters are Z11 ¼ 106s, Z12 ¼ Z21 ¼ 107s, and

Z22 ¼ 108s. Compare with the results of Problem 13.21.
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Ans: A ¼ 0:1;B ¼ 0;C ¼ 10�7=s and D ¼ 10. For high frequencies, the device is similar to the device of

Problem 13.21, with N ¼ 10.

13.26 The Z-parameters of a two-port device N are Z11 ¼ ks, Z12 ¼ Z21 ¼ 10ks, and Z22 ¼ 100ks. A 1-� resistor

is connected across the output port (Fig. 13-30). (a) Find the input impedance Zin ¼ V1=I1 and construct

its equivalent circuit. (b) Give the values of the elements for k ¼ 1 and 106.

Ans: ðaÞ Zin ¼
ks

1þ 100ks
¼

1

100þ 1=ks

The equivalent circuit is a parallel RL circuit with R ¼ 10�2 � and L ¼ 1 kH:

ðbÞ For k ¼ 1;R ¼
1

100
� and L ¼ 1 H. For k ¼ 106;R ¼

1

100
� and L ¼ 106 H

13.27 The device N in Fig. 13-30 is specified by its following Z-parameters: Z22 ¼ N2
Z11 and

Z12 ¼ Z21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z11Z22

p
¼ NZ11. Find Zin ¼ V1=I1 when a load ZL is connected to the output terminal.

Show that if Z11 � ZL=N
2 we have impedance scaling such that Zin ¼ ZL=N

2.

Ans: Zin ¼
ZL

N2 þ ZL=Z11

. For ZL � N2
Z11;Zin ¼ ZL=N

2

13.28 Find the Z-parameters in the circuit of Fig. 13-31. Hint: Use the series connection rule.

Ans: Z11 ¼ Z22 ¼ sþ 3þ 1=s;Z12 ¼ Z21 ¼ sþ 1

13.29 Find the Y-parameters in the circuit of Fig. 13-32. Hint: Use the parallel connection rule.

Ans: Y11 ¼ Y22 ¼ 9ðsþ 2Þ=16;Y12 ¼ Y21 ¼ �3ðsþ 2Þ=16
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13.30 Two two-port networks a and b with transmission parameters Ta and Tb are connected in cascade (Fig. 13-

14). Given I2a ¼ �I1b and V2a ¼ V1b, find the T-parameters of the resulting two-port network.

Ans: A ¼ AaAb þ BaCb, B ¼ AaBb þ BaDb, C ¼ CaAb þDaCb, D ¼ CaBb þDaDb

13.31 Find the T- and Z-parameters of the network in Fig. 13-33. The impedances of capacitors are given. Hint:

Use the cascade connection rule.

Ans: A ¼ 5j � 4, B ¼ 4j þ 2, C ¼ 2j � 4, and D ¼ j3, Z11 ¼ 1:3� 0:6j, Z22 ¼ 0:3� 0:6j,
Z12 ¼ Z21 ¼ �0:2� 0:1j

13.32 Find the Z-parameters of the two-port circuit of Fig. 13-34.

Ans: Z11 ¼ Z22 ¼
1
2
ðZb þ ZaÞ;Z12 ¼ Z21 ¼

1
2
ðZb � ZaÞ

13.33 Find the Z-parameters of the two-port circuit of Fig. 13-35.

Ans: Z11 ¼ Z22 ¼
1

2

Zbð2Za þ ZbÞ

Za þ Zb

; Z12 ¼ Z21 ¼
1

2

Z
2
b

Za þ Zb

13.34 Referring to the two-port circuit of Fig. 13-36, find the T-parameters as a function of ! and specify their

values at ! ¼ 1, 103, and 106 rad/s.
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Ans: A ¼ 1� 10�9!2
þ j10�9!, B ¼ 10�3

ð1þ j!Þ, C ¼ 10�6j!, and D ¼ 1. At ! ¼ 1 rad/s, A ¼ 1,

B ¼ 10�3
ð1þ jÞ, C ¼ 10�6j, and D ¼ 1. At ! ¼ 103 rad/s, A � 1, B � j, C ¼ 10�3j, and D ¼ 1.

At ! ¼ 106 rad/s, A � �103, B � 103j, C ¼ j, and D ¼ 1

13.35 A two-port network contains resistors, capacitors, and inductors only. With port #2 open [Fig. 13-37(a)], a

unit step voltage v1 ¼ uðtÞ produces i1 ¼ e�tuðtÞ ðmAÞ and v2 ¼ ð1� e�t
ÞuðtÞ (V). With port #2 short-

circuited [Fig. 13-37(b)], a unit step voltage v1 ¼ uðtÞ delivers a current i1 ¼ 0:5ð1þ e�2t
ÞuðtÞ ðmAÞ. Find

i2 and the T-equivalent network. Ans: i2 ¼ 0:5ð�1þ e�2t
ÞuðtÞ [see Fig. 13-37(c)]

13.36 The two-port network N in Fig. 13-38 is specified by Z11 ¼ 2, Z12 ¼ Z21 ¼ 1, and Z22 ¼ 4. Find I1, I2, and

I3. Ans: I1 ¼ 24 A; I2 ¼ 1:5 A; and I3 ¼ 6:5 A
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334

Mutual Inductance and
Transformers

14.1 MUTUAL INDUCTANCE

The total magnetic flux linkage � in a linear inductor made of a coil is proportional to the current
passing through it; that is, � ¼ Li (see Fig. 14-1). By Faraday’s law, the voltage across the inductor is
equal to the time derivative of the total influx linkage; that is,

v ¼
d�

dt
¼ L

di

dt

The coefficient L, in H, is called the self-inductance of the coil.

Two conductors from different circuits in close proximity to each other are magnetically coupled to
a degree that depends upon the physical arrangement and the rates of change of the currents. This
coupling is increased when one coil is wound over another. If, in addition, a soft-iron core provides a
path for the magnetic flux, the coupling is maximized. (However, the presence of iron can introduce
nonlinearity.)

To find the voltage-current relation at the terminals of the two coupled coils shown in Fig. 14-2, we
observe that the total magnetic flux linkage in each coil is produced by currents i1 and i2 and the mutual
linkage effect between the two coils is symmetrical.

�1 ¼ L1i1 þMi2

�2 ¼ Mi1 þ L2i2
ð1Þ

Fig. 14-1
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where M is the mutual inductance (in H).
The terminal voltages are time derivatives of the flux linkages.

v1ðtÞ ¼
d�1
dt

¼ L1

di1
dt

þM
di2
dt

v2ðtÞ ¼
d�2
dt

¼ M
di1
dt

þ L2

di2
dt

ð2Þ

The coupled coils constitute a special case of a two-port network discussed in Chapter 13. The
terminal characteristics (2) may also be expressed in the frequency domain or in the s-domain as follows.

Frequency Domain s-Domain

V1 ¼ j!L1I1 þ j!MI2

V2 ¼ j!MI1 þ j!L2I2
ð3Þ

V1 ¼ L1sI1 þMsI2

V2 ¼ MsI1 þ L2sI2
ð4Þ

The coupling coefficient M is discussed in Section 14.2. The frequency domain equations (3) deal with
the sinusoidal steady state. The s-domain equations (4) assume exponential sources with complex
frequency s.

EXAMPLE 14.1 Given L1 ¼ 0:1 H, L2 ¼ 0:5 H, and i1ðtÞ ¼ i2ðtÞ ¼ sin!t in the coupled coils of Fig. 14-2. Find

v1ðtÞ and v2ðtÞ for (a) M ¼ 0:01 H, ðbÞ M ¼ 0:2 H, and (c) M ¼ �0:2 H.

v1ðtÞ ¼ 0:1! cos!tþ 0:01! cos!t ¼ 0:11! cos!t ðVÞðaÞ

v2ðtÞ ¼ 0:01! cos!tþ 0:5! cos!t ¼ 0:51! cos!t ðVÞ

v1ðtÞ ¼ 0:1! cos!tþ 0:2! cos!t ¼ 0:3! cos!t ðVÞðbÞ

v2ðtÞ ¼ 0:2! cos!tþ 0:5! cos!t ¼ 0:7! cos!t ðVÞ

v1ðtÞ ¼ 0:1! cos!t� 0:2! cos!t ¼ �0:1! cos!t ðVÞðcÞ

v2ðtÞ ¼ �0:2! cos!tþ 0:5! cos!t ¼ 0:3! cos!t ðVÞ

14.2 COUPLING COEFFICIENT

A coil containing N turns with magnetic flux � linking each turn has total magnetic flux linkage
� ¼ N�. By Faraday’s law, the induced emf (voltage) in the coil is e ¼ d�=dt ¼ Nðd�=dtÞ. A negative
sign is frequently included in this equation to signal that the voltage polarity is established according to
Lenz’s law. By definition of self-inductance this voltage is also given by Lðdi=dtÞ; hence,

L
di

dt
¼ N

d�

dt
or L ¼ N

d�

di
ð5aÞ
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The unit of � being the weber, where 1 Wb ¼ 1 V � s, it follows from the above relation that
1 H ¼ 1 Wb=A. Throughout this book it has been assumed that � and i are proportional to each
other, making

L ¼ N
�

i
¼ constant ð5bÞ

In Fig. 14-3, the total flux �1 resulting from current i1 through the turns N1 consists of leakage flux,
�11, and coupling or linking flux, �12. The induced emf in the coupled coil is given by
N2ðd�12=dt). This same voltage can be written using the mutual inductance M:

e ¼ M
di1
dt

¼ N2

d�12

dt
or M ¼ N2

d�12

di1
ð6Þ

Also, as the coupling is bilateral,

M ¼ N1

d�21

di2
ð7Þ

The coupling coefficient, k, is defined as the ratio of linking flux to total flux:

k �
�12

�1

¼
�21

�2

where 0 � k � 1. Taking the product of (6) and (7) and assuming that k depends only on the geometry
of the system,

M2
¼ N2

d�12

di1

� �
N1

d�21

di2

� �
¼ N2

dðk�1Þ

di1

� �
N1

dðk�2Þ

di2

� �
¼ k2 N1

d�1

di1

� �
N2

d�2

di2

� �
¼ k2L1L2

from which M ¼ k
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
or XM ¼ k

ffiffiffiffiffiffiffiffiffiffiffi
X1X2

p
(8)

Note that (8) implies that M �
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
, a bound that may be independently derived by an energy

argument.
If all of the flux links the coils without any leakage flux, then k ¼ 1. On the other extreme, the coil

axes may be oriented such that no flux from one can induce a voltage in the other, which results in
k ¼ 0. The term close coupling is used to describe the case where most of the flux links the coils, either
by way of a magnetic core to contain the flux or by interleaving the turns of the coils directly over one
another. Coils placed side-by-side without a core are loosely coupled and have correspondingly low
values of k.

14.3 ANALYSIS OF COUPLED COILS

Polarities in Close Coupling

In Fig. 14-4, two coils are shown on a common core which channels the magnetic flux �. This
arrangement results in close coupling, which was mentioned in Section 14.2. To determine the proper
signs on the voltages of mutual inductance, apply the right-hand rule to each coil: If the fingers wrap
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around in the direction of the assumed current, the thumb points in the direction of the flux. Resulting

positive directions for �1 and �2 are shown on the figure. If fluxes �1 and �2 aid one another, then the

signs on the voltages of mutual inductance are the same as the signs on the voltages of self-inductan-

ce. Thus, the plus sign would be written in all four equations (2) and (3). In Fig. 14-4, �1 and �2

oppose each other; consequently, the equations (2) and (3) would be written with the minus sign.

Natural Current

Further understanding of coupled coils is achieved from consideration of a passive second loop as

shown in Fig. 14-5. Source v1 drives a current i1, with a corresponding flux �1 as shown. Now Lenz’s

law implies that the polarity of the induced voltage in the second circuit is such that if the circuit is

completed, a current will pass through the second coil in such a direction as to create a flux opposing the

main flux established by i1. That is, when the switch is closed in Fig. 14-5, flux �2 will have the direction

shown. The right-hand rule, with the thumb pointing in the direction of �2, provides the direction of

the natural current i2. The induced voltage is the driving voltage for the second circuit, as suggested in

Fig. 14-6; this voltage is present whether or not the circuit is closed. When the switch is closed, current

i2 is established, with a positive direction as shown.

EXAMPLE 14.2 Suppose the switch in the passive loop to be closed at an instant ðt ¼ 0Þ when i1 ¼ 0. For t > 0,

the sequence of the passive loop is (see Fig. 14-6).

R2i2 þ L2

di2
dt

�M
di1
dt

¼ 0
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while that of the active loop is

R1i1 þ L1

di1
dt

�M
di2
dt

¼ v1

Writing the above equations in the s-domain with the initial conditions i1ð0
þ
Þ ¼ i2ð0

þ
Þ ¼ 0 and eliminating I1ðsÞ, we

find

HðsÞ �
response

excitation
¼

I2ðsÞ

V1ðsÞ
¼

Ms

ðL1L2 �M2Þs2 þ ðR1L2 þ R2L1Þsþ R1R2

and from the poles of HðsÞ we have the natural frequencies of i2.

14.4 DOT RULE

The sign on a voltage of mutual inductance can be determined if the winding sense is shown on the
circuit diagram, as in Figs. 14-4 and 14-5. To simplify the problem of obtaining the correct sign, the
coils are marked with dots at the terminals which are instantaneously of the same polarity.

To assign the dots to a pair of coupled coils, select a current direction in one coil and place a dot at
the terminal where this current enters the winding. Determine the corresponding flux by application of
the right-hand rule [see Fig. 14-7(a)]. The flux of the other winding, according to Lenz’s law, opposes
the first flux. Use the right-hand rule to find the natural current direction corresponding to this second
flux [see Fig. 14-7(b)]. Now place a dot at the terminal of the second winding where the natural current
leaves the winding. This terminal is positive simultaneously with the terminal of the first coil where the
initial current entered. With the instantaneous polarity of the coupled coils given by the dots, the
pictorial representation of the core with its winding sense is no longer needed, and the coupled coils
may be illustrated as in Fig. 14-7(c). The following dot rule may now be used:

(1) when the assumed currents both enter or both leave a pair of coupled coils by the dotted
terminals, the signs on the M-terms will be the same as the signs on the L-terms; but

(2) if one current enters by a dotted terminal while the other leaves by a dotted terminal, the signs
on the M-terms will be opposite to the signs on the L-terms.

EXAMPLE 14.3 The current directions chosen in Fig. 14-8(a) are such that the signs on theM-terms are opposite

to the signs on the L-terms and the dots indicate the terminals with the same instantaneous polarity. Compare this

to the conductively coupled circuit of Fig. 14-8(b), in which the two mesh currents pass through the common element

in opposite directions, and in which the polarity markings are the same as the dots in the magnetically coupled

circuit. The similarity becomes more apparent when we allow the shading to suggest two black boxes.

14.5 ENERGY IN A PAIR OF COUPLED COILS

The energy stored in a single inductor L carrying current i is 0.5Li2 J. The energy stored in a pair
of coupled coils is given by
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W ¼
1

2
L1i

2
1 þ

1

2
L2i

2
2 þMi1i2 ðJÞ ð9Þ

where L1 and L2 are the inductances of the two coils and M is their mutual inductance. The term Mi1i2
in (9) represents the energy due to the effect of the mutual inductance. The sign of this term is (a)
positive if both currents i1 and i2 enter either at the dotted or undotted terminals, or (b) negative if one of
the currents enters at the dotted terminal and the other enters the undotted end.

EXAMPLE 14.4 In a pair of coils, with L1 ¼ 0:1 H and L2 ¼ 0:2 H, at a certain moment, i1 ¼ 4 A and

i2 ¼ 10 A. Find the total energy in the coils if the coupling coefficient M is (a) 0.1H, (b)
ffiffiffi
2

p
=10 H, (c) �0:1 H,

and (d) �
ffiffiffi
2

p
=10 H.

From (9),

ðaÞ W ¼ ð0:5Þð0:1Þ42 þ ð0:5Þð0:2Þ102 þ ð0:1Þð10Þð4Þ ¼ 14:8 J

ðbÞ W ¼ 16:46 J

ðcÞ W ¼ 6:8 J

ðdÞ W ¼ 5:14 J

The maximum and minimum energies occur in conjunction with perfect positive coupling ðM ¼
ffiffiffi
2

p
=10Þ and perfect

negative coupling ðM ¼ �
ffiffiffi
2

p
=10Þ.

14.6 CONDUCTIVELY COUPLED EQUIVALENT CIRCUITS

From the mesh current equations written for magnetically coupled coils, a conductively coupled
equivalent circuit can be constructed. Consider the sinusoidal steady-state circuit of Fig. 14-9(a), with
the mesh currents as shown. The corresponding equations in matrix form are

R1 þ j!L1 �j!M
�j!M R2 þ j!L2

� �
I1
I2

� �
¼

V1

0

� �

In Fig. 14-9(b), an inductive reactance, XM ¼ !M, carries the two mesh currents in opposite directions,
whence
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Z12 ¼ Z21 ¼ �j!M

in the Z-matrix. If now an inductance L1 �M is placed in the first loop, the mesh current equation for
this loop will be

ðR1 þ j!L1ÞI1 � j!MI2 ¼ V1

Similarly, L2 �M in the second loop results in the same mesh current equation as for the coupled-coil
circuit. Thus, the two circuits are equivalent. The dot rule is not needed in the conductively coupled
circuit, and familiar circuit techniques can be applied.

14.7 LINEAR TRANSFORMER

A transformer is a device for introducing mutual coupling between two or more electric cir-
cuits. The term iron-core transformer identifies the coupled coils which are wound on a magnetic
core of laminated specialty steel to confine the flux and maximize the coupling. Air-core transformers
are found in electronic and communications applications. A third group consists of coils wound over
one another on a nonmetallic form, with a movable slug of magnetic material within the center for
varying the coupling.

Attention here is directed to iron-core transformers where the permeability � of the iron is assumed
to be constant over the operating range of voltage and current. The development is restricted to two-
winding transformers, although three and more windings on the same core are not uncommon.

In Fig. 14-10, the primary winding, of N1 turns, is connected to the source voltage V1, and the
secondary winding, of N2 turns, is connected to the load impedance ZL. The coil resistances are shown
by lumped parameters R1 and R2. Natural current I2 produces flux �2 ¼ �21 þ �22, while I1 produces
�1 ¼ �12 þ �11. In terms of the coupling coefficient k,

�11 ¼ ð1� kÞ�1 �22 ¼ ð1� kÞ�2

From these flux relationships, leakage inductances can be related to the self-inductances:

L11 � ð1� kÞL1 L22 � ð1� kÞL2

The corresponding leakage reactances are:

X11 � ð1� kÞX1 X22 � ð1� kÞX2

It can be shown that the inductance L of an N-turn coil is proportional to N2. Hence, for two coils
wound on the same core,

L1

L2

¼
N1

N2

� �2

ð10Þ

The flux common to both windings in Fig. 14-10 is the mutual flux, �m ¼ �12 � �21. This flux
induces the coil emfs by Faraday’s law,
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e1 ¼ N1

d�m

dt
e2 ¼ N2

d�m

dt

Defining the turns ratio, a � N1=N2, we obtain from these the basic equation of the linear transformer:

e1
e2

¼ a ð11Þ

In the frequency domain, E1=E2 ¼ a.

The relationship between the mutual flux and the mutual inductance can be developed by analysis of
the secondary induced emf, as follows:

e2 ¼ N2

d�m

dt
¼ N2

d�12

dt
�N2

d�21

dt
¼ N2

d�12

dt
�N2

dðk�2Þ

dt

By use of (6) and (5a), this may be rewritten as

e2 ¼ M
di1
dt

� kL2

di2
dt

¼ M
di1
dt

�
M

a

di2
dt

where the last step involved (8) and (10):

M ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2L2ÞðL2Þ

q
¼ kaL2

Now, defining the magnetizing current i� by the equation

i1 ¼
i2
a
þ i� or I1 ¼

I2

a
þ I� ð12Þ

we have

e2 ¼ M
di�
dt

or E2 ¼ jXMI� ð13Þ

According to (13), the magnetizing current may be considered to set up the mutual flux �m in the core.
In terms of coil emfs and leakage reactances, an equivalent circuit for the linear transformer may be

drawn, in which the primary and secondary are effectively decoupled. This is shown in Fig. 14-11(a);
for comparison, the dotted equivalent circuit is shown in Fig. 14-11(b).

EXAMPLE 14.5 Draw the voltage-current phasor diagram corresponding to Fig. 14-11(a), and from it derive the

input impedance of the transformer.

The diagram is given in Fig. 14-12, in which �L denotes the phase angle of ZL. Note that, in accordance with

(13), the induced emfs E1 and E2 lead the magnetizing current I� by 908. The diagram yields the three phasor

equations

V1 ¼ ajXMI� þ ðR1 þ jX11ÞI1

jXMI� ¼ ðZL þ R2 þ jX22ÞI2

I1 ¼
1

a
I2 þ I�
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Elimination of I2 and I� among these equations results in

V1

I1
� Zin ¼ ðR1 þ jX11Þ þ a2

ð jXM=aÞðR2 þ jX22 þ ZLÞ

ð jXM=aÞ þ ðR2 þ jX22 þ ZLÞ
ð14aÞ

If, instead, the mesh current equations for Fig. 14-11(b) are used to derive Zin, the result is

Zin ¼ R1 þ jX1 þ
X2

M

R2 þ jX2 þ ZL

ð14bÞ

The reader may verify the equivalence of (14a) and (14b)—see Problem 14.36.

14.8 IDEAL TRANSFORMER

An ideal transformer is a hypothetical transformer in which there are no losses and the core has
infinite permeability, resulting in perfect coupling with no leakage flux. In large power transformers the
losses are so small relative to the power transferred that the relationships obtained from the ideal
transformer can be very useful in engineering applications.

Referring to Fig. 14-13, the lossless condition is expressed by

1
2
V1I

�
1 ¼

1
2
V2I

�
2

(see Section 10.7). But

V1 ¼ E1 ¼ aE2 ¼ aV2

and so, a being real,

V1

V2

¼
I2

I1
¼ a ð15Þ

The input impedance is readily obtained from relations (15):

Zin ¼
V1

I1
¼

aV2

I2=a
¼ a2

V2

I2
¼ a2ZL ð16Þ
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EXAMPLE 14.6 The ideal transformer may be considered as the limiting case of the linear transformer of Section

14.7. Thus, in (14a) set

R1 ¼ R2 ¼ X11 ¼ X22 ¼ 0

(no losses) and then let XM ! 1 (infinite core permeability), to obtain

Zin ¼ lim
XM!1

a2
ð jXM=aÞðZLÞ

ð jXM=aÞ þ ZL

� �
¼ a2ZL

in agreement with (16)

Ampere-Turn Dot Rule

Since a ¼ N1=N2 in (15),

N1I1 ¼ N2I2

that is, the ampere turns of the primary equal the ampere turns of the secondary. A rule can be
formulated which extends this result to transformers having more than two windings. A positive
sign is applied to an ampere-turn product if the current enters the winding by the dotted terminal; a
negative sign is applied if the current leaves by the dotted terminal. The ampere-turn dot rule then states
that the algebraic sum of the ampere-turns for a transformer is zero.

EXAMPLE 14.7 The three-winding transformer shown in Fig. 14-14 has turns N1 ¼ 20, N2 ¼ N3 ¼ 10. Find I1
given that I2 ¼ 10:0 �53:138 A, I3 ¼ 10:0 �458 A.

With the dots and current directions as shown on the diagram,

N1I1 �N2I2 �N3I3 ¼ 0

from which

20I1 ¼ 10ð10:0 �53:138Þ þ 10ð10:0 �458Þ

I1 ¼ 6:54� j7:54 ¼ 9:98 �49:068 A

14.9 AUTOTRANSFORMER

An autotransformer is an electrically continuous winding, with one or more taps, on a magnetic
core. One circuit is connected to the end terminals, while the other is connected to one end terminal
and to a tap, part way along the winding.

Referring to Fig. 14-15(a), the transformation ratio is

V1

V2

¼
N1 þN2

N2

� aþ 1

which exceeds by unity the transformation ratio of an ideal two-winding transformer having the same
turns ratio. Current I1 through the upper or series part of the winding, of N1 turns, produces the flux
�1. By Lenz’s law the natural current in the lower part of the winding produces an opposing flux
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�2. Therefore, current In leaves the lower winding by the tap. The dots on the winding are as shown in
Fig. 14-15(b). In an ideal autotransformer, as in an ideal transformer, the input and output complex
powers must be equal.

1
2
V1I

�
1 ¼

1
2
V1I

�
ab ¼

1
2
V2I

�
L

IL

Iab
¼ aþ 1whence

That is, the currents also are in the transformation ratio.

Since IL ¼ Iab þ Icb, the output complex power consists of two parts:

1
2
V2I

�
L ¼ 1

2
V2I

�
ab þ

1
2
V2I

�
cb ¼

1
2
V2I

�
ab þ að1

2
V2I

�
abÞ

The first term on the right is attributed to conduction; the second to induction. Thus, there exist both
conductive and magnetic coupling between source and load in an autotransformer.

14.10 REFLECTED IMPEDANCE

A load Z2 connected to the secondary port of a transformer, as shown in Fig. 14-16, contributes to
its input impedance. This contribution is called reflected impedance. Using the terminal characteris-
tics of the coupled coils and applying KVL around the secondary loop, we find

V1 ¼ L1sI1 þMsI2

0 ¼ MsI1 þ L2sI2 þ Z2I2

By eliminating I2, we get
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Z1 ¼
V1

I1
¼ L1s�

M2
s
2

Z2 þ L2s
ð17Þ

For the ac steady state where s ¼ j!, we have

Z1 ¼ j!L1 þ
M2!2

Z2 þ j!L2

ð18Þ

The reflected impedance is

Zreflected ¼
M2!2

Z2 þ j!L2

ð19Þ

The load Z2 is seen by the source as M2!2=ðZ2 þ j!L2Þ. The technique is often used to change an
impedance to a certain value; for example, to match a load to a source.

EXAMPLE 14.8 Given L1 ¼ 0:2 H, L2 ¼ 0:1 H, M ¼ 0:1 H, and R ¼ 10 � in the circuit of Fig. 14-17. Find i1
for v1 ¼ 142:3 sin 100t.

The input impedance Z1 at ! ¼ 100 is [see (18)]

Z1 ¼
V1

I1
¼ j!L1 þ

M2!2

Z2 þ j!L2

¼ j20þ
0:01ð10 000Þ

10þ j10
¼ 5þ j15 ¼ 5

ffiffiffiffiffi
10

p
71:68

I1 ¼ V1=Z1 ¼ 9 �71:68 AThen,

i1 ¼ 9 sin ð100t� 71:68Þ ðAÞor

EXAMPLE 14.9 Referring to Example 14.8, let v1 ¼ uðtÞ. Find i1;f , the forced response.

The input impedance is [see (17)]

Z1ðsÞ ¼ L1s�
M2

s
2

Rþ L2s

Substituting the given values for the elements, we get

Z1ðsÞ ¼
sðsþ 200Þ

10ðsþ 100Þ
or Y1ðsÞ ¼

10ðsþ 100Þ

sðsþ 200Þ

For t > 0, the input v1 ¼ 1 V is an exponential est whose exponent s ¼ 0 is a pole of Y1ðsÞ. Therefore, i1;f ¼ kt with

k ¼ 1=L1 ¼ 5. This result may also be obtained directly by dc analysis of the circuit in Fig. 14-17.

Solved Problems

14.1 When one coil of a magnetically coupled pair has a current 5.0A the resulting fluxes �11 and �12

are 0.2mWb and 0.4mWb, respectively. If the turns are N1 ¼ 500 and N2 ¼ 1500, find L1, L2,
M, and the coefficient of coupling k.
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�1 ¼ �11 þ �12 ¼ 0:6 mWb L1 ¼
N1�1

I1
¼

500ð0:6Þ

5:0
¼ 60 mH

M ¼
N2�12

I1
¼

1500ð0:4Þ

5:0
¼ 120 mH k ¼

�12

�1

¼ 0:667

Then, from M ¼ k
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
, L2 ¼ 540 mH.

14.2 Two coupled coils have self-inductances L1 ¼ 50 mH and L2 ¼ 200 mH, and a coefficient of
coupling k ¼ 0:50. If coil 2 has 1000 turns, and i1 ¼ 5:0 sin 400t (A), find the voltage at coil 2
and the flux �1.

M ¼ k
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
¼ 0:50

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð50Þð200Þ

p
¼ 50 mH

v2 ¼ M
di1
dt

¼ 0:05
d

dt
ð5:0 sin 400tÞ ¼ 100 cos 400t ðVÞ

Assuming, as always, a linear magnetic circuit,

M ¼
N2�12

i1
¼

N2ðk�1Þ

i1
or �1 ¼

M

N2k

� �
i1 ¼ 5:0� 10�4 sin 400t ðWbÞ

14.3 Apply KVL to the series circuit of Fig. 14-18.

Examination of the winding sense shows that the signs of the M-terms are opposite to the signs on the

L-terms.

Ri þ L1

di

dt
�M

di

dt
þ

1

C

ð
i dtþ L2

di

dt
�M

di

dt
¼ v

Ri þ L 0 di

dt
þ

1

C

ð
i dt ¼ vor

where L 0
� L1 þ L2 � 2M. Because

M �
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
�

L1 þ L2

2

L 0 is nonnegative.

14.4 In a series aiding connection, two coupled coils have an equivalent inductance LA; in a series
opposing connection, LB. Obtain an expression for M in terms of LA and LB.

As in Problem 14.3,

L1 þ L2 þ 2M ¼ LA L1 þ L2 � 2M ¼ LB

which give
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M ¼
1

4
ðLA � LBÞ

This problem suggests a method by which M can be determined experimentally.

14.5 (a) Write the mesh current equations for the coupled coils with currents i1 and i2 shown in Fig.
14-19. (b) Repeat for i2 as indicated by the dashed arrow.

(a) The winding sense and selected directions result in signs on the M-terms as follows:

R1i1 þ L1

di1
dt

þM
di2
dt

¼ v

R2i2 þ L2

di2
dt

þM
di1
dt

¼ v

R1ði1 � i2Þ þ L1

d

dt
ði1 � i2Þ þM

di2
dt

¼ vðbÞ

R1ði2 � i1Þ þ R2i2 þ L2

di2
dt

�M
d

dt
ði2 � i1Þ þ L1

d

dt
ði2 � i1Þ �M

di2
dt

¼ 0

14.6 Obtain the dotted equivalent circuit for the coupled circuit shown in Fig. 14-20, and use it to find
the voltage V across the 10-� capacitive reactance.

To place the dots on the circuit, consider only the coils and their winding sense. Drive a current into

the top of the left coil and place a dot at this terminal. The corresponding flux is upward. By Lenz’s law,

the flux at the right coil must be upward-directed to oppose the first flux. Then the natural current leaves

this winding by the upper terminal, which is marked with a dot. See Fig. 14-21 for the complete dotted

equivalent circuit, with currents I1 and I2 chosen for calculation of V.
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5� j5 5þ j3

5þ j3 10þ j6

� �
I1

I2

� �
¼

10 08

10� j10

" #

I1 ¼

10 5þ j3

10� j10 10þ j6

����
����

�Z

¼ 1:015 113:968 A

and V ¼ I1ð�j10Þ ¼ 10:15 23:968 V.

14.7 Obtain the dotted equivalent for the circuit shown in Fig. 14-22 and use the equivalent to find the
equivalent inductive reactance.

Drive a current into the first coil and place a dot where this current enters. The natural current in both

of the other windings establishes an opposing flux to that set up by the driven current. Place dots where the

natural current leaves the windings. (Some confusion is eliminated if the series connections are ignored

while determining the locations of the dots.) The result is Fig. 14-23.

Z ¼ j3þ j5þ j6� 2ð j2Þ þ 2ð j4Þ � 2ð j3Þ ¼ j12 �

that is, an inductive reactance of 12�.

14.8 (a) Compute the voltage V for the coupled circuit shown in Fig. 14-24. (b) Repeat with the
polarity of one coil reversed.
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(a) XM ¼ ð0:8Þ
ffiffiffiffiffiffiffiffiffiffiffi
5ð10Þ

p
¼ 5:66 �, and so the Z-matrix is

½Z� ¼
3þ j1 �3� j1:66

�3� j1:66 8þ j6

� �

I2 ¼

3þ j1 50

�3� j1:66 0

����
����

�Z

¼ 8:62 �24:798 A

and V ¼ I2ð5Þ ¼ 43:1 �24:798 V.

½Z� ¼
3þ j1 �3þ j9:66

�3þ j9:66 8þ j6

� �
ðbÞ

I2 ¼

3þ j1 50

�3þ j9:66 0

����
����

�Z

¼ 3:82 �112:128 A

and V ¼ 12ð5Þ ¼ 19:1 �112:128 V.

14.9 Obtain the equivalent inductance of the parallel-connected, coupled coils shown in Fig. 14-25.

Currents I1 and I2 are selected as shown on the diagram; then Zin ¼ V1=I1:

½Z� ¼
j!0:3 j!0:043
j!0:043 j!0:414

� �

Zin ¼
�Z

�11

¼
ð j!0:3Þð j!0:414Þ � ð j!0:043Þ2

j!0:414
¼ j!0:296and

or Leq is 0.296H.

14.10 For the coupled circuit shown in Fig. 14-26, show that dots are not needed so long as the second
loop is passive.
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Currents I1 and I2 are selected as shown.

I1 ¼

50 �j4

0 5þ j10

����
����

2þ j5 �j4

�j4 5þ j10

����
����
¼

250þ j500

�24þ j45
¼ 10:96 �54:648 A

I2 ¼

2þ j5 50

�j4 0

����
����

�Z

¼ 3:92 �118:07	 908 A

The value of �Z is unaffected by the sign on M. Since the numerator determinant for I1 does not involve

the coupling impedance, I1 is also unaffected. The expression for I2 shows that a change in the coupling

polarity results in a 1808 phase shift. With no other phasor voltage present in the second loop, this change

in phase is of no consequence.

14.11 For the coupled circuit shown in Fig. 14-27, find the ratio V2=V1 which results in zero current I1.

I1 ¼ 0 ¼

V1 j2
V2 2þ j2

����
����

�Z

Then, V1ð2þ j2Þ � V2ð j2Þ ¼ 0, from which V2=V1 ¼ 1� j1.

14.12 In the circuit of Fig. 14-28, find the voltage across the 5� reactance with the polarity shown.

For the choice of mesh currents shown on the diagram,

I1 ¼

50 458 j8
0 �j3

����
����

3þ j15 j8
j8 �j3

����
����
¼

150 �458
109� j9

¼ 1:37 �40:288 A

Similarly, I2 ¼ 3:66 �40:288 A.
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The voltage across the j5 is partly conductive, from the currents I1 and I2, and partly mutual, from

current I1 in the 4� reactance.

V ¼ ðI1 þ I2Þð j5Þ þ I1ð j3Þ ¼ 29:27 49:728 V

Of course, the same voltage must exist across the capacitor:

V ¼ �I2ð�j8Þ ¼ 29:27 49:728 V

14.13 Obtain Thévenin and Norton equivalent circuits at terminals ab for the coupled circuit shown in
Fig. 14-29.

In open circuit, a single clockwise loop current I is driven by the voltage source.

I ¼
10 08
8þ j3

¼ 1:17 �20:568 A

Then V
0
¼ Ið j5þ 4Þ � Ið j6Þ ¼ 4:82 �34:608 V.

To find the short-circuit current I 0, two clockwise mesh currents are assumed, with I2 ¼ I
0.

I
0
¼

8þ j3 10

�4þ j1 0

����
����

8þ j3 �4þ j1

�4þ j1 7þ j5

����
����
¼ 0:559 �83:398 A

Z
0
¼

V
0

I 0
¼

4:82 �34:608

0:559 �83:398
¼ 8:62 48:798 �and

The equivalent circuits are pictured in Fig. 14-30.

14.14 Obtain a conductively coupled equivalent circuit for the magnetically coupled circuit shown in
Fig. 14-31.

Select mesh currents I1 and I2 as shown on the diagram and write the KVL equations in matrix form.
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3þ j1 �3� j2
�3� j2 8þ j6

� �
I1
I2

� �
¼

50 08
0

� �

The impedances in Fig. 14-32 are selected to give the identical Z-matrix. Thus, since I1 and I2 pass through

the common impedance, Zb, in opposite directions, Z12 in the matrix is �Zb. Then,

Zb ¼ 3þ j2 �. Since Z11 is to include all impedances through which I1 passes,

3þ j1 ¼ Za þ ð3þ j2Þ

from which Za ¼ �j1 �. Similarly,

Z22 ¼ 8þ j6 ¼ Zb þ Zc

and Zc ¼ 5þ j4 �.

14.15 For the transformer circuit of Fig. 14-11(b), k ¼ 0:96, R1 ¼ 1:2 �, R2 ¼ 0:3 �, X1 ¼ 20 �,
X2 ¼ 5 �, ZL ¼ 5:0 36:878 �, and V2 ¼ 100 08 V. Obtain the coil emfs E1 and E2, and the
magnetizing current I�.

X11 ¼ ð1� kÞX1 ¼ ð1� 0:96Þð20Þ ¼ 0:8 � X22 ¼ ð1� kÞX2 ¼ 0:2 �

a ¼

ffiffiffiffiffiffi
X1

X2

s
¼ 2 XM ¼ k

ffiffiffiffiffiffiffiffiffiffiffi
X1X2

p
¼ 9:6 �
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Now a circuit of the form Fig. 14-11(a) can be constructed, starting from the phasor voltage-current

relationship at the load, and working back through E2 to E1.

I2 ¼
V2

ZL

¼
100 08

5:0 36:878
¼ 20 �36:878 A

E2 ¼ I2ðR2 þ jX22Þ þ V2 ¼ ð20 �36:878Þð0:3þ j0:2Þ þ 100 08 ¼ 107:2� j0:4 V

E1 ¼ aE2 ¼ 214:4� j0:8 V

I� ¼
E2

jXM

¼ �0:042� j11:17 A

14.16 For the linear transformer of Problem 14.15, calculate the input impedance at the terminals where
V1 is applied.

Method 1

Completing the construction begun in Problem 14.15,

I1 ¼ I� þ
1

a
I2 ¼ ð�0:042� j11:17Þ þ 10 �36:878 ¼ 18:93 �65:138 A

V1 ¼ I1ðR1 þ jX11Þ þ E1 ¼ ð18:93 �65:138Þð1:2þ j0:8Þ þ ð214:4� j0:8Þ

¼ 238:2 �3:628 V

Therefore,

Zin ¼
V1

I1
¼

238:2 �3:628

18:93 �65:138
¼ 12:58 61:518 �

Method 2

By (14a) of Example 14.5,

Zin ¼ ð1:2þ j0:8Þ þ 22
ð j4:8Þð0:3þ j0:2þ 5:0 36:878Þ

0:3þ j5:0þ 5:0 36:878

¼
114:3 123:258

9:082 61:758
¼ 12:58 61:508 �

Method 3

By (14b) of Example 14.5,

Zin ¼ ð1:2þ j20Þ þ
ð9:6Þ2

0:3þ j5þ 5:0 36:878

¼ ð1:2þ j20Þ þ ð4:80� j8:94Þ ¼ 12:58 61:538 �

14.17 In Fig. 14-33, three identical transformers are primary wye-connected and secondary delta-con-
nected. A single load impedance carries current IL ¼ 30 08 A. Given

Ib2 ¼ 20 08 A Ia2 ¼ Ic2 ¼ 10 08 A

and N1 ¼ 10N2 ¼ 100, find the primary currents Ia1, Ib1, Ic1.

The ampere-turn dot rule is applied to each transformer.

N1Ia1 þN2Ia2 ¼ 0 or Ia1 ¼ �
10

100
ð10 08Þ ¼ �1 08 A

N1Ib1 �N2Ib2 ¼ 0 or Ib1 ¼
10

100
ð20 08Þ ¼ 2 08 A

N1Ic1 þN2Ic2 ¼ 0 or Ic1 ¼ �
10

100
ð10 08Þ ¼ �1 08 A
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The sum of the primary currents provides a check:

Ia1 þ Ib1 þ Ic1 ¼ 0

14.18 For the ideal autotransformer shown in Fig. 14-34, find V2, Icb, and the input current I1.

a �
N1

N2

¼
1

2

V2 ¼
V1

aþ 1
¼ 100 08 V IL ¼

V2

ZL

¼ 10 �608 A

Icb ¼ IL � Iab ¼ 3:33 �608 A Iab ¼
IL

aþ 1
¼ 6:67 �608 A

14.19 In Problem 14.18, find the apparent power delivered to the load by transformer action and that
supplied by conduction.

Scond ¼ 1
2
V2I

�
ab ¼

1
2
ð100 08Þð6:67 608Þ ¼ 333 608 VA

Strans ¼ aScond ¼ 167 608 VA
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14.20 In the coupled circuit of Fig. 14-35, find the input admittance Y1 ¼ I1=V1 and determine the
current i1ðtÞ for v1 ¼ 2

ffiffiffi
2

p
cos t.

Apply KVL around loops 1 and 2 in the s-domain.

V1 ¼ sI1 þ sI2 þ
I1 � I2

s

0 ¼ sI1 þ ð2sþ 1ÞI2 þ
I2 � I1

s

Eliminating I2 in these equations results in

Y1 ¼
I1

V1

¼
2s2 þ sþ 1

s3 þ s2 þ 5sþ 1

For s ¼ j, the input admittance is Y1 ¼ ð1þ jÞ=4 ¼
ffiffiffi
2

p
=4 458. Therefore, i1ðtÞ ¼ cos ðtþ 458Þ.

14.21 Find the input impedance Z1 ¼ V1=I1 in the coupled circuit of Fig. 14-36.

Apply KVL around loops 1 and 2 in the s-domain.

V1 ¼ sI1 þ
1
3
sI2 þ 2ðI1 þ I2Þ

0 ¼ 1
3
sI1 þ

1
4
sI2 þ 2ðI1 þ I2Þ þ

1
12
sI2

(

V1 ¼ ð2þ sÞI1 þ ð2þ 1
3
sÞI2

0 ¼ ð2þ 1
3
sÞI1 þ ð2þ 1

3
sÞI2

(
or

The result is

I2 ¼ �I1 and Z1 ¼
V1

I1
¼

2

3
s

The current through the resistor is I1 þ I2 ¼ 0 and the resistor has no effect on Z1. The input impedance is

purely inductive.
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Supplementary Problems

14.22 Two coupled coils, L1 ¼ 0:8 H and L2 ¼ 0:2 H, have a coefficient of coupling k ¼ 0:90. Find the mutual

inductance M and the turns ratio N1=N2. Ans: 0:36 H, 2

14.23 Two coupled coils, N1 ¼ 100 and N2 ¼ 800, have a coupling coefficient k ¼ 0:85. With coil 1 open and a

current of 5.0A in coil 2, the flux is �2 ¼ 0:35 mWb. Find L1, L2, and M.

Ans: 0:875 mH, 56 mH, 5.95 mH

14.24 Two identical coupled coils have an equivalent inductance of 80 mH when connected series aiding, and

35 mH in series opposing. Find L1, L2, M, and k. Ans: 28:8 mH, 28.8 mH, 11.25 mH, 0.392

14.25 Two coupled coils, with L1 ¼ 20 mH, L2 ¼ 10 mH, and k ¼ 0:50, are connected four different ways: series

aiding, series opposing, and parallel with both arrangements of winding sense. Obtain the equivalent

inductances of the four connections. Ans: 44:1 mH, 15.9 mH, 9.47 mH, 3.39 mH

14.26 Write the mesh current equations for the coupled circuit shown in Fig. 14-37. Obtain the dotted equivalent

circuit and write the same equations.

Ans: ðR1 þ R3Þi1 þ L1

di1
dt

þ R3i2 þM
di2
dt

¼ v

ðR2 þ R3Þi2 þ L2

di2
dt

þ R3i1 þM
di1
dt

¼ v

14.27 Write the phasor equation for the single-loop, coupled circuit shown in Fig. 14-38.

Ans: ð j5þ j3� j5:03� j8þ 10ÞI ¼ 50 08

14.28 Obtain the dotted equivalent circuit for the coupled circuit of Fig. 14-38. Ans: See Fig. 14-39.

14.29 The three coupled coils shown in Fig. 14-40 have coupling coefficients of 0.50. Obtain the equivalent

inductance between the terminals AB. Ans: 239 mH

14.30 Obtain two forms of the dotted equivalent circuit for the coupled coils shown in Fig. 14-40.

Ans: See Fig. 14-41.

14.31 (a) Obtain the equivalent impedance at terminals AB of the coupled circuit shown in Fig. 14-42. (b)

Reverse the winding sense of one coil and repeat. Ans: ðaÞ 3:40 41:668 �; ðbÞ 2:54 5:378 �
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14.32 In the coupled circuit shown in Fig. 14-43, find V2 for which I1 ¼ 0. What voltage appears at the 8 �

inductive reactance under this condition? Ans: 141:4 �458 V; 100 08 V (+ at dot)

14.33 Find the mutual reactance XM for the coupled circuit of Fig. 14-44, if the average power in the 5-� resistor is

45.24 W. Ans: 4 �
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14.34 For the coupled circuit shown in Fig. 14-45, find the components of the current I2 resulting from each source

V1 and V2. Ans: 0:77 112:68 A; 1:72 86:058 A

14.35 Determine the coupling coefficient k in the circuit shown in Fig. 14-46, if the power in the 10-� resistor is

32W. Ans: 0:791

14.36 In (14a), replace a, X11, X22, and XM by their expressions in terms of X1, X2, and k, thereby obtaining (14b).
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14.37 For the coupled circuit shown in Fig. 14-47, find the input impedance at terminals ab.

Ans: 3þ j36:3 �

14.38 Find the input impedance at terminals ab of the coupled circuit shown in Fig. 14-48.

Ans: 1þ j1:5 �

14.39 Find the input impedance at terminals ab of the coupled circuit shown in Fig. 14-49.

Ans: 6:22þ j4:65 �
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14.40 Obtain Thévenin and Norton equivalent circuits at terminals ab of the coupled circuit shown in Fig. 14-50.

Ans: V
0
¼ 7:07 458 V; I 0 ¼ 1:04 �27:98 A;Z 0

¼ 6:80 72:98 �

14.41 For the ideal transformer shown in Fig. 14-51, find I1, given

IL1 ¼ 10:0 08 A IL2 ¼ 10:0 �36:878 A IL3 ¼ 4:47 �26:578 A

Ans: 16:5 �14:048 A

14.42 When the secondary of the linear transformer shown in Fig. 14-52 is open-circulated, the primary current is

I1 ¼ 4:0 �89:698 A. Find the coefficient of coupling k. Ans: 0:983

14.43 For the ideal transformer shown in Fig. 14-53, find I1, given I2 ¼ 50 �36:878 A and I3 ¼ 16 08 A.

Ans: 26:6 �34:298 A

14.44 Considering the autotransformer shown in Fig. 14-54 ideal, obtain the currents I1, Icb, and Idc.

Ans: 3:70 22:58 A; 2:12 86:718 A; 10:34 11:838 A
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362

Circuit Analysis Using
Spice and PSpice

15.1 SPICE AND PSPICE

Spice (Simulation Program with Integrated Circuit Emphasis) is a computer program developed in the
1970s at the University of California at Berkeley for simulating electronic circuits. It is used as a tool for
analysis, design, and testing of integrated circuits as well as a wide range of other electronic and electrical
circuits. Spice is a public domain program. Commercial versions, such as PSpice by MicroSim
Corporation, use the same algorithm and syntax as Spice but provide the technical support and add-
ons that industrial customers need.

This chapter introduces the basic elements of Spice/PSpice and their application to some simple
circuits. Examples are run on the evaluation version of PSpice which is available free of charge.

15.2 CIRCUIT DESCRIPTION

The circuit description is entered in the computer in the form of a series of statements in a text file
prepared by any ASCII text editor and called the source file. It may also be entered graphically by
constructing the circuit on the computer monitor with the Schematic Capture program from MicroSim.
In this chapter, we use the source file with the generic name SOURCE.CIR. To solve the circuit, we run
the circuit solver on the source file. The computer puts the solution in a file named SOURCE.OUT.

EXAMPLE 15.1 Use PSpice to find the dc steady-state voltage across the 5-mF capacitor in Fig. 15-1(a).

Fig. 15-1
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We first label the nodes by the numbers 0, 1, 2 and the elements by the symbols R1, R2, C, and Vs [Fig. 15-1(b)].

We then create in ASCII the source file shown below and give it a name, for instance, EXMP1.CIR.

DC analysis, Fig. 15-1

Vs 1 0 DC 9V

R1 1 2 3 k

R2 0 2 6 k

C 0 2 5 uF

.END

Executing the command PSPICE EXMP1, the computer solves the circuit and writes the following results in the file

EXMP1.OUT.

NODE VOLTAGE NODE VOLTAGE

(1) 9.0000 (2) 6.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vs �1:000E� 03

TOTAL POWER DISSIPATION 9:00E� 0:3 WATTS

The printed output specifies that the voltage at node 2 with reference to node 0 is 6V, the current entering the voltage

source Vs is �10�3 A, and the total power dissipated in the circuit is 9� 10�3 W.

15.3 DISSECTING A SPICE SOURCE FILE

The source file of Example 15.1 is very simple and contains the statements necessary for solving the
circuit of Fig. 15-1 by Spice. Each line in the source file is a statement. In general, if a line is too long
(over 80 characters), it can be continued onto subsequent lines. The continuation lines must begin with
a plus (þ) sign in the first column.

PSpice does not differentiate uppercase and lowercase letters and standard units are implied when
not specified. We will use both notations.

Title Statement

The first line in the source file of Example 15-1 is called the title statement. This line is used by Spice
as a label within the output file, and it is not considered in the analysis. Therefore, it is mandatory to
allocate the first line to the title line, even if it is left blank.

.END Statement

The .END statement is required at the end of the source file. Any statement following the .END will
be considered a separate source file.

Data Statements

The remaining four data statements in the source file of Example 15.1 completely specify the circuit.
The second line states that a voltage source named Vs is connected between node 1 (positive end of the
source) and the reference node 0. The source is a dc source with a value of 9 V. The third line states
that a resistor named R1, with the value of 3 k�, is connected between nodes 1 and 2. Similarly, the
fourth and fifth lines specify the connection of R2 (6 k�) and C (5 mF), respectively, between nodes 0
and 2. In any circuit, one node should be numbered 0 to serve as the reference node. The set of data
statements describing the topology of the circuit and element values is called the netlist. Data statement
syntax is described in Section 15.4.

Control and Output Statements

In the absence of any additional commands, and only based on the netlist, Spice automatically
computes the dc steady state of the following variables:

(i) Node voltages with respect to node 0.
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(ii) Currents entering each voltage source.
(iii) Power dissipated in the circuit.

However, additional control and output statements may be included in the source file to specify other
variables (see Section 15.5).

15.4 DATA STATEMENTS AND DC ANALYSIS

Passive Elements

Data statements for R, L, and C elements contain a minimum of three segments. The first segment
gives the name of the element as a string of characters beginning with R, L, or C for resistors, inductors,
or capacitors, respectively. The second segment gives the node numbers, separated by a space, between
which the element is connected. The third segment gives the element value in ohms, henrys, and farads,
optionally using the scale factors given in Table 15-1.

Possible initial conditions can be given in the fourth segment using the form IC ¼ xx. The syntax of
the data statement is

hnamei hnodesi hvaluei ½hinitial conditionsi�

The brackets indicate optional segments in the statement.

EXAMPLE 15.2 Write the data statements for R, L, and C given in Fig. 15-2.

Element hnamei hnodesi hvaluei [hinitial conditioni�

Resistor Rin 1 2 3 k

Inductor L1 5 4 30 uH IC ¼ �2 mA

Capacitor Ceq 6 5 pF IC ¼ �2 V

The third statement for the capacitor connection specifies one node only. The missing node is always taken to be the

reference node.
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Table 15-1 Scale Factors and Symbols

Name Symbol Value

femto f 10�15
¼ 1E� 15

pico p 10�12
¼ 1E� 12

nano n 10�9
¼ 1E� 9

micro u 10�6
¼ 1E� 6

milli m 10�3
¼ 1E� 3

kilo k 103 ¼ 1E3

mega meg 106 ¼ 1E6

giga g 109 ¼ 1E9

tera t 1012 ¼ 1E12

Fig. 15-2



Independent Sources

Independent sources are specified by

hnamei hnodesi htypei hvaluei

The htypei for dc and ac sources is DC and AC, respectively. Other time-dependent sources will be
described in Section 15.12. Names of voltage and current sources begin with V and I, respectively. For
voltage sources, the first node indicates the positive terminal. The current in the current source flows
from the first node to the second.

EXAMPLE 15.3 Write data statements for the sources of Fig. 15-3.

Source hnamei hnodesi htypei hvaluei

Independent Voltage Source Vs 2 1 DC 30 V

Independent Current Source Ibias 3 4 DC 2 A

EXAMPLE 15.4 Write the netlist for the circuit of Fig. 15-4(a) and run PSpice on it for dc analysis.

We first number the nodes and name the elements as in Fig. 15-4(b). The netlist is

DC Analysis, Fig. 15-4

R1 0 1 500

R2 1 2 3 k

R3 2 3 1 k

R4 0 3 1.5 k

Vs 3 1 DC 4 V

Is 0 2 DC 3 mA

.END
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The results are writte in the output file as follows:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) .1250 (2) 5.3750 (3) 4.1250

VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vs �1:500E� 03

TOTAL POWER DISSIPATION 6:00E� 03 WATTS

Dependent Sources

Linearly dependent sources are specified by

hnamei hnodesi hcontroli hgaini

Each source name should begin with a certain letter according to the following rule:

Voltage-controlled voltage source Exx
Current-controlled current source Fxx
Voltage-controlled current source Gxx
Current-controlled voltage source Hxx

The order of nodes is similar to that of independent sources. For the voltage-controlled sources,
hcontroli is the pair of nodes whose voltage difference controls the source, with the first node indicating
the þ terminal. The hgaini is the proportionality factor.

EXAMPLE 15.5 Write the data statements for the voltage-controlled sources of Fig. 15-5.

Source hnamei hnodesi hcontroli hgaini

VCVS E1 4 3 2 1 k1

VCCS G1 5 6 2 1 k2

In the case of current-controlled sources we first introduce a zero-valued voltage source (or dummy
voltage Vdmy) on the path of the controlling current and use its name as the control variable.

EXAMPLE 15.6 Write data statements for the current-controlled sources in Fig. 15-6.

Introduce Vdmy (Vdmy) with current i entering it at node 1.

Vdmy 1 7 DC 0

The data statements for the controlled sources are

Source hnamei hnodesi hcontroli hgaini

CCVS H1 4 3 Vdmy k3

CCCS F1 5 6 Vdmy k4
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EXAMPLE 15.7 Write the netlist for the circuit of Fig. 15-7(a) and run PSpice on it for dc analysis.

Number the nodes and name the elements as in Fig. 15-7(b). Then, the netlist is

DC analysis with dependent source, Fig. 15-7

Vs 1 0 DC 12

R1 1 2 1 k

R2 0 3 2 k

R3 0 4 500

Vdmy 2 3 0

F1 4 3 Vdmy 100

.END

The results in the output file are

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 12.0000 (2) 11.9410 (3) 11.9410 (4) �2:9557

VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vs �5:911E� 05

Vdmy 5:911E� 05

TOTAL POWER DISSIPATION 7:09E� 04 WATTS

15.5 CONTROL AND OUTPUT STATEMENTS IN DC ANALYSIS

Certain statements control actions or the output format. Examples are:

:OP prints the dc operating point of all independent sources.

:DC sweeps the value of an independent dc source. The syntax is

:DC hnamei hinitial valuei hfinal valuesi hstep sizei
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.PRINT prints the value of variables. The syntax is

:PRINT htypei houtput variablesi

htypei is DC, AC, or TRAN (transient).

.PLOT line-prints variables. The syntax is

:PLOT htypei houtput variablesi

.PROBE generates a data file *.DAT which can be plotted in post-analysis by evoking the Probe
program. The syntax is

:PROBE ½houtput variablesi�

EXAMPLE 15.8 Find the value of Vs in the circuit in Fig. 15-8 such that the power dissipated in the 1-k� resistor

is zero. Use the .DC command to sweep Vs from 1 to 6 V in steps of 1 V and use .PRINT to show IðVsÞ, V(1,2), and

V(2).

The source file is

DC sweep, Fig. 15-8

Vs 1 0 DC 1 V

Is 0 2 DC 1 mA

R1 1 2 1 k

R2 0 2 2 k

.DC Vs 1 6 1

.PRINT DC I(Vs) V(1,2) V(2)

.END

The results in the output file are

DC TRANSFER CURVES

Vs I(Vs) V(1,2) V(2)

1:000Eþ 00 3:333E� 04 �3:333E� 01 1:333Eþ 00

2:000Eþ 00 �1:333E� 12 1:333E� 09 2:000Eþ 00

3:000Eþ 00 �3:333E� 04 3:333E� 01 2:667Eþ 00

4:000Eþ 00 �6:667E� 04 6:667E� 01 3:333Eþ 00

5:000Eþ 00 �1:000E� 03 1:000Eþ 00 4:000Eþ 00

6:000Eþ 00 �1:333E� 03 1:333Eþ 00 4:667Eþ 00

The answer is Vs ¼ 2 V.

EXAMPLE 15.9 Write the source file for the circuit in Fig. 15-9(a) using commands .DC, .PLOT, and .PROBE to

find the I-V characteristic equation for I varying from 0 to �2 A at the terminal AB.

First, we connect a dc current source Iadd at terminal AB, ‘‘sweep’’ its value from 0 to �2 A using the .DC

command, and plot V versus I . Since the circuit is linear, two points are necessary and sufficient. However, for

clarity of the plot, ten steps are included in the source file as follows:
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Terminal Characteristic, Fig. 15-9

Iadd 0 5 DC 0

Is 0 4 DC 0.6 A

Vs 3 2 DC 5 V

R1 0 1 1

R2 1 2 2

R3 3 4 3

R4 4 5 2

.DC Iadd 0 �2 0.2

.PLOT DC V(5)

.PROBE

.END

The output is shown in Fig. 15-9(b). The I-V equation is V ¼ 8I þ 8:6.
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15.6 THÉVENIN EQUIVALENT

.TF Statement

The .TF command provides the transfer function from an input variable to an output variable and
produces the resistances seen by the two sources. It can thus generate the Thévenin equivalent of a
resistive circuit. The syntax is

:TF houtput variablei hinput variablei

EXAMPLE 15.10 Use the command .TF to find the Thévenin equivalent of the circuit seen at terminal AB in Fig.

15-10.

The node numbers and element names are shown on Fig. 15-10. The source file is

Transfer Function in Fig. 15-10

Vs 1 0 DC 12

E1 4 0 2 0 10

R1 1 2 1 k

R2 2 0 2 k

R3 2 3 1 k

R4 3 4 200

.TF V(3) Vs

.END

The output file contains the following results:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 12.0000 (2) �2:0000 (3) �17:0000 (4) �20:000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vs �1:400E� 02

TOTAL POWER DISSIPATION 1:68E� 01 WATTS

SMALL-SIGNAL CHARACTERISTICS

V(3)/Vs ¼ �1:417Eþ 00

INPUT RESISTANCE AT Vs ¼ 8:571Eþ 02

OUTPUT RESISTANCE AT V(3) ¼ �6:944Eþ 01

Therefore, VTh ¼ �1:417ð12Þ ¼ �17 V and RTh ¼ �69:44 �.

15.7 OP AMP CIRCUITS

Operational amplifiers may be modeled by high input impedance and high gain voltage-controlled
voltage sources. The model may then be used within a net list repeatedly.

EXAMPLE 15.11 Find the transfer function V3=Vs in the ideal op amp circuit of Fig. 15-11(a).

The op amp is replaced by a voltage-dependent voltage source with a gain of 106 [see Fig. 15-11(b)]. The source file is
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Inverting op amp circuit, Fig. 15-11

Vs 1 0 DC 12

E1 3 0 0 2 1E6

R1 1 2 1 k

R2 2 3 2 k

.TF V(3) Vs

.END

The transfer function is written in the output file:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 12.0000 (2) 24.00E � 06 (3) � 24.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vs � 1.200E � 02

TOTAL POWER DISSIPATION 1.44E � 01 WATTS

SMALL-SIGNAL CHARACTERISTICS

V(3)/Vs ¼ �2:000E + 00

INPUT RESISTANCE AT Vs ¼ 1.000E + 03

OUTPUT RESISTANCE AT V(3) ¼ 0.000E + 00

.SUBCKT Statement

A subcircuit is defined by a set of statements beginning with

.SUBCKT hnamei hexternal terminalsi

and terminating with an .ENDS statement. Within a netlist we refer to a subcircuit by

Xaa hnamei hnodesi

Hence, the .SUBCKT statement can assign a name to the model of an op amp for repeated use.

EXAMPLE 15.12 Given the circuit of Fig. 15-12(a), find Is, If , V2, and V6 for Vs varying from 0.5 to 2 V in 0.5-V

steps. Assume a practical op amp [Fig. 15-12(b)], with Rin ¼ 100 k�, Cin ¼ 10 pF, Rout ¼ 10 k�, and an open loop

gain of 105.

The source file employs the subcircuit named OPAMP of Fig. 15-12(b) whose description begins with

.SUBCKT and ends with .ENDS. The X1 and X2 statements describe the two op amps by referring to the

OPAMP subcircuit. Note the correspondence of node connections in the X1 and X2 statements with that of the

external terminals specified in the .SUBCKT statement. The source file is

Op amp circuit of Fig. 15-12 using .SUBCKT

.SUBCKT OPAMP 1 2 3 4

Rin 1 2 10 E5

Cin 1 2 10 pF

Rout 3 5 10 k
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Eout 5 4 1 2 10 E5

.ENDS

Vs 1 0 DC .5

Rs 1 2 1 k

R1 2 3 5 k

R2 3 4 9 k

R3 4 5 1.2 k

R4 5 6 6 k

Rf 6 2 40 k

X1 0 3 4 0 OPAMP

X2 0 5 6 0 OPAMP

.DC Vs 0.5 2 0.5

.PRINT DC V(2) V(6) I(Vs) I(R1) I(Rf)

.TF V(6) Vs

.END

The output file is

DC TRANSFER CURVES

Vs V(2) V(6) I(Vs) I(R1) I(Rf)

5:000E� 01 5:000E� 01 4:500Eþ 00 �3:372E� 09 1:000E� 04 9:999E� 0

1:000Eþ 00 1:000Eþ 00 9:000Eþ 00 �6:745E� 09 2:000E� 04 2:000E� 0

1:500Eþ 00 1:500Eþ 00 1:350Eþ 01 �1:012E� 08 3:000E� 04 3:000E� 0

2:000Eþ 00 2:000Eþ 00 1:800Eþ 01 �1:349E� 08 4:000E� 04 4:000E� 0
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NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) .5000 (2) .5000 (3) 9:400E� 06 (4) �:9000
(5) �13:00E� 06 (6) 4.4998 (X1.5) �9:3996 (X2.5) 12:9990

VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vs �3:372E� 09

TOTAL POWER DISSIPATION 1:69E� 09 WATTS

SMALL-SIGNAL CHARACTERISTICS

Vð6Þ=Vs ¼ 9:000Eþ 00

INPUT RESISTANCE AT Vs ¼ 1:483Eþ 08

OUTPUT RESISTANCE AT Vð6Þ ¼ 7:357E� 02

There is no voltage drop across Rs. Therefore, Vð2Þ ¼ Vs and the overall gain is Vð6Þ=Vs ¼ Vð2Þ=Vs ¼ 9. The

current drawn by R1 is provided through the feedback resistor Rf .

15.8 AC STEADY STATE AND FREQUENCY RESPONSE

Independent AC Sources

Independent ac sources are described by a statement with the following syntax:

hnamei hnodesi AC hmagnitudei hphase in degreesi

Voltage sources begin with V and current sources with I. The convention for direction is the same as
that for dc sources.

EXAMPLE 15.13 Write data statements for the sources shown in Fig. 15-13.

AC Source hnamei hnodesi htypei hmagnitudei hphasei

Voltage Vs 2 1 AC 14 45

Current Is 3 4 AC 2.3 �105

.AC Statement

The .AC command sweeps the frequency of all ac sources in the circuit through a desired range or
sets it at a desired value. The syntax is

:AC hsweep typei hnumber of pointsi hstarting fi hending fi

For the ac steady state, hsweep typei is LIN. In order to have a single frequency, the starting and ending
frequencies are set to the desired value and the number of points is set to one.

.PRINT AC and .PLOT AC Statements

The .PRINT AC statement prints the magnitude and phase of the steady-state output. The syntax
is

:PRINT AC hmagnitudesi hphasesi
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The magnitudes and phases of voltages are Vm(variable) and Vp(variable), respectively, and the mag-
nitudes and phases of currents are Im(variable) and Ip(variable), respectively. The syntax for .PLOT
AC is similar to that for .PRINT AC.

EXAMPLE 15.14 In the series RLC circuit of Fig. 15-14(a) vary the frequency of the source from 40 to 60 kHz in

200 steps. Find the magnitude and phase of current I using .PLOT and .PROBE.

The source file is

AC analysis of series RLC, Fig. 15-14

Vs 1 0 AC 1 0

R 1 2 32

L 2 3 2 m

C 3 0 5 n

.AC LIN 200 40 k 60 k

.PLOT AC Im(Vs) Ip(Vs)

.PROBE Vm(1, 2) Vm(2,3) Vm(3) Im(Vs) Ip(Vs)

.END

The graph of the frequency response, plotted by Probe, is shown in Fig. 15-14(b).
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15.9 MUTUAL INDUCTANCE AND TRANSFORMERS

The mutual inductance between inductors is modeled by a device whose name begins with K. The
data statement syntax is

hnamei hinductor 1i hinductor 2i hcoupling coefficienti

The dot rule, which determines the sign of the mutual inductance term, is observed by making the dotted
end of each inductor the first node entered in its data statement.

EXAMPLE 15.15 Write the three data statements which describe the coupled coils of Fig. 15-15.

The coupling coefficient is k12 ¼ 1:5=
ffiffiffiffiffiffiffiffi
2ð3Þ

p
¼ 0:61. The netlist contains the following:

L1 1 2 2

L2 3 4 3

K12 L1 L2 0.61

EXAMPLE 15.16 Plot the input impedance Zin ¼ V1=I1 in the circuit of Fig. 15-16(a) for f varying from 0.01 to

1Hz.

To find Zin, we connect a 1-A ac current source running from node 0 to node 1 and plot the magnitude and

phase of the voltage V(1) across it. The source file is

AC analysis of coupled coils, Fig. 15-16

IADD 0 1 AC 1 0

C 0 1 1 000 000 uF

R 0 2 3

L1 1 2 2 H

L2 3 2 5 H

K12 L1 L2 0.6325 H

L3 0 3 1 H

.AC LIN 20 .01 1

.PRINT AC Vm(1) Vp(1)

.PROBE

.END

Vm(1) and Vp(1), which are the magnitude and phase of Zin, are plotted by using Probe and the graph is shown

in Fig. 15-16(b). Note that the maximum occurs at about 100 mHz.

15.10 MODELING DEVICES WITH VARYING PARAMETERS

.MODEL Statement

The parameters of a passive element can be varied by using .MODEL statement. The syntax is

:MODEL hnamei htypei ½ðhparameteri ¼ hvalueiÞ�

where hnamei is the name assigned to the element. For passive linear elements, htypei is

RES for resistor

IND for inductor

CAP for capacitor

CHAP. 15] CIRCUIT ANALYSIS USING SPICE AND PSPICE 375

Fig. 15-15



We can sweep the parameter of the model though a desired range at desired steps by using the .STEP
statement:

:STEP LIN hnamei hinitial valuei hfinal valuei hstep sizei

As an example, the following two statements use .MODEL and .STEP commands to define a resistor
called heater with the resistance parameter varying from 20 to 40 � in 5 steps generating 20, 25, 30, 35,
and 40 �:

.MODEL heater RES(R ¼ 20Þ

.STEP RES heater(R) 20 40 5
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EXAMPLE 15.17 Use Probe to plot V in the circuit in Fig. 15-17(a) for f varying from 1 to 3 kHz in 100 steps.

also, R from 500 � to 1 k� in steps of 100 �.

Using .MODEL command we create the resistor RLeak and sweep its value by .STEP in the following source

file. The graph of the frequency response V versus f is plotted by using Probe and it is shown in Fig. 15-17(b).

Parallel resonance with variable R, Fig. 15-17

I 0 1 AC 1 m 0

R 1 0 RLeak 1

L 1 0 10 m

C 1 0 1 u

.MODEL RLeak RES(R ¼ 1Þ

.STEP LIN RES RLeak(R) 500 1 k 100

.AC LIN 100 1 k 3 k

.PROBE

.END
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15.11 TIME RESPONSE AND TRANSIENT ANALYSIS

.TRAN statement

Time responses, such as natural responses to initial conditions in a source-free circuit and responses
to step, pulse, exponential, or other time-dependent inputs, are produced by the .TRAN statement. The
response begins at t ¼ 0. The increment size and final time value are given in the following statement:

:TRAN hincrement sizei hfinal time valuei

EXAMPLE 15.18 Use .TRAN and .PROBE to plot the voltage across the parallel RLC combination in Fig.

15-18(a) for R ¼ 50 � and 150 � for 0 < t < 1:4 ms. The initial conditions are Ið0Þ ¼ 0:5 A and Vð0Þ ¼ 0.

The source file is

Source-free parallel RLC with variable R

R 1 0 LOSS 1

L 0 1 10 m IC ¼ :5
C 1 0 1 u IC ¼ 0

.MODEL LOSS RES(R ¼ 6Þ
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.STEP RES LOSS(R) 50 150 100

.TRAN 2.0E � 6 1:4E� 3 UIC

.PROBE

.END

Figure 15-18(b) shows the graph of the voltage plotted by Probe. For R ¼ 50 � there are no oscillations.

15.12 SPECIFYING OTHER TYPES OF SOURCES

Time-dependent sources which include dc, ac, and transient components are expressed by

hnamei hnodesi hdc comp:i hac comp:i htransient comp.i

The default for the unspecified dc or ac component is zero. The transient component appears for t > 0.
Several transient components are described below.

Exponential Source

The source starts at a constant initial value V0. At t0, it changes exponentially from V0 to a final
value V1 with a time constant tau1. At t ¼ T , it returns exponentially to V0 with a time constant tau2.
Its syntax is

EXPðV0 V1 t0 tau1 T tau2Þ

EXAMPLE 15.19 A 1-V dc voltage source starts increasing exponentially at t ¼ 5 ms, with a time constant of 5 ms

and an asymptote of 2V. After 15ms, it starts decaying back to 1V with a time constant of 2ms. Write the data

statement for the source and use Probe to plot the waveform.

The data statement is

Vs 1 0 EXPð1 2 5m 5m 20m 2mÞ

The waveform is plotted as shown in Fig. 15-19.
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Pulse Source

A periodic pulse waveform which goes from V0 to V1 and back can be represented by

PULSEðV0 V1 delay risetime falltime duration periodÞ

EXAMPLE 15.20 (a) Write the data statement for a pulse waveform which switches 10 times in one second

between 1V and 2V, with a rise and fall time of 2ms. The pulse stays at 2V for 11ms. The first pulse starts at

t ¼ 5 ms. (b) Using Probe, plot the waveform in (a).

(a) The data statement is

Vs 1 0 PULSEð1 2 5m 2m 2m 11m 100mÞ

(b) The waveform is plotted as shown in Fig. 15-20.

Sinusoidal Source

The source starts at a constant initial value V0. At t0, the exponentially decaying sinusoidal
component with frequency f , phase angle, starting amplitude V1, and decay factor alpha is added to
it. The syntax for the waveform is

SINðV0 V1 f t0 alpha phase Þ

EXAMPLE 15.21 (a) Write the mathematical expression and data statement for a dc voltage source of 1V to

which a 100-Hz sine wave with zero phase is added at t ¼ 5 ms. The amplitude of the sine wave is 2V and it decays

to zero with a time constant of 10ms. (b) Using Probe, plot VsðtÞ.
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(a) The decay factor is the inverse of the time constant and is equal to alpha ¼ 1=0:01 ¼ 100. For t > 0, the

voltage is expressed by

VsðtÞ ¼ 1þ 2e�100ðt�0:005Þ sin 628:32ðt� 0:005Þuðt� 0:005Þ

The data statement is

Vs 1 0 SINð1 2 100 5m 100Þ

(b) The waveform is plotted as shown in Fig. 15-21.

EXAMPLE 15.22 Find the voltage across a 1-mF capacitor, with zero initial charge, which is connected to a

voltage source through a 1-k� resistor as shown in the circuit in Fig. 15-22(a). The voltage source is described by

Vs ¼
15:819 V for 0 < t < 1 ms
10 V for t > 1 ms

�

We use the exponential waveform to represent Vs. The file is

Dead-beat Pulse-Step response of RC

Vs 1 0 EXP( 10 15:819 0 1:0E� 6 1:0E� 3 1:0E� 6Þ

R 1 2 1 k

C 2 0 1 uF

.TRAN 1:0E� 6 5:0E� 3 UIC

.PROBE

.END

The graph of the capacitor voltage is shown in Fig. 15-22(b). During 0 < t < 1 ms, the transient response grows

exponentially toward a dc steady-state value of 15.819V. At t ¼ 1 ms, the response reaches the value of 10V. Also

at t ¼ 1 ms, the voltage source drops to 10V. Since the source and capacitor voltages are equal, the current in the

resistor becomes zero and the steady state is reached. The transient response lasts only 1ms.
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15.13 SUMMARY

In addition to the linear elements and sources used in the preceding sections, nonlinear devices, such

as diodes (Dxx), junction field-effect transistors (Jxx), mosfets (Mxx), transmission lines (Txx), voltage

controlled switches (Sxx), and current controlled switches (Wxx), may be included in the netlist.

Sensitivity analysis is done using the .SENS statement. Fourier analysis is done using the .FOUR

statement. These can be found in books or manuals for PSpice or Spice. The following summarizes the

statements used in this chapter.

Data Statements:

R, L, C hnamei hnodesi hvaluei ½hinitial conditionsi�

Mutual Inductance kxx hind:ai hind:bi hcoupling coefficienti

Subcircuit Call Xxx hnamei hconnection nodesi

DC Voltage source Vxx hnodesi DC hvaluei

DC Current source Ixx hnodesi DC hvaluei
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AC Voltage source Vxx hnodesi AC hmagnitudei hphasei
AC Current source Ixx hnodesi AC hmagnitudei hphasei
VCVS Exx hnodesi hcontroli hgaini
CCCS Fxx hnodesi hcontroli hgaini
VCCS Gxx hnodesi hcontroli hgaini
CCVS Hxx hnodesi hcontroli hgaini

Control Statements:
.AC hsweep typei hnumber of pointsi hstarting fi hending fi
.DC hnamei hinitial valuei hfinal valuei hstep sizei
.END
.ENDS
.IC hVðnodeÞ ¼ valuei
.MODEL hnamei htypei ½ðhparameteri ¼ hvalueiÞ�

htypei is RES for resistor
htypei is IND for inductor
htypei is CAP for capacitor

.LIB [hfile namei]

.OP

.PRINT DC houtput variablesi

.PLOT DC houtput variablesi

.PRINT AC hmagnitudesi hphasesi

.PLOT AC hmagnitudesi hphasesi

.PRINT TRAN houtput variablesi

.PROBE [houtput variablesi�

.STEP LIN htypei hname(param.)i hinitial valuei hfinal valuei hstep sizei

.SUBCKT hnamei hexternal terminalsi

.TF houtput variablei hinput sourcei

.TRAN hincrement sizei hfinal valuei

Solved Problems

15.1 Use PSpice to find Vð3; 4Þ in the circuit of Fig. 15-23.

The source file is

DC analysis, Fig. 15-23

Vs 2 0 DC 105 V

R1 0 1 36

R2 0 1 12
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R3 1 2 74

R4 2 3 16.4

R5 3 4 103.2

R6 4 0 28.7

.DC Vs 105 105 1

.PRINT DC V(1) V(3, 4)

.END

The output file contains the following:

DC TRANSFER CURVES

Vs V(1) V(3, 4)

1:050Eþ 02 1:139Eþ 01 7:307Eþ 01

Therefore, Vð3; 4Þ ¼ 73:07 V.

15.2 Write the source file for the circuit of Fig. 15-24 and find I in R4.

The source file is

DC analysis, Fig. 15-24

VS 2 0 DC 200V

Is 0 3 DC 20A

R1 0 1 27

R2 1 2 47

R3 1 3 4

R4 3 0 23

.DC Vs 200 200 1

.PRINT DC I(R4)

.END

The output file contains the following results:

DC TRANSFER CURVE

Vs I(R4)

2:000Eþ 02 1:123Eþ 01

Current IðR4Þ ¼ 11:23 A flows from node 3 to node 0 according to the order of nodes in the data statement

for R4.

15.3 Find the three loop currents in the circuit of Fig. 15-25 using PSpice and compare your solution
with the analytical approach.
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The source file is

DC analysis, Fig. 15-25

V1 2 0 DC 25

V2 0 4 DC 50

R1 0 1 2

R2 1 2 5

R3 1 3 10

R4 3 0 4

R5 3 4 2

.DC V1 25 25 1

.PRINT DC I(R1) I(R3) I(R5)

.END

The output file includes the following results:

DC TRANSFER CURVES

V1 I(R1) I(R3) I(R5)

2:500Eþ 01 �1:306Eþ 00 3:172Eþ 00 1:045Eþ 01

The analytical solution requires solving three simultaneous equations.

15.4 Using PSpice, find the value of Vs in Fig. 15-4 such that the voltage source does not supply any
power.

We sweep Vs from 1 to 10V. The source and output files are

DC sweep in the circuit of Fig. 15-4

R1 0 1 500

R2 1 2 3 k

R3 2 3 1 k

R4 0 3 1.5 k

Vs 3 1 DC 4 V

Is 0 2 DC 3 mA

.DC Vs 1 10 1

.PRINT DC I(Vs)

.PROBE

.PLOT DC I(Vs)

.END

The output file contains the following results:

DC TRANSFER CURVES

Vs I(Vs)

1:000Eþ 00 7:500E� 04

2:000Eþ 00 �2:188E� 12

3:000Eþ 00 �7:500E� 04
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4:000Eþ 00 �1:500E� 03

5:000Eþ 00 �2:250E� 03

6:000Eþ 00 �3:000E� 03

7:000Eþ 00 �3:750E� 03

8:000Eþ 00 �4:500E� 03

9:000Eþ 00 �5:250E� 03

1:000Eþ 01 �6:000E� 03

The current in Vs is zero for Vs ¼ 2 V.

15.5 Perform a dc analysis on the circuit of Fig. 15-26 and find its Thévenin equivalent as seen from
terminal AB.

We include a .TF statement in the following netlist:

Thévenin equivalent of Fig. 15-26

Vs 1 0 DC 3

R1 1 2 10

Is 0 2 DC 1

.TF V(2) Is

.END

The output file includes the following results:

NODE VOLTAGE NODE VOLTAGE

(1) 3.0000 (2) 13.000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vs 1:000Eþ 00

TOTAL POWER DISSIPATION �3:00Eþ 00 WATTS

SMALL-SIGNAL CHARACTERISTICS

Vð2Þ=Is ¼ 1:000Eþ 01

INPUT RESISTANCE AT Is ¼ 1:000Eþ 01

OUTPUT RESISTANCE AT Vð2Þ ¼ 1:000Eþ 01

The Thévenin equivalent is VTh ¼ V2 ¼ 13 V, RTh ¼ 10 �.

15.6 Perform an ac analysis on the circuit of Fig. 15-27(a). Find the complex magnitude of V2 for f
varying from 100Hz to 10 kHz in 10 steps.

We add to the netlist an .AC statement to sweep the frequency and obtain V(2) by any of the commands

.PRINT, .PLOT, or .PROBE. The source file is

AC analysis of Fig. 15-27(a).

Vs 1 0 AC 10 0

R1 1 2 1 k

R2 2 0 2 k
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C 2 0 1 uF

.AC LIN 10 100 10000

.PRINT AC Vm(2) Vp(2)

.PLOT AC Vm(2) Vp(2)

.PROBE Vm(2) Vp(2)

.END

The output file contains the following results:

AC ANALYSIS

FREQ VM(2) VP(2)

1:000Eþ 02 6:149Eþ 00 �2:273Eþ 01

1:200Eþ 03 1:301Eþ 00 �7:875Eþ 01

2:300Eþ 03 6:883E� 01 �8:407Eþ 01

3:400Eþ 03 4:670E� 01 �8:598Eþ 01

4:500Eþ 03 3:532E� 01 �8:696Eþ 01
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5:600Eþ 03 2:839E� 01 �8:756Eþ 01

6:700Eþ 03 2:374E� 01 �8:796Eþ 01

7:800Eþ 03 2:039E� 01 �8:825Eþ 01

8:900Eþ 03 1:788E� 01 �8:846Eþ 01

1:000Eþ 04 1:591E� 01 �8:863Eþ 01

The magnitude and phase of V2 are plotted with greater detail in Fig. 15-27(bÞ.

15.7 Perform dc and ac analysis on the circuit in Fig. 15-28. Find the complex magnitude of V2 for f
varying from 100Hz to 10 kHz in 100 steps.

The source file is

DC and AC analysis of Fig. 15-28

Vs 1 0 AC 10 0

Is 0 2 DC 1 mA

R1 1 2 1 k

R2 2 0 2 k

C 2 0 1 uF

.AC LIN 100 100 10000

.PROBE Vm(2) Vp(2)

.END

The output file contains the following results:

SMALL SIGNAL BIAS SOLUTION

NODE VOLTAGE NODE VOLTAGE

(1) 0.0000 (2) .6667

VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vs 6:667E� 04

TOTAL POWER DISSIPATION �0:00Eþ 00 WATTS

The graph of the ac component of V2 is identical with that of V2 of Problem 15.6 shown in Fig. 15-

27(b).

15.8 Plot resonance curves for the circuit of Fig. 15-29(a) for R ¼ 2, 4, 6, 8, and 10 �.

We model the resistor as a single-parameter resistor element with a single-parameter R and change the

value of its parameter R from 2 to 10 in steps of 2 �. We use the .AC command to sweep the frequency

from 500Hz to 3 kHz in 100 steps. The source file is

Parallel resonance of practical coil, Fig. 15-29

I 0 2 AC 1 m 0

R 0 2 RLOSS 1

L 1 2 10 m

C 0 2 1 u

.MODEL RLOSS RESðR ¼ 1Þ
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.STEP RES RLOSS(R) 2 10 2

.AC LIN 100 500 3000

.PROBE

.END

The resonance curves are shown with greater detail in Fig. 15-29(b).

15.9 Use .TRAN and .PROBE to plot VC across the 1-mF capacitor in the source-free circuit of Fig.
15-30(a) for R ¼ 100, 600, 1100, 1600, and 2100 �. The initial voltage is VCð0Þ ¼ 10 V.

The values of the resistor R are changed by using .MODEL and .STEP. The source file is
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Natural response of RC, Fig. 15-30(a)

R 0 1 Rshunt 1

C 1 0 1 uF IC ¼ 10

.MODEL Rshunt RESðR ¼ 1Þ

.STEP LIN RES Rshunt(R) 100 2.1 k 500

.TRAN 1E� 4 50E� 4 UIC

.PLOT TRAN V(1)

.PROBE

.END

The graph of the voltage VC is shown in Fig. 15-30(b).

15.10 Plot the voltages between the two nodes of Fig. 15-31(a) in response to a 1-mA step current
source for R ¼ 100, 600, 1100, 1600, and 2100 �.
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The source file is

Step response of RC, Fig. 15-31(a)

I 0 1 1 m

R 0 1 Rshunt 1

C 1 0 1 uF

.MODEL Rshunt RESðR ¼ 1Þ

.STEP LIN RES Rshunt(R) 100 2.1 k 500

.TRAN 1E� 4 50E� 4 UIC

.PLOT TRAN V(1)

.PROBE

.END

The graphs of the step responses are given in Fig. 15-31(b).
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15.11 Find the Thévenin equivalent of Fig. 15-32 seen at the terminal AB:

From dc analysis we find the open-circuit voltage at AB. We also use .TF to find the output resistance

at AB. The source file and the output files are

Solution to Fig. 15-32 and Thévenin equivalent at terminal AB

R1 0 1 2

R2 0 3 6

R3 1 3 1

R4 2 3 5

R5 4 5 7

Vs1 2 1 DC 3

Vs2 3 4 DC 4

Is 0 5 DC 1

.TF V(5) Vs1

.END

The output file contains the following results:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 1.2453 (2) 4.2453 (3) 2.2642 (4) �1:7358
(5) 5.2642

VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vs1 �3:962E� 01

Vs2 �1:000Eþ 00

TOTAL POWER DISSIPATION 5:19Eþ 00 WATTS

Vð5Þ=Vs1 ¼ 1:132E� 01

INPUT RESISTANCE AT Vs1 ¼ 5:889Eþ 00

OUTPUT RESISTANCE AT Vð5Þ ¼ 8:925Eþ 00

The Thévenin equivalent is VTh ¼ V5 ¼ 5:2642 V, RTh ¼ 8:925 �.

15.12 Plot the frequency response VAB=Vac of the open-loop amplifier circuit of Fig. 15-33(a).

The following source file chooses 500 points within the frequency varying from 100Hz to 10Mhz.

Open loop frequency response of amplifier, Fig. 15-33

Rs 1 2 10 k

Rin 0 2 10 E5

Cin 0 2 short 1

Rout 3 4 10 k

R1 4 0 10 E9

Eout 3 0 0 2 1 E5

Vac 1 0 AC 10 u 0

.MODEL short CAP(C ¼ 1Þ
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.STEP LIN CAP short(C) 1 pF 101 pF 25 pF

.AC LIN 500 10 10000 k

.PROBE

.END

The frequency response is plotted by Probe for the frequency varying from 10kHz to 10MHz as shown

in Fig. 15-33(b).

15.13 Model the op amp of Fig. 15-34(a) as a subcircuit and use it to find the frequency response of
V3=Vac in Fig. 15-34ðbÞ for f varying from 1MHz to 1GHz.

The source file is

Closed loop frequency response of amplifier, Fig. 15-34

.SUBCKT OPAMP 1 2 3 4
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* node 1 is the non-inverting input

* node 2 is the inverting input

* node 3 is the output

* node 4 is the output reference (negative end of dependent source)

* node 5 is the positive end of dependent source

Rin 1 2 10 E5

Cin 1 2 100 pF

Rout 3 5 10 k

Eout 5 4 1 2 1 E5

.ENDS

Vac 1 0 AC 10 m 0

R1 1 2 10 k

Rf 2 3 Rgain 1

X1 0 2 3 0 OPAMP

.MODEL GAIN RES(R ¼ 1Þ

.STEP LIN RES Rgain(R) 1 k 801 k 200 k

.AC LIN 500 1000 k 1 000 000 k

.PROBE

.END

The frequency response is graphed in Fig. 15-34(c). Compared with the open-loop circuit of Fig. 15-

33(a), the dc gain is reduced and the bandwidth is increased.

15.14 Referring to the RC circuit of Fig. 15-22, choose the height of the initial pulse such that the
voltage across the capacitor reaches 10V in 0.5ms. Verify your answer by plotting Vc for
0 < t < 2ms.

The pulse amplitude A is computed from

Að1� e�1=2
Þ ¼ 10 from which A ¼ 25:415 V

We describe the voltage source using PULSE syntax. The source file is

Pulse-Step response of RC, dead beat in RC/2 seconds

Vs 1 0 PULSE( 10 25:415 1:0E� 6 1:0E� 6 0:5 m 3 m Þ

R 1 2 1 k

C 2 0 1 u

.TRAN 1:0E� 6 2:0E� 3 UIC

.PROBE

.END

The response shape is similar to the graph in Fig. 15-22(b). During the transition period of 0 < t < 0:5 ms,

the voltage increases exponentially toward a dc steady state value of 25.415V. However, at t ¼ 0:5 ms,

when the capacitor voltage reaches 10V, the source also has 10V across it. The current in the resistor

becomes zero and steady state is reached.

15.15 Plot the voltage across the capacitor in the circuit in Fig. 15-35(a) for R ¼ 0:01 � and 4:01 �.
The current source is a 1mA square pulse which lasts 1256.64 ms as shown in the i � t graph.

Model the resistor as a single-parameter resistor element with a single parameter R and change the

value of R from 0.01 to 4.01 in step of 4. We use the .AC command to sweep the frequency from 500Hz to

3 kHz in 100 steps. The source file is

Pulse response of RLC with variable R

Is 0 1 Pulse( 0 1 m 100 u 0:01 u 0:01 u 1256:64 u 5000 u Þ

R 1 2 LOSS 1

C 1 0 2000 n IC ¼ 0

L 2 0 5 m IC ¼ 0
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.MODEL LOSS RESðR ¼ 1Þ

.STEP RES LOSS(R) .01 4.01 4

.TRAN 10 u 3500 u 0 1 u UIC

.PROBE

.END

The result is shown in Fig. 15-35(b).

The transient response is almost zero for R ¼ 0:01 �. This is because pulse width is a multiple of the

period of natural oscillations of the circuit.
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Supplementary Problems

In the following problems, use PSpice to repeat the indicated problems and examples.

15.16 Solve Example 5.9 (Fig. 5-12).

15.17 Solve Example 5.11 (Fig. 5-16).

15.18 Solve Example 5.14 (Fig. 5-20).

15.19 Solve Example 5.15 (Fig. 5-21).

15.20 Solve Example 5.20 (Fig. 5-28) for xðtÞ ¼ 1 V.

15.21 Solve Problem 5.12 (Fig. 5-37).

15.22 Solve Problem 5.16 (Fig. 5-39).

15.23 Solve Problem 5.25 (Fig. 5-48).

15.24 Solve Problem 5.26 (Fig. 5-49).

15.25 Solve Problem 5.48 (Fig. 5-55) for vs1 ¼ vs2 ¼ 1 V.

15.26 Solve Example 7.3.

15.27 Solve Example 7.6 (Fig. 7-12).

15.28 Solve Example 7.7 [Fig. 7-13(a)].

15.29 Solve Example 7.11 [Fig. 7-17(a)].

15.30 Solve Problem 8.27 (Fig. 8-31).

15.31 Solve Problem 9.11 (Fig. 9-20).

15.32 Solve Problem 9.18 (Fig. 9-28).

15.33 Solve Problem 9.19 (Fig. 9-29).

15.34 Solve Example 11.5 [Fig. 11-15(a)].

15.35 Solve Example 11.6 [Fig. 11-16(a)].

15.36 Solve Example 11.7 (Fig. 11-17).

15.37 Solve Problem 12.7.

15.38 Solve Problem 12.14 (Fig. 12-40).

15.39 Solve Problem 12.16 (Fig. 12-43).

15.40 Solve Problem 13.28 (Fig. 13-31) for s ¼ j.

15.41 Solve Problem 13.31 (Fig. 13-33)

15.42 Solve Problem 14.8 (Fig. 14-24).

15.43 Solve Problem 14.12 (Fig. 14-28).

15.44 Solve Problem 14.13 (Fig. 14-29)

15.45 Solve Problem 14.20 (Fig. 14-35)

15.46 Solve Problem 14.21 (Fig. 14-36) for s ¼ j.
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The Laplace Transform
Method

16.1 INTRODUCTION

The relation between the response yðtÞ and excitation xðtÞ in RLC circuits is a linear differential
equation of the form

any
ðnÞ

þ � � � þ ajy
ð jÞ

þ � � � þ a1y
ð1Þ

þ a0y ¼ bmx
ðmÞ

þ � � � þ bix
ðiÞ
þ � � � þ b1x

ð1Þ
þ b0x ð1Þ

where yð jÞ and xðiÞ are the jth and ith time derivatives of yðtÞ and xðtÞ, respectively. If the values of the
circuit elements are constant, the corresponding coefficients aj and bi of the differential equation will also
be constants. In Chapters 7 and 8 we solved the differential equation by finding the natural and forced
responses. We employed the complex exponential function xðtÞ ¼ Xest to extend the solution to the
complex frequency s-domain.

The Laplace transform method described in this chapter may be viewed as generalizing the concept
of the s-domain to a mathematical formulation which would include not only exponential excitations but
also excitations of many other forms. Through the Laplace transform we represent a large class of
excitations as an infinite collection of complex exponentials and use superposition to derive the total
response.

16.2 THE LAPLACE TRANSFORM

Let f ðtÞ be a time function which is zero for t � 0 and which is (subject to some mild conditions)
arbitrarily defined for t > 0. Then the direct Laplace transform of f ðtÞ, denoted l½ f ðtÞ�, is defined by

l½ f ðtÞ� ¼ FðsÞ ¼

ð1
0þ

f ðtÞe�st dt ð2Þ

Thus, the operation l½ � transforms f ðtÞ, which is in the time domain, into FðsÞ, which is in the complex
frequency domain, or simply the s-domain, where s is the complex variable � þ j!. While it appears that
the integration could prove difficult, it will soon be apparent that application of the Laplace transform
method utilizes tables which cover all functions likely to be encountered in elementary circuit theory.

There is a uniqueness in the transform pairs; that is, if f1ðtÞ and f2ðtÞ have the same s-domain image
FðsÞ, then f1ðtÞ ¼ f2ðtÞ. This permits going back in the other direction, from the s-domain to the time
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domain, a process called the inverse Laplace transform,l�1
½FðsÞ� ¼ f ðtÞ. The inverse Laplace transform

can also be expressed as an integral, the complex inversion integral:

l
�1
½FðsÞ� ¼ f ðtÞ ¼

1

2�j

ð�0þj1

�0�j1

FðsÞest ds ð3Þ

In (3) the path of integration is a straight line parallel to the j!-axis, such that all the poles of FðsÞ lie
to the left of the line. Here again, the integration need not actually be performed unless it is a question
of adding to existing tables of transform pairs.

It should be remarked that taking the direct Laplace transform of a physical quantity introduces an
extra time unit in the result. For instance, if iðtÞ is a current in A, then IðsÞ has the units A � s (or C).
Because the extra unit s will be removed in taking the inverse Laplace transform, we shall generally omit
to cite units in the s-domain, shall still call IðsÞ a ‘‘current,’’ indicate it by an arrow, and so on.

16.3 SELECTED LAPLACE TRANSFORMS

The Laplace transform of the unit step function is easily obtained:

l½uðtÞ� ¼

ð1
0

ð1Þe�st dt ¼ �
1

s
½e�st

�
1
0 ¼

1

s

From the linearity of the Laplace transform, it follows that vðtÞ ¼ VuðtÞ in the time domain has the s-
domain image VðsÞ ¼ V=s.

The exponential decay function, which appeared often in the transients of Chapter 7, is another time
function which is readily transformed.

l½Ae�at
� ¼

ð1
0

Ae�ate�st dt ¼
�A

Aþ s
½e�ðaþsÞt

�
1
0 ¼

A

sþ a

or, inversely,

l
�1 A

sþ a

� �
¼ Ae�at

The transform of a sine function is also easily obtained.

l½sin!t� ¼

ð1
0

ðsin!tÞe�st dt ¼
�sðsin!tÞe�st

� e�st! cos!t

s2 þ !2

� �1
0

¼
!

s2 þ !2

It will be useful now to obtain the transform of a derivative, df ðtÞ=dt.

l
df ðtÞ

dt

� �
¼

ð1
0

df ðtÞ

dt
e�st dt

Integrating by parts,

l
df ðtÞ

dt

� �
¼ ½e�st f ðtÞ�10þ �

ð1
0

f ðtÞð�se�st
Þ dt ¼ �f ð0þÞ þ s

ð1
0

f ðtÞe�st dt ¼ �f ð0þÞ þ sFðsÞ

A small collection of transform pairs, including those obtained above, is given in Table 16-1. The
last five lines of the table present some general properties of the Laplace transform.

EXAMPLE 16.1 Consider a series RL circuit, with R ¼ 5 � and L ¼ 2:5 mH. At t ¼ 0, when the current in the

circuit is 2A, a source of 50V is applied. The time-domain circuit is shown in Fig. 16-1.
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(ii)    RI(s) + L[_ i(0+) + sI(s)] = V(s)

(iii)   5I(s) + (2.5×10_3)[_2+sI(s)]=

(iv)   I(s)=

(v)          10� _1         =10

(vi)            (_8)� _1                     = _ 8e
_2000t1

s+2000

_8
s+2000

Time Domain

(classical methods)

s-Domain

(i)    Ri + L 

(vii)    i(t) = 10 _ 8e_2000t 

= �di
dt

50
s

10
s

1
s

+

(A)
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Table 16-1 Laplace Transform Pairs

f ðtÞ FðsÞ

1. 1
1

s

2. t
1

s2

3. e�at
1

sþ a

4. te�at

1

ðsþ aÞ2

5. sin!t
!

s2 þ !2

6. cos!t
s

s2 þ !2

7. sin ð!tþ �Þ
s sin � þ ! cos �

s2 þ !2

8. cos ð!tþ �Þ
s cos � � ! sin �

s2 þ !2

9. e�at sin!t

!

ðsþ aÞ2 þ !2

10. e�at cos!t

sþ a

ðsþ aÞ2 þ !2

11. sinh!t
!

s2 � !2

12. cosh!t
s

s2 � !2

13.
df

dt sFðsÞ � f ð0þÞ

14.

ðt
0

f ð�Þ d� FðsÞ

s

15. f ðt� t1Þ e�t1sFðsÞ

16. c1 f1ðtÞ þ c2 f2ðtÞ c1F1ðsÞ þ c2F2ðsÞ

17.

ðt
0

f1ð�Þ f2ðt� �Þ d�
F1ðsÞF2ðsÞ



Kirchhoff’s voltage law, applied to the circuit for t > 0, yields the familiar differential equation (i). This

equation is transformed, term by term, into the s-domain equation (ii). The unknown current iðtÞ becomes IðsÞ,

while the known voltage v ¼ 50uðtÞ is transformed to 50/s. Also, di=dt is transformed into �ið0þÞ þ sIðsÞ, in which

ið0þÞ is 2A. Equation (iii) is solved for IðsÞ, and the solution is put in the form (iv) by the techniques of Section 16.6.

Then lines 1, 3, and 16 of Table 16-1 are applied to obtain the inverse Laplace transform of IðsÞ, which is iðtÞ.

A circuit can be drawn in the s-domain, as shown in Fig. 16-2. The initial current appears in the circuit as a voltage

source, Lið0þÞ. The s-domain current establishes the voltage terms RIðsÞ and sLIðsÞ in (ii) just as a phasor current I

and an impedance Z create a phasor voltage IZ.

16.4 CONVERGENCE OF THE INTEGRAL

For the Laplace transform to exist, the integral (2) should converge. This limits the variable
s ¼ � þ j! to a part of the complex plane called the convergence region. As an example, the transform
of xðtÞ ¼ e�atuðtÞ is 1=ðsþ aÞ, provided Re ½s� > �a, which defines its region of convergence.

EXAMPLE 16.2 Find the Laplace transform of xðtÞ ¼ 3e2tuðtÞ and show the region of convergence.

XðsÞ ¼

ð1
0

3e2te�st dt ¼

ð1
0

3e�ðs�2Þt dt ¼
3

s� 2
½e�ðs�2Þt

�
1
0 ¼

3

s� 2
; Re ½s� > 2

The region of convergence of XðsÞ is the right half plane � > 2, shown hatched in Fig. 16-3.

16.5 INITIAL-VALUE AND FINAL-VALUE THEOREMS

Taking the limit as s ! 1 (through real values) of the direct Laplace transform of the derivative,

df ðtÞ=dt,

lim
s!1

l
df ðtÞ

dt

� �
¼ lim

s!1

ð1
0

df ðtÞ

dt
e�st dt ¼ lim

s!1
fsFðsÞ � f ð0þÞg
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But e�st in the integrand approaches zero as s ! 1. Thus,

lim
s!1

fsFðsÞ � f ð0þÞg ¼ 0

Since f ð0þÞ is a constant, we may write

f ð0þÞ ¼ lim
s!1

fsFðsÞg

which is the statement of the initial-value theorem.

EXAMPLE 16.3 In Example 16.1,

lim
s!1

fsIðsÞg ¼ lim
s!1

10�
8s

sþ 2000

� �
¼ 10� 8 ¼ 2

which is indeed the initial current, ið0þÞ ¼ 2 A.

The final-value theorem is also developed from the direct Laplace transform of the derivative, but now the limit

is taken as s ! 0 (through real values).

lim
s!0

l
df ðtÞ

dt

� �
¼ lim

s!0

ð1
0

df ðtÞ

dt
e�st dt ¼ lim

s!0
fsFðsÞ � f ð0þÞg

lim
s!0

ð1
0

df ðtÞ

dt
e�st dt ¼

ð1
0

df ðtÞ ¼ f ð1Þ � f ð0þÞBut

and f ð0þÞ is a constant. Therefore,

f ð1Þ � f ð0þÞ ¼ �f ð0þÞ þ lim
s!0

fsFðsÞg

f ð1Þ ¼ lim
s!0

fsFðsÞgor

This is the statement of the final-value theorem. The theorem may be applied only when all poles of sFðsÞ have

negative real parts. This excludes the transforms of such functions as et and cos t, which become infinite or

indeterminate as t ! 1.

16.6 PARTIAL-FRACTIONS EXPANSIONS

The unknown quantity in a problem in circuit analysis can be either a current iðtÞ or a voltage vðtÞ.
In the s-domain, it is IðsÞ or VðsÞ; for the circuits considered in this book, this will be a rational function
of the form

RðsÞ ¼
PðsÞ

QðsÞ

where the polynomialQðsÞ is of higher degree than PðsÞ. Furthermore, RðsÞ is real for real values of s, so
that any nonreal poles of RðsÞ, that is, nonreal roots of QðsÞ ¼ 0, must occur in complex conjugate pairs.

In a partial-fractions expansion, the function RðsÞ is broken down into a sum of simpler rational
functions, its so-called principal parts, with each pole of RðsÞ contributing a principal part.

Case 1: s ¼ a is a simple pole. When s ¼ a is a nonrepeated root of QðsÞ ¼ 0, the corresponding
principal part of RðsÞ is

A

s� a
where A ¼ lim

s!a
fðs� aÞRðsÞg

If a is real, so will be A; if a is complex, then a
� is also a simple pole and the numerator of its principal

part is A�. Notice that if a ¼ 0, A is the final value of rðtÞ

Case 2: s ¼ b is a double pole. When s ¼ b is a double root of QðsÞ ¼ 0, the corresponding principal part
of RðsÞ is
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B1

s� b
þ

B2

ðs� bÞ2

where the constants B2 and B1 may be found as

B2 ¼ lim
s!b

fðs� bÞ
2
RðsÞg and B1 ¼ lim

s!b
ðs� bÞ RðsÞ �

B2

ðs� bÞ2

� �� �

B1 may be zero. Similar to Case 1, B1 and B2 are real if b is real, and these constants for the double pole
b
� are the conjugates of those for b.

The principal part at a higher-order pole can be obtained by analogy to Case 2; we shall assume,
however, that RðsÞ has no such poles. Once the partial-functions expansion of RðsÞ is known, Table 16-1
can be used to invert each term and thus to obtain the time function rðtÞ.

EXAMPLE 16.4 Find the time-domain current iðtÞ if its Laplace transform is

IðsÞ ¼
s� 10

s4 þ s2

IðsÞ ¼
s� 10

s2ðs� jÞðsþ jÞ
Factoring the denominator,

we see that the poles of IðsÞ are s ¼ 0 (double pole) and s ¼ �j (simple poles).

The principal part at s ¼ 0 is

B1

s
þ
B2

s2
¼

1

s
�
10

s2

B2 ¼ lim
s!0

s� 10

ðs� jÞðsþ jÞ

� �
¼ �10since

B1 ¼ lim
s!0

s
s� 10

s2ðs2 þ 1Þ
þ
10

s2

� �� �
¼ lim

s!0

10sþ 1

s2 þ 1

� �
¼ 1

The principal part at s ¼ þj is

A

s� j
¼ �

0:5þ j5

s� j

A ¼ lim
s!j

s� 10

s2ðsþ jÞ

� �
¼ �ð0:5þ j5Þsince

It follows at once that the principal part at s ¼ �j is

�
0:5� j5

sþ j

The partial-fractions expansion of IðsÞ is therefore

IðsÞ ¼
1

s
� 10

1

s2
� ð0:5þ j5Þ

1

s� j
� ð0:5� j5Þ

1

sþ j

and term-by-term inversion using Table 16-1 gives

iðtÞ ¼ 1� 10t� ð0:5þ j5Þe jt � ð0:5� j5Þe�jt
¼ 1� 10t� ðcos t� 10 sin tÞ

Heaviside Expansion Formula

If all poles of RðsÞ are simple, the partial-fractions expansion and termwise inversion can be accom-
plished in a single step:

l
�1 PðsÞ

QðsÞ

� �
¼
Xn
k¼1

PðakÞ

Q 0ðakÞ
eakt ð4Þ

where a1; a2; . . . ; an are the poles and Q
0
ðakÞ is dQðsÞ=ds evaluated at s ¼ ak.
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16.7 CIRCUITS IN THE s-DOMAIN

In Chapter 8 we introduced and utilized the concept of generalized impedance, admittance, and

transfer functions as functions of the complex frequency s. In this section, we extend the use of the

complex frequency to transform an RLC circuit, containing sources and initial conditions, from the time

domain to the s-domain.

Table 16-2 exhibits the elements needed to construct the s-domain image of a given time-domain
circuit. The first three lines of the table were in effect developed in Example 16.1. As for the capacitor,
we have, for t > 0,

vCðtÞ ¼ V0 þ
1

C

ðt
0

ið�Þ d�

so that, from Table 16-1,

VCðsÞ ¼
V0

s
þ
IðsÞ

Cs

EXAMPLE 16.5 In the circuit shown in Fig. 16-4(a) an initial current i1 is established while the switch is in position

1. At t ¼ 0, it is moved to position 2, introducing both a capacitor with initial charge Q0 and a constant-voltage

source V2.

The s-domain circuit is shown in Fig. 16-4(b). The s-domain equation is

RIðsÞ þ sLIðsÞ � Lið0þÞ þ
IðsÞ

sC
þ

V0

sC
¼

V2

s

in which V0 ¼ Q0=C and ið0þÞ ¼ i1 ¼ V1=R.
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Table 16-2

Time Domain s-Domain s-Domain Voltage Term

RIðsÞ

sLIðsÞ þ Lið0þÞ

sLIðsÞ þ Lið0þÞ

IðsÞ

sC
þ
V0

s

IðsÞ

sc
�
V0

s



16.8 THE NETWORK FUNCTION AND LAPLACE TRANSFORMS

In Chapter 8 we obtained responses of circuit elements to exponentials est, based on which we
introduced the concept of complex frequency and generalized impedance. We then developed the
network function HðsÞ as the ratio of input-output amplitudes, or equivalently, the input-output differ-
ential equation, natural and forced responses, and the frequency response.

In the present chapter we used the Laplace transform as an alternative method for solving differ-
ential equations. More importantly, we introduce Laplace transform models of R, L, and C elements
which, contrary to generalized impedances, incorporate initial conditions. The input-output relation-
ship is therefore derived directly in the transform domain.

What is the relationship between the complex frequency and the Laplace transform models? A
short answer is that the generalized impedance is the special case of the Laplace transform model (i.e.,
restricted to zero state), and the network function is the Laplace transform of the unit-impulse response.

EXAMPLE 16.17 Find the current developed in a series RLC circuit in response to the following two voltage

sources applied to it at t ¼ 0: (a) a unit-step, (b) a unit-impulse.

The inductor and capacitor contain zero energy at t ¼ 0�. Therefore, the Laplace transform of the current is

IðsÞ ¼ VðsÞYðsÞ.

(a) VðsÞ ¼ 1=s and the unit-step response is

IðsÞ ¼
1

s

Cs

LCs2 þ RCsþ 1
¼

1

L

1

ðsþ �Þ2 þ !2
d

iðtÞ ¼
1

L!d

e��t sin ð!d tÞuðtÞ

where

� ¼
R

2L
; and !d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

�
1

LC

s

(b) VðsÞ ¼ 1 and the unit-impulse response is

IðsÞ ¼
1

L

s

ðsþ �Þ2 þ !2
d

iðtÞ ¼
1

L!d

e��t
½!d cos ð!d tÞ � � sin ð!d tÞ�uðtÞ

The unit-impulse response may also be found by taking the time-derivative of the unit-step response.

EXAMPLE 16.18 Find the voltage across terminals of a parallel RLC circuit in response to the following two

current sources applied at t ¼ 0: (a) a unit-step, (b) a unit-impulse.

Again, the inductor and capacitor contain zero energy at t ¼ 0�. Therefore, the Laplace transform of the

current is VðsÞ ¼ IðsÞZðsÞ.

CHAP. 16] THE LAPLACE TRANSFORM METHOD 405

Fig. 16-4



(a) IðsÞ ¼ 1=s and the unit-step response is

VðsÞ ¼
1

s

RLs

RLCs2 þ Lsþ 1
¼

1

C

1

ðsþ �Þ2 þ !2
d

vðtÞ ¼
1

C!d

e��t sin ð!d tÞuðtÞ

where

� ¼
1

RC
; and !d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2RC

� �2

�
1

LC

s

(b) IðsÞ ¼ 1 and the unit-impulse response is

VðsÞ ¼
1

C

1

ðsþ �Þ2 þ !2
d

vðtÞ ¼
1

C!d

e��t
½!d cos ð!d tÞ � � sin ð!d tÞ�uðtÞ

Solved Problems

16.1 Find the Laplace transform of e�at cos!t, where a is a constant.

Applying the defining equation l½ f ðtÞ� ¼
Ð1
0 f ðtÞe�st dt to the given function, we obtain

l½e�at cos!t� ¼

ð1
0

cos!te�ðsþaÞt dt

¼
�ðsþ aÞ cos!te�ðsþaÞt

þ e�ðsþaÞt! sin!t

ðsþ aÞ2 þ !2

" #1

0

¼
sþ a

ðsþ aÞ2 þ !2

16.2 If l½ f ðtÞ� ¼ FðsÞ, show that l½e�at f ðtÞ� ¼ Fðsþ aÞ. Apply this result to Problem 16.1.

By definition, l½ f ðtÞ� ¼
Ð1
0 f ðtÞe�st dt ¼ FðsÞ. Then,

l½e�at f ðtÞ� ¼

ð1
0

½e�atf ðtÞ�e�st dt ¼

ð1
0

f ðtÞe�ðsþaÞt dt ¼ Fðsþ aÞ ð5Þ

Applying (5) to line 6 of Table 16-1 gives

l½e�at cos!t� ¼
sþ a

ðsþ aÞ2 þ !2

as determined in Problem 16.1.

16.3 Find the Laplace transform of f ðtÞ ¼ 1� e�at, where a is a constant.

l½1� e�at
� ¼

ð1
0

ð1� e�at
Þe�st dt ¼

ð1
0

e�st dt�

ð1
0

e�ðsþaÞt dt

¼ �
1

s
e�st

þ
1

sþ a
e�ðsþaÞt

� �1
0

¼
1

s
�

1

sþ a
¼

a

sðsþ aÞ
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Another Method

l a

ðt
0

e�a� d�

� �
¼ a

1=ðsþ aÞ

s
¼

a

sðsþ aÞ

16.4 Find

l
�1 1

sðs2 � a2Þ

� �

Using the method of partial fractions,

1

sðs2 � a2Þ
¼

A

s
þ

B

sþ a
þ

C

s� a

and the coefficients are

A ¼
1

s2 � a2

����
s¼0

¼ �
1

a2
B ¼

1

sðs� aÞ

����
s¼�a

¼
1

2a2
C ¼

1

sðsþ aÞ

����
s¼a

¼
1

2a2

l
�1 1

sðs2 � a2Þ

� �
¼ l

�1 �1=a2

s

" #
þl

�1 1=2a2

sþ a

" #
þl

�1 1=2a2

s� a

" #
Hence,

The corresponding time functions are found in Table 16-1:

l
�1 1

sðs2 � a2Þ

� �
¼ �

1

a2
þ

1

2s2
e�at

þ
1

2a2
eat

¼ �
1

a2
þ

1

a2
eat þ e�at

2

� �
¼

1

a2
ðcosh at� 1Þ

Another Method

By lines 11 and 14 of Table 16-1,

l
�1 1=ðs2 � a2Þ

s

" #
¼

ðt
0

sinh a�

a
d� ¼

cosh a�

a2

� �t
0

¼
1

a2
ðcosh at� 1Þ

16.5 Find

l
�1 sþ 1

sðs2 þ 4sþ 4Þ

� �

Using the method of partial fractions, we have

sþ 1

sðsþ 2Þ2
¼

A

s
þ

B1

sþ 2
þ

B2

ðsþ 2Þ2

A ¼
sþ 1

ðsþ 2Þ2

����
s¼0

¼
1

4
B2 ¼

sþ 1

s

����
s¼�2

¼
1

2
Then

B1 ¼ ðsþ 2Þ
sþ 2

2sðsþ 2Þ2

����
s¼�2

¼ �
1

4
and

l
�1 sþ 1

sðs2 þ 4sþ 4Þ

� �
¼ l

�1
1
4

s

� �
þl

�1 � 1
4

sþ 2

� �
þl

�1
1
2

ðsþ 2Þ2

� �
Hence,

The corresponding time functions are found in Table 16-1:

l
�1 sþ 1

sðs2 þ 4sþ 4Þ

� �
¼

1

4
�
1

4
e�2t

þ
1

2
te�2t
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16.6 In the series RC circuit of Fig. 16-5, the capacitor has an initial charge 2.5mC. At t ¼ 0, the
switch is closed and a constant-voltage source V ¼ 100 V is applied. Use the Laplace transform
method to find the current.

The time-domain equation for the given circuit after the switch is closed is

RiðtÞ þ
1

C
Q0 þ

ðt
0

ið�Þ d�

� �
¼ V

or 10iðtÞ þ
1

50� 10�6
ð�2:5� 10�3

Þ þ

ðt
0

ið�Þ d�

� �
¼ V (6)

Q0 is opposite in polarity to the charge which the source will deposit on the capacitor. Taking the Laplace

transform of the terms in (6), we obtain the s-domain equation

10IðsÞ �
2:5� 10�3

50� 10�6s
þ

IðsÞ

50� 10�6s
¼

100

s

or IðsÞ ¼
15

sþ ð2� 103Þ
(7)

The time function is now obtained by taking the inverse Laplace transform of (7):

iðtÞ ¼ l
�1 15

sþ ð2� 103Þ

� �
¼ 15e�2�103t

ðAÞ ð8Þ

16.7 In the RL circuit shown in Fig. 16-6, the switch is in position 1 long enough to establish steady-
state conditions, and at t ¼ 0 it is switched to position 2. Find the resulting current.

Assume the direction of the current as shown in the diagram. The initial current is then

i0 ¼ �50=25 ¼ �2 A.

The time-domain equation is

25i þ 0:01
di

dt
¼ 100 ð9Þ

Taking the Laplace transform of (9),

25IðsÞ þ 0:01sIðsÞ � 0:01ið0þÞ ¼ 100=s ð10Þ

Substituting for ið0þÞ,

25IðsÞ þ 0:01sIðsÞ þ 0:01ð2Þ ¼ 100=s ð11Þ

and IðsÞ ¼
100

sð0:01sþ 25Þ
�

0:02

0:01sþ 25
¼

104

sðsþ 2500Þ
�

2

sþ 2500
(12)
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Applying the method of partial fractions,

104

sðsþ 2500Þ
¼

A

s
þ

B

sþ 2500
ð13Þ

A ¼
104

sþ 2500

����
s¼0

¼ 4 and B ¼
104

s

����
s¼�2500

¼ �4with

Then, IðsÞ ¼
4

s
�

4

sþ 2500
�

2

sþ 2500
¼

4

s
�

6

sþ 2500
(14)

Taking the inverse Laplace transform of (14), we obtain i ¼ 4� 6e�2500t (A).

16.8 In the series RL circuit of Fig. 16-7, an exponential voltage v ¼ 50e�100t (V) is applied by closing
the switch at t ¼ 0. Find the resulting current.

The time-domain equation for the given circuit is

Ri þ L
di

dt
¼ v ð15Þ

In the s-domain, (15) has the form

RIðsÞ þ sLIðsÞ � Lið0þÞ ¼ VðsÞ ð16Þ

Substituting the circuit constants and the transform of the source, VðsÞ ¼ 50=ðsþ 100Þ, in (16),

10IðsÞ þ sð0:2ÞIðsÞ ¼
5

sþ 100
or IðsÞ ¼

250

ðsþ 100Þðsþ 50Þ
ð17Þ

By the Heaviside expansion formula,

l
�1
½IðsÞ� ¼ l

�1 PðsÞ

QðsÞ

� �
¼
X
n¼1:2

PðanÞ

Q 0ðanÞ
eant

Here, PðsÞ ¼ 250, QðsÞ ¼ s
2
þ 150sþ 5000, Q 0

ðsÞ ¼ 2sþ 150, a1 ¼ �100, and a2 ¼ �50. Then,

i ¼ l
�1
½IðsÞ� ¼

250

�50
e�100t

þ
250

50
e�50t

¼ �5e�100t
þ 5e�50t

ðAÞ

16.9 The series RC circuit of Fig. 16-8 has a sinusoidal voltage source v ¼ 180 sin ð2000tþ �Þ (V) and
an initial charge on the capacitor Q0 ¼ 1:25mC with polarity as shown. Determine the current if
the switch is closed at a time corresponding to � ¼ 908.

The time-domain equation of the circuit is

40iðtÞ þ
1

25� 10�6
ð1:25� 10�3

Þ þ

ðt
0

ið�Þ d�

� �
¼ 180 cos 2000t ð18Þ
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The Laplace transform of (18) gives the s-domain equation

40IðsÞ þ
1:25� 10�3

25� 10�6s
þ
4� 104

s
IðsÞ ¼

180s

s2 þ 4� 106
ð19Þ

or IðsÞ ¼
4:5s2

ðs2 þ 4� 106Þðsþ 103Þ
�

1:25

sþ 103
(20)

Applying the Heaviside expansion formula to the first term on the right in (20), we have PðsÞ ¼ 4:5s2,
QðsÞ ¼ s

3
þ 103s2 þ 4� 106sþ 4� 109, Q

0
ðsÞ ¼ 3s2 þ 2� 103sþ 4� 106, a1 ¼ �j2� 103, a2 ¼ j2� 103,

and a3 ¼ �103. Then,

i ¼
Pð�j2� 103Þ

Q 0ð�j � 103Þ
e�j2�103t

þ
Pð j2� 103Þ

Q 0ð j2� 103Þ
e j2�103t

þ
Pð�103Þ

Q 0ð�103Þ
e�103t

� 1:25e�103t

¼ ð1:8� j0:9Þe�j2�103t
þ ð1:8þ j0:9Þe j2�103t

� 0:35e�103t
ð21Þ

¼ �1:8 sin 2000tþ 3:6 cos 2000t� 0:35e�103t

¼ 4:02 sin ð2000tþ 116:68Þ � 0:35e�103t
ðAÞ

At t ¼ 0, the current is given by the instantaneous voltage, consisting of the source voltage and the

charged capacitor voltage, divided by the resistance. Thus,

i0 ¼ 180 sin 908�
1:25� 10�3

25� 10�6

 !,
40 ¼ 3:25 A

The same result is obtained if we set t ¼ 0 in (21).

16.10 In the series RL circuit of Fig. 16-9, the source is v ¼ 100 sin ð500tþ �Þ (V). Determine the
resulting current if the switch is closed at a time corresponding to � ¼ 0.

The s-domain equation of a series RL circuit is

RIðsÞ þ sLIðsÞ � Lið0þÞ ¼ VðsÞ ð22Þ

The transform of the source with � ¼ 0 is

VðsÞ ¼
ð100Þð500Þ

s2 þ ð500Þ2

Since there is no initial current in the inductance, Lið0þÞ ¼ 0. Substituting the circuit constants into (22),

5IðsÞ þ 0:01sIðsÞ ¼
5� 104

s2 þ 25� 104
or IðsÞ ¼

5� 106

ðs2 þ 25� 104Þðsþ 500Þ
ð23Þ

Expanding (23) by partial fractions,

IðsÞ ¼ 5
�1þ j

sþ j500

� �
þ 5

�1� j

s� j500

� �
þ

10

sþ 500
ð24Þ

The inverse Laplace transform of (24) is

i ¼ 10 sin 500t� 10 cos 500tþ 10e�500t
¼ 10e�500t

þ 14:14 sin ð500t� 458Þ ðAÞ

16.11 Rework Problem 16.10 by writing the voltage function as

v ¼ 100e j500t ðVÞ ð25Þ

Now VðsÞ ¼ 100=ðs� j500Þ, and the s-domain equation is

5IðsÞ þ 0:01sIðsÞ ¼
100

s� j500
or IðsÞ ¼

104

ðs� j500Þðsþ 500Þ
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Using partial fractions,

IðsÞ ¼
10� j10

s� j500
þ
�10þ j10

sþ 500

and inverting,

i ¼ ð10� j10Þe j500t þ ð�10þ j10Þe�500t

¼ 14:14e jð500t��=4Þ
þ ð�10þ j10Þe�500t

ðAÞ ð26Þ

The actual voltage is the imaginary part of (25); hence the actual current is the imaginary part of (26).

i ¼ 14:14 sin ð500t� �=4Þ þ 10e�500t
ðAÞ

16.12 In the series RLC circuit shown in Fig. 16-10, there is no initial charge on the capacitor. If the
switch is closed at t ¼ 0, determine the resulting current.

The time-domain equation of the given circuit is

Ri þ L
di

dt
þ

1

C

ðt
0

ið�Þ d� ¼ V ð27Þ

Because ið0þÞ ¼ 0, the Laplace transform of (27) is

RIðsÞ þ sLIðsÞ þ
1

sC
¼ IðsÞ

V

s
ð28Þ

or 2IðsÞ þ 1sIðsÞ þ
1

0:5s
IðsÞ ¼

50

s
(29)

Hence, IðsÞ ¼
50

s2 þ 2sþ 2
¼

50

ðsþ 1þ jÞðsþ 1� jÞ
(30)

Expanding (30) by partial fractions,

IðsÞ ¼
j25

ðsþ 1þ jÞ
�

j25

ðsþ 1� jÞ
ð31Þ

and the inverse Laplace transform of (31) gives

i ¼ j25feð�1�jÞt
� eð�1þjÞt

g ¼ 50e�t sin t ðAÞ

16.13 In the two-mesh network of Fig. 16-11, the two loop currents are selected as shown. Write the s-
domain equations in matrix form and construct the corresponding circuit.

Writing the set of equations in the time domain,

5i1 þ
1

2
Q0 þ

ðt
0

i1ð�Þd�

� �
þ 5i2 ¼ � and 10i2 þ 2

di2
dt

þ 5i1 ¼ � ð32Þ

Taking the Laplace transform of (32) to obtain the corresponding s-domain equations,
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5I1ðsÞ þ
Q0

2s
þ

1

2s
I1ðsÞ þ 5I2ðsÞ ¼ VðsÞ 10I2ðsÞ þ 2sI2ðsÞ � 2i2ð0

þ
Þ þ 5I1ðsÞ ¼ VðsÞ ð33Þ

When this set of s-domain equations is written in matrix form,

5þ ð1=2sÞ 5
5 10þ 2s

� �
I1ðsÞ

I2ðsÞ

� �
¼

VðsÞ � ðQ0=2sÞ
VðsÞ þ 2i2ð0

þ
Þ

� �

the required s-domain circuit can be determined by examination of the ZðsÞ, IðsÞ, and VðsÞ matrices (see Fig.

16-12).

16.14 In the two-mesh network of Fig. 16-13, find the currents which result when the switch is closed.

The time-domain equations for the network are

10i1 þ 0:02
di1
dt

� 0:02
di2
dt

¼ 100

0:02
di2
dt

þ 5i2 � 0:02
di1
dt

¼ 0

ð34Þ

Taking the Laplace transform of set (34),

ð10þ 0:02sÞI1ðsÞ � 0:02sI2ðsÞ ¼ 100=s ð5þ 0:02sÞI2ðsÞ � 0:02sI1ðsÞ ¼ 0 ð35Þ

From the second equation in set (35) we find

I2ðsÞ ¼ I1ðsÞ
s

sþ 250

� �
ð36Þ

which when substituted into the first equation gives

I1ðsÞ ¼ 6:67
sþ 250

sðsþ 166:7Þ

� �
¼

10

s
�

3:33

sþ 166:7
ð37Þ

Inverting (37),

i1 ¼ 10� 3:33e�166:7t
ðAÞ

Finally, substitute (37) into (36) and obtain

I2ðsÞ ¼ 6:67
1

sþ 166:7

� �
whence i2 ¼ 6:67e�166:7t

ðAÞ

16.15 Apply the initial- and final-value theorems in Problem 16.14.

The initial value of i1 is given by

i1ð0
þ
Þ ¼ lim

s!1
½sI1ðsÞ� ¼ lim

s!1
6:667

sþ 250

sþ 166:7

� �� �
¼ 6:67 A
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and the final value is

i1ð1Þ ¼ lim
s!0

½sI1ðsÞ� ¼ lim
s!0

6:67
sþ 250

sþ 166:7

� �� �
¼ 10 A

The initial value of i2 is given by

i2ð0
þ
Þ ¼ lim

s!1
½sI2ðsÞ� ¼ lim

s!1
6:667

s

sþ 166:7

� �� �
¼ 6:67 A

and the final value is

i2ð1Þ ¼ lim
s!0

½sI2ðsÞ� ¼ lim
s!0

6:67
s

sþ 166:7

� �� �
¼ 0

Examination of Fig. 16-13 verifies each of the preceding initial and final values. At the instant of

closing, the inductance presents an infinite impedance and the currents are i1 ¼ i2 ¼ 100=ð10þ 5Þ ¼ 6:67 A.

Then, in the steady state, the inductance appears as a short circuit; hence, i1 ¼ 10 A, i2 ¼ 0.

16.16 Solve for i1 in Problem 16.14 by determining an equivalent circuit in the s-domain.

In the s-domain the 0.02-H inductor has impedance ZðsÞ ¼ 0:02s. Therefore, the equivalent impedance

of the network as seen from the source is

ZðsÞ ¼ 10þ
ð0:02sÞð5Þ

0:02sþ 5
¼ 15

sþ 166:7

sþ 250

� �

and the s-domain equivalent circuit is as shown in Fig. 16-14. The current is then

I1ðsÞ ¼
VðsÞ

ZðsÞ
¼

100

s

sþ 250

15ðsþ 166:7Þ

� �
¼ 6:67

sþ 250

sðsþ 166:7Þ

� �

This expression is identical with (37) of Problem 16.14, and so the same time function i1 is obtained.

16.17 In the two-mesh network shown in Fig. 16-15 there is no initial charge on the capacitor. Find the
loop currents i1 and i2 which result when the switch is closed at t ¼ 0.

The time-domain equations for the circuit are

10i1 þ
1

0:2

ðt
0

i1 d� þ 10i2 ¼ 50 50i2 þ 10i1 ¼ 50

The corresponding s-domain equations are

10I1ðsÞ þ
1

0:2s
I1ðsÞ þ 10I2ðsÞ ¼

50

s
50I2ðsÞ þ 10I1ðsÞ ¼

50

s

I1ðsÞ ¼
5

sþ 0:625
I2ðsÞ ¼

1

s
�

1

sþ 0:625
Solving,
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which invert to

i1 ¼ 5e�0:625t
ðAÞ i2 ¼ 1� e�0:625t

ðAÞ

16.18 Referring to Problem 16.17, obtain the equivalent impedance of the s-domain network and
determine the total current and the branch currents using the current-division rule.

The s-domain impedance as seen by the voltage source is

ZðsÞ ¼ 10þ
40ð1=0:2sÞ

40þ 1=0:2s
¼

80sþ 50

8sþ 1
¼ 10

sþ 5=8

sþ 1=8

� �
ð38Þ

The equivalent circuit is shown in Fig. 16-16; the resulting current is

IðsÞ ¼
VðsÞ

ZðsÞ
¼ 5

sþ 1=8

sðsþ 5=8Þ
ð39Þ

Expanding IðsÞ in partial fractions,

IðsÞ ¼
1

s
þ

4

sþ 5=8
from which i ¼ 1þ 4e�5t=8

ðAÞ

Now the branch currents I1ðsÞ and I2ðsÞ can be obtained by the current-division rule. Referring to Fig.

16-17, we have

I1ðsÞ ¼ IðsÞ
40

40þ 1=0:2s

� �
¼

5

sþ 5=8
and i1 ¼ 5e�0:625t

ðAÞ

I2ðsÞ ¼ IðsÞ
1=0:2s

40þ 1=0:2s

� �
¼

1

s
�

1

sþ 5=8
and i2 ¼ 1� e�0:625t

ðAÞ

16.19 In the network of Fig. 16-18 the switch is closed at t ¼ 0 and there is no initial charge on either of
the capacitors. Find the resulting current i.
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The network has an equivalent impedance in the s-domain

ZðsÞ ¼ 10þ
ð5þ 1=sÞð5þ 1=0:5sÞ

10þ 1=sþ 1=0:5s
¼

125s2 þ 45sþ 2

sð10sþ 3Þ

Hence, the current is

IðsÞ ¼
VðsÞ

ZðsÞ
¼

50

s

sð10sþ 3Þ

ð125s2 þ 45sþ 2Þ
¼

4ðsþ 0:3Þ

ðsþ 0:308Þðsþ 0:052Þ

Expanding IðsÞ in partial fractions,

IðsÞ ¼
1=8

sþ 0:308
þ

31=8

sþ 0:052
and i ¼

1

8
e�0:308t

þ
31

8
e�0:052t

ðaÞ

16.20 Apply the initial- and final-value theorems to the s-domain current of Problem 16.19.

ið0þÞ ¼ lim
s!1

½sIðsÞ� ¼ lim
s!1

1

8

s

sþ 0:308

� �
þ
31

8

s

sþ 0:052

� �� �
¼ 4 A

ið1Þ ¼ lim
s!0

½sIðsÞ� ¼ lim
s!0

1

8

s

sþ 0:308

� �
þ
31

8

s

sþ 0:052

� �� �
¼ 0

Examination of Fig. 16-18 shows that initially the total circuit resistance is R ¼ 10þ 5ð5Þ=10 ¼ 12:5 �, and

thus, ið0þÞ ¼ 50=12:5 ¼ 4 A. Then, in the steady state, both capacitors are charged to 50V and the current

is zero.

Supplementary Problems

16.21 Find the Laplace transform of each of the following functions.

ðaÞ f ðtÞ ¼ At ðcÞ f ðtÞ ¼ e�at sin!t ðeÞ f ðtÞ ¼ cosh!t

ðbÞ f ðtÞ ¼ te�at
ðdÞ f ðtÞ ¼ sinh!t ð f Þ f ðtÞ ¼ e�at sinh!t

Ans: ðaÞ�ðeÞ See Table 16-1

ð f Þ
!

ðsþ aÞ2 � !2

16.22 Find the inverse Laplace transform of each of the following functions.

ðaÞ FðsÞ ¼
s

ðsþ 2Þðsþ 1Þ
ðdÞ FðsÞ ¼

3

sðs2 þ 6sþ 9Þ
ðgÞ FðsÞ ¼

2s

ðs2 þ 4Þðsþ 5Þ

ðbÞ FðsÞ ¼
1

s2 þ 7sþ 12
ðeÞ FðsÞ ¼

sþ 5

s2 þ 2sþ 5

ðcÞ FðsÞ ¼
5s

s2 þ 3sþ 2
ð f Þ FðsÞ ¼

2sþ 4

s2 þ 4sþ 13

Ans: ðaÞ 2e�2t
� e�t

ðdÞ 1
3
� 1

3
e�3t

� te�3t
ðgÞ 10

29
cos 2tþ 4

29
sin 2t� 10

29
e�5t

ðbÞ e�3t
� e�4t

ðeÞ e�t
ðcos 2tþ 2 sin 2tÞ

ðcÞ 10e�2t
� 5e�t

ð f Þ 2e�2t cos 3t

16.23 A series RL circuit, with R ¼ 10 � and L ¼ 0:2 H, has a constant voltage V ¼ 50 V applied at t ¼ 0. Find

the resulting current using the Laplace transform method. Ans: i ¼ 5� 5e�50t
ðAÞ

16.24 In the series RL circuit of Fig. 16-19, the switch is in position 1 long enough to establish the steady state and

is switched to position 2 at t ¼ 0. Find the current. Ans: i ¼ 5e�50t
ðAÞ
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16.25 In the circuit shown in Fig. 16-20, switch 1 is closed at t ¼ 0 and then, at t ¼ t 0 ¼ 4 ms, switch 2 is opened.

Find the current in the intervals 0 < t < t 0 and t > t 0.

Ans: i ¼ 2ð1� e�500t
Þ A; i ¼ 1:06e�1500ðt�t 0 Þ

þ 0:667 ðA)

16.26 In the series RL circuit shown in Fig. 16-21, the switch is closed on position 1 at t ¼ 0 and then, at

t ¼ t 0 ¼ 50 ms, it is moved to position 2. Find the current in the intervals 0 < t < t 0 and t > t 0.

Ans: i ¼ 0:1ð1� e�2000t
Þ ðAÞ; i ¼ 0:06e�2000ðt�t 0Þ

� 0:05 ðAÞ

16.27 A series RC circuit, with R ¼ 10 � and C ¼ 4 mF, has an initial charge Q0 ¼ 800 mC on the capacitor at the

time the switch is closed, applying a constant-voltage source V ¼ 100 V. Find the resulting current transient

if the charge is (a) of the same polarity as that deposited by the source, and (b) of the opposite polarity.

Ans: ðaÞ i ¼ �10e�25�103t
ðAÞ; ðbÞ i ¼ 30e�25�103t

ðAÞ

16.28 A series RC circuit, with R ¼ 1 k� and C ¼ 20 mF, has an initial charge Q0 on the capacitor at the time the

switch is closed, applying a constant-voltage source V ¼ 50 V. If the resulting current is i ¼ 0:075e�50t (A),

find the charge Q0 and its polarity.

Ans: 500 mC, opposite polarity to that deposited by source

16.29 In the RC circuit shown in Fig. 16-22, the switch is closed on position 1 at t ¼ 0 and then, at t ¼ t 0 ¼ � (the
time constant) is moved to position 2. Find the transient current in the intervals 0 < t < t 0 and t > t 0.

Ans: i ¼ 0:5e�200t
ðAÞ; i ¼ �:0516e�200ðt�t 0Þ

ðAÞ
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16.30 In the circuit of Fig. 16-23, Q0 ¼ 300 mC at the time the switch is closed. Find the resulting current

transient. Ans: i ¼ 2:5e�2:5�104t (A)

16.31 In the circuit shown in Fig. 16-24, the capacitor has an initial charge Q0 ¼ 25 mC and the sinusoidal voltage

source is v ¼ 100 sin ð1000tþ �Þ (V). Find the resulting current if the switch is closed at a time correspond-

ing to � ¼ 308. Ans: i ¼ 0:1535e�4000t
þ 0:0484 sin ð1000tþ 1068Þ (A)

16.32 A series RLC circuit, with R ¼ 5 �, L ¼ 0:1 H, and C ¼ 500 mF, has a constant voltage V ¼ 10 V applied at

t ¼ 0. Find the resulting current. Ans: i ¼ 0:72e�25t sin 139t (A)

16.33 In the series RLC circuit of Fig. 16-25, the capacitor has an initial charge Q0 ¼ 1 mC and the switch is in

position 1 long enough to establish the steady state. Find the transient current which results when the

switch is moved from position 1 to 2 at t ¼ 0. Ans: i ¼ e�25t
ð2 cos 222t� 0:45 sin 222tÞ (A)

16.34 A series RLC circuit, with R ¼ 5 �, L ¼ 0:2 H, and C ¼ 1 F has a voltage source v ¼ 10e�100t (V) applied at

t ¼ 0. Find the resulting current.

Ans: i ¼ �0:666e�100t
þ 0:670e�24:8t

� 0:004e�0:2t (A)

16.35 A series RLC circuit, with R ¼ 200 �, L ¼ 0:5 H, and C ¼ 100 mF has a sinusoidal voltage source

v ¼ 300 sin ð500tþ �Þ (V). Find the resulting current if the switch is closed at a time corresponding to

� ¼ 308. Ans: i ¼ 0:517e�341:4t
� 0:197e�58:6t

þ 0:983 sin ð500t� 198Þ (A)

16.36 A series RLC circuit, with R ¼ 5 �, L ¼ 0:1 H, and C ¼ 500 mF has a sinusoidal voltage source

v ¼ 100 sin 250t (V). Find the resulting current if the switch is closed at t ¼ 0.

Ans: i ¼ e�25t
ð5:42 cos 139tþ 1:89 sin 139tÞ þ 5:65 sinð250t� 73:68Þ (A)

16.37 In the two-mesh network of Fig. 16-26, the currents are selected as shown in the diagram. Write the time-

domain equations, transform them into the corresponding s-domain equations, and obtain the currents i1
and i2. Ans: i1 ¼ 2:5ð1þ e�105t

Þ ðAÞ, i2 ¼ 5e�105t (A)
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16.38 For the two-mesh network shown in Fig. 16-27, find the currents i1 and i2 which result when the switch is

closed at t ¼ 0. Ans: i1 ¼ 0:101e�100t
þ 9:899e�9950t (A), i2 ¼ �5:05e�100t

þ 5þ 0:05e�9950t (A)

16.39 In the network shown in Fig. 16-28, the 100-V source passes a continuous current in the first loop while the

switch is open. Find the currents after the switch is closed at t ¼ 0.

Ans: i1 ¼ 1:67e�6:67t
þ 5 (A), i2 ¼ 0:555e�6:67t

þ 5 (A)

16.40 The two-mesh network shown in Fig. 16-29 contains a sinusoidal voltage source v ¼ 100 sin ð200tþ �Þ (V).
The switch is closed at an instant when the voltage is increasing at its maximum rate. Find the resulting

mesh currents, with directions as shown in the diagram.

Ans: i1 ¼ 3:01e�100t
þ 8:96 sin ð200t� 63:48Þ (A), i2 ¼ 1:505e�100t

þ 4:48 sin ð200t� 63:48Þ (A)

16.41 In the circuit of Fig. 16-30, vð0Þ ¼ 1:2 V and ið0Þ ¼ 0:4 A. Find v and i for t > 0.

Ans: v ¼ 1:3334e�t
� 0:1334e�2:5t; t > 0

i ¼ 0:66667e�t
� 0:2667e�2:5t; t > 0

16.42 In the circuit of Fig. 16-31, igðtÞ ¼ cos tuðtÞ. Find v and i.

Ans: v ¼ 0:8305 cos ðt� 48:48Þ; t > 0

i ¼ 0:2626 cos ðt� 66:88Þ; t > 0
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16.43 In the circuit of Fig. 16-31, ig ¼
1 A t < 0
cos t t > 0

�
. Find v and i for t > 0 and compare with results of Problems

16.41 and 16.42.

Ans: v ¼ 0:6667e�t
� 0:0185e�2:5t

þ 0:8305 cos ðt� 48:48Þ; t > 0

i ¼ 0:3332e�t
� 0:0368e�2:5t

þ 0:2626 cos ðt� 66:88Þ; t > 0

16.44 Find capacitor voltage vðtÞ in the circuit shown in Fig. 16-32.

Ans: v ¼ 20� 10:21e�4t cos ð4:9tþ 11:538Þ; t > 0

16.45 Find inductor current iðtÞ in the circuit shown in Fig. 16-32.

Ans: i ¼ 10� 6:45e�4t cos ð4:9t� 39:28Þ; t > 0
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420

Fourier Method of
Waveform Analysis

17.1 INTRODUCTION

In the circuits examined previously, the response was obtained for excitations having constant,

sinusoidal, or exponential form. In such cases a single expression described the forcing function for

all time; for instance, v ¼ constant or v ¼ V sin!t, as shown in Fig. 17-1(a) and (b).

Certain periodic waveforms, of which the sawtooth in Fig. 17-1(c) is an example, can be only locally

defined by single functions. Thus, the sawtooth is expressed by f ðtÞ ¼ ðV=TÞt in the interval 0 < t < T

and by f ðtÞ ¼ ðV=TÞðt� TÞ in the interval T < t < 2T . While such piecemeal expressions describe the

waveform satisfactorily, they do not permit the determination of the circuit response. Now, if a periodic

function can be expressed as the sum of a finite or infinite number of sinusoidal functions, the responses

of linear networks to nonsinusoidal excitations can be determined by applying the superposition

theorem. The Fourier method provides the means for solving this type of problem.

In this chapter we develop tools and conditions for such expansions. Periodic waveforms may be

expressed in the form of Fourier series. Nonperiodic waveforms may be expressed by their Fourier

transforms. However, a piece of a nonperiodic waveform specified over a finite time period may also be

expressed by a Fourier series valid within that time period. Because of this, the Fourier series analysis is

the main concern of this chapter.

Fig. 17-1
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17.2 TRIGONOMETRIC FOURIER SERIES

Any periodic waveform—that is, one for which f ðtÞ ¼ f ðtþ TÞ—can be expressed by a Fourier series
provided that

(1) If it is discontinuous, there are only a finite number of discontinuities in the period T ;

(2) It has a finite average value over the period T ;

(3) It has a finite number of positive and negative maxima in the period T .

When these Dirichlet conditions are satisfied, the Fourier series exists and can be written in trigonometric
form:

f ðtÞ ¼ 1
2
a0 þ a1 cos!tþ a2 cos 2tþ a3 cos 3!tþ � � �

þ b1 sin!tþ b2 sin 2!tþ b3 sin 3!tþ � � � ð1Þ

The Fourier coefficients, a’s and b’s, are determined for a given waveform by the evaluation
integrals. We obtain the cosine coefficient evaluation integral by multiplying both sides of (1) by
cos n!t and integrating over a full period. The period of the fundamental, 2�=!, is the period of the
series since each term in the series has a frequency which is an integral multiple of the fundamental
frequency.

ð2�=!
0

f ðtÞ cos n!t dt ¼

ð2�=!
0

1

2
a0 cos n!t dtþ

ð2�=!
0

a1 cos!t cos n!t dtþ � � �

þ

ð2�=!
0

an cos
2 n!t dtþ � � � þ

ð2�=!
0

b1 sin!t cos n!t dt

þ

ð2�=!
0

b2 sin 2!t cos n! dtþ � � � ð2Þ

The definite integrals on the right side of (2) are all zero except that involving cos2 n!t, which has the
value ð�=!Þan. Then

an ¼
!

�

ð2�=!
0

f ðtÞ cos n!t dt ¼
2

T

ðT
0

f ðtÞ cos
2�nt

T
dt ð3Þ

Multiplying (1) by sin n!t and integrating as above results in the sine coefficient evaluation integral.

bn ¼
!

�

ð2�=!
0

f ðtÞ sin n!t dt ¼
2

T

ðT
0

f ðtÞ sin
2�nt

T
dt ð4Þ

An alternate form of the evaluation integrals with the variable  ¼ !t and the corresponding period
2� radians is

an ¼
1

�

ð2�
0

Fð Þ cos n d ð5Þ

bn ¼
1

�

ð2�
0

Fð Þ sin n d ð6Þ

where Fð Þ ¼ f ð =!Þ. The integrations can be carried out from �T=2 to T=2, �� to þ�, or over any
other full period that might simplify the calculation. The constant a0 is obtained from (3) or (5) with
n ¼ 0; however, since 1

2
a0 is the average value of the function, it can frequently be determined by

inspection of the waveform. The series with coefficients obtained from the above evaluation integrals
converges uniformly to the function at all points of continuity and converges to the mean value at points
of discontinuity.
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EXAMPLE 17.1 Find the Fourier series for the waveform shown in Fig. 17-2.

The waveform is periodic, of period 2�=! in t or 2� in !t. It is continuous for 0 < !t < 2� and given therein

by f ðtÞ ¼ ð10=2�Þ!t, with discontinuities at !t ¼ n2� where n ¼ 0; 1; 2; . . . . The Dirichlet conditions are satisfied.

The average value of the function is 5, by inspection, and thus, 1
2
a0 ¼ 5. For n > 0, (5) gives

an ¼
1

�

ð2�
0

10

2�

� �
!t cos n!t dð!tÞ ¼

10

2�2
!t

n
sin n!tþ

1

n2
cos n!t

� �2�
0

¼
10

2�2n2
ðcos n2�� cos 0Þ ¼ 0

Thus, the series contains no cosine terms. Using (6), we obtain

bn ¼
1

�

ð2�
0

10

2�

� �
!t sin n!t dð!tÞ ¼

10

2�2
�
!t

n
cos n!tþ

1

n2
sin n!t

� �2�
0

¼ �
10

�n

Using these sine-term coefficients and the average term, the series is

f ðtÞ ¼ 5�
10

�
sin!t�

10

2�
sin 2!t�

10

3�
sin 3!t� � � � ¼ 5�

10

�

X1
n¼1

sin n!t

n

The sine and cosine terms of like frequency can be combined as a single sine or cosine term with a

phase angle. Two alternate forms of the trigonometric series result.

f ðtÞ ¼ 1
2
a0 þ

P
cn cos ðn!t� �nÞ ð7Þ

and f ðtÞ ¼ 1
2
a0 þ

X
cn sin ðn!tþ �nÞ (8)

where cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

p
, �n ¼ tan�1

ðbn=anÞ, and �n ¼ tan�1
ðan=bnÞ. In (7) and (8), cn is the harmonic

amplitude, and the harmonic phase angles are �n or �n.

17.3 EXPONENTIAL FOURIER SERIES

A periodic waveform f ðtÞ satisfying the Dirichlet conditions can also be written as an exponential

Fourier series, which is a variation of the trigonometric series. The exponential series is

f ðtÞ ¼
X1

n¼�1

Ane
jn!t

ð9Þ

To obtain the evaluation integral for the An coefficients, we multiply (9) on both sides by e�jn!t and

integrate over the full period:
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ð2�
0

f ðtÞe�jn!t dð!tÞ ¼ � � � þ

ð2�
0

A�2e
�j2!te�jn!t dð!tÞ þ

ð2�
0

A�1e
�j!te�jn!t dð!tÞ

þ

ð2�
0

A0e
�jn!t dð!tÞ þ

ð2�
0

A1e
j!te�jn!t dð!tÞ þ � � �

þ

ð2�
0

Ane
jn!te�jn!t dð!tÞ þ � � � ð10Þ

The definite integrals on the right side of (10) are all zero except
Ð 2�
0 An dð!tÞ, which has the value 2�An.

Then

An ¼
1

2�

ð2�
0

f ðtÞe�jn!t dð!tÞ or An ¼
1

T

ðT
0

f ðtÞe�j2�nt=T dt ð11Þ

Just as with the a
n
and bn evaluation integrals, the limits of integration in (11) may be the endpoints

of any convenient full period and not necessarily 0 to 2� or 0 to T . Note that, f ðtÞ being real, A�n ¼ A
�
n,

so that only positive n needed to be considered in (11). Furthermore, we have

an ¼ 2ReAn bn ¼ �2 ImAn ð12Þ

EXAMPLE 17.2 Derive the exponential series (9) from the trigonometric series (1).
Replace the sine and cosine terms in (1) by their complex exponential equivalents.

sin n!t ¼
e jn!t � e�jn!t

2j
cos n!t ¼

e jn!t þ e�jn!t

2

Arranging the exponential terms in order of increasing n from �1 to þ1, we obtain the infinite sum (9) where

A0 ¼ a0=2 and

An ¼
1
2
ðan � jbnÞ A�n ¼

1
2
ðan þ jbnÞ for n ¼ 1; 2; 3; . . .

EXAMPLE 17.3 Find the exponential Fourier series for the waveform shown in Fig. 17-2. Using the coefficients

of this exponential series, obtain an and bn of the trigonometric series and compare with Example 17.1.

In the interval 0 < !t < 2� the function is given by f ðtÞ ¼ ð10=2�Þ!t. By inspection, the average value of the

function is A0 ¼ 5. Substituting f ðtÞ in (11), we obtain the coefficients An.

An ¼
1

2�

ð2�
0

10

2�

� �
!te�jn!t dð!tÞ ¼

10

ð2�Þ2
e�jn!t

ð�jnÞ2
ð�jn!t� 1Þ

� �2�
0

¼ j
10

2�n

Inserting the coefficients An in (12), the exponential form of the Fourier series for the given waveform is

f ðtÞ ¼ � � � � j
10

4�
e�j2!t

� j
10

2�
e�j!t

þ 5þ j
10

2�
e j!t þ j

10

4�
e j2!t þ � � � ð13Þ

The trigonometric series coefficients are, by (12),

an ¼ 0 bn ¼ �
10

�n

f ðtÞ ¼ 5�
10

�
sin!t�

10

2�
sin 2!t�

10

3�
sin 3!t� � � �and so

which is the same as in Example 17.1.

17.4 WAVEFORM SYMMETRY

The series obtained in Example 17.1 contained only sine terms in addition to a constant term. Other
waveforms will have only cosine terms; and sometimes only odd harmonics are present in the series,
whether the series contains sine, cosine, or both types of terms. This is the result of certain types of
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symmetry exhibited by the waveform. Knowledge of such symmetry results in reduced calculations in
determining the Fourier series. For this reason the following definitions are important.

1. A function f ðxÞ is said to be even if f ðxÞ ¼ f ð�xÞ.

The function f ðxÞ ¼ 2þ x2 þ x4 is an example of even functions since the functional values for x and
�x are equal. The cosine is an even function, since it can be expressed as the power series

cos x ¼ 1�
x2

2!
þ
x4

4!
�
x6

6!
þ
x8

8!
� � � �

The sum or product of two or more even functions is an even function, and with the addition of a
constant the even nature of the function is still preserved.

In Fig. 17-3, the waveforms shown represent even functions of x. They are symmetrical with respect
to the vertical axis, as indicated by the construction in Fig. 17-3(a).

2. A function f ðxÞ is said to be odd if f ðxÞ ¼ �f ð�xÞ.

The function f ðxÞ ¼ xþ x3 þ x5 is an example of odd functions since the values of the function for x
and �x are of opposite sign. The sine is an odd function, since it can be expressed as the power series

sin x ¼ x�
x3

3!
þ
x5

5!
�
x7

7!
þ
x9

9!
� � � �

The sum of two or more odd functions is an odd function, but the addition of a constant removes
the odd nature of the function. The product of two odd functions is an even function.

The waveforms shown in Fig. 17-4 represent odd functions of x. They are symmetrical with respect
to the origin, as indicated by the construction in Fig. 17-4(a).
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3. A periodic function f ðxÞ is said to have half-wave symmetry if f ðxÞ ¼ �f ðxþ T=2Þ where T is the

period. Two waveforms with half-wave symmetry are shown in Fig. 17-5.

When the type of symmetry of a waveform is established, the following conclusions are reached. If

the waveform is even, all terms of its Fourier series are cosine terms, including a constant if the wave-

form has a nonzero average value. Hence, there is no need of evaluating the integral for the coefficients

bn, since no sine terms can be present. If the waveform is odd, the series contains only sine terms. The

wave may be odd only after its average value is subtracted, in which case its Fourier representation will

simply contain that constant and a series of sine terms. If the waveform has half-wave symmetry, only

odd harmonics are present in the series. This series will contain both sine and cosine terms unless the

function is also odd or even. In any case, an and bn are equal to zero for n ¼ 2; 4; 6; . . . for any

waveform with half-wave symmetry. Half-wave symmetry, too, may be present only after subtraction

of the average value.

Certain waveforms can be odd or even, depending upon the location of the vertical axis. The square
wave of Fig. 17-6(a) meets the condition of an even function: f ðxÞ ¼ f ð�xÞ. A shift of the vertical axis to
the position shown in Fig. 17-6(b) produces an odd function f ðxÞ ¼ �f ð�xÞ. With the vertical axis placed
at any points other than those shown in Fig. 17-6, the square wave is neither even nor odd, and its series
contains both sine and cosine terms. Thus, in the analysis of periodic functions, the vertical axis should be
conveniently chosen to result in either an even or odd function, if the type of waveformmakes this possible.

The shifting of the horizontal axis may simplify the series representation of the function. As an
example, the waveform of Fig. 17-7(a) does not meet the requirements of an odd function until the
average value is removed as shown in Fig. 17-7(b). Thus, its series will contain a constant term and only
sine terms.

The preceding symmetry considerations can be used to check the coefficients of the exponential
Fourier series. An even waveform contains only cosine terms in its trigonometric series, and therefore
the exponential Fourier coefficients must be pure real numbers. Similarly, an odd function whose
trigonometric series consists of sine terms has pure imaginary coefficients in its exponential series.

17.5 LINE SPECTRUM

A plot showing each of the harmonic amplitudes in the wave is called the line spectrum. The lines
decrease rapidly for waves with rapidly convergent series. Waves with discontinuities, such as the
sawtooth and square wave, have spectra with slowly decreasing amplitudes, since their series have strong
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high harmonics. Their 10th harmonics will often have amplitudes of significant value as compared to
the fundamental. In contrast, the series for waveforms without discontinuities and with a generally
smooth appearance will converge rapidly, and only a few terms are required to generate the wave. Such
rapid convergence will be evident from the line spectrum where the harmonic amplitudes decrease
rapidly, so that any above the 5th or 6th are insignificant.

The harmonic content and the line spectrum of a wave are part of the very nature of that wave and
never change, regardless of the method of analysis. Shifting the origin gives the trigonometric series a
completely different appearance, and the exponential series coefficients also change greatly. However,
the same harmonics always appear in the series, and their amplitudes,

c0 ¼ j 1
2
a0j and cn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

p
ðn � 1Þ ð14Þ

or c0 ¼ jA0j and cn ¼ jAnj þ jA�nj ¼ 2jAnj ðn � 1Þ (15)

remain the same. Note that when the exponential form is used, the amplitude of the nth harmonic
combines the contributions of frequencies þn! and �n!.

EXAMPLE 17.4 In Fig. 17-8, the sawtooth wave of Example 17.1 and its line spectrum are shown. Since there

were only sine terms in the trigonometric series, the harmonic amplitudes are given directly by 1
2
a0 and jbnj. The

same line spectrum is obtained from the exponential Fourier series, (13).

17.6 WAVEFORM SYNTHESIS

Synthesis is a combination of parts so as to form a whole. Fourier synthesis is the recombination of
the terms of the trigonometric series, usually the first four or five, to produce the original wave. Often it
is only after synthesizing a wave that the student is convinced that the Fourier series does in fact
represent the periodic wave for which it was obtained.

The trigonometric series for the sawtooth wave of Fig. 17-8 is

f ðtÞ ¼ 5�
10

�
sin!t�

10

2�
sin 2!t�

10

3�
sin 3!t� � � �

These four terms are plotted and added in Fig. 17-9. Although the result is not a perfect sawtooth wave,
it appears that with more terms included the sketch will more nearly resemble a sawtooth. Since this
wave has discontinuities, its series is not rapidly convergent, and consequently, the synthesis using only
four terms does not produce a very good result. The next term, at the frequency 4!, has amplitude 10/
4�, which is certainly significant compared to the fundamental amplitude, 10/�. As each term is added
in the synthesis, the irregularities of the resultant are reduced and the approximation to the original wave
is improved. This is what was meant when we said earlier that the series converges to the function at all
points of continuity and to the mean value at points of discontinuity. In Fig. 17-9, at 0 and 2� it is clear
that a value of 5 will remain, since all sine terms are zero at these points. These are the points of
discontinuity; and the value of the function when they are approached from the left is 10, and from the
right 0, with the mean value 5.
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17.7 EFFECTIVE VALUES AND POWER

The effective or rms value of the function

f ðtÞ ¼ 1
2
a0 þ a1 cos!tþ a2 cos 2!tþ � � � þ b1 sin!tþ b2 sin 2!tþ � � �

is Frms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1
2
a0Þ

2
þ 1

2
a21 þ

1
2
a22 þ � � � þ 1

2
b21 þ

1
2
b22 þ � � �

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20 þ

1
2
c21 þ

1
2
c22 þ

1
2
c33 þ � � �

q
(16)

where (14) has been used.

Considering a linear network with an applied voltage which is periodic, we would expect that the
resulting current would contain the same harmonic terms as the voltage, but with harmonic amplitudes
of different relative magnitude, since the impedance varies with n!. It is possible that some harmonics
would not appear in the current; for example, in a pure LC parallel circuit, one of the harmonic
frequencies might coincide with the resonant frequency, making the impedance at that frequency
infinite. In general, we may write

v ¼ V0 þ
X

Vn sin ðn!tþ �nÞ and i ¼ I0 þ
X

In sin ðn!tþ  nÞ ð17Þ

with corresponding effective values of

Vrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

0 þ
1
2
V2

1 þ
1
2
V2

2 þ � � �

q
and Irms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I20 þ 1

2
I21 þ 1

2
I22 þ � � �

q
ð18Þ

The average power P follows from integration of the instantaneous power, which is given by the
product of v and i:

p ¼ vi ¼ V0 þ
X

Vn sin ðn!tþ �nÞ
h i

I0 þ
X

In sin ðn!tþ  nÞ

h i
ð19Þ

Since v and i both have period T , their product must have an integral number of its periods in T .
(Recall that for a single sine wave of applied voltage, the product vi has a period half that of the voltage
wave.) The average may therefore be calculated over one period of the voltage wave:

P ¼
1

T

ðT
0

V0 þ
X

Vn sin ðn!tþ �nÞ
h i

I0 þ
X

In sin ðn!tþ  nÞ

h i
dt ð20Þ

Examination of the possible terms in the product of the two infinite series shows them to be of the
following types: the product of two constants, the product of a constant and a sine function, the product
of two sine functions of different frequencies, and sine functions squared. After integration, the product
of the two constants is still V0I0 and the sine functions squared with the limits applied appear as
ðVnIn=2Þ cos ð�n �  nÞ; all other products upon integration over the period T are zero. Then the average
power is

P ¼ V0I0 þ
1
2
V1I1 cos �1 þ

1
2
V2I2 cos �2 þ

1
2
V3I3 cos �3 þ � � � ð21Þ
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where �n ¼ �n �  n is the angle on the equivalent impedance of the network at the angular frequency n!,
and Vn and In are the maximum values of the respective sine functions.

In the special case of a single-frequency sinusoidal voltage, V0 ¼ V2 ¼ V3 ¼ � � � ¼ 0, and (21)
reduces to the familiar

P ¼ 1
2
V1I1 cos �1 ¼ VeffIeff cos �

Compare Section 10.2. Also, for a dc voltage, V1 ¼ V2 ¼ V3 ¼ � � � ¼ 0, and (21) becomes

P ¼ V0I0 ¼ VI

Thus, (21) is quite general. Note that on the right-hand side there is no term that involves voltage and
current of different frequencies. In regard to power, then, each harmonic acts independently, and

P ¼ P0 þ P1 þ P2 þ � � �

17.8 APPLICATIONS IN CIRCUIT ANALYSIS

It has already been suggested above that we could apply the terms of a voltage series to a linear
network and obtain the corresponding harmonic terms of the current series. This result is obtained by
superposition. Thus we consider each term of the Fourier series representing the voltage as a single
source, as shown in Fig. 17.10. Now the equivalent impedance of the network at each harmonic
frequency n! is used to compute the current at that harmonic. The sum of these individual responses
is the total response i, in series form, to the applied voltage.

EXAMPLE 17.5 A series RL circuit in which R ¼ 5 � and L ¼ 20 mH (Fig. 17-11) has an applied voltage

v ¼ 100þ 50 sin!tþ 25 sin 3!t (V), with ! ¼ 500 rad/s. Find the current and the average power.

Compute the equivalent impedance of the circuit at each frequency found in the voltage function. Then obtain

the respective currents.

At ! ¼ 0, Z0 ¼ R ¼ 5 � and

I0 ¼
V0

R
¼

100

5
¼ 20 A

At ! ¼ 500 rad/s, Z1 ¼ 5þ jð500Þð20� 10�3
Þ ¼ 5þ j10 ¼ 11:15 63:48 � and

i1 ¼
V1;max

Z1

sinð!t� �1Þ ¼
50

11:15
sinð!t� 63:48Þ ¼ 4:48 sinð!t� 63:48Þ ðAÞ

At 3! ¼ 1500 rad/s, Z3 ¼ 5þ j30 ¼ 30:4 80:548 � and

i3 ¼
V3;max

Z3

sin ð3!t� �3Þ ¼
25

30:4
sin ð3!t� 80:548Þ ¼ 0:823 sin ð3!t�80:548Þ ðAÞ

The sum of the harmonic currents is the required total response; it is a Fourier series of the type (8).

i ¼ 20þ 4:48 sin ð!t� 63:48Þ þ 0:823 sin ð3!t� 80:548Þ ðAÞ

This current has the effective value

Ieff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
202 þ ð4:482=2Þ þ ð0:8232=2Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
410:6

p
¼ 20:25 A

which results in a power in the 5-� resistor of

P ¼ I2effR ¼ ð410:6Þ5 ¼ 2053 W

As a check, we compute the total average power by calculating first the power contributed by each harmonic

and then adding the results.

At ! ¼ 0: P0 ¼ V0I0 ¼ 100ð20Þ ¼ 2000 W

At ! ¼ 500 rad/s: P1 ¼
1
2
V1I1 cos �1 ¼

1
2
ð50Þð4:48Þ cos 63:48 ¼ 50:1 W

At 3! ¼ 1500 rad/s: P3 ¼
1
2
V3I3 cos �3 ¼

1
2
ð25Þð0:823Þ cos 80:548 ¼ 1:69 W

Then, P ¼ 2000þ 50:1þ 1:69 ¼ 2052 W
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Another Method

The Fourier series expression for the voltage across the resistor is

vR ¼ Ri ¼ 100þ 22:4 sin ð!t� 63:48Þ þ 4:11 sin ð3!t� 80:548Þ ðVÞ

VReff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1002 þ

1

2
ð22:4Þ2 þ

1

2
ð4:11Þ2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
10 259

p
¼ 101:3 Vand

Then the power delivered by the source is P ¼ V2
Reff=R ¼ ð10 259Þ=5 ¼ 2052 W.

In Example 17.5 the driving voltage was given as a trigonometric Fourier series in t, and the
computations were in the time domain. (The complex impedance was used only as a shortcut; Zn

and �n could have been obtained directly from R, L, and n!). If, instead, the voltage is represented by an
exponential Fourier series,

vðtÞ ¼
Xþ1

�1

Vne
jn!t

then we have to do with a superposition of phasors Vn (rotating counterclockwise if n > 0, clockwise if
n < 0), and so frequency-domain methods are called for. This is illustrated in Example 17.6.

EXAMPLE 17.6 A voltage represented by the triangular wave shown in Fig. 17-12 is applied to a pure capacitor C.

Determine the resulting current.

In the interval �� < !t < 0 the voltage function is v ¼ Vmax þ ð27Vmax=�Þ!t; and for 0 < !t < �,
v ¼ Vmax � ð2Vmax=�Þ!t. Then the coefficients of the exponential series are determined by the evaluation integral

Vn ¼
1

2�

ð0
��

½Vmax þ ð2Vmax=�Þ!t�e
�jn!t dð!tÞ þ

1

2�

ð�
0

½Vmax � ð2Vmax=�Þ!t�e
�jn!t dð!tÞ

from which Vn ¼ 4Vmax=�
2n2 for odd n, and Vn ¼ 0 for even n.

The phasor current produced by Vn (n odd) is
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In ¼
Vn

Zn

¼
4Vmax=�

2n2

1=jn!C
¼ j

4Vmax!C

�2n

with an implicit time factor e jn!t. The resultant current is therefore

iðtÞ ¼
Xþ1

�1

Ine
jn!t

¼ j
4Vmax!C

�2

Xþ1

�1

e jn!t

n

where the summation is over odd n only.

The series could be converted to the trigonometric form and then synthesized to show the current waveform.

However, this series is of the same form as the result in Problem 17.8, where the coefficients are An ¼ �jð2V=n�Þ for
odd n only. The sign here is negative, indicating that our current wave is the negative of the square wave of Problem

17.8 and has a peak value 2Vmax!C=�.

17.9 FOURIER TRANSFORM OF NONPERIODIC WAVEFORMS

A nonperiod waveform xðtÞ is said to satisfy the Dirichlet conditions if

(a) xðtÞ is absolutely integrable,
Ðþ1

�1
jxðtÞj dt <1, and

(b) the number of maxima and minima and the number of discontinuities of xðtÞ in every finite
interval is finite.

For such a waveform, we can define the Fourier transform Xð f Þ by

Xð f Þ ¼

ð1
�1

xðtÞe�j2�ft dt ð22aÞ

where f is the frequency. The above integral is called the Fourier integral. The time function xðtÞ is
called the inverse Fourier transform of Xð f Þ and is obtained from it by

xðtÞ ¼

ð1
�1

Xð f Þe j2�ft df ð22bÞ

xðtÞ and Xð f Þ form a Fourier transform pair. Instead of f , the angular velocity ! ¼ 2�f may also be
used, in which case, (22a) and (22b) become, respectively,

Xð!Þ ¼

ð1
�1

xðtÞe�j!t dt ð23aÞ

and xðtÞ ¼
1

2�

ð1
�1

Xð!Þe j!t d! (23b)

EXAMPLE 17.7 Find the Fourier transform of xðtÞ ¼ e�atuðtÞ, a > 0. Plot Xð f Þ for �1 < f < þ1.

From (22a), the Fourier transform of xðtÞ is

Xð f Þ ¼

ð1
0

e�ate�j2�ft dt ¼
1

aþ j2�f
ð24Þ

Xð f Þ is a complex function of a real variable. Its magnitude and phase angle, jXð f Þj and Xð f Þ, respectively, shown

in Figs. 17-13(a) and (b), are given by

jXð f Þj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 4�2f 2
p ð25aÞ

and Xð f Þ ¼ � tan�1
ð2�f =aÞ (25b)
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Alternatively, Xð f Þ may be shown by its real and imaginary parts, Re ½Xð f Þ� and Im ½Xð f Þ�, as in Figs. 17-14(a) and

(b).

Re ½Xð f Þ� ¼
a

a2 þ 4�2f 2
ð26aÞ

Im ½Xð f Þ� ¼
�2�f

a2 þ 4�2f 2
ð26bÞ

EXAMPLE 17.8 Find the Fourier transform of the square pulse

xðtÞ ¼
1 for � T < t < T
0 otherwise

�

From (22a),

Xð f Þ ¼

ðT
�T

e�j2�ft dt ¼
1

�j2�f
ej2�f
h iT

�T
¼

sin 2�fT

�f
ð27Þ

Because xðtÞ is even, Xð f Þ is real. The transform pairs are plotted in Figs. 17-15(a) and (b) for T ¼ 1
2
s.

EXAMPLE 17.9 Find the Fourier transform of xðtÞ ¼ eatuð�tÞ; a > 0.

Xð f Þ ¼

ð0
�1

eate�j2�ft dt ¼
1

a� j2�f
ð28Þ
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EXAMPLE 17.10 Find the inverse Fourier transform of Xð f Þ ¼ 2a=ða2 þ 4�2f 2Þ, a > 0.

By partial fraction expansion we have

Xð f Þ ¼
1

aþ j2�f
þ

1

a� j2�f
ð29Þ

The inverse of each term in (29) may be derived from (24) and (28) so that

xðtÞ ¼ e�atuðtÞ þ eatuð�tÞ ¼ e�ajtj for all t

See Fig. 17-16.

17.10 PROPERTIES OF THE FOURIER TRANSFORM

Some properties of the Fourier transform are listed in Table 17-1. Several commonly used trans-
form pairs are given in Table 17-2.

17.11 CONTINUOUS SPECTRUM

jXð f Þj2, as defined in Section 17.9, is called the energy density or the spectrum of the waveform xðtÞ.
Unlike the periodic functions, the energy content of a nonperiodic waveform xðtÞ at each frequency is
zero. However, the energy content within a frequency band from f1 to f2 is
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Table 17-1 Fourier Transform Properties

Time Domain xðtÞ ¼

ð1
�1

Xð f Þe j2�ft dt Frequency Domain Xð f Þ ¼

ð1
�1

xðtÞe�j2�ft dt

1. xðtÞ real Xð f Þ ¼ X�
ð�f Þ

2. xðtÞ even, xðtÞ ¼ xð�tÞ Xð f Þ ¼ Xð�f Þ

3. xðtÞ, odd, xðtÞ ¼ �xð�tÞ Xð f Þ ¼ �Xð�f Þ

4. XðtÞ xð�f Þ

5.
xð0Þ ¼

ð1
�1

Xð f Þ df Xð0Þ ¼

ð1
�1

xðtÞ dt

6. yðtÞ ¼ xðatÞ
Yð f Þ ¼

1

jaj
Xð f =aÞ

7. yðtÞ ¼ txðtÞ
Yð f Þ ¼ �

1

j2�

dXð f Þ

df

8. yðtÞ ¼ xð�tÞ Yð f Þ ¼ Xð�f Þ

9. yðtÞ ¼ xðt� t0Þ Yð f Þ ¼ e�j2�ft0Xð f Þ

Table 17-2 Fourier Transform Pairs

xðtÞ Xð f Þ

1. e�atuðtÞ; a > 0

1

aþ j2�f

2. e�ajtj; a > 0

2a

a2 þ 4�2f 2

3. te�atuðtÞ; a > 0

1

ðaþ j2�f Þ2

4. expð��t2=�2Þ � expð��f 2�2Þ

5.

6.

7. 1 �ð f Þ

8. �ðtÞ 1

9. sin 2�f0t

�ð f � f0Þ � �ð f þ f0Þ

2j

10. cos 2�f0t
�ð f � f0Þ þ �ð f þ f0Þ

2



W ¼ 2

ðf2
f1

jxð f Þj2 df ð30Þ

EXAMPLE 17.11 Find the spectrum of xðtÞ ¼ e�atuðtÞ � eatuð�tÞ, a > 0, shown in Fig. 17-17.

We have xðtÞ ¼ x1ðtÞ � x2ðtÞ. Since x1ðtÞ ¼ e�atuðtÞ and x2ðtÞ ¼ eatuð�tÞ,

X1ð f Þ ¼
1

aþ j2�f
X2ð f Þ ¼

1

a� j2�f

Xð f Þ ¼ X1ð f Þ � X2ð f Þ ¼
�j4�f

a2 þ 4�2f 2
Then

jXð f Þj2 ¼
16�2f 2

ða2 þ 4�2f 2Þ2
from which

EXAMPLE 17.12 Find and compare the energy contents W1 and W2 of y1ðtÞ ¼ e�jatj and

y2ðtÞ ¼ e�atuðtÞ � eatuð�tÞ, a > 0, within the band 0 to 1Hz. Let a ¼ 200.

From Examples 17.10 and 17.11,

jY1ð f Þj
2
¼

4a2

ða2 þ 4�2f 2Þ2
and jY2ð f Þj

2
¼

16�2f 2

ða2 þ 4�2f 2Þ2

Within 0 < f < 1 Hz, the spectra and energies may be approximated by

jY1ð f Þj
2
� 4=a2 ¼ 10�4 J=Hz and W1 ¼ 2ð10�4

Þ J ¼ 200mJ

jY2ð f Þ
2
j � 10�7 f 2 and W2 � 0

The preceding results agree with the observation that most of the energy in y1ðtÞ is near the low-frequency region in

contrast to y2ðtÞ.

Solved Problems

17.1 Find the trigonometric Fourier series for the square wave shown in Fig. 17-18 and plot the line
spectrum.

In the interval 0 < !t < �, f ðtÞ ¼ V; and for � < !t < 2�, f ðtÞ ¼ �V . The average value of the wave is

zero; hence, a0=2 ¼ 0. The cosine coefficients are obtained by writing the evaluation integral with the

functions inserted as follows:
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an ¼
1

�

ð�
0

V cos n!t dð!tÞ þ

ð2�
�

ð�VÞ cos n!t dð!tÞ

� �
¼

V

�

1

n
sin n!t

� ��
0

�
1

n
sin n!t

� �2�
�

( )

¼ 0 for all n

Thus, the series contains no cosine terms. Proceeding with the evaluation integral for the sine terms,

bn ¼
1

�

ð�
0

V sin n!t dð!tÞ þ

ð2�
�

ð�VÞ sin n!t dð!tÞ

� �

¼
V

�
�
1

n
cos n!t

� ��
0

þ
1

n
cos n!t

� �2�
�

( )

¼
V

�n
ð� cos n�þ cos 0þ cos n2�� cos n�Þ ¼

2V

�n
ð1� cos n�Þ

Then bn ¼ 4V=�n for n ¼ 1; 3; 5; . . . ; and bn ¼ 0 for n ¼ 2; 4; 6; . . . . The series for the square wave is

f ðtÞ ¼
4V

�
sin!tþ

4V

3�
sin 3!tþ

4V

5�
sin 5!tþ � � �

The line spectrum for this series is shown in Fig. 17-19. This series contains only odd-harmonic sine

terms, as could have been anticipated by examination of the waveform for symmetry. Since the wave in Fig.

17-18 is odd, its series contains only sine terms; and since it also has half-wave symmetry, only odd

harmonics are present.

17.2 Find the trigonometric Fourier series for the triangular wave shown in Fig. 17-20 and plot the line
spectrum.

The wave is an even function, since f ðtÞ ¼ f ð�tÞ, and if its average value, V=2, is subtracted, it also has

half-wave symmetry, that is, f ðtÞ ¼ �f ðtþ �Þ. For �� < !t < 0, f ðtÞ ¼ V þ ðV=�Þ!t; and for 0 < !t < �,
f ðtÞ ¼ V � ðV=�Þ!t. Since even waveforms have only cosine terms, all bn ¼ 0. For n � 1,

an ¼
1

�

ð0
��

½V þ ðV=�Þ!t� cos n!t dð!tÞ þ
1

�

ð�
0

½V � ðV=�Þ!t� cos n!t dð!tÞ

¼
V

�

ð�
��

cos n!t dð!tÞ þ

ð0
��

!t

�
cos n!t dð!tÞ �

ð�
0

!t

�
cos n!t dð!tÞ

� �

¼
V

�2
1

n2
cos n!tþ

!t

�
sin n!t

� �0
��

�
1

n2
cos n!tþ

!t

n
sin n!t

� ��
0

( )

¼
V

�2n2
½cos 0� cosð�n�Þ � cos n�þ cos 0� ¼

2V

�2n2
ð1� cos n�Þ

As predicted from half-wave symmetry, the series contains only odd terms, since an ¼ 0 for n ¼ 2; 4; 6; . . . .
For n ¼ 1; 3; 5; . . . ; an ¼ 4V=�2n2. Then the required Fourier series is

f ðtÞ ¼
V

2
þ

4V

��2
cos!tþ

4V

ð3�Þ2
cos 3!tþ

4V

ð5�Þ2
cos 5!tþ � � �
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The coefficients decrease as 1=n2, and thus the series converges more rapidly than that of Problem 17.1. This

fact is evident from the line spectrum shown in Fig. 17-21.

17.3 Find the trigonometric Fourier series for the sawtooth wave shown in Fig. 17-22 and plot the line
spectrum.

By inspection, the waveform is odd (and therefore has average value zero). Consequently the series will

contain only sine terms. A single expression, f ðtÞ ¼ ðV=�Þ!t, describes the wave over the period from �� to

þ�, and we will use these limits on our evaluation integral for bn.

bn ¼
1

�

ð�
��

ðV=�Þ!t sin n!t dð!tÞ ¼
V

�2
1

n2
sin n!t�

!t

n
cos n!t

� ��
��

¼ �
2V

n�
ðcos n�Þ

As cos n� is þ1 for even n and �1 for odd n, the signs of the coefficients alternate. The required series is

f ðtÞ ¼
2V

�
fsin!t� 1

2
sin 2!tþ 1

3
sin 3!t� 1

4
sin 4!tþ � � �g

The coefficients decrease as 1=n, and thus the series converges slowly, as shown by the spectrum in Fig. 17-23.

Except for the shift in the origin and the average term, this waveform is the same as in Fig. 17-8; compare the

two spectra.

17.4 Find the trigonometric Fourier series for the waveform shown in Fig. 17-24 and sketch the line
spectrum.

In the interval 0 < !t < �, f ðtÞ ¼ ðV=�Þ!t; and for � < !t < 2�, f ðtÞ ¼ 0. By inspection, the average

value of the wave is V=4. Since the wave is neither even nor odd, the series will contain both sine and cosine

terms. For n > 0, we have

an ¼
1

�

ð�
0

ðV=�Þ!t cos n!t dð!tÞ ¼
V

�2
1

n2
cos n!tþ

!t

n
sin n!t

� ��
0

¼
V

�2n2
ðcos n�� 1Þ
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When n is even, cos n�� 1 ¼ 0 and an ¼ 0. When n is odd, an ¼ �2V=ð�2n2Þ. The bn coefficients are

bn ¼
1

�

ð�
0

ðV=�Þ!t sin n!t dð!tÞ ¼
V

�2
1

n2
sin n!t�

!t

n
cos n!t

� ��
0

¼ �
V

�n
ðcos n�Þ ¼ ð�1Þnþ1 V

�n

Then the required Fourier series is

f ðtÞ ¼
V

4
�
2V

�2
cos!t�

2V

ð3�Þ2
cos 3!t�

2V

ð5�Þ2
cos 5!t� � � �

þ
V

�
sin!t�

V

2�
sin 2!tþ

V

3�
sin 3!t� � � �

The even-harmonic amplitudes are given directly by jbnj, since there are no even-harmonic cosine terms.

However, the odd-harmonic amplitudes must be computed using cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

p
. Thus,

c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2V=�2Þ2 þ ðV=�Þ2

q
¼ Vð0:377Þ c3 ¼ Vð0:109Þ c5 ¼ Vð0:064Þ

The line spectrum is shown in Fig. 17-25.

17.5 Find the trigonometric Fourier series for the half-wave-rectified sine wave shown in Fig. 17-26
and sketch the line spectrum.

The wave shows no symmetry, and we therefore expect the series to contain both sine and cosine terms.

Since the average value is not obtainable by inspection, we evaluate a0 for use in the term a0=2.

a0 ¼
1

�

ð�
0

V sin!t dð!tÞ ¼
V

�
½� cos!t��0 ¼

2V

�

Next we determine an:

an ¼
1

�

ð�
0

V sin!t cos n!t dð!tÞ

¼
V

�

�n sin!t sin n!t� cos n!t cos!t

�n2 þ 1

� ��
0

¼
V

�ð1� n2Þ
ðcos n�þ 1Þ

With n even, an ¼ 2V=�ð1� n2Þ; and with n odd, an ¼ 0. However, this expression is indeterminate for

n ¼ 1, and therefore we must integrate separately for a1.

a1 ¼
1

�

ð�
0

V sin!t cos!t dð!tÞ ¼
V

�

ð�
0

1
2
sin 2!t dð!tÞ ¼ 0

Now we evaluate bn:

bn ¼
1

�

ð�
0

V sin!t sin n!t dð!tÞ ¼
V

�

n sin!t cos n!t� sin n!t cos!t

�n2 þ 1

� ��
0

¼ 0
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Here again the expression is indeterminate for n ¼ 1, and b1 is evaluated separately.

b1 ¼
1

�

ð�
0

V sin2 !t dð!tÞ ¼
V

�

!t

2
�
sin 2!t

4

� ��
0

¼
V

2

Then the required Fourier series is

f ðtÞ ¼
V

�
1þ

�

2
sin!t�

2

3
cos 2!t�

2

15
cos 4!t�

2

35
cos 6!t� � � �

� �

The spectrum, Fig. 17-27, shows the strong fundamental term in the series and the rapidly decreasing

amplitudes of the higher harmonics.

17.6 Find the trigonometric Fourier series for the half-wave-rectified sine wave shown in Fig. 17-28,
where the vertical axis is shifted from its position in Fig. 17-26.

The function is described in the interval �� < !t < 0 by f ðtÞ ¼ �V sin!t. The average value is the

same as that in Problem 17.5, that is, 1
2
a0 ¼ V=�. For the coefficients an, we have

an ¼
1

�

ð0
��

ð�V sin!tÞ cos n!t dð!tÞ ¼
V

�ð1� n2Þ
ð1þ cos n�Þ

For n even, an ¼ 2V=�ð1� n2Þ; and for n odd, an ¼ 0, except that n ¼ 1 must be examined separately.

a1 ¼
1

�

ð0
��

ð�V sin!tÞ cos!t dð!tÞ ¼ 0

For the coefficients bn, we obtain

bn ¼
1

�

ð0
��

ð�V sin!tÞ sin n!t dð!tÞ ¼ 0

except for n ¼ 1.

b1 ¼
1

�

ð0
��

ð�VÞ sin2 !t dð!tÞ ¼ �
V

2

Thus, the series is

f ðtÞ ¼
V

�
1�

�

2
sin!t�

2

3
cos 2!t�

2

15
cos 4!t�

2

35
cos 6!t� � � �

� �
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This series is identical to that of Problem 17.5, except for the fundamental term, which has a negative

coefficient in this series. The spectrum would obviously be identical to that of Fig. 17-27.

Another Method

When the sine wave V sin!t is subtracted from the graph of Fig. 17.26, the graph of Fig. 17-28 results.

17.7 Obtain the trigonometric Fourier series for the repeating rectangular pulse shown in Fig. 17-29
and plot the line spectrum.

With the vertical axis positioned as shown, the wave is even and the series will contain only cosine terms

and a constant term. In the period from �� to þ� used for the evaluation integrals, the function is zero

except from ��=6 to þ�=6.

a0 ¼
1

�

ð�=6
��=6

V dð!tÞ ¼
V

3
an ¼

1

�

ð�=6
��=6

V cos n!t dð!tÞ ¼
2V

n�
sin

n�

6

Since sin n�=6 ¼ 1=2,
ffiffiffi
3

p
=2; 1;

ffiffiffi
3

p
=2; 1=2; 0;�1=2; . . . for n ¼ 1; 2; 3; 4; 5; 6; 7; . . . , respectively, the series is

f ðtÞ ¼
V

6
þ
2V

�

"
1

2
cos!tþ

ffiffiffi
3

p

2

1

2

� �
cos 2!tþ 1

1

3

� �
cos 3!tþ

ffiffiffi
3

p

2

1

4

� �
cos 4!t

þ
1

2

1

5

� �
cos 5!t�

1

2

1

7

� �
cos 7!t� � � �

#

f ðtÞ ¼
V

6
þ
2V

�

X1
n¼1

1

n
sin ðn�=6Þ cos n!tor

The line spectrum, shown in Fig. 17-30, decreases very slowly for this wave, since the series converges

very slowly to the function. Of particular interest is the fact that the 8th, 9th, and 10th harmonic

amplitudes exceed the 7th. With the simple waves considered previously, the higher-harmonic amplitudes

were progressively lower.

17.8 Find the exponential Fourier series for the square wave shown in Figs. 17-18 and 17-31, and
sketch the line spectrum. Obtain the trigonometric series coefficients from those of the expo-
nential series and compare with Problem 17.1.

In the interval �� < !t < 0, f ðtÞ ¼ �V ; and for 0 < !t < �, f ðtÞ ¼ V . The wave is odd; therefore,

A0 ¼ 0 and the An will be pure imaginaries.

An ¼
1

2�

ð0
��

ð�VÞe�jn!t dð!tÞ þ

ð�
0

Ve�jn!t dð!tÞ

� �

¼
V

2�
�

1

ð�jnÞ
e�jn!t

� �0
��

þ
1

ð�jnÞ
e�jn!t

� ��
0

( )

¼
V

�j2�n
ð�e0 þ e jn� þ e�jn�

� e0Þ ¼ j
V

n�
ðejn� � 1Þ
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For n even, e jn� ¼ þ1 and An ¼ 0; for n odd, e jn� ¼ �1 and An ¼ �jð2V=n�Þ (half-wave symmetry). The

required Fourier series is

f ðtÞ ¼ � � � þ j
2V

3�
e�j3!t

þ j
2V

�
e�j!t

� j
2V

�
e j!t � j

2V

3�
e j3!t � � � �

The graph in Fig. 17-32 shows amplitudes for both positive and negative frequencies. Combining the

values at þn and �n yields the same line spectrum as plotted in Fig. 17-19.

The trigonometric-series cosine coefficients are

an ¼ 2ReAn ¼ 0

bn ¼ �2 ImAn ¼
4V

n�
for odd n onlyand

These agree with the coefficients obtained in Problem 17.1.

17.9 Find the exponential Fourier series for the triangular wave shown in Figs. 17-20 and 17-33 and
sketch the line spectrum.

In the interval �� < !t < 0, f ðtÞ ¼ V þ ðV=�Þ!t; and for 0 < !t < �, f ðtÞ ¼ V � ðV=�Þ!t. The wave

is even and therefore the An coefficients will be pure real. By inspection the average value is V=2.

An ¼
1

2�

ð0
��

½V þ ðV=�Þ!t�e�jn!t dð!tÞ þ

ð�
0

½V � ðV=�Þ!t�e�jn!t dð!tÞ

� �

¼
V

2�2

ð0
��

!te�jn!t dð!tÞ þ

ð�
0

ð�!tÞe�jn!t dð!tÞ þ

ð�
��

�e�jn!t dð!tÞ

� �

¼
V

2�2
e�jn!t

ð�jnÞ2
ð�jn!t� 1Þ

� �0
��

�
e�jn!t

ð�jnÞ2
ð�jn!t� 1Þ

� ��
0

( )
¼

V

�2n2
ð1� e jn�Þ

For even n, e jn� ¼ þ1 and An ¼ 0; for odd n, An ¼ 2V=�2n2. Thus the series is

f ðtÞ ¼ � � � þ
2V

ð�3�Þ2
e�j3!t

þ
2V

ð��Þ2
e�j!t

þ
V

2
þ

2V

ð�Þ2
e j!t þ

2V

ð3�Þ2
e j3!t þ � � �

The harmonic amplitudes

c0 ¼
V

2
cn ¼ 2jAnj ¼

0 ðn ¼ 2; 4; 6; . . .Þ
4V=�2n2 ðn ¼ 1; 3; 5; . . .Þ

�

are exactly as plotted in Fig. 17-21.

440 FOURIER METHOD OF WAVEFORM ANALYSIS [CHAP. 17

Fig. 17-31 Fig. 71-32



17.10 Find the exponential Fourier series for the half-wave rectified sine wave shown in Figs. 17-26 and
17-34, and sketch the line spectrum.

In the interval 0 < !t < �, f ðtÞ ¼ V sin!t; and from � to 2�, f ðtÞ ¼ 0. Then

An ¼
1

2�

ð�
0

V sin!t e�jn!t dð!tÞ

¼
V

2�

e�jn!t

ð1� n2Þ
ð�jn sin!t� cos!tÞ

� ��
0

¼
Vðe�jn�

þ 1Þ

2�ð1� n2Þ

For even n, An ¼ V=�ð1� n2Þ; for odd n, An ¼ 0. However, for n ¼ 1, the expression for An becomes

indeterminate. L’Hôpital’s rule may be applied; in other words, the numerator and denominator are

separately differentiated with respect to n, after which n is allowed to approach 1, with the result that

A1 ¼ �jðV=4Þ.

The average value is

A0 ¼
1

2�

ð�
0

V sin!t dð!tÞ ¼
V

2�

h
� cos!t

i�
0
¼

V

�

Then the exponential Fourier series is

f ðtÞ ¼ � � � �
V

15�
e�j4!t

�
V

3�
e�j2!t

þ j
V

4
e�j!t

þ
V

�
� j

V

4
e j!t �

V

3�
e j2!t �

V

15�
e j4!t � � � �

The harmonic amplitudes,

c0 ¼ A0 ¼
V

�
cn ¼ 2jAnj ¼

2V=�ðn2 � 1Þ ðn ¼ 2; 4; 6; . . .Þ
V=2 ðn ¼ 1Þ
0 ðn ¼ 3; 5; 7; . . .Þ

8<
:

are exactly as plotted in Fig. 17-27.

17.11 Find the average power in a resistance R ¼ 10 �, if the current in Fourier series form is
i ¼ 10 sin!tþ 5 sin 3!tþ 2 sin 5!t (A).

The current has an effective value Ieff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð10Þ2 þ 1

2
ð5Þ2 þ 1

2
ð2Þ2

q
¼

ffiffiffiffiffiffiffiffiffi
64:5

p
¼ 8:03 A. Then the average

power is P ¼ I2effR ¼ ð64:5Þ10 ¼ 645 W.

Another Method

The total power is the sum of the harmonic powers, which are given by 1
2
VmaxImax cos �. But the

voltage across the resistor and the current are in phase for all harmonics, and �n ¼ 0. Then,

vR ¼ Ri ¼ 100 sin!tþ 50 sin 3!tþ 20 sin 5!t

and P ¼ 1
2
ð100Þð10Þ þ 1

2
ð50Þð5Þ þ 1

2
ð20Þð2Þ ¼ 645 W.

17.12 Find the average power supplied to a network if the applied voltage and resulting current are

v ¼ 50þ 50 sin 5� 103tþ 30 sin 104tþ 20 sin 2� 104t ðVÞ

i ¼ 11:2 sin ð5� 103tþ 63:48Þ þ 10:6 sin ð104tþ 458Þ þ 8:97 sin ð2� 104tþ 26:68Þ ðAÞ
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The total average power is the sum of the harmonic powers:

P ¼ ð50Þð0Þ þ 1
2
ð50Þð11:2Þ cos 63:48þ 1

2
ð30Þð10:6Þ cos 458þ 1

2
ð20Þð8:97Þ cos 26:68 ¼ 317:7 W

17.13 Obtain the constants of the two-element series circuit with the applied voltage and resultant
current given in Problem 17.12.

The voltage series contains a constant term 50, but there is no corresponding term in the current series,

thus indicating that one of the elements is a capacitor. Since power is delivered to the circuit, the other

element must be a resistor.

Ieff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð11:2Þ2 þ 1

2
ð10:6Þ2 þ 1

2
ð8:97Þ2

q
¼ 12:6 A

The average power is P ¼ I2effR, from which R ¼ P=I2eff ¼ 317:7=159:2 ¼ 2 �.

At ! ¼ 104 rad/s, the current leads the voltage by 458. Hence,

1 ¼ tan 458 ¼
1

!CR
or C ¼

1

ð104Þð2Þ
¼ 50 mF

Therefore, the two-element series circuit consists of a resistor of 2 � and a capacitor of 50 mF.

17.14 The voltage wave shown in Fig. 17-35 is applied to a series circuit of R ¼ 2 k� and L ¼ 10 H.
Use the trigonometric Fourier series to obtain the voltage across the resistor. Plot the line
spectra of the applied voltage and vR to show the effect of the inductance on the harmonics.
! ¼ 377 rad/s.

The applied voltage has average value Vmax=�, as in Problem 17.5. The wave function is even and

hence the series contains only cosine terms, with coefficients obtained by the following evaluation integral:

an ¼
1

�

ð�=2
��=2

300 cos!t cos n!t dð!tÞ ¼
600

�ð1� n2Þ
cos n�=2 V

Here, cos n�=2 has the value �1 for n ¼ 2; 6; 10; . . . ; and þ1 for n ¼ 4; 8; 12; . . . . For n odd, cos n�=2 ¼ 0.

However, for n ¼ 1, the expression is indeterminate and must be evaluated separately.

a1 ¼
1

�

ð�=2
��=2

300 cos2 !t dð!tÞ ¼
300

�

!t

2
þ
sin 2!t

4

� ��=2
��=2

¼
300

2
V

v ¼
300

�
1þ

�

2
cos!tþ

2

3
cos 2!t�

2

15
cos 4!tþ

2

35
cos 6!t� � � �

� �
ðVÞThus,

In Table 17-3, the total impedance of the series circuit is computed for each harmonic in the voltage

expression. The Fourier coefficients of the current series are the voltage series coefficients divided by the Zn;

the current terms lag the voltage terms by the phase angles �n.
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I0 ¼
300=�

2
mA

i1 ¼
300=2

4:26
cos ð!t� 628Þ ðmAÞ

i2 ¼
600=3�

7:78
cos ð2!t� 75:18Þ ðmAÞ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then the current series is

i ¼
300

2�
þ

300

ð2Þð4:26Þ
cos ð!t� 628Þ þ

600

3�ð7:78Þ
cos ð2!t� 75:18Þ

�
600

15�ð15:2Þ
cos ð4!t� 82:458Þ þ

600

35�ð22:6Þ
cos ð6!t� 84:928Þ � � � � ðmAÞ

and the voltage across the resistor is

vR ¼ Ri ¼ 95:5þ 70:4 cos ð!t� 628Þ þ 16:4 cos ð2!t� 75:18Þ

� 1:67 cos ð4!t� 82:458Þ þ 0:483 cos ð6!t� 84:928Þ � � � � ðVÞ

Figure 17-36 shows clearly how the harmonic amplitudes of the applied voltage have been reduced by

the 10-H series inductance.

17.15 The current in a 10-mH inductance has the waveform shown in Fig. 17-37. Obtain the trigono-
metric series for the voltage across the inductance, given that ! ¼ 500 rad/s.
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Table 17-3

n n!, rad/s R, k� n!L; k� Zn; k� �n

0 0 2 0 2 08
1 377 2 3.77 4.26 628
2 754 2 7.54 7.78 75.18
4 1508 2 15.08 15.2 82.458
6 2262 2 22.62 22.6 84.928
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The derivative of the waveform of Fig. 17-37 is graphed in Fig. 17-38. This is just Fig. 17-18 with

V ¼ �20=�. Hence, from Problem 17.1,

di

dð!tÞ
¼ �

80

�2
ðsin!tþ 1

3
sin 3!tþ 1

5
sin 5!tþ � � �Þ ðAÞ

vL ¼ L!
di

dð!tÞ
¼ �

400

�2
ðsin!tþ 1

3
sin 3!tþ 1

5
sin 5!tþ � � �Þ ðVÞand so

Supplementary Problems

17.16 Synthesize the waveform for which the trigonometric Fourier series is

f ðtÞ ¼
8V

�2
fsin!t� 1

9
sin 3!tþ 1

25
sin 5!t� 1

49
sin 7!tþ � � �g

17.17 Synthesize the waveform if its Fourier series is

f ðtÞ ¼ 5�
40

�2
ðcos!tþ 1

9
cos 3!tþ 1

25
cos 5!tþ � � �Þ

þ
20

�
ðsin!t� 1

2
sin 2!tþ 1

3
sin 3!t� 1

4
sin 4!tþ � � �Þ

17.18 Synthesize the waveform for the given Fourier series.

f ðtÞ ¼ V

�
1

2�
�

1

�
cos!t�

1

3�
cos 2!tþ

1

2�
cos 3!t�

1

15�
cos 4!t�

1

6�
cos 6!tþ � � �

þ
1

4
sin!t�

2

3�
sin 2!tþ

4

15�
sin 4!t� � � �

�

17.19 Find the trigonometric Fourier series for the sawtooth wave shown in Fig. 17-39 and plot the line spectrum.

Compare with Example 17.1.

Ans: f ðtÞ ¼
V

2
þ
V

�
ðsin!tþ 1

2
sin 2!tþ 1

3
sin 3!tþ � � �Þ
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17.20 Find the trigonometric Fourier series for the sawtooth wave shown in Fig. 17-40 and plot the spectrum.

Compare with the result of Problem 17.3.

Ans: f ðtÞ ¼
�2V

�
fsin!tþ 1

2
sin 2!tþ 1

3
sin 3!tþ 1

4
sin 4!tþ � � �g

17.21 Find the trigonometric Fourier series for the waveform shown in Fig. 17-41 and plot the line spectrum.

Ans: f ðtÞ ¼
4V

�2
fcos!tþ 1

9
cos 3!tþ 1

25
cos 5!tþ � � �g �

2V

�
fsin!tþ 1

3
sin 3!tþ 1

5
sin 5!tþ � � �g

17.22 Find the trigonometric Fourier series of the square wave shown in Fig. 17-42 and plot the line spectrum.

Compare with the result of Problem 17.1.

Ans: f ðtÞ ¼
4V

�
fcos!t� 1

3
cos 3!tþ 1

5
cos 5!t� 1

7
cos 7!tþ � � �g

17.23 Find the trigonometric Fourier series for the waveforms shown in Fig. 17-43. Plot the line spectrum of each

and compare.

Ans: ðaÞ f ðtÞ ¼
5

12
þ
X1
n¼1

10

n�
sin

n�

12

� 	
cos n!tþ

10

n�
1� cos

n�

12

� 	
sin n!t

� �

ðbÞ f ðtÞ ¼
50

6
þ
X1
n¼1

10

n�
sin

n5�

3

� �
cos n!tþ

10

n�
1� cos

n5�

3

� �
sin n!t

� �

17.24 Find the trigonometric Fourier series for the half-wave-rectified sine wave shown in Fig. 17-44 and plot the

line spectrum. Compare the answer with the results of Problems 17.5 and 17.6.

Ans: f ðtÞ ¼
V

�
1þ

�

2
cos!tþ

2

3
cos 2!t�

2

15
cos 4!tþ

2

35
cos 6!t� � � �

� �
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17.25 Find the trigonometric Fourier series for the full-wave-rectified sine wave shown in Fig. 17-45 and plot the

spectrum.

Ans: f ðtÞ ¼
2V

�
ð1þ 2

3
cos 2!t� 2

15
cos 4!tþ 2

35
cos 6!t� � � �Þ

17.26 The waveform in Fig. 17-46 is that of Fig. 17-45 with the origin shifted. Find the Fourier series and show

that the two spectra are identical.

Ans: f ðtÞ ¼
2V

�
ð1� 2

3
cos 2!t� 2

15
cos 4!t� 2

35
cos 6!t� � � �Þ

17.27 Find the trigonometric Fourier series for the waveform shown in Fig. 17-47.

Ans: f ðtÞ ¼
V

2�
�

V

2�
cos!tþ

X1
n¼2

V

�ð1� n2Þ
ðcos n�þ n sin n�=2Þ cos n!t

þ
V

4
sin!tþ

X1
n¼2

�nV cos n�=2

�ð1� n2Þ

� �
sin n!t

17.28 Find the trigonometric Fourier series for the waveform shown in Fig. 17-48. Add this series termwise to

that of Problem 17.27, and compare the sum with the series obtained in Problem 17.5.

Ans: f ðtÞ ¼
V

2�
þ

V

2�
cos!tþ

X1
n¼2

Vðn sin n�=2� 1Þ

�ðn2 � 1Þ
cos n!tþ

V

4
sin!tþ

X1
n¼2

nV cos n�=2

�ð1� n2Þ
sin n!t
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17.29 Find the exponential Fourier series for the waveform shown in Fig. 17-49 and plot the line spectrum.

Convert the coefficients obtained here into the trigonometric series coefficients, write the trigonometric

series, and compare it with the result of Problem 17.4.

Ans: f ðtÞ ¼ V

�
� � � þ

1

9�2
� j

1

6�

� �
e�j3!t

� j
1

4�
e�j2!t

�
1

�2
� j

1

2�

� �
e�j!t

þ
1

4

�
1

�2
þ j

1

2�

� �
e j!t þ j

1

4�
e j2!t �

1

9�2
þ j

1

6�

� �
e j3!t � � � �

�

17.30 Find the exponential Fourier series for the waveform shown in Fig. 17-50 and plot the line spectrum.

Ans: f ðtÞ ¼ V

�
� � � þ

1

9�2
þ j

1

6�

� �
e�j3!t

þ j
1

4�
e�j2!t

þ
1

�2
þ j

1

2�

� �
e�j!t

þ
1

4

þ
1

�2
� j

1

2�

� �
e j!t � j

1

4�
e j2!t þ

1

9�2
� j

1

6�

� �
e j3!t þ � � �

�

17.31 Find the exponential Fourier series for the square wave shown in Fig. 17-51 and plot the line spectrum. Add

the exponential series of Problems 17.29 and 17.30 and compare the sum to the series obtained here.

Ans: f ðtÞ ¼ V � � � þ j
1

3�
e�j3!t

þ j
1

�
e�j!t

þ
1

2
� j

1

�
e j!t � j

1

3�
e j3!t � � � �

� �

17.32 Find the exponential Fourier series for the sawtooth waveform shown in Fig. 17-52 and plot the spectrum.

Convert the coefficients obtained here into the trigonometric series coefficients, write the trigonometric

series, and compare the results with the series obtained in Problem 17.19.

Ans: f ðtÞ ¼ V � � � þ j
1

4�
e�j2!t

þ j
1

2�
e�j!t

þ
1

2
� j

1

2�
e j!t � j

1

4�
e j2!t � � � �

� �

17.33 Find the exponential Fourier series for the waveform shown in Fig. 17-53 and plot the spectrum. Convert

the trigonometric series coefficients found in Problem 17.20 into exponential series coefficients and compare

them with the coefficients of the series obtained here.

Ans: f ðtÞ ¼ V � � � � j
1

2�
e�j2!t

� j
1

�
e�j!t

þ j
1

�
e j!t þ j

1

2�
e j2!t þ � � �

� �
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17.34 Find the exponential Fourier series for the waveform shown in Fig. 17-54 and plot the spectrum. Convert

the coefficients to trigonometric series coefficients, write the trigonometric series, and compare it with that

obtained in Problem 17.21.

Ans: f ðtÞ ¼ V

�
� � � þ

2

9�2
� j

1

3�

� �
e�j3!t

þ
2

�2
� j

1

�

� �
e�j!t

þ
2

�2
þ j

1

�

� �
e j!t

þ
2

9�2
þ j

1

3�

� �
e j3!t þ � � �

�

17.35 Find the exponential Fourier series for the square wave shown in Fig. 17-55 and plot the line spectrum.

Convert the trigonometric series coefficients of Problem 17.22 into exponential series coefficients and com-

pare with the coefficients in the result obtained here.

Ans: f ðtÞ ¼
2V

�
ð� � � þ 1

5
e�j5!t

� 1
3
e�j3!t

þ e�j!t
þ e j!t � 1

3
e�j3!t

þ 1
5
e j5!t � � � �Þ

17.36 Find the exponential Fourier series for the waveform shown in Fig. 17-56 and plot the line spectrum.

Ans: f ðtÞ ¼ � � � þ
V

2�
sin

2�

6

� �
e�j2!t

þ
V

�
sin

�

6

� 	
e�j!t

þ
V

6
þ
V

�
sin

�

6

� 	
e j!t

þ
V

2�
sin

2�

6

� �
e j2!t þ � � �

17.37 Find the exponential Fourier series for the half-wave-rectified sine wave shown in Fig. 17-57. Convert these

coefficients into the trigonometric series coefficients, write the trigonometric series, and compare it with the

result of Problem 17.24.

Ans: f ðtÞ ¼ � � � �
V

15�
e�j4!t

þ
V

3�
e�j2!t

þ
V

4
e�j!t

þ
V

�
þ
V

4
ej!t þ

V

3�
ej2!t �

V

15�
ej4!t þ � � �

17.38 Find the exponential Fourier series for the full-wave rectified sine wave shown in Fig. 17-58 and plot the line

spectrum.

Ans: f ðtÞ ¼ � � � �
2V

15�
e�j4!t

þ
2V

3�
e�j2!t

þ
2V

�
þ
2V

3�
e j2!t �

2V

15�
e j4!t þ � � �
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17.39 Find the effective voltage, effective current, and average power supplied to a passive network if the applied

voltage is v ¼ 200þ 100 cos ð500tþ 308Þ þ 75 cos ð1500tþ 608Þ (V) and the resulting current is

i ¼ 3:53 cos ð500tþ 758Þ þ 3:55 cos ð1500tþ 78:458Þ (A). Ans: 218.5V, 3.54A, 250.8W

17.40 A voltage v ¼ 50þ 25 sin 500tþ 10 sin 1500tþ 5 sin 2500t (V) is applied to the terminals of a passive net-

work and the resulting current is

i ¼ 5þ 2:23 sin ð500t� 26:68Þ þ 0:556 sin ð1500t� 56:38Þ þ 0:186 sin ð2500t� 68:28Þ ðAÞ

Find the effective voltage, effective current, and the average power. Ans: 53.6V, 5.25A, 276.5W

17.41 A three-element series circuit, with R ¼ 5 �, L ¼ 5 mH, and C ¼ 50 mF, has an applied voltage

v ¼ 150 sin 1000tþ 100 sin 2000tþ 75 sin 3000t (V). Find the effective current and the average power for

the circuit. Sketch the line spectrum of the voltage and the current, and note the effect of series resonance.

Ans: 16.58A, 1374W

17.42 A two-element series circuit, with R ¼ 10 � and L ¼ 20 mH, has current

i ¼ 5 sin 100tþ 3 sin 300tþ 2 sin 500t ðAÞ

Find the effective applied voltage and the average power. Ans: 48V, 190W

17.43 A pure inductance, L ¼ 10 mH, has the triangular current wave shown in Fig. 17-59, where ! ¼ 500 rad/s.

Obtain the exponential Fourier series for the voltage across the inductance. Compare the answer with the

result of Problem 17.8.

Ans: vL ¼
200

�2
ð� � � � j 1

3
e�j3!t

� je�j!t
þ je j!t þ j 1

3
e j!t þ � � �Þ ðVÞ

17.44 A pure inductance, L ¼ 10 mH, has an applied voltage with the waveform shown in Fig. 17-60, where

! ¼ 200 rad/s. Obtain the current series in trigonometric form and identify the current waveform.

Ans: i ¼
20

�
ðsin!t� 1

9
sin 3!tþ 1

25
sin 5!t� 1

49
sin 7!tþ � � �Þ ðAÞ; triangular

17.45 Figure 17-61 shows a full-wave-rectified sine wave representing the voltage applied to the terminals of an

LC series circuit. Use the trigonometric Fourier series to find the voltages across the inductor and the

capacitor.
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Ans: vL ¼
4Vm

�

2!L

3 2!L�
1

2!C

� � cos 2!t�
4!L

15 4!L�
1

4!C

� � cos 4!tþ � � �

2
664

3
775

vC ¼
4Vm

�

1

2
�

1

3ð2!CÞ 2!L�
1

2!C

� � cos 2!tþ
1

15ð4!CÞ 4!L�
1

4!C

� � cos 4!t� � � �

2
664

3
775

17.46 A three-element circuit consists of R ¼ 5 � in series with a parallel combination of L and C. At

! ¼ 500 rad/s, XL ¼ 2 �, XC ¼ 8 �. Find the total current if the applied voltage is given by

v ¼ 50þ 20 sin 500tþ 10 sin 1000t (V). Ans: i ¼ 10þ 3:53 sin ð500t� 28:18Þ (A)
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Complex Number
System

A1 COMPLEX NUMBERS

A complex number z is a number of the form xþ jy, where x and y are real numbers and j ¼
ffiffiffiffiffiffiffi
�1

p
.

We write x ¼ Re z, the real part of z; y ¼ Im z, the imaginary part of z. Two complex numbers are equal
if and only if their real parts are equal and their imaginary parts are equal.

A2 COMPLEX PLANE

A pair of orthogonal axes, with the horizontal axis displaying Re z and the vertical axis j Im z,
determine a complex plane in which each complex number is a unique point. Refer to Fig. A-1, on
which six complex numbers are shown. Equivalently, each complex number is represented by a unique
vector from the origin of the complex plane, as illustrated for the complex number z6 in Fig. A-1.

Fig. A-1 Fig. A-2

APPENDIX A
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A3 VECTOR OPERATOR j

In addition to the definition of j given in Section A1, it may be viewed as an operator which rotates
any complex number (vector) A 908 in the counterclockwise direction. The case where A is a pure real
number, x, is illustrated in Fig. A-2. The rotation sends A into jx, on the positive imaginary axis.
Continuing, j2 advances A 1808; j3, 2708; and j4, 3608. Also shown in Fig. A-2 is a complex number B in
the first quadrant, at angle �. Note that jB is in the second quadrant, at angle � þ 908.

A4 OTHER REPRESENTATIONS OF COMPLEX NUMBERS

In Section A1 complex numbers were defined in rectangular form. In Fig. A-3, x ¼ r cos �,
y ¼ r sin �, and the complex number z can be written in trigonometric form as

z ¼ xþ jy ¼ rðcos � þ j sin �Þ

where r is the modulus or absolute value (the notation r ¼ jzj is common), given by r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and the

angle � ¼ tan�1
ð y=xÞ is the argument of z.

Euler’s formula, e j� ¼ cos � þ j sin �, permits another representation of a complex number, called the
exponential form:

z ¼ r cos � þ jr sin � ¼ rej�

A third form, widely used in circuit analysis, is the polar or Steinmetz form, z ¼ r �, where � is
usually in degrees.

A5 SUM AND DIFFERENCE OF COMPLEX NUMBERS

To add two complex numbers, add the real parts and the imaginary parts separately. To subtract
two complex numbers, subtract the real parts and the imaginary parts separately. From the practical
standpoint, addition and subtraction of complex numbers can be performed conveniently only when
both numbers are in the rectangular form.

EXAMPLE A1 Given z1 ¼ 5� j2 and z2 ¼ �3� j8,

z1 þ z2 ¼ ð5� 3Þ þ jð�2� 8Þ ¼ 2� j10

z2 � z1 ¼ ð�3� 5Þ þ jð�8þ 2Þ ¼ �8� j6

A6 MULTIPLICATION OF COMPLEX NUMBERS

The product of two complex numbers when both are in exponential form follows directly from the
laws of exponents.

z1z2 ¼ ðr1e
j�1 Þðr2e

_jj�2 Þ ¼ r1r2e
jð�1þ�2Þ
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The polar or Steinmetz product is evident from reference to the exponential form.

z1z2 ¼ ðr1 �1Þðr2 �2Þ ¼ r1r2 �1 þ �2

The rectangular product can be found by treating the two complex numbers as binomials.

z1z2 ¼ ðx1 þ jy1Þðx2 þ jy2Þ ¼ x1x2 þ jx1y2 þ jy1x2 þ j2y1y2

¼ ðx1x2 � y1y2Þ þ jðx1y2 þ y1x2Þ

EXAMPLE A2 If z1 ¼ 5e j�=3 and z2 ¼ 2e�j�=6, then z1z2 ¼ ð5e j�=3Þð2e�j�=6
Þ ¼ 10e j�=6.

EXAMPLE A3 If z1 ¼ 2 308 and z2 ¼ 5 �458, then z1z2 ¼ ð2 308Þð5 �458Þ ¼ 10 �158.

EXAMPLE A4 If z1 ¼ 2þ j3 and z2 ¼ �1� j3, then z1z2 ¼ ð2þ j3Þð�1� j3Þ ¼ 7� j9.

A7 DIVISION OF COMPLEX NUMBERS

For two complex numbers in exponential form, the quotient follows directly from the laws of
exponents.

z1

z
¼

r1e
j�1

r2e
j�2

¼
r1
r2

e jð�1��2Þ

Again, the polar or Steinmetz form of division is evident from reference to the exponential form.

z1

z2
¼

r1 �1

r2 �2
¼

r1
r2

�1 � �2

Division of two complex numbers in the rectangular form is performed by multiplying the numera-
tor and denominator by the conjugate of the denominator (see Section A8).

z1

z2
¼

x1 þ jy1
x2 þ jy2

x2 � jy2
x2 � jy2

� �
¼

ðx1x2 þ y1y2Þ þ jð y1x2 � y2x1Þ

x22 þ y22
¼

x1x2 þ y1y2
x22 þ y22

þ j
y1x2 � y2x1
x22 þ y22

EXAMPLE A5 Given z1 ¼ 4e j�=3 and z2 ¼ 2e j�=6,

z1

z2
¼

4e j�=3

2e j�=6
¼ 2e j�=6

EXAMPLE A6 Given z1 ¼ 8 �308 and z2 ¼ 2 �608,

z1

z2
¼

8 �308

2 �608
¼ 4 308

EXAMPLE A7 Given z1 ¼ 4� j5 and z2 ¼ 1þ j2,

z1

z2
¼

4� j5

1þ j2

1� j2

1� j2

� �
¼ �

6

5
� j

13

5

A8 CONJUGATE OF A COMPLEX NUMBER

The conjugate of the complex number z ¼ xþ jy is the complex number z� ¼ x� jy. Thus,

Re z ¼
zþ z

�

2
Im z ¼

z� z
�

2j
jzj ¼

ffiffiffiffiffiffiffi
zz�

p
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In the complex plane, the points z and z
� are mirror images in the axis of reals.

In exponential form: z ¼ re j�, z� ¼ re�j�.
In polar form: z ¼ r �, z� ¼ r ��.
In trigonometric form: z ¼ rðcos � þ j sin �Þ, z� ¼ rðcos � � j sin �Þ.
Conjugation has the following useful properties:

ðiÞ ðz
�
Þ
�
¼ z ðiiiÞ ðz1z2Þ

�
¼ z

�
1z

�
2

ðiiÞ ðz1 � z2Þ
�
¼ z

�
1 � z

�
2 ðivÞ

z1

z2

� ��

¼
z
�
1

z�2
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Matrices and
Determinants

B1 SIMULTANEOUS EQUATIONS AND THE CHARACTERISTIC MATRIX

Many engineering systems are described by a set of linearly independent simultaneous equations of
the form

y1 ¼ a11x1 þ a12x2 þ a13x3 þ � � � þ a1nxn
y2 ¼ a21x1 þ a22x2 þ a23x3 þ � � � þ a2nxn
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
ym ¼ am1x1 þ am2x2 þ am3x3 þ � � � þ amnxn

where the xj are the independent variables, the yi the dependent variables, and the aij are the coefficients
of the independent variables. The aij may be constants or functions of some parameter.

A more convenient form may be obtained for the above equations by expressing them in matrix
form.

y1
y2
. . .
ym

2
664

3
775 ¼

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
. . . . . . . . . . . . . . .
am1 am2 am3 . . . amn

2
664

3
775

x1
x2
. . .
xn

2
664

3
775

or Y ¼ AX, by a suitable definition of the product AX (see Section B3). Matrix A � ½aij � is called the
characteristic matrix of the system; its order or dimension is denoted as

dðAÞ � m� n

where m is the number of rows and n is the number of columns.

B2 TYPES OF MATRICES

Row matrix. A matrix which may contain any number of columns but only one row; dðAÞ ¼ 1� n.
Also called a row vector.

Column matrix. A matrix which may contain any number of rows but only one column;
dðAÞ ¼ m� 1. Also called a column vector.

Diagonal matrix. A matrix whose nonzero elements are all on the principal diagonal.

APPENDIX B
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Unit matrix. A diagonal matrix having every diagonal element unity.

Null matrix. A matrix in which every element is zero.

Square matrix. A matrix in which the number of rows is equal to the number of columns;
dðAÞ ¼ n� n.

Symmetric matrix. Given

A �

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
. . . . . . . . . . . . . . .
am1 am2 am3 . . . amn

2
664

3
775 dðAÞ ¼ m� n

the transpose of A is

A
T
�

a11 a21 a31 . . . am1

a12 a22 a32 . . . am2

a13 a23 a33 . . . am3

. . . . . . . . . . . . . . .
a1n a2n a3n . . . amn

2
66664

3
77775 dðAT

Þ ¼ n�m

Thus, the rows of A are the columns of A
T , and vice versa. Matrix A is symmetric if A ¼ A

T ; a
symmetric matrix must then be square.

Hermitian matrix. Given

A �

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
. . . . . . . . . . . . . . .
am1 am2 am3 . . . amn

2
664

3
775

the conjugate of A is

A
�
�

a�11 a�12 a�13 . . . a�1n
a�21 a�22 a�23 . . . a�2n
. . . . . . . . . . . . . . .
a�m1 a�m2 a�m3 . . . a�mn

2
664

3
775

Matrix A is hermitian if A ¼ ðA
�
Þ
T ; that is, a hermitian matrix is a square matrix with real elements on

the main diagonal and complex conjugate elements occupying positions that are mirror images in the
main diagonal. Note that ðA�

Þ
T
¼ ðA

T
Þ
�.

Nonsingular matrix. An n� n square matrix A is nonsingular (or invertible) if there exists an n� n
square matrix B such that

AB ¼ BA ¼ I

where I is the n� n unit matrix. The matrix B is called the inverse of the nonsingular matrix A, and we
write B ¼ A

�1. If A is nonsingular, the matrix equation Y ¼ AX of Section B1 has, for any Y, the
unique solution

X ¼ A
�1
Y

B3 MATRIX ARITHMETIC

Addition and Subtraction of Matrices

Two matrices of the same order are conformable for addition or subtraction; two matrices of
different orders cannot be added or subtracted.

The sum (difference) of two m� n matrices, A ¼ ½aij� and B ¼ ½bij�, is the m� n matrix C of which
each element is the sum (difference) of the corresponding elements of A and B. Thus, A� B ¼ ½aij � bij �.
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EXAMPLE B1 If

A ¼
1 4 0

2 7 3

� �
B ¼

5 2 6

0 1 1

� �

Aþ B ¼
1þ 5 4þ 2 0þ 6

2þ 0 7þ 1 3þ 1

� �
¼

6 6 6

2 8 4

� �
then

A� B ¼
�4 2 �6

2 6 2

� �

The transpose of the sum (difference) of two matrices is the sum (difference) of the two transposes:

ðA� BÞ
T
¼ A

T
� B

T

Multiplication of Matrices

The product AB, in that order, of a 1�m matrix A and an m� 1 matrix B is a 1� 1 matrix
C � ½c11�, where

C ¼ ½ a11 a12 a13 . . . a1m �

b11

b21

b31

. . .

bm1

2
6666664

3
7777775

¼ ½a11b11 þ a12b21 þ . . .þ a1mbm1� ¼
Xm
k¼1

a1kbk1

" #

Note that each element of the row matrix is multiplied into the corresponding element of the column
matrix and then the products are summed. Usually, we identify C with the scalar c11, treating it as an
ordinary number drawn from the number field to which the elements of A and B belong.

The product AB, in that order, of the m� s matrix A ¼ ½aij � and the s� n matrix B ¼ ½bij � is the
m� n matrix C ¼ ½cij�, where

cij ¼
Xs

k¼1

aikbkj ði ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; nÞ

EXAMPLE B2

a11 a12
a21 a22
a31 a32

2
4

3
5 b11 b12

b21 b22

� �
¼

a11b11 þ a12b21 a11b12 þ a12b22
a21b11 þ a22b21 a21b12 þ a22b22
a31b11 þ a32b21 a31b12 þ a32b22

2
4

3
5

3 5 �8
2 1 6
4 �6 7

2
4

3
5 I1

I2
I3

2
4

3
5 ¼

3I1 þ 5I2 � 8I3
2I1 þ 1I2 þ 6I3
4I1 � 6I2 þ 7I3

2
4

3
5

5 �3
4 2

� �
8 �2 6
7 0 9

� �
¼

5ð8Þ þ ð�3Þð7Þ 5ð�2Þ þ ð�3Þð0Þ 5ð6Þ þ ð�3Þð9Þ
4ð8Þ þ 2ð7Þ 4ð�2Þ þ 2ð0Þ 4ð6Þ þ 2ð9Þ

� �
¼

19 �10 3
46 �8 42

� �

Matrix A is conformable to matrix B for multiplication. In other words, the product AB is defined,
only when the number of columns of A is equal to the number of rows of B. Thus, if A is a 3� 2 matrix
and B is a 2� 5 matrix, then the product AB is defined, but the product BA is not defined. If D and E

are 3� 3 matrices, both products DE and ED are defined. However, it is not necessarily true that
DE ¼ ED.

The transpose of the product of two matrices is the product of the two transposes taken in reverse
order:
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ðABÞ
T
¼ B

T
A

T

If A and B are nonsingular matrices of the same dimension, then AB is also nonsingular, with

ðABÞ
�1

¼ B
�1
A

�1

Multiplication of a Matrix by a Scalar

The product of a matrix A � ½aij� by a scalar k is defined by

kA ¼ Ak � ½kaij�

that is, each element of A is multiplied by k. Note the properties

kðAþ BÞ ¼ kAþ kB kðABÞ ¼ ðkAÞB ¼ AðkBÞ ðkAÞT ¼ kAT

B4 DETERMINANT OF A SQUARE MATRIX

Attached to any n� n matrix A � ½aij � is a certain scalar function of the aij, called the determinant of
A. This number is denoted as

detA or jAj or �A or

a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

��������

��������
where the last form puts into evidence the elements of A, upon which the number depends. For
determinants of order n ¼ 1 and n ¼ 2, we have explicitly

ja11j ¼ a11
a11 a12
a21 a22

����
���� ¼ a11a22 � a12a21

For larger n, the analogous expressions become very cumbersome, and they are usually avoided by use of
Laplace’s expansion theorem (see below). What is important is that the determinant is defined in such a
way that

detAB ¼ ðdetAÞðdetBÞ

for any two n� n matrices A and B. Two other basic properties are:

detAT
¼ detA det kA ¼ kn detA

Finally, detA 6¼ 0 if and only if A is nonsingular.

EXAMPLE B3 Verify the deteminant multiplication rule for

A ¼
1 4
3 2

� �
B ¼

�2 9
1 �

� �

We have

AB ¼
1 4
3 2

� �
�2 9
1 �

� �
¼

2 9þ 4�
�4 27þ 2�

� �

2 9þ 4�

�4 27þ 2�

����
���� ¼ 2ð27þ 2�Þ � ð9þ 4�Þð�4Þ ¼ 90þ 20�and

1 4

3 2

����
���� ¼ 1ð2Þ � 4ð3Þ ¼ �10But

�2 9

1 �

����
���� ¼ �2ð�Þ � 9ð1Þ ¼ �9� 2�
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and indeed 90þ 20� ¼ ð�10Þð�9� 2�Þ.

Laplace’s Expansion Theorem

The minor, Mij , of the element aij of a determinant of order n is the determinant of order n� 1
obtained by deleting the row and column containing aij. The cofactor,�ij , of the element aij is defined as

�ij ¼ ð�1ÞiþjMij

Laplace’s theorem states: In the determinant of a square matrix A, multiply each element in the pth
row (column) by the cofactor of the corresponding element in the qth row (column), and sum the
products. Then the result is 0, for p 6¼ q; and detA, for p ¼ q.

It follows at once from Laplace’s theorem that if A has two rows or two columns the same, then
detA ¼ 0 (and A must be a singular matrix).

Matrix Inversion by Determinants; Cramer’s rule

Laplace’s expansion theorem can be exhibited as a matrix multiplication, as follows:

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

. . . . . . . . . . . . . . .

an1 an2 an3 . . . ann

2
6664

3
7775

�11 �21 �31 . . . �n1

�12 �22 �32 . . . �n2

. . . . . . . . . . . . . . .

�1n �2n �3n . . . �nn

2
6664

3
7775

¼

�11 �21 �31 . . . �n1

�12 �22 �32 . . . �n2

. . . . . . . . . . . . . . .

�1n �2n �3n . . . �nn

2
6664

3
7775

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

. . . . . . . . . . . . . . .

an1 an2 an3 . . . ann

2
6664

3
7775

¼

detA 0 0 . . . 0

0 detA 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . detA

2
6664

3
7775

AðadjAÞ ¼ ðadjAÞA ¼ ðdetAÞIor

where adjA � ½�ji� is the transposed matrix of the cofactors of the aij in the determinant of A, and I is
the n� n unit matrix.

If A is nonsingular, one may divide through by detA 6¼ 0, and infer that

A
�1

¼
1

detA
adjA

This means that the unique solution of the linear system Y ¼ AX is

X ¼
1

detA
adjA

� �
Y

which is Cramer’s rule in matrix form. The ordinary, determinant form is obtained by considering the
rth row ðr ¼ 1; 2; . . . ; nÞ of the matrix solution. Since the rth row of adjA is

�1r �2r �3r . . . �nr�
�

we have:
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xr ¼
1

detA

� �
½�1r �2r �3r . . . �nr �

y1

y2

y3

� � �

yn

2
6666664

3
7777775

¼
1

detA

� �
ð y1�1r þ y2�2r þ y3�3r þ � � � þ yn�nrÞ

¼
1

detA

� � a11 � � � a1ðr�1Þ y1 a1ðrþ1Þ � � � a1n

a21 � � � a2ðr�1Þ y2 a2ðrþ1Þ � � � a2n

� � � � � � � � � � � � � � � � � � � � �

an1 � � � anr�1Þ yn anðrþ1Þ � � � ann

���������

���������
The last equality may be verified by applying Laplace’s theorem to the rth column of the given deter-

minant.

B5 EIGENVALUES OF A SQUARE MATRIX

For a linear system Y ¼ AX, with n� n characteristic matrix A, it is of particular importance to

investigate the ‘‘excitations’’ X that produce a proportionate ‘‘response’’ Y. Thus, letting Y ¼ �X,
where � is a scalar,

�X ¼ AX or ð�I� AÞX ¼ O

where O is the n� 1 null matrix. Now, if the matrix �I� A were nonsingular, only the trival solution

X ¼ Y ¼ O would exist. Hence, for a nontrivial solution, the value of � must be such as to make �I� A

a singular matrix; that is, we must have

det ð�I� AÞ ¼

�� a11 �a12 �a13 . . . �a1n
�a21 �� a22 �a23 � � � �a2n
. . . . . . . . . . . . . . .
�an1 �an2 �an3 � � � �� ann

��������

�������� ¼ 0

The n roots of this polynomial equation in � are the eigenvalues of matrix A; the corresponding non-

trivial solutions X are known as the eigenvectors of A.

Setting � ¼ 0 in the left side of the above characteristic equation, we see that the constant term in the

equation must be

det ð�AÞ ¼ det ½ð�1ÞA� ¼ ð�1Þnðdet AÞ

Since the coefficient of �n in the equation is obviously unity, the constant term is also equal to ð�1Þn

times the product of all the roots. The determinant of a square matrix is the product of all its eigenva-

lues—an alternate, and very useful, definition of the determinant.
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ABC sequence, 250, 262–263, 266, 270

AC generator, 248, 260

AC power, 219–247

apparent, 226–230

average, 221–223, 224, 236, 245–247

complex, 226–230, 245, 247

energy exchanged between inductor/capacitor,

224–226

instantaneous, 219, 220, 224, 236

maximum power transfer, 233–234, 247

parallel-connected networks, 230–231

power factor improvement, 231–233

quadrature, 223

reactive, 223, 226–231, 243

real, 221–224

in RLC, 223–224

sinusoidal steady state, 220–221

AC wattmeter, 259, 265

Active circuits, 143–145, 175

first-order, 143–145

higher-order, 175

Active elements, 7–8

Active filters, 282–283

Active phase shifter, 145

Admittance, 196, 205, 242, 305

combination of, 197

coupling, 201

diagram, 197

input, 201, 211

in parallel, 197

self-, 201

in series, 197

transfer, 201, 211

Admittance parameters, short-circuit

(see Y-parameters)

Air-core transformers, 340

Ampere, 1, 2

Ampere-hours, 5

Ampere-turn dot rule, 343

Ampere-turns, 343

Amplifiers, 64–100

differential/difference, 75

feedback in, 65–66

integrator/summer, 78–79

leaky integrator, 78

Amplifiers (Cont.):

model of, 64–65

operational (see Op amps)

Analog computes, 80–81

Analysis methods, 37–63 (See also Laws; Theorems)

branch current, 37, 47, 56

determinant, 38–40

Laplace transform, 398–419

matrix/matrices, 38–40, 50–52

mesh (loop) current, 37–38, 42, 48, 56, 58, 62, 63,

198–200, 208

node voltage, 40–42, 57, 59, 61, 62, 201, 209

Apparent power, 226–230

in three-phase system, 259

Attenuator, 31

Autotransformers, 343–344, 354

Average power, 221–224, 236, 245–247, 427

Bandpass filters, 283–284

Bandwidth, 299–300

Batteries, 5

Branch current method, 37, 47, 56

Capacitance/capacitors, 6, 7, 9, 12, 33, 156, 176 –177,

214

DC steady state in, 136

discharge in a resistor, 127–128

energy exchange between inductors, 224–226

establishing DC voltage across, 129–130

lossy, 301–302

in parallel, 26, 31

in series, 27, 31

Capacitive reactance, 196

Capacitive susceptance, 196

CBA sequence, 250, 263–264, 270

Center frequency, 283

Centi, 2

Circuit analysis, 362–397

applications, 428–430

circuit description, 362, 363

DC analysis, 364–367

using Spice and PSpice, 362–397

Circuits:

analysis methods, 37–63

concepts, 7–23

INDEX
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Circuits (Cont.):

diagrams of, 12–13

differentiator, 79

elements in parallel, 26–27

elements in series, 25–26

first-order, 127–160

active, 143–145

higher-order, 161–190

active, 175

integrator, 77–78

inverting, 71

laws regarding, 24–36

locus diagram, 290–292

noninverting, 72–73

noninverting integrators, 188

polyphase, 248–272

RC (see RC circuits)

RL (see RL circuits)

RLC (see RLC circuits)

series-parallel conversions, 289

sign convention, 8

sinusoidal (see Sinusoidal circuits; Sinusoidal

steady-state circuits)

summing, 71–72

tank, 291

two-mesh, 167–168, 185

voltage-current relations, 9

Close coupling, 336

Coils, 250, 259, 298, 345

coupled, 336–338, 345–346

energy in a pair of, 338–340

in series, 206

Column matrix, 455

Comparators, 82–83

Complex frequency, 168–169, 178–179, 185

forced response and, 172–173

frequency scaling, 174

impedance of s-domain circuits, 169–170

magnitude scaling, 174

natural response and, 173–174

network function and, 170 –172

pole zero plots, 169–172

Complex frequency domain, 398

Complex inversion integral, 398

Complex number system, 451– 454

complex plane, 451

conjugate of, 453–454

difference of, 452

division of, 452–453

modulus or absolute value, 451

multiplication of, 452– 453

rectangular form, 451

representatives of, 451– 452

sum of, 452

trigonometric form, 451

vector operator, 451

Complex plane, 451

Complex power, 226–230, 245–247

Computers:

analog, 80–81

circuit analysis using, 362–397

PSpice program (see Spice and PSpice)

Schematic Capture program, 362

Spice program (see Spice and PSpice)

Conductance, 1, 215

Conduction, 2

Constant quantities, 4–6

Convergence region, 401

Cosine wave, 119, 421

Coulomb, 1, 2, 3

Coupled coils, 336–338

energy in a pair of, 338–340

Coupling admittance, 201

Coupling coefficient, 335–336

Coupling flux, 335

Cramer’s rule, 39, 459–460

Critically damped, 161, 163, 167, 284

Current, 1, 19, 20, 29

branch, 37, 47, 56, 205, 303

constant, 4

DC, 132

Kirchhoff’s law, 24, 25, 37, 40

load, 252

loop, 37, 49, 57

magnetizing, 340–342

mesh, 37, 48, 56, 208, 216

natural, 336–338

Norton equivalent, 45–47

phase, 251–253

phasor, 429

relation to voltage, 9

variable, 4

Current dividers, 28–29, 198, 213

Damped sinusoids, 114

Damping, 161–163

critically damped, 161, 284

circuits in parallel, 167

RLC circuits in series, 162

overdamped, 161, 284

RLC circuits:

in parallel, 165

in series, 162

underdamped, 161, 284

RLC circuits:

in parallel, 166

in series, 162–163

Damping ratio, 284

DC analysis, 364–367

output statements, 367–370

DC current, establishing in an inductor, 132

DC steady state in inductors/capacitors, 136

Delta system, 251

balanced loads, 252–253
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Delta system (Cont.):

equivalent wye connections and, 254–255

unbalanced loads, 255

Determinant method, 38–40

Diagonal matrix, 455

Differentiator circuit, 79

Diode, 13, 22, 23

forward-biased, 13

reverse-biased, 13

ideal, 22, 23

operating point, 23

terminal characteristic, 23

Direct Laplace transform, 398

Dirichlet condition, 420, 422, 430

Displacement neutral voltage, 257

Dissipation factor, 301

Dot rule, 338, 347–348, 375

ampere-turn, 343

Dynamic resistance, 13

Eigenvalues, 460

Electric charge, 1–3

Electric current, 2–3

Electric potential, 1, 3–4

Electric power, 4

Electrical units, 1–2, 223

Electrons, 2–3, 5

Elements:

active, 7–8

nonlinear, 36

passive, 7–8

Energy (See also Power)

exchange between inductors and capacitors,

224–226

kinetic, 3

potential, 3

work, 1, 3

Energy density, 432

Euler’s formula, 452

Euler’s identity, 196

Exponential function, 112–114, 132–134

Farad, 1

Faraday’s law, 335, 340

Farads, 9, 364

Feedback in amplifier circuits, 65–66

Femto, 364

Filters, 280–282

active, 282–283

bandpass, 283–284

highpass, 144

low-pass, 81, 280

passive, 282–283

scaling frequency response of, 292

First-order circuits, 127–160

active, 143–145

Floating source, 75

Flux:

coupling, 335

leakage, 336

linkage, 336

mutual, 340

Force, 1, 2

Forced response, 129

network function and, 172–173

Fourier integral, 430

Fourier method, 420–450

analysis using computers, 382

circuit analysis and, 428–430

effective values and power, 427–428

exponential series, 422–423, 439–441, 447–448

trigonometric series, 422–423, 434–439, 444–445

waveform symmetry, 423–425

Fourier transform:

inverse, 430, 432

properties of, 432–433

Frequency, 1, 103

center, 283

complex, 168–169

half-power, 278

natural, 187, 284

operating, 289

scaling, 292

Frequency domain, 196, 198

Frequency response, 81, 273–274

computer circuit analysis of, 373–374

half-power, 278

high-pass networks, 274–278

low-pass networks, 274–278

network functions and, 279–280

parallel LC circuits, 287–288

from pole-zero location, 280–281

scaling of, 292

series resonance and, 284–286

two-port/two-element networks, 278–279

Frequency scaling, 174

Gain, open loop, 65

Generators:

Ac, 248, 260

three-phase, 249, 250

two-phase, 248

Giga, 2, 364

g-parameters, 317, 320

Half-power frequency, 278

Half-wave symmetry, 425, 435

Harmonics, 117, 425–426, 428–430, 441

Heaviside expansion formula, 403, 409

Henry, 1, 9, 364

Hermitian matrix, 456

Hertz, 1

Higher-order circuits, 161–190

active, 175
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High-pass filter, 144

Homogeneous solution, 127, 129

Horsepower, 6

h-parameters, 316, 320, 328

Hybrid parameters, 316, 320

Ideal transformers, 342–343

Impedance, 179, 204–205, 214, 269–270

combinations of, 197

diagram, 197

input, 200

in parallel, 197, 198

reflected, 344–345

in s-domain, 169–170

in series, 197, 198

sinusoidal steady-state circuits, 196–198

transfer, 200, 201

Impedance parameters, open-circuit (see Z-parameters)

Impulse function:

sifting property, 112

strength, 111

unit, 110–112

Impulse response:

RC circuits and, 140–142

RL circuits and, 140–142

Inductance/inductors, 1, 7–9, 11, 15, 20

DC steady state in, 136

energy exchange between capacitors, 224–226

establishing DC current in, 132–133

leakage, 340

mutual, 334–335

in parallel, 30, 33

self-, 334–335

in series, 33

Induction motors, 244, 246

Inductive reactance, 329–330

Inductive susceptance, 196–197

Input admittance, 201, 211

Input impedance, 200

Input resistance, 41–42, 57

Instantaneous power, 219–220, 223, 224, 234–235,

248–250

Integrator circuit, 78–79

initial conditions of, 79

leaky, 78–79

noninverting, 188

International System of Units (SI), 1–2

Inverse Fourier transform, 430, 432

Inverse hybrid parameters, 317, 320

Inverse Laplace transform, 398

Inverting circuit, 71

Ions, 2

Iron-core transformer, 340

Joule, 1–4

Kelvin temperature, 1

Kilo, 2, 364

Kilowatt-hour, 5

Kinetic energy, 3

Kirchhoff’s current law (KCL), 24, 25, 37, 40

Kirchhoff’s voltage law (KVL), 24, 38, 401

Lag network, 189

Laplace transform method, 398–419

circuits in s-domain, 404–405

convergence of the integral, 401

direct, 398

final-value theorem, 401–402

Heaviside expansion formula, 403, 409

initial-value theorem, 401–402

inverse, 398

network function and, 405

partial-fraction expansion, 402–403

selected transforms, 400

Laplace’s expansion theorem, 459

Laws, 24–36 (See also Theorems)

Kirchhoff’s current, 24, 25, 37, 40

Kirchhoff’s voltage, 24, 38, 401

Lenz’s, 338

Ohm’s, 9, 46

LC circuits, parallel, 288

Lead network, 189

Leakage flux, 336

Leakage inductance, 340

Length, 1

Lenz’s law, 338

Lightning, 22

Line spectrum, 425–426

Linear transformers, 340–342, 353

Lining flux, 336

Load current, 252

Locus diagram, 290–292

Loop current method (see Mesh current/mesh current

method)

Loop currents, 37, 49, 57

Lossy capacitors, 301–302

Low-pass filters, 80, 280

Magnetic flux, 1

Magnetic flux density, 1

Magnetic flux linkage, 336

Magnetizing current, 340–342

Magnitude scaling, 174, 183

Mass, 1

Matrix (matrices), 455–460

adding, 456–457

characteristics, 455

column, 455

diagonal, 455

eigenvalues of square, 460

Hermitian, 456

inversion by determinants, 459

multiplying, 457–458
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Matrix (Cont.):

nonsingular, 456

null, 455

row, 455

scalar, 458

simultaneous equations, 455

square, 455, 458– 460

subtracting, 456 – 457

symmetric, 455

types of, 455–456

unit, 455

Z-matrix, 199–200

Matrix method, 38–40, 49–50

Maximum power transfer theorem, 47

Mega, 2, 364

Mesh current/mesh current method, 37, 38, 42–43,

48, 56, 58, 62, 63, 208, 216

sinusoidal circuits and, 198–200

Meter, 1

Methods, analysis (see Analysis methods)

Micro, 2, 364

Milli, 2, 364

Minimum power, 35

Motors:

induction, 244, 246

Mutual flux, 340

Mutual inductance, 334–335

computer circuit analysis of, 375

conductively coupled equivalent circuit and, 329–330

coupled coils and, 336–338

coupling coefficients and, 335–336

dot-rule and, 338

Nano, 2, 364

Natural current, 336–338

Natural frequency, 187, 284

Natural response, 129

network function and, 173–174

Network function, 170–172, 186, 405

forced response, 172–173

frequency response and, 279–280

Laplace transform and, 405

natural response, 173–174

pole zero plots, 171–172

Network reduction, 42, 44

Networks:

conversion between Z- and Y-parameters, 315–316

g-parameters, 317, 320

high-pass, 274–278

h-parameters, 316, 320, 328

lag, 189

lead, 189

low-pass, 274–278

nonreciprocal, 311

parallel-connected, 230–231

parameter choices, 320

passive, 171

Networks (Cont.):

pi-equivalent, 314

reciprocal, 311, 314

T-equivalent, 312

terminals characteristics, 310, 314–315

terminal parameters, 320–321

T-parameters, 317–318, 319, 320

two-mesh, 418

two-port, 310–333

two-port/two-element, 278–279

Y-parameters, 312–314, 319, 320, 324

Z-parameters, 310–312, 318, 320–323, 325

Newton, 1, 2

Newton-meter, 2

Node, 24

principal, 24

simple, 24

Node voltage method, 40–42, 51, 57, 59, 61, 62, 209, 210

sinusoidal circuits and, 201

Noninverting circuits, 72–73

Noninverting integrators, 188

Nonlinear element, 36

Nonlinear resistors, 13–14

dynamic resistance, 13

static resistance, 13

Nonperiodic functions, 108–109

Nonreciprocal networks, 311

Nonsingular matrix, 456

Norton equivalent current, 45–47, 218

Norton’s theorem, 45–47, 59–60, 212–213, 217, 218

sinusoidal circuits and, 201–202

Null matrix, 455

Number systems, complex (see Complex number

system)

Ohm, 1, 9, 364

Ohm’s law, 9, 46

Op amps, 66–69

circuit analysis of, 70–71

circuits containing several, 76–77

computer circuit analysis of, 370–372

voltage follower, 74, 97

Open-loop gain, 65

Operating point, diode, 23

Operational amplifiers (see Op amps)

Overdamping, 161, 162, 165, 284

Partial-fraction expansion, 402–403

Particular solution, 127, 129

Passive elements, 7–8

Passive filters, 282–283

Passive phase shifter, 145

Periodic function, 101–102, 219

average/effective RMS values, 107–108

combination of, 106

Periodic pulse, 102

Periodic tone burst, 102

INDEX 465



Phase angle, 1, 178–179, 192–193, 195

Phase current, 251–253

Phase shift, 103–105

Phase shifter, 145

active, 145

passive, 145

Phasor voltage, 251

Phasors, 194–195

defining, 194

diagrams, 195

equivalent notations of, 195

phase difference of, 193

voltage, 207

Pico, 2, 364

Pi-equivalent network, 314

Plane angle, 1

Polarity, 8, 29, 250

instantaneous, 338

Pole zero plots (see Zero pole plots)

Polyphase circuits, 248, 272

ABC sequence, 250, 262–263, 266, 270

CBA sequence, 250, 263–264, 270

CBA or ABC, 272

delta system, 251

balanced loads, 252–253

equivalent wye connections and, 254–255

unbalanced loads, 255

instantaneous power, 248

phasor voltages, 251

power measurement with wattmeters, 259–260

three-phase loads, single-line equivalent for, 255

three-phase power, 258–259

three-phase systems, 249–251

two-phase systems, 248–249

wye system, 251

balanced loads, 253–254

equivalent delta connections and, 254–255

unbalanced four-wire loads, 256

unbalanced three-wire loads, 257–258

Potential energy, 3

Potentiometer, 31

Power, 1, 2, 18–19, 21, 84 (See also Energy)

absorbed, 84

ac, 219–247

apparent, 226–230, 259

average, 221–224, 236, 245–247

complex, 226–230, 245, 247

effective values and, 427–428

electrical, 4

instantaneous, 219, 220, 224, 236

minimum, 35

quadrature, 223

reactive, 223, 226–231, 243, 259–260

real, 221–224

in sinusoidal steady state, 220–221

superposition of, 234

in three-phase systems, 259–260

Power factor, 231–232, 238–240

improving, 231–233

in three-phase systems, 259–260

Power transfer, maximum, 233–234

Power triangle, 226–230, 240–241

Primary winding, 340

Principal node, 24

PSpice (see Spice and PSpice)

Pulse, response of first-order circuits to,

139–140

Quadrature power, 223

Quality factor, 286–287, 297

Radian, 1

Random signals, 115–116

RC circuits:

complex first-order, 134–135

impulse response of, 140–142

in parallel, 122, 290

response:

to exponential excitations, 141–142

to pulse, 139–140

to sinusoidal excitations, 143–145

in series, 155–157, 204, 214

step response of, 141–142

two-branch, 304

Reactance, 196

inductive, 329–330

Reactive power, 223, 226, 243

in three-phase systems, 259–260

Real power, 221–224

Reciprocal networks, 311

pi-equivalent of, 314

Reflected impedance, 344–345

Resistance/resistors, 1, 9, 10

capacitor discharge in, 127–128

distributed, 7–8

dynamic, 13

input, 41–42, 57

nonlinear, 13–14

in parallel, 26, 28, 30, 32

in series, 25, 28

static, 13

transfer, 42, 58

Resonance, 283–284, 293–295, 299, 305–306

parallel, 287

series, 284–286

RL circuits:

complex first-order, 134–135

impulse response of, 140–142

response:

to exponential excitations, 141–142

to pulse, 139–140

to sinusoidal excitations, 143–145

in series, 152–153, 156, 291

source-free, 130–131
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RL circuits (Cont.):

step response of, 141–142

two-branch, 304

RLC circuits:

ac power in, 223–224

in parallel, 164–167, 177

critically damped, 167

overdamped, 165

underdamped, 166

natural resonant frequency, 185

quality factor, 297

resonance:

parallel, 287

series, 284–286

scaled element values, 188

s-domain impedance, 170

in series, 161–164, 176–177, 290–292

critically damped, 163

overdamped, 162

underdamped, 164

transient current, 185

transient voltage, 185

Root-mean-square (RMS), 4

average/effective values, 107–108

Row matrix, 455

Saturation, 82, 83

Sawtooth wave, 420, 426, 444

Scalar, 440

Scaling:

frequency, 174, 292

magnitude, 174, 183

s-domain circuits, 185, 404

impedance, 169–170

impedance of RLC circuits, 170

passive networks in, 171

Second, 1

Secondary winding, 340

Self-admittance, 201

Self-inductance, 334–335

Sensitivity, 97

analysis using computers, 382

Siemens, 1

Signals:

nonperiodic, 108–109

periodic, 101–102, 106, 219

random, 115–116

Simple node, 24

Sine wave, 101, 421

Sinusoidal circuits:

Norton’s theorem and, 201–202

steady-state node voltage method and, 201

Thévenin’s theorem and, 201–202

Sinusoidal functions, 103

Sinusoidal steady-state circuits, 191–218

admittance, 196–198

element responses, 191–193

Sinusoidal steady-state circuits (Cont.):

impedance, 196–198

mesh current method and, 198–200

phase angle, 192–193

phasors, 193–196

voltage/current division in frequency domain, 198

SI units, 1–2

Software (see Computers; Spice and PSpice)

Spice and PSpice, 362–397

ac steady state, 373–374

AC statement, 373

independent sources, 373

.PLOT AC statement, 373

.PRINT AC statement, 373

data statements:

controlled sources, 366–367

current-controlled sources, 366–367

dependent sources, 366

independent sources, 365

linearly dependent sources, 366

passive elements, 364

scale factors and symbols, 364

voltage-controlled sources, 366–367

DC analysis:

output statements, 367–370

using, 364–367

exponential source, 379

Fourier analysis, 382

frequency response, 373–374

modeling devices, 375–377

mutual inductance, 375

op amp circuit analysis, 370–372

pulse source, 380

sensitivity analysis, 382

sinusoidal source, 380

source file:

control statements, 363

data statements, 363

dissecting, 363

.END statement, 363

output statements, 363

title statement, 363

specifying other sources, 379–382

.SUBCKT statement, 371

Thévenin equivalent, 370

time response, 378–379

transformers, 375

transient analysis, 378–379

s-plane plot, 186

Square matrix, 455, 458–460

Static resistance, 13

Steady state, 127

DC in inductors/capacitors, 136

Steradian, 1

Summing circuit, 71–72

Superposition, 44–45, 60–63, 99

of average powers, 234
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Susceptance, 196

Switching, 87, 148

transition at, 136 –138

Symmetric matrix, 455

Symmetry:

half-wave, 425, 435

waveforms, 423–425

Synthesis, waveform, 426

Tank circuit, 291

Temperature, kelvin, 1

T-equivalent network, 312

Tera, 2, 364

Terminal characteristics, 310, 314–315

Terminal parameters, 320–321

Tesla, 1

Theorems:

final-value, 401–402

initial-value, 401–402

Laplace’s expansion, 459

maximum power transfer, 47

Norton’s, 45–47, 60–61, 201–202, 212–213, 217

Thévenin’s, 45–47, 53, 60–61, 201–202, 211–213,

217, 370

(See also Laws)

Thévenin equivalent voltage, 45, 218

Thévenin’s theorem, 45–47, 53, 60–61, 211–213, 217,

218, 370

sinusoidal circuits and, 201–202

Three-phase systems (see Polyphase circuits)

Time, 1

Time constant, 112, 132–133

Time domain, 196, 398

Time function, 178–179, 406–407

nonperiodic, 101, 108–109

periodic, 101–102, 106

random, 101

Time response:

computer circuit analysis of, 378–379

Time shift, 103–105

Tone burst, 121

T-parameters, 317–320

Transducers, 246

Transfer admittance, 201, 211

Transfer function, 186, 298, 370

Transfer impedance, 200, 210

Transfer resistance, 42, 58

Transformer rating, 243

Transformers, 246

air-core, 340

auto-, 343–344, 354

computer circuit analysis of, 375

ideal, 342–343

iron-core, 340

linear, 340–342, 353

reflected impedance of, 344–345

Transients, 127

computer circuit analysis of, 378–379

Two-mesh circuits, 167–168, 185

Two-mesh networks, 418

Two-port networks, 278–279, 310–333

cascade connection, 319

converting between Z- and Y-parameters, 315–316

g-parameters, 317, 320

h-parameters, 316, 320, 328

interconnecting, 318–319

parallel connection, 319

series connection, 318

T-equivalent of, 312

terminals and, 310

T-parameters, 317–320

Y-parameters, 312–314, 319, 320, 324

Z-parameters, 310–312, 318, 320–323, 325

Underdamping, 161, 164, 166, 284

Unit delta function, 110–112

Unit impulse function, 110–112

Unit impulse response, 140–142

Unit matrix, 455

Unit step function, 109–110

Unit step response, 140–142

Vector operator, 452

Volt, 1, 3

Voltage, 18

displacement neutral, 257

Kirchhoff’s law, 24, 38, 401

node, 40–42, 51, 57, 59, 201–202, 209, 210

phasor, 251

polarity, 250

relation to current, 9

Thévenin equivalent, 45

Volt-ampere reactive, 223

Voltage dividers, 28, 33, 181, 198, 207, 213, 294

Voltage drop, 24

Voltage followers, 74, 97

Voltage ratio, 293

Voltage sources:

dependent, 7

independent, 7

Voltage transfer function, 181–182, 304

Watt, 1, 2, 4

Wattmeters, 265

power measurement with, 259–260

Waveforms:

analysis using Fourier method, 420–450

continuous spectrum of, 432–434

cosine, 421

effective values and power, 427–428

energy density of, 432

line spectrum, 425–426
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Waveforms (Cont.):

nonperiodic transforming, 430–431

periodic, 420

sawtooth, 420, 426, 444

sine, 101, 421

symmetry of, 423–425, 435

synthesis of, 426, 444

Weber, 1

Winding, 346–348

primary, 340

secondary, 340

Work energy, 1, 2

Wye system, 251

balanced four-wire loads, 253–254

Wye system (Cont.):

equivalent delta connections and, 254–255

unbalanced four-wire loads, 256

unbalanced three-wire loads, 257–258

Y-parameters, 312–314, 319, 320, 324

converting between Z-parameters and, 315–316

Zero pole plots, 170–173, 181–182, 186–187

frequency response from, 280–281

Z-matrix, 192–193

Z-parameters, 310–312, 318, 320–323, 325

converting between Y-parameters and, 315–316
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