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Preface

We are happy to present this book with contributions from leading researchers
around the world. We were invited to take on this project by Dr. Edmund H.
Immergut, Consulting Editor, who discussed it at the meetings of the German
Physical Society with a number of scientists and the publisher. We thank
Dr. Immergut for the invitation.

In the recent years, there has been a growing interest in the field of thermo-
dynamic properties of solids due to the development of advanced experimental and
modeling tools. Predicting structural phase transitions and thermodynamic proper-
ties find important applications in condensed matter and material science research,
as well as in interdisciplinary research involving geophysics and earth sciences.
Contributed by the experts in their respective fields, each topic of this book aims at
meeting the need of the academic and industrial researchers, graduate students, and
nonspecialists working in these fields. The book covers various experimental and
theoretical techniques relevant to the subject.

The first few chapters give details about the experimental techniques used to
determine the thermodynamic properties of solids at high pressures and tempera-
tures. These include spectroscopic techniques of Raman, infrared, Brillouin, neu-
tron and X-ray scattering, neutron and X-ray diffraction, calorimetry, and so on and
interpretations of the experimental data to understand the thermodynamic behavior
of solids.

The modeling of the thermodynamic properties can be carried out using a
combination of classical and quantum mechanical approaches. Semiempirical
methods are quite successful in spite of their approximate nature. The techni-
ques of lattice dynamics, molecular dynamics simulations, and ab initio quantum
mechanical simulations that play an important role in the modeling are dis-
cussed extensively.

Numerous applications are presented that cover a wide variety of technologically
relevant materials as well as geophysically important minerals. These include, for
example, novel negative thermal expansion materials, ferroelectrics, oxides, sili-
cates, and garnets. The results obtained using a combination of experiments and
theory are analyzed. The theoretical studies enable the planning, analysis, and
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interpretation of various experiments as well as provide fundamental insights into
the origins of observed anomalous properties.
The book is expected to be a useful reference tool for the academic and industrial

researchers and graduate students of physics, chemistry, and material science. We
are grateful to the various authors for their contributions that form the backbone of
this book.
The publishers, Wiley-VCH, especially Anja Tschörtner and her team, have been

very cooperative and understanding, and we are indeed grateful for their untiring
efforts in bringing out the excellent publication.

Solid State Physics Division Samrath L. Chaplot,
Bhabha Atomic Research Centre Ranjan Mittal, and
Trombay, Mumbai 400 085, India Narayani Choudhury
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1
Thermodynamic Properties of Solids: Experiment and
Modeling
Samrath L. Chaplot, Ranjan Mittal, and Narayani Choudhury

1.1
Introduction

While thinking of thermodynamic properties of solids, a wide variety of properties
and phenomena come to mind. Perhaps the most notable are specific heat, phase
transitions, thermal expansion, thermal conductivity, melting, and so on. The
macroscopic thermodynamic properties [1–11] are determined by microscopic
crystalline and electronic structure and atomic vibrations, and these are determined
by the nature of bonding between the atoms. In this book, we focus on the
understanding and modeling of these microscopic and macroscopic properties and
the experimental techniques [12–21] used in their investigation.

The modeling of the structure, dynamics, and various thermodynamic properties
is done either by the first-principles quantum mechanical methods [6, 7] or by the
semiempirical methods [8–11] largely based on models of interatomic interactions.
The former is computationally far more intensive; therefore, its application to
complex structures has been more recent and somewhat limited because of the
available computational resources. The latter has been more widely used. Both of
these techniques are extensively covered in this book.

On the experimental side, a variety ofmicroscopic andmacroscopic techniques are
in use. The visible light, infrared and X-ray photons, and thermal neutrons are most
widely used microscopic probes. These spectroscopic techniques [12–17] generate a
rich amount of complex data of all kinds of vibrationalmodes of various polarizations
and symmetry. Theoretical lattice dynamical calculations [7–10] are necessary for
optimal planning of the experiments and for the microscopic interpretation of
complex experimental data. Macroscopic measurements of specific heat [18] and
thermal expansion [19, 20] and use of high-pressure, high-temperature devices [21]
are also particularly important for thermodynamic investigations. These experimen-
tal techniques and the interpretations of their results by theoretical techniques are
presented in individual chapters.
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1.2
Spectroscopic Techniques and Semiempirical Theoretical Methods

The macroscopic thermodynamic properties are closely related to the microscopic
dynamics of atoms. The collective vibrations of atoms in solids, which are called
lattice vibrations, occur in discrete energies. These quanta of lattice vibrations are
known as phonons.

Phonons are one of the fundamental excitations in a solid, and alongwith electrons
they determine the thermodynamic properties of a material. In insulators and
semiconductors, phonons play a prominent role. They directly contribute to a
number of phenomena such as the thermal expansion, temperature dependence
ofmechanical properties, phase transitions, and phase diagrams. The understanding
of phonon spectra, especially that of new materials, is essential for future techno-
logical developments.

The theoreticalmethods of lattice dynamics and the calculation of thermodynamic
properties dealing with semiempirical and ab initio approaches are covered in
Chapters 3 and 8, respectively. The concept of phonons assumes that the atomic
vibrations are harmonic in nature, which is strictly valid at low temperatures, typically
below the Debye temperature of the solid. As a complementary tool, molecular
dynamics simulation is especially useful in studying the dynamics at high tempera-
tures and in understanding the mechanisms of solid–solid phase transitions and
melting, and so on. The simulations are also discussed in Chapter 3.

Spectroscopic techniques aim to determine the characteristics of these phonons.
There are three major spectroscopic techniques, namely, optical spectroscopy
(Chapter 2), inelastic neutron scattering (Chapter 3), and inelastic X-ray scattering
(Chapter 4), which are complementary to each other.

Recent developments in lasers, optics, and electronics have made a significant
impact on the modern optical spectroscopic methods and instrumentations. The
optical techniques of Raman, infrared, and Brillouin scattering are reviewed in
Chapter 2. Here the authors present a detailed comparison among the three
techniques and provide a theoretical and experimental methodology. The chapter
also gives a detailed account of the contribution of optical spectroscopy methods for
studying the vibrational properties of materials under extreme conditions of high
pressures and high temperatures. The uses of the spectroscopic methods are
illustrated by examples taken from recent literature.

Inelastic neutron scattering is a spectroscopic technique in which neutrons are
used to probe the dynamics of atoms and molecules in solids. It is the main
experimental technique for determining the phonon dispersion curves as it offers
both energy andmomentumwellmatched for studies of variousmaterials. Chapter 3
describes the principles and recent applications of inelastic neutron scattering,
theoretical lattice dynamics, and molecular dynamics simulations. The calculations
provide microscopic insights into a variety of novel phenomena like high-pressure
phonon softening, structural phase transitions, melting, and so on.

Inelastic neutron scattering experiments take long data acquisition time and
require large sample volume. This situation has changed with the advances in
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synchrotron radiation instrumentation. The improvement in X-ray photon flux
combined with advances in instrumentation capabilities has made it possible to
carry out detailed phonon studies for small quantities of samples, which also enables
measurements under very high pressure (Chapter 4). The X-ray beam can be focused
down tomicron size, which allows investigation of very small crystals. The technique
of inelastic X-ray scattering has opened new and important opportunities in the
investigation of dynamics of atoms.

1.3
Thermal Measurement Techniques

The specific heat of a material is one of the most important thermodynamic
properties indicating its heat retention or loss ability. Specific heat measurements
also reveal signatures of crystalline or magnetic phase transitions. The major factors
contributing to the specific heat are the atomic vibrations and electrons, which are
called the lattice and electronic specific heat, respectively. The relation of the specific
heat to these important physical properties and phase transitions makes this subject
especially interesting for experimental and theoretical investigations. Chapter 5 gives
a detailed theory of specific heat and presents a number of theoretical models. The
principles and experimental methods of calorimetry to measure heat capacity of
solids are also described.

Thermal expansion, an important thermophysical property of materials, has been
of considerable interest for research and development of technology. This is an
important material property considered for any structural materials experiencing a
temperature gradient. Examples range from metals and ceramic parts of cooking
wares to highly sophisticated engineering mechanical structures, such as buildings,
bridges, air/spacecraft bodies, vessels, kiln, furnaces, and so on. Thermal expansion
data of ceramics have also been a prime consideration for the design of electrolytes
and electrodes of solid oxide fuel cells as well as reactor technology.

The bulk thermal expansion is generally measured by techniques like dilatometer
and interferometers, while lattice thermal expansion is generally determined by the
diffraction methods like variable-temperature X-ray or neutron diffraction. The
nature and type of interatomic bonding, polyhedra around the cations, and packing
of atoms in the unit cell and so on are key features in governing the magnitude and
anisotropy of thermal expansion behavior. The salient details of the diffraction
method and its importance for thermal expansion measurements are discussed in
Chapter 6.

1.4
First-Principles Quantum Mechanical Methods

The study of electronic structure in solids provides important insights into the atomic
structure and electronic properties of materials. Chapter 7 describes the main
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theoretical approaches and computational techniques for electronic structure calcu-
lations. Various practical methods used to solve the electronic structure problem are
discussed. Finally, the electronic structure and crystallographic phase transforma-
tions of elemental compounds under high external pressure are described by means
of the first principles theory.

The ab initio quantummechanical computation methods have now become very
useful research tool in the condensedmatter physics. It is nowpossible to calculate a
wide variety of material properties like electronic structure, elastic constants,
phonon dispersion relations, and so on at high pressures and temperatures.
Because of this, ab initio methods are now quite useful in earth science since they
provide data that are complementary to the experiments on material properties at
extreme pressure and temperature conditions found in the earth�s interior. The ab
initio lattice dynamics is studied by means of a perturbative approach to the density
functional theory (Chapter 8). The study of phonon dynamics in multilayers,
surfaces, crystals with defects and impurities, and so on is very limited. Ab initio
phonon calculation is expected to provide new insights into such systems.

1.5
Outlook

We have discussed above a variety of experimental and theoretical methods used in
the study of thermodynamic properties and related topics. Two major developments
seem to stand out in the immediate future. One is the availability of the next
generation of neutron and synchrotron sources that would bring a revolution in the
way experiments are carried out and the nature of information and knowledge that is
derived. We may expect new physics about the local short-range structures and
ordering in complex and mixed solids; real-time analysis of dynamical phenomena
including phase transitions and growth of novel structures of low dimensions,
especially nanostructures and multilayers; new applications in energy systems and
environment and earth sciences [22]; and so on. The secondmajor development is the
spurt in massively parallel computing that would enable the modeling of the
structures and dynamical phenomena just noted above in the context of next-
generation experimental facilities. We hope and believe that the contents of various
topics covered in this book would prove extremely valuable in these new
developments.
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2
Optical Spectroscopy Methods and
High-Pressure–High-Temperature Studies
Alain Polian, Patrick Simon, and Olivier Pag�es

This chapter aims to show how optical spectroscopies contribute to the study of
vibrational properties under extreme conditions. Now, what do we mean by extreme
conditions?We can take it in the otherway andmention that ambient conditions have
nothing more special as to permit life on earth – that is already not bad! From the
point of view of physics, no particular property occurs at ambient conditions. On the
contrary, most of the matter in the universe is under extreme pressure (P) and
temperature (T), as it is in planets, stars, and more exotic objects. Studies at high
pressure and high temperature are hence only the study of matter in its �normal�
conditions. The reason why geoscientists are much interested in such studies is
self-explanatory, but other fields are widely studied. The application of high pressure
and high temperature enables to explore the repulsive part of the potential energy
(fundamental physics), to provoke phase transformations thereby leading to new
structures eventuallymetastable at ambient conditions (materials sciences), to orient
chemical reactions in requested directions (chemistry), and even to crystallize
proteins, that otherwise would not happen by using other techniques (biology).
Another interest to work under variable conditions is that, obviously, more insight is
given into the considered phenomenon, in that the pressure and/or temperature
derivatives of the phenomenon become available, thus offering a more complete
picture to achieve optimum understanding and/or modeling.

There are mainly five experimental methods to probe the vibrational properties of
matter: optical spectroscopies (of main interest here), ultrasonics (US), inelastic
neutron scattering (INS, cf. Chapter 3), more recently inelastic X-ray scattering (IXS,
cf. Chapter 4) – that was made possible due to the introduction of third generation
synchrotron radiation facilities – and picosecond (PS) acoustics.

INS and IXS are used to determine the dispersion of vibration modes, that is,
acoustical as well as optical ones, over the whole Brillouin zone (BZ). The most
stringent limitations are the needed sources (national-size ones, i.e., a nuclear reactor
for INS and a monochromatized X-ray beam as delivered by a synchrotron for IXS),
and a limitation to small momentum transfer (q< 0.1qBZB, where q is themagnitude
of the wavevector and BZB is the BZ boundary). An additional limitation for INS is
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that the sample should be large (�1 cm3). For an insight into acoustical modes close
to the center of the BZ (q� 0), the commonly used and the precise technique, at least
at ambient conditions, is US, in which the sound velocity is deduced from the
measurement of the transit time throughout the sample. Again, a large sample is
needed, that is, some millimeters long. The latest technique, a pump-probe one, is
PS.With this, a pump laser pulse is sent onto an absorbing sample (ametal), creating
a heat pulse that propagates throughout the sample. Some picoseconds after the
pump, a probe laser beam is sent to detect the arrival of the heat pulse at the other end
of the sample, and measures the transit time. Unfortunately, for the moment, only
the longitudinal acoustical modes can be detected by this technique. Decisive
advantages are that small samples can be used, transparent or not (it is easy to
evaporate a thin metal layer on a transparent sample), and the technique can be
implemented at the laboratory scale. A synthetic presentation of the different q-
domains addressed by the different techniques in relation to acoustical modes is
given in Figure 2.1.

Currently, the versatile techniques at the laboratory scale are certainly optical
spectroscopies, that is, infrared (IR) absorption, a generic terminology covering
reflection/transmission/emission, and visible scattering, under the Raman and
Brillouin variants. These provide complementary insights into acoustical (Brillouin)
and optical (Raman/IR) modes. Again, optical spectroscopies cover a limited q-
domain, that is, they operate close to theBZ-center, but with an unequalled resolution
(less than 1 cm�1, typically). Also, very small samples can be used (from several cubic
millimeter with standards setups, down to several cubicmicrometer with the Raman
microprobe), transparent ones being preferable for the determination of bulk
properties.

Figure 2.1 Typical momentum transfer involved in the various techniques of elastic properties
measurements. US: ultrasonics; IXS: inelastic X-ray scattering and LA (TA): longitudinal
(transversal) acoustic mode.
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2.1
Methods and Principles: Ambient Conditions

To introduce the basic principles of optical spectroscopies, we limit ourselves to
ambient conditions – the pressure and temperature aspects making the objects of
specific developments in Section 2.2, and focus on a model system, that is, a
semiconductor. With semiconductors, nature seems to offer to scientists �objects�
with a quasimathematical perfection (simple atoms arranged on a regular lattice),
where models can be developed at the ultimate scale of the atoms themselves. Here,
vibrational properties reveal the lattice dynamics, that is, the vibration modes are
collective, referred to as phonons. In this back-to-basics section, the main sources in
the literature are quoted directly in the title of each paragraph – even though the
present formulation might be different – while more regular insight is indicated by
in-text references.

2.1.1
Semiconductors

Among semiconductors, the leading system is silicon (Si). Silicon belongs to column
IV in the periodic table, and thereby has an electronic configuration of the sp3 type.
Four electrons are available per atom for the chemical bonding, which ends up in a
tetrahedral environment, and a crystal structure of the diamond type. The intrinsic
symmetry leads to a purely covalent bond, as represented by an electronic charge
accumulated at intermediary distance between the atoms. Now, such monoatomic
crystals bring only a limited insight into the phonon properties of semiconductors;
the full picture emerges out by considering AB semiconductor compounds (see
details below). With these, the same average sp3 electronic configuration is achieved
by combining two elements taken symmetrically on each side of column IV. A deficit
of electrons of the cationA (column< IV), associatedwith a positive charge (þZe), is
compensated by an excess of electrons of the anionB (column> IV), creditedwith the
opposite charge (�Ze). This balance results in an asymmetric bond position toward
B, which confers a partially ionic character to the bond. The crystal structure, called
zinc blende, consists of the A- and B-like intercalated fcc (face-centered cubic)
sublattices, each atom being at the center of a regular tetrahedron formed with
atoms of the other species. The dependence of the elastic properties on the ionicity of
the chemical bond in zinc blende semiconductors, that has a direct impact on the
phonon properties, is detailed in Ref. [1].

Ideally, the atomdisplacement ~u associatedwith a phonon in a semiconductor can
be described as a plane wave, which is written as ~u ¼ ~u0exp½jðvt�~q �~rÞ�, where
~u0, t, and ~r refer to the amplitude, to time, and to the atom position, respectively. As
such, a phonon is best represented in the reciprocal space where the dispersion, that
is, the relation between the pulsation (v) and the wavenumber (q), is explicited. In
practice, an insight along the high-symmetry directions of thefirst BZ, that covers the
whole q-domain from theBZ-center (q¼ 0) to the Brillouin zone boundary (qBZB¼p/
a� 108 cm�1, where a is the lattice constant), will do. Experimentally, full insight into
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such dispersion curves can be achieved by using INS or IXS, as already mentioned.
On the theoretical side, the reference is the adiabatic bond chargemodel as originally
worked out by Weber [2] for the purely covalent semiconductors from column IV.
Precisely, this is based on a description of the chemical bond in terms of a regular
electronic charge, as indicated above. A successful variant for the partially ionic
III–V�s was developed by Rustagi and Weber [3] later.

2.1.2
q � 0 Optical Modes: Concept of Polaritons [4, 5]

Optical spectroscopies provide a selected insight at q� 0 only (refer to Section 2.1.3).
At this limit, two broad families of phonons can be distinguished: optical modes that
have a propagating character upon approaching the zone center, and acoustical
modes, whose dispersion converges to zero at q¼ 0. These correspond to out-of-
phase and in-phase vibrations of the anion and cation sublattices, respectively. In
particular, due to the cubic symmetry of the zinc blende structure, the transverse (TO)
and longitudinal (LO) optical modes, corresponding to atom vibrations perpendic-
ular to and along the direction of propagation, respectively, should be degenerate
exactly at q¼ 0.1) For a deeper insight, let us formalize that, in polarmaterials, optical
modes do create in principle a polarization ~P , with temporal (v) and spatial (q)
dependencies similar to those of the underlying atom displacements. Such elastic
waves, with mechanical-/electrical-mixed character are referred to as phonon polar-
itons. The dispersion relation v(q) is derived by combining the relevant sets of
equations that carry the two characters. For each set, the restriction on q� 0 provides
much simplification.

2.1.2.1 Maxwell Equations
At q� 0, the wavelength is large enough – quasi-infinite, in fact – that the atom
displacements are similar over several lattice cells (introducing the notion of
quasirigid sublattices) with the consequence that the accompanying polarization
field ~P has amacroscopic character (spatially averaged over one lattice cell). As such,
its propagation can be formalized via the Maxwell equations that bear upon field
quantities having meaning only on a macroscopic basis, precisely. The crystal is
viewed as an effective medium. In the case of a nonmagnetic semiconductor, an
elimination of the induction from Ampere equation via Lenz equation leads to
~qð~q �~EÞ�q2 ~E ¼ �m0v

2ðe0 ~E þ ~PÞ, where m0 and e0 refer to the magnetic perme-
ability and dielectric permittivity of vacuum, respectively. A combination with Gauss
equation, that is, ~q �~E ¼ �e�1

0 ~q �~P , leads to

~E ¼ v2

c2
~P�~qð~q �~PÞ

� �
� e0 q2�v2

c2

� �� ��1

ð2:1Þ

1) To figure this out, represent an optical mode at q ¼ 0, that is, a vibration of the perfectly rigid cation
sublattice against the perfectly rigid anion one, and realize that thewave vector– nul, in fact – could as
well be oriented perpendicular to (TO) or along (LO) the sublattice displacements.
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where
ffiffiffiffiffiffiffiffiffi
m0e0

p
is the velocity of light in vacuum. The electric fields carried by a TO

(~q ? ~P) and a LO (~q== ~P) mode in a zinc blende system (the cubic symmetry
implies isotropy) follow directly as

~EL ¼ �
~P
e0

; ~ET ¼ v2½e0ðq2c2�v2Þ��1 ~P ð2:2Þ

If the so-called retardation effects are neglected, that is, by taking c ! 1 (which
becomes valid for finite/nonnegligible q values), ET¼ 0. So, reasonably far from the
center of the BZ – an estimate is given below, a TOmode basically reduces to a purely
mechanical vibration. For a LOmode, a Coulombic interaction exists that adds to the
mechanical restoring force.2) This is at the origin of the TO–LO splitting at q� 0 in a
polar crystal. Now, exactly at q¼ 0, Equation 2.2 leads to ~ET ¼~EL, providing the
required TO–LO degeneracy. What happens at intermediate q value is the object of
the development hereafter. Note that the TO and LOmodesmay also be characterized
by a condition on the relative dielectric function of the crystal – with respect to
vacuum, denoted by er, as introduced via the Gauss equation

e0er ~E ¼ e0 ~E þ ~P ð2:3Þ

The compatibility with Equation 2.2 implies the respective conditions for the TO
and LO modes as

er ¼ q2c2v�2; er ¼ 0 ð2:4Þ

2.1.2.2 Mechanical Equations
The lattice dynamics takes place in the IR spectral range, and involves two oscillators
(at least), that is, the nuclei of (A, B) atoms (including the core electrons, strongly
bound) – also referred to as ions hereafter – plus the peripheral electrons (from the
chemical bonding, weakly bound). The latter vibrate naturally at high frequency
(visible), and are therefore able a fortiori to follow the comparatively slow dynamics
(IR) of nuclei (much heavier corpuscles). The two oscillators are characterized by the
displacements with respect to their equilibrium positions, denoted by uA, uB, and y,
respectively. Now, placing the analysis at q� 0 brings in a major advantage that the
space-related phase term of the plane wave that ideally describes each oscillator
(nuclei, electrons) just disappears, and with it an obligation to position vectorially
each individual oscillator in the crystal. Therefore, a model based on a scalar
representation of the crystal (linear chain approximation) – a phenomenological
one – should do in principle. At this limit, the relevant IR oscillator for an optical
mode naturally appears to be the A�B bond itself, and the associated displacement is

2) Consider a q � 0 propagation along the [1 1 1] crystal direction, where A (polarized þ ) and B
(polarized �) planes alternate. For a TO mode, the A and B planes slide on themselves, so that no
polarization is created with respect to the static situation, that is, ET¼ 0. For a LOmode, the average
distance between the A and B planes over a time period has become shorter than in the static case,
resulting in the creation of some polarization, that is, EL 6¼ 0.
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the bond stretching u¼ uA�uB representing, in fact, the relative displacement of the
quasirigid A- and B-sublattices. By considering Hooke-like mechanical restoring
forces between first neighbors only for A and B (in first approximation), that is,
proportional to the bond stretching (harmonic approximation), plus the Coulombic
forces, that imply the local field, termed Ee, the equations ofmotion per bond and per
peripheral electron, respectively, are formulated as

m€u ¼ �k0uþðZeÞEe ð2:5Þ

and

m€y ¼ �k00yþ eEe ð2:6Þ

where m ¼ ðm�1
A þm�1

B Þ�1 is the reduced mass of the A�B bond, and (m, e) are the
mass and elementary charge of an electron, respectively. Care must be taken that Ee
and E are not equivalent, that is, one has a microscopic local character (Ee) and the
other a macroscopic-average character (E), so that Equations 2.1 and 2.2 cannot be
directly combined with Equations 2.5 and 2.6. A prerequisite is to express Ee via
the macroscopic parameters of the system (u, P, E).

2.1.2.3 Lorentz Approach
An elegantmethod developed by Lorentz, as schematically represented in Figure 2.2,
assimilates each bond to a discrete electric dipole ~p (resulting from the added
contributions of the ions and peripheral electrons) being immersed into the dipolar
field created by the other – identical – bonds from the whole crystal. A so-called
Lorentz sphere S(O,R) is introduced, centered on the dipole under consideration (O)

Figure 2.2 Schematic view of the Lorentz approach for calculation of the local field ~Ee.
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and with arbitrary radius (R), such that the inside and the outside of the sphere
(extending to the infinite) are, respectively, perceived fromO as a discrete collection of
dipoles ~p arranged on a regular array – a cubic one in the present case, and a uniform
dipolar continuum – characterized by polarization ~P (an average dipolar moment
per crystal unit volume) as compatible with the Maxwell equations. The two regions
create their own electric fields inO, denoted by ~f int and

~f ext, respectively, that add to
form ~Ee. Themacroscopic-average electric field ~E , as for it, is obtained by adding to
~f ext the electric field ~E s created inO by S(O,R) where a uniform dipolar continuum
with polarization ~P substitutes for the discrete collection of dipoles ~p. This comes to
a vision of the crystal in terms of a uniform dipolar continuum, that is, an effective
medium,which is in the spirit of theMaxwell equations. Then, ~Ee ¼ ~E� ~E s þ ~f int.
The cubic symmetry implies ~f int ¼ 0 (a full treatment for a simple cubic lattice is
detailed in Refs. [6, 7]). ~E s can be calculated in O by substituting a surfacial
distribution of charge (s), for example, for the volumic polarization ~P inside S
(O, R), that is, a nonhomogeneous one, as the equivalence is written as s ¼ ~P �~n,
where ~n is a unit vector normal to S(O, R) pointing outside. This leads to
~E s ¼ � ~P=ð3e0Þ.
Thus,

~Ee ¼ ~E þ ~p
3e0

ð2:7Þ

with

P ¼ N½ðZeÞuþðaþ þa�ÞEe� ð2:8Þ

where (Ze)u and aiEe (subscript i stands for þ or �) are the dipolar moments per
bond and per atom, (aþ , a�) denote the individual polarizabilities of the (A, B) ions
(due to electrons), and N is the number of bonds per crystal unit volume.

2.1.2.4 Effective Charge/Force Constant
Equations ofmotion (2.5) and (2.6) reformulate via Equations 2.7 and 2.8 on the basis
of the macroscopic observables u and E, which makes them compatible with the
Maxwell equations. The general form remains unchanged, but the force constants
and charges are �renormalized to themacroscopic scale,� coming to a terminology of
�effective� force constants/charges, as identified by a star hereafter. Equations 2.5
and 2.6 lead to

mð�v2 þv2
TÞu�ðZeÞ �E ¼ 0 ð2:9Þ

and

mv2
e y�e �E ¼ 0 ð2:10Þ

where vT ¼ ffiffiffiffiffiffiffiffiffiffiffi
k �
0 =m

p
and ve ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k0 �0 =m

p
are resonance frequencies as obtained

by taking E¼ 0 – of a transverse type for phonons. Note that in Equation 2.10, v
(IR range) is neglected in front of ve (visible range).
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2.1.2.5 Combined Electrical/Mechanical Equations: Dispersion of Polaritons Modes
Equations 2.3 and 2.7–2.9 allow to explicit er as

er ¼ e1 þ ðeS�e1Þ 1�v2

v2
T

� ��1

ð2:11Þ

where eS and e1 refer to the relative static and high-frequency dielectric constants, as
obtained by taking extreme v values in Equation 2.9, that is, v ! 0 and v ! 1
(v�vT), respectively. In Equation (2.11) the first term refers to electrons and the
second term refers to ions. Equations 2.4 lead to

v2
L ¼ v2

T
eS
e1

;
q2c2

v2
¼ e1 1þ v2

L�v2
T

v2
T�v2

� �
ð2:12Þ

for the LO (Lyddane–Sachs–Teller relation) and TO modes, respectively. A dimen-
sionless oscillator strength is introduced to estimate the �strength� of the ionic
resonance, that is, S ¼ es�e1 ¼ e1ðv2

L�v2
TÞ=v2

T. Naturally, S scales as the fraction
of bonds in the crystal (see a generalization to multioscillator systems in Sec-
tion 2.1.4.1). In fact, the same expression of er can be obtained just by writing P
as N(Ze)

�
u þ ne

�
y, that is, directly in terms of the effective charges (macroscopic

scale), which allows to skip a treatment of the local field Ee, but (Ze)
�
should satisfy

v2
L�v2

T ¼ NðZeÞ �2

me0e1
ðer ¼ 0Þ ð2:13Þ

and also, the electronic susceptibility x1, as given by ne
�
y¼ e0 x1E, should be

formulated as

e1 ¼ 1þ x1: ð2:14Þ

The latter relation simply expresses that at pulsations well beyond those of optical
modes, the polarization of the crystal is all due to electrons. What emerges from
Equation 2.12 is that the LO mode has no dispersion, thus simply referred to as the
LO phonon. In contrast, the TO mode is highly dispersive but the dispersion is
confined close to the BZ-center. In fact, the asymptotes are reached for q� 5vT/c,
corresponding to �10�5qBZB. They are defined by those limit situations where the
polarization wave (ET) is nomore coupled to the nuclei (u). This may occur either for
ET¼ 0, in which case the TO polariton is like the TO phonon of a diamond-type
(nonpolar) crystal, with �purely mechanical� pulsation vT; or for u¼ 0, the typical
situation at v ! 1 (v�vT) where the propagation of the polarization wave is all
governed by electrons – the dispersion takes the linear formv2¼ q2c2/e1. TOmodes
are referred to as phonon polaritons in the strong electrical/mechanical-coupling
regime. At low q values, the low- and high-frequency polariton branches are of
electromagnetic (EM) and elastic types, respectively. The situation is reversed at large
q values. For example, the dispersion of the phonon polaritons in gallium phosphide
(GaP) – reproduced from Ref. 8 – is shown in Figure 2.3, left panel.
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2.1.3
Vibration Spectra

The vibrational techniques differ by the light/matter interaction mechanisms
brought into play.

2.1.3.1 IR Spectroscopies: A Direct Light/Optical-Mode Interaction [4, 5, 11]
As their name implies, optical phonons may be revealed via a direct interaction with
anEMradiation of similar pulsation,which opens thefield of IR spectroscopies.Now,
EM radiations have a transverse character, and as such may couple to TO polaritons
only, not to the LO phonon. Basically, when an IR beam penetrates the crystal, it
propagates under the form of a TO polariton. Maxwell equations indicate that the
phase velocity reduces from c (in vacuum) to c/n (in the crystal), where n ¼ ffiffiffiffi

er
p

is the
refractive index of the crystal. The TO polariton is – obviously – forced at the same
pulsation as the exciting radiation, so that the modification of the phase velocity is all
due to a renormalization of the wavenumber q0 (in vacuum) to q¼ nq0 (in the crystal).
From Equations 2.11 and 2.12, n is real outside the (TO, LO) band and imaginary
inside. Thus, radiationswith pulsationvT<v<vL cannot propagate into the crystal
in principle, and thereby should be totally reflected. In fact, total reflection never
occurs as part of the incident energy is absorbed by the crystal, which is accounted for
by adding a dissipative force into the phonon-related equation of motion. This is
naturally taken as antiproportional to the displacement velocity (Coulomb-like), that
is, as�mc _u, c being the so-called phonon damping – a simple rule states the smaller c,
the better the crystal quality. This comes in fine to add �jcv to the denominator of
er in Equations 2.11 and 2.12, which thus takes an imaginary character. This is
enough to confer on n, a partially real character within the optical band, thus allowing

Figure 2.3 Dispersion of polariton modes of GaP (left panel, adapted from Ref. [8]). The
corresponding IR reflectivity and (TO, LO) Raman spectra are shown in the central and right panels,
respectively, for two values of the phonon damping c, as indicated. The spectra were calculated from
Equations 2.15 and 2.18, respectively, by using the set of input parameter (e1¼ 9.1 [9],
TO–LO¼ 365–405 cm�1, CF–H¼�0.47 [10]). The shaded zone in the left panel describes the
specific q-domain as explored by using the standard Raman/Brillouin scattering geometries, that is,
more backscattering-like. The low and high q-limits are �10�5qBZB and �10�3qBZB, typically. The
low-frequency polariton dispersion curve is accessible by Raman scattering by using forward-like
scattering geometries, that is, small q angles as indicated (valid for the excitation line 632.8 nm).
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some propagation. If we refer to the standard setup for IR reflectivity/transmissivity
pressure and temperature measurements, corresponding to quasinormal incidence
on a unique vacuum/crystal interface, the energy reflection and transmission
coefficients, that give the IR reflectivity and transmissivity spectra – as derived on
the basis of a pure normal incidence – take the well-known forms [12]

RðvÞ ¼ 1� ffiffiffiffi
er

p
1þ ffiffiffiffi

er
p

����
����
2

; TrðvÞ ¼ 4
ffiffiffiffi
er

p

1þ ffiffiffiffi
er

p� 	2 : ð2:15Þ

For example, the normal incidence IR reflectivity spectrum of GaP is shown in
Figure 2.3, central panel. Note that it peaks close to the asymptotic TO frequency, and
goes through a minimum close to the LO frequency. The light energy that is neither
reflected nor transmitted is absorbed by the medium, and, at thermal equilibrium,
reemitted as thermal radiation at the same pulsation (Kirchoff �s law, AðvÞ ¼ EmðvÞ
whereAðvÞ denotes absorbance). The spectral emissivity Em is defined as the ratio of
the sample-to-blackbody intensities at the same temperature and angular conditions.
A basic law of energy conservation is fulfilled, that is, Em(v)¼ 1� [R(v) þ Tr(v)],
that simply gives the energy balance upon incident light beam. If one considers
opaque materials, spectral emissivity is nothing but [1�R(v)]. In fact, the spectral
emissivity gives access to the same information on vibrational properties as reflec-
tivity and transmissivity do. It is implicit that all four coefficients (R,Tr,Em, andA) are
temperature dependent.

2.1.3.2 Raman Scattering: An Indirect Light/Optical-Mode Interaction [13, 14]
By penetrating the crystal, a visible excitation interacts resonantly with electrons
(peripheral ones). In a classical description, these behave as oscillating dipolesPe, and
as such scatter light in all directions – but the oscillating one – according to theHertz
mechanism. Most of the light is scattered quasielastically, which is referred to as
Rayleigh scattering. Less probably (106–1012 times less) part of the incident energy is
taken to set one optical phonon in motion, or on the contrary one optical phonon is
consumed during the light/matter interaction. The pulsation of the scattered light
(vs) is accordingly shifted with respect to the incident one (vi) – downward for a
Stokes process and upward for an anti-Stokes one – of the pulsation of the optical
phonon (V) brought into play. Such inelastic scattering is referred to as the first-order
Raman scattering (a single optical phonon is involved). Another formulation is that
the optical phonon modulates the electronic susceptibility x, that is, the ability of
electrons to polarize under the electric field Ev carried by the visible excitation
(Pe¼ e0 xEv), the Raman scattering being due, then, to the change in polarization
dPe¼ e0 dxEv.

2.1.3.2.1 RamanGeometry The light/phonon interaction is governed by energy and
wavevector conservation laws similar in every respect to those implied in a collision
process. For Stokes scattering, these come to vi�vs¼V and ~ki�~ks ¼ ~q, respec-
tively, where subscripts �i� and �s� refer to the incident and scattered radiations
(visible range), the right term being related to the phonon (IR range). Depending on
the scattering geometry, a continuous domain of q values can be explored. Extreme
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values correspond to twice the incident wavenumber (~ki and ~ks antiparallel, that is,
backward scattering, or backscattering) and to the close neighborhood of the center of
the BZ (~ki and ~ks parallel, that is, forward scattering), as schematically shown in
Figure 2.3, left panel. Now, the dispersion of visible light in the crystal is quasivertical
at the scale of the phonon dispersion, so that, in fact, 2ki� 10�3qBZB still refers to the
BZ-center. The former classical formalism used for polaritons and IR spectroscopies
– based on theMaxwell equations and a linear chainmodel formechanical equations
– thus remains basically valid for the Raman scattering. Another aspect is that the
limit q value corresponding to the asymptotic behavior of the polariton, that is,
qasymp� 5vT/c, is reached for an angle between ~ki and ~ks as small as q� 5	 typically.
Thus, the dispersion of the polaritons is accessible via the Raman scattering only by
using small q values, that is, in a quasiperfect forward scattering geometry, provided
samples with a thickness smaller than the penetration depth of the exciting beam are
used (�1mm typically out of resonance conditions). With usual scattering geome-
tries, that is, backscattering-like ones, only the LOmode and the asymptotic TOmode
– a purely mechanical vibration – are accessible.

2.1.3.2.2 TOFrequency This relates directly to the effective bond force constant (k �
0 ,

cf. Section 2.1.2.4). Now, a basic rule is that the bond force constant scales as the inverse
bond length (strictly, the harmonic approximation – cf. Section 2.1.2.2 – is not valid).
By applying a hydrostatic pressure (resp. increasing the temperature), the lattice of
AB compound shrinks (resp. expands), and therefore the TO frequency is increased
(resp. decreased). The rule can also be used to probe the local environment of an
impurity, say, C in substitution for B in AB-like matrix. Basically different local
distortions of the impurity A�C bond, depending on the local environment, that is,
more or less C-rich, should provide as many AC-like TO frequencies (more detail is
given in Section 2.3.2.1). There exists a limit. however. Indeed, such so-called phonon
localization is observed only if the fluctuation in the TO frequency is larger than the
dispersion of the TO mode – the TO dispersion in the pure AC crystal providing a
natural reference. This is known as the Anderson�s criterion [15].

2.1.3.2.3 (TO, LO) Raman Lineshape According to the Hertz-dipole formalism, the
intensity scattered by a unit dipole p at pulsation v scales as v4hp2i, where the
brackets refer to a so-called fluctuation spectral density, that is, to averaging over a
time period. As the Raman process between the light (visible) and the optical (IR)
modes is indirect, mediated by peripheral electrons (visible), the Raman polariza-
tion is essentially nonlinear. In fact, PNL¼ dPe is taken as the general bilinear form
of the phonons (u) and electrons (y) displacements at the two different pulsations,
that is, as a linear combination of products (uyv, yyv, yuv, and uuv) where subscript �v�
refers to �visible� and the absence of subscript refers to �IR.� Since the lattice
response is entirely negligible in the visible (quasistatic/Born–Oppenheimer ap-
proximation), that is, uv¼ 0, the last two terms are just omitted. Now, we consider
Equation 2.10 that establishes a generic proportionality between the electron
displacement and a macroscopic electric field in the crystal. This is valid both in
the IR (y) and in the visible (yv) ranges. Only, in the second case, the macroscopic
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field Ev of the visible radiation should substitute for the macroscopic field E of the
phonon (the LO one). On this basis, PNL is expressed as dxEv¼ (duu þ dEE)Ev,
where du and dE are constants (when using standard excitations, i.e., nonresonant
ones) that identify with the partial derivatives of x with respect to u and E, that is,
du 
 qx

qu and dE ¼ qx
qE (we recall that u and E are differential parameters in essence, in

that they refer to a relative displacement of two sublattices and to the macroscopic
field that proceeds from such relative displacement). It is explicit then that the
Raman scattering by a LO mode is due to modulation of x via both the atom
displacement u (�deformation potential� mechanism) and the related macroscopic
field E (�electro-optic� effect). For a TO mode, E is turned off, that is, the Raman
scattering occurs via the �deformation potential� mechanism only. Here, we treat
the general case of a LO mode, and indicate how the resulting Raman cross section
modifies for a TO mode. For a Stokes process, the generic LO Raman signal as
derived via hP2

NLi takes the form

Ivs¼vi�V � v4
s � hE2iþ 2

du
dE

huEiþ du
dE

� �2

hu2i
( )

: ð2:16Þ

2.1.3.2.4 Fluctuation–Dissipation Theorem hE2i, hu.Ei, and hu2i are evaluated via the
fluctuation–dissipation theorem. This relates hR2i at a pulsation v, referring to
the �response� (R) of the crystal to an external �stimulus� (St), as the dissipative
part of the linear response function L (L¼R/St) according to hR2i ¼
ImðLÞð�h=2pÞ½nðvÞþ 1�, where n(v), the Boltzmann factor, accounts for the temper-
ature dependence. In the case ofmultiple responses/stimuli, a general formulation is
hRiRji ¼ ImðLijÞð�h=2pÞ½nðvÞþ 1�, where Lij¼Ri/Stj is the crossed linear response
function.Our set of (mechanical and electrical) equations being linear, the formalism
applies. The L-matrix is referred to as the generalized Nyquist susceptibility.

For doing so, a proper external stimulus vectorSt¼ (Pext,F, f ) as defined per crystal
unit volume is associated with the overall response vector R¼ (E, u, y). Note that St
andRmay consist of concrete as well as abstract physical quantities, putting forward,
in the second case, that one cannot go against the principle of causality. In fact, (F, f )
and Pext represent pseudoexternal mechanical forces and a pseudolongitudinal
(E exists only for LO modes) plane wave of polarization density to be added in
the originalmechanical and electrical equations, respectively. It is just amatter to add
F/N and f/n as rightmost terms of Equations 2.5 and 2.6, where n and N are the
number of electronic and ionic oscillators per crystal unit volume, respectively, and to
reformulate Equation 2.3 by adding Pext to the polarization term (by definition, Pext is
already defined per crystal unit volume).

In fact, hE2i and hu2i basically relate to the reactualized forms of Equations 2.3
and 2.9, respectively, and huEi to a mixture of both. While Equation 2.3 gives er, that
expresses via the natural observables (e1, vL, and vT), Equation 2.9 in its present
form is not that easy to handle, due toN and (Ze)

�
that are not directly accessible. So, a

novel parameter Z that relates to the oscillator strength S via S ¼ Z2v�2
T e�1

0 is
introduced in substitution to (Ze)

�
by writing the compatibility with Equation 2.13,
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which comes to Z ¼ ffiffiffiffiffiffiffiffiffi
N=m

p ðZeÞ �. The subsequent change of variable v ¼ ffiffiffiffiffiffiffiffiffiffi
Nmu

p
allows to generate a counterpart to Equation 2.9 with fully determined parameters.
Care must be taken that Z involves N and as such is defined per crystal unit volume
(not per oscillator, as in Equation 2.9). Thus, the generalized force constant F is
not divided by N when added to the (v, Z)-based version of Equation 2.9. Eventually,
the reactualized set of electrical/mechanical equations for a LO mode (er¼ 0) is
written as

Pext

f
F

0
@

1
A ¼

�e0 �ne � �Z
�ne � n2e �2e�1

0 x�1
1 0

�Z 0 GðvÞ

0
@

1
A E

y
v

0
@

1
A ð2:17Þ

whereGðvÞ ¼ ð�v2 þv2
T�jcvÞ describes the damped resonance due to the ions in

er. Here, c accounts for the finite linewidth of the Raman features. The Lij terms are
eventually obtained by taking the inverse of the above 3� 3 matrix. By using the
u ! v change of variable, we can arrive at

ðIvsÞLO;TO � v4
s �½nðvÞþ 1� �Imf�ðe0erÞ�1½1þCF--Hv

2
TGðvÞ�1�2

þC2
F--Hv

4
TZ

�2GðvÞ�1g ð2:18Þ
where CF--H ¼ ðNmÞ�1=2Zv�2

T ðdu=dEÞ is the so-called Faust–Henry coefficient, that
measures the relative efficiencies of the �deformation potential� and �electro-optic�
scatteringmechanisms [16]. Equation 2.18 provides directly the LORaman lineshape
of a polar semiconductor compound on the basis of the restricted set of intangible
observables (e1, vT, vL, and CF�H), plus the phonon damping c. For the LO
mode (er¼ 0), the first term clearly plays a major role – in fact, preliminary insight
into the LO mode can be obtained via Im(e�1

r ). In contrast, it turns negligible for the
TOmode ðer ¼ q2c2=v2Þ as for usual backscattering-like geometries q � ffiffiffiffiffiffiffiffiffiffiffi

vT=c
p

, as
already mentioned. For practical use the Raman cross section of the TOmode thus
reduces to the imaginary part of the second term in Equation 2.18. Alternative insight
into the TOmode can be obtained by realizing that the TO resonance is fixed by hv2i
only, which is expressed as G�1� e0er

�1Z2G�2, and again the second term vanishes
due to the above considerations on er. Thus, in fact, a TO insight is given by Im(G�1),
that scales as Im(er), corresponding in fine to the following Lorentzian with linewidth
at half height (c/2) centered at the pole of er

ðIvsÞTO � ðv�vTÞ2 þ c

2


 �2
� ��1

: ð2:19Þ

For example, the TO and LO Raman lineshapes of GaP – as calculated from
Equation 2.18 – are shown in Figure 2.3, right panel.

2.1.3.3 Brillouin Scattering: An Indirect Light/Acoustical-Mode Interaction
From a qualitative point of view (see a more formal classical description in
Section 2.1.5.3), propagation of a sound (acoustical) wave in a medium produces
a periodical density fluctuation that diffracts visible light in the same way X-rays are
diffracted by the atomic planes in a crystal. A difference, here, is that the modulation
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propagates with the sound velocity, hence producing a Doppler effect on the
diffracted light. With this, the energy difference between the incident and the
diffracted lights is the energy of the acoustic mode. In fact, the basic principles of
light/matter interaction are similar for the Brillouin and the Raman scatterings. Only
in the former case, the visible radiation is scattered by an acoustical phonon. So, the
Brillouin signal takes a Lorentzian lineshape as typically accounted for by Equa-
tion 2.19, but wherevT is replaced by the pulsation of the acoustical phonon, denoted
by vac. In particular, the energy and momentum conservations are identical for the
Raman and the Brillouin scatterings, so that the latter takes place at q� 0 also. At this
limit, the dispersion of an acousticalmode is quasilinear, that is, of the typevac¼ qvac,
where vac refers to the velocity of the acoustical wave. A substitution into the energy
and momentum conservations, making the reasonable approximations ks� ki and
ns� ni where n is the refractive index of the crystal and subscripts s and i refer to the
scattered and incident visible radiations, leads to [17]

vac � 2nivivacc
�1sin

q

2
ð2:20Þ

where q is the angle between ~ks and ~ki inside the crystal. Dealing with different q
values allows exploring part of the acoustical dispersion curve: the Brillouin
shift (vac) is maximum in the backscattering geometry (q� 180	) and reduces to
zero in the forward geometry (q� 0	). Also, Equation 2.20may be used to determine
ni or vac, where vac relates directly to the elastic constants of the crystal, via the density
r, as

c11 ¼ rv2ac;½100;LA�; C44 ¼ rv2ac;½100;TA�; C12 ¼ C11 þC44�rv2ac;½100;TA�: ð2:21Þ

From an experimental point of view, because of the proximity of the Brillouin lines
with the elastically scattered Rayleigh line, high-resolution apparatus should be used.
Such a high-resolution apparatus is the Fabry–P�erot (FP) interferometer. Modern FP
interferometers were introduced mostly by J.R. Sandercock [18] with the tandem
triple pass interferometer (see Section 2.2.2.4, for detail).

2.1.4
Some Particular Cases

2.1.4.1 Multioscillator System
Equations 2.15 and 2.18 remain basically valid for multioscillator systems, such as
alloys (detail is given in Section 2.3.2.1). Then, er builds up by summing over the
whole series of p ionic oscillators in the crystal,

er ¼ e1 þ
X

p
Spv

2
T;pGðvÞ�1

p ð2:22Þ

where e1 is the sum of the related values in the parent crystals weighted by the
corresponding fractions of oscillators. A similar summation applies to the CF�H

terms inEquation 2.18, the constituent parameters being all p-dependent and thereby
rewritten with subscript p. The full expression as derived on the general basis of
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mechanically coupled oscillators is [19]

ðIvsÞLO;TO � Im
n
�ðe0erÞ�1

h
1þ

X
p
CF--H;pv

2
T;pGðvÞ�1

p

i2
þ
X

p
C2
F--H;pv

2
T;pZ

�2
p GðvÞ�1

p

o
ð2:23Þ

if we omit the Boltzmann andv4
s factors. A similar expression was earlier derived by

Mintairov et al. for mechanically independent oscillators [20]. A basic rule remains
valid that both Sp – that relates to Z2

p , and CF�H,p, scale as the fraction of oscillator
p in the crystal. By writing that er turns equal to zero at each LO frequency vL,p

[cf. Equation 2.4], it becomes

Sp ¼ e1
v2

L;p�v2
T;p

v2
T;p

Y
m 6¼p

v2
L;m�v2

T;p

v2
T;m�v2

T;p

: ð2:24Þ

In principle,Np should follow from direct comparison with the oscillator strength
in the p-type pure crystal. In fact, the procedure is rather hazardous as close LOmodes
couple via their macroscopic field E, resulting in a strong distortion of the original/
uncoupled LO signals. Therefore, the observed vL,p frequencies may just be not
reliable [19].

2.1.4.2 Multilayer System [12]
Now, we treat brieflymultilayer systems, focusing on the casemost commonly found
in practice of a thin layer (thickness a) deposited on a semi-infinite substrate analyzed
by optical spectroscopies at quasinormal incidence. The layer and the substrate are
assumed to be homogenous and isotropic dielectrics.

The layer and the substrate provide separate Raman (Brillouin) signals as given by
I0Lðe�2/a�1Þ and I0Se�2/a, where I0L and I

0
S refer to the signals from the raw layer taken

as semi-infinite (a ! 1) and the raw semi-infinite substrate, respectively. These
expressions are obtained simply by taking into account that the signal from an
arbitrary depth z of a givenmediumwith Raman (resp. Brillouin) cross section I and
absorption coefficient / at the considered wavelength (out of resonance conditions,
no distinction is made in practice between the/ values of the incident and scattered
radiations) scales as Ie�2/z. The exponential term represents attenuation of the
incident beam on its way forth down to depth z and of the scattered beam on its way
back to the surface.

Regarding IR reflectivity, the question is how the light propagates in a multilayer
stack? A basic law, as inferred from the Maxwell equations, is that the tangential
components of the macroscopic ~E and ~B fields are preserved across the vacuum/
layer and layer/substrate interfaces. This is expressed in terms of the individualfields
related to the incident, reflected and transmitted waves, the coexisting fields on one
side of a surface/interface just adding vectorially (linearity of theMaxwell equations).
Each equation separates in two, one corresponding to phase conservation, and the
other being related to amplitudes. The former involves the incident/reflection/
refraction angles, and comes to Descartes laws. The latter reformulates by consid-
ering that the layer-related amplitudes at the vacuum/layer and layer/substrate
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interfaces just differ because of a phase difference d ¼ k0nLa that develops at the
crossing of the layer, where nL is the refractive index of the layer and k0 the
wavenumber in vacuum. Then, a correlation can be established between the net
amplitudes of the macroscopic fields ~E and ~B at the two interfaces via a 2� 2 so-
called transfer matrix, with components m11¼ cos d, m12¼m21¼ j(c/nL) sin d, and
m44¼ cos d. In a next stage, the macroscopic fields are expressed in terms of the
incident (E0), reflected (Er), and transmitted (Et)fields related to thewhole system.The
reflection coefficient related to the amplitude, that is, r¼Er/E0, is then written as [21]

r ¼ nLðn0�nSÞcos dþ jðn0nS�n2LÞsin d

nLðn0 þ nSÞcos dþ jðn0nS þ n2LÞsin d
ð2:25Þ

where nS is the refractive index of the substrate, that is, the square root of the related
relative dielectric function – including a damping term. The IR reflectivity coefficient
is eventually inferred via R ¼ jrj2. A similar expression can be derived for the
transmission coefficient. The procedure generalizes to multilayers, the transfer
matrix of the entire multilayer stack being the product of the individual transfer
matrices from each layer.

2.1.4.3 Multicomponent System (Composite) [22]
The simplest composite consists of kmonoatomic components randomly dispersed
as spherical inclusions with uniform size (radius Rk). The crucial issue, here, is how
to calculate an effective dielectric function for the whole system, for subsequent
injection into the IR reflectivity coefficient, and also, in principle, into the Raman
cross section. The concept of effective dielectric function is valid provided macro-
scopic fields can be defined – in the sense of the Maxwell equations, which requires
that both Rk and the correlation length jk per component (average spacing between
type-k inclusions) are much smaller than the optical wavelength l. An additional
constraint, for practical use, is that Rk is large enough that electronic confinement
effects can be neglected, in which case the individual dielectric constant ek associated
with each component can be approximated to the bulk value.

In each pure crystal, the dielectric function ek¼ (e0er)k (a macroscopic parameter)
may relate to the atom polarizability ak (a microscopic parameter) by combining
Equation 2.8 – a simplified form for monoatomic crystals, that is, Pk¼NkakEe –with
Equations 2.7 and 2.3, leading to the so-called Clausius–Mossotti formula

ek�e0
ek þ 2e0

¼ 1
3e0

Nk/k: ð2:26Þ

This establishes a relation between the microscopic (ak) and the mesoscopic (ek)
scales in the composite. By analogy, the effective dielectric function ee of the whole
composite (macroscopic scale) is written as

ee�e0
ee þ 2e0

¼ 1
3e0

X
k
Xknkak ð2:27Þ

where Xk is the number of type-k inclusions per crystal unit volume, and nk is the
number of type-k atoms per inclusion. By using Equation 2.26 and realizing that
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Xknk/Nk corresponds to the fraction pk of component k in the crystal – assuming that
the density of atoms is the same in all k pure materials, it becomes

ee�e0
ee�2e0

¼ 1
3e0

X
k

ek�e0
ek þ 2e0

ð2:28Þ

that provides the searched relation between themesoscopic (ek) and themacroscopic (ee)
scales. If we consider a two-component (a, b) system, two limit cases can be
distinguished depending on the relative fractions (pa, pb¼ 1� pa) of the constituents.
When one component (a) is so diluted that each type-a inclusion can be viewed as
isolated in the host matrix formed by the other component (b), that is, when pa� pb,
Maxwell Garnett [23] proposes to derive a univocal expression of ee just by replacing e0
(where subscript �0� refers to vacuum, i.e., the �host� medium within the micro-
scopic-to-mesosocopic description of the a- and b-type pure crystals) by eb (the host
medium is crystal �b� within the mesoscopic-to-macroscopic description of the
composite) in Equation 2.28. In contrast, when the two components are in similar
proportion in the crystal, that is, when pa� pb, Bruggeman [24] comes to a vision
where all inclusions of any type, that is, a- or b-type, are immersed into the same (a,b)-
like effectivemedium. In this case, the latter plays the role of the hostmediumwhich
comes to replace e0 by ee in Equation 2.28, ending up in a fully symmetrical
expression with respect to species a and b.

2.1.5
Selection Rules [5, 17]

The phonons involved in the IR reflectivity, Raman, and Brillouin processes are
identified from symmetry considerations. The restriction to q� 0 brings in a
simplification that the atom displacements are invariant under a lattice translation,
so that only the point group should be considered (Td for zinc blende crystals). The
phonon symmetry is derived by relating the species of the point group to the species
of the site group per atom that have the symmetry of an atomdisplacement, that is, of
a translation vector (Tx, Ty, Tz). These are expressed in terms of the irreducible
representations of the point group as determined from group theory, which comes
eventually to symmetry F2, with three dimension, for both acoustical and optical
modes in zinc blende structure. Now, as phonon properties are invariant under
symmetry operations of a crystal, the light–phonon interaction should remain
unchanged also. Thus, the first step is to symmetrize the relevant tensor for the
light-matter process under consideration in terms of the irreducible representations
of the crystal. The active phonons for a given process are those with symmetries that
belong to the development of the related tensor.

2.1.5.1 Raman Scattering
Only optical modes are involved in the Raman scattering. Now, on top of the basic
selection rules imposed by the symmetry, one should consider setup-dependent ones
related to thepolarizations of the incident (~ei) and scattered radiations (~es). In fact, in a
classical approach, the Raman cross section of a TO mode is expressed as
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ðIvsÞTO � ~ei
~~Rv ~es

����
����
2

, where
~~Rv, the so-called Raman tensor, refers to the polariza-

tion v of the phonon mode.
~~Rv is a contraction of u (first-rank tensor) and du � qx

qu
(third-rank tensor) in the Raman polarization, and therefore a second-rank tensor as
represented by a 3� 3 matrix. The group theory indicates that a third-rank tensor has
only one nonzero component in the zinc blende symmetry, denoted by d hereafter,
corresponding to indices xyz and cyclic permutations. Thus for a phonon polarized
alongx¼ [001],dappearsintheyzandzypositionsoftherelatedRamantensor,denoted

by
~~Rx, the remaining terms being nul. Similar considerations apply to

~~Ry and
~~Rz.

So, in the system of crystallographic axes x, y, and z, the Raman tensors take the form

~~Rx ¼
0 0 0

0 0 d

0 d 0

0
B@

1
CA;

~~Ry

0 0 d

0 0 0

d 0 0

0
B@

1
CA;

~~Rz

0 d 0

d 0 0

0 0 0

0
B@

1
CA ð2:29Þ

for the zinc blende structure. Regarding the symmetry, qxqu and
qx
qE are equivalent since

both u andE are vectors (first-rank tensors). So, theRaman tensors are the same forTO
and LO modes. Only, the d value is different. For example, in a zinc blende crystal,
backscattering onto the (0 0 1), (1 1 0), and (1 1 1) crystal faces correspond to (TO
forbidden, LO allowed), (TO allowed, LO forbidden) and (TO allowed, LO allowed)
unpolarized configurations, respectively.

2.1.5.2 IR Absorption
Again, this is concerned with optical modes only. The relevant tensor, here, refers to
the electric dipolar moment (in a classical/molecular approach, the incident light
induces oscillating electric dipoles in the crystal, which radiate the reflected and
transmitted beams), that is, a vector (first-rank tensor). The irreducible representa-
tion of such a tensor is of the F2 type, so that the optical mode of the zinc blende
structure is IR active. A general rule is that in crystals with a center of inversion, the
Raman active modes are IR inactive, and reciprocally.

2.1.5.3 Brillouin Scattering
This is concerned with acoustical modes. To introduce the Brillouin tensor,

~~B, we
should be more explicit than that discussed in Section 2.1.3.3 on the nature of the
interaction between the incident light (visible) and the phonon (IR). Again, the
interaction is mediated by peripheral electrons. Basically, the fluctuations in strain
caused by the acoustical wave generate local x -fluctuations (dx), which in turn are
responsible for light scattering (according to the Hertz mechanism). This is at the
point that the difference between the Raman and Brillouin scatterings becomes
clear. Optical modes as detected by Raman scattering are not specially q-sensitive
(cf. Figure 2.1), so that a basic formalism at the limit q ! 0, as summarized in
Sections 2.1.2 and 2.1.3, is sufficient. In contrast, some ~q-dependence should be
there for Brillouin scattering because a rigid translation of the whole crystal (an
acoustical mode at q¼ 0) cannot produce any local x -fluctuation. With this respect, a

general expression of
~~B as a contraction of e, the strain induced by the acoustical
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phonon (second-rank tensor), and qx
qe (fourth-rank tensor) does not seem sufficiently

explicit. The tradition is to express
~~B in relation to the strain-induced variation in

e (where e¼ e0er) – rather than in x, as given by the photoelastic effect at q� 0. The

distortion of the electronic dielectric constant – a tensor – is then written

as de
!! ¼ qu

~~T , whereu is the local atomdisplacement and the elements of tensor
~~T

are of the form eaaebb time Bab

qu ,
~~B being the product of e�1 by the Pockel�s tensor.

Eventually, the Brillouin selection rules are fixed by the product ~ei
~~T v

~~es

����
����
2

– with

conventional notation. The calculations were performed in several high-symmetry

directions for all the symmetry groups as given in Ref. [25].

2.1.6
When Departing from Pure Crystals . . .

The formalism developed above is rigorous for crystals. A large class of materials,
such as glasses, remain out of this formalism. While a rigorous description of the
dynamics and the vibrational properties of glassy materials is still lacking today,
nevertheless, it is possible to extend the previous description in an approximate way.

The dynamics of a perfect crystal is represented by the phonon dispersion curves.
The disorder inherent to glasses will act in two manners on the phonon dispersion
curves. First, it induces distributions of bond lengths and angles, which results in
broadening of the dispersion curves. The second consequence is the loss of trans-
lational symmetry, and hence of the notion of Brillouin zone. Basically, all dispersion
curves collapse in their common projection on the frequency axis, that is, they merge
into some density of states. This is true in particular for optical modes that address
directly a local physical property, that is, thebond force constant, andas such arehighly
sensitive to the local atom arrangement. In fact, the loss of translational symmetry
shows itself via partial release of theRamanand infrared q� 0 selection rules. Another
effect is that the IR and Raman linewidths are generally broader in glasses than in
crystals. An example is given in Figure 2.4. Brillouinmodes aremuch less affected. As
they correspond to vibrations with long characteristic wavelength, that is, of the crystal
taken as a whole, they aremuch less sensitive to disorder andmost often the Brillouin
lines are comparable in a crystal and in the glass of same composition.

2.2
Optical Vibrational Spectroscopies Under Extreme Conditions

2.2.1
A Specific Impact/Identity in the Field

The field of high pressure is extremely multidisciplinary, as may be noticed on the
Web site of both the international organizations for high pressure (http://www.ct.
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infn.it/airapt/, http://www.ehprg.org/). All the scientific areas of �hard� sciences are
covered, butMathematics, and the industrial applications is an ever-developing field,
from the synthesis of new materials, the hot pressing, and the food processing. In
order to make progress, scientists of many fields have to collaborate into any project.
The high-temperature field may be opened to less fundamental domains, but deals
also with numerous industrial problematics such as glasses, ceramics, refractory
materials, thermal barriers, cements, nuclear industry, which are some of the main
examples. And thermodynamics is clearly connected to both parameters, temper-
ature and pressure.

In the following, we take specific examples in various scientific fields to illustrate
the power of optical spectroscopies under high pressure and temperature.

2.2.1.1 Solid-State Physics
The main effect of high pressure is to modify the interatomic distance and, thereby
the intensity and the hierarchy of the different interactions involved in interatomic
bonding. Themodification of interatomic distances and of crystals lattice parameters
directly affects the Brillouin zone dimensions and the electronic properties. The
electronic bandwidth increases under pressure and the relative position of the
various bands or localized levels changes. This can produce insulator–metal tran-
sition through a gap closing or a Mott–Hubbard process. The magnetic properties
can be modified through electronic transfer from one band to another one (spin
transition, dismutation). Dimerization processes inducing a gap opening (Peierls

Figure 2.4 Comparison of the Raman responses (top) and the IR reflectivity (bottom) of glassy
SiO2 (silica) and crystalline SiO2 (a-quartz).
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transition) leads to the existence of two different bond lengths with different
compressibilities. The pressure acts against this distortion, the largest distance
being more compressible than the shortest one, and when the distances are almost
identical, the dimerized state (insulating) becomes unstable with respect to the
symmetrical one (metallic).

We present here the example of the discovery of a nonmolecular phase of nitrogen.
Nitrogen is known to be a very stable molecular diatomic, because of the extremely
strong triple bond. An advantage can be taken from the strength of the molecular
bond: due to the difference of energy between 1/3 triple and the single bond, it would
enable to stock a large energy density by transforming the molecular materials into a
polymeric network – that could be utilized at the back-transformation to the
molecular state. Calculations [26] predicted a pressure-induced molecular solid to
single-bonded atomic crystal, whose structure was predicted to be cubic gauche
(cg-N) [27].M.I. Eremets et al. [28, 29] andM.J. Lipp et al. [30] have studied nitrogen as
a function of pressure at high temperature. The characterization techniques were the
Raman scattering and X-ray diffraction. They proved that at 110GPa and �2000K,
solidN2 transforms indeed to a new crystalline form. TheRaman scattering spectra at
110GPa and various temperatures are shown inFigure 2.5. The spectrumat 1990 K is
the first one ever measured in pure N2 where the vibron of the molecule is not
observed. It is replaced by a phonon approximately 840 cm�1. X-ray diffraction
spectra were obtained in the new polymeric structure, and Rietveld refinements were
performed. This procedure led to a cg-N structure (space group I213) with
a0¼ 3.4542� 0.0009A

	
.

In this structure, shown in Figure 2.6, all nitrogen atoms have a coordination
number of three, and all the bonds are identical. The cg-N structure was stable in the
downstroke down to 42GPa. This enabled to fit the volume in the 42–134GPa range
with a Birch–Murnaghan equation of states with the following parameters: B0¼ 298
GPa� 0.6GPa (or B0¼ 301.0� 0.9GPa for Vinet equation of state), with B0 ¼ 4,
fixed, and V0¼ 6.592A

	
[29]. cg-N is hence stiff solid with a bulk modulus value

characteristic of strong covalent solids.

Figure 2.5 The Raman spectra of nitrogen at 110GPa at several temperatures. Reprinted with
permission from Ref. [29]. Copyright 2010, American Institute of Physics.
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2.2.1.2 Earth Sciences
It is not necessary to demonstrate the importance of SiO2 not only in everyday life, but
also in geosciences. It is a major constituent of the Earth mantle and its high-
pressure/-temperature behavior is therefore fundamental in many aspects. It exists
under many different crystalline and amorphous phases.

Here, we present results on an isostructural crystal, the berlinite AlPO4, whose
phase diagram is similar to that of SiO2. This compound is obtained by replacing
the silicon atoms in the quartz structure alternatively by phosphorus and alumin-
ium, resulting in the doubling of the crystallographic unit cell. The number of
studies increased a lot after the publication of a �memory glass� property [31], that
is, at 14 GPa at ambient temperature, this compound is subjected to a structural
transformation to an amorphous phase; at the downstroke, the sample recovered
its initial crystalline structure, with the same orientation. Amorphization was
detected by energy dispersive X-ray diffraction on a powder, whereas the revers-
ibility and recovering of the orientations was detected by birefringence measure-
ments on a single crystalline sample, with measurements at ambient conditions,
before and after a pressure run to 15 GPa. It was proved by Brillouin scattering
under pressure [32] that the transition was indeed reversible with the same
crystalline orientation before and after pressurization, and moreover that the
high-pressure phase was elastically anisotropic. The first proof that the high-
pressure phase was not amorphous was given by a Raman study [33] where it was
shown that above 14 GPa, there were narrow Raman lines, footprint of a
crystallinity. Representative spectra are shown in Figure 2.7. The issue was
definitely solved by X-ray diffraction measurements [34, 35] when the structure
of the first and a second high-pressure phases were identified. The first high-
pressure phase corresponds to a coordination number of 6 around the aluminium
atoms, and four around the phosphorus, whereas the second one, starting around
47 GPa corresponds to the increase of coordination number from 4 to 6 around the
phosphorus.

Figure 2.6 Cubic gauche structure of the polymeric nitrogen. Reprinted by permission from
Macmillan Publishers Ltd: Nature Materials, Ref. [28], copyright 2010.
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2.2.2
Specificities and Instrumentation for High-Temperature and High-Pressure
Investigations

2.2.2.1 Temperature and Emissivity
Performing optical spectroscopy (infrared, Raman, and Brillouin) in the high-
temperature range is dominated by the following main characteristic: the thermal
emission of the sample and of its close environment (sample holder, heating device,
and so on). These spectroscopies act in the visible or infrared spectral range, which is
just the domain where thermal emission stands, for temperatures between room
temperature and 2000–3000K. To give some idea of the importance of thermal
emission in our problem, one can compare the typical amplitude of Raman or
Brillouin scatterings, which is too weak to be detected by the eye, and the thermal
emission of a sample heated at 2000 	C, which needs specific precautions to avoid
dazzling, as dark goggles or welder masks. For infrared transmission or reflection,
even if this simple comparison does not stand, the ratio of intensities of the required
signal versus thermal emission is comparable. In fact, as we will see hereafter,
this ratio of intensities can easily reach several orders of magnitude. Therefore,
to have a better understanding of the specificities of high temperature for vibrational
optical spectroscopy, it is essential in a first step to recall the basic features of
thermal emission. A better understanding of its physical concepts will allow to find

Figure 2.7 The Raman spectra taken during compression. Reprinted figure with permission from
Ref. [33]. Copyright 2010 by the American Physical Society.
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solutions for performing IR, Raman, and Brillouin spectroscopies up to high
temperatures.

The thermal radiation characteristics of a material are given by its spectral
emissivity, as introduced in Section 2.1.3.1. The luminance L(v, T) emitted by a
material as thermal radiation is in fact the product of two terms: luminance of
blackbody radiation, that is, Planck�s law, which fixes dependence on frequency and
temperature; multiplied by spectral emissivity, which reflects the properties of the
material itself.

Lðv;TÞ ¼ Emðv;TÞL0ðv;TÞ ¼ Emðv;TÞC1v
3 e

C2v
T �1

h i�1
ð2:30Þ

withC1¼ 2h.c2¼ 1.191� 10�16Wm2sr�1 andC2¼ 1.439� 10�2mK. Themaximum
of Planck�s law L0 stands in the mid-infrared at room temperature and progressively
shifts to high frequencies (4000 cm�1 at 2000 	C), to arrive close to the visible range at
6000 	C.

This equation, together with Kirchoff�s law, reflects all the consequences of
temperature on optical vibrational spectroscopy. To give some quantitative idea of
the effect of Planck�s law in the temperature range of interest, typically 1000–2000 	C,
the luminance close to 500 nm (wavelength of the current Raman and Brillouin
lasers) increases by about one order of magnitude every 300 	C. The optical condi-
tions for a sample reaching 2000 	C are much more severe than at 1000 	C.

One can consider the consequences of thermal radiation on each of the three
spectroscopies, IR, Raman, and Brillouin scatterings. For the Raman and Brillouin
scatterings, thermal radiation acts as a background term superimposed on the
scattered light. It is the same situation for infrared reflectivity and transmittivity,
and all derivatives (diffuse or specular reflection). The experimental routes to extract
the vibrational information from thermal background will be rather comparable and
mainly defined according to the specificities of each method. Brillouin scattering is
the favorable case (contrary to room temperaturewhereBrillouin scattering is amuch
less routine technique than the Raman or the infrared techniques) due to the high
contrast between the narrow sharp Brillouin lines and the thermal background.
Besides this, the Raman and the infrared need specific noticeable adaptations of the
optical spectrometer to be performed up to 2000 	C. Infrared spectroscopy is a
peculiar case: above some temperature threshold (300–1000 	C, depending of the
spectral range in infrared: the lowest the frequency, the lowest the temperature), an
elegant way to solve the problem of thermal emission is to measure it directly,
without lightening by a source as for reflection or transmission. As previously
exposed, emissivity is directly connected to transmittivity or reflectivity, and the
vibrational information can be extracted from emissivity measurements. Thermal
emission is not a parasitic signal but the signal to be recorded, and, as it is stronger
and stronger upon heating, one can think of easier and easier measurements! But
reality is not that simple. All these aspects will be detailed hereafter in the
corresponding subsections.

First, let us emphasize that the first way to limit difficulties due to thermal
emission on optical vibrational spectroscopies (this does not concern the emissivity
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spectroscopy, except at low frequencies – far-IR – due to room temperature thermal
emission) are to limit the effect of the first term Em(v, T) in Equation 2.30 no real
material acts as a blackbody, the spectral emissivity is always smaller than one. Then,
all means to limit effective absorption in the sample can be used: chemical purity,
homogeneity, and quality of the polishing. If there is no source of absorption in the
visible range, no emissionwill occur in this range! For example, silica of high purity
heated near its Tg (1200 	C) emits negligible intensity in the visible range, whereas
another one containing 3d ion impurities will emit a strong orange–yellow light.
Improving optical quality of the surface (polishing) and of volume (minimizing
texture effects) is important too: it is a way to limit effective absorption cross section
through multiple reflections, and, for materials heated in a furnace, it is also a way
to limit diffuse scattering of light emitted by the furnace itself. Of course, these
ideas cannot be employed in many cases. However, when realistic, they must be
tried, due to their efficiency, as they directly eliminate a large part of the problem at
its source.

2.2.2.2 High-Pressure Optical Cells, Diamond–Anvil Cells
To perform optical measurements under high pressure, there are typically two kinds
of apparatuses, the �hydrostatic pressure� cells [36], and the diamond–anvil cells
[36, 37]. The cells of first kind are normally large volume cells, where a fluid or a gas
under high pressure is led into the experimental volume through a capillary. The
windows, sealed under several techniques, are in sapphire. The maximum pressure
reached in such a cell is approximately 1.5GPa. However, the versatile setup is the
diamond– anvil cell (DAC), because of many advantages. First of all, diamond is
transparent in a broadwavelength range, it is the hardest naturalmaterial, and it has a
very high thermal conductivity. With a DAC, pressure equivalent to that of the center
of the Earth (360GPa) can be reached!

The principle of the DAC is extremely simple (Figure 2.8): two anvils squeeze a
metallic gasket. A hole drilled at the position of the center of the anvils forms the
experimental volume. It contains the sample, a pressure-transmittingmedium and a
pressure gauge, generally a piece of ruby. The pressure-transmittingmedium should
maintain hydrostatic – or at least �quasihydrostatic� conditions in the broadest
possible pressure range. 4 : 1methanol–ethanol, or 16 : 3 : 1methanol–ethanol–water
mixture arewell adapted up to 10–15GPa. Above this pressure, neon or better helium
are better suited, but present the disadvantage to need special high-pressure
equipment to be loaded in the DAC.

The general shape of the anvils is that of jewellery brilliant where the tip is cut to
form the culet. Standard�50GPa- anvils are shown inFigure 2.8. Recently [38], a new
type of anvil was proposed. Progress in diamond machining enabled to polish the
sides of the stones as a cone, instead as a faceted polygone (Figure 2.9). This enables to
have a large lateral support, leaving the complete table for the optical access.

Naturally, because by definition pressure is a force divided by a surface, the larger
the pressure one wants to reach, the smaller the surface. To reach the 100GPa range,
beveled anvils have to be used, with a typical dimension of 20–100 mm for the culet,
100–300 mm for the bevel, and a bevel angle of 7–8	 [39].
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Figure 2.8 Typical size of the diamond anvil setup for �standard� anvils.

Figure 2.9 Schematic view of conventional (top) and conical �Boehler–Almax� (bottom) high-
pressure anvils. Reprinted fromRef. [38] entitled �Newanvil designs indiamond cells�, by permission
of the publisher (Taylor & Francis Group, http://www.informaworld.com).
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The classification of the diamonds is important in view of the application one
needs. Pure diamonds, that is, without impurities – type IIa, are requested for
infraredmeasurements. For the Raman and Brillouin scatterings, themain problem
comes from luminescence of the anvils. Therefore, they have to be selected, by
comparing the intensity of the first-order (1330 cm�1) and the second-order Raman
scatterings with the luminescence around 800 cm�1.

There are many types of DAC [36, 37], and some of them are presented in
Figure 2.10, with the lever-arms DAC of Piermarini and Block [40], used for optical
measurements, the miniature Merrill–Bassett [41] with beryllium seats mostly used
for X-ray diffractionmeasurements, and the LeToullec DAC [42], the first driven by a
deformablemembrane. Figure 2.11 presents one of thefirst �pneumatic�DAC [43] in
which the pressure is varied with nitrogen gas pressure acting on the piston. As can
be seen from the various designs, the differences between them aremostly in theway
the force is transmitted to the anvils, lever arms, and Belleville spring washers,
screws, gas pressure. Depending on the utilization they are made for, the optical

Figure 2.10 Various types of diamond–anvil cells. Left: Piermarini–Block lever arms DAC
(Reprinted with permission from Ref. [40]. Copyright 2010, American Institute of Physics); Center:
Merrill–BassettminiatureDAC (Reprintedwithpermission fromRef. [41]. Copyright 2010, American
Institute of Physics); Right: LeToullec membrane DAC (5 cm in diameter) (Reprinted from Ref. [42]
entitled �The membrane diamond anvil cell: A new device for generating continuous pressure and
temperature variations�, by permission of the publisher (Taylor & Francis Group, http://www.
informaworld.com).

Figure 2.11 One of the early DACs (reprinted from Ref. [43] with IUCr�s copyright permission,
http://journals.iucr.org/), where the pressure is varied by applying a gas pressure.
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aperture may vary in the visible. As an example, in the DACs presented here,
the aperture is quite small for theMerrill–Basset and the FourmeDACs conceived for
X-ray diffraction, because the diamond anvil seats are made in beryllium. On the
contrary, using the Boehler–Almax design for the anvils, apertures as large as 50	

(cone angle) may be reached with many DACs.

2.2.2.3 High-Temperature Instrumentation
Instrumentation about high temperature can be divided in two parts: how to apply
temperature and how to measure it. For applying temperatures, two large routes are
employed: furnaces (with heating by Joule effect) or �optical heating.� This second
term concerns all devices based on heating by light absorption (lasers, image
furnaces, and so on.).

Furnace is the tool universally used for moderated temperatures (below 1000 	C).
They can be used for higher temperatures, but some limits must be kept in mind.
First, in a furnace, whatever the device, a large volume ofmatter is heated: sample, of
course, but also sample holder, and mainly the internal walls of the furnace, or the
heating device itself. These hot elements give a strong thermal radiation on the
sample – radiation is the efficient way of energy transfer at high temperatures. This
transfer is themechanism that brings thermal energy to the sample by radiation, but
this light can be reflected or scattered by the sample to the spectrometer and detector.
The apparent thermal backgroundwill be the sumof thermal emission of the sample,
and of the contribution of the sample surrounding. A furnace devoted to high-
temperature optical measurements must have its output window adapted to the
following optical devices to limit this effect, through fairly low numerical apertures.

Second limitation of furnaces is their use with specific atmospheres: metallic
heating devices can be used in air up to approximately 1600–1700 	C (platinum);
above which onemust generally use systems under vacuum or reducing atmosphere
(with tungsten heating elements for instance). The device must include specific
windows compatible with the spectral range under consideration. If this is not a real
difficulty for the Raman and Brillouin, it can be more complicated to solve for
infrared, where no material apart from diamond is transparent on the whole
vibrational spectral range. Besides these limitations, the problem of temperature
measurement in a furnace is somewhat easy to solve, at least up to temperatures in
the vicinity of 1700 	C: awell-suited thermocouple inside the furnace, in good contact
with the sample holder or the sample itself, gives acceptable values of temperature.
Above, pyrometric measurements are more adapted.

A specific system of furnace often used in micro-Raman spectrometry is the �hot-
wire� device. It consists of a thin metallic wire, heated by Joule effect, where a small
hole (typically some tens of micrometers) is made, and the sample is put into this
hole. The device is easily compatible with the geometry of a Ramanmicroscope, even
with short front distances. It is an easy mean to perform measurements on liquid
samples (the hole in the wire forms a crucible where the sample is molten). Other
advantages are the fact that the hot zone is small compared to a furnace, limiting the
thermal background. Temperature measurement can be done on the wire, the
temperature of which is close to that of the sample.
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The second class of heating devices dealswith the �optical� ones. Someeffortswere
carried out through image furnaces, where the light of an intense source (as arc
lamps) was focused onto the sample. But currently, high-power lasers are used
(mainly CO2 ones – l¼ 10.6mm,with typical powers of some tens to hundredsWatt).
Induction furnaces used for conducting samples enter also this category, as heating
with the Raman excitation laser itself [44]. Several advantages appear compared to a
�Joule� furnace: (i) Only the sample is heated, not its neighborhood. This limits the
thermal emission to the sample alone. (ii) As the mass of matter is limited, the
systems allow rapid changes of temperature (some seconds from room temperature
to 2000 	C). This is often essential, especially for liquid samples, where interaction
between them, the surrounding atmosphere, and the sample holder can lead rapidly
to noticeable changes of chemical composition. One can probe some metastable
states, of limited lifetimes. Away to limit the effect of the sample holder is to suppress
it, by putting the sample (somewhat spherical) in equilibrium on a gas flow
(Figure 2.12). This so-called �aerodynamic levitation� device was already instrumen-
ted on different spectroscopic tools [45, 46]. It works well on solids as on liquids (a
droplet in levitation), allows to control atmosphere via the choice of the sustaining
gas, and is particularly interesting for glass-forming liquids as heterogeneous
nucleation due to contact with the crucible is strongly limited.

Another advantage of heating by optical beams as CO2 lasers is their compatibility
with diamond–anvil cells, as the heating power can be focused on very small samples
(and also owing to the diamond transparency at 10.6mm).

But these optical devices display also some disadvantages. First, the sample must
absorb in the spectral range of the light source. It is not possible to heat neither pure
silicas with an arc lamp for instance (light is transmitted) normetals with a CO2 laser
(light is mainly reflected). However, in the latter case, a possible solution would be to
use YAG: Nd3þ lasers at 1.06mm. This illustrates well that it is always essential to
think emissivity when performing high-temperature experiments.

Figure 2.12 Typical aerodynamic levitation device, used here for the Raman scattering
experiments.
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The second disadvantage of optical heating devices versus Joule furnaces concerns
measurement of the temperature, which drives us to present the following topic.
As only the sample is heated, it is generally hazardous to measure temperature by
devices as thermocouples (apart if the sample is big compared to the thermocouple,
and this one in good contact with the sample, ideally inside it). But this is difficult to
realize, in fact. Temperature monitoring is most often done by pyrometry in �optical
heating� devices. And once more, spectral emissivity of the sample must be kept in
mind. Pyrometry consists of measuring luminance of the sample and of an internal
temperature-calibrated blackbody source, at some well-chosen wavenumber where
the sample spectral emissivity is known. This allows precise (DT< 10 	C) temper-
ature measurements up to more than 2000 	C. But it must be underlined that such
accuracy is completely dependent on the knowledge of the spectral emissivity of the
material under consideration (the main part of the uncertainty originates from
emissivity knowledge). Precise temperature measurements in the high temperature
are never easy, and this topic would be for itself the subject of a review article. One can
give some ideas about an elegantway, consisting of using the specific properties of the
Christiansen point [47], which is generally observed in polar dielectric materials; for
this point, standing just above the highest frequency LOmode, the refraction index is
equal to 1 and the extinction one is very low. The reflectivity and transmittivity are
near to zero, so emissivity is equal to 1 and the material acts as a blackbody for this
wavenumber. Performing pyrometry at this wavenumber will limit uncertainty on
temperature to that of the luminance alone, and obviously this Christiansen point
pyrometry constitutes the best way to measure temperatures. On the other hand,
these measurements are rather uneasy to handle, as they necessitate an infrared
spectrometer as pyrometer (see Section 2.2.2.6 below). Christiansen point generally
is most often situated in the mid-infrared, close to 1000 cm�1 for oxides that
constitute a large part of the materials of interest for high temperatures. Besides
this, pyrometric measurements also need a direct access, or through windows
transparent at the wavenumber of pyrometric measurement: this is obvious to say,
but it needs generally two sets of windows (one for Christiansen – temperature
measurements, one for vibrational spectroscopy) apart from infraredmethodswhere
the same spectral range is used.

A particular method of temperature measurement for the Raman scattering must
be cited here: the ratio of Stokes over anti-Stokes spectra gives access to temperature.
It is one of the rare direct methods of measurement of temperature, other methods,
in general, are indirect as they are based on some calibration through a well-known
temperature reference: blackbody for pyrometry, cold junction for thermocouples,
and so on. Moreover, the temperature is determined at the exact point, which is the
source of the Raman light. The Stokes-to-anti-Stokes ratio gives access directly to
temperature (provided the v4 scattering correction and the spectrometer calibration
response are done). Accuracy is never so good as at very low temperatures, as Stokes
and anti-Stokes components tend to be equal at infinite temperatures. To be precise,
this necessitates to have a good knowledge of the spectrometer response, andmust be
done on awide spectral range, not only on one point. In spite of these limitations, this
remains an efficient way to determine temperature [48].
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2.2.2.4 Brillouin Devices
The scattering geometries commonly used in order to determine the elastic constants
are shown in Figure 2.13a. In Section 2.1, the modulus of the phonon wavevector is
equal to

ffiffiffi
2

p
nk, where k� ki� ks and n� ni� ns. In Figure 2.13b, |q|¼ 2nk. Such

backscattering geometry produces the largest wavenumber shift. Figure 2.13c shows
an interesting geometry – referred to as the platelet geometry – for Brillouin
scattering under pressure (provided that an ad hoc cell is available), because
measurement of the refractive index n is not required. Indeed, in the crystal the
modulus of the light wavevector is equal to nk. Owing to the incidence angle,
|q|¼ 2nksin r, where r is the angle of the refracted photon inside the crystal with
respect to the normal to the surface. Using the Descartes law of refraction, one
obtains |q|¼ 2k sin i, where i is the known angle of incidence. In particular, the
knowledge of the relative orientation of ~ki and ~ks with respect to the crystallographic
axes allows the determination of that of ~q. The selection rules [25] allow to deduce the
related combination of elastic constants.

In any case, the frequency difference between the elastically scattered light
(Rayleigh) and the scattering by the acoustic mode (Brillouin) is small [less than
6 cm�1 (180GHz)]. Moreover, the intensity ratio between Rayleigh and Brillouin
signals is typically 106–109 in solids. Therefore, a high-resolution apparatus is
mandatory. The grating Raman spectrometer is not sufficient for that purpose, even
the triple grating ones. The best-adapted setup is the Fabry–P�erot interferometer.
This interferometer is composed of two planemirrors,maintained extremely parallel
to each other. The transmission of such a system is given by the well-known
expression:

TFB ¼ ½1�AMð1�RMÞ�1�2½1þ 4F2p�2sin2 pp��1 ð2:31Þ
where AM(RM) is the absorption (reflection) by the mirrors, the integer p the order of
interference equal to 1/2e where e is the distance between the mirrors, and F the
finesse, defined by Dv/dv, with Dv the distance between two adjacent interference
orders, also called free spectral range (FSR), is equal to 1/2e (in cm�1), and dv is the
width at halfmaximumof a transmission peak (see Figure 2.14). In fact, the finesse is
due to both the reflectivity and the planeity of the mirrors, and one can write
F�2 ¼ F�2

R þ F�2
p , where FR ¼ p

ffiffiffi
2

p ð1�RMÞ�1 and Fp ¼ m=2 for a mirror polished
at l/m.

Figure 2.13 Most commonly usedgeometries inBrillouin scattering, (a) 90	 scattering, |q|¼ 21/2nk;
(b) backscattering geometry, |q|¼ 2nk; (c) platelet geometry, |q|¼ 2nk sin r¼ 2k sin i.
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Another important quality of the Fabry–P�erot interferometer is the contrast,
defined as the ratio of the maximum-to-minimum transmitted light, that is, C¼
Imax/Imin¼ [4R/(1�R)2] þ 1. The resolving power is given byR¼v/dv¼Fv/Dv.
Taking realistic values, that is, R¼ 0.92, v¼ 2. 104 cm�1 (500 nm), and e¼ 2mm
gives F¼ 37.7, C¼ 576, free spectral range ¼2.5 cm�1, and R¼ 3�105.

Such an instrument is already quite efficent, but is often not sufficient, specially
when working with solids in the backscattering geometry where the Brillouin
efficiency is not high enough to enable a sufficient signal-to-noise ratio. Two
improvements have been made to the system, the multipass and the introduction
of the tandem Fabry–P�erot.

Suppose the beam passes N times through the interferometer. In that case, the
transmission will be TFB;N ¼ TN

FB;1. Using Equation 2.31, one can easily compute the
finesse and the contrast for theNpass system, coming toFN ¼ F1 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=N�1

ph i
and

CN ¼ CN
1

From this, it is clear that the multipassing of an interferometer is extremely
advantageous, especially in terms of contrast.

In the classicalmultipass setups, there are still some problems, that is, it is difficult
to change the free spectral range, and with one measurement it is impossible to
decide whether one line is the Stokes component coming from the interference
order,N, or the anti-Stokes one, of the orderN þ 1. In that case, one has tomake two
measurementswith different free spectral ranges. A solution to increase the FSR is to
use two interferometers in series, with slightly different FSR. In that case, the
transmission through the system is shown in Figure 2.15. The two lateral peaks of the
individual FP are attenuated by the second FP. A simple and elegant way to build a
tandemFPwas proposedby J.R. Sandercock [18], as shown inFigure 2.16. The twoFP
in tandem are scanned at the same time by a single piezoelectric stack thanks to
deformable parallelogram geometry. The optical path is such that the parallel beam
goes through the system three times, providing a high contrast and a large FSR.
Moreover, the parallelism of themirrors is independent of the scanning of the setup,
giving a good stability to the system.

2.2.2.5 Raman Devices
For high pressure, there is no specificity of the spectrometer. The only adaptation
is that, because of the small size of the samples and of the size of the diamond–anvil
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Figure 2.14 Transmission of a single pass Fabry–P�erot. Here, an alternative notation for v is s.
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Figure 2.15 Transmission through two individual interferometers, and through the tandem.Here,
an alternative notation for v is s.
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Figure 2.16 Scheme of the tandem interferometer proposed by Sandercock.
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cell, one should use micro-Raman with long working distance microscope
objectives.

Contrary to Brillouin devices and to high pressures, the Raman scattering at high
temperatures needs specific improvements to limit thermal background. If not, the
Raman measurements in classical configuration (green excitation laser) will be
limited to approximately 1000–1200 	C, depending on the Raman scattering effi-
ciency of the considered material. Above, the thermal background is too intense and
precludes detecting theRaman information. Several ways are possible to pushup this
limit, and addition of someof theseways is needed to reach 2000 	C. First, let us recall
that limiting emissivity itself (see above) is one of the most efficient ways, when
realistic. A second way is to remove thermal background, that is, to record the
spectrum of the sample with excitation laser, followed by a second record without
laser (which consists of the thermal flux emitted by the sample and its environment),
and to subtract the second from the first. This makes it possible to increase the
temperature limit by 100–200	C. Another way is to record anti-Stokes spectrum
rather than Stokes one [49], which results in a small gain in thermal background
rejection. All these solutions allow pushing up the saturation limit of the detector.
But, it is clearly insufficient to increase the limit by 1000	C. Some solutions are
possible for this goal; they will be rapidly reviewed hereafter.

2.2.2.5.1 Spatial Filtering The idea here is to limit the source volume of thermal
emission to the only source volume of the Raman scattering. The hot zone of the
sample and its immediate environment is always larger than that of the Raman
source volume. Besides this, as thermal background can be much larger than the
Raman signal, it contributes to the recorded signal even if not in ideal optical
conditions. It is of interest to limit the size of the sample surface that is imaged at the
spectrometer entrance slit to the only zone where the excitation laser is focused. This
is done by an afocal system with two convergent lenses and a pinhole positioned
exactly at their common focal point. It is the basic idea of a confocalmicroscope. Such
spatial filtering was used by Gillet et al. [50] and McMillan et al. [51] in a confocal
microscope, and then by Yashima et al. [52] (with UV excitation for the latter) in the
macro-Raman configuration, today it is often used in the high-temperature Raman
devices.

2.2.2.5.2 UVShifting of the Laser Line As the thermal radiationmaximum lies in the
near infrared, its influence progressively decreases upon increasing the excitation
laser frequency. One can position the laser excitation at higher frequencies, in theUV
range, to help removing the thermal background. Thiswas pointed outfirst by Farrow
and Nagelberg [53], and then by different groups, with good results: Both Yashima
et al. [52] and Fujimori et al. [54] were using an argon line (363.8 nm), and Zouboulis
et al. [55] a quadrupled YAG: Nd3þ laser (266 nm). Today, the availability of UV lasers
(tripled, quadrupled, and even quintupled YAG: Nd3þ ) and that of UV-dedicated
spectrometers from the different Raman manufacturers opens this way to many
groups, and clearly this constitutes one of the promising directions for the
future. However, even if UV excitation displays advantage of an increased Raman
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efficiency through thev4 scattering factor, specificities of UVexcitationmust be kept
inmind:more frequent absorption and luminescence processes, smaller penetration
depth inducing preferential analysis of the surface. Besides, IXS (cf. Chapter 4)
provides a huge high-frequency shift, which is not affected by thermal radiation
problems.

2.2.2.5.3 Temporal Filtering The driving idea is to take benefit of the fact that the
Raman scattering is a rapid effect (characteristic times beyond the picosecond scale).
So if taking a pulsed laser, with some detection device synchronized to it (opened
during the laser pulses; closed in-between), one can reject the thermal backgroundby a
factor equal to the ratio r¼ t2/t1 between the period t2 separating two pulses and the
pulsewidth t1. If compared to a continuous laser of the same averaged power, this
allows to access to very high temperatures: typical pulsed lasers (532nmdoubledYAG:
Nd3þ ) have t2¼ 1 ms and t1¼ 30ns, then a rejection factor of 3.104. Let us recall that
between 1000 and 2000 	C and for the green spectral range, thermal emission
increases by about one order of magnitude for every 300 	C, which means that
temporalfiltering is away to increase thehigh-temperature limit from1000 to2200 	C.
Temporal filtering appears as the efficient way to access to very high temperatures. It
was recently extensively discussed [56], we will limit here to instrumental aspects and
to a short comparison of pulsed 532nm laserwith continuous 355nm:UVcontinuous
device ismore efficient for �moderately� high temperatures (up to about 1700 	C), the
pulsed one is better above (see [56] for details).

2.2.2.5.4 Specific Instrumentation The pulsed Raman spectroscopymainly requires
the laser source and the detection device. However, all the optical path must be
compatible with the high peak powers inherent to a pulsed laser (this generally
precludes high-magnification objectives in micro-Raman configuration). Lasers are
not a problem since they are commercially available. For a long time, detectors were a
serious problem. The first paper about temporal filtering for the high-temperature
Raman scattering was the pioneering work by Exharos et al. [57, 58] on silicas and
boron nitride; they used a photodiode array detector (PDA). They were followed by
Bernadez et al. [59] and by the Grenoble group [60–63] that monitored plasma-
assisted growth of diamond films, with similar PDA devices. During these years, the
development and the impressive performances of CCD detectors have made them
inescapable in a Raman spectrometer. However, they are intrinsically incompatible
with nanosecond timescales, whereas PDA devices were. Devices based on photo-
multipliers and gated electronics were also used for detection [44, 64–70]. Some
attempts were also made through positioning, between sample and spectrometer,
some rapid optical door, based for instance on a Pockels device [56]. But today, amore
efficient solution is given by intensified CCDs (ICCD). These are now easy to find
commercially and offer satisfactory performances and lifetimes. The light intensifier
can be driven by a high voltage (opaque or transparent depending on the voltage) and
constitutes an optical door integrated to the detector. These ICCDs today appear as
the best solution for the time-resolved Raman measurements, and they are used by
several groups by theworld [56, 71–78]. Goncharov et al. [71], who have used them for
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simultaneous high P and high T measurements feel that ICCDs could allow the
Raman scattering up to huge temperatures (5000K).

This concept of temporal filtering through pulsed spectroscopy could also thought
to be applicable for Brillouin scattering. In fact, it is not as simple as that a specific
difficulty comes from the extremely narrow linewidth needed for a Brillouin
excitation laser, as Brillouin lines stand close to the Rayleigh lines. The short pulse
durations (some tens of nanoseconds) of a pulsed laser induce rather large frequency
linewidths, typically of 1 cm�1, incompatible with Brillouin scattering.

2.2.2.6 Infrared Devices: Emissivity Measurements (Temperature and Pressure)
As already underlined, the temperature and the infrared spectral range are intimately
connected since radiative thermal exchanges essentially stand in this range. About 30
years ago,first attempts of infrared spectroscopy at high temperaturewere carried out
by reflection and transmission techniques [11]. The problem was, as for scattering
techniques, to extract the reflection or transmission information from the thermal
background emitted by the sample and its environment. But in this case, the problem
was more complex, when using Fourier-transform interferometer, which is the
current tool in infrared spectroscopy. The sample and its environment emit a thermal
background that goes directly to the detector, where it constitutes a continuous
background superimposed to the interferogram; but, the thermal background goes
back to theMichelson interferometer, where it ismodulated by the scanner, a part of it
is reflected to the detector through the sample, which part constitutes an interfer-
ogram in phase opposition with the main one, resulting in an underestimated final
spectrum. This difficulty has a solution in the particular case of the Genzel-type
interferometer (with light focused on the beamsplitter), where it is possible to
spatially filter the second interferogram through a judicious misalignment of the
interferometer [11]. As Genzel-type interferometers are no more commercially
available today, more details will not be given here, but can be found in Ref. [11].
A consequence is that today no solution for performing reflection or transmission
infrared spectroscopy can be built based on commercial spectrometers. In fact, the
high-temperature domain is much less investigated in infrared spectroscopy than in
Raman scattering.

As already rapidly noted in Section 2.2.2.1, the best solution for opening high
temperatures to infrared techniques consists of emissivity measurements. The
thermal beam emitted by the heated sample is directly recorded by the spectrometer,
and the reference beam (obtained by removing the sample in transmittivity or
replacing it by a mirror in reflectivity) is given by a blackbody reference furnace,
ideally heated at the same temperature, and with same directional conditions.
Spectral emissivity is the ratio of these two spectra.

There are very few reports about spectral emissivitymeasurements, with the aim to
use them for vibrational spectra determination and condensed matter application.
Often, they are devoted to determine thermal balances, without focusing on vibration
properties. While dealing with lattice dynamics, one can cite Sova et al. [79] and
Rozenbaum et al. [80], who presented reports based on CO2 laser heating. The latter
authors have developed a device devoted to emissivity measurements (Figure 2.17),
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operational in a large spectral range, from far-infrared to the visible range. Again, one
of the main advantages concerns the way to solve the problem of thermal fluxes
emitted by the sample environment. The solution developed by Rozenbaum et al. [80]
is optical heatingbyusing a powerCO2 laser. The sample is aflat disk, heated by aCO2

laser. The flux emitted by the sample perpendicular to the surface is collected,
focused, and injected as source in the FT-IR spectrometer. The reference spectrum is
given by a blackbody furnace, which is translated at the exact place of the sample. All
the emission parts (laser, sample, and blackbody furnace) are firmly attached as a
whole, and can be moved without any temperature perturbation. For practical
reasons (good working point for the furnace, better stability, no need for a temper-
ature change, and no time to wait for equilibrium), the temperature of the blackbody
furnace is kept constant (qBB� 1400 	C) and the blackbody reference spectrum at the
sample temperature is deduced from the sample one at 1400 	C via Planck�s law.
By the way the system is operational on a much larger temperature range than
the blackbody furnace: up to very high temperature (! 3000 	C), down to low
temperatures, and close to room temperature. By using this system, one limits the
parasitic thermal emission fluxes, even though these are not completely removed.

Figure 2.17 Experimental setup of infrared emissivity measurements. Reprinted with permission
from Ref. [80]. Copyright 2010, American Institute of Physics.
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A subsequent analysis of the same group [81] has shown that recording accurate
results needs to take into account the remaining parasitic fluxes emitted by all optical
components situated in the immediate neighborhood of the beam, that is, typically, a
diaphragm or an opticalmount limits the diameter of the optical beam, but itsmatter
constitutes a source of thermal emission at the spectrometer temperature. This
correction (refer to Equation 2.32) is more important for intermediate temperatures,
and the low-/intermediate-frequency range.

EðqObjÞ ¼ FTðI�ISÞ
FTðIBB�ISÞ �

L½qBB�LðqSÞ�
L½qObj�LðqSÞ� ð2:32Þ

where I, IBB, and IS denote, respectively, the interferograms of the sample at
temperature qObj, of the blackbody at temperature qBB, and of the sample at the
temperature qS of its surrounding (close to room temperature). FT means Fourier
transform. In that way, all effects due to parasitic thermal emission are removed.

This device works well up to very high temperature (2500 	C and even more is
available), on solid materials as on liquids. By CO2 heating, it is possible to heat the
center part of a solid disk sample above its melting point, in that way the liquid is
sustained in a self-crucible, of identical chemical nature (at least for congruent
melting). The samplemust be rather large (typically�1 cm2) and only the hotmolten
zone acts as a source for the measurement.

Compared to the Raman and Brillouin scatterings, infrared measurements
(specular reflectivity as emissivity) need more data processing to access the relevant
vibrational information. A fitting process with specific dielectric function models
is necessary. Often, the three-parameter classical Born–Huang dispersion model
(cf. Section 2.1), or the four-parameter factorized form, is used (see Ref. [11] for a
review). Thesemodels describe quite correctly the latticemode spectral range, but are
quite less efficient to reconstruct higher frequencies, where transmission becomes
progressively semitransparent. Besides this, for high temperatures, anharmonic
effects become more important. More sophisticated semiquantum models of
dielectric functions are necessary, which take into account the frequency-dependence
of damping [82].

2.2.3
Acoustical Modes

2.2.3.1 General Presentation
As discussed in the introductory part of this chapter, the methods to measure the
elastic properties are ultrasonics (US), inelastic neutrons scattering (INS), IXS, and
Brillouin scattering. In conjunction with DAC, INS is not usable because its needs
large samples. In principle, US also requires large samples, but two developments
enabled measurements in the DAC. In �classical� US, the tranducers vibrate around
10–50MHz, which corresponds to wavelength in themillimeter range, that is, much
too large to use in a DAC. Some years ago, a gigahertz ultrasonic delay line, working
only with longitudinal waves was developed [83]. This was a big improvement,
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because with such a setup, the wavelengths are now compatible with the typical
dimensions of the sample in a DAC. About a decade later, the same group invented a
longitudinal to transverse converter enabling the study of the elastic properties in
crystals, by the US method ([84]; see Figure 2.18).

This technique presents the great advantage with respect to Brillouin scattering to
permitmeasurementswhatever the electronic state of the sample is.However, for the
moment, it seems to be limited to the 10GPa range, because of the necessity that the
diamond culet and the sample have to remain strictly parallel, which is not the case
when the pressure is increased.

The second technique is the picosecond US [85], which has been applied very
recently to the studies under high pressure. This technique is based on the pump-
probe technique: a Ti:sapphire laser produces ultrashort pulses of 100 fs corre-
sponding to a wavelength of�800 nm. The laser beam is split into pump (�20mW)
and probe (�3mW) beams (Figure 2.19) by a beamsplitter. The pump is focused on
one surface of the sample, whereas the probe is focused on the opposite one. Both
focus points are of the order of 3mm. The probe beam is scanned on the sample
surface using a X–Y piezoelectric stage to locate the pump beam. The effect of the
pump laser pulse is to create a sudden and small temperature rise (1 K), which
produces a longitudinal acoustic strain field. The thermal and acoustic effects alter
the optical reflectivity of the sample in two ways: the photoelastic effect and the
surface displacement as the acoustic echo reaches the surface. The first modifica-
tion contributes to the change of both real and imaginary parts of the reflectance,
and the second one to the change of the imaginary contribution only. The variation
of the optical path length of the probe enables to detect the reflectivity modification
as a function of time. The detection is carried out by a stabilized Michelson
interferometer that allows the determination of the reflectivity imaginary part
change (at high pressure, interferometric measurements are mandatory to effi-
ciently detect acoustic pulses with a low-frequency spectrum due to sound atten-
uation). The possibilities of this setup were tested by performing measurements of
the elastic properties of the quasicrystal AlPdMn [86]. Two echoes corresponding to
longitudinal acoustic waves were recorded at each pressure, through the relative

Figure 2.18 Ultrasonics in a DAC. (A) Converter from longitudnal to transverse wave. It is made of
a YAG crystal that produces pure mode with well-defined polarization direction. (B) Scheme of the
whole setup. Reprinted from Ref. [84]. Copyright 2010 National Academy of Sciences, U.S.A.
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variation of the reflectance imaginary part. The first echo corresponds to a single
way between the two surfaces of the sample, the second one being reflected twice
more at the AlPdMn/PTM interfaces.

In order to deduce the sample thickness, the experiment was first performed at
ambient conditions. The knowledge of the sound velocity, and the measurement of

Figure 2.19 Experimental setup used to perform picosecond-laser acoustics studies at high
pressure (Reprinted figure with permission from Ref. [86]. Copyright 2010 by the American Physical
Society). The arrow indicates the schematic illustration of generation and detection process for
AlPdMn in DAC. Inset: Enlargement of the ultrasounds in the DAC. PTM: pressure-transmitting
medium. There is a thin layer (�1 mm) between the sample and the diamond (pump side).

Figure 2.20 Pressure dependence of the longitudinal sound velocity of AlPdMn. The red circles
were obtained from classical ultrasonic measurements, and the black and cyan crosses from the
picosecond measurements presented here. Reprinted figure with permission from Ref. [86].
Copyright 2010 by the American Physical Society.
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Figure 2.21 Spectrum obtained of AlPdMn at 9.85GPa. The two insets present enlarged parts of
the first and second echoes. Reprinted figure with permission from Ref. [86]. Copyright 2010 by the
American Physical Society.

the transit time gives the thickness through v¼ 2d/twith a high accuracy. The transit
time is measured under pressure with the same accuracy. The pressure dependence
of the thickness is obtained from the equation of state [87], and the sound velocity
finally deduced as a function of pressure.

This technique is particularly promising for several reasons. First, it may be
utilized with any kind of sample, transparent or opaque, and of dimensions perfectly
adapted to the DAC. Second, it is not perturbed by the deviatoric stresses induced by
the pressure-transmittingmedium, as shown in Figure 2.20, where the black crosses
were obtained using argon as a pressure-transmitting medium, and the cyan ones
with neon (neon is much softer as argon), contrary to gigahertz method. It also does
not suffer from the curvature of diamonds imposed by very high pressure. Another
great advantage of this technique is that it enables the measurement of the
attenuation: subtracting the thermal background from the oscillations shown in
Figure 2.21 permits the calculation of the attenuation in the pressure-transmitting
medium. The principal disadvantage of this technique is that for the moment, the
authors did not found the possibility to measure shear waves. The case of the
quasicrystal, AlPdMn is specially favorable because it is elastically isotropic, that is,
(C11�C12)/2¼C44. Therefore, the precise determination of the equation of state
using X-ray diffraction gives the bulk modulus B¼ (C11 þ 2C12)/3¼C11 þ 4C44/3.
Hence, with both measurements, the two elastic moduli are determined.

2.2.3.2 Examples
H2O is a chemical species with one of the richest known phase diagrams with more
than 12 different crystallographic phases, 3 amorphous structures (low-density
amorphous, high-density amorphous, and very high-density amorphous) with
first-order transition between them, and two liquid phases (low-density liquid,
high-density liquid). This property, together with the importance of water for life,
and the particular physical properties of this compound, led to an extremely rich
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literature. The elastic properties of H2O were studied as a function of pressure and
temperature. At ambient temperature, the succession of phases is water ! ice VI at
approximately 1.05GPa and ice VI ! ice VII at 2.2 GPa. The structure of ice VI is
tetragonal (space group P42/nmc), and that of ice VII, cubic (space group Pn3m). The
first Brillouin scattering studies of H2O at ambient temperature under high pres-
sure [88] were performed in the backscattering geometry (see Section 2.2.2.4). In this
geometry, the knowledge of the refractive index is mandatory. Fortunately, it was
known in the liquid, and measured at the liquid – ice VI equilibrium. It was
extrapolated to high pressure with the hypothesis that n is a linear function of the
Eulerian strains, using the measured equation of state of ices [89]. In that way, the
sound velocitywas computed from the results presented in Figure 2.22. The square of
the sound velocity is equal to the ratio of a combination of elastic moduli by the
density. In this chapter, the results have been analyzed in terms of Murnaghan�s
equation of state by plotting the logarithm of the elastic modulus C versus log (r/r0)
(see Figure 2.23). The slope in the liquid range is approximately 6.8, consistent with
that obtained in liquids, and that obtained both in ice VI and in ice VII is
approximately 4.3, in good agreement with the B0 value deduced from the X-ray
equation of state [89], which is 4.1.

These measurements performed up to 30GPa have been extended up to
67GPa [90] and performed on D2O up to 34GPa [91] with results similar to those
obtained on H2O.

The results on ice VII have been improved by using the platelet geometry [92]. We
recall that such geometry presents the advantage of not implying themeasurement of
the refractive index (cf. Section 2.2.2.4), and further enables to measure the
transverse acoustical phonons, that are often not seen in the backscattering geometry.
The authors not only used the platelet geometry but also developed a newmethod of
measurements for single crystals grown under pressure, like ice in the present
case. The crystallographic orientation of the sample was not determined by X-rays.
In order to overcome this lack, the authors did rotate the DAC around the anvils
axis, measuring the Brillouin spectra every 10 degrees. Now, the square of the
velocities of a cubic crystal may be expressed as a function of six variables:

Figure 2.22 Brillouin frequency shift and product nV of water, ice VI, and ice VII. Reprinted figure
with permission from Ref. [88]. Copyright 2010 by the American Physical Society.
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v2i ¼ f ðC11=r;C12=r;C44=r; q;j; xÞ, where the subscript i stand for the three acous-
tic modes; r is the density; and q, j, and x are the Euler angles relating the laboratory
and the crystal frames. A least-square fit procedure enabled the determination of the
Cij/r, and subsequent use of the X-ray determined equation of state [89] did provide
the value of the individual elastic moduli as a function of pressure (Figures 2.24
and 2.25).

The same technique was applied [93] to the measurement of the elastic moduli of
the more complex ice VI, stable at ambient temperature between 1.05 and 2.1GPa

Figure 2.23 Plot of log10(rv
2
L) as a function of log10(r/r0).

Figure 2.24 Brillouin shift and sound velocities in ice VII at 4.7GPa. Reprinted figure with
permission from Ref. [92]. Copyright 2010 by the American Physical Society.
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(see Figure 2.26). This phase is tetragonal and has therefore six elastic moduli, C11,
C12, C13, C33, C44, and C66.

At the same time, the elastic moduli of ice VI were determined also by Brillouin
scattering [94], but on large (125 mm3) single crystals at �2 	C and 0.72GPa, using

Figure 2.25 Pressure dependence of thee elastic moduli of the cubic ice VII at 300 K. Reprinted
figure with permission from Ref. [92]. Copyright 2010 by the American Physical Society.

Figure 2.26 Pressure dependence of elasticmoduli in a liquid, tetragonal ice VI, and cubic ice VII at
300 K. The solid line indicates the adiabatic bulk modulus. Reprinted figure with permission from
Ref. [93]. Copyright 2010 by the American Physical Society.

50j 2 Optical Spectroscopy Methods and High-Pressure–High-Temperature Studies



90	 geometry. The accuracy of the Brillouin frequency shift is certainly much better
under these conditions, but the determination of the refractive index is mandatory.

The results on large crystals were confirmed in a work on ice III and ice VI [95],
where theBrillouin scatteringwasmeasured at 271K andbetween 0.62 and 0.82GPa.
The results obtained by both techniques are compared in Table 2.1. There are three
important differences between the two sets of results: (i) 50% difference in C66, (ii)
20% difference in C11, and (iii) inversion between C12 and C13. The origin of these
discrepancies is not clear. Again, in many of the experiments, the orientation of the
crystals was not made by X-rays. In the DAC, it was deduced from the fitting
procedure, while for the large crystal it was made by measuring the birefringence.
This is the explanation proposed by H. Shimizu [96] who calculated that with a 45	

rotation of the crystalline axes around the z-direction, the values are close to those
obtained in the DAC.

The adiabatic bulk modulus can be deduced from the elastic moduli via the
relation

BS ¼ C33C11�2C2
13 þC33C12

C11 þ 2C33�4C13 þC12
: ð2:33Þ

By using the values of Table 2.1, one can find BS¼ 17.8GPa for the large crystal
and 19.5GPa in the DAC.

Quartz is almost as present in our everyday life as water, although it is not vital for
human life. It is the major rock-forming mineral, and it plays a fundamental role in
the Earth�s crust. Moreover, both cristobalite and tridymite exist in two varieties, with
several amorphous modifications. In the simplified phase diagram shown in
Figure 2.27, the silicon atoms are tetrahedrally coordinated with oxygen, but in the
stishovite where the coordination number is 6. At ambient conditions, the stable
structure is thea-quartz, which is trigonal (space groupP3121).When compressed at
ambient temperature, the a-quartz remains stable up to approximately 20–25GPa
(there is no direct transformation to coesite or stishovite structures). At that pressure,
there is a progressive destabilization of the structure, leading to an amorphous
phase [97, 98]. This transition in such an important material provoked an abundant
literature, both on the experimental and the theoretical sides. We will restrict
ourselves here to the elastic properties. It should be emphasized at this point that

Table 2.1 Comparison of the elastic moduli (in GPa) obtained in the DAC and on large single
crystals.

[93] (300 K, 1.23GPa) [94] (271 K, 0.72GPa) [94] With rotation 45	 [96]

C11 32.8 26.8 31.1
C12 11.8 14.5 10.3
C13 14.7 12.8 12.8
C33 27.8 26.2 26.2
C44 6.3 6.3 6.3
C66 5.9 10.4 6.1
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sound waves propagate in all materials, that is, none of the concerned technique is
able to detect whether a sample is in a crystalline or an amorphous phase.

The transition pressure (�20GPa) led to the use of Brillouin scattering as the only
possible technique. The first result was obtained in the backscattering geometry [99].
The experiment used either argon or 1 : 4 ethanol–methanol mixture as a pressure-
transmitting medium, with no difference between the results. The longitudinal
modes were obtained for phonons propagating parallel and perpendicular to the
[0 0 1] axis. The experiment was performed up to 25GPa, during both pressure
increase and pressure decrease. During upstroke, the Brillouin peaks began to
broaden above 15GPa, but sharpen again at the downstroke below 10GPa. The
astonishing result presented in this chapter is that the recovered sample, supposed to
be amorphous, is elastically anisotropic; indeed, as shown in Figure 2.28, the LA
modes measured at ambient after an upstroke to 20GPa are at 1.3 cm�1 along the
c-axis, and at 1.45 cm�1 in the perpendicular direction.

It has been later observed by transmission electron microscopy [100] that the first
step of amorphization occurs by the formation of planar defects, followed by the
formation of the amorphous phase on the defect sites. Indeed, these planar defects
are due to the formation of one crystalline phase at 21GPa [101].

The most recent results obtained by Brillouin scattering on quartz ([102], see
Figure 2.29) were obtained in the platelet geometry (cf. Section 2.2.2.2), by using the
technique developed by H. Shimizu, and presented in the preceding paragraph for
water. The experiment was performed using neon or helium as a pressure-trans-
mittingmedium (with nomeasurable difference). It should be noted here that this is
the crystal with the lowest symmetry on which the Shimizu�s technique has been
used. One of the goals of the experiment was to determine which of the stability
criteria (Born criterion) is involved in the a-quartz high-pressure destabilization. It
seems to be necessary to remind once more that in trigonal crystals (32, 3m, and 3m
classes), the Born criterion gives rise to only two conditions [103, 104], that is,

Figure 2.27 Schematic phase diagram of SiO2.
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B1 ¼ ðc11 þ c12Þc33�2c213 ¼ 2ððc11�c66Þc33�c213Þ > 0 and B2 ¼ ðc11�c12Þc44�2c214
¼ 2ðc66c44�c214Þ > 0. These conditions are labeled B2 and B3 in [102]. The main
finding of this chapter is that the condition labeled here B2 decreases above 15GPa,
and reaches 0 around 45GPa.

Unfortunately, it has been later shown by US measurements [104] that there are
some inconsistencies in [102], and that the attribution of themodes is not correct. The
Born criterion both increase with pressure. c44 increases with pressure, while c66
decreases.

It might be emphasized that this powerful technique should be handled with care,
because the orientation of the studied crystal is not checked with X-rays.

SiO2 at very high temperature
Silica is an important material for its technological application, as well as for its
unusual properties. For instance, in the glassy state its compressibility increases with
pressure, as do its refractive index and elastic moduli with temperature.

Glassy silica is made up of a three-dimensional open network of SiO4 tetrahedra
linked by bridging oxygens. The very strong Si�O bonds have an almost constant

Figure 2.28 LA modes in quartz versus pressure. Solid (open) symbols correspond to upstroke
(downstroke). (a) [0 0 1] direction and (b) perpendicular direction. Reprinted figure with permission
from Ref. [99]. Copyright 2010 by the American Physical Society.
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length, and the disorder of the structure is given by the wide range of values adopted
by Si�O�Si angles. As a result, the thermal-expansion coefficient of the glass is
small, like that of the liquid.

The physical properties of liquid SiO2 remain not well known, however, due to
the experimental difficulties related to a very high glass transition temperature

Figure 2.29 Elastic moduli of quartz as a function of pressure (Reprinted figure with permission
fromRef. [102]. Copyright 2010 by theAmerican Physical Society). Solid (empty) symbols represents
results obtained during (de)pressurization.

Figure 2.30 Brillouin scattering spectra of SiO2 obtained at various temperatures in the 90	

geometry. The central peak is the Rayleigh line, and the peaks to the left and to the right are the anti-
Stokes and Stokes Brillouin lines, respectively.
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Figure 2.31 Longitudinal (C11, circles), transverse (C44, diamonds), and bulk (squares) moduli
against temperature. Reprinted figure from Ref. [105] by permission from EDP Sciences.

(1450 K) and extremely high viscosity, that is, above 2000 K, the melting point of
cristobalite.

Brillouin scattering studies have been performed up to 2300K in a 90	 geometry,
which enabled to measure the velocities of both the longitudinal and the transverse
acoustic modes [105]. The sample was first melted inside a heating wire made of
platinum–iridium alloy and cooled down before the start of the experiment. Typical
Brillouin spectra obtained using this setup and a tandemFabry–P�erot interferometer
are shown in Figure 2.30 for various temperatures. From the frequency shift, the
sound velocity has been obtained through a modeling of the refractive index as a
function of temperature. From the longitudinal and transverse sound velocities, the
elastic moduli could be deduced from C11 ¼ r:V2

L and C44 ¼ r:V2
T, respectively.

Here,r is the density calculatedwith the assumption of a constant thermal expansion
coefficient and VL (VT) is the longitudinal (transverse) sound velocity. From the two
elastic moduli of an isotropicmedium, the bulkmodulus is given by B¼C11� 4C44/
3. The threemoduli are shown in Figure 2.31 as a function of temperature. There, the
temperature range without experimental points is due to the recrystallization of the
sample, which prevents any measurement. One striking result of this experiment is
the continuous increase of the bulk modulus, that is, the decrease of the compress-
ibility, up to the highest temperature reached.

2.2.4
Optical Modes

2.2.4.1 Pressure Aspect
Carbon dioxide presents a good example of the power of optical spectroscopies for the
determination of the structural and vibrational properties of matter. At ambient
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conditions, CO2 is a simplemolecular gas, and an important atmospheric constituent
in the sense that it is one of the powerful global warming gases. Subjected to large
compression, the tendency of themolecular gases is that the intramolecular bonding
weakens with respect to the intermolecular one, leading finally to nonmolecular
solids. Such an example was given in Section 2.2.1.2 in the case of nitrogen. CO2 was
found also to lose its molecular character at high pressure and high
temperature [106].

The phase diagram was explored by different techniques such as X-ray diffrac-
tion, Raman, and infrared spectroscopies. However, the full complexity of this
phase diagram is certainly far from being known, and the recent Raman measure-
ments led to the discovery of a new structure along the melting curve ([107], see
Figure 2.32), CO2-VII. The symmetry of this phase was determined by X-ray
diffraction, and is orthorhombic Cmcb (identical to Cmca with an inversion of
a- and b-axes).

Like many phases of carbon dioxide, this could be maintained down to 300K
(Figure 2.33) in ametastable state. In the cited study, the authors prove that phase VII
is strictly molecular, with a C¼O bond length not far from that in phase I. Moreover,
they could determine the internal energy difference between phases IV and VII, that
is, 2.5 meV/molecule at 726K. This strongly supports that phase IV, and most likely
phase II, are molecular phases too, in contradiction with the phase diagram
presented in Figure 2.34.

Amorphousmaterials, amorphous-amorphous transition, pressure-induced amor-
phisation. The vibrational spectrum of a disordered material, glass or amorphous, is
characterized by a low-frequency excitation, commonly referred to as the �Boson
peak.� It is observed in the Raman scattering and in inelastic neutron scattering.
The origin of this boson peak is still controversial, but is in most cases ascribed to an

Figure 2.32 Phase transition points of CO2 from the Raman scattering (Reprinted figure from Ref.
[107] by permission from EDP Sciences). The curves are fit to the data. The melting points of phase
IV and phase VII are well fitted by the Simon–Glatzel law: T¼ T0[1 þ (P�P0)/a]1/cwith T0¼ 805 K,
P0¼ 11.15 GPa, a¼ 4.6(8) GPa and c¼ 3.8(6). Photograph: sample of phase VII (with pressure
sensors) at 770 K and 11.8GPa.
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excessdensityof vibrational stateswhoseorigin is in transversevibrationalmodes [108,
109]. The pressure dependence of the boson peak could be used to clarify his
properties, but it clearly depends on the studied materials. For example, in glassy
As2S3, �pressure effects on the Boson peak aremanifested as an appreciable shift of its
frequency to higher values, a suppression of its intensity, aswell as a noticeable change
of its asymmetry leading to a more symmetric shape at high pressures� [110]. On the
contrary, in poly(isobutylene) densified by 20% at 1.4GPa, if the intensity decreases
and there is a shift to higher frequencies, �surprisingly, the shape of the boson peak
remains unchanged even at such high compression� [111]. The temperature depen-
dence of the Boson peak in glasses will be discussed in the following Section 2.2.4.3,
through the example of silica.

Figure 2.33 The Raman spectra of CO2 collected on quenched phase VII at 300 K (top) and along
an isotherm at 719K going from phase I to phase IV through phase VII (bottom). Reprinted figure
from Ref. [107] by permission from EDP Sciences.

Figure 2.34 Phase diagram of CO2 showing the molecular (white), intermediate (blue), and
nonmolecular (red) phases. The arrows represent typical experimental paths. Reprinted by
permission from Macmillan Publishers Ltd: Nature Materials, Ref. [106], copyright 2010.
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The story of first-order amorphous–amorphous transition was open with the case
of the low-density amorphous (LDA) to high-density amorphous (HDA) transition in
water ice [112]. The order of the transition was deduced from DV measured by the
displacement of the piston in a piston-cylinder apparatus. It was later confirmed
directly by neutron diffraction in a Paris–Edinburgh Press and by the Raman
scattering in a diamond–anvil cell [113]. In this work, the authors show in situ the
coexistence of the two forms of amorphous ices, and the transformation from one
form to the other one at constant pressure.

The compression of crystals leads to denser structures, crystalline, or amorphous.
This pressure-induced amorphization may be due to potential barrier, and may
happen either suddenly like in ice at low temperature and high pressure [114] or in
several steps. The case of Co(OH)2 illustrates this last process [115]. At ambient
temperature, the Raman and infrared absorption spectra show a decrease of the
intensity and a large broadening of the modes around 11GPa, characteristic of a
pressure-induced amorphization. The transition is shown to be reversible. However,
X-ray diffraction show that the compound retains crystalline order at least up to
30GPa, that is, much higher than the �amorphization� pressure. Because the X-rays
intensities are insensitive to the positions of the hydrogen atoms, the authors
conclude that the Co–O sublattice remains ordered, while the hydrogen sublattice
becomes disordered. In Sc2(MoO4)3 the story presents similarities, in the sense that
in a first step theMoO4 tetrahedra become disordered around 4GPa, as shown by the
large broadening of the internal modes of the molybdate ions. Finally, a complete
amorphization of the crystal does occur only above 12GPa [116]. In that case, the
amorphization is an irreversible transformation.

2.2.4.2 Temperature Aspect
Searching to access opticalmodes in thehigh-temperature rangedealsmost oftenwith
large fields of interest. First of them concerns condensed matter physics and physical
chemistry: phase transitions, chemical species, anharmonicity, metastability, and
mechanisms of conductivity. A specific case is the physics and chemistry of glasses
and their related liquids. The goals proceed from a structural point of view, chemical
composition,behavioraroundTg, andeffectsofannealing.Glassesathigh temperature
constitute a multidisciplinary field in which scientists from the fields of condensed
matter physics, chemistry, and geoscience act and interact. In order to display themain
features of opticalmode spectroscopy at high temperatures, typical applicationswill be
reviewed hereafter concerning diamond, refractory oxides (spinels), and glasses.

Diamond was one of the most studied compounds by the Raman spectroscopy at
high temperatures [48, 59–65, 117–121]. Obviously, infrared methods here are not
relevant since no first-order mode is infrared active. The reason of this interest is the
need for monitoring crystal growth of diamond films by CVD methods. Figure 2.35
displays the dependence of the diamond Raman line during plasma-assisted CVD
deposition. The increase of the line intensity evidences an increasing thickness of the
film; the line position is temperature dependent and stress dependent. It can be used
as a thermometer; during growth, the film surface is supposed to be stress-free and
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the line position can be used as a thermometer. If temperature is known by another
way, one can monitor the level of stresses inside the film, during annealing
treatments, for instance. Note that even if the temperature in this example is not
so high (850 	C), the light emitted by the plasma gives a background signal
comparable to much higher temperatures.

Cubic boron nitride is rather analogous to diamond and was the object of several
studies at high temperatures [44, 58], with a particularly spectacular in situ evidence of
the cubic-to-hexagonal transformation [44] at 1570 	C (see Figure 2.36). Aluminum
nitride of related structure was also investigated [122].

Refractory oxides obviously take a large place in high temperature in situ charac-
terization. Among them, the spinel MgAl2O4 takes a peculiar place, for geoscientists

Figure 2.35 The Raman spectra recorded during the growth of a diamond film on a silicon
substrate, inside a plasma-assisted CVD reactor (T¼ 850 	C). The figure covers 24 h of deposition.
Reprinted figure from Ref. [120] by permission from Wiley.

Figure 2.36 The Raman spectra exhibiting the cubic to hexagonal form of BN at 1840 K (cal. line
denote a frequency–calibration line). Reprinted figure with permission from Ref. [44]. Copyright
2010 by the American Physical Society.
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Figure 2.37 The left and right widths at half maximum for the Raman Egmode ofMgAl2O4 at high
temperatures, on two spinels of different origin. The gray zone indicate the irreversible order–
disorder transition. The widths in the nonstoichiometric synthetic spinel at room temperature are
indicated by arrows. Reprinted figure from Ref. [74] by permission from theMineralogical Society of
America.

as for condensed matter physicists. One of the reasons of this interest is the
irreversible order–disorder transition occurring in this compound above 1000 	C:
the cations are ordered below this range (Al on octahedral sites andMg in tetrahedral
ones), and become progressively disordered above. This compound was the object of
several studies dealing with this transition, through the infrared emittance and the
Raman experiments [74, 81, 123]. Figure 2.37 displays the temperature dependence
of linewidths obtained from the Raman measurements [74] (as disorder induces
appearance of new lines of the low-frequency wing of the main lines, it results a
strong asymmetry of the resulting lines). This figure evidences the increasing of
disorder in a temperature range slightly dependent of the thermal history of the
sample.Disorder is characterized by an inversionparameter x (the real formula being
(Mg1-xAlx)[MgxAl2-x]O4, where parentheses stand for tetrahedral sites and square
brackets stand for octahedral ones. De Sousa Meneses et al. [81] have succeeded in
determining accurately this inversion parameter from intensity of infrared lines.
The same authors have extended their infrared emittance measurements up to the
liquid state (Tmelting �2125 	C), with evidence of a noticeable increase of the
emittance in the mid-infrared range (3000–5000 cm�1) beginning more than 200 	C
below melting (Figure 2.38). At the same time, vibration mode frequencies are not
modified, whereas they undergo a clear jump at melting temperature (Figure 2.39).
The increase in emittance is explained by a Debye-like relaxation thermally activated,
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Figure 2.38 Effect of the solid to liquid phase transition on frequency and full width at half
maximum of a typical vibration mode of MgAl2O4. Reprinted figure from Ref. [81] by permission
from the Institute of Physics.

with activation energy unaffected at the melting. Similar behaviors of increase of
absorption in themid-IRwere also observed in other oxides (MgOandAl2O3), but not
at all in silica [80]. The short characteristic time of the relaxation leads to think that it is
some electronic contribution. A deeper understanding of this phenomenon is still
lacking.

Another class of refractorymaterials was also object of several reports: zirconia and
yttria-stabilized zirconia [56, 67, 124, 125]. The sequence of phase transitions, the
effect of size particle (nanostructured ZrO2), and the need for a better knowledge of
stabilized zirconia (a material often used in high-temperature devices) were the aim
of these studies.

Another class of refractorymaterials was also object of several reports: zirconia and
yttria-stabilized zirconia [56, 67, 124, 125]. The sequence of phase transitions, the
effect of size particle (nanostructured ZrO2), and the need for a better knowledge of
stabilized zirconia (a material often used in high-temperature devices) were the aim
of these studies.

REPETITIVE:

Glasses, as a generic topic, are the object of numerous studies. The high-temperature
range correspond to many interesting physical subjects: physics of the glass tran-
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sition, structure of the liquid and of the undercooled liquid, coordination number in
the liquid and the glass, local changes on recrystallization, andmonitoring of stresses
and of structural effects of annealing for the main ones, which are mainly not only
silicates but also aluminates [51, 57, 69, 77, 80, 126–143].

Silica takes an important place in this list with important contributions, starting by
Exharos�s one that can be considered as a pioneering work [57] of the high-
temperature Raman spectroscopy. The glass transition of silica is approximately
1200 	C,meaning thatmeasurements of the liquid above this temperature and of the
glass upon annealing in this range are of the highest interest for a better knowledge of
this model glass. Many works were undertaken, some of them were undertaken
recently (Raman: ([144–146] (Figure 2.40), [51, 139, 147]) and infrared: [79, 80, 148]).
The main results concern the nature of the structural relaxation close to Tg (decrease
of S�O�Si average bond, increase of Si�O bond stretching force, temperature
dependence of the �ring � modes D1 and D2), and structure of the liquid at very high
temperature, with breaking of some intertetrahedra bonds and formation of terminal
Si¼O bonds. It was also shown that the boson peak persists not only in the
supercooled liquid but also in the stable liquid state at higher temperature, with
three distinct regimes (glass, supercooled, and molten). The existence of the boson
peak in the stable liquid could be supported by a specific topology of the potential
energy landscape [145].

Molten salts. Besides all these very high temperatures, sometimes the word
�extreme� applies only to the temperature but also to the chemical nature of the
sample under study. Some liquids aremuch aggressive at intermediate temperatures
and constitute serious problems to imagine a sample environment compatible with
temperature, corrosive conditions, and optical measurements. It is typically the case
ofmolten salts,mainly fluorides, for which specific devices were conceived operating
at somewhat intermediate temperature (typically 1000 	C) [149–151].

Figure 2.39 Set of emittance spectra of MgAl2O4 in both solid and liquid states. Melting is around
2400 K. Results show appearance of a relaxation process inducing an emittance increase in themid-
IR. Reprinted figure from Ref. [81] by permission from the Institute of Physic.
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2.3
Perspectives

2.3.1
Instrumentation

2.3.1.1 Natural Development of Existing Setups
The past years were marked by an significant increase of activity in the high-
temperature Raman scattering, mainly due to important technological improve-
ments, with the availability of ICCD devices. This impulse will presumably continue
on the next years due to the interest for high T in many domains (see hereafter) One

Figure 2.40 The Raman spectra of silica in glassy, supercooled (s.l.), and liquid states. Reprinted
with permission from Ref. [146]. Copyright 2010, American Institute of Physics.
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can think in a realistic future to a new breakthrough with ICCDs operating in the UV
range, which would mix temporal filtering and UV-shift advantage.

Infrared methodology is up to date largely less developed than the Raman
methodology for high temperatures. The emissivity measurements systems remain
rare, at least aimed by an aim in solid (or molten) state and material sciences.
However, it undoubtedly constitute the most efficient way to attain very high
temperatures, up to 2500–3000 	C – the highest temperature results reported in
this chapter were obtained through IR emissivity measurements.

2.3.1.2 Innovative Combinations of X-ray and Vibrational Spectroscopies
It is clear that the data obtained by vibrational spectroscopies alone are not sufficient
to understand the properties of the compounds, especially when pressure or
temperature are used as external thermodynamic parameters. In any case, one
needs the structure of the sample under examination, the symmetry, the interatomic
distances, the density, and the dependence of these quantities with the pressure/
temperature. In other words, X-ray diffraction and/or X-ray absorption give prere-
quisite information in order to interpret any result given by the other techniques.
Another one problem is that under extreme conditions, especially when the
measurements are performed at both high pressure and high temperature, the
reproducibility of a given thermodynamic condition is extremely difficult. When a
phase transformation is generated at high pressure, measurement of the maximum
of physical properties is highly desirable because itmay happen that the new phase is
(meta)stable in a small part of the P, Tphase diagram. It is the reason why in several
synchrotron radiation facilities, Raman, infrared, or Brillouin setups are build in
beamline stations to allow the simultaneous measurement of structural and vibra-
tional/elastic properties. One good example is given by the 13-BM-D station (GSE-
CARS, see Figure 2.41) of the Advanced Photon Source (Argonne, USA). This X-ray

Figure 2.41 Schematic view of the setup installed on the 13-BM-D beamline of the APS. Reprinted
with permission from Ref. [152]. Copyright 2010, American Institute of Physics.
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diffraction beamline is installed on a bending magnet and equipped with a MAR
image plate detector for the X-rays. A Brillouin interferometer has been installed on
an optical table above the X-ray beam. An optical system enables to make the
measurements in a diamond–anvil cell without anymovement, simultaneously with
the X-ray diffraction [152]. With this setup, the authors could measure the elastic
properties of MgO together with the X-ray diffraction and of NaCl at high pressure
and high temperature, with an oven around the diamond anvils.

The number of experimental stations developing capability of the Raman spec-
troscopy together with the X-ray measurements (both diffraction and absorption) is
growing fast. For example, the ID13, as well as the SNBL beamline of the ESRF
(Grenoble, France) and the SAMBA beamline at SOLEIL (Paris, France) offer the
possibility of micro-Raman measurement both in-line and off-line, but for the time
being not simultaneously with the X-ray diffraction measurement.

2.3.2
Physical Phenomena

2.3.2.1 Phonons (Zone-Center): A Natural �Mesoscope� into the Alloy Disorder
Since the pioneer extended X-ray absorption fine structure (EXAFS) measurements
performed by Mikkelsen and Boyce with In1-xGaxAs [153] it is well known that each
bond tends to retain its natural bond length in an alloy, corresponding to a 1-bond !
1-length picture of the lattice relaxation of zinc blende alloys. The naive relation
quoted in italics in Section 2.1.3.2.2 between the bond length and the bond force
constant suggests a similar 1-bond ! 1-TO generic scheme for the lattice dynamics.
Such behavior is well accounted for by the modified random element isodisplace-
ment (MREI)model [154], where eachmode shifts smoothly between the frequencies
of the parent and the impurity (vimp) modes when x changes, its intensity scaling as
the related bond fraction. No singularity is expected. Only one input parameter is
needed per bond, that is vimp. The whole trend can be figured out by imagining that
the bond of like species is equivalent, immersed into the same VCA-type continuum
(Figure 2.42a). In this sense the MREI model is VCA-like.

When confronted with the Raman/IR data the 1-bond ! 1-TO generic scheme
comes into two main types: (i) pure 1-bond ! 1-mode, that is, well separated A–B
and A–C TOmodes that shift smoothly between the parent and the impurity modes
with antagonist intensity variations when x changes and (ii) 2-bond ! 1-mode, that
is, a unique (A–B, A–C)-mixed TOmode that shifts regularly between the parent TO
modes with quasistable intensity. There exists also a sort of intermediary type
(exceptional), referred to as (iii) modified two-mode, with two (A–B, A–C)-mixed
TOmodes, that is, a dominant one of type (ii) that joins the parent TOmodes, plus a
minor one connecting the impuritymodes, that does not allow to fully discard type (i).
The leading systems in each case are InGaAs [type (i)], ZnTeSe [type (ii)], and InGaP
[type (iii)]. Amore detailed classificationwas proposed byGenzel et al. [155]. The basic
MREI-VCAclassification in twomain types – (i) and (ii) – is supported by a theoretical
criterionworked out by Elliott et al. [156] within the coherent potential approximation
(CPA). This predicts type (i) if the optical bands of the A�B and A�C bonds do
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overlap in the alloy; type (ii) otherwise. The optical bands here are simply built up by
linear extrapolation of the parent TOand LO frequencies onto the relatedvimp values.
Generally, MREI-VCA (experimental) and Elliott-CPA (theoretical) classifications
were found to be consistent [157]. However, in the past few years, a careful
reexamination of the available vibrational data in the literature has revealed that
even the InGaAs, ZnTeSe, and InGaP do not obey the phonon mode behaviors that
they are supposed to represent [19].

Pag�es et al. proposed that, owing to the local character of the bond force constant,
even basic understanding of the phonon (TO) behavior in alloys should rely on
detailed insight into the local topologies of the (B, C) substituting species, guiding to
the percolation site theory. In fact, all the apparent anomalies in the vibration spectra
of the �leading� alloys above could be explained within a so-called percolationmodel,
introducing a vision of a random zinc blende AB1-xCx alloy at themesoscopic scale in
terms of a composite of the AB-like and AC-like interpenetrated host regions, as
originating from natural fluctuations in the x-value at the local scale (Figure 2.42b).

Figure 2.42 Schematic viewsof a randomAB1-xCx alloy according to theVCA (a) andpercolation (b)
schemes. The gray scales reinforces when the local coposition becomes more like that of the
corresponding pure crystal. AMREI-like correlation between the AC-like TO frequencies (v) and the
actual (x) or rescaled (y, z) alloy compositions is emphasized. The intensity aspect (I) is indicated
within brackets. For each (v,I) couple, subscript and superscript B (C) refer to the A�B (A�C) bond
and to the pale AB-like (dark AC-like) regions, respectively. Similar descriptions apply to theA�Band
A�C bonds. Reprinted figure with permission from Ref. [159]. Copyright 2010 by the American
Physical Society.
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For a given bond, each region brings a specific TOmode, corresponding to a 1-bond
! 2-mode (TO) behavior. In a vT versus x plot, one should consider that each
individualMREI-like TObranch is split into a symmetrical double-branch attached at
its two ends to the parent and impurity modes, as characterized by the splitting D in
the dilute limits. The microscopic mechanism behind is a slight difference in bond
length for a given bond species in the AB-like and AC-like regions. The difference is
of the order of�1% as estimated from ab initio calculations [158], which seems to be
enough to create phonon localization – cf. Anderson�s criterion in Section 2.1.3.2.
The intensity of each TO submode scales as the fraction of like bonds in the crystals,
that is, as (1-x) for A–B bonds and as x for A–C ones, weighted by the scattering
volumes of the corresponding AB-like (1-x) or AC-like host region. Further, each
subbranch is characterized by two regimes on each side of the related bond
percolation threshold (PC), that is, xC� 0.19 for the AC-like region and xB� 0.81
for the AB-like one. Below PC, where the minor region consists of a dispersion of
finite-size clusters with quasistable internal structure, a so-called �fractal-like�
regime is identified where vT is stable. Above PC, the clusters have coalesced into
a tree-like continuum, and vT has turned smoothly x-dependent up to the parent
limit. This is referred to as the �normal� regime. There, the vT versus x-curve is
modeled by applying a MREI approach to the restricted x-domain covered by the
continuum. Such rescaled-MREI description comes, in fact, to view each percolation

Figure 2.43 Schematic 1-bond ! 2-mode (TO) percolation schemes of InGaAs (a), InGaP (b),
and ZnTeSe (c), with rescaled-MREI oblique segments simplified to straight lines for more clarity.
The intensity of each TOmode in the Raman spectra scales as indicated within brackets in inset (b).
The optical (TO–LO) bands used for the Elliott-CPA criterion are shown as shaded areas. Reprinted
figure with permission from Ref. [159]. Copyright 2010 by the American Physical Society.
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continuum at PC – a pure fractal – as a pseudoparent/binary. Two input parameters
only are required per bond to implement the percolation model, that is, vimp, as for
the MREI model, plus D, the splitting between the like phonon modes from the AB-
like and AC-like regions in the dilute limit.

The 1-bond ! 2-mode (TO) percolation schemes for InGaAs, InGaP, and ZnTeSe
are schematically reproduced in Figure 2.43. An obvious analogy exists between the
three schemes, indicating that the traditional MREI-VCA/Elliott-CPA classification
has in fact no raison d�̂etre, and can be unified within the percolation scheme (see also
Ref. [159]).

On the practical side, the VCA ! percolation shift of paradigm reveals that zone-
center phonons provide a natural insight into the alloy disorder at the unusual
mesoscopic scale: a terminology is introduced that such phonons do act as a
�mesoscope.� As such they may be used to study how a pressure-induced structural
phase transition is initiated in an alloy. It is a matter to decide whether the AB- and
AC-like regions, as identified by distinct TOmodes per bond, are affected in the same
way by pressure, or whether one region is given a specific role. This remains
unexplored.

2.3.2.2 Elucidation of the Mechanism of the Pressure-Induced Phase Transformations
One of the most important phenomena to understand is the determination of the
phase transformation path. Indeed, for example, for SiO2 a-quartz, every possible
mechanism has been proposed for the pressure-induced amorphization: soft acous-
tical phonon, soft optical phonon, B1 or B2 Born stability criteria, and so on.

Performing at the same time experimental studies and ab initio calculation is now
mandatory to improve our knowledge. One good example of what should be done is
given by the wurtzite ! rock salt transformation in ZnO and III-N compounds. In a
recent paper [160], a general path of transformation (see Figure 2.44) is deduced from
ab initio calculation performed in the density-functional theory (DFT) framework and
the local density approximation (LDA). Ab initio phonon dispersion curves are
determined through the density-functional perturbation theory.

This work shows that the fourfold coordinated wurtzite to the sixfold coordinated
rocksalt phase transformation occurs through a quasitetragonal intermediate struc-
ture, which bridges in a crystallographic simple way, the two structures. This
hypothesis is confirmed in the compounds with d-electrons ZnO, GaN, and InN
and strongly supported by the experimental and ab initio determination of the shear
constants and phonons under pressure. The other path through the hexagonal
intermediate structure seems possible only in compounds containing d-electron-free
cations, such asAlN andw-SiC. Important result of this study concern the predictions
on the dynamical and elastic pressure properties of studied wurtzite compounds,
such as the softening of TAmodes and of theC44 andC66 shear elasticmoduli inZnO,
GaN, and InN, or the independence of the wurtzite internal parameter u on pressure.
The prediction is validated by the experimental results in ZnO, but are clearly needed
for GaN and InN. In conclusion,many different types of experiments combinedwith
ab initio calculations are needed for better understanding of the properties of
compounds under extreme conditions.
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2.3.2.3 Glasses
Glasses (and their associated liquids) were cited above as presumably the domain
with the highest number of reports in the high-temperature range. Clearly, this
enthusiasm will continue, as data in this field are essential for many different
scientific communities: earth sciences (with underlining oncemore thatmanymajor
experimental improvements were done by them), condensed matter physicists, with
opportunity to attain pertinent data about glassy transition and structural relaxation
mechanisms on annealing (the simplest glasses on the structural point of view have
very high Tg and melting temperatures), chemists with access to high-temperature
molten states (structure and composition), and material science people with many
applications (vitroceramics, refractories, and so on.).

The solid–liquid (melting fromcrystal) transition remains also a domainwith open
questions, as the exact mechanisms of melting. As for glasses, some beyond the
structurally simplest materials have the highest melting temperature, as MgO. The
report of some electronic-like relaxation in this temperature range cited above has no
explanation till now and deserves further investigations.

A particular field of applications will also certainly devote numerous studies in the
next future: the need of knowledge for materials constituting the future Generation
IV nuclear reactors. The temperature range of interest of these materials will be
1200–2000 	C and obviously this will necessitate a large effort of research to develop
methods to be adapted for these extreme conditions: temperature, pressure (never-
theless, largely below what is reported here), but also under irradiation. In particular,

Figure 2.44 Ab initio calculation of the wurtzite ! rock salt transformation in ZnO and III-N
compounds. Reprinted figure with permission from Ref. [160]. Copyright 2010 by the American
Physical Society.
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one can think of important developments with respect to in situ characterizations,
which can be compatible with optical spectroscopies.
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3
Inelastic Neutron Scattering, Lattice Dynamics,
Computer Simulation and Thermodynamic Properties
Ranjan Mittal, Samrath L. Chaplot, and Narayani Choudhury

3.1
Introduction

In the study of solids at the microscopic level, it is important to know the crystal
structure and the dynamics of the atoms.Many important physical properties such as
phase transitions, thermal expansion, specific heat, and thermal conductivity orig-
inate from the dynamics of atoms [1–6]. The collectivemotions of atoms in crystalline
solids form traveling waves (called lattice vibrations). At low temperatures, typically
below the Debye temperature, when the vibrations are essentially harmonic in
nature, these traveling waves are noninteracting and act as simple harmonic
oscillators, which are also called normal modes of vibrations. They are quantized
in terms of �phonons.� The phonons are characterized by three parameters, namely,
their wave vector, energy, and polarization vector. The polarization vector defines the
relative atomic vibrations along three orthogonal directions. In order to understand
the physical properties of any solid, it is of interest to study the energy–wavelength
relation (dispersion relation) of the thermal motions of the atoms, which is deter-
mined by the interatomic interactions. These studies fall in the domain of lattice
dynamics.

At high temperatures, usually well above the Debye temperature, or close to phase
transition, and so on, the atomic vibrationsmaynot be harmonic. Thephonons are no
more noninteracting and their frequencies may change with temperature. When the
anharmonicity is small, some kind of perturbation theory may be used to study such
changes. However, different methods may be needed when anharmonicity is large.
Molecular dynamics simulation is one such technique wherein the dynamical
equation of motion is solved by brute force and atomic trajectories are calculated.
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These are used to calculate the space–time correlation function and various ther-
modynamic properties.

Experimental studies of lattice vibration include techniques such as Raman
spectroscopy, infrared absorption, inelastic neutron scattering, inelastic X-ray scat-
tering, and so on. Unlike Raman and infrared studies, which probe only the long
wavelength excitations in one-phonon scattering, inelastic neutron and X-ray scat-
tering can directly probe the phonons in the entire Brillouin zone. While inelastic
neutron scattering is widely used for such measurements, inelastic X-ray scattering
has also been used [7, 8] at intense synchrotrons sources for the study of phonons in
a few materials. The neutron technique will be discussed in this chapter and the
X-ray experiments are explained in another chapter.

Experimental studies at high pressures and temperatures are often limited while
first-principles studies of various thermodynamic properties are possible in several
cases, accurate models for theoretical studies of various materials are of utmost
importance. The success of the models in predicting thermodynamic properties
depends crucially on their ability to explain a variety of microscopic dynamical
properties [1, 5, 6]. These include an understanding of the crystal structure, equation
of state, phonon dispersion relations, and density of states. The data obtained from
neutron scattering and optical experiments are used to test and validate models of
interatomic potentials [1, 5, 6], which in turn could be used to predict thermodynamic
properties at high pressures and temperatures. The interatomic potential model
can also be used for classical molecular dynamics simulations to understand the
microscopic insights in a variety of novel phenomena such as pressure induced
changes in atomic coordination, bonding, elastic properties, seismic discontinuities,
and so on. Simulations are also useful to understand the properties ofmaterial under
extreme high-pressure and -temperature conditions that are difficult to achieve in the
laboratory.

The combination of neutron scattering experiments, lattice dynamics, and mo-
lecular dynamics (MD) simulations is a powerful tool to study the structure and
dynamics of complex molecular systems. Using these techniques, we have studied
the phonon properties and phase transitions of a variety of solids. The experiments
provide valuable information about the phonon dispersion relation and density of
states, while the calculations enable microscopic interpretation of the experimental
data. The materials studied find a wide range of applications and involve negative
thermal expansion materials, technologically important samples, and geophysically
relevant minerals.

The organization of this chapter is as follows: The theoretical formalism of lattice
dynamics is given in Section 3.2. The details about the computational techniques are
outlined in Section 3.3. The procedure for calculation of thermodynamic properties
of solids is described in Section 3.4. Theory and details about the experimental
techniques for inelastic neutron scattering are described in Sections 3.5 and 3.6,
respectively. In Section 3.7, we have discussed about the technique of molecular
dynamics simulation. The applications of inelastic neutron scattering, lattice dy-
namics, andmolecular dynamics are given in Section 3.8. Finally, the conclusions are
given in Section 3.9.
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3.2
Lattice Dynamics

3.2.1
Theoretical Formalisms

The formalism of lattice dynamics is based on the Born–Oppenheimer or adiabatic
approximation. In this approximation, it is assumed that the electronic wavefunc-
tions change adiabatically during the nuclear motion. The electrons essentially
contribute an additional effective potential for the nuclear motions and the lattice
vibrations are associated only with nuclearmotions. In this chapter, only summary of
the mathematical formalism for a perfect crystal is described. A complete account
of the formal theory of lattice dynamics can be found in literature [2–4]. For small

displacements of the atoms, u
l
k

� �
, about their equilibrium positions, r

l
k

� �
, where

l denotes the lth unit cell (l¼ 1, 2, . . . N) and k is the kth type of atom (k¼ 1,2, . . . n)
within the unit cell, the crystal potential energy can be written as a Taylor expansion.
The expansion is retained only up to the second derivative in the so-called harmonic
approximation, as follows:
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where the suffices a and b denote Cartesian coordinates.
In the equilibrium configuration, the force on every atommust vanish. This leads

to the result

wa
l
k

� �
¼ 0; for every a; k; l

Hence, w1 ¼ 0.
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Thus, in the harmonic approximation,
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1
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: ð3:2Þ

Accordingly, the equation of motion of the (lk)th atom becomes

mk€ua
l
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� �
¼ �
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l0k0b
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� �
ub

l0
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� �
: ð3:3Þ

From Equation 3.3, it is clear that wab
l l0

k k0

� �
is the negative of the force exerted

on atom (lk) in the a-direction due to unit displacement of the atom ðl0k0Þ in the
b-direction. The quantity wab is referred to as the force constant.

The crystal periodicity suggests that the solutions of Equation 3.3must be such that
the displacements of atoms in different unit cells must be same apart from phase
factor. The equations of motion (3.3) are solved by assuming wave-like solutions of
the type

ua
l
k

� �
¼ UaðkjqÞexpfiðq:r l

k

� �
�vðqÞtg: ð3:4Þ

Here, q is the wave vector andv(q) is the angular frequency associated with the wave.
Substituting (3.4) in (3.3),

mkv
2ðqÞUaðkjqÞ ¼

X
k0b

Dab
q
kk0

� �
Ubðk0jqÞ ð3:5Þ

where mk is the mass and r
l
k

� �
the position coordinate of the kth atom.

Here, the dynamical matrix Dab
q
kk0

� �
is given as
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The 3n-coupled equations of motion are obtained. As stated earlier, the adiabatic
approximation is assumed wherein the electrons adiabatically follow the nuclear
vibrations and provide an effective nuclear potential. However, this does not imply
that the atoms are rigid during vibrations. The electric field setup by the displace-
ments of the ions ismodified by their electronic polarizability, which in turnmodifies
the force on them and affects the phonon frequencies. This may be described by
a shell model [2, 4], in which each ion is regarded to be composed of a rigid or
nonpolarizable core and a charged shell with effective charges X(k) and Y(k),
respectively. The core and shell are connected by a harmonic spring constant
K(k). Thus, the shell can be displaced relative to the core causing a dipole, which
in turn leads to a proper description of dielectric behavior of the crystals. One can
calculate the dynamicalmatrices between the pairs, core–core, core–shell, shell–core,
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and shell–shell, denoted as DCC, DCS, DSC, and DSS, respectively. We have the
following equations involving the displacement vectors associated with the core (U)
and polarization (W):

mv2U ¼ DCCUþDCSW ð3:7Þ

0 ¼ DSCUþDSSW ð3:8Þ
Eliminating W, we get,

mv2U ¼ ½DCC�fDCSðDSSÞ�1DSCg�U ð3:9Þ
and we obtain the dynamical matrix

D ¼ DCC�DCSðDSSÞ�1DSC: ð3:10Þ
For simplicity, the short-range forces between atoms are included only between

the shells. The frequencies of the normal modes and eigenvectors are determined by
diagonalizing the dynamical matrix through a solution of the secular equation

det

����mkv
2ðqÞ2dkk0dab�Dab

q
kk0

� ����� ¼ 0: ð3:11Þ

SolvingEquation 3.11, 3n eigenvalues are obtained,which arev2
j ðqÞ, ( j¼ 1, 2, . . . ,

3n). Because, the dynamical matrix is Hermitian, the eigenfrequencies are real and
its eigenvectors may be chosen as orthonormal. The components of the eigenvectors
jjðqÞ determine the pattern of displacement of the atoms in a particular mode of
vibration.

The displacements of the atoms in one of these normal modes, labeled by (q j),
correspond to a wave-like displacement of atoms and are given as
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ð3:12Þ

where,P
q
j

� �
is the normal coordinate and jaðkjq jÞ is the normalized eigenvector of

the normal mode (q j), where j runs from 1 to 3n and is used to distinguish between
the 3n normal modes at q. Corresponding to every direction in q-space, there are 3n
curvesv¼vj(q), ( j¼ 1,2, . . . 3n). Such curves are called phonondispersion relations.
The index j, which distinguishes the various frequencies corresponding to the
propagation vector, characterizes various branches of the dispersion relation.
Though, some of these branches are degenerate because of symmetry, in general,
they are distinct. The form of dispersion relation depends on the crystal structure as
well as on the nature of the interatomic forces. However, a cyclic crystal always
has three zero frequency modes at q¼ 0, which correspond to lateral translation of
the crystal along three mutually perpendicular directions. These three branches are
referred to as acoustic branches. The remaining (3n� 3) branches have finite
frequencies at q¼ 0, which are labeled as optic branches.
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The crux of the lattice-dynamical problem therefore is to calculate the dynamical
matrix, which is usually done by constructing a suitablemodel for the force constants
or by using a suitable crystal potential. Corresponding to the 3n degrees of freedom
for any wave vector q, there are 3n eigenvectors each having 3n components. Group-
theoretical analysis at various high-symmetry points and directions in the Brillouin
zone are used to derive the symmetry vectors for block diagonalization of the
dynamical matrix. This allows the classification of the phonon modes into different
irreducible representations enabling direct comparison with single crystal Raman,
infrared, and neutron data.

The phonon density of states is defined by the equation

gðvÞ ¼ D0
ð
BZ

X
j

dðv�vjðqÞÞdq ¼ D0X
jp

dðv�vjðqÞÞdqp ð3:13Þ

where D0 is a normalization constant such that
Ð
gðvÞdv ¼ 1; that is, g(v)dv is the

ratio of the number of eigenstates in the frequency interval (v, v þ dv) to the total
number of eigenstates. p is the mesh index characterizing q in the discretized
irreducible Brillouin zone and dqp provides theweighting factor corresponding to the
volume of pth mesh in q-space.

3.3
Computational Techniques

As seen in Section 3.2, the essential part involved in lattice dynamical calculations is
the setting up of the �dynamical matrix� that depends on the derivatives of the crystal
potential (force constants). Ideally, one would like to develop a uniform prescription
for calculating the crystal potential and hence its derivatives that is applicable to
various crystals.

An approach often adopted for lattice dynamical studies involves fitting of
empirical values of force constants between various pairs of atoms to available
experimental data. This approach is ideally suited only for simple solids, where the
effective interactions between atoms are of short range, which are negligible beyond
the first, second, or third neighbors. Otherwise, the number of force constant
parameters necessary for reproducing the experimental data becomes very large.
As we need to calculate the anharmonic properties, thermal expansion, equation of
state, and so on, an approach based on force constants would not be useful.

Lattice dynamics calculations of the equation of state and vibrational properties
may be carried out using either a quantum-mechanical ab initio approach or an
atomistic approach involving semiempirical interatomic potentials.Ab initio density-
functional calculations [9–12]havebeen reported for somesilicateminerals including
quartz SIO2 and perovskites. However, because of the limited computational re-
sources for complex structures an approach based on an empirical interatomic
potential function is generally used in the calculations. The form of potentials used
[1, 6, 7] for the calculation is
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where r is the separation between the atoms of types k and k0, Z(k) and R(k) are,
respectively, empirical charge and radius parameter of the atom type k, 1/(4p eo)¼
9� 109Nm2Coul�2, a¼ 1822 eV, and b¼ 12.364. The last term in Equation 3.14 is
applied only between certain atoms.

The above potential function is used for the lattice dynamical calculations of
ZrW2O8, HfW2O8 [13, 14], MSiO4 (M¼Zr, Hf, Th, and U) [15–18], M3Al2Si3O12

(M¼Fe, Si, Ca, and Mn) [19, 20], MV2O7 (M¼Zr and Hf ) [21], MPO4 (M¼ Lu and
Yb) [22], NaNbO3 [23], and so on.

As a further improvement, a covalent potential [1, 6, 7] is also included between
certain atoms.

VðrÞ ¼ �D exp
�nðr�roÞ2

2r

 !
ð3:15Þ

where n, D, and ro are the empirical parameters of the potential.
The parameters of the potential are determined using the conditions of the

structural and dynamic equilibrium of the crystal. This procedure [24] has been
successful in the case of several compounds as discussed later in Section 3.7.
Structural constraints used are that at T¼ 0, the free energy is minimized with
respect to the lattice parameters and the atomic positions of the crystal at zero
pressure, and the structure is close to that determined by the diffraction experiments.
The dynamic equilibrium requires that the calculated phonon frequencies have real
values for all the wave vectors in the Brillouin zone. The parameters of potentials
should also reproduce various other available experimental data, namely, elastic
constants, optical phonon frequencies or the range of phonon spectrum, and so on.
At high pressures, the crystal structures are obtained by minimization of the free
energy with respect to the lattice parameters and the atomic positions. The equilib-
rium structure thus obtained is used in lattice dynamics calculations. The polariz-
ability of certain atoms has been introduced in the framework of the shell model as
discussed in Section 3.2.1.

Three-body terms are not included in the potential although their contribution is,
to some extent, mimicked by the two-body potential. For example, O�Si�O bond
angle is partly determined by the O�O potential. This is justified from the fact that
the potential reproduced the equilibrium crystal structural parameters and other
dynamical properties of many solids quite satisfactorily. The interest lies in the
development of an interatomic potential that gives good description of the experi-
mental data with the limited number of adjustable parameters. The three-body terms
can be included in the potential, and the parameters of the potential can be optimized
when a large amount of phonon data become available.

The interatomic potential model has been used for the calculation of vibrational
and thermodynamic properties of various solids such as (i) the frequency of phonons
as a function of the wave vector (i.e., the phonon dispersion relation), (ii) the
polarization vector of the phonons, (iii) the frequency distribution of phonons,
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(iv) the thermodynamic properties of the solid such as the equation of state, specific
heat, free energies, and so on, and (v) the variation of phonon frequencies due to
pressure, temperature, and so on. The calculations are carried out using the current
version of computer program DISPR [25] developed at Trombay, India.

3.4
Thermodynamic Properties of Solids

The theory of lattice dynamics described in Section 3.2 allows us to determine the
phonon frequencies in the harmonic approximation. The phenomena that cannot
be accounted [2–4] for without going beyond the harmonic approximation are the
increase in specific heat beyond the value 3NkB with increasing temperature, the
thermal expansion, the multiphonon process, and so on. The number of phonons
excited in thermal equilibrium at any temperature is given by Bose–Einstein

distribution nðvÞ ¼ 1
expð�hv=kBTÞ�1

h i
. At high temperatures, �hvjðqÞ � kBT , the num-

ber of phonons in a given state is directly proportional to the temperature and
inversely proportional to their energy. Anharmonic effects are relatively small at low
temperatures. These effects become more important at high temperatures. This
change at high temperatures affects physical properties of the crystal. In the
quasiharmonic approximation [2–4], (where, the vibrations of atoms at any finite
temperature are assumed to be harmonic about their mean positions appropriate
to the corresponding temperature), the thermodynamic properties of a crystal are
based on the averages of energies associated with the 3nN vibrations corresponding
to the number of degrees of freedom of the n atomic constituents in the N unit cells
of the crystal.

The thermodynamic properties, namely, the free energy, the specific heat and the
entropy are obtained from the partition function Z defined as

Z ¼ Tr exp
�H
kBT

� �� �
: ð3:16Þ

If this trace is evaluated in terms of the eigenenergies of the Hamiltonian (H), then

Z ¼ exp
�wðVÞ
kBT

� �Yqj exp ��hvjðqÞ
kBT

n o
1�exp ��hvjðqÞ

kBT

n o : ð3:17Þ

All the thermodynamic properties of the crystal derived from the partition function
involve summations over the phonon frequencies in the entire Brillouin zone and
can be expressed as averages over the phonon density of states. The Helmholtz free
energy F and entropy S are given as

F ¼ �kBT ln Z ¼ wðVÞþ
ð

1
2
�hvþ kBT ln 1�exp

��hv
kBT

� �� �� �
gðvÞdv

ð3:18Þ
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and

S ¼ � dF
dT

¼ kB
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The energy E of the crystal with volume V is

E ¼ F�T
dF
dT

¼ wðVÞþEvib ð3:20Þ

wherew(V) is the static lattice energy andEvib, the vibrational energy at temperatureT.

Evib ¼
ð

nðvÞþ 1
2

� �
�hvgðvÞdv ð3:21Þ

where n(v) is the population factor given as

nðvÞ ¼ 1
expð�hv=kBTÞ�1

: ð3:22Þ

The specific heat CV(T) is given as

CVðTÞ ¼ dE
dT

¼ kB
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kBT
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The calculated phonon density of states can be used to compute the specific heat.
While lattice dynamical calculations yield CV, the specific heat at constant volume,
experimental heat capacity data correspond to CP, the specific heat at constant
pressure. The difference CP�CV is given as

CPðTÞ�CPðTÞ ¼ ½aV ðTÞ�2BVT ð3:24Þ

where aV is the volume thermal expansion and B is the bulk modulus defined as

B ¼ �V
dP
dV

.

The volume thermal expansion coefficient in the quasiharmonic approximation is
given as

aV ¼ 1
BV

X
i

GiCViðTÞ ð3:25Þ

where Gi is the mode Gr€uneisen parameter of the phonons in state i (¼ q j, which
refers to the jth phonon mode at wave vector q), which is given as

Gi ¼ � q lnvi

q ln V
: ð3:26Þ
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The procedure of the calculation of thermal expansion is applicable when explicit
anharmonicity of phonons is not significant, and the thermal expansion arises
mainly from the implicit anharmonicity, that is, the change of phonon frequencies
with volume. The higher order contribution to thermal expansion arising from
variation of bulk modulus with volume [26, 27] is also included. The procedure is
found satisfactory [13–22] in thermal expansion calculations of ZrW2O8, HfW2O8,
ZrV2O7, HfV2O7, and MSiO4 (M¼Zr, Hf, Th, and U) and aluminosilicate garnets.
Due to very large Debye temperatures in most of these systems, the quasiharmonic
approximation seems to be suitable up to fairly high temperatures.

3.5
Theory of Inelastic Neutron Scattering

The inelastic scattering of any radiation from a system involves exchange of energy
and momentum between the system and the probing radiation. Thermal neutrons
can exchange part of their energy or momentum with an excitation in the system.
Theymay lose part of their energy in creating an excitation in the system ormay gain
energy by annihilation. Thus, the nature of the excitation can be probed bymeasuring
the energy andmomentumof the neutrons both before and after the scattering event
from a system. The fundamental equations [28] describing the conservation of
momentum and energy when a neutron is scattered from a crystal are

Ei�Ef ¼ �hvðq; jÞ ð3:27Þ

and

�hðki�kf Þ ¼ �hQ ¼ �hðG� qÞ ð3:28Þ

where ki and kf are incident and the scattered neutron wave vectors, respectively, and
Q is thewave vector transfer (scattering vector) associatedwith the scattering process.
q is the wave vector of the excitation with energy �hv(¼ E), G is a reciprocal lattice
vector, Ei and Ef are the incident and scattered neutron energies, respectively, and�hv
is the energy transfer to the system in the scattering process. The þ (�) sign indicates
that the excitation is absorbed(created) in the scattering process. Hence, the exper-
imental technique of neutron scattering to determine the nature of excitations in the
system involves study of the inelastic spectrumof scattered neutrons. The energy and
wave vector of neutrons are measured using a spectrometer.

In the scattering process, the inelastic scattering cross section is directly propor-
tional to the dynamical structure factor S(Q,v) (characteristic of the system), which is
the double Fourier transform of the space–time correlation function of the consti-
tuents of the system including the phonon. Peaks in S(Q,v) correspond to these
elementary excitations [28, 29]. The measurements on single crystals give informa-
tion about the q dependence of phonon (phonon dispersion relation), while poly-
crystalline samples provide frequency distribution of the phonons (phonondensity of
states g(v)). The measurement of phonon dispersion relation is not always possible
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because a suitable single crystal may not be available. It is difficult to determine all
the phonon branches in the phonon dispersion relation separately. The complete
phonon dispersion relation is often available only along high symmetry directions of
the Brillouin zone. Therefore, in order to obtain a complete picture of the dynamics,
it is useful to determine the phonon density of states.

3.5.1
Inelastic Neutron Scattering from Single Crystals: Phonon Dispersion Relations

The neutron scattering structure factor [28, 29] due to a one-phonon inelastic process
is given as

Sð1ÞcohðQ;vÞ ¼ A0X
qj

�h
2vðq jÞ nðvÞþ 1

2
� 1
2

� �
Fð1Þ
j ðQÞ

��� ���2dðQ�G� qÞdðv�vðqjÞÞ

ð3:29Þ
where

Fð1Þ
j ðQÞ ¼

X
k

bcohk
Q �jðq j;kÞffiffiffiffiffiffi

mk
p expð�WkðQÞÞexpðiG � rðkÞÞ; ð3:30Þ

A0 is the normalization constant, and bk, mk, and r(k) are neutron scattering length,
mass, and the coordinate of the kth atom, respectively. j is eigenvector of excitation,
Fð1Þ
j (Q) is one-phonon structure factor, exp(�Wk(Q)) is the Debye–Waller factor. �hQ

and �hv are the momentum and energy transfer on scattering of the neutron,
respectively, while n(v) is the phonon-population factor given by Equation 3.22.

The upper and lower signs� and� in Equation 3.29 correspond to loss and gain of
the energy of the neutrons, respectively. The two delta functions in Equation 3.29
stand for the conservation ofmomentum and energy. These two conditions allow the
determination of the phonon dispersion relationvj(q). From a large number of such
measurements on a single crystal, one can identify several points of the phonon
dispersion relations.

From Equation 3.30, it is clear that phonon cross sections depend strongly on Q
and j, apart from the atomic structure of the solid itself. For measuring a phonon
having the polarization (eigen) vector j, the scattering vectorQ should be chosen such
that it is aligned parallel to j as much as possible. Since Q¼G� q and for
longitudinal mode q ==== j, one should choose G ==== q for observation of a longitudinal
mode. For transverse modes, q ? j and one requires G ? q.

For simple structures, the eigenvectors may be determined entirely from the
symmetry of the space group. Thus, the structure factors Fj(Q) may be entirely
determined from the crystal structure. For more complex structures, the space–
group symmetry only classifies the phonons into a number of irreducible repre-
sentations. The number of phonons associated with each representation is same as
that of number of symmetry vectors. The eigenvectors could be any linear combina-
tions of the symmetry vectors associated with the irreducible representation.
Calculation of individual structure factors can be done from the knowledge of the
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eigenvectors that may be calculated on the basis of a reasonable model of the lattice
dynamics. These calculations help in identifying the regions in reciprocal space,
where theneutron-scattering cross sections are large. The procedure has beenused to
calculate (Section 3.7.2) the neutron scattering structure factors for themeasurement
of the phonon dispersion relations from the single crystal of zircon, ZrSiO4.

3.5.2
Inelastic Neutron Scattering from Powder Samples: Phonon Density of States

In Section 3.4.1, the scattering experiment from a single crystal is considered, in
which the scattering vector has a definite orientation with respect to the reciprocal
space of the single crystal. In the case of scattering from a powder sample, the
reciprocal axes belonging to the different grains of the powder have different
orientations, and ideally all possible orientations exist with equal probability. Thus,
averaging over the various grains is equivalent to averaging over all orientations of
the scattering vectorQ. Further averaging over the magnitude ofQ, or in the limit of
large Q where the correlations between atomic motions become small and S(Q,v)
becomes independent ofQ (except for some smoothly varyingQ dependent factors),
one getsS(v), the density of excitations at the frequencyv, weightedwith the neutron
scattering lengths. Since the peaks in S(Q,v) would normally beQ dependent, due to
coherent scattering effects, the averaging overQ should be carried out over a suitable
chosen range of Q.

The expression for coherent inelastic neutron scattering from a powder sample
due to one-phonon excitation is obtained from the one-phonon expression for a
single crystal given in Section 3.4.1 by the directional averaging of Q.However, this
procedure is usually not followed, since one needs the dispersion relation as well as
the eigenvectors over the entire Brillouin zone for performing the average. Hence,
the coherent inelastic neutron scattering data from a powder sample are usually
analyzed in the incoherent approximation. In this approximation, one neglects the
correlations between the motions of atoms and treats the scattering from each atom
as incoherent with the scattering amplitude bcohk . However, this is valid only for large
Q. In the incoherent approximation, the cross section will not contain the phase term
and the directional averaging overQ of the term |Q � j|2 gives Q2j2/3. Therefore, the
expression [28, 29] for coherent one-phonon scattering from a powder sample is
given as

Sð1ÞcohðQ;vÞ ¼ A00X
k

expð�2WkðQÞÞ ðb
coh
k Þ2
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whereA00 is a normalization constant. Incoherent inelastic scattering also contributes
to the scattering from a powder sample in almost the sameway as coherent scattering
in the incoherent approximation. Thus, the so-called neutron-weighted density of
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states involvesweighting by the total scattering cross section of the constituent atoms.
The measured scattering function [19, 20] in the incoherent approximation is
therefore given as

Sð1ÞincðQ;vÞ ¼
X
k

b2k
hb2i e

�2WkðQÞ Q
2

2mk

gkðvÞ
�hv nðvÞþ 1

2
� 1
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� �
ð3:32Þ

where the partial density of states gk(v) is given as

gkðvÞ ¼
ðX

j

jðq j; kÞj j2dðv�vjðqÞÞdq: ð3:33Þ

Thus, the scattered neutrons provide the information on the density of one-phonon
states weighted by the scattering lengths and the population factor. The observed
neutron-weighted phonon density of states is a sum of the partial components of
the density of states due to the various atoms, weighted by their scattering length
squares.

gnðvÞ ¼ B0X
k

4pb2k
mk

� �
gkðvÞ ð3:34Þ

where B0 is a normalization constant. Typical weighting factors
4pb2k
mk

for the various
atoms in the units of barns/amu are Al: 0.055; Mg: 0.150; Fe: 0.201; Ca: 0.075;
Si: 0.077; and O: 0.265. By comparing the experimental phonon spectra with the
calculated neutron-weighted density of states obtained from a lattice-dynamical
model, the dynamical contribution to frequency distribution from various atomic
and molecular species can be understood.

Any inelastic neutron scattering spectrum from a powder sample also contains a
contribution from multiphonon scattering [30]. Since one is interested to measure
only the one-phonon spectrum, themultiphonon component has to be estimated and
subtracted from the measured spectrum. Usually, when the one-phonon spectra is
a broad function, the multiphonon scattering contributes a continuous spectrum
and effectively increases the background. The scattered intensity represents the
scattering function in terms ofQ andvwhich, in the conventional harmonic phonon
expansion, can be written as

SðQ;vÞ ¼ Sð0Þ þ Sð1Þ þ SðnÞ ð3:35Þ

where, S(0), S(1), and S(n) represent elastic, one-phonon, andmultiphonon scattering,
respectively. The multiphonon contribution to the total scattering is usually esti-
mated in the incoherent approximation using Sjolander�s formalism [30] in which
the total contribution is treated as a sum of the partial components of the density of
states from various species of atoms. The coherent scattering due to multiphonon
excitations involves the rules of energy and wave vector conservation similar to those
for one-phonon excitations, namely,

Ei�Ef ¼ ��hvðq1; j1Þ � �hvðq2; j2Þ � . . . ð3:36Þ
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and

ki�kf ¼ G� q1� q2� . . . ð3:37Þ

where the þ or � corresponds to either creation or annihilation of the phonons.
Note that, for any of the parameters (Ei, Ef, ki, and kf) it would be usually possible to
obtain several combinations of q and v satisfying the above conservation rules.
Hence, it turns out, unlike the one-phonon contribution, usually the multiphonon
contribution to the inelastic neutron spectrum does not give rise to sharp peaks but
gives only a continuous spectrum.

It is important to note that themultiphonon contribution is quite important even at
low temperatures since the phonon creation is always possible for sufficiently large
incident neutron energy. The coherent cross section for the multiphonon process is
more difficult to evaluate theoretically than the one-phonon spectrum. It is conve-
nient to resort to the incoherent approximation, which may be more justified when
more phonons are involved in the scattering process since the scattering is expected
to be a smoothly varying function ofQ andv, and that the interatomic correlations are
expected to be small. In this approximation,

SðmÞðQ;vÞ ¼
X
k

Akb2k
mk

Smk ðQ;vÞ ð3:38Þ

whereAk is a normalization constant. The total multiphonon scattering cross section
is a weighted sum of the multiphonon contribution from each atomic species.
Contribution from the incoherent multiphonon scattering is taken into account by
using the total scattering length squares of the atoms. The computation of Smk ðQ;vÞ
is carried out using the Sjolander�s formalism. Smk ðQ;vÞ is given as

Smk ðQ;vÞ ¼ expð�2WkÞ
X¥
n¼2

GnðvÞ ð2WkÞn
n!

ð3:39Þ

withGo(v)¼d(v) andG1(v)¼ gk(v) where, gk(v) is the partial density of states, and

GnðvÞ ¼
ð¥
�¥

gkðv�v0ÞGn�1ðv0Þdv0 ð3:40Þ

gives the higher order terms. The multiphonon contribution may be estimated on
the basis of a lattice-dynamical model. The experimental one-phonon spectrum is
obtained by subtracting the calculated multiphonon contribution from the experi-
mental data.

3.6
Experimental Techniques for Inelastic Neutron Scattering

A number of different techniques [28, 29, 31] have been developed to determine
the change in energy and momentum of the scattered neutrons, but only the
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measurements using the triple-axis spectrometer and neutron time-of-flight tech-
nique are described in this chapter.

3.6.1
Measurements Using Triple-Axis Spectrometer

Scanning of the v-q plane along any path is most conveniently carried out with
triple-axis spectrometer [28]. The monochromatization of the primary neutron
beam from the reactor and analysis of the energy of the scattered neutrons are
obtained by neutron diffraction using a single crystal (monochromator and analyzer).
The resolution of the spectrometer can be changed by replacing the crystals and
collimators.
Figure 3.1 shows the schematic diagramof the triple-axis spectrometer at Trombay,

India [32]. As name implies, this instrument comprises three axes. A crystal
monochromator situated at the first axis helps to select a monochromatic neutron
beam from the Maxwellian spectrum of neutrons from the reactor. These mono-
chromatic neutrons are incident on a sample mounted on the second axis. As the
neutrons undergo energy and momentum exchange during the scattering, one can
measure the spectrum of neutrons scattered at any scattering angle by means of an
analyzing crystal mounted on the third axis followed by a neutron detector. The
simplest method of analyzing the spectrum is by a ðqA�2qAÞscan of analyzer and
detector combination, in which one may observe a neutron group at some 2qA. The
measured intensity of the peak corresponds to an arbitrary locus in the (Q,v) space.
For ease in interpretations of data, preferred scans correspond to situations where
wave vector transfer Q or energy transfer �hv is a constant. The measurements of
neutron intensities are carried out at a series of Ei and/or Ef in such a way that all the
time either Q or v is held constant. These are therefore referred to as constant Q or
constant v scans.
At Dhruva reactor, Trombay, India, the neutrons of fixed final energy Ef are

observed using pyrolytic graphite (0 0 2) analyzer, while the incident energy is varied
using a copper (1 1 1) monochromator. A pyrolytic graphite filter can be used to
reduce the contribution from the second-order reflection. The spectrometer covers
scattering angles ranging from 10 to 100	. The intensity of the scattered neutrons is
measured by a BF3 gas counter. All the measurements are carried out in the energy
loss mode with constant momentum transfer (Q). The elastic energy resolution is
approximately 15% of the final energy.

3.6.1.1 Phonon Density of States
Measurement of density of states for coherent samples requires data collection over a
wide range of Q and v. For good averaging over the Brillouin zone, the Q values are
kept as large as possible. The experimental data obtained for different fixed energies
Ef and momentum transfer (Q) values are averaged over Q to obtain the neutron-
weighted phonon density of states g(n)(E). As these experiments are time consuming,
in view of intensity limitations, medium flux reactors (such as Dhruva reactor) have
been used to obtain density of states of coherent scatterers with range of

3.6 Experimental Techniques for Inelastic Neutron Scattering j89



phonon spectrum extending upto 50meV. At Dhruva reactor, the triple-axis
spectrometer has been used for the measurements of phonon density of states
of X-ray image storage material BaFCl and Cu2O. Such measurements require
approximately 10 cc of the polycrystalline sample. Several scans are recorded
in the constant momentum transfer (Q) and the neutron energy loss mode. Q
values from 4 to 6 A

	 �1 and Ef values from 20 to 30meV were used in different
scans.

Figure 3.1 (Upper) Layout and (lower) schematic diagram of the triple-axis spectrometer at
Dhruva reactor, Trombay, India (after Ref. [1]).
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3.6.1.2 Phonon Dispersion Relations
Figure 3.2a shows the vector diagrams of scattering geometry for constant Q
scans [19]. For a selected wave vector q with momentum transfer �hQ, the neutron
intensity is recorded as a function of energy transfer and the observed peak is
assigned to the energy of the excitation. Constant Q mode is best suited for the
measurement of excitations with weak dispersion (Figure 3.2a, whereas for a strong
dispersion Figure 3.2b constant v technique gives best results. A large number of
such measurements of peaks in the S(Q,v) can be used to identify several points on
the phonon dispersion relation v(q). The calculated one-phonon structure factors
(Section 3.4.1) are generally used as guide for the selection of Bragg points for the
measurements of phonon dispersion relation.

3.6.2
Measurements Using Time-of-Flight Technique

The time-of-flight (TOF) technique [31] is different from the reactor based triple-
axis spectroscopy where the (Q,v) space is scanned pointwise. On the other hand,

x
TA

LA

q

(q
)

xx
xx
x

x x x x x

q

3

(q
)

3

(a)

(b)

k0

k0

k1

k1

(200)

(200)

(000)

(000)

G

G

Q

Q

q

q

Figure 3.2 The representation of scans in
(Q,v) space and corresponding scattering
diagrams for measurements using triple-axis
spectrometer: (a) constant Q measurement of

a transverse acoustic (TA) phonon with fixed
analyzer energy and (b) constant v
measurement of a longitudinal acoustic (LA)
phonon. (After Ref. [28].)
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time-of-flight spectrometer detects a large (Q,v) space volume in a single run. This is
done by the simultaneous use of several detectors equipped with the respective TOF
electronics. The change in energy and the scattering vector Q is obtained by
measuring the flight time and the scattering angle of the neutrons from a beam
pulsing device (chopper) to the detectors. The energy of the neutrons isfixed before or
after the scattering process.

Therefore, during an experiment, one obtains the dependence of the double
differential cross section upon the energy transferred in a neutron scattering event
at the sample and after introducing corrections theneutron-weighted phonondensity
of states g(n)(E) can be obtained using Equation 3.35.

3.6.2.1 Phonon Density of States
Formeasurement of phonondensity of states the scattered neutrons from the sample
are collected over a wide range of scattering angles. By choosing a suitable high
incident neutron energy, measurement of the scattering function S(Q,v) over a
wide range of momentum and energy transfers can be undertaken and the data can
be averaged over a wide range of Q. High-pressure inelastic neutron scattering
experiments [33, 34] were carried out on polycrystalline samples of ZrW2O8

(Section 3.7.3.2) and ZrMo2O8 using the time-of-flight IN6 spectrometer (Figure 3.3)
at the Institut Laue Langevin (ILL), Grenoble, France. The angular range of the
spectrometer is from 10 to 113	. Pyrolitic graphite (0 0 2) is used as the monochro-
mator. The second-order reflection from the graphite monochromator is removed
by a beryllium filter cooled at liquid nitrogen temperature. An incident energy of
3.12meV with an elastic resolution of 80meV was chosen and the measurements

Figure 3.3 Schematic diagram of the IN6 spectrometer at ILL, Grenoble, France. (After www.ill.fr.)
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were performed in the energy gainmode. The sampleswere compressedusing argon
gas in a pressure cell available at ILL.

3.6.2.2 Phonon Dispersion Relations
Formeasurements of phonon dispersion relation using time-of-flight technique, the
incident neutron energy ismeasured by the time-of-flight technique and the scattered
energy is analyzed simultaneously by several crystal analyzers at various scattering
angles.While the triple-axis spectrometers in reactors allow for scanswith constantQ
or v, such scans are not efficiently carried out at a pulsed source where one obtains
the complete (time-of-flight) energy spectrum of the neutrons scattered from the
sample along a given direction. The trajectory of the scan in (Q,v) space is not along
constant Q or constant v, but is determined by the geometrical and other instru-
mental settings. The layout and schematic diagram of the PRISMA spectrometer [35]
are shown in Figure 3.4. In the PRISMA spectrometer (Figure 3.4) a number ofQ-v
scans can be simultaneously obtained using several independent analyzers and
detectors. Thus, the inability to carry out constant Q scans has been partly compen-
sated. While in general, these Q-v scans have severe limitations as observations at
arbitrary Q and v (e.g., a pure longitudinal scan) are not possible. The PRISMA
spectrometer at ISIS, UK has been used for themeasurements of phonon dispersion
relation of zircon ZrSiO4 upto the energy of 70 meV.

3.7
Molecular Dynamics Simulation

Molecular dynamics simulation (MDS) is the name of a technique in which the
trajectories of a system of interacting particles are calculated by numerically solving
their classical equations ofmotion [36–42]. Awide range of applications, for example,
the study of phase transitions anddynamics ofmicroscopic defects in solids, has been
developed over the past few decades. In fact, this rapid development has kept pace
with the growing availability of computing power.

An essential requirement for solving the classical equations ofmotion is the ability
to calculate the forces on the particles. There aremanyways to do this. The forcesmay
be obtained either from an interparticle potential or from the force constants in
a coupled system. Alternatively, the forces in an atomic system could be evaluated
from the first principles quantum mechanical calculation of the electronic ener-
gies [10, 43]. Accordingly, the MDS may be called the classical MDS or the ab initio
MDS. The two are complementary while the former is useful for extensive studies
and for relatively more complex systems.

Starting with the early simulations by Alder and Wainright [36] using hard-core
potentials and Rahman [37] using Lennard–Jones potentials, there has been a great
deal of progress in terms of various applications in the last four decades. However,
the progress was relatively slow in the 1960s and 1970s as extensive computing
facilities were not widely available. In late 1970s, we studied the defect vibrational
modes in rare gas solids and identified them as local modes or the resonance
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modes [44]. A major milestone was the development of the constant-pressure
technique by Parrinello and Rahman [45, 46], which facilitated studies of phase
transitions involving changes in the crystallographic unit cells.

Simulations relevant to materials science involve study of a variety of physical
systems, such as the bulk solids and liquids, clusters and nanoparticles, surfaces and
interfaces, solid lattices with point and extended defects, and so on. The simulations
may involve the characteristic parameters of temperature (T ), volume (V ), total
energy (E ), external stress (S ), total number of particles (N ), and so on. The
quantities such as T, S, V, and E, are easily calculated at any instant of time using
the atomic positions and velocities. In turn, any of these quantities (T,S,E, andV ) can
be controlled by suitably constraining the atomic trajectories in the simulations
[45, 46]. Simulations commonly employed are those in which various combinations,

Figure 3.4 Layout (upper) and schematic diagram (lower) of thePRISMAspectrometer at ISIS,UK.
(After www.isis.rl.ac.uk.)
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for example, (NVT ), (NPT ), (NVE ), or (NE ) are kept fixed. It is now convenient to
perform simulations with N about 10 000 to more than a million atoms. Bulk
properties are generated by assuming periodic boundary conditions. However, the
time scale of themicroscopicMDS remains limited to about a few nanoseconds, that
is, a fewmillion time steps of a few femtoseconds each. This time sale is sufficient for
a large variety of dynamical phenomena at the atomic level including critical
propagation of extended defects and many of the phase transitions.

It is easy to make a contact between the MDS and the various scattering experi-
ments, such as the Raman and neutron scattering experiments from various
materials. Such experiments essentially measure the correlations among the posi-
tions of atomsat the same timeor at different times. These correlations canbedirectly
calculated from the simulated atomic trajectories and compared with experiments.

The simulations are validated when one obtains a good agreement between the
simulated results and the experiments. Then, the simulations canbeused to visualize
and study themicroscopic details that are not easily accessible from the experimental
observations. For example, one could study the details of the collective phenomena
associated with phase transitions, defect dynamics, plastic deformation, or damage.
The simulations may also be extended to various sample environments, which may
not have been achieved in the experiments (with due caution about the applicability of
the simulations). The simulations can be only as good as the interatomic potential
employed. Usually, one identifies the nature of the chemical bonds and uses suitable
functional forms with adjustable parameters, which may be derived from the
available experimental data or results from ab initio calculations. It is advisable to
test the validity of the potential for the conditions, such as the interparticle distances
and the coordinations that are likely to be encountered in the simulations.

We have developed empirical interatomic potentials in variety of complex ionic
and molecular solids (Section 3.8), tested their lattice dynamical predictions
against neutron scattering and other experimental data, and used them inmolecular
dynamics simulations at high temperature and pressure. At Trombay, we have
developed the necessary software for molecular dynamics simulations (MOLDY),
which may be applicable to systems of arbitrary size and symmetry. In particular,
these softwares are also applicable to systems containing molecular ions for which
the long-rangeCoulomb interaction is handled via theEwald technique.Our in-house
code MOLDY has been parallelized and installed on the BARC parallel computer.

3.8
Applications of Inelastic Neutron Scattering, Lattice Dynamics,
and Computer Simulation

3.8.1
Phonon Density of States

Although, in principle, both reactor and spallation sources can be used for measure-
ments of the phonon density of states, the time-of-flight method using a pulsed
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spallation source is the most commonly adopted technique for the measurements
of the phonon density of states, as it can cover the wide range of momentum and
energy transfers. Themeasured phonondensity of states of the rare-earth phosphates
(LuPO4 and YbPO4) are compared with shell model calculations in Figure 3.5. The
computed partial density of states [22] provides the dynamical contribution to
frequency distribution from various species of atoms and has been useful in the
interpretation of the observed data.

The contribution from 729 wave vectors has been included in calculation of the
phonon density of states (Figure 3.5) of LuPO4 and YbPO4. The histogram sampling
of frequencies is carried out in a frequency interval of 1.0 meV. The calculated
neutron-weighted one-phonon density of states (Figure 3.5) is in good agreement
with our measured data on YbPO4 and the reported data [47] for LuPO4. The spectra
consist of phonon bands centered at about 24, 40, 68, 83, and 125meV. There is
a band gap in the energy range of 90–115meV. These can be interpreted in terms of
the partial density of states contributed from various atomic species. The calculated
partial density of states (Figure 3.6) shows that rare-earth atoms contribute below
50meV. The phonon band around 24meV is broader in YbPO4 as compared to that in
LuPO4 due to a dominant broad contribution from the Yb atom. The vibrations of
oxygen and phosphate atoms span the entire 0–145meV range. Above 115meV, the
contributions are mainly due to P�O stretching modes. The total phonon densities
of states for LuPO4 and YbPO4 are similar due to the fact that the compounds are
isostructural and the masses of the rare-earth elements (Yb and Lu) are nearly same.

Due to the structural complexity involved, an approach based on interatomic
potentials has been used to derive phonon density of states and various microscopic
and macroscopic properties for several minerals including forsterite [48, 49],
fayalite [50], enstatite [51–53], MgSiO3 perovskite [54, 55], almandine, pyrope,
grossular, spessartine, [19, 20], zircon [16–18], sillimanite, andalusite, kyanite [56],
and so on.

Figure 3.5 Comparison between the
experimental and the calculated phonon density
of states of LuPO4 and YbPO4 in the zircon
phase. A Gaussian of FWHM 6 meV has been

used for the smoothing in order to correspond
to the energy resolution in the experiment
(which varies between 2 and 4% of the incident
energy of 200 meV). (After Ref. [22].)
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3.8.2
Raman and Infrared Modes, and Phonon Dispersion Relation

The study of orthosilicates, zircon (ZrSiO4), hafnon (HfSiO4), thorite (ThSiO4),
and coffinite (USiO4) are of particularly importance, since these compounds are
effective radiation resistant materials suitable for fission reactor applications and
for storage of nuclear waste. These compounds have the zircon structure [57–59]
with the space group I41=amd ðD19

4hÞ and four formula units in the tetragonal unit cell.
The zircon structure compounds are known to transform [60–62] to the scheelite
phase (I41/a) at about 20GPa. However, thorium silicate, ThSiO4 has a zircon
structure (I41/amd) at low temperature [25], whereas the high temperature form
of ThSiO4 has huttonite structure (P21/n). Zircon to huttonite transition is unusual
[63–65] since a less dense phase usually occurs at high temperature. High-pressure
studies have not been reported for USiO4. Due to the various applications of these
compounds, several groups [66–75] have reported experimental and theoretical
studies of its structural and vibrational properties, including the specific heat and
elastic constants.

The calculated phonon frequencies at the zone center for MSiO4 (M¼Zr, Hf,
Th, and U) in the zircon phase [18] are compared in Figure 3.7. The calculations
are compared with the experimental Raman data and the ab initio calculations.

Figure 3.6 Calculated partial densities of states of various atoms in LuPO4 and YbPO4. (After
Ref. [22].)
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The average deviation between the calculated and the experimental frequencies is
within 4–5%.

Inelastic neutron scattering is used to obtain information about the phonons in the
entire Brillouin zone. In order to refine the interatomic potential for ZrSiO4 we have
carried out extensive inelastic neutron scattering experiments, in particular at high
energy transfer up to 85meV. The data have been obtained [15–17] using spallation
and steady sources and the observed phonon dispersion relations are compared
with lattice dynamical calculations. Lattice dynamical calculations are essential for
the planning of neutron experiments, that is, for the calculation of the one-phonon
structure factors in order to select themost appropriate Bragg points for the detection
of particular phonons. They are further important for assignments of the various
inelastic signals to specific phonon branches.

The phonon measurements for ZrSiO4 were performed in three rounds using
different techniques. Our early measurements of the phonon dispersion relation
in zircon were performed on the medium resolution triple-axis spectrometer
at Trombay, India [15]. Due to the relatively low neutron flux of this instrument,
these measurements were restricted to an energy range up to 32meV. Subsequently,
further measurements [16] were done on the PRISMA spectrometer at ISIS
using time-of-flight technique. The maximum phonon energies recorded on this

Figure 3.7 The comparison between the
calculated (T¼ 0 K) and the experimental
[68–73] (T¼ 300 K) zone center phonon
frequencies for zircon phase of MSiO4 (M¼Zr,
Hf, Th, and U). The ab initio calculations [67] for

ZrSiO4 andHfSiO4 are also shown. TheA2g, A1u,
B1u, and B2u are optically inactive modes. The
frequencies are plotted in the order of ZrSiO4,
HfSiO4, ThSiO4, and USiO4 from below. (After
Ref. [18].)
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instrument were 65meV. These measurements yielded a large number of phonon
frequencies because TOF techniques allow a simultaneous measurement of several
phonons along specific paths in Q–E space. We performed additional measure-
ments [17] using the 1T1 triple-axis spectrometer at the Laboratoire L�eon Brillouin,
Saclay.

The symmetry assignments and phonon dispersion relation results from the
inelastic neutron scattering experiments are shown in Figure 3.8. Due to the involved
nature of these experiments, such extensive measurements are often not available
despite their importance. The measured data are compared with the computed first
principles results and the fitted results obtained using the shell model. The
experimental results are generally in good agreement with the first principles
calculations. The quality of the fit is also satisfactory with approximately 4%deviation
between the experimental and the calculated shell model values. The overall
agreement between the experiment and the two calculations appears satisfactorily
although some differences could arise due to inherent limitations in theory and
experiments. The observed phonon intensities are found to be in a good qualitative
agreement with the calculated one-phonon structure factors, which are quite
satisfactory considering the many corrections involved in the experimental inten-
sities and the difficulties generally encountered when making predictions from
models.

The extensive phonon data have been used to refine the interatomic potential for
zircon. The shell model calculations produce a good description of the available data

Figure 3.8 The experimental phonon
dispersion curves in zircon alongwith the lattice
dynamical calculations (solid lines: shell model;
dashed lines: ab initio) for zircon. The open

rectangles, solid circles, and open circles give
the phonon peaks identified in the experiments
at LLB [17],France; ISIS1 [16],UK; and Dhruva
reactor [15], India, respectively. (After Ref. [16].)
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on the phonon density of states measured on a polycrystalline sample. The potential
derived is also fruitfully used [17] to understand the high-pressure and -temperature
phase diagram, thermodynamic properties, and various microscopic and macro-
scopic properties of zircon.

The calculated structure factors have also been used as guides for our measure-
ments of phonon dispersion relations from single crystals of the minerals forster-
ite [48], fayalite [76], and the aluminum silicate mineral andalusite [77].

3.8.3
Elastic Constants, Gibbs Free Energies, and Phase Stability

The computed elastic constants for theMSiO4 (M¼Zr, Hf, Th, andU) are compared
in Table 3.1. The calculated bulk modulus value of ZrSiO4 is 22% higher than the
experimental [61] value. However, the calculated acoustic phonon branches for
ZrSiO4 are found to be in good agreement with the calculations [17]. Therefore,
the bulk modulus should also be well reproduced. Perhaps, the measurement of the
bulkmodulus ofZrSiO4 fromnatural single crystalsmayhave been influenced [78] by
the presence of known radiation damage due to radioactive impurities. This may be
one of the reasons for difference between the experimental and the calculated values
of bulk modulus of ZrSiO4. The calculated bulk modulus values of the zircon and
scheelite phases of HfSiO4 are 260 and 314GPa, respectively. These values are
approximately 3.5% higher in comparison of the ZrSiO4. The calculated bulkmoduli
for ThSiO4 and USiO4 in their zircon phase are nearly same. These values are
approximately 80% of the bulk modulus values of HfSiO4.

The phase diagram of a compound can be calculated by comparing the Gibbs free
energies in various phases. In quasiharmonic approximation, Gibbs free energy of
nth phase is given as

G ¼ Wn þPVn�TSn ð3:41Þ

Table 3.1 The elastic constants and bulk modulus [17, 18] in zircon and scheelite phase of ZrSiO4

and HfSiO4 and zircon phase of ThSiO4 and USiO4 (in GPa units).

Elastic
constant

Expt.
ZrSiO
(Zircon)

Calc.
ZrSiO4

(Zircon)

Calc.
ZrSiO4

(Scheelite)

Calc.
HfSiO4

(Zircon)

Calc.
HfSiO4

(Scheelite)

Calc.
ThSiO4

(Zircon)

Calc.
USiO4

(Zircon)

C11 424.4 432 470 441 477 334 370
C33 489.6 532 288 537 282 453 483
C44 113.3 110 74 107 72 78 89
C66 48.2 39 133 41 136 11 20
C12 69.2 73 241 77 247 38 48
C13 150.2 180 255 192 274 144 159
B 205a) 251 303 260 314 197 217

a) Expt. Ref. [66] for elastic constants and Ref. [61] for bulk modulus for zircon.
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Where,Wn,Vn, and Sn refer to the internal energy, lattice volume, and the vibrational
entropy of the nth phase, respectively. The vibrational contribution is included by
calculating the phonon density of states in all the phases of compound to derive the
free energy as a function of temperature at each pressure. Then, theGibbs free energy
has been calculated as a function of pressure and temperature.

3.8.3.1 Zircon Structured Compound
The calculated phonon dispersion relation show [18] that for ThSiO4, there is a
greater density of low frequency modes in the huttonite phase in comparison of the
zircon phase. This result in larger vibrational entropy in the huttonite phase, which
favors [79] this phase at high temperatures.

Our Gibbs free energy calculations show that the zircon phase transforms
(Figure 3.9) to the scheelite and huttonite phases at high pressure for HfSiO4 and
ThSiO4, respectively, which is in good agreement with the experimental observa-
tions [60, 63–65]. It is likely that the phase transition pressure of ThSiO4 in
experiments is overestimated as these were performedwith only increasing pressure
and some hysteresis is expected [63–65]. Our calculated transition pressure agrees
with that estimated from an analysis of themeasured enthalpies [63–65]. For ThSiO4,
at further high pressure, the scheelite phase is found (Figure 3.9) to be stable.
Experimentally, however, transformation to an amorphous phase is found (coexisting
with the huttonite phase) instead of the scheelite phase, whichmight be due to kinetic
hindrance. The free energy calculations in the zircon, scheelite and huttonite phases

Figure 3.9 The calculated phase diagram of HfSiO4, ThSiO4, and USiO4 as obtained from the free
energy calculations. For ThSiO4, experimental data are taken from Refs. [63–65]. The experimental
data for HfSiO4 are from Ref. 60. (After Ref. [18].)
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of USiO4 suggest that scheelite is the stable phase of USiO4 at high pressures. The
free energy changes due to volume are important in zircon to scheelite phase
transition in HfSiO4 and USiO4, while vibrational energy and entropy play an
important role in zircon to huttonite phase transition in ThSiO4. It is important
and satisfying to note that the free energy calculation with the present model is able
to distinguish between the phases and reproduce their relative stability over a range
of pressure and temperature. This is probably the most stringent test of the
interatomic potentials.

3.8.3.2 Sodium Niobate
Sodium niobate based ceramics exhibit interesting electrical and mechanical prop-
erties that find important technological applications. Neutron diffraction studies
using powder samples have been used to understand the complex sequence of low
temperature phase transitions ofNaNbO3 in the temperature range from12 to 350K.
Detailed Rietveld analysis of the diffraction data [23] reveals that the antiferroelectric
(AFE) to ferroelectric (FE) phase transition occurs on cooling around 73K, while the
reverse ferroelectric to antiferroelectric transition occurs on heating at 245K.
However, the former transformation is not complete until it reaches 12K and there
is unambiguous evidence for the presence of the ferroelectric R3c phase coexisting
with an antiferroelectic phase (Pbcm) over a wide range of temperatures.

Using the theoretical lattice dynamical model, we have calculated [23] the energy
barriers between the paraelectric Pm�3m, ferroelectric R3c, and antiferroelectric Pbcm
phases. The paraelectric cubic Pm�3m structure has a higher energy than the ferro-
electric R3c and antiferroelectric Pbcm phases. Further, we have calculated the double
wells corresponding to the ferroelectric and antiferroelectric distortions (Figure 3.10
(a)). Our calculations reveal that both the ferroelectric and antiferroelectric distortions
in NaNbO3 yield similar lowering of the energy as compared to the higher energy
paraelectric phase, although the ferroelectric phase has a slightly lower energy.

The ferroelectric R3c phase has a slightly lower internal energy, the slightly higher
vibrational entropy of the antiferroelectric Pbcm phase causes the free energy
crossover at Tc
 50K. The free energy differences of the antiferroelectric Pbcm and
ferroelectric R3c structures (inset of Figure 3.10(b)) are, however, within thermal
fluctuations in the 0–400K temperature range, which explain the coexisting ferro-
electric and antiferroelectric structures over a wide range of temperature in NaNbO3

observed in neutron diffraction experiments. The small energy difference between
the two phases is of interest, as it would make it possible to easily switch from the
antiferroelectric to ferroelectric state using realizable electric fields, which in turn
would determine the potential use of this material for applications.

3.8.4
Negative Thermal Expansion from Inelastic Neutron Scattering
and Lattice Dynamics

Large isotropic negative thermal expansion (NTE) from 0.3 to 1050Kwas discovered
in cubic ZrW2O8 [80]. Since then, many experimental and theoretical simulation
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studies [81, 82] have been carried out to determine phonon spectrum and its
relevance to NTE in framework solids. We have carried out [13, 14, 21, 33, 34,
83–85] inelastic neutron scattering and lattice dynamical calculations to understand
NTE in ZrW2O8, HfW2O8, ZrMo2O8, ZrV2O7, HfV2O7, Cu2O, and Ag2O. Thermal
expansion in insulatingmaterials is related to the anharmonicity of lattice vibrations.
The key parameters, known as Gr€uneisen parameters are obtained from the volume
dependence of phonon frequencies. In the quasiharmonic approximation each of
the phonon modes v(q, j), (where, v(q, j)¼ frequency, q¼wave vector, j¼mode
index, j¼ 1,3N; N being the number of atoms in the crystallographic primitive unit
cell), contribute to the thermal expansion [2, 4] equal to 1

BV Gðq; jÞCVðq; j;TÞ (where
G(q,j)¼�qlnv(q,j)/qlnV is themode Gr€uneisen parameter,V is the cell volume, B is
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Figure 3.10 (a) Energy barriers from the
paraelectric Pm3�m to antiferroelectric (space
group Pbcm) phase and ferroelectric (space
group R3c) phase. z corresponds to the
symmetry lowering AFE and FE distortions of

the ideal cubic paraelectric structure for the
dashed and full lines, respectively. (b) Calculated
free energy (including vibrational contributions)
for the antiferroelectric and ferroelectric phases
of NaNbO3. (After Ref. [23].)
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the bulk modulus, CVðq; j;TÞ ¼ qEðq; jÞ=qT is the contribution of the phononmode

to the specific heat, Eðq; jÞ ¼ nþ 1
2

� �
hvðq; jÞ, n ¼ exp hvðq;jÞ

kT

	 

�1

h i�1
� �

. Since

CVðq; j;TÞ is positive for all modes at all temperatures, it is clear that the NTE would
result only from large negative values of the Gr€uneisen parameter for certain
phonons; the values should be large enough to compensate for the normal positive
values of all other phonons. The frequencies of such phonons should decrease on
compression of the crystal rather than increase, which is the usual behavior.

3.8.4.1 Negative Thermal Expansion Calculation
Our calculation [21] of the temperature dependence of the volume thermal expansion
coefficient (Figure 3.11a) indicates that in cubic ZrV2O7 almost all the NTE (approx-
imately 95%) is contributed from the phonon modes below 9meV, among which
nearly 50% of the NTE arises from just two lowest modes. The comparison between
the calculated and the experimental data for cubic ZrV2O7 [86] is shown in
Figure 3.11b. The agreement between our calculations and experimental data is
excellent in the high-Tphase between 400 and 900K. In the low-Tphase below 400K,
the soft phonons of the high-T phase would freeze and may no longer have the
negative Gr€uneisen parameters. The low-T phase has positive thermal expansion
coefficient. Above 900K, the experimental data show a sharp drop in the volume at
approximately 900K, which probably signifies another phase transition.

Our estimates of NTE coefficient agree well with available experimental data. The
calculations show that phonon modes of energy from 4 to 7 meV are major
contributors to NTE. These important phonon modes involve translations and
librations of ZrO6 octahedral and VO4 tetrahedral units, which significantly soften
(Figure 3.12) on compression of the lattice and lead to the thermal compression.
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Figure 3.11 (a) The calculated volume thermal
expansion (solid line) in the cubic ZrV2O7 along
with separate contributions from the two lowest
phonon branches (dotted line) and all the
phonons below 9 meV (dashed line).
(b) Comparison between the calculated and

the experimental [86] thermal expansion
behaviors of ZrV2O7. The low temperature
phase of ZrV2O7 below about 400K has positive
thermal expansion coefficient. The calculations
have been carried out in high-temperature
phase. (After Ref. [21].)
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The maximum softening in the high-T phase occurs at 0.31h1, 1, 0i, which is near
h1/3, 1/3, 0i, and the freezing of these modes at low temperature could lead to the
known incommensurate phase [86] below 375K, and then below 350K to the
3� 3� 3 superstructure (low temperature phase) [87]. We note that the calculated
soft-mode wave vector is an excellent agreement with the observed [86] incommen-
surate modulation. The phonon modes involved in NTE in ZrV2O7 are found to be
quite different from those involved in cubic ZrW2O8.

3.8.4.2 Thermal Expansion from Experimental High-Pressure Inelastic
Neutron Scattering
The measured neutron cross-section-weighted phonon density of states g(n)(E) for
ZrW2O8 at 160K and different pressures after subtracting the contributions from
argon gas, absorption from the sample and empty cell background are shown in
Figure 3.13. The ambient pressure results are in agreement with the previous
measurements [88]. The spectra at high pressures show an unusually large softening.
In conformity with the predictions, the phonon modes of energy below approxi-
mately 5meV soften by approximately 0.15meV at 1.7 kbar with respect to ambient

Figure 3.12 The calculated phonon dispersion relation up to 10 meV for cubic ZrV2O7 along the
(1 0 0), (1 1 0), and (1 1 1) directions. The solid and dashed lines correspond to ambient pressure
and 3 kbar, respectively (After Ref. [21].)
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pressure. At energies above 5meV, the shift of the spectrum is much less than that
at lower energies. These observations (Figure 3.13) are in good agreement with the
lattice dynamical calculations considering the known inherent limitations in exper-
iment (e.g., incoherent approximation) and theory.

TheGr€uneisen parameter GðEÞ ¼ B
E
dE
dP ; where B ¼ �V dP

dV

� �
for phonons of energy

E has been obtained (Figure 3.14a) using the cumulative distributions for the density
of states. The experimental results of Gr€uneisen parameters (Figure 3.14b) are in
good agreement with predictions from lattice dynamics. The aV thus derived from
the neutron inelastic scattering data is in good agreement (Figure 3.14b) with that
directly observed by diffraction [89]. The analysis shows that the large negative
Gr€uneisen parameters of modes below 10 meV are able to explain the low temper-
ature thermal expansion coefficient and its nearly constant value above 70K [80, 89].

3.8.5
Thermodynamic Properties

The silicate perovskite,MgSiO3, is a principal constituent of the Earth�s lowermantle.
The physical and thermodynamic properties of this mineral are of importance for
interpreting the physics of the Earth�s interior. In view of its geophysical importance,
extensive experimental studies of its crystal structure [91], elastic constants, phonon
frequencies [92, 93], equation of state [94, 95], specific heat [96], thermal expansion,
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melting [97–100] and so on have been reported. The phase transitions of MgSiO3

silicate perovskite have involved several controversies [54, 101–104] and are of
interest, as they may contribute to observed seismic discontinuities in the Earth�s
mantle [54, 105]. Several workers have also undertaken extensive theoretical lattice
dynamics and molecular dynamics studies on MgSiO3 silicate perovskite using
ab initio [10, 104, 106–110] and atomistic approaches [54, 111–114].

We had carried out detailed lattice-dynamics studies and molecular dynamics
simulations of MgSiO3 silicate perovskite [54, 115]. The computed equation of state,
specific heat, and thermal expansion of enstatite and silicate MgSiO3 perovskite [55]
are shown in Figure 3.15. The calculations are in good agreement with experimental
data and available ab initio calculations validating the model and demonstrating the
role of these models in predicting high-pressure and -temperature thermodynamic
properties. Similar calculations have been reported for forsterite [49], the aluminum
silicate minerals sillimanite, andalusite, and kyanite [56], the garnet minerals
almandine, pyrope, grossular, and spessartine [19, 20], and so on.

3.8.6
Phase Transitions in Magnesium Silicate, MgSiO3

Magnesium silicate in various polymorphic forms constitutes a major component of
the Earth�s mantle. The upper mantle, which extends to a depth of 440 km, contains
olivine, pyroxene and garnet phases, whereas the lowermantle below 660 kmdepth is
largelymade of the perovskite phase [120]. Apparently, themost important difference
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Figure 3.14 (a) The experimental Gr€uneisen
parameter [G(E)] for cubic ZrW2O8 as a function
of phonon energy (E) (averaged over the whole
Brillouin zone). The Gr€uneisen parameter has
been determined using the density of states at
P¼ 0 and 1.7 kbar that represents the average
over the whole range in this study. The
calculated G(E) from the lattice dynamical
calculations is shown by a dotted line. (b) The

comparison between the volume thermal
expansion (aV) for cubic ZrW2O8 derived from
the present high-pressure neutron inelastic
scattering experiment (full line) and that
obtained using neutron diffraction [70] (filled
circles). The experimental bulk modulus
value [90] of 72.5 GPa is used in the calculation
of thermal expansion. (After Ref. [33].)
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between the upper and the lower mantle silicates is that the silicon coordination
changes from 4 to 6, respectively, whereas the Mg coordination also increases from
6 to 8. This kind of information is indirectly inferred from seismic observations and
compositional modeling of the Earth�s interior based on accurate information about
the structure and thermodynamic properties of the constituent phases [121–126].
Accurate modeling of mantle minerals is therefore of utmost importance, and
simultaneously is also a major challenge in condensed matter physics.

We shall discuss here the results of MD simulations in Magnesium silicate as a
function of pressure at high temperature starting from an important upper mantle
phase, orthoenstatite. The present studies have used well-tested interatomic poten-
tials comprising long-rangeCoulomb and short-rangeBorn–Mayer type interactions.
TheMD simulations were performed on systems of approximately 4000 atoms using

Figure 3.15 Comparisons of the calculated
[55] (full line) specific heat (a) and equation of
state (b) of enstatite with available experimental
data [116–119] (symbols). ((c), (d), and (e))
Comparisons of the calculated [55] (full line)

specific heat, equation of state and high-
pressure thermal expansion of MgSiO3 silicate
perovskite with available experimental data [94,
96, 102] (symbols) and ab initio LDA
calculations [10] (dotted lines). (After Ref. [55].)
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macrocells of size (2a, 4b, and 6c), where a, b, and c are approximately 18, 9, and 5A
	
,

respectively. The results have been cross-checked using macrocells of sizes (2a, 2b,
and 4c) and (4a, 4b, and 6c) and these simulations took several weeks on a parallel
supercomputer. At each pressure and temperature the structure is equilibrated for
duration of about 20 ps using a time step of 1 fs, while the system completed a phase
transition is less than 50 ps.

Figure 3.16a shows the simulated change of volume as a function of pressure at
three fixed temperatures of 300, 900, and 2050K, which clearly reveal first-order
transitions. The transition pressures appear to decreasewith increasing temperature.

The wave velocities are calculated from the simulation of the dynamical structure
factors S(Q,v) of fairly long wavelength (of approximately 40A

	
) acoustic phonons in

several propagation directions. The structure factor S(Q,v) is related to the time
correlation function F(Q,t) of the density operator rQ(t), which is given [41] as

SðQ;vÞ ¼
ð þ¥

�¥
eivtFðQ; tÞdt ð3:42Þ

where

FðQ; tÞ ¼ 1
N
hrQðtÞr�Qð0Þi ð3:43Þ

Figure 3.16 (a) The simulated volumes as a
function of increasing pressure at various
temperatures. (b) The solid line corresponds to
the simulated longitudinal (VP) and transverse
(VS)wave velocities anddensity (r) as a function
of pressure up to the mantle-core boundary at

T¼ 900 K. The wave velocities VP and VS are
obtained by averaging over a large number of
acoustic mode frequencies along various
directions. The discontinuities in the simulated
VP, VS, and r represent phase transitions.
(After Ref. [55].)
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For an atomic system, the density operator is given as

rQðtÞ ¼
XN
i¼1

eiQ � riðtÞ ð3:44Þ

where ri(t) is the instantaneous position of the ith atom at time t.
In Figure 3.16b, we have compared the simulated seismic longitudinal and

transverse velocities (VP and VS, respectively) and densities (r) with the preliminary
reference earth model (PREM) estimates [121]. The PREM results are based on
seismic observations and estimates of the physical and thermodynamic properties of
mantle forming phases corresponding to an actual mantle composition. The PREM
results reveal several discontinuities in the observed longitudinal and transverse
wave velocities (VP and VS, respectively) and densities (r), which define the bound-
aries between theuppermantle, transition zone, and the lowermantle. The transition
zone is defined by the observed seismic discontinuities at depths of 440 and 660 km,
which on a pressure scale corresponds to approximately 13 and 24GPa, respectively.
The simulations involve only one initial phase while the PREM results correspond to
an actual mantle composition.

The simulated structure factors S(Q, v) of a typical longitudinal and transverse
acoustic phonon mode in the enstatite, intermediate, and perovskite phases are
shown in Figure 3.17. Both the longitudinal and transverse acoustic phonon
frequencies shift to higher energies upon transformation from the enstatite to the
perovskite phase (via the intermediate phase). This �hardening� of frequencies in
turn results in significant changes in the elastic properties, whichfinallymanifests as
discontinuities in the simulated seismic velocities (Figure 3.16b).

Figure 3.18 shows the crystal structures of the three simulated phases. Orthoen-
statite [127] is orthorhombic (having the space group Pbca with 80 atoms in the unit
cell) and its structure comprises of MgO6 octahedral bands and single silicate
tetrahedral chains. For clarity, only the coordination polyhedra around the Si atoms
are shown, with the Mg atoms depicted as circles. In enstatite, there are two
crystallographycally distinct MgO6 octahedra (which are shown as circles of varying
shades) and the silicate SiO4 tetrahedra share corners to form chains parallel to
the c-axis. The perovskite structure, on the other hand, comprises of a network of
corner-shared SiO6 octahedra, with the Mg atoms occupying the interstices. The
coordination number of Mg in MgSiO3 perovskite, depends on the degree of
distortion from the cubic, varying from 12 (in the ideal cubic) to 8 (in the distorted
orthorhombic). X-ray diffraction studies indicate that MgSiO3 perovskite has the
orthorhombic structure (with space group Pnma having 20 atoms/unit cell) over a
wide range of pressures and temperature [102]. The simulated structures of enstatite
and perovskite are overall consistent with these experimental observations.

The density of states is determined by Fourier transforming the velocity–velocity
autocorrelation function hv(0).v(t)i and is given as

gðvÞ ¼
ð þ¥

�¥

vð0Þ � vðtÞ
v2

e�ivtdt ð3:45Þ
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In Figure 3.19, the calculated vibrational density of states in enstatite phase along
with the partial contributions from theMg, Si, and O atoms is shown. The simulated
density of states of enstatite is found to be in overall agreement with results obtained
from lattice dynamics calculations and available inelastic neutron scattering data [53].

3.8.7
Fast Ion Diffusion in Li2O and U2O

Uranium, thorium, and lithium oxides are superionic conductors whose solid-state
diffusion coefficients are comparable to that of liquids. They allow macroscopic

Figure 3.17 The simulated structure factor of a typical (a) longitudinal acoustic phonon mode
and (b) transverse acoustic phonon mode in the enstatite, intermediate and perovskite phases.
(After Ref. [55])
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movement of ions through their structure. A rapid diffusion of a significant fraction
of one of the constituent species within an essentially rigid framework of the other
species occurs. Uranium and thorium oxides are of technological importance to the
nuclear industry. Li2O finds several technological applications ranging from min-
iature light -weight high-power density lithium-ion batteries for heart pacemakers,
laptop computers to name a few. A detailed study [128–130] of their physical and
thermodynamic properties is of great interest for enhanced understanding of these
systems. We have used a combination of lattice dynamics and molecular dynamics
studies to understandUO2, ThO2 [131], and Li2O in their normal aswell as superionic
phase.With the help ofmolecular dynamics simulations, the transition fromnormal
to superionic phase has been studied. These oxides exhibit a sublattice melting-like
behavior at temperatures around 0.8Tm, where Tm is the melting temperature. In
actinides UO2 and ThO2, it is the oxygen sublattice that exhibits premelting
phenomena, while in antifluorite Li2O, it is the lithium atom that exhibits superionic
behavior. The melting temperatures of Li2O, UO2, and ThO2 are 1705, 3310, and
3400K, respectively. Our studies infer that superionicity sets around 1000, 2400, and

Figure 3.18 Simulated high-pressure
structures in the enstatite, intermediate, and
perovskite phases. The Mg atoms (circles) and
the coordination polyhedra around the Si atoms
are displayed. The intermediate phase

(characterized by 5-coordinated silicon) is an
orientationally disordered crystalline phase with
space group Pmna where the Mg and Si atoms
occupy the 2b and 2d sites, respectively. (After
Ref. [55].)
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2700K in the three oxides. Figure 3.20 gives the comparison of our calculations with
the reported experimental data.

The microscopic snapshot of the processes occurring in the sublattice around
transition temperature is depicted in Figure 3.21. The position–time plots of certain
Li atoms, for time duration of 10 ps at 1250 K in XY and YZ planes are given in
Figure 3.21. The Li atomAat an initial position (the positions are actuallymultiples of
the lattice parameter) of (1.25,1.25,1.25) moves to a second position (1.25,1.25,1.75)
with a jump time of approximately 0.065 ps, residence time beingmore than 3.3 ps at
the initial position. It then moves to the third position of (1.25,0.75,1.25). The
residence time at the second position is 3.9 ps. Before moving to the third position,
it undergoes some transit zigzag motion in the octahedral region surrounding the
coordinate (1.25,1.65,1.5). On the other hand, atomB starts at an initial coordinate of
(3.75,0.75,1.75) and then moves to the second position (3.75,1.25,1.75) in the time
duration for which these atoms were tracked. These results indicate that the lithium
atoms jump from one tetrahedral position to another, passing the octahedral
interstitial regions during transit; at any given instant the probability of an atom
sitting in the octahedral position is rather small. Similar results have been reported
for CuI [132, 133], where ionic density distribution shows no or very little occupation
of the octahedral sites with increase in temperature. Average potential energy curves
obtained for CuI depicts that energy is a minimum at the tetrahedral sites and rises
rapidly as the octahedral site is approached. The lithiumatoms essentiallymove from
one tetrahedral position to another randomly, yet maintaining the local order and
structure to a great degree.

Figure 3.19 Calculated partial and total density of states (arbitrary units) of enstatite at P¼ 13 GPa
and T¼ 900K. (After Ref. [55].)
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It can be concluded that though considerable disturbances are occurring in one
of the sublattice, the crystal structure of the system is maintained. This behavior is
called fast ion conduction, and this is technologically important and used for several
applications.

3.9
Conclusions

The combination of lattice dynamics calculations and inelastic neutron scattering
measurements can be successfully used to study the phonon properties and their
manifestations in thermodynamic quantities such as specific heat, thermal expan-
sion, and equation of state. The measurements of phonon density of states from the
powder samples and the wave vector dependence of phonon frequencies from single
crystals can be made using spectrometers at both the steady state sources such as
reactors and pulsed spallation sources. The experiments validate the models and the
models in turn have been fruitfully used to calculate the phonon spectra and various
thermodynamic properties at high pressures and high temperatures. The phonon
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calculations have been useful in the planning and execution of the experiments. The
calculations also enabled microscopic interpretations of the observed experimental
data. Molecular dynamics studies have been useful in understanding the high
pressure–temperature phase transitions of solids. The simulations have enabled a
microscopic visualization of the key mechanisms of phase transitions and provide
useful insights about the variations in the vibrational properties.
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4
Phonon Spectroscopy of Polycrystalline Materials Using
Inelastic X-Ray Scattering
Alexei Bosak, Irmengard Fischer, and Michael Krisch

4.1
Introduction

The study of phonon dispersion in condensedmatter at momentum transfersQ and
energies E, characteristic of collective atom motions, provides insight into many
physical properties such as elasticity, interatomic forces, structural phase stability and
transitions, anharmonicity, and electron correlation. Phonon spectroscopy has been
traditionally the domain of neutron spectroscopy. Neutrons as probing particle are
particularly suitable, since (i) the neutron–nucleus scattering cross-section is suffi-
ciently weak to allow a large penetration depth, (ii) the energy of neutrons with
wavelengths of the order of interparticle distances is about 100meV, and therefore
comparable to typical phonon energies, and (iii) the momentum of the neutron
allows one to probe the whole dispersion scheme out to several tens of nm�1.

X-rays represent another probe that can in principle as well be used to determine
the phonon dispersion throughout the Brillouin zone (BZ). However, it has been
pointed out in several textbooks that this would represent a formidable experimental
challenge mainly due to the fact that an X-ray instrument would have to provide an
extremely high-energy resolution of at leastDE/E¼ 10�7. For example, the following
statement can be found in the textbook Solid State Physics by Ashcroft and Mermin
about the possibility to measure phonons with X-rays: In general the resolution of such
minute photon frequency shifts is so difficult that one can only measure the total scattered
radiation of all frequencies . . . [1]. Indeed, the first attempts for the extraction of lattice
dynamics from X-ray experiments were made by analyzing the diffuse scattering
intensity between the diffraction spots. It was shown by Laval in 1939 [2] that the
thermal movements of the atoms contributed to these intensities, which could
therefore provide information on the lattice dynamics. One of the first experiments
along these lines was performed in 1948 byOlmer on fcc aluminum [3]; his workwas
completed by Walker in 1956 [4]. Furthermore, in combination with the lattice
dynamics theory of Born, interatomic force constants could be derived by Curien [5]
and Jacobsen [6] fora-iron and copper. There was, however, no possibility at that time
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to measure such dispersion curves directly, due to the lack of scattered intensity. In
the 1980s a spectrometer setup, using a rotating anode X-ray generator, yielded an
instrumental energy resolutionDE of 42meV, but the photon flux was not sufficient
to perform an inelastic X-ray scattering (IXS) experiment [7]. Using synchrotron
radiation from a bending magnet at HASYLAB provided the necessary high photon
flux, and first pioneering experiments were performed on graphite and beryllium
with an energy resolution of DE¼ 55meV [8, 9]. This modest energy resolution and
photon flux were significantly improved by the construction of a dedicated instru-
ment located at a wiggler source at HASYLAB, where an instrumental resolution of
9meV could be achieved [10]. With the advent of the third-generation synchrotron
radiation sources, in particular the European Synchrotron Radiation Facility (ESRF)
in Grenoble (France), the Advanced Photon Source (APS) at the Argonne National
Laboratory (United States) and the Super Photon Ring (SPring-8) in Japan, the IXS
technique gained its full maturity within a few years. Thanks to the high brilliance of
the undulator X-ray sources and important developments in X-ray optics, experi-
ments are now routinely performedwith an energy resolution of 1.5meV. At present,
there are worldwide five instruments dedicated to IXS fromphonons: ID16 and ID28
at the ESRF [11, 12], 3ID and 30ID at the APS [13, 14], and BL35XU at SPring-8 [15].
Two further projects are in an advanced design stage.

Today, the use of photons complements the capabilities of inelastic neutron
spectroscopy, in particular in cases where neutron techniques are difficult or
impossible to apply. This concerns the study of disordered and polycrystalline
systems where well-defined sound-like excitations are only clearly resolvable in the
small momentum transfer (Q ) limit, typically below 10nm�1. In particular, in
systems with a high speed of sound (vsound � E/Q ), the required energy transfer
and energy resolution cannot be met simultaneously. These kinematic restrictions
are absent for X-rays (see Figure 4.1). Another important advantage of inelastic X-ray
scattering lies in the possibility to study samples in very small quantities (V¼ 10�4

�10�6mm3). This has opened new possibilities in material research and high-
pressure science. IXS is applied to a large variety of very different materials ranging
from quantum liquids over high Tc superconductors to biological aggregates. The
interested reader is referred to several reviews that allow gaining an excellent
overview of the various research fields [16–20].

The present review is focused on IXS from polycrystalline materials. In polycrys-
talline systems, the directional information is lost due to the random orientation of
the individual crystalline grains. The information content is therefore limited, or, in
the best case, involves sophisticated modeling. An approximate average longitudinal
acoustic (LA) phonon dispersion can be determined, if Q is chosen to be within the
first Brillouin zone. Earlier examples comprise studies of the high-pressure phases
of ice [21, 22] and ice clathrates [23, 24], iron [25, 26], and other geophysically relevant
materials [27–29]. The vibrational density of states (VDOS) can be determined – in
analogy to coherent INS [30] – in the so-called incoherent approximation. Section 4.4
provides a rigorous theoretical treatment of IXS at lowQ and discusses the relation of
IXS-derived elastic properties with the macroscopic aggregate elasticity. Density of
state measurements are presented in Section 4.5. The VDOS provides the link
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between the microscopic interatomic interactions and the macroscopic thermody-
namic and elastic properties. In the case of monoatomic systems, well-established
integral equations allow the derivation of the vibrational contribution to the heat
capacity, free energy and entropy, and the atomic mean square displacements and
mean force constants [31]. Furthermore, the Debye temperature and velocity can be
derived. The extraction of these quantities for multicomponent systems is not
straightforward and necessitates modeling of the lattice dynamics for each constit-
uent atom species. Section 4.6 presents a novel methodology for the extraction of the
single-crystal lattice dynamics from polycrystalline materials, exploiting the infor-
mation in the intermediate Q-range. The review is complemented by a short
overview of the theoretical background (Section 4.2) and the instrumental setup
(Section 4.3). Section 4.7 contains the concluding remarks and attempts to project
onto the future.

4.2
Theoretical Background

4.2.1
Scattering Kinematics and Dynamical Structure Factor

In the following discussion, we assume the validity of both (quasi)harmonic and
adiabatic approximations. In this particular case, the dynamical matrix, being the
Fourier transform of the force matrix, provides the complete description of the
phonon system, including elasticity and lattice thermodynamics of the material.

The inelastic scattering process is depicted schematically in Figure 4.2.
The momentum and energy conservation impose that

Figure 4.1 Approximate energy transfer E–momentum transfer Q range, accessible by inelastic
neutron (INS) and X-ray scattering (IXS). The green and red lines represent the linear dispersion of
sound waves with a velocity as indicated in the figure.
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~Q ¼~ki�~kf ; ð4:1aÞ

E ¼ Ei�Ef : ð4:1bÞ

In order to reach sufficiently large momentum transfers to cover several Brillouin
zones, X-rays with an energy of at least 10 keVneed to be employed. Considering that
typical energies of phonons are in the meV range, E � Ei, the momentum transfer
depends only on the incident wave vector (energy) and the scattering angle 2q:

Q ¼ 2ki sin ðqÞ: ð4:2Þ

The general form of the dynamical structure factor Sð~Q ;EÞ for single-phonon
scattering takes the following form [17]:

Sð~Q ;EÞ ¼
X
j

Gð~Q ; jÞFðE;T ; ~Q ; jÞ; ð4:3Þ

Gð~Q ; jÞ ¼
X
d

fdð~Q Þe�Wdð~Q Þþ i~Q �~rd ð~Q � ŝ j
dð~qÞÞM�1=2

d

�����
�����
2

; ð4:4Þ

and the thermal factor

FðE;T ; ~Q ; jÞ¼ 1
Ejð~qÞ ðhnðEjð~qÞ;TÞiþ1ÞdðE�Ejð~qÞÞþhnðEjð~qÞ;TÞidðEþEjð~qÞÞ�

�
ð4:5aÞ

with thermal occupation factor hnðE;TÞi¼ 1=ðexpðE=kTÞ�1Þð Þ, or as

FðE;T ; ~Q ; jÞ¼ 1

1�exp � E
kT

� � 1
Ejð~qÞ dðE�Ejð~qÞÞ�dðEþEjð~qÞÞ�;

� ð4:5bÞ

where Ejð~qÞ is the energy of mode j at momentum transfer ~q, fd is the atomic
scattering factor of atom d with mass Md, Wdð~Q Þ is the Debye–Waller factor at the
position ~rd, and ŝ

j
d is the d-site projected component of the 3N-dimensional

normalized eigenvector of the phonon mode j, defined in the periodic notation
ŝjð~qþ~tÞ¼ ŝjð~qÞ.~t is an arbitrary reciprocal lattice vector and~q¼ ~Q�~t is the reduced
momentum transfer.

d

2

photon

photon

Figure 4.2 Schematics of the inelastic
scattering process. Ei (Ef), and~ki (

~kf ) denote the
energy and the wave vector of the incident
(scattered) photon, respectively, and 2q is the

scattering angle. ~Q is the momentum transfer
and dV is the portion of solid anglewithinwhich
the scattered photons are detected.
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In polycrystalline materials, it is not possible to determine the phonon dispersion
along specific directions, as only the magnitude of the momentum transfer ~Q is
defined. The scattering process takes place on a spherical shell of radius Q, and the
scattered intensity is integrated over the surface of this shell. If the Debye–Waller
factors are assumed to be the same for all types of atoms ð ~WÞ, we obtain for the
averaging over the sphere of radius Q ¼ ~Q

�� ��:
SðQ ;E;TÞ ¼ gðQ; EÞFðEÞ � expð�2 ~WÞ; ð4:6Þ

gðQ;EÞ ¼
X
d

fdðQÞð~Q � êdð~Q ; jÞÞM�1=2
d

�����
�����
2

dðE�E~Q ; jÞ
* +

; ð4:7Þ

where h � � � imeans averaging over the sphere of radius Q and the phonon modes j.
Inside the first Brillouin zone, ~Q ¼~q and scattering from quasilongitudinal

phononmodes dominates, since only phononmodeswith an eigenvector component
parallel to their propagation direction contribute to the S(Q,E) (see Equation 4.7). In
the long wavelength limit, the displacements of different atom species become
collinear and parallel to the eigenvectors of the corresponding elastic waves êð~n; jÞ
(~n ¼ ~Q= ~Q

�� ��). In this case, the scattering from a polycrystal is completely defined by
the macroscopic elasticity of the crystal:

gðQ;EÞ!A ~Q � êð~n; jÞ�� ��2dðE�V~n; j
~Q
�� ��ÞD E

; ð4:8Þ

where A is a scaling factor and V~n; j is the sound velocity, obtained from the
Christoffel�s equation [32].

In the limit of large momentum transfers, the normalized gðQ;EÞ should
approach the generalized vibrational density of states:

gðQ;EÞ!AQ2
X
n

GnðEÞ
Mn

f 2n ðQÞ; ð4:9Þ

whereGnðEÞ ¼
P

~Q ; j ênð~Q ; jÞ�� ��2dðE�E~Q ; jÞ are the partial densities of states, andA is

a scaling factor. As inelastic X-ray scattering from phonons is essentially a coherent
scattering process, the same incoherent approximation as for coherent INS can be
applied [30].

4.2.2
IXS Cross Section

The IXS cross section is directly proportional to the dynamical structure factor
Sð~Q ;EÞ associated with the collective motions of the atoms within the validity of the
following assumptions [10, 33]: (i) the scattering cross section is dominated by the
Thomson scattering term, and the other resonant and spin-dependent contributions
to the electron–photon (e–ph) scattering cross section can be neglected, (ii) the
adiabatic approximation allows separating the electronic and nuclear parts of the total
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wave function, and therefore the center of mass of the electronic cloud follows the
nuclear motion, and (iii) there are no electronic excitations in the considered energy
transfer range. Under the above conditions, the IXS double differential cross section
can be written as

q2sð~Q ; EÞ
qVqE

¼ r20 ð~ei �~ef Þ2
kf
ki
Sð~Q ;EÞ; ð4:10Þ

whereV denotes the solid angle in which the inelastic scattered X-rays are observed,
r0 is the classical electron radius, and~eið~ef Þ are the photon polarization vectors of the
incident (scattered) photons. The prefactor to Sð~Q ; EÞ is the Thomson scattering
cross section that describes the coupling to the electromagnetic field.

An important experimental aspect is related to the optimum scattering intensity.
The flux of I scattered photons into the solid angle DV and energy interval DE is
given by

I ¼ I0
q2s
qVqE

DVDEnte�mt; ð4:11Þ

where I0 is the incident photon flux, n is the number of scattering units per unit
volume, t is the sample thickness, and m is the total absorption coefficient. The
maximum IXS signal is obtained for t¼ 1/m. The dominating attenuation process for
elements with an atomic numberZ> 3 is photoelectric absorption for X-ray energies
above 10 keV. The photoelectric absorption process is roughly proportional to Z4, far
away fromelectron absorption edges.As theThomson cross section is proportional to
f ð~Q Þ�� ��2 � Z2 (for small Q), I is roughly proportional to 1/Z2. Furthermore, an
estimate for the inelastic X-ray scattering intensity I can be obtained, similar to the
approach by Sinn [34]:

I / te�mtrZ2

H2
DM

2
; ð4:12Þ

whereHD and r are the Debye temperature and the density, respectively. Figure 4.3
(top panel) shows the IXS signal as a function of Z for a monoatomic system with an
optimum sample thickness t¼ 1/m and f (Q )¼Z, and for a X-ray energy of
17.794 keV. The alkali metals (Na, K, Rb, and Cs) form an exception, since they are
very soft (lowDebye velocity) and have a low density. Furthermore, Se, In, andHg are
soft materials, while Yb shows an exceptionally high scattering intensity due to an
anomaly in its density. The study of materials composed of heavy atoms is more
difficult than the ones of low Z materials. On the other hand, in cases where the
sample thickness is limited (t� 1/m) either due to the availability of the material or
constraints imposed by the sample environment (high pressure, high/low temper-
ature, high magnetic field, and so on), it is an advantage to study high Z materials.
This is illustrated in the bottompanel of Figure 4.3 for a sample thickness of 20mm. It
is apparent that the IXS signal for low Zmaterials is weak and increases with Z up to
Z¼ 59, with a gain of a factor 100 in this range.
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Figure 4.3 Figure ofmerit of the IXS technique as a function of the atomic numberZ. (a)Optimum
sample thickness t¼ 1/m. (b) t¼ 20mm.
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4.3
Instrumental Principles

All IXS instruments are based on the triple-axis spectrometer as developed by
Brockhouse for INS [35]. The three axes comprise the very high-energy resolution
monochromator (first axis), the sample goniometry and the scattering arm (second
axis), and the crystal analyzer (third axis). A detailed account of the instrumental
developments and the two different types of very high-energy resolution mono-
chromators is given inRefs [17, 20].Here, the optical layout and theworking principle
of the inelastic scattering beamline ID28 at the ESRF shall be described in some
detail.

Figure 4.4 gives an overview of the optical layout. TheX-ray source consists of three
1.6m long undulators of 32mm magnetic period that are operated on the third or
fifth harmonics. These standard undulators are complemented by two short-period
(17.6mm period) undulators that provide a factor 2 higher flux at 17 794 eV.

A collimating refractive lens made out of beryllium can be inserted in order to
provide a bettermatch between the vertical divergence of theX-ray beam at the source
point and the angular spectral acceptance of the high heat load silicon (1 1 1)
monochromator. The design parameters are given by the following equation [36]:

R=N ¼ 2dp; ð4:13Þ
where 1� d is the real part of the refractive index, p is the distance between the source
and the optical element, R is the radius of the cylindrical lens holes, and N is the
number of holes. In order to accept the full vertical profile of the X-ray beam, R was
chosen to be 1mm, leading to the number of holes varying between 13 and 34,
depending on the selected photon energy. The experimentally determined residual
divergence amounts to 1–2mrad, and the increase in spectral flux is 6, 20, and 30% at
17.794, 21.747, and 25.704 keV, respectively.

The X-ray beam from the undulator is premonochromatized by a silicon (1 1 1)
double-crystal monochromator to a relative bandwidth of DE/E¼ 1.5� 10�4. Due to
the high heat load produced by the intense undulator beam (total power up to 200W

Figure 4.4 Schematic optical layout of the inelastic scattering beamline II (ID28) at the European
Synchrotron Radiation Facility.
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and a power density up to 15.2W/mm2), the crystal has to be cooled down to cryogenic
temperatures of about 125K where silicon displays a maximum in the thermal
conductivity and a minimum in the linear thermal expansion coefficient [37]. This
allows keeping the thermal deformation of the crystal below the limits where photon
flux losses occur.

In order to further reduce the heat load on the very high-resolution backscattering
monochromator, a silicon (3 3 1) channelcut monochromator can be inserted behind
the silicon (1 1 1) premonochromator. In this case, the bandwidth amounts to DE/
E¼ 1.5� 10�5.

The required energy resolution in the meV range at photon energies between 15
and 25 keV is achieved by the utilization of high-order reflections from perfect
crystals. It can be shown that the resolving power (E/DE) is given by [38]

DE
E

� �
¼ dhkl

pLext
; ð4:14Þ

where dhkl denotes the lattice spacing, associated with the (hkl) reflection order, and
Lext the primary extinction length, a quantity deduced within the framework of the
dynamical theory of X-ray diffraction [38]. Lext increases with increasing reflection
order. In order to reach a high resolving power, it is therefore necessary to use high-
order Bragg reflections and to have highly perfect crystals. Relative lattice spacing
variations Dd/d within the diffracting volume, induced by defects, distortions, or
impurities, must be significantly smaller than the desired relative energy resolution:
Dd/d� (DE/E)� 10�8. This stringent requirement practically limits the choice of the
material to silicon.A further important consideration is related to the spectral angular
acceptance (Darwin width), which is given by

vD ¼ DE
E

� �
tan qB: ð4:15Þ

As a consequence of the above criteria, the main monochromator consists of a flat
perfect single crystal, operating at a Bragg angle of 89.98	 and utilizing the silicon
(n n n) reflection orders. This close-to-exact backscattering configuration ensures that
the Darwin width is larger than the X-ray beam divergence, and therefore all the
photons within the desired energy bandwidth are transmitted. The monochromator
has an asymmetry cut, a (angle between the lattice plane normal and the crystal
surface) of 75	, with the vertical diffraction plane. In this way the power density of the
incident X-rays is further reduced and undesirable thermal gradients within the
diffracting volume can be avoided. The crystal is temperature controlled by a high-
precision platinum 100V (Pt100) thermometer bridge in closed-loop operation with
aPID-controlled heater unit [39]. Further details on themonochromator can be found
in Ref. [40].

The X-rays are focused by a platinum-coated toroidal mirror with a variable
meridional radius and a sagittal radius of 0.101m, operated at a glancing angle of
2.7 mrad. The meridional radius can be changed by a bending device, thus allowing
the optimization of the optical scheme if additional optical elements such as the
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collimating lens, already discussed, are utilized. The mirror has a reflectivity of about
80% throughout the exploited energy range and provides a focus of 270� 60 mm2

full-width half-maximum in the horizontal and vertical plane, respectively. Further-
more, the left and right parts of the mirror have an infinite sagittal radius, and
therefore the X-ray beam is focused only in the vertical direction. This part of the
mirror is utilized in conjunctionwith the focusing-gradedmultilayer described below.

If a smaller X-ray spot at the sample position is required, for example, for studies
using diamond anvil cells, the beam size in the horizontal direction needs to be
further reduced. This is accomplished by a focusingmultilayer, located 2m in front of
the sample position. Due to the large optical demagnification (1 : 50), the Bragg angle
change along the illuminated multilayer length, l, exceeds its spectral angular
acceptance; the multilayer must therefore have a lateral gradient in its d-spacing.
It can be shown that to the lowest order this gradient is given by [41]

Dd
d

¼ l cos q
2

1
q
� 1
p

� �
: ð4:16Þ

Here, p and q denote the source-multilayer and multilayer-focal plane distance.
Such a multilayer was realized using the ESRF in-house facilities [42] with the
following characteristics: 120 layers of Ru/B4Cwith a period of 3 nm in the center, a
nonlinear gradient of 6.1% over the 240mm long footprint, and a reflectivity of about
70% throughout the utilized energy range.

The sample stage consists of a four-circle goniometry with the three translational
degrees of freedom. Additional circles or a kappa goniostat can be mounted if it is
required by a specific experimental setup. A microscopy and an optical spectrometer
are mounted on-line for sample alignment and pressure determination by the ruby
fluorescence method. Furthermore, various pressure cells, high-temperature oven,
and cryostats allow the study ofmaterials in awide range of temperature andpressure.

Although the required energy resolution is the same for the monochromator and
the analyzer, there is a significant difference concerning their angular acceptance.
The spatial angular acceptance of themonochromator should be compatible with the
divergence of the X-ray beam, whereas the analyzermust have amuch larger angular
acceptance, which is only restricted by the required Q-resolution. An angular
acceptance up to 4� 10mrad2 is an adequate compromise between Q-resolution
and signal maximization. These constraints necessitate focusing optics. Since it is
not possible to elastically bend a crystal without introducing important elastic
deformations, which in turn deteriorate the intrinsic energy resolution, one has to
position small, unperturbed crystals onto a spherical substratewith a radius, fulfilling
the Rowland condition. This polygonal approximation to the spherical shape yields
the intrinsic energy resolution, provided the individual crystals are unperturbed and
the geometrical contribution of the cube size to the energy resolution is negligible.
The solution realized at the ESRF consists of gluing 12 000 small crystals of
0.6� 0.6� 3mm3 size onto a spherical silicon substrate [43]. This procedure yields
very good results, and provided the record energy resolution of 0.9meV, utilizing the
silicon [13 13 13] reflection order at 25 704 eV.
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Apart from the heavy constraints imposed on the analyzer construction, another
important ingredient for a good analyzer performance is the temperature stability of
the analyzer. To this purpose, the analyzers are actively stabilized utilizing the same
kind of thermometer–heater unit as for the high-energy resolution monochromator.
As all other optical components, the analyzers are operated in high vacuum.

The energy-analyzed photons are detected by a Peltier-cooled silicon diode detector
that has an intrinsic energy resolution of 800 eV [44]. The dark counts due to
electronic and environmental noises amount to about 0.2 counts/min. Further
components of the spectrometer are an entrance pinhole, slits in front of the
analyzers in order to define the momentum transfer resolution, and a detector
pinhole for aberrant ray suppression. The analyzer crystals are temperature stabilized
at about 22.5 	C with a typical stability of 1mK/24 h. The momentum transfer is
selected by rotating the spectrometer around a vertical axis passing through the
scattering sample in the horizontal plane. Since there are nine independent analyzer
systems, spectra at nine different momentum transfers can be recorded simulta-
neously. Table 4.1 summarizes the main characteristics of the spectrometer.

Energy scans are done by changing the relative lattice constant between mono-
chromator and analyzer crystals via the temperatureT:DE/E¼Dd/d¼a(T)DT, where
a(T)¼a0 þ bDT (with a0¼ 2.58� 10�6 K�1, b¼ 1.6� 10�8 K�2, andDT¼ T� 22.5
	C) is the thermal expansion coefficient of silicon [45]. The validity of this conversion
has been checked by comparing the experimentally determined diamond dispersion
curve for longitudinal acoustic and optical phonons with well-established inelastic
neutron scattering results, ab initio calculations, and Raman spectroscopy [46].

4.4
IXS in the Low-Q Limit

In the low-Q (long wavelength) limit, the IXS spectrum is governed by the macro-
scopic elasticity of the crystal. The ~Q � êð~n; jÞ�� ��2 term in Equation 4.7 implies that only
components of the phonon eigenvector parallel to the propagation direction con-
tribute to the dynamical structure factor within the first Brillouin zone. The IXS
signal is therefore generally dominated by (quasi)longitudinal acoustic phonons and

Table 4.1 Instrumental energy resolution, maximum momentum transfer Qmax, and Q-spacing
between analyzers, Qn – Qm, at the utilized photon energies.

Reflection (Si) (8 8 8) (9 9 9) (11 11 11) (13 13 13)
Wavelength (Å) 0.7839 0.6968 0.5701 0.4824
Energy (eV) 15 816 17 793 21 747 25 701
Qmax (nm

�1) 67.7 76.2 93.2 110
Energy resolution (meV) 6.0 3.0 1.5 0.9–1.1
Qn – Qm (nm�1) 1.1 1.2 1.5 1.75
DQ (nm�1) 0.25 0.28 0.34 0.40

DQ denotes the typicalQ-resolution in the horizontal scattering plane (for 20mm horizontal analyzer
slit opening).
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its dispersion can be recorded, if the probed Q-range is chosen to be within the first
Brillouin zone. If sound velocities shall be derived from the orientation-averaged LA
dispersion, care has to be taken concerning the Q-range over which data are
considered, as shall be demonstrated using the example of bcc iron. Furthermore,
if the single-crystal elastic properties significantly deviate from isotropy, nonnegli-
gible differences can appear for the properties of the polycrystalline aggregate. This
effect obviously becomes more pronounced for textured samples. Moreover, the
appearance of quasitransverse excitations needs to be considered. These aspects will
be discussed in the following sections [47].

4.4.1
Scattering from (Quasi)Longitudinal Phonons

It is a common practise to fit the dispersion by a sine function:

E ¼ 2�h
p
VLQmax sin

p

2
Q

Qmax

� �
: ð4:17Þ

The value ofQmax is either left free or fixed to a value, determined approximating the
volume of the Wigner–Seitz Brillouin zone by a sphere of radius Qmax [26]. The
validity and the limitations of this approach are examined below, using a realistic
lattice dynamics model.

As no analytic solution exists for arbitraryQ-values in polycrystallinematerials, we
proceeded with a numerical modeling, taking the example of bcc iron. Born–von
K�arm�an coupling constants were taken up to the fifth shell [48]. The theoretical
constant Q IXS spectra were convoluted with the resolution function (3 meV
FWHM), and the thermal factors are calculated for 298K. The resulting spectra
were fitted using coupled pseudo-Voigt functions in order to reproduce typical data
analysis procedures. The result of these simulations is shown in Figure 4.5. The left
panel displays S(Q ,E)/Q as a function of the reducedmomentum transfer. Here, the

Figure 4.5 Body-centered cubic iron. (a) Stokes side of S(Q,E)/Q, represented as grayscale image.
(b) Simulated LA polycrystalline dispersion (open diamonds) compared to the single-crystal
dispersion along the main symmetry directions. Figure taken from Bosak et al. [47].
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intensity is represented on a gray scale. The LAdispersion iswell defined – as testified
by the small energy spread of the LA phonon at constant Q – up to Qa/2p � 1=

ffiffiffi
2

p
.

Above this value, the dispersion is increasingly smeared out, and a phonon position
can no longer be defined. The right panel shows the simulated polycrystalline LA
dispersion, together with the single-crystal dispersion along the three main sym-
metry directions.We note that for the low-Q region, the polycrystalline LA dispersion
is very close to the LA dispersion along the h110i direction. If the sine fit is performed
in the range up to the maximum of the dispersion, the resulting sound velocity is
rather sensitive to the choice ofQmax. IfQmax remains free, its resulting value is close
to 0.66� 2p/a, significantly lower than the theoretical value for a spherical approx-
imation of the Brillouin zone for which the resultingQmax¼ 0.78� 2p/a. As a result,
the sound velocities derived in these two ways differ significantly.

In order to validate these findings, an IXS experiment was performed, utilizing the
Si(8 8 8) configuration at an incident photon energy of 15 816 eV, with a total energy
resolution of 5.5meV. The sample consisted of a polycrystalline foil of high-purity bcc
iron of 30mmthickness, roughly corresponding to one absorption length. IXS spectra
were recorded for two angular settings of the spectrometer, spanning aQ-range from
3 to 13.4 nm�1. Figure 4.6 shows a set of representative spectra. The resulting
dispersion of the LA phonon branch is reported in the left panel of Figure 4.7,
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Figure 4.6 Representative IXS spectra of polycrystalline bcc iron at the indicated momentum
transfers within the Brillouin zone 1. The peak intensities are scaled to the same height for clarity.
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together with a sine fit to the experimental data. We note the good quality of the fit
and, more important, the excellent agreement of the sound velocity VLA and the
parameterQmax with the calculated values: VL¼ 6035m s�1 andQmax¼ 0.66� 2p/a.
This good agreement can be expected, since the largest Q-value at which an IXS
spectrumwas recorded corresponds toQ¼ 0.585� 2p/a, a value that is significantly
lower than 0.707� 2p/a, identified above as the critical Q-value. The right panel of
Figure 4.7 shows theQ-evolution of the excitation width. These were obtained, using
a model Lorentzian function, convoluted with the experimental resolution function.
Apart from the highest Q-point, we note a monotonic increase of the width, in
qualitative agreement with our simulation, which yields an excess width of 0.25meV
(FWHM) at 13.4 nm�1.

4.4.2
Scattering from Quasitransverse Phonons

Contributions from quasitransverse acoustic (qTA) phonons, whose eigenvectors
possess a finite component alongQ , can become nonnegligible in the first BZ due to
a strong elastic anisotropy and/or the low crystal symmetry. This is illustrated in a
simulation for the case of sodium and a-quartz in Figure 4.8. Here, we utilized
Equation 4.8 and single-crystal elastic moduli, reported in literature. In order to
emphasize the spread in sound speed,wehave chosen this representation rather than
to report g(Q ,E ). Another advantage of the chosen representation is that we can
obtain semiquantitative estimates without involving lattice dynamics calculations. It
must be kept in mind that the relation E ¼ VQ is only approximate at Q¼ 5 nm�1

due to the bending of the acoustic dispersion curve. For the case of sodium, two
clearly distinct and rather broad distributions can be identified, corresponding to the
longitudinal and transverse acoustic (TA) phonon branches. Figure 4.8b shows the
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Figure 4.7 Left panel: Low-Q LA phonon dispersion of polycrystalline bcc iron (full circles). The
solid line represents the best fit, usingEquation4.17, and the resulting fit parameters are indicated at
the bottom of the panel. Right panel: Evolution of the phonon line width as a function of Q.
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IXS signal I(Q ,E ) (including the thermal factor FðEÞ, which enhances the lower
energy qTA excitation), convoluted with a typical energy resolution of 3 meV. The
estimated ratio of transverse/longitudinal peaks is asmuch as�18% for sodium due
to its high elastic anisotropy. For crystal symmetries lower than cubic, the qTA
contribution can become even more important. This is illustrated in Figure 4.8c and
d. It can be appreciated that the velocity distribution takes a more complex form; the
TA and LA velocities are no longer clearly separated, and each individual distribution
contains at least two distinct peaks. This is a direct consequence of the strong elastic
anisotropy. Though the transverse contributions are strongly suppressed due to the
j~Q � êð~n; jÞj2term in theS(Q ,E ), the shape of the IXS spectrum I(Q ,E ) is composed of
a main peak and a clearly visible low-energy shoulder, associated with the LA and TA
phonons, respectively (see Figure 4.8d).

Figure 4.9 shows representative experimental IXS spectra for sodium, together
with model calculations. These spectra clearly reveal, besides the usual Stokes and
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Figure 4.8 g(Q,QV) for sodium (a) and a-quartz (c) at Q¼ 5 nm�1. Corresponding dynamical
structure factor S(Q,E) (thin line) and I(Q,E) (thick line) – its convolution with a typical energy
resolution function of 3meV – as a function of energy transfer for sodium (b) and a-quartz (d).
Figure adapted from Bosak et al. [47].
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Figure 4.9 Low-Q IXS spectra of polycrystalline sodium, recorded with 1.5 meV energy resolution
(solid lines) compared with an elasticity-based model (dashed line). Experimental and theoretical
spectra are shifted along the vertical axis for clarity. Figure taken from Bosak et al. [47].

anti-Stokes scattering from LAphonons, some extra intensity at lower energy, due to
the contribution of TA phonons. The LA peak positions of the model were slightly
corrected in order to account for the bending of the acoustic dispersion, and an elastic
line was added for better comparison. The excellent agreement of modeled and
experimental spectra indicates undoubtedly that the low-energy transfer signal is the
result of scattering from quasitransverse phonons.

4.4.3
The Aggregate Elasticity of Polycrystalline Materials

There are several approaches to calculate the isotropic elastic properties of polycrys-
talline materials from single-crystal elastic constants. The most common models
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presume either (i) constant stress throughout the body (Reuss average) [49], thus
neglecting the boundary conditions for the strain, or (ii) constant strain throughout
the body (Voigt average) [50], thus neglecting the boundary conditions for the stress.
These two models provide the lower and upper bounds of the isotropic moduli. The
Hill approximation [51] corresponds to the average of the Voigt and Reuss approx-
imation. The most accurate results for isotropic and textured samples are obtained
from self-consistent iterative approaches [52] or first-principle calculations [53],
which aim at solving the problem of an elastic inclusion in a homogeneous matrix
of the same elastic properties as the one of the polycrystalline material. These
treatments are relatively complicated, time consuming, and the results depend on
parameters like the grain shape.

The procedure, proposed by Matthies and Humbert [54], is much simpler. The
resulting average has the properties of a geometrical mean and obeys the physical
condition for the compliance tensor C on averaging:hCi ¼ hC�1i�1. In other words,
the average value must be equal to the inverse of the average of the inverse value. We
note that this condition is not fulfilled for the Voigt, Reuss, and Hill approximations.
For an isotropic distribution (no texture effects), analytical expressions canbe obtained
for crystal symmetries higher than monoclinic. For cubic symmetry, one obtains [54]

C44 ¼ m ¼
�
C0
11�C0

12

�2=5
C3=5
44

22=5
; ð4:18aÞ

C11 ¼ 2mþ l ¼
�
4mþC0

11þ 2C0
12

�
3

; ð4:18bÞ

C12 ¼ l ¼ C11�2C44; ð4:18cÞ
where m and l are the Lam�e constants. These are linked to the bulk modulus K and
shear modulus G by the following relationship: l ¼ K�ð2=3ÞG and
m ¼ ð3=2ÞðK�lÞ ¼ G. It follows that longitudinal and transverse sound speeds are
not necessarily exactly the same as the ones derived from the phonon dispersion
measurements as they are different functions of the elastic moduli.

In Table 4.2 the values of aggregate sound velocities are compared to those
determined from the simulated IXS spectra. Average (macroscopic) aggregate values
are calculated using the principle of a geometric mean for the elastic tensor [54] as
described above and available elastic moduli [55–57]. The simulation was performed
forQ¼ 5 nm�1 andT¼ 298K, employing Equation 4.8, and did not take into account
any energy or momentum transfer resolution effects. It must be noted that the IXS
average for VS is not accessible experimentally in most cases.

This analysis reveals that VL and VS, derived from IXS measurements, can differ
from the aggregate macroscopic average up to several percent with exception of
diamond. Na displays the largest deviation for VL (6.2%), while the value of VS is in
reasonable agreement with the macroscopic average (�0.9%). A complementary
situation occurs for Cowhere the difference forVL is very small (0.3%), but very large
for VS (7.7%). Finally, the overall discrepancy is most pronounced for SiO2 as a
consequence of the low crystal symmetry.

The above analysis shows that the LA sound velocity obtained via low-Q IXS
measurements from polycrystalline materials can be quite different from the
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aggregate one, and its value is sensitive to the dispersion fitting procedure. In the
absence of very low-Q data (well within the linear E(Q ) regime), the choice of Qmax

can become crucial and attention must be paid to the data treatment.

4.4.4
Effects of Texture

Texturing of polycrystalline samples is a quite common phenomenon as a result,
for example, of the synthesis procedure or if the material is submitted to nonhydro-
static pressure. As graphite is themost anisotropic among all the elementary solids, it
is a good example for the demonstration of anisotropy effects in low-Q IXS spectra.
The preparation of nontextured polycrystalline graphite samples presents significant
difficulties. We therefore limited our study to a pyrolytic graphite sample, which
was rotated with a frequency of about 10Hz around an axis, perpendicular to the
crystallographic c-axis and the horizontal scattering plane. This configuration is
equivalent to the study of a textured sample with an orientation distribution function
f (g)¼ 4d(y)/sin(q), where q and y are the corresponding Euler angles. As input
parameters, we have used the recently determined set of graphite elastic moduli [58].
Figure 4.10 shows a typical experimental IXS spectrum recorded at 6.85 nm�1,
together with calculations for both an isotropic model and a model that incorporates
the texture as simulated in the experiment. First, we note that two distinct structures
at very different energy transfers are observed. Coarsely speaking, these are due to LA
andTAphonons propagating close to the c-axis (low-energy transfer) and LAphonons
in the basal plane (high-energy transfer). Their large energy difference is due to the
very different bonding strengths. Themain effect of texture is reflected in line shape
changes of the low-energy feature, while at higher energy transfers the influence of
texture is only moderate.

Table 4.2 Comparison of aggregate longitudinal VL and shear sound velocities VS with those
determined from the simulated IXS spectra. Table taken from Bosak of et al. [47].

Material Macroscopic average IXS average

VL (m s�1) VS (m s�1) VL (m s�1) VS (m s�1)

Diamonda) 18 175 12 351 18 219 (þ 0.2%) 12 238 (�0.9%)
Na (fcc)a) 3115 1434 3308 (þ 6.2%) 1421 (�0.9%)
Fe (bcc)a) 5916 3220 6035 (þ 2.0%) 3118 (�3.2%)
Fe (hcp)b) 8634 4709 8627 (�0.1%) 4785 (þ 1.6%)
Fe (hcp)c) 9341 5300 9344 (0.0%) 5380 (þ 1.5%)
Co (hcp)a) 5704 2934 5721 (þ 0.3%) 3161 (þ 7.7%)
Quartza) 6093 4039 6318 (þ 3.7%) 4210 (þ 4.2%)

The difference in % is indicated in parentheses. See text for further details.
a) Tabulated elastic constants from Landolt B€ornstein [55].
b) Elastic constants derived from radial X-ray diffraction and ultrasonic techniques [56].
c) Elastic constants obtained from ab initio calculations [57].
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The position and shape of the experimental low-energy feature is not very well
described by the model. Besides the spectral weight arising from LA (0 0 1) phonons
in the longwave limit, the scattering fromTAphonons, propagating close to the basal
plane and polarized along the c-axis, give a significant contribution. The TA phonon
energy grows faster than the LA phonon energy with increasing Q due to the
parabolic-like dispersion of these modes: E2¼CQ2 þ DQ4 (C and D are con-
stants) [59]. As a consequence, for some Q-values the low-energy feature becomes
narrower than predicted within the frame of our elastic model, which assumes a
linear relationship between E and Q. Exploiting the simple dynamic model of
Nicklow et al. [60], it can be demonstrated that the apparent Q-dispersion of high-
and low-energy features mimics the LA in-plane dispersion and LA dispersion along
C–A, respectively. This is illustrated by comparing the intensity map obtained for
pyrolytic graphite with the single-crystal data [61] (see Figure 4.11). This extreme case
of graphite underlines that the term �average sound velocity� and even
�orientationally averaged sound velocity� must be used with prudence, specifically
if strongly anisotropic systems are considered.

4.5
IXS in the High-Q Limit: The Phonon Density of States

The phonon density of states (PDOS) gives the energy distribution g(E) of the
phonons, which can be measured using either INS or IXS. A further method is
provided by nuclear inelastic scattering if the studied material contains a Möss-
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Figure 4.10 Experimental IXS spectrum of textured pyrolytic graphite atQ¼ 6.85 nm�1 compared
with elasticity-based models with and without texture. Figure taken from Bosak et al. [47].
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bauer isotope [62, 63]. In monoatomic polycrystalline samples, g(E) can be deter-
mined directly, while in systems with different atomic species, only the generalized
DOS can be obtained. Here the individual contributions of the different constituent
atoms are weighted by their corresponding scattering length (INS) or atomic from
factor (IXS). For large Q , the normalized gðQ;EÞ should approach the generalized
VDOS, (see Equation 4.9).

As inelastic X-ray scattering from phonons is essentially a coherent scattering
process, the same incoherent approximation as for coherent INS needs to be
applied [64–66]. Several aspects have to be considered in order to ensure a correct
VDOS approximation. Intuitively, the larger the momentum transfer, the better the
approximation, and in the limit of a very largeQ-sphere, even one IXS spectrumwill
give a good VDOS approximation. However, the radius of the largest Q-sphere is
given by the maximum scattering angle of the IXS spectrometer. Another aspect
concerns the thickness of the integration shell.While for INS there are no constraints
associated to this since the neutron scattering length b is independent of Q , for IXS
the atomic form factor f (Q ) displays a pronounced Q-dependence with an approx-
imately exponential decay. This decay is element dependent, and the Q-value for
which f (Q ) has dropped by 50% from its maximum ( f (Q¼ 0)¼Z) corresponds
roughly to the inverse of the spatial extent of the atom. This leads to a distortion of the
VDOS, if the integration is performed over a large Q-range.

Figure 4.11 Low-Q IXS intensity map of textured pyrolytic graphite compared with single-crystal
phonon dispersion data; longitudinal acoustic phonons along C-A (triangles), C-M (circles), and C-
K-M (diamonds) [58, 61]. Solid and dashed lines are the results of a lattice dynamics calculation [60].
Positive energy transfer corresponds to the Stokes side of the spectra. Figure taken from Bosak
et al. [47].
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In general, no recipe exists for the choice of the shell sampling, but it was shown
that semiquantitative criteria for a uniform sampling can be established, which
are independent of any specific lattice dynamics model, and only result from simple
symmetry consideration [67]. In practise, the collection of typically 10 IXS spectra
in the 50–70 nm�1Q-range is sufficient to ensure a correct sampling. The PDOS is
then determined after correcting for the crystal analyzer efficiencies, subtracting
the elastic line, and following a previously established data treatment in which the
multiphonon contributions are eliminated simultaneously with the deconvolution
of the instrumental function [68]. A benchmark study on polycrystalline diamond
has convincingly proven the validity of the approach [67]. In the following, a
few representative examples of PDOS determinations with X-rays shall be
presented.

4.5.1
Magnesium Oxide

MgO is regarded as the prototype oxide due to its simple structure and the large
stability field (in pressure and temperature) of the NaCl structure. It is an important
ceramic for industrial applications, and is of great interest for Earth sciences, since it
is a major mineral in the Earth�s lower mantle. Consequently, several calculations of
its lattice dynamics exist in literature and allow a critical comparison with experi-
mental results. In the present context, MgO served as a benchmark for a diatomic
system.

Ten IXS spectra were recorded, covering a Q-range of about 15 nm�1 (approxi-
mately 60–75 nm�1) with a momentum resolution of 0.7 nm�1, both in the hori-
zontal and vertical directions. The spectra were recordedwith an energy resolution of
5.4meV, employing the silicon (8 8 8) setup. ForMgOwe canonly extract theX-VDOS
for the selected Q-region. The weighting with f (Q )�2Q�2 is no more useful as the
contributions for the two atoms are significantly different. On the other hand, the
variation of effective scattering factors f (Q )2Q2 forMg andO is less than 8% over the
sampled Q-range, therefore no correction is needed.

Figure 4.12 shows the comparison of the experimental X-VDOS with results from
different ab initio calculations [69–72]. As expected, the overall form of the X-VDOS is
roughly the same as for theVDOS, but relative intensities of peaks are changed due to
the different scattering power ofMg andO for X-rays.We note significant differences
among the various VDOS. This is not surprising, since none of the calculated single-
crystal dispersionsmatch the experimental phonon dispersion perfectly [73, 74]. The
best agreement between experiment and theory is obtained for calculations using
density functional perturbation theory (DFPT)within the local density approximation
(LDA) [69, 70]. The calculations by Drummond et al. [71], performed using DFT
within the quasiharmonic approximation, underestimate the transverse acoustic
phonon energies and overestimate the energies of the highest optical branches. The
calculation by Parlinski et al. [72] shows the largest energy difference for the first peak
in the VDOS (�4meV) and significantly underestimates the energy of the highest
optical branches.
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Figure 4.12 Reconstructed generalized X-VDOSofMgO versus calculated ab initio results [88–92].
Figure taken from Bosak et al. [67].

As only the X-VDOS is available, no thermodynamic data can be obtained. The
present data shouldbe completed byneutronVDOSmeasurements in order to obtain
the partial VDOS forMg andO, or, less directly, the presentX-VDOS results should be
used for the adjustment of ab initio models, most likely using DFPTwithin LDA. It
can be shown that the real VDOS can be obtained at least for the low-energy part [67].
For this portion of theVDOS (E< 20meV), we obtain a scaling factora of about 0.908
and extract from the thus corrected generalized VDOS the low-temperature limit of
the Debye temperature and the average sound speed by a parabolic fit to the
experimental data. In Table 4.3 we compare our results with those calculated from
the available elastic data. The agreement is remarkable, thus proving that even for a
multicomponent system, aggregate properties can be correctly extracted.
Finally, we would like to stress that the combination of IXS–VDOSmeasurements

(determination of the Debye velocity VD) with results from IXS within the first
Brillouin zone (determination of the aggregate compressional velocity VP) and X-ray
diffraction (determination of the bulk modulus K and the density r) allows the
extraction of the single-crystal elastic moduli C11, C44, and C12 for cubic systems.
From low- and high-Q IXS measurements, we obtain [67, 76] VP¼ 9960ms�1 and
VD¼ 6630ms�1, whereasK¼162.5 GPa was taken from literature [77]. A set of three
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Table 4.3 Selected macroscopic parameters for MgO. Table taken from Bosak et al. [67].

Parameter Calculated from VDOS Calculated from elastic data [75]

qD – low-temperature limit 935(20)K 940K
Average sound speed VD 6.63 (13) kms�1 6.65 kms�1

Table 4.4 MgO: comparison of elastic moduli derived from polycrystalline X-ray data with single-
crystal Brillouin light scattering (BLS) data. The estimated error for X-ray data is �3%.

VD (km s�1) VP (km s�1) B (GPa) C11 (GPa) C12 (GPa) C44 (GPa)

XRD [77] 162.5
IXS (present) 6.63 9.96 299.3 159.6 94.1
BLS [75] 296.8 155.8 95.3

equations then allows the determination of the three independent elastic moduli:

K ¼ 1
3
ðC11 þ 2C12Þ; ð4:19Þ

VP;D ¼ 1
12p

X3
j¼1

ð
1
V3
j

dV

 !�
1
3
: ð4:20Þ

VP is computed as the average of the longitudinal contribution in Equation 4.20,
while VD is formally obtained by averaging over all directions. The results for MgO
are displayed in Table 4.4. Themaximumdeviation with respect to single-crystal data
is as low as 2.5%, which can be considered as an excellent result.

4.5.2
Boron Nitride [78]

An interesting and technologically important example concerns the superhard
polymorphs of boron nitride. The physical and chemical properties of boron nitride
have attracted a lot of interest due to their fascinatingmechanical properties and high
melting points in the zinc blende (z-BN) and wurtzite (w-BN) phases. At ambient
conditions, the most usual form is the graphite-like hexagonal phase with two-layer
stacking (h-BN), although the three-layer form also exists (r-BN). Surprisingly
enough, in contrast to carbon, the zinc blende phase is thermodynamically the most
stable one at ambient conditions, while the most common h-BN is metastable. The
wurtzite phase is metastable under any condition, but can be produced via a
martensitic mechanism from h-BN. Experimental data concerning the lattice dy-
namics of any form of boron nitride are limited to frequencies of C-point optical
phonons obtained by Raman spectroscopy [79, 80]. The only exception is h-BN for
which an IXS study on a tiny single crystal was recently performed [81].
Ten IXS were recorded, spanning the Q-range 60–73 nm�1 for w-BN and

52–68 nm�1 for z-BN, with an overall energy resolution of 3meV. The spectra were

4.5 IXS in the High-Q Limit: The Phonon Density of States j145



properly weighted, summed, and treated according to the established protocol.
Figure 4.13 shows the derived generalized IXS–PDOS for z-BN, compared to
theoretical results. It is worth noting that among the available ab initio calculations,
the energy position of special points varies [82–86]. The best overall agreement with
our experimental data is obtained using a plane-wave pseudopotentialmethodwithin
the density-functional theory [82]: a linear response approach to the density func-
tional was used to derive the Born effective charges, phonon frequencies, and
eigenvectors. While the overall agreement between theory and experiment is quite
remarkable, there are noticeable deviations for the high-energy cutoff. These are not
due to experimental errors, since the X-VDOS cutoffs – nearly identical for both BN
forms (162–164meV) – coincide well with the zone center LO z-BN energy of
�162meV, determined by Raman spectroscopy [79, 80]. The choice of the bestmodel
in the case of the wurtzite polymorph is less obvious (see Figure 4.14), as both

Figure 4.13 Experimental X-VDOS versus ab initio calculations of z-BN [82–86]. The vertical bars
indicate special points.
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available theoretical data sets [84] (M. Pabst, unpublished) show visible deviations
from the experiment.

A parabolic fit to the low-energy part of the VDOS (up to 40–50meV) allows the
determination of the average sound speed vD. Our value for vD is in reasonable
agreement with the one calculated from elastic constants [82, 87]. The low-temper-
ature limit of qD obtained from the same fit of the VDOS is obviously very close to the
calculated one, but differs significantly from the one found from specific heat
measurements (1600–1800 K) [88]. Such a difference can be explained by the
presence of impurities and point defects.

Tables 4.5 and 4.6 summarize the main results for the macroscopic parameters
obtained combining both DOS limit and low-Q scattering results [78]. It is worth

Figure 4.14 Experimental X-VDOS versus ab initio calculations of w-BN [84] (M. Pabst,
unpublished). The vertical bars indicate special points. Figure taken from Bosak et al. [78].

Table 4.5 Selected macroscopic parameters for z-BN. Table taken from Bosak et al. [78].

Parameter This work Other experiments Calculations

Longitudinal velocity (m s�1) 16 000(30) 16 420(8)a) 16 260b), 16 350c)

Shear velocity (m s�1) 11 200(40) 10 780(3)a) 10 675b), 10 695c)

Debye velocity (m s�1) 12 200(20) 11 760(3)a) 11 645b), 11 715c)

low-T qD (K) 2000(40) �1700d), 1930(5)a) 1910b), 1920c)

a) Calculated from experimentally determined elastic moduli [87].
b) ab initio calculations [82] (M. Pabst, unpublished).
c) ab initio calculations [89].
d) Obtained by a fit to specific heat data [88].
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noting that the shear velocity and, consequently, the Debye temperature are higher
for w-BN. The effect is modest, but nevertheless observable.

4.5.3
Clathrate Ba8Si46 [90]

Novelmaterials based on structureswithmetallic ions located in oversized crystalline
cages are an intriguing class of substances. The encaged ions form a nanoscale
crystalline subnetwork and influence a wide variety of physical properties. Among
thesematerials those that become superconducting are particularly interesting since
they representmodel systems to study the electron–phonon interactions thatmediate
superconductivity.

Thefilled clathrates based on group IVelements (i.e., Si, Ge, and so on) also belong
to this family of materials and include several superconductors [91–94]. Type-I (e.g.,
Ba8Si46) and type-II (e.g., NaxSi136) Si-clathrates form three-dimensional crystalline
lattices based on rigid oversized 20 atom and 24 or 28 atom Si cages in which metal
atoms are enclosed [95, 96].

The mechanism of superconductivity for the type-I Ba8Si46 clathrate was investi-
gated both theoretically by ab initio calculations and experimentally [97, 98]. The joint
experimental andtheoretical study [97]has shownthat superconductivity is an intrinsic
property of the sp3 silicon network. A large electron–phonon coupling exists in such
covalent structures. Recently, theoretical work has pointed out that the low-frequency
modes in Ba8Si46, in particular those arising from the Ba vibrations in the large Si24
cages, contribute significantly to the electron–phonon coupling parameter l [99].

In order to study the Ba vibrations, inelastic scattering experiments have been
performed utilizing both INS and IXS. The spectrometers IN4 and IN5 at the Institut
Laue Langevin (Grenoble, France) have been used for INS experiments. The incident
neutronwavelengthwas2.25Åwithanenergyresolutionof0.8meV.Informationonthe
generalized VDOSwas obtained from the INS spectrum using the incoherent approx-
imation. IXS data were collected on ID28 at the ESRF with 3meV energy resolution.

The complementarity of the two techniques results from the different atomic
scattering factors for the two probes (neutrons and X-rays): the scattering probability
of X-rays by the electronic shell of the sample constituents is roughly proportional to

Table 4.6 Selected macroscopic parameters for w-BN.

Parameter This work Other experiments Calculations

Longitudinal velocity (m s�1) 16 000(30) — 16 205a), 16 660b)

Shear velocity (m s�1) 11 450(70) — 10 590a), 11 025b)

Debye velocity (m s�1) 12 400(50) — 11 595a), 12 065b)

low-t qD (K) 2030(80) �1700c) 1900a), 1980b)

a) ab initio calculations [82], (M. Pabst, unpublished).
b) ab initio calculations [89].
c) Obtained by a fit to specific heat data [88].
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Z2, and is therefore strongly barium biased. This can be seen in Figure 4.15 where
X-ray- and neutron-weighted VDOS are compared. The two Einstein-like modes
associated with the Ba vibrations are much better visible in the IXS spectrum.

It is worth noting that the volume of the sample used for the IXS experiment at
ambient conditions was �3� 10�3mm3. This opens up the possibility to perform
VDOS measurements under high pressures using diamond anvil cell techniques.

4.6
IXS in the Intermediate Q-Range

As developed in the previous chapters, IXS spectra recorded at lowQ (within the first
Brillouin zone) give access to the orientation-averaged longitudinal velocity, while at
high Q an appropriate averaging of IXS spectra permits the reconstruction of the
(generalized) VDOS. Compared to single-crystal work, the lattice dynamics informa-
tion content is therefore limited. This is an important constraint, since novelmaterials
or materials studied under extreme conditions are often available only in polycrys-
talline form because of synthesis procedures or the presence of structural phase
transitions. Attempts to overcome this limitation have been undertaken by analyzing
neutron powder diffraction data. The method proposed by Dimitrov et al. [100]
analyses the pair distribution function (PDF) obtained by a Fourier transform of the
elastic scattering intensity S(Q). The parameters of a phonon dispersion model are
then refined with respect to the experimental PDF. Goodwin et al. [101] analyzed
reverse Monte Carlo configurations, refined to the powder data. Here, we explore the
information contained in IXS spectra recorded in the intermediateQ-range,where the
spectral shape varies with momentum transfer due to – though relaxed – selection
rules [102]. Therefore, additional constraints (beyond VDOS and averaged longitu-
dinal sound velocity) are provided for the lattice dynamics.

Figure 4.15 Generalized density of states of Ba8Si46 as obtained by INS and IXS. Figure adapted
from Lortz et al. [90].
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The approach consists of recording IXS spectra over a large momentum transfer
region (typically 2–80 nm�1) and compare them with a model calculation that
properly takes into account the polycrystalline state of the material and the IXS
cross section. A least-squares refinement of the model IXS spectra then provides the
single-crystal dispersion scheme. As a benchmark for the proposedmethodology, we
have chosen beryllium.

The IXS experiment was performed utilizing the Si (9 9 9) backscattering
configuration with an energy resolution of 3.0meV. A total of 90 IXS spectra were
recorded, spanning a momentum transfer region from 1.9 to 79.5 nm�1. We chose
the exact angular positions to uniformly cover the achievable momentum transfer
range and to avoid Bragg peaks. The sample was a sintered pellet of beryllium grains
of 15mmdiameter, roughly corresponding to one absorption length. Due to the large
grain size, it was necessary to rotate the sample with a frequency of about 10Hz. The
absence of texture was verified determining the relative intensities of the De-
bye–Scherrer rings and comparing them to the ideal powder X-ray diffraction
spectrum.

The complete experimentalmomentum transfer– energy – intensitymap is shown
in Figure 4.16. The experimental data are normalized to the incomingX-ray intensity,
the polarization of the beam, the analyzer efficiencies, and the atomic form factor.
Furthermore, the elastic line was carefully subtracted using a pseudo-Voigt fit. In the
low-Q limit, the dispersion of the averaged longitudinal dynamics is observable,
while in the high-Q limit the VDOS is approached. In the intermediate momentum
transfer range and lower energy region, acoustic phonons form the arc structure.
Optical vibrations compose the band in the higher energy range. TheQ-values of the
IXS spectra, selected for the refinement procedure, are marked by a white line
(Q¼ 3.2, 8.0, 14.4, 19.3, 22.9, 42.8, 52.2, 62.6, 69.4, and 78.5 nm�1). A Born–von
K�arm�an lattice dynamics model was refined to the 10 spectra, using the beryllium
hexagonal unit cell with a¼ 2.2858Å and c¼ 3.5843Å and two atoms at (0, 0, 0) and
(1/3, 1/3, 0.5). We have included up to the seventh next-neighbor (NN) atomic force

Figure 4.16 Normalized IXS intensity map for polycrystalline beryllium: (a) experimental data; (b)
refined model. The vertical white lines mark the momentum transfer values corresponding to the
selected spectra used for the fitting. Figure adapted from Fischer et al. [108].
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constants (29 parameters), using a set of published force constants as the starting
parameter [103]. The scattering intensity was calculated for a mesh of 43 200 points
on 1/24 of the spherical shell surface, and then averaged and properly weighted as
described above. The merit function, measuring the agreement between the exper-
imental data and model calculations during the fitting routine, decreased by a factor
2.4 from x2¼ 3.73 to 1.55. Figure 4.17 shows four representative experimental IXS
spectra together with the resulting computed spectra using the starting and refined
models. It can be noted that the starting model already shows a remarkable
agreement with the experimental data, improvements in the refined model are
nevertheless evident. At low momentum transfers (3.2 and 8.0 nm�1), the positions
of the peaks are improved. For the spectrum at 14.4 nm�1, the intensity distribution
of the main feature at about 77meV is better reproduced. Finally, a better agreement
can be appreciated for the low-energy portion in the spectrum at 62.6 nm�1.
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Figure 4.17 Representative IXS spectra of polycrystalline beryllium: experiment (black line),
startingmodel spectra (blue line), and refinedmodel spectra (red line). Figure adapted fromFischer
et al. [102].
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Figure 4.18 compares the dispersion calculated from the refined force constants
(red line) with the experimental one (black dots) and the starting model (blue line).
The excellent overall agreement confirms the results obtained for the polycrystalline
system. Differences can be observed in the optical branches. This is due to the fact
that the shape of the optic part in the IXS spectra ismore sensitive to the choice of the
number of neighbors and the set of force constants, illustrating the limitation of
the Born–von K�arm�an model in this very anisotropic system. A reasonably good
starting model is essential for the fit to converge. In general, there are several
possibilities to produce suitable starting parameters. One is to use force constants of
the material, if they are available, or, alternatively, of a system with similar physical
properties. Another option is to use an empirical model such as rigid ion or shell
models. Finally, a set of Hellmann–Feynman forces can be computed, using ab initio
methods. It is important to stress that the proposed methodology is limited to
relatively simple materials. As the number of atoms per unit cell increases, the
density of phonon branches increases, and distinct features can no longer be
observed in the polycrystalline IXS spectra, making a refinement fit impossible.
A further constraint arises if the material is composed of light and heavy atoms. As
the IXS cross section is roughly proportional to Z2, where Z is the number of
electrons, the weak signal from the light-atom species is masked by the strong signal
arising from the heavy-atom species.

Even without a refinement as described above, a stringent discriminating test can
be made if several lattice dynamics models exist. This is actually the case for
beryllium, for which, besides the force constants of Hannon et al. [103], another
set has been derived by Kwasniok [104]. Both studies have refined a Born–von
K�arm�anmodel to the experimental dispersion relation, obtained by inelastic neutron
scattering [105]. Kwasniok utilized 33 parameters, including up to the 8 next
neighbors, while Hannon et al. refine 29 parameters considering 7 next neighbors.
The two calculations show an equally good agreement with the experimental data for
themain symmetry direction of the phonon dispersion (see panel a of Figure 4.19). In
contrast to this, the computed individual IXS spectra show distinct differences as can

Figure 4.18 Dispersion relation for beryllium: experimental INS data [111] (black dots), starting
model (blue line), and refined model calculation (red line). Figure adapted from Fischer et al. [102].
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be appreciated in panels b–d of the same figure. Obvious discrepancies in peak
positions and intensities occur for the model of Kwasniok in all spectra. On the
contrary, the calculation of Hannon et al. reproduces the spectra quite well through-
out the whole Q-region. This observation can be understood considering that in the
INS dispersion only main symmetry directions are taken into account, whereas the
calculation of the polycrystalline IXS spectra demands the averaging over a spherical
surface with radius Q, therefore involving also nonhigh symmetry directions. The
additional information from nonhigh symmetry directions allows making the
appropriate choice between different models.

4.7
Concluding Remarks

The present study has focused on inelastic X-ray scattering in polycrystalline
materials and has provided both the formal theoretical background and examples
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Figure 4.19 (a) Dispersion relations of Be
along high symmetry directions. Polycrystalline
IXS spectra at (b) Q¼ 29.9 nm�1, (c)
Q¼ 42.8 nm�1, and (d) Q¼ 52.2 nm�1. INS

data (black points) and IXS spectra (black lines)
are compared to the results derived frommodel
I [103] (pink lines) and model II [104] (blue
lines). Figure adapted from Fischer et al. [102].
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to illustrate the present status. It has been emphasized that attention has to be paid
when orientation-averaged properties are linked to the macroscopic aggregate
properties. If the single-crystal elastic properties significantly deviate from isotropy,
nonnegligible differences can appear for the properties of the polycrystalline aggre-
gate. This effect obviously becomes more pronounced for textured samples. Fur-
thermore, if sound velocities shall be derived from the orientation-averaged LA
dispersion, care has to be taken concerning the Q-range over which data are
considered, as we demonstrate using the example of bcc iron.

IXS within the �incoherent approximation� approach promises to become a
valuable tool in the determination of the frequency distribution function, thus
complementing well-established inelastic neutron and nuclear scattering techni-
ques. Even if only the generalized VDOS is accessible for nonmonoatomic systems,
experimental results provide a discriminating test for the validity of the approxima-
tionsmade in the respective calculations. The technique can be applied to a very wide
class of materials and furthermore opens the possibility to study systems in extreme
conditions such as high pressure and/or high temperature. It is worth noting that
with respect to inelastic neutron scattering, the amount of material needed is 3–5
orders less, and anomalous absorption (like for B, Cd, Gd, and so on) or anomalously
high cross sections (H) are not present. Formulticomponent systems, the X-VDOS is
only defined for a particular spherical shell inQ-space due to theQ-dependence of the
atomic scattering factor f (Q ). Since the scattering strengths for neutrons and X-rays
are essentially different, it opens the possibility to extract directly the partial densities
of states in at least binary systems from coupled N-VDOS and X-VDOS
measurements.

Combining IXS data at low- and high-momentum transfers with X-ray diffraction
results can provide accurate values for the average longitudinal sound speed, the
Debye velocity, and the bulk modulus. These three quantities fully determine the
elasticity tensor of cubic materials, thus allowing the determination of single-crystal
elastic moduli in polycrystalline materials. A further step in this direction is the
introduction of a newmethodology for the determination of the single-crystal lattice
dynamics frompolycrystallinematerials. It could be shown that for the chosen simple
test case of beryllium, a least-squares refinement of a model calculation can be
performed. It has been furthermore demonstrated that even without a fit procedure
the validity of a model calculation can be assessed by inspection of individual
polycrystalline inelastic spectra. As a matter of fact, a comparison (experiment
versus model/theory) not only of the phonon energies but also the intensity
distribution, and furthermore including all crystallographic directions (as we deal
with a polycrystalline material), provides an important constraint. While the least-
squares refinement procedure will only be successful for relatively simple systems,
the comparative approach can be applied to more complex materials.

The study of polycrystalline materials by IXS will considerably benefit from a new
generation of IXS spectrometers. In particular, a multianalyzer crystal spectrometer,
covering the entire momentum transfer range, would allow the collection of all the
IXS spectra simultaneously, consequently reducing the data acquisition time sig-
nificantly. This will enable the investigation of materials in increasingly complex
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environments such as high pressure and high temperature (by laser heating), static
and pulsed magnetic fields, as well as time-resolved studies.
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5
Heat Capacity of Solids
Toshihide Tsuji

5.1
Introduction

Each atom in solids oscillates about its equilibrium position over a wide range of
frequencies from zero up to a maximum value, and the conduction electrons in
metals are freely mobile in solids. The oscillation of atoms and movement of
electrons contribute to the internal energy of solids. When we heat a sample, solids
absorb heat, and some of the phonons and electrons are excited thermally, so the
internal energy of solids is expected to increase. The increase in internal energy due
to lattice vibration of atoms and kinetic energy of free electrons in solids can attribute
to the increase in heat capacity.

Heat capacity of solids is usually measured at constant pressure and defined as

Cp ¼ ðdH=dTÞp; ð5:1Þ
where H is the enthalpy, T is the absolute temperature, and P is the pressure. Heat
capacity at constant pressure is one of the indispensable thermodynamic quantities to
obtain the free energy function of solids. By using the thermodynamic quantities at
the reference temperature q, the free energy function (fef) of solids at temperature T
is given as follows:

ðfef ÞTðqÞ ¼ �
G0

T�H0
q

�
=T

¼
�ðT

q

CpdT

�
=T�

ðT
q

Cpd ln T ;
ð5:2Þ

where G0
T is the standard Gibbs energy at the absolute temperature T and H0

q is the
standard enthalpy at the reference temperature q. From heat capacity data as a
function of temperature in the temperature range from q to T, the free energy
function of solids can be determined by using Equation 5.2.

Equilibrium constants K(T) of chemical reaction at temperature T are calculated
from the standard Gibbs energy change of the reaction as follows:

ln KðTÞ ¼ �DG0
T=ðRTÞ

¼ �DH0
q=ðRTÞ�Dðfef ÞTðqÞ=R; ð5:3Þ
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where DH0
q is the standard enthalpy change at the reference temperature q and R is

the gas constant.
Thermodynamic equilibrium state is easily achieved at high temperatures, so the

equilibrium constant of the chemical reaction, K(T), can be calculated from Equa-
tion 5.3, and the precision and accuracy of thermodynamic quantities of the
substances related to the chemical reaction depend on those of heat capacity data
in the temperature range from q to T and the standard enthalpies at the reference
temperature.

In this chapter, the principles and experimentalmethods of calorimetry tomeasure
heat capacity of solids will be described first. Then, the heat capacity at constant
pressure (Cp) determined experimentally can be related to that at constant volume
(Cv) calculated theoretically through the thermodynamic relation. The total heat
capacity of Cv is represented by the sum of each contributed heat capacity, a
theoretical calculation of which will be explained in some detail subsequently.
Then, normal heat capacity data without phase transition will be compared with
the experimental values. Finally, the phase transition mechanism of the second
order–disorder phase transition will be discussed.

5.2
Principles and Experimental Methods of Calorimetry

Calorimetry is the measurement of the heat absorbed or generated in a solid
under study, when the solid undergoes the physical and chemical changes from a
well-defined initial state to a well-defined final state. The change of state in
question may result from the physical changes such as melting, vaporization, and
sublimation or its reverse processes, or chemical changes such as chemical
reaction, dissolution, adsorption, or dilution. It may also result from the changes
in temperature, pressure, magnetic field, and electric field. In the adiabatic
calorimetry, the temperature increment (DT) rather than the heat is measured
against a fixed amount of input energy (DE), so the heat capacity is obtained from
the ratio of DE to DT. On the other hand, the enthalpy is measured for the
temperature jump calorimetry. Heat capacity may then be calculated from the
measured enthalpy as a function of temperature by Equation 5.1. An excellent
textbook is available for the calorimetry and thermal analysis [1]. Principles and
experimental methods of typical calorimetry will be briefly described in the
following sections.

5.2.1
Adiabatic Heat Capacity Calorimetry

The absolute value of heat capacity is measured most accurately by an adiabatic
calorimeter for the temperature region from liquid helium temperature to room
temperature (low-temperature adiabatic calorimetry) and that for the region from
room temperature up to about 1030K (high-temperature adiabatic calorimetry).
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Under adiabatic conditions, the heat capacity Cp is obtained as Cp¼DE/DT from
themeasurements of input energyDE to the sample vessel (or a sample and its vessel)
and the resulting temperature increment DT. Before the energy input, the sample is
in a thermodynamic equilibrium state at the initial temperature Ti. After the input
energy of DE, the new equilibrium state at the final temperature Tf is achieved. As a
small heat leak leads to a temperature drift of the calorimeter, the values of Ti and Tf
are determined by extrapolating to the midpoint of the input energy, assuming
adiabatic conditions during the energy input period. Thus, the heat capacity at the
mean temperature Tm¼ (Ti þ Tf)/2 is obtained as the average heat capacity between
Ti and Tf. However, the curvature correction of the heat capacity should bemade for a
sharp anomaly due to a phase transition.

A typical cryostat of adiabatic heat capacity calorimeter in the temperature range
from liquid helium temperature to room temperature (low-temperature adiabatic
calorimetry) is shown in Figure 5.1 [1, 2]. The adiabatic condition is achieved in high
vacuum of about 10�4 Pa, when the calorimeter vessel (F) is kept in the same
temperature as the adiabatic shields (H). Liquid nitrogen and/or liquid helium are
used as the refrigerant, depending on the temperature range involved. In order to
cool the calorimeter, either a small amount of helium gas (about 1 Pa) is put into the
vacuum space ormechanical heat switch is used. After cooling the calorimeter, either
the helium gas is evacuated or the mechanical heat switch is turned off. When the
adiabatic condition is achieved under high vacuum, the heat capacity measurement
can be carried out. The heat capacity of a sample is calculated by subtracting the heat
capacity of the empty calorimeter vessel from themeasured total heat capacity of both
sample and vessel.

The measuring principle of adiabatic calorimetry in the temperature range from
room temperature up to about 1030K (high-temperature adiabatic calorimetry) is the
same as that of low-temperature adiabatic calorimetry, as described above. On
constructing a calorimeter workable at high temperatures, one encounters a number
of technical problems in calorimeter design and materials selection. The main
problem intrinsic to high-temperature calorimeters is the heat exchange by radiation
between the sample vessel and adiabatic shield especially at higher temperatures,
because heat flow rate coefficient by radiation increases in proportion to T3. The
problem of heat exchange due to radiation is efficiently reduced by radiation shields.
Other problems are heat leak due to gas and solid conduction through electric leads,
thermocouple, heaters, and so on. Temperature measurement, the reaction between
sample and its vessel, degradation of thermocouple as well as shielding and
insulating materials, and so on should also be taken into consideration.

Figure 5.2 shows a high-temperature adiabatic calorimeter [1, 3]. The sample
container of vitreous quartz is cylindrical having a central well for a resistance
thermometer and Kanthal D heater. The container (a) fits into a silver calorimeter
with removable bottomand end covers. This assembly is surrounded by top, side, and
bottom shielded bodies (b) of silver. The temperature differences between the
calorimeter and shields (d) are automatically controlled by shield heaters tomaintain
adiabatic conditions during input and drift periods. The calorimeter and shield
systems are surrounded by guard heater silver bodies (c) and placed in a vertical tube
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furnace. The energy inputs to the calorimeter are determined by measuring current
through the Kanthal heater, the potential drop across it, and the input time. Heat
capacity measurement on a-Al203 shows a standard deviation from the mean of
0.15% and a standard deviation from the NBS data of 0.25% over the temperature
range from 300 to 1031K.

5.2.2
Adiabatic Scanning Calorimetry

A double adiabatic scanning calorimeter (ASC) is shown in Figure 5.3 [1, 4]. The
calorimeter is designed for the measurement of absolute enthalpy change of phase

Figure 5.1 Cryostat of an adiabatic
calorimeter [1, 2]. A, outer jacket evacuation
tube; B, refrigerant transfer tubes; C, outer
jacket; D, indium seal; E, thermal sink; F,

calorimeter vessel; G, outer shield; H, adiabatic
shields; I, inner jacket; J, refrigerant can; K,
indium seal; L, inner jacket evacuation tube; M,
liquid nitrogen Dewar vessel.
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transition at high temperatures, using a relatively small amount of sample (3–10 g).
The necessary conditions for absolute heat capacity measurement are that the heat
leak is minimal and constant for both measurements of vessel with and without
sample.

Themeasuring principle of ASC is as follows. The temperature difference between
the double platinum sphere and the first adiabatic shield and that between the first

Figure 5.2 Adiabatic calorimeter at high temperatures [1, 3]. (a) Calorimeter proper with removal
bottom and end covers. (b) Top, side, and bottom shielded bodies. (c) Top, side, and bottom
guarded bodies. (d) Calorimeter thermostat.
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and second shields are reduced to zero by controlling the power of the first and
second external heaters, independently, using a PID thyristor-type controller. The
sample is heated at a constant heating rate from 0.25 to 8K min�1 by an electric
programmer. The difference between the voltage of programmer and the electro-
motive force of the thermocouple in the sample vessel is brought to zero by
controlling the power of an internal heater, using a PID transistor drive-type
controller. The power of the internal heater is read by a wattmeter and recorder
continuously. Heat capacity of a sample is calculated as follows:

Cp ¼ M�1
m WeðdT=dtÞ�1;

where Mm is the number of moles of a sample, We is the energy input to the
calorimeter, and dT/dt is the heating rate.

ASChas been applied tomeasure the heat capacity of powdermaterials from273 to
773K. The heat capacity of a-Al2O3 standard sample ismeasured with an accuracy of
0.6%.The absolute enthalpy of transition is determinedprecisely,while the transition
temperature is obtained by the extrapolation of the heating rate to zero.

Figure 5.3 Double adiabatic scanning
calorimeter at high temperatures [1, 4]. 1,
Sample vessel of quartz; 2, alumina bobbin; 3,
water cooling pipe; 4, thermocouple for
programmer; 5, double platinum sphere for
homogeneity of heat; 6, platinum sphere for the
first adiabatic shield; 7, platinum sphere for the
second adiabatic shield; 8, alumina sphere; 9,

stainless steel sphere for thermal shield; 10,
outermost sphere vessel; 11, thermocouple for
adiabatic control; 12, second external heater; 13,
first external heater; 14, internal heater.
(Reprinted with permission fromR.C. Chisholm
and J.W. Stout, J. Chen. Phys. Vol. 36, 972, 1962.
Copyright 1962, American Institute of Physics.)
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5.2.3
Direct Pulse-Heating Calorimetry

The direct pulse-heating method for measuring heat capacity is very attractive, partic-
ularly for materials that are electrical conductors, because heat capacity, electrical
resistivity,andhemispherical totalemittancearemeasuredsimultaneously.Themethod
involves rapid and continuous resistive heating and cooling of the sample by a single
subsecond pulse at high temperatures (above 1900K) with millisecond resolution.

In a high-temperature dynamic experiment of millisecond resolution, the major
source of power loss is thermal radiation.Heat capacity of a samplemay be expressed
from the energy balance during heating as

Cp ¼ ½VI�esAsðT4
s�T4

r ��=½nðdT=dtÞh�; ð5:4Þ

where V is the terminal voltage between two knife edges, I is the current through the
sample, e is the spherical total emittance, s is the Stefan–Boltzmann constant
(5.6697� 10�8Wm�2K�4),As is theeffectivesurfacearea,Ts is thesampletemperature
andTr istheroomtemperature,n istheeffectiveamountofthesample,and(dT/dt)histhe
heating rate. On the other hand, the energy balance during cooling can be written as

�CpnðdT=dtÞc ¼ esAsðT4
s�T4

r �; ð5:5Þ
where (dT/dt)c is the cooling rate. From combinations of Equations 5.4 and 5.5, e is
expressed as

e ¼ ½VIðdT=dtÞc�=f½sAsðT4
s�T4

r Þ�½ðdT=dtÞc�ðdT=dtÞh�g: ð5:6Þ
Since e is calculated from the experimental data on the right-hand side of

Equation 5.6, heat capacity is calculated fromEquation 5.4 or 5.5 by using the e value.
Specific electrical resistivity r is calculated with the aid of the following equation:

r ¼ RsAc=l; ð5:7Þ
where Rs is the resistance of effective sample, Ac is the effective cross-sectional area,
and l is the effective length.

Schematic diagram of the arrangement of the sample, clamps, and potential
probes is shown in Figure 5.4 [5]. The sample is heated from room temperature to
close to its melting point in less than 1 s. The temperature of the rapidly heating
sample is measured at blackbody radiation hole by means of a high-speed photo-
electric pyrometer as a function of themeasuring time. The current flow through the
sample and the voltage drop between two knife edges consisting of the same
materials as the measuring sample are obtained simultaneously.

5.2.4
Laser-Flash Calorimetry

The principle of the laser-flash calorimetry is as follows [1, 6]. After the sample is
heated by a pulse from a ruby laser, the energy absorbed by the sample (E) and its
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Figure 5.4 Schematic diagramof direct pulse-heating calorimeter. The arrangement of the sample,
clamps, and potential proves is shown [5]. (Contribution of the National Institute of Standards and
Technology).

resulting temperature increment (DT) are precisely measured. The sample is in the
form of a small disk pellet having a diameter of 8–12mm and a thickness of
0.5–5mm. As shown in Figure 5.5 [1, 6], an absorbing disk and a thin glassy-carbon
plate are attached on the front surface of the sample. For precisemeasurements of the
sample temperature and its temperature increment, a thin thermocouple, attached to
the back surface of the sample with silver paste, is used. The maximum temperature
increment of a sample,DTmax, is determined after correction of the heat loss from the
sample during the measurement. The amount of energy absorbed by the sample is
measured by a Si-photoelectric cell and is corrected bymeasuring a standardmaterial
of known heat capacity of a-Al2O3 crystal. The heat capacity of the sample is then
obtained by

Cp ¼ fðE=DTmaxÞ�CÞg=M; ð5:8Þ
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Figure 5.5 Sample holding assembly of laser-flash calorimeter [1, 6].

where M is the number of moles of a sample and C is the total heat capacity of the
absorbing disk and the adhesive materials.

The experimental procedures for the heat capacitymeasurement are carried out in
two steps. The first step is to determine the absolute heat capacity of the sample at
room temperature by using a standard material of a-Al2O3 crystal. Next, the
temperature dependence of the heat capacity is determined relative to the absolute
value measured at room temperature. The estimated inaccuracies are within�0.8%
at 300K and �2% at 1100K.

5.2.5
Temperature Jump Calorimetry

There exist two methods of temperature jump calorimetry: a sample at T is dropped
into a calorimeter assembly at room temperature (room-temperature jump calorim-
etry) or, conversely, the sample at room temperature is dropped into the assembly at
high temperatures (high-temperature jump calorimetry). In both methods of tem-
perature jump calorimetry, the enthalpy change of the sample is measured in terms
of the amount of heat absorbed by the calorimeter assembly in changing from an
initial temperature to a final temperature. This measured value is then corrected to
298.15K, so the tabulated enthalpy values of the sample are referred to 298.15K,
that is, HT�H298.15, where HT and H298.15 are the enthalpies at T and 298.15K,
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respectively.When the reaction or transformation of the sample does not occur in the
calorimeter, the heat capacity at constant pressure as a function of temperature may
then be derived either from the smoothed enthalpy data obtained graphically or from
the following equation:

Cp ¼ dðHT�H298:15Þp=dT : ð5:9Þ

On the other hand, enthalpy change by phase transformation can also be
determined by a temperature jump calorimeter from the difference in the measured
enthalpy change before and after the phase transformation.

A room-temperature jump calorimeter designed formeasuring enthalpy ofmetals
and alloys in the temperature range between 700 and 1800K is schematically shown
inFigure 5.6 [1, 7]. It consists of a heating furnace, a device for dropping a sample, and
a calorimeter assembly. The calorimeter assembly, which consists of a Dewer vessel
and a copper tube with 27 copper fins, contains distilled water. The temperature
change of water in the calorimeter is measured with a precision of 0.001K using a
platinum resistance thermometer. The water equivalent of the calorimeter is deter-
mined to be 17.7 kJ K�1 using sapphire as a standardmaterial. The temperature of the
sample in the furnace ismeasuredwith a Pt/Pt-13%Rh thermocouple situated beside
the platinum holder.

5.3
Thermodynamic Relation Between Cp and Cv

The heat capacity of solids is ordinarily measured at constant pressure Cp, as
described in the previous section. On the other hand, the heat capacity at constant
volume Cv is calculated theoretically if the interatomic distance is kept constant,
independent of the temperature changes, and is defined as Cv¼ (dE/dT)v, where E is
the internal energy of solids and V is the volume. The dilatometric term Cd is the
difference between Cp and Cv and is derived from the classical thermodynamic
relation

Cd ¼ Cp�Cv ¼ �T ðqV=qTÞ2p=ðqV=qpÞT : ð5:10Þ

From the definition of the isothermal compressibility kT¼�(qV/qp)T/V and the
coefficient of the volume thermal expansion bp¼ (qV/qT)p/V, Equation 5.10 may be
expressed as

Cd ¼ Cp�Cv ¼ ðVb2p=kT ÞT : ð5:11Þ

Since the Gr€uneisen constant ce is defined by ce¼bpV/(kTCv), Equation 5.11 is
rewritten as

Cp ¼ Cv þCvcebpT : ð5:12Þ

For isotropic substances, the coefficient of the volume thermal expansion may be
expressed in terms of the coefficient of linear expansion ap as
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bp ¼ ðqV=qTÞp=V ¼ 3fðqL=qTÞp=Lg ¼ 3ap: ð5:13Þ

Hence, from Equation 5.11,

Cp�Cv ¼ ð9Va2
p=kT ÞT : ð5:14Þ

Dividing Equation 5.12 by Cv, the following equation can be derived:

Cp=Cv ¼ 1þ cebpT : ð5:15Þ

If we assume ce¼ 2 and bp¼ 10� 10�6 (K�1) at T¼ 300K, the second term in
Equation 5.15 is estimated to be 6� 10�3 (0.6%). It means that the heat capacity at

Figure 5.6 Construction of a temperature
jump calorimeter [1, 7]. a, Dropping
mechanism; b, Pt-Rh wire; c, Pt/Pt-Rh
thermocouple; d, alumina tube; e, molybdenum

silicide heater; f, Pt crucible; g, shutter; h, Pt
resistance thermometer; i, copper tube; j,
copper fins; k, Dewar vessel; l, insulating
material; m, distilled water.
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constant volume may be assumed to be approximately equal to the heat capacity at
constant pressure at room temperature. Cv may be equal to Cp at cryogenic
temperatures, because bp is zero at the absolute zero temperature. However,
Cp > Cv holds at higher temperature, because values of both cebp and T are positive.

For a lattice heat capacity contributed to lattice vibrations, an approximation called
the Nernst–Lindemann formula is often used:

Cd ¼ Cp�Cv ¼ AC2
pT ;

where A is a system-dependent constant. The values of Cd at the temperature T
are estimated from the Cp values measured experimentally.

5.4
Data Analysis of Heat Capacity at Constant Volume (Cv)

When a sample is heated under adiabatic conditions, the increment of total internal
energy (DEv) of the solid is attributed as the sum of each contributed internal energy
(DEi) from the conservation of energy as follows:

DEv ¼ SDEi ¼ DEl þDEl;a þDEe;c þDEe;sh þDEm þDEf þ � � � : ð5:16Þ

As the derivative of the internal energy by the temperature is the heat capacity at
constant volume, the heat capacity at constant volume Cv can be expressed as

Cv ¼ Cl þCl;a þCe;c þCe;sh þCm þCf þ � � � ; ð5:17Þ
where Cl is the lattice heat capacity, Cl,a is the heat capacity due to anharmonic lattice
vibration, Ce,c is the electronic heat capacity due to conduction electron, Ce,sh is the
electronic Schottky-type heat capacity due to electronic excitation to higher energy
levels, Cm is the magnon heat capacity due to the excitation of the spin system in
magnetically ordered substances, and Cf is the heat capacity due to the formation of
vacancies. Main contribution of heat capacity at constant volume is the lattice heat
capacity (Cl) due to lattice vibrations and will be discussed in the next section.

5.4.1
Lattice Heat Capacity (Cl)

5.4.1.1 Classical Theory of Lattice Heat Capacity
Dulong and Petit observed from the heat capacity measurement at constant pressure
that the heat capacity of many elemental solids is about 6 cal K�1 mol�1 at room
temperature. The theoretical justification of the experimental law ofDulong andPetit
was demonstrated by the equipartition of energy theorem by Boltzmann as follows.

The total energy of a linear harmonic oscillator, E, consists of kinetic and potential
energies, that is,

E ¼ ð1=2Þmv2 þð1=2ÞKx2; ð5:18Þ
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wherem is themass, v is the velocity,K is the force constant, and x is the distance from
the equilibriumposition. From the theoremof equipartition of energy, the energy of a
particle per degree of freedom in equilibrium is (kBT/2), where kB is the Boltzmann
constant. A three-dimensional oscillator that has three degrees of freedom for kinetic
energy as well as potential energy will therefore have an internal energy of 3kBT at
thermal equilibrium. One mole of an elemental solid hasNA atoms, whereNA is the
Avogadro constant, and thus its internal energy is 3NAkBT. The lattice heat capacity at
constant volume,Cl, is obtained by differentiating the internal energy with respect to
temperature at constant volume, that is,

ðdE=dTÞv ¼ Cl ¼ 3NAkB:

The product of Avogadro constant and Boltzmann constant is equal to the gas
constant R. Therefore,

Cl ¼ 3R ¼ 5:96 cal K�1 mol�1 ¼ 24:94 J K�1 mol�1:

Hence, the law of Dulong and Petit, where heat capacity of the elemental solids is
about 6 cal K�1 mol�1 at room temperature, can be explained on the basis of classical
statistical mechanics.

For chemical compounds, Kopp and Neumann extended the experimental law of
Dulong and Petit and suggested that Cv¼ 3nR, where n is the number of atoms per
formula unit (or �molecular�).

Table 5.1 shows the molar heat capacity at constant pressure of solids at room
temperature. The Cp values of most of metallic elements are in nearly good
agreement with 3R¼ 24.94 J K�1mol�1, although the atomic heat capacities of C
(diamond) and Si are considerably lower than the values predicted by the experi-
mental law of Dulong and Petit and its explanation will be discussed below. This
means that the main contribution of heat capacity at constant pressure is the lattice
heat capacity. It is also seen in the table that the experimental values at room
temperature of compounds except SiC and SiO2 (quartz) agree well with 6R
(¼ 49.88 J K�1mol�1) and 9R (¼ 74.82 J K�1mol�1) for two and three atoms per
formula unit, respectively.

5.4.1.2 Einstein�s Model of Lattice Heat Capacity
Einstein proposed a simple harmonic vibration model of crystal lattice to explain the
increase in lattice heat capacity at constant volume from zero at the absolute

Table 5.1 Molar heat capacity at constant pressure of solids at 298.15 K.

Solids Cp (J K
�1 mol�1) Solids Cp (J K

�1 mol�1)

Ag 25.4 NaCl 49.69
Al 24.35 SiC 26.65
C (diamond) 6.12 FeS 50.54
Cu 24.43 SiO2 (quartz) 44.43
Fe 25.0 BaF2 71.21
Si 20.0 CaCl2 72.61
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temperature to 3R value per mole at high-temperature limit. His physical model
considers the lattice vibrations of NA atoms as a set of 3NA independent harmonic
oscillators in one dimension, having the same frequency v. A harmonic oscillator
does not have a continuous energy spectrum in a classical model, but can accept
energy values equal to an integer times �hv, where v is the frequency of oscillators
and �h is equal to h/2p (h is the Planck constant). The possible nth energy level, en, of
an oscillator may be given by

en ¼ fnþð1=2Þg�hv; n ¼ 0; 1; 2; 3; . . . : ð5:19Þ
The probability existing in the nth energy level, Pn, is represented by the

Boltzmann factor as

Pn ¼ expf�en=ðkBTÞg
.X1

n¼0

expf�en=ðkBTÞg

¼ expf�n�hv=ðkBTÞg
.X1

n¼0

expf�n�hv=ðkBTÞg:

The average energy of an oscillator at temperature T is thus expressed as

hei ¼
X1
n¼0

Pnen

¼ ð�hv=2Þþ ð�hvÞ
X1
n¼0

ne�nx

 ! , X1
n¼0

e�nx

 !
;

)( ð5:20Þ

where x¼�hv/(kBT ).
Since the second term in Equation 5.20 is calculated bymathematical technique as

X1
n¼0

ne�nx

 !, X1
n¼0

e�nx

 !
¼ � d ln

X1
n¼0

e�nx

 !,
dx

( )

¼ �d ln f1=ð1�e�xÞg=dx ¼ 1=ðex�1Þ;

the average energy of an oscillator is thus given by

hei ¼ ð�hv=2Þþ ð�hvÞ=½expf�hv=ðkBTÞg�1�: ð5:21Þ
The vibrational energy of an elemental solid, hEi, having 3NA independent

harmonic oscillators is expressed as

hEi ¼ 3NAhei ¼ 3NAð�hv=2Þþ 3NAð�hvÞ=½expf�hv=ðkBTÞg�1�: ð5:22Þ
The heat capacity of an elemental solid is thus obtained by differentiating

Equation 5.22 with respect to temperature:

Cl ¼ ðqhEi=qTÞv ¼ 3NAkBf�hv=ðkBTÞg2expf�hv=ðkBTÞg=½expf�hv=ðkBTÞg�1�2:
ð5:23Þ

For convenience, the characteristic Einstein temperature defined by qE¼�hv/kB
may be introduced in Equation 5.23 to obtain
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Cl ¼ f3RðqE=TÞ2expðqE=TÞg=fexpðqE=TÞ�1g2: ð5:24Þ
In the high-temperature limit, T�qE, Equation 5.24 upon expansion in power

series becomes

Cl ¼ 3R ¼ 5:96 cal K�1 mol�1 ¼ 24:94 J K�1 mol�1;

where the result of Einstein�s theory agrees with that of the classical Boltzmann�s
theory.

In the low-temperature region, T�qE, Equation 5.24 may be written approxi-
mately as

Cl 	 3RðqE=TÞ2expð�qE=TÞ: ð5:25Þ
According to Equation 5.25, the low-temperature heat capacity of solids should

approach zero exponentially. As seen in Figure 5.7, the experimental heat capacities
of Al and Cu approach to zero more slowly than the theoretical values predicted by
Einstein�s model. The reason for the discrepancy between Einstein�s theoretical
prediction and the experimental results may be explained on the basis of the
assumption made in the theory that each atom in a solid vibrates independently
of the other atoms with the same frequency.

5.4.1.3 Debye�s Model of Lattice Heat Capacity
Debye�s model of lattice heat capacity assumes the continuummodel for all possible
vibrational modes of the solid, where the wavelength is larger compared with the
interatomic distances, and a solid may appear like a continuous elastic medium.
Debye has also given a limit to the total number of vibrational modes equal to 3NA,
and the frequency spectrum to an ideal continuum is cut off in order to complywith a
total of 3NA modes. This procedure thus provides a maximum frequencyvD (Debye
frequency) that is common to both longitudinal and transverse modes.

Figure 5.7 Theoretical heat capacity data calculated by Einstein�s and Debye�s models are
compared with the experimental values of Al (*) and Cu (.) metals.
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Since each vibrational mode associates with a harmonic oscillator of the same
frequency, the internal energy of an elementary solid is the sum of vibration modes
expressed in Equation 5.21 and is represented as

hEi ¼
X3
i¼1

X
q

f�hviðqÞg=½expf�hviðqÞ=ðkBTÞg�1�; ð5:26Þ

where the first sum is that of one longitudinal and two transverse waves and the
second sum is that of wave number vector, q, from 0 to n. The zero-point energy in
Equation 5.21 is neglected for Equation 5.26, because this value is independent of
temperature and has no effect on the final result. Since q is a continuous parameter
and density of state is expressed as V/(2p)3, Equation 5.26 may be written as

hEi ¼ fV=ð2pÞ3g
ð3
i¼1

ð ð
dqx dqy dqzf�hviðqÞg=½expf�hviðqÞ=ðkBTÞg�1�;

ð5:27Þ
where V is the volume.

The dispersion relation between v(q) and q may be written as

vðqÞ ¼ vq:

The total number of vibrationalmodes is equal to 3NA, and the frequency spectrum
to an ideal continuum is cut off in order to comply with a total of 3NA modes as
follows:

3ð4p=3Þq3mfV=ð2pÞ3g ¼ 3NA or qm ¼ ð6p2NA=VÞ1=3ð ð ð ð
dqx dqy dqz ¼ 4p

ðqm
0

q2dq; ð5:28Þ

where qm is the maximum of wave number vector.
Thus, Equation 5.27 is expressed as

hEi ¼ f3V=ð2p2Þg
ðqm
0

dq � q2ð�hvqÞ=½expf�hvq=ðkBTÞg�1�

¼ f3V=ð2p2ÞgfðkBTÞ4=ð�hvÞ3g
ðxm
0

x3dx=ðex�1Þ;
ð5:29Þ

where x¼�hv/(kBT) and xm¼�hvD/(kBT).
From Equation 5.28 and definition of the Debye temperature qD¼�hvD/kB,

Equation 5.29 is written as

hEi ¼ 9RTðT=qDÞ3
ðqD=T
0

fx3dx=ðex�1Þg; ð5:30Þ

where xm¼�hvD/(kBT)¼qD/T.
Lattice heat capacity is calculated by differentiating Equation 5.30 with respect to

the temperature as

Cl ¼ 9RðT=qDÞ3
ðqD=T
0

fexx4dx=ðex�1Þ2g ¼ 3RDðqD=TÞ; ð5:31Þ

where D(qD/T) is the tabulated Debye function, x¼qD/T.
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In the high-temperature limit (T�qD), xm (¼ qD/T) is small compared with unity
for thewhole integration range, andEquation 5.31 could easily be integrated to obtain
the expression

Cl ¼ 3R ¼ 5:96 cal K�1 mol�1 ¼ 24:94 J K�1 mol�1:

This result explains the law of Dulong and Petit derived from the classical theory.
At very low temperatures, T�qD, the upper limit of integration in Equation 5.31

may be replaced by infinity, since �hv/(kBT) ! 1 as T ! 0. It is now possible to
integrate Equation 5.31 as follows:

ðqD=T
0

fexx4dx=ðex�1Þ2g ¼ 4p4=15:

Hence,

Cl ¼ ð12=5Þp4RðT=qDÞ3 T < ðqD=50Þ: ð5:32Þ

Debye�s theory predicts a cube lawdependence of the heat capacity of the elemental
solids for temperatures T< (qD/50). As seen in Figure 5.7, the prediction of Debye�s
theory agrees quite well with the experimental heat capacity data of Al and Cu and
improves Einstein�s theory definitely.

Lindemann derives the relation between Debye�s temperature qD and melting
point Tm of solids as follows:

qD ¼ ð3�h=xmÞð4p=3Þ1=3kB�1=2fTm=ðMV2=3Þg1=2; ð5:33Þ
where M is the mass of solid, V is the molar volume of solid, and xm is the atomic
displacement of lattice vibration at melting point. Debye temperatures qD are plotted
as a function of {Tm/(MV2/3)}1/2 for various materials in Figure 5.8 [8]. A good linear
relation holds for the same crystal structure materials such as alkali halide, covalent
materials having diamond or zinc blende structure, andmetals having face-centered
cubic structure (FCC) or body-centered cubic structure (BCC).

According to the prediction of Debye�s theory, the Debye temperature qD of a solid
is constant, independent of temperature, but in fact varies with temperature. The
deficiency of the Debye theory may be explained on the basis of the approximation
made in treating solids as continuous elasticmedia and of neglecting the discreteness
of the atoms.

5.4.1.4 Anharmonic Term of Lattice Heat Capacity
InDebye�s continuummodel, the harmonic lattice vibration of solid is assumed. The
anharmonic term of lattice heat capacity, Cl,a, is usually described as a term
proportional to the temperature T, which is proposed by Peierls [9]:

Cl;a ¼ const: T :

Anharmonic term of lattice heat capacity for many metal and UO2 is analyzed by
the above equation.
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5.4.2
Other Terms Contributed to Heat Capacity at Constant Volume

5.4.2.1 Electronic Heat Capacity (Ce,c)
When heat is supplied to a metal, the energies of both lattice vibrations and free
electrons are increased. However, a significant contribution to the heat capacity
comes from the free electrons present in thematerial especially at low temperatures.

As expected from classical theory for the atoms of a monoatomic gas
(see Section 5.4.1.1), the electronic contribution to heat capacity should be (3/2)
NAkB¼ (3/2)R from a free-electronmodel formetals in thermal equilibriumwith the
atoms of the solid, if a metal gives one valence electron and all electrons are freely
mobile. But the observed electron contribution at room temperature is usually less
than 0.01 of this expected value.

Figure 5.8 Debye temperatures qD are plotted as a function of {Tm/(MV2/3)}1/2 for various
materials [8].
, oxide;~, carbide;&, nitride; –�–, covalentmaterials with diamond or zinc blende
structure; –!–, alkali halide, – - –, face-centered cubic metal;— - - -—, body-centered cubic metal.
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A qualitative solution to the problem of heat capacity for the conduction electron
gas is explained as follows. If NA is the total number of electrons, only a fraction of
electrons having the order of E/EF¼ kBT/EF, where EF¼ kBTF is the Fermi energy
and TF is the Fermi temperature, can be excited thermally at temperature T,
because only these electrons lie within an energy range of the order of kBT near
the top of the Fermi–Dirac energy distribution. Since each of these NA(T/
TF) electrons has a thermal energy of the order of kBT, the total electronic thermal
kinetic energy is of the order ofEK	NA(T/TF)kBTand the electronic heat capacity due
to conduction electron, Ce,c, is given by

Ce;c ¼ ðdEK=dTÞv 	 2NAkBðT=TFÞ
and is directly proportional to T, in good agreement with the experimental results. At
room temperature, Ce,c is smaller than the classical value (3/2)NAkB¼ (3/2)R by a
factor of the order of 0.01 or less, for TF� 5� 104 K.

Using the Fermi–Dirac distribution function and the density of state, which is
the number of orbitals per unit energy range, the following expression for the
electronic heat capacity due to conduction electrons may be obtained at low
temperatures:

Ce;c ¼ ð1=2Þp2NAkBðT=TFÞ ¼ cT ; ð5:34Þ
where c is the proportionality constant.

5.4.2.2 Schottky-type Heat Capacity (Ce,sh)
The electronic heat capacity due to electronic excitation from the ground state to
higher energy levels, which is usually called Schottky-type heat capacity, Ce,sh, is
described as follows. The partition function Q of the system is generally given as

Q ¼
Xn
i¼1

giexpf�Ei=ðRTÞg;

where Ei is the energy difference between the ground state and the ith excited state
and gi is the degeneracy of ith excited state. When we put E0¼ 0 for the ground state,
the average energy hEi is expressed as

hEi ¼ Q�1
Xn
i¼1

giEiexpf�Ei=ðRTÞg: ð5:35Þ

Schottky-type heat capacity is obtained by differentiating the average energy of
Equation 5.35 with respect to the temperature:

Ce;sh ¼ ðqhEi=qTÞv

¼ Q�0R�1T�2 Q
Xn
i¼1

giE
2
i expf�Ei=ðRTÞg�

Xn
i¼1

giEiexpð�Ei=ðRTÞÞ
( )2" #

¼ R�1T�2fhE2i�ðhEiÞ2g:

5.4 Data Analysis of Heat Capacity at Constant Volume (Cv) j177



For a two-level system consisting of the ground state and thefirst excited state,Ce,sh

may be written as

Ce;sh ¼ fE2
i =ðRT2Þgðg1=g0Þexpf�Ei=ðRTÞg=½1þðg1=g0Þexpf�Ei=ðRTÞg�2;

ð5:36Þ
where E1 is the energy difference between the ground state and the first excited state.

At very low temperatures, T�E1/R, Equation 5.36 may be written as

Ce;sh ¼ ðg1=g0ÞfE2
1=ðRT2Þgexpf�E1=ðRTÞg: ð5:37Þ

On the other hand, at high temperatures, T�E1/R, Equation 5.36 becomes

Ce;sh ¼ g0g1ðg0 þ g1Þ�2fE2
1=ðRT2Þg: ð5:38Þ

5.4.2.3 Magnetic Heat Capacity (Cm)
There are two types of materials that exhibit a magnetic contribution to the total heat
capacity, namely, the ferromagnetic and the ferrimagnetic materials.

A ferromagnetic material has a spontaneous magnetic moment even in the
absence of an external magnetic field and shows a magnetic ordering with parallel
alignment of adjacent spins. A ferromagneticmaterial shows a phase transition from
the ordered ferromagnetic phase at low temperatures to the disordered paramagnetic
phase at high temperatures above the Curie temperature, Tc, which is defined as the
temperature above which magnetization disappears.

On the other hand, ferrimagnetic materials are similar to the ferromagnetic
materials, but in the former the adjacent spins are unequal and antiparallel. The
N�eel temperature of a ferrimagnetic material is defined as the phase transition
temperature from the ordered ferrimagnetic phase at low temperatures to the
disordered paramagnetic phase at high temperatures.

For ferri- and ferr-omagnetic materials, the mean internal energy hEi is given by
the following equation:

hEi ¼ 4pVð2af Jspa
2ÞfðkBTÞ=ð2af Jspa

2Þ5=2g
ðx
0
x4dx=fexpðx2Þ�1g; ð5:39Þ

where af is a constant depending upon crystal structure, a is the lattice constant, J is
the quantummechanical exchange constant, sp is themagnitude of the spin vector for
ferri- and ferr-omagnetic materials, and V is the volume of the material.

At low temperatures, the upper limit for xmay be taken equal to infinity and hence
the integral may be easily determined. Differentiating Equation 5.39 with respect to
temperature gives the magnetic heat capacity Cm,f,

Cm;f ¼ dhEi=dT ¼ CaNAkBfkBT=ð2JspÞg3=2 ¼ CaRfkBT=ð2JspÞg3=2; ð5:40Þ

where Ca is the constant depending upon crystal structure.
For an antiferromagnetic material, spins are ordered in an antiparallel arrange-

ment, but there is no net magnetic moment below the N�eel temperature. The
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expression for the mean internal energy of antiferromagnetic material may be
written as

E ¼ 4pVð2aaJ
0spa2ÞfðkBTÞ=ð2aaJ

0spa2Þg4
ð
x3dx=ðex�1Þ; ð5:41Þ

whereaa is a constant depending upon crystal structure and J0 is themagnitude of the
quantum mechanical exchange constant for the antiferromagnetic material.

The upper limit for integration may be taken as equal to infinity at low tempera-
tures, so differentiation of Equation 5.41 with respect to temperature gives the
magnetic heat capacity:

Cm;af ¼ CafNAkBfkBT=ð2J0spÞg3 ð5:42Þ
where Caf is a constant depending upon the type of lattice.

5.4.2.4 Heat Capacity due to Activation Process
Formation of vacancies as well as the formation of the electron and hole pairs may
occur at high temperatures through the activation process. Heat capacity due to the
vacancy formation may be given as

Cf ¼ fjfDH2
f =ðRT2Þgexpf�DHf=ðRTÞg; ð5:43Þ

where jf is the entropy term of the vacancy formation given by exp (DSf/R) andDHf is
the energy of vacancy formation.

On the other hand, heat capacity due to the electron and hole pairs is expressed as

Ceh ¼ fjehDE2
eh=ðRT2Þgexpf�DEeh=ðRTÞg; ð5:44Þ

where jeh is the entropy term of the electron and hole pairs represented by exp(DSeh/
R) and DEeh is the formation energy of the electron and hole pairs.

5.5
Estimation of Normal Heat Capacity

5.5.1
Analysis of Heat Capacity Data

5.5.1.1 Heat Capacity Data at Low Temperatures
Whenheat is supplied to ametal or an alloy, the energies of both lattice vibrations and
free electrons are increased. In the absence of contributions from magnetic heat
capacity, the heat capacity of metals or alloys below both the Debye temperature and
the Fermi temperature may be expressed as the sum of electron and phonon
contributions:

Cv ¼ Ce;c þCl ¼ cT þ bT3; ð5:45Þ
where cT is the electronic contribution and bT3 is the phonon contribution of the
lattice vibrations. At sufficiently low temperatures (T< 1K), the electronic heat
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capacity is dominant, while at high temperatures the phonon contribution is
predominant. Dividing Equation 5.45 by T gives the following equation:

Cv=T ¼ cþ bT2: ð5:46Þ
Figure 5.9 shows a good linear relation of Equation 5.46 in the plot of Cv/T for Ag

metal as a function of T2. The values of b and c are calculated from the slope of a
straight line and intercept (c¼ 0.646m JK�2mol�1) of the plot, respectively.

For nonmetals, the electronic contribution may be very small compared with the
lattice term, so

Cv ¼ Cl ¼ bT3: ð5:47Þ

5.5.1.2 Heat Capacity Data of Metal Oxides with Fluorite-Type Crystal Structure
Heat capacities of the stoichiometric CeO2, ThO2, UO2, NpO2, and PuO2 having a
fluorite-type crystal structure are shown in Figure 5.10 [10] as a function of

Figure 5.9 Heat capacity of Ag at low temperatures plotted by Equation 5.46.

Figure 5.10 Dependence of heat capacity (Cp) on temperature for the stoichiometric CeO2, ThO2,
UO2, NpO2, and PuO2 [10].
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temperature. The magnetic phase transitions from the ordered antiferromagnetic
phase to the paramagnetic phase are seen at 30.4 and 25.2 K for the stoichiometric
UO2 and NpO2, respectively. Heat capacities of CeO2 (Ce

4þ ) without 4f electrons
agreewell with those of ThO2 (Th

4þ ) without 5f electrons, and both heat capacity data
are thus near to the Dulong–Petit value of 9R (¼74.82 J K�1mol�1) at high tempera-
tures. The increase in heat capacity of UO2 (U

4þ : 5f2), NpO2 (Np
4þ : 5f3), and PuO2

(Pu4þ : 5f4) with increasing 5f electrons may be explained by Schottky-type heat
capacity due to excitation of 5f electrons.

The experimental heat capacity data of the stoichiometric UO2 are shown as a
function of the temperature in Figure 5.11 [11], where the sum of lattice heat capacity
(Cl), dilatometric heat capacity (Cd), Schottky-type heat capacity (Ce,sh), and small
amount of heat capacity due to vacancy formation (Cf) is plotted. The contribution to
lattice heat capacity Cl is large at low temperatures, but the contributions of Cd and
Ce,sh increase with increasing temperature.

5.5.1.3 Heat Capacity Data of Negative Thermal Expansion Materials ZrW2O8

Most of the materials expand with increasing temperature because of the increase
in the distance between the constituent particles that vibrate in an anharmonic
potential. However, some of the materials contract with increasing temperature,
the so-called negative thermal expansion materials. Isomorphous ZrW2O8 and
HfW2O8 contract isotropically over a very wide temperature range over 1000 K.
Their crystal structures are very scarce in nature and consist of ZrO6 (or HfO6)
octahedra and WO4 tetrahedra, sharing the oxygen atoms at vertexes of these
polyhedra. The polyhedra form some low-energy librational and translational
modes, which have been proved to be closely related to the negative thermal
expansion.

Corrected heat capacity at constant volume (Cv) of ZrW2O8 obtained from the
experimental heat capacity data is shown as a function of temperature in Figure 5.12a
and b [12], where heat capacity contribution of five functions (CD, CE1, CE2, CR1, and

Figure 5.11 Dependence of heat capacity (Cp) on temperature for the stoichiometric UO2 [11].

�
, corrected experimental results; � � � � � � , Cl; - - - - - -, Cl þ Cd; –––, Cl þ Cd þ Ce,sh.
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CR2) and their sum (Ctotal¼CD þ CE1 þ CE2 þ CR1 þ CR2) are plotted. Measured
Cp data are converted approximately to heat capacity at constant volume (Cv) between
80 and 210K by using Equation 5.12, although the Cp value was identified as the Cv

value (about 0.6% of Cp at 100 K) between 1.8 and 80K. In the figure, the total heat
capacityCtotal reproducesCv very well. Most parts of the heat capacity below 300K are

Figure 5.12 Heat capacity contributions of five
functions (CD, CE1, CE2, CR1, andCR2), their sum
(Ctotal¼CD þ CE1 þ CE2 þ CR1 þ CR2), and
Cv obtained from the experimental heat capacity
data for ZrW2O8 in the Cv–T plot (a) and CvT

-3

versus log T plot (b) [12]. In (b), CR2 is

excluded due to the small contribution to
heat capacity. (Reprinted with permission from
Y. Yamamura, N. Nakajima, et al., Phys. Rev. B,
Vol. 66, 014301, 2002. Copyright 2002 by the
American Physical Society.)
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attributed to CR1. CD, CE1, CE2, CR1, and Ctotal are plotted as CvT
�3 versus log T in

Figure 5.12b. It is clear that the maximum peak at about 9.5K mainly consists of
CE1T

�3 and CR1T
�3. The maximum of CE2T

�3 is located at about 22K and overlaps
with CR1T

�3. Although the fit seems to be carried out without the E2 mode at first
glance, the good fit could not be obtained without the E2 mode. To describe a broad
distribution over a rather wide frequency range, a rectangular distribution was
introduced. The rectangular distribution enables us to describe complex phonon
density of states (DOSs) and to find some characteristic vibration modes. The Debye
temperature (qD¼ 311K) was calculated from the Debye T3 law in the narrow
temperature range 1.8–2.6K by using Equation 5.32. The detailed analysis indicates
that two characteristic Einstein modes (E1, E2) have negative mode Gr€uneisen
parameters in ZrW2O8. The E1 mode originates from the vibrations including the
translationalmotionofZr (orHf) atomsorundistortedZrO6octahedron, andE2mode
originates from the vibrations including the librational motion of the octahedron.

Figure 5.13a and b [12] shows the effective DOS of ZrW2O8, together with the
experimental DOS, gn(v), obtained from inelastic neutron scattering. It is not easy to

Figure 5.13 Calculated effective phononDOSof ZrW2O8 comparedwith the experimental phonon
DOS, gn(v), obtained from inelastic neutron scattering [12]. (b) is an enlarged plot of (a). (Reprinted
with permission from Y. Yamamura, N. Nakajima, et al., Phys. Rev. B, Vol. 66, 014301, 2002.
Copyright 2002 by the American Physical Society.)
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compare the effective DOS with the experimental gn(v), because gn(v) is a neutron
cross sectionweightedDOS. It is, however, still possible to compare the experimental
data to the effective DOS at some points. Any phonon mode above 150 meV was not
found by the neutron study. The upper limit value agrees very well with the highest
characteristic temperature of R2 (qR2H¼ 1747K, 150.5meV). On the other hand, the
lowest limit of the characteristic temperature of all themodes except theDebyemode
is E1 (qE1¼ 41.8 K, 3.60meV), which is the same as the peak at the lowest frequency
of gn(v).

5.5.2
Kopp–Neumann Law

Dulong and Petit�s law was extended to predict the molar heat capacity of alloys by
Kopp and Neumann. According to the Kopp–Neumann law, if an alloy consists of
elements 1, 2, 3, . . ., n having atomic fraction X1, X2, X3, . . ., Xn and atomic heat
capacity Cp1, Cp2, Cp3, . . ., Cpn at constant pressure, the heat capacity of the alloy at
constant pressure is given by

Cp ¼
Xn
i¼1

XiCpi: ð5:48Þ

However, Equation 5.48 should be applied with caution for alloys especially near
magnetic and phase transitions. As will be shown in Figure 5.18, the experimental
heat capacity data at constant pressure of b-brass agree closely with the calculated
values between 0 and 150 
C. However, the Kopp–Neumann law cannot be applied
to a compound (UO2) whose physical and chemical properties of one element
(U) are different from those of other element (O) by using the equation
Cp(UO2)¼Cp(U) þ 2Cp(O).

More important extension of the Kopp–Neumann law was also applied to
chemical compounds, that is, the molar specific heat capacity of a compound is
equal to the sum of the molar fraction and heat capacity of its constituent
compounds having similar physical and chemical properties. For example, the
heat capacities of the nonstoichiometric UO2þ x and the U1�xThxO2 solid solution
are estimated as

CpðUO2þ xÞ ¼ fð3þ xÞ=3gCpðUO2Þ
CpðU1�xThxO2Þ ¼ ð1�xÞCpðUO2Þþ xCpðThO2Þ:

ð5:49Þ

Heat capacity data ofUO2,UO2.25 (U4O9), andUO2.667 (U3O8) permole of uranium
compounds at constant pressure are calculated by using Equation 5.49, and the
results are shown as a function of temperature in Figure 5.14 [13], where the broken
lines are normal heat capacities of U4O9 and U3O8 estimated by using the Kopp-
Neumann law. Experimental heat capacity data of UO2.25 (U4O9) at temperatures
between 500 and 850K except phase transition are in good agreement with normal
heat capacity data, whereas the experimental heat capacity data of UO2.667 (U3O8) are
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lower than the normal values. The difference of the latter may be caused by the
overestimation of Schottky-type heat capacity due to U4þ in UO2, as shown in
Figure 5.11, in spite of the small contribution of U4þ to UO2.667 (U3O8).

5.5.3
Estimation of Heat Capacity Data from Thermal Expansion Coefficient

Heat capacity at constant pressure of isotropic crystals is expressed from the
thermodynamic relation as

Cp ¼ bpVm=ðKacaÞ ¼ 3apVm=ðKacaÞ; ð5:50Þ

whereKa is the adiabatic compressibility, ca is the adiabatic compressibility,Vm is the
molar volume, bp is the coefficient of the volume thermal expansion, and ap is the
coefficient of the linear thermal expansion. The values of Ka and ca in Equation 5.50
are assumed to be independent of temperature, andKa and ca of CeO2 at 298.15K are
used in the subsequent calculations. Then, Cp at temperatures from 150 to 800K is
calculated from themeasured 3ap andVm by using Equation 5.50. Figure 5.15 shows
the temperature dependence of the calculatedCp for CeO2, together with those of two
compiled databases [14]. The calculated values agree reasonably with the reported
ones in a wide temperature range, although the calculated values are slightly higher
than the reported data at low and high temperatures. The small deviation may be
caused by the assumption that the values of Ka and ca are independent of
temperature.

Figure 5.14 Heat capacities of UO2, UO2.250, and UO2.667. The broken lines show the estimated
heat capacities of UO2.250 and UO2.667 by Equation 5.49 [13].

5.5 Estimation of Normal Heat Capacity j185



5.5.4
Corresponding States Method

Corresponding states method is applied to the system in which heat capacities of a
series of compounds having the same crystal structure are measured [15, 16]. In
this method, it is assumed that the heat capacity of a sample at temperature T,
Cp,normal(sample, T), can be represented by the heat capacity of the standardmaterial
at temperature rT, Cp;normal(standard material, rT ), as follows:

Cp;normalðsample; TÞ ¼ Cp;normalðstandard material; rTÞ: ð5:51Þ

Materials without any anomaly in the temperature range of phase transition are
selected as standard materials. For example, at the magnetic phase transition, an
antiferromagnetic material is used as a standardmaterial, which will be discussed in
Section 5.6.2

5.5.5
Volumetric Interpolation Schemes

The volumetric interpolation scheme proposed by Westrum [17] involves the linear
interpolation on the basis of the fractional molar volume increment of the com-
pounds in question. Since the Ln(OH)3 (Ln¼Pr, Eu, Tb) and LnCl3 (Pr, Eu)
compounds are part of isoanionic series having relatively small lattice contributions
and the lower lying energy levels have been spectroscopically determined for these
compounds, this lanthanide series is themost nearly ideal system to resolve Schottky
contributions of the heat capacity in the temperature range from 5 to 350K. Normal

Figure 5.15 Heat capacities of CeO2 as a functionof temperature. The estimatedheat capacity data
(...) are compared with those of the compiled two databases (-- -, –) [14].
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heat capacities of Ln(OH)3 (Ln¼Pr, Eu, Tb) and LnCl3 (Pr, Eu) compounds at
constant pressure may be calculated from antiferromagnetic lanthanum com-
pounds, not having 4f electron, and gadolinium compounds, having half-filled 7
electrons, as follows:

Cp;normalðLnL3Þ ¼ xCp;normalðLaL3Þþð1�xÞCp;normalðGdL3Þ
x ¼ fVmðLnL3Þ�VmðLaL3Þg=fVmðGdL3Þ�VmðLaL3Þg;

ð5:52Þ

where Ln is the lanthanide ion, Vm is the molar volume, and L is an anion of OH� or
Cl�. Figure 5.16 shows the calorimetrically and spectroscopically determined
Schottky-type contributions of heat capacity of the Ln(OH)3 (Ln¼Pr, Eu, Tb) and
LnCl3 (Pr, Eu) compounds [17]. Excess heat capacities determined from the exper-
imental heat capacity data at constant pressure and normal heat capacity obtained by

Figure 5.16 Calorimetrically (–) and spectroscopically (
) determined Schottky contributions
for Eu(OH)3, Pr(OH)3, Tb(OH)3, EuCl3, and PrCl3. The successive curves are displaced by 1 unit of
Cp/R [17].
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using Equation 5.52 are in good agreement with heat capacity data calculated from
the spectroscopic data by distribution function.

5.6
Phase Transition

5.6.1
Second-Order Phase Transition

5.6.1.1 Order–Disorder Phase Transition due to Atomic Configuration
The Bragg–Williams theory [10] of the order–disorder phase transition has
been developed in binary alloys AB, where the number of A atoms is equal
to the number of B atoms. The alloy has two crystallographic sites a and b. In the
low-temperature phase, when all the A atoms occupy a-sites and all the B atoms
occupy b-sites, the alloy is completely ordered. On the other hand, when the
distribution of A and B atoms is completely random over a- and b-sites in the
high-temperature phase, the alloy is completely disordered. If NR and NW are,
respectively, the number of the right and wrong sites that the atoms occupy, the
order parameter s is defined as

s ¼ ðNR�NWÞ=ðNR þNWÞ:

Therefore, s¼ 1 for the complete order state and s¼ 0 for the complete disorder
state. Internal energy of the system, E(s), is expressed as a function of the long-range
order parameter s by

EðsÞ ¼ Eð0Þ�ð1=4ÞNZVs2
V ¼ ð1=2Þ ðVAA þVBBÞ�VAB;

where E(0) is the internal energy at completely disordered state (s¼ 0), N is the total
number of crystallographic sites, Z is the coordination number, and VAA, VBB, and
VAB are the interaction energies of AA, BB, and AB pairs, respectively.

The heat capacity for the long-range order–disorder phase transition of binary alloy
is described in terms of the long-range order parameter:

DCv ¼ RT2
c f1�tanhð2Tcs=TÞg=½T2�TTcf1�tanhð2Tcs=TÞg�; ð5:53Þ

whereDCv is the heat capacity due to the order–disorder rearrangement and Tc is the
critical temperature.

Partition function of configuration, P(s), is written as

PðsÞ ¼ ½ðN=2Þ!=fðN=4Þð1þ sÞg!fðN=4Þð1�sÞg!�2

� exp½�fEð0Þ=ðkBTÞgþ ð1=4ÞNZVs2=ðkBTÞ�:
ð5:54Þ

In the case of dP(s)/ds¼ 0, the relation between s and T is expressed as

s ¼ tanhfZVs=ð2kBTÞg; ð5:55Þ
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Figure 5.17 Long-range order parameter calculated by the Bragg–Williamsmodel [18] and a short-
range order parameter for b-brass [19] as a function of temperature. The solid and broken lines are
the long- and short-range order parameters, respectively. (Reprinted with permission from J.M.
Cowley, Phys. Rev., 120, 1648, 1960. Copyright 1960 by the American Physical Society.)

and the following relation holds at transition temperature Tc:

ZV ¼ 2kBTc:

Figure 5.17 shows the long-range order parameter calculated by the Bragg–
Williams model [18] and an example of a short-range parameter [19] for b-brass
(CuZn) as a function of temperature. The solid and broken lines are the long- and
short-range order parameters, respectively. The order parameter s decreases contin-
uously up to Tc with increasing temperature, which is characteristic of a typical
second-order phase transition. The experimental heat capacity data of the CuZn
alloy [20] and that calculated by Equation 5.53 are shown in Figure 5.18 [18]. A sharp
heat capacity anomaly is observed experimentally, and the excess heat capacity
remains above phase transition temperatures, compared to the calculated heat
capacity data, because the Bragg–Williams approximation takes into consideration
only long-range ordering and not short-range ordering.

5.6.1.2 Order–Disorder Phase Transition due to Orientation in ZrW2O8

The negative thermal expansion of ZrW2O8 originates in the rare crystal structure
having the large open space and the low-energy vibrations of WO4 tetrahedra and
ZrO6 octahedra. This low-energy vibrational motion of WO4 units brings about
another interesting physical property ofZrW2O8,which undergoes a structural phase
transition around 440K from an acentric to centric structure with increasing
temperature. The structural phase transition is related to the orientation of unshared
vertex of the WO4 unit. In the low-temperature phase (P213), two neighboring WO4

tetrahedra on the [111] body diagonal in the unit cell point to their unshared vertexes
in the [111] direction, whereas they are randomly oriented in the [111] or �[111]
directions in the high-temperature phase (Pa3� ). Two disordering mechanisms have
been proposed so far. One mechanism is that the two WO4 tetrahedra on the [111]
body diagonal change their orientation concertedly. If this is the case, the entropy of
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transition is R ln 2 (¼5.8 J K�1mol�1) like amagnetic transition in a spin 1/2. On the
other hand, if two tetrahedra can independently take two orientations, the expected
entropy is R ln 4 (¼11.5 J K�1mol�1).

In order to know phase transition mechanism, heat capacities of ZrW2O8 are
measured in the temperature range from 1.8 to 483K by using two adiabatic
calorimeters and a commercial relaxation calorimeter, and the results are shown
in Figure 5.19 [21]. A large l-type heat capacity anomaly due to an order–disorder

Figure 5.18 Heat capacity (.) of b-brass as a function of temperature [20]. The broken line is the
normal heat capacity estimated from the Kopp–Neumann law by using Equation 5.48, and the chain
line is the heat capacity calculated by the Bragg–Williams model [18].

Figure 5.19 Heat capacity of ZrW2O8 plotted against temperature. The broken line is the normal
portion of the heat capacity to separate the excess heat capacity from the observed values [21].
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phase transition is observed at 440K. The heat capacity data below 180K and above
470K are fitted with five functions by using a linear least-squares method, as
described in Section 5.5.1.3. The estimated normal heat capacity is shown as the
broken curves. The enthalpy and entropy of phase transition are determined to be
1.56 kJmol�1 and 4.09 J K�1mol�1, respectively. The entropy of transition is about
70% of R ln 2 (¼5.8 J K�1mol�1), and this result is expected for a typical order–
disorder phase transition inwhich the twoWO4 tetrahedra on the [111] body diagonal
change their orientation concertedly.

5.6.2
Magnetic Order–Disorder Phase Transition

Equation 5.40 shows that the magnetic contribution to the heat capacity at low
temperatures for the ferromagnetic and ferrimagnetic materials is proportional to
the three-halves power of the absolute temperature.When heat is supplied to ametal,
the energies of free electrons, lattice vibrations, and spins are increased. For
ferromagnetic metals, the total heat capacity at constant volume is equal to the sum
of the electronic, lattice, and magnetic terms, that is,

Cv ¼ Ce;c þCl þCm ¼ cT þ bT3 þ dT3=2: ð5:56Þ
For ferrimagnets, which are electrical insulators, the electronic term in Equa-

tion 5.56 is negligibly small, compared with the other terms, so the total heat capacity
at constant volume may be given by the following expression:

Cv ¼ Cl þCm ¼ bT3 þ dT3=2: ð5:57Þ
Both sides of Equation 5.57 may be divided by T3/2 to give

Cv=T
3=2 ¼ bT3=2 þ d: ð5:58Þ

A plot of Cv/T
3/2 versus T3/2 should give a straight line with slope b and intercept d.

Themagnetic contribution to the heat capacity by ferromagnetic and ferrimagnetic
materials is the T3/2 dependence, whereas that by antiferromagnetic materials is T3

dependence, as described in Section 5.4.2.3. Hence, for antiferromagneticmaterials,
the temperature dependence is of the same form as the Debye�s T3 law, so the
separation of the spin wave contribution from the heat capacity in antiferromagnetic
materials is very difficult.

Heat capacities of CoCl2, CuCl2, and CrCl2 minus the heat capacity of MnCl2 are
shown in the temperature range from 10 to 300K in Figure 5.20 [15]. Between 35 and
90K, the total heat capacity of CoCl2 is less than the heat capacity of MnCl2. To avoid
this negative heat capacity, the heat capacity of CoCl2 is approximated by the
corresponding states method. The heat capacity of CoCl2 at temperature T is
represented by the lattice heat capacity of MnCl2 at temperature rT, and the lattice
entropy of CoCl2 at T is that of the MnCl2 lattice at temperature rT.

Figure 5.21 [15] shows the magnetic entropy and heat capacity of CoCl2 calculated
for r¼ 0.90. The magnetic entropy of CoCl2 reaches R ln 2 at near 75 K, and it is
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apparent that there are only two states associated with the magnetic ordering
corresponding to the heat capacity anomaly with a peak at 24.91 K.

5.7
Summary

5.7.1
Heat Capacity Measurement

There exist two typical heat capacity measurements: an adiabatic heat capacity
calorimetry and a temperature jump calorimetry.

5.7.1.1 Adiabatic Heat Capacity Calorimetry
The absolute value of heat capacity, Cp, is obtained most accurately as Cp¼DE/DT
from themeasurements of input energyDE to the sample vessel (or a sample and its
vessel) and the resulting temperature increment DT.

Figure 5.21 Magnetic contributions to the heat capacity and entropy of CoCl2 versus
temperature [15]. The lattice heat capacity and entropy of MnCl2 at temperature 0.90T are the
estimates of the lattice heat capacity and entropy of CoCl2 at temperature T.

Figure 5.20 Heat capacities of CoCl2, CuCl2, and CrCl2 minus the lattice heat capacity of MnCl2
versus temperature [15].
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5.7.1.2 Temperature Jump Calorimetry
The enthalpy change of the sample ismeasured as the amount of heat absorbed by the
calorimeter in changing from an initial temperature to a final temperature. The Cp

value as a function of temperaturemay then be derived from the smoothed tabulated
enthalpy data as Cp¼ d(HT�H298.15)p/dT. The enthalpy change by phase transfor-
mation can also be determined from the difference in themeasured enthalpy change
before and after the phase transformation.

5.7.2
Thermodynamic Relation Between Cp and Cv

The heat capacity of solids is ordinarily measured at constant pressure, Cp¼ (dH/
dT)p, whereas the heat capacity at constant volume, Cv¼ (dE/dT)v, is calculated
theoretically if the interatomic distance is kept constant, independent of the tem-
perature changes. The dilatometric termCd is the difference betweenCp andCv and is
obtained from the classical thermodynamic relations as

Cd ¼ Cp�Cv ¼ ðVb2p=kT ÞT
¼ CvcebpT

where kT is the isothermal compressibility, bp is the volume thermal expansion, and
ce is the Gr€uneisen constant.

For a lattice heat capacity contributed to lattice vibrations, an approximation called
the Nernst–Lindemann formula is often used:

Cd ¼ Cp�Cv ¼ AC2
pT ;

where A is a system-dependent constant. The values of Cd at the temperature T are
estimated from the values of Cp measured experimentally.

5.7.3
Estimation of Normal Heat Capacity

The heat capacity at constant volume Cv can be expressed as the sum of each
contributed heat capacity:

Cv ¼ Cl þCl;a þCe;c þCe;sh þCm þCf þ � � � ;

where Cl is the lattice heat capacity, Cl,a is the heat capacity due to anharmonic lattice
vibration, Ce,c is the electronic heat capacity due to conduction electron, Ce,sh is the
electronic Schottky-type heat capacity due to electronic excitation to higher energy
levels, Cm is the magnon heat capacity due to the excitation of the spin system in
magnetically ordered substances, and Cf is the heat capacity due to the formation of
vacancies.
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The main contribution of heat capacity at constant volume is the lattice heat
capacity (Cl) due to lattice vibrations. Debye�s theory predicts a cube law dependence
of the heat capacity of the elemental solids for temperatures T< (qD/50):

Cl ¼ ð12=5Þp4RðT=qDÞ3:

5.7.3.1 Nonmagnetic Metals and Alloys at Low Temperatures
The heat capacity of nonmagnetic metals and alloys below both the Debye temper-
ature and the Fermi temperature may be expressed as the sum of phonon and
electron contributions:

Cv ¼ Cl þCe;c ¼ bT3 þ cT :

At sufficiently low temperatures (T< 1K) the electronic heat capacity is dominant,
while at high temperatures the phonon contribution is predominant.

5.7.3.2 Nonmetals and Non-Alloys Without Magnetic Transition at Low Temperatures
For nonmetals and non-alloys, the electronic contribution may be very small
compared with the lattice term, so

Cv ¼ Cl ¼ bT3:

5.7.3.3 Ferromagnetic and Ferrimagnetic Materials at Low Temperatures
For ferromagnetic metals and alloys, the total heat capacity at constant volume is
equal to the sum of the lattice, electronic, and magnetic terms, that is,

Cv ¼ Cl þCe;c þCm ¼ bT3 þ cT þ dT3=2:

For ferrimagnets, which are electrical insulators, the electronic term in equation is
negligibly small, compared with the other terms, so the total heat capacity at constant
volume may be given by the following expression:

Cv ¼ Cl þCm ¼ bT3 þ dT3=2:

5.7.3.4 Antiferromagnetic Materials at Low Temperatures
For antiferromagnetic materials, the magnon heat capacity shows T3 dependence:

Cv ¼ Cl þCe;c þCm ¼ bT3 þ cT þ dT3:

The temperature dependence is of the same form as the Debye�s T3 law, so the
separation of the spin wave contribution from the heat capacity in antiferromagnetic
materials is very difficult.

5.7.3.5 Metal Oxides with Fluorite-Type Crystal Structure at High Temperatures
The heat capacity data of metal oxide with fluorite-type crystal structure at high
temperatures are expressed as the sumof the lattice, the electronic Schottky-type, and
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the vacancy formation terms:

Cv ¼ Cl þCe;sh þCf

¼ 3RDðT=qDÞþ ðg1=g0ÞfE2
1=ðRT2Þgexpf�E1=ðRTÞg

þ fjfDH2
f =ðRT2Þgexpf�DHf=ðRTÞg:

5.7.4
Second-Order Phase Transition

5.7.4.1 Order–Disorder Phase Transition due to Atomic Configuration
According to the Bragg–Williams theory of the order–disorder phase transition, the
heat capacity for the long-range order–disorder phase transition of binary alloy is
described in terms of the long-range order parameter s:

DCv ¼ RT2
c f1�tanhð2Tcs=TÞg=½T2�TTcf1�tanhð2Tcs=TÞg�;

whereDCv is the heat capacity due to the order–disorder rearrangement and Tc is the
critical temperature. The following relation holds at transition temperature Tc:

ZV ¼ 2kBTc;

where Z is the coordination number.
A sharp heat capacity anomaly of CuZn alloy is observed experimentally, and the

excess heat capacity remains above phase transition temperatures, compared to the
calculated heat capacity data, because the Bragg–Williams approximation takes into
consideration only long-range ordering and not short-range ordering.

5.7.4.2 Order–Disorder Phase Transition due to Orientation in ZrW2O8

The negative thermal expansion material of ZrW2O8 undergoes a structural phase
transition around 440K from an acentric to centric structure with increasing
temperature. In the low-temperature phase, two neighboring WO4 tetrahedra on
the [111] body diagonal point to their unshared vertexes in the [111] direction,
whereas they are randomly oriented in the [111] or �[111] directions in the high-
temperature phase. Two disordering mechanisms have been proposed so far. One
mechanism is that the two WO4 tetrahedra on the [111] body diagonal change their
orientation concertedly, where the entropy of transition is R ln 2 (¼5.8 J K�1mol�1)
like a magnetic transition in a spin 1/2. On the other hand, if two tetrahedra can
independently take two orientations, the expected entropy is R ln 4
(¼11.5 J K�1mol�1).

The entropy of phase transition is determined experimentally to be 4.09 J K�1

mol�1, which is about 70% of R ln 2 (¼5.8 J K�1mol�1), supporting the transition
mechanism that the two WO4 tetrahedra on the [111] body diagonal change their
orientation concertedly.
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6
Diffraction and Thermal Expansion of Solids
Avesh Kumar Tyagi and Srungarpu Nagabhusan Achary

6.1
Introduction

Thermal expansion ofmaterials is a topic of age-old interest tomankind in view of the
chronological development of several devices and technologies [1, 2]. The concept of
thermal expansion and knowledge of thermal expansion coefficient of materials
remain important for any structural materials experiencing a temperature gradient.
The structural materials include any material used in technology to build a me-
chanically or electronically integrated physical entity. In particular, the thermal
properties are of interest when any structural assembly faces a temperature variation.
Thermal expansion effects have been well considered right from the metals and
ceramic parts of cookwares to the highly sophisticatedmechanical structures, such as
buildings, bridges, air/spacecraft, vessels, kilns, furnaces, and so on. In particular,
metals such as steel, copper, and so on that are important structural parts show a
significant expansion with temperature. Thus, in all these materials, thermal
expansion was exploited either to enhance or to nullify any temperature-induced
dimensional instability, for example, the utilization of thermal expansion in auto-
matic cut-off switch using bimetals is well known. The discovery of Invar (an alloy of
35% Ni and 65% Fe) and subsequent modified compositions as Elinvar, Kovar,
Alnico, and so on have found immense applications inmodern technologies, such as
design of high-accuracy clocks, shadow mask in television screen, and so on [3].
In addition, low thermal expansion in fused silica and controllable thermal expansion
in materials with glass and glass–ceramic compositions have been discovered and
used in precise optical instruments, mirror substrates, glass–metal junctions [4, 5].
A large number of crystalline materials with low thermal expansion are also
discovered [6]. Thermal expansion data of ceramics have been a prime consideration
in the designing of electrolyte and electrodes of solid oxide fuel cells [7]. Similarly,
thermal expansion data of nuclear fuel materials are significant in preventing
detrimental effects of fuel–clad interaction and unwanted swelling of fuel pins [8].
Nuclear reactor performance is mainly restricted by the thermal expansion and
thermal conductivity of the fuel pellets under irradiation conditions. In these
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applications, the material property is more significant than the structural assembly
and hence the structuralmaterials are tuned as per their thermal expansion behavior.
However, the thermal expansion behavior of electronic materials causing temper-
ature-induced dimensional instability leading to circuit failure also needs to be dealt
with. Considering such aspects, several Invar-type alloys and metal matrix compo-
sites are developed in recent years [9]. Thus, the thermal expansion data of any
material are the first requisite for the development of most of the technologies.

In general, it is known that all materials expand or contract with the rise or fall of
temperature. The thermal expansion of anymaterial is explained as a relative change
in dimensionwith a unit rise in temperature. The bulk thermal expansion coefficient
is thus presented as (al) and defined as

al ¼ lT � l0
l0ðT �T0Þ ; ð6:1Þ

where lT is the length of the material at temperature T; l0 is the reference length, that
is, the length of the material at reference temperature T0; and al is the coefficient of
thermal expansion in �C�1 or K�1.

The al determined by Equation 6.1 represents the function of two extremes of
temperature, thus giving the average thermal expansion over the range. However,
nonlinear variation of the dimension is very commonly observed in practice. Hence,
often al is represented as a function defined in a range of temperature. This variation
of dimension with temperature is expressed as polynomial function:

LT ¼ L0 þ aðT �T0Þþ bðT �T0Þ2 þ cðT �T0Þ3 þ dðT �T0Þ4 þ � � � ; ð6:2Þ
where T0 is the reference temperature with respect to which the thermal expansion
coefficients are defined. If the reference temperature is assumed at absolute zero, the
above equation reduces to

LT ¼ L0 þ aðTÞþ bðTÞ2 þ cðTÞ3 þ dðTÞ4 þ � � � :
Hence, the coefficient of thermal expansion is defined as

al ¼ 1
L0

dLT
dT

� �
: ð6:3Þ

With the development of technology, interest in the thermal expansion grew only
from the utility point of view. However, the basic understanding of the phenomena
greatly advanced after a close correlation between coefficients of thermal expansion
and the internal structure and the effect of temperature on vibrations of atoms were
revealed [10]. Thus, the lattice structure and dynamics have been extensively studied
to explain the thermal expansion behavior of materials. The concept of internal
structure leads to the definition of two different coefficients of thermal expansions,
namely, bulk (average) and lattice (unit cell) thermal expansion coefficients.

The intrinsic thermal expansion of thematerial is the actual lattice expansion. The
measurements of the bulk and lattice thermal expansions are respectively based
onmacroscopic andmicroscopic observation of the effects of temperature. However,
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contributions from the grain boundary, micro/macrocracks, and voids are the
additional important factors, which contribute to the bulk thermal expansion of a
material [11]. The average thermal expansion and the intrinsic unit cell expansion
agree well only in the direct measurement on a single crystal. In general, the unit cell
expansion is anisotropic in nature unless the crystal is isotropic. Thus, the average
thermal expansion obtained in the bulkmeasurement is an average of this anisotropy,
and is significant in the utilization of a material. In addition, the bulk thermal
expansion is easier to tune than the lattice thermal expansion [9, 12]. Usually, the
presence of micro/macrocracks and grain boundary and voids significantly mask
expansion and thus withstand considerable thermal shock, even though they have
degraded mechanical strength compared to single crystals. Therefore, measure-
ments of the bulk or average thermal expansion as well as unit cell expansion govern
the response of any material under heating.

Mostly, the lattice thermal expansionsmeasured from diffraction data are given in
terms of volumetric thermal expansion coefficients (aV in �C�1 or K�1) and similar to
Equation 6.3, they are defined as a relative change of unit cell volume at infinitesimal
change in temperature:

aV ¼ 1
V0

dV
dT

� �
: ð6:4Þ

Similarly, the average volume thermal expansion of a material is defined in terms of
the volumes at initial and final temperatures and thus

av ¼ VT �V0

V0ðT �T0Þ ; ð6:5Þ

where VT is the unit cell volume of the materials at the temperature T and V0 is the
reference volume, that is, volume of the material at reference temperature T0.

The coefficients of the thermal expansion can also be expressed as a variation of
density with temperature. For isotropic materials, the linear thermal expansion as
well as the bulk thermal expansion can be related easily as aV¼ 3�al. However, the
situation is not such trivial where the thermal expansion is anisotropic, as in the
case of noncubic systems. In such cases, the axial thermal expansion (al) measured
along some reference axes (often preferred alongunit cell directions) is equated to the
volume thermal expansion by appropriate symmetry considerations.

6.2
Strain Analysis

In order to relate the thermal expansion to the elastic constants of a solid and hence
to the other related properties, thermal expansion coefficients are preferentially given
in strain notation [13–18]. Usually the strain in lattice is determined with respect to
an unstrained lattice at constant stress, that is, normally at zero pressure. The
temperature derivative of strain represents the thermal expansion.
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In a simple orthogonal systems, the deformation in lattice due to the expansion
along the three orthogonal axes a0, b0, and c0 results in a new set of orthogonal
axes a, b, and c. The new orthogonal axes due to rise in temperature DT can thus be
given as

a ¼ a0 þDa

b ¼ b0 þDb

c ¼ c0 þDc

and hence V ¼ V0 þDV ¼ ða0 þDaÞðb0 þDbÞðc0 þDcÞ

9>>>=
>>>;
: ð6:6Þ

From the definition of strain, the linear strain along a, b, and c axes and the volume
strain, given in Equation 6.7, are called Lagrangian strain:

Da=a0; Db=b0; Dc=c0 andDV=V0: ð6:7Þ
The temperature derivative of these Lagrange strain components give the axial or
volume thermal expansion coefficients, which can be written as

aa ¼ ðDa=a0Þ=DT ; ab ¼ ðDb=b0Þ=DT ; ac ¼ ðDc=c0Þ=DT and

aV ¼ ðDV=V0Þ=DT :
ð6:8Þ

Ignoring the product of two or more strain components, the volume strain can be
obtained from Equation 6.6 as

DV=V0 ¼ Da=a0 þDb=b0 þDc=c0 ð6:9Þ
and similarly the coefficient of volume thermal expansion can be written as

aV ¼ aa þab þac: ð6:10Þ
In particular, the expansions of single crystals are measured usually along the

crystallographic habits or along the directional vectors of the suitably cut planes. The
linear thermal expansion in any arbitrary direction with direction cosines l,m, and n
is given by

almn ¼ aa � l2 þab �m2 þac � n2: ð6:11Þ
In the case of lower symmetric (viz., triclinic) systems, the lattice strains are

defined with six independent Lagrange strain components (eij) tensor expressed as

e11 e12 e13
e21 e22 e23

e31 e32 e33

2
4

3
5; ð6:12Þ

where the components e11, e22, and e33 (i.e., eij for i¼ j) are strains along the principal
axes and eij (for i 6¼ j) is defined with an angle between two axes, that is, with respect
to two principal axes. The eij terms are defined as e12¼ a� b�dab, e23¼ b� c�dbc,
and e13¼ a� c� dac. Thus, the coefficients e11, e22, and e33 are strains along the
normal crystallographic axes and are called principal strain coefficients. Similarly,
the coefficients e12, e23, e31, and so on are called shear strains.
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From Equation 6.11, the temperature derivative terms that represent thermal
expansion are as follows:

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
4

3
5: ð6:13Þ

Hence, the volume thermal expansion coefficient in terms of the unit cell parameters
is defined as

aV ¼ aa þab þac þ 1
X

wa

q cos a
qT

þwb

q cos b
qT

þwc

q cos c
qT

� �
; ð6:14Þ

where

X ¼ V
abc

¼ ð1� cos2a� cos2b� cos2cþ 2cos a� cos b� cos cÞ1=2;

wa ¼ cos b� cos c� cos a
wb ¼ cos a� cos c� cos b
wc ¼ cos a� cos b� cos c

:

Besides, no shear components exist in the case of isotropic orthogonal crystals, that
is, with a¼b¼ c¼ 90 �C, and thus the three principal strain are only used for lattice
expansion behavior. In such cases, Equation 6.13 reduces to Equation 6.10, and thus
the sum of the axial thermal expansion coefficients represents the volume thermal
expansion coefficient.

6.3
Thermodynamics of Thermal Expansion

Using the definition of thermal expansion coefficients along with the Maxwell
equations, the thermal expansion can be explained with other thermodynamic
parameters. The relations between thermophysical properties of crystals have been
extensively explained in several reports [19–23]. In this section, the relations of the
thermal expansion coefficients with various thermodynamic and elastic parameters
are briefly explained.

According to the definition (Equation 6.9), the volume thermal expansion coef-
ficient (aV) at constant pressure is given by

aV ¼ 1
V

dV
dT

� �
p

:

Using the Maxwell relation ðdV=dTÞp ¼ �ðdS=dPÞT , the above equation can be
written as

aV ¼ � 1
V

dS
dP

� �
T

¼ � 1
V

dS
dV

� �
T

dV
dP

� �
T

¼ x
dS
dV

� �
T

; ð6:15Þ
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where x, the isothermal compressibility, is defined as Equation 6.16 and its reciprocal
represents bulk modulus:

x ¼ � 1
V

dV
dP

� �
T
: ð6:16Þ

The isothermal compressibility is related to the elastic constants (Sij) of the lattices as

x ¼
X

i; j¼1� 3

Sij: ð6:17Þ

Further, from the alternative Maxwell relation, aV can be defined as

aV ¼ 1
BT

dP
dT

� �
p
; ð6:18Þ

where BT is the isothermal bulk modulus.
In order to explain the thermal expansion behavior of solids, Gr€uneisen [24] had

introduced the Gr€uneisen parameter (c), defined as

c ¼ V
CV

dP
dT

� �
p
; ð6:19Þ

where V is the volume of the unit cell and CV is the heat capacity at constant volume.
Hence, the thermal expansion coefficient can be related to the thermodynamic
parameters as

aV ¼ CV

BTV
c: ð6:20Þ

Similarly, using the heat capacity at constant pressure, an equivalent relation for aV

can be derived as

aV ¼ CP

BSV
c; ð6:21Þ

where Bs is the adiabatic bulk modulus.
Thus, it can be inferred from Equations 6.20 and 6.21 that the coefficient of

thermal expansion has a direct relation with the heat capacity and inverse relation
with the bulk modulus of a solid. Since the bulk modulus is weakly temperature
dependent, the specific heat and thermal expansion behave similarly, but with a
constant difference [23–25].

In principle, the thermal properties of a solid are the consequence of temperature
variation of theHelmholtz free energy (F ), which has been defined asU�TS, where
U is internal energy and S is the entropy. Also, the pressure can be defined as
P¼�(dF/dV)T. The volume of the material at pressure P and temperature T is
decided by the minimum value of the F(V, T). The increase in temperature can alter
the minima of the free energy variation with the volume and the shift in the minima
represents the change in volume with the temperature [26, 27].
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6.4
Origin of Thermal Expansion

The atomistic analysis of thermal expansion shows that the thermal expansion
originates from the anharmonic nature of the interatomic potential energy curve
represented by potential well model [18, 28]. Several theoretical studies on thermal
expansion of solids using various interatomic potential models have been discussed
in detail in the literature [29–33]. The typical interatomic potential energy can be
written as

UðxÞ ¼ ax2 � bx3 � cx4 � � � ; ð6:22Þ
where x is the displacement of atoms from the equilibrium position.

The coefficients a and b represent symmetric and asymmetric components of the
vibrations, respectively, and c represents the damping of vibration at large vibration
amplitude [18]. The typical potential energy variation with the interatomic separation
is shown in Figure 6.1. An increase in the width of the asymmetry with temperature
due to the longitudinal vibration leads to an increase in the equilibrium separation
of the bonded pair by dr value, as shown in Figure 6.1. The mean separation (r) and
vibration amplitude depend on the force constant of the chemical bond of the paired
atoms. In this chapter, we have qualitativelymentioned that the thermal expansion of
a solid is a consequence of the expansion of chemical bonds due to the asymmetric
nature of the interatomic potential energy curve.

r0

r0 + δr

r0

r

0

U

Figure 6.1 Variation of interatomic potential (U) with a separation of a pair of atoms (r).
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Considering the vibration energy, the free energy function can be written in
simpler relation [34–37]:

F ¼ Eþ kT
X
j

ln
hvj

kT

� �
ð6:23Þ

where k is the Boltzmann�s constant, vj is the vibrational frequency, and E is the
internal energy of the lattice.

Assuming the phonon frequencies as temperature independent, from the ther-
modynamic definition of pressure P ¼ �ðdF=dVÞT and Equation 6.18, the coeffi-
cients of volume thermal expansion aV is

aV ¼ � kx
X
j

1
vj

dvj

dV
; ð6:24Þ

where V is the volume of the unit cell and x is the compressibility.
The Gr€uneisen parameter represents the strength of anharmonic forces in the

crystal and can be defined in terms of vibrational frequency (Equation 6.25):

cj ¼ � d lnvj

d ln V
: ð6:25Þ

FromEquations 6.24 and 6.25, the coefficients of volume thermal expansion can be
related to the Gr€uneisen parameters:

aV ¼ � kx
V

X
j

V
vj

dvj

dV
¼ kx

V

X
j

cj: ð6:26Þ

The overall Gr€uneisen parameter (c) can be defined as a sum of all the mode
Gr€uneisen parameters (cj). Including the temperature dependencies of vibrational
frequencies, Equation 6.26 can be transformed to Equation 6.20. Thus, from
Equations 6.20 and 6.26, it can be concluded that the magnitude and sign of c are
directly related to the coefficients of thermal expansion. For most materials, the
positive values of c are observed and they show normal positive thermal expansion
behaviors. The variation of vibration energies with volume generally governs the sign
of c and thus the positive or negative thermal expansion coefficients.

In summary, the thermal expansion of crystals is related to their bonding strength
and in turn to the lattice energy and crystal structure. Thus, the thermal expansion
of a solid depends on the nature and strength of the chemical bond, mass of the
vibrating atoms, melting point, crystal structure, and so on.

The above relations are based on the general assumption that thermal expansion or
specific heat originating from the vibrational contribution of the lattice approach to
zero following T3 relation as the temperature approaches to 0 K. Similarly, they attain
constant values at temperature greater than the characteristic temperature defined as
the Debye temperature (qD). However, these expressions show appreciable deviation
in the case of metals. It can be mentioned here that in the case of conductors or
metals, a significant contribution to thermophysical properties arises from the
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electrons [28, 38, 39].Hence, it is appropriate to consider the contribution of electrons
along with the phonon or their interactions to the thermal expansion. It can also be
mentioned here that most of the electron states have very little effect on specific heat
and thermal expansion. However, electrons close to the Fermi surface significantly
contribute to these properties. Besides, it can also be emphasized here that the
Gr€uneisen parameter has a temperature dependency and thus cannot be assumed as
constant over all temperatures in practice. It has been observed that the Gr€uneisen
parameter approaches to a constant value as the temperature approaches to 0K and
also to another constant as the temperature exceeds qD [18, 38]. Considering the
contribution of electrons, the thermal expansion coefficient can be by

aV ¼ 1
BV

�
cphononv Cphonon

V þ celectronC electron
V

�
ð6:27Þ

where cphonon is the Gr€uneisen parameter for the phonons, celectron is the Gr€uneisen
parameter for electrons, Cphonon

V is the lattice contribution to specific heat, and
Celectron
V is the electronic specific heat.
Assuming the electron gas model, celectron can be approximated to 2/3 [28] and

hence the above equation can be expressed as

aV ¼ 1
BV

cphononv Cphonon
V þ 2

3
C electron
V

� �
: ð6:28Þ

The thermal expansions of metals have been extensively studied in order to
decipher the contribution of both electron and phonon [28, 38, 39]. It has been
observed that at very low temperatures, the contribution from electron are appreci-
able and thus the thermal expansion falls linearly with T instead with T3 as in the
insulators. The electronic contribution to thermal expansion can thus show a
negative thermal expansion (NTE) behavior at low temperatures [19, 34]. Besides
these electronic effects, magnetic interaction and correlated electrons also signifi-
cantly contribute to the nature of thermal expansion [40–48], which has been
discussed subsequently.

6.5
Techniques for Measurement of Thermal Expansion

The measurement of thermal expansion developed chronologically from crude
marker comparison methods to the presently used more sophisticated and auto-
matedmeasurement devices such as dilatometer and interferometers. The principles
and procedures of measurement of thermal expansion of solids have been discussed
in detail in several literatures [49–55]. On the basis of the measured data, the
measurements can be grouped as bulk and lattice thermal expansionmeasurements.
The bulk thermal expansion of a material is measured by a direct observation of the
change of dimensionwith temperature. In practice, the change in length ismeasured
by a dilatometer or an interferometer. However, the lattice thermal expansion is
generally determined by the diffraction methods like variable-temperature X-ray or
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neutron diffraction. In thesemethods the delineation of exact structural information
at various temperatures provides plausible reason of thermal expansion.

The measurement of thermal expansion needs a mode to quantify the dilation of
a material at a particular temperature with respect to a reference temperature. Thus,
the sample is usually heated to a particular temperature and dilation or its effect
is measured with various modes, such as physical measurement of length or
measurement of other effects such as electrical or optical properties. Highly
sensitive attachments to the direct measurement methods enhance the accuracy
and shorten the data acquisition time. Some of the techniques are briefly touched
upon here.

6.5.1
Dilatometer

The pushrod-type dilatometer is the most widely used technique for thermal
expansion measurement, due to its simplest and efficient features [2, 3, 34, 56, 57].
In this method, the length of the sample is measured either continuously or
periodically while heating or cooling it. The sample is placed in a furnace and a
pushrod is placed touching the sample. The expansion in the sample is caused by
movement of the pushrod. The magnitude of the expansion is measured by a
transducer via mechanical, optical, or electrical means. The sensitivity of the
transducer decides the accuracy of the expansion data. The vertical and horizontal
designs of the dilatometer are the most commonly used geometries. Usually the
horizontal geometry dilatometers have less thermal gradient compared to the vertical
ones due to less convection loss of heat. Appropriate furnace assembly minimizing
the convection loss can make the vertical design more effective. Besides, the
shrinkage and negative thermal expansions are more suitably studied with the
vertical dilatometers as sample position is intact without sliding from the end plate
due to the self-weights of the sample and pushrod. The limitation to maximum
temperature of measurements usually arises from the nature of pushrod. Fused
silica rods are frequently used as pushrods due to their low thermal expansion
(al¼ 0.5� 10�6 �C�1). The fused silica rods can be safely operated below the
devitrification temperature of about 1000 �C. High-purity sintered alumina rods
(al¼ 8–8.5� 10�6 �C�1) arewidely used for high temperatures (up to 1700 �C) due to
their high melting temperature and mechanical strength. In the case of alumina
pushrod-based dilatometer, a blank run data are needed for correcting the values of
overall expansion. For measurements at very high temperatures, metals such as Mo,
Ta, and so on (up to 2000 �C) and graphite rods (up to 3000 �C) are often used, but only
in vacuum or inert atmosphere.

The usual dilatometers have normal dial gauges based on mechanical strains to
more sensitive linear variable differential transformers (LVDT) and resistive or
capacitive or squid-based electrical transducer to quantify the thermal dilation. All
these transducers are extensively used for the measurement of the bulk thermal
expansion [2, 3, 56]. In the mechanical dial gauge, the dilation from the sample is
transmitted to the strained coil attached to a pointer. The pointer deflects from its
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equilibriumpositionwith the external stress and the extent of deflection indicates the
dilation of the sample.More sensitivemeasurements of the dilation are donewith the
electrical transducers such as LVDT [58], where the pushrod is connected to the core
placed inside the coils of a transformer. The motion of the core inside the coils
generates emf signal in secondary coil and the signal is measured by potentiometers.
In variable transformer, the null position is created with equilibrium position of the
core in two oppositely connected transformers, and the development of the signal
with positive or negative direction due to the sample expansion or contraction of the
sample ismeasured directly. Also, the pushrod can be connected to a slider over a coil
of a variac assembly. Themeasurement of resistance cangive theposition of the slider
and hence the extent of expansion. Similarly, the pushrod can also be connected to
one of the plates of a parallel plate capacitor and the measured capacitance governed
by the separation of the plates is ameasure of the dilation in the sample. The dilation
in length (Dl) is measured with an increase in the temperature (DT ) and thus the
thermal expansion is calculated.

6.5.2
Interferometer

Interferometers have been extensively used for the measurement of thermal expan-
sion from the basic concept of interference of light [59]. Usually these are sensitive
even up to 0.025 mm in displacement over a wide range of temperatures. The design
details and application of interferometer for the thermal expansion of materials have
been explained in several reports [60–64]. In general, the fringes are formed by two
optically flat transparent plates separated by the spacer (sample) due to interference
when illuminated with a parallel monochromatic beam of light. The expansion or
contraction of the sample due to thermal treatment changes the separation of the two
reflecting plates and hence the variation of fringe patterns, which is observed from
the fringemotion. The number of fringes passed through a reference point due to the
variation of spacing of plates is counted. The variation of this spacing due to the
increase in temperature is calculated from the following relation:

Dl ¼ DN
l

2
; ð6:29Þ

where DN is the number of fringes passed through the reference points, l is the
wavelength of the illuminating light, andDl is the change in the separation of the two
plates and hence the change in the dimension of the sample.

Several designs, namely, Fizeau [65] and Fabry–Perrot [66] type interferometers are
commonly used for thermal expansion measurements. In an interferometer, the
fringes are counted by a telescope monitoring constantly. However, later develop-
ments of automated interferometers use photographic plates and photoelectric
recorders to overcome this constraint. The changes in intensity at a reference point
placed on the top plate are detected by photocell and the current pulse produced after
each fringe movement is recorded as light intensity with time.
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6.5.3
Telescope Methods

Telescopic methods are the most direct observation of thermal expansion where the
dilation of the sample ismeasured by amicrotelescope [67]. Often, a twin telescope is
used to see two marked points of the sample placed in a heater and illuminated with
a light source. The absolute expansionmeasurement can be very accurate, even up to
few ppm (i.e., 10�6) levels [68]. However, similar accuracy can be easily obtained by
pushrod-type dilatometers. Thus, these methods are rarely used for measurements
of thermal expansion.

6.5.4
Diffraction Methods

Diffraction (in particular X-ray diffraction) has been extensively used for fast and
accuratemeasurement of the thermal expansion data. There are severalmonographs
that explain the methods of determination of thermal expansion coefficients using
X-ray diffraction [69–72]. In such measurements, the sample holder of a normal
diffractometer is heated either directly or indirectly without any other modifications
except the electrical and thermal protection of the other parts, such as goniometer or
camera and detectors. Similarly, for the measurement of diffraction data at low
temperatures, the sample is cooled either by a cryostat or by blowing cold gas. The
diffraction methods are advantageous over other techniques for thermal expansion
measurements as it requires small amount of sample and there is no need to have
large single crystals or densely packed samples. The problemof temperature gradient
is also minimized due to the small sample size. In fact, data obtained from the
diffraction methods are the intrinsic thermal expansion data, that is, thermal
expansion of the unit cell, in contrast to the bulk (overall) data in other methods.
Thus, the anisotropy of the thermal expansion can be determined by diffraction
methods. Also, the thermal expansion of a sample of interest in a mixture or in the
absence of a phase-pure specimen can also be determined. The effects like phase
transition, decomposition aswell as effect of crystallization, strain, and so on can also
be delineated by the diffractionmethods. However, it should be mentioned here that
unlike dilatometry, diffraction methods cannot be used in studying the thermal
expansion behavior of amorphous materials.

More commonly, the diffraction experiments are meant for the structural studies
of the crystalline materials. It is well known that crystal structure can be explained
with three-dimensional arrays of parallel rows of atoms, which are equivalent to
parallel planes of a normal grating. Thus, they produce bright and dark fringes of
diffraction pattern when illuminated with a radiation having wavelength of the order
of separation of planes. The Bragg law (Equation 6.30) of diffraction relates the
possibility of constructive interference to the interplanar separations.

1

dhkl
2 ¼

n2l2

4� sin2qhkl
ðBragg�s lawÞ; ð6:30Þ
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where l is the wavelength of radiation (Å), q is the glancing angle (called as the Bragg
angle) (�), d is the interplanar separations (Å), and n is the order of diffraction.

For measuring the axial thermal expansion, the unit cell parameters at various
temperatures are determined by the observed reflections of the diffraction pattern
recorded at different temperatures. It is known that the unit cell parameters are
related to the position of the reflections (q) and in turn to d (interplanar spacing)
values as below.

The relation between the interplanar spacing and the unit cell parameters is
given by

1
d2hkl

¼

h2
a2 sin

2aþ k2
b2 sin

2bþ l2
c2 sin

2cþ 2hk
ab ðcos a � cos b� cos cÞþ

2kl
bc ðcos b � cos c� cos aÞþ 2lh

ca ðcos c � cos a� cos bÞ
1� cos2a� cos2b� cos2cþ 2cos a � cos b � cos c

; ð6:31Þ

where d is the interplanar spacing of hkl planes; q is the Bragg angle; l is the
wavelength of the X-ray used; and a, b, c, a, b, and c are the unit cell parameters.

The diffraction method can use radiation sources, such as X-ray, neutron, or
electron. However, for most practical studies, the X-ray and neutron diffractions are
used. There are several pros and cons of neutron and X-ray diffractometers and
hence they are often used as complementary techniques for the thermal expansion
measurements. Since the neutron sources for the diffraction experiment are central
facilities and are not as common as laboratory X-ray diffraction facilities, variable-
temperature X-ray diffractometers are very commonly used for thermal expansion
studies. The details of the procedures for thermal expansionmeasurements by X-ray
diffraction are explained in the following section.

6.6
X-Ray Diffraction in Thermal Expansion

X-ray diffraction experimental setup requires an X-ray source, the sample under
investigation, and a detector to count the diffracted X-rays. The radiation source can
be monochromatic or polychromatic. The X-ray diffraction experiments can be
carried out either with single-crystal or polycrystalline samples. The former type of
samples are studied by the Laue method, the Weissenberg photograph method, or
most commonly with the automated four-circle diffractometers [73, 74]. The latter
types of samples are studied either by the Debye–Scherrer photographic methods or
automated powder diffractometers. Similarly, the detection of scattered radiation can
be made with a photographic film or radiation counter. The earliest methods of
detection of X-rays are based on film methods that are also used even today. Modern
single-crystal and polycrystalline diffractometers use image plate for detection of
X-rays, which are fast and efficient. In a powder X-ray diffractometer, the powdered
sample either in the form of a smeared layer or compacted flat pack or filled in a
capillary is exposed to monochromatic beam of X-ray and intensity of the diffracted
beam is collected over a range of angles (2q with respect to the incident beam). The
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intensity corresponding to a constructive interference of the diffracted beam from
a crystallographic plane is observed as a peak, corresponding to the Bragg angle (q),
while background is observed at all other angles. Besides, the symmetry in a lattice
can also extinct some peaks in diffraction pattern. Qualitatively, the formal infor-
mation present in a diffraction pattern can be depicted as shown in Figure 6.2.

The design of the diffractometer and heating assembly are based on the require-
ments [69–72]. In the case of variable-temperature X-ray diffractometer, the sample
holder is placed in a heater or cryostat. The heater usually is a resistive heater that acts
as sample holder in most commonly used high-temperature (HT) X-ray diffractom-
eter with focusing geometry. In diffractometer with the Debye–Scherrer geometry,
radiation heater surrounding the sample or reflection heaters are more commonly
used than the direct resistive heaters. The utility of such heater is limited by its
melting temperature and mechanical strength as well as the compatibility with
sample and atmosphere [71]. Platinum or Pt-Rh strip is very commonly used for
temperatures up to 1600 �C, while for higher temperatures Wor Ta heaters are used
but in inert atmospheres or vacuum.

The sample preparation and data collection (step width and step time) are
determined by the sample character. For a good peak shape, appreciable intensity
is essential, which is useful for getting the position of maxima accurately. The most
important source of error to the intensity of the diffraction patterns arises from the
preferred orientation, sample displacement, or transparency. The latter two also
affect the position of the Bragg peaks. In addition, the sample heating rate and the
temperature stability are also important parameters for generating good diffraction
pattern for thermal expansion measurements. Selected reflections required for the
determination of unit cell parameters are scanned for a time and width suitable
for determining accurate peak position and hence the interplanar spacing. For the
determination of unit cell parameters, Equation 6.31 can be rewritten in reciprocal
lattice parameters as

Powder 
XRD

pattern

Background

Reflections

Compton scattering, TDS, 
Amorphous content 
Local order–disorder

Sample 

Nonsample 

Position

Intensity 

Profile 

Unit cell parameter, Symmetry, Space group, 
Phase analysis (Qualitative)

Particle size, Strain 

Crystal structure, Temperature factors, Occupancies, 
Phase analysis (Quantification) 

Air scattering, Substrate scattering 

Figure 6.2 Schematic of typical information present in a powder X-ray diffraction pattern.
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1
d2

¼ h2ða�Þ2þk2ðb�Þ2þ l2ðc�Þ2þ2hka�b�cos c� þ2klb�c�cosa� þ2lhc�a�cosb�;

ð6:32Þ
where a�, b�, c�, a�, b�, and c�are reciprocal lattice parameters and they are given by

a� ¼ bc sina
V

; b� ¼ ca sinb
V

; c� ¼ ab sin c
V

cosa� ¼ cosb � cos c� cosa
sinb � sin c ; cosb� ¼ cos c � cosa� cosb

sin c � sina ;

cos c� ¼ cosa � cosb� cos c
sina sinb

V2 ¼ a2b2c2ð1� cos2 a� cos2 b� cos2 cþ2 cosa � cosb �cos cÞ

9>>>>>>>>>>>=
>>>>>>>>>>>;

: ð6:33Þ

In the above equations, a�, b�, c�, a�, b�, and c� are the unknown quantities. In a
simplified manner, this equation is written as

Q�
hkl ¼ h2 �Aþk2 �Bþ l2 �Cþ2hk�Dþ2kl� Eþ2hl� F; ð6:34Þ

where Q is equal to 1/d2.
The terms A–F in Equation 6.34 are the unknown parameters to be determined by

the observedQ� values by substituting appropriate integers for theMiller indices h, k,
and l by trial and errors. In most of the trial and error methods, the crystal system is
assumed to be cubic initially and thus reducing the above equation to simpler
forms [69, 70]. The trials for indexing all the observed reflections are made by
lowering the lattice symmetry to tetragonal, orthorhombic, and so on. In the Ito�s
method of indexing, a reverse approach is followed [69, 70, 75], where the reciprocal
lattice parameters are calculated from appropriately selectedQhkl using the following
relations:

Qh00 ¼ h2Q100 Q0ko ¼ k2Q010 Q001 ¼ l2Q001

cos a� ¼ Q0kl �Q0kl

4klb�c�
; cos b� ¼ Qh0l �Qh0l

4hla�c�
; and cos c� ¼ Qhk0 �Qh�k0

4hka�b�

9>=
>;:

ð6:35Þ
The reciprocal lattice vectors are further refined by least-squares method to get

their best values and thendirectunit cell parameters are obtainedusingEquation6.32.
Several computer programs, namely, TREOR, VISER, ITO, CELL, UNITCELL,
POWDER, INDEXING, and so on are used for automatic determination of the unit
cell parameters from a set of observed d-values. The solution with the highest figure
of merits with smallest unit cell volume and higher symmetry is usually preferred.
The typical figures of merit of indexing are given either by the de-Wolff�s M20 or
MN [76] or by the Louer�s FN [77] defined in Equation 6.36.

MN ¼ QN

2 DQ
�� ��Nobs

Npos
; FN ¼ 1

Dq
�� ��Nobs

Npos
; ð6:36Þ
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whereQN ¼ ð1=d2NÞ forNth reflection,DQ andDq are average errors inQs and 2qs,
and Npos is the number of possible lines within the last observed reflections.

The systematic absence in the indices can give the lattice type and symmetry of
the unit cell. The determination of the space group by the powder data is mostly
susceptible to mistake owing to the high degree of peak overlapping. However, it is
also possible to get the unit cell and structural parameters accurately at various
temperatures from the full powder X-ray diffraction pattern. Rietveld refinements
[78, 79] have been extensively used to derive the structural parameters. So the general
practice is the stepwise collection of full diffraction pattern and subsequent refine-
ment of the structural parameters to determine exact crystal structure [80]. The basic
principle of the Rietveld refinement is based on the calculation of intensity of an
unknown compound assuming amodel with all the structure and profile parameters.
The structuralmodel assumes space group, position coordinates of all the atoms, and
fairly close unit cell parameters. The profile is definedwith specific function, namely,
Gaussian, Lorentzian, or their combination as pseudo-Voigt function. A smooth
varying function or linear interpolation of the selected background points is used for
modeling of the background:

Yci ¼ ybi þ s
X
hkl

L� P � n� Fhklj j2wð2Ji � 2JhklÞ � Phkl � A; ð6:37Þ

whereYci is the calculated intensity at the ith step, ybi is the background intensity at ith
step, L is the Lorentz factor,P is the polarization factor, |Fhkl|

2 is the structure factor for
hkl reflections, j(2qi� 2qhkl) is the profile function, Phkl is the preferred orientation
function, A is the absorption correction, and S is the scalar factor.

The difference between the calculated and observed intensity at each step is
minimized by least-squares refinements. Thus, the minimizing factor is given by

D ¼
Xn
i¼1

wiðYio �YicÞ2; ð6:38Þ

where wi is the weighting factor and usually 1/Yoi.
Several computer packages, namely, DBWS, Fullprof, GSAS, Rietan, and so on, are

used for the Rietveld refinements. The progress of the refinement and goodness
of the refinement are judged by the residual indicators defined as R-values and the
difference plot of the observed and calculated diffraction profiles.

In order to determine the thermal expansion behavior, the diffraction data are
collected at various temperatures and subjected to similar analysis procedures to get
the unit cell and other structural parameters at those temperatures. The temperature
factors (B, defined as B¼ 8p2u2, where u is the root mean square amplitude of
vibration of atom from the mean position) are also refined at various temperatures.
This is very important to understand the internal expansion of the crystal structure
and thus the intricacy of the thermal expansion [81]. But it can bementioned here that
the refinement of thermal parameters and in particular anisotropic refinement is
limited by the quality and strategy of collected diffraction data. Often, neutron
diffraction data prove to be superior for the refinement of the anisotropic temper-
ature factors.
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Thus, it can be inferred that the bulk thermal expansion of materials is measured
by the dilatometry or interferrometric techniques,while the lattice thermal expansion
has been studied by the diffraction techniques. As mentioned earlier, the greatest
source of errors in the measurement of the bulk thermal expansions arise from the
microcrack and voids that can also be caused by the phase transitions with significant
change in molar volumes. Thus, they often show lower values of coefficients of
thermal expansion compared to true values. Thus, the observation of negative
thermal expansion behavior in the bulk thermal expansion measurement is often
an artifact. Suitable sized single crystals for such materials are also not easy to
prepare. Diffraction methods provide the most reliable data for low or negative
thermal expansion materials. Hence, all such materials are essentially studied by
diffraction methods only.

6.7
Positive and Negative Thermal Expansions

A large number of thermal expansion data of diversified materials, in the interest of
either mineralogy or technology or fundamental interests, have been generated by
varieties of techniques. The thermal expansion data of these materials have been
compiled in several databases. An extensive thermal expansion data of various
metallic and nonmetallic solids have been compiled in Refs [82–84]. Similar
compilations of a large number of compounds, in particular interest to geology or
mineralogy, are also available in other literatures [85–89]. The most reliable data on
thermal expansion and the structural explanation of thermal expansionbehavior have
been generated only after the development of high-temperature camera for diffrac-
tion studies [87, 89–92]. More commonly, the thermal expansion data were collected
at ambient pressure, that is, 1 atm. Later with the theoretical and experimental
development of equation of states with pressure, volume, and temperature, attention
has been extended to themeasurement of thermal expansion data under nonambient
pressures. Initially such studies were focused on the materials of geological interest
and later on technologically relevant materials [93, 94]. Based on the thermal
expansionbehaviors,most of thematerials exhibitmoderate (al� 10–30� 10�6 �C�1)
to high positive (al � 50–60� 10�6 �C�1) coefficients. Certain materials such as low
melting metals and ionic solids exhibit thermal expansion coefficients of the order
of 80–100� 10�6 �C�1, while strongly bonded covalent solids such as Si, diamond,
and so on exhibit low thermal expansion coefficients (al� 1–5� 10�6 �C�1). Most of
the ceramic oxides exhibit significant positive thermal expansion. Data for a large
number of fluorite and fluorite-related compounds having relevance to nuclear or
fuel cell technology have also been extensively reported in the literature [7, 95–98].
Similarly, the studies in perovskite-type compounds bear fundamental interest
in understanding the phase transition and structure-dependent thermal expansion
behavior as well as interesting physical properties [99–104]. A large number of
thermal expansion studies are aimed at technologically important optical and
electronic materials for their practical application in the form and growth of crystals.
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Extensive studies on the thermal expansion of ABO4-type compounds with the
scheelite-and zircon-type materials show that zircon-type silicates, vanadates,
and phosphates show lower thermal expansion compared to the scheelite analo-
gues [105–110]. Several examples of discerning the thermal expansion data from the
high-temperature XRD and dilatometer are explained in the subsequent section.

In addition to these commonphenomena, certainmaterials exhibit negative values
for thermal expansion coefficients and are known as negative thermal expansion
materials [5, 6]. The low and negative thermal expansion materials have attracted
a lot of attention due to their technological importance as well as for fundamental
understanding [111–123]. Also, the negative thermal expansion materials are very
promising for tailoring thermal expansion behavior. Several materials, though
relatively scarce, namely, AX2O8, AY2O7 (A¼Zr, Hf; X¼W, Mo; Y¼P and V)
[111, 113, 125–128], A2(XO4)3 (A¼ trivalent cations, such as Sc3þ , Y3þ , Er3þ , Yb3þ

etc. and X¼W6þ or Mo6þ ) [129–136], A2O (A¼Cuþ , Agþ ) [137, 138], AXO2

(A¼Cuþ , Agþ and X¼Sc3þ , Al3þ and Ln3þ ) [139, 140], various phosphates, such
as NbOPO4, VPO5 [141, 142], and Zr2O(PO4)2 [143], show contraction behavior with
increase in temperature. Various silica polymorphs and related compounds are also
known to exhibit low thermal expansions [144]. Anomalous or low thermal expansion
in the b-eucryptite [145], cordierite (Mg2Al2Si5O18) [146], b-spodumene [147], and
NZP family compounds [148–153] due to compensation of expansion and contrac-
tion along the different crystallographic axes are also reported. Various types of
zeolite-type materials such as fauzasite and MCM are also reported to exhibit low or
negative thermal expansion behavior [154, 155]. Several tetrahedrally bonded ele-
ments, such as Si, Ge, and so on, and amorphous silica also exhibit negative thermal
expansion at low temperatures [156]. The negative thermal expansion of ice near the
melting point is also an important example to reveal the bonding and structural
effects [157]. Negative thermal expansion coefficients in polymeric structures such as
elastomers and crystalline polyethylene are also known.Negative thermal expansions
in f-block elements such as Pu and Ce have also been reported [158, 159]. Several
alloys such as YbGaGe [160], CeAl3 [161], and so on exhibiting negative and
controllable thermal expansions along with the electrical or magnetic properties
are also known. Alloys such as Invar, Covar, and so on also show such anomalous
expansion behavior with very low thermal expansion coefficients [3]. Glass and glass
ceramic compositions with low controllable thermal expansion behavior have been
used extensively in various applications [162]. Anomalous or negative thermal
expansion behaviors in some perovskite are also reported in the literature. In
particular, some of the ferroelectric perovskite-type solid solutions also exhibit
negative thermal expansion over a small temperature range [163–169]. The negative
thermal expansion in ZrO2 near the phase transition is also known [170].
A large number of compounds with cyanide groups are also known to exhibit
negative or low thermal expansion behavior. Zn(CN)2 [171] and Cd(CN)2 [172] have
negative thermal expansion coefficients that are almost double of that of ZrW2O8.
Several complex cyanides exhibiting negative thermal expansion have been recently
discovered [173, 174]. A large anisotropic thermal expansion coefficients of about
þ 140� 10�6 �C�1 (for aa) and �125� 10�6 �C�1 (for ac) have been reported for
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trigonal Ag3Co(CN)6 [175]. Systematic temperature-dependent structural studies of
these compounds revealed the structural intricacies relating to the origin of anom-
alous thermal expansion behavior. These aspects have been explained in subsequent
sections.

6.8
Factors Affecting the Thermal Expansion Coefficients

From the origin of thermal expansion behaviors of materials and experimental data
of large number of diversified materials, namely, weak van der Waals to strong
covalently bonded network to closely packed structures, metals to insulators, non-
magnetic to strongly ferromagnetic, and so on, it is observed that several of their
physical properties have strong correlation with coefficients of thermal expansion.
Thus, thermal expansion behavior can be qualitatively predicted from the melting
point, compressibility, and strength of the chemical bonds of a material. The
correlation of the thermal expansion coefficients with these properties are briefly
explained below.

6.8.1
Melting Points

Melting temperature of a solid can be directly related to the thermal expansion as the
melting process is related to the chemical bond expansion followed by dissociation.
A general trend of the melting temperature with the thermal expansion coefficients
has been observed [176, 177]. A comparison of melting temperature with thermal
expansion coefficients of several isostructural materials is given in Table 6.1. The

Table 6.1 Comparison ofmelting temperature (mp) and thermal expansion coefficient (a) of some
elements and compounds.

Name mp
(�C)

al� 106
�C�1

Name mp
(�C)

al� 106
�C�1

Name mp
(�C)

aa� 106 �C�1

(Temperature range)

Li 179 47 CoAl2O4 1955 8.5 ThO2
a) 2375 9.6 (20–1200 �C)

Na 98 70 ZnAl2O4 1952 8.7 CeO2
a) 2600 11.6 (20–1200 �C)

K 64 83 MgAl2O4 2130 7.8 YSZa) 2700 10.6
Rb 40 90 NiAl2O4 2020 8.4 UO2

b) 2840 9.38 (20–1425 �C)
Cs 29 97
BCC Spinel Fluorite
References c) d) e)

a) M.D. Mathews, B.R. Ambekar, and A.K. Tyagi, J. Nucl. Mater., 341, 19, 2005.
b) A.C. Momin and M.D. Mathews, Indian J. Chem., 15a, 1096, 1977.
c) Handbook of Chemistry and Physics, 50th edn, 1969.
d) R.K. Kirby, Thermal expansion, American Institute of Physics Handbook, 3rd edn, 1972.
e) L.M. Foster and H.C. Stumph, J. Am. Ceram. Soc., 73, 1590, 1951.
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thermal expansion coefficient can be approximated to the melting temperature by
a simple empirical relation [176]:

aV ¼ 1
16:6Tm

: ð6:39Þ

Owing to the inverse relation withmelting temperature, the lowmelting elements
such as alkali metals have very high thermal expansion coefficients compared to the
transition metal elements, which have higher melting temperature. Similar trend
is observed in the case of compounds also (Table 6.1). It can be mentioned here that
only about 8–10% dilation is observed inmaterials up tomelting temperature. Thus,
this general trend of melting points does not hold over all the temperature range but
to some extent within half of the melting point.

6.8.2
Bond Strengths

Aclose correlation of the bond valencewith the expansion or compression of bond has
been used to explain thermal expansion and compressibility of the crystal [178–180].
The stronger force of attraction leads to a rigid structure and thus inhibits the
expansion or compression. From the Born potential model, Megaw [178, 179] has
generalized the thermal expansion of chemical bond in terms of Pauling bond
valence (S) as an empirical relation given below:

abond / 1
S2

; ð6:40Þ

where S is the bond valence defined as S is equal to z/n, z being the charge of the
cation and n the coordination number around the cation.

Using the bond valences, Cameron et al. [181] and Hazen and Prewitt [180]
generalized the thermal expansion of the bonds with empirical relations as

abond � 32:9ð0:75� SiÞ � 10� 6�C� 1: ð6:41Þ

The definition of Pauling�s bond valence has later been modified by Brown as
Equation 6.42 [182, 183] to explain the thermal expansion of irregular polyhedra. In
calculating the bond valences, the parameter B is usually fixed at a constant value of
0.37 and the equilibrium bond length (r0) is defined empirically from bond lengths
of regular polyhedron. Extensive compilations for the values of r0 are reported in
Refs [182–184]:

Si ¼ exp
r� r0
B

� �
; ð6:42Þ

where Si is the bond valence of the ith bond.
The rigid nature of some chemical bonds, such as Si�O, Ge�O, P�O, V�O, and

so on, as suggested from the above relations, has been validated in several temper-
ature variation crystal structure studies [88, 92, 178–185]. In addition, the low or
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negative thermal expansion behaviors of several examples are also explained from
such considerations.

6.8.3
Compressibility and Packing Density

As it has been mentioned earlier, the thermal expansion coefficient has a direct
relation with the compressibilities. In general, more compressible materials have
poorly packed structure and show higher thermal expansion. Thus, the molecular
solids show higher values for thermal expansion coefficients [186]. The compress-
ibility to thermal expansion can be related empirically as al � A� x, where x is the
compressibility andA is a constant. Hazen and Prewitt [180] have empirically related
the thermal expansion coefficients and compressibilites as

a

x
¼ ð32:9ð0:75� SiÞ=37:0ðd3=zÞ; ð6:43Þ

whereSi is equal to z/n, z being the charge of the central cation and n the coordination
number, and d is the equilibrium bond length.

These empirical relations generally represent the trend of thermal expansion
behavior.However, deviations from thenormal behaviors are evident in several cases.

6.8.4
Defects and Impurities or Alloy Formation

Thermal expansion of a material is also affected significantly by the presence of
defects in the lattice. The normal point defects such as vacancies (Schottky) or
interstitial (Frenkel) types have significant role in the thermal expansion. The point
defect concentrations are estimated from the difference in the bulk and lattice
thermal expansion coefficients determined by dilatometry and high-temperature
XRD [11]. In general, the linear thermal expansion measured by normal dilatometry
shows higher thermal expansion coefficients compared to that determined by the
X-ray diffraction methods due to the presence of vacancies. The difference and
variation of the thermal expansion difference is used to determine the vacancy
concentration as well as their formation energies [11]. Usually the thermal expansion
data obtained by dilatometry and HT-XRD are similar at low temperature region but
differ appreciably at higher temperature region.

Similarly, the extrinsic impurities also affect the thermal expansion behavior of a
material. The alloying effect can show the averaging effect of the chemical bond
strengths unless there is no significant alteration in the interaction of the atoms.
Thus, most of the alloys show the weighted average thermal expansion coefficients
of the component elements. Often deviations are observed in the case of additional
segregated phase or clusters formation in the sample. In such cases, the thermal
expansion measurement from the diffraction studies are also affected due to the
additional strain in the lattice. Besides, the additional component in the solid solution
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can also alter the electronic structures and hence the drastic difference in the normal
averaging behaviors.

6.8.5
Phase Transitions (Magnetic and Electronic Transitions)

Crystallographic phase transitions show discontinuity in the variation of the unit cell
parameters with temperature due to the difference in the unit cell and bonding
patterns. The two phases can have difference in the thermophysical properties due to
the intrinsic internal arrangement of atoms. Also, the phase transition can cause
either increase or decrease in the specific volume. In both the cases, the materials
develop stress leading to a damaged mechanical integrity. In such cases, the thermal
expansionmeasured by the bulk techniques lead to erroneous results. The diffraction
experiments can be successfully used to study the difference in the thermal
expansion behavior of these phases. The thermal expansion in several ferroelectric
or relaxor compounds near the transition temperature shows discontinuity in the
variation of unit cell parameters with temperature [163–169]. It has already been
mentioned that the electrons also contribute to the thermal expansion in addition
to the phonons. Thus, the materials exhibiting electronic or magnetic transitions
often show anomaly in thermal expansion behaviors. The variation of the magnetic
interaction of the ions is reflected as discontinuity or anomaly in the thermal
expansion behaviors. The influence of magnetic interactions in several Fe-based
alloys (Invar and related alloys) on thermal expansions is also known [3]. Similarly, the
influence of electronic transitions on the thermal expansion in governing the thermal
expansion coefficient can also be significant. The low or negative thermal expansion
in several metals such as Pu, U, and Ce are explained with this effect [158, 159]. The
negative thermal expansion of YbGaGe andCeAl3 [160, 161] are also the consequence
of such electronic transitions.

6.9
Structure and Thermal Expansion

Recent studies on anomalous thermal expansion materials, that is, materials with
negative and anisotropic thermal expansion behavior indicate that the crystal
structure of the materials plays a vital role in governing the thermal expansion
behavior. High-temperature crystal chemistry studies on such materials revealed
that the nature and type of bonding, polyhedra around the cations and packing of
polyhedra in the unit cell, amplitude and anisotropy of vibration parameters of atoms,
and so on are the key features in governing themagnitude and anisotropy of thermal
expansion behavior.

In order to reduce the repulsive forces between the central cations, the polyhedra
with the higher charge cations prefer to share only corners to form a lattice. Thus,
an appreciably lower density structures arise in these arrangements. More implicitly,
polyhedra formed with central ions with higher charges favor such framework

218j 6 Diffraction and Thermal Expansion of Solids



structure. The polyhedra around the central atoms can be tetrahedra, octahedra, or
cube depending on the ionic radii. The typical polyhedral connections in such
structures are shown in Figure 6.3. In an unstrained lattice, themaximum separation
of the central ions is possible in linear linkage, that is,M–X–M¼ 180�, whereM is the
central ion and X is the ligand of a polyhedra. In such cases, the separation between
the central atoms can be given by 2�M–X.

However, in real crystals, the effective packing may restrict not only the nature
of the polyhedra but also their angles. Such angled features lead to the tilting of
the polyhedra, which are commonly observed in real crystals. As an example of
framework structure, silica structure is formed with SiO4 tetrahedra linked by
sharing the corner oxygen atoms. The typical Si�O�Si bond angles (147–152�) are
significantly lower than the expected 180�. The lower values of Si�O�Si bond angles
indicate that the tetrahedra are tilted to accommodate the space with minimum
strain. However, sufficient strains show appreciable expansion in the lattice to relieve
it to an equilibrium values. These polyhedral tilting effects are observed in the
perovskite lattices leading to phase transition as well as anisotropic thermal expan-
sion behavior.

Besides, such framework materials do not show appreciable expansion due to
transverse vibration of the bridging atoms of polyhedral units. The typical schematic
figure showing the effects of transverse and longitudinal vibrations of the framework
solid is depicted in Figure 6.4.

Figure 6.3 Typical connection of two tetrahedra (a), octahedra (b), and cubes (c) framework-
structured compounds.

Figure 6.4 Schematic for representing the vibration of shared atoms leading to difference in
separation of nonbonded atoms.
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As observed from Figure 6.4, with the increase in temperature, the increasing
amplitude of transverse vibration of a bridging atom can effectively lower the
separation between the next nearest atoms, while the increase in the vibration
amplitude in longitudinal direction, that is, along the length of the bond, leads to
increase the same. Such phenomena have been observed in the materials with the
two coordinated atoms. The anisotropy of the thermal vibration depends on the
coordination as well as arrangement of atoms in the unit cell. The negative thermal
expansion behavior of cubic ZrW2O8 or HfW2O8 has been explained by such
effects [111]. This observation has been generalized in a wide varieties of framework
materials showing negative thermal expansion behavior [6, 111, 126, 128, 129, 135,
141, 142, 167, 169, 187–197]. Some typical examples are explained in the subsequent
section of this chapter.

Besides the tilting or rotation of polyhedral units, the distortion within the
polyhedra also significantly affects the thermal expansion behavior of materials. In
general, in real lattices, the polyhedra are often irregular and exhibit significant
distortion. The polyhedral distortion arising from the variation of the various central
to apex distances are crucial for the expansion of polyhedra, in addition to the
interligand repulsion. The typical variations of bond valence with interatomic
separation (r) are shown in Figure 6.5. A small change in r for r < r0, where r0 is
the equilibrium distance, causes a significant change in bond valences compared to
an identical change in r for r> r0. Thus, a small increase in the shorter bonds needs
a large decrease in the longer side. In the homogenization process of distorted
polyhedra, the longer bonds decrease significantly and thereby reduction of poly-
hedral volume is observed.

The polyhedral distortions have been quantified in various relations explained in
several reports. The most commonly used polyhedral distortion parameters are

Figure 6.5 Variation of bond valence parameters (S) with interatomic distances (r).
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defined by bond angle variance (s2) and quadratic elongation hli terms defined by
Robinson et al. [197] as

hli ¼
Xn
i¼1

li
l0

� �2

n
ðs2Þ ¼

Xn
i¼1

ðqi � q0Þ2
n� 1

; ð6:44Þ

where li and qi are the observed bond lengths and bond angles, l0 are the bond lengths
of corresponding regular polyhedra, q0 are the regular polyhedral angles, and n is the
coordination number.

With an increase in temperature,more distorted polyhedra homogenize the bonds
and that is reflected in its expansion behaviors. However, exceptions with increasing
distortion at higher temperatures are also known. These are basically controlled by
other structural parameters, such as interligand, interpolyhedral, or counterions
repulsion in the lattice, and electronic characters of the ions [46].

Thus, in conclusion, the thermal expansion can be treated as a structure-sensitive
property. In view of this, an extensive study of temperature variation of crystal
structure provides the plausible reason for their behavior with temperature.

6.10
Examples

The salient results of thermal expansion behavior obtained for different systems
have been grouped and explained on the basis of their structure type in this section.
The similarities and the differences observed in the bulk thermal expansion from
dilatometry and lattice thermal expansion from X-ray diffraction are explained. Also,
the relation of crystal chemistry with the nature andmagnitude of thermal expansion
will be discussed.

6.10.1
Fluorite-Type AO2 Compounds

Thermal expansion data on fluorite and related compounds have significant utilities
in several areas, such as crystal growth of optical materials, design of fuel cells, gas
sensors, and nuclear reactors [7, 99]. Also, rich crystallography of fluorite lattice due
to the formation of anion or cation excess or deficient lattice is of fundamental
interest [197b]. In particular, the fluorite-type oxides have a direct relevance to the
nuclear industry as most efficient nuclear fuel materials are of fluorite types. Due to
the higher thermal stability and melting points as well as the better irradiation and
postirradiation managements [95–98], the fluorite-type nuclear fuels are often
preferred. The empty crystallographic sites of the fluorite lattice can accommodate
a large amount of fission products formed during the burning process. Some of the
materials relevant to the nuclear industry are UO2, ThO2, PuO2, AmO2, CeO2, and so
on, which crystallize in the fluorite-type lattice. In particular interest of the Indian
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Nuclear Energy Programme, ThO2 and its substituted materials have been exten-
sively studied in the recent years for their application as fuel in Advanced Heavy
Water Reactor (AHWR) [204]. In this aspect, the detailed phase diagrams as well as
thermal expansion behaviors have been investigated afreshwith various simulated or
actual fuelmatrices [205]. The typical thermal expansion data on some of the fluorite-
type materials relevant to nuclear technology are summarized in Table 6.2.

Similarly, thermal expansion behaviors of fluorite-type lattices containing rare-
earth or alkaline-earth elements have also been studied by high-temperature X-ray
diffraction. Some of such studies are explained in this section. In such cases, high-
temperature diffraction studies have been extensively used to determine the lattice
thermal expansion and to understand the internal scenario during the expansion of
fuels under irradiation conditions.

6.10.1.1 Isovalent Substituted AO2 Lattices
Isovalent cation substitution in the ThO2 lattice form solid solution without any
cation or anion vacancies. In such cases, the solubility limits are often restricted due
to the ionic size mismatch of the host and guest cations. The formation of fluorite-
type solid solutions have been reported in CeO2–ZrO2 [206, 207], CeO2–HfO2 [208],
ThO2–CeO2 [98, 198, 209], CeO2–ThO2–ZrO2 [207, 211], CeO2–YSZ [212],
ThO2–UO2 [213, 214], and so on systems. Limited solubility of about 5–10mol%
of ZrO2 or HfO2 in CeO2 or ThO2 or UO2 due to ionic radii mismatch while solid
solution is in the complete range in ThO2–CeO2 system is reported in these studies.

Table 6.2 Thermal expansion coefficients of some of the fluorite-type (AO2) compounds.

Name aa� 106
�C�1

Temperature
range (�C)

References Name aa� 106
�C�1

Temperature
range (�C)

References

UO2 10.8 20–2300 [96] ThO2 9.04 20–900a) [198]
10.0 20–1000 [97] 9.54 20–900 [198]

10.41 20–1027 [199]
10.24 20–927 [83]
11.00 25–900 [200]
10.4 20–927 [202]
9.67 20–1000 [97]
9.58 20–1200 [203]

PuO2 11.61 20–927 [199] CeO2 10.58 20–900a) [198]
12.00 20–927 [83] 11.76 20–900 [198]
12.14 25–900 [200] 12.06 20–1200 [198]
11.4 20–1000 [97]

NpO2 10.80 20–1027 [199] AmO2 9.3 20–927 [200]
10.99 25–900 [200]
11.14 20–927 [202]
9.5 20–700 [201]
11.0 20–1000 [201]

BkO2 13.2 25–900 [200] CmO2 10.10 20–1000 [200]

a) Dilatometric data.
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Freshley and Mattys [215] have reported a complete solid solution in between
ThO2–PuO2. Detailed thermophysical properties of ThO2, Th1�xUxO2, and
Th1�xPuxO2 have also been reported in the literature [216, 221]. The formation of
an ideal solid solution or slight deviation from the ideality often depends on the
thermal history of the samples inUO2–ThO2 system [217–220]. The X-ray diffraction
studies on ThO2–CeO2 revealed the formation of ideal solid solutions between the
two end members [198]. The powder XRD patterns of some of the compositions in
ThO2–CeO2 system are depicted in Figure 6.6.

The observed unit cell parameters of Th1�xCexO2 compositions show a gradual
decreasing trend with the composition due to the ionic radii differences (ionic radii of
Th4þ and Ce4þ are 1.05 and 0.97Å, respectively, in cubic coordination [221]). The
typical variation of the unit cell parameters with CeO2 content is shown in Figure 6.7.
The thermal expansion behavior of this series studied by dilatometer as well as the
high-temperature XRD shows almost similar trend with the composition. The
variation of the unit cell parameters of Th1�xCexO2 at 1473K with composition (x)
(Figure 6.7) also show a similar trend as that at ambient temperature but with a
different slope (�0.017(2) Å per mol of CeO2) compared to that at ambient temper-
ature (�0.019(2) Å/mol of CeO2). The deviation in slope can be attributed to the
difference in the thermal expansion with compositions. The coefficients of axial
thermal expansion for the Th1�xCexO2 compositions are also shown in Figure 6.7.

The variations of unit cell parameters of ThO2 and CeO2 with temperatures are
shown in Figure 6.8. A comparison of the lattice thermal expansion behavior of ThO2

and CeO2 shows that the CeO2 has higher thermal expansion coefficient than ThO2.

Figure 6.6 Powder XRD patterns (CuKa) of some Th1�xCexO2 compositions.
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The difference in the thermal expansion behavior has been attributed to the
difference in the melting point of CeO2 than ThO2. The thermal expansion studies
in the series of compositions between ThO2 and CeO2 revealed that the lattice
thermal expansion coefficients follow the averaging effect of the two end members.

Figure 6.8 Variation of unit cell parameters of ThO2 and CeO2 with temperature.

Figure 6.7 Variation of unit cell parameters of Th1�xCexO2 at 293 and 1473K and aa with
composition.
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The thermal expansion coefficients of Th1�xCexO2 compositions obtained from
dilatometry as well as HT-XRD studies [198] are summarized in Table 6.3. The lower
values of thermal expansion coefficients as observed in dilatometry (Table 6.3) can be
attributed to lower packing density of the bulk samples.

The variation of unit cell parameters of ThO2 and CeO2 with temperature can be
fitted with polynomial function, and the typical fitting equations are as follows:

ThO2 : aT ¼ 0:5584þ 5:0906� 10� 6½T 	 þ 1:1420� 10� 10½T 	2
CeO2 : aT ¼ 0:5387þ 8:3946� 10� 6½T 	 � 1:1023� 10� 9½T 	2;

where T is the temperature in K.
The axial thermal expansion coefficients at various temperatures have been

obtained by considering Equations 6.3 and 6.4. The coefficients of volume thermal
expansion of these systems can be given by 3�aa (as in Equation 6.10). The typical
variation of volume thermal expansion coefficients with temperature for ThO2 is
shown in Figure 6.9. With the available literature data of specific heat and com-
pressibility of ThO2, these data have been further extended to the determination of
the Gr€uneisen parameters at various temperatures by Equation 6.21. For compar-
ison, compressibilities and specific data of ThO2 at various temperatures are included
in Figure 6.9. The typical variation of the Gr€uneisen parameters of ThO2 with
temperature is shown in Figure 6.10.

Similar phase relations and thermal expansion studies on ZrO2-, HfO2-, or UO2

substituted-ThO2 or CeO2 have also been carried out by X-ray diffraction method.
As an example, the powder XRD patterns of some representative compositions of
Ce1�xHfxO2 prepared by solid state reaction of CeO2 andHfO2 at 1400 �C for 48 h are
shown in Figure 6.11.

The unit cell parameters of Ce0.90Hf0.10O2, Ce0.80Hf0.20O2, and Ce0.70Hf0.30O2 are
5.388(1), 5.382(1), and 5.379(1) Å, respectively. The presence of monoclinic impurity
phase of HfO2 beyond Ce0.90Hf0.10O2 could be confirmed from the variation of unit
cell parameters of fluorite unit cell of the successive compositions.

The typical variation of diffraction pattern with temperature for a representative
composition of ThO2-4wt% UO2 in ThO2–UO2 system is shown in Figure 6.12.

Table 6.3 Comparisons of thermal expansion coefficients of some Th1�xCexO2 obtained by
dilatometry and HT-XRD [198].

x a (nm) % TDa) al� 106 (�C�1)
RT–850 �C

aa� 106 (�C�1)
RT–850 �C

aa� 106 (�C�1)
(RT–1200 �C)

mp (�C)

0 0.5599(1) 96 9.04 9.54 9.54 3377
0.04 0.5591(1) 83 9.35 9.76 9.85
0.08 0.5588(1) 83 9.49 9.96 10.01
1 0.5411(2) 85 11.58 11.76 12.06 2600

TD, Theoretical density; mp, melting points; al, linear thermal expansion coefficients from
dilatometry; aa, lattice thermal expansion coefficients from HT-XRD.
a) sample sintered at 1300 �C for 48 h.
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Figure 6.10 Variation of the Gr€uneisen parameters (c) of ThO2 with temperatures.
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The position of the reflections shows a gradual shift toward lower angle with increase
in temperature. The thermal expansion coefficients of Th1�xUxO2 vary linearly with
compositions. Besides, the oxidation state of uranium in such solid solutions has also
significant influence on them as observed by dilatometric studies. A comparative
bulk and lattice thermal expansion studies on the near stoichiometric UO2 also
reveal appreciable contribution of Schottky defects to lattice expansion at higher

Figure 6.12 Powder XRD patterns (CuKa) of ThO2-4 wt% UO2 composition at different
temperatures. Asterisk (�) indicates the reflection due to platinum sample holder.

Figure 6.11 Powder XRD patterns (CuKa) of some Ce1�xHfxO2 compositions. (M is the
monoclinic HfO2 phase; F is the fluorite-type Ce1�xHfxO2 solid solutions.)
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temperatures [217, 221]. An explicit survey of thermal expansion behavior obtained
from diffraction measurements shows a strong influence of composition on the
temperature dependency of unit cell parameters [217].

The typical axial thermal expansion coefficients of some isovalent substituted
AO2-type compounds are summarized in Table 6.4. The similarity and differences
can be attributed either to the measurement methods or to the temperature ranges.

6.10.1.2 Aliovalent Substituted AO2 Lattice
In addition to the above-mentioned isovalent substituted fluorite-type compounds,
the aliovalent substituted products also have relevance to nuclear technology for
simulating the fission product carrying behavior of nuclear fuels. The major fission
products formed in the fission process of U and Pu are rare-earth elements and
alkaline-earth elements, such as Sr and Ba. Under different heating conditions, the
solid solution limits of various rare-earth ions and other fission product elements
have been determined by analyzing the ambient-temperature X-ray diffraction
data [223–236]. The phase analysis in the rare-earth substituted products of ThO2

reveals a fluorite (F-)-type solid solution formation in a limited range and beyond
which rare-earth oxide remains as separated phase. While the similar studies in the
CeO2 indicate the fluorite-type solid solution in CeO2-rich compositions while the
C-type (Y2O3 group rare-earth oxides) solid solution in other ends. The phase widths
of F- and C-type solid solutions depend on ionic radii differences between the rare-
earth metals and host lattice metal ions. As an example, the phase analysis of
Ce1�xGdxO2�x/2 compositions in CeO2–Gd2O3 systems revealed the formation of
F-type solid solutions up to nominal composition at Ce0.45Gd0.55O1.45 and C-type
solid solutions at and beyondCe0.40Gd0.60O1.40 [232]. These two solid solution phases

Table 6.4 Axial thermal expansion coefficients (aa) of some substituted AO2 compounds.

Composition aa (� 106) �C�1 Temperature range (�C) References

ThO2 9.13, 9.58, 9.67 20–900, �1200, �1350 [213, 214]
ThO2-2wt % UO2 9.74 20–900, �1200, �1350 [213]
ThO2-2wt % UO2 9.35, 9.82 20–900, 20–1350 [214]
ThO2-4wt % UO2 9.35, 10.09 20–900, 20–1350 [214]
ThO2-6wt % UO2 9.97, 10.37 20–900, 20–1350 [214]
Th0.05Ce0.90Zr0.05O2 11.91 20–1200 [211]
Th0.10Ce0.80Zr0.10O2 11.72 20–1200 [211]
Th0.15Ce0.70Zr0.15O2 11.58 20–1200 [211]
Th0.45Ce0.45Zr0.10O2 11.19 20–1200 [211]
Th0.75Ce0.125Zr0.125O2 9.75 20–1200 [211]
Th0.80Ce0.10Zr0.10O2 9.88 20–1200 [211]
Th0.95Zr0.05O2 9.24 20–1200 [211]
Ce0.9Zr0.1O2 13.7 20–1200 [211]
Ce0.8Zr0.2O2 13.9 20–1200 [211]
CeO2 12.68 20–900 [210]
ZrO2 8.0 293–1173 [222]
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can have a miscibility gap and its width depends on the ionic radius of the trivalent
rare-earth ion [225–231]. Similar results are also observed in ThO2–Nd2O3, ThO2–

Dy2O3, CeO2–Ho2O3, and so on systems. The typical XRD patterns depicting the
evolution of phases with composition in Th1�xDyxO2�x/2 system are shown in
Figure 6.13.

It can be mentioned here that these aliovalent substituted compositions can have
anion excess C-type lattice or anion deficient fluorite lattice. However, the ordering of
the anions or distortion of the lattice is also possible in these compositions [243–247].
The presence of such defective fluorite lattice directly affects the lattice thermal
expansion and in turn bulk thermal expansion behavior. In addition, the lattice
expansion or contraction due to the ionic size and vacancy influence can also lead to
themicro- ormacrocracks affecting the bulk thermal expansion behavior. The typical
high-temperature XRD patterns of Ce0.90Ho0.10O1.95 representing a fluorite-type
solid solution are shown in Figure 6.14. The unit cell parameters obtained by
indexing the peaks of diffraction patterns recorded at different temperatures are
shown in Figure 6.15. The typical axial thermal expansion coefficient (aa) of
Ce0.90Ho0.10O1.95 is 13.0� 10�6 �C�1 compared to 12.6� 10�6 �C�1 of CeO2.

Similar studies on the thermal expansion behavior of Th1�xNdxO2�x/2 (0.0
�

 1.0) shows a systematic increase in the values of thermal expansion coefficients
with Nd2O3 contents [238]. Salient results of the axial thermal expansion of
Th1�xNdxO2�x/2 (0.0
�
 1.0) series are given in Table 6.5. However, the opposite
trends are observed in the case of Gd3þ -, Eu3þ -, and Dy3þ -substituted ThO2

lattice (Table 6.6) [240]. High-temperature X-ray diffraction studies on a series of
solid solutions with composition Ce0.5M0.5O1.75 (M¼ rare-earth ion) indicate the

Figure 6.13 Ambient-temperature powder XRDpatterns (CuKa) of Th1�xDyxO2�x/2 compositions.
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significant role of the rare-earth oxide structure (Table 6.7) on the lattice thermal
expansion behavior.

A comparison of thermal expansion coefficients of Th1�xMxO2�x/2 systems
indicates an increasing trend with the increasing contents of trivalent rare-earth
ion of the hexagonal rare-earth oxides (Tables 6.5–6.7). The analysis of the structure
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Figure 6.15 Variation of unit cell parameters of fluorite-type Ce0.90Ho0.10O1.95.

Figure 6.14 Powder XRD patterns (CuKa) of Ce0.90Ho0.10O1.95 at different temperatures. Asterisk
(�) indicates the reflection due to platinum sample holder.
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indicates that the incorporation of the vacancy is likely to hinder the thermal
expansion. However, the decreasing bond strength of the average M�O bonds due
to smaller charged cations in the eight coordinated polyhedra enhances the thermal
expansion due to the bond expansion. These two competing effects govern the overall
thermal expansion of the lattice irrespective of the increase or decrease in unit cell
parameters.

Besides, the trivalent rare-earth ions, the alkaline-earth metal ions, such as Sr2þ -
andBa2þ -substituted solid solution compositions, have also been extensively studied
for thermal expansion as well as phase relations using X-ray diffraction [240–242].
A typical case of thermal expansion studies in the solid solution region of
Ce1�xSrxO2�x [235, 236] (Table 6.8) shows that the coefficients of thermal expansion
increase with increasing the Sr2þ contents. This can also be assigned to the more
ionic nature of Sr�O bonds in the Sr2þ -substituted fluorite lattice.

Table 6.5 Lattice parameters of Th1�xNdxO2�x/2 (0
�
 1) solid solutions [232].

S. No. Composition Mol % of
NdO1.5

Phase Unit cell
parameter(s) (Å)

a� 106 (�C�1)%

1 Th1.00Nd0.00O2.000 0.0 F a¼ 5.600(1) 9.04
2 Th0.95Nd0.05O1.975 5.0 F a¼ 5.594(1) b)

3 Th0.90Nd0.10O1.950 10.0 F a¼ 5.594(1) 9.40
4 Th0.85Nd0.15O1.925 15.0 F a¼ 5.595(1) b)

5 Th0.80Nd0.20O1.900 20.0 F a¼ 5.594(2) 9.64
6 Th0.75Nd0.25O1.875 25.0 F a¼ 5.598(2) b)

7 Th0.70Nd0.30O1.850 30.0 F a¼ 5.599(1) 9.82
8 Th0.65Nd0.35O1.825 35.0 F a¼ 5.598(1) b)

9 Th0.60Nd0.40O1.800 40.0 F a¼ 5.597(1) 10.12
10 Th0.55Nd0.45O1.775 45.0 F a¼ 5.592(1) b)

11 Th0.50Nd0.50O1.750 50.0 F a¼ 5.592(1) 10.51
12 Th0.00Nd1.00O1.500 100.0 H a¼ 3.831(1),

c¼ 5.998(1)
11.26

% Temperature range: 20–1200 �C; F, fluorite type; H, hexagonal rare-earth oxide type.
b) No experimental data available.

Table 6.6 Thermal expansion coefficient (aa)� 106 (�C�1) of Th1�xM0
xO2�y.

x Nd Eu Gd Dy Y Sr Ba

0 9.55 9.55 9.55 9.55 — — —

0.10 10.60 9.41 9.41 9.27 8.35 9.43 9.65
0.20 10.76 9.26 9.11 — — — —

0.30 10.91 8.81 8.83 — — — —

0.40 11.06 8.68 8.68 — — — —

20–1200 �C (HT-XRD data) 20–900 �C (dilatometry data)
References [224] [224] [224] [234] [234] [234]
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6.10.2
Framework Materials

It has already been explained that certain crystalline materials show negative or low
thermal expansion compared to normal positive thermal expansion [6b, 111–142].
From the precise crystal structure analysis at various temperatures, Sleight and his
coworkers explained the role of structure in the negative thermal expansion of
ZrW2O8 [111, 113]. Following this, a large number of newermaterials in phosphates,
tungstates, molybdates, and so on with low or negative thermal expansion coeffi-
cients have been discovered [124–142]. The low thermal expansion behavior of NZP
(NaZr2P3O12)-type compounds due to anisotropic unit cell expansion has also been
reported from the variable-temperature structural studies [144–152]. The most
common structural features in all these materials focused on the rigid nature
of the polyhedra and their connections. These aspects have been explained in
Section 6.1. From the variable-temperature structural studies of such materials, it
is revealed that the transverse vibration of bridging atoms of framework crystals
shows negative or low thermal expansion. The common flexible feature of the
framework of the crystal lies at the atoms that are connected only to two atoms,

Table 6.8 Thermal expansion coefficient (aa) of fluorite-type Ce1�xSrxO1�x solid solutions [235].

Nominal
composition

Phases Unit cell
parameter a (Å)

a (� 106) �C�1

(RT–900 �C)
a (� 106) �C�1

(RT–1200 �C)

Ce1.00 Sr0.00O2.00 F 5.402(3) 11.58 12.68
Ce0.95 Sr0.05O1.95 F 5.416(1) 11.62 12.82
Ce0.925 Sr0.0755O1.925 F 5.422(1) 11.82 13.02

F, cubic (fluorite type).

Table 6.7 Thermal expansion coefficients (aa) of fluorite-type Ce0.5M0.5O1.75 (in the range
293–1473 K) [223].

M Unit cell of MOx lattice aa (�106) �C�1

Ce F 12.68
La H 10.48
Nd H 11.87
Sm M 12.10
Eu M 12.61
Gd M 12.47
Dy C 11.77
Ho C 11.95
Er C 12.29
Yb C 12.32
Lu C 12.45

F, CeO2 (fluorite); H, hexagonal; M, monoclinic; C, cubic rare-earth oxides lattice.
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that is, the bridging atoms [6b,132]. The transverse vibration of the common
polyhedral corner atoms leads to the tilting of polyhedron and that in turn lowers
the average distance between the polyhedral centers. Several theoretical and dynam-
ics studies support this tilt motions [116–123, 127]. Thus, the search for low thermal
expansion materials is mainly focused on such low-density framework-structured
materials. In addition, perovskite- and elpasolite-related structured materials also
show such tilt motion leading to anisotropic expansion behavior [163–168]. The
thermal expansion behaviors of a large number of tungstates, molybdates, phos-
phates, and so on have been studied by HT-XRD. The detailed crystal structure
analyses at various temperatures and their comparison revealed the factors control-
ling the thermal expansion of suchmaterials. Some of the examples are explained in
the following sections.

6.10.2.1 Cristobalite-Type APO4 (A ¼ Al3þ , Ga3þ , and B3þ )
Extensive studies on different crystallographic modifications and phase transitions
of silica (SiO2) revealed quartz, tyrdymite, and cristobalite as the three stable
polymorphs at ambient pressure. Further, various displacive transitions in these
polymorphs are also known. Considerable amounts of studies on silica have been
devoted for understanding the structure of earth�s interior. However, technologically
important properties such as piezoelectric and dielectric properties of silica with low
thermal expansion behavior also attract several studies on SiO2. Cristobalite, the
high-temperature modification of SiO2, has been known for low thermal expansion
coefficients. Several APO4 (A¼ trivalent cations)-type phosphates are known to
crystallize in almost all modifications of SiO2 structures and have half of the
Si replaced by A and the other half by P atoms [237–242]. The structures of these
compounds contain bothAO4 andPO4 tetrahedral units and the four oxygen atomsof
PO4

3� are connected to four metal ions [242]. The cristobalite (orthorhombic) lattice
for AlPO4 and GaPO4 is observed at elevated temperatures but can be retained at
room temperature by annealing for long time above the cristobalite transition
temperature. Since AlPO4 and GaPO4 are isostructural and there is small difference
in ionic radii of Al3þ and Ga3þ , a continuous solid solution is formed between these
two end members [196, 243, 244]. A series of compositions Al1�xGaxPO4 has been
studied by HT-XRD in the temperature range of 25–1000 �C. The unit cell details of
the series of compositions have been determined by the Rietveld refinement of the
powder XRD data. The typical unit cell and structural parameters for AlPO4 and
GaPO4 at room temperature are given in Table 6.9.

Similar details of the other compositions have been reported [200]. It can be
mentioned here that though the ionic radius of Ga3þ is larger than that of Al3þ ,
GaPO4 crystallizes with lattice of a smaller unit cell volume than AlPO4 (unit cell
volume of AlPO4 and GaPO4 are 351.2 (1) and 334.6(0) Å3, respectively, Z¼ 4).
A typical variation of unit cell parameters along the composition is shown in
Figure 6.16. Besides, the average bond length of Ga�O (1.85 Å) is also higher than
the Al�O bond length (1.77Å). The larger unit cell volume of the AlPO4 can be
attributed to theAl�O�Pangles (average¼ 145�), which is higher than theGa�O�P
angle in GaPO4 (average¼ 132�). The higher value of Al�O�P angle causes the
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larger separation betweenAl andPatoms as compared toGa andP, leading to a larger
unit cell volume for the former.

The structural details at various temperatures are obtained by comparing the
HT-XRD data with the ambient-temperature XRD data. All Al1�xGaxPO4 composi-
tions undergo structural transition at elevated temperatures. For example, the XRD
pattern (Figure 6.17) of AlPO4 recorded at 300 �C shows phase transformation. The
observed reflections for this phase indicate the formation of high-cristobalite phase of
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Figure 6.16 Variation of unit cell parameters with composition for Al1�xGaxPO4.

Table 6.9 Crystallographic parameters for AlPO4 and GaPO4 at room temperature.

AlPO4 GaPO4

Temperature 25 �C 25 �C
Space group C2221 (No. 20) C2221 (No. 20)
a, b, c (Å) 7.084(1), 7.082(1), 6.9989(4) 6.9876(5), 6.9624(5), 6.8774(4)
V (Å3), Z 351.15(9), 4 334.59(4), 4
M: 4b(0, y, 1/4) 0, 0.194(1), 1/4 0, 0.186(1), 1/4
P: 4a(x, 0, 0) 0.295(1), 0, 0 0.316(2), 0, 0
O1: 8c(x, y, z) 0.187(1), 0.058(2), 0.163(1) 0.202(2),0.026(2),0.187(2)
O2: 8c(x, y, z) 0.428(2),0.160(1), 0.946(1) 0.441(2), 0.171(2), 0.969(2)
Rp, Rwp, x

2, RB 13.4, 18.3, 2.3, 1.7 11.6, 15.9, 1.9. 5.6
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AlPO4, where the oxygen atoms are statistically occupied in 1/3 of the 48h sites [196,
243, 245, 246]. The crystallographic data at various temperatures for the high-
temperature modifications have been similarly obtained by the Rietveld refinement
of the high-temperature powder XRD data. The structural data for two representative
compositions are given inTable 6.10. The structural transitionhas been characterized
as reversible and nonquenchable displacive type and the typical transition temper-
ature increases with Ga3þ ion content in the composition. A typical crystal structure
of low- and high-cristobalite-type AlPO4 is shown in Figure 6.18.

Table 6.10 Crystallographic parameters for the high-cristobalite-type AlPO4 and GaPO4 [196].

AlPO4 GaPO4

Temperature 300 �C 700 �C
Space group F-43m (216) F-43m (216)
a (Å) 7.1969(2) 7.1850(2)
V (Å3), Z 372.77(1), 4 366.76(2), 4
M: 4a 0, 0, 0 0, 0, 0
P: 4c 1/4, 1/4, 1/4 1/4, 1/4, 1/4
O1: 48h(x, x, z) (occ. 1/3) 0.114(1), 0.114(1), 0.188(1) 0.106(2), 0.106(2), 0.207(5)
Rp,Rwp, x

2, RB 13.4, 18.3, 2.3, 1.7 11.6, 15.9, 1.9, 5.6

Figure 6.17 The Rietveld refinement plots for low-cristobalite (orthorhombic C2221) and
high-cristobalite (Cubic F-43m) phases of AlPO4. Vertical lines indicate the Bragg positions (upper
AlPO4 and lower Pt sample holder).
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From the high-temperature X-ray diffraction studies, it could also be concluded
that the high-temperature behavior of the orthorhombic phase of GaPO4 is different
from the rest of the compositions in this series. In the case of GaPO4, the low
cristobalite transforms to the b-cristobalite lattice at 700 �C, but relaxes slowly to
quartz-type phase [196, 243]. In such cases, the structural details of the high-
cristobalite modification in the presence of quartz-type phase could be accurately
determined from the high-temperature diffraction studies.

The typical temperature variations of unit cell parameters for AlPO4 and GaPO4

are shown in Figure 6.19. The variation of unit cell volume with temperature for
each composition shows that the orthorhombic phase has a significantly larger
thermal expansion than the cubic (high-temperature) phase. The phase transition

Figure 6.19 Variations of unit cell parameters of AlPO4 and GaPO4 with temperature.

Figure 6.18 Crystal structure of (a) low-cristobalite (orthorhombic C2221) and (b) high-cristobalite
(cubic F-43m) phases of AlPO4.
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accompanied by a significant increase in unit volume leads to the formation of a less
dense structure at higher temperatures. The thermal expansion coefficients of both
low- and high-cristobalite phases of various compositions along with the excess
volume are shown in Table 6.11. The coefficient of volume thermal expansion of the
high-cristobalite phase increases with the increase in Ga3þ content in the unit cell,
while that for the low-cristobalite phase decreases with the Ga3þ content. The phase-
transition temperatures and associated enthalpy are related to the change in unit
cell volume and the orthorhombicity and strain in the lattice of the respective
phosphates.

Similar studies on BPO4 that crystallize in tetragonal lattice within the high-
cristobalite frame have also been carried out in the temperature range of
25–900 �C [195]. The refined crystallographic data for two representative tempera-
tures are given in Table 6.12 and the corresponding powder XRD patterns are shown
in Figure 6.20. The typical variation of unit cell parameters along with temperature
is shown in Figure 6.21. The variation of unit cell parameters with temperature
shows a significant anisotropic expansion along the a-axis compared to c-axis.

Table 6.12 Structural details of BPO4 at 25 and 900 �C (space group: I-4, No. 82) [195].

Temperature a (Å) c (Å) V (Å)3 Oxygen
(x, y z)

(B) B
(Å2)

(P) B
(Å2)

(O) B
(Å2)

25 �C 4.3447(2) 6.6415(5) 125.37(2) 0.139(1) 2.9(6) 2.4(1) 3.7(2)
0.259(1)
0.1275(5)

900 �C 4.3939(2) 6.6539(6) 128.46(1) 0.127(1) 3.2(7) 3.6(2) 5.2(3)
0.257(1)
0.1250(7)

a (�C�1) 12.9� 10�6 2.1� 10�6 28.2� 10�6

O: 8g (x, y, z); B: 2c (0, 1/2, 1/4); P: 2a (0, 0, 0).

Table 6.11 Thermal expansion coefficient of low (C2221)- and high (F-43m)-cristobalite
forms of Al1�xGaxPO4.

C2221 phase
aa, ab, ac, aV

a)
F-43m phase

aa, aV
a)

Db)� 104 Tc (�C) DVc) (Å3)

AlPO4 27.4, 27.2, 44.5, 99.8 1.93, 5.75 1.4 202 15.2
Al0.8Ga0.2PO4 23.0, 20.3, 35.4, 79.1 4.11, 12.3 2.1 273 15.4
Al0.5Ga0.5PO4 18.7, 22.4, 30.4, 71.9 5.52, 16.6 9.2 340 19.7
Al0.2Ga0.8PO4 18.8, 20.3, 25.9, 65.6 6.40, 19.3 12.8 506 21.6
GaPO4 18.5, 19.8, 23.2, 62.2 7.17, 21.4 17.9 605 24.8

Tc: transition temperature.
a) (� 106 �C�1).
b) D: orthorhombicity (jb� a/b þ aj).
c) Excess volume (DV) change in unit cell volume at the transition temperature.
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Figure 6.21 Variation of unit cell parameters (a), and B-O-P angles and polyhedral tilt angles (b) of
BPO4 with temperature.

Figure 6.20 The Rietveld refinement plots for low-cristobalite-type BPO4 at RT and 900 �C. Vertical
lines indicate the Bragg positions (upper BPO4 and lower Pt sample holder).
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The variations of the structural parameters, in particular, the thermal parameters
of various atoms and derived structural parameters like bond angle and bond lengths,
have been used to explain the thermal expansion behavior of the unit cell [195]. It has
been observed that with increasing temperature, thermal parameters of the O atoms
increases significantly compared to that of B and P atoms. A systematic increase of
B�O�P bond angle with increasing temperature leads to gradual increase in the
interpolyhedral separation and hence dilation in the unit cell axes. This is further
reflected in the anisotropic expansion of unit cell axes (c/a¼ 1.529 at 25 �C and
1.514 at 900 �C). The typical B�O�P bond angle at 25 and 900 �C are 132.3(3)� and
135.8(4)�, respectively. It can also be emphasized here that the typical BO4 and PO4

units act as the typical rigid polyhedra, as reported by Hazen and Prewitt [180] for
highly charged central cation polyhedra. Thus, with the increasing temperature, the
tilts (w) [247] between the BO4 and PO4 tetrahedra are lowered. The polyhedral tilt is
common in the temperature- or pressure-induced structural variation of framework
compounds. Such tilting variation has been used to explain the NTE or displacive
phase transitions in perovskites [248–253]. The variations of the interpolyhedral
angle (B�O�P) and tilt angles with temperature are shown in Figure 6.21.

A comparison of the thermal expansion coefficients of various high-cristobalite-
type phosphates revealed that the higher the value of M�O�P bond angle, the lower
the thermal expansion coefficient. The coefficient of volume thermal expansion (aV)
can be given by aV (�C�1)¼�191.32 þ 4.33� [q]� 0.02� [q]2. The temperature
variation of crystal structures of cristobalite-type compounds suggests that the
M�O�P bond angle has significant role in thermal expansion as in other frame-
work-type materials [126–132].

6.10.2.2 Molybdates and Tungstates
TheMX2O8(M¼Zr,HfandX¼WMo)andM2(XO4)3,M¼ trivalent ionssuchasY,Sc,
Lu, Al, Cr, Fe, and so on, type molybdates and tungstates have drawn significant
attention to thermal expansionmeasurements after the discovery of NTE behavior in
several of them [111–115, 126–142]. All these compounds crystallize in framework-
structured architect of corner-shared octahedral MO6 or tetrahedral XO4 units.
Structural studies on MX2O8 compounds indicate that tungstates form cubic frame-
work structure with MO6 octahedral and XO4 units, while the corresponding molyb-
dates form layered structure with the sheets of MO6 octahedral and XO4 tetrahedral
units.ThestudiesonA2(MO4)3 (A¼ trivalentcationandM¼Mo6þ orW6þ ) [254,255]
indicate the existence of a series of lattice types, namely, tetragonal, orthorhombic,
monoclinic, and so on depending on the nature and ionic radii of trivalent counter-
cations. Abrahams et al. [255] reported that the countermetal ions in these compounds
exist in eight- or sixfold coordinations with orthorhombic Sc2(WO4)3 type or mono-
clinic Eu2(WO4)3 type depending upon the radius ratio of A3þ and O2� ions. The
thermal expansions of such materials have been determined extensively by the X-ray
anddilatometric techniques and someof themare explained in the following sections.

6.10.2.2.1 A2(MoO4)3 The thermal expansion behavior of A2(MoO4)3, A being the
heavier rare-earth ions, and other trivalent ions such as Cr3þ , Fe3þ , and Al3þ has
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been studied in detail by dilatometry and HT-XRD [128–132, 255–261]. Dilatometric
studies on dense pellets of Al2(MoO4)3, Cr2(MoO4)3, and Fe2(CrO4)3 carried out over
the temperature range fromRTto 850 �C shows a common feature of expansion in all
these three samples [130]. Detailed structural studies of these samples at ambient
temperature indicate that all samples crystallize in monoclinic (P21/c) lattices
[130, 262–266], with unit cell parameters: a¼ 15.687(4), b¼ 9.233(2), c¼ 18.212
(5) Å, and b¼ 125.27(1)� for Fe2(MoO4)3; a¼ 15.554(6), b¼ 9.151(3), c¼ 18.102(9) Å,
and b¼ 125.32(2)� for Cr2(MoO4)3; and a¼ 15.368(1), b¼ 9.034(1), c¼ 17.864(1) Å,
and b¼ 125.35(1)� for Al2(MoO4)3. In the thermal expansion studies, a significant
positive expansion followed by a negative expansion is observed in each case
(Figure 6.22) [130]. The typical observed thermal expansion coefficients in these
three samples are given in Table 6.13. The discontinuity in thermal expansion
behavior indicates a structural transition that is further confirmed by DSC [130].
Further thermal expansion behaviors of these are studied by high-temperature
diffraction studies. The detailed high-temperature X-ray diffraction studies show
that the ambient monoclinic lattice transforms to high-temperature orthorhombic
lattice (Pnca). The typical powder XRD pattern of the Cr2(MoO4)3 at temperatures
below and above the transition temperature is shown in Figure 6.23.

The typical unit cell parameters for Cr2(MoO4)3 at 400 �C are a¼ 9.258(1),
b¼ 12.732(1), and c¼ 9.177(1) Å and V¼ 1081.8(1) Å3 (space group: Pnca). The
temperature variation of unit cell parameters of both ambient and high-temperature
phases of Cr2(MoO4)3 is shown in Figure 6.24. In contrast to the observed negative
thermal expansion behavior in dilatometry, a subtle but positive thermal expansion

Figure 6.22 Variation in the percentage of linear thermal expansion with temperature [130].
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is observed in high-temperature orthorhombic phase. The typical axial thermal
expansion coefficients of Cr2(MoO4)3 in orthorhombic and monoclinic phases are
aa (�C

�1)¼�0.7� 10�6, ab (�C�1)¼ 6.8� 10�6, and ac (�C
�1)¼�1.5� 10�6 and

aa (�C�1)¼ 8.87� 10�6, ab (�C�1)¼ 9.12� 10�6, and ac (�C�1)¼ 13.05� 10�6,
respectively. Further, the analysis of the unit cell parameters indicates that about
1.5% of unit cell volume increases at the transition temperature. The drastic
expansion of unit cell volume at the transition temperature develops micro- and
macrocracks in the pellet andhencemasks the thermal expansion of the actual lattice.

Similar variable-temperature crystal structure analyses on Sc2(MoO4)3 (in the
temperature range of 4–300K) indicate that a monoclinic (av¼ 21.9� 10�6 K�1) to
orthorhombic (av¼�6.3� 10�6 K�1) phase transition occurs at 180K [129]. The
monoclinic phases of Sc2(MoO4)3, Fe2(MoO4)3, and Al2(MoO4)3 are isostructural
to ambient-temperature Cr2(MoO4)3 type, while the orthorhombic phase is isostruc-
tural to Sc2(WO4)3 [129, 255, 263, 267, 268]. In all these cases, the crystal structure is
made up of AO6 octahedra and MoO4 tetrahedra. The detailed studies on the
monoclinic and orthorhombic phases indicate that both the structures are related
and the structural change is brought by small displacement of the atoms, in particular

Figure 6.23 Typical XRD pattern of Cr2(MoO4)3 at 573 and 673 K, representing the P21/a and Pnca
phases. (Reflections due to sample holder is marked as �.)

Table 6.13 Coefficients of thermal expansion (al� 106 in �C�1) data of A2(MoO4)3 [130].

A3þ Temperature range (�C) al� 106 (in �C�1) Tc (�C)

Fe3þ 27–500 9.7 500
550–800 �14.8

Cr3þ 27–350 9.8 380
400–800 �9.4

Al3þ 27–200 8.7 200
250–800 �2.8

Tc: Monoclinic to orthorhombic phase transition temperature.
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in the oxygen sublattices. This transition is very commonly observed in several
molybdates and is a ferroelastic to paraelastic displacive transition [129]. The low-
temperature monoclinic modification has six distinguishable Mo sites, whereas the
high-temperature orthorhombic phase has two distinguishable Mo sites. In both
lattices, the Mo atoms have tetrahedral coordination and trivalent cations have an
octahedral coordination and have flexible framework-type arrangements. Though
both the unit cells are made from similar structural arrangement, the drastic
expansion of the unit cell volume leads to poorly packed lattice and hence lower
thermal expansion coefficient is observed for orthorhombic phase compared to the
monoclinic phase. Similar monoclinic to orthorhombic transition is reported for
other M2�xM0

x(MoO4)3 analogues [260–263] with drastic difference in thermal
expansion behaviors.

A comparison of thermal expansion coefficients of isostructural molybdates of
various trivalent ions as observed by dilatometry or high-temperature XRD shows
that the ionic radii of trivalent ions have controlling role on them. The typical thermal
expansion coefficients of various orthorhombic molybdates are summarized in
Table 6.14. It can also be mentioned here that the heavier lanthanide analogues

Figure 6.24 Variation of unit cell parameters, (a) monoclinic, (b) orthorhombic, and (C) molar
volume (V/Z) of Cr2(MoO4) with temperature.
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exhibit similar phase transition as well as thermal expansion behavior. However,
at ambient temperature, Gd2(MoO4)3-type orthorhombic lattices are formed in
heavier lanthanide molybdates. The thermal expansion behaviors of these lattices
also show a significant expansion in the lattice with different thermal expansion
coefficients.

6.10.2.2.2 A2(WO4)3 Similar to A2(XO4)3-type molybdates, the analogous tung-
states have been studied extensively by high-temperature X-ray diffraction. The low
and/or negative thermal expansion behaviors are observed in most of them. For this
reason, most of the studies are mainly focused on the smaller trivalent ions, such as
heavier rare-earth or transition metal ions. Often, the heavier rare-earth tungstates
are hygroscopic at ambient temperature and on dehydration they formorthorhombic
Sc2(WO4)3-type structures [261]. However, with other cations, namely, Al3þ , Ga3þ ,
Sc3þ , In3þ , and so on, these tungstates do not show hygroscopic behavior. The
crystal structure ofmonoclinic Eu2(WO4)3 is closely related to scheelite and in turn to
fluorite lattice. In these structures, the larger metal ion (Ln3þ ) form eight coordi-
nated polyhedra that share their edges similar to the normal fluorite-type lattice. The
tungsten atoms form tetrahedra and penta-coordinated polyhedra and they link these
LnO8 units by sharing edges and corners. The stabilities of these structures are
related to the stability of the eight and six coordinated polyhedra of the rare-earth
cations. The crystal structures of these two types are shown in Figure 6.25. Besides,
the orthorhombic Sc2W3O12-type structures have relatively lower packing density

Table 6.14 Thermal expansion coefficients (�C�1) of few orthorhombic A2(MoO4)3-type
molybdates.

A Temperature
range (�C)

aa� 106

(�C�1)
ab� 106

(�C�1)
ac� 106

(�C�1)
al� 106

(�C�1)
References

Sc3þ �90 to þ 25 �8.41 10.82 �8.83 �6.30 [129]
La3þ 25–800 3.02 3.02 12.83 6.36 [260]
Y3þ 25–800 �11.69 �6.57 �10.04 �9.36 [260]
Er3þ 25–800 �10.84 �3.34 �8.57 �7.56 [260]
Yb3þ 25–800 �10.02 �2.99 �5.21 �6.04 [260]
Lu3þ 25–800 �8.69 �1.64 �7.75 �6.02 [260]
Fe3þ 540–800 �1.94 4.57 0.71 1.14 [260]
Fe3þ 550–750 �2.28 7.35 �0.70 1.34 [258]
Al3þ 250–650 �0.94 7.34 0.57 1.8 [258]
Cr3þ 420–750 �2.40 6.26 �1.75 0.7 [258]
Cr3þ 400–700 �0.72 6.80 �1.54 1.52 a)

(Yb1�xCrx)
3þ

0.1 200–800 �8.530 0.203 �5.886 �4.729 [257]
0.2 200–800 �5.378 3.512 �3.201 �1.691 [257]
0.9 250–800 �1.112 5.069 �0.551 1.134 [257]
1.0 450–800 �2.424 6.293 �1.738 0.708 [257]

All the reported data are given in Pnca setting.
a) Present data.

6.10 Examples j243



compared to the monoclinic analogues. Thus, the lower values of thermal expansion
coefficients are expected only in the orthorhombic class tungstates.

As a typical example, the thermal expansion behavior of orthorhombic Al2(WO4)3
studied by dilatometry and high-temperature XRD studies [134–136] is discussed
in this section. At ambient temperature, unit cell parameters of Al2(WO4)3 are
a¼ 9.134(2), b¼ 12.575(2), and c¼ 9.050(1) Å, V¼ 1039.6(2) Å3, and Z¼ 4 (space
group: Pnca). The typical ambient-temperature XRD pattern of Al2(WO4)3 is shown
in Figure 6.26. The crystal structure reveals the presence of AlO6 octahedra (Al�O
bonds ranging from 1.82(2) to 2.01(2) Å) and two types of WO4 tetrahedra, namely,
W(1)O4 (W�O bonds 1.74(2)� 2 and 1.77(2)� 2) and W(2)O4 (W�O bonds 1.77(2)
to 1.79(2) Å). The structure is isostructural to the high-temperature orthorhombic
modification of the above-mentioned molybdates. A pellet (�12mm diameter and

Figure 6.26 Ambient-temperature powder XRD pattern of Al2(WO4)3. Rp: 9.52%; Rwp: 13.1% and
x2: 1.84; RB: 5.92%; and RF: 3.41%).

Figure 6.25 (a) Crystal structure of Eu2(WO4)3 (EuO8: red, WO5: green, WO4: yellow). (b) Crystal
structure of Sc2(WO4)3 (ScO6: red, WO4: yellow).
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10mm height) with approximately 88% of theoretical density obtained by heating a
pellet of preformed powder at 1100 �C for 18 h was used for the dilatometric studies.
The bulk thermal expansion of Al2(WO4)3 as observed fromdilatometry is depicted in
Figure 6.27.

The variation in the percentage of the linear thermal expansion with temperature
remains constant initially and then decreases. The observed coefficient of average
linear thermal expansion (al) is �1.5� 10�6 �C�1 in the region of 25–850 �C [136].
Further, it may be added here that a negative value of about�3� 10�6 �C�1 has also
been reported for average linear thermal expansion coefficients [126]. However, on
the basis of the diffraction studies, this compound was shown to have an anisotropic
expansion with a net positive volume expansion, av¼ þ 2.2� 10�6 �C�1 [126] and
þ 4.5� 10�6 �C�1 [134]. In the temperature range of 25–900 �C, the thermal
expansion behavior of this is further determined by in situ high-temperature
X-ray diffraction studies. The typical powder XRD patterns recorded at various
temperatures are shown in Figure 6.28a. The observed reflections at each temper-
ature are indexed to get the high-temperature unit cell parameters. The typical
unit cell parameters of Al2(WO4)3 at 900 �C are a¼ 9.113(3), b¼ 12.645(4), and
c¼ 9.051(2) Å and V¼ 1043.0(3) Å3. The variations of unit cell parameters with
temperature are shown in Figure 6.28b. The typical coefficients of thermal expansion
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Figure 6.27 Variation in the percentage of linear thermal expansion with temperature of
Al2(WO4)3.
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along the different axes are aa¼�2.63� 10�6 �C�1, ab¼ 6.36� 10�6 �C�1, ac¼
0.088� 10�6 �C�1, and aV¼ 3.74� 10�6 �C�1.

The closely related crystal structures of monoclinic lighter rare-earth tungstate as
well as orthorhombic heavier rare-earth tungstates, but with opposite thermal
expansion behaviors, are promising for the creation of low or tunable thermal
expansion ceramic materials. For example, at ambient temperature, Nd2(WO4)3
has monoclinic (space group: C2/c) lattice with unit cell parameters: a¼ 7.753,
b¼ 11.602, and c¼ 11.538Å, b¼ 109.77�, V¼ 977Å3, and Z¼ 4. The dilatometric
study on sintered bulk ceramic sample of Nd2(WO4)3 shows a positive thermal
expansion coefficient (al¼ 7.9� 10�6 K�1). Similar studies on Y2(WO4)3 show an
appreciable negative thermal expansion coefficient (al¼�5.8� 10�6 K�1). The
ambient-temperature unit cell parameters of Y2(WO4)3 are a¼ 9.166, b¼ 12.610,
and c¼ 8.968Å,V¼ 1036Å3, andZ¼ 4 (space group: Pnca) and is isostructural to the
above-explained Al2(WO4)3 structure. In general, a continuous solid solution be-
tween these two structures do not exists [271, 272]. Tunable thermal expansion
behaviors have been reported in such systems, even though the two structures do not
form a continuous solid solution.

The thermal expansion behavior of a large number of tungstates having ortho-
rhombic crystal structure have been studied by dilatometry as well as high-tem-
perature diffraction methods [6, 112–115, 126–136]. The typical thermal expansion
data of some of the tungstates are given in Table 6.15. In all of them, anisotropic
thermal expansions similar to Al2(WO4)3 have been observed. In addition, the
magnitudes of thermal expansion coefficient of both monoclinic and orthorhombic
phases are strongly influenced by the ionic radii of the rare-earth ions. In addition
to the solid solutions of the orthorhombic tungstates, several solid solution

Figure 6.28 (a) Typical powder XRD pattern (CuKa) of Al2(WO4)3 at different temperatures.
(b) Variation of unit cell parameters of Al2(WO4)3 at different temperatures.
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compositions between the orthorhombic and monoclinic lattices have also been
investigated [269–283].

6.10.2.2.3 AX2O8 Thermal expansion measurements on ZrW2O8 and HfW2O8 by
diffraction techniques have been well established in literature. The negative thermal
expansion behavior of ZrW2O8 has been known since long ago [273], but it has
attractedmuch attention only recently [113]. Both ZrW2O8 andHfW2O8 crystallize in
cubic (P213) lattice at ambient temperature. So the observed isotropic axial thermal
expansion data correlate with dilatometric studies [111–113]. Besides, the diffracto-
metric studies could also characterize the discontinuity (at�157 �C) in the variation
of linear or axial expansion with temperature. The symmetry change has been
attributed to an order–disorder (P213–Pa3) transition involving the migration of
oxygen atom leading to a dynamic equilibrium state of theWO4 tetrahedra along the
threefold axis [111]. The typical thermal expansion coefficients of the two lattices of
ZrW2O8 are �9.4� 10�6 �C�1 (in �272.7 to 127 �C) and �5.5� 10�6 �C�1 (in
157–777 �C) [111, 113]. These interesting intricacies prompt preparation and thermal
expansion measurement on similar analogues. Thermal expansion data have been
reported for similar cubic ZrMo2O8 and HfMo2O8 and other closely related com-
pounds, such as ZrP2O7 and ZrV2O7. In the temperature range of�262 to 300 �C, no
such order–disorder transition in the metastable cubic ZrMo2O8 or HfMo2O8 is
observed in high-temperature diffraction studies [133]. The typical axial thermal
expansion coefficients for cubicZrMo2O8 andHfMo2O8 are�4.9� 10�6 �C�1 (in the
range�262 to 300 �C) [133] and�4.0� 10�6 �C�1 (in the range�196 to 300 �C) [274].

In addition to the above-mentioned cubic polymorphs, several other crystallo-
graphic modifications are known for AX2O8 compounds. At ambient temperature
and pressure, trigonal ZrMo2O8 and HfMo2O8 are the stable polymorphs for
molybdates [274–278], while no other stable phases exist for tungstates [279]. A
densermonoclinic polymorph of ZrMo2O8 is also known [280]. Under high pressure

Table 6.15 Thermal expansion coefficients (�C�1) of few orthorhombic A2(WO4)-type tungstates.
(All the reference data are mentioned here in Pnca setting.).

A3þ Temperature range (�C) aa� 106 ab� 106 ac� 106 aV� 106 References

Y 20–800 �10.4 �3.1 �7.6 �20.9 [134]
Y �258–800 �10.6 �2.53 �7.97 �20.9 [127]
Y 200–800 �9.78 �5.13 �6.68 �22.0 [269]
Lu 20–800 �9.9 �2.2 �8.3 �20.4 [140]
Yb 200–800 �10.20 �2.65 �6.41 �19.1 [269]
Sc 20–800 �6.3 7.5 �5.5 �6.5 [128]
Al 20–800 �1.31 5.94 �0.099 4.51 [134]
Al 25–900 �2.63 6.36 0.088 3.74 a)

Er 200–800 �10.14 �3.35 �6.70 �20.1 [269]
Lu 200–800 �9.70 �2.89 �5.74 �18.5 [269]
Lu 120–620 �9.9 �2.2 �8.3 �20.4 [135]

a) Present data.
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and high pressure and high temperature, orthorhombic and trigonal phases of
ZrW2O8 and HfW2O8 are reported [281–283]. Similarly, a large number of mono-
clinic and triclinic polymorphs of ZrMo2O8 and HfMo2O8 under high pressure or
high pressure and high temperature are also reported [125, 283–288]. Thermal
expansion behaviors of only few noncubic polymorphs of AX2O8 have been studied
by high-temperature X-ray diffraction method [132, 289] (Anitha, M., Achary, S.N.,
and Tyagi, A.K., personal communication). Thermal expansions of the trigonal and
monoclinic HfMo2O8 [288] have been studied by high-temperature X-ray diffraction
and the typical structural implications on the thermal expansion are explainedhere as
an example.

The structure of trigonal (a)HfMo2O8 andZrMo2O8 consists of three-dimensional
framework of corner-sharing AO6 and MoO4 polyhedra, where each tetrahedral
molybdate group shares three of the corner oxygen atoms with the three different
AO6 octahedra. The fourth oxygen atom in the MO4 tetrahedra is nonbridged and
points to the interlayer region. Thus, the trigonalMX2O8 produces a layered structure
along c-axis and enables large amplitude rocking motion of MO4 tetrahedra and
nonbridged oxygen atoms. The monoclinic (b) form of HfMo2O8 is a high pressure
and high temperature polymorph and can be obtained by quenching the trigonal
HfMo2O8 from 2.15GPa and 560 �C [288]. The detailed crystal structure analysis of
the monoclinic form revealed that the structural transformation occur with an
increase in the coordination number of Hf and Mo atoms and dimerization of
isolated MoO4 units. In addition, about 20% increase in density occurs during this
transformation. The typical crystal structures of trigonal and monoclinic HfMo2O8

are shown in Figure 6.29.
The powder XRD patterns for trigonal and monoclinic HfMo2O8 recorded at

different temperatures are shown inFigure 6.30a andb. It is observed that the powder
XRD patterns recorded up to 700 �C do not indicate any difference from that at the

Figure 6.29 (a) Crystal structure of trigonal
HfMo2O8 (HfO6 and MoO4 are shown):
a¼ 10.1086(3), c¼ 11.7509(4) Å,
V¼ 1039.89(5) Å3, space group: P-31c.

(b) Crystal structure of monoclinic HfMo2O8

(HfO8 andMo2O10 are shown): a¼ 11.4264(8),
b¼ 7.9095(6), c¼ 7.4461(5) Å, b¼ 122.368
(5)�, V¼ 568.4(1) Å3, space group: C2/c.
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ambient temperature. The unit cell parameters at each temperature have been
determined and they are shown in Figure 6.31a and b. The small discontinuity in
the variation of unit cell parameters around 200 �C is attributed to order–disorder
transition of the trigonal phase. No such discontinuity in the case of monoclinic
HfMo2O8 indicating any phase transition is observed.

Figure 6.31 (a) Variation of unit cell parameters of trigonal HfMo2O8 with temperature.
(b) Variation of unit cell parameters of monoclinic HfMo2O8 with temperature.

Figure 6.30 (a) XRD patterns of trigonal HfMo2O8 at different temperatures. (b) XRD patterns of
monoclinic HfMo2O8 at different temperatures (Recorded with CuKa radiation).
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The typical variationof theunit cellparametersof trigonalHfMo2O8showsnegative
expansion along a- and b-axes, whereas a significant positive expansion along c-axis
similar to ZrMo2O8 [290]. The coefficients of axial thermal expansion for HfMo2O8

are aa¼ab¼�6.42� 10�6 �C�1, ac¼ 56.6� 10�6 �C�1, av¼ 43.4� 10�6 �C�1 (in
25–700 �C). It canberecalledhere that thecrystal structureof the trigonal formismade
upofsheetsofHfO6octahedra linkedwithMoO4 tetrahedraat thecorners.Theapexof
theMoO4 units points toward the space between the layers and thus there is a strong
O�O repulsion, leading to a weak interaction between the layers. Thus, there is a
strong expansion along this direction. The negative expansion along other directions
canbe realizedby the cooperative rotationof theMoO4-HfO6 framework.The thermal
expansion coefficients of themonoclinic phase areaa¼ 1.3� 10�6 �C�1,ab¼ 15.6�
10�6 �C�1, ac¼ 10.7� 10�6 �C�1, and av¼ 21.9� 10�6 �C�1. Themonoclinic phase
has a relatively higher packed structure compared to the trigonal phase [288]. Thus, in
this case, the expansion is mainly controlled by the expansion of the chemical bonds,
which results in a positive expansion but the average thermal expansion is lower than
that of the trigonal phase.

6.10.3
Scheelite- and Zircon-Type ABO4 Compounds

The ionic radii and charge combination of A and B cations govern the crystal
structure of the ABO4-type compounds [291, 292]. A large variety of structure types,
namely, scheelite, monazite, zircon, wolframite, baryte, anhydrite, MnSO4, CrPO4,
and so on, and silica polymorphs types are known for ABO4 compositions. The
thermal expansion of silica analogue ABO4 compounds have already been explained.
Among the ABO4-type compounds, the zircon-type compounds are well known for
the low thermal expansion and incompressible behavior, while scheelite lattice show
appreciably higher thermal expansion [45, 46, 105–110, 293–306] (Anitha, M.,
Achary, S.N., and Tyagi, A.K., personal communication). The thermal expansion
behavior of CaMoO4 and CaWO4 (scheelite types) and LuVO4 and GdVO4 (zircon
types) as observed from high-temperature X-ray diffraction studies are explained
here.

Both scheelite and zircon lattice of ABO4 have tetragonal unit cell built from the
AO8 polyhedra (bisdisphenoid) and BO4 (tetrahedra). However, the typical connec-
tions of the polyhedra are different in these two structures. In a general view, the
scheelite structure is related to the fluorite lattice, while the zircon is related to the
rutile lattice [297].

6.10.3.1 CaMoO4 and CaWO4

BothCaMoO4 andCaWO4 have tetragonal unit cell (space group: I41/a), Ca,Mo orW,
and O atoms are located at (4b: 0, 1/4, 5/8), (4a:0, 1/4, 1/8), and (16f: x, y, z) sites,
respectively [297]. The thermal expansion ofCaMoO4has been studied byDeshpande
and Suryanarayana [298] in the temperature range of 25–350 �C. The typical values
of average thermal expansion coefficients along a- and c-axes (aa and ac) are
10.71� 10�6 and 16.17� 10�6 �C�1. Bayer [105] has reported the average axial
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thermal expansion for CaWO4 as 13.7� 10�6 and 21.5� 10�6 �C�1 (in the temper-
ature range of 20–1020 �C) and 11.5� 10�6 and 19.2� 10�6 �C�1 (in the temperature
range of 20–520 �C). The thermal expansion behaviors of CaWO4 and CaMoO4 have
been studied by HT-XRD in the temperature range of 25–1000 �C [299]. The unit cell
and other structural parameters are obtained by the Rietveld refinement of the
powder X-ray data recorded at various temperatures. The typical powder XRD data
of CaMoO4 recorded at ambient temperature and 1000 �C are shown in Figure 6.32.
The refined unit cell of CaMoO4 and CaWO4 at ambient temperature and 1000 �C
are given in Table 6.16.

Smooth variations of unit cell parameters with temperature are observed for
CaMoO4 and CaWO4 (Figure 6.33). The variations of unit cell parameters with
temperature are fitted with polynomial function and the typical fitting parameters
are included in Table 6.15. Further, the variation of c/a of CaMoO4 and CaWO4

reflects the significantly higher expansion along the c-axis compared to that along
a-axis. The typical values of c/a of CaMoO4 and CaWO4 at ambient temperature
are 2.188 and 2.169, respectively, and those at 1000 �C are 2.207 and 2.188,
respectively.

The detailed analyses of the structural data observed for CaMoO4 at various
temperatures have been used to explain the thermal expansion behavior of both.
A comparison of various interatomic distances indicates a significantly larger
expansion of Ca�O bonds compared to the Mo�O bond. The typical Ca�O bond
lengths at ambient temperature are 2.450(8) and 2.474(8) Å and those at 1000 �C are

Figure 6.32 The Rietveld refinement plots of CaMoO4 at 25 and 1000 �C (vertical marks indicate
the Bragg positions; lower vertical marks indicate platinum-base metal reflections).
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2.52(1) and 2.50(1) Å. The expansion of the average Ca�O bonds with temperature
can be fitted as

dhCa�OiavðA
� Þ ¼ 2:461ð2Þþ 5:13ð3Þ � 10� 5½T 	;

where T is the temperature in �C.
Similarly, the polyhedral volume of the CaO8 units shows a significant expansion

compared to the MoO4 units (Figure 6.34). The average thermal expansion of the
Ca�Obonds is about 0.019� 10�6 �C�1, which is comparable to the reported value of
0.016� 10�6 �C�1 in similar eight coordinatedCa2þ polyhedra [180]. Acloser insight
into the unit cell of CaMoO4 indicates that the unit cell is built by the CaO8 polyhedral
units by sharing four of their edges with four other CaO8 units. Along the a- and
b-axes, the CaO8 units are linked by theMoO4 units. The lower thermal expansion of
the MoO4 tetrahedral units results in the lower thermal expansion of the a-axis
compared to the c-axis.

6.10.3.2 LuPO4, LuVO4, and GdVO4 (Zircon Type)
In general, the zircon group materials show drastically different thermal expansion
behaviors depending upon the cation charge and ionic radii combination [108, 109].
The low thermal expansion of ZrSiO4 has been reported from high-temperature
diffraction data [296–299]. Subbarao et al. [109] andBayer [105] have compared a large
number of compounds with zircon structure, where low thermal expansion is
generally observed in the case of silicates compared to others. Phosphates and
vanadates of smaller rare-earth ions form stable zircon-type lattices. The thermal

Figure 6.33 Variations of unit cell parameters with temperature [8].
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expansion measurements of rare-earth phosphates or vanadates have been carried
out extensively from the high-temperature X-ray diffraction and dilatometric studies
[105–110, 300–306] (Anitha, M., Achary, S.N., and Tyagi, A.K., personal communi-
cation). The typical coefficients of thermal expansion reported for such vanadates and
phosphates are summarized in Table 6.17.

A comparison of the thermal expansion data shows higher expansion and higher
anisotropy in vanadates than in the phosphates. Detailed analysis of thermal
expansion behavior of LuVO4 and LuPO4 has been carried out. Structural details
at higher temperature are obtained by the Rietveld refinement of the powder XRD
data. The typical variations of unit cell parameters at various temperatures are
shown in Figure 6.35a. In order to compare the anisotropy in the thermal expansion,
the variation of c/a with temperature is shown in Figure 6.35b. The temperature
evolution of unit cell parameters for LuVO4 and LuPO4 can be expressed by the
polynomial relation:

LuPO4 : aðA� Þ ¼ 6:7875ð4Þþ 4:21ð7Þ � 10� 5½T 	
cðA� Þ ¼ 5:9542ð4Þþ 4:41ð8Þ � 10� 5½T 	
VðA� Þ3 ¼ 274:30ð5Þþ 0:0055ð9Þ � ½T 	

LuVO4 : aðA� Þ ¼ 7:0214ð3Þþ 2:60ð5Þ � 10� 5½T 	
cðA� Þ ¼ 6:2277ð3Þþ 7:42ð5Þ � 10� 5½T 	
VðA� Þ3 ¼ 307:02ð4Þþ 0:0060ð7Þ � ½T 	;

where T is the temperature in �C.

Figure 6.34 Variation of polyhedral volumes of CaO8 and MoO4 units of CaMoO4 with
temperature [8].
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The ambient-temperature unit cell parameters of LuVO4 and LuPO4 are
a¼ 7.0230(1) and c¼ 6.2305(1) Å and V¼ 307.31(1) Å3 and a¼ 6.7895(3) and
c¼ 5.9560(4) Å and V¼ 274.56(2) Å3 (space group: I41/amd, Z¼ 4), respectively.
In the temperature range of 25–1000 �C, the typical coefficients of axial thermal
expansion of these are aa¼ 6.04� 10�6 �C�1 and aa¼ 7.25� 10�6 �C�1 (for LuPO4)
and aa¼ 3.62� 10�6 �C�1 and aa¼ 11.80� 10�6 �C�1 (for LuVO4). Similar studies
on GdVO4 also revealed the anisotropic thermal expansion coefficients, namely,
aa¼ 3.6� 10�6 �C�1 and ac¼ 10.80� 10�6 �C�1.

The strain coefficients for LuVO4 and LuPO4 have been obtained at various
temperatures from the determined unit cell parameters, as explained in Equa-
tion 6.12. Since the present systems are tetragonal, only principal strain components
(e11, e22, and e33) are nonzero in the strain matrix given in Equation 6.12. Besides,
the principal strains e11 and e22 are equal due to the tetragonal symmetry. Between

Table 6.17 Coefficients of axial thermal expansion of some rare-earth phosphates and vanadates.

APO4 Temperature
range (�C)

aav� (106)
(�C�1)

aa� (106)
(�C�1)

ac� (106)
(�C�1)

Experiment References

LuPO4 25–1000 6.44 6.04 7.25 HT-XRD [306]
LuPO4 20–1000 6.2 Dilatometer [107]
ErPO4 20–1000 6.0 Dilatometer [107]
YbPO4 20–1000 6.0 Dilatometer [107]
YPO4 20–1000 6.2 Dilatometer [107]
YPO4 20–520 5.0 5.9 HT-XRD [105]
YPO4 20–1020 5.4 6.0 HT-XRD [105]
YPO4 25–1000 5.7 — — Dilatometer [110]
ScPO4 20–1200 5.5 4.1 8.4 HT-XRD [109]
YVO4 20–520 3.7 10.1 HT-XRD [105]
YVO4 20–1020 4.0 10.5 HT-XRD [105]
ScVO4 20–1200 4.05 12.95 HT-XRD [307]
ScVO4 20–1200 3.9 14. HT-XRD [308]
YVO4 27–670 3.1 7.21 HT-XRD [302]
GdVO4 25–540 2.16 8.92 HT-XRD [303]
GdVO4 25–1000 3.6 10.8 HT-XRD Anitha, M.,

Achary, S.N.,
and Tyagi, A.K.,
personal
communication

GdVO4 25–600 2.97 9.97 HT-XRD Anitha, M.,
Achary, S.N.,
and Tyagi, A.K.,
personal
communication

NdVO4 20–520 3.7 10.1 HT-XRD [105]
YVO4 20–1020 4.0 10.5 HT-XRD [105]
LuVO4 25–1000 6.34 3.62 11.80 HT-XRD [306]
LuVO4 12–300K 0.7 5.6 LTND [45, 46]
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ambient temperature and 1000 �C, the principal axes strain coefficients are e11¼
e22¼ 0.35� 10�2 and e33¼ 1.15� 10�2 (for LuVO4); e11¼ e22¼ 0.59� 10�2 and
e33¼ 0.71� 10�2 (for LuPO4). The trace of the matrix represents the volume strain.
The temperature variation of principal strain components for both LuVO4 and LuPO4

are shown in Figure 6.36. It can be observed that the anisotropy of the strain
components is significant in the case of LuVO4 compared to that of LuPO4. Thus, the
thermal expansion ellipsoid (shown in Figure 6.37) for LuPO4 is more spherical
compared to that of LuVO4.

The crystal structures of LuPO4, LuVO4, or GdVO4 consist of LuO8 or GdO8

polyhedra (bisdisphenoid) and PO4 or VO4 tetrahedra. Along the c-axis, the AO8

Figure 6.35 Variation of unit cell parameters (a) and c/a (b) of LuPO4 and LuVO4with temperature.

Figure 6.36 Variations of principal strain components of LuVO4 and LuPO4 with temperature.
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and PO4 or VO4 units are linked by sharing their edges. Along a- and b-directions,
the chains of these units are joined by sharing other edges of the AO8 polyhedra. The
differences in these phosphate or vanadate structures arise from the difference
betweenPO4 andVO4 tetrahedra. This leads to the difference in the axial ratio and the
distortion in AO8 units and hence the differences in thermal expansion behaviors.
A typical AO8 polyhedral unit of zircon-type structure is shown in Figure 6.38.

LuO8 polyhedra in both the structures are formed by two sets of Lu�O bonds,
namely, LuOa and LuOc (marked in Figure 6.38). The significant difference in the
Lu�O (sets of longer four Lu�O bond lengths) in these two structures due to the
change in B cation from V to P is reflected in all the differences in the crystal
structure. The longer Lu�Oc bonds show appreciable expansion with temperature
compared to the shorter bonds in LuVO4. The typical variation of interatomic

Figure 6.37 Thermal expansion ellipsoids LuVO4 (a) and LuPO4 (b).

Figure 6.38 Typical AO8 polyhedral unit of zircon-type structure.
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distances with temperature for LuVO4 is shown in Figure 6.39a. The typical
polyhedral parameters of these two materials at two extreme temperatures of study
are given in Table 6.18. This suggests that the AO8 units of LuPO4 aremore spherical
than those of LuVO4.

Figure 6.39 (a) Variation of typical interatomic distances in LuVO4 with temperature. (b) Variation
of volume of LuO8 units of LuPO4 and LuVO4 with temperature.

Table 6.18 Typical interatomic distances and polyhedral parameters of LuO8 units [306].

LuVO4 LuPO4

T (�C) a� 106 �C�1 T (�C) a� 106 �C�1

25 1000 25 1000

Lu-Oa 2.262(8) 2.262(8) 3.4 2.255(7) 2.277(8) 10.8
S 0.46 0.456 0.469 0.438
hli 1.511 1.437 1.422 1.408
s2 1048 955 935 916
Lu-Oc 2.431(5) 2.493(8) 24.7 2.364(6) 2.386(7) 8.9
S 0.289 0.244 0.346 0.326
hli 1.355 1.371 1.435 1.448
s2 1321 1372 1562 1601
VLuO8 (Å

3) 23.04(10) 23.88(10) 38 22.05(10) 22.66(10) 29
D 13.6� 10�4 23.7� 10�4 5.6� 10�4 5.5� 10�4

Lu-Lu/B 3.8415(1) 3.8601(1) 5.1 3.7070(1) 3.7295(1) 6.4
Lu-B 3.1152(1) 3.1511(1) 11.9 2.9780(1) 2.9990(1) 7.4

S, bond valence; D, distortion in LuO8 units; hli and s2 are quadratic elongation and bond angle
variance (defined as Equation 6.41), respectively.
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In addition, the larger polyhedral volume of LuO8 unit in LuVO4 (23.04Å
3) than

that in LuPO4 (22.05Å3) is a consequence of this difference. The variations of
polyhedral volumes with temperature for these two compounds are shown in
Figure 6.39b. The difference in anisotropy in thermal expansion of zircon-type
vanadates and phosphates is related to the sphericity and distortion of AO8 units as
well as spatial distribution of the A�O bonds.

In both ABO4-type scheelite and zircon structures, the BO4 polyhedra act as typical
rigid units, with virtually no expansion. The overall expansion behavior is governed
by the AO8 units. The typical thermal expansion behavior of scheelite lattice is
basically controlled by the temperature-induced expansion of the A�O bonds and
their orientation. The lower expansion of zircon lattice compared to scheelite is due to
the sharing of edges of AO8 with a rigid BO4 unit.

6.11
Conclusion

In this chapter, the thermal expansion and its origin are briefly explained. Subse-
quently, the effects of various parameters and in particular the structural effect on the
thermal expansion are explained. Various techniques used in thermal expansion
measurements are also touched upon. Further, the X-ray diffraction in determining
the thermal expansion is also explained in detail. The thermal expansion measure-
ments by X-ray diffraction providing the structural origin as plausible reason are
explained with selected examples. Besides the mentioned examples, a large number
of studies delineating the crystal structure and thermal expansion have been carried
out in recent years. However, the perovskite systems, where the diffraction techni-
ques have immense role in understanding the thermal expansion and phase
transition, are not explained in this chapter.
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7
Electronic Structure and High-Pressure Behavior of Solids
Carlos Moys�es Araújo and Rajeev Ahuja

7.1
Introduction

The relation between the electronic structure and the crystallographic atomic
arrangement is one of the fundamental questions in physics, geophysics, and
chemistry. Since the discovery of the atomic nature of matter and its periodic
structure, this has remained as one of the main questions regarding the very
foundation of solid systems. Needless to say, this has also bearings on physical and
chemical properties of matter, where again the relation between structure and
performance is of direct interest. Solids have been mainly studied at ambient
conditions, that is, at room temperature and pressure. However, it was realized
early that there is also a fundamental relation between volume and structure, and that
this dependence could most fruitfully be studied by means of high-pressure
experimental techniques. From a theoretical point of view, this is an ideal type of
experiment, since only the volume is changed, which is a very clean variation of the
external conditions.

Here, we describe the electronic structure and crystallographic phase transforma-
tions of simple systems (elemental compounds) under high external pressure by
means offirst-principles theory. This is done for a number of examples coveringmost
of periodic table groups. We will show that compounds made of single type of
element can already display a rich and complex phase diagram due to peculiar
pressure-induced electron band structuremodifications. The chapter is organized as
follows: in Sections 7.2 and 7.3, basic concepts of the general theoretical background
are reviewed. The subsequent chapters present the results for each specific system
and we finalize with an overview in Section 7.10.

7.2
First-Principles Theory

The main goal of first-principles theory of solids consists in solving the time-
independent Schr€odinger equation
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HtYk;nðr1; . . . ; rn;R1; . . . ;RtÞ ¼ EnðkÞYk;nðr1; . . . ; rn;R1; . . . ;RtÞ ð7:1Þ
to obtain the many-body eigenfunctions, Yk;nðr1; r2; . . . rn;R1;R2 . . .RtÞ, which
represent the stationary state of isolated system, and the corresponding eigenvalues,
EnðkÞ, which form the electron band structure of solids. Although this equation is
written in an elegant and simple form, to find its solution is a rather difficult task
requiring approximations that are usually done in three different levels. The first
approximation level, which is called the Born–Oppenheimer approximation, con-
siders the nuclei frozen with the electrons in instantaneous equilibrium with them.
Thus, the nuclei are treated as an external potential applied to the electron cloud so
that the electronic and ionic problems are decoupled. The other two approximation
levels are, actually, implemented within a new formulation of the many-body
problem, which is termed density-functional theory (DFT). This theory has been
shown to be very successful to describe the underlying physics of solids. In the
following, we elaborate briefly on its foundation and on some of its implementation
methods for solids.

7.2.1
Density-Functional Theory: Hohenberg–Kohn Theorems and Kohn–Sham Equation

The DFT is based on the theorems formulated by Hohenberg and Kohn (HK) [1]:

Theorem 7.1
For any system of interacting particles in an external potential VextðrÞ, there is a one-
to-one correspondence between the potential and the ground-state particle density
r0ðrÞ. The ground-state expectation value of any observable is, thus, a unique
functional of the ground-state particle density r0ðrÞ

hyjAjyi ¼ A½r0ðrÞ�: ð7:2Þ

Theorem 7.2
For any external potential applied to an interacting particle system, it is possible to
define a universal total energy functional of the particle density, which is written as

E½rðrÞ� ¼ EHK½rðrÞ� þ
ð
VextðrÞrðrÞdr; ð7:3Þ

where the term EHK½rðrÞ� includes all internal energies of the interacting particle
systems. The globalminimumof the functional in (7.3) is the exact ground-state total
energy of the system E0 and the particle density that minimizes this functional is the
exact ground-state density r0ðrÞ, that is,

d

dr
E rðrÞ½ �jr¼r0

¼ 0; ð7:4Þ

with

E0 ¼ E½r0ðrÞ�: ð7:5Þ
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The first theorem establishes that all observable quantities can be written as a
functional of the particle density. It means that the density has as much information
as the wavefunction does. In this way, instead of representing the system state by a
wavefunction in a multidimensional space, one can represent it by the particle
density that lives in a three-dimensional space. The second theorem states the
universality of the energy functional and the variational principle, which provides a
clue in finding a way to replace the original formulation of the many-body prob-
lem (7.1) by something that is more easily treatable. However, it can only be used if
the functional EHK is known (or a good approximation for it).

Kohn and Sham (KS) [2] have developed a framework within which the HK
theorems can be applied for practical problems. The main idea consists in replacing
the interacting many-body problem by a corresponding noninteracting particle
system in an appropriate external potential. In the KS ansatz, the total energy
functional can be written as

E½rðrÞ� ¼ T0½r� þEH½rðrÞ� þEext½rðrÞ� þExc½rðrÞ� þEII; ð7:6Þ

which is the so-calledKS functional. Thefirst, second, and third terms inEquation 7.6
are the functionals for the kinetic energy of a noninteracting electron gas, the classical
Coulomb contribution (Hartree term) for the electron–electron interaction, and the
external potential contribution due to nuclei and any other external potential,
respectively. All many-body effects of exchange and correlation are incorporated
into the term Exc½rðrÞ�, which is called the exchange-correlation functional. The
minimization of the KS functional with respect to the density rðrÞ leads to the
following one-particle Schr€odinger-like equation

� 1
2
r2 þVext þ

ð
rðr 0Þ
jr�r0j dr

0 þ dExc½r�
drðrÞ

� �
yqðrÞ ¼ eqyqðrÞ; ð7:7Þ

where eq are the KS eigenvalues,yqðrÞ are the KS orbitals, and Veff ðrÞ is the effective
potential. The exact ground-state density, rðrÞ, of a N-electron system is given by

rðrÞ ¼
X
q

jyqðrÞj2: ð7:8Þ

Equations 7.7 and 7.8 must be solved in a self-consistent scheme so that the exact
ground-state density and total energy of the many-body electron problem can be
determined.

7.2.2
Exchange-Correlation Functional

The task of determining the exchange-correlation functional Exc½rðrÞ� enters on the
second approximation step mentioned above and is the main challenge in the
implementation of the KS scheme. The local density approximation (LDA) has been
the most commonly used [8]. Here, the only information needed is the exchange-
correlation energy of the homogeneous electron gas as a function of density [3].
The LDA is expected to work well for systems with a slowly varying density, as for
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instance the nearly free electronmetals. Surprisingly, it also appears to be successful
for many other systems including semiconductors and insulators. However, further
improvements are still required. A natural way to improve the LDA is to consider the
exchange-correlation energy depending not only on the density rðrÞ but also on its
gradient rrðrÞ. This is implemented through an approach called generalized
gradient approximation (GGA). The most widely used parametrizations for the
GGA-functional are those obtained by Becke (B88) [4], by Perdew and Wang
(PW91) [5], and by Perdew,Burke, andEnzerhof (PBE) [6].More recent developments
of the exchange-correlation functionals include, besides the electron density and
its gradient, the KS orbital kinetic energy [7]. These new functionals are termed
meta-GGA.

7.2.3
Plane Wave Methods

To solve the single-particle equation, the KS orbitals are expanded in basis functions.
In solids, theplanewaves (PWs) are thenatural choice due toBloch theorem.However,
the representation of rapidly oscillating core statesmake the direct implementation of
PWbasis set computationally inviable. One approach to circumvent this problem is to
represent the valence electron–ion interaction via pseudopotentials, which is fitted to
free atom energy level. This pseudopotential-PWmethod is very accurate to describe
sp-bonded solids [8]. However, to deal with the more localized d- and f-orbitals and to
incorporate properly the effect of core states other approaches are required.Oneway is
to split the basis set into two distinct classes where the basis functions close to the
nucleus are more similar to atomic orbitals and in the interstitial region they are PW
functions.This is the ideabehind theaugmentedplanewavemethod (APW) [8]. In this
method, the crystal lattice is divided into twomain parts, which are termedmuffin-tin
(MT) and interstitial (I) regions. As originally developed, the APW basis functions are
energy dependentwhat could lead to unphysical results. This problemwas later solved
by the linearized augmented planewave (LAPW)methodwhere the basis function are
approximated to be energy-independent through an expansions around some refer-
ence energy levels [9]. Another PW-based method that is being widely used is the
projector augmented wave (PAW) method [10]. This is an all-electron frozen core
method, which combines the features of both the ultrasoft pseudopotentials andAPW
methods. Following the latter, the wavefunctions have a dual representation. Within
spheres centeredat eachatomicposition (the augmentation region), they are expanded
by partial waves and outside they are expanded into plane waves or some other
convenient basis set.

7.2.4
Linearized Muffin-Tin Orbitals Method

Besides the PW-based methods, there are other approaches to solve KS equation as
for instance the linearizedmuffin-tin orbitals (LMTO)method [11], in which the real
space is split into the muffin-tin and interstitial regions as in the LAPWmethod but
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no PWs are used as basis function. This method has been successfully employed in
the investigation of materials physics under high pressure. LMTO was developed
with the aim of not only providing a new electronic structure method but also
bringing physical interpretation of the electronic structure in the terms of a minimal
basis of orbitals. In fact, thismethod has led to new concepts, such as canonical bands,
which has shown to be valuable to identify the underlying physics of crystallographic
phase transitions. The implementation of LMTO is usually based on a number
approximations as for instance the atomic sphere approximation (ASA) where the
interstitial volume is reduced to zero and that is more appropriate to describe close-
packed solids. When no geometrical approximations are applied to the symmetry of
the potential, the method is called a full potential method (FPLMTO). This approach
is significantlymore time consuming but it allows the investigation of open structure
solids.

7.2.5
Hellman–Feynman Theorem and Geometry Optimization

In this section, geometry optimization is briefly discussed, that is, the search for the
spatial equilibrium configuration in which the atoms are arranged in the ground
state. In the solid state, besides the atomic positions, the shape and volume of the unit
cell must be optimized as well.

An atom feeling a net force moves in the direction of the force so that the total
energy is minimized. The equilibrium configuration is reached when all such forces
are equal to zero, ormore realistic, when they are within some convergence criterion.
These forces are calculated by using the force theorem or, as it is usually called, the
Hellmann–Feynman theorem [8]. This theorem can be understood as follows. The
forces due to the atomic displacements can be written as

Fl ¼ � qE
qRl

; ð7:9Þ

where E is the system total energy,

E ¼ hYjHjYi
hYjYi : ð7:10Þ

Thus, assuming hYjYi ¼ 1 and substituting (7.10) into (7.9), we get

Fl ¼ � Y

���� qHqRl

����Y
� �

� qY
qRl

jHjY
� �

� YjHj qY
qRl

� �
: ð7:11Þ

At the exact ground-state solution, the energy is extremal with respect to all
possible variations of the wavefunction, and as a consequence the last two terms on
the right-hand side of (7.11) vanish. Therefore, the forces are determined exclusively
by the terms explicitly dependent upon atomic positions and it can be written as

Fl ¼ � qhYjHjYi
qRl

¼ � Yj qH
qRl

jY
� �

: ð7:12Þ
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Thus, one can keep jYi at their ground-state values and calculate the partial
derivative of the total energy with respect to the ionic positions only.

There are two main factors that can affect the use of the force theorem. One is the
errors due to nonself-consistency and another is the explicit dependence of the basis
functions upon the ionic positions. The latter gives rise to the so-called Pulay forces.
These factors must be treated explicitly in order to avoid additional errors. A good
discussion can be found in Ref. [8]. For a plane wave basis set, the Pulay forces are
zero because the basis functions do not depend on the atomic position. However, in
this case, one still needs to be careful if the volume and shape of a unit cell are being
optimized. It is necessary to guarantee that the plane wave basis set is complete. In
practice, this is done by using a large energy cutoff.

7.3
Structural Phase Transition from First Principles

To investigate the hydrostatic pressure effects, the volume of the unit cell (V) is varied,
the internal degrees of freedom are reoptimized and the total energy recalculated
producing a set of energy (E) – volume (V) values, which are fitted to an equation of
states (EOSs). Then, from the first derivative of this equation with respect to volume,
we obtain the pressure–volume PðVÞ relation and so the enthalpy HðPÞ at 0 K. For
light elements, we need to go beyond the static lattice model and include the zero-
point vibration energy in the 0K enthalpy function.

As the applied hydrostatic pressure increases, the solids can undergo structural
transitions. To investigate this phenomenon, a standard procedure is to calculate
HðPÞ curves for different candidate structures and the stabilized structure at a given
pressure will be the one with the lowest enthalpy. Here, we have a problem of
searching for crystal structures in a multidimensional configurational space. Many
methods have been developed to achieve this goal where we could mention, for
instance, the randomsearchmethod [12], the dataminemethod [13], the evolutionary
method [14], and so on. All these are searching methods based on 0K total energy
calculation. However, a more general approach to study equilibrium states of solids
should include temperature effect. This can be achieved by evaluating the phonon
dispersion curves and then the vibration free energy for different pressures within
the quasiharmonic approximation. There are two main approaches to calculate the
phonon modes from first principles, namely, frozen phonon and linear response
method [8, 15]. The latter is derived from a second-order perturbation theory whereas
the formermake use of a direct method to calculate the derivatives of the total energy
with respect to perturbations, by carrying out full self-consistent calculations for
different values of perturbations and obtaining the derivatives by finite difference
formulas.

Another way to investigate structural stability at finite temperature is through
molecular dynamics (MD) simulations, which have experienced significant advances
in the last two decades; thanks to developments in both theoretical methods and
computational facilities. In the classicalMD,whichwas the only possible approach in
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the past but still widely employed, the forces are obtained through effective potentials
between the nuclei (parameterized pair potentials) that attempt to include the effects
of electrons. More recently, ab initio (or first-principles-based) MD was made
possible. In this case, the forces are determined directly from the solution of
quantum mechanical problem of electrons without any adjustment of parameters.
However, the nuclei are still treated as classical objects with their dynamics governed
by Newton�s equation. There are two main methods available to implement ab initio
MD [8]. The first divides the problem in two parts: (a) themotion of the nuclei and (b)
the self-consistent solution of Kohn–Sham equations for the electrons. This metho-
dology is termed Born–Oppenheimermolecular dynamics. The alternative approach
is Car–Parinello MD where the dynamics of nuclei and the quantum electronic
problem are solved within the same algorithm.

These methods appear to be very powerful to study the thermodynamics of the
structural transformation and to predict new crystallographic atomic arrangement at
high pressure. However, to reveal the underlying physics of this phase transition, we
need to inspect the electronic structure of the competing phases as a function of
pressure. In the next sections, we will discuss some examples throughout the
periodic table for which DFT has been able to provide the fundamental understand-
ing of the phase transitions.

7.4
Alkali Metals

Alkali metals are often used as examples of so-called simple metals, where the
electronic structure to a large extent can be compared with the highly simplified
electron gas model. However, they are also of technological interest primarily as
liquid coolants for nuclear reactors. These metals have high compressibilities and
low melting points, so their phase diagrams have been determined over a consid-
erable range of volume compressions. Unexpectedly, these high-pressure studies
show complex phase diagrams with many crystal structures.

Among them, cesium (Cs) is themost-studied alkalimetal and exhibits an unusual
sequence of phase transitions under pressure. Cs is also the only alkali metal that has
beendemonstrated to become superconducting underhighpressure [16]. At ambient
conditions, Cs is stable in the high-symmetry body-centered cubic (bcc) structure,
which transforms into a face-centered cubic (fcc) phase at approximately 2.3GPa
[17, 18]. The fcc phase undergoes a structural phase transition to a tetragonal
structure (Cs IV) at approximately 4.3GPa, which is stable up to 10GPa, where it
transforms into an orthorhombic structure (Cs V phase) with space group Cmca and
16 atoms in the unit cell [19, 20]. The coordination numbers change from 12 ! 8
10/11 ! 12 when going from fcc ! Cs IV ! Cs V ! Cs VI as the pressure is
increased.

First principles have been able to catch the correct crystallographic transformation
sequence in Cs, namely, fcc ! Cs IV ! CsV ! Cs VI; and this sequence can be
explained by a simple canonical band energy model and population of d-states [21].
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This is illustrated by the canonical energy difference as a function of the number of d-
electrons presented in Figure 7.1. One can see that for d-band filling up to 0.4 the
eigenvalue sum of the canonical bands stabilizes the fcc structure, for d-band filling
between 0.4 and 0.55, it stabilizes Cs IV; for 0.55–0.8 interval, it stabilizes Cs V; and
beyond 0.8 and up to 2.0, it shows the stability of Cs VI (dhcp) phase. Thus, the d-
bands, which are almost empty at ambient conditions, start to be filled out, as
pressure is applied, by electrons that are transferred from s-like states. Once the s- to
d-transition is completed, that is, when the 6s electron states is completely trans-
formed to the d-band, the hcp structure become stable. It should be noticed that in the
periodic table, another metal with one d-electron (yttrium) is also stable in the hcp
structure. These results suggest that different crystal structures, as for instance Cs V,
can be designed just by changing d-band population. This could be achieved by
forming alloys, for instance.

There is another crystallographic phase of Cs (Cs III), which has caught a lot of
attention both experimentally and theoretically [22]. This phase was first believed to
be related to an isostructural transition. However, more recent experimental and
theoretical investigations have demonstrated that Cs III phase possesses a complex
type of structure with an orthorhombic symmetry belonging to the space group
C2221, which contains 84 atoms in the unit cell. This type of structure has also been
observed in Rb III phase, which contains 52 atoms in the unit cell [23, 24]. To
understand the stabilization of this phase, let us first consider the variation of d-band
occupancy as a function of volume as calculated by full potential LMTOFigure 7.2. As
can be seen, the d-band occupation is very similar for both elements in the region
whereCs III andRb III are stable, which iswhenV=V0 is in the range 0.418–0.430 for
Cs and 0.310–0.334 for Rb. One important result is that, in the case of Cs, at

Figure 7.1 Energy differences obtained from canonical d-bands as a function of the d-band filling
for Cs VI (dotted-dashed line), Cs IV (dashed line), and Cs V (dotted line) structure. The fcc (solid
line) phase is used as the reference level. From Ref. [21].
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V=V0 ¼ 0.42, all other phases (namely, fcc, Cs IV, and Cs V) have the same self-
consistent FPLMTO total energy, that is, they are degenerated. This volume corre-
sponds to a d-band occupation of 0.52 (see Figure 7.1). Now, we have a remarkable
agreement between FPLMTO and the canonical bandmodel because this is the exact
common crossing point for all three curves in Figure 7.1. The structures involved in
this energy crossing display a variety of coordination numbers (12 ! 8 ! 10/
11 ! 12). This allows the stabilization of the complex Cs III phase, which possesses
coordination numbers for individual atoms between 8 and 11. Thus, Cs III takes full
advantage of the other near-degenerated phases. However, this can happens only in a
narrow pressure interval.

7.5
Alkaline Earth Metals

The behavior of alkaline earthmetals is strongly influenced by occupation of d-bands
in a similar way as alkali metals shown above. Here, we describe such effects in
calcium (Ca) and in less extent in strontium (Sr), which are elements in themiddle of
this group so that they may combine features of their lighter and heavier congeners.

The phase diagram of Ca is quite unique. With increasing hydrostatic pressure, in
a range from 0 to 40 GPa, it undergoes the following sequence of structural phase
transitions [25–27]: fcc ! bcc ! simple cubic (sc); that is, the number of nearest
neighbors (NN) decreases starting from 12NN (fcc), via a structure with 8NN (fcc),
and then with only 6NN (sc). First-principles calculations display very good agree-
ment with the experimental values for the transition pressures and volume col-
lapses [27]. The underlying physics of these phase transitions are understood from
arguments based on the d-electron density distribution of valence electrons as a

Figure 7.2 Occupation number for Cs 5d and Rb 4d electrons as a function of volume. From
Ref. [23].
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function of volume. The loss of coordination is compensated by a larger atomic
wavefunction overlap as shown, from FPLMTO calculations, in Ref. [27].

Let us describe in more detail the physical mechanisms for the stabilization of the
simple cubic structure under pressure in Ca. The reduced volumes causes the d-
states to become increasingly populated, from being essentially empty at ambient
conditions (at the experimental volume under ambient conditions,V0) to become the
dominant state at around V/V0¼ 0.3. Furthermore, the bandwidth of the d-states is
demonstrated to scale as (1/V)(5/3) so that it becomes increasingly important for
decreasing volumes. This effect favors the sc phase over the bcc phase. A further
decrease in the volume stabilizes again the bcc structure mainly due to Born–Mayer
repulsion of the 3p core states. In fact, the basic mechanism for the structural
behavior of Ca under pressure is determined by an interplay between Madelung, d-
band, and Born–Mayer contributions. This has been illustrated by fitting the
calculated bcc–sc energy difference (the spd-valence curve in Figure 7.3) with the
following function [27]:

Figure 7.3 Energy difference between the bcc and sc crystal structures for Ca as a function of
volume (V/Veq, Veq¼ equilibrium volume) for different choices of the basis set. The bee structure is
used as the zero energy reference level. From Ref. [27].
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In Equation 7.13, the first, second, and third terms represent the change in the
Madelung, d-band energy, and Born–Mayer contribution, respectively. For Ca, the
fitting parameters are found to be A ¼ 31:0, B ¼ 0:12, and C ¼ 27:0. Besides Ca,
magnesium (Mg) is also predicted to be able to undergo a phase transition to sc
structure but at higher transition pressure of 6.6Mbar. This is because unoccupied d-
states in Mg lies at higher energies and therefore higher pressures are required to
start their population. For Be, the d-orbitals are lying at very high energy so that the sc
structure is not stable at any volume.

With increasing pressure for levels above 113GPa, Ca undergoes two new
structural phase transitions as reported in recent experiments [28]. These crystal
structures, which could not be resolved directly from the analysis of the diffraction
patterns, were determined from ab initio metadynamics simulations [29]. One of
them, denoted Ca IV, forms a tetragonal structure, which consists of two helical
chains along the c-axis, while the other one is an orthorhombic lattice of four zigzag
chains. At even higher pressures, >122 GPa, first-principles calculations predicted
that Ca V transforms into a stable Sc II type incommensurate complex [30]. This
structure is composed by two tetragonal sublattices, the host (i) and the guest (ii), with
the same a-lattice parameter but different values for c-lattice parameter with the ratio
c ¼ c1=c2 being an irrational number. In the ab initio investigation, the incommen-
surate structure is modeled by a supercell containing the host and the guest cells but
forming a commensurate structure with a rational c ratio. This approach is based on
the fact that the total energy is a continuous function of the structure parameters so
that the energy of an analogue commensurate structure with c ratio close to the
incommensurate one will approach the energy of the true incommensurate struc-
ture. Therefore, the total energy as a function of c ratio curve must display a
minimum value for the true incommensurate structure. This method appears to
be very good to assess the parameters of the incommensurate phase from first-
principles calculations.

Another alkaline earth element displaying a complex phase diagram is Sr, which
comes just bellow Ca in the periodic table. At ambient conditions, Sr stabilizes in an
fcc structure, which transforms into a bcc structure at approximately 26 GPa.
Subsequently, it undergoes the following sequence of structural transformations:
bcc ! Sr III ! Sr IV ! Sr V, with the transition pressures at approximately 26, 35,
and 46GPa, respectively [26]. Sr IV structure is shown to be monoclinic belonging to
space group Ia with 12 atoms in the unit cell whereas Sr V is a kind of host–guest
incommensurate structure. The Sr III phase is still not clearly resolved. The main
candidate is tetragonal b-tin structure. However, first-principles-based studies have
demonstrated that either it is not the correct structure or it exists as an alternative path

7.5 Alkaline Earth Metals j279



(metastable structure) for the transition frombcc to Sr IVphase [31]. It could also be a
coexisting structure with an unsolved smooth phase. All these crystallographic
transformations are driven by an electron transfer process from sp-valence states
to d-like states as for other elements such as Ca.

The results described so far, show that simple metals such as Ca and Sr displays
quite a complex behavior under high pressure with a rich phase diagram. These
discoveries have been made possible thanks to the advances on high-pressure
techniques and on first-principles theory.

7.6
Transition Metals

In transitionmetals, themost important parameter controlling the stability of a given
crystal structure is the d-state occupation number. This is due to the fact that the
density of states projected on d-states for the bcc, fcc, and hexagonal close-packed
structure show characteristic element independent shapes indicating that the one-
electron contribution to the total energy dictates the crystal–structure stability.
Therefore, by using the structure constant, which is a property related only to a
given crystal structure and not to the specific material (or potential), Duthie and
Pettifor [32] as well as Skriver [33] have been able to explain the well-known crystal
structure sequence of the transition metals, that is, hcp ! bcc ! hcp ! fcc. Their
results show that the crystal structure of a certain metal is expected to be modified if
an increase of its d-states occupation occurs. Thus, under high pressure where the
occupation of d-bands are modified the transition metal must undergo crystallo-
graphic phase transformations. For example, Zr (hcp) is expected to become more
similar to its neighbor to the right in the series, Nb (bcc), and consequently the bcc
structure should be stabilized, as it is subjected to external pressure. This has been
confirmed experimentally and demonstrated theoretically [34–36].

In fact,most of high-pressure experimental studies can be explained on the basis of
the work by Duthie and Pettifor and Skriver. However, at very high pressures, other
contributions become relevant requesting more advanced theoretical models. We
show in Figure 7.4 the change in the total energy as a function of the cell volumewith
reference to fcc structure for Y, Ti, Rh, Pd, and Pt. For Y and Ti the fcc structure has
been used instead of hcp, which has been shown to be a good approximation.One can
notice that all studied metals are stable in the fcc structure at large volumes and that
they all become bcc at sufficiently low volumes or high pressures. In the case of Yand
Ti, this can be understood from the above-mentioned band filling effect since a
reduced volume corresponds to an increased d occupation and thus Y and Ti are
expected to eventually stabilize in the bcc structure. However, for Rh, Pd, and Pt, the
stabilization of the bcc structure is unexpected for the following reason. For d-band
occupation larger than 7, the fcc structure should be stable and for these metals an
external pressurewill notmove the d-band occupation out of this range. The results of
Figure 7.4 thus represent a breakdown of the arguments based on the filling of a
canonical d-band. It should be pointed out that the density of states at these high
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compressions no longer resemble the well-known canonical d-shape emphasizing
that the standard concept of canonical d-bands is no longer applicable. At this high
compression, the pseudo-p-bands starts to broaden into bands, which will hybridize
with the d valence states. The influence of p�d hybridization is in fact very significant
leading to stabilization of structures that are far from being stable at ambient
conditions [37].

Below, we describe the behavior of transition metals in the Chromium group,
which includes Cr, Mo, and W. These elements display pronounced similarities in
their crystallographic behavior. All of them stabilize in a bcc structure at ambient
conditions and undergo structural phase transformations to hcp and fcc with volume
collapses in the range from 30 to 50% of the experimental volume. The band filling
(not the Madelung) is the contribution to the total energy that dictates the crystal
structure in these systems. At extraordinary high-pressure, Cr, Mo, andW transform
back into the bcc structure and again this is explained by the p�d hybridization
discussed above [38].

Another transition metal that plays an important role in the human society and
deserves our attention in this text is gold (Au). This element is exceptionally stable to
chemical reactions and to extreme pressures and temperatures [39]. For many years,

Figure 7.4 Calculated total energy difference between the bcc and fcc structures for Y, Ti, Rh, Pd,
and Pt as a function of volume. The energy of the fcc phase is used as the reference level. From
Ref. [37].

7.6 Transition Metals j281



the equation of state of Au has been used as standard for high-pressure studies
[40, 41]. However, this status is now under debate since the experimental confir-
mation of the fcc–hcp phase transition [42], which was previously predicted from
first-principles theory [43]. This crystallographic modification takes place at approx-
imately 230 GPa and the transition pressure increases with increasing temperature.
Such phenomenon is ascribed to d! sp electron transfer, which is connected to
relativistic effects. Similar elements such as Cu, Ag, and Pt are not expected to
undergo similar phase transitions. For Pt, this is explained by the fact that its d-band
is not completelyfilled compared to d-band ofAu,which, according to canonical band
model, stabilizes the fcc structure. In the case of Cu andAg, the relativistic effects are
less pronounced (since they are lighter thanAu) so that the d! sp electron transfer is
lower. These results shown that, in the sense of structural stability at high pressure,
Au is less stable than copper, silver, and platinum.

As a last example of the transitionmetal subsection, we analyze the behavior of iron
(Fe) under high pressure. Iron is considered to be themain constituent of the Earth�s
core and therefore a great deal of effort has been devoted to understand its properties
under high pressure and high temperature [44–49]. At ambient conditions, Fe
assumes a hcp structure, which is stable for a wide range of pressure and temper-
ature. The results from shock-wave experiments suggested that iron undergoes a
structural phase transition to a bcc phase [50]. First-principles calculations at 0 K have
not been able to reproduce this result [51, 52]. The energy difference between hcp and
bcc is found to be large and furthermore the bcc phase is found to be mechanically
unstable. Actually, the bcc phase is also dynamically unstable at low T. However,
quasi-ab initio molecular dynamics simulations have shown that indeed Fe trans-
forms into a bcc structure before melting showing that high temperature is required
in order to promote this phase transition [49]. This could be connected to eventual
anharmonic effects at high T, which is still a topic of study. These results indicate that
Fe in the Earth�s inner core must be stable in the bcc phase.

7.7
Group III Elements

The group-IIIA elements aluminum (Al), gallium (Ga), and indium (In) display a
quite surprising behavior under high pressure, which has become a very active topic
of experimental and theoretical investigations [53–56]. The lightest element, Al,
adopts the high-symmetry fcc structure already at ambient conditions and no
structural transformation is observed up to pressures of approximately 220GPa.
Gallium transforms into the bct-In phase (body-centered tetragonal structure), which
is called Ga III phase, at a pressure of approximately 14GPa. Increasing further, the
pressure Ga undergoes a new crystallographic modification to the fcc structure at
approximately 120GPa. This structural phase transition from the lower symmetry bct
to the high-symmetry fcc structure is not observed in In up to the highest applied
pressure of 67GPa and first-principles calculations at 0 K predicted that this phase
transition may take place at extremely high pressure of approximately 800GPa [56].
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Such results indicate that these group IIIA elements follow a trend that is exactly the
opposite behavior as regards the corresponding states rule.

The competition between the high-symmetry fcc and low-symmetry bct struc-
ture, for Al, Ga, and In, can be understood from the analysis of the s-p
hybridization (or mixing) of the valence band. The reader should see the results
presented in Figure 3 of Ref. [56]. The degree of s-p mixing is shown to follow the
same trend as the change of the band energy as a function of tetragonal distortion
of the fcc structure. Al displays a maximum of such s-p mixing at c/a ratio of

ffiffiffi
2

p
corresponding to fcc structure already at equilibrium volume. For Ga and In, this
is achieved only at higher pressures. In the case of Ga, the maximum s-p mixing at
c/a ratio of

ffiffiffi
2

p
occurs exactly at the transition pressure whereas for In this happens

before the transition pressure is reached. This delay for the stabilization of the fcc-
In is due to formation of van Hove singularity on the density of states as s-p mixing
gap evolves, which indicates structure instability. This peak is moved away from
the Fermi energy by tetragonal distortion of fcc structure. When this part of the
band is moved above, the Fermi energy of the fcc phase becomes stable what
occurs at even higher pressure. This different evolution of s-p hybridization gap
was demonstrated to be related to relativistic effects that are more significant in In
compared to Ga.

The simplest group IIIA element, boron (B), is one of the most challenging
systems for high-pressure study due to its structural complexity in a variety of
polymorphic forms even in the ground state [57]. One of its polymorphs b-B
eventually transforms from a nonmetal to a superconductor above 160 GPa with
a transition temperature (Tc) of 6 K [58]. This is an important finding that has
prompted a great deal of studies. However, this superconducting phase remains
unknown. A good candidate is the a-Ga phase since it has been shown, from total-
energy calculations, to be more stable than bct and fcc phases at high pressure. In a
recent study, Ma et al. [59] have predicted from ab initio theory that a-Ga B is a good
superconductor with strong anisotropy, which is a consequence of the two-dimen-
sional nature of its electronic structure. The calculated electron–phonon coupling
constant l increases with pressure, which shows consistence with the experimental
finding where the transition temperature increases with pressure.

7.8
Group IV Elements

In this section, we will focus on the high-pressure behavior of silicon (Si) and
germanium (Ge), which are group IV elements of great technological importance in
the electronics industry. Besides that, these materials display a rich phase diagram,
which has attracted a lot of theoretical as well as experimental attention. At ambient
conditions, Si is stable in the diamond-type structure [60] and at approximately 12
GPa it transforms to the b-Sn structure [61]. The b-Sn structure is stable up to 16GPa
above which Si changes to the primitive hexagonal (ph) structure [62, 63]. Actually, in
the narrow pressure range 13–16GPa an intermediate phase forms, which is
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orthorhombic belonging to the Imma space group. Furthermore, Si becomes a
superconductor in its high pressure, primitive hexagonal phase. Further increase in
pressure induces other two crystallographic phase transitions, namely, ph ! hcp!
fcc at approximately 42 and 78GPa, respectively. Beside those, a new phase has also
been discovered, which is the so-called Si VI phase. FPLMTOmethod has been shown
to be accurate enough to catch this phase transition even though Si VI exists in a very
narrow pressure range [64]. In Figure 7.5, we show the energy difference between the
ph, hcp, and Si VI crystal structures for Si as a function of volume. As can be seen, Si
first transforms from ph to Si VI and then into hcp. The structure of Si VI is an
orthorhombic structure belonging to space group Cmca and with coordination
number of 10/11. Thus, with increasing pressure, Si increase the number of nearest
neighbors in the sequence: 8NN (ph) ! 10/11 (Si VI) ! 12 (hcp). This is because the
repulsive Born–Mayer term dominates the total energy in Si under high pressure so
that at the lowest volumes the structures with better packing become stable.

Gemanium displays a sequence of pressure-induced phase transitions similar to
Si. It adopts the diamond-type structure at ambient conditions and at approximately
10GPa it transforms to the b-Sn structure [62]. This structure further transforms to
the simple hexagonal (sh) structure at 75GPa, which stays stable up to 102GPa when
a hcp structure stabilizes [65]. Between the b-Sn and sh structure at approximately
75GPa, a new orthorhombic phase with the Imma space group was identified.
Theoretical studies based on ab initio calculations have correctly reproduced the
observed diamond to b-Sn phase transition as well as the phase sequence b-Sn
! Imma! sh, as a function of increasing pressure. More recently, full potential
LMTO calculations have demonstrated that the Cmca stabilizes in a narrow pressure
interval between sh and hcp, similar to Si [66]. This is illustrated in Figure 7.6.Hence,

Figure 7.5 Energy difference between the ph, hcp, and Si VI crystal structures for Si as a function of
volume. The Si VI structure is used as the reference level. From Ref. [64].
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the repulsive Born–Mayer term also dominates the total energy in Ge stabilizing the
close-packed structures at extremely high pressure.

7.9
Group V Elements

The group V elements are not considered to be of high technological importance
except when combined with other elements as in the case of GaAs. Therefore, they
have attracted less attention compared to other elements in the periodic table. Here,
we will focus on the high-pressure behavior of phosphorus (P), which displays
peculiar crystallographic properties. At ambient conditions, it forms a layered
structure consisting of six-membered rings, which displays orthorhombic symmetry
and is called A17 phase [67]. In this phase, phosphorus is a narrow band gap
semiconductor with an energy gap of 0.3 eV [68]. A transition from the orthorhombic
(A17) to the rhombohedral structure, A7 phase, occurs at 5.5GPa and already at a
slightly higher pressure of 11GPa, it undergoes a new phase change to the simple
cubic (sc) structure [69]. This phase is stable for a wide pressure range and only at
around 137GPa another crystallographic rearrangement takes place when a simple
hexagonal (sh) structure is stabilized. High-pressure experimental studies on the
stability of sc phase have revealed that the sc-sh transition occurs via an intermediate
phase (P IV) whose crystal structure is still under debate. The diffraction measure-
ments suggest that this structure might be the consequence of a monoclinic
distortion along [1 1 0] direction in the sc structure. With increasing further the

Figure 7.6 Energy difference between the sh, hcp, Cmca, dhcp, and fcc crystal structures forGe as a
function of volume. The Cmca structure is used as the energy reference level. Reprinted with
permission of [R. Ahuja and B. Johannson, Journal of Applied Physics, Vol. 89, Issue 5, p. 2547].
Copyright American Institute of Physics 2001.
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Figure 7.7 Total energy of phosphorus as a function of volume for different structures. The total
energy of the bcc structure is taken as a reference level. From Ref. [70].

pressure, at around 262GPa, sh is transformed into a bcc structure. The stabilization
of this high-symmetry structure at very high pressure is in line with the phase
diagram of other heavier group V elements.
Density-functional theorywithin local density approximationhas been shown to be

successful to describe underlying physics of P under pressure. First of all the
semiconductor state with a narrow band gap in A17 phase is well reproduced from
different implementations ofDFT.TheA17-A7 transition is found to be accompanied
by a transition from the semiconductor to semi-metallic state whereas the higher
pressure phases (sc, sh and bcc) display a more free electron-like density of states as
can be seen in Figure 2 of Ref. [70]. Thus, the metallic behavior of phosphorus
increases with increasing pressure. Possible structures to the intermediate P IV
phase have also been investigated through FPLMTO calculations where the lowest
energy configuration was found to assume an orthorhombic structure belonging to
space group Imma. The total energy difference between different phases of P and its
bcc phase as a function of volume is displayed in Figure 7.7, where the stabilization of
Imma phase is illustrated. One can notice that sh and Imma structures are quite close
in energy so that they may coexist for some pressure interval. The crystallographic
sequence of Phosphorus under pressure can be understood from the variations of
bandwidth as shown in Figure 2 of Ref. [70]. This is associated with the degree of
hybridization between sp- and d-bands.

7.10
Overview

The advances on the first-principles calculation methods along with a significant
development of computational facilities has made feasible the investigation of
complex crystal structures improving our understanding of the solids behavior when
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subject to a wide range of pressure and temperature. This chapter shows some
examples of elemental compounds in which the electronic structure theory success-
fully revealed the underlying physics of the pressure (or temperature in some
cases)-induced crystallographic phase transitions. However, most of these studies
still relied strongly on the experimental results to determine the structure sequences
as pressure is increased. In the past 10 years, a great deal of effort has been devoted to
relax this constrain, that is, to increase the prediction power of ab initio theory.

In fact, we are witnessing now an incredible improvement of ab initio theory
capability to predict new structures thanks to the developments of search tools to
explore the configurational space, which are based on genetic algorithm methods,
random search methods, data mine approaches, topological modeling methods, and
so on. These methods are based on 0K calculations and vibrational contributions for
the free energy is not included. However, with increasing temperature, more states
become accessible on the energy landscape and the latter contribution must be
added. To this end, two methods stand out, namely, the ergodicity search algorithm
based on Monte Carlo simulations and the metadynamics approach. For getting a
good overview about all these methods (at 0 K or finite temperature), the reader is
recommended to see the review article by Woodley and Catlow [14].

Another important topic that has also experienced a significant advance is the
investigation of dynamical stability of the different phases. In some cases,
although the crystal structure is found to be the stable configuration, from
thermodynamics viewpoint, it is not experimentally observed. This could be due
to dynamical and/or mechanical instability. The latter is more straightforward to
assess from first-principle calculations but the former request heavy calculations
of the full phonon spectra. The development of frozen phonon methods, which
makes use of a direct method to calculate the derivatives of the total energy with
respect to perturbations, has allowed the calculation of phonon spectra of
complexes systems. The dynamical stability of different phases is already taken
into account in the metadynamics simulations, but it must be incorporated in
the other search methods.

In spite of the significant advances already achieved by the scientific community,
there still are many hurdles to be overcome in order to investigate more realistic
situations when, for example, defects and interfaces play a role. To this end, we
believe that the greatest progress will come from research efforts resulting from a
close collaboration between theory and experiments.

References

1 Hohenberg, P. and Kohn, W. (1964)
Inhomogeneous electron gas. Phys. Rev.,
136, B864.

2 Kohn,W.andSham,L.(1965)Self-consistent
equations including exchange and
correlation effects. Phys. Rev., 140, A1133.

3 Ceperley, D.M. and Alder, B.J. (1980)
Ground-state of the electron-gas by a

stochastic method. Phys. Rev. Lett., 45,
566–569.

4 Becke, A.D. (1988) Density-functional
exchange-energy approximation with
correct asymptotic-behavior. Phys. Rev. A,
38, 3098–3100.

5 Perdew, J.P. andWang, Y. (1992) Accurate
and simple analytic representation of the

References j287



electron-gas correlation-energy. Phys. Rev.
B, 45, 13244–13249.

6 Perdew, J.P., Burke, K., and Ernzerhof, M.
(1996) Generalized gradient approxima-
tion made simple. Phys. Rev. Lett., 77,
3865–3868.

7 Tao, J., Perdew, J.P., Staroverov, V.N., and
Scuseria, G.E. (2003) Climbing the
density functional ladder: nonempirical
meta-generalized gradient approximation
designed for molecules and solids. Phys.
Rev. Lett., 91, 146401.

8 Martin, R.M. (2004) Electronic Structure
Basic Theory and Practical Methods,
Cambridge University Press; and the
references therein.

9 Singh, D. (1994) Plane Waves,
Pseudopotentials and the LAPW Method,
Kluwer Academic.

10 Bl€ochl, P.E. (1994) Projector augmented-
wave method. Phys. Rev. B, 50,
17953–17979.

11 Skriver, H.L. (1984) The LMTO Method,
Springer, Berlin.

12 Pickard, C.J. and Needs, R.J. (2007) When
is H2O not water? J. Chem. Phys., 127,
244503.

13 Curtarolo, S., Morgan, D., Persson, K.,
Rodgers, J., and Ceder, G. (2003)
Predicting crystal structures with data
mining of quantum calculations. Phys.
Rev. Lett., 91, 135503.

14 Woodley, S.M. and Catlow, R. (2008)
Crystal structure prediction from first
principles.Nat.Mater., 7, 937–946; and the
references therein.

15 Baroni, S., de Gironcoli, S., Corso, A.D.,
and Giannozzi, P. (2001) Phonons and
related crystal properties from density-
functional perturbation theory. Rev. Mod.
Phys., 73, 515–562.

16 Wittig, J. (1970) Pressure-induced
superconductivity in cesium and yttrium.
Phys. Rev. Lett., 24, 812.

17 Hall, H.T., Merrill, L., and Barnett, J.D.
(1964) High pressure polymorphism in
cesium. Science, 146, 1297.

18 Anderson, M.S., Gutman, E.J., Packard,
J.R., andSwenson,C.A. (1969) Equationof
state for cesium metal to 23 Kbar. J. Phys.
Chem. Solids, 30, 1587.

19 Takemura, K., Minomura, S., and
Shimomura, O. (1982) X-ray-diffraction

study of electronic transitions in cesium
under high-pressure. Phys. Rev. Lett., 49,
1772–1775.

20 Schwarz, U., Takemura, K., Hanfland, M.,
and Syassen, K. (1998) Crystal structure of
cesium-V. Phys. Rev. Lett., 81, 2711–2714.

21 Ahuja, R., Eriksson, O., and Johansson, B.
(2000) Theoretical high-pressure studies
of Cs metal. Phys. Rev. B, 63, 014102.

22 Young, D.A. (1991) Phase Diagrams of the
Elements, University of California Press,
Berkeley.

23 Osorio-Guill_en, J.M., Ahuja, R., and
Johansson, B. (2004) Structural phase
transitions in heavy alkali metals under
pressure. ChemPhysChem, 5, 1411–1415.

24 See references in Ref. [23].
25 Skriver, H.L. (1982) Calculated structural

phase-transitions in the alkaline-earth
metals. Phys. Rev. Lett., 49, 1768–1772.

26 Olijnyk, H. and Holzapfel, W.B. (1984)
Phase-transitions in alkaline-earth metals
under pressure. Phys. Lett. A, 100,
191–194.

27 Ahuja, R., Eriksson, O., Wills, J.M., and
Johansson, B. (1995) Theoretical
confirmation of the high pressure simple
cubic phase in calcium. Phys. Rev. Lett., 75,
3473–3476.

28 Yabuuchi, T., Nakamoto, Y., Shimizu, K.,
and Kikegawa, T. (2005) New high-
pressure phase of calcium. J. Phys. Soc.
Jpn, 74, 2391–2392.

29 Ishikawa, T. et al. (2008) Theoretical study
of the structure of calcium in phases IV
and V via ab initio metadynamics
simulation. Phys. Rev. B, 77, 020101(R).

30 Arapan, S., Mao, H., and Ahuja, R. (2008)
Prediction of incommensurate crystal
structure in Ca at high pressure. Proc. Nat.
Acad. Sci. USA, 105, 20627–20630.

31 Phusittrakool, A., Bovornratanaraks, T.,
Ahuja, R., and Pinsook, U. (2008) High
pressure structural phase transitions in Sr
from ab initio calculations.Phys. Rev. B, 77,
174118.

32 Duthie, J.C. and Pettifor, D.G. (1977)
Correlation between d-band occupancy
and crystal-structure in rare-earths. Phys.
Rev. Lett., 38, 564–567.

33 Skriver,H.L. (1985)Crystal-structure from
one-electron theory. Phys. Rev. B, 31,
1909–1923.

288j 7 Electronic Structure and High-Pressure Behavior of Solids



34 Sikka, S.K., Vohra, Y.K., and
Chidambarum, R. (1982) Omega-phase in
materials. Prog. Mater. Sci., 27, 245–310.

35 Xia, H., Parthasarathy, G., Luo, H., Vohra,
Y.K., and Ruoff, A.L. (1990) Crystal
structure of group-IVAmetals at ultrahigh
pressures. Phys. Rev. B, 42, 6736–6738.

36 Ahuja, R., Wills, J.M., Johansson, B., and
Eriksson, O. (1993) Crystal structures of
Ti, Zr, and Hf under compression: theory.
Phys. Rev. B, 48, 16269–16279.

37 Ahuja, R., S€oderlind, P., Trygg, J., Melsen,
J., Wills, J.M., Johansson, B., and
Eriksson, O. (1994) Influence of
pseudocore valence-bandhybridizationon
the crystal-structure phase stabilities of
transition metals under extreme
compressions. Phys. Rev. B, 50,
14690–14693.

38 S€oderlind, P., Ahuja, R., Eriksson, O.,
Johansson, B., and Wills, J.M. (1994)
Theoretical predictions of structural phase
transitions in Cr, Mo, and W. Phys. Rev. B,
49, 9365–9371.

39 Hammer, B. andNorskov, J.K. (1995)Why
gold is the noblest of all metals? Nature,
376, 238–240.

40 Batani, D., Balducci, A., Beretta, D.,
Bernardinello, A., Lower, T., Koenig, M.,
Benuzzi, A., Faral, B., and Hall, T. (2000)
Equation of state data for gold in the
pressure range< 10 TPa. Phys. Rev. B, 61,
9287–9294.

41 Dewaele, A., Loubeyre, P., and Mezouar,
M. (2004) Equations of state of six metals
above 94 GPa. Phys. Rev. B, 70, 094112.

42 Dubrovinsky, L., Dubrovinskaia, N.,
Crichton, W.A., Mikhaylushkin, A.S.,
Simak, S.I., Abrikosov, I.A., de Almeida,
J.S., Ahuja, R., Luo, W., and Johansson, B.
(2007) Noblest of all metals is structurally
unstable at high pressure. Phys. Rev. Lett.,
98, 045503.

43 Ahuja, R., Rekhi, S., and Johansson, B.
(2001) Theoretical prediction of a phase
transition in gold.Phys. Rev. B, 63, 212101.

44 Boehler, R. (1993) Temperatures in the
Earth�s core from melting-point
measurements of iron at high-static
pressures. Nature, 363, 534–536.

45 Shen, G., Mao, H.K., Hemley, R.J., Duffy,
T.S., and Rivers, M.L. (1998) Melting and
crystal structure of iron at high pressures

and temperatures. Geophys. Res. Lett., 25,
373–376.

46 Alfe, D., Gillan, M.J., and Price, G.D.
(1999) The melting curve of iron at the
pressures of the Earth�s core from ab initio
calculations. Nature, 401, 462–464.

47 Laio, A., Bernard, S., Chiarotti, G.L.,
Scandolo, S., and Tosatti, E. (2000) Physics
of iron at Earth�s core conditions. Science,
287, 1027–1030.

48 Steinle-Neumann,G., Stixrude, L., Cohen,
R.E., and G€ulseren, O. (2001) Elasticity of
iron at the temperature of the Earth�s
inner core. Nature, 413, 57–60.

49 Belonoshko, A.B., Ahuja, R., and
Johansson, B. (2003) Stability of the body-
centred-cubic phase of iron in the Earth�s
inner core. Nature, 424, 1032–1034.

50 Brown, J.M. and McQueen, R.G. (1986)
Gr€uneisen Parameter, and elasticity for
shocked iron between 77 GPa and 400
GPa. J. Geophys. Res, 91, 7485–7494.

51 Stixrude, L., Cohen, R.E., and Singh, D.J.
(1994) Iron at high pressure: linearized-
augmented-plane-wave computations in
the generalized-gradient approximation.
Phys. Rev. B, 50, 6442–6445.

52 S€oderlind, P., Moriarty, J.A., and Wills,
J.M. (1996) First-principles theory of iron
up to earth-core pressures: structural,
vibrational, and elastic properties. Phys.
Rev. B, 53, 14063–14072.

53 Greene, R.G. et al. (1994) Al as a simple
solid: high-pressure study to 220 GPa (2.2
Mbar). Phys. Rev. Lett., 73, 2075–2078.

54 Schulte, O. and Holzapfel, W.B. (1997)
Effect of pressure on the atomic volume of
Ga and Tl up to 68 GPa. Phys. Rev. B, 55,
8122–8128.

55 Kenichi, T., Kazuaki, K., and Masao, A.
(1998) High-pressure bct-fcc phase
transition in Ga. Phys. Rev. B, 58,
2482–2486.

56 Simak, S.I., H€aussermann, U., Ahuja, R.,
Lidin, R., and Johansson, B. (2000)
Gallium and indiumunder high pressure.
Phys. Rev. Lett., 85, 142–145.

57 Donohue, J. (1974) The Structures of
the Elements, John Wiley & Sons, Inc.,
New York.

58 Eremets, M.I., Struzhkin, V.V., Mao, H.K.,
andHemley,R.J. (2001) Superconductivity
in boron. Science, 293, 272–274.

References j289



59 Ma, Y., Tse, J.S., Klug, D.D., and Ahuja, R.
(2004) Electron–phonon coupling of a-Ga
boron. Phys. Rev. B, 70, 214107.

60 Minomura, S. andDrickamer,H.G. (1962)
Pressure induced phase transitions in
silicon, germanium and some 3–5
compounds. J. Phys. Chem. Solids, 23, 451.

61 Jamieson, J.C. (1963) Crystal structure at
highpressuresofmetallicmodificationsof
silicon and germanium. Science, 139, 762.

62 Olijnyk, H., Sikka, S.K., and Holzapfel,
W.B. (1984) Structural-phase transitions
in Si andGeunder pressures up to 50GPa.
Phys. Lett. A, 103, 137–140.

63 Hu, J.Z. and Spain, I.L. (1984) Phases
of silicon at high-pressure. Solid State
Commun., 51, 263–266.

64 Ahuja, R., Eriksson, O., and Johansson, B.
(1999) Theoretical high-pressure studies
of silicon VI. Phys. Rev. B, 60,
14475–14477.

65 Vohra, Y.K., Brister, K.E., Desgreniers, S.,
Ruoff, A.L., Chang, K.J., and Cohen, M.L.

(1986) Phase transition studies of
Germanium up to 1.25 Mbar. Phys.
Rev. Lett., 56, 1944–1947.

66 Ahuja, R. and Johansson, B. (2001)
Theoretical prediction of the Cmca phase
in Ge under high pressure. J. Appl. Phys.,
89, 2547.

67 Brown, A. and Rundqvist, S. (1965)
Refinement of crystal structure of
black phosphorous. Acta Crystallogr.,
19, 684.

68 Keyes, R.W. (1953) The electrical
properties of black phosphorus.Phys. Rev.,
92, 580–584.

69 Kikegawa, T. and Iwasaki, H. (1983) An X-
ray-diffraction study of lattice
compression and phase-transition of
crystalline phosphorous. Acta Crystallogr.
B, 39, 158–164.

70 Ahuja, R. (2003) Calculated high pressure
crystal structure transformations for
phosphorus. Phys. Stat. Sol. B, 235,
282–287.

290j 7 Electronic Structure and High-Pressure Behavior of Solids



8
Ab Initio Lattice Dynamics and Thermodynamical Properties
Razvan Caracas and Xavier Gonze

8.1
Introduction

Many physical properties of an atomic crystalline lattice can be successfully deter-
mined from first principles within the static approximation at zero temperature.
However, the crystal lattice is not just a rigid collection of atoms under symmetry
constraints. On the contrary, it is in a continuous dynamical state, with atoms
vibrating around their respective equilibrium positions. The description of as many
of its physical properties, such as phase transitions, infrared or Raman spectra
require the ability to describe the fluctuations of the nuclei positions with respect to
their static equilibriumpositions occurring during these vibrations. The treatment of
such effects, once the properties of the static lattice system are established, can be
done in a coherent framework, treating small deformations by way of perturbation
theory inside density functional theory (DFT) [1, 2]. The corresponding formalism,
called density-functional perturbation theory (DFPT) [3–14] has been already im-
plemented in several software packages (e.g., see Refs [15–23]). The goal of this
chapter is to present a general overview of the DFPT formalism to the readers to use
and understand such programs.

Practical DFPT applications have already generated a large number of studies. In
particular, the computation of selected vibrational frequencies, for example, for
comparison with infrared and Raman data, is now routine, and can be performed for
rather complicated crystal structures (e.g., see Ref. 24). Althoughmore demanding in
resources, both human and CPU time, the computation of the full vibrational
spectrum is an invaluable source of information on the behavior of the crystal under
different thermodynamic conditions. It allows determining whether a structure is
stable against all possible small deformations (e.g., see Refs. [25, 26]), computing the
temperature-dependent properties of this structure, such as thermal dilatation,
temperature-dependent entropy, specific heat, internal energy, or free energy or
allows determining whether a crystalline structure will present local instabilities. For
high-pressure investigations, such analysis is crucial.
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In the following, we will describe the theoretical basis that allow us to obtain
starting from the first principles raw data, the specific quantities that can be linked to
experimental results.

This chapter is organized as follows. In Section 8.2, we present the concept of
interatomic force constants and dynamical matrices, and emphasize that they are
second-order derivatives of the energy. In Section 8.3, we explain how we can
compute within density-functional perturbation theory such as second-order deri-
vatives. In Section 8.4, we focus on dielectric properties and on related infrared and
Raman spectra. Then, in Section 8.5, we present the computation of thermodynamic
quantities and Raman spectra of the polymeric high-pressure phase of nitrogen and
we analyze the dynamical instabilities of ice X under pressure. The chapter ends with
some discussions and perspectives.

8.2
Phonons

For the determination of the dynamical matrix, we start from a system of nuclei and
electrons, in its electronic ground state. In the framework of the Born–Oppenheimer
(BO) approximation (the adiabatic approximation, namely, stating that the electrons
follow instantaneously the movement of the nuclei), the energy of such a system is a
well-defined function of the position of the nuclei that can be computed on the basis
of density functional theory, or any many-body approach to the electronic structure
problem.Wewill refer to this energy as the Born–Oppenheimer ground-state energy
of the system, to which the kinetic energy of the nuclei should be added to obtain a
total energy.With respect to the periodic arrangement of nuclei, corresponding to the
perfect classical crystal at zero temperature, small displacements around the equi-
librium positions occur, and, in a classical viewpoint, evolve as a function of time.
Consequently, the energy of the crystal can be expressed like a Taylor expansion as a
function of the nuclear displacements [12, 14] as

E ¼ Eð0Þ þ
X
aka

qE
qtaka

0
@

1
ADtaka þ

X
aka

X
bk0b

q2E
qtakaqt

b
k0b

0
@

1
ADtakaDt

b
k0b

þ
X
aka

X
bk0b

X
ck00 c

q3E
qtakaqt

b
k0bqt

c
k00 c

0
@

1
ADtakaDt

b
k0bDt

c
k00 c þ . . .

ð8:1Þ

whereDtaka is the displacement of the nucleus k along directiona in the cell labeled a
(with vectorRa), from its equilibriumposition tk. Thefirst termof the series, when all
displacements vanish, correspond to theminimal energy in the static approximation
of the lattice – E(0) (e.g., which is computed in a standard density-functional theory
calculation). The second term of the series development corresponds to the forces on
the atoms that vanish for the equilibrium configuration, at which energy is minimal
and atoms lay in the bottom of the potential wells; hence, there are no linear terms in
Equation 8.1. The third term of the series is called a �harmonic term� and the
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expansion of the energy truncated at second order is called the �harmonic
approximation,� the vibration of the nuclei being treated as a quasielastic lattice.
Truncations of the energy expansion at higher orders are possible and the resulting
equations correspond to anharmonic effects and to higher order properties and will
be treated in some detail in Section 8.4.2. For the time being, let us remain within the
harmonic approximation. Forces and energies are related through the principle of
virtual works: the force exerted on onenucleus in a specific direction is the opposite of
the derivative of the energy due to an infinitesimal change of position of this nucleus
along that direction. When the nuclei are not at their equilibrium position, forces
appear. In the harmonic approximation, they are linearly related to the displacement
of every nucleus:

Fa
ka ¼ �

X
bk0b

q2E
qtakaqt

b
k0b

 !
Dtbk0b: ð8:2Þ

In order to describe the force on one nucleus a that arises because of the
displacement of another nucleus b (which can be even itself), from Equation 8.2
one needs the matrix of interatomic force constants (IFCs):

Cka;k0bða; bÞ ¼ q2E

qtakaqt
b
k0b

 !
: ð8:3Þ

The dynamics of the lattice obeys the classical mechanics law of Newton – forces
equal mass times acceleration. The acceleration of each nucleus due to the forces
acting upon it is then given as

Fa
kaðtÞ ¼ Mk

q2takaðtÞ
qt2

: ð8:4Þ

In the harmonic approximation, the general solutions of the evolution equation,
Equation 8.4, consist in a superposition of the so-called normal modes of vibrations,
labeled by the index s, with amplitude as (to be determined by the initial conditions),
that is,

DtakaðtÞ ¼
X
s

asU
a
sðkaÞeivst þ c:c: ð8:5Þ

where the normal mode angular frequency, vs, corresponds to a pattern of nuclear
displacements Ua

s . Both quantities are determined by the solution of a generalized
eigenvalue equation, involving the interatomic force constants, as well as the masses
of the nucleiX

k0bb

Cka;k0bða; bÞUb
sðk0bÞ ¼ Mkv

2
sU

a
sðkaÞ ð8:6Þ

To simplify the system of equations, wemake use of the invariance of the structure
with respect to the lattice periodicity. The interatomic force constant between the
atom k from cell a and the atom k� from cell b is equal to that between atom k from cell
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a� and atom k� from cell b�, if a� b¼ a�� b�¼ q (Figure 8.1). Consequently, we can
replace (a,b) by thewave vector q, which characterizes the normalmodes of vibration.
These modes have the form of a Bloch wave, namely, the product of a wave vector-
dependent phase factor that varies from cell to cell, by a wave vector-dependent
periodic function:

Ua
sðkaÞ ¼ eiq �RaUmqðkaÞ ð8:7Þ

In the framework of quantum mechanics, such patterns of displacements are
quantized and are called phonons.Note that we replaced the index s by the composite
index mq, where the dependence on the wave vector (q) appears explicitly.

The periodic part of the Bloch wave fulfills a similarly generalized eigenvalue
equation:X

k0b

Dka;k0bðqÞUmqðk0bÞ ¼ Mkv
2
mqUmqðkaÞ ð8:8Þ

expressed in terms of the dynamical matrices, the Fourier transforms of the inter-
atomic force constants

Dka;k0bðqÞ ¼
X
B

Cka;k0bð0; bÞeiq �Rb ð8:9Þ

The corresponding eigendisplacements are normalized such asX
ka

Mk½UmqðkaÞ��UmqðkaÞ ¼ 1 ð8:10Þ

The dynamicalmatrix has dimension 3Nn� 3Nn, whereNn is the number of nuclei
in the unit cell. By diagonalization, we obtain the eigenvalues, which are the square of
the phonon frequencies, and its eigenvectors, which are the displacements corre-
sponding to the atomic vibrations. Each eigenvector has 3Nn components, corre-
sponding to the displacement of each of the Nn atoms along the three Cartesian
directions. The phonons, also named phonon modes, can be degenerated.

Figure 8.1 Interatomic force constants in the harmonic approximation.
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The eigenvalues of the dynamical matrix correspond to the second derivative of the
energy with respect to the corresponding atomic pattern of displacements.

One quick check of the dynamical stability of a given structure is the sign of the
phonon frequencies: if all the phonons have positive frequencies for all wave vectors,
then the structure is dynamically stable and hence at least thermodynamically
metastable. If there are phonons with imaginary frequencies (namely, an eigenvalue
of the dynamicalmatrix is negative) then the structure is dynamically unstable. In this
case, the energy describes a double-well potential as a function of the amplitude of the
atomic displacement corresponding to the unstable phonon eigenvector. The energy
of the crystal is lowered if the atoms move according to this phonon, which usually
results in a second-order phase transition [27].

The dispersion relations, giving the frequency of the phonons as a function of the
wave vector q, form �phonon bands.� As for all waves propagating in a periodic
medium, for example, as electronic waves, the wave vectors are restricted in a portion
of the reciprocal space, the Brillouin zone, whose boundaries are Bragg planes.
Traditionally, the phonon dispersion relations are represented for a selected set of
(high symmetry) lines in the Brillouin zone.

The C point at q¼h0 0 0i is the center of the Brillouin zone. Phonons with that
wave vector have a pattern of displacement with wavelength 1/0¼1 along each of
the three directions of the space. In other words, the displacement pattern is identical
in all unit cells. By contrast, all the other points in theBrillouin zone correspond to the
waves with a finite wavelength and a phase varying from cell to cell, that is,
propagating waves. There are three phonon branches that go to zero frequency
when q approaches 0. They are called the acoustic branches. In these vibrational
modes, all the atoms of the structure move in phase, by the same amount along the
same direction, such as the crystal is actually left invariant, due to the translational
invariance of the energy. Such acoustic branches are found in all phonon spectra. The
dispersion relations of the acoustic branches around C can be related to the elastic
constants tensor. The computation of the dynamical matrix at one specific q wave
vector is now a routine task, if performed in the framework of DFPT (see next
section). Still, it takes a nonnegligible amount of computer time. Because of this, it is
not considered as a good strategy to perform band structure calculations, like for the
one of diamond, based on hundreds of single q wave vector direct evaluations of
dynamical matrices.

Special techniques have been set up to interpolate the phonon dispersion relations
throughout the whole Brillouin zone, from the knowledge of selected dynamical
matrices. Such techniques, building upon the knowledge of asymptotic behavior of
the interatomic force constants, are based on Fourier transforms, and specific
treatment of the dipole–dipole interaction [7, 12].

In the adiabatic and harmonic approximations, the basic equations defining
interatomic force constants, dynamical matrices, dispersion relations, and Bloch
waves are exactly the same as in classical mechanics. However, the dynamics of the
lattice should be described by a many-body nuclear time-dependent wavefunction,
related to the static ground state by phonon creation operators. However, this
difference with classical mechanics has negligible consequences, except at the level
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of the computation of the phonon contribution to thermodynamical quantities or the
atomic temperature factors.

Next, we focus on DFPT that allows the efficient computation of the second-order
derivatives of the energy with respect to arbitrary nuclei displacement, needed to
obtain the dynamical matrices.

8.3
Density-Functional Perturbation Theory

In the density-functional theory [1, 2], we can derive the ground-state energy of the
electronic system by minimization of the following functional:

Eelfyag ¼
Xocc
a

�
yajT þ vextjya

�þEHxc½n� ð8:11Þ

or alternatively

Hjyag ¼ eajyag; where H ¼ T þ vext þ vxc ð8:12Þ

whereya�s are the Kohn–Sham orbitals (to be varied until theminimum is found), T
is the kinetic energy operator, vext is the external potential to the electronic system,
including the one created by nuclei, EHxc is the Hartree and exchange-correlation
energy functional of the electronic density n(r), vxc is the Hartree and exchange–
correlation potential, H is the Hamiltonian operator and the summation runs over
the occupied states a. In the following, we restrict ourselves to the insulating
non-spin-polarized case.

The occupied Kohn–Sham orbitals are subject to the orthonormalization con-
straints,ð

y�
aðrÞybðrÞ dr ¼ hyajybi ¼ dab ð8:13Þ

where a and b label occupied states. The density is generated as

nðrÞ ¼
Xocc
a

y�
aðrÞyaðrÞ ð8:14Þ

The minimization of Eel{ya} under the orthonormality constraints Equation 8.12
can be achieved using the Lagrange multiplier method.

In the density-functional perturbation theory, one determines the derivatives of the
DFTelectronic energy with respect to different perturbations. This electronic energy
is only a part of the Born–Oppenheimer energy: the nuclei–nuclei interaction energy
must be added to it. However, the treatment of this additional contribution is much
easier because it involves only computing the electrostatic repulsion between
classical point charges (for example, [12]).
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The perturbations treated in DFPT might be external applied fields (electric or
magnetic), strains, aswell as changes of potentials inducedbynuclear displacements,
or any type of perturbation of the equations that define the reference system.
This powerful generic theory is able to deal with perturbations characterized by a
non-zero, commensurate or incommensurate wave vector [28], with a workload
similar to the one needed to deal with a periodic perturbation.Hence, it is particularly
efficient for dealing with phonons.

8.3.1
Perturbation Expansion

The DFT equations have been defined for generic external potentials vext. We now
choose a reference (unperturbed) external potential vext and expand the perturbed
potential vext in terms of a small parameter l, as follows [4, 8]:

vextðlÞ ¼ vð0Þext þ lvð1Þext þ l2vð2Þext þ l3vð3Þext . . . ð8:15Þ

We are interested in the change of physical quantities, due to the perturbation of
the external potential [29]. So,we expand the different perturbed quantitiesX(l) using
the same form as for

XðlÞ ¼ X ð0Þ þ lX ð1Þ þ l2X ð2Þ þ l3X ð3Þ . . . ð8:16Þ

where X can be the electronic energy Eel, the electronic wavefunctions yaðrÞ, the
density n(r), the electron eigenenergies eab, or the Hamiltonian H. For example, the
lowest order expansion of Equation 8.16 is simply

Hð0Þjyð0Þ
a >¼ eð0Þa jyð0Þ

a > : ð8:17Þ

We suppose that all the zero-order quantities are known, as well as the change of
external potential vext through all orders. In what follows, we suppose that the latter
terms are the only applied perturbation, although the theory can be generalized to
other forms of perturbation. For the computation of dynamical matrices and of
phonons, only the first and second-order derivatives of the energy with respect to
atomic displacements and electric fields are needed. For the computation of the
Raman tensors intensities, the nonlinear optical coefficients, the anharmonicities
and the infrared intensities we need to go at least to the third-order derivatives of the
energy with respect to atomic displacements and electric fields. The DFPT allows
building all these terms [3–5, 11].

Thanks to the variational property of the DFT electronic energy, the first-order
derivative of the electronic energy can be evaluated without knowing any first-order
quantity, except the change of external potential:

Eð1Þ
el ¼

Xocc
a

hyð0Þ
a jvð1Þext jyð0Þ

a i: ð8:18Þ
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By contrast, the first-order change of wavefunctions, density, and Hamiltonian
must be obtained self-consistently (or through a variational approach), in the same
spirit as the self-consistent determination of the unperturbedwavefunctions, density,
and Hamiltonian. Supposing the first-order changes of wavefunctions y

ð1Þ
a ðrÞ are

known, then, the first-order change of density can be obtained as [3]

nð1ÞðrÞ ¼
Xocc
a

y�ð1Þ
a ðrÞyð0Þ

a ðrÞþy�ð0Þ
a ðrÞyð1Þ

a ðrÞ ð8:19Þ

Based on this, one can compute the first-order change ofHamiltonianHð1Þ, thanks
to [3]

Hð1Þ ¼ vð1Þext þ vð1ÞHxc ¼ vð1Þext þ
ð

d2EHxc

dnðrÞdnðr 0Þ
����
nð0Þ

nð1Þðr 0Þ dr 0: ð8:20Þ

For the second-order derivative of the electronic energy, different expressions can
be used, whose ingredients are zero- and first-order quantities only. There is a simple
nonvariational expression

Eð2Þ
el ¼
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a

hyð0Þ
a jvð1Þext jyð1Þ

a iþ
Xocc
a

hyð0Þ
a jvð2Þext jyð0Þ

a i ð8:21Þ

or a more complex, and more accurate variational expression [5, 6, 11]:
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ð8:22Þ
where the first-order changes in wavefunctions yð1Þ

a (herein after first-order wave-
functions) can be varied under the constraints

hyð0Þ
a jyð1Þ

b i¼0 ð8:23Þ

for all occupied states a and b.
In similar variational or nonvariational ways, one can build the third-order

derivatives of the energy based on the knowledge of the first- and second-order
derivatives of the energy and of wavefunctions.

Except for symmetry-breaking effects due to perturbations, the computer time
needed to compute the self-consistent response to a given perturbation is comparable
to the computer time needed to compute the self-consistent ground-state properties
of the crystalline system, at fixed nuclei positions.
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8.3.2
Response to Static Electric Fields

For the computation of the infrared response, onemust treat not only changes in the
potential due to the collective nuclei displacements but also changes associatedwith a
homogeneous, low-frequency (compared to the typical electronic excitation energy)
electric field. Two important problems arise when one attempts to deal with the
response to such an electric field Emac. The first problem comes from the fact that the
potential energy of the electron, placed in such a field, is linear in space, and breaks
the periodicity of the crystalline lattice:

vscrðrÞ ¼
X
a

emac;ara: ð8:24Þ

Second, this macroscopic electric field corresponds to a screened potential: the
change of macroscopic electric field is the sum of an external change of field and an
internal change of field, the latter being induced by the response of the electrons (the
polarization of the material). In the theory of classical electromagnetism, the
connection between the macroscopic displacement, electric, and polarization fields
can be written as

DmacðrÞ ¼ emacðrÞþ 4pPmacðrÞ ð8:25Þ
where PmacðrÞ is related to the macroscopic charge density by

nmac ¼ �rPmacðrÞ: ð8:26Þ
The long-wavemethod is commonly used to deal with the first problem: a potential

linear in space is obtained as the limit for q tending to 0 of

vðrÞ ¼ lim
q! 0

l
2sin q � r

jqj ¼ lim
q! 0

l
eiq � r

ijqj �
e�iq � r

ijqj
� �

ð8:27Þ

where q is in the direction of the homogeneous field. The detailed theoretical
treatment of the response to an electric field, using the long-wave method, and
treating the screening adequately (in order to solve the above-mentioned second
problem) is given in Ref. [12]. It is found that an auxiliary quantity is needed: the
derivative of the ground-state wavefunctions with respect to their wave vector, which
can also be computed within DFPT. Once this quantity has been obtained, the
computation of the response to a homogeneous electric field per se can be performed,
also within DFPT.

8.3.3
Mixed Perturbations

The dynamical matrices or interatomic force constants are mixed second-order
derivatives of theBorn–Oppenheimer energy, corresponding to twodifferent (groups
of) nuclear displacements. Moreover, during the atomic vibrations, there is a
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coupling between phonons and electric field. For its computation, we need mixed
derivatives of the energy with respect to both atomic displacements and homoge-
neous electric fields.

DFPT is able to deal straightforwardly with such mixed derivatives. We consider
two or more simultaneous Hermitian perturbations, lji combined in a Taylor-like
expansion of the following type (see Ref. [4, 12] for the notation):

vextðlÞ ¼ vð0Þext þ
X
j1

lj1vext;j1 þ
X
j1;j2

lj1lj2vext;j1 j2 þ
X
j1;j2 j3

lj1lj2lj3vext;j1 j2 j3 þ . . .

ð8:28Þ
The mixed derivatives of the energy of the electronic system

Eel;j1 j2 ¼
1
2

q2Eel

qlj1qlj2
ð8:29Þ

are obtained, respectively, from

Ej1 j2 ¼
X
a

hy j2
a jv j1

extjyð0Þ
a iþ

X
a

hyð0Þ
a jv j1 j2

ext jyð0Þ
a i: ð8:30Þ

In the expression Equation 8.30, the first-order derivative of the wavefunctions
with respect to the first perturbation jy j1

a i are not needed, while the computation of
v j1
ext and hyð0Þ

a jv j1 j2
ext jyð0Þ

a i takes little time. Similar expressions, which do not involve
jy j2

a i but jy j1
a i are also available, as well as more accurate stationary expressions.

When three perturbations are considered (e.g., two electric fields and one atomic
displacement in case of Raman tensors or three electric field in case of nonlinear
optical coefficients) the latter expression becomes

Ej1 j2 j3
el ¼ 1

3
q3Eel

qlj1qlj2qlj3
: ð8:31Þ

Thus, the ability to compute the first-order responses (i.e., changes in wavefunc-
tions and densities) to the basic perturbations described previously gives us also, as
byproducts, mixed second-order derivatives of the electronic energy. Actually, even
third-order mixed derivatives of the energy might be computed straightforwardly,
thanks to the 2n þ 1 theorem of perturbation theory, within DFPT [4].

8.4
Infrared and Raman Spectra

Electromagnetic radiation or photons (in quantum theory) interact in several ways
with a crystal. For an insulating solid, and considering electromagnetic frequencies
in the infrared range, phonons are the predominant cause of features in the
absorption or reflection spectra.

Only phonons with a very small wave vector q ! 0 interact with photons. Indeed,
the photons absorbed and emitted should have energy comparable to the one of
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phonons, that is, 0.3 eV at most. Such photons have a very large wavelength (larger
than 3 mm), compared to the typical unit cell size, hence a very small wave vector.
Even in the case of scattering of photons of higher energies (e.g., the Raman
scattering, with photon energies around a few electronvolts), the involved phonons
all have negligible wave vectors.

For this q ! 0 limit symmetry-based group theory considerations allow to classify
the phonons according to the irreducible representations of the crystal point
group [28]. In particular, for crystals possessing a center of inversion, there are
phonon modes whose corresponding representations are invariant with respect to
inversion (�gerade� or �g�modes), or change sign under inversion (�ungerade� or �u�
modes. Beyond phonon modes, many properties of crystals, such as dielectric
tensors, elastic constants, thermal expansion coefficients, spontaneous polarization,
might be classified according to irreducible representations. Group theory allows
deducing transformation laws of these objects, and even predicts vanishing of some
effects, or selected components of the response tensors. For example, in the case of
the spontaneous polarization (a vector), one should examine the way a vector
transforms under the operations of the point group. In particular, a vector always
changes signs under inversion; hence, a crystal with inversion symmetry cannot have
a spontaneous polarization.

Two experimental techniques are commonly used for phonon spectroscopy with
electromagnetic fields: intrared reflectivity (or absorption), and Raman scattering.
They are quite complementary because the involved phonon often belongs to
different irreducible representations.

8.4.1
Infrared

The reflectivity of electromagnetic waves normal to the surface, having their electric
field with direction q along an optical axis of the crystal, is given in terms of the
frequency-dependent dielectric permittivity e�q:

RðvÞ ¼ e�q
1=2ðvÞ�1

e
1=2
�q ðvÞþ 1

�����
�����
2

: ð8:32Þ

More general expressions for the reflectivity, or for the absorption,may be found in
classical textbooks [29]. The dielectric permittivity along the direction �q is computed
from the dielectric permittivity tensor

e�qðvÞ ¼
X
ab

�qaeabðvÞ�qb: ð8:33Þ

Let us examine the first principle approach to this tensor. In the infrared frequency
regime, the dielectric permittivity tensor obtained in the harmonic approximation
can be split in two parts, the electronic contribution eab, taken as frequency
independent, and the phonon contribution.
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For the evaluation of the coupling between phonons and a homogeneous electric
field, we need to consider the forces created by an applied electric field, and the
polarization created by nuclear displacements. The Born-effective charge tensor
Z�
k;ba is the change in polarization (per unit cell) created along the direction b due to

the displacement along the direction a of the nuclei j, under the condition of zero
electric field [3, 12, 30]. The same tensor corresponds to the energy derivative with
respect to atomic displacements and electric fields or, equivalently, to the change in
atomic force due to an electric field:

Z�
k;ba ¼ V0

qPmac;b

qtkaðq ¼ 0Þ ¼
qFk;a
qeb

¼ � qE
qebqtkaðq ¼ 0Þ : ð8:34Þ

TheBorn effective charge tensors fulfill an important sum rule stemming from the
fact that a global translation of a neutral crystal, as a whole, should not change its
polarization. This sum rule implies that the charge neutrality is fulfilled at the level of
the Born effective charges. For every direction a and b, one must have [30]X

k

Z�
k;ba ¼ 0; ð8:35Þ

that is, the sum of the Born effective charges of all nuclei in one cell must vanish,
element by element. In DFT computations, this sum rule will be broken because of
(i) the incompleteness of the basis set used to represent wave functions, (ii) the
discreteness of special point grids, or (iii) the discretization of the real space integral
(needed for the evaluation of the exchange-correlation energies and potentials).
Techniques to recover the Born effective charge neutrality sum rule are described in
Ref. [12].

Then, based on the Born effective charge tensors for each nuclei, and the
eigenvectors of the dynamical matrix at the Brillouin zone center, one can fully
derive the photon-phonon interaction in the harmonic approximation. Following
Refs [30, 31], the quantity

pma ¼
X
kb

Z�
k;baUmq¼0ðkbÞ ð8:35Þ

that combines Born effective charges with the phonon eigendisplacements,
Umq¼0ðkbÞ is referred to as the polarity of the phononmodem. The three components
pma form a vector pm, whose sign is arbitrary [32]. In terms of mode polarities, the
dielectric tensor eabðvÞ has a rather simple expression

eabðvÞ ¼ e1ab þ
4p
V0

X
m

pmapmb

v2
m�v2

ð8:36Þ

and the dielectric permittivity along some direction q, Equation 8.36, becomes

e�qðvÞ ¼
X
ab

�qae
1
abðvÞ�qb þ

4p
V0

X
m

ðpm � qÞ2
v2

m�v2
: ð8:37Þ
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The last two equations express eabðvÞ and e�qðvÞ in terms of an electronic
contribution e1ab (approximated as frequency-independent in the infrared regime),
and contributions from each possible phonon mode m at the Brillouin zone center.
The phonon contributions have characteristic frequency dependence: there is a
resonant behavior when the frequency of lightmatches the one of a phonon, inwhich
case the denominator of Equation 8.37 vanishes. The latter equation shows that, if the
vector pm is perpendicular to q, the direction of the electric field, themodem does not
contribute to the dielectric permittivity constant along q. Then, for eachmodem there
is one direction along which the mode contributes to the dielectric permittivity
constant, in which case it is referred to as longitudinal, while for the perpendicular
directions, the mode will be referred to as transverse. In this way, we find the (well-
known) distinction between the longitudinal optic (LO) modes and the transverse
optic (TO) modes. This distinction will be the subject of further explanation later.

Alternatively, the same value of the dielectric permittivity tensormight be obtained
in terms of the Born effective charge tensors and the zone-center dynamical matrix,
see Equation 52 of Ref. 11, from which one deduces the following expression of the
static v¼ 0 dielectric permittivity tensor,

e0abðvÞ ¼ e1ab þ
4p
V0

X
kk0

X
a0b0

Z�
k;aa0 ½~Cðq ¼ 0Þ��1

ka0;k0b0Z
�
k0 ;bb0

� �
: ð8:38Þ

This equation highlights that when the frequency is sufficiently small as to allow
nuclei to relax to their equilibrium position under the applied field, their masses do
not play a role anymore: the staticv¼ 0 dielectric permittivity tensor is independent
of the masses.

8.4.2
Raman

In a Raman experiment, the (polarized) incident light is scattered by the sample, and
the energy as well as polarization of the outgoing light is measured. A Raman
spectrum, presenting the energy of the outgoing photons, will consist of rather well-
defined peaks, around an elastic peak (corresponding to outgoing photons that have
the energy of the incident photons – the Rayleigh peak).

At the lowest order of the theory, the dominant mechanism is the absorption or
emission of a phonon by a photon. A measure of the energy difference between the
outgoing and incident photons gives the energy of the absorbing or emitting phonon.
Thus, even more straightforwardly than the IR spectrum, a Raman spectrum relates
to the energy of phonons at the Brillouin-zone center: when the zero of the frequency
scale is set at the incident light frequency, the absolute value of the energy of the peaks
corresponds to the energy of the phonons.

The Raman intensity of a specific mode is determined by the specific Raman
scattering efficiency (S) via a prefactor. The Raman scattering efficiency depends on
the frequency of the incoming photon, v0, on the frequency of the phonon, on
temperature, T, and on the Raman tensor am. Its full expression is [33, 34]
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dS
dV

¼ ðv0�vmÞ4
c4

jeS �a � e0j2 h
2vm

ðnm þ 1Þ: ð8:39Þ

The dependency on temperature is given by the boson factor as

nm ¼ 1
ehvm=kBT�1

ð8:40Þ

and the Raman tensor

am
ij ¼

ffiffiffiffiffiffi
V0

p X
kb

qx1ð1Þ
ij

qtkb
gmðkbÞ ¼

ffiffiffiffiffiffi
V0

p X
kb

q
qtkb

q2E
qeiqej

� �
eiejgmðkbÞ ð8:41Þ

is the derivative of the macroscopic dielectric tensor with respect to the set of atomic
displacements that correspond to the phonon eigenvector [31, 35, 36]. The middle
term in Equation 8.39, jeS �a � e0j, gives the coupling between the incoming phonon
with polarization e0, the crystal, characterized by a Raman tensor a and the scattered
phonon with polarization eS.

The Raman tensors are the key ingredients needed to calculate the Raman spectra.
They can be computed either from finite differences, as the change of the dielectric
tensor due to infinitesimal atomic displacements, or from perturbation theory, as the
derivative of the energywith respect to three perturbations: two electricfields and one
atomic displacement. For this, oneneeds to define an electronic (variational) enthalpy
that takes into account both the electronic energy and its changes under an external
electric field

Feþ i½Rk; e� ¼ min
yn

ðEeþ i½Rk;yk��V0eP½yk�

that we develop, according to Equation 8.1, a Taylor expansion to third order [31]:

Feþ i l½ � ¼ Feþ i
ð0Þ l½ �þ

X
i

qFeþ i

qli

� �
liþ 1

2

X
ij

q2Feþ i

qliqlj

� �
lilj

þ 1
6

X
ij

q3Feþ i

qliqljqlk

� �
liljlkþ . . .

ð8:42Þ

Considering as perturbations atomic displacements, t, and electric fields, e, then
each of the different terms of the full expansion corresponds to a (measurable)
physical property:

Feþ i½Rk; E� ¼ Feþ i½Rk;E�
�V0

X
a

Ps
a

polarization
ea�

X
a

X
k

F0
atka
forces

�V0=2
X
ab

x
1ð1Þ
ab eaeb

dielectric tensor

�
X
ab

X
k

Z�
k;abtkaeb

dynamical charges

þ 1=2
X
ab

X
k0k

Cabðk; k0Þtkatk0b
interatomic force constants
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�V0=3
X
ab

x
1ð2Þ
abc eaebec

nonlinearoptical coefficients

�V0=2
X
k

X
ab

qx1ð1Þ
ab

qtkc
eaebtkc

Ramancoefficient

�1=2
X
kk0

X
ab

qZ�
k;ab

qtk0c
tkatk0ceb

þ1=3
X
kk0k00

X
ab

Jðk;k0;k00Þtkatk0btk00 c
anharmonicities

þ ... ð8:43Þ

By inverting this equation one can obtain the different physical properties of
interest.

The terms of the Taylor expansion up to the second order are already computed
using density functional perturbation theory as in Section 8.3. The third-order terms
can be computed following the same approach, like in the 2n þ 1 theorem [4]. Of
course, the complexity of the exact expression for each higher order term of the
Kohn–Sham equations and consequently the complexity of the implementation
increase with the order of the derivation. Currently, there are two available im-
plementations, which are the nonlinear optical coefficients, that is, the derivative of
the energy with respect to three electric fields, and the Raman tensors, that is, the
derivative of the energy with respect to two electric field and one atomic displace-
ments [31, 36]. The third term of the third-order derivative of the energy, that is, with
respect to one electric field and two atomic displacements participates to the width of
the infrared and Raman peaks, while the very last term from the expression yields
anharmonicities, related to the phonon time of life, the line broadening of Raman
and infrared spectra and thermal transport due to phonon scattering.

Concerning the Raman spectra, the Raman tensor is given by the Raman
coefficient term. For noncentrosymmetric crystals, some modes are active in both
Raman and infrared. In this case, the same formalism as above holds for the TO
component, while a supplementary correction is needed for the modes in LO
geometry. In this case, the Raman tensors become [31]

qx1ð1Þ
ij

qtkb

�����
D¼0

¼
qx1ð1Þ

ij

qtkb

�����
E¼0

� 8p
V0

X
l

Z�
kblqlX

ll0
qle

1
llj0ql0

X
l

x
1ð2Þ
ijl ql: ð8:44Þ

Quite often, experimental data are recorded using polarized or unpolarized
lasers on powdered samples. If we neglect the surface effects on the Raman
tensors, an approximation that is valid for meso- and macrocrystals, then the
resulting Raman spectra can be obtained y performing averages over all possible
orientation of the crystals and then summing up over the parallel and perpen-
dicular laser polarizations. The intensities of the two polarized components of the
powder spectra, parallel and perpendicular, and the resulting total powder spectra
are [34, 37]
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G0 ¼
ðaxx þayy þazzÞ2

3

G1 ¼ ðaxy�ayzÞ2 þðayz�azxÞ2 þðazx�axyÞ2
2

G2 ¼ ðaxy þayzÞ2 þðayz þazxÞ2 þðazx þaxyÞ2
2

þ ðaxx�ayyÞ2 þðayy�azzÞ2 þðazz�axxÞ2
3

ð8:45Þ

Ipowderjj ¼ Cð10G0 þ 4G2Þ
Ipowder? ¼ Cð5G1 þ 3G2Þ
Ipowdertot ¼ Ipowderjj þ Ipowder? :

ð8:46Þ

This formalism has been applied successfully, for example, in the ABINIT
implementation to various systems [38–42].

8.5
Thermodynamical Properties

Now, we can compute the Helmholtz free energy, the internal energy, the constant-
volume specific heat, and the entropy as functions of temperature. Such thermo-
dynamic functions of a solid are determined mostly by the vibrational degrees of
freedom of the lattice, since, generally speaking, the electronic degrees of freedom
play a noticeable role only for metals at very low temperatures [43]. However, the
complete knowledge of the phonon band structure, with sufficient accuracy, is
required for the calculation of these thermodynamic functions. The formulas
presented here neglect all anharmonic effects. For most solids, the harmonic
approximation will be accurate for a temperature smaller than a significant fraction
of the melting temperature or the temperature of the lowest solid–solid phase
transition (e.g., about 500K for quartz, that undergoes a phase transition above
800 K). On the other hand, the quantum effects are correctly included, unlike in an
approach based on the classical dynamics of nuclei.

The above-mentioned thermodynamic functions require summations over the
eigenstates of all phononsm at all wave vectors q. This sum can be transformed into a
one-dimensional integral over the phonon density of states, g(v):

ð3NnÞ
ðvL

0
f ðvÞgðvÞdv ð8:47Þ

where Nn is the number of nuclei per unit cell, vL is the largest phonon frequency,
and g(v)dv defines the phonon population in the rangev andv þ dv. The phonon
density of states g(v) can be normalized so that
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ðvL

0
gðvÞdv ¼ 1 ð8:48Þ

such as

gðvÞ ¼ ð2pÞ3
V0ð3NnÞ

X
m

dðv�vmqÞdq ð8:49Þ

Specifically, the phonon contribution to theHelmholtz free energyDF, the phonon
contribution to the internal energy DE, as well as the constant-volume specific heat
CV, and the entropy S, at temperatureT, evaluated for one unit cell, have the following
expressions within the harmonic approximation [44], where x ¼ �hv=kBT and kB is
the Boltzmann constant:

DF ¼ ð3NnÞkBT
ðvL

0
fln ðex�1Þ�x=2ggðvÞdv;

DE ¼ ð3NnÞ
ðvL

0

ðex þ 1Þ
ðex�1Þ

�hv
2

gðvÞdv;

CV ¼ ð3NnÞkB
ðvL

0

x
ex=2�e�x=2

0
@

1
A

2

gðvÞdv;

S ¼ ð3NnÞkB
ðvL

0

xex

ex�1
�ln ðex�1Þ

2
4

3
5gðvÞdv:

ð8:50Þ

8.6
Examples and Applications

We will exemplify these theoretical developments with two cases: with the determi-
nation of the thermodynamic properties and of the Raman spectra of polymeric
nitrogen – the cubic gauche phase of atomic nitrogen; and with the analysis of the
dynamical instabilities of the ionic phase of water ice – ice X.

8.6.1
Polymeric Nitrogen

Crystalline nitrogenundergoes a series of phase transitions that compact its structure
and reduce the degrees of freedom of molecules by increasing the order. At low
pressures, in the a phase the free rotation of the molecules describes spheres, while
in the b phase it describes disks in two dimensions. At higher pressure, the degree of
freedomof themolecularmotions is further reduced and partial disorder or complete
order occurs, as exhibited by different crystalline structures such as the d or e [45, 46].
All these phases have molecular structures. From 10–20GPa up to about 100GPa,
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there are several crystalline phases obtained experimentally whose structures and
stabilities are not yet fully understood. Above approximately 100GPa, first principles
calculations suggested that crystalline atomic polymeric structures should develop,
where the integrality of the nitrogen molecules is lost. Several theoretical structures
have been predicted [47–49], and the most stable one, named �cubic gauche,� has
been experimentally confirmed afterward experimentally [50, 51]. These experiments
that lead to the formation of the cubic gauche structure passed through the
amorphous state as an intermediate state.

The cubic gauche structure is cubic, with I213 space group, and the atoms
positioned in the special 8a(x x x) Wyckhoff positions. Each nitrogen atom has three
nearest neighbors at equal distance. This topology thus yields an atomic character to
the structure, with the nitrogen atoms polymerizing in left-handed spiral chains
parallel to the [1 1 1] directions. The chains delimit different void spaces with
quasitrigonal cross sections in the (1 1 1) planes or quasihexagonal in the (1 1 0)
planes. The strong covalent bonding and the three-dimensional framework topology
of the structure determine the exceptional hardness of this material.

There are 12 optical phonon modes that according to group theory decompose in
the zone center as A þ E þ 2T. TheTmodes are bothRaman and infrared active, and
the A and E modes are only Raman active. All the modes harden under pressure as
shown in Figure 8.2.

The dispersion of the phonon bands is shown in Figure 8.3a and b at two
pressures [39]. All the modes have positive frequencies, thus the cubic gauche
structure of nitrogen is dynamically stable over a wide pressure range. The density of
states, the integral of the phonon population as a function of energy levels is
represented in panel c of the Figure 8.3. Based on this density of states we can
derive the thermodynamic properties of the structure using equations (8.50). Someof
these are illustrated in Figure 8.4.

Figure 8.2 Variation of the phonons frequencies at gamma for the cubic gauche structure of
nitrogen. The T, A, and E modes are Raman active and the T modes are also infrared active.
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Then we compute the Raman spectra for the cubic gauche structure of nitro-
gen [39]. As this structure is stable at high pressures, Raman spectroscopy is the usual
tool used for identification. The theoretical Raman spectra are dominated by the A
mode. The intensity of the other modes is less than 10% and they would be hardly
observable in a measurement. Our theoretical prediction is in excellent agreement
with the experimental measurements [39, 50], in terms of both peak position and
intensity, as shown in Figure 8.5.

8.6.2
Ice X

The phase diagram of water ice is dominated by the ices VII, VIII, and X above
approximately 3GPa [52, 53]. The structure of these three phases is similar and
consists of a body-centered cubic lattice of oxygen atoms with the hydrogen atoms
staying in-between. In ice VII and ice VIII the integrality of the molecules is
preserved, the structure being thus �molecular.� Ice VII is disordered the molecules
pointing randomly in all Cartesian directions. The structure has cubic symmetry. Ice
VIII is orderedwith themolecules pointing only around the c-direction. The structure
has tetragonal symmetry with a center of inversion. In ice X, the integrality of the
molecules is lost. The hydrogen atoms lay between every two neighboring oxygen at
equal distance. The structure is cubic and has an ionic character.

As much experimental effort has been dedicated to the study of the phase
boundaries and the physical properties of these three ices, we have performed a
dynamical analysis by computing the phonons at different pressures for the iceX [54].
Phonon band dispersion at three representative pressures is shown in Figure 8.6.

Figure 8.3 Phonon band dispersion in the cubic gauche structure of nitrogen at several pressures.
All the phonons have positive frequencies hence the structure is dynamically stable.
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At low pressures, below approximately 114GPa ice X exhibits an unstable phonon
mode (Figure 8.6a). Thismode isweakly dispersive:we retrieve it unstable around the
same frequency all over the Brillouin zone. This behavior is an indication about the
highly localized character in the direct space of the atomic displacement pattern.
Indeed if we look at the corresponding vibration in the direct space we observe that
this mode corresponds to the bouncing back and forth of the hydrogen atoms
between their two oxygen neighbors (Figure 8.6b).

At low pressures, the distance between the two oxygen atoms is large and thus the
potential opens up and forms the characteristic two-well shape of the unstablemodes

Figure 8.4 Temperature variation of selected thermodynamic properties of the cubic gauche
structure of nitrogen at several pressures.
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Figure 8.6 Analysis of the phonon dispersion
bands in ice X as a function of pressure. At low
pressures, below 100GPa, there is one unstable
phonon mode, represented by convention with
negative frequencies (a) that corresponds to
bouncing back and forth of the hydrogen atoms
between their two oxygen neighbors (b). This

displacement describes a double-well potential
(c) that leads to the disordering of the structure.
At intermediate pressures all phonons are
stable (d)while at highpressure a new instability
develops in M (e). This triggers a phase
transition toward a new orthorhombic post-ice
X phase (f).

Figure 8.5 The Raman spectra of the cubic gauche phase of nitrogen are dominated by one strong
peak with A symmetry that hardens under pressure. The theoretical calculations and the
experimental measurements are in excellent agreement.
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(Figure 8.6c). The hydrogen atoms oscillate between these two minima, which are
energetically equivalent positions. The structure resulting from the condensation of
this unstable phonon mode is disordered ice X. There is experimental evidence [55]
showing that the transition between ices VII or VIII and X goes through an
intermediate phase, which is disordered.

As the pressure increases the distance between the oxygen atoms decreases and
the double-well potential closes and transforms into a normal potential well with
the minimum at the mid-distance between the two oxygen atoms. The hydrogen
atoms are stabilized and vibrate around this minimum, situated at equal distance
to both oxygen neighbors. This is the stable configuration of ice X, which can be
found in a pressure range extending from about 114GPa up to 430GPa
(Figure 8.6d).

Toward the upper part of this stability range another phonon softens, around theM
point of the reciprocal space (Figure 8.6e). This phonon mode corresponds to
displacements of both hydrogen and oxygen atoms parallel to the diagonal (1 1 0)
planes. The result of this displacement is shear of the tetrahedra and a breaking of the
symmetry. This is the phase transition to the post-ice X phase of ice, with Pnm
symmetry (Figure 8.6f).

It is important to note that the analysis of the phononmodes in ice X allows us (i) to
explain experimental observations fromRaman spectroscopy in the region below 100
GPa that can be explained by the disordered ice X and (ii) to confirmprevious ab initio
molecular dynamics calculations [56] that predicted a phase transition to a post-ice X
with Pbcm symmetry.

8.7
Conclusions

We have reviewed the basics of lattice dynamics from the perspective of the density-
functional perturbation theory. We have presented the theory used for (i) the
calculation of the phonons at the Brillouin-zone center, and connected this with
infrared and Raman experiments; (ii) the calculations of the phonon band structures
allowing to analyze the stability or instability of a phase; (iii) the determination of the
intensity of the Raman peaks; and (iv) the computations of the thermodynamical
properties (specific heat, internal energy, free energy, and entropy).

Wehave shown that the basic idea behindDFPT is expressing the energy of a lattice
as a Taylor expansion function of one or more perturbations. The different terms of
the expansion are evaluated analytically, in increasing derivation order. Each term or
combination of terms is then related to specific physical properties. Here, we have
discussed in detail only atomic displacements and electric field type perturbations,
but other perturbations are possible, such as strain or magnetic field. Some of these
properties are already available in several density-functional software packages, while
others still wait to be coded. In these cases, finite differences can be used successfully
on its own or on top of DFPT to derive nonlinear properties that have not yet been
implemented.
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It is possible to obtain interatomic force constants also by finite differences of the
total energy and by force calculations, in large supercells. Eventually if one uses the
same basis set for the representation of the electronic wavefunctions, with the same
relevant parameters, the final results from both methods should be identical.
However, the DFPT has the power and elegance of a pure analytical development
that can also provide more physical answers with a smaller computational cost.
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