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This book is designed for use as a textbook for a first course in circuit analysis or as a supplement to
standard texts and can be used by electrical engineering students as well as other engineereing and
technology students. Emphasis is placed on the basic laws, theorems, and problem-solving techniques
which are common to most courses.

The subject matter is divided into 17 chapters covering duly-recognized areas of theory and study.
The chapters begin with statements of pertinent definitions, principles, and theorems together with
illustrative examples. This is followed by sets of solved and supplementary problems. The problems
cover a range of levels of difficulty. Some problems focus on fine points, which helps the student to better
apply the basic principles correctly and confidently. The supplementary problems are generally more
numerous and give the reader an opportunity to practice problem-solving skills. Answers are provided
with each supplementary problem.

The book begins with fundamental definitions, circuit elements including dependent sources, circuit
laws and theorems, and analysis techniques such as node voltage and mesh current methods. These
theorems and methods are initially applied to DC-resistive circuits and then extended to RLC circuits by
the use of impedance and complex frequency. Chapter 5 on amplifiers and op amp circuits is new. The op
amp examples and problems are selected carefully to illustrate simple but practical cases which are of
interest and importance in the student’s future courses. The subject of waveforms and signals is also
treated in a new chapter to increase the student’s awareness of commonly used signal models.

Circuit behavior such as the steady state and transient response to steps, pulses, impulses, and
exponential inputs is discussed for first-order circuits in Chapter 7 and then extended to circuits of
higher order in Chapter 8, where the concept of complex frequency is introduced. Phasor analysis,
sinuosidal steady state, power, power factor, and polyphase circuits are thoroughly covered. Network
functions, frequency response, filters, series and parallel resonance, two-port networks, mutual induc-
tance, and transformers are covered in detail. Application of Spice and PSpice in circuit analysis is
introduced in Chapter 15. Circuit equations are solved using classical differential equations and the
Laplace transform, which permits a convenient comparison. Fourier series and Fourier transforms and
their use in circuit analysis are covered in Chapter 17. Finally, two appendixes provide a useful summary
of the complex number system, and matrices and determinants.

This book is dedicated to our students from whom we have learned to teach well. To a large degree it
is they who have made possible our satisfying and rewarding teaching careers. And finally, we wish to
thank our wives, Zahra Nahvi and Nina Edminister for their continuing support, and for whom all these
efforts were happily made.

MaHumMooD NAHVI
JoserH A. EDMINISTER
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Introduction

1.1 ELECTRICAL QUANTITIES AND SI UNITS

The International System of Units (SI) will be used throughout this book. Four basic quantities
and their SI units are listed in Table 1-1. The other three basic quantities and corresponding SI units,
not shown in the table, are temperature in degrees kelvin (K), amount of substance in moles (mol), and
luminous intensity in candelas (cd).

All other units may be derived from the seven basic units. The electrical quantities and their symbols
commonly used in electrical circuit analysis are listed in Table 1-2.

Two supplementary quantities are plane angle (also called phase angle in electric circuit analysis)
and solid angle. Their corresponding SI units are the radian (rad) and steradian (sr).

Degrees are almost universally used for the phase angles in sinusoidal functions, for instance,
sin(wt + 30°). Since wt is in radians, this is a case of mixed units.

The decimal multiples or submultiples of SI units should be used whenever possible. The symbols
given in Table 1-3 are prefixed to the unit symbols of Tables 1-1 and 1-2. For example, mV is used for
millivolt, 107V, and MW for megawatt, 10°W.

1.2 FORCE, WORK, AND POWER

The derived units follow the mathematical expressions which relate the quantities. From ““force
equals mass times acceleration,” the newton (N) is defined as the unbalanced force that imparts an
acceleration of 1 meter per second squared to a 1-kilogram mass. Thus, I N = 1kg- m/s>.

Work results when a force acts over a distance. A joule of work is equivalent to a newton-meter:
1J=1N-m. Work and energy have the same units.

Power is the rate at which work is done or the rate at which energy is changed from one form to
another. The unit of power, the watt (W), is one joule per second (J/s).

Table 1-1
Quantity Symbol SI Unit Abbreviation
length L, meter m
mass M, m kilogram kg
time Tt second S
current 1,i ampere A

1
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2 INTRODUCTION [CHAP. 1

Table 1-2
Quantity Symbol SI Unit Abbreviation
electric charge 0,q coulomb C
electric potential V,v volt A\
resistance R ohm Q
conductance G siemens S
inductance L henry H
capacitance C farad F
frequency f hertz Hz
force F.f newton N
energy, work W, w joule J
power P,p watt W
magnetic flux 1) weber Wb
magnetic flux density B tesla T

EXAMPLE 1.1. In simple rectilinear motion a 10-kg mass is given a constant acceleration of 2.0m/s>. () Find the
acting force F. (b) If the body was at rest at = 0, x = 0, find the position, kinetic energy, and power for 1 = 4s.

(a) F =ma = (10kg)(2.0m/s>) = 20.0kg - m/s*> = 20.0N
(b) At r=4ds, x=1a =1(2.0m/s*)(4s)’ = 16.0m
KE = Fx = (20.0N)(16.0m) = 3200N - m = 3.2kJ
P=KE/t =32kJ/4s =0.8kJ/s = 0.8kW

1.3 ELECTRIC CHARGE AND CURRENT

The unit of current, the ampere (A), is defined as the constant current in two parallel conductors of
infinite length and negligible cross section, 1 meter apart in vacuum, which produces a force between the
conductors of 2.0 x 1077 newtons per meter length. A more useful concept, however, is that current
results from charges in motion, and 1 ampere is equivalent to 1 coulomb of charge moving across a fixed
surface in 1 second. Thus, in time-variable functions, i(A) = dg/dt(C/s). The derived unit of charge,
the coulomb (C), is equivalent to an ampere-second.

The moving charges may be positive or negative. Positive ions, moving to the left in a liquid or
plasma suggested in Fig. 1-1(a), produce a current i, also directed to the left.  If these ions cross the
plane surface S at the rate of one coulomb per second, then the resulting current is 1 ampere. Negative
ions moving to the right as shown in Fig. 1-1(b) also produce a current directed to the left.

Table 1-3
Prefix Factor Symbol
pico 107" p
nano 1077 n
micro 1076 n
milli 1073 m
centi 1072 c
deci 107! d
kilo 10° k
mega 10° M
giga 10° G
tera 10'2 T




CHAP. 1] INTRODUCTION 3

-7 0 -6 OO0 O~

1.9 oo O~
NCE Oy S ONG O~ [0

_dq _dq
Cdr Cdr
(@) (b)

Fig. 1-1

Of more importance in electric circuit analysis is the current in metallic conductors which takes place
through the motion of electrons that occupy the outermost shell of the atomic structure. In copper, for
example, one electron in the outermost shell is only loosely bound to the central nucleus and moves
freely from one atom to the next in the crystal structure. At normal temperatures there is constant,
random motion of these electrons. A reasonably accurate picture of conduction in a copper conductor
is that approximately 8.5 x 10*® conduction electrons per cubic meter are free to move. The electron
charge is —e = —1.602 x 107" C, so that for a current of one ampere approximately 6.24 x 10'® elec-
trons per second would have to pass a fixed cross section of the conductor.

EXAMPLE 1.2. A conductor has a constant current of five amperes. How many electrons pass a fixed point on
the conductor in one minute?
5A = (5C/s)(60 s/min) = 300 C/min
300 C/min

= 1.87 x 10*' elect :
1.602 x 10~ C/electron X electrons/min

1.4 ELECTRIC POTENTIAL

An electric charge experiences a force in an electric field which, if unopposed, will accelerate the
particle containing the charge. Of interest here is the work done to move the charge against the field as
suggested in Fig. 1-2(a). Thus, if I joule of work is required to move the charge Q, I coulomb from
position 0 to position 1, then position 1 is at a potential of I volt with respect to position 0; 1V =11J/C.
This electric potential is capable of doing work just as the mass in Fig. 1-2(b), which was raised against
the gravitational force g to a height 4 above the ground plane. The potential energy mgh represents an
ability to do work when the mass m is released. As the mass falls, it accelerates and this potential energy
is converted to kinetic energy.

8

PE = mgh
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-
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A
o0

//////////.//‘//////

(a) (b)
Fig. 1-2



4 INTRODUCTION [CHAP. 1

EXAMPLE 1.3. In an electric circuit an energy of 9.25 uJ is required to transport 0.5 pC from point « to point b.
What electric potential difference exists between the two points?

~9.25x107°)

= ~=18.
05x106c 1Y

1 volt =1 joule per coulomb V

1.5 ENERGY AND ELECTRICAL POWER

Electric energy in joules will be encountered in later chapters dealing with capacitance and induc-
tance whose respective electric and magnetic fields are capable of storing energy. The rate, in joules per
second, at which energy is transferred is electric power in warts. Furthermore, the product of voltage
and current yields the electric power, p =vi; IW=1V-1A. Also, V-A=(J/C)-(C/s)=J/s =W.
In a more fundamental sense power is the time derivative p = dw/dt, so that instantaneous power p is
generally a function of time. In the following chapters time average power P,,, and a root-mean-square
(RMS) value for the case where voltage and current are sinusoidal will be developed.

EXAMPLE 1.4. A resistor has a potential difference of 50.0 V across its terminals and 120.0 C of charge per minute
passes a fixed point. Under these conditions at what rate is electric energy converted to heat?

(120.0 C/min)/(60s/min) = 2.0A P = (2.0 A)(50.0V) = 100.0 W

Since 1 W = 1]/s, the rate of energy conversion is one hundred joules per second.

1.6 CONSTANT AND VARIABLE FUNCTIONS

To distinguish between constant and time-varying quantities, capital letters are employed for the
constant quantity and lowercase for the variable quantity. For example, a constant current of 10
amperes is written / = 10.0 A, while a 10-ampere time-variable current is written i = 10.0 f(#) A. Exam-
ples of common functions in circuit analysis are the sinusoidal function i = 10.0sinw?(A) and the
exponential function v = 15.0e% (V).

Solved Problems

1.1 The force applied to an object moving in the x direction varies according to F = 12/x* (N).
(a) Find the work done in the interval Im < x <3m. (b) What constant force acting over the
same interval would result in the same work?

312 -17°
(a) dW =Fdx so W= dx =12 =387

2
1 X X 1

() 8J=F.2m) or F,=4N

C

1.2 Electrical energy is converted to heat at the rate of 7.56kJ/min in a resistor which has 270 C/min
passing through. What is the voltage difference across the resistor terminals?

From P = VI,

P 7.56 x 10’ J/min

V=770 C/min

—28J/C =28V
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1.3

1.4

1.5

1.6

1.7

A certain circuit element has a current i = 2.5sinwz (mA), where w is the angular frequency in
rad/s, and a voltage difference v = 45sin wt (V) between terminals. Find the average power P,
and the energy Wy transferred in one period of the sine function.

Energy is the time-integral of instantaneous power:

27/ w P27/ 112.5
WT:J vidi = 112.5J sin wrdt = ——" (mJ)
0 0 @
The average power is then
Wr
avg = m = 56.25mW

Note that P,,, is independent of w.

The unit of energy commonly used by electric utility companies is the kilowatt-hour (kWh).
(a) How many joules are in 1kWh? (b) A color television set rated at 75 W is operated from
7:00 p.m. to 11:30 p.m. What total energy does this represent in kilowatt-hours and in mega-
joules?

(@) 1kWh = (1000J/s)(3600s/h) = 3.6 MJ

(b) (75.0W)(4.5h) = 337.5Wh = 0.3375 kWh
(0.3375kWh)(3.6 MJ/kWh) = 1.215MJ

An AWG #12 copper wire, a size in common use in residential wiring, contains approximately
2.77 x 10 free electrons per meter length, assuming one free conduction electron per atom.
What percentage of these electrons will pass a fixed cross section if the conductor carries a
constant current of 25.0 A?

25.0C/s
1.602 x 10~'° C/electron
(1.56 x 10% electrons/s)(60 s/min) = 9.36 x 10%! electrons/min

9.36 x 10°!
W(mm =3.38%

=1.56 x 10% electron/s

How many electrons pass a fixed point in a 100-watt light bulb in 1 hour if the applied constant
voltage is 120 V?

100W = (120V) x I(A)  I=5/6A

(5/6 C/s)(36005s/h)

= 1.87 x 10% elect h
1,602 x 10~ C/electron X 1T clections pet out

A typical 12 V auto battery is rated according to ampere-hours. A 70-A - h battery, for example, at
a discharge rate of 3.5 A has a life of 20 h. (a) Assuming the voltage remains constant, obtain the
energy and power delivered in a complete discharge of the preceding batttery. (b) Repeat for a
discharge rate of 7.0 A.

(@ (3.5A)12V)=42.0W (or J/s)
(42.01/5)(3600 s/h)(20 h) = 3.02 MJ

(b) (T.0A)12V) = 84.0W
(84.01/5)(3600's/h)(10 h) = 3.02 MJ



1.8

1.9

1.10

1.11

1.12

1.13

1.15
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The ampere-hour rating is a measure of the energy the battery stores; consequently, the energy trans-
ferred for total discharge is the same whether it is transferred in 10 hours or 20 hours. Since power is the
rate of energy transfer, the power for a 10-hour discharge is twice that in a 20-hour discharge.

Supplementary Problems

Obtain the work and power associated with a force of 7.5 x 1074N acting over a distance of 2 meters in an
elapsed time of 14 seconds. Ans.  1.5mJ, 0.107 mW

Obtain the work and power required to move a 5.0-kg mass up a frictionless plane inclined at an angle of 30°
with the horizontal for a distance of 2.0 m along the plane in a time of 3.5s. Ans. 49.0J, 14.0W

Work equal to 136.0 joules is expended in moving 8.5 x 10'® electrons between two points in an electric
circuit. What potential difference does this establish between the two points? Ans. 100V

A pulse of electricity measures 305V, 0.15 A, and lasts 500 ps. What power and energy does this represent?
Ans. 45.75W, 22.9mlJ

A unit of power used for electric motors is the horsepower (hp), equal to 746 watts. How much energy does
a 5-hp motor deliver in 2 hours? Express the answer in MJ. Ans. 26.9MJ

For >0, g = (4.0 x 107*)(1 —¢ ") (C). Obtain the current at 7 =3ms.  Ans. 47.2mA

A certain circuit element has the current and voltage
i=10e % (A) v =150(1 — e %) (V)

Find the total energy transferred during ¢ > 0. Ans.  50mJ

The capacitance of a circuit element is defined as Q/V, where Q is the magnitude of charge stored in the
element and V' is the magnitude of the voltage difference across the element. The SI derived unit of
capacitance is the farad (F). Express the farad in terms of the basic units.

Ans. 1F=1A% s*/kg-m?



Circuit Concepts

2.1 PASSIVE AND ACTIVE ELEMENTS

An electrical device is represented by a circuit diagram or network constructed from series and
parallel arrangements of two-terminal elements. The analysis of the circuit diagram predicts the perfor-
mance of the actual device. A two-terminal element in general form is shown in Fig. 2-1, with a single
device represented by the rectangular symbol and two perfectly conducting leads ending at connecting
points A and B. Active elements are voltage or current sources which are able to supply energy to the
network. Resistors, inductors, and capacitors are passive elements which take energy from the sources
and either convert it to another form or store it in an electric or magnetic field.

B
Fig. 2-1

Figure 2-2 illustrates seven basic circuit elements. Elements (a) and (b) are voltage sources and (c)
and (d) are current sources. A voltage source that is not affected by changes in the connected circuit is an
independent source, illustrated by the circle in Fig. 2-2(a). A dependent voltage source which changes in
some described manner with the conditions on the connected circuit is shown by the diamond-shaped
symbol in Fig. 2-2(b). Current sources may also be either independent or dependent and the correspond-
ing symbols are shown in (¢) and (d). The three passive circuit elements are shown in Fig. 2-2(e), (f), and
(8)-

The circuit diagrams presented here are termed lumped-parameter circuits, since a single element in
one location is used to represent a distributed resistance, inductance, or capacitance. For example, a coil
consisting of a large number of turns of insulated wire has resistance throughout the entire length of the
wire. Nevertheless, a single resistance lumped at one place as in Fig. 2-3(b) or (c¢) represents the dis-
tributed resistance. The inductance is likewise lumped at one place, either in series with the resistance as
in (b) or in parallel as in (c).

7
Copyright 2003, 1997, 1986, 1965 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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| % | # | % | % R L Cji:
(a) (b) (c) C)] (e)

Fig. 2-2

< |
11//4
| R, § L,

WL

(a) (b) {c)

Fig. 2-3

In general, a coil can be represented by either a series or a parallel arrangement of circuit elements.
The frequency of the applied voltage may require that one or the other be used to represent the device.

2.2 SIGN CONVENTIONS

A voltage function and a polarity must be specified to completely describe a voltage source. The
polarity marks, 4+ and —, are placed near the conductors of the symbol that identifies the voltage source.
If, for example, v = 10.0 sin wt in Fig. 2-4(a), terminal A is positive with respect to B for 0 > wt > =, and
B is positive with respect to 4 for 7 > wt > 27 for the first cycle of the sine function.

P A 0 A il?A

+ +

O- O H o

o B o B o B
(@) (b) (c)
Fig. 2-4

Similarly, a current source requires that a direction be indicated, as well as the function, as shown in
Fig. 2-4(b). For passive circuit elements R, L, and C, shown in Fig. 2-4(c), the terminal where the current
enters is generally treated as positive with respect to the terminal where the current leaves.

The sign on power is illustrated by the dc circuit of Fig. 2-5(a) with constant voltage sources
V,=20.0V and V3 = 5.0V and a single 5-2 resistor. The resulting current of 3.0 A is in the clockwise
direction. Considering now Fig. 2-5(b), power is absorbed by an element when the current enters the
element at the positive terminal. Power, computed by VI or IR, is therefore absorbed by both the
resistor and the V7 source, 45.0 W and 15W respectively. Since the current enters V4 at the negative
terminal, this element is the power source for the circuit. P = VI = 60.0 W confirms that the power
absorbed by the resistor and the source V' is provided by the source V.
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+ 50 - + -
AAA <P,
+ + + +
vV, — _ — v <> _ <B>
200V /T [=304 — 50V A =304
(@) b)

Fig. 2-5

2.3 VOLTAGE-CURRENT RELATIONS

The passive circuit elements resistance R, inductance L, and capacitance C are defined by the
manner in which the voltage and current are related for the individual element. For example, if the
voltage v and current i for a single element are related by a constant, then the element is a resistance,
R is the constant of proportionality, and v = Ri. Similarly, if the voltage is the time derivative of the
current, then the element is an inductance, L is the constant of proportionality, and v = Ldi/dt.
Finally, if the current in the element is the time derivative of the voltage, then the element is a
capacitance, C is the constant of proportionality, and i = C dv/dt. Table 2-1 summarizes these rela-
tionships for the three passive circuit elements. Note the current directions and the corresponding
polarity of the voltages.

Table 2-1
Circuit element Units Voltage Current Power
i
i,
v ohms () v=Ri =2 p=vi=0iR
(Ohms’s law) R
Resistance
i
1 +
di 1 ) L di
v henries (H) UZLE l:ZJvdH—k] p:w:LlE
Inductance
i
1 +
1 ( d dr
v farads (F) 1):6, idt+k, i:C% p:vi:Cvi
Capacitance
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2.4 RESISTANCE

All electrical devices that consume energy must have a resistor (also called a resistance) in their
circuit model. Inductors and capacitors may store energy but over time return that energy to the source
or to another circuit element. Power in the resistor, given by p = vi = >R = v*/R, is always positive as
illustrated in Example 2.1 below. Energy is then determined as the integral of the instantaneous power

153 5] 1 153
W:J pdl:RJ i2dt:EJ o> dr

t A 1

EXAMPLE 2.1. A 4.0-Q resistor has a current i = 2.5sinw? (A). Find the voltage, power, and energy over one
cycle. o = 500rad/s.

v = Ri =10.0sinwt (V)
p =vi =i*R = 25.0sin* wt (W)

! t sin2owt
w= L pdt = 25.0|:§ S :| @)

The plots of i, p, and w shown in Fig. 2-6 illustrate that p is always positive and that the energy w, although a
function of time, is always increasing. This is the energy absorbed by the resistor.

i A
25 F -
(@)
1 , / .
4} ‘I‘r\\/QﬂT w?
W
25F ===
®)
! ! .
0 3 2w wt
w, mJ

(0

Fig. 2-6
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2.5 INDUCTANCE

The circuit element that stores energy in a magnetic field is an inductor (also called an inductance).
With time-variable current, the energy is generally stored during some parts of the cycle and then
returned to the source during others. When the inductance is removed from the source, the magnetic
field will collapse; in other words, no energy is stored without a connected source. Coils found in electric
motors, transformers, and similar devices can be expected to have inductances in their circuit models.
Even a set of parallel conductors exhibits inductance that must be considered at most frequencies. The
power and energy relationships are as follows.

di . d[l
EI_E[ELZ:I

15 15} 1
s =J pdt =J Lidt = L[ — ii]

A A

p=vi=1L

Energy stored in the magnetic field of an inductance is w; = %Liz.

EXAMPLE 2.2. In the interval 0 > ¢ > (7r/50)s a 30-mH inductance has a current i = 10.0sin 507 (A). Obtain the
voltage, power, and energy for the inductance.

t

v=1L g =15.0c0s507 (V) p=vi=750sin100z (W)  w, = j pdt =0.75(1 — cos 1007) (J)
0

As shown in Fig. 2-7, the energy is zero at t = 0 and ¢ = (7/50)s. Thus, while energy transfer did occur over the
interval, this energy was first stored and later returned to the source.

i A pW
1] ST, »5h-----
1
|
[}
4
+
E)
L]
.
L
.
.
1
1]
] /S0
H 1
[} /S0 L s Y s
v,V
15
w,)
/50
"| 150 ------------ v
o Ls H
s
+
:
'
0 w100 w/50 LS

Fig. 2-7
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2.6 CAPACITANCE

The circuit element that stores energy in an electric field is a capacitor (also called capacitance).
When the voltage is variable over a cycle, energy will be stored during one part of the cycle and
returned in the next. While an inductance cannot retain energy after removal of the source because the
magnetic field collapses, the capacitor retains the charge and the electric field can remain after the
source is removed. This charged condition can remain until a discharge path is provided, at which
time the energy is released. The charge, ¢ = Cv, on a capacitor results in an electric field in the
dielectric which is the mechanism of the energy storage. In the simple parallel-plate capacitor there
is an excess of charge on one plate and a deficiency on the other. It is the equalization of these charges
that takes place when the capacitor is discharged. The power and energy relationships for the capa-
citance are as follows.

. dv d[l _,
p_w_CUE_E[ECU}

15} 1 1
WC:J pdt:J Cvdv:i C[v%—v%]

4 51

The energy stored in the electric field of capacitance is we = %Cvz.

EXAMPLE 2.3. In the interval 0 > ¢ > 57 ms, a 20-uF capacitance has a voltage v = 50.0sin 2007 (V). Obtain the
charge, power, and energy. Plot we assuming w =0 at 1 = 0.

¢ = Cv = 1000sin 2007 (nC)

i=C % = 0.20c0s 2007 (A)

p = vi = 5.0sin 400z (W)

5]
We = [ pdt =12.5[1 — cos400¢] (mJ)

Jiy

In the interval 0 > ¢ > 2.57ms the voltage and charge increase from zero to 50.0V and 1000 uC, respectively.
Figure 2-8 shows that the stored energy increases to a value of 25mJ, after which it returns to zero as the energy
is returned to the source.

B ————

- S t, ms

Fig. 2-8

2.7 CIRCUIT DIAGRAMS

Every circuit diagram can be constructed in a variety of ways which may look different but are in
fact identical. The diagram presented in a problem may not suggest the best of several methods of
solution. Consequently, a diagram should be examined before a solution is started and redrawn if
necessary to show more clearly how the elements are interconnected. An extreme example is illustrated
in Fig. 2-9, where the three circuits are actually identical. In Fig. 2-9(a) the three “‘junctions” labeled A
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are shown as two “‘junctions” in (b). However, resistor R4 is bypassed by a short circuit and may be
removed for purposes of analysis. Then, in Fig. 2-9(c) the single junction A is shown with its three
meeting branches.

R,
B
Ry B RZ R A
Al A B A
v
v ki
s b
C SR b R
¢ C b Joh C R, :E R,
<
Ra R,
R;
) A
A A
(a) (b) (c)
Fig. 2-9

2.8 NONLINEAR RESISTORS

The current-voltage relationship in an element may be instantaneous but not necessarily linear. The
element is then modeled as a nonlinear resistor. An example is a filament lamp which at higher voltages
draws proportionally less current. Another important electrical device modeled as a nonlinear resistor is
a diode. A diode is a two-terminal device that, roughly speaking, conducts electric current in one
direction (from anode to cathode, called forward-biased) much better than the opposite direction
(reverse-biased). The circuit symbol for the diode and an example of its current-voltage characteristic
are shown in Fig. 2-25. The arrow is from the anode to the cathode and indicates the forward direction
(i > 0). A small positive voltage at the diode’s terminal biases the diode in the forward direction and can
produce a large current. A negative voltage biases the diode in the reverse direction and produces little
current even at large voltage values. An ideal diode is a circuit model which works like a perfect switch.
See Fig. 2-26. Its (i, v) characteristic is

v=0 wheni>0
i=0 whenv<0

The static resistance of a nonlinear resistor operating at (I, V) is R = V/I. Its dynamic resistance is
r = AV /AI which is the inverse of the slope of the current plotted versus voltage. Static and dynamic
resistances both depend on the operating point.

EXAMPLE 2.4. The current and voltage characteristic of a semiconductor diode in the forward direction is
measured and recorded in the following table:

v (V) 0.5 0.6 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 0.72 0.73 0.74 0.75

i(mA) | 2x107* | 0.11 | 0.78 | 1.2 1.7 2.6 39 5.8 8.6 12.9 19.2 28.7 427

In the reverse direction (i.e., when v < 0), i =4 x 107> A. Using the values given in the table,
calculate the static and dynamic resistances (R and r) of the diode when it operates at 30 mA, and
find its power consumption p.

From the table
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v ~ _ 07 =25.78Q
28.7 x 1073

I
LAV 0752073 oo
I~ (427-19.2) x 103

p=VI~074x287x 107°W = 21.238 mW

EXAMPLE 2.5. The current and voltage characteristic of a tungsten filament light bulb is measured and recorded
in the following table. Voltages are DC steady-state values, applied for a long enough time for the lamp to reach
thermal equilibrium.

v (V) 05111572 3135 4|45 5155 6| 6.5 7175 8

i(mA) | 4 6|8 O 11|12 |13 |14 (15|16 | 17| 18 | 18 | 19 | 20

Find the static and dynamic resistances of the filament and also the power consumption at the operating points

(a) i=10mA; (b) i = 15mA.

v AV
R=— el = VI
I "Tar PV
2.5 3.2 _3
R —2 250Q A" 5000, p~25x 10 x 107 W = 25mW
@ 10 x 102 "1 =9) x 1073 ? e m
5-4.
B Rrv—> =350~ 2 5000 pasx 15x 1070 W = T5mW
15 % 10 (16 — 14) x 10

2.1

2.2

2.3

Solved Problems

A 25.0-Q resistance has a voltage v = 150.0sin 377¢ (V). Find the corresponding current i and
power p.

5 v

i==60sin3771(A)  p=uvi=900.0 sin® 377 (W)

The current in a 5-Q resistor increases linearly from zero to 10A in 2ms. At ¢ =27 ms the
current is again zero, and it increases linearly to 10 A at 1 = 4ms. This pattern repeats each 2 ms.
Sketch the corresponding v.

Since v = Ri, the maximum voltage must be (5)(10) = 50 V. In Fig. 2-10 the plots of i and v are shown.
The identical nature of the functions is evident.

An inductance of 2.0 mH has a current i = 5.0(1 — o300y (A). Find the corresponding voltage
and the maximum stored energy.
di

= 50.0¢% (v)

=L
v dt

In Fig. 2-11 the plots of i and v are given. Since the maximum current is 5.0 A, the maximum stored energy
is

1
Winax = D) LIr%mx =25.0mJ
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i, A
10
I | |
I
0 2 3 6 t, ms
(a)
v, V
50
| |
I
0 2 4 6 t, ms
b)
Fig. 2-10
i, A v,V
S0 -=mmmmmemommmmo--——oooa: 50.0
i
v
0 L 1 1 1 1 1 t 0 t
Fig. 2-11

2.4  An inductance of 3.0 mH has a voltage that is described as follows: for 0 > ¢ > 2ms, V=150V
and, for 2 >t > 4ms, V= —30.0V. Obtain the corresponding current and sketch v; and i for

the given intervals.

For 0 > ¢t > 2ms,

t !
i:lj vdzz%J 15.0dr = 5 x 10°1 (A)
L) 3x 1073 [,

For t = 2ms,

i=10.0A
For 2 > t > 4ms,
1 1 !
i=7 LXW vdi+10.0 + 35— wa—s —30.0 dt
=10.0+ ﬁ [—30.07 + (60.0 x 107%)] (A)

=30.0 — (10 x 10°7) (A)

See Fig. 2-12.

2.5 A capacitance of 60.0 uF has a voltage described as follows: 0 > ¢ > 2ms, v = 25.0 x 10%7 (V).
Sketch i, p, and w for the given interval and find W,,,.

For 0 > ¢ > 2ms,
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v, 100 F A
15.0 ————: i
0 0 T4 1, ms > 4 f, ms
=300+ :—-—-: -10.0 :
Fig. 2-12
) dv ¢ d 3
i=C=60x10"" — (250x10') = 1.5A
p=uvi=2375x 101 (W)
t
We = J pdt = 1.875 x 10*# (m))
0
See Fig. 2-13.
Winax = (1.875 x 10Y(2 x 107%)? = 75.0mJ
1 1
or Winax =5 CV2,, = 5(60.0 x 107%)(50.0)* = 75.0mJ
v, V i, A w, mJ
EA e R
50.0 |- 1.5 T E
: i Y] . :
s e T o
1 L L i E 1 i 1 L E 460125 ' E i i
0 2t ms 0 2 f, ms 0 Q0.5 1.0 1.5 2.0 f, ms

Fig. 2-13
2.6 A 20.0-pF capacitance is linearly charged from 0 to 400 uC in 5.0ms. Find the voltage function
and W

{400 x 107°
T=\50x 1073

v=g/C=4.0x 10’ (V)

)z =8.0x 10727 (C)
1
Viax = (4.0 x 10%)(5.0 x 1073) =200V Wppae = 3 CVi, =4.0mJ

2.7 A series circuit with R =2Q, L = 2mH, and C = 500 uF has a current which increases linearly
from zero to 10 A in the interval 0 < 7 < 1 ms, remains at 10 A for 1 ms < ¢ < 2ms, and decreases
linearly from 10 A at t = 2ms to zero at t = 3ms. Sketch vy, vy, and vc.

vg must be a time function identical to i, with V. =2(10) =20V.
For 0 <t < 1ms,
d

T
— =20V
dt

%: 10 x 10° A/s and vy =1L

When di/dt =0, for Ims < ¢ < 2ms, v, =0.
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Assuming zero initial charge on the capacitor,
1
=—|idt
Ve C [ 1da
For 0 <t < Ims,
ve = L [T 10* tdt = 107 (V)
5 x 1074 Jo
This voltage reaches a value of 10V at I ms. For lms < ¢ <2ms,
ve = (20 x 10%) (1 — 1073) 4+ 10 (V)
See Fig. 2-14.
i A v, V
10 2
| I
| | | } }
0 1 2 3 t, ms 0 1 2 3 Lms
1 1
;
ve, V
W —— e -
VR, A\
0 ———— |
2 0 | e —— | |
| | 0 ———4a | | {
| | — | i
0 1 2 3 i, ms [} 1 2 3 f,ms
Fig. 2-14
2.8 A single circuit element has the current and voltage functions graphed in Fig. 2-15. Determine

the element.

15

w3
—_——

o

]

Fig. 2-15
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2.9

2.10

2.11
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The element cannot be a resistor since v and i are not proportional. v is an integral of i. For
2ms < t < 4ms, i # 0 but v is constant (zero); hence the element cannot be a capacitor. For 0 < ¢ < 2ms,

di_ s 10°A/s and ov=15V

dt
di
L=v/Z=3mH
v/dt 3m

(Examine the interval 4ms < ¢ < 6 ms; L must be the same.)

Consequently,

Obtain the voltage v in the branch shown in Fig. 2-16 for (a) i, =1A, (b) ih =—-2A,
(C) i2 =0A.

Voltage v is the sum of the current-independent 10-V source and the current-dependent voltage source
ve. Note that the factor 15 multiplying the control current carries the units €.

(a) v=104v, =104+ 15(1) =25V
() v=104v, = 104+ 15(=2) = =20V
(© v=104150) =10V

Fig. 2-16

Find the power absorbed by the generalized circuit element in Fig. 2-17, for (a) v=50V,
() v=-50V.

a———
i=85A
Fig. 2-17

Since the current enters the element at the negative terminal,

(@) p=—vi =—(50)(8.5) = —425W
(b) p=—vi =—(=50)(8.5) =425 W

Find the power delivered by the sources in the circuit of Fig. 2-18.

2050

=—-10A
i 3 0

The powers absorbed by the sources are:
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2.12

2.13

2.14

10

AAA
Y

(i) Up = 50 V

2Q

AAA

A A4

Fig. 2-18

Pa = Va0 = —(20)(—10) = 200 W
Py = vpi = (50)(—10) = —3500 W

Since power delivered is the negative of power absorbed, source v, delivers 500 W and source v, absorbs
200 W. The power in the two resistors is 300 W.

A 25.0-K2 resistance has a voltage v = 150.0sin 377¢ (V). Find the power p and the average power
Pavg OVET one cycle.

i=v/R=06.0sin377t (A)
p = vi = 900.0sin® 3771 (W)
The end of one period of the voltage and current functions occurs at 377t =2x.  For P, the

integration is taken over one-half cycle, 377t = n. Thus,

1 T . 2
Poyy = - Jo 900.0sin"(3770)d(377¢) = 450.0 (W)

Find the voltage across the 10.0-2 resistor in Fig. 2-19 if the control current i, in the dependent
source is (a) 2A and (b) —1A.

i=4i,—40;  vg=iR=40.0i, —40.0 (V)

i, =2; vp =400V

i,=—1; vp = —80.0V

i

4i <4 : % 10.0 Q (D 40A

Fig. 2-19

Supplementary Problems

A resistor has a voltage of ' =1.5mV. Obtain the current if the power absorbed is (a) 27.75nW and
(h) 1.20 uW. Ans. 18.5pA, 0.8 mA
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2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25
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A resistance of 5.0 Q has a current i = 5.0 x 10°¢ (A) in the interval 0 > ¢ > 2ms. Obtain the instantaneous
and average power. Ans. 12507 (W), 167.0 (W)

Current j enters a generalized circuit element at the positive terminal and the voltage across the element is
3.91V. If the power absorbed is —25.0 mW, obtain the current. Ans. —6.4mA

Determine the single circuit element for which the current and voltage in the interval 0 > 10°: > 7 are given
by i = 2.0sin 10°# (mA) and v = 5.0 cos 10°7 (mV). Ans.  An inductance of 2.5mH

An inductance of 4.0 mH has a voltage v = 2.0e710 (V). Obtain the maximum stored energy. At ¢ =0,
the current is zero. Ans. 0.5mW

A capacitance of 2.0 uF with an initial charge Q, is switched into a series circuit consisting of a 10.0-Q
resistance. Find Q) if the energy dissipated in the resistance is 3.6 mJ. Ans.  120.0 uC

Given that a capactance of C farads has a current i = (V,,/R)e”"/® (A), show that the maximum stored
energy is %C V2. Assume the initial charge is zero.

The current after 1 = 0 in a single circuit element is as shown in Fig. 2-20. Find the voltage across the
element at 7z = 6.5 ps, if the element is (¢) 10k2, (b) 15mH, (¢) 0.3nF with Q(0) = 0.
Ans. (a) 25V; (b) =75V; (c¢) 81.3V

1, us

Fig. 2-20

The 20.0-uF capacitor in the circuit shown in Fig. 2-21 has a voltage for ¢ > 0, v = 100.0e~/%%"* (V). Obtain
the energy function that accompanies the discharge of the capacitor and compare the total energy to that
which is absorbed by the 750-Q resistor. Ans. 0.10 (1 — 7007y (1)

20 uF .
1L tc

N |

&
R & 750
_ 9

Fig. 2-21

Find the current / in the circuit shown in Fig. 2-22, if the control v, of the dependent voltage source has the
value (a) 4V, (b) 5V, (c¢) 10V. Ans. (a) 1A; (b) 0A; (¢) —5A

In the circuit shown in Fig. 2-23, find the current, i, given (a) iy, =2A, b =0; (b) ij=—1A,i, =4A;
(¢) iy =i, =1A. Ans. (a) 10A; (b)) 11A; (¢) 9A

A 1-pF capacitor with an initial charge of 107 C is connected to a resistor R at = 0. Assume discharge
current during 0 <7 < 1ms is constant. Approximate the capacitor voltage drop at = 1ms for
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2.26

2.27

2.28

2.29

2.30

4i R Siy

Fig. 2-23

(@) R=1MQ; (b) R=100k22; (¢) R=10k2. Hint: Compute the charge lost during the 1-ms period.
Ans. (a) 0.1V; (b) 1V; (b) 10V

The actual discharge current in Problem 2.25 is i = (100/R)e7106[/R A. Find the capacitor voltage drop at
1 ms after connection to the resistor for (@) R=1MQ; (b) R=100kQ; (¢) R=10k<.

Ans. (a) 0.1V; (b) 1V; (¢) 9.52V

A 10-pF capacitor discharges in an element such that its voltage is v = 2¢~ 190
delivered by the capacitor as functions of time.

Ans. i =20 mA, p = vi = 4071 mJ

Find the current and power

Find voltage v, current i, and energy W in the capacitor of Problem 2.27 at time t = 0, 1, 3, 5, and 10 ms. By
integrating the power delivered by the capacitor, show that the energy dissipated in the element during the
interval from 0 to 7 is equal to the energy lost by the capacitor.

Ans.

t v i w

0 2V 20mA 20 pJ

1 ms 736 mV | 7.36mA | 2.7u]

3ms 100mV | 1mA 0.05pnJ

Sms 13.5mV | 135pA ~ 0.001 pJ

10ms | 91pV | 0.91pA | ~0

The current delivered by a current source is increased linearly from zero to 10 A in 1-ms time and then is
decreased linearly back to zero in 2ms. The source feeds a 3-k€2 resistor in series with a 2-H inductor (see
Fig. 2-24). (a) Find the energy dissipated in the resistor during the rise time (W) and the fall time
(W,). (b) Find the energy delivered to the inductor during the above two intervals. (¢) Find the energy
delivered by the current source to the series RL combination during the preceding two intervals. Note:
Series elements have the same current. The voltage drop across their combination is the sum of their
individual voltages.

Ans.  (a) W) =100, W, =200; (b) W; =200, W, =—=200; (c) W, =300, W, =0, all in joules

The voltage of a 5-pF capacitor is increased linearly from zero to 10V in 1 ms time and is then kept at that
level. Find the current. Find the total energy delivered to the capacitor and verify that delivered energy is
equal to the energy stored in the capacitor.

Ans. i =50mA during 0 < ¢ < 1 ms and is zero elsewhere, W = 250 pJ.
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2.32

2.33

2.34

2.35

2.36

2.37

2.38
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i (4) iy
3 kQ
10

2H

| | -

1 2 3 t(msec)

Fig. 2-24

A 10-puF capacitor is charged to 2V. A path is established between its terminals which draws a constant
current of 7. (a) For I = 1 mA, how long does it take to reduce the capacitor voltage to 5 percent of its
initial value? (b) For what value of I, does the capacitor voltage remain above 90 percent of its initial value
after passage of 24 hours?

Ans. (a) 19ms, (b) 23.15pA

Energy gained (or lost) by an electric charge ¢ traveling in an electric field is gqv, where v is the electric
potential gained (or lost). In a capacitor with charge Q and terminal voltage V, let all charges go from one
plate to the other. By way of computation, show that the total energy W gained (or lost) is not OV but
QV/2 and explain why.  Also note that QV/2 is equal to the initial energy content of the capacitor.
Ans. W = [ qudt = Q[*5%] =0V /2= LCV?. The apparent discrepancy is explained by the following.
The starting voltage vetween the two plates is V. As the charges migrate from one plate of the capacitor to
the other plate, the voltage between the two plates drops and becomes zero when all charges have moved.
The average of the voltage during the migration process is V'/2, and therefore, the total energy is QV'/2.

Lightning I. The time profile of the discharge current in a typical cloud-to-ground lightning stroke is
modeled by a triangle. The surge takes 1ps to reach the peak value of 100kA and then is reduced to
zero in 99 uS. (@) Find the electric charge Q discharged. (b) If the cloud-to-ground voltage before the
discharge is 400 MV, find the total energy W released and the average power P during the discharge. (c) If
during the storm there is an average of 18 such lightning strokes per hour, find the average power released in
lhour.  Ans. (1) Q=5C; (b)) W=10°J,P=10"W; (¢) 5SMW

Lightning II. Find the cloud-to-ground capacitance in Problem 2.33 just before the lightning stroke.
Ans. 12.5uF

Lightning III. The current in a cloud-to-ground lightning stroke starts at 200 kA and diminishes linearly to
zero in 100 us.  Find the energy released W and the capacitance of the cloud to ground C if the voltage
before the discharge is (a) 100MV; (b) 500 MV.

Ans. (@) W=5x101,C=0.1pF; (b) W =25x10°J,C=20nF

The semiconductor diode of Example 2.4 is placed in the circuit of Fig. 2-25. Find the current for
(@) Vi=1V, (b) Vy,=—-1V. Ans. (a) 14mA; (b)) 0

The diode in the circuit of Fig. 2-26 is ideal. The inductor draws 100 mA from the voltage source. A 2-puF
capacitor with zero initial charge is also connected in parallel with the inductor through an ideal diode such
that the diode is reversed biased (i.e., it blocks charging of the capacitor). The switch s suddenly disconnects
with the rest of the circuit, forcing the inductor current to pass through the diode and establishing 200 V at
the capacitor’s terminals. Find the value of the inductor. Ans. L =8H

Compute the static and dynamic resistances of the diode of Example 2.4 at the operating point v = 0.66 V.

Ans. Rm&zzssog and r~ 207706 5 g
1.2 % 107 (1.7-0.78) x 1072
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Fig. 2-26

2.39  The diode of Example 2.4 operates within the range 10 < i < 20mA. Within that range, approximate its
terminal characteristic by a straight line i = av + 8, by specifying @ and S.
Ans. i =630v— 4407 mA, where v is in V

2.40 The diode of Example 2.4 operates within the range of 20 < i < 40mA. Within that range, approximate its
terminal characteristic by a straight line connecting the two operating limits.
Ans. i =993.33v— 702.3mA, where visin V

2.41  Within the operating range of 20 < i < 40 mA, model the diode of Example 2.4 by a resistor R in series with
a voltage source V" such that the model matches exactly with the diode performance at 0.72 and 0.75V. Find
Rand V. Ans. R=1.007Q, V =707 mV



Circuit Laws

3.1 INTRODUCTION

An electric circuit or network consists of a number of interconnected single circuit elements of the
type described in Chapter 2. The circuit will generally contain at least one voltage or current source.
The arrangement of elements results in a new set of constraints between the currents and voltages.
These new constraints and their corresponding equations, added to the current-voltage relationships
of the individual elements, provide the solution of the network.

The underlying purpose of defining the individual elements, connecting them in a network, and
solving the equations is to analyze the performance of such electrical devices as motors, generators,
transformers, electrical transducers, and a host of electronic devices. The solution generally answers
necessary questions about the operation of the device under conditions applied by a source of energy.

3.2 KIRCHHOFF’S VOLTAGE LAW

For any closed path in a network, Kirchhoff’s voltage law (KVL) states that the algebraic sum of the
voltages is zero. Some of the voltages will be sosurces, while others will result from current in passive
elements creating a voltage, which is sometimes referred to as a voltage drop. The law applies equally
well to circuits driven by constant sources, DC, time variable sources, v(¢) and i(¢), and to circuits driven
by sources which will be introduced in Chapter 9. The mesh current method of circuit analysis
introduced in Section 4.2 is based on Kirchhoff’s voltage law.

EXAMPLE 3.1. Write the KVL equation for the circuit shown in Fig. 3-1.

R, U

-—yw—@—

v
+
o () C ) w3
- U3 +
R3

Fig. 3-1
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Starting at the lower left corner of the circuit, for the current direction as shown, we have
—v,+ v+ +v;+v3=0
—v, 4+ iR, + vy + iRy + iRy =0
v, —vp = iRy + Ry + R3)

3.3 KIRCHHOFF’S CURRENT LAW

The connection of two or more circuit elements creates a junction called a node. The junction
between two elements is called a simple node and no division of current results. The junction of three or
more elements is called a principal node, and here current division does take place. Kirchhoff’s current
law (KCL) states that the algrebraic sum of the currents at a node is zero. It may be stated alternatively
that the sum of the currents entering a node is equal to the sum of the currents leaving that node. The
node voltage method of circuit analysis introduced in Section 4.3 is based on equations written at the
principal nodes of a network by applying Kirchhoff’s current law. The basis for the law is the con-
servation of electric charge.

EXAMPLE 3.2. Write the KCL equation for the principal node shown in Fig. 3-2.
ll—lz+lg—l4—15:0

i1+i3:i2+i4+i5

—_— -— 3

i

— ¢

—— —

in is
Fig. 3-2

3.4 CIRCUIT ELEMENTS IN SERIES

Three passive circuit elements in series connection as shown in Fig. 3-3 have the same current i. The
voltages across the elements are vy, v5, and v3. The total voltage v is the sum of the individual voltages;
V=] + Uy + V3.

Fig. 3-3

If the elements are resistors,
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v = lRl + ZR2 + ZR3
=R + R + Ry)
= ich

where a single equivalent resistance R, replaces the three series resistors. ~ The same relationship
between i and v will pertain.

For any number of resistors in series, we have Ryq = Rj + Ry +---.

If the three passive elements are inductances,
di

L
at

di
=(L L L) —
(L1 + Ly + Ls) 7
di
eq E
Extending this to any number of inductances in series, we have Leg = Ly + Ly + .

If the three circuit elements are capacitances, assuming zero initial charges so that the constants of
integration are zero,

di di

U:Ll +L3E

1 1 1
=— |idt+— | idt+— | idt
! C1Jl +Czjl +C3Jl

(L] Jidt
a6 q
o

idi
Ceq

The equivalent capacitance of several capacitances in series is 1/Coq = 1/C; +1/Cy + - - .

EXAMPLE 3.3. The equivalent resistance of three resistors in series is 750.0 2. Two of the resistors are 40.0 and
410.0 2. What must be the ohmic resistance of the third resistor?
Req :Rl +R2+R3
750.0 = 40.0 +410.0 + R; and R; =300.0Q

EXAMPLE 3.4. Two capacitors, C; = 2.0uF and C, = 10.0 uF, are connected in series.  Find the equivalent
capacitance. Repeat if C, is 10.0 pF.
CiC, (2.0 x 107%)(10.0 x 107%)
eq = = s — = L.67TuF
Ci+C, 20x107°4+10.0 x 10

If C, = 10.0pF,

(20 x107(10.0 x 107'%)  20.0 x 107"

Ceq = =
42,0 x 10704+ 10.0 x 10712 2.0 x 107°

=10.0pF

where the contribution of 10.0 x 10'? to the sum C, + C, in the denominator is negligible and therefore it can be
omitted.

Note: When two capacitors in series differ by a large amount, the equivalent capacitance is essen-
tially equal to the value of the smaller of the two.

3.5 CIRCUIT ELEMENTS IN PARALLEL

For three circuit elements connected in parallel as shown in Fig. 3-4, KCL states that the current i
entering the principal node is the sum of the three currents leaving the node through the branches.
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g @

Fig. 3-4
i=i4i+i

If the three passive circuit elements are resistances,

+ v n <1 41 1 n 1) 1
=— —=|- —Jv=—w
R R R3 R, R, R Req
For several resistors in parallel,

Lot
Rqg R R

q

The case of two resistors in parallel occurs frequently and deserves special mention. The equivalent
resistance of two resistors in parallel is given by the product over the sum.
_ RiR
“T R+ R

EXAMPLE 3.5. Obtain the equivalent resistance of (a) two 60.0-Q resistors in parallel and (b) three 60.0-Q
resistors in parallel.

_(60.0)°
(a) R =" = 3009
(b) : Lo by b r =200
Req 600" 60.0 ' 60.0 e = o

Note: For n identical resistors in parallel the equivalent resistance is given by R/n.
Combinations of inductances in parallel have similar expressions to those of resistors in parallel:

1 1 1 i LL,
S T d, for t duct Leg=7—"7F
+— 4+ and, for two inductances, “ =7 I

EXAMPLE 3.6. Two inductances L; = 3.0mH and L, = 6.0mH are connected in parallel. Find L.

! 1 1
L 30mH 6omn M Fw=20mH

With three capacitances in parallel,

dv

dv dv dv
l—C1d+C2dl+C; —(C1+C2+C‘g) qu

For several parallel capacitors, Coq = C; + C, + - - -, which is of the same form as resistors in series.
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3.6 VOLTAGE DIVISION

A set of series-connected resistors as shown in Fig. 3-5 is referred to as a voltage divider. The
concept extends beyond the set of resistors illustrated here and applies equally to impedances in series, as
will be shown in Chapter 9.

Since v; = iR; and v = i(R; + R, + R3),

R,
M=\
! R + R, + R

EXAMPLE 3.7. A voltage divider circuit of two resistors is designed with a total resistance of the two resistors
equal to 50.0 2. If the output voltage is 10 percent of the input voltage, obtain the values of the two resistors in the
circuit.

R,

=010 010=—1—
v 50.0 x 10

from which R; = 5.0Q and R, =45.0 .

3.7 CURRENT DIVISION

A parallel arrangement of resistors as shown in Fig. 3-6 results in a current divider. The ratio of the
branch current i; to the total current 7 illustrates the operation of the divider.

+ l )
3l
v Ry R, % Ry

Fig. 3-6
v v ond ) v
= — 4 —+— n i =—
R R R 'R
i 1/R, Ry R;

Then — = =
l 1/R1+1/R2+]/R3 R1R2+R1R3+R2R3
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For a two-branch current divider we have
i R,

iR +R

This may be expressed as follows: The ratio of the current in one branch of a two-branch parallel circuit
to the total current is equal to the ratio of the resistance of the other branch resistance to the sum of the
two resistances.

EXAMPLE 3.8. A current of 30.0mA is to be divided into two branch currents of 20.0 mA and 10.0 mA by a
network with an equivalent resistance equal to or greater than 10.0 2. Obtain the branch resistances.

ZOmA_ R2 IOmA_ Rl R|R2

= = > 10.0 Q2
30mA Rl +R2 30mA R| +R2 R] +R2 -

Solving these equations yields R; > 15.0 Q2 and R, > 30.0 Q.

Solved Problems

3.1 Find V3 and its polarity if the current / in the circuit of Fig. 3-7 is 0.40 A.

vz
500 100V

—M————()—

vy
500V j) I % 20.0 Q)
M\

avb
Vi

Fig. 3-7

Assume that V3 has the same polarity as ;. Applying KVL and starting from the lower left corner,

V) —I(5.0) = V, — 1(20.0) + V3 = 0
50.0 —2.0 — 10.0 — 8.0+ V3 =0
Vi =-30.0V

Terminal b is positive with respect to terminal a.

3.2  Obtain the currents /; and I, for the network shown in Fig. 3-8.
a and b comprise one node. Applying KCL,
204+7.0+1, =30 or I, =—-6.0A
Also, ¢ and d comprise a single node. Thus,

404+60=5,+1.0 or L =9.0A

3.3  Find the current / for the circuit shown in Fig. 3-9.
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5 ~

11

Fig. 3-9

The branch currents within the enclosed area cannot be calculated since no values of the resistors are
given. However, KCL applies to the network taken as a single node. Thus,

20-30-40-7=0 or I1=-50A

3.4  Find the equivalent resistance for the circuit shown in Fig. 3-10.

200

200
200 1060

Fig. 3-10

The two 20-Q resistors in parallel have an equivalent resistance R,y = [(20)(20)/(20 +20)] = 10. This
is in series with the 10-Q2 resistor so that their sum is 20 2. This in turn is in parallel with the other 20-Q
resistor so that the overall equivalent resistance is 10 2.

3.5 Determine the equivalent inductance of the three parallel inductances shown in Fig. 3-11.
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10 mH 20 mH 20 mH

" N

Fig. 3-11

The two 20-mH inductances have an equivalent inductance of 10 mH. Since this is in parallel with the
10-mH inductance, the overall equivalent inductance is SmH. Alternatively,

1 1 1 1 1 1 1 4

L_eq:L_,+L_2+L_3: 0mH T 20mH " 20mH _ 20mH

or L.q = 5mH

3.6 Express the total capacitance of the three capacitors in Fig. 3-12.

G

A} |
A
e
w

Fig. 3-12

For C, and Cj in parallel, Coq = C; + C3. Then for C, and C in series,

Co — CiCq _ Ci(G+Cy)
70 +Cq CHG+G

3.7  The circuit shown in Fig. 3-13 is a voltage divider, also called an attenuator. When it is a single
resistor with an adjustable tap, it is called a potentiometer, or pot. To discover the effect of
loading, which is caused by the resistance R of the voltmeter VM, calculate the ratio V. /V;, for
(@) R=o00, (b) IMQ, (¢) 10kR2, (d) 1kQ.

250

(a) Vout/Vin =0.100

2250 +250
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(b) The resistance R in parallel with the 250-Q resistor has an equivalent resistance
250(10°%) 249.9
=——=—-=2499Q d Vout/Vin = =—=——————=10.100
=250 + 10° an out/ Vin = 5350 4 249.9
(250)(10 000)
=—————~-=72439Q d Vout/Vin = 0.098
(C) eq 250 + 10 000 an out/ in 0.0
(250)(1000)
d =————~=200.0Q d Vout/Via = 0.082
( ) €q 250 + 1000 an oul/ in
3.8  Find all branch currents in the network shown in Fig. 3-14(a).
s 4
I A e’ I “—hyL—
20 ) 20
< e 4 <
:,129 80 60 ::30 ::9.80 €200
13.7 A 137 A 1
b
(a) (b)
Fig. 3-14
The equivalent resistances to the left and right of nodes « and b are
(12)®)
Req(left) = 5 + 20 == 98 Q
(6)(3)
Req(right) = T( =20
Now referring to the reduced network of Fig. 3-14(b),
2.0
T
9.8
I, =——-(137)=11.38A
4=1 1.8( 3.7) 38
Then referring to the original network,
I, = 2%(2.32) =093A L, =232-093=139A
Is :3(11.38):3.79A I =11.38—-379=759A
Supplementary Problems
3.9 Find the source voltage V and its polarity in the circuit shown in Fig. 3-15 if (¢) I =2.0A and

3.10

(b) I =-2.0A. Ans. (a) 50V, b positive; (b) 10V, a positive.

Find R, for the circuit of Fig. 3-16 for (@) Ry =00, (b)) R, =0, (c) R, =5%.
Ans. (a) 3692; (b)) 1692; (c) 20
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100

16 Q)
VWA o— A\
a
200v(}) Q CPV oo L
b
W o -
bt Fig. 3-16
Fig. 3-15

3.11 An inductance of 8.0mH is in series with two inductances in parallel, one of 3.0 mH and the other 6.0 mH.

Find L. Ans.  10.0mH

3.12  Show that for the three capacitances of equal value shown in Fig. 3-17 Coq = 1.5C.

AY |

tA)

o
—
a

Fig. 3-17

Fig. 3-18

3.13 Find Ry and R, for the voltage divider in Fig. 3-18 so that the current 7 is limited to 0.5A when

Vo=100V.  Ans. Ry =2MSQ, Ry =200

3.14  Using voltage division, calculate V| and ¥V, in the network shown in Fig. 3-19. Ans. 114V, 731V

740 Q 16.4 0 AN
50
\:.0 A
3 > 3 ovinzady IC?D >
%003 12003 105. SRLE 42 40 203
t 287 0
Fig. 3-20

Fig. 3-19

3.15 Obtain the source current I and the total power delivered to the circuit in Fig. 3-20.
Ans. 6.0A, 228W

3.16 Show that for four resistors in parallel the current in one branch, for example the branch of Ry, is related to

the total current by

R’ R R>R
R, + R R\Ry + R\ R; + RoRy
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3.17

3.18

3.19

3.20

3.21
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Note: This is similar to the case of current division in a two-branch parallel circuit where the other resistor
has been replaced by R’.

A power transmission line carries current from a 6000-V generator to three loads, A, B, and C. The loads
are located at 4, 7, and 10 km from the generator and draw 50, 20, and 100 A, respectively. The resistance of
the line is 0.1 2/km; see Fig. 3-21. («) Find the voltage at loads A, B, C. (b) Find the maximum percentage
voltage drop from the generator to a load.

| 4 km | 3 km | 3 km |

‘ 180 A ‘ ‘ ‘

ﬂ» 0.4 Q 03Q 0.3Q
Generator
(6000 V)

+ 72V — + 39V - + 30V —
50A 30A 100 A
Fig. 3-21

Ans. (a) vy = 5928V, vy = 5889V, ve = 5859V; (b) 2.35 percent

In the circuit of Fig. 3-22, R = 0 and 7; and i, are unknown. Find i and v .
Ans. i=4A,vyc =24V

10 A A i B 4A
— - — - -
4Q 3Q
R
— P m—
i D C ip
Fig. 3-22

In the circuit of Fig. 3-22, R=1Q and iy, =2A. Find, i, i,, and vy¢.
Ans. iZSA,i2:—16A,’UAC:27V

In the circuit of Fig. 3-23, i = v =0, vy =9V, i, =12A. For the four cases of (¢) R=0,
b)) R=69, (¢) R=92Q, and (d) R=10000%, draw the simplified circuit and find iz, and v,c.
Hint: A zero voltage source corresponds to a short-circuited element and a zero current source corresponds
to an open-circuited element.

(@) igg=7v4c=30
b) gy =42, 00 =216

ans, | O iba vac (All in A and V)
(C) lpgy = 3.5,1}AC =19.5

(d) iBA :0.006%0,1)/4(' :902%9

In the circuit of Fig. 3-23, vy =wvp=0,i5 =6A,ip, =12A. For the four cases of (a)
R=0,b) R=62,(c) R=9%2,and (d) R =10 000 2, draw the simplified circuit and find iz, and v .

(@) ipsy=6,v4c =36
b) iy =3.6,vyc =28.8

ans, | O s vac (All in A and V)
(C) gy :3,UAC:27

d) gy =0.005~0,v4c~ 18



CHAP. 3] CIRCUIT LAWS 35

3.22

3.23

3.24

3.25

B4
O3
vy,
i, % 6Q
Fig. 3-23
In the circuit Fig. 3-23, vy =0, vyp, =6V, iy =6A, ip=12A. For the four cases of (¢) R=0,

(b) R=62, (¢) R=9Q, and (d) R = 100002, draw the simplified circuit and find iz, and v 4.

(a) iBA :5.33,UAC:34
b) ipy =32, =27.6 .

ans, | O iba vac (Allin A and V)
(C) lpy = 266, Vyc = 26

(d) iBA =0.005 ~ O,UAC = 1801 ~ 18

In the circuit of Fig. 3-24, (a) find the resistance seen by the voltage source, R;, = v/i, as a function of a,
and (b) evaluate R;, for a =0, 1, 2. Ans. (a) R;, =R/(1—a); (b) R, 00,—R

b

0 'S P

Fig. 3-24

In the circuit of Fig. 3-24, (a) find power P delivered by the voltage source as a function of @, and
(b) evaluate P fora=0,1,2.  Ans. (a) P=v*(1—a)/R; (b) v*/R,0,—*/R

In the circuit of Fig. 3-24, let a = 2. Connect a resistor R, in parallel with the voltage source and adjust it
within the range 0 < R, < 0.99R such that the voltage source delivers minimum power. Find («) the value
of R, and (b) the power delivered by the voltage source.

Ans. (@) R, =099R, (b) P=v*/(99R)

. bi
i

A =

1 kQ

10mv<f> %R] R%u

Fig. 3-25
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3.26

3.27

3.28

3.29

3.30
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In the circuit of Fig. 3-25, Ry =0 and » = 100. Draw the simplified circuit and find v for R = 1 kQ and
10 k2. Ans. v=1,10V

In the circuit of Fig. 3-25, R; =0 and R = 1kQ. Draw the simplified circuit and find v for » = 50, 100, 200.
Note that v changes proportionally with b. Ans. v=0.5,1,2V

In the circuit of Fig. 3-25, Ry =100 and R=11kQ. Draw the simplified circuit and find v for
b = 50,100, 200. Compare with corresponding values obtained in Problem 3.27 and note that in the present
case v is less sensitive to variations in b. Ans. v=0.90,1,1.04V

A nonlinear element is modeled by the following terminal characteristic.

.| 10v whenv>0
"=o.1v when v <0

Find the element’s current if it is connected to a voltage source with (a¢) v =1 +sinz and (b) v = —1 +sin+.
See Fig. 3-26(a). Ans. (a) i=10(1 +sin¢); (b) i =0.1(—1+sin?)

+ +
v Ct) v |::| nonlinear v C) v |::| nonlinear

(@) (b)
Fig. 3-26
Place a 1-Q linear resistor between the nonlinear element of Problem 3.29 and the voltage source. See Fig.

3-26(b). Find the element’s current if the voltage source is (¢) v=1+sin¢ and (b) v =—1+sin+.
Ans. (a) i=091(1 +sin¢); (b) i =0.091(—1 +sin¢)



Analysis Methods

4.1 THE BRANCH CURRENT METHOD

In the branch current method a current is assigned to each branch in an active network. Then
Kirchhoff’s current law is applied at the principal nodes and the voltages between the nodes employed to
relate the currents. This produces a set of simultaneous equations which can be solved to obtain the
currents.

EXAMPLE 4.1 Obtain the current in each branch of the network shown in Fig. 4-1 using the branch current
method.

50 a 20
WA " -
L
| I +1 L I
0V (‘FP 100 <+> 8V
b
Fig. 4-1

Currents [}, I, and I3 are assigned to the branches as shown. Applying KCL at node a,
L=hL+1L (1)

The voltage V', can be written in terms of the elements in each of the branches; V,, = 20 — [;(5), V,, = I5(10) and
Vo = L(2) + 8. Then the following equations can be written

20 — I;(5) = I;(10) )
20— 1,(5) =L2)+8 3

Solving the three equations (/), (2), and (3) simultaneously gives I; =2A, I, = 1A, and ; = 1 A.

Other directions may be chosen for the branch currents and the answers will simply include the
appropriate sign. In a more complex network, the branch current method is difficult to apply because it
does not suggest either a starting point or a logical progression through the network to produce the
necessary equations. It also results in more independent equations than either the mesh current or node
voltage method requires.

37
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4.2 THE MESH CURRENT METHOD

In the mesh current method a current is assigned to each window of the network such that the
currents complete a closed loop. They are sometimes referred to as loop currents. Each element and
branch therefore will have an independent current. When a branch has two of the mesh currents, the
actual current is given by their algebraic sum. The assigned mesh currents may have either clockwise or
counterclockwise directions, although at the outset it is wise to assign to all of the mesh currents a
clockwise direction. Once the currents are assigned, Kirchhoff’s voltage law is written for each loop to
obtain the necessary simultaneous equations.

EXAMPLE 4.2 Obtain the current in each branch of the network shown in Fig. 4-2 (same as Fig. 4-1) using the
mesh current method.

50 2Q B

AAA
vy

20V C’;) I 100 L 8V

<=

Fig. 4-2

The currents /; and I, are chosen as shown on the circuit diagram. Applying KVL around the left loop,

starting at point «,

—204+55, +10(/; — ) =0
and around the right loop, starting at point §,
8+ 10, —)+2, =0

Rearranging terms,
151, — 101, = 20 )
—101;, + 121, = -8 )

Solving (4) and () simultaneously resultsin /; =2 A and I, = 1 A. The current in the center branch, shown dotted,
is{ — I, =1A. In Example 4.1 this was branch current 7.

The currents do not have to be restricted to the windows in order to result in a valid set of
simultaneous equations, although that is the usual case with the mesh current method. For example,
see Problem 4.6, where each of the currents passes through the source. In that problem they are called
loop currents. The applicable rule is that each element in the network must have a current or a
combination of currents and no two elements in different branches can be assigned the same current
or the same combination of currents.

4.3 MATRICES AND DETERMINANTS

The n simultancous equations of an n-mesh network can be written in matrix form. (Refer to
Appendix B for an introduction to matrices and determinants.)

EXAMPLE 4.3 When KVL is applied to the three-mesh network of Fig. 4-3, the following three equations are
obtained:
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(R4 + Rp) — Rpl, =V,
—Rply + (Rg + Rc + Rp)l, —Rpl3 =0
—Rphh +(Rp + Rp)l3 = =V,

Placing the equations in matrix form,

Ry+ Rp —Rp 0 I Va
_RB RB+RC+RD _RD 12 = O
0 —Rp Rp + R L -V,
RA R(‘ RE
v,{ I +
a\ - 1 Rg I Rp I v
Fig. 4-3

The elements of the matrices can be indicated in general form as follows:

Ry Rp Ry || 1 Vi
Ry Ry Rn||L|=|MW (6)
Ry Ry Ry || L V3

Now element R;; (row 1, column 1) is the sum of all resistances through which mesh current /; passes. In Fig.
4-3, this is R, + Rp. Similarly, elements Ry, and Rj; are the sums of all resistances through which 7, and I3,
respectively, pass.

Element Ry, (row 1, column 2) is the sum of all resistances through which mesh currents 7; and I, pass. The
sign of Ry, is + if the two currents are in the same direction through each resistance, and — if they are in opposite
directions. In Fig. 4-3, Ry is the only resistance common to /; and /,; and the current directions are opposite in Rp,
so that the sign is negative. Similarly, elements R,;, R»3, Ry3, and Rj3; are the sums of the resistances common to
the two mesh currents indicated by the subscripts, with the signs determined as described previously for Rj,. It
should be noted that for all 7 and j, R; = R;. As a result, the resistance matrix is symmetric about the principal
diagonal.

The current matrix requires no explanation, since the elements are in a single column with subscripts 1, 2, 3, . . .
to identify the current with the corresponding mesh. These are the unknowns in the mesh current method of
network analysis.

Element V| in the voltage matrix is the sum of all source voltages driving mesh current 7;. A voltage is
counted positive in the sum if /; passes from the — to the + terminal of the source; otherwise, it is counted
negative. In other words, a voltage is positive if the source drives in the direction of the mesh current. In Fig.
4.3, mesh 1 has a source V, driving in the direction of 7;; mesh 2 has no source; and mesh 3 has a source V;, driving
opposite to the direction of I3, making V3 negative.

The matrix equation arising from the mesh current method may be solved by various techniques.
One of these, the method of determinants (Cramer’s rule), will be presented here. It should be stated,
however, that other techniques are far more efficient for large networks.

EXAMPLE 4.4 Solve matrix equation (6) of Example 4.3 by the method of determinants.

The unknown current /; is obtained as the ratio of two determinants. The denominator determinant has the
elements of resistance matrix. This may be referred to as the determinant of the coefficients and given the symbol
Ag. The numerator determinant has the same elements as A except in the first column, where the elements of the
voltage matrix replace those of the determinant of the coefficients. Thus,

Vl R12 R13 Rll R12 R13 1 Vl R12 R13
Ag

Iy =|V2 Ry Ry Ry Ry Ry|= Vy Ry Ry
V3 Ry Rs Ry Rz Ry V3 Ry Ry
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Similarly,
11 Ru i Ry 1 [Ru R 1
15 = Ry V2 Ry L =X Ry Ry 1
RIRy V3 Ry RIRy1 Ry V3

An expansion of the numerator determinants by cofactors of the voltage terms results in a set of equations
which can be helpful in understanding the network, particularly in terms of its driving-point and transfer resistances:

n=i) (s () ¢
b=iiag) (s () @

A A A
pn(a) (s () ©

Here, A; stands for the cofactor of R;; (the element in row i, column j) in Ag. Care must be taken with the
signs of the cofactors—see Appendix B.

44 THE NODE VOLTAGE METHOD

The network shown in Fig. 4-4(a) contains five nodes, where 4 and 5 are simple nodes and /, 2, and 3
are principal nodes. In the node voltage method, one of the principal nodes is selected as the reference
and equations based on KCL are written at the other principal nodes. At each of these other principal
nodes, a voltage is assigned, where it is understood that this is a voltage with respect to the reference
node. These voltages are the unknowns and, when determined by a suitable method, result in the
network solution.

V| VZ
4 1 2 5
Ra R¢ Re

v, 5' Rs Ro Vv,
. g
3

(a) (b)
Fig. 4-4

The network is redrawn in Fig. 4-4(b) and node 3 selected as the reference for voltages V; and V.
KCL requires that the total current out of node 1 be zero:

Vi—-V, Vi Vi=V
I a Vi =V

Ry Rp Re
Similarly, the total current out of node 2 must be zero:

Vo=V Vo, Vo=V,
2 L Tl
Rc Rp Rg
(Applying KCL in this form does not imply that the actual branch currents all are directed out of either
node. Indeed, the current in branch /-2 is necessarily directed out of one node and into the other.)
Putting the two equations for V| and V), in matrix form,



CHAP. 4] ANALYSIS METHODS 41

1 1 1 1

— S v V,/R

RA+RB+RC RC 1 3 a/A
! 1+1+1 V- - Vy/R
R¢ Rc ' Ry Ry : PTE

Note the symmetry of the coefficient matrix. The 1,1-element contains the sum of the reciprocals of
all resistances connected to note /; the 2,2-element contains the sum of the reciprocals of all resistances
connected to node 2. The 1,2- and 2,1-elements are each equal to the negative of the sum of the
reciprocals of the resistances of all branches joining nodes / and 2. (There is just one such branch
in the present circuit.)

On the right-hand side, the current matrix contains V,/R, and V', /R, the driving currents. Both
these terms are taken positive because they both drive a current into a node. Further discussion of the
elements in the matrix representation of the node voltage equations is given in Chapter 9, where the
networks are treated in the sinusoidal steady state.

EXAMPLE 4.5 Solve the circuit of Example 4.2 using the node voltage method.
The circuit is redrawn in Fig. 4-5.  With two principal nodes, only one equation is required. Assuming the
currents are all directed out of the upper node and the bottom node is the reference,

Vi—20 V, V-8
5 0 2 -

from which V; = 10V. Then, I; = (10 —20)/5 = —2 A (the negative sign indicates that current /; flows into node
I); L,=(10-8)/2=1A; 5, =10/10 =1A. Current I3 in Example 4.2 is shown dotted.

0

50 / 1[\ 20

y b

ref.

Fig. 4-5

4.5 INPUT AND OUTPUT RESISTANCES

In single-source networks, the input or driving-point resistance is often of interest. Such a network
is suggested in Fig. 4-6, where the driving voltage has been designated as }/; and the corresponding
current as /;. Since the only source is V7, the equation for I; is [see (7) of Example 4.4]:

The input resistance is the ratio of V| to I;:

The reader should verify that Az/A;; actually carries the units Q.

A voltage source applied to a passive network results in voltages between all nodes of the network.
An external resistor connected between two nodes will draw current from the network and in general will
reduce the voltage between those nodes. This is due to the voltage across the output resistance (see



42 ANALYSIS METHODS [CHAP. 4

|2 ' I, Passive ( I

Network Vv, Passive I,
Network
Fig. 4-6
Fig. 4-7

Thévenin too). The output resistance is found by dividing the open-circuited voltage to the short-
circuited current at the desired node. The short-circuited current is found in Section 4.6.

4.6 TRANSFER RESISTANCE

A driving voltage in one part of a network results in currents in all the network branches. For
example, a voltage source applied to a passive network results in an output current in that part of the
network where a load resistance has been connected. In such a case the network has an overall transfer
resistance. Consider the passive network suggested in Fig. 4-7, where the voltage source has been
designated as V, and the output current as I,. The mesh current equation for I, contains only one
term, the one resulting from V. in the numerator determinant:

Ay A
A=(0)(A1;>+~-~+0+ V,.(A—’;)+0+-~

The network transfer resistance is the ratio of V, to I:

Ag
Rtransfer.r.r = A

rs
Because the resistance matrix is symmetric, A,, = A,,, and so
Rtransfer,rs = Rtransfer,sr

This expresses an important property of linear networks: If a certain voltage in mesh r gives rise to a
certain current in mesh s, then the same voltage in mesh s produces the same current in mesh r.
Consider now the more general situation of an n-mesh network containing a number of voltage
sources. The solution for the current in mesh k& can be rewritten in terms of input and transfer
resistances [refer to (7), (8), and (9) of Example 4.4]:
v Vi-1 Vi Vit . Va

I, k=
eransfer, 1k Rtransfer.(k— Dk Rinput.k RLransfer,(lH— Dk eransfer,nk

There is nothing new here mathematically, but in this form the current equation does illustrate the
superposition principle very clearly, showing how the resistances control the effects which the voltage
sources have on a particular mesh current. A source far removed from mesh k will have a high transfer
resistance into that mesh and will therefore contribute very little to 7. Source V}, and others in meshes
adjacent to mesh k, will provide the greater part of I.

4.7 NETWORK REDUCTION

The mesh current and node voltage methods are the principal techniques of circuit analysis. How-
ever, the equivalent resistance of series and parallel branches (Sections 3.4 and 3.5), combined with the
voltage and current division rules, provide another method of analyzing a network. This method is
tedious and usually requires the drawing of several additional circuits. Even so, the process of reducing
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the network provides a very clear picture of the overall functioning of the network in terms of voltages,
currents, and power. The reduction begins with a scan of the network to pick out series and parallel

combinations of resistors.

EXAMPLE 4.6 Obtain the total power supplied by the 60-V source and the power absorbed in each resistor in the
network of Fig. 4-8.

Ry=7+5=12Q

(12)(6)
d=————=4Q
cd 12+6
g 79 4
P A A
$c a
70
b
ﬁ()vctD 202 :E6ﬂ
<
50
od b
-
f
Fig. 4-8

These two equivalents are in parallel (Fig. 4-9), giving

_®a2) _
=y "

Then this 3-Q equivalent is in series with the 7-Q resistor (Fig. 4-10), so that for the entire circuit,

Ry =7+3=10Q

i g 70 ¢
C a
40 120 0V C:,) 30
d b
—
f f
Fig. 4-9 Fig. 4-10

The total power absorbed, which equals the total power supplied by the source, can now be calculated as

7r (60)
=— =" =360W
Pr R 10

This power is divided between R,, and R, as follows:

7 3
P,, = P;g = —— (360) =252 W P, =-——(360) = 108 W
e = Pia = 57 (360) s =775 (360) = 10
Power P, is further divided between R, and R, as follows:
P —i(108)—81w P —L(IOS)—NW
“T442 B T4y 12 B
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Finally, these powers are divided between the individual resistances as follows:

,

P 1)=27TW Pqg =——(27) =15

o =5 8D =27 o =775 (27) = 1S75W
5

P 81) =54W Psqg =——27)=11.25W

@ =13 g O 0 =775 @7

4.8 SUPERPOSITION

A linear network which contains two or more independent sources can be analyzed to obtain the
various voltages and branch currents by allowing the sources to act one at a time, then superposing the
results. This principle applies because of the linear relationship between current and voltage. With
dependent sources, superposition can be used only when the control functions are external to the network
containing the sources, so that the controls are unchanged as the sources act one at a time. Voltage
sources to be suppressed while a single source acts are replaced by short circuits; current sources are
replaced by open circuits. Superposition cannot be directly applied to the computation of power,
because power in an element is proportional to the square of the current or the square of the voltage,
which is nonlinear.

As a further illustration of superposition consider equation (7) of Example 4.4:

A A A
() () ()

which contains the superposition principle implicitly. Note that the three terms on the right are added
to result in current /;. If there are sources in each of the three meshes, then each term contributes to the
current /;. Additionally, if only mesh 3 contains a source, V| and V, will be zero and /; is fully
determined by the third term.

EXAMPLE 4.7 Compute the current in the 23-Q resistor of Fig. 4-11(a) by applying the superposition principle.
With the 200-V source acting alone, the 20-A current source is replaced by an open circuit, Fig. 4-11(b).

40 40
47 Q
< b
s 27 Q o.c. i: 230
200 V T

Fig. 4-11
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274 +2
Rq =47+ 3D _ 550
54

200
Iy=—2=331A

27
Lo == )(3.31)=1.65A
o = (57) 030 = 163

When the 20-A source acts alone, the 200-V source is replaced by a short circuit, Fig. 4-11(¢). The equivalent
resistance to the left of the source is

Reg =4+ (277)247) =2115Q
p 21.15

The total current in the 23-Q resistor is

Isq = I + Isg = 11.23A

4.9 THEVENIN’S AND NORTON’S THEOREMS

A linear, active, resistive network which contains one or more voltage or current sources can be
replaced by a single voltage source and a series resistance (Thévenin’s theorem), or by a single current
source and a parallel resistance (Norton’s theorem). The voltage is called the Thévenin equivalent
voltage, V', and the current the Norton equivalent current, I'. The two resistances are the same,
R’. When terminals ab in Fig. 4-12(a) are open-circuited, a voltage will appear between them.

Linear
Active
Network

\ 4 \
\, v q“) ’ r (1) $R /l
/ / /
b :/b —,

(a) (b) Thévenin {¢) Norton

Fig. 4-12

From Fig. 4-12(b) it is evident that this must be the voltage V' of the Thévenin equivalent circuit. If
a short circuit is applied to the terminals, as suggested by the dashed line in Fig. 4-12(a), a current will
result. From Fig. 4-12(c) it is evident that this current must be I’ of the Norton equivalent circuit.
Now, if the circuits in (b) and (c¢) are equivalents of the same active network, they are equivalent to each
other. It follows that I’ = V'/R’. If both V' and I’ have been determined from the active network,
then R' =V'/I'.

EXAMPLE 4.8 Obtain the Thévenin and Norton equivalent circuits for the active network in Fig. 4-13(a).
With terminals ab open, the two sources drive a clockwise current through the 3-Q and 6-Q resistors
[Fig. 4-13(b)].
20410 30
(=20

346 9

Since no current passes through the upper right 3-Q resistor, the Thévenin voltage can be taken from either active
branch:
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30
30 60
20 V 10V
—0 b
(a)
b )
230 i; 6 Q
® ®
S.C. S.C.
¢ ¢
0 b
()
Fig. 4-13
30
V=V =20— <?>(3) — 10V
, 30
or Vi = =<3>6—10=10V

The resistance R’ can be obtained by shorting out the voltage sources [Fig. 4.13(c)] and finding the equivalent
resistance of this network at terminals ab:

RO

5Q
9

When a short circuit is applied to the terminals, current /. results from the two sources. Assuming that it
runs through the short from «a to b, we have, by superposition,

6 20 3 10
I&c.:I/:< ) _< ) =2A
643 3Jr(3)9(6) 343 6Jr(3)653)

Figure 4-14 shows the two equivalent circuits. In the present case, V', R’, and I' were obtained
independently. Since they are related by Ohm’s law, any two may be used to obtain the third.

AAA.

eV Oa
50

p
'UVCfD 2A 350

—0 b

(a) Thévenin Equivalent (b) Norton Equivalent
Fig. 4-14

The usefulness of Thévenin and Norton equivalent circuits is clear when an active network is to be

examined under a number of load conditions, each represented by a resistor. This is suggested in
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Fig. 4-15, where it is evident that the resistors R, R,, ..., R, can be connected one at a time, and the
resulting current and power readily obtained. If this were attempted in the original circuit using, for
example, network reduction, the task would be very tedious and time-consuming.

—MWN———0 a
R

 +
Vd) R, R, - - - &R,

Fig. 4-15

4.10 MAXIMUM POWER TRANSFER THEOREM

At times it is desired to obtain the maximum power transfer from an active network to an external
load resistor R;. Assuming that the network is linear, it can be reduced to an equivalent circuit as in
Fig. 4-16. Then

V/

[=——
R+ R,

and so the power absorbed by the load is
po_ V/2RL _ V/2 . (R/ N RL>2
"T(R'+ R 4R R'+ R,

It is seen that P, attains its maximum value, ¥?/4R’, when R; = R’, in which case the power in R’ is
also V" /4R'. Consequently, when the power transferred is a maximum, the efficiency is 50 percent.

|
/ |
O > g
— L 4» R[_
I <

Fig. 4-16
It is noted that the condition for maximum power transfer to the load is not the same as the

condition for maximum power delivered by the source. The latter happens when R; =0, in which
case power delivered to the load is zero (i.e., at a minimum).

Solved Problems

4.1  Use branch currents in the network shown in Fig. 4-17 to find the current supplied by the 60-V
source.
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70
1, ll: l I l 1A
<
wv(: 120 6 Q 320
Fig. 4-17
KVL and KCL give:
5(12) = I;(6)
5(12) = 1,(12)
60 = I,(7) + (12)
11 = 12 + 13 + 14
Substituting (/0) and (/1) in (13),
11 :Iz+212+12 :4[2
Now (14) is substituted in (12):
60211(7)+%11(12):1011 or 11:6A
4.2  Solve Problem 4.1 by the mesh current method.
120 b 60 I :bzn
<

Fig. 4-18
Applying KVL to each mesh (see Fig. 4-18) results in

60 = 71, + 121, — I)
0=12(1, — I) + 6(I, —
0 = 6(13 - 12) + 1213

Rearranging terms and putting the equations in matrix form,

191 — 121, =60 19
121, + 18, — 6I;= 0 or —12
—6L +18L,= 0 0

Using Cramer’s rule to find 7,
60 —12 0 19 —-12 0
L= 0 18 —6|+|—-12 18 —6
0 -6 18 0 -6 18

6]

—12 07[17
18 —6 ]2 ==
-6 18| L

=17280+ 2880 =6 A

[CHAP. 4

(10)
(1
(12)
(3)

(4
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4.3  Solve the network of Problems 4.1 and 4.2 by the node voltage method. See Fig. 4-19.
With two principal nodes, only one equation is necessary.

Vi—60 Vi Vi Vi
7 26 12

from which V| =18V. Then,

60 — ¥,
I = =06A
: 7
1
70
12 Q
wv(Z)
ref.
Fig. 4-19
4.4  In Problem 4.2, obtain Ri,,,,; and use it to calculate 7;.
Agr 2880 2880
U ETA L T I8 —6] 288 0
-6 18
Then I, = 60 :@:6A
Rinpul,l 10

4.5  Obtain Rynsfer.12 a0d Rypanster,13 for the network of Problem 4.2 and use them to calculate /, and
L.

The cofactor of the 1,2-element in Az must include a negative sign:

_(_ 142 —12 —6 _ X _ﬁ_2880_
A12 _( 1) 0 18‘ =216 Rmmstcr,lZ - AIZ - 216 =13.33Q
Then, I, = 60/13.33 = 4.50 A.
—-12 18 A 2880
Ay = (=D _6‘ =72 Rumien3 = 3= 5 =400

Then, I3 = 60/40 = 1.50 A.

4.6  Solve Problem 4.1 by use of the loop currents indicated in Fig. 4-20.

The elements in the matrix form of the equations are obtained by inspection, following the rules of
Section 4.2.
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7Q
et 4 2 e &
b y
wv(ﬁ I l o b 60 h p FEXV
p <
F
Fig. 4-20
19 7 70[1 60
713 7||L|=]|60
77 19]|L 60
19 7 7
Thus, Ag=| 7 13 7 |=2880

7 7 19

Notice that in Problem 4.2, too, A, = 2880, although the elements in the determinant were different. A4/l
valid sets of meshes or loops yield the same numerical value for Ag. The three numerator determinants are

60 7 7
Ny =1|60 13 7|=4320 N, = 8642 N3 =4320
60 7 19
Consequently,
N, 4320 N, N;
= A =55 = 19 h=3%=3 h=3i=15

The current supplied by the 60-V source is the sum of the three loop currents, I} + I, + I3 = 6 A.

4.7  Write the mesh current matrix equation for the network of Fig. 4-21 by inspection, and solve for
the currents.

100 2Q
5;2 Q 1
7 =5 0|1 =25
-5 19 4||L|= 25
0 -4 6| 4L 50
Solving,
=25 =5 0 7 =5 0
L= 25 19 —4|=|-5 19 —4|=(-700)+536=—-131A
50 -4 6 0 -4 6
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Similarly,

N2:1700:3.17A 13:N3:5600

_ N _ 170 28 —10.45A
Ap 536 Ax 536 104

4.8  Solve Problem 4.7 by the node voltage method.

The circuit has been redrawn in Fig. 4-22, with two principal nodes numbered / and 2 and the third
chosen as the reference node. By KCL, the net current out of node / must equal zero.

10 Q

ref.

Fig. 4-22

Vi V=25 -V

2 5 10 0
Similarly, at node 2,
Va=Vi Vs Vat50
10 4 2
Putting the two equations in matrix form,
1 1 1 1 B
SR R _ V 5
275 10 10 o
: : + : + : V. - 25
10 10 42 2 B

The determinant of coefficients and the numerator determinants are

0.80 —0.10

A:‘—om 05| = 0-670
5 —=0.10 0.80 5
Nl:‘—ZS 0.85‘:1'75 NZ:’—O.IO _25’:—19.5
From these,
1.75 —19.5
In terms of these voltages, the currents in Fig. 4-21 are determined as follows:
h=%?=4ﬁA 5:”&”:3UA =220 o4sa

4.9  For the network shown in Fig. 4-23, find ¥, which makes I, = 7.5 mA.

The node voltage method will be used and the matrix form of the equations written by inspection.
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40

I
8Q

6Q
O
120
ref.
Fig. 4-23
1 1 1 1
224t 2 V. V,/20
207773 4 o /
1 LN - 0
4 476 6 2
Solving for V5,
0.443 V\./zo’
—0.250 0
= =0.0638V/,
2 0.443 —0.250 .
—0.250  0.583
V, 0.0638V,
Then 715x 1073 =1, = ?2 = %

from which V;, =0.705V.

4.10 In the network shown in Fig. 4-24, find the current in the 10-2 resistor.

10 Q

2

Fig. 4-24

The nodal equations in matrix form are written by inspection.

11 1 7
4= 2 Vv 2
st0 s || L
% 6
5 52 2 B
‘ 2 —0.20'

-6 7
Vl:—o Ol _|18v
0.30 —0.20
—020  0.70

[CHAP. 4
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Then, 7 = V;/10 =0.118 A.

4.11 Find the voltage V,, in the network shown in Fig. 4-25.

a 50
AAA
—AA~—
10 Q)
x
AN
5V
sQ x
Fig. 4-25

The two closed loops are independent, and no current can pass through the connecting branch.

30
I, =2A L=—=3A
1 2 10
Vab = Vax + ny + V_Vb = _11(5) -5 +12(4) =-3V

4.12 For the ladder network of Fig. 4-26, obtain the transfer resistance as expressed by the ratio of V;,

to 14.
10 O 10 © 10 © a
‘P p
V. L 50 L 50 L 508 L SR
b
Fig. 4-26
By inspection, the network equation is
15 =5 0 0l n in
-5 20 -5 O{|L]|_] O
0 =5 20 =S|l L| | 0
0 0 =5 S54+R. || L4 0
AR =5125R; + 18750 Ny =125V,
N, v,
I, = =1 (A
* T Ar 41R, + 150 (A)
Vi
and Rtransfcr414 = % = 41RL + 150 (Q)
4

4.13 Obtain a Thévenin equivalent for the circuit of Fig. 4-26 to the left of terminals ab.

The short-circuit current /. is obtained from the three-mesh circuit shown in Fig. 4-27.
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10 Q2 10 © 100

=

‘L
Fig. 4-27
15 =5 o[ 1, Vin
-5 20 =5|| L |=]0
0 -5 15| L. 0
-5 20'
Vin
I = 0 -5 _ Vin
se Ag ~ 150

The open-circuit voltage V, . is the voltage across the 5-Q resistor indicated in Fig. 4-28.

100 10 Q 10 N a
M AV o)
L+
Via L sq L sa L 5a3v,
P .C.
0
b
Fig. 4-28
15 =5 07[1 Vin
-5 20 =5||L|=]0
0 =5 20 || & 0
25V; Vi
I — n — 1 A
=515 ~ 305 W
Then, the Thévenin source V' =V, = L(5) = V;,/41, and
Voo _ 150
Rm=7"=3

S.C.
The Thévenin equivalent circuit is shown in Fig. 4-29. With R; connected to terminals ab, the output

current is
Vin/41 Vi

I = = A
* 7 (150/41) + R, mm+wﬂ)

agreeing with Problem 4.12.

4.14 Use superposition to find the current / from each voltage source in the circuit shown in Fig. 4-30.

Loop currents are chosen such that each source contains only one current.



CHAP. 4] ANALYSIS METHODS 55

130
R= 41 n a
——W——oﬁ
’4 b
v=ﬁ<+> SR
41 \- 4
b
Fig. 4-29
-— 7
- ]
70 47 Q
1, 270
@ 200V
460 V \Z
Fig. 4-30

54 =271 1] = [ —460
=27 T4l L] = 200

From the 460-V source,

o (—460)(74)

! 3267
and for the 200-V source

" ” _(200)(_27)

! 3267 63
Then, I=1I'+1"=-1042+1.65=-8.77A

25 v(ﬁ

Fig. 4-31(a)

4.15 Obtain the current in each resistor in Fig. 4-31(a), using network reduction methods.

As a first step, two-resistor parallel combinations are converted to their equivalents. For the 6 Q and
3Q, Ryq =(6)(3)/(6+3)=2Q. For the two 4-Q resistors, Ryq = 2. The circuit is redrawn with series
resistors added [Fig. 4-31(b)]. Now the two 6-S2 resistors in parallel have the equivalent R,y = 3 2, and this
is in series with the 2. Hence, Ry = 5%, as shown in Fig. 4-31(¢). The resulting total current is
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®) ©
Fig. 4-31 (cont.)

Iy = SA
r=rs

Now the branch currents can be obtained by working back through the circuits of Fig. 4-31(b) and
4-31(a)
IC :IF :%IT :25 A
Ip=1Iz=%3Ic=125A

3 5
I, =—"I;=>A
176+3 773
6 10
Ip=— I, =— A
B76+3 773

4.16 Find the value of the adjustable resistance R which results in maximum power transfer across the
terminals ab of the circuit shown in Fig. 4-32.

a
10 Q 50
p
wov(* 5; 150 R
b
Fig. 4-32

First a Thévenin equivalent is obtained, with ' =60V and R’ = 11 Q. By Section 4.10, maximum
power transfer occurs for R = R’ = 11 Q, with
V/Z

= 81.82
i = 8182 W

Pmax:

Supplementary Problems

4.17  Apply the mesh current method to the network of Fig. 4-33 and write the matrix equations by inspection.
Obtain current /; by expanding the numerator determinant about the column containing the voltage sources
to show that each source supplies a current of 2.13 A.
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4.18

4.19

4.20

4.21

20 50 10
10 v(t) @ 5@ 4@ 27V
Fig. 4-33

Loop currents are shown in the network of Fig. 4-34. Write the matrix equation and solve for the three
currents. Ans. 3.55A, —198A, —2.98A

S o AN ®
4 Q
L
20
Fig. 4-34

The network of Problem 4.18 has been redrawn in Fig. 4-35 for solution by the node voltage method. Ob-
tain node voltages V| and 7, and verify the currents obtained in Problem 4.18.
Ans. 7.11V, =396V

30 20V

5Q

10V

ref.

Fig. 4-35

In the network shown in Fig. 4-36 current I, = 7.5mA. Use mesh currents to find the required source
voltage V. Ans. 0.705V

Use appropriate determinants of Problem 4.20 to obtain the input resistance as seen by the source voltage
V,. Check the result by network reduction. Ans. 23.5Q
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4.22

4.23

4.24

4.25

4.26

ANALYSIS METHODS [CHAP. 4
8Q a0
lla
‘b
\Z 70 60 %: 6Q
120
Fig. 4-36

For the network shown in Fig. 4-36, obtain the transfer resistance which relates the current /; to the source
voltage V. Ans. 94.0Q

For the network shown in Fig. 4-37, obtain the mesh currents. Ans. 5.0A,1.0A, 0.5A

60N 18 O
SOV<+>© 50 L 40 &I 240
4
Fig. 4-37

Using the matrices from Problem 4.23 calculate Riypui,1s Riransfer,12> a0d Riranster, 13-
Ans. 10L,50€, 100

In the network shown in Fig. 4-38, obtain the four mesh currents.
Ans. 2.11A, —0.263 A, —2.34A, 0.426 A

50 20

Fig. 4-38

For the circuit shown in Fig. 4-39, obtain V, ., /., and R’ at the terminals ab using mesh current or node
voltage methods. Consider terminal a positive with respect to b. Ans. —6.29V,—-0.667A,9.44Q
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8Q
e
) 3
12V e20
4
snd
> 4 a
Tb
Fig. 4-39

4.27  Use the node voltage method to obtain V. and I at the terminals ab of the network shown in Fig. 4-
40. Consider a positive with respect to b. Ans. —11.2V,-737A

40 5Q
A p—— AP —)

4
p
w@®  §
20V
i s

Fig. 4-40

4.28  Use network reduction to obtain the current in each of the resistors in the circuit shown in Fig. 4-41.
Ans. In the 2.45-Q resistor, 3.10A; 6.7, 0.855A; 10.092, 0.466 A; 12.0L, 0.389A; 17.47Q, 0.595A;
6.30Q, 1.65A

‘D
a1
<

18V
p
 6.30 Q

AAA

Fig. 4-41

4.29  Both ammeters in the circuit shown in Fig. 4-42 indicate 1.70 A. If the source supplies 300 W to the circuit,
find R, and R,. Ans. 23.9Q,443.0 Q2

+
(A) Source 950 $R  $15430

Ry

Fig. 4-42
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4.30

4.31

4.32

4.33

4.34

4.35
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In the network shown in Fig. 4-43 the two current sources provide I” and I” where I'+1" =1. Use
superposition to obtain these currents. Ans. 12A,15.0A, 16.2A

<

L 30 + <'t>3VR 4 p
240 691;11,
L <

Fig. 4-43
Obtain the current / in the network shown in Fig. 4.44. Ans. —12A
~ oI, (V)
i "A" a
\/ — +
2A

Fig. 4-45

Obtain the Thévenin and Norton equivalents for the network shown in Fig. 4.45.
Ans. V' =30V,I'=5A,R' =6

Find the maximum power that the active network to the left of terminals ab can deliver to the adjustable
resistor R in Fig. 4-46. Ans. 8.44W

)R

60 Q2
60 2 300 gR

0V

VWA

Fig. 4-46

Under no-load condition a dc generator has a terminal voltage of 120 V.  When delivering its rated current
of 40 A, the terminal voltage drops to 112V. Find the Thévenin and Norton equivalents.
Ans. V' =120V,I' =600A, R’ =0.2Q

The network of Problem 4.14 has been redrawn in Fig. 4-47 and terminals ¢ and » added. Reduce the
network to the left of terminals ab by a Thévenin or Norton equivalent circuit and solve for the current /.
Ans. —8.77TA
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47Q

%279 %27.(),

460V

Fig. 4-47

4.36 Node Voltage Method. In the circuit of Fig. 4-48 write three node equations for nodes A, B, and C, with
node D as the reference, and find the node voltages.

Node A: SV —=2Vg =3V =130

Ans. Node B: -V, ,+6Vy—3Ve=0 from which V, =17, V=9,V =1233 allin V
Node C: _VA_2VB+3VC:2

6V
4Q 1

-— )

ANV )
B

Al » C
6Q 2Q
1A<f> 3Q <D 2A
D
Fig. 4-48

437 In the circuit of Fig. 4-48 note that the current through the 3-Q resistor is 3 A giving rise to
Vg =9V. Apply KVL around the mesh on the upper part of the circuit to find current /7 coming out of
the voltage source, then find V4 and V. Ans. I=1/3A,V,=17V,V:=37/3V

4.38  Superposition. In the circuit of Fig. 4-48 find contribution of each source to V4, V, V-, and show that they
add up to values found in Problems 4.36 and 4.37.

Contribution of the voltage source: Vy=3 V=0 | Ve=-1

Ans. Contribution of the 1 A current source: | V=6 Vg=3| V=4 (All in V)
Contribution of the 2 A current source: | V, =8 Ve=6 | Vc=28/3
Contribution of all sources: Vy=17 | Vg=9 | Vc=137/3

4.39  In the circuit of Fig. 4-48 remove the 2-A current source and then find the voltage V, . between the open-
circuited nodes C and D. Ans. V,. =3V

4.40  Use the values for V- and V, . obtained in Problems 4.36 and 4.39 to find the Thévenin equivalent of the
circuit of Fig. 4-48 seen by the 2-A current source. Ans. Vg, =3V, Ry, =14/3Q

4.41 In the circuit of Fig. 4-48 remove the 2-A current source and set the other two sources to zero, reducing the
circuit to a source-free resistive circuit. Find R, the equivalent resistance seen from terminals CD, and note
that the answer is equal to the Thévenin resistance obtained in Problem 4.40. Ans. R=14/3Q
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4.42 Find Thévenin equivalent of the circuit of Fig. 4-49 seen from terminals AB.
ans. VTh = 12V, RTh =17Q

6V I
4Q 2 20
A S A
i I L
AO AN AV NV NV
6Q 20 1Q 20
%59 $>2i 3V<j> %29 C:)zv
BO AAAY AAAY
1Q 1Q
Fig. 4-49
Fig. 4-50

4.43  Loop Current Method. In the circuit of Fig. 4-50 write three loop equations using /;, /5, and /5. Then find
the currents.
Loop 1: 4L +2L+ ;=3
Ans. Loop 2: 2I) + 5, — , =2 From which I, =32/51,, =9/51, 5, =7/51 all in A
Loop3: —L+2L+2L=0

4.44  Superposition. In the circuit of Fig. 4-50 find the contribution of each source to /;, I,, I3, and show that
they add up to values found in Problem 4.43.

From the source on the left: I, =36/51 L, =-9/51 | I; =27/51
Ans. From the source on the right: | I, = —4/51 | L, =18/51 | I =-20/51 (All'in A)
From both sources: I, =32/51 | L, =9/51 L =17/51

4.45 Node Voltage Method. In the circuit of Fig. 4-51 write three node equations for nodes A, B, and C, with
node D as the reference, and find the node voltages.

7Q
ANV
D)
B
A » C
2Q 30
20
3A<D 9 %19
3V
D
Fig. 4-51

Node A: 9V, —TVp— 2V =42
Ans. Node B: -3V, +8Vy— 2Ve=9 From which V, =9, V=5 V,=2allin V
Node C: =3V, =TV +31V=0
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4.46

4.47

4.48

4.49

4.50

Loop Current Method. In the circuit of Fig. 4-51 write two loop equations using /; and I, as loop currents,
then find the currents and node voltages.

{Loop I: 4L -1 =2
Ans.
Loop2: -1, +2,=3

IIZIA, 12 :ZA

from which, {
VA :9V, VBZSV, VCZZV

Superposition. In the circuit of Fig. 4-51 find the contribution of each source to V', Vg, V(, and show that
they add up to values found in Problem 4.45.

From the current source: | V, =7429 | Vp=3.143 | V= 1.429
Ans. From the voltage source: | V,=1.571 | Vp=1.857 | Vo =0.571 (all in V)
From both sources: Vy=9 V=5 Ve=2

Verify that the circuit of Fig. 4-52(«) is equivalent to the circuit of Fig. 4-51.
Ans. Move node B in Fig. 4-51 to the outside of the loop.

(b)

Fig. 4-52

Find V', and Vp in the circuit of Fig. 4-52(b). Ans. V,4=9,Vp=5,bothin V

Show that the three terminal circuits enclosed in the dashed boundaries of Fig. 4-52(a) and (b) are equivalent
(i.e., in terms of their relation to other circuits). Hint: Use the linearity and superposition properties, along
with the results of Problems 4.48 and 4.49.



Amplifiers and
Operational Amplifier
Circuits

5.1 AMPLIFIER MODEL

An amplifier is a device which magnifies signals. The heart of an amplifier is a source controlled by
an input signal. A simplified model of a voltage amplifier is shown in Fig. 5-1(«¢). The input and output
reference terminals are often connected together and form a common reference node. When the output
terminal is open we have v, = kv;, where k, the multiplying factor, is called the open circuit gain.
Resistors R; and R, are the input and output resistances of the amplifier, respectively. For a better
operation it is desired that R; be high and R, be low. In an ideal amplifier, R; = oo and R, = 0 as in Fig.
5-1(b). Deviations from the above conditions can reduce the overall gain.

AO A\ o B
i R ¥
(4
vy R % <t> kv, vy
A O < B
(@)
o— -0 %)
¥ ¥
vy <t> kvy Uy
o - o
Fig. 5-1

64
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EXAMPLE 5.1 A practical voltage source v, with an internal resistance R, is connected to the input of a voltage
amplifier with input resistance R; as in Fig. 5-2. Find v, /v,.

o VWA

R, R

el

Us v R; <t> ku, 3

+0O

o

Fig. 5-2

The amplifier’s input voltage, v, is obtained by dividing v, between R; and R,.

R;
O
1 R,— ¥ Rs s
The output voltage v, is
kR;
Vy = kU[ = R[ —|—le Vg
from which
R
B g ()
vy, R+ Ry

The amplifier loads the voltage source. The open-loop gain is reduced by the factor R;/(R; + Ry).

EXAMPLE 5.2 In Fig. 5-3 a practical voltage source v, with internal resistance R, feeds a load R; through an
amplifier with input and output resistances R; and R,, respectively. Find v, /v;.

W o o 2
R, R,

s (t) v R % <t> kv, vz % R

B

Fig. 5-3
By voltage division,
R
v = Ri ¥ Rs Vs
Similarly, the output voltage is

R, RiR, V, R R,

Uy = kUl

or — = X k
Uy Ri + Rx Rl + Ro

=k ) 2
R+R, " REIRNRF R @

Note that the open-loop gain is further reduced by an additional factor of R;/(R; + R,), which also makes the output
voltage dependent on the load.

5.2 FEEDBACK IN AMPLIFIER CIRCUITS

The gain of an amplifier may be controlled by feeding back a portion of its output to its input as
done for the ideal amplifier in Fig. 5-4 through the feedback resistor R,. The feedback ratio
R /(R; + R,) affects the overall gain and makes the amplifier less sensitive to variations in k.
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Uy

EXAMPLE 5.3 Find v,/v, in Fig. 5-4 and express it as a function of the ratio » = R;/(R; + R»).
From the amplifier we know that

vy = kv or v = vy /k 3
Applying KCL at node 4,

=0 @

Substitute v; in (3) into (4) to obtain

o RE gk herep=

= = —_— 5
Vg R2+R1—R1k ]—bk R1+R2 ( )

EXAMPLE 5.4 In Fig. 5-5, Ry = 1kQ and R, = 5kQ. (a) Find v,/v, as a function of the open-loop gain k.
() Compute v,/v, for k = 100 and 1000 and discuss the results.

A
WMo Ay .
Rl R2
Vs (tp Uy kul Uy
—0 o
B

Fig. 5-5

(a) Figures 5-4 and 5-5 differ only in the polarity of the dependent voltage source. To find v, /v;, use the results of
Example 5.3 and change k to —k in (9).

(%) —k R] 1
— = 1 — _— h = = —
o - =D e b= =6
(%) _ 75]{
v, 64k

(b) At k=100, vy,/v, = —4.72; at k = 1000, v,/v, = —4.97. Thus, a tenfold increase in k produces only a 5.3
percent change in v, /vg; i.e., (4.97 —4.72)/4.72 = 5.3 percent.
Note that for very large values of &, v,/v, approaches —R,/R; which is independent of k.

5.3 OPERATIONAL AMPLIFIERS

The operational amplifier (op amp) is a device with two input terminals, labeled + and — or non-
inverting and inverting, respectively. The device is also connected to dc power supplies (+V,. and
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—V,.). The common reference for inputs, output, and power supplies resides outside the op amp and is
called the ground (Fig. 5-6).

+V,. (positive supply)
o}

>—o v, (output)

o
-V, (negative supply)

(inverting input) v~ O—\

(noninverting input) v* Q——————l 7

1L (common ground)

Fig. 5-6

The output voltage v, depends on v, =v" —v~. Neglecting the capacitive effects, the transfer
function is that shown in Fig. 5-7. In the linear range, v, = Av,;. The open-loop gain A is generally
very high. v, saturates at the extremes of +V,. and —V,. when input v, exceeds the linear range
|Ud| > Vcc/A-

vD
+V.. F
~4———— slope = A
_Vee
A
L 4 vy=vt—v
Vee
A
Ve
Fig. 5-7

Figure 5-8 shows the model of an op amp in the linear range with power supply connections omitted
for simplicity. In practice, R; is large, R, is small, and 4 ranges from 10° to several millions. The
model of Fig. 5-8 is valid as long as the output remains between +V,. and —V,.. V. is generally from 5
to 18 V.

EXAMPLE 5.5 In the op amp of Fig. 5-8, V,, = 15V, A = 10°, and v~ = 0. Find the upper limit on the magni-
tude of v™ for linear operation.

[v,] = [10°0v"] < 15V ot < 15x 1073V = 150 uV

EXAMPLE 5.6 In the op amp of Fig. 5-8, V.. =5V, 4 = 10%, v~ = 0 and v = 100sin2 7¢ (uV). Find and sketch
the open-loop output v,,.

The input to the op amp is v; = v" — v~ = (100sin277)10~® (V). When the op amp operates in the linear
range, v, = 105vd = 10sin2 7z (V). The output should remain between +5 and —5V (Fig. 5-9). Saturation starts
when v, = 10sin 2 ¢ reaches the 5-V level. This occurs at t = 1/12s. The op amp comes out of 5-V saturation at
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vt O-

/ A=) "

Fig. 5-8

t =5/12. Similarly, the op amp is in —5-V saturation from ¢ = 7/12 to 11/12s.  One full cycle of the output, given
in volts, from r =0 to Isis

5 1/12 <t < 5/12
vy = -5 7/12 <t < 11/12
10sin2 7t otherwise

vy (1)

10 F L

]

i
f

o

S
o

-10 F T

Fig. 5-9

EXAMPLE 5.7 Repeat Example 5.6 for v~ = 25V and v* = 50sin 2w (uV).
vg=v" —v" =(50sin270)107% — 25 x 107° = 50 x 10~ °(sin2 77z — 1/2) (V)
When the op amp is within linear range, its output is
v, = 10%0,; = 5(sin2 7t — 1/2) (V)

v, saturates at the —5-V level when 5(sin 27z — 1/2) < —5, 7/12 <t < 11/12 (see Fig. 5-10). One cycle of v,, in
volts, from 1t =0 to 1s is
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3 -5 712 <t < 11/12
Yo = 5(sin 27t — 1/2) otherwise

0y (D)

69

Fig. 5-10

EXAMPLE 5.8 In Fig. 5-11, R, = 10k, R, = 50k, R; =500k, R, =0, and 4 = 10°. Find vy/v;.  Assume

the amplifier is not saturated.

R,
AL v
O = :
+ Rl
Al v
e
Fig. 5-11
The sum of currents arriving at node B is zero. Note that v, =0 and vy = —v;. Therefore,
(% + Vg Vg (%] + Vg
=0
10 7500 50
Since R, = 0, we have
vy = Avg = IOSUd or vy = 10750,

(©)

)
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Substituting v, in (7) into (6), the ratio v,/v; is found to be

UV -5

—_= =-5
vy 141072 +5x 1072 4+0.1 x 1073

5.4 ANALYSIS OF CIRCUITS CONTAINING IDEAL OP AMPS

In an ideal op amp, R; and A are infinite and R, is zero. Therefore, the ideal op amp draws zero
current at its inverting and noninverting inputs, and if it is not saturated these inputs are at the same
voltage. Throughout this chapter we assume op amps are ideal and operate in the linear range unless
specified otherwise.

EXAMPLE 5.9 The op amp in Fig. 5-12 is ideal and not saturated. Find () v,/v; (b) the input resistance v; /i;;
and (¢) iy, i, p; (the power delivered by v;), and p, (the power dissipated in the resistors) given v; = 0.5V.

10kQ  » 2kQ

Fig. 5-12

(a) The noninverting terminal A4 is grounded and so v4 = 0. Since the op amp is ideal and not saturated, vz = 0.
Applying KCL at nodes B and C and noting that the op amp draws no current, we get

v
Node B: ?' + 1—8 =0 or ve = —2u; €)]

Node C: 11’—8 + UTC + % —0 or w=32u ©)

Substituting v in (8) into (9),
vy = —6.4v, or vy /v = —6.4
(b) With Vg =0, i =v;/5000 and so
input resistance = v; /i; = SkQ

(¢) The input current is i; = v;/5000. Given that v; = 0.5V, i; =0.5/5000 = 0.1 mA.
To find #,, we apply KCL at the output of the op amp;
i = V2 U —Uc
78000 " 2000

From part (a), v, = —=3.2V and vc = —1V. Therefore, i, = 1.5mA.
The power delivered by v; is

1 = v1i; = v3/5000 = 50 x 107 °W = 50 y¢W

Powers in the resistors are
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1k Pira = v&/1000 = 0.001 W = 1000 pW
2k Prka = (13 — ve)? /2000 = 0.00242 W = 2420 pW
5k Pska = 3/5000 = 0.00005 W = 50 pW
8kQ: Pska = 13/8000 = 0.00128 W = 1280 uW
10k Ploka = ve/10000 = 0.0001 W = 100 pW

The total power dissipated in the resistors is

P2 = Pixe t Pake + Pska + Pska + Proke = 1000 + 2420 + 50 + 1280 + 100 = 4850 uW

5.5 INVERTING CIRCUIT

In an inverting circuit, the input signal is connected through R; to the inverting terminal of the op
amp and the output terminal is connected back through a feedback resistor R, to the inverting terminal.
The noninverting terminal of the op amp is grounded (see Fig. 5-13).

Ry
VWA
Ry B
VWA -
—
vy JiT * vy
Fig. 5-13

To find the gain v,/v;, apply KCL to the currents arriving at node B:

Uy )

=0 and Y2 _ R

= — 10
R, +R2 v R, (10)

The gain is negative and is determined by the choice of resistors only. The input resistance of the circuit
is Rl .

5.6 SUMMING CIRCUIT

The weighted sum of several voltages in a circuit can be obtained by using the circuit of Fig. 5-14.
This circuit, called a summing circuit, is an extension of the inverting circuit.
To find the output, apply KCL to the inverting node:

from which

R, R R,
UOZ—RTlvl‘FR—‘ZUzﬁL"'ﬁLR—nUn (11)

EXAMPLE 5.10 Let the circuit of Fig. 5-14 have four input lines with R =1, Ry =1, Ry =1, Ry =}, and R, = 1,
all values given in k2. The input lines are set either at 0 or 1 V. Find v, in terms of vy, v3, v, v, given the
following sets of inputs:

(a) U4:1V ’U3:0 ’U2:0 U]ZIV
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Ry
R,
Vi O=— W -
R, Y
v o——AAM- + Yo
R,

oM
Rn
Fig. 5-14
(b) ’U4:1V ’U';ZIV ’U2:1V UIZO

From (/1)
Uy = —(8vg + 4v3 + 2u; +vy)
Substituting for v; to vy we obtain

(a) Uy = A
) v, =—-14V

The set {v4, v3, v5, v1} forms a binary sequence containing four bits at high (1 V) or low (0V) values. Input sets
given in (@) and (b) correspond to the binary numbers (1001), = (9),, and (1110), = (14),,, respectively. With the
inputs at 0 V (low) or 1V (high), the circuit converts the binary number represented by the input set {v,, v3, v, v;} to
a negative voltage which, when measured in V, is equal to the base 10 representation of the input set. The circuit is
a digital-to-analog converter.

5.7 NONINVERTING CIRCUIT

In a noninverting circuit the input signal arrives at the noninverting terminal of the op amp. The
inverting terminal is connected to the output through R, and also to the ground through R; (see
Fig. 5-15).

R,
vVWA
R, B N
= o
+
+
A
U
vy
Fig. 5-15

To find the gain v, /v, apply KCL at node B. Note that terminals 4 and B are both at v; and the
op amp draws no current.

el T B ) or 2142

12
Ry R, o R, (12)



CHAP. 5]
The gain v, /v, is positive and greater than or equal to one.
as the op amp draws no current.

EXAMPLE 5.11 Find v,/v; in the circuit shown in Fig. 5-16.
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The input resistance of the circuit is infinite

7k
VWA
2kQ
= \/W B \
s / * biz
10kQ2
Uy Lo %RZ
5k
Fig. 5-16

First find v, by dividing v; between the 10-k2 and 5-k2 resistors.

5 1
5+10

Vg =

From (12) we get

(] =§U1

7 9 9/1 v
U2:<1+§>UA :EUA :§<§’Ul>:1.5’l}1 and ;?:15

Another Method

Find vp by dividing v, between the 2-k2 and 7-k€2 resistors and set vp = vy.

\]

2 1
— v

V=37 =g =)

EXAMPLE 5.12

and

Uy
U1

1.5

Determine v, in Fig. 5-17 in terms of vy, v,, v3, and the circuit elements.

. 4
R R R B
Uy L] L£]
¢ o
Fig. 5-17
First, v, is found by applying KCL at node 4.
v — v Vy — U V3 — v 1
IRA ZRA 3RA=0 or vy =3 vty (13)
From (/2) and (/3) we get
R 1 R
Uo=<1+R—T>UA=§(1+R—T>(U1+U2+U3) (19
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5.8 VOLTAGE FOLLOWER

The op amp in the circuit of Fig. 5-18(a) provides a unity gain amplifier in which v, = v; since
vy =v", vy, =v and v" =v~. The output v, follows the input v,. By supplying i, to R,, the op amp
eliminates the loading effect of R; on the voltage source. It therefore functions as a buffer.

EXAMPLE 5.13 (a) Find i, v;, v;, and i, in Fig. 5-18(a). (b) Compare these results with those obtained when
source and load are connected directly as in Fig. 5-18(b).

(a) With the op amp present [Fig. 5-18(«)], we have
i,=0 V] = Uy Vy =V = g i =v,/R;
The voltage follower op amp does not draw any current from the signal source v,. Therefore, v, reaches the
load with no reduction caused by the load current. The current in R; is supplied by the op amp.
() With the op amp removed [Fig. 5-18(b)], we have

Vg

_ R,
" R/ +R,

“R+R

i.r = i/ and V) =0

The current drawn by R, goes through R, and produces a drop in the voltage reaching it. The load voltage v,
depends on R;.

i I 17
| I | . I
| I I . I
| — { | Lo |
I VW ] / 1+ 1 {
I RA‘ | | | : |
I 1 3 |
1 R
:”CD I v 21 <
= | | (. I
| I i (. |
| P - 1! !
I | I (I I
o e I e e e e Vo I
voltage source voltage follower load
(a)

T T T T T h r—=—=—7=1

| | | 1

| I o I

I i 1 I I

= W——————— |

: Rs [ + + 1 i

I I l |

| UsCJ_r) oo o ! ‘ g R 1

1 | | 1

I | l |

| - . ! I

| L oo |

o e e e e I . 1

voltage source load
)

Fig. 5-18
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5.9 DIFFERENTIAL AND DIFFERENCE AMPLIFIERS

A signal source vy with no connection to ground is called a floating source. Such a signal may be
amplified by the circuit of Fig. 5-19.

Ry

L AAA

PO
+
+

v,

o

1

Fig. 5-19
Here the two input terminals 4 and B of the op amp are at the same voltage. Therefore, by writing
KVL around the input loop we get
The op amp inputs do not draw any current and so current i also flows through the R, resistors.
Applying KVL around the op amp, we have
Y, + Rzl + Rzl = O vV, = —2R21 = —2R2’Uf/2R1 = _(R2/R1)Uf (15)

In the special case when two voltage sources v; and v, with a common ground are connected to the
inverting and noninverting inputs of the circuit, respectively (see Fig. 5-20), we have vy = v; — v, and

v, = (Ry/R)(vy — vy) (16)

EXAMPLE 5.14 Find v, as a function of v; and v, in the circuit of Fig. 5-20.
Applying KCL at nodes 4 and B,

Ry
R, g
' WA >
b0
A +
+
)
Ry 4 "
o
v Uy R,
Fig. 5-20
Vg — V2 | Uy
Node A4: Y=+ -2=0
R; Ry
Vp — U Vp — U,
Node B: =0
ode R, i

Set v, = vp and eliminate them from the preceding KCL equations to get



76 AMPLIFIERS AND OPERATIONAL AMPLIFIER CIRCUITS [CHAP. 5

v :7R4(R1+R2)v —&v 17)
"TR(Ry+Ry) R

When R; = R; and R, = Ry, (I7) is reduced to (76).

5.10 CIRCUITS CONTAINING SEVERAL OP AMPS

The analysis and results developed for single op amp circuits can be applied to circuits containing
several ideal op amps in cascade or nested loops because there is no loading effect.

EXAMPLE 5.15 Find v; and v, in Fig. 5-21.

w05y 1kQ 2kQ
3k0 o W —
VWA i
-06V -/ \A— -
o VVYV - 2k} —0 v,
l— + v]
Fig. 5-21

The first op amp is an inverting circuit.
vy =—3/1)(—-0.6) =18V
The second op amp is a summing circuit.

vy = —(2/1)(0.5) — (2/2)(1.8) = —2.8 V

EXAMPLE 5.16 Let R, =1kQ in the circuit of Fig. 5-22, find vy, v, v,, i, i, and iy as functions of v, for
(@) Ry =00 and (b) Ry =40k

— VWA
Ry
9k
VWA VWA
)
- 1.2kQ
+ + 0
4 +
vz v{)
> o)
Fig. 5-22

(a) Ry =o0. The two inverting op amps are cascaded, with vT =0. By voltage division in the input loop we have

5 5

=24, 18
54107 6™ (18)

v =

From the inverting amplifiers we get
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v =~/ = —(9/5)(2 vx> ~ 15y,
v, = —(6/1.2)v, = —5(—1.5v,) = 7.5v,

Vg _
= co0g ) = 01660, (mA)

is = il

ir=0

(b) Ry =40kQ. From the inverting op amps we get v, = —5v, and v, = —(9/5)v; so that v, = 9v;. Apply KCL
to the currents leaving node B.

V) — Uy ﬂ )

1 5 40

Substitute v, = 9v; in (/9) and solve for v; to get

=0 (19)

v = U
vy = —(9/5)v; = —1.80,
v, = —(6/1.2)v = —5(—1.80,) = 9v,

i U=V
$71000
Apply KCL at node B.
| Y _
ir = = 5500 (A) = 5000 (A) = 0.2y, (mA)

The current i; in the 5-k2 input resistor of the first op amp is provided by the output of the second op amp
through the 40-k<2 feedback resistor. The current i; drawn from v is, therefore, zero. The input resistance of
the circuit is infinite.

5.11 INTEGRATOR AND DIFFERENTIATOR CIRCUITS

Integrator

By replacing the feedback resistor in the inverting amplifier of Fig. 5-13 with a capacitor, the basic
integrator circuit shown in Fig. 5-23 will result.

a

—r—

. MA—2E \ N
" A I_ / :
- L 1

Fig. 5-23

To obtain the input-output relationship apply KCL at the inverting node:

v e d : dp_ 1
R +C = 0 from which 1= RCY

t

1
and Uy = —Ric J (U dt (20)

—00

In other words, the output is equal to the integral of the input multiplied by a gain factor of —1/RC.

EXAMPLE 5.17 In Fig. 5-23 let R = 1k, C = 1 uF, and v; =sin2000¢. Assuming v,(0) = 0, find v, for ¢ > 0.
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1 t
Uy = —W JO sin 2000t dt = O.S(COS 2000t — 1)

Leaky Integrator

The circuit of Fig. 5-24 is called a leaky integrator, as the capacitor voltage is continuously dis-
charged through the feedback resistor R,. This will result in a reduction in gain |v,/v;| and a phase
shift in v,. For further discussion see Section 5.13.

Ry
A
C
1L
I\
Rl
VWA 2 - -
7
vy A I + Uy
Fig. 5-24

EXAMPLE 5.18 In Fig. 5-24, R| = Ry = 1kQ, C = 1 pF, and v; =sin2000z. Find v,.
The inverting node is at zero voltage, and the sum of currents arriving at it is zero. Thus,

-3 dvz

—4+C—+-—==0 1077 —= =0
R’ a +Rf or  ut ar
-3 dU2 .
10 T + v, = —sin 20007 21

The solution for v, in (21) is a sinusoidal with the same frequency as that of v; but different amplitude and phase
angle, i.e.,

vy, = A c0s(2000¢ + B) (22)
To find 4 and B, we substitute v, and dv,/dt in (22) into (21). First dv/dt = —2000A4 sin(2000¢ + B). Thus,
1073 dv, /dt + v5 = —2A45in(20001 + B) + A cos(20007 + B) = — sin 20001
But 2A4sin(2000¢ + B) — A cos(2000¢ + B) = A+/5sin(20007 + B — 26.57°) = sin 20007
Therefore, A = +/5/5 = 0.447, B = 26.57° and

vy = 0.447 cos(2000¢ + 26.57°) (23)

Integrator-Summer Amplifier
A single op amp in an inverting configuration with multiple input lines and a feedback capacitor as
shown in Fig. 5-25 can produce the sum of integrals of several functions with desired gains.

EXAMPLE 5.19 Find the output v, in the integrator-summer amplifier of Fig. 5-25, where the circuit has three
inputs.
Apply KCL at the inverting input of the op amp to get
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N ﬁ
VWA I
Ry
VWA +
vy : AI— + U,
e Uy i
Fig. 5-25
(U] (%]} (%} dUo _
R, + R, + Ry + dt 0
!
U] Uy U3
=— —t——+—dt 24
e J,M<RIC+R2C+R36> @)

Initial Condition of Integration

The desired initial condition, v,, of the integration can be provided by a reset switch as shown in Fig.
5-26. By momentarily connecting the switch and then disconnecting it at ¢ = ¢,, an initial value of v, is
established across the capacitor and appears at the output v,. For ¢ > ¢,, the weighted integral of input
is added to the output.

1 t
V) = _ﬁ J[O (U] dt + U, (25)

L
|
\/\E

Uo C
- | {
1\
R B ——0
A +
v (* r s vy
Fig. 5-26

Differentiator

By putting an inductor in place of the resistor in the feedback path of an inverting amplifier, the
derivative of the input signal is produced at the output. Figure 5-27 shows the resulting differentiator
circuit.

To obtain the input-output relationship, apply KCL to currents arriving at the inverting node:

1 t
—+ZJ vdt=0 or @ vy=-———1 (26)
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L
Y Y'Y\
R
B —0
A +
U 1 Uy
Fig. 5-27

5.12 ANALOG COMPUTERS

The inverting amplifiers, summing circuits, and integrators described in the previous sections are
used as building blocks to form analog computers for solving linear differential equations. Differentia-
tors are avoided because of considerable effect of noise despite its low level.

To design a computing circuit, first rearrange the differential equation such that the highest existing
derivative of the desired variable is on one side of the equation. Add integrators and amplifiers in
cascade and in nested loops as shown in the following examples. In this section we use the notations
x' = dx/dt, x" = d*x/dr* and so on.

EXAMPLE 5.20 Design a circuit with x(¢) as input to generate output y(#) which satisfies the following equation:
¥ (1) +2'(0) + 3y(0) = x(1) (27)

Step 1. Rearrange the differential equation (27) as follows:

yi=x=2y" =3y (28)
Step 2. Use the summer-integrator op amp #1 in Fig. 5-28 to integrate (28). Apply (24) to find R|, R,, R; and
C, such that output of op amp #1 is v; = —y’. We let C; = 1 uF and compute the resistors accordingly:
RlCl = 1 Rl = 1MQ

R,C,=1/3 R, =333kQ
RyC, =1/2 Ry =500kQ

" :‘J(x_3y—2y')dt=_Jy"dl=—y' (29)

Step 3. Integrate v, = —y’ by op amp #2 to obtain y. Welet C; = 1 uF and R, = | MQ to obtain v, = y at the
output of op amp #2.

1 /
vz_—mjuzdt_Jy dt=y (30)

Step 4. Supply inputs to op amp #1 through the following connections. Feed v; = —y’ directly back to the R
input of op amp #1. Pass v, = y through the unity gain inverting op amp #3 to generate —y, and then feed it to the
R, input of op amp #1. Connect the voltage source x(¢) to the R, input of op amp #1. The complete circuit is
shown in Fig. 5-28.

EXAMPLE 5.21 Design an op amp circuit as an ideal voltage source v(f) satisfying the equation v’ +v =0 for
t >0, with v(0) =1V.

Following the steps used in Example 5.20, the circuit of Fig. 5-29 with RC = 15 is assembled. The initial
condition is entered when the switch is opened at + = 0. The solution v(f) = ¢, t > 0, is observed at the output of
the op amp.
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= 1 A AAAA
Op amp 10 kQ
#3
+
Fig. 5-28
N 1V
—eTo—| F——
C
—/WWA -
R 0
+
p v
1
Fig. 5-29

5.13 LOW-PASS FILTER

A frequency-selective amplifier whose gain decreases from a finite value to zero as the frequency of
the sinusoidal input increases from dc to infinity is called a low-pass filter. The plot of gain versus
frequency is called a frequency response. An easy technique for finding the frequency response of filters
will be developed in Chapter 13. The leaky integrator of Fig. 5-24 is a low-pass filter, as illustrated in
the following example.

EXAMPLE 5.22 In Example 5.18 let v; = sinw¢. Find v, for w = 0, 10, 100, 10%, 10*, and 10° rad/s.
By repeating the procedure of Example 5.18, the frequency response is found and given in Table 5-1. The
response amplitude decreases with frequency. The circuit is a low-pass filter.

Table 5-1. Frequency Response of the Low-pass Filter

w,rad/s | 0 10 100 10° 104 10°
/. Hz 0 1.59 15.9 159 1.59 x 10> 15.9 x 10
[0 /01| 1 1 0.995 0.707 0.1 0.01
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5.14 COMPARATOR

The circuit of Fig. 5-30 compares the voltage v; with a reference level v,. Since the open-loop gain
is very large, the op amp output v, is either at +V,,. (if v; > v,) or at =V, (if v; < v,). This is shown by
vy = V,.sgn[v; — v,] where “sgn” stands for “‘sign of.” For v, =0, we have

+Vee v > 0
Uy = Vcc sgn[vl] = { —V 'Ui <0

o+V,.

>

.
) S, 1

v O

Fig. 5-30

EXAMPLE 5.23 In Fig. 5-30, let V., =5V, v, =0, and v; = sinwt. Find v,.
For 0 <t < 7/w,
v =sinwt > 0 v, =5V
For n/w < t <27/ w,
vy =sinwt < 0 vy =-5V

The output v, is a square pulse which switches between +5V and —5V with period of 27/w. One cycle of v, is
given by

S5V O<t<m/ow

271 =s5v T/w<t<2m/w

EXAMPLE 5.24 The circuit of Fig. 5-31 is a parallel analog-to-digital converter. The +V,. and —V,,. connections
are omitted for simplicity. Let V.. =5V, v, =4V, and v; =t (V) for 0 <t <4s. Find outputs v3, vy, and v;.
Interpret the answer.

The op amps have no feedback, and they function as comparators. The outputs with values at +5 or —5V are
given in Table 5-2.

Table 5-2

time, s input, V outputs, V

O0<t<l1 0<v <1 n==5 v,=-5 vyy=-5
l<t<?2 l<v; <2 n==5 v,=-5 vyy=45
2<t<3 2<v; <3 n==5 v=45 vy=4+5
3<t<4 3<w <4 n=4+5 v, =45 vy =45

The binary sequences {vs, v5, v} in Table 5-2 uniquely specify the input voltage in discrete domain. How-
ever, in their present form they are not the binary numbers representing input amplitudes. Yet, by using a
coder we could transform the above sequences into the binary numbers corresponding to the values of analog
inputs.
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V3

vy

Yy

4

Fig. 5-31
Solved Problems

In Fig. 5-3, let v, =20V, R, =109, R, =990, k =5, and R, =3Q. Find (a¢) the Thévenin
equivalent of the circuit seen by R; and (b) v, and the power dissipated in R, for R, = 0.5, 1, 3, 5,
10, 100, and 1000 2.

(a) The open-circuit voltage and short-circuit current at A-B terminal are v,, = 5Sv; and i;. = Sv/3,
respectively.
We find v; by dividing v, between R, and R;. Thus,
R - 990
TR, +R, T 10+990

v, (20) = 19.8V

b
¢
VWA

=
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Therefore,
Voo, = 5(19.8) =99V UTh = Ve, =99V
ise. =99/3=33A Rry = Vo [ige =3 Q2
The Thévenin equivalent is shown in Fig. 5-32.
(b) With the load R; connected, we have

99R 2
= ! and p:2
R +3 R,

)
V) = ———— Upp
R; + Ry

[CHAP. 5

Table 5-3 shows the voltage across the load and the power dissipated in it for the given seven values of
R;. The load voltage is at its maximum when R; = co. However, power delivered to R; = oo is zero.
Power delivered to R; is maximum at R, = 3 Q, which is equal to the output resistance of the amplifier.

Table 5-3

RI’Q ’UZvV pyw

0.5 14.14 400.04

1 24.75 612.56
3 49.50 816.75
5 61.88 765.70

10 76.15 579.94
100 96.12 92.38
1000 98.70 9.74

In the circuits of Figs. 5-4 and 5-5 let R, = 1kQ and R, = 5kQ. Find the gains Gt = v,/v, in
Fig. 5-4 and G~ = v, /v, in Fig. 5-5 for k =1, 2, 4, 6, 8, 10, 100, 1000, and co. Compare the

results.

From (5) in Example 5.3, at R; = 1kQ and R, = 5k we have

+_ v 5k
G = v, 6—k
In Example 5.4 we found
,_Uz__ Sk
G Tu, . 6+k

€3]

(32

The gains G~ and G* are calculated for nine values of k in Table 5-4.  As k becomes very large, G and
G~ approach the limit gain of —5, which is the negative of the ratio R,/R; and is independent of k. The
circuit of Fig. 5-5 (with negative feedback) is always stable and its gain monotonically approaches the limit
gain. However, the circuit of Fig. 5-4 (with positive feedback) is unstable. The gain G becomes very

large as k approaches six. Atk =06, Gt = co.

Table 5-4

k G* G~
1 1.0 —0.71
2 2.5 —1.25
4 10.0 —2.00
6 00 —2.50
8 -20.0 —-2.86
10 —12.5 —-3.12
100 —5.32 —4.72
1000 -5.03 —4.97
o0 —5.00 —5.00
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5.3

5.4

Let Ry = 1kQ, R, =5k, and R; = 50k in the circuit of Fig. 5-33. Find v, /v, for k =1, 10,
100, 1000, co and compare the results with the values of G~ in Table 5-4.

Ry
A
R, A :'__________—:
+ ! ?
| |
|
Us Ctp v : R; kv, : Uy
| |
1 -
! | 5
I |
S Jd
Amplifier
Fig. 5-33

This problem is solved by application of KCL at node A (another approach which uses the Thévenin
equivalent is suggested in Problem 5.30). Thus,
Vp -V U1~V U

1 5 t5=0 (33)

From the amplifier we obtain
Vy) = —k’Ul or v = —/Uz/k (34)
Replacing v; in (34) into (33) and rearranging terms, we obtain

v, =50k -5k
v, 61410k 6.1+k (39)

Values of v, /v, in (35) are shown in Table 5-5 as functions of k. The 50-k< input resistance of the amplifier
reduces the overall gain very slightly, as seen by comparing Tables 5-4 and 5-5. The feedback has made the
input resistance of the amplifier less effective in changing the overall gain.

Table 5-5
k 'U2/v,y
1 —0.704
10 —-3.106
100 —4.713
1000 —4.97
00 —5.00

Let again R} = 1k and R, = 5k in the circuit of Fig. 5-33.

(a) Find v, /v, as a function of k and R;.

(b) Let R; =1kQ. Find v,/v, for k =1, 10, 100, 1000, co. Repeat for R; = oco.

(¢) Discuss the effects of R; and k on the overall gain. Show that, for kK = co and R; # 0,
the gain of the amplifier is independent of R; and is equal to — R,/R;.

(a) Apply KCL to currents leaving node 4 to obtain
v — Uy v — 0y (%]
A7 A2 Ty
75 TR
From the amplifier we get v, = —kv; or v; = —v,/k. Substituting for v; in the KCL equation and

rearranging terms we get
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(%) ck i
—_ = — h > = 36
o Olgxa Wherec=ser (36)
(b) For R, =1k, ¢ = 1/11 which, substituted into (36), gives
(%) —5k
2 37
v, 1l+k 7)
For R; = oo we get ¢ = 1/6 and so
(%} —Sk
20 38
vy, 6+k (38)

Table 5-6 gives values of v, /v, in (37) and (38) versus k. Note that (38) is identical with (32).

Table 5-6
UZ/US

k R[ =1kQ Ri =
1 —0.31 —0.71
10 —2.38 -3.12
100 —4.51 —4.72
1000 —4.95 —-4.97
o0 —5.00 —5.00

(¢) Comparing the two columns in Table 5-6 we see that the smaller R; reduces the overall gain G™.
However, as the open-loop gain k increases, the effect of R; is diminished. As k becomes very
large, v,/v; approaches —5 unless R; = 0.

5.5 Letagain R; = 1kQ and R, = 5k in the circuit of Fig. 5-33. Replace the circuit to the left of
node A including v, Ry, and R; by its Thévenin equivalent. Then use (5) to derive (36).

The Thévenin equivalent is given by

N Ry, Ry
TR +R  1+R,
Rev — RR, R
™TR+R 1+R
where the resistors are in k<.
From (),
—k
Uzz(lfb)mvﬂl
Ry R; 5(1+R))
h b= = d l—p="— T2
where Ru+R 6R+5 6R, +5
Therefore,
_5(1+R) —k R, —5Rk

U

TOR +5 14 RA/6R +5) 1+R “T6R +5+ Rk *
which is identical with (36).

5.6  Find the output voltage of an op amp with 4 = 10° and V,, = 10V for v~ = 0 and v+ = sin 7 (V).
Refer to Figs. 5-7 and 5-8.
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5.7

5.8

5.9

Because of high gain, saturation occurs quickly at
[vs] = 10%)v,| =10V or  |uy| = 1074V
We may ignore the linear interval and write

410V >0
“2T1-10V wy; <0

where v, = vT — v~ =sint (V). One cycle of the output is given by

_J+10V O<t<m
21210V T<t<2mw

For a more exact v,, we use the transfer characteristic of the op amp in Fig. 5-7.

-10 vy < —107*V
vy = 10%v, 10 <o, < 107*V
+10 vy > 1074V
Saturation begins at |v,| = |sin?| = 107* V. Since this is a very small range, we may replace sin by 7. The
output v, is then given by
v = 10% — 107 <1< 107%s
v= 10 1074 <t <7—10"%s
v=-100(t—7) 7-10"*"<t<m+107%s
vy =—10 T+107* <1 <2m—107%s

To appreciate the insignificance of error in ignoring the linear range, note that during one period of 27r's
the interval of linear operation is only 4 x 10™*s, which gives a ratio of 64 x 107,

Repeat Problem 5.6 for v* = sin 27t (V) and v~ = 0.5V.

The output voltage is

v= 10V when vt > v~

v, =—10V when vt < v~

Switching occurs when sin 2z = 1/2.  This happens at ¢t = 1/12, 5/12, 13/12, and so on. Therefore, one
cycle of v, is given by

vy= 10V 1/12<t<5/12s
vy =—10V  5/12 <t <13/12s

Figure 5-34 shows the graphs of v*, v, and v,.

In the circuit of Fig. 5-35 v, = sin 100¢. Find v; and v,.
At nodes B and A, vg =v, =0. Then,

30 .
v = 20430 v, = 0.6sin 1007 (V)
vy = —% vy = —% (0.6 sin 1007) = —2sin 1007 (V)
. 100 .
Alternatively, V=5 130 vy = —25in 1007 (V)

Saturation levels for the op amps in Fig. 5-31 are +V,., =5V and —V,. = —5V. The reference
voltage is v, = 1 V. Find the sequence of outputs corresponding to values of v; from 0 to 1V in
steps of 0.25V.
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Fig. 5-34
100 Q
208 C 300
—W—s
p—O
A +
v, = sin 100t v, +
R V2
- O
Fig. 5-35

See Table 5-7 where L = -5V and H = +5V.

Table 5-7
vy, V vy | vy | v
0to025 | L | L | L
025%t005 | L |L |H
057t0075 | L | H|H
0.75% to 1 H|H|H

5.10 Find v in the circuit of Fig. 5-36.
Apply KCL at node 4,

[CHAP. 5
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Then

4 s 4 O
+

! L =L

Rl_gl RZ_g2 R3_g3
v

L Uy U3
' s o
Fig. 5-36

w=—v)g+W—v)g+@—13)g3=0
po Vi8I T g U8y VRR; + 1R R3 + 13 Ry Ry
g1 +8+8; RiRy + RoR3 + R3 Ry
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5.11 In the circuit of Fig. 5-37 find v, (the voltage at node C), i;, R;, (the input resistance seen by the
9-V source), v,, and i,.

i

—

v=9V "=

%

50

At nodes B and A4, vy =

40 o 30
—VV——/ M
p——Q
b, *
" +
6}
100 Uy

Fig. 5-37

vy = 0. Applying KCL at node C, we get

(ve —=9)/4+vc/64+vc/3=0 from which ve=3V

Then i

From the inverting ampl

—(9—ve)/A=15A and Ry, =v/ij =9/1.5=6%

ifier circuit we have

Vy = —(5/3)'UC =-5V and I = —5/10 =—-05A

5.12 Find v, in Problem 5.11 by replacing the circuit to the left of nodes 4-B in Fig. 5-37 by its

Thévenin equivalent.
R

Then vy = —(5/5.4)(5.4)

5.13 Find vc, i, v5, and Ry, the input resistance seen by the 21-V source in Fig. 5-38.

(6)(4) 6
=34+-—"2=54Q ¢ =——(9)=54V
™ = 3 c14 5 and Uh = e 9 =5

=-5V.

From the inverting amplifier we get

vy = —(5/3)vc

Note that vy = v, = 0 and so KCL at node C results in

(39
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8k 5k
i 3kQ c
WA AWN—
3kQ 125
Q
il I A +
21V == 6k v
& T %)
Fig. 5-38

ve—21 wve ve ve—v

3 6 3 8
Substituting v = —(3/5)v, from (39) into (40) we get v, = —10V. Then

0

Ve = 6V
iy = (21 — ve)/3000 = 0.005A = 5mA
Ry, = 21/i; = 21/0.005 = 4200 2 = 4.2k

[CHAP. 5

(40)

In the circuit of Fig. 5-38 change the 21-V source by a factor of k. Show that v, i, v, In

Problem 5.13 are changed by the same factor but R;, remains unchanged.

Let v, = 21k (V) represent the new voltage source. From the inverting amplifier we have [see (39)]

vy = —(5/3)vc
Apply KCL at node C to obtain [see (40)]
Ve =Y V¢ V¢  Vc—U
3 + 6 + 3 + 8 =0

Solving for v and v,, we have

ve = (6/21)v, = 6k (V)  and vy = —(10/21)v, = —10k (V)

i) = (v, — vc)/3000 = (21 — 6)k/3000 = 0.005k A
Ry = /i = 21k/0.005k = 4200 Q

These results are expected since the circuit is linear.

Find v, and vc in Problem 5.13 by replacing the circuit to the left of node C in Fig. 5-38

(including the 21-V battery and the 3-kQ2 and 6-k2 resistors) by its Thévenin equivalent.

We first compute the Thévenin equivalent:

_©0) _ _ 6 _
RTh—6+3—2kQ and vTh_3+6(21)_l4V

Replace the circuit to the left of node C by the above v, and Ry, and then apply KCL at C:

ve — 14 v vc—vzzo
2 3 8

(41)

For the inverting amplifier we have v, = —(5/3)vc or v = —0.6 v,, which results, after substitution in (41),

invy,=—-10Vand vc=6V.
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5.16 (a) Find the Thévenin equivalent of the circuit to the left of nodes 4-B in Fig. 5-39(a) and then
find v, for R, = 1kQ, 10k, and co. (b) Repeat for Fig. 5-39(¢) and compare with part (a).

(a) The Thévenin equivalent of the circuit in Fig. 5-39(«a) is shown in Fig. 5-39(b).

+ @ >

6 k)

M)
\/
O
<
+ @ =

WAA
=
=1
0O
N
—AAA
=

@

r
I
|
|
|
I
I
|
I
I
1
=N N

30 \

+ @ >

)
>
<

\

6 kQ2
<+ B = 3
e -
() @
Fig. 5-39
6 3)(6
UTh :6——}—3(15):10\[ and RTh :%:21{9
By dividing vy, between Ry, and R; we get
R,
5= s (10
For R, = 1k, v = 333V
For R, = 10k, v, = 833V

For R, = o0 v,= 10V
The output v, depends on R;. The operation of the voltage divider is also affected by R;.

() The Thévenin equivalent of the circuit in Fig. 5-39(c) is shown in Fig. 5-12(d). Here we have
UTh = 10V and RTh =0

and v, = vy, = 10V for all values of R;, that is, the output v, depends on R;, R,, and v, only and is
independent of R;.
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5.18

5.19
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Find v, as a function of #; in the circuit of Fig. 5-40(a).

Fig. 5-40

Current i; goes through resistor R producing a voltage —Ri; across it from right to left. Since the
inverting terminal B is zero potential, the preceding voltage appears at the output as v, = —Ri; [see Fig. 5-
40(b)]. Therefore, the op amp converts the current i; to a voltage v, with a gain of |v,/i;| = R. The
current source i; delivers no power as the voltage v, across it is zero.

A transducer generates a weak current /; which feeds a load R; and produces a voltage v, across
it. Tt is desired that v; follow the signal with a constant gain of 10® regardless of the value of R,.
Design a current-to-voltage converter to accomplish this task.

The transducer should feed R; indirectly through an op amp. The following designs produce
v; = 10%, independently of R,.

Design I: Choose R = 100 M in Fig. 5-40. However, a resistor of such a large magnitude is expensive and
not readily available.

Design 2: The conversion gain of 108V /4 is also obtained in the circuit of Fig. 5-41. The first op amp with
R =10° converts i; to v; = —10%,. The second amplifier with a gain of —100 (e.g., R, = 1k and
R, = 100k2) amplifies v; to v, = —100v, = 10%,. The circuit requires two op amps and three resistors
(1M, 100k, and 1kS) which are less expensive and more readily available.

VWA

+ +
. + +
‘®
* v Uy load R,

[ A

Design 3: See Fig. 5-42 and Problem 5.19.

Determine the resistor values which would produce a current-to-voltage conversion gain of
v,/i; = 10 V/A in the circuit of Fig. 5-42.
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5.20

5.21

i R c R,
AA YW

R,
B u—
$
i A p
U, load R,
Fig. 5-42
Apply KCL at node C. Note that vz =v, =0. Thus,
Ve, Ve ve—v_
R R, R,
Substituting v = —Ri; and solving for v, we get
. R, R
vy = — Ry where Ry = R(l + R—T + 72)

For a conversion gain of v, /ij = Ryq = 108 V/A = 100 M2, we need to find resistor values to satisfy the
following equation:

R2 R') 8
Rll+—+—)=10°Q
( +R1+R>

One solution is to choose R = 1 M, R; = 1k, and R, = 99k2. The design of Fig. 5-42 uses a single op
amp and three resistors which are not expensive and are readily available.

Find i, as a function of v; in the circuit of Fig. 5-43.

£
-]
a

@ »)
Fig. 5-43

We have
vp=v4=0 i =v/R =1 =v/R

The op amp converts the voltage source to a floating current source. The voltage-to-current conversion
ratio is R; and is independent of R,.

A practical current source (i in parallel with internal resistance R,) directly feeds a load R, as in
Fig. 5-44(a). (a) Find load current j;. (b) Place an op amp between the source and the load as
in Fig. 5-44(b). Find i, and compare with part (a).
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[ X

oD
N
&
AN
>

X9

&
("
-|}<-———\/!v~——<
> oW
\/
vk
I
|
|
I
I
I—
O

) ' (©
Fig. 5-44
(a) In the direct connection, Fig. 5-44(a), i; = i;R,/(R; + R;), which varies with R;,. (b) In Fig. 5-44(b), the

op amp forces vg to zero causing the current in R, to become zero. Therefore, i; = i, which is now

independent of R;. The op amp circuit converts the practical current source to an ideal current source.
See Figure 5-44(c).

5.22 Find v, in the circuit of Fig. 5-45.

R, R,
o VWA
R R
R

——0

+ U3 + +
UU

Fig. 5-45
The first op amp is a unity gain inverter with v; = —v,. The second op amp is a summing circuit with a

gain of —R, /R, for both inputs v; and v;. The output is

R R
UOZ—RTT(M +U3)=R—T(U2—U1)
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The circuit is a difference amplifier.

5.23 Find v, in the circuit of Fig. 5-46.

R,
—MA
R
VWA — -
——o
16 * +
- " v,
: T o

Fig. 5-46

Apply KCL at node B. Note that vy =v, = v,. Thus,

Uy =V V2=

R R, 0
Solving for v,, we get v, = vy + (Ry/R;)(vy — v1).
5.24 Find v, in the circuit of Fig. 5-47.
R, R v, R, R,
L—MA MN—F— A M

—0

+ + +

vG

U

Uy

I [ i

Fig. 5-47

The left part of the circuit has a gain of (1 + R;/R»).
Problem 5.23 and substituting for v; results in

R R R R R
Uy = V2 +RTT(U2—U3)= <1+R—?>U2—R—?(1 +R—;>U1 = <1+R—?)(U2—U1)

5.25 In Fig. 5-48 choose resistors for a differential gain of 10° so that v, = 10%(v, — v;).

The two frontal op amps are voltage followers.

v =g and vg = U
From (76), Sec. 5.9, we have
Ry

R
UOZFI(UB_UA):F?(UZ_UI)

To obtain the required differential gain of R,/R; = 10°, choose Ry =100 and R, = 100 MQ.

Therefore, v; = (1 + R;/R,)v;. Using results of

95
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2 SN— Ry R,

+

V) Ot

BN AW oy, 5
/ <

B Ry Ry

Fig. 5-48

The circuit of Fig. 5-48 can have the same gain as that of Fig. 5-45, but its input resistance is infinite.
However, it employs two small and large resistors which are rather out of ordinary range.

5.26 Resistors having high magnitude and accuracy are expensive. Show that in the circuit of Fig. 5-
49 we can choose resistors of ordinary range so that v, = 10°(v, — v)).

V16 R,
—M-
i t RG )
. +
v, )
\ Rs
——/M A% o
vzo._—_/ B R R, __.L
Fig. 5-49

The two frontal op amps convey the input voltages v; and v, to the terminals of R, creating an upward

current i = (v; —v;)/Rs in the resistor. The current also goes through the two Rj; resistors, creating
voltage drops iR; across them. Therefore,

R R
vi=v — Ryi=v; — 2 (v —v)) vg = vy + Ryi = vy + 5> (v — vy)

Ro R
2R

Vg — Uy = (1 +—3>(U2 —vy)
Rg

R R 2R

and UoZR—?(UB—UA)ZR—TO‘FR—G})(T&—UO

For a differential gain of 10® we must have

Yo :&(14_&) = 10°
vu—v R Rg

Choose R, = R; = 1k, R, = 100k, and R; = SMQ.
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5.27

5.28

5.29

The circuit of Fig. 5-49 has an infinite input resistance, employs resistors within ordinary range, and
uses three op amps.

Show that in the circuit of Fig. 5-50 i; = i, regardless of the circuits of N; and N,.

C

[ 3
[ I

T

Fig. 5-50

Nodes 4 and B are at the same voltage v, = vg. Since the op amp draws no current, #; and i, flow
through the two resistors and KVL around the op amp loop 4BC gives Ri; — Ri, = 0. Therefore, i; = i5.

Let N; be the voltage source v; and N, be the resistor R, in the circuit of Fig. 5-50. Find the
input resistance R, = v;/i;.

From the op amp we obtain v, =vp and i; =i,. From connections to N; and N, we obtain
v] = vg = vy, = v, and v, = —i, Ry, respectively. The input resistance is v /ij = —i,R,/i, = —R, which is
the negative of the load. The op amp circuit is a negative impedance converter.

A voltage follower is constructed using an op amp with a finite open-loop gain 4 and R;, = o0
(see Fig. 5-51). Find the gain G =wv,/v;. Defining sensitivity s as the ratio of percentage
change produced in G to the percentage change in A, find s.

I
T —° T Q

I I

| Yy |

| Av, ’:> |
S § | v

I I

e e — ——d

3}
o
Fig. 5-51

From Fig. 5-51 we have v, = Av;. Applying KVL around the amplifier, obtain

v =g+ v = vy + Avg = vg(1 + 4) = vy(1 + 4)/4
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5.32
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The rate of change of G with respect to 4 is
d—G = ;2 from which dG = d—Az
dA~ (1+ A) (14 A4)
The percentage change produced in G is 100(dG/G).
dG  d4A 1+ 4 1 dA

G UtA2 A4 1+4°4

and the sensitivity is

L dG/G 1
ST d4/A T 114

The percentage change in G depends on A. Samples of dG/dA and s are shown in Table 5-8.

Table 5-8
A G =vy)/v dG/dA s
10 0.909 0.008 0.091
11 0.917 0.007 0.083
100 0.990 0.0001 0.01
1000 0.999 0 0

For high values of A4, the gain G is not sensitive to changes in 4.

Supplementary Problems

Repeat Problem 5.3 by replacing the circuit to the left of node B (including v,, R, and R;) by its Thévenin
equivalent (see Fig. 5-33) Solve the problem by applying the results of Example 5.4.

Find the Thévenin equivalent of the circuit to the left of nodes 4-B in Fig. 5-52 with k = 10 for (¢) R, = c©
and (b) R, = 50kQ. Ans. (a) vy, = =100V, Ry, = 1002; (b) v, = —31.22V, Ry, = 37.48 Q2

VWA
R, A
——o ~WA
10 kQ + 100 O
10V Uy kud Rl
- B
Fig. 5-52

Repeat Problem 5.31 for R, = 50kQ and k = 100. Ans. vp, = —47.16V, Ry, = 5.66 Q2

Determine the relationship between R, R;, and R, in Fig. 5-41 such that the circuit has a gain of
Uz/il = 106 V/A Ans. RR2/R1 = 106
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5.34

5.35

5.36

5.37

5.38

5.39

5.40

5.41

5.42

5.43

5.44

In the circuit of Fig. 5-13, V,, =10V, Ry =2kQ and v;y = 1 V. Find the maximum value of R, before the
op amp is saturated. Ans. R, =20kQ

Let the summing circuit of Fig. 5-14 have two inputs with v; =1 and v, =sin¢ (V). Let R; =3k,
R, =5k, and R, = 8kQ. Apply superposition to find v,. Ans. v, =—G+3%sin7)

In Fig. 5-17 let Ry = 4kQ and R, = 8kQ. Apply superposition to find v, in terms of the input voltages.
Ans. v, =v;+ v, + 13

Find the input resistance seen by vy in Fig. 5-19. Ans. Ry, = 2R,

Use superposition to find v, in Fig. 5-20 for R; =2, R, =7, R3; = 10, R4 = 5, all values in k.
Ans. v, = 1.5v, — 3.5,

In the circuit of Fig. 5-20 find (@) vy for Ry =1, R, = 3, R; = 2, and R4 = 2, all values in k2; () the input
resistance R,;, seen by v,; (c) i; as a function of v; and v, and show that v; sees a variable load which
depends on v,. Ans. (a) v, =2vy, —3v, (b) Ry, =4kQ, (¢) ij =v —vy/2

Using a single op amp, design an amplifier with a gain of v,/v; = 3/4, input resistance of 8 k2, and zero
output resistance. Ans. See Fig. 5-53.

p—0 Uy

no——/ AV —9p— ¢

2kQ

6 kO

Fig. 5-53

Show that, given R; = oo and R, = 0, the noninverting op amp circuit of Fig. 5-15 and (/2) is reduced to a
voltage follower.

In the circuit of Fig. 5-22 let R, = 10kQ. (a) Find R, such that iy =0. (b) Is R, independent of R,?
Discuss. Ans. (a) 40kQ; (b) yes

The input to the circuit of Fig. 5-23 with RC =1 is v; = sinwt. Write KCL at node B and solve for v,.
Ans. v, = —(1/w)coswt + C

Show that the output v, in Fig. 5.54 is the same as the output of the integrator in Fig. 5-23.

T4
v1<+> R —Lc
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5.46

5.47
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IV t>0

Find v, in the leaky integrator of Fig. 5-24 with Ry = Ry = 1kQ, C = 1 pF, and v; = {0 (<0

_ _—1000
Ans. vy(t) = { I+e V) >0
t<0
, 1V <0 , =Yy >0
Repeat Problem 5.45 for v; = {0 (=0 Ans. v (f) = { REY, <0

In the differential equation 10™2dv,/dt + vy = vy, v, is the forcing function and v, is the response. Design
an op amp circuit to obtain v, from wv;. Ans.  See Fig. 5-24, with Ry = Ry, RC = 1072, and v = —v.

Design a circuit containing op amps to solve the following set of equations:

y/+x:7}sl

2y +x'+3x = —vy
Ans.  See Fig. 5-55, with R{C = R;C =15, R,C =1s, R;C =1s.

C
¥
A\
Rl
VWA -
Rl Y
Ust
+
= ", N
1L
R, A\
A -
R3 > X
VWA
R, *
VWA =

V2

Fig. 5-55



CHAPTER 6

Waveforms and Signals

6.1 INTRODUCTION

The voltages and currents in electric circuits are described by three classes of time functions:

(i) Periodic functions
(i) Nonperiodic functions
(i) Random functions

In this chapter the time domain of all functions is —oo < f < 0o and the terms function, waveform, and
signal are used interchangeably.

6.2 PERIODIC FUNCTIONS
A signal v(¢) is periodic with period T if
() =v(t+T) for all ¢

Four types of periodic functions which are specified for one period T and corresponding graphs are
as follows:

(a) Sine wave:
U](l)z VO Sin27Tl/T (])
See Fig. 6-1(a).

Fig. 6-1(a)
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(b) Periodic pulse:

. V] for0 <t < Tl
val) = { -V, forT) <t<T )
See Fig. 6-1(b).
(1)
v, —
T T ,
Fig. 6-1(b)
(¢) Periodic tone burst:
| Vosin2nt/A for0 <t < T
1;3(1)_{0 for Ty, <t<T (3)

where T = kA and k is an integer. See Fig. 6-1(c).

vyt

/VO- A/\ T, T/\ /\ t
VARV VARV

Fig. 6-1(¢)

(d) Repetition of a recording every T seconds:
v4(1) 4)
See Fig. 6-1(d).

vg(B)

T/\/\ T .,
\4 4

Fig. 6-1(d)

Periodic signals may be very complex. However, as will be seen in Chapter 17, they may be
represented by a sum of sinusoids. This type of function will be developed in the following sections.
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6.3 SINUSOIDAL FUNCTIONS
A sinusoidal voltage v(f) is given by
u(t) = Vi cos(wt + 6)

where V, is the amplitude, w is the angular velocity, or angular frequency, and 6 is the phase angle.
The angular velocity w may be expressed in terms of the period T or the frequency f, where f = 1/T.
The frequency is given in hertz, Hz, or cycles/s. Since cos wt = cos t(wt + 27), w and T are related by
oT =2m. And since it takes 7" seconds for v(¢) to return to its original value, it goes through 1/7T cycles
in one second.
In summary, for sinusoidal functions we have

w=2n/T =2nf f=1/T=w/2n T=1/f =2n/w

EXAMPLE 6.1 Graph each of the following functions and specify period and frequency.
(a) vi(f) =cost (b) vy(t) =sint (¢) v3(¢) = 2cos2mt

(d) v4(t) = 2cos (t/4 — 45°) = 2cos (rwt/4 — m/4) = 2 cos[n(t — 1)/4]
(e) vs(t) = 5cos (1074 60°) = Scos (10¢ 4+ 7/3) = Scos 10(z + 7/30)

(a) See Fig. 6-2(a). T =27 =6.2832s and f = 0.159 Hz.

(b) See Fig. 6-2(b). T =27 =6.2832s and f = 0.159 Hz.

(¢) See Fig. 6-2(¢). T =1sand f =1Hz.

(d) See Fig. 6-2(d). T =8sand f =0.125Hz.

(e) See Fig. 6-2(¢). T =0.27 =0.62832s and f = 1.59 Hz.

EXAMPLE 6.2 Plot v(f) = 5coswt versus wt.
See Fig. 6.3.

6.4 TIME SHIFT AND PHASE SHIFT

If the function v(f) = coswt is delayed by 1 seconds, we get v(f — 1) = cosw(t — 7) = cos (wt — 0),
where 6 = wt. The delay shifts the graph of v(¢) to the right by an amount of 7 seconds, which
corresponds to a phase lag of 6 = wt = 2nft. A time shift of t seconds to the left on the graph produces
u(t 4 1), resulting in a leading phase angle called an advance.

Conversely, a phase shift of 6 corresponds to a time shift of r. Therefore, for a given phase shift the
higher is the frequency, the smaller is the required time shift.

EXAMPLE 6.3 Plot v(f) = 5cos (¢/6 4+ 30°) versus ¢ and 7t/6.
Rewrite the given as

u(t) = Scos (mwt/6 4+ m/6) = Scos[n(t + 1)/6]

This is a cosine function with period of 12 s, which is advanced in time by 1s. In other words, the graph is shifted to
the left by 1s or 30° as shown in Fig. 6-4.

EXAMPLE 6.4 Consider a linear circuit with the following input-output pair valid for all w and 4:
Input:  v(¢) = A cos wt Output:  vy(¢) = A cos(wt — 0)
Given v;(t) = cos wit + cos wyt, find vy(7) when

(@) 6 =100 [phase shift is proportional to frequency, Fig. 6-5(a)]
b)) 6= 10°° [phase shift is constant, Fig. 6-5(b)]
The output is vy(f) = cos (w t — ;) + cos (wyt — 65).



104

WAVEFORMS AND SIGNALS
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6; =107 %w;, 6, = 10 °w,. Then

vo(£) = cos (w1 — 107%w;) + cos (wy1 — 107 5w,)

=cosw(f — 107 + coswy(t — 107 = v;(r — 1078 = v,(1 — 1)

where t = 10™s = 1 ps.  Thus a phase shift proportional to w [Fig. 6-5(a)] delays all frequency components of

the input signal by 1 ps.
6, =6, =107%. Then

vo() = cos (wt — 107%) + cos (wrt — 107°)

The output follows the input with no distortion.

= cosw(t — 107 /w;) + cos wy(t — 107 /ewy)

A constant phase shift [Fig. 6-5(b)] delays different frequency components of the input signal by different

amounts. The output is a distorted form of the input.
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6.5 COMBINATIONS OF PERIODIC FUNCTIONS

The sum of two periodic functions with respective periods 7} and T, is a periodic function if a
common period T =n;T) =n,T,, where n; and n, are integers, can be found. This requires
T,/T> = ny/ny to be a rational number. Otherwise, the sum is not a periodic function.

EXAMPLE 6.5 Find the period of v(f) = cos 5¢ + 3 sin(3z 4 45°).
The period of cos 5¢ is T} = 2x/5 and the period of 3sin(3¢ +45°) is T, = 2n/3. Take T =2x = 5T, = 3T,
which is the smallest common integral multiple of 7} and 7,. Observe that v(t + T) = v(¢) since

v(t+ T) = cos 5(¢t + 2m) + 3sin[3(z + 27) + 45°] = cos 5¢ + 3 sin(3¢ + 45°) = v(¢)

Therefore, the period of v(¢) is 2.

EXAMPLE 6.6 Is v(f) = cos t + cos 2xt periodic? Discuss.
The period of costis 77 = 2w. The period of cos2ntis T, = 1. No common period 7' = n; T = n, T, exists
because 7;/T, = 2m is not a rational number. Therefore, v(¢) is not periodic.

EXAMPLE 6.7 Given p = 3.14, find the period of v(f) = cos ¢ + cos 2pt.

The period of cost is T} = 27 and the period of cos2ptis T, = w/3.14. The ratio T,/T, = 6.28 is a rational
number. The integer pair n; = 25 and n, = 157 satisfies the relation n,/n; = T,/T, = 628/100 = 157/25. There-
fore, v(?) is periodic with period T = n T} = n, T, = 507 s.

Trigonometric Identities
The trigonometric identities in Table 6-1 are useful in the study of circuit analysis.

Table 6-1
sina = — sin(—a) (5a)
cosa = cos (—a) (5b)
sina = cos(a — 90°) (b¢0)
cosa = sin(a + 90°) (5d)
sin2a = 2sinacosa (6a)
cos2a=cos’a—sina=2cos’a—1=1-2sin’a (6b)
5 1 —cos2a (7a)
sin“a = ———
2 1 + cos2a (7b)
cos’a=———
2
sin(a + b) = sinacosb + cosasin b (8a)
cos(a + b) = cosacosb — sinasin b (8h)
sinasinb = Jcos(a — b) —Scos(a + b) (9a)
sinacosb = Lsin (a + b) + Lsin(a — b) (9b)
cosacosh = Lcos(a+ b)+ cos(a—b) (9¢c)
sina +sinb = 2sin} (a + b) cos§ (a — b) (10a)
cosa+cosb = 2coss (a+ b)cost (a—b) (10b)

EXAMPLE 6.8 Express v(f) = cos 5t sin(37 4 45°) as the sum of two cosine functions and find its period.

v(f) = cos 5t sin(3t + 45°) = [sin(87 + 45°) — sin(2¢ — 45°)]/2 [Eq. (9b)]
= [cos (8¢ — 45°) 4+ cos (2t + 45°)]/2 [Eq. (5¢)]

The period of v(z) is 7.



CHAP. 6] WAVEFORMS AND SIGNALS

6.6 THE AVERAGE AND EFFECTIVE (RMS) VALUES

A periodic function f(7), with a period 7', has an average value F,,, given by

to+T

T
Fan =410 = [ roa=1 [ rwa

Iy

The root-mean-square (rms) or effective value of f(¢) during the same period is defined by

1 (otT . 172
Feff:Frms:[?J f (t)dt:|
0]

It is seen that Fesz = (f*(1)).

Average and effective values of periodic functions are normally computed over one period.

EXAMPLE 6.9 Find the average and effective values of the cosine wave v(¢t) = V,, cos (wt + 6).
Using (11),

1 (7 Vi .
Vie =7 L V,,cos (wt + 0) di = T [sin(wt + O)]F =0

and using (12),

1 (T 1 (7
Vi = J Vn{cosz(wzw)dz:ﬁj V211 + cos 2wt + )] dt = V22
0

T o
from which Ve = Vu/~2 = 0.707V,,

107

(1)

(12)

(3)

(14)

Equations (/3) and (/4) show that the results are independent of the frequency and phase angle 6. In other words,

the average of a cosine wave and its rms value are always 0 and 0.707 V,,,, respectively.

EXAMPLE 6.10 Find V,,, and Vy of the half-rectified sine wave

ot = V., sin wt when sinwt > 0
10 when sinwt < 0

From (11),

V. _ 1 T/ Vs dt = Vm T/2
ave = . ' SIN wt l_wT [-coswt]y’” =V, /m

and from (12),

1

T/2 1 (72
T J V,i sin wrdl = — J V,i(l — cos2wt)dt = V,f7/4

Var =
¢ 0 2T )o

from which Vet = Vin/2

EXAMPLE 6.11 Find V,,, and V¢ of the periodic function v(z) where, for one period T,

_ VO for0 <t < Tl . _
u(t) = { v, for T) <t < 3T, Period T = 3T,
Vi -V
We have Ve = ﬁ (T, —2T)) = TO
> Vo )
and chf = ﬁ (Tl =+ 2T1) = VO

from which Ver = Vo

The preceding result can be generalized as follows. If |v(?)| = V, then Vy = V.

(15)

(16)

(U7

(8)

(19)

(20)
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EXAMPLE 6.12 Compute the average power dissipated from 0 to 7 in a resistor connected to a voltage v(?).
Replace v(7) by a constant voltage V.. Find V. such that the average power during the period remains the same.

p=vi=1v"/R
1 (T 1 V3
Py = RT L V() dt = R Var = % or Vae = Vst

EXAMPLE 6.13 The current i(#) shown in Fig. 6-6 passes through a 1-uF capacitor. Find (@) v, the voltage
across the capacitor at t = Sk ms (k=0,1,2,3,...) and (b) the value of a constant current source Iy, which can
produce the same voltage across the above capacitor at ¢t = 5k ms when applied at > 0. Compare 4. with (i(¢)), the
average of i(f) in Fig. 6-6, for a period of 5ms after # > 0.

i), mA

2+

Fig. 6-6
(a) Att=>5ms
1 5%107° 3x1073 5x1073
vac:—J i(r)dt = 10°(1073) J 4dz—J 2di|=12-4=8V
0 3x1073

This is the net charging effect of i(r) during each 5-ms interval. Every 5ms the above amount is added to the
capacitor voltage. Therefore, at t = 5k ms, v = 8k (V).

(b) With a constant current I, the capacitor voltage vy, at t = 5k ms is

1 Skx 1073
Vae = [0 Ly dt = 10%(Iy)(5k x 107 = 10°(Sk)(Ige) (V)

Since vy, = v, at 5k ms, we obtain
10°(5k)(Ige) =8k or I =8k/(5k x 10) = 1.6 x 107> A = 1.6mA
Note that Iy, = (i(¢)) of Fig. 6-6 for any period of 5ms at ¢ > 0.

6.7 NONPERIODIC FUNCTIONS

A nonperiodic function cannot be specified for all times by simply knowing a finite segment.
Examples of nonperiodic functions are

0 fort <0

(a) mm:{l ot 1)
0 fort <0

(b) n(t)=131/T for0<t<T (22)
0 fort>T

0 fort <0
© mmz{fm o= (23)
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0 fort <0
(d) va(1) = { sin wt fort>0 (24)
0 fort <0
(e) vs(t) = { e " cos wt fort>0 (25)
(f) vg(t) = e " forall ¢ (26)
(2) vi(t) = e " for all ¢ (27)
(h) vg(t) = e “"coswr  for all ¢ (28)

Several of these functions are used as mathematical models and building blocks for actual signals in
analysis and design of circuits. Examples are discussed in the following sections.

6.8 THE UNIT STEP FUNCTION
The dimensionless unit step function, is defined by

0 fort <0

) = { 1 fort >0 (29)

The function is graphed in Fig. 6-7. Note that the function is undefined at 7 = 0.

u(t)

Fig. 6-7

To illustrate the use of u(z), assume the switch S in the circuit of Fig. 6-8(«a) has been in position / for
t < 0 and is moved to position 2 at t = 0. The voltage across 4-B may be expressed by v,z = Vou(?).
The equivalent circuit for the voltage step is shown in Fig. 6-8(b).

|°<+
il
|
N
oy
0
\_/
S
=
=
N
-

(@) )
Fig. 6-8

EXAMPLE 6.14 The switch in the circuit of Fig. 6-8(«) is moved to position 2 at t =¢,. Express v,p using the
step function.

The appearance of V|, across A-B is delayed until t = 7,. Replace the argument ¢ in the step function by ¢ — 7,
and so we have v,z = Vou(t — ty).
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EXAMPLE 6.15 If the switch in Fig. 6-8(a) is moved to position 2 at 1 = 0 and then moved back to position / at
t = 5s, express v p using the step function.

vp = Volu(t) — u(t = 5)]

EXAMPLE 6.16 Express v(7), graphed in Fig. 6-9, using the step function.

u(r)
b

Fig. 6-9

u(t) = [u(t) — u(t — 2m)]sin ¢

6.9 THE UNIT IMPULSE FUNCTION

Consider the function s(¢) of Fig. 6-10(a), which is zero for ¢+ < 0 and increases uniformly from 0 to
1 in T seconds. Its derivative dr(f) is a pulse of duration 7 and height 1/7, as seen in Fig. 6-10(b).

0 fort <0
dr(y=11/T for0<t<T (30)
0 fort>T

If the transition time 7 is reduced, the pulse in Fig. 6-10(b) becomes narrower and taller, but the
area under the pulse remains equal to 1. If we let 7" approach zero, in the limit function s4(¢) becomes
a unit step wu(¢) and its derivative dr(f) becomes a unit pulse §(z) with zero width and infinite
height. The unit impulse 8(¢) is shown in Fig. 6-10(¢). The unit impulse or unit delta function is defined
by

83(H=0 fort#0 and JOO d(Hdt=1 30

—00

An impulse which is the limit of a narrow pulse with an area A4 is expressed by A438(f). The
magnitude A4 is sometimes called the strength of the impulse. A unit impulse which occurs at ¢ = ¢,
is expressed by 8(7 — ).

EXAMPLE 6.17 The voltage across the terminals of a 100-nF capacitor grows linearly, from 0 to 10V, taking the
shape of the function s7(7) in Fig. 6-10(a). Find (a) the charge across the capacitor at t = T and (b) the current
ic(?) in the capacitor for T =1s, T =1ms, and T = 1 ps.

(@) Atr=T,ve=10V. The charge across the capacitor is Q = Cvc = 107" x 10 = 1075

. _ d’UC
®) io()=C—=
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sy(0)
1+ —
i t
T
(a)
dr(1)
L
T /
t
T
(b
o)
1
t
(©)
Fig. 6-10
From Fig. 6-10,
0 fort <0
ic)=41,=10"%T(A) for0<t<T (32)
0 fort>T

For T=1s,1y=10"°A; for T = 1ms, I, = 10 A; and for T = lps, I, = 1 A.
In all the preceding cases, the charge accumulated across the capacitor at the end of the transition period is

T
0= J ic(ydt = I, T =107°C
0
The amount of charge at + = T is independent of 7. It generates a voltage vc = 10V across the capacitor.
EXAMPLE 6.18 Let dy (¢ — ty) denote a narrow pulse of width T and height 1/7T, which starts at t = #,. Consider

a function f(¢) which is continuous between ¢, and ¢, + T as shown in Fig. 6-11(a¢). Find the limit of integral 7 in
(33) when T approaches zero.

=] are- s (33)
_ o I/T tO <t < l() =+ T
dr(t—1to) = { 0 elsewhere
Substituting dy in (33) we get
[ [otT S
[ =— = —
T Jto f()dt T (34a)

where S is the hatched area under f(¢) between ¢y and ¢, + 7 in Fig. 6.11(b). Assuming 7 to be small, the function
f(r) may be approximated by a line connecting 4 and B. S is the area of the resulting trapezoid.

S =31/ (to) +f(to + TIT (34b)
1 =3[/ (t) + /(1o + T)] (34¢)
As T — 0, dp(t — ty) = 8(t — ty) and f(ty + T) — f(¢y) and from (34c) we get
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dr(t—ty)
1 gl ‘/ )
T [ f

tgtg+T

@

So)

g+ T)

o o+ T

®)
Fig. 6-11

lim 7 = lim 1(/(t9) +/(to + 7] (34d)

We assumed £(z) to be continuous between #, and ¢, + 7. Therefore,

lim 7 = /(1) (340)
But }i_rzlol = [i; 8(t —tg) f(2)dt 34/
and so r 8(t — 1),/ (1) di = f(z0) (34g)

The identity (34g) is called the sifting property of the impulse function. It is also used as another definition for

8(1).

6.10 THE EXPONENTIAL FUNCTION

The function f () = ¢* with s a complex constant is called exponential. It decays with time if the
real part of s is negative and grows if the real part of s is positive. We will discuss exponentials ¢* in
which the constant « is a real number.

The inverse of the constant « has the dimension of time and is called the time constant t = 1/a. A
decaying exponential ¢/" is plotted versus 7 as shown in Fig. 6-12. The function decays from one at
{=0to zero at t = co. After T seconds the function ¢ /" is reduced to ¢~' = 0.368. For r = I, the
function e~ is called a normalized exponential which is the same as ¢~"/" when plotted versus 7/7.

EXAMPLE 6.19 Show that the tangent to the graph of e/ at 7 = 0 intersects the ¢ axis at 7 = 7 as shown in

Fig. 6-12.
The tangent line begins at point 4 (v = 1, t = 0) with a slope of de™"/"/dlt|,_y = —1/t. The equation of the line
i8S v (f) = —t/t+ 1. The line intersects the ¢ axis at point B where t = t. This observation provides a convenient

approximate approach to plotting the exponential function as described in Example 6.20.

EXAMPLE 6.20 Draw an approximate plot of v(r) = /" for ¢ > 0.
Identify the initial point 4 ( = 0, v = 1) of the curve and the intersection B of its tangent with the 7 axis at t = 7.
Draw the tangent line 4B. Two additional points C and D located at r =  and ¢ = 27, with heights of 0.368 and
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0.368

0.135

Fig. 6-12

0.3682 = 0.135, respectively, also belong to the curve. Using the preceding indicators, the curve may be drawn with
a rather good approximation (see Fig. 6-12).

EXAMPLE 6.21 (a) Show that the rate of change with respect to time of an exponential function v = 4e" is at any
moment proportional to the value of the function at that moment. (b) Show that any linear combination of an
exponential function and its n derivatives is proportional to the function itself. Find the coefficient of proportion-
ality.

(a) The rate of change of a function is equal to the derivative of the function, which, for the given exponential
function, is

% =sde’ = s
(b) Using the result of (a) we get
d"v ,
— "4 SU__
g =S¢ = 5"
dv " "
av+a —+---+a, —= (@ +as+---+a,s")v=Hv (35)
dt dr
where H=ay+as+ - +a,s" (36)
Specifying and Plotting f(r) = Ae ™ + B
We often encounter the function
f(t)=Ae " +B (37)

This function is completely specified by the three numbers 4, B, and « defined as
A = initial value — final value B = final value a = inverse of the time constant
or, in another form,

Initial value f(0) = A4+ B Final value f(c0) = B Time constant = 1/a

EXAMPLE 6.22 Find a function v(¢) which decays exponentially from 5V at 1 =0 to 1V at t = oo with a time
constant of 3s. Plot v(7) using the technique of Example 6.20.
From (37) we have v(t) = Ae™/"+ B. Nowv(0)=A+B=5,vicc)=B=1, A=4,and r=3. Thus

o(f) =4e"P + 1
The preceding result can be generalized in the following form:

—t/t

u(t) = (initial value — final value)e™ " + (final value)

The plot is shown in Fig. 6-13.
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u(?)

2.47

\\‘

4(0.368) = 1.47 {
1

.

o

—

o

[ICY) N

Fig. 6-13

EXAMPLE 6.23 The voltage v = Voe /", v > 0, is connected to a capacitor. Find the current i in the capacitor.
Sketch v and i for ¥y =10V, C = 1 pF, and 7 = I ms.

Using i = Cdv/dt,
for t < 0, v=Vpe'" and Q= I
for t > 0, v=Vye " and i=—Ie "
where Iy = CV,/t.

For Vo =10V, C = 1 uF,and r = 10 s, we get [, = 10mA. Graphs of v and i are shown in Figs. 6-14(«) and
(b), respectively.

v =10 ¢ 10004 (v) i, mA

f, ms t, ms
@ ()
Fig. 6-14
6.1 DAMPED SINUSOIDS
A damped sinusoid, with its amplitude decaying exponentially has the form
v(t) = Ae” " cos (wt + 6) (38)

This function will be discussed in more detail in Chapter 8.

EXAMPLE 6.24 The current i = Ije™* cos wt passes through a series RL circuit. (@) Find vg;, the voltage across
this combination. (b) Compute vg; for [y =3A, a=2, o =40rad/s, R=5Q and L=0.1H. Sketch i as a
function of time.
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(a) We have

vg = Ri = Rlje " cos wt
di .
v, =L E; = —Llye “(acos wt + wsin wf)
vr = Vg + v = Le “[(R — La) cos wt — Lwsin wf] = Ve * cos (wt + 6)

where Vo =Ipy/(R— La)* + L*«* and 6 =tan '[Lo/(R — La)] (39)

(b) Substituting the given data into (39), V', = 18.75V and 6 = 39.8°. Current i/ and voltage vg; are then given by
i=3¢cos40r and v, = 18.75¢7 % cos (40t + 39.8°)
The current i is graphed in Fig. 6-15.

i(1)

Fig. 6-15

6.12 RANDOM SIGNALS

So far we have dealt with signals which are completely specified. For example, the values of a
sinusoidal waveform, such as the line voltage, can be determined for all times if its amplitude, frequency,
and phase are known. Such signals are called deterministic.

There exists another class of signals which can be specified only partly through their time averages,
such as their mean, rms value, and frequency range. These are called random signals. Random signals
can carry information and should not be mistaken with noise, which normally corrupts the information
contents of the signal.

The voltage recorded at the terminals of a microphone due to speech utterance and the signals
picked up by an antenna tuned to a radio or TV station are examples of random signals. The future
course and values of such signals can be predicted only in average and not precisely. Other examples of
random signals are the binary waveforms in digital computers, image intensities over the area of a
picture, and the speech or music which modulates the amplitude of carrier waves in an AM system.

It may not seem useful to discuss signals whose values are specified only in average. However,
through harmonic analysis we can still find much about the average effect of such signals in electric
circuits.

EXAMPLE 6.25 Samples from a random signal x(z) are recorded every 1 ms and designated by x(n). Approx-
imate the mean and rms values of x(¢) from samples given in Table 6-2.
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Table 6-2

n (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xmy |2 4 11 5 7 6 9 10 3 6 & 4 1 3 5 12

The time averages of x(7) and x*(r) may be approximated from x(n).

Xpe =Q+4+114+54+74+64+9+10+3+6+8+44+14+3+5+12)/16=6
X = Q4+ 1P+ 47 6+ 9 4107 +3° 4+ 67+ 8 +47 + 17 432+ 57 + 129)/16 = 46
Xeff:6.78

EXAMPLE 6.26 A binary signal v() is either at 0.5 or —0.5V. It can change its sign at 1-ms intervals. The sign
change is not known a priori, but it has an equal chance for positive or negative values. Therefore, if measured for a
long time, it spends an equal amount of time at the 0.5-V and —0.5-V levels. Determine its average and effective
values over a period of 10s.

During the 10-s period, there are 10,000 intervals, each of 1-ms duration, which on average are equally divided
between the 0.5-V and —0.5-V levels. Therefore, the average of v(f) can be approximated as

Vaye = (0.5 x 5000 — 0.5 x 5000)/10,000 = 0
The effective value of v(¢) is
V2 = [(0.5)* x 5000 + (—0.5)* x 5000]/10,000 = (0.5)> or V. =0.5V

The value of V. is exact and independent of the number of intervals.

Solved Problems

6.1 Find the maximum and minimum values of v = 1 + 2 sin(w? + 6), given w = 1000 rad/s and 6 = 3
rad. Determine if the function v is periodic, and find its frequency f and period 7. Specify the
phase angle in degrees.

Vo =142=3  Vyn=1-2=-1

The function v is periodic. To find the frequency and period, we note that w = 2zf = 1000 rad/s.
Thus,

f =1000/2r = 159.15Hz and T =1/f =2r/1000 = 0.00628 s = 6.28 ms
Phase angle = 3rad = 180° x 3/7 = 171.9°

6.2 In a microwave range measurement system the electromagnetic signal v; = A4 sin2mxft, with
f =100 MHz, is transmitted and its echo v,(¢) from the target is recorded. The range is com-
puted from 7, the time delay between the signal and its echo. (a) Write an expression for v,(¢)
and compute its phase angle for time delays 7; = 515ns and 7, = 555ns. (b) Can the distance
be computed unambiguously from the phase angle in v,(¢)? If not, determine the additional
needed information.

(a) Let vy(f) = Bsin 2nf(t — t) = Bsin(2nft — 6).
For f = 100MHz = 10° Hz, 6 = 27f7 = 2 x 1071 = 27k + ¢ where 0 < ¢ < 271.
For 1, = 515 x 107, 6; = 2710% x 515 x 107 = 1037 = 51 x 27+ ¢, or k; = 51 and ¢; = 7.
For 7, = 555 x 1077, 0, = 277108 x 555 x 107 = 1117 = 55 x 2w+ ¢, or ky = 55 and ¢, = 7.
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(b) Since phase angles ¢; and ¢, are equal, the time delays t; and 7, may not be distinguished from each
other based on the corresponding phase angles ¢; and ¢,. For unambiguous determination of the
distance, k and ¢ are both needed.

6.3  Show that if periods T and T, of two periodic functions v;(¢) and v,(¢) have a common multiple,
the sum of the two functions, v(¢) = v(¢) + v,(?), is periodic with a period equal to the smallest
common multiple of 7; and 7,. In such case show that Vyy, = Vi 4ve + V2 ave-

If two integers n; and n, can be found such that T =n T, = n,T,, then v;(f) = vi(t + n;T}) and
vy(f) = vo(t + nyT,). Consequently,

ot +T)=v(t+T)+ 0t + T) = v1(1) + va(1) = (1)
and v(¢) is periodic with period 7.

The average is

1 (" 1 (" 1 ("
Vo =7 |, 010+ 001t = | 0047 [ 0s0dt = Vi + Vo

6.4  Show that the average of cos’ (wf + 6) is 1/2.

Using the identity cos® (wrf + 6) :%[1 +cos2(wt + 0)], the notation (f) = F,y,, and the result of
Problem 6.3, we have

(1 4+ cos2(wt 4+ 60)) = (1) + (cos 2(wt + 6))
But (cos2(wt + 0)) = 0. Therefore, (cos*(wt + 0)) = 1/2.

6.5  Let u(t) = Vyo + Vaecos (wt +6). Show that Vi = Vi, +1 V..

1 T
Vi = T J Ve + Ve cos (ot + 0)] dt
0

1 T
=7 J (V3. + V2 cos® (w4 60) + 2V 4. Ve cOs (wt + 0)] dt
0

= Vie +3Vae
Alternatively, we can write
Ver = (0P (0) = ([Vae + Ve cos (@t + O)T)
= (V3. + V2 cos> (ot 4 0) + 2V Ve cOs (o + 6))
= V3. + VZ(cos® (wf + 0)) + 2V 4. Ve (cos (wt + 6))
= Vie +5Vac

6.6 Let f; and f, be two different harmonics of f,. Show that the effective value of
o(t) = V) cosQnfi1 4 601) + Vy cos nfat + 605) is [3(Vi + V3).
v} (1) = Vi cos® 2afit + 6)) + Vi cos® 2nfst + 65)
+ 2V V5 cos (2nfit + 0;) cos 2nfrt + 65)
Vir = (0’ (1)) = Vi(cos” 2nfit +6)) + V3 (cos” 2mfat +6,))
+ 2V, Vs {cos (2fi t + 6,) cos (27tfat + 65))

But (cos® (27tfi1 + 6,)) = (cos (27fst + 6,)) = 1/2 (see Problem 6.4) and
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L icos (s + /)0 + 0 +6))

—~

(cos (27tf 1+ 6)) cos 2nfrt + 6)) =

—

2
+5{cos2m(fy = /)t + (01 — B)]) = 0

Therefore, Ve = 3(Vi + V3) and Ve = \J3(V + 13).

The signal v(¢) in Fig. 6-16 is sinusoidal. Find its period and frequency. Express it in the form
v(t) = A 4+ Bcos(wt 4 6) and find its average and rms values.

ﬂt u(t)
8fe--

> 1,5

20

Fig. 6-16

The time between two positive peaks, 7' = 20s, is one period corresponding to a frequency / = 0.05 Hz.
The signal is a cosine function with amplitude B added to a constant value A.

B:%(Vmax - anln):%(8+4):6 A=Vyax = B=Vyin +B=2

The cosine is shifted by 2s to the right, which corresponds to a phase lag of (2/20)360° = 36°. Therefore,
the signal is expressed by

o(f) = 2 + 6.cos (1% [ — 36°>

The average and effective values are found from A4 and B:

Vae = A =2, Vi=A>+B2=2"46/2=22 or Vg =+22=4.69

Let v; = cos2007t and v, = cos202x¢. Show that v = v; 4 v, is periodic. Find its period, V.,
and the times when v attains its maximum value.

The periods of v; and v, are T; = 1/100s and T, = 1/101 s, respectively. The period of v = vy 4+ v, is
the smallest common multiple of 77 and 75, which is 7= 10077 = 1017, = I's. The maximum of v occurs
at t = k with k an integer when v; and v, are at their maxima and V,,, = 2.

Convert v(f) = 3cos 1007 + 4 sin 100¢ to A4 sin(100¢ + 6).
Note that 3/+/3> +4? = 3/5 =5sin36.87° and 4/v/3> + 4*> = 4/5 = c0s36.87°. Then,

v(t) = 3¢cos 1007 + 4 sin 100z = 5(0.6 cos 1007 + 0.8 sin 100¢)
= 5(sin 36.87° cos 1007 + cos 36.87° sin 1007) = 5sin(1007 4 36.87°)
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6.10 Find the average and effective value of v,(¢) in Fig. 6-1(b) for V1, =2, V, =1, T =4T,.

T =V (T-Ty) Vy—-3V,
V2,avg = T = 2 =-0.25
ViTi+Vi(T—T) 7

T 4

Ve = or Ve =+1/2=132

6.11 Find V3,4, and V; o in Fig. 6-1(c) for T = 100T.

From Fig. 6-1(c), V34 = 0. To find V3 o, observe that the integral of v3 over one period is Vg T,/2.
The average of 3 over T = 1007} is therefore

Wi(t)) = Vigr = ViT1/200T, = V3/200  or  Viep = Von/2/20 = 0.0707V,
The effective value of the tone burst is reduced by the factor /T/7T; = 10.

6.12 Referring to Fig. 6-1(d), let T = 6 and let the areas under the positive and negative sections of
v4(?) be +5 and —3, respectively. Find the average and effective values of vy(?).

V4,zlvg = (5 - 3)/6 =1/3

The effective value cannot be determined from the given data.

6.13 Find the average and effective value of the half-rectified cosine wave v;(¢) shown in Fig. 6-17(a).

T/4 2 Vv, T 274
Vlavg:EJ. COSldeZL Sinlt :Vm
’ T ) gy T 22T Tl 4y w
| 27t vz (T 4t
Vier = 2 At =01 1 ——)dt
1eff T J—T/4 cos T I + cos T
V2 T . 4x\™ vi/T T\ V2
=— |t+-—SsIn — = —4+—) =
2T ar" T | 4y 2T \47 4 4

from which Vi o = V,,,/2.

6.14 Find the average and effective value of the full-rectified cosine wave v,(z) = V,,| cos 2t/ T'| shown
in Fig. 6-17(b).

uy() V(1)

v, Vo

|
ENEY
<
Faity
v~y -
x[q
ﬂ = - - - -
v
=4
|
NI
<
iy
(SR
=3
13
~
3
»]ﬂ

(@) 2}
Fig. 6-17
Use the results of Problems 6.3 and 6.13 to find V; ,y,. Thus,
UZ(Z) = 1)1([) + Ul(t - T/2) and V2,avg = Vl,avg + Vl.avg = 2V1.avg = 2Vm/77
Use the results of Problems 6.5 and 6.13 to find V; . And so,

Vit = Viewr + View = 2View = Vo/2  or Vaett = Vin/V2
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The rms value of v,(#) can also be derived directly. Because of the squaring operation, a full-rectified
cosine function has the same rms value as the cosine function itself, which is V,,/+/2.

6.15 A 100-mH inductor in series with 20-Q resistor [Fig. 6-18(a)] carries a current i as shown in
Fig. 6-18(h). Find and plot the voltages across R, L, and RL.

e

3 . i A
200 43 10
Vrr .
100 mH < VL fs
10-3
(@ (b)
Vg, ¥
v,V
200
10-3 s 103 t,s
-800
~1000 -1000
(©) @
Fig. 6-18
10 i 0 fort <0
i={101-10°) (A) and é: —10*A/s  for0<t<1073s
0 0 for > 10"3s
200V g 0 fort <0
vg = Ri = { 20001 — 10°1) (V) and vL:Lz;: —1000V  for0<t<1073s
0 0 for > 10"%s

Since the passive elements are in series, vg; = vg + vz and so

200V fort <0
vpr = § =2(10°) =800 (V)  for0<t<10""s
0 for 1> 107%s

The graphs of v; and wvg; are given in Fig. 6-18(c) and (d), respectively. The plot of the resistor
voltage vg has the same shape as that of the current [see Fig. 6-18(b)], except for scaling by a factor of +20x.
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6.16 A radar signal s(z), with amplitude V,, = 100V, consists of repeated tone bursts. FEach tone
burst lasts 7j, = 50 us. The bursts are repeated every 7y, = 10ms. Find S, and the average
power in s(z).

Let Vo = V,,+/2 be the effective value of the sinusoid within a burst. The energy contained in a single
burst is W, = T, VZ. The energy contained in one period of s(z) is W, = T,S%. Since W, = W, = W, we
obtain

TyVar = ToSar Sar = (T;/ T Vay Sett = v/ Tp/ T Vet (40)

Substituting the values of T}, T, and Vg into (40), we obtain

Setr = \/(50 x 1076)/(10 x 107%)(100/+/2) =5V
Then W = 10_2(25) =0.25J. The average power in s(¢) is
P=W/T, = T,Six/T, = Sir =25W

The average power of s(7) is represented by ngf and its peak power by fof. The ratio of peak power to
average power is y/T,/T,. In this example the average power and the peak power are 25W and 5000 W,
respectively.

6.17 An appliance uses Vo = 120V at 60 Hz and draws I; = 10 A with a phase lag of 60°. Express
v, I, and p = vi as functions of time and show that power is periodic with a dc value. Find the
frequency, and the average, maximum, and minimum values of p.

v = 1202 cos wr i = 10v/2 cos(wi — 60°)
p = vi = 2400 cos wt cos (wt — 60°) = 1200 cos 60° + 1200 cos (2wt — 60°) = 600 + 1200 cos (2wt — 60°)

The power function is periodic. The frequency f =2 x 60 = 120Hz and P,,; = 600 W, py, = 600 +
1200 = 1800 W, ppin = 600 — 1200 = —600 W.

6.18 A narrow pulse i; of 1-A amplitude and 1-pus duration enters a 1-pF capacitor at ¢t = 0, as shown
in Fig. 6-19. The capacitor is initially uncharged. Find the voltage across the capacitor.

i, A
+ 1
ks C ;4: ve
N t, s
Fig. 6-19

The voltage across the capacitor is

1 0 fort <0

Ve =— J idi=110% (V) for 0 < ¢t < 1 ps (charging period)
CJ_
00 1V for t > 1ps

If the same amount of charge were deposited on the capacitor in zero time, then we would have v = u(¢)
(V) and i(r) = 107%8(2) (A).

6.19 The narrow pulse i, of Problem 6.18 enters a parallel combination of a 1-uF capacitor and a
1-MQ resistor (Fig. 6-20). Assume the pulse ends at = 0 and that the capacitor is initially
uncharged. Find the voltage across the parallel RC combination.
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ip{ icy +

iy CD 1 MQ ﬁ: 1 uF ve

Fig. 6-20

Let v designate the voltage across the parallel RC combination. The current in Ris ip = v/R = 10~%0.
During the pulse, i remains negligible because v cannot exceed 1 V and iz remains under 1 pA. Therefore,
it is reasonable to assume that during the pulse, ic = 1 A and consequently v(0") = 1 V. For ¢ > 0, from
application of KVL around the RC loop we get

dv "
v4+—=0, v(0T)=1V 41)
dt
The only solution to (4/) is v = e~ for t > 0 or v(¢) = ¢ 'u(¢) for all t. For all practical purposes, i, can be
considered an impulse of size 107° A, and then v = ¢ "u(¢) (V) is called the response of the RC combination
to the current impulse.

Plot the function v(¢) which varies exponentially from 5V at t =0 to 12V at t = oo with a time
constant of 2s. Write the equation for v(z).

Identify the initial point 4 (¢t = 0 and v = 5) and the asymptote v = 12 in Fig. 6-21. The tangent at 4
intersects the asymptote at t = 2, which is point B on the line. Draw the tangent line 4B. Identify point C
belonging to the curve at t = 2. For a more accurate plot, identify point D at t =4. Draw the curve as
shown. The equation is v(f) = de~"/> + B. From the initial and final conditions, we getv(0)=A+B=5
and v(co) = B=12 or A = —7, and v(1) = —7e~"* +12.

u(t)

12
11.05

9.42

The voltage v = Ve " for a > 0 is connected across a parallel combination of a resistor and a
capacitor as shown in Fig. 6-22(a). (a) Find currents ic, ig, and i = ic + ig. (b) Compute and
graph v, ic, ig, and i for Vy =10V, C=1pF, R=1MQ, and a = 1.

(@) See (a) in Table 6-3 for the required currents.

(b) See (b) in Table 6-3. Figures 6-22(b)—(e) show the plots of v, i, ig, and i, respectively, for the given
data. During ¢ > 0, i = 0, and the voltage source does not supply any current to the RC combination.
The resistor current needed to sustain the exponential voltage across it is supplied by the capacitor.



CHAP. 6] WAVEFORMS AND SIGNALS 123

tig Vic

V=V, e=alt Cj)

=

Y1
Al
9}

(@

s
®)
ic, MA
A
ts
i, LA
5 s

Fig. 6-22
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6.24

6.25

6.26
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Table 6-3
Time v lc':CdU/dt [R:U/R l:l(+lR
t<0 | v="Vye" ic = CVyae™ ir = (Vy/R)e" i =vy(Ca+ 1/R)e”
a) | t> v= Ve ic = —CVyae ir = (Vy/R)e i=Vy=Ca+ e
(a) 0 Voe ™™ | i CVyae™ | ig =(Vy/R)e ™™ | i=Vy(—Ca+1/R)e™"
<0 | v=10¢ ic =107 i =107% i=2(107%")
@ | t>0 ] v=10e" | ic=—=10e" | ig=107e" i=0

Let v; = 8sin 1007t and v, = 65sin 9971.

maximum, average, and effective values of v.

Ans.

Supplementary Problems

Show that v = v; 4+ v, is periodic.
T= 2’ Vmax = 147 Vavg = 07 Veff = 5\/2

[CHAP. 6

Find the period, and the

Find period, frequency, phase angle in degrees, and maximum, minimum, average, and effective values of
v(t) =24 6cos (10wt + 7/6).
Ans. T =0.2s, f = 5Hz, phase = 30°, Vipax = 8, Vinin = —4, Viyg = 2, Vegr = v/22

Reduce () = 2 cos (wt + 30°) + 3 coswt to v(t) = A sin (wt + 0).

Ans.

A=4284,0=102°

Find V., and V; o in the graph of Fig. 6-1() for V| =V, =3, and T = 4T, /3.

Ans.

Repeat Problem 6.25 for V', =0, V, =4, and T = 27].

VZ,avg =15, VZ,eff =3

Ans.

V2,avg =-2, V2,eff = 2\/5

Find V7 4, and V3 in the graph of Fig. 6-1(c) for Vo =2 and T = 200T;.

Ans.

V3,avg =0, V3,efl" =0.1

The waveform in Fig. 6-23 is sinusoidal. Express it in the form v = 4 + Bsin (wf + 0) and find its mean and
rms values.

Ans. v(t) =1+ 6sin (/12 4 120°), Vyye = 1, Vegr = V19

20
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6.29

6.30

6.31

6.32

6.33

6.34

6.35

6.36

Find the average and effective values of v;(f) in Fig. 6-24(a) and v,(¢) in Fig. 6-24(b).

1 17 1 13
Ans. Viag = -3 Vietr = 3 Vaavg = -3 Vaerr = 5

The current through a series RL circuit with R = 5 and L = 10 H is given in Fig. 6-10(a) where T = 1s.
Find the voltage across RL.

0 fort <0
Ans. v= 4 10+ 5¢ for0<t<1
5 fort>1

Find the capacitor current in Problem 6.19 (Fig. 6-20) for all ¢. Ans. ic = 1078[8(r) — e u(1)]

The voltage v across a 1-H inductor consists of one cycle of a sinusoidal waveform as shown in Fig. 6-25(a).
(a) Write the equation for v(7). (b) Find and plot the current through the inductor. (¢) Find the amount
and time of maximum energy in the inductor.

Ans. (a) v=[u(t) —u(t — T)]sin 2—? V)

(b) i:(T/Zn)[u(z)—u(t—T)](l—cos 2—?_’) (A). See Fig. 6-25(b).

1
(C) Wmax =57 T2 (J) att=T/2
2w

V(1) y(t)

@ ®)
Fig. 6-24

Write the expression for v(z) which decays exponentially from 7 at # = 0 to 3 at r = oo with a time constant of
200ms.  Ans. o(f)=3+4e for 1> 0

Write the expression for v(¢) which grows exponentially with a time constant of 0.8 s from zero at t = —oo to
9atr=0.  Ans. o(t)=9¢"* for1<0

Express the current of Fig. 6-6 in terms of step functions.

Ans. i(t) =4u(t)+ 6 i [u(t — 5k) — u(t — 5k + 2)]
=1

In Fig. 6-10(a) let T = 1s and call the waveform s,(¢). Express s;(¢) and its first two derivatives ds; /dt and
dzsl/dtz, using step and impulse functions.
Ans.  s,(6) = [u(t) — u(t — D]t + u(t — 1), dsy /dt = u(t) — u(t — 1), d*s, /di* = 8(1) — 8(t — 1)



126

6.37

6.38
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v,V
1
/ t
T T
2
-1 Fr
(@)
i, A
A I
. t
g T
b)
Fig. 6-25

Find an impulse voltage which creates a 1-A current jump at 7 = 0 when applied across a 10-mH inductor.
Ans.  o(t) = 10728(¢) (V)

(a) Given v; =cost, v, =cos(t+30°) and v = v; + vy, write v in the form of a single cosine function
v = Acos(t+6). (b) Find effective values of v, v,, and v. Discuss why Vesz > (Vlziyeff + Vieff).

Ans. (a) v=193cos(t+15°); (D) Viexw = Vaerr = 0.707, Vg = 1.366 Vi is found from the following
derivation

Var = (V) = () +v)%) = (0] + 13 + 201v,) = (07) + (13) + 2(v,v,)

Since v; and v, have the same frequency and are 30° out of phase, we get (V| V,) = %cos 30° = V/3/4,
which is positive. Therefore, ngf > (V%eff + V22.eff).

(a) Show that v, = cost+cos~/2¢t is not periodic. (b) Replace /2 by 1.4 and then show that
vy = cos 1 + cos 1.4¢ is periodic and find its period 75. (¢) Replace +/2 by 1.41 and find the period T; of
vy = cost+cos 1.411. (d) Replace /2 by 1.4142 and find the period T, of v, = cos ¢ + cos 1.41421.

Ans. (a) +/2 is not a rational number. Therefore, v, is not periodic. (b) T, = 10m's. (c) T3 = 2007 s.
(d) T, =10 0007 s.

A random signal s(¢) with an rms value of 5V has a dc value of 2V. Find the rms value of s4(¢) = s(f) — 2,
that is, when the dc component is removed. Ans.  Sper = V52 —4=+21=458V



First-Order Circuits

7.1 INTRODUCTION

Whenever a circuit is switched from one condition to another, either by a change in the applied
source or a change in the circuit elements, there is a transitional period during which the branch currents
and element voltages change from their former values to new ones. This period is called the transient.
After the transient has passed, the circuit is said to be in the steady state. Now, the linear differential
equation that describes the circuit will have two parts to its solution, the complementary function (or the
homogeneous solution) and the particular solution. The complementary function corresponds to the
transient, and the particular solution to the steady state.

In this chapter we will find the response of first-order circuits, given various initial conditions and
sources. We will then develop an intuitive approach which can lead us to the same response without
going through the formal solution of differential equations. We will also present and solve important
issues relating to natural, force, step, and impulse responses, along with the dc steady state and the
switching behavior of inductors and capacitors.

7.2 CAPACITOR DISCHARGE IN A RESISTOR

Assume a capacitor has a voltage difference V), between its plates. When a conducting path R is
provided, the stored charge travels through the capacitor from one plate to the other, establishing a
current i. Thus, the capacitor voltage v is gradually reduced to zero, at which time the current also
becomes zero. In the RC circuit of Fig. 7-1(a), Ri =v and i = —Cdv/dt. Eliminating 7 in both
equations gives

dv 1
—+—v=0 1
ai " RC" @

The only function whose linear combination with its derivative can be zero is an exponential
function of the form Ae”. Replacing v by Ae’" and dv/dt by s4e’ in (1), we get

1 1
sAe’ + RC Ae' = A(s + R) e =0

. 1
from which s+ RC= 0 or S=—2C 2
Given v(0) = A =V}, v(¢) and i(¢) are found to be

127
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o(t) = Ve /RE, >0 3)
i(t) = —C%:%e—”’“, >0 4)

The voltage and current of the capacitor are exponentials with initial values of V, and V/R, respecti-
vely. As time increases, voltage and current decrease to zero with a time constant of t = RC. See
Figs. 7-1(b) and (c).

EXAMPLE 7.1 The voltage across a 1-pF capacitor is 10V for 1 < 0. At t=0, a 1-MQ resistor is connected
across the capacitor terminals. Find the time constant t, the voltage v(¢), and its value at t = 5.

T=RC=10°10"%s=1s o(f) = 10~ (V), 1> 0 u(5) = 107> = 0.067V
t=0
i} : N
R CxR v

(a)

<

%
0.368—
R

Fig. 7-1

EXAMPLE 7.2 A 5-uF capacitor with an initial voltage of 4 V is connected to a parallel combination of a 3-k2 and
a 6-k< resistor (Fig. 7-2). Find the current 7 in the 6-k<2 resistor.

]
g f
1

Fig. 7-2

S

t=0
5 uF
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The equivalent resistance of the two parallel resistors is R =2kQ. The time constant of the circuit is
RC=10"%s. The voltage and current in the 6-k2 resistor are, respectively,

v=4e"1 (V) and  i=v/6000=0.67¢"'% (mA)

7.3 ESTABLISHING A DC VOLTAGE ACROSS A CAPACITOR

Connect an initially uncharged capacitor to a battery with voltage V through a resistor at ¢t = 0.
The circuit is shown in Fig. 7-3(a).

—NVWN—= +
R
Vo u(®) f) Cm| v
(a)
v ()
/T T
!
0.632V, |-----#- ,
!
1
i t
RC
®)
i@
%
R
%
0.368 -
R
t

(©)
Fig. 7-3

For ¢ > 0, KVL around the loop gives Ri + v = V|, which, after substituting i = C(dv/dt), becomes

dv 1 1
E+R7C,U:R7CVO t>0 (50)

with the initial condition
(0N =v(07)=0 (5b)

The solution should satisfy both (5a) and (5b). The particular solution (or forced response) v,(1) = Vy
satisfies (5a) but not (5b). The homogeneous solution (or natural response) v,(t) = Ae™" RC can be added
and its magnitude A4 can be adjusted so that the total solution (6a) satisfies both (5a) and (5b).

u(t) = v, () + vp(1) = Vo + Ae”"RC (6a)

From the initial condition, v(07) = Vy +A4 =0 or A = —V,. Thus the total solution is
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o(t) = Vo(1 —e "RYu(r)  [see Fig. 7-3(h)] (6b)

i(f) = % e RCY(1) [see Fig. 7-3(c)] (6¢)

EXAMPLE 7.3 A 4-pF capacitor with an initial voltage of v(07) =2V is connected to a 12-V battery through a
resistor R = 5k at t = 0. Find the voltage across and current through the capacitor for ¢ > 0.
The time constant of the circuit is 7 = RC = 0.02s. Following the analysis of Example 7.2, we get

o) = 12+ e
From the initial conditions, v(07) = v(0") = 12+ 4 =2 or A = —10. Thus, for ¢ > 0,
v(t) = 12 — 10e7>" (V)
i(t) = (12 —v)/5000 = 2 x 10737307 4 — 2501 (mA)

The current may also be computed from i = C(dv/dt). And so the voltage increases exponentially from an
initial value of 2V to a final value of 12V, with a time constant of 20 ms, as shown in Fig. 7-4(«a), while the current
decreases from 2mA to zero as shown in Fig. 7-4(b).

v(®,V
12
8.32
2
0 1S
(@)
i), mA
ts

7.4 THE SOURCE-FREE RL CIRCUIT

In the RL circuit of Fig. 7-5, assume that at ¢ =0 the current is /,. For ¢ > 0, i should satisfy
Ri + L(di/dt) = 0, the solution of which is i = 4¢". By substitution we find 4 and s:

AR+ Ls)e’ =0, R+ Ls=0, s=—R/L
The initial condition i(0) = 4 = I,. Then
i(t) = Ie ®F fort>0 (7)
The time constant of the circuit is L/R.

EXAMPLE 7.4 The 12-V battery in Fig. 7-6(a) is disconnected at t = 0. Find the inductor current and voltage v
for all times.
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+
R% L v
Fig. 7-5
=0 4Q
—eTe——AAN ,
oy
+
12V ':}:‘ 0.1H v % 100
(@
40
MWA— ¥ -
+
12V—_— v 0.1H v 10Q
- i(0H=3A -
®) ©
i v
3
1
: 100 !
1
100
-30
) )]
Fig. 7-6

Assume the switch S has been closed for a long time. The inductor current is then constant and its voltage is
zero. The circuit at ¢t = 0™ is shown in Fig. 7-6(b) with i(07) = 12/4 = 3 A. After the battery is disconnected, at
t > 0, the circuit will be as shown in Fig. 7-6(c). For ¢t > 0, the current decreases exponentially from 3 A to zero.
The time constant of the circuit is L/R = (1/100)s. Using the results of Example 7.3, for ¢ > 0, the inductor
current and voltage are, respectively,

i(t) = 3™

o(f) = L(di/df) = =30e7'%% (V)

i(¢) and v(¢) are plotted in Figs. 7-6(d) and (e), respectively.
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7.5 ESTABLISHING A DC CURRENT IN AN INDUCTOR

If a dc source is suddenly applied to a series RL circuit initially at rest, as in Fig. 7-7(a), the current
grows exponentially from zero to a constant value with a time constant of L/R. The preceding result is
the solution of the first-order differential equation (8) which is obtained by applying KVL around the
loop. The solution follows.

i®
—e A ——=—
+
+
Vo = L u(n
@
it) v(®
L
® [ o T
v, ,
0.632-2 f===- -4
; 0.368V,
i t t
=L/R
(b) (c)
Fig. 7-7
o di o
RZ+LE=V0 for t > 0, i(07)=0 &)

Since i = (1) + i, (1), where i,(1) = Ae RVL and i,(1) = Vy/R, we have
i=Ae ®E LV /R

The coefficient 4 is found from i{(0Y) = 4 4+ V;/R=0o0r A = —V;,/R. The current in the inductor
and the voltage across it are given by (9) and (/0) and plotted in Fig. 7-7(b) and (¢), respectively.

i(ty=Vy/R(1 —e Ry fort>0 )
wf)=L g = Vye RI/E fort>0 (10)

7.6 THE EXPONENTIAL FUNCTION REVISITED

The exponential decay function may be written in the form e~"/%, where 7 is the time constant (in s).

For the RC circuit of Section 7.2, t = RC; while for the RL circuit of Section 7.4, t = L/R. The general
decay function

fity=4e"" (>0
is plotted in Fig. 7-8, with time measured in multiples of 7. It is seen that

f(r) = Ae ' =0.3684
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f0)=A

63.2%

W4 () =0
7

Fig. 7-8

that is, at ¢ = t the function is 36.8 percent of the initial value. It may also be said that the function has
undergone 63.2 percent of the change from f(07) to f(co). At t= 5, the function has the value
0.00674, which is less than 1 percent of the initial value. From a practical standpoint, the transient
is often regarded as over after r = 5t.

The tangent to the exponential curve at # = 0" can be used to estimate the time constant. In fact,
since

slope = f/(0") = ==

the tangent line must cut the horizontal axis at ¢ = 7 (see Fig. 7-9). More generally, the tangent at 1 = ¢,
has horizontal intercept #, + 7. Thus, if the two values f(,) and f'(¢,) are known, the entire curve can
be constructed.

A9

é
v \{slope=—tan¢=—é !

T
Fig. 7-9

At times a transient is only partially displayed (on chart paper or on the face of an oscilloscope), and
the simultaneous values of function and slope needed in the preceding method are not available. In
that case, any pair of data points, perhaps read from instruments, may be used to find the equation of the
transient. Thus, referring to Fig. 7-10,

1 — Ae /T fr= Ae /T

which may be solved simultaneously to give

h—1

"Thf—imp

and then A4 in terms of 7 and either f] or f5.
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7.7 COMPLEX FIRST-ORDER RL AND RC CIRCUITS

[CHAP. 7

A more complex circuit containing resistors, sources, and a single energy storage element may be
converted to a Thévenin or Norton equivalent as seen from the two terminals of the inductor or

capacitor.
ing to the methods described in the

previous sections.

This reduces the complex circuit to a simple RC or RL circuit which may be solved accord-

If a source in the circuit is suddently switched to a dc value, the resulting currents and voltages are

exponentials, sharing the same time constant with possibly different initial and final values.

The time

constant of the circuit is either RC or L/R, where R is the resistance in the Thévenin equivalent of the
circuit as seen by the capacitor or inductor.

EXAMPLE 7.5 Find i, v, and #, in Fig. 7-11(a).

iy 120 i Rp=40 1 ;
== AAAY; ) i AN L —
+ ‘l ' I +
|
9u(t)<+ 60 5 : = + !
M v mH vy =3u@®{ i v
i
i I
_ I | _
B . B
@) Q)]

Fig. 7-11

5 mH

The Thévenin equivalent of the circuit to the left of the inductor is shown in Fig. 7-11(b) with Ry, = 4 Q and
vy = 3u(f) (V). The time constant of the circuit is 7 = L/Ryy, = 5(107%)/4s = 1.25ms. The initial value of the

inductor current is zero. Its final value

Therefore,

i=0.75(1 — e %) (A)

v=L

is

oy vt 3V
i(00) = = G =075 A

[
i 3e u(t) (V)

9—v
12

e o

v can also be derived directly from its initial value v(0%) = (9 x 6)/(12 4+ 6) = 3V, its final value v(co) = 0 and the

circuit’s time constant.
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EXAMPLE 7.6 In Fig. 7-12 the 9-uF capacitor is connected to the circuit at # = 0. At this time, capacitor voltage
is Vg = 17V. Find Vg, Up, Ve, iABa iAC: and iBC for t > 0.

Vs

©
*
o)

VIV
5
LR ol ==
WV
2

Fig. 7-12

Apply KCL at nodes 4, B, and C for ¢ > 0 to find voltages in term of i

1 1 1 1 1
NOdeA: (§+§+6>’UA—§'UB—6’U(‘:O or 6’UA—3'UB—UC:0 (I])
1 1 5. 1 3.
Node B: sz—}— 2 4 10‘1—ZvC:0 or —2uy 4+ 3vg —ve = (4 x 107)i (12)
1 1 I 1 1
Node C: _EUA_ZUB+ 4+6+12 c=0 or —2vy —3vg+ 6ve =0 (13)

Solving (1), (12), and (I/3) simultaneously,
=110 vy =310 e =5(10%)i

The circuit as seen by the capacitor is equivalent to a resistor R = vg/i = 34/9kQ2. The capacitor discharges
its initial voltage V) in an exponential form with a time constant t = RC = 33“(103)(9 x 107%) = 0.034s. For ¢ > 0,
the voltages and currents are

vp = Voo /T = 176710003 ()
dug
dt

vy = 2(10 )i = 10.5¢~ 1000734 () ve = 3(10 )i = 12¢ 100034 ()

=—C =2 =9 x 17 x 1073/34)e71900/3% = (4.5 x 10737 1000/34 (A)

vap = vy —vp=—6.5¢" (V) iy =0,5/2000 = (=3.25 x 107 (A)
Vye = vy —ve = —1.5e71 () iqe = v40/6000 = (—0.25 x 1073)e 1000734 (A)
vge = vp — ve = 5e” 0 (v) isc = vpc/4000 = (1.25 x 1073)e™ 100734 (A)

All voltages and currents are exponential functions and have the same time constant. For simplicity, it is custom-

ary to use units of V, mA, k2, and ms for voltage, current, resistance, and time, respectively, so that the multipliers
1000 and 10~ can be omitted from the equations as summarized below.

vy =10.5¢77 (V) wyp=—65""* (V) igp=-325""* (mA)

vg = 17¢77** (V) vye = =157 (V) iye =—025¢77*  (mA)

ve = 12773 (V) vge = 5¢ (V) ige = 1.25¢77*  (mA)
i=4.5¢"** (mA)
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7.8 DC STEADY STATE IN INDUCTORS AND CAPACITORS

As noted in Section 7.1, the natural exponential component of the response of RL and RC circuits to
step inputs diminishes as time passes. At ¢t = oo, the circuit reaches steady state and the response is
made of the forced dc component only.

Theoretically, it should take an infinite amount of time for RL or RC circuits to reach dc steady
state. However, at t = 57, the transient component is reduced to 0.67 percent of its initial value. After
passage of 10 time constants the transient component equals to 0.0045 percent of its initial value, which
is less than 5 in 100,000, at which time for all practical purposes we may assume the steady state has been
reached.

At the dc steady state of RLC circuits, assuming no sustained oscillations exist in the circuit, all
currents and voltages in the circuit are constants. When the voltage across a capacitor is constant, the
current through it is zero. All capacitors, therefore, appear as open circuits in the dc steady state.
Similarly, when the current through an inductor is constant, the voltage across it is zero. All inductors
therefore appear as short circuits in the dc steady state. The circuit will be reduced to a dc-resistive case
from which voltages across capacitors and currents through inductors can be easily found, as all the
currents and voltages are constants and the analysis involves no differential equations.

The dc steady-state behavior presented in the preceding paragraph is valid for circuits containing
any number of inductors, capacitors, and dc sources.

EXAMPLE 7.7 Find the steady-state values of i, v¢y, and v, in the circuit of Fig. 7-13(a).
When the steady state is reached, the circuit will be as shown in Fig. 7-13(b). The inductor current and
capacitor voltages are obtained by applying KCL at nodes 4 and B in Fig. 7-13(b). Thus,
Vy Vy —Up UA+18—’UB_

Node 4: =
ode 3776 6

3 or 2’UA —’UBZO

Up Vg — Uy /UB—IS—'UA
= = — 4, + =
2 6 6 0 or Vy 51}3 36

Node B:

Solving for v, and vg we find vy, = 6 Vand vy = 12V. By inspection of Fig. 7-13(b), we have i; = 2mA, v =8V,
and Ver = 6V.

EXAMPLE 7.8 Find i/ and v in the circuit of Fig. 7-14.
At t = 0, the voltage across the capacitor is zero. Its final value is obtained from dc analysis to be —2V. The
time constant of the circuit of Fig. 7-14, as derived in Example 7.6, is 0.034s. Therefore,

v==2(1—e ") (V)

i—c__0Ox 107°)2 % 10°) 100034

5= o u(t) (A) = —0.53¢"19%3 1) (mA)

7.9 TRANSITIONS AT SWITCHING TIME

A sudden switching of a source or a jump in its magnitude can translate into sudden jumps in
voltages or currents in a circuit. A jump in the capacitor voltage requires an impulse current. Simi-
larly, a jump in the inductor current requires an impulse voltage. If no such impulses can be present,
the capacitor voltages and the inductor currents remain continuous. Therefore, the post-switching
conditions of L and C can be derived from their pre-switching conditions.

EXAMPLE 7.9 In Fig. 7-15(a) the switch S is closed at r = 0. Find i and v for all times.

At t =07, the circuit is at steady state and the inductor functions as a short with v(07) = 0 [see Fig. 7-15(b)].
The inductor current is then easily found to be i(07) = 2A. After Sis closed at t = 0, the circuit will be as shown in
Fig. 7-15(¢). For t > 0, the current is exponential with a time constant of T = L/R = 1/30s, an initial value of
i(07) = i(07) =2 A, and a final value of 12/3 =4 A. The inductor’s voltage and current are
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vy(1)=18u() ;
L
@ M—= VY
6 k() L
VA VWA
2k0 4kQ
R § 3kQ + % 12kQ
=) v IR €
3u(r-1) + _
V2 T G
(@)
18V iy
A B
" VWA . A%
2k 4%0
§ 3k0 % 12kQ
3A C* Ve Ve
I
)
Fig. 7-13
36 u(t)
()
o) VWA
6 kQ
VWA + VWA
2kQ 40
bi
+
§ 30 v IR 9 uF % 12kQ
Fig. 7-14
For ¢t <0, i=2Aandv=0
For ¢ > 0, i=4—2¢ (A) andv:L%:@—”f V)

and plotted in Figs. 7-15(d) and (e).

EXAMPLE 7.10 Find i and v for t =0~ and ¢ = 0" in the circuit of Fig. 7-16, given R = 5, L = 10mH, and

Y — 5Vfort<0
* 7| Ssinwt (V) for t > 0
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s
t=0
—————
+—AAA ANA—=
20 3Q +
+
12V —==— 60 v <100mH
(@)
20 30 30 i
ANN—
+
+ ) +
12V _l, 60Q s 12V—— v 100 mH
(2] (©)
v,V
6
i, A
4 --------------------------

2 E
: 1 ts t 1, s
T=35 T “_‘31()
C)) O}
Fig. 7-15
R i
A'A'A% —
Vy v L
Fig. 7-16

At t=0", i(07)=5/5=1A and v(0")=0. During the transition time r =0~ to t=0", the inductor
current is continuous as there exists no voltage impulse to produce a discontinuity in it. Therefore,
i(0Y)=i(0")=1A. To find v(0"), write KVL at r=0%:v, = RI +v and note that v(0") =0. Therefore,
v(07) = 0,(0%) — ri(0T) = =5 V.
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7.10 RESPONSE OF FIRST-ORDER CIRCUITS TO A PULSE

In this section we will derive the response of a first-order circuit to a rectangular pulse. The
derivation applies to RC or RL circuits where the input can be a current or a voltage. As an example,
we use the series RC circuit in Fig. 7-17(a) with the voltage source delivering a pulse of duration 7" and
height V,,. For ¢t <0, v and i are zero. For the duration of the pulse, we use (6b) and (6¢) in Section
7.3:

v=Vy(l—e "R (0<t<T) (14a)
i= % e IRC 0<t<T) (14b)
When the pulse ceases, the circuit is source-free with the capacitor at an initial voltage V.
Vi =Vy(l —e T/RE (14¢)
Using (3) and (4) in Section 7.2, and taking into account the time shift 7', we have
v = VTef(FT)/RC (t>T) (15a)
i=—(Vy/Re R (1> 1) (15b)

The capacitor voltage and current are plotted in Figs. 7-17(b) and (c).

R i
AMN— N
ve= Volu(® - u(t-T)] fol~"
(@)
i
v(l
Vop----=""m=mm2 -
Ve[ s 5
': - T
i P N t
T T T+1 T T
o
P
()] ©)
Fig. 7-17

EXAMPLE 7.11 In the circuit of Fig. 7-17(a), let R = 1 kQ and C = | puF and let the voltage source be a pulse of
height 7, and duration 7. Find i and v for (@) Vo=1V and T =1ms, (b) V=10V and T = 0.1 ms, and
(¢) Vo=100V and T = 0.01 ms.

We use (/4) and (15) with the time constant of r = RC = 1 ms. For convenience, time will be expressed in ms,
voltages in V, and currents in mA. We also use the approximation e”' =1 — ¢t when ¢ < 1.

(@9 Vo=1V, T =1ms.
For 0 <t < 1ms,

v=>l—-eNi=e¢ and Vp =(1—e ) =0.632V
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For ¢t > 1 ms,
v=0.632¢""Y =172 and i = —1.72¢7"

b) Voy=10V, T =0.1 ms.
For 0 <t < 0.1ms,

v=10(1 —¢™"),i=10e7", and V; = 10(1 — e ') = 0.95V
For ¢ > 0.1 ms,
v=0.95""""D =105, and i = —1.05¢"

(¢) Vo=100V, T =0.01 ms.
For 0 < ¢ < 0.0l ms,

v=100(1 — ")~ 1007, i = 100" ~ 100(1 — 1), and V7 = 100(1 — e ") = 0.995V
For ¢t > 0.01 ms,
v=0.995¢" =1 0l¢~" and i = —1.01¢”"

As the input voltage pulse approaches an impulse, the capacitor voltage and current approach v = e~ "u(f) (V)
and i = 8(t) — e "u(t).

7.11 IMPULSE RESPONSE OF RC AND RL CIRCUITS

A narrow pulse can be modeled as an impulse with the area under the pulse indicating its strength.
Impulse response is a useful tool in analysis and synthesis of circuits. It may be derived in several ways:
take the limit of the response to a narrow pulse, to be called limit approach, as illustrated in Examples
7-11 and 7-12; take the derivative of the step response; solve the differential equation directly. The
impulse response is often designated by /(7).

EXAMPLE 7.12 Find the limits of i and v of the circuit Fig. 7-17(a) for a voltage pulse of unit area as the pulse
duration is decreased to zero.

We use the pulse responses in (/4) and (/5) with ¥y = 1/T and find their limits as 7" approaches zero. From
(14¢) we have

: o _ _-T/RC _
}1% Vi = }1% (1—e )/T =1/RC

From (75) we have:

For ¢t <0, h,=0 and h; =0
1 1
For 0” <t <07, 0<h, < R and k= 7 5(1)
1 1
For ¢t > 0, hy(f) = Rfce-’/RC and K1) = e e /RC
Therefore,
1 1 1
hy(t) = = e R u(h) and hi(t) = 8(1) = e e RCu(r)

EXAMPLE 7.13 Find the impulse responses of the RC circuit in Fig. 7-17(a) by taking the derivatives of its unit
step responses.

A unit impulse may be considered the derivative of a unit step. Based on the properties of linear differential
equations with constant coefficients, we can take the time derivative of the step response to find the impulse
response. The unit step responses of an RC circuit were found in (6) to be

o) =1 —e 0  and (1) = (1/R)e” "R u(r)

We find the unit impulse responses by taking the derivatives of the step responses. Thus
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— L —1/RC _ l _ L —t/RC
h,(t) = RC e u(t) and hi(t) = R 8(1) R e u(t)

EXAMPLE 7.14 Find the impulse responses /,(¢), h,(f), and h;;(f) of the RL circuit of Fig. 7-11(a) by taking the
derivatives of its unit step responses.

The responses of the circuit to a step of amplitude 9 were already found in Example 7.5. Taking their
derivatives and scaling them down by 1/9, we find the unit impulse responses to be

hi(f) = é % [0.75(1 — e 39Yu(r)] = @ e 3% (1)
_ l i ,—800¢ _ _@ —800¢ l
h() = 5 = Be ™ u(] = === ™ u(t) + 3 5()

_1dJl —800¢ 200 _goo, 1
hil(z)_9dl[4(3 () | = 5= ¢ un) + 3¢ 8(0)

7.12 SUMMARY OF STEP AND IMPULSE RESPONSES IN RC AND RL CIRCUITS

Responses of RL and RC circuits to step and impulse inputs are summarized in Table 7-1.  Some of
the entries in this table have been derived in the previous sections. The remaining entries will be derived
in the solved problems.

7.13 RESPONSE OF RC AND RL CIRCUITS TO SUDDEN EXPONENTIAL EXCITATIONS

Consider the first-order differential equation which is derived from an RL combination in series with
a sudden exponential voltage source v, = Ve u(z) as in the circuit of Fig. 7-18.  The circuit is at rest for
t <0. By applying KVL, we get

di
Ri+L Z; = Vye'u(t) (16)

For ¢ > 0, the solution is
i(t)=i)()+i ) and  i(07)=0 (17a)

Table 7-1(a) Step and Impulse Responses in RC Circuits

RC circuit Unit Step Response Unit Impulse Response
R I
VWA= N
v, C) co= o | vy=u() vy = 8(1)
v=(1 = e "RY(r) h, = (1/RC)e™"RC (1)
- i= (/R u(r) hy = —(1/R*C)e™ " u(t) + (1/R)8(1)
i, = 8()
N Cb R% c=g v | h=uD hy = (1/C)e R u(r)
v=R(1—e () hi = —(1/RC)e™RCu(r) + (1)
- i= ef’/RCu(t)
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Table 7-1(b) Step and Impulse Responses in RL Circuits

RL circuit Unit Step Response Unit Impulse Response
R 1
VVWA—= .
. Cb L § Vol vy =u(r) vy = (1)
v=e Ry h, = (R/L)e R y(s) + 8(7)
- i=(1/R)(1 = e R/ yy(r) h; = —(1/L)e R u(r)
i,
+
s (D R% L3 v | i=uw iy = 8()
v = Re R y(r) h, = —(R*/L)e R u(t) + R(f)
- i=(1—=e Ry hy = (R/Lye R/ y(r)
i AMA v,=Voesu(t)
R 1)

O = L %

@ ®)
Fig. 7-18

The natural response i,(¢) is the solution of Ri+ L(di/dt) = 0; i.e., the case with a zero forcing
function. Following an argument similar to that of Section 7.4 we obtain
ip(1) = Ae R/t (17b)
The forced response i,(7) is a function which satisfies (/6) for > 0. The only such function is
i (1) = Iye" (I7¢)

After substituting i, in (/6), I, is found to be Iy = V,/(R + Ls). By choosing 4 = —V;/ (R + Ls), the
boundary condition i(0") = 0 is also satisfied. Therefore,

Vi
i(t) = WOLS (" — e R'yu(r) (17d)
Special Case. 1f the forcing function has the same exponent as that of the natural response (s = —R/L),

the forced response needs to be i,(7) = Iote_R’/ L. This can be verified by substitution in (/6), which also
yields Iy = V,,/L The natural response is the same as (/7b). The total response is then

i(1) = i,(0) + ip(1) = (Tpt + A)e "

From i(07) = i(0") = 0 we find 4 = 0, and so i(r) = Iyte “"/Ru(r), where I, = V,/L.
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7.14 RESPONSE OF RC AND RL CIRCUITS TO SUDDEN SINUSOIDAL EXCITATIONS

When a series RL circuit is connected to a sudden ac voltage v, = V, cos wt (Fig. 7-19), the equation
of interest is

Ri+L % = Vy(cos wt)u(r) (18)

The solution is
i(ty=1i,+i, where i()=Ade " and  i(1) = Iycos(wt —0)

By inserting i, in (18), we find /j:

v, L
Iy = 0 and §=tan"' =2
VR + L’ R

Then () = Ae ®E L Iycos(wt —6) >0

From i(07) = 0, we get 4 = —I,cosf. Therefore,

i(7) = Ip[cos (ot — ) — cos e R/

Fig. 7-19

7.15 SUMMARY OF FORCED RESPONSE IN FIRST-ORDER CIRCUITS

Consider the following differential equation:

© 04t = 10 (19)

The forced response v,(7) depends on the forcing function f(7). Several examples were given in the
previous sections. Table 7-2 summarizes some useful pairs of the forcing function and what should be
guessed for v,(7). The responses are obtained by substitution in the differential equation. By weighted
linear combination of the entries in Table 7-2 and their time delay, the forced response to new functions
may be deduced.

7.16 FIRST-ORDER ACTIVE CIRCUITS

Active circuits containing op amps are less susceptible to loading effects when interconnected with
other circuits. In addition, they offer a wider range of capabilities with more ease of realization than
passive circuits. In our present analysis of linear active circuits we assume ideal op amps; that is; (1) the
current drawn by the op amp input terminals is zero and (2) the voltage difference between the inverting
and noninverting terminals of the op amp is negligible (see Chapter 5). The usual methods of analysis
are then applied to the circuit as illustrated in the following examples.
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Table 7-2
S@ (1)
1 1
a
; t 1
a a
eSl
e, (s # —a)
s+a
e*fl/ te—at
1 w
cos wt Acos (wt — 0) where A=——— and tanf=—
@+ o’ a
—bt —bt _ 1 _ w
e " cos wt Ae™"" cos (wt — 6) where A=—————— and tanf= 5
V@b + o “

EXAMPLE 7.15 Highpass filter. The op amp in the circuit of Fig. 7-44 is ideal. Find the unit-step response of
the circuit; that is, v, for v, = u(r).

The inverting input terminal of the op amp is at virtual ground and the capacitor has zero voltage at t = 0.
The 1-V step input therefore generates an exponentially decaying current i through R;C (from left to right, with a
time constant R;C and initial value of 1/R;).

1 1
P —1/(R,C)
i=—ce u(t
R, @
All of the preceding current passes through R, (the op amp draws no current), generating v, = —R,i at the output
terminal. The unit-step response is therefore
Ry w0
vy=——"¢ Su(t
=% 0

EXAMPLE 7.16 In the circuit of Fig. 7-44 derive the differential equation relating v, to v;. Find its unit-step
response and compare with the answer in Example 7.15.

Since the inverting input terminal of the op amp is at virtual ground and doesn’t draw any current, the current ;
passing through C, R, and R, from left to right is —v,/R,. Let v, be the voltage of the node connecting R; and C.
Then, the capacitor voltage is v; — v, (positive on the left side). The capacitor current and voltage are related by

vy _d(o—vy)
R, dt
To eliminate v, we note that the segment made of R;, R,, and the op amp form an inverting amplifier with
v, = —(Ry/Ry)vy, from which vy, = —(R;/Ry)v,. Substituting for v,, we get
dv, dv;

RC—=—-R,C—
e 2 dr

To find the unit-step response, we first solve the following equation:

d _
v2+R1Cﬁ { R,C t>0

dr |0 t<0

The solution of the preceding equation is —R,C(1 — e~ /®y(r).  The unit-step response of the circuit is the time-
derivative of the preceding solution.



CHAP. 7] FIRST-ORDER CIRCUITS 145
Ry, _
() = —R—z e ’/(R‘C)u(l‘)

Alternate Approach
The unit step response may also be found by the Laplace transform method (see Chapter 16).

EXAMPLE 7.17 Passive phase shifter. Find the relationship between v, and v; in the circuit of Fig. 7-45(a).
Let node D be the reference node. Apply KCL at nodes A and B to find

dvg  (Wa—v) _

dt R
d(vg —v1) Up

¢ i TR

KCL at node A: C

KCL at node B: 0

Subtracting the second equation from the first and noting that v, = v, — vz we get

dvz_ dU]
U2+RCZ—'U1—RCW

EXAMPLE 7.18 Active phase shifter. Show that the relationship between v, and v; in the circuit of Fig. 7-45(b) is
the same as in Fig. 7-45(a).
Apply KCL at the inverting (node A) and non-inverting (node B) inputs of the op amp.

KCL at node A: (vg —v1) + (v — ) —0

Ry R,
KCL at node B: M—I—C%:O
R dt

From the op amp we have v, = v and from the KCL equation for node A, we have v, = (v; + v,)/2. Substituting
the preceding values in the KCL at node B, we find

dv, dv,
RC —==v, — RC —
v + RC i vy C 7

Solved Problems

7.1 At t =07, just before the switch is closed in Fig. 7-20, v =100 V. Obtain the current and
charge transients.

o
-
1
+ +1
T bR Q400 O
2| sourF -9
Fig. 7-20

With the polarities as indicated on the diagram, vz = v for > 0, and 1/RC = 62.55"'. Also,
ve(0T) = ve(07) =100 V. Thus,

vg = ve = 100765 (V) i= %R =0.25¢"%% (A) g = Cuc = 4000e7%%  (uC)
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7.2 InProblem 7.1, obtain the power and energy in the resistor, and compare the latter with the initial
energy stored in the capacitor.

pr = vgi = 25¢715" (W)

t t
Wg = J prdt = J 25¢7 150 dr = 0201 — e ') (D)
0 0

The initial stored energy is
Wy =1CV5 =140 x 107°)(100)° J = 0.20 = wg(c0)

In other words, all the stored energy in the capacitor is eventually delivered to the resistor, where it is
converted into heat.

7.3  An RC transient identical to that in Problems 7.1 and 7.2 has a power transient
pR — 36Oe—f/0.00001 (W)
Obtain the initial charge Qg, if R =10 L.

, 2
pr = Pye2/RE or == 10° or C=2pF

13
W= JO prdi = 3.6(1 — e—r/o.ooom) (mJ)

Then, wg(c0) = 3.6mJ = Q3/2C, from which Q, = 120 pC.

7.4  The switch in the RL circuit shown in Fig. 7-21 is moved from position / to position 2 at ¢ = 0.
Obtain vy and v; with polarities as indicated.

) 2
e
/
+ m
UR 100 Q

2A -
®

oL 4 H

Fig. 7-21

The constant-current source drives a current through the inductance in the same direction as that of the
transient current i. Then, for 1 > 0,

i= IoefR[/L — 28725[ (A)
vg = Ri =200e™>" (V)
v, = —vg = =200 (V)

7.5  For the transient of Problem 7.4 obtain pp and p;.

pr = vgi = 400e7 (W)
pr = vy i =—400e7 (W)

Negative power for the inductance is consistent with the fact that energy is leaving the element. And, since
this energy is being transferred to the resistance, py is positive.
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7.6

7.7

7.8

ov(®) ) 0

A series RC circuit with R = 5kQ and C = 20 uF has a constant-voltage source of 100 V applied
at ¢t = 0; there is no initial charge on the capacitor. Obtain i, vg, v¢, and ¢, for ¢ > 0.

The capacitor charge, and hence v, must be continuous at t = 0:
ve(0%) = ve(07) =0

As t — 00, ve — 100V, the applied voltage. The time constant of the circuit is r = RC = 10™'s. Hence,
from Section 6.10,

ve = [e(0F) = ve(00)]e ™™ + ve(o0) = —100e 1 +100 (V)

The other functions follow from this. If the element voltages are both positive where the current
enters, vg + vc = 100 ¥, and so

vg = 10071 (V)
i= %R =207 (mA)
g = Cvc =2000(1 — 1% (u0)

The switch in the circuit shown in Fig. 7-22(a) is closed at t = 0, at which moment the capacitor
has charge Q, = 500 pC, with the polarity indicated. Obtain i and ¢, for ¢ > 0, and sketch the
graph of q.

q, pC

1000

/ I kQ
!

Q 20 uF 8.11 L. ms
T
500
(a) b)
Fig. 7-22

The initial charge has a corresponding voltage V, = 0,/C = 25V, whence v-(07) = —25V. The sign
is negative because the capacitor voltage, in agreement with the positive direction of the current, would be +
on the top plate. Also vc(00) =+50V and 1 =0.02s. Thus, as in Problem 7.6,

ve=-75¢""450 (V)

from which

d
¢ = Cve = —1500e7°" 41000 (uC) i= F? —75¢7"  (mA)

The sketch in Fig. 7-22(b) shows that the charge changes from 500 uC of one polarity to 1000 pC of the
opposite polarity.

Obtain the current Z, for all values of ¢, in the circuit of Fig. 7-23.

For ¢ < 0, the voltage source is a short circuit and the current source shares 2 A equally between the two
10-€2 resistors:
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sou(t) (V)
—5
10 Q
1002 2u(-1) (A)
) i l 02 H
Fig. 7-23

i(f)y=i07)=i(0")=1A

For ¢ > 0, the current source is replaced by an open circuit and the 50-V source acts in the RL series
circuit (R =20). Consequently, as t — oo, i > —50/20 = —2.5A. Then, by Sections 6.10 and 7.3,

i(7) = [(i((07) — i(c0)le ™ R/E + i(c0) = 3.5¢71% — 2.5 (A)
By means of unit step functions, the two formulas may be combined into a single formula valid for all #:

i(0) = u(—=1) + 3.5¢71%% —2.5u(r) (A)

7.9  In Fig. 7-24(a), the switch is closed at t = 0. The capacitor has no charge for r < 0. Find iy, i,
ve, and v, for all times if i; = 2mA.

Fort <0, ip =2mA, ic =vc =0, and v, = (2mA)(5000 Q) = 10'V.
For ¢ > 0, the time constant is T = RC = 10ms and
ir(07) =0, ig(00) =2mA, and ip =2(1 — ¢ '%%) (mA)  [See Fig. 7-24(b).]
ve(07) = 0, ve(o0) = 2mA)5kRQ) = 10V, and ve = 10(1 — e~ %) (V) [See Fig. 7-24(c).]
ic(0") =2mA, ic(c0) =0, and i =2¢7'% (mA)  [See Fig. 7-24(d).]
0,(01) = 0, v,(00) = 2mA)(5kQ) = 10V, and v, = 10(1 —e ') (V)  [See Fig. 7-24(¢).]

7.10 In Fig. 7-25, the switch is opened at t = 0. Find iy, i, ve, and v,.

For t < 0, the circuit is at steady state with ip = 6(4)/(4 +2) =4mA, ic =0, and v¢ = v, = 4(2) =8 V.
During the switching at r =0, the capacitor voltage remains the same. After the switch is opened, at
t = 0", the capacitor has the same voltage v-(07) = vo(07) = 8 V.

For ¢ > 0, the capacitor discharges in the 5-k<2 resistor, produced from the series combination of the
3-kQ and 2-kQ resistors. The time constant of the circuit is 7= (2 4 3)(10°)(2 x 107%) = 0.01s. The
currents and voltages are

Ve = g 1001 V)
i = —ic = v¢/5000 = (8/5000)e "% = 1.6 1% (mA)
v, = (6mA)(4kQ) =24V

since, for ¢ > 0, all of the 6mA goes through the 4-k2 resistor.

7.11 The switch in the circuit of Fig. 7-26 is closed on position / at = 0 and then moved to 2 after one
time constant, at t = v = 250 pus. Obtain the current for ¢ > 0.

It is simplest first to find the charge on the capacitor, since it is known to be continuous (at # = 0 and at
t = 1), and then to differentiate it to obtain the current.
For 0 <t < 7, ¢ must have the form

g=Ae™" +B
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(@)
ve, V
i, MA
10f-------> SRR b LT LLS
2 |
: f, ms . £, ms
10 10
] (©)
v, V
io mA o
2 H
1, ms . f, ms
10 10
)] (e)
Fig. 7-24
tigr ip
+ ‘ iC
"
ve o 2RF % 2kQ
6 mA Q) 2 4kQ -
3kQ
Fig. 7-25
L
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From the assumption ¢(0) = 0 and the condition

dg 20V
(0")==1|  =—— =40mA
O =G o =500 ~40m
we find that 4 = —B = —10uC, or
g=10(1—-¢*) @Cc) (0=<r=<7) (20)

From (20), ¢(r) = 10(1 — e™h pC; and we know that g(oo) = (0.5 uF)(—40V) = =20 uC.
Hence, ¢, is determined for 7 > 7 as

q = [g(r) — g(00)]e™""7"" + g(00) = 71.55¢ 4" =20 (nC) @1
Differentiating (20) and (21),
. dq { 40e740%  mA)  (0<r<7)

"TUT] —286.2¢7Y  (mA) (1> 1)
See Fig. 7-27.
i, mA
40
14.7 o —— ‘
0 i
| 7=250 ps
|
i
|
|
|
|
~105.3 [—— -
Fig. 7-27

7.12 A series RL circuit has a constant voltage V" applied at t = 0. At what time does vy = v;?

The current in an RL circuit is a continuous function, starting at zero in this case, and reaching the final
value V/R. Thus, for ¢t > 0,

14
=5 —em and vg=Ri=V(1 -7

where = L/R is the time constant of the circuit. Since vz + v; = V, the two voltages will be equal when

DR:%V
—t/Ty _ 1
V(l_e [r)—jV
- _ 1
e 1/1_7
L2
T

that is, when t = 0.6937. Note that this time is independent of V.

7.13 A constant voltage is applied to a series RL circuit at t = 0. The voltage across the inductance is
20V at 3.46ms and 5V at 25ms. Obtain Rif L=2 H.

Using the two-point method of Section 7-6.
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Hh— 14 25 —3.46
= = =15.54
f Inv; —Inv, In20—1In5 ms
and so R:£ #: 128.7 Q2

T 1554 x 102

7.14 In Fig. 7-28, switch S; is closed at t = 0. Switch S, is opened at t =4 ms. Obtain i for ¢ > 0.

7 50 O
SO'—NW-—

1

you 100 Q 4
L
wo v (+)

S,

¥

01 H

Fig. 7-28

As there is always inductance in the circuit, the current is a continuous function at all times. In the
interval 0 < ¢ < 4ms, with the 100 Q shorted out and a time constant t = (0.1 H)/(50 ) = 2ms, 7 starts at
zero and builds toward

100V
50Q

even though it never gets close to that value. Hence, as in Problem 7.12

2A

i=201—e¢") (A (0<t<4) (22)
wherein ¢ is measured in ms. In particular,
i@=21-e¢H=1729A

In the interval ¢ > 4 ms, i starts at 1.729 A and decays toward 100/150 = 0.667 A, with a time constant
0.1/150 = %ms. Therefore, with 7 again in ms,

i=(1.729 — 0.667)e V2 1 0.667 = 428.4¢ 2 +0.667 (A) (1> 4) (23)

7.15 In the circuit of Fig. 7-29, the switch is closed at ¢t = 0, when the 6-uF capacitor has charge
Qo = 300uC. Obtain the expression for the transient voltage vg.

The two parallel capacitors have an equivalent capacitance of 3 uF. Then this capacitance is in series
with the 6 uF, so that the overall equivalent capacitance is 2pF. Thus, T = RCyq = 40 ps.
At 1= 0", KVL gives vz = 300/6 = 50 V; and, as t — oo, vg — 0 (since i — 0). Therefore,

vg =50 e 7T =50e74 (V)

in which 7 is measured in ps.

_~ 200 !

*or "

A7~

O"‘/'kﬁuF ,[1 uF szF 6A<D 10

Fig. 7-29 Fig. 7-30
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In the circuit shown in Fig. 7-30, the switch is moved to position 2 at t = 0. Obtain the current i,
at t = 34.7ms.

After the switching, the three inductances have the equivalent

_ 10 5(10)
Leq = z + ? =5H
Then 7 = 5/200 = 25ms, and so, with ¢ in ms,
i=6e""" (A) = (1—55)1 =27 (A)
and i(34.7) = 2¢3*7/P A = 0.50 A

In Fig. 7-31, the switch is closed at t = 0. Obtain the current i and capacitor voltage v., for
t>0.

100

50 vV

Fig. 7-31
As far as the natural response of the circuit is concerned, the two resistors are in parallel; hence,
T=RqC=(5Q)2uF)=10ps

By continuity, v-(0%) = v(07) = 0. Furthermore, as ¢ — oo, the capacitor becomes an open circuit, leav-
ing 20 Q in series with the S0 V. That is,

i(c0) :%: 25A ve(o0) = (2.5A)(10Q) =25V

Knowing the end conditions on v., we can write
ve = [ve(0%) = ve(oo)le™ + ve(o0) = 25(1 — /1) (V)

wherein ¢ is measured in ps.
The current in the capacitor is given by

d
e =C=C=s5" (@A)

and the current in the parallel 10-Q resistor is

v,

g =75 = 251 =) (&)
Hence, i=ic+inq=251+e"1% (A)

The problem might also have been solved by assigning mesh currents and solving simultaneous differ-
ential equations.

The switch in the two-mesh circuit shown in Fig. 7-32 is closed at t = 0. Obtain the currents i,
and i, for ¢ > 0.
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7.19

AAA
v

10 Q
) _7 50 i2
iy
100 V 250
001 H

Fig. 7-32
S . diy
10(i; + i) + 5i; +0.01 i 100 24)
10(i; + i) + Si = 100 (25
From (25), i, = (100 — 107;)/15. Substituting in (24),
% + 833i; = 3333 (26)

The steady-state solution (particular solution) of (26) is i;(co) = 3333/833 = 4.0 A; hence
iy = Ae ¥ 440 (A)
The initial condition 7;(07) = /;(07) = 0 now gives 4 = —4.0 A, so that
i =401 —¢ ) (A)  and 5 =4.0+267 (A)
Alternate Method

When the rest of the circuit is viewed from the terminals of the inductance, there is equivalent resistance

1
ch:5+¥50):8.339

Then 1/7 = R.q/L = 833 s7!. At t = oo, the circuit resistance is

Ry = 10+%:12.SQ

so that the total current is iz = 100/12.5 =8 A. And, at ¢ = oo, this divides equally between the two 5-Q
resistors, yielding a final inductor current of 4 A. Consequently,

ip =i =4(1 —e 33 (A)

A series RL circuit, with R = 50Q and L = 0.2 H, has a sinusoidal voltage
v = 150sin (5007 + 0.785) (V)
applied at 1 = 0. Obtain the current for ¢ > 0.
The circuit equation for 7 > 0 is

di .
E; 2507 = 750 sin (5007 + 0.785) 27)

The solution is in two parts, the complementary function (i;) and the particular solution (i,), so that
i =i, +1i,. The complementary function is the general solution of (27) when the right-hand side is replaced
by zero: i, = ke >, The method of undetermined coefficients for obtaining i, consists in assuming that

i, = A cos 5007 + Bsin 500¢

since the right-hand side of (27) can also be expressed as a linear combination of these two functions. Then
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% = —5004 sin 5007 4 5005 cos 500¢
Substituting these expressions for i, and di,/dt into (27) and expanding the right-hand side,
—5004 sin 5007 4+ 5008 cos 5007 4 2504 cos 500z + 2508 sin 500¢ = 530.3 cos 5007 + 530.3 sin 500¢
Now equating the coefficients of like terms,
—5004 + 250B = 530.3 and 500B + 2504 = 530.3
Solving these simultaneous equations, 4 = —0.4243 A, B=1.273 A.
i, = —0.4243 cos 5007 + 1.273 sin 500¢ = 1.342sin (5007 — 0.322)  (A)
and i =i, +i, = ke " 4+ 1.3425in (5001 — 0.322) (A)
Att=0,i=0. Applying this condition, k = 0.425 A, and, finally,

i = 0.425¢"2" 4 1.342in (5007 — 0.322) (A)

7.20 For the circuit of Fig. 7-33, obtain the current i;, for all values of .

0.2 mH

S vy Y

10Q Su(t) (A)
0 u(-1 (V)

Fig. 7-33

For ¢ < 0, the 50-V source results in inductor current 50/20 = 2.5A. The 5-A current source is applied
fort > 0. Ast— oo, this current divides equally between the two 10-2 resistors, whence i; (c0) = —2.5A.
The time constant of the circuit is

_02x107°H _ 1
700 T 10

and so, with ¢ in ms and using i, (07) = i,(07) = 2.5A,
ip = [i,(07) — ip(c0)]e " + ip(00) = 5.0 1% — 2.5 (A)
Finally, using unit step functions to combine the expressions for # < 0 and 7 > 0,

ip = 2.5u(—1) + (5.0e7'% —2.5)u(r) (A)

7.21 The switch in Fig. 7-34 has been in position / for a long time; it is moved to 2 at r = 0. Obtain
the expression for i, for ¢t > 0.

With the switch on 7, i(07) = 50/40 = 1.25A. With an inductance in the circuit, ((07) = i(07). Long
after the switch has been moved to 2, i(co) = 10/40 = 0.25A. In the above notation,

B =i(0c0) =0.25A A=i0"—B=100A
and the time constant is = L/R = (1/2000)s. Then, for z > 0,

i=1.00e7 4025 (A)
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1 1
Qe
X
2 2 +
I —J- UR 5000 O
. 100 V =, -
- 50V +
10V ]- T ve T 1 pF
Fig. 7-34 Fig. 7-35

7.22  The switch in the circuit shown in Fig. 7-35 is moved from / to 2 at t = 0. Find v and wvg, for
t>0.

With the switch on I, the 100-V source results in v-(07) = 100V; and, by continuity of charge,
ve(0T) = ve(07).  In position 2, with the 50-V source of opposite polarity, vo(co) = —50V. Thus,

B=0vc(00) = =50V  A=0vc(0")—B=150V

1
:R = —
T C 2005

and ve = 1506729 — 50 (V)
Finally, KVL gives vg + ve + 50 = 0, or
vg = —150e7 2 (V)

7.23 Obtain the energy functions for the circuit of Problem 7.22.
we =1Cvg = 1.253e7 — 1)*  (mJ)

t ,2
W= J U g =11.25(1 — ) (m1)
o R

7.24 A series RC circuit, with R = 5k2 and C = 20 uF, has two voltage sources in series,
v; = 25u(—1t) (V) vy =25u(t—t") (V)

Obtain the complete expression for the voltage across the capacitor and make a sketch, if ¢’ is
positive.

The capacitor voltage is continuous. For 7 < 0, v; results in a capacitor voltage of 25V.
For 0 < <1, both sources are zero, so that v decays exponentially from 25V towards zero:

ve =25¢77RC = 250710 (V) (0<t<{t)

In particular, ve(t') = 25¢7'% (V).
For ¢t > t', vc builds from v(¢') towards the final value 25V established by v,:

ve = [ue(t) = ve(oa)le™ VR 4 ve(00)
=25[1— (" — e (V) (=1)
Thus, for all 7,
ve = 25u(—1) + 25¢ 7 u(t) — u(t — )] + 25[1 — (€' — Ve " u(r — t') (V)

See Fig. 7-36.
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L

25V

Supplementary Problems

The capacitor in the circuit shown in Fig. 7-37 has initial charge Q, = 800 uC, with polarity as indicated. If
the switch is closed at 1 = 0, obtain the current and charge, for ¢ > 0.
Ans. i=—10e2% (A), g =4 x 10741 4+ %% (©)

/ —"&
1 \* 2 \
/ 00 100 O
100 V Ct) + 50V 20V 50 [LF

Q T 4 uF T

Fig. 7-37

Fig. 7-38

A 2-uF capacitor, with initial charge Q, = 100 uC, is connected across a 100-$2 resistor at t = 0. Calculate
the time in which the transient voltage across the resistor drops from 40 to 10 volts. Ans. 0.277ms

In the RC circuit shown in Fig. 7-38, the switch is closed on position / at = 0 and then moved to 2 after the
passage of one time constant. Obtain the current transient for (a) 0 <t <17, (b) t> 1.
Ans. (a) 0.5¢72% (A); (b)) —0.516¢7200"0  (A)

A 10-pF capacitor, with initial charge Q,, is connected across a resistor at t = 0. Given that the power
transient for the capacitor is 800e~*%" (W), find R, 0y, and the initial stored energy in the capacitor.
Ans. 50,2000 nC, 0.20J

A series RL circuit, with R = 10 Q2 and L = 1 H, has a 100-V source applied at t = 0. Find the current for
1>0.  Ans. 101 —e7 ') (A)

In Fig. 7-39, the switch is closed on position / at t = 0, then moved to 2 at r = 1 ms. Find the time at which
the voltage across the resistor is zero, reversing polarity. Ans. 1.261ms

A series RL circuit, with R = 1002 and L = 0.2H, has a 100-V source applied at ¢t = 0; then a second
source, of 50 V with the same polarity, is switched in at ¢ = ¢/, replacing the first source. Find ¢’ such that
the current is constant at 0.5 A for ¢ > ¢'. Ans. 1.39ms
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j
I \’ 2 500 Q
SOV# #SOV
02 H

Fig. 7-39

7.32  The circuit of Problem 7.31 has a 50-V source of opposite polarity switched in at + = 0.50 ms, replacing the
first source. Obtain the current for (a) 0 <7 < 0.50ms, (b) t > 0.50ms.
Ans. (@) 1= (A);  (b) 0721750000005 _ g 50 (A)

7.33 A voltage transient, 35¢7°" (V), has the value 25V at 1, = 6.73 x 10™*s. Show that at 1 =1, + t the
function has a value 36.8 percent of that at ¢;.

7.34 A transient that increases from zero toward a positive steady-state magnitude is 49.5 at r; = 5.0 ms, and 120
at 1, = 20.0ms. Obtain the time constant . Ans. 12.4ms

7.35  The circuit shown in Fig. 7-40 is switched to position / at r = 0, then to position 2 at t = 3t. Find the
transient current i for (a) 0 <t < 37, (b) t> 37.
Ans. (a) 2.5(3_50 0007 (A), (b) _ ].58(3_66 700(z—0.00006) (A)

~

i

aam™

v <+>

O() T 0.5 [.LF
+

Fig. 7-40 Fig. 7-41

7.36  An RL circuit, with R =300 and L = 1 H, has voltage v = 100 cos (1007 4+ 45°) (V) applied by closing a
switch at # = 0. [A convenient notation has been used for the phase of v, which, strictly, should be indicated
as 1007 + (ir/4) (rad).] Obtain the resulting current for ¢ > 0.
Ans.  —0.282¢73% 4 0.316 cos (1007 + 26.6°)  (A)

7.37 The RC circuit shown in Fig. 7-41 has an initial charge on the capacitor Q, = 25uC, with polarity as
indicated. The switch is closed at r = 0, applying a voltage v = 100sin (10007 + 30°) (V). Obtain the
current for > 0. Ans. 153.5¢749%% 4 48 4sin (10007 + 106°) (mA)

7.38  What initial charge on the capacitor in Problem 7.37 would cause the current to go directly into the steady
state without a transient? Ans.  13.37pC (4 on top plate)

7.39  Write simultaneous differential equations for the circuit shown in Fig. 7-42 and solve for i, and /. The
switch is closed at 1 = 0 after having been open for an extended period of time. (This problem can also be
solved by applying known initial and final conditions to general solutions, as in Problem 7-17.)
Ans. i = 1.67%7 £ 5 (A), i, = —0.555¢ %7 15 (A)
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50 s 200
A ¢

A A A4

I

i 10 Q
100 V Cib 00 50u(r) (V)
2H

AA,

Fig. 7-42 Fig. 7-43

7.40  For the RL circuit shown in Fig. 7-43, find the current i, at the following times: (¢) —Ims, (b) 0%,
(¢) 0.3ms, (d) oo. Ans. (a) 2.00A; (b) 2.00A; (c) 2.78A; (d) 3.00A

7.41 A series RC circuit, with R =2kQ and C =40uF, has two voltage sources in series with each other,

vy = 50V and v, = —100u(?) (V). Find (a) the capacitor voltage at t = 7, (b) the time at which the capa-
citor voltage is zero and reversing polarity. Ans. (a) —13.2V; (b) 55.5ms

7.42  Find the unit-impulse response of the circuit of Fig. 7-44; i.e., v, for v; = §(¢) (a unit-area narrow voltage
pulse).

R 1
Ans. vy = —R% [5(:) “RC e—’/<RlC>u(z)]

—_—
Ry
C y R,
+ v, — — —o—9
i +
vy v,

Fig. 7-44

7.43 In the circuits of Fig. 7-45, RC =5x 1077 and v;(¢) = 10 + cos (10007) + 3 cos (2000%). Find v,(2).

Assume tan 6 ~ 6 when 6 < 1°. Ans. vy(1) ~ 10 + cos[1000(z — 10%)] + 3 cos[2000(z — 107%)] =
v (£ —107%)
Rl
i ANV
C R R, A
s NN -
v <+> - v +A —
12 2 n :
R B
R _‘, C v, + C [$)
(@) (®)
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7.44

7.45

7.46

7.47

The input voltage in the circuits of 7-45 is a weighted sum of sinusoids with the highest frequency f, Hz.
Assuming that RC < 1/(360 f,), find v,(?). Ans.  vy(t) = vi(t —2RC)

Find the relationship between v, and v; in the circuit of Fig. 7-46.

v
dt

Ans. vy, + RC = 2u,

Fig. 7-47
Fig. 7-46
In the circuit of Fig. 7-47, find the differential equation relating v, to v;. Compare with the circuit of

Fig. 7-45(a) of Example 7.17.

d’U2 _ 1 dUl
AI’ZS. (%) -‘r‘RCW—i(Ul RC E)

In the circuit of Fig. 7-48, find the relationship between v, and v;.

d C d
Ans. U2+R1C1 %:—FL<’U1 —R2C2 ﬂ)
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7.48

7.49

7.50

7.51

FIRST-ORDER CIRCUITS [CHAP. 7

In the circuit of Fig. 7-49, let k = 0. Find v and i after the switch is closed at 1 = 0.
Ans. v=e"'i=1-05¢"

Show that the segment of the circuit enclosed by the dashed box in the circuit of Fig. 7-49 is equivalent to an
inductor with value L = 1/(1 — k) H. Hint: Write KVL between terminals AB of the dashed box.

The switch in the circuit of Fig. 7-49 is closed at t =0. Find v at ¢ > 0 for the following values of &:
(@ 0.5, (b 1, () 2. Ans. (@) v=e? B)v=1; () v=e

Find i, the current drawn from the battery, in Problem 7.50.
Ans. (@) i=1-05"% () i=05 (¢) i=1-0.5¢



CHAPTER 8

Higher-Order Circuits
and Complex Frequency

8.1 INTRODUCTION

In Chapter 7, RL and RC circuits with initial currents or charge on the capacitor were examined and
first-order differential equations were solved to obtain the transient voltages and currents. When two
or more storage elements are present, the network equations will result in second-order differential
equations. In this chapter, several examples of second-order circuits will be presented. This will
then be followed by more direct methods of analysis, including complex frequency and pole-zero plots.

8.2 SERIES RLC CIRCUIT

The second-order differential equation, which will be examined shortly, has a solution that can take
three different forms, each form depending on the circuit elements. In order to visualize the three
possibilities, a second-order mechanical system is shown in Fig. 8-1. The mass M is suspended by a
spring with a constant k. A damping device D is attached to the mass M. If the mass is displaced
from its rest position and then released at r =0, its resulting motion will be overdamped, critically
damped, or underdamped (oscillatory). Figure 8-2 shows the graph of the resulting motions of the
mass after its release from the displaced position z; (at ¢t = 0).

LS
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oscillatory

criticalty
-z damped

Fig. 8-2

The series RLC circuit shown in Fig. 8-3 contains no voltage source. Kirchhoff’s voltage law for
the closed loop after the switch is closed is

vp+vr+ve=0

. di 1 (.
or RI+LE+EJldt_

Differentiating and dividing by L yields
d’i iR R di . L —o
d? " Ldt

A solution of this second-order differential equation is of the form i = 4,¢"’ 4+ 4,¢™'. Substituting this
solution in the differential equation obtains

T

Fig. 8-3

R 1 R 1
sitf 2 o 2 o g
Ale <S1+L LC)+A2€ <S2+L52+LC> O

that is, if s; and s, are the roots of s+ (R/L)s+(1/LC) =0,

G R R 1 s R R 1 4
1= 751 or) 1c- ¢ 2= 751 or) c= ¢

where o = R/2L, B= /& — &}, and wy = 1/+/LC
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Overdamped Case (o > wy)
In this case, both @ and 8 are real positive numbers.

i= A TP 4,0 TP = o7 (4, 6P 4 Ay P

EXAMPLE 8.1 A series RLC circuit, with R =200, L =0.10H, and C = 13.33 uF, has an initial charge on the
capacitor of Qp = 2.67 x 1073 C. A switch is closed at r =0, allowing the capacitor to discharge. Obtain the
current transient. (See Fig. 8-4.)

For this circuit,

R 1
@=pp =105 W =75=75x10s7  and  f= o’ —f=5005"

Then, i= 6710001(14165001 +A2€75001)

The values of the constants 4; and A4, are obtained from the initial conditions. The inductance requires that

i(0Y) = i(07). Also the charge and voltage on the capacitor at r=0" must be the same as at +=0", and
ve(07) = Qy/C =200V. Applying these two conditions,

0=4,+ 4, and 42000 = —5004; — 15004,
from which 4, = £2, 4, = F2, and, taking 4, positive,
i = 26700 _ 9 15000 (p)

If the negative value is taken for A, the function has simply flipped downward but it has the same shape. The signs
of A, and A, are fixed by the polarity of the initial voltage on the capacitor and its relationship to the assumed
positive direction for the current.

Fig. 8-4

Critically Damped Case (o« = wy)

With o = w,, the differential equation takes on a different form and the two exponential terms
suggested in the preceding will no longer provide a solution. The equation becomes

d*i di =~ 5.

prl + 2« 7 +ai=0

and the solution takes the form i = e™*(4, + A,1).

EXAMPLE 8.2 Repeat Example 8.1 for C = 10 uF, which results in o = wy.
As in Example 8.1, the initial conditions are used to determine the constants. Since i(07) = i(0"),
0= [Al + Az(o)] and Al =0. Then,
di _ d —at _ —at —at
E_E(Azle )= Ay(—ate™™ + )
from which A, = (di/df)|p+ = £2000. Hence, i = £20007¢'*"" (A) (see Fig. 8-5).
Once again the polarity is a matter of the choice of direction for the current with respect to the polarity of the
initial voltage on the capacitor.
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) -“"/r—\
0 :

3

Fig. 8-5

The responses for the overdamped and critically damped cases plotted in Figs. 8-4 and 8-5, respec-
tively, are quite similar. The reader is encouraged to examine the results, selecting several values for ¢,
and comparing the currents. For example, find the time at which the current in each of the two cases
reaches the values of 1.0mA and 1.0pA. Also, in each case, find #; for the maximum current.

Underdamped or Oscillatory Case (o < wg)
When a < w, s; and s, in the solution to the differential equation suggested in the preceding are

complex conjugates s; = & +jB and 5, = & — jB, where f is now given by ,/w} —@?. The solution can
be written in the exponential form

i= é’iat(Alé’jﬁr + Azeijﬁl)
or, in a readily derived sinusoidal form,

i = e “(A5cos Bt + Ay sin Br)

EXAMPLE 8.3 Repeat Example 8.1 for C = 1 pF.

As before,
R 1
o =-—=1000s"" ws=—=10"s%  B=+107 — 10° = 3000 rad/s
2L LC
Then, i = e 194, cos 30007 + A, sin 3000¢)

The constants A5 and A, are obtained from the initial conditions as before, i(07) = 0 and v,(07) =200V. From
this A; =0 and 44, = £0.667. Thus,

i = £0.667¢7 1% (sin 30007) (A)

See Fig. 8-6. The function +0.667¢ % shown dashed in the graph, provides an envelope within which the
sine function is confined. The oscillatory current has a radian frequency of S(rad/s), but is damped by the expo-
nential term e,

8.3 PARALLEL RLC CIRCUIT
The response of the parallel RLC circuit shown in Fig. 8-7 will be similar to that of the series RLC

circuit, since a second-order differential equation can be expected. The node voltage method gives

v 1 [ dv
4 = b
R+LJ0vdt+Cdt 0 1)

Differentiating and dividing by C yields

&_’_L@_’_L_O
d*  RCdt LC

A solution is of the form
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0.667 N\

- - - ~
”~
”~
7
7
7
7
7
Ve
0667

Fig. 8-6

v=Ae" + Aye™ )

1 [/ 1\ 1
where S :_WjL (m> _R:_OhL /az—wé
2

1 1 1
Y I DRI TSR O¥-
2= 73RC (2RC> L™ TYTVE T

where @« = 1/2RC and wy = 1/+/LC. Note that «, the damping factor of the transient, differs from « in

the series RLC circuit.
v
3
+
CmQ
=

Fig. 8-7

The transient response is easiest to visualize by assuming an initial charge Q, on the capacitor and a

switch that closes at t = 0. However, a step function voltage applied to the circuit will initiate the same
transient response.

Overdamped Case (¢ > w?)

In this case, the solution (2) applies.

EXAMPLE 8.4 A parallel RLC circuit, with R =10002, C =0.167uF, and L = 1.0H, has an initial voltage
Vo = 50.0V on the capacitor. Obtain the voltage v(z) when the switch is closed at # = 0.
We have

1 2 6 2 1 6
=——=1299%4 =8. 1 o= — . 1
o 3 99 o 8.96 x 10 wy 5.99 x 10
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Since o > w}, the circuit is overdamped and from (2) we have

5] = —a+ /o —w} = —1271 and szz—a—,/(xz—wé:—47l7

dv

At t=0, Vo=A,+ 4, and b

=s514) + 54,
=0

From the nodal equation (/), at # = 0 and with no initial current in the inductance L,

V() d’U_ dU o VO
RTCT=Y " Gl T TRe

Solving for 4,

_ Vols2 +1/RC)
a Sy — 81

A, =1553 and A, =V, — A4, = 50.0 — 155.3 = —105.3

Substituting into (2)
v=1553¢"171 — 1053717 (V)
See Fig. 8-8.

155.3¢ -1271t

50.0

-50.0 =

-105.3¢ 4117t

—-105.3

Fig. 8-8

Underdamped (Oscillatory) Case (w% > o)

The oscillatory case for the parallel RLC circuit results in an equation of the same form as that of
the underdamped series RLC circuit. Thus,

v=-e"*(4; coswyt + A, sin wyt) )

where & = 1/2RC and w; = \/wj — . o, is a radian frequency just as was the case with sinusoidal

circuit analysis. Here it is the frequency of the damped oscillation. It is referred to as the damped
radian frequency.

EXAMPLE 8.5 A parallel RLC circuit, with R =200, L =0.28 H, and C = 3.57uF, has an initial voltage
Vo = 50.0V on the capacitor. Obtain the voltage function when the switch is closed at = 0.
1 1 1 1

= = = = = =10°
* T 2RC T 2(200)3.57 x 10°9) LC ~ (0.28)(3.57 x 107)

700 o> =49 x 10° wi

Since a)% > o, the circuit parameters result in an oscillatory response.
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s = \Jof —a? = /100 — (49 x 10%) = 714

At t =0, V) = 50.0; hence in (3) 4, = V,, = 50.0. From the nodal equation

VO 1 ! dv
?+ZJO Ud["‘CE—O
dv _ VO
dt|i=0"  RC

at 1 =0,

Differentiating the expression for v and setting r = 0 yields

dv V
E =0 = LD[[Az — O(A] or wdAZ — (XAl = —R—g
Since 4; = 50.0,
—(Vo/RC) + V,
a4y = “VVROF Vo4
Wy
and so v=1e""%(50.0cos 7147 — 49.0sin 7147) (V)

The critically damped case will not be examined for the parallel RLC circuit, since it has little or no
real value in circuit design. In fact, it is merely a curiosity, since it is a set of circuit constants whose
response, while damped, is on the verge of oscillation.

8.4 TWO-MESH CIRCUIT

The analysis of the response for a two-mesh circuit which contains two storage elements results in
simultaneous differential equation as shown in the following.

7 R,

R,
+
. . L, 2
V' i
-T L,

Fig. 8-9

For the circuit of Fig. 8-9, choose mesh currents i; and i,, as indicated. KVL yields the two first-
order differential equations

di
R1i1+Llj+R1i2=V (4)
. . diy
Riiy + (R + Ry)ir + Ly o=V (5
which must be solved simultaneously. To accomplish this, take the time derivative of (4),
di, d*i, d

i
R =4 L, — + R, 712:

dt dar 0 ©

and then eliminate i, and di,/dt between (4), (5), and (6). The following result is a second-order
equation for ij, of the types treated in Sections 8.2 and 8.3, except for the constant term on the right:
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d*iy, R\Ly+R,L,+R/Lydiy, RR, . RV
anh an i—
dr? LiL, dt ' LiL, ' LL,

)

The steady-state solution of (7) is evidently i;(c0) = V/Ry; the transient solution will be determined
by the roots s; and s, of

@ RLitRL + Ry RiRy

X =0
L\L, ' L\L,
together with the initial conditions
di V
(07 =0 L=
40" dr |o* T L,

(both i; and i, must be continuous at t = 0). Once the expression for 7; is known, that for i, follows
from (4).

There will be a damping factor that insures the transient will ultimately die out. Also, depending
on the values of the four circuit constants, the transient can be overdamped or underdamped, which is
oscillatory. In general, the current expression will be

i, = (transie t)—i—V
11 = (transien e
1 R,

The transient part will have a value of —V/R; at t = 0 and a value of zero as t — oo.

8.5 COMPLEX FREQUENCY

We have examined circuits where the driving function was a constant (e.g., V' = 50.0 V), a sinusoidal
function (e.g., v = 100.0sin (5007 + 30°) (V), or an exponential function, e.g., v = 10e™>" (V). In this
section, we introduce a complex frequency, s, which unifies the three functions and will simplify the
analysis, whether the transient or steady-state response is required.

We begin by expressing the exponential function in the equivalent cosine and sine form:

/) — cos (ot + ¢) + jsin (ot + ¢)

We will focus exclusively on the cosine term cos (w? + ¢) = Re e/ and for convenience drop the
prefix Re. Introducing a constant 4 and the factor e”,

AT = A% cos(wt+P)  Ae TV = gee  where s = 0 + jo

The complex frequency s = o + jo has units s™!, and w, as we know, has units rad/s. Consequently,
the units on o must also be s~'. This is the neper frequency with units Np/s. If both ¢ and w are

Vi

Fig. 8-10
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nonzero, the function is a damped cosine. Only negative values of o are considered. If o and w are zero,
the result is a constant. And finally, with @ = 0 and o nonzero, the result is an exponential decay
function. In Table 8-1, several functions are given with corresponding values of s for the expression Ae™.

Table 8-1
S s A
10e~ —5+j0 10
5¢0s (5007 + 30°) 0+ 500 5
2¢ ¥ cos (1007 — 45°) | =3 +,100 2
100.0 0+ /0 100.0

When Fig. 8-10 is examined for various values of s, the three cases are evident. If o = 0, there is no
damping and the result is a cosine function with maximum values of £V, (not shown). If @ =0, the
function is an exponential decay with an initial value V,,. And finally, with both @ and ¢ nonzero, the
damped cosine is the result.

8.6 GENERALIZED IMPEDANCE (R, L, C) IN s-DOMAIN

A driving voltage of the form v = V" applied to a passive network will result in branch currents
and voltages across the elements, each having the same time dependence ¢; e.g., Ie/Ve™, and V,e/?e™.
Consequently, only the magnitudes of currents and voltages and the phase angles need be determined
(this will also be the case in sinusoidal circuit analysis in Chapter 9). We are thus led to consider the
network in the s-domain (see Fig. 8-11).

i, = Leitelo + ot I(s)=1,2%

v = Vel +or V(s) = V,, L°

+ - + -
v, = Vyelfeilo +jol Vy(s) =V, A
(a) Time domain (b) s-Domain

Fig. 8-11

A series RL circuit with an applied voltage v = V,,e/¢® will result in a current i = ,,¢’Ve¥ =1,,¢",
which, substituted in the nodal equation
di

= Vme‘](PeSf

Ri+ L
1+ i

will result in

RI, e =sLI, e = Ve from which I, = V"
R+sL

Note that in the s-domain the impedance of the series RL circuit is R +sL. The inductance there-
fore has an s-domain impedance sL.
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EXAMPLE 8.6 A series RL circuit, with R = 10 Q and L = 2 H, has an applied voltage v = 10 e~ cos (107 + 30°).
Obtain the current i by an s-domain analysis.

v=10 {3OOGS[=R1'+L%: 10[—{—2%
Since i = Ie¥,
10 /30°
10 /30° €™ = 107e™ + 2sle™ or I=
10+ 2s

Substituting s = —2 + 10,

= 10@, :10,@:0.48z—43.30
10 +2(—2+,10) _ 6+,20

Then, i = I = 0.48¢ % cos (107 — 43.3°) (A).

1

EXAMPLE 8.7 A series RC circuit, with R = 10 Q2 and C = 0.2 F, has the same applied voltage as in Example 8.6.
Obtain the current by an s-domain analysis.
As in Example 8.6,

1
v=10 /30°¢% = Ri—i—EJidt: 10i+5Jidz

Since i = Ie¥,

10 /30°¢" = 101 —i—é Ie™ from which I= 10 /30° =1.01 /32.8°
S 10+ 5/s

Then, i = 1.01e ¥ cos (107 + 32.8°) (A).

Note that the s-domain impedance for the capacitance is 1/(sC). Thus the s-domain impedance of
a series RLC circuit will be Z(s) = R+ sL + 1/(sC)

8.7 NETWORK FUNCTION AND POLE-ZERO PLOTS

A driving voltage of the form v = Ve* applied to a passive network will result in currents and
voltages throughout the network, each having the same time function ¢*; for example, Ie’V¢®. There-
fore, only the magnitude / and phase angle i need be determined. We are thus led to consider an
s-domain where voltages and currents are expressed in polar form, for instance, V /6, I / ¥, and so on.
Figure 8-12 suggests the correspondence between the time-domain network, where s = o + jw, and the

i=Jejtest I(s) = 1LY

v = Vest V(s) = vA°
(a) Time domain (b) s-Domain

Fig. 8-12
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s-domain where only magnitudes and phase angles are shown. In the s-domain, inductances are
expressed by sL and capacitances by 1/(sC). The impedance in the s-domain is Z(s) = V(s)/I(s).

A network function H(s) is defined as the ratio of the complex amplitude of an exponential output
Y(s) to the complex amplitude of an exponential input X(s) If, for example, X(s) is a driving voltage
and Y(s) is the output voltage across a pair of terminals, then the ratio Y(s)/X(s) is nondimensional.

The network function H(s) can be derived from the input-output differential equation

dny dnfly dy dmx dmflx dx
ay W‘Fan—l i1 +-ta E“"aﬂy:bm W"'bm—l W"'"""bl E'Fbox

When x() = Xe* and y(1) = Ye*,
(ansn + an—lsn_l +ootas+ aO)QSt = (bmsm + bm—lsm_l +oee b]S + bO)eSt
Then,

Y as"+ a, "4 as+ ag

H(s) = =
(S) X(S) bmsm + bm—lsm_l +---+ bls + bO

In linear circuits made up of lumped elements, the network function H(s) is a rational function of s
and can be written in the following general form

(s—2z)8—-2)---(s—2,)

H(s) =k
(s—p)s—p)---(s—p)
where k is some real number. The complex constants z,, (m = 1,2, ..., u), the zeros of H(s), and the
p,(m=1,2,...,v) the poles of H(s), assume particular importance when H(s) is interpreted as the ratio

of the response (in one part of the s-domain network) to the excitation (in another part of the network).
Thus, when s = z,,, the response will be zero, no matter how great the excitation; whereas, when s = p,,
the response will be infinite, no matter how small the excitation.

EXAMPLE 8.8 A passive network in the s-domain is shown in Fig. 8-13. Obtain the network function for the
current I(s) due to an input voltage V(s).

e _ 1
"o =ve =79
58\ /20
. (?) (?) s2+8s+12
Since Z(S) =25 —+ ﬁ = (25) W
3 s
we have
2
s*+ 12
HE) =09 679
y
((xs) 2250

+
Vis) <‘> Ss j 20

Fig. 8-13
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The numerator of H(s) in Example 8.8 is zero when s = +jv/12. Consequently, a voltage function
at this frequency results in a current of zero. In Chapter 12 where series and parallel resonance are
discussed, it will be found that the parallel LC circuit is resonant at w = 1/+/LC. With L = % H and
C =5%F, w=+12rad/s.

The zeros and poles of a network function H(s) can be plotted in a complex s-plane. Figure 8-14
shows the poles and zeros of Example 8.8, with zeros marked ©® and poles marked x. The zeros occur
in complex conjugate pairs, s = +/+/12, and the poles are s = —2 and s = —6.

Jw, rad/s
vi2
)
H(s) = v(s)
YLl 1 ye I
~6 -2 o, Np/s
~ivV12
Fig. 8-14

8.8 THE FORCED RESPONSE

The network function can be expressed in polar form and the response obtained graphically. Be-
fore starting the development, it is helpful to recall that H(s) is merely a ratio such as Vy(s)/V;(s),
L,(s)/V,(s), or I,(s)/I;(s). With the polynomials factored,

(s—z)s—2) --(s—2,)
5—P)GS—2)---(5—p,)

Now setting (s —z,,) = N, &(m =1,2,...,n)and (s —p,) =D, @(n =1,2,...,v), we have
(N1 [a)(Ns [oy) - (N [o) NNy
(D) [B)(Dy [B2)-(D /B - DDy

It follows that the response of the network to an excitation for which s = o + jw is determined by
measuring the lengths of the vectors from the zeros and poles to s as well as the angles these vectors make
with the positive o axis in the pole-zero plot.

H(s) =k

N,
H(s) =k o [t ta) =Bt +B)

EXAMPLE 8.9 Test the response of the network of Example 8.8 to an exponential voltage excitation v = le*,
where s = 1 Np/s.

Locate the test point 1 + jO on the pole-zero plot. Draw the vectors from the poles and zeros to the test point
and compute the lengths and angles (see Fig. 8-15). Thus,

Ny =N,=+13,D,=3,D,=7,8,=8,=0, and o] = —a, = tan"" /12 = 73.9°

WIH13) /0° — 0° = 0.248

Hence, H(1) = (0.4) 37
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X

Fig. 8-15

The result implies that, in the time domain, i(¢) = 0.248v(¢), so that both voltage and current become
infinite according to the function ¢'’. For most practical cases, o must be either negative or zero.

The above geometrical method does not seem to require knowledge of the analytic expression for
H(s) as a rational function. It is clear, however, that the expression can be written, to within the
constant factor k, from the known poles and zeros of H(s) in the pole-zero plot. See Problem 8.37.

8.9 THE NATURAL RESPONSE

This chapter has focused on the forced or steady-state response, and it is in obtaining that response
that the complex-frequency method is most helpful. However, the natural frequencies, which charac-
terize the transient response, are easily obtained. They are the poles of the network function.

EXAMPLE 8.10 The same network as in Example 8.8 is shown in Fig. 8-16. Obtain the natural response when a
source V(s) is inserted at xx’.

2540

¥(s)

Fig. 8-16
The network function is the same as in Example 8.8:

2+ 12

HE =09 5619

The natural frequencies are then —2 Np/s and —6 Np/s. Hence, in the time domain, the natural or transient current
is of the form

i,, = A1672t + A2€76t
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where the constants 4; and A, are determined by applying the initial conditions to the complete response, i = i, + iy,
where i, indicates the forced response.

EXAMPLE 8.11 The network of Fig. 8-16 is driven by current I(s) across terminals yy’. The network function is
H(s) = V(s)/I(s) = Z(s). The three branches are in parallel so that

_ 20s
S (s+2)(s+6)
20

H(s) = Z(s) =

1
Lildy
2.5 Ss

Again the poles are at —2 Np/s and —6 Np/s, which is the same result as that obtained in Example 8.10.

8.10 MAGNITUDE AND FREQUENCY SCALING
Magnitude Scaling

Let a network have input impedance function Z;,(s), and let K, be a positive real number. Then, if
each resistance R in the network is replaced by K, R, each inductance L by K,,,L, and each capacitance C
by C/K,,, the new input impedance function will be K,,Z;,(s). We say that the network has been
magnitude-scaled by a factor K,,,.

Frequency Scaling

If, instead of the above changes, we preserve each resistance R, replace each inductance L by L/K;
(K > 0), and replace each capacitance C by C/K;, then the new input impedance function will be
Z,(s/K;). That is, the new network has the same impedance at complex frequency K;s as the old
had ats. We say that the network has been frequency-scaled by a factor K;.

EXAMPLE 8.12 Express Z(s) for the circuit shown in Fig. 8-17 and observe the resulting magnitude scaling.

K
(KmR) —
Z(s) = K, Ls + — S5 — 1(’”|:LS+M]
K. R4 & R+ (1/Cs)
m CS
K, Ls
S = . Km
KmR : T FS
Oun———
Fig. 8-17

There are practical applications suggested by this brief exposure to magnitude scaling. For
example, if the input current to a network were greater than it should be, a factor K,, = 10 would reduce
the current to 1/10 of the former value.
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8.11 HIGHER-ORDER ACTIVE CIRCUITS

Application of circuit laws to circuits which contain op amps and several storage elements produces,
in general, several first-order differential equations which may be solved simultaneously or be reduced to
a higher-order input-output equation. A convenient tool for developing the equations is the complex
frequency s (and generalized impedance in the s-domain) as used throughout Sections 8.5 to 8.10.
Again, we assume ideal op amps (see Section 7.16). The method is illustrated in the following examples.

EXAMPLE 8.13 Find H(s) = V,/V; in the circuit of Fig. 8-41 and show that the circuit becomes a noninverting
integrator if and only if R|C| = R,C>.

Apply voltage division, in the phasor domain, to the input and feedback paths to find the voltages at the
terminals of the op amp.

1

At terminal A: VA = m Vl
. R,Cys
At terminal B: V= H—zT;Czs P
But V, = V. Therefore,
V2 _ 1 + R2 C2S

Vl o (1 =+ RICIS)chzs

Only if R;C; = R,C, = RC do we get an integrator with a gain of 1/RC
V, 1 I
—==—, =— dt
v, RCs 2= Re J Yl

—00

EXAMPLE 8.14 The circuit of Fig. 8-42 is called an equal-component Sallen-Key circuit. Find H(s) = V,/V;
and convert it to a differential equation.
Write KCL at nodes A and B.

Va—Vi Vai—Vp

At node A: R + I +V4—Vy)Cs=0
At node B: % + VgCs =0
Let 1 + Ry/R; =k, then V, = kVp. Eliminating V', and V' between the above equations we get
Vy k
Vi R2C% s+ (3 —k)RCs + 1
d*v dv
R2C2 2 —Re ™2 _
C Y + B —-kRC 7 + vy = kv

EXAMPLE 8.15 In the circuit of Fig. 8-42 assume R =2kQ, C = 10nF, and R, = R;. Find v, if v; = u(?).
By substituting the element values in H(s) found in Example 8.14 we obtain
Vy, 2
Vi 4x107102 42 x 1055+ 1

a? d
d—;f+5x 104%+25>< 10%, = 5 x 10%,

The response of the preceding equation for ¢ > 0 to v; = u(z) is
vy =2+ e ¥ (2coswt —2.31sinwt) = 2 + 3.055¢"% cos (wt + 130.9°)
where o = 25000 and @ = 21 651 rad/s.

EXAMPLE 8.16 Find conditions in the circuit of Fig. 8-42 for sustained oscillations in v,(¢) (with zero input) and
find the frequency of oscillations.
In Example 8.14 we obtained
Vy k
V, R2C%s2 4+ (3 —k)RCs+ 1




176

HIGHER-ORDER CIRCUITS AND COMPLEX FREQUENCY [CHAP. 8

For sustained oscillations the roots of the characteristic equation in Example 8.14 should be imaginary numbers.
This happens when k = 3 or R, = 2Ry, in which case w = 1/RC.

8.1

Solved Problems

A series RLC circuit, with R =3kQ, L = 10H, and C = 200 uF, has a constant-voltage source,
V=50V, applied at t =0. (a) Obtain the current transient, if the capacitor has no initial
charge. (b) Sketch the current and find the time at which it is a maximum.

R -1 2 1 -2 / -1
(a) a:i:ISOS wo:R:SOOs B=c?— i =1483s
The circuit is overdamped (@ > wy).
s =—a+pf=—-170s" §)=—a—f=-2983s"
and = Ay 1Ty gy 2083

Since the circuit contains an inductance, i(07) = i(07) = 0; also, Q(0T) = Q(07) = 0. Thus, at r = 0,
KVL gives

di di V

— = — = — = A

0—|—0—|—Ldl0+ V or Gl =T SA/s

Applying these initial conditions to the expression for i,

0=A4;(1)+ 4,(1)

5=—1.704(1) — 298.34,(1)
from which 4] = —4, = 16.9mA.

i= ]6.9(6—1.701‘ _ 6—298.3[) (mA)

(b) For the time of maximum current,
di _
dr

Solving by logarithms, t = 17.4ms. See Fig. 8-18.

0= —28.73¢ 11 4 50413028
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8.2

8.3

8.4

8.5

A series RLC circuit, with R = 50, L = 0.1 H, and C = 50 pF, has a constant voltage V' = 100V
applied at # = 0. Obtain the current transient, assuming zero initial charge on the capacitor.

R 1 , 1 5 2 .
a:i:2505 a)ozL—C:2.0>< 10° s B=a? —w}=;370.8rad/s

This is an oscillatory case (o < wy), and the general current expression is
i=e %4, cos370.8 1 + A, sin 370.87)
The initial conditions, obtained as in Problem 8.1, are

di
. + _ -
ioH=0 o

=1000A/s
0+

and these determine the values: 4, =0, 4, =2.70A. Then

i=eP%(2.70sin370.87) (A)

Rework Problem 8.2, if the capacitor has an initial charge Q, = 2500 uC.

Everything remains the same as in Problem 8.2 except the second initial condition, which is now

di| 0y di| 100 — (2500/50)
0+LE0++F—V r @l = o

=500A/s

The initial values are half those in Problem 8.2, and so, by linearity,

i=e P(1.355in370.87) (A)

A parallel RLC network, with R = 50.0 2, C =200 pF, and L = 55.6 mH, has an initial charge
Qo = 5.0mC on the capacitor. Obtain the expression for the voltage across the network.

1 -1 > 4 2
o 2RC 50s wp Ic 8.99 x 10" s

Since w3 > &, the voltage function is oscillatory and so w; = | J@} —o? =296rad/s. The general voltage
expression is

v=e"%(4, cos 2967 + A, sin 2961)
With Qp =5.0x 1072 C, V/y =25.0V. At:=0,v=250V. Then, 4, = 25.0.

d . - .
71; = —50e7" (A4, cos 2961 + A, sin 2961) + 296¢ " (— A4, sin 2961 4+ A, cos 2961)

Att=0, dv/dt = —Vy/RC = wyA, — aA;, from which 4, = —4.22. Thus,
v=e"(25.0c082961 — 4.225in2967) (V)

In Fig. 8-19, the switch is closed at 1 = 0. Obtain the current i and capacitor voltage v., for
t>0.

As far as the natural response of the circuit is concerned, the two resistors are in parallel; hence,
T=ReqC = (5Q2)2uF) =10ps

By continuity, v-(0%) = v(07) = 0. Furthermore, as t — oo, the capacitor becomes an open circuit, leav-
ing 20 Q in series with the S0 V. That is,

i(00) = % =25A ve(00) = (2.5A)10Q) = 25V
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8.6

8.7
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. .
™~ 2 uF

Fig. 8-19

Knowing the end conditions on v-, we can write
ve = [0e(0%) = ve(0o)le™" +ve(00) = 25(1 — ™) (V)

wherein ¢ is measured in ps.
The current in the capacitor is given by

d’UC _

[~ = C — =5 1/10 A
lc a1 e (A)
and the current in the parallel 10-Q2 resistor is

. (U _
e =19 =251 - (&)

Hence, i=ic+igq=2.51+¢"% (A)

[CHAP. 8

The problem might also have been solved by assigning mesh currents and solving simultaneous differ-

ential equations.

For the time functions listed in the first column of Table 8-2, write the corresponding amplitude

and phase angle (cosine-based) and the complex frequency s.

See columns 2 and 3 of the table.

Table 8-2
Time Function A @° S
i()=86.6A 86.6/0° A 0
i(f) = 15.0e 2100 (A) 15.0/0° A —2 x 10* Np/s
o(f) = 25.0 cos (2507 — 45°) (V) 250/=45° V | 4;250rad/s
o(f) = 0.50 sin (2507 + 30°) (V) 0.50/=60° V | £;250rad/s
i(7) = 5.0¢71%sin (501 +90°) (A) | 5.0/0° A —100 % j50 7!
i(f) = 3cos 50t + 4sin 50r  (A) 5/=53.13° A | +;50rad/s

For each amplitude and phase angle in the first column and complex frequency s in the second

column in Table 8-3, write the corresponding time function.

See column 3 of the table.

Table 8-3
A/¢° S Time Function
10/0° +j120m 10 cos 1207t
2/45° —i1207 2cos (12071 4 45°)
5/-90° —2 4 j50 5¢72 cos (50¢ — 90°)
15/0° —5000 £ j1000 | 15¢73%% ¢os 10007
100 /30° 0 86.6
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8.8

8.9

8.10

8.11

An amplitude and phase angle of 104/2/45°V has an associated complex frequency
s=—50+,100s"". Find the voltage at t = 10 ms.

o(f) = 10827 cos (1007 4+ 45°) (V)
At t=1072s, 1007 = 1rad = 57.3°, and so
v=10v2¢""°c0s102.3° = —1.83V

A passive network contains resistors, a 70-mH inductor, and a 25-pF capacitor. Obtain the
respective s-domain impedances for a driving voltage (a) v = 100sin (30074 45°) (V),
(b) v = 100e""% cos 3007 (V).

(a) Resistance is independent of frequency. At s =;300rad/s, the impedance of the inductor is
sL = (j300)(70 x 107%) = j21

and that of the capacitor is
1
— = —j133.3
sC /

(b) Ats=—100+,300s"",
sL = (=100 +7300)(70 x 107%) = =7 + 21

| |
1 — 40— /120
sC (=100 +,300)(25 x 10-9) J

For the circuit shown in Fig. 8-20, obtain v at t = 0.1s for source current (a) i = 10cos 2t (A),
(b) i =10e""cos2t (A).

2(s +2) s+3
Zi(s) =2 =4
n) =2+ "0 =)
(a) Ats=j2rad/s, Z;,(j2) =3.22/7.13°Q2. Then,
V=1Z;,, = (10 /0°)(3.22 /7.13°) = 32.2 /7.13° V or v=2322cos (2t +7.13°) (V)

and v(0.1) = 32.2cos (18.59°) = 30.5V.
(b) Ats=—1+,2s", Zi(—=1+,2)=3.14/11.31°Q. Then
V=1Z,=314/1131° V  or wv=314¢"cos2+11.31° (V)
and v(0.1) = 31.4¢7%! c0s22.77° = 26.2 V.

20 20 20
+ 20
) < —d 4
i v :: 2Q 3 1 H Z(s) /F\ 3
2s
[ o
Fig. 8-20 Fig. 8-21

Obtain the impedance Z;,(s) for the circuit shown in Fig. 8-21 at (a) s =0, (b) s =j4rad/s,
(c) Is| = o0.
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4
2(S+1)(§) §*+3s+4
Zin(s) =2+ =0 o
2(S+ 1)+§

(a) Z;,(0) =4, the impedance offered to a constant (dc) source in the steady state.

(4 +3(j4) + 4

b Zin(j4) =2
(b) in(/4) (A7 4412

=2.33/-29.05° Q

This is the impedance offered to a source sin4t or cos 4.

(¢) Zi,(00) =2%Q. At very high frequencies the capacitance acts like a short circuit across the RL branch.

8.12 Express the impedance Z(s) of the parallel combination of L =4H and C =1F. At what
frequencies s is this impedance zero or infinite?

_ @s)(1/s) S
T 4s+(1/s)  s240.25

Z(s)

By inspection, Z(0) = 0 and Z(oco) = 0, which agrees with our earlier understanding of parallel LC circuits at
frequencies of zero (dc) and infinity. For |Z(s)| = oo,

$+025=0 or s = +0.5rad/s

A sinusoidal driving source, of frequency 0.5 rad/s, results in parallel resonance and an infinite impedance.

8.13 The circuit shown in Fig. 8-22 has a voltage source connected at terminals ab. The response to
the excitation is the input current. Obtain the appropriate network function H(s).

response  I(s) 1
H(s) — —osponse. 18 1
®) excitation  V(s) Z(s)
Q+1/s)1) 8s+3 . 1 3s+1
Z(s) =2 = f hich H(s) = — =
O =24 /s+1 3sq1 [romwhic ©) =76 "8s13
Z 3
a® A 2 a
wmenf ¥V VV
1’ comm
$2¢ 1)
< +
1 b L V(s) 3 == vis) 216)
ANIF s’
b @= -
Fig. 8-22 Fig. 8-23

8.14 Obtain H(s) for the network shown in Fig. 8-23, where the excitation is the driving current I(s)
and the response is the voltage at the input terminals.

Applying KCL at junction a,

I(s) + 21(s) = g Vi) or  Vi(s)= ? I(s)
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At the input terminals, KVL gives

V(s) = 2sI(s) + V'(s) = <2s + %) I(s)
2
Then H(s) = % = 2 :_ 15

8.15 For the two-port network shown in Fig. 8-24 find the values of R;, R,, and C, given that the
voltage transfer function is

M Ye®_ 02

Vis) s*+3s+2

The impedance looking into xx is

, (1/sCYR; + Ry) R+ Ry
(1/SC) +R1 + R2 1 +(Rl +R2)CS

Then, by repeated voltage division,

Vo (Vo \(VYu\_( R Z' \_ RyJ/R +R)C
Vi a Vxx' V,‘ o Rl +R2 Z/+Sl _52+ 1 +L
C

R+ R)C

Equating the coefficients in this expression to those in the given expression for H,(s), we find:

1
Q Ry=—Q

C=-F R = 3

Wi W

8.16 Construct the pole-zero plot for the transfer admittance function

I > 425+ 17
H(s) = o(s):sz—i- S +
Vis)  s*+3s+2

In factored form,

(s+1+j4)s+ 1 —jd)
s+ Ds+2)

H(s) =

Poles exist at —1 and —2; zeros at —1 £ j4. See Fig. 8-25.
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~1+j4 @__4_ jw, rad/s

|
|
H(s) = | r
|
!

L,(s)/Vi(s)
_;g -1 o, Np/s
| -
|
' -
I

Fig. 8-25

8.17 Obtain the natural frequencies of the network shown in Fig. 8-26 by driving it with a conveniently
located current source.

Xy y
20
p
310 2
S
4s
M
Fig. 8-26

The response to a current source connected at xx’ is a voltage across these same terminals; hence the
network function H(s) = V(s)/I(s) = Z(s). Then,

LR U B $+2.55+ 1.5
Z(s) 1 2/s 2+4s \2 s+0.5
s+ 0.5 s+ 0.5
Th Z(s) =2 =2
s ©=0 e ms+15 P erDe+19)

The natural frequencies are the poles of the network function, s = —1.0 Np/s =2 and s = —1.5 Np/s.

8.18 Repeat Problem 8.17, now driving the network with a conveniently located voltage source.

The conductor at yy’ in Fig. 8-26 can be opened and a voltage source inserted. Then,
H(s) = I(s)/V(s) = 1/Z(s).

The impedance of the netework at terminals yy’ is
12/s) (4)52 +2.55+1.5
1+2/s s+2

1 1 s+2
Th Hes) = 1 — (1)__s+2
e ©=7 (4) 2 +255+ 1.5

Z(s)=2+4s+




CHAP. §] HIGHER-ORDER CIRCUITS AND COMPLEX FREQUENCY 183

8.19

8.20

The denominator is the same as that in Problem 8.17, with the same roots and corresponding natural
frequencies.

A 5000-rad/s sinusoidal source, V =100 /0°V in phasor form, is applied to the circuit of
Fig. 8-27. Obtain the magnitude-scaling factor K, and the element values which will limit the
current to 89 mA (maximum value).

At w = 5000rad/s,

(jooLs) (R + .L)

Zin :]a)Ll + ]a)](j
jow R+—
JoL; + +ja)C
, (j0.500)(0.40 — j0.80)
=70.250 =1.124 /69.15° Q@
S0+ 040 - 70,30

For |[V| =100V, |I] =100/1.124 = 89.0 A. Thus, to limit the current to 89 x 1073 A, the impedance must
be increased by the factor K, = 10°.

The scaled element values are as follows: R =10°(0.4Q)=400Q, L;=10°(50pH)= 50mH,
L, = 10°(100 pH) = 100 mH, and C = (250 pF)/10° = 0.250 pF.

Li=50 uH R=040Q

Ly;=100 uH ~ C =250 uF

AY1

Fig. 8-27

Refer to Fig. 8-28. Obtain H(s)=V,/V, for s=j4 x 10%rad/s. Scale the network with
K,, = 107 and compare H(s) for the two networks.

2 k)
+ yw +
2k
\7 0.5mH V,
0.5 mH
Fig. 8-28

At w =4 x 10°rad/s, X; = (4 x 10%)(0.5 x 10™%) =20002. Then,

v, 72000 1
Hs)=~2= 70 _ " /450
8 =¥, = 2000 2000 ~ 3 L

After magnitude scaling, the inductive reactance is 107°(20009)=2Q and the resistance is
1073(2kQ) = 2. Thus

H(s) = L

1
=— /45°
24,2 «/_j/
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8.21

8.22

8.23

8.24
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The voltage transfer function remains unchanged by magnitude scaling. In general, any dimensionless
transfer function is unaffected by magnitude scaling; a transfer function having units 2 is multiplied by K,,,;
and a function having units S is multiplied by 1/K,,.

A three-element series circuit contains R =5, L =4H, and C =391 mF. Obtain the series
resonant frequency, in rad/s, and then frequency-scale the circuit with Ky = 1000. Plot |Z(«w)|
for both circuits.

Before scaling,

1
wy = —— = 8rad/s and Z(wy) = R=5Q

VLC
After scaling,
4H 391 mF

wo = 10008 rad/s) = 8000rad/s  Z(wy) = R = 5

1Zl. @

40
30
20

10

._L)() i 1 i 1 !

05wy  0.707 wy wy 1.414 wy 2
4 5.656 8 11.312 16  rad/s
4000 5656 8000 11312 16 000 rad/s
Fig. 8-29

Thus, frequency scaling by a factor of 1000 results in the 5-Q impedance value being attained at 8000 rad/s
instead of 8rad/s. Any other value of the impedance is likewise attained, after scaling, at a frequency 1000
times that at which it was attained before scaling. Consequently, the two graphs of |Z(w)| differ only in the
horizontal scale—see Fig. 8-29. (The same would be true of the two graphs of 6z,.)

Supplementary Problems

In the RLC circuit of Fig. 8-30, the capacitor is initially charged to ¥, =200V. Find the current transient
after the switch is closed at = 0. Ans.  —2e7 %% 5in 10007 (A)

A series RLC circuit, with R =200, L = 0.1 H, and C = 100 puF, has a voltage source of 200V applied at
t = 0. Find the current transient, assuming zero initial charge on the capacitor.
Ans. 1.055(e73% — 71980 (A)

What value of capacitance, in place of the 100 uF in Problem 8.23, results in the critically damped case?
Ans. 10pF
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8.25

8.26

8.27

8.28

8.29

8.30

8.31

8.32

8.33

50
N 200 O r——-J\Mv—Y
iz
Iy 50
0.1 H
. 20 uF
Vo T 5 uF RY 0.1 H
Fig. 8-30 Fig. 8-31

Find the natural resonant frequency, |8|, of a series RLC circuit with R =200, L = 0.1 H, C = 5uF.
Ans. 1000 rad/s

A voltage of 10V is applied at = 0 to a series RLC circuit with R=5Q, L =0.1H, C =500 pF. Find the
transient voltage across the resistance. Ans.  3.60¢>'sin139¢ (V)

In the two-mesh circuit shown in Fig. 8-31, the switch is closed at t = 0. Find /| and i, for ¢ > 0.
Ans. i = 0.101e71% 4+ 9.899¢7%  (A), i, = —5.05¢7 1% + 5.00 4+ 0.05¢7%  (A)

A voltage has the s-domain representation 100 /30°V. Express the time function for (a) s = —2 Np/s,
(b) s=—14,5s"".  Ans. (a) 86.6¢7 2 (V); (b) 100e ' cos (5430 (V)

Give the complex frequencies associated with the current i(f) = 5.0 + 10e > cos (50 + 90°)  (A).
Ans. 0, =3+ j50s7!

A phasor current 25 /40° A has complex frequency s = —2 + 3 s”!. What is the magnitude of i(z) at
t=02s? Ans. 4.51A

Calculate the impedance Z(s) for the circuit shown in Fig. 8-32, at (a) s=0, (b) s=jlrad/s,
(¢) s=j2rad/s, (d) |s| = oc. Ans. (a) 1Q; (b) 1.58/18.43°Q; (¢) 1.84 /12.53°Q; (d) 2%

1 Q
1 ] Iy(s)
s2 s
s2
L
1Q 20 Vis) T
20

Fig. 8-32 Fig. 8-33

wid

The voltage source in the s-domain circuit shown in Fig. 8-33 has the time-domain expression
v;i(t) = 10e " cos 2t (V)
Obtain i,(7). Ans.  7.07¢ " cos (2t 4+98.13°) (A)

In the time domain, a series circuit of R, L, and C has an applied voltage v; and element voltages vg, v, and
ve.  Obtain the voltage transfer functions (a) Vg(s)/Vi(s), (b) V(s)/Vi(s).
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Rs/L 1/LC
Ans. (a) ; R/ T (b) 5 Ig i
St Ie St Ie

8.34  Obtain the network function H(s) for the circuit shown in Fig. 8-34. The response is the voltage V;(s).

(s+7—j2.65)(s + 7 +j2.65)

Ans. s+ 2)s+4)

Li(s)

Fig. 8-34

8.35  Construct the s-plane plot for the transfer function of Problem 8.34. Evaluate H(;3) from the plot.
Ans. See Fig. 8-35.

(7.02)(9.0) /2.86 + 38.91°

=3.50 /=51.41° Q
(3.61)(5.0) /56.31° 4 36.87°
~T+j2.65 N, j3=Tp

—7-j2.65 - —j3

Fig. 8-35
8.36  Obtain H(s) = V,(s)/I;(s) for the circuit shown in Fig. 8-36 and construct the pole-zero plot.

s(s” + 1.5)

Ans. H =
s © s+ 1

See Fig. 8-37.

8.37  Write the transfer function H(s) whose pole-zero plot is given in Fig. 8-38.

s> + 50s + 400

Ans. H(s) =k 53—
s= + 40s + 2000
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Jjw, radfs

L(s)

Vi(s) Ct) 0.5s 8 é

Fig. 8-36 Fig. 8-37

8.38 The pole-zero plot in Fig. 8-39 shows a pole at s = 0 and zeros at s = —50 £;50. Use the geometrical
method to evaluate the transfer function at the test point j100.
Ans. H(j100) = 223.6 /26.57°

jw, rad/s

j100 = 1P
Jw, rad/s
- /50
TR D

[
]
—O—@

~40 {-10 F o, Np/s P o, Np/s
I
20~ jao Y —F
—— —— -jj()
Fig. 8-38 Fig. 8-39

8.39 A two-branch parallel circuit has a resistance of 20 Q in one branch and the series combination of R = 10Q
and L = 0.1 H in the other. First, apply an excitation, I;(s), and obtain the natural frequency from the
denominator of the network function. Try different locations for applying the current source. Second,
insert a voltage source, V;(s), and obtain the natural frequency. Ans.  — 300 Np/s in all cases

8.40 In the network shown in Fig. 8-40, the switch is closed at r =0. At¢=0%,i=0 and

di

—=25A/s

dt /

Obtain the natural frequencies and the complete current, i = i, + i.

Ans.  —8.5Np/s, —23.5Np/s; i = —2.25¢ 5" —0.25¢ 2> +2.5 (A)
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8.41

8.42

8.43

8.44

8.45

8.46
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sV = 1® Ao s+20
Y -2 Z(s) F+32+198
Fig. 8-40

A series RLC circuit contains R=18, L=2H, and C =0.25F. Simultaneously apply magnitude and
frequency scaling, with K, = 2000 and K, = 10*.  What are the scaled element values?
Ans. 2000,0.4H, 12.5puF

At a certain frequency w;, a voltage V; =25 /0° V applied to a passive network results in a current
I, =3.85 /=30° (A). The network elements are magnitude-scaled with K,, = 10. Obtain the current
which results from a second voltage source, V, = 10 /45° V, replacing the first, if the second source fre-
quency is w, = 10°w,. Ans. 0.154 /15° A

In the circuit of Fig. 8-41 let R{C; = R,C, = 1073, Find vy for t>0 if: (a) vy = cos(10007)u(t),
(b) vy = sin (10007)u(?). Ans. (a) v, =sin(10007); (b)) v, =1 —cos(1000¢)

In the circuit of Fig. 8-42 assume R =2k, C =10nF, and R, = R; and v; = coswt. Find v, for the
following frequencies: (a) wy = 5 x 10*rad/s, (b) w; = 10° rad/s.
Ans. (a) vy =2sinwyt; (b)) vy = 0.555c0s (w1t — 146.3°)

v

Fig. 8-42

Noninverting integrators. In the circuits of Fig. 8-43(«) and 8-43(b) find the relationship between v, and v;.
Ans. (a) v; = (RC/2)dvy/dt;  (b) vy = 2RCdv,/dlt

In the circuit of Fig. 8-44 find the relationship between v, and v;. Show that for R;C; = R,C, we obtain
vy = Ryvi /(R + Ry).

dn d
Ans. R1R2(C1 + Cz) %‘i‘ (Rl + Rz)U2 = R1R2C1 %—F Rz’Ul
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R
MV i i
(4 C C [$)
Y1 C— vy R

(a) (%)
Fig. 8-43
8.47  In the circuit of Fig. 8-44 let R = 9kQ =9R,, C, = 100pF =9Cy, and v; = 10* V. Find i at 1 ms after
the switch is closed. Ans. i=1.0001 mA

R,

<0 A

1

Q=

Fig. 8-44

8.48 Lead network. The circuit of Fig. 8-45(a) is called a lead network. (a) Find the differential equation
relating v, to v;. (b) Find the unit-step response of the network with R; = 10kQ, R, = 1k, and
C=1pF. (¢) Let v; =coswt be the input and v, = A4 cos (wt + ) be the output of the network of Part
(b). Find 4 and 6 for w at 1, 100, 331.6, 1100, and 10°, all in rad/s. At what w is the phase at a maximum?

Ri+ R\ _du
R R,C)*

Ans. (a) &—f—(

1 _
7 (B) vy =37 (1 +10e 1001y, £)

I
=4 TR

()

1 100 331.6 1100 10°
0.091 0.128 0.3015 071 1

0.5° 39.8° 56.4° 39.8°  0.5°

Phase is maximum at w = 1004/11 = 331.6rad/s

8.49  Lagnetwork. The circuit of Fig. 8-45(b) is called a lag network. (a) Find the differential equation relating
vy to v;. (b) Find the unit-step response of the network with Ry = 10kQ, R, = 1k, and C = 1pF.
(¢) Let v; = coswt be the input and v, = A4 cos(wt — 6) be the output of the network of Part (). Find 4
and 6 for w at 1, 90.9, 301.5, 1000, and 10°, all in rad/s. At what w is the phase at a minimum?

dUl

dv 10 _
Ans. (a) vy + (R, +R2)C712:v1 +RC—E (b) vy = (1 17 ¢ 9°-°">u(z)
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© ol 90.9 301.5 1000 10°

1 0.71  0.3015 0.128 0.091
0.5° 39.8° 564° 39.8°  0.5°

Phase is minimum at w = 1000/+4/11 = 301.5rad/s
8.50 In the circuit of Fig. 8-46 find the relationship between v, and v, for (a) k = 10°, (b) k=10. 1In each
case find its unit-step response; that is, v, for v; = u(?).
d
Ans. (a) % +4x10%, = -4 x 1070, v, = —10(1 - 674X106[)u(l)

B D24 100 = 4100, 0= —10(1 - utr

10 £Q

(f) 12 1 MQ v “Z25nF kv v,

Fig. 8-46

[




CHAPTER 9

Sinusoidal Steady-
State Circuit Analysis

9.1 INTRODUCTION

This chapter will concentrate on the steady-state response of circuits driven by sinusoidal sources.
The response will also be sinusoidal.  For a linear circuit, the assumption of a sinusoidal source
represents no real restriction, since a source that can be described by a periodic function can be replaced
by an equivalent combination (Fourier series) of sinusoids. This matter will be treated in Chapter 17.

9.2 ELEMENT RESPONSES

The voltage-current relationships for the single elements R, L, and C were examined in Chapter 2
and summarized in Table 2-1. In this chapter, the functions of v and i will be sines or cosines with the
argument wt.  is the angular frequency and has the unit rad/s. Also, w = 2xf, where f is the frequency
with unit cycle/s, or more commonly hertz (Hz).

Consider an inductance L with i = I cos (wt + 45°) A [see Fig. 9-1(a)]. The voltage is

"
v, =L Z; — wLI[— sin (wt + 459)] = LI cos (wt + 1357 (V)

————— 1
— N
i + AN i
L ? oL i 1 1
-135° 45“\ 0 180° 360° wt
(a) (b)

Fig. 9-1

191
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A comparison of v; and i shows that the current /ags the voltage by 90° or 7/2 rad. The functions
are sketched in Fig. 9-1(b). Note that the current function i is to the right of v, and since the horizontal
scale is wt, events displaced to the right occur later in time. This illustrates that i /ags v. The horizontal
scale is in radians, but note that it is also marked in degrees (—135°, 180°, etc.). This is a case of mixed
units just as with wt+45°. It is not mathematically correct but is the accepted practice in circuit
analysis. The vertical scale indicates two different quantities, that is, v and i, so there should be two
scales rather than one.

While examining this sketch, it is a good time to point out that a sinusoid is completely defined when
its magnitude (V" or I), frequency (w or f), and phase (45° or 135°) are specified.

In Table 9-1 the responses of the three basic circuit elements are shown for applied current
i =1Icoswt and voltage v = Vcoswt. If sketches are made of these responses, they will show that
for a resistance R, v and i are in phase. For an inductance L, i lags v by 90° or /2 rad. And for a
capacitance C, i leads v by 90° or /2 rad.

Table 9-1
i =1Icoswt v =V coswt
|
14
UR+ R v, = RI cos wt ir :ﬁcosw
i
o . V (e}
v, 4L vy, = wLI cos (wt 4 90°) ir :—Lcos(a)z—90 )
1)

,ll
1
Ue = c ve=—c cos (wt — 90°) ic = wCV cos(wt 4 90°)

T

EXAMPLE 9.1 The RL series circuit shown in Fig. 9-2 has a current i = I'sinwz. Obtain the voltage v across the
two circuit elements and sketch v and .

. di .
vg = RIsin wt vr, :Lj;:wLIsm(wt—k%O)

v =wvg +v; = RIsinwt + oLl sin (wt + 90°)

+ o+
R Ur
o
L v
Fig. 9-2
Since the current is a sine function and
v = Vsin(wt+ 0) = Vsinwtcos + V cos wt sin § (1)

we have from the above

v = RI sin wt + wLI sin wt cos 90° 4+ wLI cos wt sin 90° 2
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Equating coefficients of like terms in (/) and (2),

Vsing = wll and Vcos® = RI

Then v =1,/ R? + (wL)* sin [wt + arctan (wL/R)]
L
and V=IJ/R+(wL)? and 6=tan"" ‘%

The functions i/ and v are sketched in Fig. 9-3. The phase angle 6, the angle by which 7 lags v, lies within the
range 0° < 6 < 90°, with the limiting values attained for oL <« R and wL > R, respectively. If the circuit had an
applied voltage v = V sin wt, the resulting current would be

vV
R

i:‘/ * o+ (L)

sin (wt — 6)

where, as before, § = tan™! (wL/R).

<

Fig. 9-3

EXAMPLE 9.2 If the current driving a series RC circuit is given by i = [ sin wt, obtain the total voltage across the
two elements.

vg = RI sin wt ve = (1/wC) sin (ot — 90°)

U:UR+U(j = VSIn(wt—@)

where V=1/R+ (1/wC)? and 6 =tan"! (1/wCR)

The negative phase angle shifts v to the right of the current i. Consequently i leads v for a series RC circuit. The
phase angle is constrained to the range 0° < 0 < 90°. For (1/wC) < R, the angle 6 = 0°, and for (1/wC) > R, the
angle 6 = 90°. See Fig. 9-4.
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9.3 PHASORS

A brief look at the voltage and current sinusoids in the preceding examples shows that the ampli-
tudes and phase differences are the two principal concerns. A directed line segment, or phasor, such as
that shown rotating in a counterclockwise direction at a constant angular velocity w (rad/s) in Fig. 9-5,
has a projection on the horizontal which is a cosine function. The length of the phasor or its magnitude
is the amplitude or maximum value of the cosine function. The angle between two positions of the
phasor is the phase difference between the corresponding points on the cosine function.

ﬂ(‘S
\

~

3
o
N

3
1

3m/2

2@ |— —

w!

Fig. 9-5

Throughout this book phasors will be defined from the cosine function. 1If a voltage or current is
expressed as a sine, it will be changed to a cosine by subtracting 90° from the phase.

Consider the examples shown in Table 9-2. Observe that the phasors, which are directed line
segments and vectorial in nature, are indicated by boldface capitals, for example, V, I. The phase
angle of the cosine function is the angle on the phasor. The phasor diagrams here and all that follow
may be considered as a snapshot of the counterclockwise-rotating directed line segment taken at # = 0.
The frequency f (Hz) and w (rad/s) generally do not appear but they should be kept in mind, since they
are implicit in any sinusoidal steady-state problem.

EXAMPLE 9.3 A series combination of R =102 and L =20mH has a current i = 5.0cos (500¢ + 10°) (A).
Obtain the voltages v and V, the phasor current I and sketch the phasor diagram.
Using the methods of Example 9.1,

vg = 50.0cos (5007 + 10°) v, =L i; = 50.0 cos (5007 + 100°)

d
v=wg + vy = 70.7cos (5007 + 55°) (V)
The corresponding phasors are

I1=50 /10° A and V=707 /55°V
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Table 9-2

Function Phasor Representation

v = 150cos (5007 + 45°) (V)

i = 3.0sin (20007 + 30°) (mA)
= 3.0cos (20007 — 60°) (mA)

1=30 /-60° mA

195

The phase angle of 45° can be seen in the time-domain graphs of i and v shown in Fig. 9-6(a), and the phasor

diagram with I and V shown in Fig. 9-6(b).

\'%
v
I\ |
N | o
| / >
I ! 1 i I I
"1 nadlls o 180° e W wt 10°
—»l 550 fe— | w
|
@ (b)

Fig. 9-6

Phasors can be treated as complex numbers. When the horizontal axis is identified as the real axis
of a complex plane, the phasors become complex numbers and the usual rules apply. In view of Euler’s

identity, there are three equivalent notations for a phasor.

polar form v="r /6
rectangular form V = V(cos 6 + jsin6)

exponential form vV =ve”

The cosine expression may also be written as

v =V cos(wt +0) = Re [Ve! 1] = Re[Ve/']

The exponential form suggests how to treat the product and quotient of phasors.

v, e X Vzeﬂ’z) + Vzej(f’l +02)’

IV [60(Vy [6) = V1V [0+ 6

Since
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and, since (V1e™)/(Vye/™) = (V,/V)e =%,

Vi o Vi/Vy [6,—6,
v, /6

The rectangular form is used in summing or subtracting phasors.

EXAMPLE 9.4 Given V|, =25.0 /143.13° and V, = 11.2 /26.57°, find the ratio V,/V, and the sum V| 4+ V,.

25.0 /143.13°
ViV, = 20 B335 553 /116.56° = —1.00 +j1.99
V=07 est /

Vi + V, = (=20.0 +/15.0) + (10.0 +j5.0) = —10.0 +20.0 = 23.36 /116.57°

9.4 IMPEDANCE AND ADMITTANCE

A sinusoidal voltage or current applied to a passive RLC circuit produces a sinusoidal response.
With time functions, such as v(¢) and i(¢), the circuit is said to be in the time domain, Fig. 9-7(a); and
when the circuit is analyzed using phasors, it is said to be in the frequency domain, Fig. 9-7(b). The
voltage and current may be written, respectively,

u(f) = Vcos(wt+60) =Re[Ve’] and V=V /0
i(t) = I cos (ot + ¢) = Re [Ie/] and I=171 @
The ratio of phasor voltage V to phasor current I is defined as impedance Z., that is, Z = V/I. The

reciprocal of impedance is called admittance Y, so that Y = 1/Z (S), where 1S = 1 Q™' = I mho. Y and
Z are complex numbers.

i), !

+
@ wr) RLC ' Z

(a) Time domain (b) Frequency domain

Fig. 9-7

When impedance is written in Cartesian form the real part is the resistance R and the imaginary part
is the reactance X. The sign on the imaginary part may be positive or negative: When positive, X is
called the inductive reactance, and when negative, X is called the capacitive reactance. ~ When the
admittance is written in Cartesian form, the real part is admittance G and the imaginary part is suscep-
tance B. A positive sign on the susceptance indicates a capacitive susceptance, and a negative sign
indicates an inductive susceptance. Thus,

7 =R+jX; and 7Z=R—jX¢
Y=G-jB; and Y =G+ /B¢
The relationships between these terms follow from Z = 1/Y. Then,

G —B

= — 7= and X=———
G+ B G+ B

R -X
G= e T2 and = Brxe X
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These expressions are not of much use in a problem where calculations can be carried out with the
numerical values as in the following example.

EXAMPLE 9.5 The phasor voltage across the terminals of a network such as that shown in Fig. 9-7(b) is
100.0 /45° V and the resulting current is 5.0 /15° A. Find the equivalent impedance and admittance.

V 100.0 /45°

_ Y IOV LS 560 /300 = 17.324+/10.0 €
1 50 /15 J
1

Y — =0.05 /=30 = (4.33 — j2.50) x 1072S

Thus, R =17.32Q, X; = 10.0Q, G =4.33 x 10728, and B, = 2.50 x 1072S.
Combinations of Impedances

The relation V =1Z (in the frequency domain) is formally identical to Ohm’s law, v = iR, for a
resistive network (in the time domain). Therefore, impedances combine exactly like resistances:

impedances in series Zw=72,+7,+---
imped . el 1 1 n 1 4
impedances in paralle — =4} ...
Zeq Zl Z2

In particular, for two parallel impedances, Z.q, = Z,Z,/(Z, + Z,).

Impedance Diagram

In an impedance diagram, an impedance Z is represented by a point in the right half of the complex
plane. Figure 9-8 shows two impedances; Z,, in the first quadrant, exhibits inductive reactance, while
Z,, in the fourth quadrant, exhibits capacitive reactance. Their series equivalent, Z; + Z,, is obtained
by vector addition, as shown. Note that the “vectors” are shown without arrowheads, in order to
distinguish these complex numbers from phasors.

iX. Q

Fig. 9-8

Combinations of Admittances
Replacing Z by 1/Y in the formulas above gives

L_1, 1,
qu Y1 Y2

admittances in parallel Yoq=Yi + Y, +---

admittances in series

Thus, series circuits are easiest treated in terms of impedance; parallel circuits, in terms of admittance.
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Admittance Diagram

Figure 9-9, an admittance diagram, is analogous to Fig. 9-8 for impedance. Shown are an admit-
tance Y; having capacitive susceptance and an admittance Y, having inductive susceptance, together
with their vector sum, Y| + Y,, which is the admittance of a parallel combination of Y; and Y,.

jB.

9.5 VOLTAGE AND CURRENT DIVISION IN THE FREQUENCY DOMAIN

In view of the analogy between impedance in the frequency domain and resistance in the time
domain, Sections 3.6 and 3.7 imply the following results.
(1) Impedances in series divide the total voltage in the ratio of the impedances:

V, Z, Z
L - V.=—"V
v,oz, °° Tz T
See Fig. 9-10.
+
—_— + . <
1 z v, ll, 113 1 1,
+
2| |V, \Y H ZiorY, [] Z,orY: U Z,orY,
Vr -
N _ o
Zn V,. I
Fig. 9-10 Fig. 9-11

(2) Impedances in parallel (admittances in series) divide the total current in the inverse ratio of the
impedances (direct ratio of the admittances):
L7, Y, Zg, Y,

I—\:ZZY—S or lr—Zr ITZ

See Fig. 9-11.

9.6 THE MESH CURRENT METHOD

Consider the frequency-domain network of Fig. 9-12.  Applying KVL, as in Section 4.3, or simply
by inspection, we find the matrix equation
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Z,, Z,, Z; ||] A
7y, Zy 1y || L |=|V,
Zy 71y, 71y || 1L \E

for the unknown mesh currents Iy, I, I;. Here, Zy; = Z, 4+ Zp, the self-impedance of mesh 1, is the sum
of all impedances through which I, passes. Similarly, Z,, = Zz+ Z + Zp and Zs3 = Z;, + Z; are the
self-impedances of meshes 2 and 3.

ZA Z(‘ ZE
vn # 9 ZB lz ZD 13 Ctb Vb
Fig. 9-12

The 1,2-element of the Z-matrix is defined as:
7, = Z =+ (impedance common to I; and I,)

where a summand takes the plus sign if the two currents pass through the impedance in the same
direction, and takes the minus sign in the opposite case. It follows that, invariably, Z;, = Z,;. In
Fig. 9-12, I; and I, thread Zj in opposite directions, whence

LZ,=27, =-Z;
Similarly,

7:=173 = Z + (impedance common to I} and I3) =0
Zyy =7y = Z + (impedance common to I, and I, = —Z

The Z-matrix is symmetric.
In the V-column on the right-hand side of the equation, the entries V, (k =1, 2, 3) are defined
exactly as in Section 4.3:

V. = Z =+ (driving voltage in mesh k)

where a summand takes the plus sign if the voltage drives in the direction of I, and takes the minus sign
in the opposite case. For the network of Fig. 9-12,

Vi=+V, V,=0 V3 =-V,

Instead of using the meshes, or “windows” of the (planar) network, it is sometimes expedient to
choose an appropriate set of loops, each containing one or more meshes in its interior. It is easy to see
that two loop currents might have the same direction in one impedance and opposite directions in
another.  Nevertheless, the preceding rules for writing the Z-matrix and the V-column have been
formulated in such a way as to apply either to meshes or to loops. These rules are, of course, identical
to those used in Section 4.3 to write the R-matrix and V-column.

EXAMPLE 9.6 Suppose that the phasor voltage across Zjg, with polarity as indicated in Fig. 9-13 is sought.
Choosing meshes as in Fig. 9-12 would entail solving for both I; and I,, then obtaining the voltage as
Vg =, —1))Zy. In Fig. 9-13 three loops (two of which are meshes) are chosen so as to make I; the only current
in Zg. Furthermore, the direction of I; is chosen such that Vz = 1;Zp. Setting up the matrix equation:
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Z,+Zg -7, 0 I -V,
—Z, Zy+Zc+Zp Zp L =]V,
0 Zp Zp+Zg I vV,

from which
Zs -V, -7, 0
VB:ZBIIZA_ Vo Zy+Zp+Zc Zy
1V, Zp Zp+Zg
where A, is the determinant of the Z-matrix.
Zs Zc Ze
— . o B o 1
T et ) SR
r _ I
vn Ci) ll VB TZB ZD I Ctbvb
+
Fig. 9-13

Input and Transfer Impedances

The notions of input resistance (Section 4.5) and transfer resistance (Section 4.6) have their exact
counterparts in the frequency domain. Thus, for the single-source network of Fig. 9-14, the input
impedance is

V, A
Zinput,r I_) g
-

A,

where ,, is the cofactor of Z,, in A,; and the transfer impedance between mesh (or loop) r and mesh (loop)
s 1s

Ztransfer,rs

vV, A,
I

where A,, is the cofactor of Z,, in A,.

Passive
Network,
[z}

Fig. 9-14

As before, the superposition principle for an arbitrary n-mesh or n-loop network may be expressed
as

:LJ’_"'J’_ Vi + Vi 4 Vit +...+L
Ztransfer, 1k Ztransfer, (k—Dk Zinput, k Ztransfer. (k+Dk Ztransfer,nk

Ik
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9.7 THE NODE VOLTAGE METHOD

The procedure is exactly as in Section 4.4, with admittances replacing reciprocal resistances. A
frequency-domain network with n principal nodes, one of them designated as the reference node,
requires n — 1 node voltage equations. Thus, for n = 4, the matrix equation would be

Yl 1 Y12 Yl3 Vl Il
Y2l Y22 Y23 V2 = IZ
Y31 Y32 Y33 V3 13

in which the unknowns, V;, V,, and V;, are the voltages of principal nodes 1, 2, and 3 with respect to
principal node 4, the reference node.

Y, is the self~admittance of node 1, given by the sum of all admittances connected to node 1.
Similarly, Y,, and Y33 are the self-admittances of nodes 2 and 3.

Y >, the coupling admittance between nodes 1 and 2, is given by minus the sum of all admittances
connecting nodes 1 and 2. It follows that Y, = Y,;. Similarly, for the other coupling admittances:
Y3 = Y3, Yo3 = Y3p. The Y-matrix is therefore symmetric.

On the right-hand side of the equation, the I-column is formed just as in Section 4.4; i.e.,

I, = Z (current driving into node k) k=1,2,3)

in which a current driving out of node k is counted as negative.

Input and Transfer Admittances
The matrix equation of the node voltage method,

[(YIIVI=10]
is identical in form to the matrix equation of the mesh current method,
[Z][] = [V]

Therefore, in theory at least, input and transfer admittances can be defined by analogy with input and
transfer impedances:

Il AY
Yinput,r = \7 = A
r r
L Ay

Ytransfer,rs = VA = A

where now A,, and A,, are the cofactors of Y, and Y, in Ay. In practice, these definitions are often of
limited use. However, they are valuable in providing an expression of the superposition principle (for
voltages);

| | P | | I
Vi=—1 4.4 k=1 4k 4 k] ot
eransfer,lk Ytransfer,(k—])k Yinput,k Ytransfer,(k+l)k Ytransfer,(n—]f)k
for k=1,2,...,n— 1. In words: the voltage at any principal node (relative to the reference node) is

obtained by adding the voltages produced at that node by the various driving currents, these currents
acting one at a time.

9.8 THEVENIN’S AND NORTON’S THEOREMS

These theorems are exactly as given in Section 4.9, with the open-circuit voltage V', short-circuit
current /', and representative resistance R’ replaced by the open-circuit phasor voltage V', short-circuit
phasor current I’, and representative impedance Z'. See Fig. 9-15.
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a 9 -0
z
Linear
Active v r <> z
Network
b _ -0
(a) Frequency-domain network (b) Thévenin equivalent (c) Norton equivalent
Fig. 9-15

9.9 SUPERPOSITION OF AC SOURCES

How do we apply superposition to circuits with more than one sinusoidal source? If all sources
have the same frequency, superposition is applied in the phasor domain. Otherwise, the circuit is solved
for each source, and time-domain responses are added.

EXAMPLE 9.7 A practical coil is connected in series between two voltage sources v; = Scosw;t and
vy, = 10 cos (wy? + 60°) such that the sources share the same reference node. See Fig. 9-54. The voltage difference
across the terminals of the coil is therefore v; — v,. The coil is modeled by a 5-mH inductor in series with a 10-Q
resistor. Find the current i(¢) in the coil for (¢) w; = w, = 2000rad/s and (b) w; = 2000rad/s, w, = 2w;.

(a) The impedance of the coil is R 4 jLw = 10 4710 = 10/2 /45°Q. The phasor voltage between its terminals is
V=V, —-V,=5-10 /60° = —j5+/3V. The current is
\Y —j5/3 —j8.66
= — = o =0.61 2—1350A
Z 1042 /45°  14.14 /45°
i=0.61cos (20007 — 135°)

(b) Because the coil has different impedances at w; = 2000 and w, = 4000 rad/s, the current may be represented in
the time domain only. By applying superposition, we get i = i; — i,, where i; and i, are currents due to v; and
vy, respectively.

Vi 5
L=—l=—"=035/-45°A, () =0. 20007 — 45°
=7 = Tog10 = 035 LASAL (0= 0.35¢05 20000 - 45°)
V2 10 i60(> ‘
L=_—=———==045 /=34 A 1) = 0.45 cos (40007 — 3.4°
? Z, 104,20 045 [=3.4° A, ir(¢) = 0.45 cos (4000 )

i =i — iy = 0.350s (20007 — 45°) — 0.45 cos (40007 — 3.4°)

Solved Problems

9.1 A 10-mH inductor has current i = 5.0 cos 2000z (A). Obtain the voltage v;.
From Table 9-1, v; = wLI cos (wt 4+ 90°) = 100 cos (20007 + 90°) (V). As a sine function,
vy = 100sin (20007 + 180°) = —1005sin 20007 (V)

9.2 A series circuit, with R =10 and L = 20mH, has current i = 2.0sin 5007 (A). Obtain total
voltage v and the angle by which 7 lags v.
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9.3

9.4

9.5

By the methods of Example 9.1,

500020 x 107%)
10 -

v =1/ R + (wL)* sin (ot + 0) = 28.3sin (5007 + 45°) (V)

It is seen that 7 lags v by 45°.

0 = arctan 45°

Find the two elements in a series circuit, given that the current and total voltage are
i =10cos (50007 — 23.13%) (A) v = 50cos (50007 4+ 30°) (V)

Since 7 lags v (by 53.13°), the elements are R and L. The ratio of Vi, to I, is 50/10. Hence,

50 5000L
o= R?4+(5000L)> and  tan53.13°=1.33 = =

Solving, R =3.02, L = 0.8 mH.

A series circuit, with R = 2.0 Q and C = 200 pF, has a sinusoidal applied voltage with a frequency
of 99.47MHz. If the maximum voltage across the capacitance is 24 V, what is the maximum
voltage across the series combination?

w="2nf = 6.25 x 10® rad/s
From Table 9-1, I, = ©CV¢ nax = 3.0A.  Then, by the methods of Example 9.2,

Vs = I B2+ (1/0C = (6 + (247 = 2474V

The current in a series circuit of R =5Q and L =30mH lags the applied voltage by 80°.
Determine the source frequency and the impedance Z.

From the impedance diagram, Fig. 9-16,
5+jX, =7 /80° X, =5tan80° = 28.4Q
Then 28.4 = (30 x 107%), whence w = 945.2rad/s and f = 150.4 Hz.
7Z=5+;284Q

80

X fp——— — —

Fig. 9-16 Fig. 9-17
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9.6

9.7

9.8

9.9
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At what frequency will the current lead the voltage by 30° in a series circuit with R =8 Q and
C =30uF?

From the impedance diagram, Fig. 9-17,

8—jXe=2Z /-30° - Xc=8tan(—30°) = —4.62Q
1

Th 42— 1
en 27/ (30 x 1079

or f=1149Hz

A series RC circuit, with R = 10 €, has an impedance with an angle of —45° at f{ = 500 Hz. Find
the frequency for which the magnitude of the impedance is (a) twice that at f;, (b) one-half that

at f].
From 10 — jX¢ = Z, /45°, Xc = 10Q and Z, = 14.14Q.

(a) For twice the magnitude,

10— jXo=2828 /6° or  Xo=+/(28.28)* — (10)*> =26.45Q

Then, since X is inversely proportional to f,

10 5 _
m—ﬁ or f2—189HZ

(b) A magnitude Z; = 7.07 2 is impossible; the smallest magnitude possible is Z = R =10 Q.

A two-element series circuit has voltage V.= 240 /0°V and current I = 50 /—60° A. Determine
the current which results when the resistance is reduced to () 30 percent, (b) 60 percent, of its
former value.

V240 /0°
Z=—=—""""— —48 /60°=240+j4.16 Q
I 50 /—60° +
(@) 30% x 240 =0.72  Z, =0.72+j4.16 =422 /80.2° Q
240 /0°
[ =——=— =568 /—80.2° A
"7 422 /80.2°
(b) 60% x 2.40 =144  Z, =144+ 416 =4.40 /70.9° Q

240 /0°
L=—""5"— _545/-709° A
27440 /70.9°

For the circuit shown in Fig. 9-18, obtain Z, and compute L.
For series impedances,
Z, =10 /0°+4.47 /63.4° =12.0+j4.0=12.65 /18.43° Q

V. 100 /0°
Z,, 12.65 /18.43°

Then | = =791 /=18.43° A

9.10 Evaluate the impedance Z; in the circuit of Fig. 9-19.

Z:¥:20 /60° =10.0 +17.3
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ﬁ. 00° Q
500 j80Q Z

AAN VNV s Jmssvmm——
4.47/63.4° Q —
25/-15° A+ 5045 V -

100/0° V

Fig. 9-18 Fig. 9-19

Then, since impedances in series add,

50+/80+2Z, =100+/17.3 or Z,=50+/93 Q

9.11 Compute the equivalent impedance Z., and admittance Y4 for the four-branch circuit shown in

Fig. 9-20.
Using admittances,
1 1
Y, =—=-j0.20S Y; =-—=0.067S
1 75 J 3775
1
Y,=—+—=0.05-;0.087S Y,=——=j0.10S
2751866 / ‘S50
Then Yoq=Y  + Y2+ Y54+ Y, =0.117 —j0.187 = 0.221 /=58.0° S
1
and Ly = Yo = 4.53 /58.0° Q

€q

1
— O ® ® ®
o-
-+
50 1"
p
v isa 3150 A< -i10 0
j8.66 01
O
Fig. 9-20

9.12 The total current I entering the circuit shown in Fig. 9-20is 33.0 /—13.0° A. Obtain the branch
current Iy and the voltage V.

V=1Z, =(33.0 /=13.0°)(4.53 /58.0°) = 149.5 /45.0° V

1
I, = VY; = (149.5 [45.0°)<E @) =997 /45.0° A

9.13 Find Z; in the three-branch network of Fig. 9-21, if I = 31.5 /24.0° A for an applied voltage
V =50.0 /60.0° V.
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Y= % =0.630 /=36.0° =0.510 —;0.370 S

I I
Th 0.510 — j0.370 = Y; 4+ — 4 ——
en J Y10 304730

whence Y; = 0.354 /—45° S and Z; = 2.0 +,2.0 Q.

o
R—
I 40 Q
s
v Z| :; 10 ﬂ
300
O
Fig. 9-21

9.14 The constants R and L of a coil can be obtained by connecting the coil in series with a known
resistance and measuring the coil voltage V., the resistor voltage V;, and the total voltage V'
(Fig. 9-22). The frequency must also be known, but the phase angles of the voltages are not

\

|

+ Vr - %\\0 (g ‘

+ Vv, - 1}(\ :’V ; > Wl
—_———— ¥

+ V| - r— —] (\}* I
10 0 | R jwL | |/

L_ [P — _l \ ~ I

10 R
Fig. 9-23

Fig. 9-22
known. Given that f =60Hz, V', =20V, V, =224V, and V' =36.0V, find R and L.
The measured voltages are effective values; but, as far as impedance calculations are concerned, it

makes no difference whether effective or peak values are used.
The (effective) current is I = V;/10 =2.0A. Then

22.4 36.0
Z,=55=1129  Zy=7,=180Q

From the impedance diagram, Fig. 9-23,
(18.0)* = (10 + R)* + (wL)*
(11.2)* = R* + (wL)*

where w = 2760 = 377rad/s. Solving simultaneously,
R=492Q L =267mH

9.15 In the parallel circuit shown in Fig. 9-24, the effective values of the currents are: 7, = 18.0 A,
I, =15.0A, Ir =30.0A. Determine R and X;.
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The problem can be solved in a manner similar to that used in Problem 9.14 but with the admittance

diagram.
The (effective) voltage is V' = [;(4.0) = 60.0 V. Then

I, Iy
Y, =-=2=0.300S Yoq =~ =0.500S Y, =-—=02508
Ty «“aTy "7 40
O l G
- I, Y, =0250S ——
Ir I ) '
* < o I
R xi v :: 400 > T l
v
- 7 B,
% %0.5( J}“) l L
0 & »
o
Fig. 9-24 Fig. 9-25

From the admittance diagram, Fig. 9-25,
(0.500)> = (0.250 + G)*> + B>
(0.300* = G* + B

which yield G = 0.195S, B; = 0.228S. Then

1 1
R=—=513Q and X;, =—5=7439Q
G we e,

ie., X, =439Q.

9.16 Obtain the phasor voltage V 45 in the two-branch parallel circuit of Fig. 9-26.

By current-division methods, I} = 4.64 /120.1° Aand I, = 17.4 /30.1° A. Either path AXB or path
AYB may be considered. Choosing the former,

Vs =Vax + Vyp = L20) — L(j6) = 92.8 /120.1° + 104.4 /—59.9° = 11.6 /—59.9° V

Yy
g +
; B
18/45° A C) "1 A B v oA
. j8.66 ()
20 0 j6Q T -j4 !
X - o
A ‘ .
X
Fig. 9-26 Fig. 9-27

9.17 In the parallel circuit shown in Fig. 9-27, V5, =48.3 /30° V. Find the applied voltage V.

By voltage division in the two branches:

—j4 | 78.66
\% =2 V=—YV S
AT 44 1+] BY 75 1 )8.66
1 8.6 |
d Vg =V —Vpy = - V= v
and so AB = Vax = VX (1 ¥ 5 +j8.66) Z0.268 + 1

or V = (=0.268 + 1)V 45 = (1.035 /105°)(48.3 /30°) = 50.0 /135° V
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9.18 Obtain the voltage V, in the network of Fig. 9-28, using the mesh current method

2100
‘P

10 ©

AAA
A A A4

+ V, -

Fig. 9-28

One choice of mesh currents is shown on the circuit diagram, with I5 passing through the 10-2 resistor
in a direction such that V, = I3(10) (V). The matrix equation can be written by inspection:

743 j5 5 I, 10 /0°
j5 1243 —-QC-2) (| L |=]|5 /30
5 -Q2-52) 17-j)2 I; 0

Solving by determinants,
T+j3 5 10 /0°
j5 124,73 5 /30°

5 242 0 667.96 /—169.09°
— = =0435 /—194.15° A
1534.5 /25.06°

STVTH3 S5 5
J5 1243 242
50 242 17-)2

and V, = I;(10) = 4.35 /—194.15° V.

In the netwrok of Fig. 9-29, determine the voltage V which results in a zero current through the

9.19
2 + 73 Q impedance.
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Choosing mesh currents as shown on the circuit diagram,
L |3+5 30 /0° 0
I, = = —Jj5 0 6=0
0 \% 10

Expanding the numerator determinant by cofactors of the second column,

—(30 /0°)

=5 6| |5+ 0] _ B )
0 10‘ ‘ -5 6‘ =0  whence V=354/450° V
9.20 Solve Problem 9.19 by the node voltage method.

The network is redrawn in Fig. 9-30 with one end of the 2 + j3 impedance as the reference node. By the
rule of Section 9.7 the matrix equation is

1 1 1

1,1 Vi 30 /0°
5Tt 3 <5+j5> ~ s
11 111 =30 /00 v
‘(5+rs) sttatellvd L7573
For node voltage V; to be zero, it is necessary that the numerator determinant in the solution for V vanish.
30 5& —0.200 +;0.200
| = =0  from which V=354 /45 V
—30 /0° v .
— 7 0.617 — j0.200

50/0° V

ref.

Fig. 9-30

Fig. 9-31

9.21 Use the node voltage method to obtain the current I in the network of Fig. 9-31.

There are three principal nodes in the network. The reference and node 7 are selected so that the node
1 voltage is the voltage across the j2-Q reactance.

1 1 Vi 50 /0°
5+j2+4 4 5

1 1 1 1 50 {9()0

4 4+—j2+2 Vv, 2

from which
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‘ 10 —0.250 ‘
v Jj25 0.750 +;0.500 13.52 /56.31°
I =

'0.450 ~70.500 —0.250 ‘ T 0.546 /—15.94°
~0.250  0.750 +0.500

- 2476 [12.25°
2. /90°

and

12.38 /=17.75° A

9.22 Find the input impedance at terminals ab for the network of Fig. 9-32.

) 1,
a 50720 S0
Y. o o o
1 2 M
20
% I $30 I $s50 1 Vo
> 4 > 4
T
b ref
Fig. 9-32

With mesh current I; selected as shown on the diagram.

8§—j2 -3 0
-3 845 -5

7 A Lo -5 7-;21 3155 /16.19°
imput. A T ‘8+/‘5 -5 ‘ T 452 /24.86°
)

=6.98 /—8.67°

=24.76 /12.25° V

Q

[CHAP. 9

9.23 For the network in Fig. 9-32, obtain the current in the inductor, I, by first obtaining the transfer

impedance. Let V=10 /30° V.
A, 3155 /16.19°

Ztransfer,lZ = A_12 - _‘ _3 -5 ‘
0 7-—,2
A 10 /30°
Then I,=0hL e

T Zvorrs 1445 /32.14°

9.24 For the network in Fig. 9-32, find the value of the source voltage V which results

Vo =5.0 /0° V.

= 1445 /32.14° Q

=0.692 /=2.14° A

in

The transfer impedance can be used to compute the current in the 2 — j2 Q impedance, from which V,

is readily obtained.

B, 3155 1615
transfer,13 — Al3 - 15 &

=210 /16.19°

Vo= (2= 2) = — Y (2= 2) = V(0.135 /—61.19°)

eransl‘er, 13
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Thus, if Vo =5.0 /0° V,

5.0 /0°
== —370 /61.19° V
0.135 /—61.19°

Alternate Method

The node voltage method may be used. V|, is the node voltage V, for the selection of nodes indicated in
Fig. 9-32.

1 1 1 \%

- 0
Vo=Vo=r—— -’51 - = V(0.134 /—61.15°)
5-j2°3°)5 5
1 L1y
js 5TsT2a

For Vy =5.0 /0° V,V =373 /61.15° V, which agrees with the previous answer to within roundoff errors.

9.25 For the network shown in Fig. 9-33, obtain the input admittance and use it to compute node

voltage V;.
L1l 1
10572 2
[N 1
A e
Vigpu1 = 5= 21 12 3”]4 01 _ 0311 /—49.97° s
11 - - -
2355 5o
I 5.0 /0°
v, =N [0

= =16.1 /49.97° V
Yinpu,1  0.311 /—49.97° [49.97°

-j10 Q

Fig. 9-33

9.26  For the network of Problem 9.25, compute the transfer admittance Y,nsrer. 12 and use it to obtain
node voltage V,.

Ay  0.194 /—55.49°
Y _ 7 = (.388 /—55.49° S
Ay —(=0.50) [=5549°
I
Vy=—1 =129 /5549° V
eransfer,lz

Ytransfer, 12 =
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9.27 Replace the active network in Fig. 9-34(a) at terminals ab with a Thévenin equivalent.

53 +j4)

Z =5+ 22 5504625 @
P53 tJ

The open-circuit voltage V' at terminals ab is the voltage across the 3 4 j4 Q impedance:

vV = (180+L4>(3+ i4) = 5.59 /26.56° V

jsQ

—tY"Y a 1 |, O a

= lx\ \ z
1040° v# 7 \, A4 Cﬁ)
/

b 0 b
(a) (b)
Fig. 9-34

9.28 For the network of Problem 9.27, obtain a Norton equivalent circuit (Fig. 9-35).

At terminals ab, I, is the Norton current I’. By current division,

po_ 10/ (3 +J4) —0.830 /—41.63° A

53 + /4
5Jr./( +../) 3459
349
l’ 4L
g0 g 500
—0a
w@® e v
gna g wa
r Cb z j24 0 j60
—) b X
Fig. 9-35 Fig. 9-36

The shunt impedance Z' is as found in Problem 9.27, Z' = 2.50 + j6.25 Q.

9.29 Obtain the Thévenin equivalent for the bridge circuit of Fig. 9-36. Make V' the voltage of a with
respect to b.

By voltage division in either branch,

_ 12424 30 +,60
Vax - (20 L) Vbx 80+ 160

33 424 (20 /0%
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12+/24 30 +j60
334,24 80+ 60

Hence, V=V, — V= (20 ﬁ)( ) =0.326 /169.4° V=V’

Viewed from ab with the voltage source shorted out, the circuit is two parallel combinations in series, and so

,21(124/24)  50(30 +60)

—=47.35 /26.81° Q
334,24 80— +/60) [2681°

9.30 Replace the network of Fig. 9-37 at terminals ab with a Norton equivalent and with a Thévenin

equivalent.
100 rl\ -j10 Q 3Q
a
\"% | 1
? b

10/0°

Fig. 9-37
By current division,
, 10 /0° 3+j4
I, =1 = - - =0.439 /105.26° A
5 (=/10)3 +/4) (3 —j6> flo5.26
10 4 —————=
3—j6

and by voltage division in the open circuit,

V=V =25 (10 o) = 3.68 /3603 V
1344

V' 368 /36.03°
Th 7/ =2 = 20 L0037/ 6903 @
" U~ 0439 /105.26°

See Fig. 9-38.

1 } O a -0 a
8.37/-69.23°
3.68/36.03° V 0.439/105.26° A 8.37/-69.23° )
O b O b
(a) Thévenin (b) Norton

Fig. 9-38
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9.32

9.33

9.34

9.35

9.36

9.37

9.38

9.39

9.40

9.41
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Supplementary Problems

Two circuit elements in a series connection have current and total voltage
i =13.42sin(500¢ — 53.4°) (A) v = 150sin (5007 + 10°) (V)
Identify the two elements. Ans. R=5Q,L=20mH

Two circuit elements in a series connection have current and total voltage
i=4.0cos (20007 4+ 13.2°) (A) v = 200sin (20007 4+ 50.0°) (V)
Identify the two elements. Ans. R=309,C =12.5pF

A series RC circuit, with R =27.5Q and C = 66.7 uF, has sinusoidal voltages and current, with angular
frequency 1500rad/s. Find the phase angle by which the current leads the voltage. Ans. 20°

A series RLC circuit, with R =159, L =80mH, and C = 30uF, has a sinusoidal current at angular
frequency 500rad/s. Determine the phase angle and whether the current leads or lags the total voltage.
Ans. 60.6°, leads

A capacitance C = 35 pF is in parallel with a certain element. Identify the element, given that the voltage
and total current are

v =150sin 30007 (V) ir = 16.5sin (30007 + 72.4°) (A)
Ans. R=130.1Q

A two-element series circuit, with R = 20 Q2 and L = 20 mH, has an impedance 40.0 /6 Q. Determine the
angle 6 and the frequency. Ans. 60°,276 Hz

Determine the impedance of the series RL circuit, with R = 25Q and L = 10mH, at (¢) 100Hz, () 500 Hz,
(¢) 1000 Hz. Ans. (a) 25.8 /14.1°Q; (b) 40.1 /51.5°Q; (c¢) 67.6 /68.3° Q

Determine the circuit constants of a two-element series circuit if the applied voltage
v = 1505sin (50007 + 45°) (V)
results in a current i = 3.0 sin (50007 — 15°) (A). Ans. 259,8.66 mH

A series circuit of R = 102 and C = 40 uF has an applied voltage v = 500 cos (25007 — 20°) (V). Find the
resulting current i. Ans.  25+/2cos (2500¢ +25°) (A)

Three impedances are in series: Z; = 3.0 /45° Q, Z, = 102 /45° Q, Z; = 5.0 /=90° Q. Find the applied
voltage V, if the voltage across Z; is 27.0 /—10° V. Ans. 126.5 /—=24.6°V

For the three-element series circuit in Fig. 9-39, (@) find the current I; () find the voltage across each
impedance and construct the voltage phasor diagram which shows that V, +V, +V; = 100 /0° V.
Ans. (a) 6.28 /=9.17° A; (b) see Fig. 9-40.

100/ VC) 460"

10/=20° 0

I Le1 €+ 2 4

Fig. 9-39
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10040° V

Fig. 9-40

9.42  Find Z in the parallel circuit of Fig. 9-41, if V=150.0 /30.0° V and I =27.9 /57.8° A.
Ans. 5.0 /=30°Q

Fig. 9-41

9.43  Obtain the conductance and susceptance corresponding to a voltage V =85.0 /205°V and a resulting
current [ =41.2 /—141.0° A. Ans. 0.4718S,0.117S (capacitive)

9.44 A practical coil contains resistance as well as inductance and can be represented by either a series or parallel
circuit, as suggested in Fig. 9-42. Obtain R, and L, in terms of R, and L.

(@L,)’ R
Ans. R, =R+ R‘: L, =L+ wzny
O
RJ
<4 4 .
:: R, JjwL,
JolL
O
(a) (b)

Fig. 9-42

9.45  In the network shown in Fig. 9-43 the 60-Hz current magnitudes are known to be: I =29.9A, I} =223 A,
and I, = 8.0 A. Obtain the circuit constants R and L. Ans. 5.82,38.5mH

! ‘
:: 50 2 150
> o + B
jowL i: 150 100/0° V q_) <:A
s X

Fig. 9-43 Fig. 9-44
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9.47

9.48

9.49

9.50
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Obtain the magnitude of the voltage V 45 in the two-branch parallel network of Fig. 9-44, if X, is (a) 5%,
bh) 152, (¢) 0. Ans. 50V, whatever X

In the network shown in Fig. 9-45, V5 = 36.1 /3.18° V. Find the source voltage V.

Ans. 75 /=90°V

o 10 0
100 a0
30
QO I :
q— B s00° V (t) v -j5Q
50 30 - j4Q
Fig. 9-45 Fig. 9-46

For the network of Fig. 9-46 assign two different sets of mesh currents and show that for each,
A, =559 /—26.57° Q2. For each choice, calculate the phasor voltage V. Obtain the phasor voltage
across the 3 + j4 Q impedance and compare with V. Ans. V=V;.,4=2236 /—10.30°V

For the network of Fig. 9-47, use the mesh current method to find the current in the 2 + j3 Q impedance due
to each of the sources V; and V,. Ans. 2.41 /6.45° A, 1.36 /141.45° A

5Q 20 j3Q 40

In the network shown in Fig. 9-48, the two equal capacitances C and the shunting resistance R are adjusted
until the detector current I is zero. Assuming a source angular frequency w, determine the values of R, and
L.. Ans. R,=1/(&*C*R),L, =1/Q2wC)

A'f/'
7
¢ Y
PZAN A\ ll
C C b
2
R g L, [] Zo
vtI

Fig. 9-48
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9.51 For the network of Fig. 9-49, obtain the current ratio I;/I;. Ans. 3.3 /=90°
i2 0 AR 50
r___rvvvx_.4
Vv, Ct D :
P
Fig. 9-49
9.52  For the network of Fig. 9-49, obtain Z;,,,; and Zanser 13- Show that Zyanerer 31 = Ziransfer, 13-
Ans. 1.31 /21.8° @,4.31 /—68.2° Q
9.53 In the network of Fig. 9-50, obtain the voltage ratio V;/V, by application of the node voltage method.
Ans. DU 161 /—298°
App
9.54  For the network of Fig. 9-50, obtain the driving-point impedance Zi,p ;- Ans. 5.59 /17.35° Q
N sa 20
+ 2 Q 5 3 [~17.4° >
v(? j jsQ swa 55.8/=174° V Cj) S0 360
j3Q
o- &=LV -0 b
ref.
Fig. 9-50 Fig. 9-51
9.55  Obtain the Thévenin and Norton equivalent circuits at terminals ab for the network of Fig. 9-51. Choose
the polarity such that V' =V,,. Ans. V' =200 /0°V,1' =5.56 /=23.06° A, Z' =3.60 /23.06° Q
9.56  Obtain the Thévenin and Norton equivalent circuits at terminals ab for the network of Fig. 9-52.
Ans. V' =115 /=958°V,1' =139 /—80.6° A, Z’ =8.26 /=15.2° Q
10/45° V 10 O
5Q a
30 5Q sQ
20/0° V
" e A
i5Q jsQ
-j4 Q 10 Q
| -0 b
O b
Fig. 9-52 Fig. 9-53
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9.57

9.58

aC

9.59

9.60

9.61

9.62

9.63

9.64

SINUSOIDAL STEADY-STATE CIRCUIT ANALYSIS [CHAP. 9

Obtain the Théveinin and Norton equivalent circuits at terminals ab for the network of Fig. 9-53.

Ans. V' =11.18 /93.43° V,1' =2.24 /56.56° A,Z' = 5.0 /36.87° Q

In the circuit of Fig. 9-54, v; = 10V and v, = 5sin2000¢. Find i.
Ans. i =1—0.35sin (20007 — 45°)

— A | -—
10 Q _l> 5 mH % |7
AW 000 il L.
: (D OF
On G af
4H
Fig. 9-54 Fig. 9-55

In the circuit of Fig. 9-55, v; = 6 coswt and v, = cos(wt + 60°). Find v, if w = 2rad/sec. Hint: Apply
KCL at node A in the phasor domain. Ans. vy = 1.11sin2¢

In the circuit of Problem 9.59 find phasor currents I; and I, drawn from the two sources. Hint: Apply
phasor KVL to the loops on the left and right sides of the circuit.
Ans. 1, =508 /—=100.4°, 1, = 1057 /—145°, both in mA

Find v, in the circuit of Problem 9.59 if w = 0.5rad/s. Ans. V,=0

In the circuit of Fig. 9-55, v; = V; cos(0.5¢ + 6,) and v, = V,c0s(0.5¢ + 6,). Find the current through the
4 H inductor. Ans. = (V,/4)sin(0.5¢ + 6,) — (V1/3)sin (0.5¢ + 6;)

In the circuit of Fig. 9-55, v; = Vjcos(¢t+6,) and v, = V,cos(t+6,). Find v,.
Ans. vy = oo, unless V| = V, =0, in which case v, =0

In the circuit of Fig. 9-55, v; = V] cos(2t) and v, = V5 cos(0.25¢). Find vy,.
Ans. vy =—0.816Vcos(2t) — 0.6V, cos (0.25¢)



CHAPTER 10

AC Power

10.1 POWER IN THE TIME DOMAIN
The instantaneous power entering a two-terminal circuit N (Fig. 10-1) is defined by
p(1) = v(0)i(7) (1)

where v(7) and i(r) are terminal voltage and current, respectively. If p is positive, energy is delivered to
the circuit. If p is negative, energy is returned from the circuit to the source.

i
(e
+
O+ =
-
Fig. 10-1

In this chapter, we consider periodic currents and voltages, with emphasis on the sinusoidal steady
state in linear RLC circuits. Since the storage capacity of an inductor or a capacitor is finite, these
passive elements cannot continue receiving energy without returning it. Therefore, in the steady state
and during each cycle, all of the energy received by an inductor or capacitor is returned. The energy
received by a resistor is, however, dissipated in the form of thermal, mechanical, chemical, and/or
electromagnetic energies. The net energy flow to a passive circuit during one cycle is, therefore, positive
or Zero.

EXAMPLE 10.1 Figure 10-2(a) shows the graph of a current in a resistor of 1kQ. Find and plot the instanta-
neous power p(t).
From v = Ri, we have p(f) = vi = Ri* = 1000 x 107® = 107° W = I mW. See Fig. 10-2(b).

EXAMPLE 10.2 The current in Example 10.1 passes through a 0.5-uF capacitor. Find the power p(7) entering the
capacitor and the energy w(¢) stored in it. Assume vc(0) = 0. Plot p(f) and w(¥).

Figure 10-2(a) indicates that the current in the capacitor is a periodic function with a period 7 = 2ms. During
one period the current is given by

P I mA (0 <t < 1ms)
| -1ImA (1 <t <2ms)

219
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i, mA
+1
1, ms
0 1 2 3 4 5
-1 —
(@)
p, mW
1
t
0
)
Fig. 10-2

The voltage across the capacitor is also a periodic function with the same period 7' [Fig. 10-3(¢)]. During one
period the voltage is

o 20000 (V) (0 <1< 1ms)
”(Z)_EJO’d’_{4—20001(V) (1 <t <2ms)

Finally, the power entering the capacitor and the energy stored in it (both also periodic with period T) are

i [[20000 (mW) O<i<imy) o
p()_”’_{zoooz—umW) (l<t<2ms LD 10-30)]

1 ., 2 () (0 <7< 1ms) .
=Lk = Fig. 10-
W) =5 Cv {tz+4><106—4><103z(J) (1 <1<2ms) [Fig. 10-3()]

Alternatively, w(7) may be obtained by integrating p(¢). Power entering the capacitor during one period is equally
positive and negative [see Fig. 10-3(b)]. The energy stored in the capacitor is always positive as shown in Fig. 10-
3(c). The maximum stored energy is Wy, = 10T =1uJ atr=1,3,4,...ms.

10.2 POWER IN SINUSOIDAL STEADY STATE

A sinusoidal voltage v = V,, cos wt, applied across an impedance Z = |Z| /6, establishes a current
i = I, cos(wt —0). The power delivered to the impedance at time 7 is

p(t) =vi = V1, cos wt cos(wt —0) =1V,1,[cos6 + cos Quwt — 6)]
= Verlegr[cos 6 + cos Qwt — 6)]
= Vegrlegr €080 + VegrLegr 08 Qi — 6) )

where Vg = Vo /v2, L = 1,,/3/2, and Iy = Vog/|Z|. The instantaneous power in (2) consists of a
sinusoidal component Vgl cos (2wt — 6) plus a constant value Vgl cos @ which becomes the average
power P,,,. This is illustrated in Fig. 10-4. During a portion of one cycle, the instantaneous power
is positive which indicates that the power flows into the load. During the rest of the cycle, the instan-
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v,V
2 b
1 I
1 1 1 t, ms
1 2 3 4 5
(a)
p, mW
2 -
¢t ms
i 2 3 4 5
2t /
(b)
w, pf
1 3
I L 1 1 1 t, ms
1 2 3 4 5
©
Fig. 10-3

taneous power may be negative, which indicates that the power flows out of the load. The net flow
of power during one cycle is, however, nonnegative and is called the average power.

EXAMPLE 10.3 A voltage v = 140 cos wt is connected across an impedance Z = 5 /—60°. Find p(7).
The voltage v results in a current i = 28 cos (wt + 60°). Then,

p(t) = vi = 140(28) cos wt cos (wt + 60°) = 980 + 1960 cos (2wt + 60°)

The instantaneous power has a constant component of 980 W and a sinusoidal component with twice the frequency
of the source. The plot of p vs. ¢ is similar to that in Fig. 10-4 with 6 = —n/3.

10.3 AVERAGE OR REAL POWER

The net or average power P,,, = (p(7)) entering a load during one period is called the real power.
Since the average of cos (2wt — 6) over one period is zero, from (2) we get

Pavg = eff]eff cos @ (3)
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If Z=R+jX =|Z| /6, then cosd = R/|Z| and P,,; may be expressed by

R
Pavg = Vegrlegr E (4)
Vr

or P, =—=R 5
or Pavg = RIesz (6)

The average power is nonnegative. It depends on V, I, and the phase angle between them. When
Ver and L are given, P is maximum for # = 0. This occurs when the load is purely resistive. For a
purely reactive load, || =90° and P,,, =0. The ratio of P, to Vil is called the power factor
pf. From (3), the ratio is equal to cosf and so
Pavg

pf = —7
Vet Lege

0<pf<l (7)

The subscript avg in the average power P,,, is often omitted and so in the remainder of this chapter
P will denote average power.

EXAMPLE 10.4 Find P delivered from a sinusoidal voltage source with Vo =110V to an impedance of
Z =10+/8. Find the power factor.

Z =10+,8 = 12.81 /38.7°

Ve 110
= —859/-387° A
Z  12.81/38.7°

P = Vgl cos6 = 110(8.59cos 38.7°) = 73743 W
pf = cos38.7° = 0.78

Ler =
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Alternative Solution
We have |Z> = 100 + 64 = 164. Then,

P=VZ%R/|Z> = 110*(10)/164 = 737.8 W

The alternative solution gives a more accurate answer.

104 REACTIVE POWER

If a passive network contains inductors, capacitors, or both, a portion of energy entering it during
one cycle is stored and then returned to the source. During the period of energy return, the power is
negative. The power involved in this exchange is called reactive or quadrature power. Although the
net effect of reactive power is zero, it degrades the operation of power systems. Reactive power,
indicated by Q, is defined as

O = Vegrler sin 0 (8)
If Z=R+jX =1|Z| /6, then sinf = X/|Z| and Q may be expressed by
X
O = Verlegr Zl )
Ve
or = 10
Q ZP (10)
or 0 = XIi (1)

The unit of reactive power is the volt-amperes reactive (var).

The reactive power Q depends on V, I, and the phase angle between them. It is the product of the
voltage and that component of the current which is 90° out of phase with the voltage. Q is zero for
6 = 0°. This occurs for a purely resistive load, when V and I are in phase. When the load is purely
reactive, |#] = 90° and Q attains its maximum magnitude for given J and /. Note that, while P is
always nonnegative, Q can assume positive values (for an inductive load where the current lags the
voltage) or negative values (for a capacitive load where the current leads the voltage). It is also
customary to specify Q by it magnitude and load type. For example, 100-kvar inductive means
O = 100 kvar and 100-kvar capacitive indicates Q = —100 kvar.

EXAMPLE 10.5 The voltage and current across a load are given by Vi = 110V and I = 20 /=50° A. Find P
and Q.

P =11020c0s50°) = 1414 W Q = 110(20sin 50°) = 1685 var

10.5 SUMMARY OF AC POWER IN R, L, AND C

AC power in resistors, inductors, and capacitors, is summarized in Table 10-1. We use the notation
V. and I to include the phase angles. The last column of Table 10-1 is S = VI where S is called
apparent power. S is discussed in Section 10.7 in more detail.

EXAMPLE 10.6 Find the power delivered from a sinusoidal source to a resistor R. Let the effective values of
voltage and current be ¥ and I, respectively.

pr(t) = vig = (VN/2) cos wt(Iv2) cos wt = 2VI cos® wt = VI(1 + cos 2wr)
e
= RI*(1 + cos 2wt) = — (1+cos201)

VZ
Thus, PR:?:RIZ 0=0
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Table 10-1
v = (V+/2)cos wt Ve = V/0°
i = (Iv2) cos (wt — 6) I =1/-6°
P ="VIcosH, Q = VIsin6 and S = VI (apparent power)
z i L p(?) p 0 S
V2 14 V2 V2 V2
R IR { cos wt ELO R (1 4 cos2wt) x |0 r
V2 i 14 v V2 &
L 1Lw o COS((,()[—90 ) L—w/—90 L—wsm2wt 0 L_(;_) L_w
—
C | Co | VV2Cwcos (0t +90°) | VCw/90° | —V*Cwsin2wt | 0 | —V*Cw | VCo

The instantaneous power entering a resistor varies sinusoidally between zero and 2RI°, with twice the frequency
of excitation, and with an average value of P = RI*. o(f) and pr(?) are plotted in Fig. 10-5(a).

EXAMPLE 10.7 Find the ac power entering an inductor L.

pr(t) =vip = (V\f2) cos a)t(lﬁ) cos (wt —90°) = 2V coswtsinwt = VI sin 2wt = Lol sin 2wt
2
= — sin 2wt

V2
Thus, P=0 Q=VI=—=Lol’
Lw

The instantaneous power entering an inductor varies sinusoidally between Q and —Q, with twice the frequency
of the source, and an average value of zero. See Fig. 10-5(b).

EXAMPLE 10.8 Find the ac power delivered in a capacitor C.

pc(t) = vic = (V\/E) cos wt (1\/5) cos (ot + 90°) = =2V cos wisin wt = — VI sin 2wt = —CowV? sin 2wt
2
= ——— sin 2wt
Ty Sin2e

12
Thus, P=0 Q=-VI=-——=—CoV?
Cw

Like an inductor, the instantaneous power entering a capacitor varies sinusoidally between —Q and Q, with
twice the frequency of the source, and an average value of zero. See Fig. 10-5(c).

10.6 EXCHANGE OF ENERGY BETWEEN AN INDUCTOR AND A CAPACITOR

If an inductor and a capacitor are fed in parallel by the same ac voltage source or in series by
the same current source, the power entering the capacitor is 180° out of phase with the power
entering the inductor. This is explicitly reflected in the opposite signs of reactive power Q for
the inductor and the capacitor. In such cases, the inductor and the capacitor will exchange some
energy with each other, bypassing the ac source. This reduces the reactive power delivered by the
source to the LC combination and consequently improves the power factor. See Sections 10.8 and
10.9.

EXAMPLE 10.9 Find the total instantaneous power p(), the average power P, and the reactive power Q, delivered
from v = (V'+/2)cos wt to a parallel RLC combination.
The total instantaneous power is

pr =vi=v(ig+iy +ic)=pr+pL+pc
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27 -32‘" - - 0 3 [y 37‘" 2
-2
4 PR(t)
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2m _3211 —r -z 0 z w 2217 2w
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)

Fig. 10-5
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pc®)
%748
wt
_ _3 3
27 v —r -z 0 z w I 2w
VI

(©)
pr=VI[cos § + cos (2wt — 0)]

—_— | O f—

L. VI(1 + cos 0)

w!

\/ \/VI(—1+cos 4 — _v

()]
Fig. 10-5 (cont.)

Substituting the values of pg, p;, and p- found in Examples 10.6, 10.7, and 10.8, respectively, we get

V2 1 .
pr=— (1 4+ cos2wi) + V[ — — Cw ) sin 2wt
R Lo
The average power is
Pr=Pr=V?/R

The reactive power is

1
Qr =0, +0Qc=V" (L— - Cw) (12)
w

For (1/Lw) — Cw = 0, the total reactive power is zero. Figure 10-5(d) shows p(¢) for a load with a leading power
factor.

10.7 COMPLEX POWER, APPARENT POWER, AND POWER TRIANGLE

The two components P and Q of power play different roles and may not be added together. How-
ever, they may conveniently be brought together in the form of a vector quantity called complex power S
and defined by S = P+;0Q. The magnitude |S| = /P> + Q%> = Vil is called the apparent power S
and is expressed in units of volt-amperes (VA). The three scalar quantities S, P, and Q may be
represented geometrically as the hypotenuse, horizontal and vertical legs, respectively, of a right triangle
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(called a power triangle) as shown in Fig. 10-6(a). The power triangle is simply the triangle of the
impedance Z scaled by the factor Iesz as shown in Fig. 10-6(h). Power triangles for an inductive load
and a capacitive load are shown in Figs. 10-6(c) and (d), respectively.

s |z|r?
0 X1
0
RI?

(@) »)

S
Q
(inductive)
)
P

(c)

P
0
Q
S (capacitive)

@
Fig. 10-6

It can be easily proved that S = V I%, where V4 is the complex amplitude of effective voltage and
I’ is the complex conjugate of the amplitude of effective current. An equivalent formula is S = I Z.
In summary,

Complex Power: S=Vliy = P+,j0 = I%Z (13)
Real Power: P = Re[S] = Vgplogp cosb (14)
Reactive Power: O = Im[S] = Vgl sin 6 (15)
Apparent Power: S = Verelor (16)

EXAMPLE 10.10 (a) A sinusoidal voltage with Vg =10V is connected across Z, =1+, as shown in
Fig. 10-7(a). Find i, I o, p1(9), Py, Qy, power factor pf), and S;. (b) Repeat part (a) replacing the load Z;
in (a) by Z, = 1 —j, as shown in Fig. 10-7(b). (¢) Repeat part (a) after connecting in parallel Z; in (a) and Z, in (b)
as shown in Fig. 10-7(c).

Let v = 104/2 cos wt.
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(a) See Fig. 10-7(a).

Z, =+/2/45°
i; = 10 cos (wt — 45°)
Lo = 5v/2 /=45°

Pp1(0) = (100+/2) cos wt cos (wt — 45°)
= 50 + (50v/2) cos Qwt — 45°) W

Py = Vgl efr cOs45° = 50 W

01 = Viegrly ofr 5in45° = 50 var

S| =P +j0; =504,50

S; = ISi] = 50+/2 = 70.7 VA

pf; = 0.707 lagging

(¢) See Fig. 10-7(c).

AC POWER

(b) See Fig. 10-7(b)
Zy =2 /-45°
i, = 10 cos (wt 4 45°)
Lo = 5v2/45°
Pa2(2) = (100+/2) cos wt cos (wt + 45°)
= 50 + (50+/2) cos 2wt + 45°) W
Py = Vgl e cOs 45° = 50 W
Oy = Vel ofr $in 45° = —50 var
Sy = Py +j0> = 50 —j50
Sy =[S, = 50+/2 = 70.7 VA
pf; = 0.707 leading

A +H0 =5
Z=7Z\2y= 7=
T+ )
i = 10+/2 cos wt
Iy =10

p(t) = 200 cos® ot = 100 + 100 cos 2wt W
P == Veffleff == 100 W

0=0
S=P=100
S =S| = 100 VA
pf=1
b
1
V=10V s, 0
1
” A
Py
(a)
)
Py
1 l
V=10V
A o))
()

Fig. 10-7

[CHAP. 10



CHAP. 10] AC POWER
1
o L
2 Vh
zZ P, P,
10V >
€ S=P=P +P,
p——— | J
e,
©
v(t)
" \ /\
%o\yﬂ"" BE D ”
i®
/\ m
L 'l mt
wt
wt
wt
P9
200
100
wt

(d)
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The results of part (¢) may also be derived from the observation that for the Z,||Z, combination, i = i} + i,
and, consequently,
() = pi(1) + p2(1)
= [50 4 (508/2) cos (2wt — 45°)] + [50 + (50+/2) cos (Rt + 45°)]
=100 4 100 cos 2wt W
P=P +P,=50+50=100 W
0=0+0,=50-50=0
=100 < Sl + S2

The power triangles are shown in Figs. 10-7(a), (b), and (¢). Figure 10-7(d) shows the plots of v, i, and p for the
three loads.

EXAMPLE 10.11 A certain passive network has equivalent impedance Z = 3 + j4 Q and an applied voltage
v = 42.5c0s(1000z + 30°) (V)
Give complete power information.

42
Ver = —5 JEY

veff_(42.5/f>@ 85 aiix A

I = =
7 5/53.13° 2
S = Vi Iir = 180.6 /53.13° = 108.4 + j144.5
Hence, P = 108.4 W, Q = 144.5var (inductive), S = 180.6 VA, and pf = cos 53.13° = 0.6 lagging.

10.8 PARALLEL-CONNECTED NETWORKS

The complex power S is also useful in analyzing practical networks, for example, the collection of
households drawing on the same power lines. Referring to Fig. 10-8,

St = Vel = Ver (M egr + Begr + - + Ly err)
=S +S,+---+8S,

from which

PT:P1+P2+'”+PI1
Or=01+0>+--+0,

St =/ P7 + 0%

P
PfTZ—T

St

These results (which also hold for series-connected networks) imply that the power triangle for the
network may be obtained by joining the power triangles for the branches vertex to vertex. In the
example shown in Fig. 10-9, n = 3, with branches 1 and 3 assumed inductive and branch 2 capacitive.
In such diagrams, some of the triangles may degenerate into straight-line segments if the corresponding
R or X is zero.

If the power data for the individual branches are not important, the network may be replaced by its
equivalent admittance, and this used directly to compute Sy.

EXAMPLE 10.12 Three loads are connected in parallel to a 6-kV.; ac line, as shown in Fig. 10-8. Given
P, =10kW, pf; = 1; P, =20kW, pf, = 0.5 lagging; P; = 15kW, pf; = 0.6 lagging

Find Pr, Qr, S7, pfr, and the current L.



CHAP. 10] AC POWER 231

1 2 3 n
: ———— ]
—
Leq
v P, P, [ P, [ P,
« o) o Qs Q.
Fig. 10-8
We first find the reactive power for each load:
pfi =cost; =1 tanf; =0 Q) = Pytan6; = Okvar
pfz = COS 92 =0.5 tan92 =1.73 Q2 = P2 tan92 = 34.6kvar
pf; = cosf; = 0.6 tan6; = 1.33 Q3 = Pytan6; = 20 kvar

Then Py, Q7, St, and pfy, are

Pr=P +Py+P;=10+20+15=45kW
Or =0+ 0>+ 03 =0+34.6 +20 = 54.6kvar

Sy =/ P2+ 0> =45 + 54.6> = 70.75kVA

pfr = Pr/Sr = 0.64 = cos 6, 6 = 50.5° lagging
L = S/Ver = (70.75kVA)/(6kV) = 11.8 A
Lg=11.8/=50.5°A

The current could also be found from I =1; +1, +1;. However, this approach is more time-consuming.

91

% Or

S

Q Py

Py

P

Fig. 10-9

10.9 POWER FACTOR IMPROVEMENT

Electrical service to industrial customers is three-phase, as opposed to the single-phase power
supplied to residential and small commercial customers. While metering and billing practices vary
among the utilities, the large consumers will always find it advantageous to reduce the quadrature
component of their power triangle; this is called “improving the power factor.” Industrial systems
generally have an overall inductive component because of the large number of motors. Each individual
load tends to be either pure resistance, with unity power factor, or resistance and inductive reactance,
with a lagging power factor. All of the loads are parallel-connected, and the equivalent impedance
results in a lagging current and a corresponding inductive quadrature power Q. To improve the power
factor, capacitors, in three-phase banks, are connected to the system either on the primary or secondary
side of the main transformer, such that the combination of the plant load and the capacitor banks
presents a load to the serving utility which is nearer to unit power factor.
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EXAMPLE 10.13 How much capacitive Q must be provided by the capacitor bank in Fig. 10-10 to improve the
power factor to 0.95 lagging?

+ @ i I I
L M
L
240/0° V /T\ ]3.5@ Q
X !
i
- @ l
Fig. 10-10

Before addition of the capacitor bank, pf = cos25°C = 0.906 lagging, and

240 /0°

I =———=068.6/-25 A
"7 3525
S = Vliy = (240 &) (68'6 /+25° = 8232 {25") = 7461 473479
= Vefrletr = 2 /2 = = J
After the improvement, the triangle has the same P, but its angle is cos~' 0.95 = 18.19°. Then (see Fig. 10-11),
479 — Q.
% = tan 18.19° or Q. = 1027 var (capacitive)

The new value of apparent power is S’ = 7854 VA, as compared to the original S = 8232 VA. The decrease,
378 VA, amounts to 4.6 percent.

O('
S =8232 VA
Q = 3479 var
s (inductive)
2 Q-0
U819
P =7461 W
Fig. 10-11

The transformers, the distribution systems, and the utility company alternators are all rated in kVA
or MVA. Consequently, an improvement in the power factor, with its corresponding reduction in
kVA, releases some of this generation and transmission capability so that it can be used to serve
other customers. This is the reason behind the rate structures which, in one way or another, make it
more costly for an industrial customer to operate with a lower power factor. An economic study
comparing the cost of the capacitor bank to the savings realized is frequently made. The results of
such a study will show whether the improvement should be made and also what final power factor
should be attained.

EXAMPLE 10.14 A load of P = 1000 kW with pf = 0.5 lagging is fed by a 5-kV source. A capacitor is added in
parallel such that the power factor is improved to 0.8. Find the reduction in current drawn from the generator.
Before improvement:

P =1000kW, cos =0.5,S = P/cosd =2000kVA, T =400 A
After improvement:

P =1000kW, cos® =0.8,S = P/cos6 = 1250kVA, T =250 A
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Hence, for the same amount of real power, the current is reduced by (400 — 250)/400 = 0.375 or 37.5 percent.

EXAMPLE 10.15 A fourth load Q, is added in parallel to the three parallel loads of Example 10.12 such that the
total power factor becomes 0.8 lagging while the total power remains the same. Find Q4 and the resulting S.
discuss the effect on the current.

In Example 10.12 we found total real and reactive powers to be P = P;+ P,+ P; =45kW and
0 =01+ 0, + 03 = 54.6kvar, respectively. For compensation, we now add load Q4 (with P, = 0) such that
the new power factor is pf = cos6 = 0.8 lagging, 6 = 36.87°.

Then, tan 36.87° = (0 + 04)/P = (54.6 + 04)/45 =075 Q4 = —20.85kvar

The results are summarized in Table 10-2. Addition of the compensating load Q, reduces the reactive power from
54.6 kvar to 33.75 kvar and improves the power factor. This reduces the apparent power S from 70.75 kVA to
56.25 kVA. The current is proportionally reduced.

Table 10-2
Load P, kW pf 0, kvar | S, kVA
#1 10 1 0 10
#2 20 0.5 lagging 34.6 40
#3 15 0.6 lagging 20 25

#1+2+3) | 45 | 0.64 lagging | 54.6 70.75

#4 0 0 leading —20.85 20.85

Total 45 0.8 lagging 33.75 56.25

10.10 MAXIMUM POWER TRANSFER

The average power delivered to a load Z; from a sinusoidal signal generator with open circuit
voltage V, and internal impedance Z, = R + jX is maximum when Z, is equal to the complex conjugate
of Z, so that Z, = R—jX. The maximum average power delivered to Z is Py = V2 J4AR.

EXAMPLE 10.16 A generator, with V, = 100 V(rms) and Z, = 1+, feeds a load Z; = 2 (Fig. 10-12). (a) Find
the average power P, (absorbed by Z,), the power P, (dissipated in Z,) and P; (provided by the generator).
(b) Compute the value of a second load Z, such that, when in parallel with Z;, the equivalent impedance is
7 =7,|Z, =Zx%,. (c) Connect in parallel Z, found in (b) with Z; and then find the powers Pz, Py, P2,
(absorbed by Z, Z,, and Z,, respectively), P, (dissipated in Z,) and P (provided by the generator).

(@ |Zy+Zy =12+1+jl=+10. Thus I=V,/(Z; +Z,) =100/(2+ 1 +) and |I| = 10+/10 A. The required
powers are

Pz = Re[Z,] x |I* = 2(10~/10)> = 2000 W
P, = Re[Z,] x |I]* = 1(10~/10)* = 1000 W
Py = Py + P, = 2000 + 1000 = 3000 W

Fig. 10-12
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(b) LetZ, =a+jb. To find a and b, we set Z;||Z, = Z; =1 —j. Then,

7,2,  2a+jb)
Zl =+ Z2 2 +a +]b

from whicha—b—2=0and a+b+2=0. Solving these simultaneous equations, « = 0 and b = —2; sub-
stituting into the equation above, Z, = —j2.

by Z=Z\Z,=1—-jand Z+Z,=1—j+1+4j=2. Then, I =V,/(Z+Z,)=100/(1—j+1+j)=100/2 =
50 A, and so

P, =Re[Z]x P =1x50"=2500W P, =Re[Z,]x I’ =1x 50" =2500 W
To find P, and Pz, we first find V across Z: V; =1Z = 50(1 —j). Then 1 =V,/Z; =50(1 —))/2 =
(25v/2) /=45°, and
Py =Re[Z)] x |I1]* =225v/2)* =2500W P, =0W Py =P, + Py = 5000 W
Alternatively, we can state that

Pzzzo and P2|:PZ:2500W

10.11 SUPERPOSITION OF AVERAGE POWERS

Consider a network containing two AC sources with two different frequencies, w; and w,. If a
common period 7 may be found for the sources (i.e., w; = mw, w, = nw, where w = 27/T and m # n),
then superposition of individual powers applies (i.e., P = P, + P,), where P; and P, are average powers
due to application of each source. The preceding result may be generalized to the case of any n number
of sinusoidal sources operating simultaneously on a network. If the » sinusoids form harmonics of a
fundamental frequency, then superposition of powers applies.

P= Z Py
k=1

EXAMPLE 10.17 A practical coil is placed between two voltage sources v; = Scosw;t and v, = 10cos (w,t = 60°),
which share the same common reference terminal (see Fig. 9-54). The coil is modeled by a 5-mH inductor in series
with a 10-Q resistor. Find the average power in the coil for (a) w, = 2w; = 4000, (b)w; = wy, = 2000,
(¢) @, = 2000 and w, = 1000+/2, all in rad/s.

Let v; by itself produce i;. Likewise, let v, produce i,. Theni=1i; —i,. The instantaneous power p and the
average power P are

p=R*=R(i, — i)’ = R?+ R = 2Ri|i
P = (p) = R(i) + R(53) — 2R{iyi) = Py + P, — 2R{i\iy)

where (p) indicates the average of p. Note that in addition to P, and P,, we need to take into account a third term
(i11,) which, depending on w; and w,, may or may not be zero.

(a) By applying superposition in the phasor domain we find the current in the coil (see Example 9.7).

v, 5
[=—l=—"_=0. —45° A, i =0. 20007 — 45°
R R TITy 0.35/ —45° A, i, = 0.35c0s (20007 — 45°)
R} 10 x 0.35°
P=—Ll=—=""""" 062
1= 5 0.625 W
vV, 10/60° )
L=—=—""—"==045/ —3.4° A, i, = 0.45cos (40007 — 3.4°
2 Z, 104,20 L ) cos ( )
RE 10 x 0.45?
Pp=—2=—""" —1W
2T 2

i =1 — 1 = 0.35¢c0s (20007 — 45°) — 0.45 cos (40007 — 3.4°)
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In this case (iji,) = 0 because (cos (20007 — 45°) cos (40007 — 3.4°)) = 0. Therefore, superposition of power
applies and P = P + P, = 0.625+ 1 =1.625W.

The current in the coil is i = 0.61 cos (20007 — 135°) (see Example 9.7). The average power dissipated in the
coil is P = RI*/2 =5 x (0.61)*> = 1.875 W. Note that P > P, + P,.

By applying superposition in the time domain we find
ip = 0.35c0s (20007 — 45°), P, = 0.625 W
i» = 0.41 cos (100027 — 35.3%), P, = 0.833 W
i =i} — iy, P = (Ri*/2) = P, + P, — 1.44(cos (20001 — 45°) cos (1000+/2¢ — 35.3°))

The term (cos (2000 — 45°) cos (1000+/27 — 35.3%)) is not determined because a common period can’t be
found. The average power depends on the duration of averaging.

Solved Problems

The current plotted in Fig. 10-2(a) enters a 0.5-pF capacitor in series with a 1-k€2 resistor. Find
and plot (a) v across the series RC combination and (b) the instantanecous power p entering
RC. (¢) Compare the results with Examples 10.1 and 10.2.

(a) Referring to Fig. 10-2(a), in one cycle of the current the voltages are

1V (0 <t<1ms)
UR:{—]V (1 <1 <2ms)
e 20007 (V) 0 <1< 1ms)
”C:EJ’d_{4—2000z(V) (1 <1 <2ms)
1420001 (V) (0 <1< 1ms)
320000 (V) (1 <t<2ms)

0

V=vg +vc = { [See Fig. 10-13(a)]

(b) During one cycle,

pr =R’ =1mW
2000z (mW) 0 <1< lms)
20007 — 4 (mW) (1 <t<2ms)
1 +2000¢ (mW) (0 <t < 1ms)

—vi— _ See Fig. 10-13(
P=v=pr+tPpc {2000[—3(mW) (I <r<ams LOcFiE (0]

Pc = 'Uci = {

(¢) The average power entering the circuit during one cycle is equal to the average power absorbed by the
resistor. It is the same result obtained in Example 10.1. The power exchanged between the source
and the circuit during one cycle also agrees with the result obtained in Example 10.2.

A 1-V ac voltage feeds (a) a 1-Q resistor, (b) aload Z =1+, and (¢) aload Z=1 —. Find P
in each of the three cases.

(@ P=V*/R=1/1=1W

(b) and (¢) |Z|=|1+jl=2. I=V/|Z|=1/V2. P=RI’=05W

10.3 Obtain the complete power information for a passive circuit with an applied voltage v =

150 cos (wt + 10°) V and a resulting current i = 5.0 cos (wt — 50°) A.

Using the complex power
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b U,V
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| /k /k
1
L I 1 Il t, ms

0 1 \] 2 3 \I4 5 \
—i+

(@)

p, mW
3tk
2L
1 /
4 1 > 1, MS

0 1 / 2 3 / 4 5 /
_ip

(b)

Fig. 10-13
S =V Il = (ﬂ (103> (ﬂ [50") = 375/60° = 187.5 4 ;342.8
= Veffleff = \/5 \/5 = = . J .

Thus, P = 187.5 W, Q = 324.8 var (inductive), S = 375 VA, and pf = cos 60° = 0.50 lagging.

A two-element series circuit has average power 940 W and power factor 0.707 leading. Deter-
mine the circuit elements if the applied voltage is v = 99.0 cos (60007 4+ 30°) V.

The effective applied voltage is 99.0/4/2 = 70.0 V.  Substituting in P = Vg cos6,
940 = (70.0)L(0.707) or I =190 A
Then, (19.0)*R = 940, from which R =2.60 Q. For a leading pf, 6 = cos ' 0.707 = —45°, and so
where

Z=R-jXc Xc = Rtan45° = 2.60 £

Finally, from 2.60 = 1/wC, C = 64.1 pF.

Find the two elements of a series circuit having current i = 4.24 cos (5000z 4 45°) A, power 180
W, and power factor 0.80 lagging.

The effective value of the current is Ly = 4.24/+/2 = 3.0 A. Then,

180 = (3.0)*R or R=200Q

The impedance angle is 6 = cos ' 0.80 = +36.87°, wherefore the second element must be an induc-
tor. From the power triangle,

X
Q =ML _ tan36.87° or
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Finally, from 15.0=5000L, L = 3.0 mH.

10.6 Obtain the power information for each element in Fig. 10-14 and construct the power triangle.

-
@

—
I=14.1430° A 3q
j6 Q2
T -j2Q
Fig. 10-14
The effective current is 14.14/4/2 = 10 A.
P = (103 =300 W Ojsq = (10)*6 = 600 var (inductive) 0_jng = (10)*2 = 200 var (capacitive)
S= \/ (300)% + (600 — 200)> = 500 VA pf = P/S = 0.6 lagging

The power triangle is shown in Fig. 10-15.

200 va iti
600 var (inductive) l r(capacitive)

‘:@ Q =400 var (inductive)

Fig. 10-15

10.7 A series circuit of R = 10 2 and X = 5 Q has an effective applied voltage of 120 V. Determine
the complete power information.

120

— 2 2 —
Z=VI0+5 =118 Lg=1

=10.73 A

Then:

P=I3R=1152W  Q=I%Xc =576 var (capacitive) S =/(1152)> + (576)° = 1288 VA
and pf = 1152/1288 = 0.894 leading

10.8 Impedances Z; = 5.83/—59.0° Q and Z, = 8.94/63.43° Q are in series and carry an effective
current of 5.0 A. Determine the complete power information.

Hence, Pr=(5.02(7.0)=175W O = (5.0*(3.0) = 75 var (inductive)

175
Sy =+/(175)* 4+ (75 = 190.4VA  pf = 7904 = 0919 lagging
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10.9 Obtain the total power information for the parallel circuit shown in Fig. 10-16.

-j3 0

50 |(_T

AAA
\AA

4Q
Fig. 10-16

By current division,

I =17.88 /18.43° A I, =26.05/-12.53° A

17.88\ 2 26.05\°
Then, Pr=(-222) 5+ (222) @) =2156 W
=) o+ (5) @
17.88\?
= | —=) (3) =480 var (capacitive
er ( V2 ) ® (capacitive)
S =+/(2156)> 4 (480)* = 2209 VA
2156 _
pf = 2200 — 0.976 leading
Alternate Method
4(5-73) .
Zoy = —222 =240 —j0.53 Q
) J

Then, P = (42.4/v/2)%(2.40) = 2157 W and Q = (42.4/+/2)*(0.53) = 476 var (capacitive).

10.10 Find the power factor for the circuit shown in Fig. 10-17.

With no voltage or current specified, P, Q, and S cannot be calculated. However, the power factor is
the cosine of the angle on the equivalent impedance.

_34+/400) _ o
Zy, = B34 =3.68/36.03° Q

pf = co0s36.03° = 0.809 lagging

@ 30 j4aQ
— —
R
1
Ot

Fig. 10-17

10.11 If the total power in the circuit Fig. 10-17 is 1100 W, what are the powers in the two resistors?
By current division,

Lew Zp 10

= = =)
Ly Z1 /32442
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P () 6
and so 3Q — 2l,el’"f( ) —
Pog  B4(10) 5

Solving simultaneously with P;q + Pjgq = 1100 W gives P3q = 600 W, Pjyq = 500 W.

10.12 Obtain the power factor of a two-branch parallel circuit where the first branch has Z; =2 4 j4 Q,
and the second Z, = 6 40 Q2. To what value must the 6-Q resistor be changed to result in the
overall power factor 0.90 lagging?

Since the angle on the equivalent admittance is the negative of the angle on the equivalent impedance,
its cosine also gives the power factor.

1 1 .
Y = i Te" 0.334 /-36.84° S

pf = cos(—36.84°) = 0.80 lagging

The pf is lagging because the impedance angle is positive.
Now, for a change in power factor to 0.90, the admittance angle must become cos™'0.90 =

—25.84°.  Then,
1 1 1 1 1
Y/ = — —=|— — -7 =
“=214 R (10+R) /3
requires 11/5 = tan 25.84° or R=3.20Q
10" R

10.13 A voltage, 28.28 /60° V, is applied to a two-branch parallel circuit in which Z; =4 /30° and
Z, =5/60° Q. Obtain the power triangles for the branches and combine them into the total
power triangle.

\%
I, :1:7.07[300A L=—=566/0° A
Z, Z,
28.28 7.07
S; = (== /60° )| —= /=30°) = 100 /30° = 86.6 +;50.0
! (ﬁ )Q@ ) /
28.28 5.66
S, = (—= /60° ) == /0° ) = 80.0 /60° = 40.0 + j69.3
= (%7 (o) (5 o) 7

Sr=S+8,=126.6+,119.3 =174.0 /43.3° VA

The power triangles and their summation are shown in Fig. 10-18.

v
iy Q,=69.3 var
> ¥ (inductive)
04 7
\'\b" ) 60°
Vs
)
S P,=400 W
o
S -
Q) = 50.0 var
o (inductive)
P,=866W

Fig. 10-18
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10.14 Determine the total power information for three parallel-connected loads: load #1, 250 VA,
pf = 0.50 lagging; load #2, 180 W, pf = 0.80 leading; load #3, 300 VA, 100 var (inductive).

Calculate the average power P and the reactive power Q for each load.
Load #1 Given s = 250 VA, cosf = 0.50 lagging. Then,

P =250(0.50) = 125 W  Q =/(250)* — (125)> = 216.5 var (inductive)
Load #2 Given P = 180 W, cos 6 = 0.80 leading. Then, 6 = cos 10.80 = —36.87° and
Q = 180 tan(—36.87°) = 135 var (capacitive)
Load #3 Given S =300 VA, Q = 100 var (inductive). Then,

P =,/(300)* — (100)* = 282.8 W

Pr=125+180+282.8 = 587.8 W
Or =216.5— 1354100 = 181.5 var (inductive)
Sy =587.8+/181.5=615.2 /17.16°

Combining componentwise:

Therefore, S = 615.2 VA and pf = cos 17.16° = 0.955 lagging.

10.15 Obtain the complete power triangle and the total current for the parallel circuit shown in Fig. 10-
19, if for branch 2, S, = 1490 VA.

O) ©

3Q jo Q
Fig. 10-19
From S, = 5w Z,
1490
Bop = ———= =222 A’
V3?46
and, by current division,
I, 346 3% 46 45
ﬁ = m whence Ilzyeff = m Izz,eff = E (222) =768 A2
Then, Si = It Zy = 768(2 + j3) = 1536 + 2304

S, = B oZy = 222(3 + j6) = 666 + j1332
S; =S, +S, = 2202 + /3636

that is, Py = 2202 W, Q7 = 3636 var (inductive),

2202
S =+/(2202)* + (3636)> = 4251 VA and  pf = % =0.518 lagging
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Since the phase angle of the voltage is unknown, only the magnitude of I can be given. By current
division,
_2+4)3, or , 2243, 13 2
2 = 5 +j9 T 2.eff — 52 +92 T, eff — 106 T,eff

and so

106
[ = T3 (29 =181 AP or I =426A

10.16 Obtain the complete power triangle for the circuit shown in Fig. 10-20, if the total reactive power
is 2500 var (inductive). Find the branch powers P, and P,.

4Q 120
j4 Q j6 O
Fig. 10-20

The equivalent admittance allows the calculation of the total power triangle.
Yeq =Y, +Y,=0.2488 /-39.57° S
Then, Pr =2500c0t39.57° = 3025 W
S7 = 3025 4,2500 = 3924 /39.57° VA

and pf = Py/St = 0.771 lagging.
The current ratio is I;/I, = Y,/ Y, = 0.177/0.0745.

P L4

P, 3(12)

and P1+P2:3025W

from which P; = 1975 W and P, = 1050 W.

10.17 A load of 300 kW, with power factor 0.65 lagging, has the power factor improved to 0.90 lagging
by parallel capacitors. How many kvar must these capacitors furnish, and what is the resulting
percent reduction in apparent power?

The angles corresponding to the power factors are first obtained:
cos™'0.65=49.46°  cos ' 0.90 = 25.84°
Then (see Fig. 10-21),

0 = 300tan49.46° = 350.7 kvar (inductive)
0 — Q. =300tan25.84° = 145.3 kvar (inductive)

whence Q. = 205.4 kvar (capacitive). Since

300 , 300
S:ﬁ:461.5kVA S —m—333.3kVA
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the reduction is

461.5 —333.3
461.5

(100%) = 27.8%

10.18 Find the capacitance C necessary to improve the power factor to 0.95 lagging in the circuit shown
in Fig. 10-22, if the effective voltage of 120V has a frequency of 60 Hz.

.

Vea =120V —jXc 20/30° Q

o

Fig. 10-22

Admittance provides a good approach.

1
Y., = joC +—+—=0.0433 —j(0.0250 — oC S
eq =J0C + 20 f300 J( oC) (S)

The admittance diagram, Fig. 10-23, illustrates the next step.

6 =cos™'0.95=18.19°
0.0250 — wC = (0.0433)(tan 18.19°)

wC =0.0108
C =28.6uF
0.0433
G
i8.19°
0.0250 - wC

Fig. 10-23
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10.19 A circuit with impedance Z = 10.0 /60° © has the power factor improved by a parallel capacitive
reactance of 20 Q2. What percent reduction in current results?

Since I = VY, the current reduction can be obtained from the ratio of the admittances after and before
addition of the capacitors.

Yietore = 0.100 /—=60° S and Y, = 0.050 /90° +0.100 /—60° = 0.062 /—36.20° S

Ljer  0.062
Jater _ 2P 0,62
Toetore 0.100 0620

so the reduction is 38 percent.

10.20 A transformer rated at a maximum of 25kVA supplies a 12-kW load at power factor 0.60
lagging. What percent of the transformer rating does this load represent? How many kW in
additional load may be added at unity power factor before the transformer exceeds its rated kVA?

For the 12-kW load, S =12/060 = 20kVA. The transformer is at (20/25)(100%) = 80% of full
rating.
The additional load at unity power factor does not change the reactive power,

0 = +/(20)*> — (12)* = 16 kvar (inductive)

Then, at full capacity,

0" = sin~!(16/25) = 39.79°
P’ =25¢0s39.79° = 19.2kW
Pagqa = 19.2 —12.0 = 7.2kW

Note that the full-rated kVA is shown by an arc in Fig. 10-24, of radius 25.

New load

at unity pf
\‘ b 25 kVA arc

16 kvar

1
o
39.79°
—_
P =12 kW
L———P' =192 kW
Fig. 10-24

10.21 Referring to Problem 10.20, if the additional load has power factor 0.866 leading, how many kVA
may be added without exceeding the transformer rating?

The original load is S = 12 416 kVA and the added load is
S, =8, /=30° = $,(0.866) — jS,(0.500) (kVA)

The total is S, = (12 + 0.866S,) +j(16 — 0.500S,) (kVA). Then,
S% = (12 4 0.866S,)> + (16 — 0.500S,)* = (25)°

gives S, = 12.8 kVA.
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An induction motor with a shaft power output of 1.56 kW has an efficiency of 85 percent. At
this load, the power factor is 0.80 lagging. Give complete input power information.
P 1.5

out
Tout _ g5 Py = = 1.765 kW
P, or n =085

Then, from the power triangle,

1765

Sin =550 = 2206 KVA Qi = +/(2.206)* — (1.765)* = 1.324 kvar (inductive)

The equivalent circuit of an induction motor contains a variable resistance which is a function of the
shaft load. The power factor is therefore variable, ranging from values near 0.30 at starting to 0.85 at full
load.

Supplementary Problems

Given a circuit with an applied voltage v = 14.14 cos wt (V) and a resulting current i = 17.1 cos (wt — 14.05°)
(mA), determine the complete power triangle.
Ans. P =117mW, Q = 29.3 mvar (inductive), pf = 0.970 lagging

Given a circuit with an applied voltage v = 340sin (wf — 60°) (V) and a resulting current i =13.3
sin (wt — 48.7°) (A), determine the complete power triangle.
Ans. P =2217W, Q = 443 var (capacitive), pf = 0.981 leading

A two-element series circuit with R =5.0Q and X; = 15.0 2, has an effective voltage 31.6 V across the
resistance. Find the complex power and the power factor. Ans. 200 +j600 Va, 0.316 lagging

A circuit with impedance Z = 8.0 — j6.0 2 has an applied phasor voltage 70.7 /—90.0° V. Obtain the
complete power triangle. Ans. P =200W, Q = 150 var (capacitive), pf = 0.80 leading

Determine the circuit impedance which has a complex power S = 5031 /—26.57° VA for an applied phasor
voltage 212.1 /0° V. Ans. 4.0 —;2.0Q

Determine the impedance corresponding to apparent power 3500 VA, power factor 0.76 lagging, and effec-
tive current 18.0 A. Ans.  10.8 /40.54° Q

A two-branch parallel circuit, with Z; =10/0°Q and Z, =8.0/-30.0°, has a total current
i =17.07cos (wt —90°) (A). Obtain the complete power triangle.
Ans. P =110W, Q = 32.9 var (capacitive), pf = 0.958 leading

A two-branch parallel circuit has branch impedances Z; = 2.0 —j5.0 Q and Z, = 1.0 +,1.0 Q. Obtain the
complete power triangle for the circuit if the 2.0-Q resistor consumes 20 W.
Ans. P =165W, Q =95 var (inductive), pf = 0.867 lagging

A two-branch parallel circuit, with impedances Z; = 4.0 /—=30° Q and Z, = 5.0 /60° @, has an applied
effective voltage of 20 V. Obtain the power triangles for the branches and combine them to obtain the
total power triangle. Ans. Sy = 128.1 VA, pf = 0.989 lagging

Obtain the complex power for the complete circuit of Fig. 10-25 if branch 1 takes 8.0 kvar.
Ans. S =8+j12 kVA, pf = 0.555 lagging

In the circuit of Fig. 10-26, find Z if S; = 3373 Va, pf = 0.938 leading, and the 3-Q resistor has an average
power of 666 W. Ans. 2—j2Q
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O ®

4Q
j5Q

j2 0
Fig. 10-25

30
YA

j6 Q
Fig. 10-26

10.34 The parallel circuit in Fig. 10-27 has a total average power of 1500 W. Obtain the total power-triangle
information. Ans. S = 1500 + ;2471 VA, pf = 0.519 lagging

20 30
30 j6 Q
Fig. 10-27

10.35 Determine the average power in the 15-Q and 8- resistances in Fig. 10-28 if the total average power in the
circuit is 2000 W. Ans. T23W, 127TW

80

T

15 Q

Fig. 10-28

10.36 A three-branch parallel circuit, with Z; =25 /15° Q, Z, = 15/60° , and Z; = 15 /90° ©, has an applied
voltage V = 339.4 /—30° V. Obtain the total apparent power and the overall power factor.
Ans. 4291 VA, 0.966 lagging

10.37 Obtain the complete power triangle for the following parallel-connected loads: load #1, SkW, pf = 0.80
lagging; load #2, 4kVA, 2 kvar (capacitive); load #3, 6kVA, pf = 0.90 lagging.
Ans. 14.535kVA, pf = 0.954 lagging
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Obtain the complete power triangle for the following parallel-connected loads: load #1, 200 VA, pf = 0.70
lagging; load #2, 350 VA, pf = 0.50 lagging; load #3, 275 VA, pf = 1.00.
Ans. S =590 + j444 VA, pf = 0.799 lagging

A 4500-VA load at power factor 0.75 lagging is supplied by a 60-Hz source at effective voltage
240V. Determine the parallel capacitance in microfarads necessary to improve the power factor to
(a) 0.90 lagging, (b) 0.90 leading. Ans. (a) 61.8uF; (b) 212 uF

In Problem 10.39, what percent reduction in line current and total voltamperes was achieved in part
(a)? What further reduction was achieved in part (b)? Ans. 16.1 percent, none

The addition of a 20-kvar capacitor bank improved the power factor of a certain load to 0.90 lagging. -
Determine the complex power before the addition of the capacitors, if the final apparent power is
185kVA. Ans. S =166.54,100.6 kVA

A 25-kVA load with power factor 0.80 lagging has a group of resistive heating units added at unity power
factor. How many kW do these units take, if the new overall power factor is 0.85 lagging?
Ans. 4.2 kW

A 500-kVA transformer is at full load and 0.60 lagging power faactor. A capacitor bank is added, improv-
ing the power factor to 0.90 lagging. After improvement, what percent of rated kVA is the transformer
carrying? Ans. 66.7 percent

A 100-kVA transformer is at 80 percent of rated load at power factor 0.85 lagging. How many kVA in
additional load at 0.60 lagging power factor will bring the transformer to full rated load?
Ans. 21.2 kVA

A 250-kVA transformer is at full load with power factor 0.80 lagging. (¢) How many kvar of capacitors
must be added to improve this power factor to 0.90 lagging? (b) After improvement of the power factor, a
new load is to be added at 0.50 lagging power factor. How many kVA of this new load will bring the
transformer back to rated kVA, and what is the final power factor?

Ans. (a) 53.1 kvar (capacitive); (b) 33.35 kVA, 0.867 lagging

A 65-kVA load with a lagging power factor is combined with a 25-kVA synchronous motor load which
operates at pf = 0.60 leading. Find the power factor of the 65-kVA load, if the overall power factor is 0.85
lagging. Ans. 0.585 lagging

An induction motor load of 2000kVA has power factor 0.80 lagging. Synchronous motors totaling
500k VA are added and operated at a leading power factor. If the overall power factor is then 0.90 lagging,
what is the power factor of the synchronous motors? Ans.  0.92 leading

Find maximum energy (E) stored in the inductor of Example 10.17(a) and show that it is greater than the
sum of maximum stored energies when each source is applied alone (E; and E,).
Ans. E=1.6ml, E; =306 uJ, E;, =506 uJ

The terminal voltage and current of a two-terminal circuit are V,,,, = 120V and 1,,,, = 30 /—60° A at
f =60Hz. Compute the complex power. Find the impedance of the circuit and its equivalent circuit
made of two series elements.

Ans. S =1800+3117.7 VA, Z =2+ 3464 = R+ jLw, R=2Q, L =9.2 mH

In the circuit of Fig. 10-29 the voltage source has effective value 10 V at @ = 1 rad/s and the current source is
zero. (a) Find the average and reactive powers delivered by the voltage source. (b) Find the effective
value of the current in the resistor and the average power absorbed by it and the reactive powers in L and
C. Show the balance sheet for the average and reactive powers between the source and R, L, and C.
Ans. (@) P=80W, Q= —60var, (b) I =5v2A, Pr=80W, Q= —160 var, Q; = 100 var, P = P
and O, +Q0c =0
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10.51 In the circuit of Fig. 10-29, v, = 10/2cos ¢ and i, = 10s/2cos 2. (a) Find the average power delivered by
each source. (b) Find the current in the resistor and the average power absorbed by it.
Ans. (a) P, =P, =80 W, (b)ip=2+/10cos(t—26.5°)+2+/10cos (2t — 63.4°), Pr = 160 W

lq
—

7000

1H

56 i 102 u(Du

Fig. 10-29

10.52 A single-phase AC source having effective value 6 kV delivers 100 kW at a power factor 0.8 lagging to two
parallel loads. The individual power factors of the loads are pf; = 0.7 lagging and pf>, =0.1 lea-
ding. (a) Find powers P; and P, delivered to each load. (») Find the impedance of each load and
their combination.

Ans. (a) Py =97.54 kW, P, =246 kW, (b) Z, = 0.244 /—84.26 Q, Z, = 0.043 /45.57 2, Z = 0.048 /36.87 Q

10.53 A practical voltage source is modeled by an ideal voltage source V, with an open-circuited effective value
of 320V in series with an output impedance Z, =50+ ;100 Q. The source feeds a load Z, =
200 +;100 2. See Fig. 10-30. (a) Find the average power and reactive power delivered by V.
(b) Find the average power and reactive power absorbed by the load. (¢) A reactive element jX is
added in parallel to Z,. Find the X such that power delivered to Z, is maximized.
Ans.  (a) P, =250 W and Q, = 200 var, (b) P, =200 W and Q, =100 var, (c¢) X =—100

Fig. 10-30



Polyphase Circuits

11.1 INTRODUCTION
The instantaneous power delivered from a sinusoidal source to an impedance is
p(t) = v(0)i(t) = V,1,cos0 + V1, cos 2wt — 0) (1)

where V), and I, are the rms values of v and i, respectively, and 6 is the angle between them. The power
oscillates between V,I,(1 + cos6) and V,I,(—1 + cos6). In power systems, especially at higher levels, it
is desirable to have a steady flow of power from source to load. For this reason, polyphase systems are
used. Another advantage is having more than one voltage value on the lines. In polyphase systems, V),
and [, indicate voltage and current, respectively, in a phase which may be different from voltages and
currents in other phases. This chapter deals mainly with three-phase circuits which are the industry
standard. However, examples of two-phase circuits will also be presented.

11.2 TWO-PHASE SYSTEMS

A balanced two-phase generator has two voltage sources producing the same amplitude and fre-
quency but 90° or 180° out of phase. There are advantages in such a system since it gives the user the
option of two voltages and two magnetic fields. Power flow may be constant or pulsating.

EXAMPLE 11.1 An ac generator contains two voltage sources with voltages of the same amplitude and frequency,
but 90° out of phase. The references of the sources are connected together to form the generator’s reference
terminal n. The system feeds two identical loads [Fig. 11-1(a)]. Find currents, voltages, the instantaneous and
average powers delivered.

Terminal voltages and currents at generator’s terminal are

v,(t) = V,v/2cos wt up(t) = V,v/2 cos (ot — 90°) )
i(t) = Iv2cos(wt —60)  iy(t) = I,v/2cos (ot — 90° — 6)
In the phasor domain, let Z = |Z|/6 and I, =V,/|Z|. Then,
Van =V, /0 Vepy=V,/[=90°  V,p=V,y—Vgy =2V, /45 6)
Ii=1,/-0 Iz3=1,/-90-0 Iy=I+I3=12/-45—-0

The voltage and current phasors are shown in Fig. 11-1(b).
Instantaneous powers p4(7) and pg(z) delivered by the two sources are

248
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Fig. 11-1

Pa(t) = v,(Di (1) = VI, cos0 + VI, cos 2wt — 0)

(1) = vp(Diy(t) = VI, co80 — V1, cos Qwt — 6)
The total instantaneous power p7(f) delivered by the generator is
pr(t) = pa(t) + pp(t) = V,1,cos0 + V, I, cos Qwt — 6) + V,1,cos0 — V, I, cos Qwt — ) = 2V, 1, cos b
Thus, pr(t) = Py = 2V, 1, cos 6 “)

In the system of Fig. 11-1(a), two voltage values V), and ﬁVp are available to the load and the power flow is
constant. In addition, the 90°-phase shift between the two voltages may be used to produce a special rotating
magnetic field needed in some applications.

11.3 THREE-PHASE SYSTEMS

Three-phase generators contain three sinusoidal voltage sources with voltages of the same frequency
but a 120°-phase shift with respect to each other. This is realized by positioning three coils at 120°
electrical angle separations on the same rotor. Normally, the amplitudes of the three phases are also
equal. The generator is then balanced. In Fig. 11-2, three coils are equally distributed about the
circumference of the rotor; that is, the coils are displaced from one another by 120 mechanical degrees.
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Fig. 11-2

Coil ends and slip rings are not shown; however, it is evident that counterclockwise rotation results in the
coil sides 4, B, and C passing under the pole pieces in the order ... A-B-C-A-B-C ... Voltage polarities
reverse for each change of pole. Assuming that the pole shape and corresponding magnetic flux density
are such that the induced voltages are sinusoidal, the result for the three coils is as shown in Fig. 11-3.
Voltage B is 120 electrical degrees later than 4, and C is 240° later. This is referred to as the 4BC
sequence. Changing the direction of rotation would result in ... A-C-B-A-C-B..., which is called the
CBA sequence.

wl

2.9.9.9:¢

Fig. 11-3

The voltages of a balanced 4BC sequence in the time and phasor domains are given in (5) and (6),
respectively. The phasor diagram for the voltage is shown in Fig. 11-4.

Vca = VCn - ‘Ian
™~ - Vcn
30°
Vab = Van - Vbn
30° P 7
7
s
30° Ve
A/
" \ Van
\
\
\
\
Vbc - Vbn - Vcn

Fig. 11-4
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Van(8) = (V,V2)coswt vy, (1) = (V,v/2) cos (ot — 120°)  v,,,(1) = (V,v/2) cos (wt — 240°)  (5)
Vo=V, [0 Vy =V, /[=120° V., =V, /=240° (6)

11.4 WYE AND DELTA SYSTEMS

The ends of the coils can be connected in wye (also designated Y; see Section 11.8), with ends 4', B,
and C' joined at a common point designated the neutral, N; and with ends A4, B, and C brought out to
become the lines A, B, and C of the three-phase system. If the neutral point is carried along with the
lines, it is a three-phase, four-wire system. In Fig. 11-5, the lines are designated by lowercase a, b, and ¢
at the supply, which could either be a transformer bank or a three-phase alternator, and by uppercase 4,
B, and C at the load. If line impedances must be considered, then the current direction through, for
example, line a4 would be 1,4, and the phasor line voltage drop V.

a ——— A
z
N
Load
- B
"
T e -t
z
C
23
z
Fig. 11-5

The generator coil ends can be connected as shown in Fig. 11-6, making a delta-connected (or A-
connected), three-phase system with lines a, b, and ¢. A delta-connected set of coils has no neutral point
to produce a four-wire system, except through the use of A-Y transformers.

Fig. 11-6

11.5 PHASOR VOLTAGES

The selection of a phase angle for one voltage in a three-phase system fixes the angles of all other
voltages. This is tantamount to fixing the # = 0 point on the horizontal axis of Fig. 11-3, which can be
done quite arbitrarily. In this chapter, an angle of zero will always be associated with the phasor voltage
of line B with respect to line C: Vo =V, /0°.

It is shown in Problem 11.4 that the line-to-line voltage ¥/, is +/3 times the line-to-neutral voltage.
All ABC-sequence voltages are shown in Fig. 11-7(«) and CBA voltages in Fig. 11-7(h). These phasor
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A C - B
Vag = V /120° Vap = Vi /[240°
Ve = VL fP Vac = Vi [
v(‘A = V[_[24U° N V(A = VL[ 120°
N Van = (VL/V3)00° Van = (Vi /V3)zo0°
Ven = (Vi /V3)-30° Ve = (VL/V3)30°
Ven = (VL /V3)[=150° Ven = (VL /V3)LS°
C B A
(a) Sequence ABC (b) Sequence CBA
Fig. 11-7

voltages, in keeping with the previous chapters, reflect maximum values. In the three-phase, four-wire,
480-volt system, widely used for industrial loads, and the 208-volt system, common in commercial
buildings, effective values are specified. In this chapter, a line-to-line voltage in the former system
would be Ve = 678.8 /0° V, making Vycer = 678.8/+/2 =480 V. People who regularly work in this
field use effective-valued phasors, and would write V- = 480 /0° V.

11.6 BALANCED DELTA-CONNECTED LOAD

Three identical impedances connected as shown in Fig. 11-8 make up a balanced A-connected load.
The currents in the impedances are referred to either as phase currents or load currents, and the three will
be equal in magnitude and mutually displaced in phase by 120°. The line currents will also be equal in
magnitude and displaced from one another by 120°; by convention, they are given a direction from the
source to the load.

EXAMPLE 11.2 A three-phase, three-wire, 4 BC system, with an effective line voltage of 120V, has three impe-
dances of 5.0 /45° Q in a A-connection. Determine the line currents and draw the voltage-current phasor diagram.
The maximum line voltage is 1204/2 = 169.7 V. Referring to Fig. 11-7(a), the voltages are:

Vup=1697/120°V Vo =169.7/0°V Vg, =169.7/240°V

Double subscripts give the phase-current directions; for example, I,z passes through the impedance from line 4 to
line B. All current directions are shown in Fig. 11-8. Then the phase currents are

Vs 169.7/120°

IABZT—is 150 =339/75° A
Ve 169.7/0° 0
e ="7C =575 =09/=45 A
Vi 169.7/240° .
lea=—~ = T4 = 33.9/195° A
| Iea
—
A
A
5/45° Q
I VAE l-tB 5&0_ (9]
- 5145 Q
B
A
Ve Vi
Y
C
— I

Fig. 11-8
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By KCL, line current I, is given by

I, =L+ 1,0 =339/75 —33.9/195° = 58.7/45° A

Similarly, Iy = 58.7 /=75° A and I = 58.7 /165° A.

The line-to-line voltages and all currents are shown on the phasor diagram, Fig. 11-9. Note particularly the
balanced currents. After one phase current has been computed, all other currents may be obtained through the
symmetry of the phasor diagram. Note also that 33.9 x +/3 = 58.7; that is, I; = +/3Ip, for a balanced delta load.

Fig. 11-9

11.7 BALANCED FOUR-WIRE, WYE-CONNECTED LOAD

Three identical impedances connected as shown in Fig. 11-10 make up a balanced Y-connected load.
the currents in the impedances are also the line currents; so the directions are chosen from the source to
the load, as before.

EXAMPLE 11.3 A three-phase, four-wire, CBA system, with an effective line voltage of 120V, has three impe-

dances of 20 /—30° Q in a Y-connection (Fig. 11-10). Determine the line currents and draw the voltage-current
phasor diagram.

A
VA,N
N
l'\ l Vg~ Q
B
Ven
C

Fig. 11-10

The maximum line voltage is 169.7 V, and the line-to-neutral magnitude, 169.7/4/3 =98.0 V. From Fig.
11-7(b),

Vv =98.0/=90°V  Vuy=98.0/30°V  Vey =98.0/150° V

Vv 98.01/-90°
Then I, = % = ﬁ =4.90/-60° A

and, similarly, Iz = 4.90 /60° A, I =4.90 /180° A.



254 POLYPHASE CIRCUITS [CHAP. 11

The voltage-current phasor diagram is shown in Fig. 11-11. Note that with one line current calculated, the
other two can be obtained through the symmetry of the phasor diagram. All three line currents return through the
neutral. Therefore, the neutral current is the negative sum of the line currents:

IN=—(IA+[B+Ic)=0

Van

Fig. 11-11

Since the neutral current of a balanced, Y-connected, three-phase load is always zero, the neutral
conductor may, for computation purposes, be removed, with no change in the results. In actual power
circuits, it must not be physically removed, since it carries the (small) unbalance of the currents, carries
short-circuit or fault currents for operation of protective devices, and prevents overvoltages on the
phases of the load. Since the computation in Example 11.3 proceeded without difficulty, the neutral
will be included when calculating line currents in balanced loads, even when the system is actually three-
wire.

11.8 EQUIVALENT Y- AND A-CONNECTIONS

Figure 11-12 shows three impedances connected in a A (delta) configuration, and three impedances
connected in a Y (wye) configuration. Let the terminals of the two connections be identified in pairs as
indicated by the labels «, 8, y. Then Z, is the impedance “‘adjoining” terminal « in the Y-connection,
and Z is the impedance “opposite” terminal « in the A-connection, and so on. Looking into any two
terminals, the two connections will be equivalent if corresponding input, output, and transfer impe-
dances are equal. The criteria for equivalence are as follows:

N— A

g U
ZA Z(‘
B
{(a) A-connection (b) Y-connection

Fig. 11-12
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Y-to-A Transformation A-to-Y Transformation

7,7, +7,1;+ 7,7, 7,75
Z,= 7, = LAl
Z, Z,+Zp+Zc

7,7, + 7,15+ 7,7, 7,72
Zp= 7, = “afc
Z, Zy+Zp+Zc

7,71, + 7,15+ 7,75 ZpZc
Z Zi+Z5+Zc

It should be noted that if the three impedances of one connection are equal, so are those of the
equivalent connection, with Z, /Z~y = 3.

11.9 SINGLE-LINE EQUIVALENT CIRCUIT FOR BALANCED THREE-PHASE LOADS

Figure 11-13(a) shows a balanced Y-connected load. In many cases, for instance, in power
calculations, only the common magnitude, /;, of the three line currents is needed. This may be obtained
from the single-line equivalent, Fig. 11-13(b), which represents one phase of the original system, with the
line-to-neutral voltage arbitrarily given a zero phase angle. This makes I, = I, /—6, where @ is the
impedance angle. If the actual line currents I 4, I, and I~ are desired, their phase angles may be found
by adding —6 to the phase angles of V 4, Vgy, and V- as given in Fig. 11-7. Observe that the angle on
I, gives the power factor for each phase, pf = cos®6.

The method may be applied to a balanced A-connected load if the load is replaced by its Y-
equivalent, where Zy = %ZA (Section 11.8).

A
) I z -

Van ¥ ‘ I
N Z Vial0° z
B z
C

(a) (b)
Fig. 11-13

EXAMPLE 11.4 Rework Example 11.3 by the single-line equivalent method.
Referring to Fig. 11-14 (in which the symbol Y indicates the type of connection of the original load),

Vinv  98.0/0°
I =2 =" —-490/30° A
LTz T 20/=30°

From Fig. 11-7(b), the phase angles of V 4y, Vgy, and Vy are —90°, 30°, and 150°. Hence,
I,=490/-60° A 1;,=490/60° A I.=490/180° A

11.10 UNBALANCED DELTA-CONNECTED LOAD

The solution of the unbalanced delta-connected load consists in computing the phase currents and
then applying KCL to obtain the line currents. The currents will be unequal and will not have the
symmetry of the balanced case.

EXAMPLE 11.5 A three-phase, 339.4-V, ABC system [Fig. 11-15(a)] has a A-connected load, with
Zs=10/0° Q Zpc=10/30° Q  Zgy=15/-30° Q
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VLN = lL ; 20[ —300 Q

98.0/0° V

Fig. 11-14
Obtain phase and line currents and draw the phasor diagram.

Vs 3394 /120°
Z,;  10/0°

Similarly, Izc = 33.94 /—30° A and I, = 22.63 /270° A. Then,
I, =15 +1,0=23394/120° — 22.63 /270° = 54.72 /108.1° A

Also, Iy = 65.56 /—45° A and I =29.93 /—169.1° A.
The voltage-current phasor diagram is shown in Fig. 11-15(), with magnitudes and angles to scale.

WA \
10/0° 15/=30° Q
Vca Vas Las 0

10/30°

=33.94/120° A

IAB -

Ica

Ve

(a) ()

Fig. 11-15

11.11 UNBALANCED WYE-CONNECTED LOAD

Four-Wire

The neutral conductor carries the unbalanced current of a wye-connected load and maintains the
line-to-neutral voltage magnitude across each phase of the load. The line currents are unequal and the
currents on the phasor diagram have no symmetry.

EXAMPLE 11.6 A three-phase, four-wire, 150-V, CBA system has a Y-connected load, with
Z,=6/0° Q Zpy=6/30° Q Z =5/45 Q
Obtain all line currents and draw the phasor diagram. See Figure 11-16(a).

Vv 86.6/=90°

I, = =2 ——_ 1443 /-90° A
1Tz, 6/0° ‘
Vv 86.6/30°
BT 7, 6 /30° o
Vey o 86.6 /150°
Io=-Y 27— _1732/105° A
T Ze 5/45°

Iy = —(14.43 /=90° + 14.43 /0° + 17.32 /105°) = 10.21 /—167.0° A

Figure 11-16(b) gives the phasor diagram.
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A
Vay
Van 1. |{]6/0° O
Iy J W
N
pp—— 5/45° O Is
Van Is ), 167°
B 14
Ven
C Vaxn
(a) (b)
Fig. 11-16
Three-Wire

Without the neutral conductor, the Y-connected impedances will have voltages which vary consid-
erably from the line-to-neutral magnitude.

EXAMPLE 11.7 Figure 11-17(a) shows the same system as treated in Example 11.6 except that the neutral wire is
no longer present. Obtain the line currents and find the displacement neutral voltage, V-

(0]
A
1 —_—i
lA 6&’ () SZQ Q
Vas l
5/45° Q
Is
——— A C
’ O
3
v oF
Vac AB BC
C
B (ref.)
(a) (b)

Fig. 11-17

The circuit is redrawn in Fig. 11-17(b) so as to suggest a single node-voltage equation with Vp as the unknown.

Vos—Vas  Vos I Vos + Ve _

z, ‘z," zc 0
( 1 1 1 ) 150 /240° 150 /0°
VOB + B + B = -
6/0° 6/30° 5/45° 6/0° 5/45°
from which Vo = 66.76 /—=152.85° V. Then,
\Y%
I;=—-22-11.13/-2.85 A
Zg
From V()A —+ VAB = V()B’ V()A = 100.7 / 81.08° V, and
I, = —% =16.78 /=98.92° A
A

Similarly, VOC = VOB — VCB =95.58 / —18.58° V, and
I =19.12/1164° A
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Point O is displaced from the neutral N by a phasor voltage Voy, given by

1
Von = Vou + Vn = 100.7 /81.08° +%) —90° =20.24 /39.53° V

The phasor diagram, Fig. 11-18, shows the shift of point O from the centroid of the equilateral triangle.
See Problem 11-13 for an alternate method.

Fig. 11-18

11.12 THREE-PHASE POWER

The powers delivered by the three phases of a balanced generator to three identical impedances with
phase angle 6 are

() = V,1,c080 + V,I,cos Qwt — 6)
pp(t) = V1,080 + V, I, cos 2wt — 240° — 6)
p(t) = V,I,cos60 + VI, cos Qwt — 480° — 0)

pT([) = pu(t) +pb(t) +pc(l)
=3V, I,cos0 + V,I,[cos Qwt — 0) + cos 2wt — 240° — 6) + cos 2wt — 480° — 0)]
But cos (2wt — 6) + cos Qwt — 240° — 0) + cos Qwt — 480° — 0) = 0 for all . Therefore,
pr(t) =3V,I,cos0 = P

The total instantaneous power is the same as the total average power. It may be written in terms of line
voltage V; and line current /;. Thus,

In the delta system, V;, =V, and I, = ﬁlp. Therefore, P = /3 Vil cosé.

In the wye system, V; = «/§Vp and I; = I,. Therefore, P = N3V I, cosb.
The expression ~/3V, I, cosf gives the power in a three-phase balanced system, regardless of the con-
nection configuration. The power factor of the three-phase system is cosf. The line voltage V; in
industrial systems is always known. If the load is balanced, the total power can then be computed from
the line current and power factor.
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In summary, power, reactive power, apparent power, and power factor in a three-phase system are
P=~3V I, cos60 Q=+3V, I sin0 S=~3V,I, pf==

Of course, all voltage and currents are effective values.

11.13 POWER MEASUREMENT AND THE TWO-WATTMETER METHOD

An ac wattmeter has a potential coil and a current coil and responds to the product of the effective
voltage, the effective current, and the cosine of the phase angle between them. Thus, in Fig. 11-19, the
wattmeter will indicate the average power supplied to the passive network,

P = Vegylegr cos 6 = Re (Ve Lyy)
(see Section 10.7).

La

el

®
’ i

(-

' w
Passive
Ven Network
Fig. 11-19

Two wattmeters connected in any two lines of a three-phase, three-wire system will correctly indicate
the total three-phase power by the sum of the two meter readings. A meter will attempt to go downscale if
the phase angle between the voltage and current exceeds 90°. In this event, the current-coil connections
can be reversed and the upscale meter reading treated as negative in the sum. In Fig. 11-20 the meters
are inserted in lines 4 and C, with the potential-coil reference connections in line B. Their readings will
be

W4 =Re(Vperlier) = Re (V perliper) + Re (VagernLicer)
We = Re (VegerrIter) = Re (VeperIoaen) + Re (VegerItpe)

in which the KCL expressions I, =143 + 1 ,c and I = I -4 + I3 have been used to replace line currents
by phase currents. The first term in W, is recognized as P 45, the average power in phase 4B of the delta

+ Lpest A
A . ] L, ]
W,
t ° ’ IABer ‘\ICAeff
+
Vo Bets
B B (., C
V —_—
CBeff + Tpcess
[ ] [
We Icert
C ® 1
+

Fig. 11-20
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load; likewise, the second term in W is Pcp. Adding the two equations and recombining the middle
terms then yields
Wi+ We =Py +Re[(Vagerr — Vesem)icenr] + Pes = Pag + Pac + Pes

Sil’lce, by KVL, VAB - VCB == VAC'
The same reasoning establishes the analogous result for a Y-connected load.

Balanced Loads

When three equal impedances Z /6 are connected in delta, the phase currents make 30° angles with
their resultant line currents. Figure 11-21 corresponds to Fig. 11-20 under the assumption of 4BC
sequencing. It is seen that V 5 leads I, by 6 + 30°, while V5 leads I by 6 — 30°. Consequently, the
two wattmeters will read

W4 =V apeirlserr €08 (0 + 30%) We = VepesrIcefr €08 (6 — 30°)

or, since in general we do not know the relative order in the voltage sequence of the two lines chosen for
the wattmeters,

Wi = Viedp e cos (6 + 30°)
Wy = Vel e cOs (6 — 307)

These expressions also hold for a balanced Y-connection.

Fig. 11-21

Elimination of V1 o5 between the two readings leads to

W, — W,
tan = V32—
<W2+W1)

Thus, from the two wattmeter readings, the magnitude of the impedance angle 6 can be inferred. The
sign of tan 6 suggested by the preceding formula is meaningless, since the arbitrary subscripts 1 and 2
might just as well be interchanged. However, in the practical case, the balanced load is usually known to
be inductive (6 > 0).

Solved Problems

11.1 The two-phase balanced ac generator of Fig. 11-22 feeds two identical loads. The two voltage
sources are 180° out of phase. Find («) the line currents, voltages, and their phase angles, and
(b) the instantaneous and average powers delivered by the generator.
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Fig. 11-22

Let Z=|Z| /0 and I, = V,/|Z|.
(a) The voltages and currents in phasor domain are
Vay =V, /0 Vey =V, [=180° = -V, /0 Vg =Vay —Van =2V, /0
Now, from [, and Z given above, we have
ILy=1,/-0 13=1/-180°—-0=—1,/-0 Iy=1,+13=0
(b) The instantaneous powers delivered are
Pa(t) = v,(D)ig() = V,I,cos0 + V),
Pu(t) = vp(D)iy() = VI, cos 0 + 1,
The total instantaneous power p7(t) is

pr(D) = p(0) + pp(t) = ZVplp cos6 + 2Vp[[) cos (2wt — 0)

cos Qwt — 6)

1
I, cos 2wt — 6)

The average power is P,,, = 2V pl, cos 6.

11.2  Solve Problem 11.1 given V), = 110 Vrms and Z = 4 + ;3 Q.
(a) In phasor form, Z =443 =5/36.9° Q2. Then,
VAN:HO& V VBN:1105—1800 V
Vu=Vun—Vgy=110/0—-110/-180°=220/0 V
and Li=Vn/Z=22/-369" A Iz=Vgy/Z=22/-2169"=-22/-369"° A

Iy=1;+13=0

(B)  pa() = 110(22)[cos 36.9° + cos 2wt — 36.9°)] = 1936 + 2420 cos (2wt — 36.9°) (W)
(1) = 110(22)[cos 36.9° + cos (2wt — 36.9° — 360°)] = 1936 + 2420 cos 2wt — 36.9°) (W)
P(6) = pu(t) + py(f) = 3872 + 4840 cos 2wt — 36.9°) (W)
Py =3872 W
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11.3 Repeat Problem 11.2 but with the two voltage sources of Problem 11.1 90° out of phase.
(a) Again, Z =5 /36.9°. Then,
Viy=110/0 V  Vgy=110/-90° V

Vs =Vuv—Vey=110/0—110 /=90° = 110(~/2 /—45° = 155.6 /—45° V
and L,=V,y/Z=22/-369° A I3=Vuy/Z=22/-1269° A

Iy =1,+13=22/-36.9°+22/-126.9° = 22(+/2 /—81.9°) = 31.1 /—81.9° A

(b)  pa(t) =110(22)[cos 36.9° 4 cos 2wt — 36.9°)] = 1936 + 2420 cos Qwt — 36.9°) (W)
(1) = 110(22)[cos 36.9° + cos 2wt — 36.9° — 180°)] = 1936 — 2420 cos (2wt — 36.9°) (W)
p(t) = P, + P, =2(1936) = 3872 W
Py =3872 W

11.4 Show that the line-to-line voltage ¥, in a three-phase system is /3 times the line-to-neutral
voltage Vp,.

See the voltage phasor diagram (for the ABC sequence), Fig. 11-23.

A

]
I 300
!

B
l"—Vp;. cos 30°
V.= \/:;Vp;.

Fig. 11-23

C

11.5 A three-phase, ABC system, with an effective voltage 70.7 V, has a balanced A-connected load
with impedances 20 /45° Q.  Obtain the line currents and draw the voltage-current phasor
diagram.

The circuit is shown in Fig. 11-24. The phasor voltages have magnitudes Vi, = v2Ver = 100 V.
Phase angles are obtained from Fig. 11-7(a). Then,

Vs 100/120°
Ipg=—-=———""-=50/75 A
BTUZ T 20 /45°
Similarly, Izc = 5.0 /=45° A and I, = 5.0 /195° A. The line currents are:

ILi=X;+1,c=5/75—-5/195°=8.65/45° A

Similarly, Iz = 8.65 /=75° A, I = 8.65 /165° A.
The voltage-current phasor diagram is shown in Fig. 11-25.
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—— A \
Lag Q
Vv \%
ca AB 0145 Q
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—_—20/45° Q
Vg )
Ic Y < Igc -«
— C

Fig. 11-24

Fig. 11-25

11.6 A three-phase, three-wire CBA system, with an effective line voltage 106.1 V, has a balanced Y-
connected load with impedances 5 /—30° Q (Fig. 11-26). Obtain the currents and draw the
voltage-current phasor diagram.

With balanced Y-loads, the neutral conductor carries no current. Even though this system is three-

wire, the neutral may be added to simplify computation of the line currents. The magnitude of the line
voltage is V; = +/2(106.1) = 150 V. Then the line-to-neutral magnitude is V;y = 150/+/3 = 86.6 V.

V. 86.6/=90°
I, = =0 1732 /-60° A
17z 5/-30°

Fig. 11-26
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Similarly, Iz =17.32 /60° A, I =17.32 /180° A.  See the phasor diagram, Fig. 11-27, in which the
balanced set of line currents leads the set of line-to-neutral voltages by 30°, the negative of the angle of
the impedances.

30°
Ic

Van
Fig. 11-27

11.7 A three-phase, three-wire CBA system, with an effective line voltage 106.1 V, has a balanced A-
connected load with impedances Z = 15/30° 2. Obtain the line and phase currents by the
single-line equivalent method.

Referring to Fig. 11-28, V,y = (141.4v/2)/4/3 = 1155V, and so

115.5 /0°
I =———=— =231/=30° A
LT (15/3) /30°
L A

w5
E
o

o

Fig. 11-28
The line currents lag the 4 BC-sequence, line-to-neutral voltages by 30°:
I,=231/60° A I;=231/-60° A I.=231/180° A
The phase currents, of magnitude /p, = I; /+/3 = 13.3 A, lag the corresponding line-to-line voltages by 30°:
I,;=133/90° A  Ipc=133/-30° A I, =133/210° A

A sketch of the phasor diagram will make all of the foregoing angles evident.

11.8 A three-phase, three-wire system, with an effective line voltage 176.8 V, supplies two balanced
loads, one in delta with Z, = 15 /0° € and the other in wye with Zy = 10 /30° Q. Obtain the
total power.

First convert the A-load to Y, and then use the single-line equivalent circuit, Fig. 11-29, to obtain the
line current.
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—

L

144.3/0° V 50° 0 []10@ Q

N= = =
Fig. 11-29
[ 1443 /0° 1443 /0°

= +
LT 5 /00 10 /30°
Then P =3V ey cos 6 = v/3(176.8)(29.7) c0s 9.9° = 8959 W

=420/-9.9° A

11.9 Obtain the readings when the two-wattmeter method is applied to the circuit of Problem 11.8.

The angle on I;, —9.9°, is the negative of the angle on the equivalent impedance of the parallel
combination of 5/0° Q and 10 /30° . Therefore, 6 = 9.9° in the formulas of Section 11.13.

W\ = Vi ey e 08 (0 + 30°) = (176.8)(29.7) c0s 39.9° = 4028 W
Wy = Vil eir 08 (0 — 30°) = (176.8)(29.7) cos (=20.1°) = 4931 W

As a check, W, + W, = 8959 W, in agreement with Problem 11.8.

11.10 A three-phase supply, with an effective line voltage 240 V, has an unbalanced A-connected load
shown in Fig. 11-30. Obtain the line currents and the total power.

A
A
4]
Vea Vas
B
A
Vac
Y
C

Fig. 11-30
The power calculations can be performed without knowledge of the sequence of the system. The

effective values of the phase currents are

240 240 240
IABeff:2_5:9-6A IBCeff:F: 16 A ICAeff:%: 12A

Hence, the complex powers in the three phases are
S5 = (9.6)%(25 /90°) = 2304 /90° = 0 + j2304
Spe = (16)2(15 /30°) = 3840 /30° = 3325 + 1920
Sca = (12)%(20 /0°) = 2880 /0° = 2880 + 0
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and the total complex power is their sum,
St = 6205 + j4224

that is, Py = 6205 W and Q7 = 4224 var (inductive).
To obtain the currents a sequence must be assumed; let it be ABC. Then, using Fig. 11-7(a),

339.4 /120°
Ip="""=—==13.6/30° A
48705 /90°

339.4 /0°
Ipp =————=226/=30° A
BC 715 /30°

339.4 /240°
I, =" —==17.0/240° A
CA 20& L

The line currents are obtained by applying KCL at the junctions.

I, =T,5+1,0=13.6/30°—17.0/240° = 29.6 /46.7° A
Ip=Ige+1g, =22.6/=30°—13.6/30°=19.7/-66.7° A
Ic=Tc +1cp=17.0/240°—22.6 /-30°=283/—173.1° A

11.11 Obtain the readings of wattmeters placed in lines 4 and B of the circuit of Problem 11.10 (Line C
is the potential reference for both meters.)

. (29.6 )
WA = Re (VACcfflAeff) = Re |:(240 60 )(f —46.7 ):|

= Re(5023/13.3°) = 4888 W

Wy = Re (Vpearlyar) = Re [(240&) (]9727 /66.7°>]

=Re(3343/66.7°) = 1322 W

Note that W, + Wy = 6210 W, which agrees with Py as found in Problem 11.10.

11.12 A three-phase, four-wire, ABC system, with line voltage Vg~ = 294.2/0° V, has a Y-connected
load of Z, = 10/0° Q, Z = 15/30° Q, and Z = 10/=30° Q (Fig. 11-31). Obtain the line and
neutral currents.

A
A
VA.\
Iy
N
l Van
B
Ven
Y
C

Fig. 11-31
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169.9/90°
L = 72— 16.99/90° A
A 10@ /
169.9/-30°
1, = 19930 sy 00 A
15/30°
169.9/—150°
I = 2= 1699/—120° A
N 10/=30°

Iy = -1, +15+1) =8.04/69.5° A

11.13 The Y-connected load impedances Z, = 10/0° Q, Z = 15/30° Q, and Z = 10/=30° , in Fig.
11-32, are supplied by a three-phase, three-wire, 4ABC system in which V3 = 208/0° V. Obtain
the voltages across the impedances and the displacement neutral voltage V.

A
i
I
208/120° V E] 10/0° Q
15/30° Q
B —— {4
A
I
208/0° V L] 10/=30° Q
C
Fig. 11-32

The method of Example 11.7 could be applied here and one node-voltage equation solved. However,
the mesh currents I; and I, suggested in Fig. 11-32 provide another approach.

10/0° + 15/30° —15/30° I | _ [208/120°
—-15/30° 15/30°+10/=30° || L | ~ | 208/0°

Solving, I; = 14.16/86.09° A and I, = 10.21/52.41° A. The line currents are then
I,=1 =14.16/86.09° A Iz=1, -1, =8.01/-48.93° A Ir =-1, =10.21/—-127.59° A
Now the phasor voltages at the load may be computed.
Vo =1,Z,=141.6/86.09° V
VBO = IBZB = 1202[ _18930 V
Veo =1cZe =102.1/-157.59° V
Von =Vou+ Vyy =141.6/=93.91° 4 120.1/90° = 23.3/—114.53° V

The phasor diagram is given in Fig. 11-33.

11.14 Obtain the total average power for the unbalanced, Y-connected load in Problem 11.13, and
compare with the readings of wattmeters in lines B and C.

The phase powers are
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Fig. 11-33

14.16
P, = IfleffRA = (— (10) =1002.5 W
V2
Py = I3xR (8'01 (15c0830°) =417.0 W
B — {Beff g — | — = = .
V2
10.21\?
Pe = ItgiRe = (O—ﬁ) (10c0s30°) =451.4 W

and so the total average power is 1870.9 W.
From the results of Problem 11.13, the wattmeter readings are:

208 8.01
Wy =Re(Vperlyer) = Re | (—= /=60° ) (== /48.93° ) | =817.1 W
B (Vaaerlperr) [(\5 )(«/ﬁ )]
i 208 10.21
We =Re(Veyerrleer = Re [(ﬁ [24000> (7 / 127.590>] =1052.8 W

The total power read by the two wattmeters is 1869.9 W.

11.15 A three-phase, three-wire, balanced, A-connected load yields wattmeter readings of 1154 W and
557W. Obtain the load impedance, if the line voltage is 141.4V.

W, — W, 577
+tanf=V3| ——++— ) =V3|—) =0.577 6 = +30.0°
an \/_(Wz T Wl) f(ml)

and, using Py = v/3V o]} i €OS O,

Vi V3Vier  3Viegcos®  3(100)* cos 30.0° 01500
T Ipper lper  Pr 11544577 =

N

Thus, Z, = 15.0/430.0° .

11.16 A balanced A-connected load, with Z, = 30/30° 2, is connected to a three-phase, three-wire,
250-V system by conductors having impedances Z, = 0.4+ 0.3 Q. Obtain the line-to-line
voltage at the load.

The single-line equivalent circuit is shown in Fig. 11-34. By voltage division, the voltage across the

substitute Y-load is
10/30° 250
Vv = —/0°) =1374/-0.33° V
AN <0.4 +/0.3+ 10 [30°)<J§ )

whence V; = (137.4)(v/3) = 238.0 V.
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a 0.4+j03 Q A a
I
250
20 v l 10300 O
lvj
= N = N
Fig. 11-34

Considering the magnitudes only, the line voltage at the load, 238.0 V, represents a drop of 12.0 V. The
wire size and total length control the resistance in Z,, while the enclosing conduit material (e.g., steel,
aluminum, or fiber), as well as the length, affects the inductive reactance.

Supplementary Problems

In the following, the voltage-current phasor diagram will not be included in the answer, even though the
problem may ask specifically for one. As a general rule, a phasor diagram should be constructed for every
polyphase problem.

11.17

11.18

11.19

11.20

11.21

11.22

11.23

Three impedances of 10.0/53.13° € are connected in delta to a three-phase, CBA system with an affective
line voltage 240 V. Obtain the line currents.

Ans. 1,=158.8/—143.13° A, Iz =58.8/=23.13° A, I = 58.8/96.87° A

Three impedances of 4.20/—35° Q2 are connected in delta to a three-phase, ABC system having
Ve =495.0/0° V. Obtain the line currents.
Ans. 1, =20.41/125° A, Tz =20.41/5° A, 1o =20.41/=115° A

A three-phase, three-wire system, with an effective line voltage 100 V, has currents
I,=1541/-160° A Iz =1541/-40° A I =1541/80° A

What is the sequence of the system and what are the impedances, if the connection is delta?
Ans. CBA,159/70° Q

A balanced Y-connected load, with impedances 6.0/45° Q, is connected to a three-phase, four-wire CBA
system having effective line voltage 208 V. Obtain the four line currents.
Ans. 1,=12831/-135°A, 15 =28.31/—15° A, I, =28.31/105°A, Iy =0

A balanced Y-connected load, with impedances 65.0/—20° 2, is connected to a three-phase, three-wire,
CBA system, where V 45 = 678.8/—120° V. Obtain the three line currents.
Ans. 1,=6.03/=70° A, 1, =6.03/50° A, I = 6.03/170° A

A balanced A-connected load, with Z, =9.0/—-30°, and a balanced Y-connected load, with
Zy =5.0/45° Q, are supplied by the same three-phase, ABC system, with effective line voltage 480 V.
Obtain the line currents, using the single-line equivalent method.

Ans. 1,=168.9/93.36° A, 1 = 168.9/-26.64° A, I = 168.9/—146.64° A

A balanced A-connected load having impedances 27.0 /—25° Q and a balanced Y-connected load having
impedances 10.0 /—30° Q are supplied by the same three-phase, ABC system, with V- = 169.8/—150° V.
Obtain the line currents.

Ans. 1,=35.8/117.36° A, I =358/-2.64° A, I =35.8/—-122.64° A
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11.24

11.25

11.26

11.27

11.28

11.29

11.30

11.31

11.32

11.33

11.34

11.35
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A balanced A-connected load, with impedances 10.0/—36.9° ©Q, and a balanced Y-connected load are
supplied by the same three-phase, 4BC system having V4 = 141.4/240° V. If 1, =40.44/13.41° A,
what are the impedances of the Y-connected load? Ans. 5.0/-=53.3°

A three-phase, ABC system, with effective line voltage 500V, has a A-connected load for which
Z,;=100/30° Q  Zpc=250/0° Q@ Zc;=200/=30° Q
Obtain the line currents.
Ans. 1,=106.1/90.0° A, Iz = 76.15/—68.20° A, I = 45.28 / —128.65° A
A three-phase, ABC system, with V- =294.2/0° V, has the A-connected load
Z5=50/0° Q@  Zpc=40/30° Q@ Zcy=60/-15°

Obtain the line currents.

Ans. 1,=99.7/99.7° A, 13 =1279/-433 A 1o =77.1/—-172.1° A

A three-phase, four-wire, CBA system, with effective line voltage 100 V, has Y-connected impedances

Z,=30/00 Q@ Zp,=361/5631° Q@ Zo=224/-2657" Q

Obtain the currents 1, I, I, and I.
Ans. 27.2/-90° A,22.6/—26.3° A,36.4/176.6° A, 38.6/65.3° A

A three-phase, four-wire, ABC system, with Ve = 294.2/0° V, has Y-connected impedances
Z,=120/45 Q Zp=100/30° Q@ Z-,=8.0/0" Q

Obtain the currents I 4, I, I, and 1.

Ans. 14.16/45° A,16.99/—-60° A,21.24/—150° A, 15.32/90.4° A

A Y-connected load, with Z, =10/0° Q, Zg =10/60°, and Z, = 10/—=60° , is connected to a three-
phase, three-wire, 4 BC system having effective line voltage 141.4V. Find the load voltages V 4o, V30, Vco
and the displacement neutral voltage Vpy. Construct a phasor diagram similar to Fig. 11-18.

Ans. 173.2/90° V,100/0° V, 100/180° V, 57.73 /=90° V

A Y-connected load, with Z, = 10/—60° @, Z; = 10/0° Q, and Z, = 10/60° , is connected to a three-
phase, three-wire, CBA system having effective line voltage 147.1 V. Obtain the line currents I 4, I3, and I.
Ans.  20.8/-60° A,0,20.8/120° A

A three-phase, three-wire, ABC system with a balanced load has effective line voltage 200 V and (maximum)
line current I, = 13.61/60° A. Obtain the total power. Ans. 2887 W

Two balanced A-connected loads, with impedances 20 /—60° Q and 18 /45° , respectively, are connected to a
three-phase system for which a line voltage is Vzc = 212.1/0° V. Obtain the phase power of each load.
After using the single-line equivalent method to obtain the total line current, compute the total power, and
compare with the sum of the phase powers.

Ans.  562.3 W, 883.6 W, 4337.5 W = 3(562.3 W) + 3(883.6 W)

In Problem 11.5, a balanced A-connected load with Z = 20/45° Q resulted in line currents 8.65 A for line
voltages 100V, both maximum values. Find the readings of two wattmeters used to measure the total
average power. Ans. 111.9 W, 417.7W

Obtain the readings of two wattmeters in a three-phase, three-wire system having effective line voltage 240 V
and balanced, A-connected load impedances 20/80° . Ans. — 1706 W, 3206 W

A three-phase, three-wire, ABC system, with line voltage V- = 311.1/0° V, has line currents

I,=615/116.6° A Iz =61.2/-48.0° A Ir=16.1/218° A
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11.36

11.37

11.38

11.39

11.40

11.41

11.42

11.43

11.44

11.45

11.46

11.47

Find the readings of wattmeters in lines (¢) 4 and B, (b) B and C, and (¢) 4 and C.
Ans. (a) 5266 W, 6370 W; (b) 9312W, 2322W; (c) 9549W, 1973 W

A three-phase, three-wire, 4ABC system has an effective line voltage 440 V. The line currents are

I,=279/90° A I =81.0/-9.9° A I =81.0/189.9° A

Obtain the readings of wattmeters in lines (a¢) 4 and B, (b) B and C.
Ans. (a) 7.52kW, 24.8kW; (b) 16.16kW, 16.16kW

Two wattmeters in a three-phase, three-wire system with effective line voltage 120 V read 1500 W and 500 W.
What is the impedance of the balanced A-connected load? Ans. 16.3/440.9° Q

A three-phase, three-wire, 4 BC system has effective line voltage 173.2 V. Wattmeters in lines 4 and B read
—301 W and 1327 W, respectively. Find the impedance of the balanced Y-connected load. (Since the
sequence is specified, the sign of the impedance angle can be determined.)

Ans. 10/-=70° Q

A three-phase, three-wire system, with a line voltage V- = 339.4/0° V, has a balanced Y-connected load of
Zy =15/60° Q. The lines between the system and the load have impedances 2.24 /26.57° Q. Find the line-
voltage magnitude at the load. Ans. 301.1V

Repeat Problem 11.39 with the load impedance Zy = 15/—60° ©2. By drawing the voltage phasor diagrams
for the two cases, illustrate the effect of load impedance angle on the voltage drop for a given line
impedance. Ans. 3329V

A three-phase generator with an effective line voltage of 6000 V supplies the following four balanced loads in
parallel: 16 kW at pf = 0.8 lagging, 24kW at pf = 0.6 lagging, 4kW at pf = 1, and 1 kW at pf = 0.1 leading.
(a) Find the total average power (P) supplied by the generator, reactive power (Q), apparent power (S),
power factor, and effective value of line current. (b) Find the amount of reactive load Q. to be added in
parallel to produce an overall power factor of 0.9 lagging, then find apparent power and effective value of
line current.

Ans. (a) P=45kW, Q = 34.05 kvar, S = 5643 kVA, pf = 0.8 lagging, I; =543 A, (b) Qc =—12.25
kvar, S =50kVA, I, =535 A

A balanced A-connected load with impedances Z, = 6 4+ j9 2 is connected to a three-phase generator with
an effective line voltage of 400 V. The lines between the load and the generator have resistances of 1 2 each.
Find the effective line current, power delivered by the generator, and power absorbed by the load.

Ans. I =54.43 A, P, =26666 W, P, = 17777 W

In Problem 11.42, find the effective line voltage at the load.
Ans. V; =340V

A three-phase generator feeds two balanced loads (9kW at pf = 0.8 and 12kW at pf = 0.6, both lagging)
through three cables (0.1 Q each). The generator is regulated such that the effective line voltage at the load is
220 V. Find the effective line voltage at the generator. Ans. 230V

A balanced A-connected load has impedances 45 + j60 . Find the average power delivered to it at an
effective line voltage of: (a) 400V, (b) 390 V.
Ans. (a) 3.84 kW, (b) 3.65kW

Obtain the change in average power delivered to a three-phase balanced load if the line voltage is multiplied
by a factor a. Ans. Power is multiplied by the factor o

A three-phase, three-wire source supplies a balanced load rated for 15kW with pf = 0.8 at an effective line
voltage of 220 V. Find the power absorbed by the load if the three wires connecting the source to the load
have resistances of 0.05 2 each and the effective line voltage at the source is 220 V. Use both a simplified
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approximation and also an exact method.
Ans.  14.67 kW (by an approximate method), 14.54kW (by an exact method)

In Problem 11.47 determine the effective value of line voltage such that the load operates at its rated values.
Ans. 222.46V (by an approximate method), 221.98 V (by an exact method)

What happens to the quantity of power supplied by a three-phase, three-wire system to a balanced load if
one phase is disconnected? Ans. Power is halved.

A three-phase, three-wire generator with effective line voltage 6000 V is connected to a balanced load by
three lines with resistances of 1 Q each, delivering a total of 200kW. Find the efficiency (the ratio of power
absorbed by the load to power delivered by the system) if the power factor of the generator is (a) 0.6,
(b) 0.9 Ans. (a) 98.5 percent (b) 99.3 percent.

A 60-Hz three-phase, three-wire system with terminals labeled 1, 2, 3 has an effective line voltage of 220 V.
To determine if the system is ABC or CBA, the circuit of Fig. 11-35 is tested. Find the effective voltage
between node 4 and line 2 if the system is (¢) ABC, (b) CBA.

Ans. (a) 80.5V; (b) 300.5V

Line 1 1
% 1000 Q
Three-phase | Line 2 2 4
—. .—
system
——265nF
Line 3 3

Fig. 11-35



Frequency Response,
Filters, and Resonance

12.1 FREQUENCY RESPONSE

The response of linear circuits to a sinusoidal input is also a sinusoid, with the same frequency but
possibly a different amplitude and phase angle. This response is a function of the frequency. We have
already seen that a sinusoid can be represented by a phasor which shows its magnitude and phase. The
frequency response is defined as the ratio of the output phasor to the input phasor. It is a real function of
Jjow and is given by

H(jow) = Re[H] +j Im[H] = |H|e"’ (1a)

where Re [H] and Im [H] are the real and imaginary parts of H(jw) and |H| and 6 are its magnitude and
phase angle. Re[H], Im[H], [H|, and 6 are, in general, functions of w. They are related by

IH|* = [H(jo)” = Re’ [H] + Im* [H] (1b)
o« Im[H]

The frequency response, therefore, depends on the choice of input and output variables. For
example, if a current source is connected across the network of Fig. 12-1(a), the terminal current is
the input and the terminal voltage may be taken as the output. In this case, the input impedance
Z = V, /1, constitutes the frequency response. Conversely, if a voltage source is applied to the input and

1 1 I, I
— B ——
+ ] ¥ +
Vi ONE-PORT Vi TWO-PORT \A v
(a) (b)
Fig. 12-1
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the terminal current is measured, the input admittance Y =1,/V, = 1/Z represents the frequency
response.
For the two-port network of Fig. 12-1(b), the following frequency responses are defined:

Input impedance Z;,(jw) = V/1;

Input admittance Y;,(jw) = 1/Z;,(jw) =1;/V,
Voltage transfer ratio H,(jw) = V,/V;
Current transfer ratio H;(jw) = I, /14

Transfer impedances V,/1; and V;/I,

EXAMPLE 12.1 Find the frequency response V,/V, for the two-port circuit shown in Fig. 12-2.
Let Yz be the admittance of the parallel RC combination. Then, Yge = 107%w + 1/1250. V,/V| is obtained
by dividing V; between Zgc and the 5-k2 resistor.

Vo Zge 1 1

U0 = 5 = 7o 55000~ T4 5000¥rc ~ 51+ 10 ) (2a)
1 1,103
H=—— 9= tan"'(100) (2b)
51+ 10602
5k

v ANN— + o,

v, 1 uF ,[ 12500V,

_ | ' -

Fig. 12-2

Alternative solution: First we find the Thévenin equivalent of the resistive part of the circuit, V, = V;/5 and
R, = 1k, and then divide V1, between Ry, and the 1-puF capacitor to obtain (2a).

12.2 HIGH-PASS AND LOW-PASS NETWORKS

A resistive voltage divider under a no-load condition is shown in Fig. 12-3, with the standard two-
port voltages and currents. The voltage transfer function and input impedance are

Ry
H, (w) = —— H...(w) =R, + R
1/00( ) Rl + R2 Aoo( ) 1 2
The oo in subscripts indicates no-load conditions. Both H,, and H., are real constants, independent
of frequency, since no reactive elements are present. If the network contains either an inductance or a
capacitance, then H,, and H.,, will be complex and will vary with frequency. If |H,.| decreases as

L L =0
— R] i
AAA
VVV
+ +

L A A s

<
AAA

Fig. 12-3
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frequency increases, the performance is called high-frequency roll-off and the circuit is a low-pass network.
On the contrary, a high-pass network will have low-frequency roll-off, with |H,.,| decreasing as the
frequency decreases. Four two-element circuits are shown in Fig. 12-4, two high-pass and two low-
pass.

R, IC[I L, R,
— Y e
I\
b p
L 5; R; 5: R; G
(a) High-Pass (b) Low-Pass
Fig. 124

The RL high-pass circuit shown in Fig. 12-5 is open-circuited or under no-load. = The input
impedance frequency response is determined by plotting the magnitude and phase angle of

H.oo() = Ry +joL, = [H.| /6y

ll lz =0
— . P =t
AN/ 2,
+ +
\{ L. Vs
Fig. 12-5

or, normalizing and writing w, = R;/L,,

Hz;jl(“’) — 1+ j(w/w,) = m [tan” (@/w,)

Five values of w provide sufficient data to plot |H.|/R; and 6y, as shown in Fig. 12-6. The
magnitude approaches infinity with increasing frequency, and so, at very high frequencies, the network
current I; will be zero.

In a similar manner, the frequency response of the output-to-input voltage ratio can be obtained.
Voltage division under no-load gives

ja)Lz 1
H, = =
) = R oLy~ 1= (/o)
1
so that H,| = ——— and Oy = tan"(w, /)

Y1+ (@ /0)
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H,|/R
© HLI/R | o MR -
0 1 0° 2+
0.5w, 0.54/5 26.6° -
[oN V2 45° 1
20, 5 63.4° = 1 1 l
00 00 90 05w, @ 2 ®
n
00° b e e o
90°
45° -
| 1 I
0.5, w, 2w, w
Fig. 12-6

The magnitude and angle are plotted in Fig. 12-7. This transfer function approaches unity at high
frequency, where the output voltage is the same as the input. Hence the description ““low-frequency roll-
off”” and the name ‘‘high-pass.”

[HL| O
]
1
mc
|
[
l I 45° |- !
| | | | |
| I | L 1
0.5w, wy 2w, 7 0.5, wy 2w, w
Fig. 12-7

A transfer impedance of the RL high-pass circuit under no-load is

Hyo(w) o

R1 J Wy

v
H, (w) = 1—2 =jwl,  or
1

The angle is constant at 90°; the graph of magnitude versus w is a straight line, similar to a reactance plot
of wL versus w. See Fig. 12-8.

|HI/R, 7~

Wy w

Fig. 12-8

Interchanging the positions of R and L results in a low-pass network with high-frequency roll-off
(Fig. 12-9). For the open-circuit condition
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Fig. 12-9
R, 1
H,(0) = : = -
=) = R L, 1+ fwfoy)
with w, = R,/L;; that is,
1
H| =— and 6y =tan ' (~w/w,)
1+ (0/0,)

The magnitude and angle plots are shown in Fig. 12-10. The voltage transfer function H,, approaches
zero at high frequencies and unity at w = 0. Hence the name “low-pass.”

[H.{ 6u
1.0 0.5w, Wy 2w, w
T ] I
0.5 l ' ‘
SE 1 | 45— — — = |
l I |
| l | ol
0.5 w, wy 2wy, @
Fig. 12-10

The other network functions of this low-pass network are obtained in the Solved Problems.

EXAMPLE 12.2 Obtain the voltage transfer function H,,, for the open circuit shown in Fig. 12-11. At what
frequency, in hertz, does [H,| = 1/+/2 if (a) C, = 10 nF, (b)) C, = 1 nF?

s RI=5KkQ L=0
+ +
Vv, G VY

Fig. 12-11
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1/jwC, 1 1 2x 107
H,(0) = - = - where W, = = rad/s)
@ = R T oy ~ T+ /) RG - G Y
1
(a) H,| =
1+ (/o)
and so [H,| = 1/4/2 when
2x 107
w=w, :xi()izz x 10*rad/s

10 x 1079

or when f = (2 x 10*)/27 = 3.18 kHz.
10
(b) [ =7 (3.18) =31.8kHz

Comparing (a) and (b), it is seen that the greater the value of C,, the lower is the frequency at which
|[H,| drops to 0.707 of its peak value, 1; in other words, the more is the graph of |H,|, shown in Fig. 12-
10, shifted to the left. Consequently, any stray shunting capacitance, in parallel with C,, serves to reduce
the response of the circuit.

12.3 HALF-POWER FREQUENCIES
The frequency w, calculated in Example 12.2, the frequency at which
|Hv| = 0-707|H1;|max

is called the half-power frequency. In this case, the name is justified by Problem 12.5, which shows that
the power input into the circuit of Fig. 12-11 will be half-maximum when

1
JoCy

that is, when w = w,..
Quite generally, any nonconstant network function H(w) will attain its greatest absolute value at
some unique frequency w,. We shall call a frequency at which

[H(w)| = 0.707|H(w,)|

a half-power frequency (or half-power point), whether or not this frequency actually corresponds to
50 percent power. In most cases, 0 < w, < o0, so that there are two half-power frequencies, one
above and one below the peak frequency. These are called the upper and lower half-power
frequencies (points), and their separation, the bandwidth, serves as a measure of the sharpness of
the peak.

12.4 GENERALIZED TWO-PORT, TWO-ELEMENT NETWORKS

The basic RL or RC network of the type examined in Section 12.2 can be generalized with Z; and
Z,, as shown in Fig. 12-12; the load impedance Z; is connected at the output port.
By voltage division,
VA vV, VA
V = = V H R e —
2 Z, +27 1 or TN, T2+ 2
where Z' = 7,7, /(Z, + Z,), the equivalent impedance of Z, and Z, in parallel. The other transfer
functions are calculated similarly, and are displayed in Table 12-1.
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L Z I,
—— i e,
e >
+ +
'1
A\ Z; V; L Y 73
Fig. 12-12
Table 12-1
Nelworlf Vl V2 IZ V2 H[ IZ
tput Function H =— Q HU == H’- == l—lvl-[7 = — Q —_— = S
© r’(‘ondmon - Il ( ) Vl Il } I] ( ) HZ 1 ( )
Short-circuit, B L
Z;, =0 Z, 0 -1 0 Z,
Open-circuit Z,
ZL:OO Z1+Z2 Z1+Z2 0 Z2 0
Load, VA -7, -7’
ZL Zl +Z/ Zl +Z/ Z2+ZL Z/ ZL(Z1+Z,)

12.5 THE FREQUENCY RESPONSE AND NETWORK FUNCTIONS
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The frequency response of a network may be found by substituting jw for s in its network function.

This useful method is illustrated in the following example.

EXAMPLE 12.3 Find (a) the network function H(s) = V,/V; in the circuit shown in Fig. 12-13, () H(jw) for

LC =2/w} and L/C = R%, and (¢) the magnitude and phase angle of H(jw) in (b) for w, = 1rad/s.

(a) Assume V, is known. Use generalized impedances Ls and 1/Cs and solve for V;.
From I = V,/R,

R+ L
V,=R+1Ls)lp =Ty,
CSs(R + Ls) V, Cs(R+Ls).  1+Cs(R+ Ls)
IC:CSVA :TVZ and IIZIR‘FI(:f“F R V2: R
R+ L
Then, V, =V, 4RI, = ; SV, 41+ Cs(R+ Ls)]V,
|

and H(s) = V2 = 5

V, T2+ (L/R+CRs+LCs

I,
+ R

Fig. 12-13

)

(4a)
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() From LC =2/wf and L/C = R* we get L = ~/2R/wy and C = +/2/Raw,. Substituting L and C into (4a) gives

1 1 1 1
o= (1 V25 ) + (s/wof) o 100 =3 (- (0)/0)0)2) .

H|> = l (%) and 0= —tan"! «éﬁwoa;
4\ + (w/wp) @y —w

Note that H(jw) is independent of R. The network passes low-frequency sinusoids and rejects, or attenuates,
the high-frequency sinusoids. It is a low-pass filter with a half-power frequency of w = wy and, in this case, the
magnitude of the frequency response is |H(jw)| = [H(0)|/+/2 = +/2/4 and its phase angle is [H(jwy) = —7/2.

(¢) Forawyg=1,

1 1 1 1
Hs)==(—~—— or H(o)y==(——o—— 4¢
® 2(1+f2s+s2> (e 2<1+1ﬁw—wz> #
11 V2w
2 =1
H| :4_11+w4 and 0 = —tan (1_w2)

The RC network of Fig 12-4(b) was defined as a first-order low-pass filter with half-power frequency
at wy = 1/R,C,. The circuit of Fig. 12-13 is called a second-order Butterworth filter. It has a sharper cutoff.

12.6 FREQUENCY RESPONSE FROM POLE-ZERO LOCATION

The frequency response of a network is the value of the network function H(s) at s = jw. This
observation can be used to evaluate H(jw) graphically. The graphical method can produce a quick
sketch of H(jw) and bring to our attention its behavior near a pole or a zero without the need for a
complete solution.

EXAMPLE 12.4 Find poles and zeros of H(s) = 10s/(s” + 2s + 26). Place them in the s-domain and use the pole-
zero plot to sketch H(jw).
H(s) has a zero at z; = 0. Its poles p, and p, are found from s* +2s +26 = 0 so that p, = —1 + 5 and

p, = —1 —j5. The pole-zero plot is shown in Fig. 12-14(a). The network function can then be written as
S—17
H(s) = (10) ——
( ¢ )(S_Pl)(S—Pz)

For each value of s, the term (s — z;) is a vector originating from the zero z; and ending at point s in the s-domain.
Similarly, s — p; and s — p, are vectors drawn from poles p; and p,, respectively, to the point s. Therefore, for any
value of s, the network function may be expressed in terms of three vectors A, B, and C as follows:

H(s) = (10) ﬁ where A=(s—2z;),B=(s—p;),and C=(s—p,)

The magnitude and phase angle of H(s) at any point on the s-plane may be found from:

_ [A]
[H(s)| = (10) B[ x C| (5a)
/H(s)=/A—-/B—/C (5b)

By placing s on the jw axis [Fig. 12-14(a)], varying w from 0 to co, and measuring the magnitudes and phase angles of
vectors A, B, and C, we can use (5a) and (5b) to find the magnitude and phase angle plots. Figure 12-14(b) shows
the magnitude plot.

12.7 IDEAL AND PRACTICAL FILTERS

In general, networks are frequency selective. Filters are a class of networks designed to possess
specific frequency selectivity characteristics. They pass certain frequencies unaffected (the pass-band)
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141
|H]
s - plane
S
3.54
-1
(o2
2.6
1.66
w

0

P2

(@) (b}

Fig. 12-14

and stop others (the stop-band). Ideally, in the pass-band, H(jw) = 1 and in the stop-band, H(jw) = 0.
We therefore recognize the following classes of filters: low-pass [Fig. 12-15(«a)], high-pass [Fig. 12-15(5)],
bandpass [Fig. 12-15(¢)], and bandstop [Fig. 12-15(d)]. Ideal filters are not physically realizable, but we
can design and build practical filters as close to the ideal one as desired. The closer to the ideal
characteristic, the more complex the circuit of a practical filter will be.

The RC or RL circuits of Section 12.2 are first-order filters. They are far from ideal filters. As
illustrated in the following example, the frequency response can approach that of the ideal filters if we
increase the order of the filter.

NN
N\
N
N
\

(@ (b)

\

N\
\

© @
Fig. 12-15

DN
DN
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EXAMPLE 12.5 Three network functions H;, H,, and Hj are given by
1 1 1 1
b H = ’ H = =
s+1 & H, §2 4+ /25 + 1 (© H S 4+282+25+1 (s+D)(2+s+1)

Find the magnitudes of their frequency responses. Show that all three functions are low-pass with half-power
frequency at wy = 1.

(@ H; =

' 1 1
@ M =000 o)~ 1+a

2 1 1
(b) |H2| —(1_w2 +]\/§a))(1—w2 _]\/Ea))_1+w4

2 1 1
(0 H3|” =

(1 4+ 0?1 — & + jo)1 — ? — jw) 1 +

For all three functions, at w = 0, 1, and oo, we have |H|2 =1, 1/2, and 0, respectively. Therefore, the three network
functions are low-pass with the same half-power frequency of wy = 1. They are first-, second-, and third-order
Butterworth filters, respectively. The higher the order of the filter, the sharper is the cutoff region in the frequency
response.

12.8 PASSIVE AND ACTIVE FILTERS

Filters which contain only resistors, inductors, and capacitors are called passive. Those containing
additional dependent sources are called active. Passive filters do not require external energy sources and
they can last longer. Active filters are generally made of RC circuits and amplifiers. The circuit in Fig.
12-16(a) shows a second-order low-pass passive filter. The circuit in Fig. 12-16(b) shows an active filter
with a frequency response V,/V; equivalent to that of the circuit in Fig. 12-16(a).

EXAMPLE 12.6 Find the network function V,/V| in the circuits shown in (¢) Fig. 12-16(a) and (b) Fig. 12-16(b).
(a) In Fig. 12-16(a), we find V, from V, by voltage division.
_ 1 Vv, B Vv, _ A\
 CsR+Ls+1/Cs LCs’+RCs+1  LCs*+(R/L)s+(1/LC)
Substituting for R =1, L = 1/+/2, and C = /2, and dividing by V,, we get
Vv, 1
Vi @4Vt
(b) In Fig. 12-16(b), we apply KCL at nodes A and B with Vg = V,.

vV,

2F
IL
LAY
Va v,
Vi—/AV—— AV — +
L=1V2H VanQ V2R Q ——o v,
v, C=V2F v, -
]\ 11=I
(a) (b)

Fig. 12-16



CHAP. 12] FREQUENCY RESPONSE, FILTERS, AND RESONANCE 283

Node A: (Vy=VONV2+ (V= VIV2+ (V4 —Vy)2s =0 (6a)

Node B: Vos+(V, =V )V2=0 (6b)
By eliminating V 4 in (6a) and (6b), the network function H(s) = V,/V, is obtained. Thus,
V. 1
Vi &24+2s+1

Note that the circuits of Figs. 12-16(a) and (b) have identical network functions. They are second-order Butter-
worth low-pass filters with half-power frequencies at w = 1 rad/s.

12.9 BANDPASS FILTERS AND RESONANCE
The following network function is called a bandpass function.

ks

H(s) = >
() s24as+b

where ¢ > 0,b > 0,k >0 7)
The name is especially appropriate when the poles are complex, close to the jw axis, and away from the
origin in the s-domain. The frequency response of the bandpass function is
kjo HP = Ko B K

(b— Y +d*e? @+ (b —?)/w?

H(jow) = 6)]

b—o? +ajw

The maximum of [H| occurs when b — o> = 0 or w = +/b, which is called the center frequency wy. At the
center frequency, we have |H|,,, = |[H(wy)| = k/a. The half-power frequencies are at w; and wj,, where

H(w)l” = [H(w;)|* = § [H(w) (9a)
By applying (8) to (9a), w; and w, are found to be roots of the following equation:

a2
T

>

Solving, w =4+ b—a)2 (9c)

w, =+/a?/d+b+aj2 9d)

(9b)

From (9¢) and (9d) we have

Wy —w=a and oy = b = o} (10a)

The bandwidth B is defined by
B=w,—w =a (10D)
The quality factor Q is defined by
0 =w/B=~b/a (10¢)

The quality factor measures the sharpness of the frequency response around the center frequency. This
behavior is also called resonance (see Sections 12.11 to 12.15). When the quality factor is high, w; and wy,
may be approximated by wy — 8/2 and w, + /2, respectively.

EXAMPLE 12.7 Consider the network function H(s) = 105/(52 +300s + 10%).  Find the center frequency, lower
and upper half-power frequencies, the bandwidth, and the quality factor.
Since wj = 10°, the center frequency wy = 1000 rad/s.

The lower and upper half-power frequencies are, respectively,



284 FREQUENCY RESPONSE, FILTERS, AND RESONANCE [CHAP. 12

w = +2/4+ b — a2 = /300%/4 + 10° — 300/2 = 861.2 rad/s
W, =\ @/4+ b+ a2 = /3002/4 + 10° + 300/2 = 1161.2 rad/s

The bandwidth 8 = w, — w; = 1161.2 — 861.2 = 300 rad/s.
The quality factor Q = 1000/300 = 3.3.

EXAMPLE 12.8 Repeat Example 12.7 for H(s) = 10s/(s* + 30s + 10°). Again, from o} = 10°, w, = 1000 rad/s.

Then,
w; =+/30%/4 +10° — 30/2 = 985.1 rad/s
w, = +/30%2/4 4+ 10° 4+ 30/2 = 1015.1 rad/s

B =a=30rad/s and Q0 =1000/30 = 33.3

Note that w; and w), can also be approximated with good accuracy by

w = wy — B/2 = 1000 —30/2 =985 rad/s  and @, = wy + B/2 = 1000 + 30/2 = 1015 rad/s

12.10  NATURAL FREQUENCY AND DAMPING RATIO
The denominator of the bandpass function given in (7) may be written as
S +as+b=s+2kws + &}

where wy = /b is called the natural frequency and & = a/(2+/b) is called the damping ratio. For & > 1,
the circuit has two distinct poles on the negative real axis and is called overdamped. For & =1, the
circuit has a real pole of order two at —wq and is critically damped. For & < 1, the circuit has a pair of
conjugate poles at —&wy + jwgy/1 — £ and —&wy — jwy+/1 — 2. The poles are positioned on a semicircle
in the left half plane with radius w,. The placement angle of the poles is ¢ = sin”!' & (see Fig. 12-17).
The circuit is underdamped and can contain damped oscillations. Note that the damping ratio is equal
to half of the inverse of the quality factor.

Jjw
gy
g oyV1-£
1
: & sind=¢
1
—£wp! -
1
1
1
' b
1
A —woxﬁ—?
$2
—ay
Fig. 12-17

12.11 RLC SERIES CIRCUIT; SERIES RESONANCE

The RLC circuit shown in Fig. 12-18 has, under open-circuit condition, an input or driving-point
impedance

Z(@) = R +j(wL - 1)
wC
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I L c L =0
+ N\ +
A\ R A\
Fig. 12-18

The circuit is said to be in series resonance (or low-impedance resonance) when Z; () is real (and so
|Z;,(w)| 1s a minimum); that is, when
L ! 0 1
oL —— = or w=w)=—
oC 0
Figure 12-19 shows the frequency response. The capacitive reactance, inversely proportional to w,
is higher at low frequencies, while the inductive reactance, directly proportional to w, is greater at the
higher frequencies. Consequently, the net reactance at frequencies below wj is capacitive, and the angle
on Z;, is negative. At frequencies above w,, the circuit appears inductive, and the angle on Z;, is
positive.

Zn
R \ /

(a) (b)
Fig. 12-19

By voltage division, the voltage transfer function for Fig. 12-18 is

R

Hvoo(w) = 7. (w)

= RYin (a))

The frequency response (magnitude only) is plotted in Fig. 12-20; the curve is just the reciprocal of that
in Fig. 12-19(a). Note that roll-off occurs both below and above the series resonant frequency wy. The
points where the response is 0.707, the half-power points (Section 12.3), are at frequencies w; and wy,.
The bandwidth is the width between these two frequencies: 8 = w;, — ;.

A quality factor, Qg = wyL/R, may be defined for the series RLC circuit at resonance. (See Section
12.12 for the general development of Q.) The half-power frequencies can be expressed in terms of the
circuit elements, or in terms of wy, and Q, as follows:

_ R (R 2+ L_ LI
h=or L) TeT™ 402 720,

__ R (R 2+ 1 .
Y=L L) TLeT™ 402 20,
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H.|
1.0

0.707
0.5

See Problem 12.5. Subtraction of the expressions gives

Ry

=1-0,

which suggests that the higher the “quality,” the narrower the bandwidth.

B

12.12 QUALITY FACTOR

A quality factor or figure of merit can be assigned to a component or to a complete circuit. It is
defined as

QEZT((

maximum energy stored
energy dissipated per cycle

a dimensionless number. This definition is in agreement with definitions given in Sections 12.9 and
12.11.

A practical inductor, in which both resistance and inductance are present, is modeled in Fig. 12-21.
The maximum stored energy is %Llém, while the energy dissipated per cycle is

2 2R
(I R) (n) = max 7T
w w

7

Fig. 12-21

wlL

Hence, g = —
de R

A practical capacitor can be modeled by a parallel combination of R and C, as shown in Fig. 12.22.
The maximum stored energy is %C V2 . and the energy dissipated per cycle is V2, 7/Rw. Thus,
Ocap = 0CR.

The Q of the series RLC circuit is derived in Problem 12.6(a). It is usually applied at resonance, in
which case it has the equivalent forms

D ="R ZwCcrR RVC
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7

Fig. 12-22

12.13 RLC PARALLEL CIRCUIT; PARALLEL RESONANCE

A parallel RLC network is shown in Fig. 12-23. Observe that V, = V;. Under the open-circuit
condition, the input admittance is

1 1 1
Y =—4+—+4+jwC =——
in(®) R +jw 7 tie Z.(@)

'] l2
— ——
+ ! +
\2 R L C T V;
Fig. 12-23

The network will be in parallel resonance (or high-impedance resonance) when Y;,(w), and thus Z;,(w), is
real (and so |Y;,(w)| is a minimum and |Z;,(w)| is a maximum); that is, when

1
——4wC=0 or w=w, =—=

wlL VLC

The symbol w, is now used to denote the quantity 1/4/LC in order to distinguish the resonance from
a low-impedance resonance. Complex series-parallel networks may have several high-impedance reso-
nant frequencies w, and several low-impedance resonant frequencies wy.

The normalized input impedance

Zy() _ !
o 1
1 +jR|wC ——
(e p)

is plotted (magnitude only) in Fig. 12-24. Half-power frequencies w; and w,, are indicated on the plot.
Analogous to series resonance, the bandwidth is given by

_ @
0,

where Q,, the quality factor of the parallel circuit at = w,, has the equivalent expressions

R C
Qa oL 2 C=RJ7

B

See Problem 12.6(b).
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0.707
0.5

Fig. 12-24

12.14 PRACTICAL LC PARALLEL CIRCUIT

A parallel LC “tank” circuit has frequency applications in electronics as a tuning or frequency
selection device. While the capacitor may often be treated as “pure C,” the losses in the inductor should
be included. A reasonable model for the practical tank is shown in Fig. 12-25. The input admittance is

1 R wL
Y, (w) = joC + — = +ilwC - —
(@) = RtjoL~ R+ (L)} [ Rz—i—(a)L)z}

L

’ M sx |

v, | I

For resonance,

c w,L o 1 | RXC
0,C =—/——"7-"——— w, = — -
“ R4 (w,L)? " JLC L

At the resonant frequency, Y;,(w,) = RC/L and, from Section 12.11, the Q of the inductance at w, is

w,L L
Oni =" =\ cre ™!
If Qjng > 10, then @, ~ 1/v/LC and
Zin(w )
’ R “l Qiznd

The frequency response is similar to that of the parallel RLC circuit, except that the high-impedance
resonance occurs at a lower frequency for low Q;,4. This becomes evident when the expression for w,
above is rewritten as

B 1) I
’ (m J1+1/0%)
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12.15 SERIES-PARALLEL CONVERSIONS

It is often convenient in the analysis of circuits to convert the series RL to the parallel form (see Fig.
12-26). Given Ry, Ly, and the operating frequency w, the elements R, L, of the equivalent parallel circuit
are determined by equating the admittances

R, —joL, 1 1
= % and Y, =—+-
Rs + (a)Ls) RP J a)LP

R; {
b

> =3 L

Ls

Fig. 12-26

The results are

Rp:R|:1+<a;§>:|:RS(1+Q§)
2
e ()]0

If 0, > 10, R, ~ R,Q; and L, ~ L,.
There are times when the RC circuit in either form should be converted to the other form (see Fig.
12-27). Equating either the impedances or the admittances, one finds

Fig. 12-27
R, _ R
1+ (@C,R,)  1+0;

1 1
Cs=C1,|:1+( Rp) :| C”<1+Q12,>

as the parallel-to-series transformation, and

s =

1
(a)C—R)21| =R,(1+ Q?)

P S o
2 2 2
I+ (@CRy)™ 14(1/0y)

R,,:RS[H

as the series-to-parallel transformation. Again, the equivalence depends on the operating frequency.
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12.16 LOCUS DIAGRAMS

Heretofore, the frequency response of a network has been exhibited by plotting separately the
magnitude and the angle of a suitable network function against frequency w. This same information
can be presented in a single plot: one finds the curve (locus diagram) in the complex plane traced by the
point representing the network function as w varies from 0 to co. In this section we shall discuss locus
diagrams for the input impedance or the input admittance; in some cases the variable will not be w, but
another parameter (such as resistance R).

For the series RL circuit, Fig. 12-28(a) shows the Z-locus when wL is fixed and R is variable; Fig. 12-
28(b) shows the Z-locus when R is fixed and L or w is variable; and Fig. 12-28(c¢) shows the Y-locus when
R is fixed and L or w is variable. This last locus is obtained from

1 |
Y = = /tan”'(~wL/R)
Rtjol g2 4 (o)

jimZ jimZ | jimY
R increasing ' 2R R ReY

wlL Y

jwL increasing
0 0 wL increasing
R ReZ
(a) ®) (c)
Fig. 12-28

Note that for oL =0, Y = (1/R)/0°; and for wL — oo, Y — 0/—=90°. When wL = R,

1
Y=——/-45°
RV2

A few other points will confirm the semicircular locus, with the center at 1/2R and the radius 1/2R.
Either Fig. 12-28(b) or 12-28(c) gives the frequency response of the circuit.
A parallel RC circuit has the Y- and Z-loci shown in Fig. 12-29; these are derived from

1 R
Y = R + joC and 7 =—— [tan_l(—a)CR)
1 + (wCR)?
jimY ; jlmzZ
T wC R2 R
increasing 0 & 4
. ReZ
< JuC
R<$ o )
4 R increasing /
0 «C increasing
1 Re Y
R
(@) ®) (©

Fig. 12-29
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For the RLC series circuit, the Y-locus, with w as the variable, may be determined by writing
1 R—jX

R+jX R+ X2

R . X

- R2 +X2 - R2 —|—X2

Y=G+/B=

whence

Both G and B depend on w via X. Eliminating X between the two expressions yields the equation of the

locus in the form
G 1> 1\*
2 2 2
G +B =— G—— | +B = |—
R or ( ZR) <2R>

which is the circle shown in Fig. 12-30. Note the points on the locus corresponding to w = w;, ® = wy,
and w = w,,.

/B

_— w increasing

x| - §
Q

Fig. 12-30

For the practical “tank’ circuit examined in Section 12.14, the Y-locus may be constructed by
combining the C-branch locus and the RL-branch locus. To illustrate the addition, the points corre-
sponding to frequencies w; < w, < w3 are marked on the individual loci and on the sum, shown in Fig.
12-31(¢). It is seen that |Y|,;, occurs at a frequency greater than w,; that is, the resonance is high-
impedance but not maximum-impedance. This comes about because G varies with w (see Section 12.14),
and varies in such a way that forcing B = 0 does not automatically minimize G> + B>. The separation of

jImY Y -locus jimY

317 “r
B I S
C = | I
I .| 0 0
i | ReY
L 1

YRL-|0CUS

(a) b) ()

Fig. 12-31
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the resonance and minimum-admittance frequencies is governed by the Q of the coil. Higher Q;4
corresponds to lower values of R. It is seen from Fig. 12-31(b) that low R results in a larger semicircle,
which when combined with the Y -locus, gives a higher w, and a lower minimum-admittance frequency.
When Q;,4 > 10, the two frequencies may be taken as coincident.

The case of the two-branch RC and RL circuit shown in Fig. 12-32(a) can be examined by adding
the admittance loci of the two branches. For fixed V = 1//0°, this amounts to adding the loci of the two
branch currents. Consider C variable without limit, and R, R,, L, and w constant. Then current I; is
fixed as shown in Fig. 12-32(b). The semicircular locus of I is added to I, to result in the locus of I;.

Resonance of the circuit corresponds to 67 = 0. This may occur for two values of the real, positive
parameter C [the case illustrated in Fig. 12.32(b)], for one value, or for no value—depending on the
number of real positive roots of the equation Im Y,(C) = 0.

jim Iy C increasing
I -=
(v wile w3l T /)> >
vt /
© « 0 "y —%
. jwL / Rely
joC I I 1
g N :? C==

e . Y >

Rl lC

(a) (b)
Fig. 12-32

12.17 SCALING THE FREQUENCY RESPONSE OF FILTERS

The frequency scale of a filter may be changed by adjusting the values of its inductors and
capacitors. Here we summarize the method (see also Section 8.10). Inductors and capacitors affect
the frequency behavior of circuits through Lw and Cw; that is, always as a product of element values and
the frequency. Dividing inductor and capacitor values in a circuit by a factor k will scale-up the w-axis
of the frequency response by a factor k. For example, a 1-mH inductor operating at 1 kHz has the same
impedance as a 1-pH inductor operating at 1 MHz.  Similarly, a 1-uF capacitor at 1 MHz behaves
similar to a 1-nF capacitor at 1 GHz. This is called frequency scaling and is a useful property of linear
circuits. The following two examples illustrate its application in filter design.

EXAMPLE 12.17 The network function of the circuit of Fig. 8-42 with R =2 kQ, C = 10 nF, and R, = R, is
v, 2

T N (5
— ) +H—)+1
() wo

where wy = 50, 000 rad/s (see Examples 8.14 and 8.15). This is a low-pass filter with the cutoff frequency at w,. By
using a 1-nF capacitor, w, = 500,000 and the frequency response is scaled up by a factor of 10.

H(s)

EXAMPLE 12.18 A voltage source is connected to the terminals of a series RLC circuit. The phasor current is
I =Y x V, where

Cs

Y ' = —
) = e+ RCs 1 1

This is a bandpass function with a peak of the resonance frequency of wy = 1/+/LC. Changing L and C to L/k and
C/k (a reduction factor of k) changes 1/+/LC to k/+/LC and the new resonance frequency is increased to ke,. You
may verify the shift in frequency at which the current reaches its maximum by direct evaluation of Y (jw) for the
following two cases: (¢) L = 1 mH, C = 10 nF, w, = 10° rad/s; () L = 10 mH, C = 100 nF, w, = 10° rad/s.
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Solved Problems

12.1 In the two-port network shown in Fig. 12-33, R; =7 k2 and R, =3kQ. Obtain the voltage
ratio V,/V, (a) at no-load, (b) for R, =20kQ.

o~ NN~ ® ©
+ R; +
v, R $ v, SR
< L
. s o
Fig. 12-33
(a) At no-load, voltage division gives
Vv, R, 3
—= = =——=0.30
Vi Ri+R, 743
() With R; =20k,
R,R; 60
R, = =— kQ
7 Ry,+ R, 23
R
and Ya_ Ld 60 _ 0.27

Vi R +R, 221

The voltage ratio is independent of frequency. The load resistance, 20 k<2, reduced the ratio from
0.30 to 0.27.

12.2 (@) Find L, in the high-pass circuit shown in Fig. 12-34, if |H,(w)| = 0.50 at a frequency of
50 MHz. (b) At what frequency is |H,| = 0.90?

(a) From Section 12.2, with w, = R,/L,,
1

Hy(0)] = ————
V1 + (/o)
Then, 0502 o /. = 50+/3 MHz
V14 (fe/50)
R| = S(] kﬂ

Fig. 12-34
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R 10°
and Lzz—le:mQuH
27f,  27(50+/3 x 10°)
1
(b) or f =179 MHz

N=—————
14 (507/3/1)

12.3 A voltage divider, useful for high-frequency applications, can be made with two capacitors C;
and C, in the generalized two-port network Fig. 12-2. Under open-circuit, find C, if
C; =0.01 pF and |H,| = 0.20.

From Table 12-1,

H — Z,  1jjG C
VT +Z, ] 4 1 7 C+G
JoCp  joC,
0.01
HCHCC, 0.20 = m or C2 =0.04 },J,F

The voltage ratio is seen to be frequency-independent under open-circuit.

12.4 Find the frequency at which |H,| = 0.50 for the low-pass RC network shown in Fig. 12-35.
1 1

H(w)=——— h L=
O ey M T RG
R, =100 Q
. e -
;: Cg = 2 }IF
L g -
Fig. 12-35
2 1 . ®
Then, 0.50) =——— from which — =3
1+ (0/w,) oy
and w=+3 =8660rad/s or [ =1378Hz
R Gy

12.5 For the series RLC circuit shown in Fig. 12-36, find the resonant frequency w, = 2nfy,. Also
obtain the half-power frequencies and the bandwidth B.

1
Zin(@) = R +j(wL - —)
wC

At resonance, Z;,(w) = R and wy = 1/+/LC.
1 @
wy = ————-—=2236.1rad/s fy=z—=3559Hz

V/0.5(0.4 x 1079) 27

The power formula
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100 €}

Viw) Ct) 05 H

/T\ 0.4 uF

Fig. 12-36
VarR
P=IgGR ="
‘Zinl
shows that P, = eff/R achieved at w = w,, and that P =5 P,,, when |Z:,)* = 2R?; that is, when
1 R 1

Corresponding to the upper sign, there is a single real positive root:

_R + R 2+ : 2338.3 rad/s or fn =372.1 Hz
“n=ar or) TicT Tn= 20

and corresponding to the lower sign, the single real positive root

——5—1— R 2—I—L 2138.3 rad/s or f;=340.3Hz
“="ar"\y\ar) TLe T P

12.6 Derive the Q of (@) the series RLC circuit, (b) the parallel RLC circuit.

(a) In the time domain, the instantaneous stored energy in the circuit is given by

15 qz
=14+ L
Wi=aLi+56

For a maximum,

dw Ldl q dq _ ,(Ldl

- dt

7\ ~
a ~Hatca + )"(”L”C)_O

Thus, the maximum stored energy is W at i = 0 or W at v; + v = 0, whichever is the larger. Now

the capacitor voltage, and therefore the charge, lags the current by 90°; hence, i = 0 implies ¢ = £0,..«
and

W| _Qmax:lCVQ :lc ﬁ 2: Irzndx

=T T2 T2 \wC) T 2Ce?

On the other hand, v; +ve = 0 implies v; = v = 0 and i = £/, (see the phasor diagram, Fig. 12-
37), so that

W |n,+z( =0 =12 L[r%mx
It follows that

Lin/2C” (o < o)
Wimax = 5
leax/z ((1) = (1)0)
The energy dissipated per cycle (in the resistor) is W, = I2, R7/w. Consequently,

_ Wimax _ | 1/wCR (0 < wy)
Q=2 = ‘{wL/R (= o)
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\/1

V,_+Vc “

Ve

Fig. 12-37

(b) For the parallel combination with applied voltage v(¢),

1 1
W, =L} +==q¢

2 2C
and %:LiL%+%iC:v(iL+i(;):o
If v =0, then ¢~ = 0 and
ip = Elppax = i%
giving Wpmo = 2VL§] :)’;

If iy +ic = 0, then (see Fig. 12-38) i; = ic = 0 and g = £CV .4, glVing

—1 2
WvliL+iC:() ) CVmax

Ic
{k
I +Ic A
o v
4
| 12
Fig. 12-38
2 2
Therefore Wiman = Vmazx/ 2Lw (0 < w,)
CVmax/2 (Cl) > a)a)

The energy dissipated per cycle in R is W, = V,zmxn/Rw. Consequently,

W max {mm) W§%4

Q=2n W, ~ | wCR (w0 > w,)

12.7 A three-element series circuit contains R = 10 2, L = 5 mH, and C = 12.5 pF. Plot the magni-
tude and angle of Z as functions of w for values of w from 0.8 w, through 1.2 wj.

wy = 1/J/LC = 4000 rad/s. At ay,

1
"~ (4000)(12.5 x 107%)

Z=10+j(X, — X¢) = 10 +0

X; = (4000)(5x107H) =20Q  Xc 20 Q
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The values of the reactances at other frequencies are readily obtained. A tabulation of reactances and
impedances appear in Fig. 12-39(a), and Fig. 12-39(b) shows the required plots.

w X | Xc V4

3200 | 16 | 25 10—79 | 13.4/—42°
3600 | 18 | 22.2 | 10 —j4.2 | 10.8/—22.8°
4000 | 20 | 20 10 10/0°

4400 | 22 | 18.2 | 10+,3.8 | 10.7/20.8°
4800 | 24 | 16.7 | 104,7.3 | 12.4/36.2°

(@)
6z
I
2, Q 62 «
+ 2
1Z{
14+
4 0r
13 +
2+ 1
TR
1 -wr
10+
N Wy

t t +

3200 600 4000 440 480w, rad/s
)

Fig. 12-39

12.8 Show that wy, = ./w;w), for the series RLC circuit.
By the results of Problem 12.5,

3 R2+1R R2+1+R_1_2
@1on = 2L) TIC T 2L on) TcT | Te T

12.9 Compute the quality factor of an RLC series circuit, with R =20 Q, L = 50 mH, and C =1 uF,
using (@) Q@ =wyL/R, (b) Q=1/wyCR, and (¢) Q = wy/p.
o 1
T V005 x 100

R (R, 1 R [(R\ 1
a)/:—i-i- (Z) +R=42766 rdd/S a),,:i (i) +R:46766 rdd/S

and B8 = w, — w; = 400 rad/s.

=4472rad/s

oL 4472(0.050)

(a) 0=— o =112
(b) 0= L _ ! =112

T wyCR ™ 4472(107920
(c) Q:&:4472:]l.2

B 400
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12.10

12.11

12.12

FREQUENCY RESPONSE, FILTERS, AND RESONANCE [CHAP. 12

A coil is represented by a series combination of L = 50 mH and R = 15 Q. Calculate the quality
factor at (a) 10 kHz, (b) S0 kHz.

wL 2710 x 10°)(50 x 107)

(a) Ocoil = R 15 =209

(o) Ocoil = 209(%) = 1047

Convert the circuit constants of Problem 12.10 to the parallel form (a) at 10 kHz, (b) at 250 Hz.

2
(a) R, = RS|:1 + (%) } = Rl + 02 = I5[1 + (209)’] = 655 k2

S

or, since O, > 10, R, ~ R,0; = 15(209)” = 655 k<.

1

L= L3<1 +—2> ~ L, = 50 mH
05

(b) At250Hz,

_ 2m(250)(50 x 107°)
0, = G

2 2
R, = R|[1 + 0%] = 15[1 +(5.24)"] = 426.9 Q

=5.24

1 1
L,=L|1+—|=(50x10"{1+——|=51.8mH
’ [ QE} (0 )[ (5.24)2] "

Conversion of circuit elements from series to parallel can be carried out at a specific frequency, the
equivalence holding only at that frequency. Note that in (), where Q < 10, L, differs significantly from L.

For the circuit shown in Fig. 12-40, (a) obtain the voltage transfer function H,(w), and () find the
frequency at which the function is real.

AAA .
L4 A o

+ R,

+ @

A Ad

V| R

2
AAA.

r.
0
Ay
/1
<

9!
o)

[

Fig. 12-40

(a) Let Z, and Y, represent the impedance and admittance of the R, LC parallel tank.
Z, 1 1

R+7Z, 1+RY, 11
1+ 4 + KXY, 1+R1<F+W_L+jwc>
2

H,(w) =

B 1
o R, 1
l+—+/jR|wC——
+ Rz +] 1 (a) a)L)
(b) The transfer function is real when Y, is real; that is, when
1

w=w, =—F——

JvLC

At w = w,, not only are |Z,| and |H,| maximized, but |Z;,| = |R; + Z,| also is maximized (because R; is
real and positive—see the locus diagram, Fig. 12-41).
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12.13

12.14

jImZ
~ R
z, N
zin
}
ReZ

-
Fig. 12-41

Obtain the bandwidth 8 for the circuit of Fig. 12-40 and plot g8 against the parameter

RiR,
R.=—"—
TR+ R,

Here, the half-power frequencies are determined by the condition |H,(@)| = 0.707|H,| . OF, from

Problem 12.12(a),
1 R, 1
R - ) =%(1+L RfwC——) ==+l
1<wc- wL) ( *1@) or h(wc wL)

But (see Section 12.13) this is just the equation for the half-power frequencies of an R, LC parallel circuit.
Hence,

w, 1
#=0,7cx,
The hyperbolic graph is shown in Fig. 12-42.
B. rad/s
LI
V< |
|
e R. O
v
Fig. 12-42

In the circuit of Fig. 12-40, let Ry = R, =2k, L=10mH, and C =40nF. Find the
resonant frequency and bandwidth, and compare with the results for R; =0 (i.e., a pure
parallel circuit).

1

w, = =5 x 10* rad/s
V(10 x 1073)(40 x 107%)

or f, =7958 Hz. With R, = 22/4 =1 k<, Problem 12.13 gives

1

= =2.5x10%rad
(40 x 109)(1 x 10%) x 107 rad/s

B
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12.15

12.16

FREQUENCY RESPONSE, FILTERS, AND RESONANCE [CHAP. 12

The results of Problem 12.12 and 12.13 cannot be applied as R; — 0, for, in the limit, the voltage ratio
is identically unity and so cannot provide any information about the residual R, LC parallel circuit. (Note
that B — oo as R, — 0.) Instead, we must go over to the input impedance function, as in Section 12.13,
whereby
=5x10* rad/s

1
W, = —F——=
~LC
as previously, and

1
B ~ R " 1.25 x 10* rad/s

For the circuit of Fig. 12-40, R, = 5k and C = 10 nF. If V,/V, = 0.8/0° at 15kHz, calculate
R,, L, and the bandwidth.

An angle of zero on the voltage ratio H, indicates that the circuit as a whole, and the parallel rank by
itself, is at resonance (see Problem 12.14). Then,

1 1 1
= L= — =11.26 mH
“a=JIC w3C [27(15 x 10)]2(10 x 1079)
From Problem 12.12,
H,(w,) = 0.8/0° I whence Ry, = L —20kQ
@a) = 1+ (R,/Ry) 27025

Then, R, = (5)(20)/25 = 4 k2, and Problem 12.3 gives

1

=2.5x10*rad
(10 x 109)(% x 10°) x 107 rad/s

B=

Compare the resonant frequency of the circuit shown in Fig. 12-43 for R =0 to that for
R =50 Q.

For R = 0, the circuit is that of an LC parallel tank, with
1 1

w, = = =408.2 rad/s or f,=65Hz
VLC  /(0.2)(30 x 10-9) ‘
For R =50 L,
1 R wlL
Y, =joC+— = +jlwC——
T R Y oL T R+ (L) [ R+ (a)L)z]

For resonance, Im Y;, is zero, so that

~| %
“la

1
\/—_

W, =

Fig. 12-43
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Clearly, as R — 0, this expression reduces to that given for the pure LC tank. Substituting the numerical
values produces a value of 0.791 for the radical; hence,

w, = 408.2(0.791) = 322.9 rad/s  or  f,=51.4Hz

12.17 Measurements on a practical inductor at 10 MHz give L = 8.0 pH and Q;,q = 40. () Find the
ideal capacitance C for parallel resonance at 10 MHz and calculate the corresponding bandwidth
B. (b) Repeat if a practical capacitor, with a dissipation factor D = Qc_alp = 0.005 at 10 MHz, is
used instead of an ideal capacitance.

(a) From Section 12.14,
1 1

Wy

VEC 1+ 0.2
1 1
or C= 1100 = ] =31.6 pF
Wa ind 61712 -6
m 27(1 1 . 1 14+—
[27(10 x 10°)]°(8.0 x 10 )( +1600)
Using Section 12.15 to convert the series RL branch of Fig. 12-25 to parallel at the resonant
frequency,
w,L
R, =R(1 + Qhg) = o (1+ 0ia)
1n
Then, from Section 12.13,
g WL _ w“Qi"zd _ 27(10 x 10940) 4
0, R, 1+0, 1 + 1600
or 0.25MHz.
(b) The circuit is shown in Fig. 12-44; part (a) gives the resistance of the practical inductor as
w,L
R=""=47Q
Oind

Also, from the given dissipation factor, it is known that

1
[OM CRC

=0.005
The input admittance is

1 1 wL
Yin = R Tt R oL = [R_c i (wL)z] +][wc R+ (a)L)z]
which differs from the input admittance for part (a) only in the real part. Since the imaginary part
involves the same L and the same R, and must vanish at the same frequency, C must be the same as in
part (a); namely, C = 31.6 pF.
For fixed C, bandwidth is inversely proportional to resistance. With the practical capacitor, the
net parallel resistance is

R/: RpR(‘
R, + R¢

-

R=47 Q

VL
R(‘ 1: c

L =80 uH

o=

Fig. 12-44
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where R, is as calculated in part (a). Therefore,

B _ R R (@d/0n)(] + i)
025MHz R’ Rc 1/w,C(0.005)
_ 1 4 L+ 04a)(0.005)
Oina(1 + 010
14 (1 4 1600)(0.005) 12

1
40(1 +71600)
and so 8 =0.30 MHz.

A lossy capacitor has the same effect as any loading resistor placed across the tank; the Q, is
reduced and the bandwidth increased, while f, is unchanged.

12.18 A lossy capacitor, in the series-circuit model, consists of R =25 Q and C = 20 pF. Obtain the
equivalent parallel model at 50 kHz.

From Section 12.15, or by letting L — 0 in Problem 12.6(a),

1 1
wCR; ~ 27(50 x 10%)(20 x 10~12)(25)

0, = = 6370

For this large Q,-value,

~ 2 _ ~ _
R,~RQ?=1010MQ  C,~C,=20pF

12.19 A variable-frequency source of V = 100/0° V is applied to a series RL circuit having R = 20 Q
and L =10 mH. Compute I for v = 0, 500, 1000, 2000, 5000 rad/s. Plot all currents on the
same phasor diagram and note the locus of the currents.

Z=R+jX; =R+ joL

Table 12-2 exhibits the required computations. With the phasor voltage at the angle zero, the locus of I as @
varies is the semicircle shown in Fig. 12-45. Since I = VY, with constant V, Fig. 12-45 is essentially the same
as Fig. 12-28(¢), the admittance locus diagram for the series RL circuit.

Table 12-2
w,rad/s | X;,Q2 | R, Q 7, Q LA
0 0 20 | 20/0° 5/0°
500 5 20 | 20.6/14.04° | 4.85/—-14.04°
1000 10 20 | 22.4/26.57° | 4.46 /—=26.57°
2000 20 20 | 28.3/45° 3.54 /—45°
5000 50 20 | 53.9/68.20° | 1.86 /—68.20°

12.20 The circuit shown in Fig. 12-46 is in resonance for two values of C when the frequency of the
driving voltage is 5000rad/s. Find these two values of C and construct the admittance locus
diagram which illustrates this fact.

At the given frequency, X; =3 Q2. Then the admittance of this fixed branch is

1

Y, =—
75453

=0.147 — j0.088 S
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50 40
0.6 mH c
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Fig. 12-46

The semicircular admittance locus of branch 2 has the radius r = 1/2R = 0.125 S. The total admittance is

the sum of the fixed admittance Y; and the variable admittance Y,.
added to the fixed complex number Yj.

Y, = 0.417 —j0.088 +

In Fig. 12-47, the semicircular locus is

The circuit resonance occurs at points a and b, where Y is real.

4 —]X(

jB. S
Ve -
/ N
‘a b o
0 T X
Y, |/ \ G. S
j00Bs e — —N — — — ¢ — — ]
}4—0.125—4
Fig. 12-47
which is real if
X2 —11.36Xc+16=0
or Xe, =9.71 @, X¢, =1.65 Q. With @ = 5000 rad/s,
C; =20.6 uF C, =121 pF

12.21

Show by locus diagrams that the magnitude of the voltage between points 4 and B in Fig. 12-48 is

always one-half the magnitude of the applied voltage V as L is varied.

O

AAA cienAAA.

LA A an g

S

A

PN )

IS

Fig. 12-48

®

Ry
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12.22

12.23

12.24

12.25
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Branch-1 current I; passes through two equal resistors R. Thus 4 is the midpoint on the phasor V, as
shown in Fig. 12-49.

\%
h >e- —Te
N Vax A Vuma M
Fig. 12-49

Branch 2 has a semicircular Y-locus [see Fig. 12-28(¢)]. Then the current locus is also semicircular, as
shown in Fig. 12.50(a). The voltage phasor diagram, Fig. 12-50(b), consists of the voltage across the
inductance, Vpy, and the voltage across R;, V3. The two voltages add vectorially,

V=Vyn=Vey+Vus

I, -locus

(a) (b) (c)
Fig. 12-50

Because I, lags Vy by 90°, Vg and V5 are perpendicular for all values of L in Fig. 12-50(b). As L varies
from 0 to oo, point B moves from N toward M along the semicircle. Figures 12-49 and 12-50(b) are
superimposed in Fig. 12-50(¢). It is clear that V 45 is a radius of the semicircle and therefore,

IVl =31V

Further, the angle ¢ by which V 45 lags V is equal to 20, where 6 = tan~! wL/R,.

Supplementary Problems

A high-pass RL circuit has R; =50 kQ and L, =0.2 mH. (a) Find o if the magnitude of the voltage
transfer function is |H,.,| = 0.90. (b) With a load R = 1 M across L,, find |H,| at @ = 7.5 x 10% rad/s.
Ans. (a) 5.16 x 10® rad/s; (b) 0.908

Obtain H,, for a high-pass RL circuit at w = 2.5w,, R =2k, L =0.05 H. Ans. 0.928/21.80°

A low-pass RC circuit under no-load has R; = 5kQ. (a) Find C, if [H,| = 0.5 at 10kHz. (b) Obtain H, at
SkHz. (¢) What value of C, results in [H,| = 0.90 at § kHz? (d) With C, as in (), find a new value for R; to
result in |H,| = 0.90 at 8§ kHz.

Ans. (a) 5.51 uF; (b) 0.756/=40.89° (¢) 1.93 uF; (d) 1749 @

A simple voltage divider would consist of R; and R,. If stray capacitance C is present, then the divider
would generally be frequency-dependent. Show, however, that V,/V, is independent of frequency for the
circuit of Fig. 12-51 if the compensating capacitance C; has a certain value. Ans. Cy = (Ry/R))C;
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e

AAAS~ f [ o
I

= | o |

P R, V2 ;‘L\ G 15 k2 0.02 uF i 0.3 H

o
AAA

12.26

12.27

12.28

12.29

12.30

12.31

-—1 .- . :
Fig. 12-51 Fig. 12-52

Assume that a sinusoidal voltage source with a variable frequency and V,,,,, = 50 V is applied to the circuit
shown in Fig. 12-52. (a) At what frequency f is |I|] a minimum? (b) Calculate this minimum current.
(¢) What is |I| at this frequency? Ans. (a) 2.05kHz; (b) 2.78 mA; (¢) 10.8 mA

A 20-pF capacitor is in parallel with a practical inductor represented by L = 1 mHz in series with R = 7 Q.
Find the resonant frequency, in rad/s and in Hz, of the parallel circuit. Ans. 1000 rad/s, 159.2 Hz

What must be the relationship between the values of R; and R if the network shown in Fig. 12-53 is to be
resonant at all frequencies? Ans. R; =R-=5%Q

R, Rc 10 Q R

2 mH T 80 uF i1 a T—jz Q
[ o

Fig. 12-53 Fig. 12-54

For the parallel network shown in Fig. 12-54, (a) find the value of R for resonance; (b) convert the RC
branch to a parallel equivalent. Ans. (a) 6.0Q; (b) R, =6.67Q, Xc, =20 Q

For the network of Fig. 12-55(a), find R for resonance. Obtain the values of R’, X;, and X in the parallel
equivalent of Fig. 12-55(b). Ans. R=1225Q,R =775Q,X; =25Q,Xc=25Q

AAA

R 10 Q
p
:R' ilxlv —L-_jxc

j10 @ T-fsn
[ . [

(a) )
Fig. 12-55

Branch 1 of a two-branch parallel circuit has an impedance Z; = 8 +j6 Q at w = 5000 rad/s. Branch 2
contains R = 8.34 Q in series with a variable capacitance C. (a) Find C for resonance. (b) Sketch the
admittance locus diagram. Ans. (a) 24 uF (b) See Fig. 12-56
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jB. 8 0.08 @ @

| Ve ~ G S 40

R

Y \
—j0.06 ¢ — —— [ ] T—]Sﬂ 10 2
O
Fig. 12-56 Fig. 12-57

12.32 Find R for resonance of the network shown in Fig. 12-57. Sketch the admittance locus diagram.
Ans. Resonance cannot be achieved by varying R. See Fig. 12-58.

jB. S

0.122

0.022

Fig. 12-58

12.33 In Problem 12.32, for what values of the inductive reactance will it be possible to obtain resonance at some
value of the variable resistance R? Ans. Xp <8.2Q

12.34 (a) Construct the admittance locus diagram for the circuit shown in Fig. 12-59. (b) For what value of
resistance in the RL branch is resonance possible for only one value of X ?
Ans. (a) See Fig. 12-60. (b) 6.25 Q.

jB. S
O.080

r =005
T T TreTTT7

10 Q 50

JXe

Fig. 12-59 Fig. 12-60

12.35 Determine the value(s) of L for which the circuit shown in Fig. 12-61 is resonant at 5000 rad/s.
Ans.  2.43 mH, 66.0 uH

12.36 A three-branch parallel circuit has fixed elements in two branches; in the third branch, one element is
variable.  The voltage-current phasor diagram is shown in Fig. 12-62. Identify all the elements if
o = 5000 rad/s.
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®
20 50
L T 20 uF
-
Fig. 12-61
T
2 Locus of 1
'\‘77 us of Ir
&
&
Va
\'M
}
V=150/~25° V

Fig. 12-62

Ans. Branch 1: R =8.05Q, L =0.431 mH
Branch 2: R=4.16 Q, C = 27.7 uF
Branch 3: L = 2.74 mH, variable R

12.37 Describe the circuit which corresponds to each locus in Fig. 12-63 if there is only one variable element in
each circuit.
Ans. (a) A two-branch parallel circuit. Branch 1: fixed R and X; branch 2: fixed R and variable X.
(b) A three-branch parallel circuit. Branch 1: fixed R and X; branch 2: fixed X; branch 3: fixed
R and variable X;.
(¢) A two-branch parallel circuit. Branch 1: fixed R and X; branch 2: fixed X; and variable R.

T\
Locus of Ir - )

f v
Locus of Iy )

Locus of It
4 -V
AY
()

[ &

(a) ()
Fig. 12-63
12.38 In the circuit of Fig. 12-64, L = 1 mH. Determine R;, R,, and C such that the impedance between the two

terminals of the circuit is 100  at all frequencies. Ans. C=100nF, R; = R, =100 Q

12.39  Given V,/V, = 10s/(s* + 2s + 81) and v, () = cos (wf), determine w such that the amplitude of v,(7) attains a
maximum. Find that maximum. Ans. w=9rad/s, V, =5V

12.40 Given H(s) = s/(s> 4+ as + b) determine a and b such that the magnitude of the frequency response |H(w)|
has a maximum at 100 Hz with a half-power bandwidth of 5 Hz. Then find the quality factor Q.
Ans. a=31.416,b =394784,Q = 20
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12.42

12.43

12.44

12.45
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Rl RZ
7 —>
L=1mH _‘7 C
Fig. 12-64

Given H(s) = (s 4+ 1)/(s* + 25 + 82), determine where |H(w)| is at a maximum, its half-power bandwidth and
quality factor. Ans. oy = /82~ 9 rad/s, Aw =2 rad/s, Q = 4.53

In a parallel RLC circuit R =10 kQ and L =20 pH. (a) Find C so that the circuit resonates at 1 MHz.
Find the quality factor Q and the bandwidth in kHz. () Find the terminal voltage of the circuit if an AC
current source of 7 = 1 mA is applied to it at: (i) 1 MHz, (ii) 1.01 MHz, (iii) 1.006 MHz

Ans. (a) C=1.267nF,Q =79.6, Af =12.56 kHz; (b) V, =10V at 1 MHz, 534 V at 1.0l MHz, and
7.24 V at 1.006 MHz

A coil is modeled as a 50-uH inductor in series with a 5-Q2 resistor. Specify the value of a capacitor to be
placed in series with the coil so that the circuit would resonate at 600 kHz. Find the quality factor Q and
bandwidth Af in kHz. Ans. C=14nF,Q =377, Af =159 kHz

The coil of Problem 12.43 placed in parallel with a capacitor C resonates at 600 kHz. Find C, quality factor
Q, and bandwidth Af in kHz. Hint: Find the equivalent parallel RLC circuit.
Ans. C=14nF,Q =377, Af =159 kHz

The circuit in Fig. 12-65(a) is a third-order Butterworth low-pass filter. Find the network function, the
magnitude of the frequency response, and its half-power cutoff frequency wy.
Ans. H(s) = 1/(s +25° + 25+ 1), [H@))* = 1/(1 + &°), wy = 1 rad/s

—— ANN—F000

+ 1Q 2H

ul<f> v, —IF 1 F—— %19 v,

+ @

[ 3
o

| h
wﬁw o

vy V2

L.
I

Fig. 12-65
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12.46

12.47

12.48

In the circuit of Fig. 12-65(b), let R=1Q,C, =1394 F,C, =0.202 F, and C; =3.551F. Find
H(s) = V,/V, and show that it approximates the passive third-order Butterworth low-pass filter of Fig.
12-65(a).  Ans. H(s) = 1/(0.99992s + 1.99778s> + 25 + 1)

Show that the half-power cutoff frequency in the circuit of Fig. 8-42 is wy = 1/(RC) and, therefore, fre-
quency scaling may be done by changing the value of C or R.
V, 2 2 1

Ans. 2= _ o —
Y T RCELRCs+1 . [ s\° /s @ =Rc
(o) +(0)

Wy @y

Find RLC values in the low-pass filter of Fig. 12-65(a) to move its half-power cutoff frequency to 5 kHz.
Ans. R=1Q,C=31.83 pF,L = 63.66 mH



Two-Port Networks

13.1 TERMINALS AND PORTS

In a two-terminal network, the terminal voltage is related to the terminal current by the impedance
Z =V /I. Inafour-terminal network, if each terminal pair (or port) is connected separately to another
circuit as in Fig. 13-1, the four variables ij, i,, v;, and v, are related by two equations called the terminal
characteristics. These two equations, plus the terminal characteristics of the connected circuits, provide
the necessary and sufficient number of equations to solve for the four variables.

4 4 L B
—o— > —————o—
+ +
N T N N
——o—— ———o°—
D 7 JA C
Fig. 13-1

13.2 Z-PARAMETERS

The terminal characteristics of a two-port network, having linear elements and dependent sources,
may be written in the s-domain as
Vi=Z 1, +Z;l,

(1)
Vo =7yl + Zply

The coefficients Z;; have the dimension of impedance and are called the Z-parameters of the network.
The Z-parameters are also called open-circuit impedance parameters since they may be measured at one
terminal while the other terminal is open. They are

|V P

Ll

)

310
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EXAMPLE 13.1 Find the Z-parameters of the two-port circuit in Fig. 13-2.
Apply KVL around the two loops in Fig. 13-2 with loop currents I; and I, to obtain

Vl = 211 —+ S(Il + 12) = (2 +S)Il =+ Slz

3
V2 :312+S(I| -‘rlz):Sll +(3+S)12 ( )
I; L
——AW —AMN—
20 30
v, 1H v,
o . o
Fig. 13-2
By comparing (/) and (3), the Z-parameters of the circuit are found to be
le =S+ 2
Zyp=17Zy=s )
Z22 =S+ 3

Note that in this example Z, = Z,;.

Reciprocal and Nonreciprocal Networks

A two-port network is called reciprocal if the open-circuit transfer impedances are equal;
7., =7,,. Consequently, in a reciprocal two-port network with current I feeding one port, the
open-circuit voltage measured at the other port is the same, irrespective of the ports. The voltage is
equal to V=Z,,I =7Z, 1. Networks containing resistors, inductors, and capacitors are generally
reciprocal.  Networks that additionally have dependent sources are generally nonreciprocal (see
Example 13.2).

EXAMPLE 13.2 The two-port circuit shown in Fig. 13-3 contains a current-dependent voltage source. Find its
Z-parameters.
As in Example 13.1, we apply KVL around the two loops:

Vi=2 -L+sh+L) =2+ +(s— DL,
V2 = 312 + S(Il + 12) = Sll + (3 + 3)12

I L
> MN——— AW -
M 20 30
2
\A tH v,
5 : 5

Fig. 13-3
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The Z-parameters are

Z]] :S+2

Z12:S—1 (5)
Zy =s

Z22=S+3

With the dependent source in the circuit, Z;, # Z,; and so the two-port circuit is nonreciprocal.

13.3 T-EQUIVALENT OF RECIPROCAL NETWORKS

A reciprocal network may be modeled by its T-equivalent as shown in the circuit of Fig. 13-4. Z,,
Z,, and Z, are obtained from the Z-parameters as follows.

Za = le - Z12
Zy,=17 — 7, (6)
7, =7,,=17,

The T-equivalent network is not necessarily realizable.

I, I
Ommeend  Z, z, o
+ +

V; Z \£3
o )
Fig. 13-4

EXAMPLE 13.3 Find the Z-parameters of Fig. 13-4.
Again we apply KVL to obtain

Vi=ZL, +Z.(, + 1) = (Z, +Z)1, + Z.1,

Vo=Z)L, +Z.(0, + ) =21, +(Zy + Z)L, ”
By comparing (/) and (7), the Z-parameters are found to be
Z,=2Z,+Z,
2y,=172y, =1, )
Zy=7Z,+7Z,

13.4 Y-PARAMETERS

The terminal characteristics may also be written as in (9), where I; and I, are expressed in terms of
Vl and V2.

L=YuV, + YLV,

)
L=YyV,+YnV,

The coefficients Y;; have the dimension of admittance and are called the Y-parameters or short-circuit
admittance parameters because they may be measured at one port while the other port is short-circuited.
The Y-parameters are
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I,
Y _
YTV v
1
Y, = V_lz

. Vi=0 (10)
Yy =2

Vilv,=o

I,
Y=o

Valv,—o

I, I
e AN T ' o
50 iF
20 3Q
v, \f!
5
iH iH
o S . o
Fig. 13-5
n h
o Y, o
+ +
A2 Y, Y, v,
o o
Fig. 13-6

We apply KCL to the input and output nodes (for convenience, we designate the admittances of the three
branches of the circuit by Y,, Y,, and Y. as shown in Fig. 13-6). Thus,

voo_ L _ 3
2+5s/3 5s+6
1 2
Y, =—  —_ =
bT345s/2 55+ 6 (n
voo L s
5+6/s 5846
The node equations are
Il = VlYa + (Vl - VZ)YL‘ = (Ya + Y(r)Vl - Y(:VZ (12)

L=V,Y, + (V2 = V)Y, = =Y.V, + (Y, + YV,

By comparing (9) with (12), we get
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Y11 - Y(l + Yc
Yo=Yy =-Y, (13)
Yn=Y,+Y,

s+3
Y, ="
N 5s+6
—s
Y)r=Yy =
12 A =357% 4
s+2
Yy = =
z 5s+6

Since Y|, = Y5, the two-port circuit is reciprocal.

13.5 PI-EQUIVALENT OF RECIPROCAL NETWORKS

A reciprocal network may be modeled by its Pi-equivalent as shown in Fig. 13-6. The three
elements of the Pi-equivalent network can be found by reverse solution. We first find the Y-parameters
of Fig. 13-6. From (/0) we have

Y, =Y,+Y, [Fig 13.7(a)
Y, =-Y. [Fig. 13-7(b)

—_ ==

. (15)
Y2] = —Yr [Flg 13-7(61)]
Yn=Y,+Y, [Fig 13-7(b)]
from which
Y, =Yu+Yp Y, =Yn+Yp Y. =-Yp=-Yy (16)
The Pi-equivalent network is not necessarily realizable.
I, L I, L
? Y. 3 a— L s
\7 Y, Y,| V,=0 vi=0 |Y, Y| v,
o o o o
(@) )
Fig. 13-7

13.6 APPLICATION OF TERMINAL CHARACTERISTICS

The four terminal variables I, I, V;, and V, in a two-port network are related by the two equations
(1) or (9). By connecting the two-port circuit to the outside as shown in Fig. 13-1, two additional
equations are obtained. The four equations then can determine I;, I,, V,, and V, without any knowl-
edge of the inside structure of the circuit.
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EXAMPLE 13.5 The Z-parameters of a two-port network are given by
Z”:25+1/S Z12:Z21:28 Z22:25+4

The network is connected to a source and a load as shown in Fig. 13-8. Find I;, I, V;, and V,.

30 I L
e
10
Vs (1)=12cos ¢ N v, Z=s+1
1H
Source Load

Fig. 13-8
The terminal characteristics are given by

V] = (25 + I/S)Il + 2812

(7)
V2 = 2SI] + (25 + 4)[2

The phasor representation of voltage v(t) is V, = 12 V with s =j. From KVL around the input and output loops
we obtain the two additional equations (/8)

Vs = 311 +V1

(18)
0:(1 +S)12+V2

Substituting s =j and V, = 12 in (/7) and in (I8) we get

V=L +21,
V, =2, + (4 +2)l,
12 = 311 + Vl

0=(1+)L+V;
from which

I, =3.29/-10.2° L =1.13/-131.2°
V, =2.88/37.5° V,=1.6/93.8°

13.7 CONVERSION BETWEEN Z- AND Y-PARAMETERS

The Y-parameters may be obtained from the Z-parameters by solving (/) for I} and I,. Applying
Cramer’s rule to (/), we get

V4 V4
I, :Dzz v, _D12 v,
77 77
—7Z; 7,
Vi+—V,
Dzz Dzz

(19)
I, =

where Dz7 = Z,Z,, — Z,Z,, is the determinant of the coefficients in (/). By comparing (/9) with (9)
we have
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V4

Y = Dl
77

-7
Y, = - 12
Yy = —Z,
Dy

7,

Y, = 21
n=p

Given the Z-parameters, for the Y-parameters to exist, the determinant D7z must be nonzero. Con-
versely, given the Y-parameters, the Z-parameters are

Y

7, ZDi
Yy

-Y
Z,— - 12
Z, — =Yy
Dyy

Y

7., — 1
2=p

where Dyy = Y[ Y2 — Y2 Y5 is the determinant of the coefficients in (9). For the Z-parameters of a
two-port circuit to be derived from its Y-parameters, Dyy should be nonzero.

EXAMPLE 13.6 Referring to Example 13.4, find the Z-parameters of the circuit of Fig. 13-5 from its
Y-parameters.
The Y-parameters of the circuit were found to be [see (/4)]

s+3 —s s+2
= Y=Y = YHh=——
5s+6 12 175 +6 27546

Substituting into (27), where Dyy = 1/(5s 4 6), we obtain

11

Z” :S+2
Zy,=17; =s (22)
Z22 :S+3

The Z-parameters in (22) are identical to the Z-parameters of the circuit of Fig. 13-2. The two circuits are
equivalent as far as the terminals are concerned. This was by design. Figure 13-2 is the T-equivalent of Fig. 13-5.
The equivalence between Fig. 13-2 and Fig. 13-5 may be verified directly by applying (6) to the Z-parameters given in
(22) to obtain its T-equivalent network.

13.8 h-PARAMETERS

Some two-port circuits or electronic devices are best characterized by the following terminal
equations:
Vi=hul; +h;pV,

(23)
I, = hy I} +hyV,

where the h;; coefficients are called the hybrid parameters, or h-parameters.

EXAMPLE 13.7 Find the h-parameters of Fig. 13-9.
This is the simple model of a bipolar junction transistor in its linear region of operation. By inspection, the
terminal characteristics of Fig. 13-9 are

V, =501, and I, =300I, (24)
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I 3001, I,
= AN o>—=
500
v, v,
o o
Fig. 13-9

By comparing (24) and (23) we get
hll == 50 h12 == 0 h21 == 300 h22 = 0 (25)

13.9 g-PARAMETERS

The terminal characteristics of a two-port circuit may also be described by still another set of hybrid
parameters given in (26).

I =g,V +grh

(26)
Vo =gnVi+gnh

where the coefficients g;; are called inverse hybrid or g-parameters.

EXAMPLE 13.8 Find the g-parameters in the circuit shown in Fig. 13-10.

. 103V, .
1 /\ 2
o= AAA- N, * =0
* 1090 N *
Vv, 100 v,
o : o
Fig. 13-10

This is the simple model of a field effect transistor in its linear region of operation. To find the g-parameters,
we first derive the terminal equations by applying Kirchhoff’s laws at the terminals:

At the input terminal: vV, = 10°1,
At the output terminal: V, =101, — 107°V))
or I, =10V, and V,=10L, — 1072V, (28)

By comparing (27) and (26) we get

g1 = 107’ gn=0 &1 = -107* gn =10 (28)

13.10 TRANSMISSION PARAMETERS

The transmission parameters A, B, C, and D express the required source variables V; and I, in terms
of the existing destination variables V, and I,. They are called ABCD or T-parameters and are defined
by
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V, = AV, — BIL,

(29)
Il = CV2 - D12

EXAMPLE 13.9 Find the T-parameters of Fig. 13-11 where Z, and Z, are nonzero.

I, I
O Z, =5
¥ ¥
\f Zy v,
o —0

Fig. 13-11

This is the simple lumped model of an incremental segment of a transmission line. From (29) we have

A% Z Z
A=_1L — Lot Zy =1+27Z,Y,
V2 [0 b
B= —& =7
l _ a
| 2 Va=0 (30)
C= L = Yb
Va2 lL,—0
I
D=-"' =1
Ly,

13.11 INTERCONNECTING TWO-PORT NETWORKS

Two-port networks may be interconnected in various configurations, such as series, parallel, or
cascade connection, resulting in new two-port networks.  For each configuration, certain set of
parameters may be more useful than others to describe the network.

Series Connection

Figure 13-12 shows a series connection of two two-port networks a and b with open-circuit
impedance parameters Z, and Z,, respectively. In this configuration, we use the Z-parameters since
they are combined as a series connection of two impedances. The Z-parameters of the series connection
are (see Problem 13.10):

I_l. Ilu IZa ‘¥_2
o~ = — -0
+ Vlai Za tVZa *

v A\

! Ly, _I_zb 2

+ +
_ Vi~ Z, ZVy -
o} O

Fig. 13-12
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2y =7y ,+7Z,
Zi,=Z,+7Z,

(31a)
2y =25 ,+ 7y,
1y, =7y ,+7Zy,
or, in the matrix form,
[Z] = [Z,] + [Zs] (31b)

Parallel Connection

Figure 13-13 shows a parallel connection of two-port networks a and b with short-circuit admittance
parameters Y, and Y,. In this case, the Y-parameters are convenient to work with. The Y-parameters
of the parallel connection are (see Problem 13.11):

Yiu=Yu.+Yus
Yio=Yn.+ Y,

(32a)
Yo =Yoo+ Yo
Yo=Ypn,+Yn,
or, in the matrix form
[Y] =[Yd] +[Ys] (32b)

Cascade Connection

The cascade connection of two-port networks a and b is shown in Fig. 13-14. In this case the
T-parameters are particularly convenient. The T-parameters of the cascade combination are

A=A, +B,C,
B =A,B, +B,D,
C=C,A,+D,C,
D =C,B,+D,D,

(33a)

or, in the matrix form,

[T] = [T,][Ts] (33b)
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Il Ila IZa I]b IZb 12
+ o—_’—:—_’—- P —— e 4
V1 - Vlu Ta t Vza t Vlb Tb t V2b V2
- . . oe————0
Fig. 13-14

13.12 CHOICE OF PARAMETER TYPE

What types of parameters are appropriate to and can best describe a given two-port network or
device? Several factors influence the choice of parameters. (/) It is possible that some types of
parameters do not exist as they may not be defined at all (see Example 13.10). (2) Some parameters
are more convenient to work with when the network is connected to other networks, as shown in Section
13.11. In this regard, by converting the two-port network to its T- and Pi-equivalent and then applying
the familiar analysis techniques, such as element reduction and current division, we can greatly reduce
and simplify the overall circuit. (3) For some networks or devices, a certain type of parameter produces
better computational accuracy and better sensitivity when used within the interconnected circuit.

EXAMPLE 13.10 Find the Z- and Y-parameters of Fig. 13-15.

L 30 20 /711\ 5
2 MN—1+— MWV V4 9
v, 30 \A
o ¢ o
Fig. 13-15
We apply KVL to the input and output loops. Thus,
Input loop: V=3 +31, + L)
Output loop: Vo, =71 +2I, + 30, + I,)
or vV, =6l + 31, and V, =101, + 51, 34
By comparing (34) and (2) we get
Z,=6 Z,=3 Z, =10 Zy=5

The Y-parameters are, however, not defined, since the application of the direct method of (/0) or the conversion
from Z-parameters (/9) produces D, = 6(5) — 3(10) = 0.

13.13 SUMMARY OF TERMINAL PARAMETERS AND CONVERSION

Terminal parameters are defined by the following equations

Z-parameters
Vi=Zuh +Z,l,
Vy =71 + Zyl,
(V] =[Z]{1]

Y-parameters
L=YuVi+ YV,
L=YyV,+YnV,
(] = [Y][V]

h-parameters
Vi =hul; +h,V,
I, =hy I} +hyV,

g-parameters
I =g, Vi+gph
V=g, Vi+gnh

T-parameters
V, =AYV, - Bl,
I] = CVZ - DIZ
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Table 13-1 summarizes the conversion between the Z-, Y-, h-, g-, and T-parameters. For the
conversion to be possible, the determinant of the source parameters must be nonzero.

Table 13-1
z Y h g T
7 7y Yoo -Yp Dy h;, 1 —gn A Dy
Dyy Dyy hy, h,, g g1l C C
z Zy Zy —Yy Yy —hy, s g1 Dy, 1 D
Dyy Dyy hy, hy, 81 n C C
Z, —Zp, Y, Yo, 1 “h, | D, 82| D —Dp
D, D hy, hy; g» 82 B B
Y —Z 7y Yo Y2 hy, —Din —& 1 -1 A
D,, D,, hy, hy, gn g2 | B B
D,, Z, 1 Yo hy, h;, 8 g2 B Dyt
Zy Zy Yo Y D, D, D D
h —Zy 1 Yo Dy, hy hy, B Bu -1 C
Ly Zy Yy, Y, D, Dy, D D
1 —Zn Dyy Yo by —hp g1 g2 C —Drr
Z, Z, Yo Yo Dy, Dy A A
’ @ % —Ya L —hy, E 821 22 l E
Zy Z Yo Yo Dy, Dy, A A
Zy, Dzz —Yy -1 —Dyy —hy, 1 g» A B
T 7, 7, Y, Y hy, hy, 2 2
s Zy —Dyy =Yy —hy -1 gu D,, C D
7y Z, Yo Yy hy, h,, &1 g_21

Dpp = P{;P5; — P, Py is the determinant of Z—, Y—, h—, g—, or T-parameters.

Solved Problems

13.1 Find the Z-parameters of the circuit in Fig. 13-16(«).

Z,, and Z,, are obtained by connecting a source to port #1 and leaving port #2 open [Fig. 13-16(b)].
The parallel and series combination of resistors produces

lezi

=8 and Z2| = —
L

1L=0 I

L=o 3

Similarly, Z,, and Z;, are obtained by connecting a source to port #2 and leaving port #1 open [Fig.
13-16(c)].

The circuit is reciprocal, since Zj, = Z»;.
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I I,
= A AMA——2 =

6 40
v, § 30 10 v,
- 10 -
5 AMY 5
(@)
I L,=0
=AM A ="
6Q 4Q
Source C) \A § 3Q g 10 v,
- 1Q -
MWV 0
®)
I,=0 I,
o— AMN—¢ MV =0
6Q 40
v, 30 § 10 \Z} C) Source
- 1Q -
5 WA
©
Fig. 13-16

13.2 The Z-parameters of a two-port network N are given by

Z11=25+1/S Z12:Z21=2,S Z22=25+4

(a) Find the T-equivalent of N. (b) The network N is connected to a source and a load as shown

in the circuit of Fig. 13-8.

(a) The three branches of the T-equivalent network (Fig. 13-4) are

1 1
Za:Z” —Z12:25+*—2S:*
S S
Z[7=Z22—Z12:25+4—2S:4

Z.=2,=172;=1s

Replace N by its T-equivalent and then solve for ij, i, v;, and v,.

(b) The T-equivalent of N, along with its input and output connections, is shown in phasor domain in Fig.

13-17.

=~
p

)

-—

12£0° v,

2j Q

M

Ty 40

10

i

Fig. 13-17



CHAP. 13] TWO-PORT NETWORKS 323

By applying the familiar analysis techniques, including element reduction and current division, to
Fig. 13-17, we find i, i, v;, and v,.

In phasor domain In the time domain:

I, =3.29/-10.2° i1 = 3.29cos(t — 10.2°)
I, =113/-131.2° ir = 1.13cos(z — 131.2°)
V, =2.88/37.5° v; = 2.88 cos (t + 37.5°)
V, =1.6/93.8° vy = 1.6cos (¢t + 93.8°)

13.3 Find the Z-parameters of the two-port network in Fig. 13-18.

I, /3I< L
= AA—— >y AAA—=
g A4 N L Q +
v, 10 v,
o o

Fig. 13-18

KVL applied to the input and output ports obtains the following:

Input port: Vl = 411 — 312 =+ (I] + 12) = 511 — 212
Output port: V,=L+0,+L)=1+2I,

By applying (2) to the above, Z;; =5, Z1, = =2, Z,; = 1, and Z,, = 2.

13.4 Find the Z-parameters of the two-port network in Fig. 13-19 and compare the results with those
of Problem 13.3.

I I,
= AN AA—=0
50 20
v, 21, <;> <’_’> I v,
o o
Fig. 13-19

KVL gives
Vl = 511 — 212 and Vz = I] + 212

The above equations are identical with the terminal characteristics obtained for the network of Fig.
13-18. Thus, the two networks are equivalent.

13.5 Find the Y-parameters of Fig. 13-19 using its Z-parameters.
From Problem 13.4,
Z,,=5 Zp=-2 172y =1 Zy=2
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Since Dyy = Z1\Zy, — 2,7, = (5)(2) — (=2)(1) = 12,

Z 2 1 -7 2 1 -7 —1 V4 5
Y“:D—Z:EZE Yo = 2= == Yo = i Yzzziz—

13.6  Find the Y-parameters of the two-port network in Fig. 13-20 and thus show that the networks of
Figs. 13-19 and 13-20 are equivalent.

Il l2
o= ’ 1 o
+ +
v, 60 ly, <‘> <f> Ly, 240V,
o : ‘ o

Fig. 1320

Apply KCL at the ports to obtain the terminal characteristics and Y-parameters. Thus,

Vi ¥
I t t: L =—+—
nput por 1 6 + 3
vV, V
Output port: L= ﬁ - 1—21
1 1 -1 1 5
and Y“:g lezg YZIZE Yzzzﬁzﬁ

which are identical with the Y-parameters obtained in Problem 3.5 for Fig. 13-19. Thus, the two networks
are equivalent.

13.7 Apply the short-circuit equations (/0) to find the Y-parameters of the two-port network in Fig.

13-21.
Il IZ
o—= 1 * NV 1 =0
* 120 *
v, 120 Iy, 30 v,
o I\ o
Fig. 13-21

L =YuVilv,=0 = <*+*>V1 or Y=

12712 6
I =YuValv, =0 :%_%: (%—%)Vz or  Yp, :é
L =Yy Vilv,- = —% or Yy = —%
L =YxuValy,—o = \;2 +% = (% +%>V2 or Yy = 1—52



CHAP. 13] TWO-PORT NETWORKS 325

13.8

13.9

Apply KCL at the nodes of the network in Fig. 13-21 to obtain its terminal characteristics and Y-
parameters. Show that two-port networks of Figs. 13-18 to 13-21 are all equivalent.

VvV

Input node: I, = B B )
V, V,-V,
: rh=—4+ =
Output node =73 + B
1 1 1 5
I =- -V L=—— =
1=¢ViteVa 2 pYitY?

The Y-parameters observed from the above characteristic equations are identical with the Y-parameters of
the circuits in Figs. 13-18, 13-19, and 13-20. Therefore, the four circuits are equivalent.

Z-parameters of the two-port network N in Fig. 13-22(a) are Z; = 4s, Z1, = 7, = 3s, and

Z,, =9s. (a) Replace N by its T-equivalent. (b) Use part («) to find input current i; for

vg = cos 1000z (V).

(@) The network is reciprocal. Therefore, its T-equivalent exists. Its elements are found from (6) and
shown in the circuit of Fig. 13-22(b).

I L

-

+ o

+@on

<
2
5

v C) § 12kQ

6 k)

¢

(b)

Fig. 13-22
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Za:Z“—Z12:4S_3S:S
Zb:Z22—Z21:95—3S:6S
Z.=2,=17; =3s

(b) We repeatedly combine the series and parallel elements of Fig. 13-22(b), with resistors being in k2 and s
in krad/s, to find Z;, in k2 as shown in the following.

(3s + 6)(6s + 12)
9s + 18

and i; = 0.2cos (10007 — 36.9°) (mA).

Zin(s) =V, /1, =s+ —3s+4  or  Zy(j)=3i+4=5/369 kQ

13.10 Two two-port networks a and b, with open-circuit impedances Z, and Z,, are connected in series
(see Fig. 13-12). Derive the Z-parameters equations (3/a).

From network a we have

Vie=Zydia+Z 0
Voo = 2oy iy + Zoy 1y,

From network b we have

Vie =Zy plip + Zyp 1
Voo = Zyy pliy + Zyp p 1y

From connection between a and b we have

L =IL,=1, Vi=Vi,+Vy
L=0,=1I V=V, +Vy

Therefore,

Vi=Zyo+Znp)h + Ly +Zpp )k
Vo = (Zo1 o+ L))y + (L g + Ly )y

from which the Z-parameters (3/a) are derived.

13.11 Two two-port networks a and b, with short-circuit admittances Y, and Y,, are connected in
parallel (see Fig. 13-13). Derive the Y-parameters equations (32a).

From network a we have

Lo=Yi1aVie+ Y20V
Lo =Y 4Vie+ Y2,V

and from network b we have

Ly =Y sVip + Y12,V
Ly =Y, Vip + Y2,V

From connection between a and b we have

Vi=Vi.=Vy L =L,+1;
Vy =V, =Vy L=0L,+1

Therefore,

L=YiatYis)Vi+ Y+ Yi)Vs
L =Yara+Y2)Vi + (Yoo, + Y22)V>

from which the Y-parameters of (32a) result.
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13.12 Find (@) the Z-parameters of the circuit of Fig. 13-23(«) and (b) an equivalent model which uses
three positive-valued resistors and one dependent voltage source.

I, 21, I, I, 21, I,
o > —AN— S —AN—o
20 30 4Q 50 *
v, 20 v, v, v,
o . o o o
@ ®)
Fig. 13-23

(¢) From application of KVL around the input and output loops we find, respectively,

V, =21, — 2L, + 2(I, + I,) = 41,
V2 = 3[2 + 2([1 + 12) = 211 + 5[2

The Z-parameters are Z;; =4, Z, =0, Z,; =2, and Z,, = 5.

(b) The circuit of Fig. 13-23(b), with two resistors and a voltage source, has the same Z-parameters as the
circuit of Fig. 13-23(a). This can be verified by applying KVL to its input and output loops.

13.13 (a) Obtain the Y-parameters of the circuit in Fig. 13-23(a) from its Z-parameters. (b) Find
an equivalent model which uses two positive-valued resistors and one dependent current
source.

((1) From Problem 1312, le = 4, Z12 = 0, Zz] = 2, Z22 = 5, and so DZZ = Z1|Z22 — Z]2Z21 = 20.
Hence,

Zy, 5 1 ~Z,
Y, =222 y,=_212_
11 12 DZZ

B ~Zy -2 1 Z, 4 1
Dy, 20 4

Y, = =S Y, = __
0 27D, 20 10 27p,, 20 5

(b) Figure 13-24, with two resistors and a current source, has the same Y-parameters as the circuit in Fig.
13-23(a). This can be verified by applying KCL to the input and output nodes.

13.14 Referring to the network of Fig. 13-23(b), convert the voltage source and its series resistor to its
Norton equivalent and show that the resulting network is identical with that in Fig. 13-24.

The Norton equivalent current source is Iy = 27,/5 = 0.41;. But 1, =V,/4. Therefore,
Iy =041 =0.1V,. The 5-Q resistor is then placed in parallel with Iy. The circuit is shown in Fig.
13-25 which is the same as the circuit in Fig. 13-24.

Iy =0.1V,

I, b I N/\ ! I
Y N P o= PN
o— = ° 0 MV \Va °

4Q

v 40 § <f> Vi S350 v v A v
1 10 2 1 50 2
o . o o o

Fig. 13-24 Fig. 13-25
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13.15 The h-parameters of a two-port network are given. Show that the network may be modeled by

the network in Fig. 13-26 where h;; is an impedance, h|, is a voltage gain, h,; is a current gain,
and h,, is an admittance.

I I,
o-—— hy; —0
+ +
A\Z LIPS hy I hy, Vv,
o o

Fig. 13-26

Apply KVL around the input loop to get
Vi =hyl; +hpV,
Apply KCL at the output node to get
I, = hy I} +hy,V,

These results agree with the definition of h-parameters given in (23).

13.16 Find the h-parameters of the circuit in Fig. 13-25.
By comparing the circuit in Fig. 13-25 with that in Fig. 13-26, we find

h, =4, hj, =0, hy = —0.4, hy=1/5=02 Q'

13.17 Find the h-parameters of the circuit in Fig. 13-25 from its Z-parameters and compare with results
of Problem 13.16.

Refer to Problem 13.13 for the values of the Z-parameters and Dzz. Use Table 13-1 for the conversion
of the Z-parameters to the h-parameters of the circuit. Thus,
hy, = Dzz _20_, 7, -2y, 2 11

= h,==—2-=0 h,, = =—=-04 hyy=—=-=0.2
Zy 5 2T Zy 1Tz, s 277y 5

The above results agree with the results of Problem 13.16.

13.18 The simplified model of a bipolar junction transistor for small signals is shown in the circuit of
Fig. 13-27. Find its h-parameters.

Il BII 12

O—=

+0Q

Vi Vs

Fig. 13-27

The terminal equations are V; = 0 and I, = BI;. By comparing these equations with (23), we conclude
that h]] = h12 = h22 =0 and h21 = ,3
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13.19 h-parameters of a two-port device H are given by
h;, = 500 h, =107* hy, = 100 hy, = 2(107%) !

Draw a circuit model of the device made of two resistors and two dependent sources including the
values of each element.

From comparison with Fig. 13-26, we draw the model of Fig. 13-28.

I, 5000 I
o AAAY 0
Vv, 10-4V, 1001, 500kQ vy,
o > . * o
Fig. 13-28

13.20 The device H of Problem 13-19 is placed in the circuit of Fig. 13-29(a). Replace H by its model
of Fig. 13-28 and find V,/V,.

1.5kQ
ANV~ . e
v, H v, 1kQ
(@)
1.5kQ 500 Q
T +
v, 10-4V, 1001, 500k y, ? 1k
b
L 2k0 /\10011
AN N .
\/ +
S v, 1k0

(©)
Fig. 13-29
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13.21

13.22

13.23

13.24

13.25
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The circuit of Fig. 13-29(b) contains the model. With good approximation, we can reduce it to Fig.
13-29(¢) from which

I, = V,/2000  V, = —1000(100I,) = —1000(100V,/2000) = —50V,
Thus, V,/V, = —50.

A load Z; is connected to the output of a two-port device N (Fig. 13-30) whose terminal
characteristics are given by V; = (1/N)V, and I = —NI,. Find (@) the T-parameters of N
and (b) the input impedance Z;, = V,/I;.

I, I,
4 =
+ +
v, z, N v, Z,
o— | -
Fig. 13-30

(@) The T-parameters are defined by [see (29)]

Vl == AVZ - B12
Il == CVZ - D12
The terminal characteristics of the device are
vV, =(1/N)V,
Il = —N12

By comparing the two pairs of equations we get A=1/N,B=0,C=0,and D= N.

(b) Three equations relating Vi, I;, V,, and I, are available: two equations are given by the terminal
characteristics of the device and the third equation comes from the connection to the load,

Vo=-7Z,1,
By eliminating V, and I, in these three equations, we get

V,=Z7,1,/N*  from which  Z, =V,/I, =Z,/N*

Supplementary Problems

The Z-parameters of the two-port network N in Fig. 13-22(a) are Z,; = 4s, Z, = Z,; = 3s, and Z,, = 9s.
Find the input current i; for v, = cos 10007 (V) by using the open circuit impedance terminal characteristic
equations of N, together with KCL equations at nodes 4, B, and C.

Ans. i = 0.2cos (10007 — 36.9°) (A)

Express the reciprocity criteria in terms of h-, g-, and T-parameters.
Ans. hjp;+hy =0,8,+8,;, =0,and AD-BC=1

Find the T-parameters of a two-port device whose Z-parameters are Z;; =s, Z;, = Z,; = 10s, and
Z,, = 100s. Ans. A=0.1,B=0,C=10""/s, and D = 10

Find the T-parameters of a two-port device whose Z-parameters are Z;; = 10%s, Z;, = Z,,; = 10’s, and
Z,, = 10%s. Compare with the results of Problem 13.21.
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13.26

13.27

13.28

13.29

Ans. A=0.1,B=0,C= 1077/5 and D = 10. For high frequencies, the device is similar to the device of
Problem 13.21, with N = 10.

The Z-parameters of a two-port device N are Z; = ks, Z;, = Z,; = 10ks, and Z,, = 100ks. A 1-Q resistor
is connected across the output port (Fig. 13-30). (@) Find the input impedance Z;, = V,/I; and construct
its equivalent circuit. (b) Give the values of the elements for £ = 1 and 10°.

ks _ 1
14 100ks ~ 100 + 1/ks
The equivalent circuit is a parallel RL circuit with R = 102 Qand L =1 kH.

Ans. (a) Ziy, =

1 6 1 6
(b) For k JR 1OOQamdL or k 0°, R 1OOQandL 0

The device N in Fig. 13-30 is specified by its following Z-parameters: Z, = N°Z,, and
Z,=2y =2 Zy=NZ,. Find Z;, =V,/I; when a load Z; is connected to the output terminal.
Show that if Z;; > ZL/N2 we have impedance scaling such that Z;, = ZL/Nz.

Z,

W/ZH. FOI'ZL<<N2Z“,Zin=ZL/N2
L

Ans. Zi, =

Find the Z-parameters in the circuit of Fig. 13-31. Hint: Use the series connection rule.
Ans. le:Z22:S+3+1/S,Z122221:S+1

I 20 I,
F’ & - 3
° MW 0
40 40
L
20

v, v,

1 1

S S

S
o— é o
Fig. 13-31

Find the Y-parameters in the circuit of Fig. 13-32. Hint: Use the parallel connection rule.
Ans. Yll :Y22:9(S+2)/16,Y12:Y21 :—3(S+2)/]6

ool
]
AY!
J1
wl—
o
A
VA
ool
e}

I L
LAY
3
g F

Fig. 13-32
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13.30 Two two-port networks a and b with transmission parameters T, and T, are connected in cascade (Fig. 13-
14). Given I,, = —1I;;, and V,, = Vy;, find the T-parameters of the resulting two-port network.
Ans. A= AaAb + BaCb, B = AuBb =+ Ban, C = C(,Ab + Dava D= CaBb + Dan

13.31 Find the T- and Z-parameters of the network in Fig. 13-33. The impedances of capacitors are given. Hint:
Use the cascade connection rule.
Ans. A=5—-4, B=4+2, C=2—4, and D=3, Z;=13-0.6j, Zy»=03-0.6j,
Z12 == Z21 == —02 - 01]

L 10 10 10 I,
g J_ MN———0
V] *]Qr[ vjﬂ/l\ 4]9/[ Vz
o . : . o

Fig. 13-33

13.32 Find the Z-parameters of the two-port circuit of Fig. 13-34.
Ans. Ly =Zyp=3Zy+Z2,). 2, =25 =%(Z;—Z,)

Fig. 13-34

13.33 Find the Z-parameters of the two-port circuit of Fig. 13-35.

1 Z,2Z, + Z,) 1 72
-_——_— Z = Z =
2 Z,+7, > T

Ans. 1y =2y =

Fig. 13-35

13.34 Referring to the two-port circuit of Fig. 13-36, find the T-parameters as a function of w and specify their
values at w = 1, 103, and 10° rad/s.
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Ans. A=1-10"0* 4107w, B=103(1+jw), C=10"%w, and D=1. At w=1rad/s, A=1,
B=1031+/), C=10"%, and D=1. At w=10’rad/s, A~ 1, B~j, C=10"%, and D=1.
At o =10°rad/s, A~ —10°, B~ 10%j, C =/, and D = 1

I, 1030 103 H I,
W =
+
+
v, 106 F ,[ v,
o : )
Fig. 13-36

13.35 A two-port network contains resistors, capacitors, and inductors only. With port #2 open [Fig. 13-37(a)], a
unit step voltage v; = u(f) produces i; = e ‘u(f) (MA) and vy = (1 — e u(f) (V). With port #2 short-
circuited [Fig. 13-37(b)], a unit step voltage v; = u(f) delivers a current #; = 0.5(1 + e u(t) (nA).  Find
i, and the T-equivalent network. Ans. i, =0.5(—-1+ e_z’)u(t) [see Fig. 13-37(c)]

— 0 —
v RLC Uy v, RLC
-
(a) ®)
i 1 M) 1 MQ 2

——AW\ l MV 0

vy ]\ 1 pF Uy

o 2 o

©
Fig. 13-37

13.36 The two-port network N in Fig. 13-38 is specified by Z; =2, Z1, = Z5; = 1,and Z», = 4. Find [}, I, and
13. Ans. I] :24A,12: 1.5 A, and ]3265A

30
MY
t,
30
- N —
MWV T —

Vv, =141 Vé) v, v, § 60

|

[
L

Fig. 13-38



Mutual Inductance and
Transformers

141 MUTUAL INDUCTANCE

The total magnetic flux linkage A in a linear inductor made of a coil is proportional to the current
passing through it; that is, A = Li (see Fig. 14-1). By Faraday’s law, the voltage across the inductor is
equal to the time derivative of the total influx linkage; that is,

d.  di

Ta T

Fig. 14-1

The coefficient L, in H, is called the self-inductance of the coil.

Two conductors from different circuits in close proximity to each other are magnetically coupled to
a degree that depends upon the physical arrangement and the rates of change of the currents. This
coupling is increased when one coil is wound over another. If, in addition, a soft-iron core provides a
path for the magnetic flux, the coupling is maximized. (However, the presence of iron can introduce
nonlinearity.)

To find the voltage-current relation at the terminals of the two coupled coils shown in Fig. 14-2, we
observe that the total magnetic flux linkage in each coil is produced by currents i; and i, and the mutual
linkage effect between the two coils is symmetrical.

)\1 :Llil +Mlz

. . (1)
)\.2 = Ml] —+ Lzlz

334
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Fig. 14-2

where M is the mutual inductance (in H).
The terminal voltages are time derivatives of the flux linkages.

Ly diy | diy
nlt) = a g tMy, 2
o diy . dis
=—==M — —_—
val?) dt a g

The coupled coils constitute a special case of a two-port network discussed in Chapter 13. The
terminal characteristics (2) may also be expressed in the frequency domain or in the s-domain as follows.

Frequency Domain s-Domain
Vi =jolil} +joMl, 3) V, = L;sl; + Msl, @
V2 Z]Q)Mll +]6()L212 Vz = MSI] + L2512

The coupling coefficient M is discussed in Section 14.2. The frequency domain equations (3) deal with
the sinusoidal steady state. The s-domain equations (4) assume exponential sources with complex
frequency s.

EXAMPLE 14.1 Given L; = 0.1 H, L, = 0.5 H, and i;(¢) = i,(¢) = sinwt in the coupled coils of Fig. 14-2. Find
v1(7) and v,(¢) for (¢) M =0.01 H, (b)) M =0.2 H, and (¢) M = —0.2 H.
(a) v(f) =0.1wcoswt + 0.0l wcoswt = 0.11 wcoswt (V)

vy(f) = 0.0l wcoswt + 0.5wcoswt = 0.5l wcoswt (V)

(b) v1(1) = 0.1wcoswt + 0.2wcoswt = 0.3wcoswt (V)
vy (1) =02wcoswt +0.5wcoswt =0.7wcoswt (V)

(o) vi(t) =0.1wcoswt —0.2wcoswt = —0.1 wcoswt (V)
(1) = —0.2wcoswt + 0.5wcoswt = 0.3wcoswt (V)

14.2 COUPLING COEFFICIENT

A coil containing N turns with magnetic flux ¢ linking each turn has total magnetic flux linkage
A = N¢. By Faraday’s law, the induced emf (voltage) in the coil is e = dA/dt = N(d¢/dr). A negative
sign is frequently included in this equation to signal that the voltage polarity is established according to
Lenz’s law. By definition of self-inductance this voltage is also given by L(di/dt); hence,
di do deo
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The unit of ¢ being the weber, where 1 Wb =1V .s, it follows from the above relation that
1 H=1Wb/A. Throughout this book it has been assumed that ¢ and i are proportional to each
other, making

L=N (;75 = constant (5b)

In Fig. 14-3, the total flux ¢ resulting from current i; through the turns N, consists of leakage flux,
¢11, and coupling or linking flux, ¢;. The induced emf in the coupled coil is given by
N>(dpy,/dr). This same voltage can be written using the mutual inductance M:

di d d
ey A M:Nz% ©6)
1

Also, as the coupling is bilateral,
M =N, —= (7)

The coupling coefficient, k, is defined as the ratio of linking flux to total flux:

=2 _ 9%
& h
where 0 < k < 1. Taking the product of (6) and (7) and assuming that & depends only on the geometry
of the system,

2 _ déi, den\ _ d(k¢,) dkga)\ _ > de¢, ¢\ _ .
M= <N2 di, )(Nl diy ) - (N2 di, >(Nl di, >_k (Nl dza)(Nz dza) =&hly

from which M=k/L L, or Xy = kv X1X5 )

Note that (8) implies that M < ./L;L,, a bound that may be independently derived by an energy
argument.

If all of the flux links the coils without any leakage flux, then £ = 1. On the other extreme, the coil
axes may be oriented such that no flux from one can induce a voltage in the other, which results in
k =0. The term close coupling is used to describe the case where most of the flux links the coils, either
by way of a magnetic core to contain the flux or by interleaving the turns of the coils directly over one
another. Coils placed side-by-side without a core are loosely coupled and have correspondingly low
values of k.

14.3 ANALYSIS OF COUPLED COILS
Polarities in Close Coupling
In Fig. 14-4, two coils are shown on a common core which channels the magnetic flux ¢. This

arrangement results in close coupling, which was mentioned in Section 14.2. To determine the proper
signs on the voltages of mutual inductance, apply the right-hand rule to each coil: If the fingers wrap
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R & & <\ R,
1] f i 8 b 2 v
\U
Fig. 14-4

around in the direction of the assumed current, the thumb points in the direction of the flux. Resulting
positive directions for ¢; and ¢, are shown on the figure. If fluxes ¢; and ¢, aid one another, then the
signs on the voltages of mutual inductance are the same as the signs on the voltages of self-inductan-
ce. Thus, the plus sign would be written in all four equations (2) and (3). In Fig. 14-4, ¢, and ¢,
oppose each other; consequently, the equations (2) and (3) would be written with the minus sign.

Natural Current

Further understanding of coupled coils is achieved from consideration of a passive second loop as
shown in Fig. 14-5. Source v; drives a current i;, with a corresponding flux ¢, as shown. Now Lenz’s
law implies that the polarity of the induced voltage in the second circuit is such that if the circuit is
completed, a current will pass through the second coil in such a direction as to create a flux opposing the
main flux established by i;. That is, when the switch is closed in Fig. 14-5, flux ¢, will have the direction
shown. The right-hand rule, with the thumb pointing in the direction of ¢,, provides the direction of
the natural current i,. The induced voltage is the driving voltage for the second circuit, as suggested in
Fig. 14-6; this voltage is present whether or not the circuit is closed. When the switch is closed, current
i, is established, with a positive direction as shown.

o i b N R
('." P, L .' ]
N v AP (/ 4
Fig. 14-5

EXAMPLE 14.2 Suppose the switch in the passive loop to be closed at an instant (¢ = 0) when i; = 0. For > 0,
the sequence of the passive loop is (see Fig. 14-6).

_ diy di
R2l2+L2 E—MEZO
R;
L,
: ]
di,
M dt

Fig. 14-6
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while that of the active loop is

di, diy
Riijh+L ——M—=

1+ Ly 7 Y

Writing the above equations in the s-domain with the initial conditions i;(0") = i,(0%) = 0 and eliminating I, (s), we
find

H(s) = response  Ix(s) Ms
" excitation  Vi(s) (L;L, — M?)s®> 4+ (R;L, + RyL{)s+ R R,

and from the poles of H(s) we have the natural frequencies of .

144 DOT RULE

The sign on a voltage of mutual inductance can be determined if the winding sense is shown on the
circuit diagram, as in Figs. 14-4 and 14-5. To simplify the problem of obtaining the correct sign, the
coils are marked with dots at the terminals which are instantaneously of the same polarity.

To assign the dots to a pair of coupled coils, select a current direction in one coil and place a dot at
the terminal where this current enters the winding. Determine the corresponding flux by application of
the right-hand rule [see Fig. 14-7(a)]. The flux of the other winding, according to Lenz’s law, opposes
the first flux. Use the right-hand rule to find the natural current direction corresponding to this second
flux [see Fig. 14-7(b)]. Now place a dot at the terminal of the second winding where the natural current
leaves the winding.  This terminal is positive simultaneously with the terminal of the first coil where the
initial current entered. With the instantaneous polarity of the coupled coils given by the dots, the
pictorial representation of the core with its winding sense is no longer needed, and the coupled coils
may be illustrated as in Fig. 14-7(c). The following dot rule may now be used:

(1) when the assumed currents both enter or both leave a pair of coupled coils by the dotted
terminals, the signs on the M-terms will be the same as the signs on the L-terms; but

(2) if one current enters by a dotted terminal while the other leaves by a dotted terminal, the signs
on the M-terms will be opposite to the signs on the L-terms.

ol —° 2N .
——— P r
P B < ; 3
S 4 — o
[ ]
(a) (b) ()
Fig. 14-7

EXAMPLE 14.3 The current directions chosen in Fig. 14-8(«a) are such that the signs on the M-terms are opposite
to the signs on the L-terms and the dots indicate the terminals with the same instantaneous polarity. Compare this
to the conductively coupled circuit of Fig. 14-8(b), in which the two mesh currents pass through the common element
in opposite directions, and in which the polarity markings are the same as the dots in the magnetically coupled
circuit. The similarity becomes more apparent when we allow the shading to suggest two black boxes.

145 ENERGY IN A PAIR OF COUPLED COILS

The energy stored in a single inductor L carrying current i is 0.5Li* J. The energy stored in a pair
of coupled coils is given by
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Fig. 14-8

1 1
W=5L i+ ELzzé + Miyi, (J) 9)

where L; and L, are the inductances of the two coils and A is their mutual inductance. The term Mi, i,
in (9) represents the energy due to the effect of the mutual inductance. The sign of this term is (a)
positive if both currents /; and i, enter either at the dotted or undotted terminals, or (b) negative if one of
the currents enters at the dotted terminal and the other enters the undotted end.

EXAMPLE 14.4 In a pair of coils, with L; =0.1 H and L, =0.2 H, at a certain moment, i{{y =4 A and
i, =10 A. Find the total energy in the coils if the coupling coefficient M is (@) 0.1H, (b) +/2/10 H, (¢) —0.1 H,
and (d) —/2/10 H.

From (9),

(@) W =(0.5)0.1)4> + (0.5)(0.2)10* + (0.1)(10)(4) = 14.8
(b) W=16461]

() W=681]

(d) W=5141

The maximum and minimum energies occur in conjunction with perfect positive coupling (M = +/2/10) and perfect
negative coupling (M = —~/2/10).

14.6 CONDUCTIVELY COUPLED EQUIVALENT CIRCUITS

From the mesh current equations written for magnetically coupled coils, a conductively coupled
equivalent circuit can be constructed. Consider the sinusoidal steady-state circuit of Fig. 14-9(a), with
the mesh currents as shown. The corresponding equations in matrix form are

Rl +]0)L1 —]a)M Il _ V]
—ja)M Rz +ja)L2 12 - 0
In Fig. 14-9(b), an inductive reactance, X, = wM, carries the two mesh currents in opposite directions,
whence

RI Rg R, /w(LI—M) lw(LZ”'M) Rz
AN~ ANy MUVVIEEEY, o 00 A8 e SRV V VI

(a) (b)
Fig. 14-9
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Ly =7y =—joM

in the Z-matrix. If now an inductance L; — M is placed in the first loop, the mesh current equation for
this loop will be

(R +jol)l} — joM1, =V,

Similarly, L, — M in the second loop results in the same mesh current equation as for the coupled-coil
circuit. Thus, the two circuits are equivalent. The dot rule is not needed in the conductively coupled
circuit, and familiar circuit techniques can be applied.

147 LINEAR TRANSFORMER

A transformer is a device for introducing mutual coupling between two or more electric cir-
cuits. The term iron-core transformer identifies the coupled coils which are wound on a magnetic
core of laminated specialty steel to confine the flux and maximize the coupling. Air-core transformers
are found in electronic and communications applications. A third group consists of coils wound over
one another on a nonmetallic form, with a movable slug of magnetic material within the center for
varying the coupling.

Attention here is directed to iron-core transformers where the permeability p of the iron is assumed
to be constant over the operating range of voltage and current. The development is restricted to two-
winding transformers, although three and more windings on the same core are not uncommon.

In Fig. 14-10, the primary winding, of Ny turns, is connected to the source voltage V;, and the
secondary winding, of N, turns, is connected to the load impedance Z;. The coil resistances are shown
by lumped parameters R; and R,. Natural current I, produces flux ¢, = ¢»; + ¢,,, while I; produces
¢ = 1o+ ¢11-  In terms of the coupling coefficient k,

¢11 = (1 — k), ¢ = (1 — k)¢
o T o)
-~ () R
D/ e - 'NZ —;: VZ—TD “
g;__—JJ
Fig. 14-10

From these flux relationships, leakage inductances can be related to the self-inductances:
Liyy=(0-kL, Ly =(1-k)L,

The corresponding leakage reactances are:
X = -k)X, Xn=(1-kX;

It can be shown that the inductance L of an N-turn coil is proportional to N*>. Hence, for two coils

wound on the same core,
L _ (MY o)
L, N,

The flux common to both windings in Fig. 14-10 is the mutual flux, ¢,, = ¢1o — ¢»;. This flux
induces the coil emfs by Faraday’s law,
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d¢/71 d¢m
ep =N, i €2=N27

Defining the turns ratio, a = N,/N,, we obtain from these the basic equation of the linear transformer:

“_y (11)
€
In the frequency domain, E;/E, = a.
The relationship between the mutual flux and the mutual inductance can be developed by analysis of
the secondary induced emf, as follows:

do,, doi» dey) deis d(ke,)
= = — — — N
=N === =N ===
By use of (6) and (5a), this may be rewritten as
di, di, di, M di
MY g, oy QN
@ a7 di  a di

where the last step involved (8) and (10):

M = k\/ (asz)(Lz) = kClL2

Now, defining the magnetizing current i, by the equation

' 1
h=24i, or I =241, (12)
a a
we have
i
ey =M % or B, =jXyl, (13)

According to (/3), the magnetizing current may be considered to set up the mutual flux ¢,, in the core.

In terms of coil emfs and leakage reactances, an equivalent circuit for the linear transformer may be
drawn, in which the primary and secondary are effectively decoupled. This is shown in Fig. 14-11(a);
for comparison, the dotted equivalent circuit is shown in Fig. 14-11(b).

R, X J X0 R, R,

ANt YN Ny 1 M + AAA-
* TN o * m

v, E Cﬁ) Ct) E. 7 [J Vi v, ixi

(a) (b)
Fig. 14-11

EXAMPLE 14.5 Draw the voltage-current phasor diagram corresponding to Fig. 14-11(«a), and from it derive the
input impedance of the transformer.

The diagram is given in Fig. 14-12, in which 6; denotes the phase angle of Z;. Note that, in accordance with
(13), the induced emfs E; and E, lead the magnetizing current I, by 90°. The diagram yields the three phasor
equations

Vi = agXyly + (R +jX )]
JXuly = (Z + Ry +jX2n)I,

1
Il :Elz+l¢
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aV: = alzzl_

\'u

Fig. 14-12

__12
a

Elimination of I, and I, among these equations results in

\s Xy /)Ry +jXon +Z1)

=7 = (R +iX, ) +d* — i 14a
= A= R G )+ (R~ X + Z1) ()
If, instead, the mesh current equations for Fig. 14-11(b) are used to derive Z;,, the result is
X2
Zin =R +jX; +—————— (14D)

+ -
Ry+jX,+Z;
The reader may verify the equivalence of (/4a) and (/4b)—see Problem 14.36.

14.8 IDEAL TRANSFORMER

An ideal transformer is a hypothetical transformer in which there are no losses and the core has
infinite permeability, resulting in perfect coupling with no leakage flux. In large power transformers the
losses are so small relative to the power transferred that the relationships obtained from the ideal
transformer can be very useful in engineering applications.

Referring to Fig. 14-13, the lossless condition is expressed by

(see Section 10.7). But
Vl = El = aE2 = (JV2

and so, a being real,

Vi b
12 15
v, 1, ¢ (15)
The input impedance is readily obtained from relations (75):
\Y \Y \Y
Vi_aVa o Vo g (16)

" _Iz/a_a I,

O a:l
+ +
R el
L + + k
Vi EI§||§EZ ZL[ V2
o -

Fig. 14-13
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EXAMPLE 14.6 The ideal transformer may be considered as the limiting case of the linear transformer of Section
14.7. Thus, in (/4a) set

Ri=R=X1=Xp=0
(no losses) and then let X,; — oo (infinite core permeability), to obtain

2 (JXu/a)Zy) ]

Z. = lim |q* 2EMIZAZL) | 27,
" Xwoo[ (Xu/a)+Z;, t

in agreement with (/6)

Ampere-Turn Dot Rule
Since @ = N;/N, in (15),

that is, the ampere turns of the primary equal the ampere turns of the secondary. A rule can be
formulated which extends this result to transformers having more than two windings. A positive
sign is applied to an ampere-turn product if the current enters the winding by the dotted terminal; a
negative sign is applied if the current leaves by the dotted terminal. The ampere-turn dot rule then states
that the algebraic sum of the ampere-turns for a transformer is zero.

EXAMPLE 14.7 The three-winding transformer shown in Fig. 14-14 has turns N; = 20, N, = N; = 10. Find I,

given that I, = 10.0/=53.13° A, I3 =10.0/—-45" A.
With the dots and current directions as shown on the diagram,

Fig. 14-14

NlIl - NzIz - N3I3 - 0
from which

201, = 10(10.0/=53.13°) + 10(10.0/—45°)
I, = 6.54 — j7.54 = 9.98/—49.06° A

149 AUTOTRANSFORMER

An autotransformer is an electrically continuous winding, with one or more taps, on a magnetic
core. One circuit is connected to the end terminals, while the other is connected to one end terminal
and to a tap, part way along the winding.

Referring to Fig. 14-15(a), the transformation ratio is

Vi N +N,
—=——"=a+1
v, N, *

which exceeds by unity the transformation ratio of an ideal two-winding transformer having the same

turns ratio. Current I; through the upper or series part of the winding, of N, turns, produces the flux
¢1. By Lenz’s law the natural current in the lower part of the winding produces an opposing flux
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z,

(a) (b)

Fig. 14-15

¢,. Therefore, current I, leaves the lower winding by the tap. The dots on the winding are as shown in
Fig. 14-15(b). In an ideal autotransformer, as in an ideal transformer, the input and output complex
powers must be equal.

WV =1ViL, =1vaL;
whence —=a+1
That is, the currents also are in the transformation ratio.
Since I; =1, + 1, the output complex power consists of two parts:
VoI =1VoL, + VoL, = IVLI + a3 VoIy)

The first term on the right is attributed to conduction; the second to induction. Thus, there exist both
conductive and magnetic coupling between source and load in an autotransformer.

14.10 REFLECTED IMPEDANCE

A load Z, connected to the secondary port of a transformer, as shown in Fig. 14-16, contributes to
its input impedance. This contribution is called reflected impedance. Using the terminal characteris-
tics of the coupled coils and applying KVL around the secondary loop, we find

V] = L]SI] + M512
0= MSIl =+ L2512 + Zzlz

By eliminating I,, we get

L o M~ L
o
¥ +
v, Ly L, \p [:I Z,

Fig. 14-16
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Vl M252
Z = — = L _—
! I] 18 Z2 =+ L2S

For the ac steady state where s = jw, we have

M*e?
7, =joli+———
1 =JwLl 7o+ jol,
The reflected impedance is
Mo’
Zreﬂected =7 , .1
7, +jol,

345

(7)

(18)

(19)

The load Z, is seen by the source as Mza)z/(Zz + jwL,). The technique is often used to change an

impedance to a certain value; for example, to match a load to a source.

EXAMPLE 14.8 Given L; =0.2H, L, =0.1 H, M =0.1 H, and R = 10 Q in the circuit of Fig. 14-17.

for v; = 142.3sin 100z,

; — M
1 ™ °
+
v; L, L, R
Fig. 14-17

The input impedance Z; at w = 100 is [see (/8)]

v, . M2 e? . 0.01(10 000) ,
Z, = =joL +— "= T 5415 = 5v10/71.6°
V=, M T e, 10 +/10 +J [11.6°
Then, I, =V,/Z, =9/-71.6° A
or i = 9sin (1007 — 71.6°)  (A)

EXAMPLE 14.9 Referring to Example 14.8, let v; = u(¢). Find i, ¢, the forced response.

The input impedance is [see (17)]

M3
Z =Lis———
1(s) 1S R+ Los
Substituting the given values for the elements, we get
s(s + 200) 10(s + 100)
Z = Y =V
1) =70 + 100) 18 =5 5 200)

For ¢ > 0, the input v; = 1 V is an exponential ¢* whose exponent s = 0 is a pole of Y;(s).
k=1/L; =5. This result may also be obtained directly by dc analysis of the circuit in Fig. 14-17.

Solved Problems

Find i 1

Therefore, i; ; = kt with

14.1 When one coil of a magnetically coupled pair has a current 5.0 A the resulting fluxes ¢;; and ¢,
are 0.2mWb and 0.4 mWb, respectively. If the turns are N; = 500 and N, = 1500, find L, L,,

M, and the coefficient of coupling k.
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N .
1 = ¢11 + P12 = 0.6 mWb L = 11 _ 50000 6):60mH
11 5-0
Naodp,  1500(0.4) b1
M="202_ "7 120 mH _%2_
T 0 0m k o 0.667

Then, from M = k/LL,, L, = 540 mH.

14.2 Two coupled coils have self-inductances L; = 50 mH and L, = 200 mH, and a coefficient of
coupling k£ = 0.50. If coil 2 has 1000 turns, and i#; = 5.0sin400¢ (A), find the voltage at coil 2
and the flux ¢;.

M = kL, L, = 0.50,/(50)(200) = 50 mH

di d
v=M 005 < (5.05in4007) = 100 cos 400 (V)
dt dt
Assuming, as always, a linear magnetic circuit,
N N, (ki M
M = ﬂ = M or ¢ = (—>i1 =5.0x 107*sin400r (Wb)
151 151 Nzk
14.3 Apply KVL to the series circuit of Fig. 14-18.
R
"A"' v L
1

{© )

Fig. 14-18

Examination of the winding sense shows that the signs of the M-terms are opposite to the signs on the

L-terms.
di di 1 di di
Ri+L —— M —+—=|idt+ L, —— M — =
by a’l+CJl they a "
di 1
Ri+L —4+— |idt=
or 1+ dt+CJI v
where L' =L, + L, —2M. Because
L+ L
M <L L, < '“2L 2

L’ is nonnegative.

144 In a series aiding connection, two coupled coils have an equivalent inductance L 4; in a series
opposing connection, L. Obtain an expression for M in terms of L, and L.

As in Problem 14.3,
L1+L2+2M:LA L1+L2—2M:LB

which give
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1
M = (Ly— Ly)

This problem suggests a method by which M can be determined experimentally.

14.5 (a) Write the mesh current equations for the coupled coils with currents i; and i, shown in Fig.
14-19. (b) Repeat for i, as indicated by the dashed arrow.

iz

[ -
i « <
m::R, : SR
)
+
® i = S ==
‘/—\\
Fig. 14-19

(a) The winding sense and selected directions result in signs on the M-terms as follows:

Ryiy + L, %‘*‘M%
R212+L2%+M%
(h) Rl(il—i2)+Llj( —rm i,
Rl(iz—i1)+R2iz+L2%_M%(h_il)""h %(l'z—h)—M%:O

14.6 Obtain the dotted equivalent circuit for the coupled circuit shown in Fig. 14-20, and use it to find
the voltage V across the 10-Q capacitive reactance.

50 5
5 Q : 20 jsQ
V™
i0/0° Vv (i> th 10/90° V
o
\% T —jl0 Q

Fig. 14-20

To place the dots on the circuit, consider only the coils and their winding sense. Drive a current into
the top of the left coil and place a dot at this terminal. The corresponding flux is upward. By Lenz’s law,
the flux at the right coil must be upward-directed to oppose the first flux. Then the natural current leaves
this winding by the upper terminal, which is marked with a dot. See Fig. 14-21 for the complete dotted
equivalent circuit, with currents I; and I, chosen for calculation of V.
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10/0° V \%
Fig. 14-21
[5—,/5 5+j3][1,]_ 10/0°
5473 10+j6/lL ] | 10—;,10
‘ 10 5+j3‘
I = m_ﬂilm”6:Lmﬂn3%°A
Z

and V = 1,(—j10) = 10.15/23.96° V.

14.7 Obtain the dotted equivalent for the circuit shown in Fig. 14-22 and use the equivalent to find the
equivalent inductive reactance.

j4

2a j3Q

30 jsQ j6 0

Fig. 14-22

Drive a current into the first coil and place a dot where this current enters. The natural current in both
of the other windings establishes an opposing flux to that set up by the driven current. Place dots where the
natural current leaves the windings. (Some confusion is eliminated if the series connections are ignored
while determining the locations of the dots.) The result is Fig. 14-23.

7 =j3+j5+j6 —2(j2) +2(j4) — 2(j3) =j12 Q

that is, an inductive reactance of 12 Q.

2 3Q
N F S
A A " A8 4 m
® 30 50® 60

Fig. 14-23

14.8 (a) Compute the voltage V for the coupled circuit shown in Fig. 14-24. (b) Repeat with the
polarity of one coil reversed.
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,50 =08 j1a o
A A 4 v eV
+
P 4
50/0° SQ<:V
*
—]40
Fig. 14-24

(a) Xy =(0.8){/5(10) = 5.66 €, and so the Z-matrix is

341 —3—j1.66
=] 251 S
—3-j1.66 846

‘ 341 50‘
Then, I = w —8.62/-24.79° A
Z

and V =1,(5) =43.1/=24.79° V.

341 —34/9.66
() [Z]:[ . . ]
-3 +9.66 8 46
‘ 341 50‘
Izzwzaszz—m.m A
Z

and V = 1,(5) = 19.1/—112.12° V..

14.9 Obtain the equivalent inductance of the parallel-connected, coupled coils shown in Fig. 14-25.

Currents I, and I, are selected as shown on the diagram; then Z;, = V,/I,.

z)= [ Je03 0043
= | jw0.043  jw0.414

ind 7 _ Az _ G0l A1) — (job. 043’ o
A“ ]w0414

or Leq is 0.296 H.

+

AL

v, %0_3 H ; 08

k=07

Fig. 14-25

14.10 For the coupled circuit shown in Fig. 14-26, show that dots are not needed so long as the second
loop is passive.
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Fig. 14-26

Currents I; and I, are selected as shown.

‘50 +j4 ‘
0 5+,/10] _ 250+,500
- = o =1096/=54.64° A
! ’2+j5 :i:j4’ —24 + j45 0.96/=5.64"
+j4 5410
’2+j5 50‘
4 0

L= ~1-392/-11807590° A
Az

The value of Ay is unaffected by the sign on M. Since the numerator determinant for I; does not involve
the coupling impedance, I; is also unaffected. The expression for I, shows that a change in the coupling
polarity results in a 180° phase shift. With no other phasor voltage present in the second loop, this change
in phase is of no consequence.

14.11 For the coupled circuit shown in Fig. 14-27, find the ratio V,/V; which results in zero current I;.

v 2%l
vV, 2452
L =o=v2 =t/
Az
Then, V(2 +2) — V,(;j2) = 0, from which V,/V, =1 —1.
50 20
2a

i+

v,

>
v1<i> L |80 szn I

Fig. 14-27

14.12 In the circuit of Fig. 14-28, find the voltage across the 5 Q2 reactance with the polarity shown.

For the choice of mesh currents shown on the diagram,

‘50145° j8 ’
0 —j3|  150/—45°
I, = ol = 137/-40.08° A
"TI3 4515 8 109 — /9
Jj8 —Jj3

Similarly, I, = 3.66/—40.28° A.
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30 j4 Q
AN Y
[ J \
EEOS R
S0[45° vV Ct I sQ L =< _jso
Fig. 14-28

The voltage across the j5 is partly conductive, from the currents I; and I,, and partly mutual, from
current I; in the 4  reactance.

V=, +L)(j5) +1,(j3) = 29.27/49.72° V
Of course, the same voltage must exist across the capacitor:

V = —L(—j8) = 29.27/49.72° V

14.13 Obtain Thévenin and Norton equivalent circuits at terminals ab for the coupled circuit shown in
Fig. 14-29.

In open circuit, a single clockwise loop current I is driven by the voltage source.

I= % 1.17/=20.56° A

8+,3
40 j10 Q 30
A AAA Y AAA a

A A A4

; N
j(,&’ 50 \\ r
10/° V Cﬁ l ° I ,\
40 /

Fig. 14-29

Then V' = I(j5 + 4) — 1(j6) = 4.82/—34.60° V.
To find the short-circuit current I’, two clockwise mesh currents are assumed, with I, =T,

’ 8+,3 10‘

. =441 0] .

I _' 5573 _4+j1’_0.559/—83.39 A
441 T4J5

V7/ - 4.82/=34.60° — 8.62/48.79°
I'  0.559/-83.39°

The equivalent circuits are pictured in Fig. 14-30.

and 7' = Q

14.14 Obtain a conductively coupled equivalent circuit for the magnetically coupled circuit shown in
Fig. 14-31.

Select mesh currents I, and I, as shown on the diagram and write the KVL equations in matrix form.
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8.62/48.79°
e p——O a -0 a
4.82(=34.60° V Cﬁ) 0.559/=83.49° A CD r] 8.62/48.79° Q
T— Y <O b
(a) (b)

Fig. 14-30

o 59 jsa /\,1()0

S00° V i
—]4 [¢]

Fig. 14-31

341 =3—5271, ] _[50/0°
-3—j2 846 ||| 0
The impedances in Fig. 14-32 are selected to give the identical Z-matrix. Thus, since I; and I, pass through

the common impedance, Z,, in opposite directions, Z;, in the matrix is —Z,. Then,
Z,=3+4, 2 Q. Since Z,; is to include all impedances through which I, passes,

3+j1=2Z,+3+,2)

AAA.
LA A4

from which Z, = —j1 Q. Similarly,
Zy=8+j6=Z7Z,+1Z,
and Z, =5+j4 Q.

@ ) e

Fig. 14-32

14.15 For the transformer circuit of Fig. 14-11(b), k=096, R, =12 Q, R, =0.3Q, X; =20 L,
X, =59, Z;, =5.0/36.87° Q, and V, = 100/0° V. Obtain the coil emfs E, and E,, and the
magnetizing current I.

X =1 - k)X, = (1 —0.96)(20) = 0.8 Xp=(1-kX, =028

X
a= 7‘:2 Xy = kyX, X =9.6 Q
2
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Now a circuit of the form Fig. 14-11(a) can be constructed, starting from the phasor voltage-current
relationship at the load, and working back through E, to E;.

v, 100/0°
L=-2=——"—_-20/-36.87° A
2T Z, T 5.0/36.87°
E, = L(R, +jX») + V, = (20/=36.87°)(0.3 + j0.2) + 100/0° = 107.2 — j0.4 V
E, =aE, =2144—j08 V

E
I, =2 =—0042—j11.17 A

JX

14.16 For the linear transformer of Problem 14.15, calculate the input impedance at the terminals where
V, is applied.

Method 1

Completing the construction begun in Problem 14.15,

1
L =1, + 1= (-0.042—/11.17) + 10/=36.87" = 18.93/=65.13 A

V, = L(R, +jX;)) + E; = (18.93/=65.13°)(1.2 + j0.8) + (214.4 — j0.8)
=2382/-3.62° V

Therefore,
A\ 238.2/—-3.62°
Z,=—=——"—"—""=1258/61.51° Q
I, 18.93/-65.13°
Method 2

By (/4a) of Example 14.5,

22 (74.8)(0.3 +,0.2 + 5.0 /36.87°)

Zin = (1.2 +0.8) +
= (1.2+/0.8) 0.3+/5.0 + 5.0/36.87°

114.3/123.25°
=———=12.58/61.50° Q
9.082/61.75°

Method 3
By (14b) of Example 14.5,
(9.6)?

0.3 +j5+5.0/36.87°
= (1.2 +20) + (4.80 — j8.94) = 12.58 /61.53°

Zin = (1.2 +20) +

14.17 In Fig. 14-33, three identical transformers are primary wye-connected and secondary delta-con-
nected. A single load impedance carries current I, = 30/0° A. Given
I, =20/0° A I,=1,=10/0° A

and Ny = 10N, = 100, find the primary currents I,;, I, L.
The ampere-turn dot rule is applied to each transformer.
10
——(10/0°)=-1/0° A
e (10/0) = ~1/0°

10
Nilyy = Nolpy =0 or Iy =100 (20/0=2/0° A

1
Nila 4+ Nala =0 or  Ty=—10l (10/07)=~1/0° A

Nllal + N21a2 =0 or Ial =
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I, —>» ® ® +——0 /
| PR
NI || N2 a
N
4
lm e ®
N
N
"4
lr! —— ® [
N " N,
ch
—
Fig. 14-33

The sum of the primary currents provides a check:

Iy +1;+1,=0

14.18 For the ideal autotransformer shown in Fig. 14-34, find V,, I, and the input current I;.

N, 2
Vl o V2 o
Vv, = =100/0° V I, =—2=10/=60° A
(l+1 ZL
I
I,=1, -1, =3.33/=60° A L, = a—il =6.67/=60° A
L
—_ a
+ lnb
N] —40 l
L
R
V,=150/0° V b +
4
N=80 §ils 7, - 10600 ||V,

Fig. 14-34

14.19 In Problem 14.18, find the apparent power delivered to the load by transformer action and that
supplied by conduction.

Scond = %VzIZb = %(100&)(6.67 /60°) =333/60° VA
Slmns = ascond =167 L()OD VA
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14.20 In the coupled circuit of Fig. 14-35, find the input admittance Y; = I;/V, and determine the

current 7;(f) for v; = 2+/2cos .

i, M=1H i
o= .
+
1H 2H
10
v; .
TIF
o
Fig. 14-35

Apply KVL around loops 1 and 2 in the s-domain.
L -5

Vl :SII +SIz +

L1
0:ﬂ1+0s+nh+3%;1

Eliminating I, in these equations results in

I, 28> +s+ 1

Y, =Lt T2
DTV, TS s+ 55+ 1

For s = j, the input admittance is Y, = (1 +/)/4 = ~/2/4/45°. Therefore, i;(f) = cos (t + 45°).

14.21 Find the input impedance Z; = V,/I; in the coupled circuit of Fig. 14-36.

:
i M=3H i
Q * .
1
1H I
1
v 1z H
2Q
o
Fig. 14-36

Apply KVL around loops 1 and 2 in the s-domain.

V| = SI] +%S12 +2(Il —|—12)
O :%SII +%SIZ +2(I| +Iz)+éSIQ

or Vi=Q+9L +2+1s),
0=0Q2+1is); +2+19)L,
The result is
vV, 2
12:—11 and Zl :I—llzgs

The current through the resistor is I; + I, = 0 and the resistor has no effect on Z;.
purely inductive.

The input impedance is
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Supplementary Problems

Two coupled coils, L; = 0.8 H and L, = 0.2 H, have a coefficient of coupling k = 0.90. Find the mutual
inductance M and the turns ratio N;/N,. Ans. 0.36 H, 2

Two coupled coils, N; = 100 and N, = 800, have a coupling coefficient k = 0.85. With coil 1 open and a
current of 5.0 A in coil 2, the flux is ¢, = 0.35 mWb. Find L, L,, and M.
Ans. 0.875 mH, 56 mH, 5.95 mH

Two identical coupled coils have an equivalent inductance of 80 mH when connected series aiding, and
35 mH in series opposing. Find L, L,, M, and k. Ans. 28.8 mH, 28.8 mH, 11.25 mH, 0.392

Two coupled coils, with L; =20 mH, L, = 10 mH, and k = 0.50, are connected four different ways: series
aiding, series opposing, and parallel with both arrangements of winding sense. Obtain the equivalent
inductances of the four connections. Ans. 44.1 mH, 15.9 mH, 9.47 mH, 3.39 mH

Write the mesh current equations for the coupled circuit shown in Fig. 14-37. Obtain the dotted equivalent
circuit and write the same equations.

di di

Ans. (R, + Ry)iy + Ly =2 4+ Ry + M =2 =1
ns. (R + Ry)iy + Idt+ 3+ i v
R Ry)i L, —+ R;i M — =
(Ry + Ry)ir + 2d[+ 30+ i v
—
L, M < L,
¢
< [- 4
R| :’ 4’R2
R;
i] iZ
v
Fig. 14-37

Write the phasor equation for the single-loop, coupled circuit shown in Fig. 14-38.
Ans. (S 43 —j5.03 —j8 4+ 10)I = 50/0°

Obtain the dotted equivalent circuit for the coupled circuit of Fig. 14-38. Ans. See Fig. 14-39.

The three coupled coils shown in Fig. 14-40 have coupling coefficients of 0.50. Obtain the equivalent
inductance between the terminals AB. Ans. 239 mH

Obtain two forms of the dotted equivalent circuit for the coupled coils shown in Fig. 14-40.
Ans. See Fig. 14-41.

(a) Obtain the equivalent impedance at terminals AB of the coupled circuit shown in Fig. 14-42. (b)
Reverse the winding sense of one coil and repeat. Ans. (a) 3.40/41.66° ; (b) 2.54/5.37° Q
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——
p ¢
j5 Q¢ k =0.65 j3Q
q
- )
T /8 Q
10 O
()
-— U
I S0PV
Fig. 14-38
j2520

o ®
is iy . l(
j5Q 10 Q j3Q -8 Q
()
\/
50/0° V
Fig. 14-39
A B
O —_0
200 mH P : 100 mH
50 mH
Fig. 14-40
70.7 mH 70.7 mH
50 mH 35.4 mH 50 mH 35.4 mH
A vy vy Yy OB A0 Yy of VY'Y vy - B
®00mH  ®50 mH 100 mH ® 200mH® SOmH® ®100 mH
(a) )
Fig. 14-41

14.32 In the coupled circuit shown in Fig. 14-43, find V, for which I =0. What voltage appears at the 8 Q
inductive reactance under this condition? Ans. 141.4/—45° V,100/0° V (+ at dot)

14.33 Find the mutual reactance X, for the coupled circuit of Fig. 14-44, if the average power in the 5-Q2 resistor is
4524 W. Ans. 4 Q
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.

‘5
502 250
1’ p
| 4
20 j29 : 30
,‘/'-\‘

1000° V Ci

Fig. 14-43

AAA
h A A 8

40

70.7.0° V Ci) s

JXm

AAAS™

& <
FJIOQ ::59

Fig. 14-44

14.34  For the coupled circuit shown in Fig. 14-45, find the components of the current I, resulting from each source
V,and V,. Ans. 0.77/112.6° A,1.72/86.05° A

I¢
20 .
j2Q -/8Q
®
V= 10° ij) j403 %139 L Vo=10/0° V
®
Fig. 14-45

14.35 Determine the coupling coefficient k in the circuit shown in Fig. 14-46, if the power in the 10-Q resistor is
32W. Ans. 0.791

14.36 In (/4a), replace a, X, X5y, and X, by their expressions in terms of X, X5, and k, thereby obtaining (/4b).
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5 Q
VY

vyw
® 80 e
28.3/0° V > 10 Q

Fig. 14-46

14.37 For the coupled circuit shown in Fig. 14-47, find the input impedance at terminals ab.
Ans. 34363 Q

[ e,

Fig. 14-47

14.38 Find the input impedance at terminals ab of the coupled circuit shown in Fig. 14-48.
Ans. 1+j1.5 Q

a O~
20 2Q
]
j5Q isQ
\’.2 Q/:
b O
Fig. 14-48

14.39 Find the input impedance at terminals ab of the coupled circuit shown in Fig. 14-49.
Ans. 622 +j4.65 Q

a O
j4 Q
j8 Q
L4 40
b O— ~AAN

Fig. 14-49
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14.40 Obtain Thévenin and Norton equivalent circuits at terminals ab of the coupled circuit shown in Fig. 14-50.
Ans. V' =7.07/45° V,I' =1.04/=27.9° A,Z' =6.80/72.9° Q

a
10/0° V Ci) Cﬁ> 10/90° V

Fig. 14-50

14.41 For the ideal transformer shown in Fig. 14-51, find I;, given
I, =100/0° A I,,=100/-36.87° A I,; =447/-2657° A

Ans. 16.5/—-14.04° A

.+ + ——
I I
120/0° V 1 I
2000V = [J 1 L,
120/0° V 1 I3
I
Fig. 14-51

14.42 When the secondary of the linear transformer shown in Fig. 14-52 is open-circulated, the primary current is
I, =4.0/=89.69° A. Find the coefficient of coupling k. Ans. 0.983

0.64Q j200 004 Q j0.125 Q)
—W-—_—I:W\—;
L
V= 480/0° V (j) E, <t> E;
a=4 o
Fig. 14-52

14.43 For the ideal transformer shown in Fig. 14-53, find I}, given I, = 50/—36.87° A and I; = 16/0° A.
Ans. 26.6/-34.29° A

14.44 Considering the autotransformer shown in Fig. 14-54 ideal, obtain the currents I;, I,, and 1.

Ans. 3.70/22.5° A,2.12/86.71° A,10.34/11.83° A



CHAP. 14] MUTUAL INDUCTANCE AND TRANSFORMERS 361

—_—
™ L
t vew ]
——
I
™
N =200 2
R
L
®
I ————————— ’
E Ny =25 L]
Fig. 14-53
+
' — a
L
|
|
l b
I i —
| | 545 A
500/0° V | iTlcb
| |
| 20000 V , ¢ [
| i —
| I 100° A
| I 1000 v T
' | | ldc
! ! !
d




Circuit Analysis Using
Spice and PSpice

15.1 SPICE AND PSPICE

Spice (Simulation Program with Integrated Circuit Emphasis) is a computer program developed in the
1970s at the University of California at Berkeley for simulating electronic circuits. Itis used as a tool for
analysis, design, and testing of integrated circuits as well as a wide range of other electronic and electrical
circuits.  Spice is a public domain program. Commercial versions, such as PSpice by MicroSim
Corporation, use the same algorithm and syntax as Spice but provide the technical support and add-
ons that industrial customers need.

This chapter introduces the basic elements of Spice/PSpice and their application to some simple
circuits. Examples are run on the evaluation version of PSpice which is available free of charge.

15.2 CIRCUIT DESCRIPTION

The circuit description is entered in the computer in the form of a series of statements in a text file
prepared by any ASCII text editor and called the source file. It may also be entered graphically by
constructing the circuit on the computer monitor with the Schematic Capture program from MicroSim.
In this chapter, we use the source file with the generic name SOURCE.CIR. To solve the circuit, we run
the circuit solver on the source file. The computer puts the solution in a file named SOURCE.OUT.

EXAMPLE 15.1 Use PSpice to find the dc steady-state voltage across the 5-pF capacitor in Fig. 15-1(a).

3kQ 1 R 2
MWV
9V 6 kQ o~ 5uF Vs R2 -~ C
0
(@) ®
Fig. 15-1
362

Copyright 2003, 1997, 1986, 1965 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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We first label the nodes by the numbers 0, 1, 2 and the elements by the symbols R1, R2, C, and Vs [Fig. 15-1()].
We then create in ASCII the source file shown below and give it a name, for instance, EXMP1.CIR.

DC analysis, Fig. 15-1

Vs 10 DC 9V
R1 1 2 3k

R2 0 2 6k

C 0 2 SuF

.END

Executing the command PSPICE EXMP1, the computer solves the circuit and writes the following results in the file
EXMPI1.0OUT.

NODE VOLTAGE NODE VOLTAGE
(1) 9.0000 ©) 6.0000
VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vs —1.000E — 03

TOTAL POWER DISSIPATION 9.00E — 0.3 WATTS

The printed output specifies that the voltage at node 2 with reference to node 0 is 6 V, the current entering the voltage
source V; is —107* A, and the total power dissipated in the circuit is 9 x 107 w.

15.3 DISSECTING A SPICE SOURCE FILE

The source file of Example 15.1 is very simple and contains the statements necessary for solving the
circuit of Fig. 15-1 by Spice. Each line in the source file is a statement. In general, if a line is too long
(over 80 characters), it can be continued onto subsequent lines. The continuation lines must begin with
a plus (+) sign in the first column.

PSpice does not differentiate uppercase and lowercase letters and standard units are implied when
not specified. We will use both notations.

Title Statement

The first line in the source file of Example 15-1 is called the title statement. This line is used by Spice
as a label within the output file, and it is not considered in the analysis. Therefore, it is mandatory to
allocate the first line to the title line, even if it is left blank.

.END Statement
The .END statement is required at the end of the source file. Any statement following the .END will
be considered a separate source file.

Data Statements

The remaining four data statements in the source file of Example 15.1 completely specify the circuit.
The second line states that a voltage source named V/ is connected between node 1 (positive end of the
source) and the reference node 0. The source is a dc source with a value of 9 V. The third line states
that a resistor named R;, with the value of 3 k€2, is connected between nodes 1 and 2. Similarly, the
fourth and fifth lines specify the connection of R, (6 k2) and C (5 uF), respectively, between nodes 0
and 2. In any circuit, one node should be numbered 0 to serve as the reference node. The set of data
statements describing the topology of the circuit and element values is called the netlist. Data statement
syntax is described in Section 15.4.

Control and Output Statements
In the absence of any additional commands, and only based on the netlist, Spice automatically
computes the dc steady state of the following variables:
(i) Node voltages with respect to node 0.
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(i) Currents entering each voltage source.

(iii) Power dissipated in the circuit.
However, additional control and output statements may be included in the source file to specify other
variables (see Section 15.5).

154 DATA STATEMENTS AND DC ANALYSIS

Passive Elements

Data statements for R, L, and C elements contain a minimum of three segments. The first segment
gives the name of the element as a string of characters beginning with R, L, or C for resistors, inductors,
or capacitors, respectively. The second segment gives the node numbers, separated by a space, between
which the element is connected. The third segment gives the element value in ohms, henrys, and farads,
optionally using the scale factors given in Table 15-1.

Table 15-1 Scale Factors and Symbols

Name Symbol Value
femto f 100 =1E-15
pico p 1002 =1E-12
nano n 10° =1E—9
micro u 10 =1E—6
milli m 107 =1E-3
kilo k 10° =1E3
mega meg 10° =1E6
giga g 10° =1E9
tera t 10" =1E12

Possible initial conditions can be given in the fourth segment using the form IC = xx. The syntax of
the data statement is

(name) (nodes) (value) [(initial conditions)]

The brackets indicate optional segments in the statement.

EXAMPLE 15.2 Write the data statements for R, L, and C given in Fig. 15-2.

R, =3kQ
Resistor node ! @ ’\/\/\, ® node 2
Ly =30 uH
Inductor node 4 0———-—N_Y>Y\—————-—o node 5
(0) =2 mA
Ceq=5pF
Capacitor node 0 o {€ e node 6
-ty
Vi0)y=-2V
Fig. 15-2
Element (name) (nodes) (value) [(initial condition)]
Resistor Rin 1 2 3k
Inductor L1 5 4 30 uH IC = -2mA
Capacitor Ceq 6 5 pF IC=-2V

The third statement for the capacitor connection specifies one node only. The missing node is always taken to be the
reference node.
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Independent Sources
Independent sources are specified by

(name) (nodes) (type) (value)

The (type) for dc and ac sources is DC and AC, respectively. Other time-dependent sources will be
described in Section 15.12. Names of voltage and current sources begin with V and I, respectively. For
voltage sources, the first node indicates the positive terminal. The current in the current source flows
from the first node to the second.

EXAMPLE 15.3 Write data statements for the sources of Fig. 15-3.

V,=30V
Independent _ N\
voltage source 1o U .2
Fhias=2 A
Independent " N\
current source 3e Cj * 4
Fig. 15-3
Source (name) (nodes) (type)  (value)
Independent Voltage Source Vs 21 DC 30V
Independent Current Source  Ibias 3 4 DC 2 A

EXAMPLE 15.4 Write the netlist for the circuit of Fig. 15-4(a) and run PSpice on it for dc analysis.

4V Vs
AN——1—AA—4 ' ; 3
3kQ 1kQ R2 R3
3 mA I
SOOQ§ §1.5k0 R1§ s §R4
0
(@) ®

Fig. 15-4

We first number the nodes and name the elements as in Fig. 15-4(b). The netlist is

DC Analysis, Fig. 15-4

R1 0 1 500

R2 12 3k

R3 23 1k

R4 0 3 1.5k

Vs 31 DC 4V
Is 0 2 DC 3 mA

.END
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The results are writte in the output file as follows:

[CHAP. 15

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) 1250 Q) 5.3750 3) 4.1250
VOLTAGE SOURCE CURRENTS
NAME CURRENT
Vs —1.500E — 03
TOTAL POWER DISSIPATION 6.00E — 03 WATTS
Dependent Sources
Linearly dependent sources are specified by
(name) (nodes) {control) (gain)

Each source name should begin with a certain letter according to the following rule:

Voltage-controlled voltage source
Current-controlled current source
Voltage-controlled current source
Current-controlled voltage source

The order of nodes is similar to that of independent sources.

Exx
Fxx
Gxx
Hxx

For the voltage-controlled sources,

(control) is the pair of nodes whose voltage difference controls the source, with the first node indicating

the 4+ terminal. The (gain) is the proportionality factor.

EXAMPLE 15.5 Write the data statements for the voltage-controlled sources of Fig. 15-5.

Voltage-controlied voltage source (VCVS)

k1Vay

[ R

+

Voltage-controlled current source (VCCS)  Vy,

5 e o

N
Fig. 15-5
Source (name) (nodes)
VCVS El 4 3
VCCS Gl 56

6 1

Control

(control)  (gain)

21 k1
2 1 k2

In the case of current-controlled sources we first introduce a zero-valued voltage source (or dummy
voltage Vgypy) on the path of the controlling current and use its name as the control variable.

EXAMPLE 15.6 Write data statements for the current-controlled sources in Fig. 15-6.

Introduce Vg, (Vdmy) with current i entering it at node 1.

Vdmy 1 7

The data statements for the controlled sources are

Source (name) (nodes)
CCVS H1 4 3
CCCS F1 56

0

(control)  (gain)
Vdmy k3
Vdmy k4
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Current-controlled voltage source (CCVS)

kyi 2
N\
3 e — + ® 4
N t
Current-controlled current source (CCCS) 7
kqi Vamy =0
5 ® AN °6
\/ T
Control
Fig. 15-6

367

EXAMPLE 15.7 Write the netlist for the circuit of Fig. 15-7(«) and run PSpice on it for dc analysis.

; 100i . ) Viamy 100 (Vgpmy)
——ANV N
1kQ 4
12V 2k0 500 Q v, Ry

(@) b
Fig. 15-7
Number the nodes and name the elements as in Fig. 15-7(h). Then, the netlist is

DC analysis with dependent source, Fig. 15-7

Vs 10 DC 12
R1 1 2 1 k

R2 0 3 2k

R3 0 4 500

Vdmy 2 3 0

F1 4 3 Vdmy 100
.END

The results in the output file are

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE

(1) 12.0000 ©) 11.9410 ) 11.9410 (@)
VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vs —5911E — 05

Vdmy 5.911E — 05

TOTAL POWER DISSIPATION 7.09E—-04  WATTS

15.5 CONTROL AND OUTPUT STATEMENTS IN DC ANALYSIS
Certain statements control actions or the output format. Examples are:

.OP prints the dc operating point of all independent sources.

.DC sweeps the value of an independent dc source. The syntax is

.DC (name) (initial value) (final values) (step size)

VOLTAGE
—2.9557
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PRINT prints the value of variables. The syntax is

.PRINT (type) (output variables)
(type) is DC, AC, or TRAN (transient).
PLOT line-prints variables. The syntax is

.PLOT (type) (output variables)

[CHAP. 15

PROBE generates a data file *. DAT which can be plotted in post-analysis by evoking the Probe

program. The syntax is

.PROBE [(output variables)]

EXAMPLE 15.8 Find the value of 7 in the circuit in Fig. 15-8 such that the power dissipated in the 1-k<2 resistor
is zero. Use the .DC command to sweep ¥, from 1 to 6 V in steps of 1 V and use .PRINT to show I(Vs), V(1,2), and

V(2).
1 Ry 2
1k
v, 1v R, < 2k D 1 mA
0
Fig. 15-8
The source file is
DC sweep, Fig. 15-8
Vs 10 DC 1V
Is 0 2 DC 1 mA
R1 12 1k
R2 0 2 2k
DC Vs 1 6 1
PRINT DC I(Vs) V(1,2) V(2)
.END
The results in the output file are
DC TRANSFER CURVES
Vs I(Vs) V(1,2) V(2)
1.000E + 00 3.333E — 04 —3.333E-01 1.333E+ 00
2.000E + 00 —1.333E - 12 1.333E-09 2.000E + 00
3.000E + 00 —3.333E — 04 3.333E — 01 2.667E + 00
4.000E + 00 —6.667E — 04 6.667E — 01 3.333E 400
5.000E + 00 —1.000E — 03 1.000E + 00 4.000E + 00
6.000E + 00 —1.333E - 03 1.333E + 00 4.667E + 00

The answer is V; =2 V.

EXAMPLE 15.9 Write the source file for the circuit in Fig. 15-9(a) using commands .DC, .PLOT, and .PROBE to

find the /-V characteristic equation for / varying from 0 to —2 A at the terminal AB.

First, we connect a dc current source I,4q at terminal AB, “sweep” its value from 0 to —2 A using the .DC

command, and plot ¥ versus /. Since the circuit is linear, two points are necessary and sufficient.

clarity of the plot, ten steps are included in the source file as follows:

However, for
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Date/Time run:

CIRCUIT ANALYSIS USING SPICE AND PSPICE

02702702 14:07:18

Thévenin
model

@)

369

Temperature: 27.0

1o0v

(A) example 15 9.dat (active)

ov

—-10v
—2.0A —1.5A —1.0A —0.5A 0.0A
D Vi) Tadd
Date: February 02, 2002 Page 1 Time: 14:47:33
(b)
Fig. 15-9

Terminal Characteristic, Fig. 15-9

Tadd
Is

Vs

R1

R2

R3

R4
.DC
.PLOT
.PROBE
.END

The output is shown in Fig. 15-9(b).

0

LW = Oo wWo

5

(O N S R e U Y

Tadd
DC

DC
DC
DC

1
2
3
2
0

V()

0.6 A
5V

0.2

The I-V equation is V' = 81 + 8.6.
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15.6 THEVENIN EQUIVALENT
TF Statement

The .TF command provides the transfer function from an input variable to an output variable and

produces the resistances seen by the two sources. It can thus generate the Thévenin equivalent of a
resistive circuit. The syntax is

.TF (output variable) (input variable)

EXAMPLE 15.10 Use the command .TF to find the Thévenin equivalent of the circuit seen at terminal 4B in Fig.
15-10.

1 Ry 2 R, 3
— A —p—
1kQ + 1k R, <2000 A
R,
V=12V v, 4
2kQ
_ 10V,
B
_ O
0
Fig. 15-10

The node numbers and element names are shown on Fig. 15-10. The source file is

Transfer Function in Fig. 15-10

Vs 10 DC 12
El 4 0 2.0 10
RI 1 2 1k

R2 20 2k

R3 2 3 1k

R4 34 200

TF V(3) Vs

END

The output file contains the following results:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 12.0000 @) —2.0000 3) —17.0000 @) —20.000
VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vs —1.400E — 02

TOTAL POWER DISSIPATION 1.68E — 01 WATTS

SMALL-SIGNAL CHARACTERISTICS

V(3)/Vs = —1.417E + 00

INPUT RESISTANCE AT Vs = 8.571E + 02
OUTPUT RESISTANCE AT V(3) = —6.944E + 01

Therefore, V, = —1.417(12) = —17 V and Ry, = —69.44 Q.

157 OP AMP CIRCUITS
Operational amplifiers may be modeled by high input impedance and high gain voltage-controlled

voltage sources. The model may then be used within a net list repeatedly.

EXAMPLE 15.11 Find the transfer function V3/V in the ideal op amp circuit of Fig. 15-11(a).
The op amp is replaced by a voltage-dependent voltage source with a gain of 10° [see Fig. 15-11(b)]. The source file is
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2kQ
wys Coa . m
1k — A o
—O
* Vs Vin 108V, Vv,
v, 12V *

V3

_ + -

O ® & O

0
(@) ®)
Fig. 15-11

Inverting op amp circuit, Fig. 15-11
Vs 10 DC 12
El 30 0 2 1E6
R1 1 2 1k
R2 2 3 2k
.TF V(@3) Vs
.END
The transfer function is written in the output file:
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
1) 12.0000 2 24.00E — 06 3) — 24.0000
VOLTAGE SOURCE CURRENTS
NAME CURRENT
Vs — 1.200E — 02

TOTAL POWER DISSIPATION 1.44E — 01 WATTS

SMALL-SIGNAL CHARACTERISTICS

V(3)/Vs = —2.000E + 00

INPUT RESISTANCE AT Vs = 1.000E + 03
OUTPUT RESISTANCE AT V(3) = 0.000E + 00

.SUBCKT Statement
A subcircuit 1s defined by a set of statements beginning with

SUBCKT (name) (external terminals)

and terminating with an .ENDS statement. Within a netlist we refer to a subcircuit by

Xaa (name) (nodes)
Hence, the .SUBCKT statement can assign a name to the model of an op amp for repeated use.

EXAMPLE 15.12 Given the circuit of Fig. 15-12(a), find I, Iy, V>, and V; for V varying from 0.5 to 2 V in 0.5-V
steps. Assume a practical op amp [Fig. 15-12(b)], with R;, = 100k€2, C;, = 10 pF, R, = 10k, and an open loop
gain of 10°.

The source file employs the subcircuit named OPAMP of Fig. 15-12(h) whose description begins with
.SUBCKT and ends with .ENDS. The X1 and X2 statements describe the two op amps by referring to the
OPAMP subcircuit. Note the correspondence of node connections in the X1 and X2 statements with that of the
external terminals specified in the .SUBCKT statement. The source file is

Op amp circuit of Fig. 15-12 using .SUBCKT

.SUBCKT OPAMP 1 23 4
Rin 1 2 10 E5

Cin 1 2 10 pF

Rout 35 10 k
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Eout 5 4 1 2 10 E5
.ENDS
Vs 10 DC .5
Rs 1 2 1k
R1 2 3 5k
R2 3 4 9k
R3 4 5 1.2k
R4 56 6 k
Rf 6 2 40 k
X1 0 3 40 OPAMP
X2 05 6 0 OPAMP
.DC Vs 0.5 2 0.5
PRINT DC V() V)  I(Vs) I(R1) IR
.TF V(6) Vs
.END
R
.{f. \f
40kQ)
R2 R4
VWA
AN CO R 9k . 6 k(
- 3
1kQ 5kQ 4 5 - 6
+ 1.2kQ) ;—-(3-
v, 05V +
Ve
)
0
(a)
ROU[
20 5e AA'A 3
2 o— -
Vin Cin -~ % Rin 10 Vi = 3
1 @] +
- 4
1 Z O 4 .J___
)
Fig. 15-12
The output file is
DC TRANSFER CURVES
Vs V(2) V(6) 1(Vs) I(R1) I(Rf)
5.000E — 01 5.000E — 01 4.500E+00 —3.372E —09 1.000E — 04 9.999E — 0
1.000E + 00 1.000E +00 9.000E +00 —6.745E — 09 2.000E — 04 2.000E —0
1.500E + 00 1.500E+00 1.350E+01 —1.012E — 08 3.000E — 04  3.000E — 0
2.000E + 00 2.000E4+00 1.800E+01  —1.349E — 08 4.000E — 04  4.000E — 0



CHAP. 15] CIRCUIT ANALYSIS USING SPICE AND PSPICE 373

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) .5000 @) 5000 3) 9.400E — 06  (4) —.9000
5) —13.00E—06  (6) 4.4998 (X1.5) ~9.3996 (X2.5)  12.9990
VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vs —3.372E — 09

TOTAL POWER DISSIPATION 1.69E — 09 WATTS

SMALL-SIGNAL CHARACTERISTICS

V(6)/Vs = 9.000E + 00

INPUT RESISTANCE AT Vs = 1.483E + 08

OUTPUT RESISTANCE AT V(6) = 7.357E — 02
There is no voltage drop across R;. Therefore, V(2) = V; and the overall gain is V(6)/V, = V(2)/V,=9. The
current drawn by R; is provided through the feedback resistor R;.

15.8 AC STEADY STATE AND FREQUENCY RESPONSE

Independent AC Sources
Independent ac sources are described by a statement with the following syntax:

(name) (nodes) AC (magnitude) (phase in degrees)

Voltage sources begin with V and current sources with I. The convention for direction is the same as
that for dc sources.

EXAMPLE 15.13 Write data statements for the sources shown in Fig. 15-13.

Independent ac voltage source
V(1) = 14 cos (w1+45°)
] e @ e 2
Independent ac current source
i (1) = 2.3 cos (w2-105°)
3 e 6 ® 4

Fig. 15-13

AC Source (name) (nodes) (type) (magnitude) (phase)
Voltage Vs 2 1 AC 14 45
Current Is 3 4 AC 2.3 —105

.AC Statement
The .AC command sweeps the frequency of all ac sources in the circuit through a desired range or
sets it at a desired value. The syntax is

AC (sweep type) (number of points) (starting f) (ending f)
For the ac steady state, (sweep type) is LIN. In order to have a single frequency, the starting and ending
frequencies are set to the desired value and the number of points is set to one.
PRINT AC and .PLOT AC Statements

The .PRINT AC statement prints the magnitude and phase of the steady-state output. The syntax
is

.PRINT AC (magnitudes) (phases)
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The magnitudes and phases of voltages are Vm(variable) and Vp(variable), respectively, and the mag-
nitudes and phases of currents are Im(variable) and Ip(variable), respectively. The syntax for .PLOT
AC is similar to that for .PRINT AC.

EXAMPLE 15.14 In the series RLC circuit of Fig. 15-14(a) vary the frequency of the source from 40 to 60 kHz in
200 steps. Find the magnitude and phase of current / using .PLOT and .PROBE.
The source file is

AC analysis of series RLC, Fig. 15-14

Vs 1 0 AC 1 0

R 1 2 32

L 23 2 m

C 30 5n

AC LIN 200 40k 60 k

PLOT AC Im(Vs) Ip(Vs)

PROBE Vm(l,2) Vm(2.3) Vm(3) Im(Vs)  Ip(Vs)
.END

The graph of the frequency response, plotted by Probe, is shown in Fig. 15-14(b).

V,=cos ot

(@)
Date/Time run: 02/02/02 15:37:06 Temperature: 27.0
(A) example 15 14.dat (active)
40mA — —80d I T I T I
—120d
30mA —
—-160d
20mA —
—200d
10mA [~
—240d
>>
oal  —280a ‘ ‘ ‘ ‘
40KHz 44KHz 48KHz 52KHz 56KHz 60KHz
O I(Vs) O P(I(Vs))
Frequency
Date: February 02, 2002 Page 1 Time: 16:14:38

(b)
Fig. 15-14
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159 MUTUAL INDUCTANCE AND TRANSFORMERS

The mutual inductance between inductors is modeled by a device whose name begins with K. The
data statement syntax is

(name) (inductor 1) (inductor 2) (coupling coefficient)

The dot rule, which determines the sign of the mutual inductance term, is observed by making the dotted
end of each inductor the first node entered in its data statement.

EXAMPLE 15.15 Write the three data statements which describe the coupled coils of Fig. 15-15.

1 [ 4
L, L,
2H 3H

2 L 3

Fig. 15-15

The coupling coefficient is k12 = 1.5/,/2(3) = 0.61. The netlist contains the following:

L1 1 2 2
L2 3 4 3
K12 L1 L2 0.6l

EXAMPLE 15.16 Plot the input impedance Z;, = V;/I; in the circuit of Fig. 15-16(«) for f varying from 0.01 to
1 Hz.
To find Z;,, we connect a 1-A ac current source running from node 0 to node 1 and plot the magnitude and

phase of the voltage V(1) across it. The source file is

AC analysis of coupled coils, Fig. 15-16

IADD 0 | AC 1 0
C 0 1 1000000 uF
R o 2 3

Ll 1 2 2H

L2 3 2 5H

K12 L1 L2 06325H

L3 0 3 IH

AC LIN 20 01 1
PRINT AC  Vm(l) Vp(1)
PROBE

END

Vm(1) and Vp(1), which are the magnitude and phase of Z;,, are plotted by using Probe and the graph is shown
in Fig. 15-16(h). Note that the maximum occurs at about 100 mHz.

15.10 MODELING DEVICES WITH VARYING PARAMETERS

.MODEL Statement
The parameters of a passive element can be varied by using .MODEL statement. The syntax is

.MODEL (name) (type) [({(parameter) = (value))]
where (name) is the name assigned to the element. For passive linear elements, (type) is

RES for resistor
IND for inductor
CAP for capacitor



376 CIRCUIT ANALYSIS USING SPICE AND PSPICE [CHAP. 15

We can sweep the parameter of the model though a desired range at desired steps by using the .STEP
statement:

.STEP LIN (name) (initial value) (final value) (step size)

As an example, the following two statements use .MODEL and .STEP commands to define a resistor
called heater with the resistance parameter varying from 20 to 40 Q in 5 steps generating 20, 25, 30, 35,
and 40 Q.

.MODEL heater ~RES(R = 20)
.STEP RES heater(R) 20 40 5

Zin=Vi/1
(a)

Date/Time run: 02/02/02 16:23:28 Temperature: 27.0

(A) example 15 16.dat (active)
4.0V — 100d I I I

1.0V [~ —50d

>> . . : - =
ovl  —100d ‘ ‘ ‘ ‘
0.01Hz 0.20Hz 0.40Hz 0.60Hz 0.80Hz 1.00Hz
o v(l) O P(V(1))
Frequency
Date: February 02, 2002 Page 1 Time: 16:30:46

(@)
Fig. 15-16
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EXAMPLE 15.17 Use Probe to plot ¥ in the circuit in Fig. 15-17(«a) for /" varying from 1 to 3kHz in 100 steps.
also, R from 500 € to 1k in steps of 100 .

Using .MODEL command we create the resistor RLeak and sweep its value by .STEP in the following source
file. The graph of the frequency response V" versus f is plotted by using Probe and it is shown in Fig. 15-17(b).

Parallel resonance with variable R, Fig. 15-17

1 0 1 AC Im O
R 10 RLeak 1
L 1 0 10 m
C 1 0 lu
.MODEL RLeak RES(R =1)
.STEP LIN RES RLeak(R) 500 1k 100
AC LIN 100 1k 3k
.PROBE
.END

1

1 mA .
1 (Dac IpWF 25 € 10mH < L R
0
@
Date/Time run: 02/02/02 16:33:15 Temperature: 27.0

(A) example 15 17.dat (active)

ov \ \ \ \

1.0KHz 1.4KHz 1.8KHz 2.2KHz 2.6KHz 3.0KHz
O¢ VvV AO+ V(1)
Frequency
Date: February 02, 2002 Page 1 Time: 16:40:37
(b)

Fig. 15-17
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15.11 TIME RESPONSE AND TRANSIENT ANALYSIS

TRAN statement

Time responses, such as natural responses to initial conditions in a source-free circuit and responses
to step, pulse, exponential, or other time-dependent inputs, are produced by the . TRAN statement. The
response begins at 1t = 0. The increment size and final time value are given in the following statement:

.TRAN (increment size) (final time value)

EXAMPLE 15.18 Use .TRAN and .PROBE to plot the voltage across the parallel RLC combination in Fig.
15-18(a) for R =50 © and 150 © for 0 < ¢ < 1.4 ms. The initial conditions are 7(0) = 0.5 A and V'(0) = 0.

1

c * L < 10mH
| uF o~ Vo)=0 R
}i(@=0.5A
0
(@)
Date/Time run: 02/02/02 16:55:56 Temperature: 27.0

(A) example 15 18.dat (active)
aov \ \ \ \

10v

1]

ov

—10v

_o0v \ \ \ \

Os 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms 1.2ms 1.4ms
g o v Time
Date: February 02, 2002 Page 1 Time: 16:56:15
(b)
Fig. 15-18
The source file is
Source-free parallel RLC with variable R
R 10 LOSS 1
L 01 10 m IC=.5
C 10 lu IC=0

MODEL  LOSS RES(R = 6)
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.STEP RES LOSS(R) 50 150 100
.TRAN 20E-6 14E-3 UIC

.PROBE

.END

Figure 15-18(b) shows the graph of the voltage plotted by Probe. For R = 50 Q there are no oscillations.

15.12 SPECIFYING OTHER TYPES OF SOURCES

Time-dependent sources which include dc, ac, and transient components are expressed by
(name) (nodes) (dc comp.) {(ac comp.) (transient comp.)

The default for the unspecified dc or ac component is zero. The transient component appears for ¢ > 0.
Several transient components are described below.

Exponential Source

The source starts at a constant initial value V. At ¢, it changes exponentially from ¥, to a final
value V| with a time constant taul. At ¢ = T, it returns exponentially to V, with a time constant tau2.
Its syntax is

EXP(V, V; t, taul T tau2)

EXAMPLE 15.19 A 1-V dc voltage source starts increasing exponentially at # = 5 ms, with a time constant of 5 ms
and an asymptote of 2V. After 15ms, it starts decaying back to 1 V with a time constant of 2ms. Write the data
statement for the source and use Probe to plot the waveform.

The data statement is

Vs 1 0 EXP(1 2 Sm S5Sm 20m 2m)

The waveform is plotted as shown in Fig. 15-19.

Date/Time run: 02/02/02 17:01:46 Temperature: 27.0

(A) example 15 19.dat (active)
2.0V T

1.2v

0.8V ‘ ‘ ‘

Os 10ms 20ms 30ms 40ms
B v Time
Date: February 02, 2002 Page 1 Time: 17:02:45

Fig. 15-19
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Pulse Source
A periodic pulse waveform which goes from V|, to V| and back can be represented by

PULSE(V, V; delay risetime falltime duration period)

EXAMPLE 15.20 (a4) Write the data statement for a pulse waveform which switches 10 times in one second
between 1V and 2V, with a rise and fall time of 2ms. The pulse stays at 2V for 11 ms. The first pulse starts at
t=5ms. (b) Using Probe, plot the waveform in ().

(a) The data statement is

Vs 1 0 PULSE(1 2 5m 2m 2m 1lm 100m)

(b) The waveform is plotted as shown in Fig. 15-20.

Date/Time run: 02/02/02 17:04:43 Temperature: 27.0
(A) example 15 20.dat (active)
2.0V T T T T I T I
1.5V - —
1.0V \ \ \ \
Os S5ms 10ms 15ms 20ms 25ms 30ms 35ms
B V() Time
Date: February 02, 2002 Page 1 Time: 17:11:58
Fig. 15-20

Sinusoidal Source

The source starts at a constant initial value V. At ¢y, the exponentially decaying sinusoidal
component with frequency f, phase angle, starting amplitude ¥}, and decay factor alpha is added to
it. The syntax for the waveform is

SIN(Vy V; f t, alpha phase)

EXAMPLE 15.21 (a) Write the mathematical expression and data statement for a dc voltage source of 1V to
which a 100-Hz sine wave with zero phase is added at # = 5 ms. The amplitude of the sine wave is 2V and it decays
to zero with a time constant of 10ms. (b) Using Probe, plot V(7).
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(a) The decay factor is the inverse of the time constant and is equal to alpha = 1/0.01 = 100. For ¢ > 0, the
voltage is expressed by

V(6) = 1 + 271000009 gin 628.32(¢ — 0.005)u(z — 0.0053)
The data statement is

Vs 10 SIN(I 2 100 5m 100)

(b) The waveform is plotted as shown in Fig. 15-21.

Date/Time run: 02/02/02 17:13:37 Temperature: 27.0

(A) example 15 21.dat (active)
\ ‘ \

3.0V ‘ ‘ ‘ ‘

Ovbs Sms 10ms 15ms 20ms 25ms 30ms 35ms
B v Time
Date: February 02, 2002 Page 1 Time: 17:18:52
Fig. 15-21

EXAMPLE 15.22 Find the voltage across a 1-uF capacitor, with zero initial charge, which is connected to a
voltage source through a 1-k< resistor as shown in the circuit in Fig. 15-22(a). The voltage source is described by

Vo 15.819 V for0 <t <1 ms
ST110V for t > 1 ms

We use the exponential waveform to represent V. The file is

Dead-beat Pulse-Step response of RC

Vs 10 EXP(10 15819 0 10E—-6 1.0E—3 1.0E—06)
R 1 2 1k

C 20 1 uF

.TRAN I.OE-6 50E-3 UIC

.PROBE

.END

The graph of the capacitor voltage is shown in Fig. 15-22(b). During 0 < ¢ < 1 ms, the transient response grows
exponentially toward a dc steady-state value of 15.819 V. At = | ms, the response reaches the value of 10 V. Also
at 1 = 1 ms, the voltage source drops to 10 V. Since the source and capacitor voltages are equal, the current in the
resistor becomes zero and the steady state is reached. The transient response lasts only 1 ms.
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R

1 2
AAA +
1kQ
V, C,I\IHF Ve
0
(a)
Date/Time run: 02/02/02 17:39:11 Temperature: 27.0
(A) example 15 22.dat (active)
l6ma L L S A T
15v |-
1]
10mA —
10V |~ = =) =)
¥
5V —
0A — S ¥
>> L
ov L —4mA \ [ [ [ [
Os 1.0ms 2.0ms 3.0ms 4.0ms 5.0ms
O v(l) ¢ V(2) v I(C)
Time
Date: February 02, 2002 Page 1 Time: 17:50:40
(b)
Fig. 15-22

15.13 SUMMARY

In addition to the linear elements and sources used in the preceding sections, nonlinear devices, such
as diodes (Dxx), junction field-effect transistors (Jxx), mosfets (Mxx), transmission lines (Txx), voltage
controlled switches (Sxx), and current controlled switches (Wxx), may be included in the netlist.
Sensitivity analysis is done using the .SENS statement. Fourier analysis is done using the .FOUR
statement. These can be found in books or manuals for PSpice or Spice. The following summarizes the
statements used in this chapter.

Data Statements:

R, L, C (name) ( (value) [(initial conditions)]
Mutual Inductance kxx (ind.a) (ind.b) (coupling coefficient)
Subcircuit Call Xxx (name) (connection nodes)

DC Voltage source Vxx (nodes) DC (value)

DC Current source Ixx (nodes) DC (value)
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15.1

AC Voltage source Vxx (nodes) AC (magnitude) (phase)
AC Current source Ixx (nodes) AC (magnitude) (phase)
VCVS Exx (nodes) {(control) (gain)

CCCS Fxx (nodes)  (control) (gain)

VCCS Gxx (nodes)  (control) (gain)

CCVS Hxx (nodes)  (control) (gain)

Control Statements:

AC (sweep type) (number of points) (starting f) (ending f)

.DC (name) (initial value)  (final value) (step size)

.END

.ENDS

IC (V(node) = value)

.MODEL (name) type) [({parameter) = (value))]
type) is RES for resistor
type) is IND for inductor

)

(
(
(
(type) is CAP for capacitor
)]

.LIB [{file name

.OP

.PRINT DC (output variables)

.PLOT DC (output variables)

.PRINT AC (magnitudes) (phases)
.PLOT AC (magnitudes) (phases)
.PRINT TRAN (output variables)

.PROBE [(output variables)]

.STEP LIN (type) (name(param.)) (initial value)  (final value)
.SUBCKT (name) (external terminals)

.TF (output variable) (input source)
.TRAN {(increment size) (final value)

Solved Problems

Use PSpice to find 7 (3, 4) in the circuit of Fig. 15-23.

1 Ry 2 R, 3
’ ' ANV ' M ' +
740 1640
360 R, ROLR, 105V v, 10320 R; V(34)
Rs
0 28.70Q 4
Fig. 15-23

The source file is

DC analysis, Fig. 15-23

Vs 2 0 DC 105 V
R1 0 1 36

R2 0 1 12

(step size)

383
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R3 12
R4 23
RS 34
R6 4 0
DC Vs 105
PRINT DC V(I)
END

74

16.4

103.2

28.7

105 1
V@3, 4)

The output file contains the following:

DC TRANSFER CURVES

Vs V(1)
1.050E + 02

Therefore, V'(3,4) = 73.07 V.

1.139E + 01

V@3, 4)
7.307E + 01

15.2 Write the source file for the circuit of Fig. 15-24 and find I in Ry.

15.3

Ry

1 3
NNV—1
40
470 R,
270 § R 2 20A
200V v,
i 0
Fig. 15-24
The source file is
DC analysis, Fig. 15-24
VS 2 0 DC 200V
Is 0 3 DC 20A
R1 0 1 27
R2 1 2 47
R3 1 3 4
R4 3 0 23
.DC Vs 200 200 1
PRINT DC I(R4)
.END

The output file contains the following results:

DC TRANSFER CURVE

Vs I(R4)

2.000E + 02 1.123E 4 01

[CHAP. 15

Current I(R4) = 11.23 A flows from node 3 to node 0 according to the order of nodes in the data statement

for R4.

Find the three loop currents in the circuit of Fig. 15-25 using PSpice and compare your solution

with the analytical approach.
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I 1 L Ry 3 I Rs 4
100 2Q
50 R,
2 Q? R, 2 402 R, 50V
sv(t)v,
0
Fig. 15-25
The source file is
DC analysis, Fig. 15-25
\%! 2 0 DC 25
V2 0 4 DC 50
R1 0 1 2
R2 1 2 5
R3 1 3 10
R4 3 0 4
RS 3 4 2
.DC Vi 25 25 1
PRINT DC I(R1) I(R3) I(R5)
.END
The output file includes the following results:
DC TRANSFER CURVES
\! I(R1) I(R3) I(RS)
2.500E + 01 —1.306E + 00 3.172E 4 00 1.045E + 01

The analytical solution requires solving three simultaneous equations.

V2

385

15.4 Using PSpice, find the value of Vs in Fig. 15-4 such that the voltage source does not supply any
power.

We sweep Vs from 1 to 10 V. The source and output files are

DC sweep in the circuit of Fig. 15-4

R1 0 1 500

R2 2 3k

R3 23 1k

R4 0 3 1.5k

Vs 3001 DC 4V
Is 0o 2 DC 3 mA
.DC Vs 110 1
PRINT DC  1(Vs)

PROBE

PLOT DC  1(Vs)

.END

The output file contains the following results:

DC TRANSFER CURVES

Vs I(Vs)
1.000E + 00 7.500E — 04
2.000E + 00 —2.188E — 12

3.000E + 00 —7.500E — 04
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4.000E + 00 —1.500E — 03
5.000E + 00 —2.250E — 03
6.000E + 00 —3.000E — 03
7.000E + 00 —3.750E — 03
8.000E + 00 —4.500E — 03
9.000E + 00 —5.250E - 03
1.000E + 01 —6.000E — 03

The current in Vs is zero for Vs =2 V.

15.5 Perform a dc analysis on the circuit of Fig. 15-26 and find its Thévenin equivalent as seen from

terminal AB.

| 100 ) A
——AA——
3V v, 1, 1AV,
¢ o
0 B
Fig. 15-26
We include a .TF statement in the following netlist:
Thévenin equivalent of Fig. 15-26
Vs 1 0 DC 3
R1 1 2 10
Is 0 2 DC 1
.TF V(2) Is
.END
The output file includes the following results:
NODE VOLTAGE NODE VOLTAGE
)] 3.0000 ) 13.000
VOLTAGE SOURCE CURRENTS
NAME CURRENT
Vs 1.000E + 00
TOTAL POWER DISSIPATION —3.00E + 00 WATTS

SMALL-SIGNAL CHARACTERISTICS
V(2)/Is = 1.000E + 01

INPUT RESISTANCE AT Is = 1.000E + 01
OUTPUT RESISTANCE AT V(2) = 1.000E + 01

The Thévenin equivalent is V, = V5, = 13V, Ry, = 10 Q.

15.6 Perform an ac analysis on the circuit of Fig. 15-27(a).
varying from 100 Hz to 10 kHz in 10 steps.

Find the complex magnitude of V, for f

We add to the netlist an .AC statement to sweep the frequency and obtain V(2) by any of the commands

.PRINT, .PLOT, or .PROBE. The source file is

AC analysis of Fig. 15-27(a).

Vs 1 0 AC 10 0
R1 1 2 1k

R2 2 0 2k
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C 20 1 uF
AC LIN 10 100 10000
PRINT AC Vm(2) Vp(2)
PLOT AC Vm(2) Vp(2)
PROBE Vm(2) Vp(2)
END
1kQ
! AN 2 —
+
v, 10_/0° 2kQ v,

(@)

Date/Time run: 10/27/93 15:21:12

387

Temperature: 27.0

(A) C:\MSIMEVS4\NA15\nal5p06.dat
y 8.0vy ,
6.0v
4.0V
2.0v
ov
Frequency
Date: October 27, 1993 Page 1 Time: 15:24:36
)
Fig. 15-27
The output file contains the following results:
AC ANALYSIS
FREQ VM(2) VP(2)
1.000E + 02 6.149E + 00 —2.273E + 01
1.200E + 03 1.301E + 00 —7.875E + 01
2.300E + 03 6.883E — 01 —8.407E + 01
3.400E + 03 4.670E — 01 —8.598E + 01
4.500E + 03 3.532E - 01 —8.696E + 01
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5.600E + 03
6.700E + 03
7.800E + 03
8.900E + 03
1.000E + 04

CIRCUIT ANALYSIS

2.839E — 01
2.374E - 01
2.039E — 01
1.788E — 01
1.591E — 01

—8.756E + 01
—8.796E + 01
—8.825E + 01
—8.846E + 01
—8.863E + 01

USING SPICE AND PSPICE

[CHAP. 15

The magnitude and phase of V, are plotted with greater detail in Fig. 15-27(b).

15.7 Perform dc and ac analysis on the circuit in Fig. 15-28. Find the complex magnitude of V, for f
varying from 100 Hz to 10 kHz in 100 steps.

15.8

1 2
. 1kQ ]-
o R c
Vr 1020 2 V2 C‘ Is
b 2k0< MFT
s ¢ ’
Fig. 15-28

The source file is

DC and AC analysis of Fig. 15-28

Vs 1 0 AC
Is 0o 2 DC
RI 1 2 1k
R2 2 0 2k
C 2 0 1 uF
AC LIN 100
PROBE  Vm(2) Vp(2)
END

10 0
1 mA
100 10000

The output file contains the following results:

SMALL SIGNAL BIAS SOLUTION

NODE VOLTAGE NODE
(€))] 0.0000 2)
VOLTAGE SOURCE CURRENTS
NAME CURRENT

Vs 6.667E — 04

TOTAL POWER DISSIPATION

VOLTAGE
.6667

—0.00E + 00

WATTS

The graph of the ac component of V, is identical with that of V, of Problem 15.6 shown in Fig. 15-

27(h).

Plot resonance curves for the circuit of Fig. 15-29(a) for R=2, 4, 6, 8§, and 10 Q.

We model the resistor as a single-parameter resistor element with a single-parameter R and change the
value of its parameter R from 2 to 10 in steps of 2 Q. We use the .AC command to sweep the frequency

from 500 Hz to 3kHz in 100 steps.

The source file is

Parallel resonance of practical coil, Fig. 15-29

1 m 0
1

I 0 2 AC

R 0 2 RLOSS

L 1 2 10 m

C 0 2 lu
MODEL  RLOSS RES(R = 1)
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.STEP RES RLOSS(R) 2 10 2
AC LIN 100 500 3000
.PROBE

.END

The resonance curves are shown with greater detail in Fig. 15-29(b).

i * 1£0° mA
ac 1 C < 1pF

(@

Date/Time run: 10/27/93 15:52:56 Temperature: 27.0

(A) C:\MSIMEV54\NA15\nal5p08.dat

Frequency

Date: October 27, 1993 Page 1 Time: 15:55:00

®)
Fig. 15-29

15.9 Use .TRAN and .PROBE to plot V¢ across the 1-uF capacitor in the source-free circuit of Fig.
15-30(a) for R = 100, 600, 1100, 1600, and 2100 2. The initial voltage is V(0) = 10 V.

The values of the resistor R are changed by using .MODEL and .STEP. The source file is
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Natural response of RC, Fig. 15-30(«a)

R 0 1 Rshunt 1

C 1 0 1 uF IC=10

.MODEL Rshunt RES(R =1)

.STEP LIN RES Rshunt(R) 100 2.1k 500
.TRAN 1E —4 50E — 4 UIC

PLOT TRAN V(1)

.PROBE

.END

The graph of the voltage V' is shown in Fig. 15-30(b).

1
1
Vo ~C §R
1 VuF
0
(@
Date/Time run: 10/21/93 10:36:31 Temperature: 27.0

{C) C:\MSIMEVS54\NA15\nal5p09.dat .
OV - = - oo o e oo

o wW
< <

-
<

D O (RPN Rp gy DY

N
N

Os 1.0ms 2.0ms 3.0ms 4.0ms 5.0ms

N
<

g o 9 & o V(1)
Time
Date: October 27, 1993 Page 1 Time: 16:02:44
®)
Fig. 15-30

15.10 Plot the voltages between the two nodes of Fig. 15-31(a) in response to a 1-mA step current
source for R = 100, 600, 1100, 1600, and 2100 2.
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The source file is

CIRCUIT ANALYSIS USING SPICE AND PSPICE

Step response of RC, Fig. 15-31(a)

I 0 1
R 0 1
C 1 0
.MODEL Rshunt
STEP LIN
.TRAN 1E -4
PLOT TRAN
.PROBE

.END

1 m

Rshunt 1
1 uF
RES(R = 1)
RES

S0E — 4
V(1)

Rshunt(R) 100
UIC

2.1k

The graphs of the step responses are given in Fig. 15-31(b).

Date/Time run: 10/27/93 14:35:42

1uWF = C i

(@

500

Temperature: 27.0

. (D) C:\MSIMEVS4\NA15\nal5pl0.dat

Date: October 27, 1993

Fig. 15-31

Time: 16:06:48

391
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15.11 Find the Thévenin equivalent of Fig. 15-32 seen at the terminal 4B.

Fig. 15-32

From dc analysis we find the open-circuit voltage at AB. We also use .TF to find the output resistance
at AB. The source file and the output files are

Solution to Fig. 15-32 and Thévenin equivalent at terminal AB

RI 0 1 2
R2 0 3 6

R3 13 1

R4 23 5

RS 4 5 7

Vsl 21 DC 3
Vs2 3 4 DC 4
Is 0 5 DC 1
TF V(5) Vsl

END

The output file contains the following results:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

(1) 1.2453 ©) 4.2453 3) 2.2642 @) —1.7358
) 5.2642

VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vsl —3.962E — 01

Vs2 —1.000E + 00

TOTAL POWER DISSIPATION S19E+00  WATTS

V(5)/Vsl = 1.132E — 01
INPUT RESISTANCE AT Vsl = 5.889E + 00
OUTPUT RESISTANCE AT V(5) = 8.925E + 00

The Thévenin equivalent is Ve, = Vs = 5.2642 V, Ry, = 8.925 Q.

15.12 Plot the frequency response V 5/ V,. of the open-loop amplifier circuit of Fig. 15-33(a).
The following source file chooses 500 points within the frequency varying from 100 Hz to 10 Mhz.

Open loop frequency response of amplifier, Fig. 15-33

Rs 1 2 10 k

Rin 0 2 10 ES

Cin 0 2 short 1

Rout 3 4 10 k

R1 4 0 10 E9

Eout 3 0 0 2 1 E5

Vac 0 AC 10 u 0

MODEL short CAP(C = 1)
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STEP LIN CAP short(C) 1pF 101 pF  25pF
AC LIN 500 10 10000 k

PROBE

END

The frequency response is plotted by Probe for the frequency varying from 10 kHz to 10 MHz as shown
in Fig. 15-33(b).

= Cn R; =1010

1to 101 pF

(@)

Temperature: 27.0

Frequency

Date: October 27, 1993

Page 1 Time: 16:23:06

®)
Fig. 15-33

15.13 Model the op amp of Fig. 15-34(a) as a subcircuit and use it to find the frequency response of
V3/V, in Fig. 15-34(b) for f varying from 1 MHz to 1 GHz.

The source file is

Closed loop frequency response of amplifier, Fig. 15-34
.SUBCKT OPAMP 1 2 3 4
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2@
2 @i —
3 = Rin Vin -~ Cin
10—+ 106Q 100 pF
+
le
(@)
1K < R;< 801 kQ
R, 2
10k 3
+
Vi 10,£0° mV *
V3
0 .
®
Date/Time run: 10/27/93 16:129:36 Temperature: 27.0
(A) C:\MSIMEVS54\NA1S5\nalSpl3.dat
PO e et et e T e L LR L e e =
: ‘
. ,
¢ ¢
' s
' .
: 1
, :
0.8V '
' '
I I
‘ I
. 1
¢ I
' I
) I
¢ I
) '
| '.
0.6V .
H :
i 1
' I
i H
I I
0.4V 1 ‘
i ;
'
i '
i i
| )
' )
i i
' I
' )
0.2v+ . . . AN -
| '
) )
I
i . '
) i
: '
; ' .
)
oV +o ™ T - - -r —
1.0MHz 3.0MHZ 10MHz 30MHz 100MH2 300MHZ 1.0GHz
s o v & o V(3)
Frequency
Date: October 27, 1993 Page 1 Time: 16:31:43
©

Fig. 15-34
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15.14

15.15

*  node 1 is the non-inverting input

*  node 2 is the inverting input

*  node 3 is the output

*  node 4 is the output reference (negative end of dependent source)
*  node 5 is the positive end of dependent source

Rin 12 10 ES

Cin 12 100 pF

Rout 35 10 k

Eout 5 4 1 2 1 ES

.ENDS

Vac 10 AC 10 m 0

R1 12 10 k

Rf 23 Rgain 1

X1 0 2 3 0 OPAMP

.MODEL GAIN RES(R = 1)

.STEP LIN RES Rgain(R) Ik 801k 200k
AC LIN 500 1000 k 1000000 k
.PROBE

.END

The frequency response is graphed in Fig. 15-34(¢). Compared with the open-loop circuit of Fig. 15-
33(a), the dc gain is reduced and the bandwidth is increased.

Referring to the RC circuit of Fig. 15-22, choose the height of the initial pulse such that the
voltage across the capacitor reaches 10V in 0.5ms.  Verify your answer by plotting V. for
0<t<2ms.

The pulse amplitude 4 is computed from
A1 —e'?)=10  from which A4 =25415V
We describe the voltage source using PULSE syntax. The source file is

Pulse-Step response of RC, dead beat in RC/2 seconds

Vs 10 PULSE(10 25415 10E—-6 10E—-6 05m 3m)
R 1 2 1k

C 20 lu

.TRAN 10E-6 20E-3 UIC

.PROBE

.END

The response shape is similar to the graph in Fig. 15-22(h). During the transition period of 0 < ¢ < 0.5 ms,
the voltage increases exponentially toward a dc steady state value of 25.415V. However, at t = 0.5 ms,
when the capacitor voltage reaches 10V, the source also has 10V across it. The current in the resistor
becomes zero and steady state is reached.

Plot the voltage across the capacitor in the circuit in Fig. 15-35(a) for R = 0.01 Q and 4.01 .
The current source is a 1 mA square pulse which lasts 1256.64 ps as shown in the i — ¢ graph.

Model the resistor as a single-parameter resistor element with a single parameter R and change the
value of R from 0.01 to 4.01 in step of 4. We use the .AC command to sweep the frequency from 500 Hz to
3kHz in 100 steps. The source file is

Pulse response of RLC with variable R

Is 0 1 Pulse(0 1m 100u 0.01u 0.0lu 1256.64u 5000 u)
R 1 2 LOSS 1

C 10 2000 n IC=0

L 20 Sm IC=0
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.MODEL LOSS RES(R=1)

.STEP RES LOSS(R) .01 4.01 4
.TRAN 10u 3500 u 0 lu UIC
.PROBE

.END

The result is shown in Fig. 15-35(b).
The transient response is almost zero for R = 0.01 Q. This is because pulse width is a multiple of the
period of natural oscillations of the circuit.

1
i mA + )
e
1+ R
- .
Iy C’ Vl 2 }LF ~C 2
5 mH L
t
1256.64 ps
0
(@)
Pulge response of RLC with variable R
Date/Time run: 11/15/94 19:42:29 Temperature: 27.0
(A) C:\MSIMEV54\NA1S\NA15\nalSpi5.dat
GOV -~ = = - == - = e e e '
i :
h ;
| )
| )
I h
I |
| :
40nv - :
' i
' )
| )
) :
| ,
| h
: )
| \
20mv - |
: ,
' )
' I
, '
' )
' :
¢ '
ov : ‘
1 '
.
: o\/}
: :
: :
; h
-20mv 4 !
) h
\ \
h |
; i
1 |
. |
: .
-40mV - ,
; i
I .
' '
) ¢
) '
h '
) .
) :
) :
-60mV + - - e - e b R R R Prm e P e Feme e Fomsms e 1
Os 5ms 1.0ms 1.5ms 2.0ms 2.5ms 3.0ms 3.5m8
a o V(1)
Time
Date: November 16, 1994 Page 1 Time: 13:19:13
®

Fig. 15-35
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Supplementary Problems

In the following problems, use PSpice to repeat the indicated problems and examples.
15.16 Solve Example 5.9 (Fig. 5-12).

15.17 Solve Example 5.11 (Fig. 5-16).

15.18 Solve Example 5.14 (Fig. 5-20).

15.19 Solve Example 5.15 (Fig. 5-21).

15.20 Solve Example 5.20 (Fig. 5-28) for x(f) =1 V.
15.21 Solve Problem 5.12 (Fig. 5-37).

15.22 Solve Problem 5.16 (Fig. 5-39).

15.23 Solve Problem 5.25 (Fig. 5-48).

15.24 Solve Problem 5.26 (Fig. 5-49).

15.25 Solve Problem 5.48 (Fig. 5-55) for v = vy =1 V.
15.26 Solve Example 7.3.

15.27 Solve Example 7.6 (Fig. 7-12).

15.28 Solve Example 7.7 [Fig. 7-13(a)].

15.29 Solve Example 7.11 [Fig. 7-17(a)].

15.30 Solve Problem 8.27 (Fig. 8-31).

15.31 Solve Problem 9.11 (Fig. 9-20).

15.32 Solve Problem 9.18 (Fig. 9-28).

15.33 Solve Problem 9.19 (Fig. 9-29).

15.34 Solve Example 11.5 [Fig. 11-15(a)].

15.35 Solve Example 11.6 [Fig. 11-16(a)].

15.36 Solve Example 11.7 (Fig. 11-17).

15.37 Solve Problem 12.7.

15.38 Solve Problem 12.14 (Fig. 12-40).

15.39 Solve Problem 12.16 (Fig. 12-43).

15.40 Solve Problem 13.28 (Fig. 13-31) for s = .
15.41 Solve Problem 13.31 (Fig. 13-33)

15.42 Solve Problem 14.8 (Fig. 14-24).

15.43 Solve Problem 14.12 (Fig. 14-28).

15.44 Solve Problem 14.13 (Fig. 14-29)

15.45 Solve Problem 14.20 (Fig. 14-35)

15.46 Solve Problem 14.21 (Fig. 14-36) for s = .



CHAPTER 16

The Laplace Transform
Method

16.1 INTRODUCTION

The relation between the response y(z) and excitation x(¢) in RLC circuits is a linear differential
equation of the form

any(”)—l—---+ajy(j)+---+a1y(”+a0y:bmx(m)+~--+bix(i)+~~-+b1,x(l)+b0x (1)

where y(j) and x” are the jth and ith time derivatives of y(¢) and x(¢), respectively. If the values of the
circuit elements are constant, the corresponding coefficients a; and b; of the differential equation will also
be constants. In Chapters 7 and 8 we solved the differential equation by finding the natural and forced
responses. We employed the complex exponential function x(f) = Xe* to extend the solution to the
complex frequency s-domain.

The Laplace transform method described in this chapter may be viewed as generalizing the concept
of the s-domain to a mathematical formulation which would include not only exponential excitations but
also excitations of many other forms. Through the Laplace transform we represent a large class of
excitations as an infinite collection of complex exponentials and use superposition to derive the total
response.

16.2 THE LAPLACE TRANSFORM

Let f(7) be a time function which is zero for ¢ < 0 and which is (subject to some mild conditions)
arbitrarily defined for # > 0. Then the direct Laplace transform of f(t), denoted Z[f(¢)], is defined by

ZLIf(0] = K(s) = Jm f(e " dt )

Thus, the operation #[ ] transforms f(z), which is in the time domain, into F(s), which is in the complex
frequency domain, or simply the s-domain, where s is the complex variable o + jw. While it appears that
the integration could prove difficult, it will soon be apparent that application of the Laplace transform
method utilizes tables which cover all functions likely to be encountered in elementary circuit theory.
There is a uniqueness in the transform pairs; that is, if f;(¢) and f>(¢) have the same s-domain image
F(s), then f(r) = f>(¢). This permits going back in the other direction, from the s-domain to the time

398
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domain, a process called the inverse Laplace transform, ¥~ '[F(s)] = f(1). The inverse Laplace transform
can also be expressed as an integral, the complex inversion integral:

-1 1 ko0 st
ZIRE)] = /() :—.J F(s)e* ds 3)
27) Joy—joe

In (3) the path of integration is a straight line parallel to the jw-axis, such that all the poles of F(s) lie
to the left of the line. Here again, the integration need not actually be performed unless it is a question
of adding to existing tables of transform pairs.

It should be remarked that taking the direct Laplace transform of a physical quantity introduces an
extra time unit in the result. For instance, if i(¢) is a current in A, then I(s) has the units A -s (or C).
Because the extra unit s will be removed in taking the inverse Laplace transform, we shall generally omit
to cite units in the s-domain, shall still call I(s) a “current,” indicate it by an arrow, and so on.

16.3 SELECTED LAPLACE TRANSFORMS
The Laplace transform of the unit step function is easily obtained:

oo —st 1 —S1q00 1
Lu@]=| (De™di=——e "]y =
0 S S
From the linearity of the Laplace transform, it follows that v(f) = Vu(¢) in the time domain has the s-
domain image V(s) = V//s.
The exponential decay function, which appeared often in the transients of Chapter 7, is another time
function which is readily transformed.

—at Oo —at —st —A —(a+s)t A
YAe ”]:J Ae e dt = —— [P = ——
0 A+s s+a
or, inversely,
A
cg—ll: } — Ae—tl[
S+a
The transform of a sine function is also easily obtained.
) 00 ) r_ : t —st _ =St ¢ oo
Plsinwt] = J (sinwt)e ™ dt = SGinw )62 i e W ] = @ -
0 L St w 0 S tow

It will be useful now to obtain the transform of a derivative, df(¢)/dt.

o0 [Zd
z [7 = J T

Integrating by parts,

g[@] SO~ | s dt =107 s | f0e = ~f0) +5F)
0 0

A small collection of transform pairs, including those obtained above, is given in Table 16-1. The

last five lines of the table present some general properties of the Laplace transform.

EXAMPLE 16.1 Consider a series RL circuit, with R=5Q and L =2.5mH. At =0, when the current in the
circuit is 2 A, a source of 50V is applied. The time-domain circuit is shown in Fig. 16-1.
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Time Domain s-Domain

(i) Ri+ L% =y————————» (i) RI(s)+ L[ i(0%) + sI(s)] = V(s)

(iii) 5I(s) + (2.5%1073)[-2+sI(s)]= %
(classical methods) l

_10 -8
v 1= S s+2000
V) my,a—lH -10
(i) i(t)=10—8e 2000t (A)«—

) | 82 [

—2000¢
+2000] 8¢

Table 16-1 Laplace Transform Pairs

S F(s)
1
1. 1 S
1
2. t )
1
3. 676” S+a
1
4. te™ (s +a)’
w
5. sin wt §2 + @?
s
6. cos wt $2 + w?
ssinf + wcos
7. sin (wt + 6) 2 + w?
scosf — wsinf
8. cos (wt + 6) §2 4+ o?
e
9. e~ sinwt (s + a)* + &*
s+a
10. e " coswt (s + a)* + o*
3}
11. sinh wt 2 — o2
S
12. cosh wt 2 — o2
ar
13. dt sF(s) —/(07)
t
- F(s)
w| o 3
15. ft—1) ¢ "°F(s)

16. cifi() + e fo(0) ciFi(s) + coF5(s)

17. L Si(@f( -1 dr Fi(9)F(s)
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o
R
50
I +3yY
S0u(t) (V) 2u(—t) {(A) * C" s
i L
l Li(0")
Fig. 16-1 Fig. 16-2

Kirchhoff’s voltage law, applied to the circuit for 7 > 0, yields the familiar differential equation (i). This
equation is transformed, term by term, into the s-domain equation (ii). The unknown current i(z) becomes I(s),
while the known voltage v = 50u(7) is transformed to 50/s. Also, di/dt is transformed into —i(0™) + sI(s), in which
i(0%)is 2A. Equation (iii) is solved for I(s), and the solution is put in the form (iv) by the techniques of Section 16.6.
Then lines 1, 3, and 16 of Table 16-1 are applied to obtain the inverse Laplace transform of I(s), which is i(¢).

A circuit can be drawn in the s-domain, as shown in Fig. 16-2. The initial current appears in the circuit as a voltage
source, Li(0T). The s-domain current establishes the voltage terms RI(s) and sLI(s) in (ii) just as a phasor current I
and an impedance Z create a phasor voltage 1Z.

16.4 CONVERGENCE OF THE INTEGRAL

For the Laplace transform to exist, the integral (2) should converge. This limits the variable
s = 0 + jw to a part of the complex plane called the convergence region. As an example, the transform
of x(f) = e~ “u(t) is 1/(s + a), provided Re [s] > —a, which defines its region of convergence.

EXAMPLE 16.2 Find the Laplace transform of x(z) = 3e2’u(t) and show the region of convergence.

_ 2t _—st _ —(s—2)t _ —(s—2)1700 —
X(s)_‘[0 3e7e dt_L 3e dt_—s_z[e 1o ot Re[s] > 2

The region of convergence of X(s) is the right half plane o > 2, shown hatched in Fig. 16-3.
jo

Region of
convergence

q

Fig. 16-3

16.5 INITIAL-VALUE AND FINAL-VALUE THEOREMS

Taking the limit as s — oo (through real values) of the direct Laplace transform of the derivative,

df (1)/dt,

d ®d
lim g[%} ~ lim J % e di = Tim (sF(s) — /(07))

S§—>00 0
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But ¢* in the integrand approaches zero as s — oo. Thus,
lim {sF(s) — f(0")} =0
Since £(0") is a constant, we may write
S(07) = lim {sF(s)}
5§—>00

which is the statement of the initial-value theorem.

EXAMPLE 16.3 In Example 16.1,

8s

Jm {s1(s)) = }LTO(N - m) =10-8=2
which is indeed the initial current, i(07) =2 A.
The final-value theorem is also developed from the direct Laplace transform of the derivative, but now the limit

is taken as s — 0 (through real values).

d % d] ,
iy 2| G = tm [} 4G e =i -0y
But lim J:c @ e dt = J:o df (t) = f(00) — £(0)

and f(07) is a constant. Therefore,
f(00) =f(07) = —f(0") + lim{sF(s)}
or f(00) = lim{sF(s)}
This is the statement of the final-value theorem. The theorem may be applied only when all poles of sF(s) have

negative real parts. This excludes the transforms of such functions as ¢’ and cost, which become infinite or
indeterminate as t — oo.

16.6 PARTIAL-FRACTIONS EXPANSIONS

The unknown quantity in a problem in circuit analysis can be either a current i(¢) or a voltage v(¢).
In the s-domain, it is I(s) or V(s); for the circuits considered in this book, this will be a rational function
of the form

_P(s)

Q(s)
where the polynomial Q(s) is of higher degree than P(s). Furthermore, R(s) is real for real values of's, so
that any nonreal poles of R(s), that is, nonreal roots of Q(s) = 0, must occur in complex conjugate pairs.

In a partial-fractions expansion, the function R(s) is broken down into a sum of simpler rational
functions, its so-called principal parts, with each pole of R(s) contributing a principal part.

R(s)

Case 1: s =a is a simple pole. 'When s = a is a nonrepeated root of Q(s) =0, the corresponding
principal part of R(s) is

p— where A = lim{(s — a)R(s)}

If a is real, so will be A; if a is complex, then a* is also a simple pole and the numerator of its principal
part is A*. Notice that if a =0, A is the final value of r(¢)

Case 2: s = b is a double pole. When s = b is a double root of Q(s) = 0, the corresponding principal part
of R(s) is
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B, B,
(s —b)?

where the constants B, and B; may be found as

B, =lim{(s —b’R()} and B, = yg;){(s ~b) [R(s) s _sz)2:|}
B, may be zero. Similar to Case 1, B; and B, are real if b is real, and these constants for the double pole
b* are the conjugates of those for b.
The principal part at a higher-order pole can be obtained by analogy to Case 2; we shall assume,
however, that R(s) has no such poles. Once the partial-functions expansion of R(s) is known, Table 16-1
can be used to invert each term and thus to obtain the time function r(¢).

EXAMPLE 16.4 Find the time-domain current i(¢) if its Laplace transform is

s—10
I —
®) st +s?
s—10

Factoring the denominator, Is)=————

s’ (s —)(s +.))

we see that the poles of I(s) are s = 0 (double pole) and s = &/ (simple poles).
The principal part at s = 0 is

B, B 1 10
S5 0

2

S S S S
. . s—10
since B, = iLmO [m] =10

s—10 10 . 10s + 1
b ‘lio{ [2(s2+1>+s7“_g‘(%(szﬂ)_1

The principal part at s = 4 is

A 0545
s—j  s—j
s—10
since A =lim =—(0.54+/5
i) =05+

It follows at once that the principal part at s = —; is
0.5—j5
s+

The partial-fractions expansion of l(s) is therefore
I(s) = - — 10——(05+}5)——(05—] )—]

and term-by-term inversion using Table 16-1 gives

(1) =1—=107 = (0.5 + j5)e" — (0.5 — j5)e™ =1 — 10t — (cos t — 10sin7)

Heaviside Expansion Formula
If all poles of R(s) are simple, the partial-fractions expansion and termwise inversion can be accom-
plished in a single step:

,1 P(S) P(ak e
[ (s)] ZQ () @

where a;, a,, ..., a, are the poles and Q’(a;) is dQ(s)/ds evaluated at s = a;.
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16.7 CIRCUITS IN THE s-DOMAIN

In Chapter 8 we introduced and utilized the concept of generalized impedance, admittance, and
transfer functions as functions of the complex frequency s. In this section, we extend the use of the
complex frequency to transform an RLC circuit, containing sources and initial conditions, from the time
domain to the s-domain.

Table 16-2
Time Domain s-Domain s-Domain Voltage Term
i—> R I(s)—> R RI(s)
—% """
i L l(s)-> sL
—_—rrrr— —”"‘——@-— sLI(s) + Li(0")
—i0) Li(©")
is L I(s)—~> sL
NV - _m__.@_ sLI(s) + Li(0")
<i(0") Li(0")
R
"’_.K_C__ i)~ sC i)V,
0
— + _
o) _"*(_@'Z ¢ s
s
1
; I(s)— C
"’__K_E_ ) H 15 ¥
-V K ( ) Vo sc s
s

Table 16-2 exhibits the elements needed to construct the s-domain image of a given time-domain
circuit. The first three lines of the table were in effect developed in Example 16.1. As for the capacitor,
we have, for 7 > 0,

!

1
ve(t) = Vo + C Jo i(r)dt

so that, from Table 16-1,

Ve =101

EXAMPLE 16.5 In the circuit shown in Fig. 16-4(«) an initial current /; is established while the switch is in position
1. Att=0, it is moved to position 2, introducing both a capacitor with initial charge Q, and a constant-voltage
source V.

The s-domain circuit is shown in Fig. 16-4(h). The s-domain equation is

Is) Vo V
) Vo _ Vo

RI LI(s) — Li(0" =
(s) + sLI(s) i( )+SC <C = s

in which ¥, = 0,/C and i(0") =i, = V,/R.
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R L c g 7 7 —/7
" e OO
+ I\~
Q R [ I
sL Li0) 1 Vo
i sC sC
I(s)
) )
T\ \\
\ € A4!
S
(a) (b)
Fig. 16-4

16.8 THE NETWORK FUNCTION AND LAPLACE TRANSFORMS

In Chapter 8 we obtained responses of circuit elements to exponentials ¢, based on which we
introduced the concept of complex frequency and generalized impedance. = We then developed the
network function H(s) as the ratio of input-output amplitudes, or equivalently, the input-output differ-
ential equation, natural and forced responses, and the frequency response.

In the present chapter we used the Laplace transform as an alternative method for solving differ-
ential equations. More importantly, we introduce Laplace transform models of R, L, and C elements
which, contrary to generalized impedances, incorporate initial conditions. The input-output relation-
ship is therefore derived directly in the transform domain.

What is the relationship between the complex frequency and the Laplace transform models? A
short answer is that the generalized impedance is the special case of the Laplace transform model (i.e.,
restricted to zero state), and the network function is the Laplace transform of the unit-impulse response.

EXAMPLE 16.17 Find the current developed in a series RLC circuit in response to the following two voltage
sources applied to it at # = 0: () a unit-step, (b) a unit-impulse.

The inductor and capacitor contain zero energy at t = 0~. Therefore, the Laplace transform of the current is
1(s) = V()Y (s).

(a) V(s) =1/s and the unit-step response is

1 Cs 1 1

I(s) =— > =— 5 >
s LCs + RCs + 1 L (S + g) + a)d

1 .

i(f) = e " sin (wyHu(t)

Lwd
where
R e [(RY_L
7T @ae=\\2L) "Lc

(b) V(s) =1 and the unit-impulse response is

1) 1 s
S)=m———5+——
L(s+0) +a}

i(t) = LLwd e "'[wy cos (wyt) — o sin (wyt)]u(f)

The unit-impulse response may also be found by taking the time-derivative of the unit-step response.

EXAMPLE 16.18 Find the voltage across terminals of a parallel RLC circuit in response to the following two
current sources applied at = 0: () a unit-step, (b) a unit-impulse.

Again, the inductor and capacitor contain zero energy at t = 0~. Therefore, the Laplace transform of the
current is V(s) = 1(s)Z(s).
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(a) I(s) = 1/s and the unit-step response is

1 RLs 1 1
Vis)=- 5 =— 5 >
s RLCs* + Ls+1  C(s+0) +a?
1
v(t) = e~ sin (wyt)u(?)

de

where

(b) I(s) =1 and the unit-impulse response is

1 1
V)= ——5—
(s) C(s+c7)2+a)§

u(t) = CLa)d e "'[wy cos (wyt) — o sin (w,t)]u(f)

Solved Problems

16.1 Find the Laplace transform of e~“ cos wt, where a is a constant.

Applying the defining equation Z[f(¢)] = f(;)o f(H)e™" dt to the given function, we obtain

00

Lle ™ coswl] = J cos wre” St gy
0

(s + a)* + o*
. S+a
T (s+a)’ + &

B |:—(s + a)cos wie ETV 4 o F 60 a)t:|

[CHAP. 16

16.2 If Z[f(1)] = F(s), show that Z[e”* f({)] = F(s + a). Apply this result to Problem 16.1.

By definition, Z[f(¢)] = fé’o f(e ™ dt =F(s). Then,

21 10 = [ e e = J:o S di = F(s + a)

0
Applying (5) to line 6 of Table 16-1 gives

S+ a

Pl coswl] = —————
[ ] (s + a)’ + o*

as determined in Problem 16.1.

16.3 Find the Laplace transform of f(r) = 1 — e~ *, where «a is a constant.

{o0) 00 00
3[1 _ e—tlt] — J (1 _ e—llt)e—st dt — J e—St dt _ J e—(S-HI)f d[
0

0 0
_ |:_l P _'_L e—(s+a)t:|w:l 1

S S+a

0 s_s—i—a:s(s-i-a)

)
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16.4

16.5

Another Method

Find

Using the method of partial fractions,

1L a4, B C
s(s2—a?) s s4a s—ua

and the coefficients are

1 1
C=
s——a 2 s(s+a) —a

Hence, g*l[ ! ] s |: 1/a i| |:1/2a i| |:1/2a :|
s(s* — ) s—a

The corresponding time functions are found in Table 16-1:

1
T 242

1 1
B=
s(s — a)

s=0 a

Another Method
By lines 11 and 14 of Table 16-1,

2 2 o !
l|:1/(s a )i| :J sinh at dr— [coshar] :iz (coshar — 1)
0 @

S

Find

- s+ 1
s(s? +4s+4)

Using the method of partial fractions, we have

S+1 _A Bl Bz
s(s+2° s s+2 (s42)
Then = s+1 :1 B2:S+1 :l
4 S |een 2
2 1
and =(6+2)——= St =—-
25(s+2)7 s=n 4
1 1 _1 1
Hence, | ST | _pifa|p et DA g 2
s(s’> +4s+4) J s+2 (s+2)°

The corresponding time functions are found in Table 16-1:

_ S+1 1 1 2 1 _2
f ! _— | == — — ! — [ !
|:s(s2—|—4s+4)i| 43¢ T

407
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16.6

16.7

THE LAPLACE TRANSFORM METHOD [CHAP. 16

In the series RC circuit of Fig. 16-5, the capacitor has an initial charge 2.5mC. At ¢t =0, the
switch is closed and a constant-voltage source ¥ = 100 V is applied. Use the Laplace transform
method to find the current.

The time-domain equation for the given circuit after the switch is closed is
l rt
Ri(t) +— [Qo + J i(7) d‘t:| =V
c 0
or 10i(1) + : (=25 10*3)+J[ i(t) d 14 (6)
i — (2.5 x i(v)dr| =
50 x 107° 0

Q, is opposite in polarity to the charge which the source will deposit on the capacitor. Taking the Laplace
transform of the terms in (6), we obtain the s-domain equation

-3
101(s) — 2.5x 10 1I(s) _ 100
50 x 107% 50 x 107%s s
15

I8)=——+ 7
or © = Taxi0) @

The time function is now obtained by taking the inverse Laplace transform of (7):

15 3

()= | ———=| =157 (A 8
0= | = 15 @ ®)

/\ ! 2 )
i 00 \ 25 0

- S0V 100 V

100 V

Fig. 16-5 Fig. 16-6

In the RL circuit shown in Fig. 16-6, the switch is in position / long enough to establish steady-
state conditions, and at ¢ = 0 it is switched to position 2. Find the resulting current.

Assume the direction of the current as shown in the diagram. The initial current is then
ip = —50/25 = -2 A.
The time-domain equation is

d

25i+0.01 Ei: 100 )
Taking the Laplace transform of (9),
25I(s) + 0.01sI(s) — 0.01i(0") = 100/s o)
Substituting for i(0%),
25I(s) + 0.01sI(s) + 0.01(2) = 100/s n
and I(s) = 100 0.02 10* 2 2

s(0.01s +25)  0.0Is+25 s(s+2500) s+ 2500
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Applying the method of partial fractions,

10* A B
L N (13)
s(s+2500) s s+ 2500
4 4
with A:L =4 and B:£ — 4
s+ 2500 |,_, S |s——2500
4 4 2 4 6
Th I(s) = — — — - _ 14
e )= T 2500 512500 s 542500 (4
Taking the inverse Laplace transform of (14), we obtain i = 4 — 6¢- 2" (A).
—100z

16.8 In the series RL circuit of Fig. 16-7, an exponential voltage v = 50¢ (V) is applied by closing

the switch at r = 0. Find the resulting current.

The time-domain equation for the given circuit is

. di
Ri+ L = (15)
In the s-domain, (/5) has the form
RI(s) + sLI(s) — Li(0T) = V(s) (16)
Substituting the circuit constants and the transform of the source, V(s) = 50/(s 4+ 100), in (/6),
5 250
101 0.2)I(s) = Is)=——+ ——— 17
©+sONO =00 o 1= 006150 (7

By the Heaviside expansion formula,

1 ol is) _ P(a,) a,t
2= [Q(S)]_n;;Q’(an)e

Here, P(s) = 250, Q(s) = s> + 150s + 5000, Q’(s) = 2s + 150, a; = —100, and a, = —50. Then,

250 _sor _
50 ¢ T

i=27E) = iis(()) ey —5¢71% 45670 (A)

16.9 The series RC circuit of Fig. 16-8 has a sinusoidal voltage source v = 180 sin (20007 + ¢) (V) and
an initial charge on the capacitor Q, = 1.25 mC with polarity as shown. Determine the current if
the switch is closed at a time corresponding to ¢ = 90°.

oo P

TN $ua TN 7N $sa

i

02 H 001 H

Fig. 16-7 Fig. 16-8 Fig. 16-9

The time-domain equation of the circuit is

40i(t) + [(1.25 x 107%) + "r i(7) dr] = 180 cos 2000¢ (18)
Jo

|
25 x 10°°
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16.10

16.11

THE LAPLACE TRANSFORM METHOD [CHAP. 16

The Laplace transform of (/8) gives the s-domain equation

1.25x 107 4 x 10* 180s
401(s) + 25 x 107 %s S I(s)= s +4 x 10°

(19)

4.5¢ 1.25
I(s) = _ 20
or ) = T ax 1096105 s+ 10° (20)

Applying the Heaviside expansion formula to the first term on the right in (20), we have P(s) = 4.5s%,
Q) =5+ 10’ +4x 10°%+4 x 10°, Q'(s) =3 +2x 10’ +4 x 10°, a; = —j2 x 10°, a, =2 x 10°,
and a3 = —10°. Then,

_PER2X10) g, PG2X10) ey, P(=10°)

Q'(=/ x 10%) Q'(j2 x 10%) Q'(~10%

= (1.8 — j0.9)e 710 4 (1.8 4 j0.9)e/>* 10" — 0.35¢710" 1)
— —1.85in20007 + 3.6 cos 20007 — 0.35¢~0"
— 4.025in (20007 + 116.6%) — 0.35¢710 (A)

103 103
e 10’—1.256’ 10°¢

At t =0, the current is given by the instantaneous voltage, consisting of the source voltage and the
charged capacitor voltage, divided by the resistance. Thus,

-3
iy = [180sin90° — 122X 107} [ag 3054
25 % 10

The same result is obtained if we set £t = 0 in (21).

In the series RL circuit of Fig. 16-9, the source is v = 100sin (5007 + ¢) (V). Determine the
resulting current if the switch is closed at a time corresponding to ¢ = 0.

The s-domain equation of a series RL circuit is
RI(s) + sLI(s) — Li(0") = V(s) (22)
The transform of the source with ¢ =0 is

~(100)(500)
VO = 2 5007

Since there is no initial current in the inductance, Li(0") = 0. Substituting the circuit constants into (22),

5% 10* 5% 10°
2 7 or I(s) = = 7
$2+25% 10 (s2 + 25 x 10%)(s + 500)

5I(s) 4+ 0.01sI(s) = (23)

Expanding (23) by partial fractions,

14 1 10
Is) =5 I\ 45 : 2
®) <s +,/500) + <s —j500> tS¥500 24)

The inverse Laplace transform of (24) is

i = 105sin 5007 — 10 cos 5007 + 10e %" = 107 + 14.14 sin (5007 — 45°)  (A)

Rework Problem 16.10 by writing the voltage function as

v = 100" (V) (25)
Now V(s) = 100/(s — j500), and the s-domain equation is
100 10*
SI(S) + 0.0ISI(S) = S—JW or I(S) = m
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Using partial fractions,

Is) = 10 —‘.]10 —10+,10
s —j500 s + 500
and inverting,

i = (10 — j10)e”" 4+ (=10 + j10)e "
= 14.14¢/C% =74 L (210 +j10)e%"  (A) (26)
The actual voltage is the imaginary part of (25); hence the actual current is the imaginary part of (26).

i = 14.14sin (500¢ — 7/4) + 10¢75% (A)

16.12 In the series RLC circuit shown in Fig. 16-10, there is no initial charge on the capacitor. If the
switch is closed at ¢ = 0, determine the resulting current.

The time-domain equation of the given circuit is

R'+Lﬂ+ijl i(D)dt=V (27)
i 27T, i(t)dt =
Because i(07) = 0, the Laplace transform of (27) is
1 V
RI sLI — =1I(s)— 2
(5) +SLIS) + = = 1) 29)
21()+II()+LI()—@ 29
or s sIs) + 555 1) =
Hence, I(s) = 50 >0 (30)

S 2542 GS+H1+)s+1—))
Expanding (30) by partial fractions,

2525
I(S)_(s+1+j) (s+1—))

and the inverse Laplace transform of (37) gives

(€2

i =j25{eT1 — TN = 5067 sins (A)

2Q 50 2H

\O AAA ' YV

) .
I H _W :L 2) |

50 V v Q 2F :SQ

TO.SF

Fig. 16-10 Fig. 16-11

284

16.13 In the two-mesh network of Fig. 16-11, the two loop currents are selected as shown. Write the s-
domain equations in matrix form and construct the corresponding circuit.

Writing the set of equations in the time domain,

9 L si = (32)

1
Sil +§ |:Q() +J i](f)d'[] —+ 512 =V and 1012 =+ 2 d[

t
0

Taking the Laplace transform of (32) to obtain the corresponding s-domain equations,
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9o

51 =
1(s) + s

When this set of s-domain equations is written in matrix form,

[5+(1/25) 5 ][L(S)}i[V(S)—(Qo/ZS)]
5 10 +2s || L(s) | ~ | V(s) + 2i,(0)

+% I,(s) + SL,(s) = V(s) 101,(s) + 2sI,(s) — 2i,(0™") + SI;(s) = V(s)

[CHAP. 16

(33)

the required s-domain circuit can be determined by examination of the Z(s), I(s), and V(s) matrices (see Fig.

16-12).
s 5 20207
=== 12 Ls)
Ii(s)
V(s) 50
Qu/2s

Fig. 16-12 Fig. 16-13

16.14 In the two-mesh network of Fig. 16-13, find the currents which result when the switch is closed.

The time-domain equations for the network are

, diy diy
10i; +0.02 o 0.02 i 100
diy . diy

Taking the Laplace transform of set (34),
(10 + 0.028)I,(s) — 0.02sI,(s) = 100/s (5 + 0.02s),(s) — 0.02sI,(s) = 0

From the second equation in set (35) we find

L(s) = () (ﬁ)

which when substituted into the first equation gives

s +250 10 3.33
L(s) =667 — " | =" >~
1) |:s(s—|— 166.7)] s s+166.7
Inverting (37),
i =10 — 3.33¢7 1967 (A)

Finally, substitute (37) into (36) and obtain

Ly(s) = 6.67< whence i, = 6.67¢7 %7 (A)

s+ 166.7)

16.15 Apply the initial- and final-value theorems in Problem 16.14.

The initial value of i, is given by

e o s+250\7 _
i1(0) = lim [s;(5)] _slin;o[é.667<si+ ee7)|=667A

(39

(35)

(36)

(37)
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16.16

16.17

and the final value is

. . . s+ 250

The initial value of i, is given by
. T T N _
i»H(0") = Slgr;[slz(s)] = Slirgo[6.667 <7s T 166.7)] =6.67 A
and the final value is

. 1 i S
ix(00) = lim[sh,(s)] = },1_{‘?)[6'67 (m)] =0

Examination of Fig. 16-13 verifies each of the preceding initial and final values. At the instant of
closing, the inductance presents an infinite impedance and the currents are i; = i, = 100/(10 4+ 5) = 6.67 A.
Then, in the steady state, the inductance appears as a short circuit; hence, i; = 10 A, i, = 0.

Solve for i; in Problem 16.14 by determining an equivalent circuit in the s-domain.

In the s-domain the 0.02-H inductor has impedance Z(s) = 0.02s. Therefore, the equivalent impedance
of the network as seen from the source is

Z(s) = 10 +

(0.0259)(5) _ | (s +166.7
002s+5 ~\s+250

and the s-domain equivalent circuit is as shown in Fig. 16-14. The current is then

V(s) 100[ s + 250 ]_ [s—}—ZSO}

L =76~ s |15+ 1667 s(s + 166.7)

This expression is identical with (37) of Problem 16.14, and so the same time function #; is obtained.

N 10 .Q

g — .l. A
<
100/s jl(s) 50 V 02F ¢ 40 Q2

Fig. 16-14 Fig. 16-15

LA Ad

In the two-mesh network shown in Fig. 16-15 there is no initial charge on the capacitor. Find the
loop currents /; and i, which result when the switch is closed at t = 0.

The time-domain equations for the circuit are
1 1
0.2 )
The corresponding s-domain equations are

10L,(8) + 53 ! 5 11(8) + 10L,(5) = 0 Sony(s) 4+ 100, () = 22

5 1 1

Solvi Ii(s)=—— I(s) = — ——
oWIng, =706 RO s+0.625
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16.18

16.19
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which invert to

il _ 564).625[ (A) i2 —1— 670.6251 (A)

Referring to Problem 16.17, obtain the equivalent impedance of the s-domain network and
determine the total current and the branch currents using the current-division rule.

The s-domain impedance as seen by the voltage source is

40(1/0.25) _ 80s +50 _ (s + 5/8)

Zs) =1 _
) =104 O T /02s = 8s+1 S+ 1/8

(38)

The equivalent circuit is shown in Fig. 16-16; the resulting current is

V) s+ 1/8
180 =79=>55+57% (39)

Expanding I(s) in partial fractions,

1 4
I(s) = sty E from which  i=1+4¢7% (A)

Now the branch currents I;(s) and I,(s) can be obtained by the current-division rule. Referring to Fig.
16-17, we have

_ _ 5 P T —0.625¢
Il(s)_l(s)<40+l/0.25)_s+5/8 and ii = Se (A)
B 1/0.2s b ) .1 06251
L) = I(S)<40 1 /0.25) =5 sysms  amd b=l-e (A)
o o — —
Lo 1) ll'(s) 1(s)
p
V(s) = 50/s [] Zs) 1/0.2s i: 40 0
Fig. 16-16 Fig. 16-17

In the network of Fig. 16-18 the switch is closed at = 0 and there is no initial charge on either of
the capacitors. Find the resulting current .

~ 100

i I1F e 0SF

50V

Fig. 16-18
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16.20

16.21

16.22

16.23

16.24

The network has an equivalent impedance in the s-domain

(5+1/8)(5+1/0.5s)  1258” 4455 +2

2O =104 0 /s 11/05s —  s(i0s13)

Hence, the current is

V()50 s(10s+3) 4(s+0.3)

I8 =7 =5 (1255 1 455+2) ~ (5+0308)(s + 0.052)

Expanding I(s) in partial fractions,

1/8 31/8 , o1 0308, 31 o0su
s10308 Tsro0s A i=ge tg ¢ @)

I(s) =

Apply the initial- and final-value theorems to the s-domain current of Problem 16.19.
e T T l N 2 S _
i07) = lim[s1(s)] _‘3520[8 s+o08) T iroosz)| =44

1 s 31 K
i(00) = limsI(s)] .;Lmo[s <s+0.308> *3 (s+ 0.052)}
Examination of Fig. 16-18 shows that initially the total circuit resistance is R = 10 + 5(5)/10 = 12.5 €, and

thus, i(07) = 50/12.5 =4 A. Then, in the steady state, both capacitors are charged to 50 V and the current
is zero.

Supplementary Problems

Find the Laplace transform of each of the following functions.
(a) f(r)= At (©) f(H)y=e “sinwt (e) f(t) =coshwt
b)) f()y=te" (d) f(t) =sinhwt (f) f(t)=e “sinhwt

Ans. (a)—e) See Table 16-1
X 1)
) (s +a)* — o?

Find the inverse Laplace transform of each of the following functions.

(@) F(s)= m d) F(s)= m () F(s)= (Sz_jﬁ

® FO=o="p3 () Fis)= %

© FO= g () K=ot

ans. (@) 27—t @) ke (8) 3500821+ gysin 2 — ¢
(b) e —e* (e) e '(cos2t+ 2sin2f)

(¢) 1072 —5¢7" (f) 2¢ *cos3t
A series RL circuit, with R = 10 Q and L = 0.2 H, has a constant voltage V' = 50 V applied at r = 0. Find

the resulting current using the Laplace transform method. Ans. i=5—"5"" (A)

In the series RL circuit of Fig. 16-19, the switch is in position / long enough to establish the steady state and
is switched to position 2 at 1 = 0. Find the current. Ans. i=5""(A)
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16.25

16.26

16.27

16.28

16.29

THE LAPLACE TRANSFORM METHOD [CHAP. 16

50 V
0.2 H

Fig. 16-19

In the circuit shown in Fig. 16-20, switch [ is closed at t = 0 and then, at ¢ = ¢ = 4 ms, switch 2 is opened.
Find the current in the intervals 0 < 7 <" and 7 > ¢'.
Ans. i=2(1—e Y A, i =1.06e"%0= 4 0,667 (A)

N

100 V

1

—-o\c

ﬁ' 10003
)

100 V Ct)

0.1 H

Fig. 16-20 Fig. 16-21

In the series RL circuit shown in Fig. 16-21, the switch is closed on position / at =0 and then, at
t=1t"= 50 ps, it is moved to position 2. Find the current in the intervals 0 <z < ¢  and ¢ > ¢".
Ans. i=0.1(1 —e ) (A), i = 0.06e2%%=") —0.05 (A)

A series RC circuit, with R = 10 Q and C = 4 pF, has an initial charge Q, = 800 pC on the capacitor at the
time the switch is closed, applying a constant-voltage source J = 100 V. Find the resulting current transient
if the charge is (@) of the same polarity as that deposited by the source, and () of the opposite polarity.
Ans. () i=—10e"2100(A), (h) i = 3067210 (A)

A series RC circuit, with R =1 kQ and C = 20 pF, has an initial charge Q, on the capacitor at the time the
switch is closed, applying a constant-voltage source ¥ = 50 V. If the resulting current is i = 0.075¢7>% (A),
find the charge Q, and its polarity.

Ans. 500 pC, opposite polarity to that deposited by source

In the RC circuit shown in Fig. 16-22, the switch is closed on position / at r = 0 and then, at t = ¢ = 7 (the
time constant) is moved to position 2. Find the transient current in the intervals 0 < 7 < t"and t > t'.
Ans. i=0.5¢" (A), i =—.0516e20"1) (A)

G}LF/‘;OO ;:3;1.F

Fig. 16-22 Fig. 16-23
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16.30

16.31

16.32

16.33

16.34

16.35

16.36

16.37

In the circuit of Fig. 16-23, 0y 24300 puC at the time the switch is closed. Find the resulting current
transient. Ans. i=2.5¢"2101(A)

In the circuit shown in Fig. 16-24, the capacitor has an initial charge Q, = 25 uC and the sinusoidal voltage
source is v = 100sin (10007 + ¢) (V). Find the resulting current if the switch is closed at a time correspond-
ing to ¢ =30°.  Ans. i=0.1535¢"*%" 1 0.0484 sin (10007 + 106°) (A)

A series RLC circuit, with R =5 Q, L = 0.1 H, and C = 500 pF, has a constant voltage IV = 10 V applied at
t =0. Find the resulting current. Ans. i=0.72¢">"sin 1397 (A)

3
g 500 O

16, :

Qv 3N 0.5 uF

Fig. 16-24 Fig. 16-25

In the series RLC circuit of Fig. 16-25, the capacitor has an initial charge Q, = 1 mC and the switch is in
position [ long enough to establish the steady state. Find the transient current which results when the
switch is moved from position / to 2 at 1 = 0. Ans. = e P(2c08222t — 0.45sin2221) (A)

A series RLC circuit, with R =5 Q, L = 0.2 H, and C = 1 F has a voltage source v = 10e100 (V) applied at
t=0. Find the resulting current.
Ans. i = —0.666¢"1%% 4+ 0.670¢72*8 — 0.004¢7%% (A)

A series RLC circuit, with R=200, L=0.5H, and C =100 uF has a sinusoidal voltage source
v = 300sin (5007 + ¢) (V). Find the resulting current if the switch is closed at a time corresponding to
$=30°.  Ans. i=0.517¢*4 —0.197¢73% +0.983sin (5007 — 19°) (A)

A series RLC circuit, with R=5Q, L=0.1 H, and C =500 uF has a sinusoidal voltage source
v =100sin250¢ (V). Find the resulting current if the switch is closed at ¢ = 0.
Ans. = e (542 ¢cos 1397 4 1.89 sin 1397) 4 5.65 sin(250¢ — 73.6°) (A)

In the two-mesh network of Fig. 16-26, the currents are selected as shown in the diagram. Write the time-
domain equations, transform them into the corresp(s)nding s-domain equations, and obtain the currents i;
and i,. Ans. i =251 4 ¢ 1) (A), i, = 57107 (A)

10 Q

/,T,\‘/,-z\\

50V 10 Q M

Fig. 16-26
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16.38 For the two-mesh network shown in Fig. 16-27, find the currents #; and i, which result when the switch is
closedat 1=0.  Ans. i; =0.101e7"%% +9.899¢7°%% (A), i) = —5.05¢'% + 5+ 0.05¢7 777 (A)

Fig. 16-27

16.39 In the network shown in Fig. 16-28, the 100-V source passes a continuous current in the first loop while the
switch is open. Find the currents after the switch is closed at ¢t = 0.
Ans. ij = 1.67e7 %7 + 5 (A), i, = 0.555¢ 77" + 5 (A)

16.40 The two-mesh network shown in Fig. 16-29 contains a sinusoidal voltage source v = 100 sin (2007 + ¢) (V).
The switch is closed at an instant when the voltage is increasing at its maximum rate. Find the resulting
mesh currents, with directions as shown in the diagram.

Ans. iy = 3.01e71%% 4 8.965in (2007 — 63.4%) (A), i, = 1.505¢~ % 4 4.48 sin (2007 — 63.4°) (A)

j}} 50 mH 3\

10 Q is
i e
100 V v 10 Q ;: 100

Fig. 16-28 Fig. 16-29

16.41 In the circuit of Fig. 16-30, v(0) = 1.2 V and i(0) = 0.4 A. Find v and i for ¢ > 0.

Ans. v=1.3334e™" —0.1334¢ > 1 > 0
i = 0.66667¢~" —0.2667¢ > 1> 0

A% + ANV +

3Q 3Q

51§1H 29% IF== v il Q1u ig<f> 29% 1IF== v

Fig. 16-30 Fig. 16-31

000/

16.42 In the circuit of Fig. 16-31, i,(¢#) = cos tu(¢). Find v and i.

Ans. v =0.8305cos(t —48.4°),t> 0
i=0.2626cos (1 — 66.8°),1 > 0
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1A <0

16.43 In the circuit of Fig. 16-31, i, = {cost (>0

16.41 and 16.42.

Find v and i for ¢ > 0 and compare with results of Problems

Ans. v=0.6667¢" —0.0185¢72 + (0.8305 cos (r — 48.4°), ¢ > 0
i =0.3332¢"" = 0.0368¢ > +0.2626 cos (f — 66.8°), 1 > 0

16.44 Find capacitor voltage v(¢) in the circuit shown in Fig. 16-32.
Ans. v=20—10.21e"* cos (4.9t 4+ 11.53°),t>0

i (A)

2Q

v +<D i ——0.1F

10

N

Fig. 16-32

16.45 Find inductor current #(¢) in the circuit shown in Fig. 16-32.
Ans. i=10—6.45¢ ¥ cos (4.9t — 39.2°),1 > 0



Fourier Method of
Waveform Analysis

17.1 INTRODUCTION

In the circuits examined previously, the response was obtained for excitations having constant,
sinusoidal, or exponential form. In such cases a single expression described the forcing function for
all time; for instance, v = constant or v = V' sin wt, as shown in Fig. 17-1(a) and (b).

v - — —
\Z

0 t

w/w 27w 3‘rr/w\
0 4 t
eV e 2N
(a) () (c)
Fig. 17-1

Certain periodic waveforms, of which the sawtooth in Fig. 17-1(c) is an example, can be only locally
defined by single functions. Thus, the sawtooth is expressed by f(¢) = (V/T)t in the interval 0 < t < T
and by f(1) = (V/T)(t — T) in the interval T < t < 2T. While such piecemeal expressions describe the
waveform satisfactorily, they do not permit the determination of the circuit response. Now, if a periodic
function can be expressed as the sum of a finite or infinite number of sinusoidal functions, the responses
of linear networks to nonsinusoidal excitations can be determined by applying the superposition
theorem. The Fourier method provides the means for solving this type of problem.

In this chapter we develop tools and conditions for such expansions. Periodic waveforms may be
expressed in the form of Fourier series. Nonperiodic waveforms may be expressed by their Fourier
transforms. However, a piece of a nonperiodic waveform specified over a finite time period may also be
expressed by a Fourier series valid within that time period. Because of this, the Fourier series analysis is
the main concern of this chapter.

420
Copyright 2003, 1997, 1986, 1965 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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17.2 TRIGONOMETRIC FOURIER SERIES

Any periodic waveform—that is, one for which f(¢) = f(¢ + T)—can be expressed by a Fourier series
provided that

(1) If it is discontinuous, there are only a finite number of discontinuities in the period T;
(2) It has a finite average value over the period T
(3) It has a finite number of positive and negative maxima in the period 7.

When these Dirichlet conditions are satisfied, the Fourier series exists and can be written in trigonometric
form:

f() =%ayg+ a coswi + a; cos 2t + a; cos 3wt + - - -
+ by sin wt + b, sin 2wt + by sin 3wt + - - - (1)

The Fourier coefficients, a’s and b’s, are determined for a given waveform by the evaluation
integrals. We obtain the cosine coefficient evaluation integral by multiplying both sides of (/) by
cosnwt and integrating over a full period. The period of the fundamental, 27r/w, is the period of the
series since each term in the series has a frequency which is an integral multiple of the fundamental
frequency.

2n/w 2r/w 27/ w
J f(t)cosnwt dt = J 5 cos nwt dt +J a, coswtcosnwt dt + - - -
0

0 0
21 /w 21/ w
—i—J a, cos” nwtdt+---+J b sin wt cos nwt dt
0 0
27/ w
+ J b, sin 2wt cos nw dt + - - - 2
0

The definite integrals on the right side of (2) are all zero except that involving cos® nwt, which has the
value (w/w)a,. Then

21/ w T
a, =2 J F(t)cos natdi = = J F(tycos 2 4t 3)
T Jo T 0 T

Multiplying (/) by sinnwt and integrating as above results in the sine coefficient evaluation integral.

27/w 2 (T 2
b, =2 J () sinnwt dt = = J F(ysin 22 gr 4)
T Jo T 0 T

An alternate form of the evaluation integrals with the variable ¥ = wt and the corresponding period
27 radians is

2
anzﬂ F(y)cosny dy 3)

0

2
b”=1j F(y)sinny dy ©)

T Jo

where F(y) = f(¥/w). The integrations can be carried out from —7'/2 to T /2, —n to 4+, or over any
other full period that might simplify the calculation. The constant ¢ is obtained from (3) or (5) with
n = 0; however, since %ao is the average value of the function, it can frequently be determined by
inspection of the waveform. The series with coefficients obtained from the above evaluation integrals
converges uniformly to the function at all points of continuity and converges to the mean value at points
of discontinuity.
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EXAMPLE 17.1 Find the Fourier series for the waveform shown in Fig. 17-2.

wt

Fig. 17-2

The waveform is periodic, of period 27/w in ¢ or 2 in wt. It is continuous for 0 < wt < 27 and given therein
by f(¢) = (10/27)wt, with discontinuities at wt = n2w where n =0, 1,2,.... The Dirichlet conditions are satisfied.
The average value of the function is 5, by inspection, and thus, %ao =5. Forn=>0, (5 gives

2

1 (* (10 10 [or . 1
a, =— 5= Jwtcos nwt d(wi) = — | — sinnwt + — cos nwt
7)o \27 2nc | n n 0

10
=537 (cosn2mw —cos0) =0
TN

Thus, the series contains no cosine terms. Using (6), we obtain

1710\ . 10 [ wr 1. 10
b, =— 5= Jwtsinnwt d(wf) = ~— | —— cosnwt + — sinnwt | = ——
7)o \27 2w n n 0 n

Using these sine-term coefficients and the average term, the series is

1 1 1 10 S ;
S = 5—;0 sinwt—%sin2w1—3—g sin 3wt —--- = 5_;0;&11:“)

The sine and cosine terms of like frequency can be combined as a single sine or cosine term with a
phase angle. Two alternate forms of the trigonometric series result.

f(0) =%ap+ 3¢, cos (nwt — 6,) )

and f(0)=3ay+ Z ¢, sin (nwt + ¢,) €))

where ¢, = /a2 + b2, 6, = tan" (b, /a,), and ¢, = tan"'(a,/b,). In (7) and (8), ¢, is the harmonic
amplitude, and the harmonic phase angles are 6, or ¢,.

17.3 EXPONENTIAL FOURIER SERIES

A periodic waveform f(¢) satisfying the Dirichlet conditions can also be written as an exponential
Fourier series, which is a variation of the trigonometric series. The exponential series is

f(y=>" A )

n=—00

To obtain the evaluation integral for the A, coefficients, we multiply (9) on both sides by ¢ 7" and

integrate over the full period:
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2 2 2

J F@Oe ™ d(wt) =+ | A_ye 2 e d(a)t)+J A_ e e d(wr)
0 0 0

2.

T 27
+ | Aje” d(wt) + J A e d(wt) + - - -
0 0

27
+ Anejna)fef/nwt d(a)t) + .. (10)
0

The definite integrals on the right side of (/0) are all zero except f()z " A, d(wt), which has the value 27A,,.
Then
1 27 . 1 T p
M=o | roeaen o A =g | e (1)
27 J, T )y
Just as with the @, and b, evaluation integrals, the limits of integration in (/) may be the endpoints
of any convenient full period and not necessarily 0 to 27t or 0 to 7. Note that, /(¢) being real, A_, = A},
so that only positive n needed to be considered in (/7). Furthermore, we have

a,=2ReA, b,=-2ImA, (12)

EXAMPLE 17.2 Derive the exponential series (9) from the trigonometric series (/).
Replace the sine and cosine terms in (/) by their complex exponential equivalents.
) ejna)t _ e—jna)t ejnwt _|_€—jn(ut
sinnwt = ————— cos nwt =
2j 2
Arranging the exponential terms in order of increasing n from —oo to 400, we obtain the infinite sum (9) where
AO = a0/2 and

A, = %(an —Jjby) A, = %(an +jby) forn=1,2,3,...

EXAMPLE 17.3 Find the exponential Fourier series for the waveform shown in Fig. 17-2. Using the coefficients
of this exponential series, obtain a, and b, of the trigonometric series and compare with Example 17.1.

In the interval 0 < wt < 27 the function is given by f(¢) = (10/2m)wt. By inspection, the average value of the
function is 4y = 5. Substituting f(¢) in (/7), we obtain the coefficients A,,.

1 (> /10 , 10 e 70
A =— — ti‘mmd 1) = —— (—jnwt — 1 =] —
" 2w L (Zﬂ)w ¢ (@) Qn)? [(—jn)2 (=jne )]0 J 2mn

Inserting the coefficients A,, in (/2), the exponential form of the Fourier series for the given waveform is

. 10 _; 10 _; 10 ; 10
f(t)z '-»—j—e_fz"”—j—e_f“”—l—S—l—j—e””t—i—j—e’z“"—i—-o- (13)
47 2w 2 47
The trigonometric series coefficients are, by (12),
10
a,=0 b, =——
n
10 . 10 . 10 .
and so f(H)=5——sinwt — — sin2wt — — sin 3wt — - - -
T 2 3r

which is the same as in Example 17.1.

174 WAVEFORM SYMMETRY

The series obtained in Example 17.1 contained only sine terms in addition to a constant term. Other
waveforms will have only cosine terms; and sometimes only odd harmonics are present in the series,
whether the series contains sine, cosine, or both types of terms. This is the result of certain types of
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symmetry exhibited by the waveform. Knowledge of such symmetry results in reduced calculations in
determining the Fourier series. For this reason the following definitions are important.

1. A function f(x) is said to be even if f(x) = f(—x).
The function f(x) = 2 4+ x> + x* isan example of even functions since the functional values for x and
—x are equal. The cosine is an even function, since it can be expressed as the power series

X2 X4 X6 X8
ataTete

cosx=1-—

The sum or product of two or more even functions is an even function, and with the addition of a
constant the even nature of the function is still preserved.

In Fig. 17-3, the waveforms shown represent even functions of x. They are symmetrical with respect
to the vertical axis, as indicated by the construction in Fig. 17-3(a).

oo 2AVA

O} 0|

(a) ) (c) (d)

Fig. 17-3

2. A function f(x) is said to be odd if f(x) = —f(—x).
The function f(x) = x + x° + x° is an example of odd functions since the values of the function for x
and —x are of opposite sign. The sine is an odd function, since it can be expressed as the power series

’63 5 7 9

. p X X X
SINX = X — +

s T Ty

The sum of two or more odd functions is an odd function, but the addition of a constant removes
the odd nature of the function. The product of two odd functions is an even function.

The waveforms shown in Fig. 17-4 represent odd functions of x. They are symmetrical with respect
to the origin, as indicated by the construction in Fig. 17-4(a).

/\ %7 /] / l/l /l X
—#Jo \\/* / o L// * Qﬂ NS
(a) (c) (a)
O X \ O \ X O T x
(b) (d) )

Fig. 17-4 Fig. 17-5
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3. A periodic function f(x) is said to have half-wave symmetry if f(x) = —f(x + T/2) where T is the
period. Two waveforms with half-wave symmetry are shown in Fig. 17-5.

When the type of symmetry of a waveform is established, the following conclusions are reached. If
the waveform is even, all terms of its Fourier series are cosine terms, including a constant if the wave-
form has a nonzero average value. Hence, there is no need of evaluating the integral for the coefficients
b,,, since no sine terms can be present. If the waveform is odd, the series contains only sine terms. The
wave may be odd only after its average value is subtracted, in which case its Fourier representation will
simply contain that constant and a series of sine terms. If the waveform has half-wave symmetry, only
odd harmonics are present in the series. This series will contain both sine and cosine terms unless the
function is also odd or even. In any case, a, and b, are equal to zero for n=2,4,6,... for any
waveform with half-wave symmetry. Half-wave symmetry, too, may be present only after subtraction
of the average value.

(a) (a)

, A
o MOV

(b) (®)

Fig. 17-6 Fig. 17-7

Certain waveforms can be odd or even, depending upon the location of the vertical axis. The square
wave of Fig. 17-6(a) meets the condition of an even function: f(x) = f(—x). A shift of the vertical axis to
the position shown in Fig. 17-6(b) produces an odd function f(x) = —f(—x). With the vertical axis placed
at any points other than those shown in Fig. 17-6, the square wave is neither even nor odd, and its series
contains both sine and cosine terms. Thus, in the analysis of periodic functions, the vertical axis should be
conveniently chosen to result in either an even or odd function, if the type of waveform makes this possible.

The shifting of the horizontal axis may simplify the series representation of the function. As an
example, the waveform of Fig. 17-7(a) does not meet the requirements of an odd function until the
average value is removed as shown in Fig. 17-7(b). Thus, its series will contain a constant term and only
sine terms.

The preceding symmetry considerations can be used to check the coefficients of the exponential
Fourier series. An even waveform contains only cosine terms in its trigonometric series, and therefore
the exponential Fourier coefficients must be pure real numbers. Similarly, an odd function whose
trigonometric series consists of sine terms has pure imaginary coefficients in its exponential series.

17.5 LINE SPECTRUM

A plot showing each of the harmonic amplitudes in the wave is called the line spectrum. The lines
decrease rapidly for waves with rapidly convergent seriecs. ~Waves with discontinuities, such as the
sawtooth and square wave, have spectra with slowly decreasing amplitudes, since their series have strong
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high harmonics. Their 10th harmonics will often have amplitudes of significant value as compared to
the fundamental. In contrast, the series for waveforms without discontinuities and with a generally
smooth appearance will converge rapidly, and only a few terms are required to generate the wave. Such
rapid convergence will be evident from the line spectrum where the harmonic amplitudes decrease
rapidly, so that any above the 5th or 6th are insignificant.

The harmonic content and the line spectrum of a wave are part of the very nature of that wave and
never change, regardless of the method of analysis. Shifting the origin gives the trigonometric series a
completely different appearance, and the exponential series coefficients also change greatly. However,
the same harmonics always appear in the series, and their amplitudes,

co = S a and ¢, =+ai+b: (n>1) (14)
or Cop = |A0| and Cp = |AI1| + |A—n| = 2|An| (n > 1) (]5)

remain the same. Note that when the exponential form is used, the amplitude of the nth harmonic
combines the contributions of frequencies +nw and —nw.

EXAMPLE 17.4 In Fig. 17-8, the sawtooth wave of Example 17.1 and its line spectrum are shown. Since there
were only sine terms in the trigonometric series, the harmonic amplitudes are given directly by %ao and |b,|. The
same line spectrum is obtained from the exponential Fourier series, (/3).

Cn

11 1
wt 0 1 2 3 4 5 6 n
Fig. 17-8

17.6 WAVEFORM SYNTHESIS

Synthesis is a combination of parts so as to form a whole. Fourier synthesis is the recombination of
the terms of the trigonometric series, usually the first four or five, to produce the original wave. Often it
is only after synthesizing a wave that the student is convinced that the Fourier series does in fact
represent the periodic wave for which it was obtained.

The trigonometric series for the sawtooth wave of Fig. 17-8 is

' 10 . 10 . 10 .
f(t)=5——sinwt — — sin 2wt — — sin 3wt — - - -
b4 2 3

These four terms are plotted and added in Fig. 17-9. Although the result is not a perfect sawtooth wave,
it appears that with more terms included the sketch will more nearly resemble a sawtooth. Since this
wave has discontinuities, its series is not rapidly convergent, and consequently, the synthesis using only
four terms does not produce a very good result. The next term, at the frequency 4w, has amplitude 10/
47, which is certainly significant compared to the fundamental amplitude, 10/. As each term is added
in the synthesis, the irregularities of the resultant are reduced and the approximation to the original wave
is improved. This is what was meant when we said earlier that the series converges to the function at all
points of continuity and to the mean value at points of discontinuity. In Fig. 17-9, at 0 and 2 it is clear
that a value of 5 will remain, since all sine terms are zero at these points. These are the points of
discontinuity; and the value of the function when they are approached from the left is 10, and from the
right 0, with the mean value 5.
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Fig. 17-9

17.7 EFFECTIVE VALUES AND POWER

The effective or rms value of the function

f(t):%ao—f-al coswt + a, cos 2wt + - -+ + by sinwt + by sin 2wt + - - -

is Frms:\/(%ao)2+%a%+%a§+~~-+§b%+%b§+~-:\/cg+§c%+§c§+§c~;+m (16)
where (/4) has been used.

Considering a linear network with an applied voltage which is periodic, we would expect that the
resulting current would contain the same harmonic terms as the voltage, but with harmonic amplitudes
of different relative magnitude, since the impedance varies with nw. It is possible that some harmonics
would not appear in the current; for example, in a pure LC parallel circuit, one of the harmonic
frequencies might coincide with the resonant frequency, making the impedance at that frequency
infinite. In general, we may write

v="Vo+ Y Vysin(t+¢,) and  i=I+ Y I,sin (ot + ) (17)

with corresponding effective values of

VrmS:\/V§+%V12+%V22+~-- and I =\/1§+§15+%1§+--- (18)

The average power P follows from integration of the instantaneous power, which is given by the
product of v and i:

p=uvi= [Vo + 3" ¥, sin (not + ¢>,1)] [10 + 3" I, sin (not + wn)] (19)

Since v and i both have period T, their product must have an integral number of its periods in 7.
(Recall that for a single sine wave of applied voltage, the product vi has a period half that of the voltage
wave.) The average may therefore be calculated over one period of the voltage wave:

T
polt J [Vo+ 3 Vsin ot +¢,)|[ 1y + 3 1, sin (root + v, (20)
0

Examination of the possible terms in the product of the two infinite series shows them to be of the
following types: the product of two constants, the product of a constant and a sine function, the product
of two sine functions of different frequencies, and sine functions squared. After integration, the product
of the two constants is still V/, and the sine functions squared with the limits applied appear as
(V,1,/2) cos (¢, — ¥,); all other products upon integration over the period 7" are zero. Then the average
power is

P=Vyly+1V 1 cosé +3Valcos6, +1V3I5co860; + - - (21)
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where 6, = ¢, — ¥, s the angle on the equivalent impedance of the network at the angular frequency nw,
and V, and I, are the maximum values of the respective sine functions.

In the special case of a single-frequency sinusoidal voltage, Vo=V, =V;=--- =0, and (2])
reduces to the familiar

P= % V] ]1 Cos 01 = eff]eff cosf
Compare Section 10.2. Also, for a dc voltage, V; =V, = V3 =--- =0, and (2]) becomes
P=Wyl,=VI

Thus, (21) is quite general. Note that on the right-hand side there is no term that involves voltage and
current of different frequencies. In regard to power, then, each harmonic acts independently, and

P=Py+P +Py+--

17.8 APPLICATIONS IN CIRCUIT ANALYSIS

It has already been suggested above that we could apply the terms of a voltage series to a linear
network and obtain the corresponding harmonic terms of the current series. This result is obtained by
superposition. Thus we consider each term of the Fourier series representing the voltage as a single
source, as shown in Fig. 17.10. Now the equivalent impedance of the network at each harmonic
frequency nw is used to compute the current at that harmonic. The sum of these individual responses
is the total response i, in series form, to the applied voltage.

EXAMPLE 17.5 A series RL circuit in which R=5Q and L =20 mH (Fig. 17-11) has an applied voltage
v = 100 4 50 sin wt + 25 sin 3wt (V), with w = 500 rad/s. Find the current and the average power.
Compute the equivalent impedance of the circuit at each frequency found in the voltage function. Then obtain
the respective currents.
Atw=0,Z,=R=5Q and
Vo 100

I T o20A
TR 5 0

At = 500 rad/s, Z; = 5+ j(500)(20 x 10) = 5+ /10 = 11.15/63.4° @ and

i = V‘Z“l‘ sin(wt — 0,) = %sin(mt — 63.4%) = 4.48sin(wt — 63.4°)  (A)

At 3w = 1500 rad/s, Z; = 5+ 30 = 30.4/80.54° © and

2
i = 1/327"; sin (3ot — 6;) = %4 sin (3ot — 80.54%) = 0.823 sin (3ot —80.54°)  (A)

The sum of the harmonic currents is the required total response; it is a Fourier series of the type (8).
i =20+ 4.48sin (wt — 63.4°) 4+ 0.823 sin (3wt — 80.54°) (A)

This current has the effective value

I = \/202 +(4.482/2) + (0.8232/2) = v/410.6 = 20.25 A
which results in a power in the 5- resistor of
P =1I%R = (410.6)5 = 2053 W

As a check, we compute the total average power by calculating first the power contributed by each harmonic
and then adding the results.

Atw=0: Py = Voly = 100(20) = 2000 W
At w = 500 rad/s: Py =1V 1 cost; =1(50)(4.48) cos 63.4° = 50.1 W
At 3w = 1500 rad/s: Py =1V;31; cos0; = 1(25)(0.823) cos80.54° = 1.69 W

Then, P =2000+ 50.1 4 1.69 = 2052 W
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as cos 2wt
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b sin 2wt v (D
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Fig. 17-10 Fig. 17-11

Another Method
The Fourier series expression for the voltage across the resistor is

vg = Ri = 100 + 22.4sin (wf — 63.4°) + 4.11 sin Bt — 80.54°) (V)

1 1
and V gett = \/1002 —}-5(22.4)2 %—5(4.11)2 =4/10259 =101.3 V
Then the power delivered by the source is P = V,zgeff/R =(10259)/5 =2052 W.

In Example 17.5 the driving voltage was given as a trigonometric Fourier series in ¢, and the
computations were in the time domain. (The complex impedance was used only as a shortcut; Z,
and 6, could have been obtained directly from R, L, and nw). If, instead, the voltage is represented by an
exponential Fourier series,

+00 )
w(n) =Y Ve
—0Q

then we have to do with a superposition of phasors V,, (rotating counterclockwise if n > 0, clockwise if
n < 0), and so frequency-domain methods are called for. This is illustrated in Example 17.6.

EXAMPLE 17.6 A voltage represented by the triangular wave shown in Fig. 17-12 is applied to a pure capacitor C.

Determine the resulting current.
y\
T wt
- 0 ks
|
}
- Vmax T

Fig. 17-12

-

In the interval —7 < wt <0 the voltage function is v= V. + 27Vha/mot; and for 0 < wt <,
U= Viax — QVmax/m)wt.  Then the coefficients of the exponential series are determined by the evaluation integral

1 ; (" :
Vn = 7J. [Vmax + (2 Vmax/ﬂ)wt]eimwl d(a)t) + 7J. [Vmux - (2 Vmux /n)wt]eimwl d(a)t)
2 i 2w 0

from which V,, = 4V,,,./7*n* for odd n, and V, = 0 for even n.
The phasor current produced by V,, (n odd) is
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V, V)T AV 0C

I, =" = _
"T7, T AneC T

with an implicit time factor ¢/*'. The resultant current is therefore

+00 ) 4V wC +00 e‘/'na)t
i(l) _ Z Ine/nwt :j ma;
=~ T n

—00
where the summation is over odd n only.

The series could be converted to the trigonometric form and then synthesized to show the current waveform.
However, this series is of the same form as the result in Problem 17.8, where the coefficients are A,, = —j(2V /nx) for
odd nonly. The sign here is negative, indicating that our current wave is the negative of the square wave of Problem
17.8 and has a peak value 2V, wC/m.

17.9 FOURIER TRANSFORM OF NONPERIODIC WAVEFORMS

A nonperiod waveform x(7) is said to satisfy the Dirichlet conditions if

(a) x(r) is absolutely integrable, jf;f |x(¢)| dt < oo, and

(b) the number of maxima and minima and the number of discontinuities of x(¢) in every finite
interval is finite.

For such a waveform, we can define the Fourier transform X(f) by

00 .
X(f) = J x(H)e 7 di (22a)
where 1 is the frequency. The above integral is called the Fourier integral. The time function x(¢) is
called the inverse Fourier transform of X(f) and is obtained from it by

(1) = Jw X df (228)

x(t) and X(f) form a Fourier transform pair. Instead of f, the angular velocity w = 2nf may also be
used, in which case, (22a) and (22b) become, respectively,

X(w) = Jm x(H)e 7 dt (23a)
1 *© jwt
and x(1) = ZJ X(w)e’” dw (23b)

EXAMPLE 17.7 Find the Fourier transform of x(¢) = e~ “u(t), a > 0. Plot X(f) for —oo < f < +00.
From (22a), the Fourier transform of x(z) is

1
a+j2nf

(249

00 . .
X(f) = J e e P dr =
0

X(f) is a complex function of a real variable. Its magnitude and phase angle, |X(f)| and /X(f), respectively, shown
in Figs. 17-13(a) and (b), are given by

X(NI = (25a)

1
Ja + 4n’f?

and /X(f) = — tan~'2nf /a) (25b)
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Fig. 17-13

Alternatively, X(f) may be shown by its real and imaginary parts, Re [X(f)] and Im [X(/f)], as in Figs. 17-14(a) and
().

Re[X(f)] = (264)

a* + 4% f?

ImX()] = 2

@+ dr (200)

Im [x(f)]

(@ (&)

Fig. 17-14

EXAMPLE 17.8 Find the Fourier transform of the square pulse

(f) = 1 for — T <t<T
o otherwise

From (22a),

r . 1 oar1T sin2mfT
— J2rft | Syt
X(f) = Jire S = ot [e’ ]77_ o (27)

Because x(7) is even, X(f) is real. The transform pairs are plotted in Figs. 17-15(a) and (b) for T = % .

EXAMPLE 17.9 Find the Fourier transform of x(¢) = ¢“u(—f), a > 0.

1
a—j2nf

0
X(f) = J, e dt = (28)
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Fig. 17-15

EXAMPLE 17.10 Find the inverse Fourier transform of X(f) = 2a/(a2 + 4712]'2), a>0.
By partial fraction expansion we have
1 1
= - + -
a+j2nf  a—j2nf

X(f) (29)

The inverse of each term in (29) may be derived from (24) and (28) so that
x(6) = e u(t) + " u(—) = =" forall 1
See Fig. 17-16.

x(8)

Fig. 17-16

17.10 PROPERTIES OF THE FOURIER TRANSFORM

Some properties of the Fourier transform are listed in Table 17-1. Several commonly used trans-
form pairs are given in Table 17-2.

17.11 CONTINUOUS SPECTRUM

IX(/)I*, as defined in Section 17.9, is called the energy density or the spectrum of the waveform x(¢).
Unlike the periodic functions, the energy content of a nonperiodic waveform x(z) at each frequency is
zero. However, the energy content within a frequency band from f; to f; is
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Table 17-1 Fourier Transform Properties

Time Domain x(f) = Joo X(f)e’*" dt | Frequency Domain X(f) = JOO x(De 7 dy
1. x(1) real X(f)=X"(=/)
2. x(1) even, x(1) = x(—f) X(f)=X(=/)
3. x(¢), odd, x(f) = —x(—1) X()=-X(=N
4. X(1) x(=f)
s, x(0) = [_ X(Ndf X(0) = [_ x(1) dt
1
ol 0 YU = XU Ja)
~ 1 X))
7. ¥(£) = tx(2) Y(H = 2 df
8. W(t) = x(—1) Y(f)=X(=/)
9. W) = x(1 — 1) Y(/) = e X(f)
Table 17-2 Fourier Transform Pairs
x(7) XN
1
1. e u(t),a>0 a+j2nf
2a
2. e a>0 a* + 4722
1
3. te “u(t),a > 0 (a +j27f)?
4. exp(—mz/tz) T exp(—r(f2 r2)
sin 27fT
77f 2T
5. !
L L
T T
= T S I N "/
sin 2mf,t
mt 2
6 1
' 1 L
2o 2fo f
~_""’ %o fo
7. 1 8(f)
8. 8(2) 1
3 = Jo) = 8(/ +./o)
9. sin 27tfyt 2
. 3(f =fo) +3(/ + /o)
10. cos 2mfyt 2

433
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2 5
W=2J ()P df (30)
fi

EXAMPLE 17.11 Find the spectrum of x(¢t) = ¢~ “u(f) — ¢“'u(—t), a > 0, shown in Fig. 17-17.

x(6)

Fig. 17-17

We have x(f) = x;(¢) — x,(¢). Since x,(f) = e~ “u(f) and x,(¢t) = "' u(—1),

i . 1
Xi() = a+2af X=z — j2nf
—j4
Then X(N) =X() = Xa(f) = #;r];”
2,2
from which IX(f ')|2 = L6z f

EXAMPLE 17.12 Find and compare the energy contents W, and W, of y/()=e¢ ' and
¥2(0) = e~ u(t) — e"u(—1), a > 0, within the band 0 to 1 Hz. Let @ = 200.
From Examples 17.10 and 17.11,
4q* 167212
Y C PR — and Y R A—
VNP = VNP =
Within 0 < f < 1 Hz, the spectra and energies may be approximated by
Y (NP ~4/a*> =10"*/Hz and W, =2(107%J =200 )
[Y2(f)* ~ 1077 2 and  W,~0

The preceding results agree with the observation that most of the energy in y,(?) is near the low-frequency region in
contrast to y,(7).

Solved Problems

17.1 Find the trigonometric Fourier series for the square wave shown in Fig. 17-18 and plot the line
spectrum.
In the interval 0 < wt < 7, f(¢) = V; and for m < wt < 2m, f(t) = —V. The average value of the wave is
zero; hence, aq/2 =0. The cosine coefficients are obtained by writing the evaluation integral with the
functions inserted as follows:
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17.2

1% 4V/m

wt

0 T 2 3m

Fig. 17-18 Fig. 17-19

0 b4

1 4 21 v 1 T 1 2
a, =— U V cos nwt d(wt) + J (—=V)cos nwt d(wt)] =— { |:7 sin nwt] —|} sin na)t] }
T 7 ||n 0o L .

=0 for all n

Thus, the series contains no cosine terms. Proceeding with the evaluation integral for the sine terms,
27

b, = % U V sin nwt d(wt) + J

0 T

A [aeona] o] |
= — ——cosnwt | +|— cosnwt
T n o Ln .

V 2V
= —(—cosnm + cos0 + cosn2mw — cosnm) = — (1 — cosnr)
n n

(=V)sinnwt d(wt)}

Then b, =4V /an forn=1,3,5,..., and b, =0 for n =2,4,6,.... The series for the square wave is
. 4v . 4V . 4V .
f(t) = — sinwt + — sin 3wt + — sin Swt + - - -
b4 3 S

The line spectrum for this series is shown in Fig. 17-19. This series contains only odd-harmonic sine
terms, as could have been anticipated by examination of the waveform for symmetry. Since the wave in Fig.
17-18 is odd, its series contains only sine terms; and since it also has half-wave symmetry, only odd
harmonics are present.

Find the trigonometric Fourier series for the triangular wave shown in Fig. 17-20 and plot the line
spectrum.

The wave is an even function, since f(¢) = f(—1), and if its average value, V'/2, is subtracted, it also has
half-wave symmetry, that is, /(1) = —f(t + 7). For —w < wt <0, f(t) = V + (V/m)wt; and for 0 < wt < 7,
f(t)=V —(V/m)wt. Since even waveforms have only cosine terms, all b, =0. Forn>1,

0 T
a, = lj [V + (V /m)wt] cos nwt d(wt) + lj [V — (V /m)wt] cos nwt d(wt)
T)_x T Jo

T 0 T
= 4 U cos nwt d(wt) + J d cos nwt d(wt) — J ot cos nwt d(wt)]
) s bid 0o

-7
V 1 ot . 0 1 ot . i
=— 1| cosnwt + — sinnwt | —|— cosnwt +— sinnwt
7 | |n T . Ln n 0
V 2V
= ——[cos 0 — cos(—nm) — cos nw + cos 0] = —— (1 — cos nx)
TN °n

As predicted from half-wave symmetry, the series contains only odd terms, since a, = 0 for n = 2,4,6, ... .
Forn=1,3,5,...,a,= 4V/rr2n2. Then the required Fourier series is

f(@ V+4V cos wt + 4V cos 3wt + cos Swt +
2 - (3m)’ (5m)°
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The coefficients decrease as 1/n%, and thus the series converges more rapidly than that of Problem 17.1. This
fact is evident from the line spectrum shown in Fig. 17-21.

c’l
VA
v
f | Y T Y wt ? T ! T 4 T T T n
w0 . 22 3 01 23 4 5 6 7 8
Fig. 17-20 Fig. 17-21

17.3  Find the trigonometric Fourier series for the sawtooth wave shown in Fig. 17-22 and plot the line
spectrum.

By inspection, the waveform is odd (and therefore has average value zero). Consequently the series will
contain only sine terms. A single expression, f(f) = (V/m)wt, describes the wave over the period from —n to
+7, and we will use these limits on our evaluation integral for b,.

1

i . Vil . t i 2V
b, = —J (V /m)wt sin nwt d(wt) = — [—2 sinnwt — 2L cos na)t] = —— (cosnm)
) | n n . nm

As cosnm is +1 for even n and —1 for odd n, the signs of the coefficients alternate. The required series is
2V . 1 L Lo
J() = — {sinwt — 5 sin 2wt + 5 sin 3wt — 5 sindwt + - - -}
b4
The coefficients decrease as 1/n, and thus the series converges slowly, as shown by the spectrum in Fig. 17-23.

Except for the shift in the origin and the average term, this waveform is the same as in Fig. 17-8; compare the
two spectra.

Cn

2Vim

Fig. 17-22 Fig. 17-23

17.4 Find the trigonometric Fourier series for the waveform shown in Fig. 17-24 and sketch the line
spectrum.

In the interval 0 < wt < 7, f(¢) = (V/m)wt; and for w < wt < 27, f(t) = 0. By inspection, the average
value of the wave is /4. Since the wave is neither even nor odd, the series will contain both sine and cosine
terms. For n > 0, we have

(" VIl ‘. v
a, = ;J (V /m)wt cos nwt d(wt) = — |:— cos nwt + % sin na)l:| = (cosnm — 1)
0 T

n? o Tn?
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When 7 is even, cosnr — 1 =0 and @, = 0. When n is odd, a, = —2V/(z*n*). The b, coefficients are
1 (" . Vil . t T vV V
b, = fj (V/m)wt sin nwt d(wt) = — |:—2 sinnot — 2L cos nwl:| = —— (cosnm) = (—=1)" —
7 Jo 7 | n n 0 n n
Then the required Fourier series is
Vo2rv 2V 2V
SO = —— coswt — —— cos 3wt — —— cosSwi — - -
4 7 (3m) (57m)

V. V. V.
+ — sinwt — — sin 2wt + — sin 3wt — - - -
bid 27 3

Cn

L

lllllll n
0 345 6 78 9

Fig. 17-24 Fig. 17-25

—
N

The even-harmonic amplitudes are given directly by |b,], since there are no even-harmonic cosine terms.
However, the odd-harmonic amplitudes must be computed using ¢, = /a2 + b2. Thus,

¢ = \/(21//;12)2 +(V/m)P = V(0377) ¢ =V(0.109)  ¢5 = V(0.064)

The line spectrum is shown in Fig. 17-25.

17.5 Find the trigonometric Fourier series for the half-wave-rectified sine wave shown in Fig. 17-26
and sketch the line spectrum.

The wave shows no symmetry, and we therefore expect the series to contain both sine and cosine terms.
Since the average value is not obtainable by inspection, we evaluate a, for use in the term a,/2.

| O V 2V
ay = fj V sinwt d(wt) = — [~ coswi]j = —
T J)o b b
Next we determine a,,:

1 T
a, =— J V' sin wt cos nwt d(wt)

T Jo
V [ —nsin wt sin nwt — cos nwt cos wt |

=— 5 = 5 (cosnm + 1)
T —n*+1 o n(l—n%)

With n even, a, = 2V /a(1 —n?); and with n odd, a, =0. However, this expression is indeterminate for
n =1, and therefore we must integrate separately for «.

T

| V .
a; = ;L V sin wt cos wt d(wt) = ;L 1sin 20t d(wf) = 0

Now we evaluate b,,:

b

b, =

1 J” V |:n sin wt cos nwt — sin nwt cos wz}
0

V' sin wt sin nwt d(wt) = — 5
T Jo b4 —n-+1



438 FOURIER METHOD OF WAVEFORM ANALYSIS [CHAP. 17

Here again the expression is indeterminate for n = 1, and b, is evaluated separately.

L[ in 200"
m:fJVﬁﬁwM@O:Kfﬂ—ng v
T Jo T 2 4

0 2

Then the required Fourier series is

V T 2 2 2
() =— (142 sinwr — = cos 2wt — — cos 4ot — — f— e
f( n( +2s1nwt 3cos wt G cos4w 5 cos 6w )

The spectrum, Fig. 17-27, shows the strong fundamental term in the series and the rapidly decreasing
amplitudes of the higher harmonics.

Cn

!
v-

V/mr

wl

>+
~J

5

<

N
[RY
Lo

Fig. 17-26 Fig. 17-27

17.6 Find the trigonometric Fourier series for the half-wave-rectified sine wave shown in Fig. 17-28,
where the vertical axis is shifted from its position in Fig. 17-26.

The function is described in the interval —m < wt < 0 by f(f) = —V sinwt. The average value is the
same as that in Problem 17.5, that is, %ao = V/n. For the coefficients a,, we have

1(°

a, =—| (=Vsinwt)cosnwtd(wt) = ————= (1 + cosnm)
) o n(l —n7)
wt
-7 0 | T 2w

Fig. 17-28
For n even, a, = 2V /7(1 — n?); and for n odd, a, = 0, except that n = 1 must be examined separately.
1(° .
a = ;J (=V sinwt)coswt d(wt) =0

For the coefficients b,, we obtain

0
b, = %J (—V sin wt) sin nwt d(wt) = 0

n

except for n = 1.
1(° , v
m:—‘(—mmﬁwmwnz——
) 2
Thus, the series is

V g 2 2 2
O=—(1-=si - 2wt — — 4ot — — .
f(@ n( 251nwt 3cos wt 15 cos 4wt 35 cos bwt )
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This series is identical to that of Problem 17.5, except for the fundamental term, which has a negative
coefficient in this series. The spectrum would obviously be identical to that of Fig. 17-27.

Another Method
When the sine wave V sin wt is subtracted from the graph of Fig. 17.26, the graph of Fig. 17-28 results.

17.7 Obtain the trigonometric Fourier series for the repeating rectangular pulse shown in Fig. 17-29
and plot the line spectrum.

Cn
Vi 4
1% 1
&V
JU i T wt 1 T 3 T ! T ! l ! Il ! n
- 76 | m/6 - 2 01 2 3 4 5 6 7 & 9 1011
Fig. 17-29 Fig. 17-30

With the vertical axis positioned as shown, the wave is even and the series will contain only cosine terms
and a constant term. In the period from —m to 4+ used for the evaluation integrals, the function is zero
except from —m/6 to +/6.

1 (/6 v 1 (/6 2V .
ay = _J Vd(wt) == a, = —J V cos nwt d(wt) = — sin m
) s 3 ) a6 nmw 6

Since sinnw/6 = 1/2, «/§/2, 1, \/5/2, 1/2,0,—1/2,...forn=1,2,3,4,5,6,7, ..., respectively, the series is

2V |1 1 1 1
f = K + 71/ |:— cos wt + £ (—) cos 2wt + 1 (5) cos 3wt + ? (Z) cosdwt

6 2 2 \2
1/1 1/1
+§(§>cos5wt—§<7>cos7wt—~~-:|
Vo2&l
or f() = 3 + - Z p sin (nr/6) cos nwt

n=I1

The line spectrum, shown in Fig. 17-30, decreases very slowly for this wave, since the series converges
very slowly to the function. Of particular interest is the fact that the 8th, 9th, and 10th harmonic
amplitudes exceed the 7th. With the simple waves considered previously, the higher-harmonic amplitudes
were progressively lower.

17.8 Find the exponential Fourier series for the square wave shown in Figs. 17-18 and 17-31, and
sketch the line spectrum. Obtain the trigonometric series coefficients from those of the expo-
nential series and compare with Problem 17.1.

In the interval —7 < wt < 0, f(t) = —V; and for 0 < wt < 7, f(t) = V. The wave is odd; therefore,
Ay = 0 and the A, will be pure imaginaries.

1

0 . T N
A= U_n(— e ™" d(wt) + JO Ve ! d(wt)]

_ K _|: 1 e/'mu[:|0 +|:L ef_/'n(ut:|ﬂ
2| L) = L=m) 0

V . . | 280
— : (_eO + e/mr + e—]nn _ eO) :j s (e/nn _ ])
—j2mn nrw
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For n even, ¢ = +1 and A, = 0; for n odd, ¢/™ = —1 and A, = —j(2V /n7) (half-wave symmetry). The
required Fourier series is

2V
/ 37 ¢
The graph in Fig. 17-32 shows amplitudes for both positive and negative frequencies. Combining the
values at +»n and —n yields the same line spectrum as plotted in Fig. 17-19.

2V . 2V . 2V . .
H=--- e K 10)) . —jot _ - =7 jot ot .
U] tizoe™ 4] e

—e
3n T

lA'I'
\%
2v
i
wt
0 - 27 3
- v ————— ! T l T 1 T T T T 1 n
-5-4-3-2-10 1 2 3 4 5
Fig. 17-31 Fig. 71-32
The trigonometric-series cosine coefficients are
a,=2ReA, =0
4V
and b,=-2ImA, = po for odd n only

These agree with the coefficients obtained in Problem 17.1.

17.9 Find the exponential Fourier series for the triangular wave shown in Figs. 17-20 and 17-33 and
sketch the line spectrum.

In the interval —7 < wt < 0, f(t) = V + (V/7)wt; and for 0 < wt < 7, f(t) =V — (V/7)wt. The wave
is even and therefore the A, coefficients will be pure real. By inspection the average value is /2.

0 T
A, = RS H [V + (V/m)wtle ™ d(wt) + j [V — (V /m)wtle™" d(a)z)}
2 -7 0

0 T
. U wte ™" d(wh) + J (—wn)e ™ d(wr) + J
2 —7 0 -

1% ef/'nwl ) 0 efjmut ) i 1% o
=5 { [W (—jnwt — 1):| _[(—jn)2 (—jnwt — 1)]0} = (1 —¢e")

e g (a)t)]

For even n, ¢ = +1 and A, = 0; for odd n, A, = 2V /7*n*. Thus the series is

2V e 2V s V2V 2V
H=--+ R e Sy e A
o (=37)° (—n)? 2 (@ (3n)?
The harmonic amplitudes
vV _ 0 n=2,4,6,...)
=75 =2l {4V/rr2n2 (n=1.3.5...)

are exactly as plotted in Fig. 17-21.
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{ \'4
\%
f ! Y T Y w!
- 0 w 27 3 0 " > 3 wl
Fig. 17-33 Fig. 17-34
17.10 Find the exponential Fourier series for the half-wave rectified sine wave shown in Figs. 17-26 and
17-34, and sketch the line spectrum.
In the interval 0 < wt < 7, f(f) = Vsinwt; and from = to 2m, f(f) = 0. Then
(™ . i
A, = —J V sin wt e " d(wt)
T Jo
Vv —jnwt o i V(e—jlm_'_ 1)
== |—— (mjnsinwt —coswt) | = —————=
2 | (1 — n?) o 2n(1 —n%)
For even n, A, = V/x(1 — n?); for odd n, A, =0. However, for n= 1, the expression for A, becomes
indeterminate. L’Hopital’s rule may be applied; in other words, the numerator and denominator are
separately differentiated with respect to n, after which n is allowed to approach 1, with the result that
Ay =—j(V/4).
The average value is
L. 4 T ¥V
Ay = ZL V sin wt d(wt) = 7 [ - coswt]o =
Then the exponential Fourier series is
V —jdwt V—'21 ‘V—'t V ~V'/ V'2t V jdwt
D= ot _ T 20 Voot VYV et YV et Y jder
S 157 we T T T 157 °
The harmonic amplitudes,
v W am* —1) (n=2,4,6,..)
G=dy=— =2A,0=1V)2 (n=1)
0 n=3,57,..)
are exactly as plotted in Fig. 17-27.
17.11 Find the average power in a resistance R = 10 €2, if the current in Fourier series form is

i = 10sin wt + 5sin 3wt + 2 sin Swt (A).

The current has an effective value Iy = \/%(10)2 + %(5)2 + %(2)2 =4/64.5=8.03 A. Then the average
power is P = IR = (64.5)10 = 645 W.

Another Method
The total power is the sum of the harmonic powers, which are given by %Vmaxlmax cos6. But the
voltage across the resistor and the current are in phase for all harmonics, and 6, = 0. Then,

vr = Ri = 100 sin wt + 50 sin 3wt + 20 sin Swt
and P = 1(100)(10) +1(50)(5) + 1 (20)(2) = 645 W.

17.12 Find the average power supplied to a network if the applied voltage and resulting current are

v=50+50sin5 x 10’7 + 30sin 10*s + 20sin 2 x 10%7 (V)
i=11.2sin(5 x 10°7 + 63.4°) + 10.6sin (10* + 45°) + 8.97sin (2 x 10*1 +26.6°) (A)
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17.13

17.14
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The total average power is the sum of the harmonic powers:

P = (50)(0) + 1(50)(11.2) cos 63.4° + 1 (30)(10.6) cos 45° + 1 (20)(8.97) c0s 26.6° = 317.7 W

Obtain the constants of the two-element series circuit with the applied voltage and resultant
current given in Problem 17.12.

The voltage series contains a constant term 50, but there is no corresponding term in the current series,
thus indicating that one of the elements is a capacitor. Since power is delivered to the circuit, the other
element must be a resistor.

Ig = \/5(11.2)2 +1(10.6 +1(8.97° = 12.6 A

The average power is P = IeszR, from which R = P/Iesz =317.7/159.2 =2 Q.
At w = 10* rad/s, the current leads the voltage by 45°. Hence,
1

1
| = tan4s° = —— C=—1 =5
an oCR (10H2)

0 uF

Therefore, the two-element series circuit consists of a resistor of 2  and a capacitor of 50 pF.

The voltage wave shown in Fig. 17-35 is applied to a series circuit of R =2kQ and L =10 H.
Use the trigonometric Fourier series to obtain the voltage across the resistor. Plot the line
spectra of the applied voltage and vy to show the effect of the inductance on the harmonics.
o = 377 rad/s.

v, V

wt

™ 2

{
I
E]
[=]
N

Fig. 17-35

The applied voltage has average value V., /7, as in Problem 17.5. The wave function is even and
hence the series contains only cosine terms, with coefficients obtained by the following evaluation integral:

1 (/2 600
a, =— 300 cos wt cos nwt d(wt) = ———- cosnn/2 V
T )2 7T(1 —n )

Here, cos nmr/2 has the value —1 forn =2,6, 10, ..., and +1 forn =4,8,12,.... Forn odd, cosnr/2 = 0.
However, for n = 1, the expression is indeterminate and must be evaluated separately.

12 300 [wr | sin2wf]" 3
alz—J 30000s2wtd(wt):ﬂ|:£+sm—w:| _30y
b —n/2 b3 2 4 /2 2
2 2 2
Thus, v:@ 1+Ecosa)z—f—fcos2wt——cos4a)t+—cos6a)t—~-- V)
7 2 3 15 35

In Table 17-3, the total impedance of the series circuit is computed for each harmonic in the voltage
expression. The Fourier coefficients of the current series are the voltage series coefficients divided by the Z,,;
the current terms lag the voltage terms by the phase angles 6,,.
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Table 17-3
n nw, rad/s R, kQ nwl, kQ Z,, kQ 0,
0 0 2 0 2 0°
1 377 2 3.77 4.26 62°
2 754 2 7.54 7.78 75.1°
4 1508 2 15.08 15.2 82.45°
6 2262 2 22.62 22.6 84.92°
300/2
i = —62° A
i 126 cos(wt — 62°) (mA)
600/3
i = 7.;8” cos Qwt —75.1°)  (mA)

Then the current series is

C 300 300 600

= 27 Yo <@ 23
600

 157(15.2)

cos 2wt — 75.1°)

cos (4wt — 82.45°%) + cos (6wt — 84.92°) — ... (mA)

600
357(22.6)
and the voltage across the resistor is

vp = Ri =95.5 4 70.4 cos (wt — 62°) + 16.4 cos Qwt — 75.1°)
— 1.67 cos (4wt — 82.45°) + 0.483 cos (6wt — 84.92°) — - (V)

Figure 17-36 shows clearly how the harmonic amplitudes of the applied voltage have been reduced by
the 10-H series inductance.

cn V Cn V
300/ 300/
s S T n S n
0O 1 2 3 4 5 6 17 01 2 3 4 5 6 7
(a) Spectrum of v (b) Spectrum of vr

Fig. 17-36

17.15 The current in a 10-mH inductance has the waveform shown in Fig. 17-37. Obtain the trigono-
metric series for the voltage across the inductance, given that w = 500 rad/s.

i A
T T 1 wl
- 0 \T/ 2
p— 10 __________
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The derivative of the waveform of Fig. 17-37 is graphed in Fig. 17-38. This is just Fig. 17-18 with
V = —-20/7. Hence, from Problem 17.1,

di 80 . . .
T;ﬂ): -3 (smwt-i—% sm3wt+% sinSwt+---) (A)
di 400 . . .
and so v, = Lo b ’[) =—— (sinwi +1sin3wr + L sinSwr4--1) (V)
w b3
di
d(wty
—L wt
o 0 ” 27
-20/m
Fig. 17-38

Supplementary Problems

17.16 Synthesize the waveform for which the trigonometric Fourier series is

8V . . . .
§10)! =— {sinwr — 1 sin 3wt + 5 sin Swt — & sin Twt + - -}

17.17 Synthesize the waveform if its Fourier series is

40
fH=5 -2 (cos ot + § cos 3wt + 55 oS 5wt + -« -)

20 . . . .
+ = (sinwt — § sin 2wt + § sin 3wt — § sindot + - - )
i
17.18 Synthesize the waveform for the given Fourier series.

I 1 1 1 1 1
f) = V(E_; cos wt i cos2wt+g cos 3wt ~T5n cos4wt—a cos 6wt + - - -

+lsint 2sin2 t+4 sin 4wt
e T T

17.19 Find the trigonometric Fourier series for the sawtooth wave shown in Fig. 17-39 and plot the line spectrum.
Compare with Example 17.1.

. VoV . . .
Ans. f(t) = 3+; (sin wt —l—% sin 2wt +% sin 3wt + - - )
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\%
Y /\
~ wt
- 0 [ lV}ﬂ
wt

Fig. 17-39 Fig. 17-40

0 RE A7 6

17.20 Find the trigonometric Fourier series for the sawtooth wave shown in Fig. 17-40 and plot the spectrum.
Compare with the result of Problem 17.3.

-2V
b4

Ans. f(t) = {sinwt + % sin 2wt + % sin 3wt + % sindwt + - - -}

17.21 Find the trigonometric Fourier series for the waveform shown in Fig. 17-41 and plot the line spectrum.

. 4V 2V . . .
Ans. f()=— {coswt—l—é cos3wt+% cosSwt + -+ -} —— {smwl—l—% s1n3wt+% sin Swt + - - -}
T T

1 —

wt

Fig. 17-41 Fig. 17-42

17.22 Find the trigonometric Fourier series of the square wave shown in Fig. 17-42 and plot the line spectrum.
Compare with the result of Problem 17.1.

4v
Ans. f() = — {coswt — 1 cos 3wt + 1 cos 5wt — 4 cos Twt + - - -}

17.23 Find the trigonometric Fourier series for the waveforms shown in Fig. 17-43. Plot the line spectrum of each
and compare.

. 5 & (10, . nm 10 nmw\ .
Ans. (a) f(t)——z—i-Z[—(sm E)cosna)t—i—E(l—cos E) smnwl:|

50 &[10/ . n5w 10 nsm\ .
(b) f(t):z—l—Z[n—(sm T)cosna)t—i—E(l—cos T) smna)t:|

10 |—| 10
1
T

’ w! wlt
Ol w12 2

0 57/3 2m 4

(a) (b)
Fig. 17-43

17.24 Find the trigonometric Fourier series for the half-wave-rectified sine wave shown in Fig. 17-44 and plot the
line spectrum. Compare the answer with the results of Problems 17.5 and 17.6.

i 14 2 2 2
Ans.  f(?) :;(1 —l—g coswt—l—g cos2wt—ﬁ cos4wt+§ Cos6wt—--~)
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w!t

wt T T
e O 4 g 2w 0] ™ 27

Fig. 17-44 Fig. 17-45

17.25 Find the trigonometric Fourier series for the full-wave-rectified sine wave shown in Fig. 17-45 and plot the
spectrum.

Ans. f(t)=— (1 —|— cos 2wt — 1z cos 4wt + 5 COs 6wt — - - -)

17.26 The waveform in Fig. 17-46 is that of Fig. 17-45 with the origin shifted. Find the Fourier series and show
that the two spectra are identical.

Ans. f(t) =— (1 —£ cos 2wt — 15 cos 4wt — 35 cos bwt — - - -)
|
v v
wl wt
° 7 oo ol ln a 2 3
Fig. 17-46 Fig. 1747

17.27 Find the trigonometric Fourier series for the waveform shown in Fig. 17-47.

. V
Ans. f(t) = o coswt + Z (1 (cosnrr—i—nsm nm/2) cos nwt

V 2] .
_ sm wt + Z [ };(ICO_S:;;/ ] sin nwt

17.28 Find the trigonometric Fourier series for the waveform shown in Fig. 17-48. Add this series termwise to
that of Problem 17.27, and compare the sum with the series obtained in Problem 17.5.

V X, V(nsinnm/2 — 1) V. 2\ nVcosnm/2 .
Ans. t_— +— cos wt = cosnwt+— sinwt ——— L sinnwt
ns. SO =550 ‘”+Z 2 —1) nottyg “’+Z (=) e
n=2 n=2
v v
T f wt wl
0 3 T 2w 0 L 2m 3

Fig. 17-48 Fig. 17-49
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17.29

17.30

17.31

17.32

17.33

Find the exponential Fourier series for the waveform shown in Fig. 17-49 and plot the line spectrum.
Convert the coefficients obtained here into the trigonometric series coefficients, write the trigonometric
series, and compare it with the result of Problem 17.4.
1 1 ; 1 ; 1 1 ; 1
Ans. N=1]|... s oY Bet 2 Y —Pot [ S s ) ot -
ns. f() [ +<9n2 ‘]671)8 T4z € 2 1) Th
1 1Y\ 1 1 1Y ;
Y L) ot R O N P DY X1
(nz + 271)6 g (9:12 + 67r>e ]
Find the exponential Fourier series for the waveform shown in Fig. 17-50 and plot the line spectrum.
1 1 1 1 1 ; 1
Ans. f(=V]|-. 3ot et (L L e 2
ns. f(t) [ +<92+16) +j4 + n2+]2ne +4
1 1 | 1 1
. jot _ 5 1 2wt J3wt L.
+ (71- J 2:1) T T (97r = 67r) + ]
:i\ V
l\ wt w!
0 ™ 2r k2 0 k4 2n 37
Fig. 17-50 Fig. 17-51
Find the exponential Fourier series for the square wave shown in Fig. 17-51 and plot the line spectrum. Add
the exponential series of Problems 17.29 and 17.30 and compare the sum to the series obtained here.
1 1 1 1 1
Ans. f(l): +] e /3wt+] 770)’-’-*—.].*8/&”—].*6'/3(1”—-'-
37 2 T RY 4
Find the exponential Fourier series for the sawtooth waveform shown in Fig. 17-52 and plot the spectrum.
Convert the coefficients obtained here into the trigonometric series coefficients, write the trigonometric
series, and compare the results with the series obtained in Problem 17.19.
I _; I _; 1 | [
Ans. N=1]|... s —jRwt P —jot i ot s ot
ns. f(1) < tige e Ay e e
/i A / w?
ﬂ' 37
! wt l/
0 i 2 4 [6%.4 - V
Fig. 17-52 Fig. 17-53
Find the exponential Fourier series for the waveform shown in Fig. 17-53 and plot the spectrum. Convert

the trigonometric series coefficients found in Problem 17.20 into exponential series coeflicients and compare
them with the coefficients of the series obtained here.

g 1 —j2w .1 —jo .1 jw 1 200
Ans. f(z):V(--«—]ﬂeﬂ’—];e"+J;e"’+jge’2’+--~>
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17.34 Find the exponential Fourier series for the waveform shown in Fig. 17-54 and plot the spectrum. Convert

the coefficients to trigonometric series coefficients, write the trigonometric series, and compare it with that
obtained in Problem 17.21.

2 1 i 2 1 ; 2 1\ ;
Ans. O=V|--- = —j3wt Il P ()] NI Y 24
ns. f(t) [ + <9ﬂ2 J 37T)e + <n2 J ﬂ)c +<n2 + ﬂ)e
2 1Y
= P PV A101)
* (97{2 + 371)6 + ]

w!

27

—

|
< =
A
3
(1)
Z
»
3
€
=)
3 -

Fig. 17-54 Fig. 17-55

17.35 Find the exponential Fourier series for the square wave shown in Fig. 17-55 and plot the line spectrum.
Convert the trigonometric series coefficients of Problem 17.22 into exponential series coefficients and com-
pare with the coefficients in the result obtained here.

2V . . . . . .
Ans. f(l):7(—|—%€ /Swl_%e /3wl+€ /m/+e/w/_%€ /3w/+%€/5wt_”_)

17.36 Find the exponential Fourier series for the waveform shown in Fig. 17-56 and plot the line spectrum.

2 ; 14 w V ,
Ans. f([) =... +% sin (g)eﬂZ(ut +; sin <%>€ﬁw7 _’_g +; sin (g)e.lwz

V 2 ;

wl

4

T T wl
— /6 /6 m 2w

Fig. 17-56 Fig. 17-57

17.37 Find the exponential Fourier series for the half-wave-rectified sine wave shown in Fig. 17-57. Convert these

coefficients into the trigonometric series coefficients, write the trigonometric series, and compare it with the
result of Problem 17.24.

V ; Voo | |80 Vo |28
Ans. M) =+ ——— ,—Jj4ot 2wt 7ot ot 76"2(“[ _ T Jjdwt .
ns. f(?) 3¢ —|—3”£ —|—4£ +7T+4c +371 52 +

17.38 Find the exponential Fourier series for the full-wave rectified sine wave shown in Fig. 17-58 and plot the line
spectrum.

2V 2V 2V 2V 2V
Ans. f()= - —— e M T e g T T e T

Jhwt .
157 3n T 3n 157 ¢ +
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17.39

17.40

17.41

17.42

17.43

17.44

17.45

w!

0] M 2
Fig. 17-58

Find the effective voltage, effective current, and average power supplied to a passive network if the applied
voltage is v =200+ 100cos (5007 + 30°) + 75cos (15007 + 60°) (V) and the resulting current is
i = 3.53cos(500z 4 75°) + 3.55cos (15007 + 78.45°) (A). Ans. 218.5V, 3.54 A, 250.8 W

A voltage v = 50 4+ 25sin 5007 4+ 10 sin 15007 + 5sin 25007 (V) is applied to the terminals of a passive net-
work and the resulting current is

i=5+2.23sin (5007 — 26.6°) + 0.556 sin (15007 — 56.3°) + 0.186 sin (25007 — 68.2°) (A)
Find the effective voltage, effective current, and the average power. Ans. 53.6V, 5.25A, 276.5W

A three-element series circuit, with R=5€Q, L=5mH, and C =50puF, has an applied voltage
v = 150sin 10007 + 100 sin 20007 + 75 sin 30007 (V). Find the effective current and the average power for
the circuit. Sketch the line spectrum of the voltage and the current, and note the effect of series resonance.
Ans. 16.58 A, 1374 W

A two-element series circuit, with R = 10 Q and L = 20 mH, has current
i = 5sin 1007 + 3 sin 3007 + 2sin 500¢  (A)
Find the effective applied voltage and the average power. Ans. 48V, 190 W

A pure inductance, L = 10 mH, has the triangular current wave shown in Fig. 17-59, where w = 500 rad/s.
Obtain the exponential Fourier series for the voltage across the inductance. Compare the answer with the
result of Problem 17.8.

200

Ans. vy =" (o= jie = e gl i 4 ) (V)

10

T T T T wl
TN T ’ S
104

Fig. 17-59 Fig. 17-60

A pure inductance, L = 10 mH, has an applied voltage with the waveform shown in Fig. 17-60, where
w = 200 rad/s. Obtain the current series in trigonometric form and identify the current waveform.

20 . . . . .
Ans. == (sinwt —§ sin 3wt + 5 sin 5wt — g5 sin Twt + --+)  (A); triangular
= 2
Figure 17-61 shows a full-wave-rectified sine wave representing the voltage applied to the terminals of an

LC series circuit. Use the trigonometric Fourier series to find the voltages across the inductor and the
capacitor.
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Ans.

4V,

vy =—
b/

4V,

Ve =——
T

1
2
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cosdwt — - -+

2wl 4wl
710052wt——100s4w1+...
2wl — — 15| 4L — —
_3< @ ZwC) 5( @ 4wC)
1 1
— T cos 2wt + I
2 2wL — —— 15(4 dol — ——
3( a)C)( 1) ZwC) 5( wC)( 0 4wC>
1
Vm
ol - o wt
Fig. 17-61

17.46 A three-element circuit consists of R =15 in series with a parallel combination of L and C.

w=>500rad/s, X; =2Q, Xc=8Q.
v = 50 + 20 sin 5007 + 10 sin 10007 (V).

[CHAP.

At

Find the total current if the applied voltage is given by

Ans.

i = 10 + 3.53 sin (5007 — 28.1°) (A)



APPENDIX A

Complex Number
System

Al COMPLEX NUMBERS

A complex number z is a number of the form x + jy, where x and y are real numbers and j = +/—1.
We write x = Rez, the real part of z; y = Im z, the imaginary part of z. Two complex numbers are equal
if and only if their real parts are equal and their imaginary parts are equal.

A2 COMPLEX PLANE

A pair of orthogonal axes, with the horizontal axis displaying Re z and the vertical axis jImz,
determine a complex plane in which each complex number is a unique point. Refer to Fig. A-1, on
which six complex numbers are shown. Equivalently, each complex number is represented by a unique
vector from the origin of the complex plane, as illustrated for the complex number zg in Fig. A-1.

. i_ix
jImz — —

L v N
n ¢ /o T \
=6 24 ti3-- P / /8 B \
z=6 - 4R | 2 ! o \
2=2-3 ' : ‘ T — ¢
: Ll t —ay s
2= j4 ! X i 7 A
=34 D H—t+—t —¢ P
z=-3+,2 ~5-4-3-2 -1 01 23 4 5 Reg \ !
15=—4"j4 ‘ T it \ /
2=3+3 ? I \ /
, ]
ql——l"i-‘ 3 \\ //
SR i it
-«——[5 j3X=‘”jX
Fig. A-1 Fig. A-2
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A3 VECTOR OPERATOR j

In addition to the definition of j given in Section Al, it may be viewed as an operator which rotates
any complex number (vector) A 90° in the counterclockwise direction. The case where A is a pure real
number, x, is illustrated in Fig. A-2. The rotation sends A into jx, on the positive imaginary axis.
Continuing, j2 advances A 1800;]'3, 270°; and j4, 360°. Also shown in Fig. A-2 is a complex number B in
the first quadrant, at angle 6. Note that jB is in the second quadrant, at angle 6 + 90°.

A4 OTHER REPRESENTATIONS OF COMPLEX NUMBERS

In Section Al complex numbers were defined in rectangular form. In Fig. A-3, x = rcoso,
y = rsin#, and the complex number z can be written in trigonometric form as

Z = x +jy = r(cos6 + jsin 6)
where r is the modulus or absolute value (the notation r = |z| is common), given by r = /x> + y?, and the

angle 6 = tan~'(y/x) is the argument of z.

Iy

Fig. A-3

Euler’s formula, ¢/’ = cos 6 + j sin 6, permits another representation of a complex number, called the
exponential form:

z=rcosf+jrsinf = re

A third form, widely used in circuit analysis, is the polar or Steinmetz form, z = r/6, where 0 is
usually in degrees.

AS SUM AND DIFFERENCE OF COMPLEX NUMBERS

To add two complex numbers, add the real parts and the imaginary parts separately. To subtract
two complex numbers, subtract the real parts and the imaginary parts separately. From the practical
standpoint, addition and subtraction of complex numbers can be performed conveniently only when
both numbers are in the rectangular form.

EXAMPLE A1 Givenz; =5—j2 and z, = -3 — 8,

21 +2,=(5-3)+/(-2-8=2-/10
2 -2 =(-3-5+j(-8+2)=-8—/6

A6 MULTIPLICATION OF COMPLEX NUMBERS

The product of two complex numbers when both are in exponential form follows directly from the
laws of exponents.

2,2y = (re"")(ry™) = ryrpe/ %
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The polar or Steinmetz product is evident from reference to the exponential form.

212y = (ry /01)(r2 /02) = 1112 /61 + 65

The rectangular product can be found by treating the two complex numbers as binomials.
212y = (x; +y)(x2 +j12) = XX 4 jX 10 +jy1X0 + 70100
= (x1x3 — y1y2) +j(x1y2 + y1x2)
EXAMPLE A2 If z; = 5¢/" and z, = 2¢ 7™, then 2,2, = (5¢/™3)(2¢7™/%) = 10e™/°.

EXAMPLE A3 Ifz, =2/30° and z, = 5/—45°, then 2,2, = (2/30°)(5/—45°) = 10/—15°.

EXAMPLE A4 Ifz, =2+ 3 and z, = —1 — /3, then 2,2, = (2 +j3)(=1 — j3) = 7 — .

A7 DIVISION OF COMPLEX NUMBERS

For two complex numbers in exponential form, the quotient follows directly from the laws of
exponents.

z I’2€j02 )

jo
L_ne T o6

Again, the polar or Steinmetz form of division is evident from reference to the exponential form.

 _n/% _n
===l /g 0
, 1/0,
Division of two complex numbers in the rectangular form is performed by multiplying the numera-
tor and denominator by the conjugate of the denominator (see Section AS).

Zy _ X + Y1 (xz —jy2> _ (X162 + y132) +j(y1X2 — y2X1) _ %1%ty j Y1X2 — YaX)
2 Xpt+jy \X2—j» X3+ 3 X3+ 13 X3+ 3

EXAMPLE A5 Given z; = 4¢/™* and z, = 2¢/™/°,

Z _ 4e~’:”/3 — oI/
7, 20
EXAMPLE A6 Given z; =8/—30° and z, = 2/—60°,
n_8/=300_
z, 2/-60°

EXAMPLE A7 Givenz, =4 —j5and z, =1+,2,

20 4—jS(1—-2\ 6 I3
n 1+2\U—p2) =575

A8 CONJUGATE OF A COMPLEX NUMBER
The conjugate of the complex number z = x + jy is the complex number z* = x — jy. Thus,

z+17"

*

Rez = Imz:z_,Z |z| = v zzZ*
2j




454 COMPLEX NUMBER SYSTEM

In the complex plane, the points z and z* are mirror images in the axis of reals.

In exponential form: z = re’’, z* = re™”.

In polar form: z = r/6, z* = r /—6.

In trigonometric form: z = r(cos 0 + jsin 6), z* = r(cos O — j sin 6).
Conjugation has the following useful properties:

(i @)=z (i) (z,2)" =17iz3
(i) (zy+t2) =72 +75 (iv) C—‘) - Z—‘
2 z,

[APP. A



APPENDIX B

Matrices and
Determinants

Bl SIMULTANEOUS EQUATIONS AND THE CHARACTERISTIC MATRIX

Many engineering systems are described by a set of linearly independent simultaneous equations of
the form

yir=anxy +apx; +ap;xs+--+ayx,
Y2 = an Xy +apnXy +apxs + -+ ayX,

Ym = A1 X1 + AppXo + A3 X3 + - -0 Ay Xy,

where the x; are the independent variables, the y; the dependent variables, and the a; are the coefficients
of the independent variables. The a; may be constants or functions of some parameter.

A more convenient form may be obtained for the above equations by expressing them in matrix
form.

V1 ay dypp dapz ... dpy X1
Ya | _ | a1 dop Gz ... Ay X2
Ym am1 Ay A3 cee Ay Xn

or Y = AX, by a suitable definition of the product AX (see Section B3). Matrix A = [a;] is called the
characteristic matrix of the system; its order or dimension is denoted as

dA)=mxn

where m is the number of rows and # is the number of columns.

B2 TYPES OF MATRICES

Row matrix. A matrix which may contain any number of columns but only one row; d(A) =1 x n.
Also called a row vector.

Column matrix. A matrix which may contain any number of rows but only one column;
d(A) =m x 1. Also called a column vector.

Diagonal matrix. A matrix whose nonzero elements are all on the principal diagonal.

455
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Unit matrix. A diagonal matrix having every diagonal element unity.

Null matrix. A matrix in which every element is zero.

Square matrix. A matrix in which the number of rows is equal to the number of columns;
d(A) =nxn.

Symmetric matrix. Given

aip dip 43 ... Ay
a a a L. a

A= 21 22 23 2n d(A) —mxn
Apy A2 A3 oo gy

the transpose of A is
apn  dzp dz ... Gy
T dip dypp dzp ... dpp T

A" = aiz  dyz  dsz P e d(A ) =nxXxm

Ay oy A3y .. Uy

Thus, the rows of A are the columns of A7, and vice versa. Matrix A is symmetric if A = AT a
symmetric matrix must then be square.
Hermitian matrix. Given

ay dypp a3 ... Ay
a a a ...oa
A= 21 22 23 2n
Ap1 Ay A3 oo gy
the conjugate of A is
* * £ *
ay  dpp a4 ... dyy
* * * *
A = dyy dyp dy ... dy
* * * *
A1 A2 Gz oo o Uy

Matrix A is hermitian if A = (A*)"; that is, a hermitian matrix is a square matrix with real elements on
the main diagonal and complex conjugate elements occupying positions that are mirror images in the
main diagonal. Note that (A*)” = (AT)*.

Nonsingular matrix. An n x n square matrix A is nonsingular (or invertible) if there exists an n X n
square matrix B such that

AB=BA =1

where I is the n x n unit matrix. The matrix B is called the inverse of the nonsingular matrix A, and we
write B=A"'. If A is nonsingular, the matrix equation Y = AX of Section B1 has, for any Y, the
unique solution

X=Aly

B3 MATRIX ARITHMETIC

Addition and Subtraction of Matrices

Two matrices of the same order are conformable for addition or subtraction; two matrices of
different orders cannot be added or subtracted.

The sum (difference) of two m x n matrices, A = [a;] and B = [b;], is the m x n matrix C of which
each element is the sum (difference) of the corresponding elements of A and B. Thus, A £ B = [a; & b;].
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EXAMPLE B1 If

1 4 0 526
A: B:
12 7 3] [o 1 1}

[14+5 442 0+6 6 6 6
then A+B= + + + —
L2+0 7+1 341 2 8 4
[—4 2 -6
A-B=
2.6 2

The transpose of the sum (difference) of two matrices is the sum (difference) of the two transposes:

(A+B)! =AT + BT

Multiplication of Matrices
The product AB, in that order, of a 1 x m matrix A and an m x 1 matrix B is a 1 x 1 matrix
C =[cy;], where
by
b

C=lan an ay ... apl| by
bml
m
= lanbn +anby + ... + a1ubyl Z a1ib

Note that each element of the row matrix is multiplied into the corresponding element of the column
matrix and then the products are summed. Usually, we identify C with the scalar ¢, treating it as an
ordinary number drawn from the number field to which the elements of A and B belong.

The product AB, in that order, of the m x s matrix A = [a;] and the s x n matrix B = [b;] is the
m x n matrix C = [c;], where

S
=y aghy  (i=12...m j=12...n)
k=1

EXAMPLE B2

an b” by ay by +apnby  aybin +apby
= | ayby +anby  aybi + anby
b21 by

ay by + anby  azbiy + apnby,

3 87171, 31, + 5L — 814
2 1 6 12 = 211 +112+613
4 -6 7|4 41, — 6L, + 7L,

5 =318 =2 67 _[5®)+ (=37 5(=2)+(=3)0) 56)+ )] [19 —10 3
4 207 0 97| 4®)+27)  A=2)+20)  46)+20) | T |46 -8 4

Matrix A is conformable to matrix B for multiplication. In other words, the product AB is defined,
only when the number of columns of A is equal to the number of rows of B. Thus, if A is a 3 x 2 matrix
and B is a 2 x 5 matrix, then the product AB is defined, but the product BA is not defined. If D and E
are 3 x 3 matrices, both products DE and ED are defined. However, it is not necessarily true that
DE = ED.

The transpose of the product of two matrices is the product of the two transposes taken in reverse
order:
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(AB)" =BTAT
If A and B are nonsingular matrices of the same dimension, then AB is also nonsingular, with

(AB)"' =B !A™!

Multiplication of a Matrix by a Scalar
The product of a matrix A = [q;] by a scalar k is defined by

kA = Ak = [kay]
that is, each element of A is multiplied by k. Note the properties
k(A +B) = kA + kB k(AB) = (kA)B = A(kB) (kAT = kAT

B4 DETERMINANT OF A SQUARE MATRIX

Attached to any n x n matrix A = [a;] is a certain scalar function of the ay, called the determinant of
A. This number is denoted as

an dypp ... Ay

a a ... a
det A or [A| or Ay or A n

Aayy (20%) B

where the last form puts into evidence the elements of A, upon which the number depends. For
determinants of order n = 1 and n = 2, we have explicitly

ay  dp

layi| = ay;
[25) D)

= dj1dy — dppdy

For larger n, the analogous expressions become very cumbersome, and they are usually avoided by use of
Laplace’s expansion theorem (see below). What is important is that the determinant is defined in such a
way that

det AB = (det A)(det B)
for any two n x n matrices A and B. Two other basic properties are:
detA” =detA  detkA = k" detA
Finally, det A # 0 if and only if A is nonsingular.

EXAMPLE B3 Verify the deteminant multiplication rule for

[ e

a2 97 [ 2 9+4x
AB—[3 2][ 1 n]_[—4 27+2n]

We have

and ‘ 2 AT 07 4 2m)— (9 4 4m)(—d) = 90 + 207
4 2742
1 4
But ‘3 2‘:1(2)—4(3):—10

9‘:—2(7{)—9(1): —9 — 2
g
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and indeed 90 + 20t = (—10)(—=9 — 27).

Laplace’s Expansion Theorem
The minor, My, of the element a; of a determinant of order » is the determinant of order n — 1

>
obtained by deleting the row and column containing a;. The cofactor, Ay, of the element g;; is defined as

i
Ay = (=1 My

Laplace’s theorem states: In the determinant of a square matrix A, multiply each element in the pth
row (column) by the cofactor of the corresponding element in the gth row (column), and sum the
products. Then the result is 0, for p # ¢; and det A, for p = ¢.

It follows at once from Laplace’s theorem that if A has two rows or two columns the same, then
det A = 0 (and A must be a singular matrix).

Matrix Inversion by Determinants; Cramer’s rule
Laplace’s expansion theorem can be exhibited as a matrix multiplication, as follows:

ap ap apn ... ay |[[An Ax Ay ... Ay
ayy ayp Ay ... Ay || A Axn Ap o oo Ap
Ayl Ay Ap3 N Aln A2n A}n s Ann
(A Ay Ay o Ay app ap Az ... dy
A An Ayn o Ap || an an an ... ay
L Aln A2n A3n tee Ann dp1 Ayy Apy .. Oy
[ det A 0 0o ... 0
| 0 deta 0 ... 0
L 0 0 0 ... detA
or A(adjA) = (adjA)A = (det A)I

where adj A = [A;] is the transposed matrix of the cofactors of the g;; in the determinant of A, and I is
the n x n unit matrix.
If A is nonsingular, one may divide through by det A £ 0, and infer that

_ 1 .
A~ ~ detA adjA

This means that the unique solution of the linear system Y = AX is

1
X= jA )Y
(detA adj )

which is Cramer’s rule in matrix form. The ordinary, determinant form is obtained by considering the
rth row (r=1,2,...,n) of the matrix solution. Since the rth row of adj A is

[ Alr AZ}' A3r s Anr]

we have:
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Y1
| by
X, = <m)[ A Ay A, Ayl »s
Vn
= <deltA)(ylA“ + Ay + 1383+ -+ yuAy)
ain o A=y V1 A+ o dag
. <;) ay 0 g1y V2o Gggny o Aoy
det A e e
gy Ape—ly Voo Ape41) 0 A

The last equality may be verified by applying Laplace’s theorem to the rth column of the given deter-
minant.

B5 EIGENVALUES OF A SQUARE MATRIX

For a linear system Y = AX, with n x n characteristic matrix A, it is of particular importance to
investigate the “‘excitations” X that produce a proportionate “response” Y. Thus, letting Y = A X,
where A is a scalar,

AX = AX or AM-AX=0
where O is the n x 1 null matrix. Now, if the matrix AI — A were nonsingular, only the trival solution

X =Y = O would exist. Hence, for a nontrivial solution, the value of A must be such as to make AI — A
a singular matrix; that is, we must have

A— a —dj —aiz ... —dyy,
—a A—a —a e —a
det ()\I _ A) — 21 22 23 2n 0
—dy —dp —dy3 v A— pp

The n roots of this polynomial equation in A are the eigenvalues of matrix A; the corresponding non-
trivial solutions X are known as the eigenvectors of A.

Setting A = 0 in the left side of the above characteristic equation, we see that the constant term in the
equation must be

det (—A) = det[(=1)A] = (—1)"(det A)
Since the coefficient of A" in the equation is obviously unity, the constant term is also equal to (—1)"

times the product of all the roots. The determinant of a square matrix is the product of all its eigenva-
lues—an alternate, and very useful, definition of the determinant.



ABC sequence, 250, 262-263, 266, 270
AC generator, 248, 260
AC power, 219-247
apparent, 226-230
average, 221-223, 224, 236, 245-247
complex, 226-230, 245, 247
energy exchanged between inductor/capacitor,
224-226
instantaneous, 219, 220, 224, 236
maximum power transfer, 233-234, 247
parallel-connected networks, 230-231
power factor improvement, 231-233
quadrature, 223
reactive, 223, 226-231, 243
real, 221-224
in RLC, 223-224
sinusoidal steady state, 220-221
AC wattmeter, 259, 265
Active circuits, 143-145, 175
first-order, 143-145
higher-order, 175
Active elements, 7-8
Active filters, 282-283
Active phase shifter, 145
Admittance, 196, 205, 242, 305
combination of, 197
coupling, 201
diagram, 197
input, 201, 211
in parallel, 197
self-, 201
in series, 197
transfer, 201, 211
Admittance parameters, short-circuit
(see Y-parameters)
Air-core transformers, 340
Ampere, 1, 2
Ampere-hours, 5
Ampere-turn dot rule, 343
Ampere-turns, 343
Amplifiers, 64-100
differential/difference, 75
feedback in, 65-66
integrator/summer, 78-79
leaky integrator, 78

Amplifiers (Cont.):
model of, 64-65
operational (see Op amps)
Analog computes, 80-81
Analysis methods, 37-63 (See also Laws; Theorems)
branch current, 37, 47, 56
determinant, 38-40
Laplace transform, 398-419
matrix/matrices, 38—40, 50-52
mesh (loop) current, 37-38, 42, 48, 56, 58, 62, 63,
198-200, 208
node voltage, 40—42, 57, 59, 61, 62, 201, 209
Apparent power, 226-230
in three-phase system, 259
Attenuator, 31
Autotransformers, 343-344, 354
Average power, 221-224, 236, 245-247, 427

Bandpeass filters, 283-284
Bandwidth, 299-300

Batteries, 5

Branch current method, 37, 47, 56

Capacitance/capacitors, 6, 7, 9, 12, 33, 156, 176177,
214
DC steady state in, 136
discharge in a resistor, 127-128
energy exchange between inductors, 224-226
establishing DC voltage across, 129-130
lossy, 301-302
in parallel, 26, 31
in series, 27, 31
Capacitive reactance, 196
Capacitive susceptance, 196
CBA sequence, 250, 263-264, 270
Center frequency, 283
Centi, 2
Circuit analysis, 362-397
applications, 428430
circuit description, 362, 363
DC analysis, 364-367
using Spice and PSpice, 362-397
Circuits:
analysis methods, 37-63
concepts, 7-23
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Circuits (Cont.):
diagrams of, 12-13
differentiator, 79
elements in parallel, 26-27
elements in series, 25-26
first-order, 127-160
active, 143-145
higher-order, 161-190
active, 175
integrator, 77-78
inverting, 71
laws regarding, 24-36
locus diagram, 290-292
noninverting, 72—73
noninverting integrators, 188
polyphase, 248-272
RC (see RC circuits)
RL (see RL circuits)
RLC (see RLC circuits)
series-parallel conversions, 289
sign convention, 8
sinusoidal (see Sinusoidal circuits; Sinusoidal
steady-state circuits)
summing, 71-72
tank, 291
two-mesh, 167-168, 185
voltage-current relations, 9
Close coupling, 336
Coils, 250, 259, 298, 345
coupled, 336-338, 345-346
energy in a pair of, 338-340
in series, 206
Column matrix, 455
Comparators, 82-83
Complex frequency, 168-169, 178-179, 185
forced response and, 172-173
frequency scaling, 174
impedance of s-domain circuits, 169-170
magnitude scaling, 174
natural response and, 173—-174
network function and, 170172
pole zero plots, 169-172
Complex frequency domain, 398
Complex inversion integral, 398
Complex number system, 451-454
complex plane, 451
conjugate of, 453454
difference of, 452
division of, 452-453
modulus or absolute value, 451
multiplication of, 452—453
rectangular form, 451
representatives of, 451-452
sum of, 452
trigonometric form, 451
vector operator, 451
Complex plane, 451

INDEX

Complex power, 226-230, 245-247
Computers:
analog, 80-81
circuit analysis using, 362-397
PSpice program (see Spice and PSpice)
Schematic Capture program, 362
Spice program (see Spice and PSpice)
Conductance, 1, 215
Conduction, 2
Constant quantities, 4-6
Convergence region, 401
Cosine wave, 119, 421
Coulomb, 1, 2, 3
Coupled coils, 336-338
energy in a pair of, 338-340
Coupling admittance, 201
Coupling coefficient, 335-336
Coupling flux, 335
Cramer’s rule, 39, 459-460
Critically damped, 161, 163, 167, 284
Current, 1, 19, 20, 29
branch, 37, 47, 56, 205, 303
constant, 4
DC, 132
Kirchhoff’s law, 24, 25, 37, 40
load, 252
loop, 37, 49, 57
magnetizing, 340342
mesh, 37, 48, 56, 208, 216
natural, 336-338
Norton equivalent, 45-47
phase, 251-253
phasor, 429
relation to voltage, 9
variable, 4
Current dividers, 28-29, 198, 213

Damped sinusoids, 114
Damping, 161-163
critically damped, 161, 284
circuits in parallel, 167
RLC circuits in series, 162
overdamped, 161, 284
RLC circuits:
in parallel, 165
in series, 162
underdamped, 161, 284
RLC circuits:
in parallel, 166
in series, 162-163
Damping ratio, 284
DC analysis, 364-367
output statements, 367-370
DC current, establishing in an inductor, 132
DC steady state in inductors/capacitors, 136
Delta system, 251
balanced loads, 252-253



Delta system (Cont.):
equivalent wye connections and, 254-255
unbalanced loads, 255
Determinant method, 3840
Diagonal matrix, 455
Differentiator circuit, 79
Diode, 13, 22, 23
forward-biased, 13
reverse-biased, 13
ideal, 22, 23
operating point, 23
terminal characteristic, 23
Direct Laplace transform, 398
Dirichlet condition, 420, 422, 430
Displacement neutral voltage, 257
Dissipation factor, 301
Dot rule, 338, 347-348, 375
ampere-turn, 343
Dynamic resistance, 13

Eigenvalues, 460
Electric charge, 1-3
Electric current, 2-3
Electric potential, 1, 34
Electric power, 4
Electrical units, 1-2, 223
Electrons, 2-3, 5
Elements:

active, 7-8

nonlinear, 36

passive, 7-8
Energy (See also Power)

exchange between inductors and capacitors,

224-226

kinetic, 3

potential, 3

work, 1, 3
Energy density, 432
Euler’s formula, 452
Euler’s identity, 196
Exponential function, 112-114, 132-134

Farad, 1
Faraday’s law, 335, 340
Farads, 9, 364
Feedback in amplifier circuits, 65-66
Femto, 364
Filters, 280282
active, 282-283
bandpass, 283-284
highpass, 144
low-pass, 81, 280
passive, 282-283
scaling frequency response of, 292
First-order circuits, 127-160
active, 143-145
Floating source, 75

INDEX 463

Flux:
coupling, 335
leakage, 336
linkage, 336
mutual, 340
Force, 1, 2
Forced response, 129
network function and, 172-173
Fourier integral, 430
Fourier method, 420-450
analysis using computers, 382
circuit analysis and, 428-430
effective values and power, 427-428
exponential series, 422-423, 439-441, 447448
trigonometric series, 422-423, 434-439, 444-445
waveform symmetry, 423-425
Fourier transform:
inverse, 430, 432
properties of, 432-433
Frequency, 1, 103
center, 283
complex, 168—169
half-power, 278
natural, 187, 284
operating, 289
scaling, 292
Frequency domain, 196, 198
Frequency response, 81, 273-274
computer circuit analysis of, 373-374
half-power, 278
high-pass networks, 274-278
low-pass networks, 274-278
network functions and, 279-280
parallel LC circuits, 287-288
from pole-zero location, 280281
scaling of, 292
series resonance and, 284-286
two-port/two-element networks, 278-279
Frequency scaling, 174

Gain, open loop, 65
Generators:
Ac, 248, 260
three-phase, 249, 250
two-phase, 248
Giga, 2, 364
g-parameters, 317, 320

Half-power frequency, 278
Half-wave symmetry, 425, 435
Harmonics, 117, 425-426, 428-430, 441
Heaviside expansion formula, 403, 409
Henry, 1, 9, 364
Hermitian matrix, 456
Hertz, 1
Higher-order circuits, 161-190

active, 175
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High-pass filter, 144
Homogeneous solution, 127, 129
Horsepower, 6

h-parameters, 316, 320, 328
Hybrid parameters, 316, 320

Ideal transformers, 342-343
Impedance, 179, 204-205, 214, 269-270
combinations of, 197
diagram, 197
input, 200
in parallel, 197, 198
reflected, 344-345
in s-domain, 169—-170
in series, 197, 198
sinusoidal steady-state circuits, 196-198
transfer, 200, 201
Impedance parameters, open-circuit (see Z-parameters)
Impulse function:
sifting property, 112
strength, 111
unit, 110-112
Impulse response:
RC circuits and, 140-142
RL circuits and, 140-142
Inductance/inductors, 1, 7-9, 11, 15, 20
DC steady state in, 136
energy exchange between capacitors, 224-226
establishing DC current in, 132-133
leakage, 340
mutual, 334-335
in parallel, 30, 33
self-, 334-335
in series, 33
Induction motors, 244, 246
Inductive reactance, 329-330
Inductive susceptance, 196-197
Input admittance, 201, 211
Input impedance, 200
Input resistance, 41-42, 57
Instantaneous power, 219-220, 223, 224, 234-235,
248-250
Integrator circuit, 78-79
initial conditions of, 79
leaky, 78-79
noninverting, 188
International System of Units (SI), 1-2
Inverse Fourier transform, 430, 432
Inverse hybrid parameters, 317, 320
Inverse Laplace transform, 398
Inverting circuit, 71
Ions, 2
Iron-core transformer, 340

Joule, 1-4

Kelvin temperature, 1

Kilo, 2, 364

Kilowatt-hour, 5

Kinetic energy, 3

Kirchhoff’s current law (KCL), 24, 25, 37, 40
Kirchhoff’s voltage law (KVL), 24, 38, 401

Lag network, 189

Laplace transform method, 398-419
circuits in s-domain, 404-405
convergence of the integral, 401
direct, 398
final-value theorem, 401-402
Heaviside expansion formula, 403, 409
initial-value theorem, 401402
inverse, 398
network function and, 405
partial-fraction expansion, 402—403
selected transforms, 400

Laplace’s expansion theorem, 459

Laws, 24-36 (See also Theorems)
Kirchhoff’s current, 24, 25, 37, 40
Kirchhoff’s voltage, 24, 38, 401
Lenz’s, 338
Ohm’s, 9, 46

LC circuits, parallel, 288

Lead network, 189

Leakage flux, 336

Leakage inductance, 340

Length, 1

Lenz’s law, 338

Lightning, 22

Line spectrum, 425-426

Linear transformers, 340-342, 353

Lining flux, 336

Load current, 252

Locus diagram, 290-292

Loop current method (see Mesh current/mesh current

method)

Loop currents, 37, 49, 57

Lossy capacitors, 301-302

Low-pass filters, 80, 280

Magnetic flux, 1
Magnetic flux density, 1
Magnetic flux linkage, 336
Magnetizing current, 340-342
Magnitude scaling, 174, 183
Mass, 1
Matrix (matrices), 455-460
adding, 456-457
characteristics, 455
column, 455
diagonal, 455
eigenvalues of square, 460
Hermitian, 456
inversion by determinants, 459
multiplying, 457458
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Matrix (Cont.):
nonsingular, 456
null, 455
row, 455
scalar, 458
simultaneous equations, 455
square, 455, 458—460
subtracting, 456—457
symmetric, 455
types of, 455-456
unit, 455
Z-matrix, 199-200
Matrix method, 38-40, 49-50
Maximum power transfer theorem, 47
Mega, 2, 364
Mesh current/mesh current method, 37, 38, 42-43,
48, 56, 58, 62, 63, 208, 216
sinusoidal circuits and, 198-200
Meter, 1
Methods, analysis (see Analysis methods)
Micro, 2, 364
Milli, 2, 364
Minimum power, 35
Motors:
induction, 244, 246
Mutual flux, 340
Mutual inductance, 334-335
computer circuit analysis of, 375
conductively coupled equivalent circuit and, 329-330
coupled coils and, 336-338
coupling coefficients and, 335-336
dot-rule and, 338

Nano, 2, 364
Natural current, 336-338
Natural frequency, 187, 284
Natural response, 129
network function and, 173-174
Network function, 170-172, 186, 405
forced response, 172-173
frequency response and, 279-280
Laplace transform and, 405
natural response, 173-174
pole zero plots, 171-172
Network reduction, 42, 44
Networks:
conversion between Z- and Y-parameters, 315-316
g-parameters, 317, 320
high-pass, 274-278
h-parameters, 316, 320, 328
lag, 189
lead, 189
low-pass, 274-278
nonreciprocal, 311
parallel-connected, 230-231
parameter choices, 320
passive, 171

Networks (Cont.):
pi-equivalent, 314
reciprocal, 311, 314
T-equivalent, 312
terminals characteristics, 310, 314-315
terminal parameters, 320-321
T-parameters, 317-318, 319, 320
two-mesh, 418
two-port, 310-333
two-port/two-element, 278-279
Y-parameters, 312-314, 319, 320, 324
Z-parameters, 310-312, 318, 320-323, 325
Newton, 1, 2
Newton-meter, 2
Node, 24
principal, 24
simple, 24
Node voltage method, 4042, 51, 57, 59, 61, 62, 209, 210
sinusoidal circuits and, 201
Noninverting circuits, 72-73
Noninverting integrators, 188
Nonlinear element, 36
Nonlinear resistors, 13-14
dynamic resistance, 13
static resistance, 13
Nonperiodic functions, 108—109
Nonreciprocal networks, 311
Nonsingular matrix, 456
Norton equivalent current, 4547, 218
Norton’s theorem, 45-47, 59-60, 212-213, 217, 218
sinusoidal circuits and, 201-202
Null matrix, 455
Number systems, complex (see Complex number
system)

Ohm, 1, 9, 364
Ohm’s law, 9, 46
Op amps, 6669
circuit analysis of, 70-71
circuits containing several, 76-77
computer circuit analysis of, 370-372
voltage follower, 74, 97
Open-loop gain, 65
Operating point, diode, 23
Operational amplifiers (see Op amps)
Overdamping, 161, 162, 165, 284

Partial-fraction expansion, 402-403

Particular solution, 127, 129

Passive elements, 7-8

Passive filters, 282-283

Passive phase shifter, 145

Periodic function, 101-102, 219
average/effective RMS values, 107-108
combination of, 106

Periodic pulse, 102

Periodic tone burst, 102
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Phase angle, 1, 178-179, 192-193, 195 Power factor, 231-232, 238-240
Phase current, 251-253 improving, 231-233
Phase shift, 103-105 in three-phase systems, 259-260
Phase shifter, 145 Power transfer, maximum, 233-234
active, 145 Power triangle, 226-230, 240-241
passive, 145 Primary winding, 340
Phasor voltage, 251 Principal node, 24
Phasors, 194-195 PSpice (see Spice and PSpice)
defining, 194 Pulse, response of first-order circuits to,
diagrams, 195 139-140
equivalent notations of, 195
phase difference of, 193 Quadrature power, 223
voltage, 207 Quality factor, 286287, 297
Pico, 2, 364
Pi-equivalent network, 314 Radian, 1
Plane angle, 1 Random signals, 115-116
Polarity, 8, 29, 250 RC circuits:
instantaneous, 338 complex first-order, 134-135
Pole zero plots (see Zero pole plots) impulse response of, 140-142
Polyphase circuits, 248, 272 in parallel, 122, 290
ABC sequence, 250, 262-263, 266, 270 response:
CBA sequence, 250, 263-264, 270 to exponential excitations, 141-142
CBA or ABC, 272 to pulse, 139-140
delta system, 251 to sinusoidal excitations, 143-145
balanced loads, 252-253 in series, 155-157, 204, 214
equivalent wye connections and, 254-255 step response of, 141-142
unbalanced loads, 255 two-branch, 304
instantaneous power, 248 Reactance, 196
phasor voltages, 251 inductive, 329-330
power measurement with wattmeters, 259—260 Reactive power, 223, 226, 243
three-phase loads, single-line equivalent for, 255 in three-phase systems, 259-260
three-phase power, 258-259 Real power, 221-224
three-phase systems, 249-251 Reciprocal networks, 311
two-phase systems, 248-249 pi-equivalent of, 314
wye system, 251 Reflected impedance, 344-345
balanced loads, 253-254 Resistance/resistors, 1, 9, 10
equivalent delta connections and, 254-255 capacitor discharge in, 127-128
unbalanced four-wire loads, 256 distributed, 7-8
unbalanced three-wire loads, 257-258 dynamic, 13
Potential energy, 3 input, 41-42, 57
Potentiometer, 31 nonlinear, 13-14
Power, 1, 2, 18-19, 21, 84 (See also Energy) in parallel, 26, 28, 30, 32
absorbed, 84 in series, 25, 28
ac, 219-247 static, 13
apparent, 226-230, 259 transfer, 42, 58
average, 221-224, 236, 245-247 Resonance, 283-284, 293-295, 299, 305-306
complex, 226-230, 245, 247 parallel, 287
effective values and, 427428 series, 284-286
electrical, 4 RL circuits:
instantaneous, 219, 220, 224, 236 complex first-order, 134-135
minimum, 35 impulse response of, 140-142
quadrature, 223 response:
reactive, 223, 226-231, 243, 259-260 to exponential excitations, 141-142
real, 221-224 to pulse, 139-140
in sinusoidal steady state, 220-221 to sinusoidal excitations, 143-145
superposition of, 234 in series, 152-153, 156, 291

in three-phase systems, 259-260 source-free, 130-131



RL circuits (Cont.):
step response of, 141-142
two-branch, 304
RLC circuits:
ac power in, 223-224
in parallel, 164-167, 177
critically damped, 167
overdamped, 165
underdamped, 166
natural resonant frequency, 185
quality factor, 297
resonance:
parallel, 287
series, 284-286
scaled element values, 188
s-domain impedance, 170
in series, 161-164, 176-177, 290-292
critically damped, 163
overdamped, 162
underdamped, 164
transient current, 185
transient voltage, 185
Root-mean-square (RMS), 4
average/effective values, 107-108
Row matrix, 455

Saturation, 82, 83
Sawtooth wave, 420, 426, 444
Scalar, 440
Scaling:
frequency, 174, 292
magnitude, 174, 183
s-domain circuits, 185, 404
impedance, 169-170
impedance of RLC circuits, 170
passive networks in, 171
Second, 1
Secondary winding, 340
Self-admittance, 201
Self-inductance, 334-335
Sensitivity, 97
analysis using computers, 382
Siemens, 1
Signals:
nonperiodic, 108-109
periodic, 101-102, 106, 219
random, 115-116
Simple node, 24
Sine wave, 101, 421
Sinusoidal circuits:
Norton’s theorem and, 201-202

steady-state node voltage method and, 201

Thévenin’s theorem and, 201-202
Sinusoidal functions, 103
Sinusoidal steady-state circuits, 191-218
admittance, 196-198
element responses, 191-193

INDEX

Sinusoidal steady-state circuits (Cont.):
impedance, 196-198
mesh current method and, 198-200
phase angle, 192-193
phasors, 193-196

467

voltage/current division in frequency domain, 198

SI units, 1-2

Software (see Computers; Spice and PSpice)

Spice and PSpice, 362-397
ac steady state, 373-374
AC statement, 373
independent sources, 373
PLOT AC statement, 373
PRINT AC statement, 373
data statements:
controlled sources, 366-367
current-controlled sources, 366-367
dependent sources, 366
independent sources, 365
linearly dependent sources, 366
passive elements, 364
scale factors and symbols, 364
voltage-controlled sources, 366-367
DC analysis:
output statements, 367-370
using, 364-367
exponential source, 379
Fourier analysis, 382
frequency response, 373-374
modeling devices, 375-377
mutual inductance, 375
op amp circuit analysis, 370-372
pulse source, 380
sensitivity analysis, 382
sinusoidal source, 380
source file:
control statements, 363
data statements, 363
dissecting, 363
.END statement, 363
output statements, 363
title statement, 363
specifying other sources, 379—382
.SUBCKT statement, 371
Thévenin equivalent, 370
time response, 378-379
transformers, 375
transient analysis, 378-379
s-plane plot, 186
Square matrix, 455, 458-460
Static resistance, 13
Steady state, 127
DC in inductors/capacitors, 136
Steradian, 1
Summing circuit, 71-72
Superposition, 44-45, 60-63, 99
of average powers, 234
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Susceptance, 196
Switching, 87, 148
transition at, 136138
Symmetric matrix, 455
Symmetry:
half-wave, 425, 435
waveforms, 423-425
Synthesis, waveform, 426

Tank circuit, 291
Temperature, kelvin, 1
T-equivalent network, 312
Tera, 2, 364
Terminal characteristics, 310, 314-315
Terminal parameters, 320-321
Tesla, 1
Theorems:
final-value, 401-402
initial-value, 401-402
Laplace’s expansion, 459
maximum power transfer, 47
Norton’s, 45-47, 60-61, 201-202, 212-213, 217
Thévenin’s, 45-47, 53, 60-61, 201-202, 211-213,
217, 370
(See also Laws)
Thévenin equivalent voltage, 45, 218
Thévenin’s theorem, 45-47, 53, 60-61, 211-213, 217,
218, 370
sinusoidal circuits and, 201-202
Three-phase systems (see Polyphase circuits)
Time, 1
Time constant, 112, 132-133
Time domain, 196, 398
Time function, 178-179, 406407
nonperiodic, 101, 108-109
periodic, 101-102, 106
random, 101
Time response:
computer circuit analysis of, 378379
Time shift, 103-105
Tone burst, 121
T-parameters, 317-320
Transducers, 246
Transfer admittance, 201, 211
Transfer function, 186, 298, 370
Transfer impedance, 200, 210
Transfer resistance, 42, 58
Transformer rating, 243
Transformers, 246
air-core, 340
auto-, 343-344, 354
computer circuit analysis of, 375
ideal, 342-343
iron-core, 340
linear, 340-342, 353
reflected impedance of, 344-345

INDEX

Transients, 127
computer circuit analysis of, 378-379
Two-mesh circuits, 167-168, 185
Two-mesh networks, 418
Two-port networks, 278-279, 310-333
cascade connection, 319
converting between Z- and Y-parameters, 315-316
g-parameters, 317, 320
h-parameters, 316, 320, 328
interconnecting, 318-319
parallel connection, 319
series connection, 318
T-equivalent of, 312
terminals and, 310
T-parameters, 317-320
Y-parameters, 312-314, 319, 320, 324
Z-parameters, 310-312, 318, 320-323, 325

Underdamping, 161, 164, 166, 284
Unit delta function, 110-112

Unit impulse function, 110-112
Unit impulse response, 140—142
Unit matrix, 455

Unit step function, 109-110

Unit step response, 140—142

Vector operator, 452
Volt, 1, 3
Voltage, 18
displacement neutral, 257
Kirchhoff’s law, 24, 38, 401
node, 40-42, 51, 57, 59, 201-202, 209, 210
phasor, 251
polarity, 250
relation to current, 9
Thévenin equivalent, 45
Volt-ampere reactive, 223
Voltage dividers, 28, 33, 181, 198, 207, 213, 294
Voltage drop, 24
Voltage followers, 74, 97
Voltage ratio, 293
Voltage sources:
dependent, 7
independent, 7
Voltage transfer function, 181-182, 304

Watt, 1, 2, 4
Wattmeters, 265
power measurement with, 259-260
Waveforms:
analysis using Fourier method, 420450
continuous spectrum of, 432-434
cosine, 421
effective values and power, 427-428
energy density of, 432
line spectrum, 425-426



Waveforms (Cont.):
nonperiodic transforming, 430-431
periodic, 420
sawtooth, 420, 426, 444
sine, 101, 421
symmetry of, 423-425, 435
synthesis of, 426, 444
Weber, 1
Winding, 346-348
primary, 340
secondary, 340
Work energy, 1, 2
Wye system, 251
balanced four-wire loads, 253-254
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Wye system (Cont.):
equivalent delta connections and, 254-255
unbalanced four-wire loads, 256
unbalanced three-wire loads, 257-258

Y-parameters, 312-314, 319, 320, 324
converting between Z-parameters and, 315-316

Zero pole plots, 170-173, 181-182, 186-187
frequency response from, 280-281

Z-matrix, 192193

Z-parameters, 310-312, 318, 320-323, 325
converting between Y-parameters and, 315-316
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