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Preface

This text presents a short, but thorough, introduction to the main concepts
and practical application of thermodynamics and kinetics appropriate for
materials science. It assumes that the reader is familiar with the concepts
typically taught in introductory, university-level courses in physics and
chemistry. The book is designed with two types of uses in mind: (1) a one or
two semester university course for mid- to upper-level undergraduate or
first year graduate students in a materials science oriented discipline and (2)
individuals who want to study this material on their own.

This text discusses the following major topical areas: basic laws of
classical and irreversible thermodynamics, phase equilibria, theory of
solutions, chemical reaction thermodynamics and kinetics, surface phe-
nomena, stressed systems, diffusion, and statistical thermodynamics. The
text is accompanied by a large number of example problems with detailed
solutions. The pedagogical appeal of the book is enhanced with computer-
based self-tests. These include over 400 questions and 2000 answers,
including many hints for the student.

While it is difficult to give a student a laboratory experience in either a
lecture course or in a self-study learning mode, the book is augmented with
computer-based laboratories. A laboratory problem is posed and the experi-
ment is described. The student has the ability to ‘‘perform’’ the experiments
and change the laboratory conditions to obtain the data needed to meet the
laboratory objective. If the student chooses inappropriate laboratory con-
ditions, the program will give him meaningful, but useless data. The
‘‘laboratory’’ results are stored in a file that can be sent directly to the
instructor. Text is provided within the ‘‘laboratory’’ as both background
material and as an aid to the student as he or she analyzes the experimental
results. ‘‘Laboratory experiments’’ are available in the following areas:

1. Construction of phase diagrams from cooling curves.
2. Determination of carbon activity in austenite.
3. Determination of nitrogen activity in Fe–Mn alloys.
4. Gas adsorption on a solid surface.
5. Determination of the order and activation energy of a chemical reaction.
6. Determination of diffusivity.
7. Chemical reactions.

Note to students

Our ultimate goal was to develop a textbook that can be used as a sup-
plement to a lecture course in thermodynamics and kinetics of materials



and also be sufficient for you to learn this material on your own. The book
is written in a manner that assumes that you have some background in
elementary physics and chemistry and some basic mathematical skills
(differentiation, integration, solution of very simple differential equations).

If you are using the book in a self-study mode, you should, of course,
first read the text. You should then solidify your understanding by
reproducing the main derivations from the chapter yourself, with the book
closed. If you have difficulties, go ahead and open the book, find out what
you were missing, and repeat. There are some Review questions at the
end of most sections. Do not ignore these! Do not panic if you cannot
answer all of them. Rather, reread the appropriate section of the text and
try again. If you have the opportunity, discuss these questions with other
students or instructors.

Once you feel that you understand the theoretical issues, try to solve
the Example problems included in the text. We tried to choose problems
which illustrate or expand upon the theoretical ideas in the text. Note that
not all of these problems are simple. If you have no idea how to solve the
problem, look at the solution at the end of the book, then take a few days
off and try to solve the problem again (you do not want to mechanically
memorize the solution). If you still have trouble, peak in the back again and
then return to this problem. Remember, there is only way to learn how to
solve problems—just do it!

After you have completed a chapter or two, you should use the
computer-based tests supplied with the text. These tests include many
multiple choice questions. In some cases, hints are provided. The hints will
not tell you which answer is correct, but will give you some additional
information that you may find useful in answering the questions. This is
a powerful learning tool and we strongly recommend that you use it.

Finally, this text-book contains seven computer-based Laboratory
Projects. You will find a complete description of each laboratory
including what you are trying to determine in the menu option labeled
‘‘Background’’. In these laboratories, you must determine how to perform
the experiments, how to analyze your results, and determine if any addi-
tional experimental data must be obtained (and give you the opportunity
to do this). Therefore, you must really understand the theoretical material
in order to obtain meaningful results; otherwise you will get absurd data.

If you are using this text to supplement a lecture course, the same
procedure can be followed. However, in this case, your instructor will
guide you. Nonetheless, you will undoubtedly find that following the
pedagogical approach outlined above will increase what you get out of
your lecture course and improve your performance in the course.

Note to instructors

This textbook is appropriate for use in several different types of courses.
This was done because thermodynamics is often combined with other
topics in a single course. Such courses include (1) Thermodynamics,
(2) Thermodynamics and Statistical Mechanics, (3) Thermodynamics and
Kinetics, (4) Thermodynamics of Materials, (5) Chemical Thermodynamics,
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and (6) Physical Chemistry. Of course, which topics you cover in a course
will depend on the breadth of the course and the amount of time available.

In a one-semester course of any type, we recommend that you include
the following topics/chapters:

Chapter Topic Omit

1 Basic laws of thermodynamics 1.2.3, 1.2.4, 1.3.2
2 Phase equilibria I
3 Thermodynamic theory of solutions 3.6, 3.7
4 Phase equilibria II
5 Thermodynamics of chemical reactions
6 Interfacial phenomena 6.1.3, 6.3
8 Kinetics of homogeneous

chemical reactions
8.2.3

Depending on the scope of the course you may want to include the
following topics:

Chapter Topic Comments

Thermodynamics of materials

7 Thermodynamics of stressed
systems

If the students had an
Elasticity course, you can
omit 7.1, 7.3, 7.5

10 Diffusion This entire chapter may be
omitted if the students will
have a specific course on
diffusion

11 Kinetics of heterogeneous
processes

12 Statistical thermodynamics I This entire chapter may be
omitted if students had a
Statistical Physics or Physical
Chemistry course

13 Statistical thermodynamics II If students had a Solid State
Physics course, you can
omit 13.3; you may also
choose to omit 13.4.4

Thermodynamics and kinetics

9 Thermodynamics of
irreversible processes

10 Diffusion You may omit 10.3–10.5
11 Kinetics of heterogeneous

processes

Thermodynamics and statistical mechanics

12 Statistical thermodynamics I
13 Statistical thermodynamics II
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This book can also be used for a classical Mechanical Engineering
Thermodynamics course, but in this case, should be supplemented by
additional materials on heat engines. Other major omissions from this
book for specific applications include galvanic cells, corrosion/oxidation,
polymer thermodynamics, catalysis, and phase transformations. If these
subjects are necessary for your course, we recommend supplementing
this text.

The textbook is accompanied by three types of software: laboratory
experiments, self-tests for the students, and exams. The laboratory
experiments and self-tests were described above. These are both important
pedagogical tools. We suggest that you recommend to your students that
they do all of the self-tests. The laboratory experiments can be assigned as
homework, however, we recommend that the students do these computer-
based laboratory experiments together with a teaching assistant in a room
equipped with an appropriate number of personal computers.

The computer-based exams are designed to be a part of a real exam.
These can be administered in a classroom (with personal computers) or as
a ‘‘take home’’ exam. Each exam has 20–40 questions, drawn either from
the entire course or from selected sections. The questions are all multiple
choice, with five possible answers. The exams are timed such that the
student has, on average, 1min per question (i.e. a half-hour for 30 ques-
tions). When the time expires, the exam will be terminated in its current
state. The final results are put into an encrypted file to be e-mailed to the
instructor, along with the students score.

Acknowledgment

We are grateful to S. Trushevsky who prepared all of the figures used in this
book and to C. Srolovitz for editing the text.
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Basic laws of
thermodynamics

In this chapter, we first introduce the basic laws of thermodynamics and the
most important thermodynamic functions. Even though many of the
concepts introduced here will be familiar to many readers with a back-
ground in elementary physics, this chapter should not be ignored as it
presents these concepts in the language of physical chemistry. Since these
concepts form the basis of physical chemistry, this subject will make no
sense without a firm footing in these fundamentals.

Thermodynamics focuses on the thermal behavior of macroscopic
systems (i.e. systems containing a very large number of particles). Thermal
processes include both heat exchange between a system and its surround-
ings and work. The general scheme of a thermodynamic description of such
processes can be described as in the picture:

Thermodynamic descriptions are usually based upon experimental
observations. Experiments can characterize the thermodynamic state of
the system in terms of a small number of measurable parameters (e.g.
temperature T and pressure p). The generalization of these measurements

1

Equilibrium conditions
and evolution 

Experiment

Thermodynamic
laws

Calculations

System
parameters

State
functions, f

∆ f



yields thermodynamics laws. Thermodynamic laws identify state functions
that describe the system behavior solely in terms of the system parameters
and not on how the system came to be in a particular state. Changes in the
state functions during some process depend on only the intial and final
states of the system but not on the path between them. Therefore, these
changes can be determined from calculations based on a very small set
of data. Thermodynamics can be used to answer such questions as (1) is
a particular process possible? (2) can the system spontaneously evolve
in a particular direction?, and (3) what is the final or equilibrium state? all
under a given set of conditions. Equilibrium can be understood as the state
in which the system parameters no longer evolve, there are no fluxes of
matter or energy through the system, and for which all small disturbances
decay. According to the zeroeth law of thermodynamics any isolated system
will eventually evolve to an equilibrium state and will never spontaneously
leave this state (without a substantial external disturbance). It is important
to emphasize that when a state function is properly chosen and how
it changes is determined (using very limited thermodynamic data from
experiment), we are able to answer all three questions raised above without
any consideration of the molecular nature of the system.

The basic laws of thermodynamics are generalizations of experimental
observations and are not derived. In this sense, thermodynamics is a first
principles theory. Since it is based upon a generalization of experimental
results, Einstein said that thermodynamics is ‘‘the only physical theory
of universal content concerning which I am convinced that within the
framework of the applicability of its based concepts, it will never be
overthrown.’’

1.1 First law of thermodynamics

1.1.1 Basic definitions

Since thermodynamics describes the macroscopic behavior of different
types of systems, we start with a formal definition of the term ‘‘system’’ and
a classification of types of systems. A system is an ensemble of bodies that
can either be extracted or imagined to be extracted from its surroundings
(see Fig. 1.1). A system is referred to as isolated if it neither exchanges
energy nor matter with its surroundings and its volume is constant.
A system which does not exchange matter with its surroundings is closed;
otherwise it is open. The state of a system is determined by a set of system
parameters such as the volume V, temperature T, pressure p, and con-
centration of each of its components ci. These parameters are not inde-
pendent but rather are related to each other by the equations of state. For a
one-component system, this equation takes the form: f(p,V,T)¼ 0 where f
may, for example, be the ideal gas law f¼ pV� nRT¼ 0 (n is the number of
moles and R is the ideal gas constant).

How a system participates in a thermodynamic processes is character-
ized by two quantities: workW, and heatQ. The following sign convention
is standard in thermodynamics: work done by the system is positive

Surroundings

System

Fig.1.1
Schematic illustration of a system and its

surroundings.
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(work done on the system is negative) and the heat supplied to the system is
positive.1 The work due to expansion (work against an external pressure) is
often separated from other types of work (e.g. the work to establish a
potential difference between electrodes in a galvanic cell or the work
to separate charges in the presence of an electric field). All types of
work with the exception of that associated with expansion are called
non-mechanical work.

The work of expansion associated with an elementary (infinitesimal)
process that changes the volume is

�Wexpan ¼ pdV: (1:1)

The work of expansion is positive if the system volume increases and it is in
accordance with Eq. (1.1). For a finite change in volume, the work of
expansion is

Wexpan ¼
Z V2

V1

pdV: (1:2)

Equation (1.2) shows that the work of expansion is simply the area under
the curve p(V). Figure 1.2 shows that the work of expansion depends on
path. For example, the system evolving along path I does more work than
that along path II. Thus, the work does not characterize the state of the
system, but rather the path which the system followed to get from one
particular state to another. This can be phrased more rigorously by stating
that �W is not a full differential (an integral of a full differential is path
independent). This is why we use the sign � instead of d in Eq. (1.1). In
general, the work associated with any infinitesimal change in the system
can be written as:

�W ¼ pdVþ �Wnon-mechanical (1:3)

The amount of heat transferred to the system also depends on the path.
Functions that depend only on the system parameters, and not the path
that led to those values of the system parameters, are state functions.
Neither heat nor work are state functions.

The first law of thermodynamics postulates that for any system there is a
state function, U, called the internal energy, which increases by a quantity
equal to the heat added to the system and decreases by the work done by
the system. Formally, this implies that the difference between the heat (�Q)
added to and the work (�W) done by the system is a full differential of a
state function U:

dU ¼ �Q� �W: (1:4)

Since the internal energy is a state function, it does not change when the
system undergoes any cycle that returns it to its initial state; that is,H
dU ¼ 0. Equation (1.4) can be rearranged as

�Q ¼ �Wþ dU, (1:5)

V

p

2

1 I

II

Fig.1.2
Schematic to illustrate that work (area

under curve) depends on path.

1 Other conventions have been adopted elsewhere in the literature. Changing convention
simply leads to changes in signs within some of thermodynamic equations.
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which implies that all heat added to the system is either used by the system
to perform work or to increase the internal energy of the system. Since
Eq. (1.4) is written in terms of differentials, the internal energy itself is
only defined to within an additive constant. This constant may be deter-
mined once a reference state is chosen (see Section 1.1.4).

Although the internal energy may have contributions from several
different terms, thermodynamics requires no information on the magni-
tude of these individual terms. Recall, however, that molecular theory or
statistical mechanics can be used to determine the magnitude of such
contributions as the kinetic energy associated with molecular motion (this
is related to the temperature of the system), the interaction energy of
molecules, and the internal energy of the molecules themselves.

In a closed system, the internal energy depends on the system
parameters: p, V, andT.2 These quantities are related to each other through
the equation of state. Therefore, the internal energy can be written in terms
of any two of these parameters. For example, if we choose to focus upon
the temperature and volume, the full differential of the internal energy is
simply:

dU ¼ @U

@T

� �
V

dTþ @U

@V

� �
T

dV: (1:6)

Review questions

1. What is the analytical expression for the first law of thermodynamics?
2. Which of the following are state functions: heat, work, internal energy?
3. Which of the following are system parameters: temperature, volume,

number of molecules, ideal gas constant, pressure, internal energy?

1.1.2 Implications of the first law of thermodynamics

We now examine some applications of the first law of thermodynamics. In
these applications, we consider only cases in which the only type of work is
that associated with the expansion of the system, but make no assumptions
about the type of system. The next section considers applications to an
ideal gas.

1. Isochoric processes (i.e. processes that leave V unchanged ). In such
processes, the work done is equal to zero and all heat entering the system
is used to change the internal energy; �Q¼ dU.

The heat capacity of the system is defined as

c ¼ lim
�T!0

�Q

�T
, (1:7)

where �T is the change in the temperature of the system associated with
the addition of heat �Q. Frequently, the heat capacity is normalized by

2 If concentrations of the individual components in the system can change, the internal
energy also depends on the quantity of each component. We consider this case in
Section 1.5.

Basic laws of thermodynamics4



either mass or moles of the species in the system. The heat capacity per
mole is called the molar heat capacity and the heat capacity per gram is
called the specific heat capacity. Under isochoric conditions, the heat
capacity is

cV ¼ @U

@T

� �
V

: (1:8)

Since the internal energy is a state function, so too is the isochoric heat
capacity. We can relate the change in internal energy associated with any
isochoric process to the heat capacity as

�U ¼
Z T2

T1

cVdT: (1:9)

2. Isobaric processes (i.e. processes that leave p unchanged). In this case,

�Q ¼ dUþ pdV ¼ d(Uþ pV) ¼ dH

where

H ¼ Uþ pV, (1:10)

is referred to as the enthalpy of the system. Since the enthalpy depends
only on the internal energy and system parameters, it is a state function.
Just as the internal energy is only defined to within an additive constant,
the enthalpy too depends on the reference state. In isobaric processes, all
heat added to the system increases the enthalpy: �Q¼ dH. The isobaric
heat capacity is defined as

cp ¼ @H

@T

� �
p

(1:11)

such that the enthalpy change is

�H ¼
Z T2

T1

cpdT: (1:12)

The isochoric and isobaric heat capacities, cV and cp, may be related by
inserting the definition of the enthalpy (Eq. 1.10) into Eq. (1.11).

cp ¼ @H

@T

� �
p

¼ @(Uþ pV )

@T

� �
p

¼ @U

@T

� �
p

þ p @V

@T

� �
p

: (1:13)

This relation can be rewritten in another form by noting that T, V, and p
are related by an equation of state and by using standard rules of differ-
entiating a multivariate function:3

@U

@T

� �
p

¼ @U

@T

� �
V

þ @U

@V

� �
T

@V

@T

� �
p

¼ cV þ @U

@V

� �
T

@V

@T

� �
p

:

3 Some useful hints on working with partial derivatives are provided in Appendix I.
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Inserting this relation into Eq. (1.13) yields the well-known result

cp � cV ¼ @U

@V

� �
T

þ p
� �

@V

@T

� �
p

: (1:14)

3. Adiabatic processes (i.e. processes that occur without exchanging heat
between the system and its surroundings, �Q¼ 0). In such processes, all of
the work performed by the system leads to a decrement of the internal
energy: �W¼ � dU.

Review question

1. What are the dimensions of the molar heat capacity?

Example problem4

1. 1 g of ice at T¼ 0�C and 10 g of water at T¼ 100�C are mixed in an
adiabatic container. What is the temperature within the container
when its contents reach equilibrium? Express your answer in K.
For H2O, the change in enthalpy on melting �Hmelt¼ 6.01 kJ/mole and
cp¼ 75.3 J/K mole.

1.1.3 Ideal gas

A gas is referred to as an ‘‘ideal gas’’5 if it can be described by the following
equation of state (i.e. the ideal gas law):

pV ¼ nRT: (1:15)

An important property of an ideal gas follows from this equation: the
internal energy does not depend on volume at fixed temperature,

@U

@V

� �
T

¼ 0: (1:16)

Thus, the molar internal energy of an ideal gas is only a function of
temperature. While a qualitative explanation of Eq. (1.16) is provided
here, a formal derivation may be found in Section 1.4.2. The internal
energy of a gas consists of three terms: the kinetic energy of the molecules,
the energy of interaction between the molecules and the internal energy
of the molecules. Of these, only the interaction energy depends on the
volume (density) of the gas because the mean nearest neighbor distance
between molecules is proportional to (V/N)1/3 and the intermolecular
interaction energy is a function of the distance between molecules.
However, the definition of an ideal gas is one for which the molecules

4 Solutions to and discussion of Example problems are provided at the back of
the book.

5 In the remainder of this chapter, the only gases considered are ideal gases. Hence, the
term ‘‘ideal’’ will be omitted. Note, for pressures up to approximately 10 atm and
temperatures above room temperature, nearly all gases behave ideally.

Basic laws of thermodynamics6



do not interact. Therefore, the internal energy of an ideal gas does not
depend on volume.

The differential of the internal energy (Eq. (1.6) of an ideal gas can be
expressed in terms of the isochoric molar heat capacity (Eq. (1.8)):

dU ¼ ncVdT: (1:17)

For an ideal gas, the relationship between the isobaric and isochoric heat
capacities can be obtained by inserting the ideal gas equation of state into
Eq. (1.14):

cp ¼ cV þ R: (1:18)

We now derive several expressions for the work done by an ideal gas
under different conditions.

1. Isothermal process (T¼ const). In general, work is defined as:
W ¼ RV2

V1
pdV. For an ideal gas, W ¼ RV2

V1

nRT
V dV. Performing the integra-

tion at constant T yields:

W ¼ nRT ln
V2

V1
: (1:19)

Since dU¼ 0 in an isothermal process (see Eq. 1.17), �Q¼ �W. This
implies that all heat added to an isothermal ideal gas is converted into
work.
2. Isobaric process (p¼ const). In this case, the expression for work
W ¼ RV2

V1
pdV is simply

W ¼ p�V ¼ nR�T, (1:20)

where the second equality is obtained using the ideal gas equation of state.
3. Adiabatic process (�Q¼ 0). Combining Eqs (1.17) and (1.5) for an
adiabatic process yields: ncVdTþ pdV¼ 0. From the ideal gas equation
of state it follows that dT¼ (pdVþVdp)/(nR). We can now rewrite the
previous equation as:

ncV
pdVþ Vdp

nR
þ pdV ¼ 0:

By inserting the ideal gas result cp� cV¼R into this equation and
rearranging terms we find pdVþ Vdpþ (� � 1)pdV ¼ Vdpþ �pdV ¼ 0,
where we have used the definition

� ¼ cp
cV
: (1:21)

We can rewrite Vdpþ �pdV ¼ 0 as dp=pþ �dV=V ¼ 0 and integrate to
obtain ln pþ � lnV ¼ constant or, equivalently,

pV� ¼ C, (1:22)

where C is a constant. This equation is valid for an adiabatic ideal gas.
Combining the first law of thermodynamics with �Q¼ 0 and Eq. (1.17)
provides an expression for the work done by an ideal gas:

W ¼ ��U ¼ �n
Z T2

T1

cVdT: (1:23)
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The first equality is valid for any adiabatic system, while the second only
applies to an adiabatic ideal gas. Another approach is to directly integrate
the function p(V ):

W ¼
Z V2

V1

pdV ¼ C
Z V2

V1

V��dV ¼ C

1� �V
1��
����
V2

V1

¼ p1V
�
1V

1��
1 � p2V

�
2V

1��
2

� � 1

¼ p1V1 � p2V2

� � 1
: (1:24)

Review questions

1. On what system parameters does the internal energy of a mole of an
ideal gas depend?

2. On what system parameters does the enthalpy of a mole of an ideal gas
depend?

3. Which ideal gas system parameter must be held fixed for
Q ¼ RT ln (V2=V1) to be valid?

Example problems

1. 2 g of air was isobarically heated from T1¼ 0�C to T2¼ 1�C at a
pressure p¼ 1 atm. The density of air at T¼ 0�C is �¼ 0.00129 g/cm3.
What is the work of expansion?

2. 2 l of nitrogen, originally at T¼ 0�C and p1¼ 5 atm, isothermally
expands until the final pressure is p2¼ 1 atm. How much heat flows into
this system during the expansion?

3. 10 g of nitrogen, originally at T1¼ 17�C, is adiabatically compressed
from 8 to 5 l. How much work was done to compress the nitrogen? The
isochoric heat capacity of a mole of nitrogen is 2.5R.

4. 1 mole of an ideal gas undergoes the following cycle:

1.1.4 Thermochemistry

The first law of thermodynamics allows us to systematize the data on the
heat of chemical reactions. Consider, for example, the burning of hydrogen
to produce water:

H2 þ 1
2O2 ¼ H2O:

p1, T1 p1, T2
p = const p = constT = const

T = const

p2, T2 p2, T1

Derive an expression for the heat added to the gas during this process
using only those parameters shown in the figure.

Basic laws of thermodynamics8



Burning 1 mole of hydrogen changes the internal energy of the system
by �U¼U(H2O)�U(H2)� 1/2U(O2), where all values are per mole. At
constant volume, the change in internal energy of the system is equal to the
heat generated during this reaction. If the reaction proceeds at constant
pressure, the heat generated is equal to the change in the enthalpy of the
system �H¼H(H2O)�H(H2)� 1/2H(O2). Since both the internal energy
and enthalpy are state functions, changes in these functions are inde-
pendent of the path along which this process occurred. This is the basis of
Hess’s law: the heat generated in a chemical reaction is determined by only
the type and state of the reactants and the products of the reaction, and
does not depend on the reaction path or the existence of any intermediate
substances formed during the reaction. This law has great practical signi-
ficance because it allows us to build rather compact thermodynamic
databases and to limit the number of experiments that are necessary for
the determination of the heats of reaction. To illustrate this, we consider a
simple example. The heat of the reaction

2Feþ 3
2 O2 ¼ Fe2O3, (1:25)

is equal to �H(1)¼ � 822 kJ/mole, and the heat of the reaction

2FeþO2 ¼ 2FeO3, (1:26)

is equal to �H(2)¼ � 530 kJ/mole. Now, consider the following new
reaction:

2FeOþ 1
2O2 ¼ Fe2O3: (1:27)

We do not need to perform a separate experiment to determine the heat
of this reaction. Rather, we note that this reaction can be described
by subtracting Eq. (1.26) from Eq. (1.25). Therefore, the heat of reac-
tion associated with Eq. (1.27) is simply �H(3)¼�H(1)��H(2)¼
� 292 kJ/mole.6 We can do this because we know Hess’s law.

In creating a thermodynamic database, we should distinguish between
two types of substances, namely, elementary and compound substances.
The latter can be synthesized from the former (more formal definitions
are discussed below). Any chemical reaction that involves compound
substances can be represented as one or more reactions involving only
elementary substances to produce those compounds. Consider the oxida-
tion of ammonia as an example:

4NH3 þ 5O2 ¼ 4NOþ 6H2O: (1:28)

In this reaction, NH3, NO, and H2O are compound substances. This
reaction can be rewritten as the following series of reactions:

(a) 1
2N2 þ 3

2H2 ¼ NH3

(b) 1
2N2 þ 1

2O2 ¼ NO

(c) 1
2O2 þH2 ¼ H2O:

6 Note that these heats of reaction are typical for reactions amongst inorganic substances
(i.e. 10–1000kJ/mole).
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Formally, we can rewrite the reaction for the oxidation of ammonia
(Eq. 1.28) as:7

Eq:(1:28) ¼ (4� b)þ (6� c)� (4� a)

Using Hess’s law, we can write the heat of reaction associated with
Eq. (1.28) as:

�H(4) ¼ 4�H(b) þ 6�H(c) � 4�H(a):

Thus, to calculate the heat of any chemical reaction, we need only know
the heats of formation of all of the compound substances involved in the
reaction from elementary substances. It is these heats of formation that are
normally tabulated in databases. Since, in practice, we more frequently
encounter reactions proceeding at constant pressure rather than constant
volume, the enthalpies of formation are commonly tabulated at room
temperature and atmospheric pressure, that is, T¼ 25�C and p¼ 1 atm.
The enthalpy of formation of elementary substances is, by definition,
�H0

f 298 ¼ 0 (the subscript ‘‘f 298’’ implies formation at T¼ 298 K and the
superscript ‘‘0’’ implies that p¼ 1 atm.8) If an elementary substance can
exist in more than one structure (polymorphic) at T¼ 25�C and p¼ 1 atm,
�H0

f 298 ¼ 0 for the most stable form. For example, for graphite
�H0

f 298 C(gr)

� � ¼ 0 and for diamond �H0
f 298 C(diamond)

� � ¼ 1:83 kJ/mole.
As a rule, inorganic compounds have �H0

f 298 < 0 (their formation is-
exothermic). However, there are exceptions, such as NO, which has a
positive enthalpy of formation. The heat of any reaction that takes place
under standard conditions9 can be determined in terms of the standard
enthalpy of formation of all of the reactants and products:

�H0
298 ¼

X
products

�i�H
0
f 298(i)�

X
reactants

�i�H
0
f 298(i) (1:29)

where the �i are stoichiometric coefficients of the participants in the reaction
(e.g. in Eq. (1.25), �Fe¼ 2, �O2

¼ 3
2, �Fe2O3

¼ 1).
We can calculate the standard heat of reaction at any temperature if we

know the heat capacity of all of the participants in the reaction. Since

cp ¼ @H

@T

� �
p

we can define

�cp ¼ d�H0
T

dT
, (1:30)

7 Check this yourself.
8 If gases take part in the reaction their partial pressures must be equal to 1 atm.
9 ‘‘Standard conditions’’ implies that the partial pressures of all gasses are 1 atm. Cases in

which the reactants or products are in solutions are discussed in Chapter 5. The enthalpy
corresponding to standard conditions is known as the standard enthalpy of reaction.
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which is calculated from the heat capacities in the same manner as in the
determination of the heat of reaction in Eq. (1.29). Integrating Eq. (1.30),
we find:

�H 0
T ¼ �H 0

298 þ
Z T

298

�cpdT: (1:31)

We can also use the tabulated data on the standard enthalpies of
formation to determine the heats of reaction at constant volume. At con-
stant volume, the heat of reaction is the change in internal energy.
Therefore, we need only find the relationship betweenU andH. For a gas,
this is simply

H ¼ Uþ pV ¼ Uþ nRT:
For a condensed phase (solid, liquid, or glass), pV is usually small relative
to heats of reaction. Consider, as an example, the case of water at room
temperature and atmosphere pressure:

pV � 105 Pa � 10�3 m3=kg � 0:018 kg=mole ¼ 1:8 J=mole
� 0:002 kJ=mole:

Therefore, we usually neglect the pV contribution to the enthalpy of
condensed phases.

The heat of a chemical reaction occurring at constant pressure is related
to that at constant volume by

�H0
T ¼ �U0

T þ��gasRT, (1:32)

where ��gas is the difference in the stoichiometric coefficients between the
gas phase products and reactants. For example, for the reaction

Cgr þ 2H2 ¼ CH4

�H0
T ¼ �U0

T þ (1� 2)RT ¼ �U0
T � RT,

that is, ��gas¼ � 1.

Review questions

1. What is the typical magnitude of the heat of chemical reactions
involving inorganic substances?

2. Define the term �H0
f 298.

3. The standard heat of formation of ammonia is �H 0
f 298(NH3) ¼

�294:1 kJ=mole. Write the chemical reaction corresponding to this
heat of formation.

Example problems

1. Calculate the heat of reaction for

CH4 þ 2CO ¼ 3C(gr) þ 2H2O
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at 1100 K. The following thermodynamic data are available from standard
thermodynamic databases:

Substance CH4 CO Cgr H2O

�H0
f 298 kJ/mole � 74.60 � 110.53 0 � 241.81

S0
298, J/(K mole) 186.26 197.55 5.74 188.72
a 42.06 28.41 16.86 30.00
b 31.50 4.10 4.77 10.71
c � 17.29 � 0.46 � 8.54 0.33

where the temperature dependence of the heat capacities of the reactants
and products are described by

cp ¼ aþ b � 10�3Tþ c � 105T�2

(The S0
298 data are included for other examples, below.)

2. Find the heat of formation of SiO2

SiþO2 ¼ SiO2

at constant volume and T¼ 700 K, given the following thermodynamic
data:

cp(Si) ¼ 20:0 J=(K mole)

cp(O2) ¼ 29:4 J=(Kmole)

cp(SiO2) ¼ 44:2 J=(K mole)

�H 0
298 ¼ �908 kJ=mole:

1.2 The second lawof thermodynamics

While the first law of thermodynamics tells us that energy is conserved,
it tells us nothing about whether a reaction will proceed and, if so, in
which direction. In order to resolve this issue, we must first introduce a
new state function which is central to the establishment of the second law
of thermodynamics. Unlike the first law, the second law is difficult to
succinctly articulate. The next four sections of this chapter describe the
establishment of the second law. However, if it is enough that you
know what it is, rather than where it comes from, you can skip ahead to
Section 1.2.5.

1.2.1 Thomson and Clausius postulates

A thermodynamic system can exchange heat with its surroundings and
perform work. Therefore, it can be viewed as if it were part of a heat engine.
The theory of heat engines was developed primarily in the eighteenth and
nineteenth centuries in connection with answering the following question:
is it possible to construct a perpetual motion machine? (Although this
question has long been settled, counter proposals still appear in news-
papers and investment seminars.) Such a theory is applicable to all
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thermodynamic systems and not just heat engines. We now briefly state
the main ideas of this theory.

We start with a discussion of several features that are common to all
types of heat engines. The heat engine consists of a medium that performs
work (e.g. by expanding) and mechanisms for adding and removing heat,
i.e. a heater and a cooler, respectively. To perform work, the medium must
obtain heat,Qh, from the heater. This acquisition of heat brings the system
from state 1 to state 2 along some path, a. (We shall label such a transition
as 1! a! 2.) We can represent this process on a p�V diagram, as shown
in Fig. 1.3. According to the first law of thermodynamics, the amount of
work done by the medium is related to the heat transferred and the change
in internal energy of the medium: W1!a!2 ¼ jQhj � (U2 �U1).

10

If the medium returns to state 1 along the same path, 2! a! 1, the total
work will be zero. However, if the medium returns to state 1 by a different
path b, 2! b! 1, the net work will be non-zero. During this process
2! b! 1 the medium gives up some heat, Qc, to the cooler and performs
(negative) work W2!b!1 ¼ �jQcj � (U1 �U2). The net work performed
by the medium in transversing this circuit is W ¼W1!a!2 þW2!b!1 ¼
jQhj � jQcj, where Q ¼ jQhj � jQcj is the total heat absorbed by the
medium in this process. This work is simply the area enclosed in going
around the circuit in the p –V diagram in Fig. 1.3 (1! a! 2! b! 1).

The efficiency of the heat engine � is defined as

� ¼ W

Qhj j : (1:33a)

Replacing the work with its heat equivalent, as per the first law of
thermodynamics, we can rewrite the efficiency as

� ¼ Qhj j � Qcj j
Qhj j : (1:33b)

Thus, the first law of thermodynamics tells us that the efficiency �� 1.
Since the efficiency can never be greater than one, it is impossible to
construct a device that produces more work than the heat provided. If �
were greater than 1, we could produce some work, while returning all of the
original heat provided to the heater (e.g. as a result of friction). This would
be a perpetual motion machine since we are getting work for nothing. Such
a device is known as a perpetual motion machine of the first type and is
prohibited by the first law of thermodynamics.

If Qc¼ 0, then �¼ 1. Such a machine is called a perpetual motion
machine of the second type. Indeed, if we could create an engine without a
cooler, we could simply use the universe as the heater, let it cool by an
infinitesimal amount while transferring an infinite amount of heat to our
medium, and produce an infinite amount of work. However, this violates
all known experience, so we must conclude that it is impossible. This
observation is known as Thomson’s postulate: no closed path through p�V

V

p

1 b

2
a

Fig.1.3
Schematic illustration that shows that

the net work done in one heat engine

cycle is the area enclosed between the

two paths.

10 In Sections 1.2.1–1.2.3, we always use the absolute value of the heat and explicitly
indicate the direction of the heat flow.
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space is possible in which the only result is the production of work and the
removal of heat from a heater. This is one statement of the Second Law

of Thermodynamics.

An alternative statement of the Second Law was given by Clausius.
Clausius’s postulate states: heat cannot flow spontaneously from a cooler to
a hotter system (without producing some other change in the universe).
The Thomson and Clausius postulates are equivalent; one follows from
the other. However, we should keep in mind that both the first law of
thermodynamics and these two postulates are not the results of thermo-
dynamics, but are, in fact, assertions that thermodynamics uses. Both are
consistent with centuries of experience.

Example problem

1. Prove the equivalence of the Thomson and Clausius postulates.

1.2.2 Reversible and irreversible processes

Consider the transformation of a system from state A to state B as the
result of some process. If it is possible to return the system from state B
back to state A by a path for which the entire circuit A!B!A leaves the
universe completely unchanged, the original transformation A!B is
reversible. On the other hand, if no such return path exists, the original
process A!B is irreversible. Consider two examples. According to the
Clausius postulate, the spontaneous flow of heat from a body at a higher
temperature to one at a lower temperature is irreversible. According to
the Thomson postulate, the release of heat by friction is an irreversible
process.

Let us consider the piston example shown in Fig. 1.4. Point A corre-
sponds to the initial state of the gas on a p�V diagram. If we remove a
shovel full of sand from the top of the piston, the pressure in the gas will
drop to the value indicated by point B on the p�V diagram and the volume
will increase to that indicated by point C. If we continue shoveling away the
sand, the system will traverse path 1 to state E, going through D along the
way. We can return the system to its original state by adding sand, as
indicated by path 2 (i.e. the dotted line in the p�V diagram). Examination

Sand
p

A

B
C

2D

E

V

1 1
Gas

Fig.1.4
Schematic illustration of the difference between a reversible and an irreversible process.
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of Fig. 1.4 shows that the work associated with the compression of the gas
in going from E to A along path 2 (i.e. the area under path 2 in Fig. 1.4) is
larger than the original work done by the gas in the expansion from A to E
along path 1. If instead of removing and adding sand by the shovel full, we
use a teaspoon, path 1 will be much closer to path 2 and hence the excess
work is drastically reduced. In the limit that we remove one sand particle at
a time, path 1 and path 2 will be indistinguishable. In this case, the excess
work is (almost exactly) zero and the process corresponding to path A!E
is reversible. Provided we change the system sufficiently slowly so that it is
always in equilibrium, a reversible process traverses a locus of equilibrium
states. If the process is reversible, we could go either way on the solid curve
by adding or removing sand particles one at a time. In other words, we
can always reverse the direction of a reversible process by infinitesimally
changing external conditions.

The piston example suggests that the maximum amount of work a
system can perform in going from one state to another is achieved when the
system moves along a reversible path. We will prove this statement in
Section 1.4.1.

1.2.3 Carnot cycle

One particular thermodynamic circuit is of special significance: this is the
Carnot cycle. By definition, theCarnot cycle is a reversible process in which
the system is alternately in contact with two heat reservoirs (a heater and a
cooler) at constant temperatures Th and Tc (Th>Tc). At first, the system is
in contact with the heater. According to the Clausius postulate, this process
can be reversible only if the system has the same temperature as the heater.
Since the heater temperature is constant, this contact must correspond to
an isothermal process. During this contact, the system acquires heat, jQhj
and performs work, W12 (see Fig. 1.5). Now, after the system is removed
from the heater and before it is brought into contact with the cooler, it must
be cooled to the temperature of the cooler (otherwise the contact with the
cooler will not correspond to a reversible process, as per the Clausius
postulate). Since there are no other heat reservoirs available, this process
must occur adiabatically. During this process, the system performs work,
W23. Then, when the system contacts the cooler, it loses heat, jQcj and
performs negative work, W34. Point 4 in Fig. 1.5 is chosen such that the
system can return to the initial state (i.e. point 1) adiabatically. During this
last adiabatic compression, the system performs negative work,W41. Thus,
a Carnot circle consists of two isotherms 12 and 34 and two adiabats 23 and
41 (see Fig. 1.5). During the entire Carnot cycle, the internal energy of the
system does not change (this is a closed circuit), but the system performs
work W¼W12þW23þW34þW41¼ jQhj � jQcj. Note that the heat flow
from and to the heater and cooler are related by the efficiency �, as per
Eq. (1.33 b)

jQcj ¼ (1� �)jQhj: (1:34)

p

V

1

4

3

2
Th

TC

Fig.1.5
A schematic Carnot cycle.
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The first Carnot theorem states that the efficiency of a machine
operating with the Carnot cycle depends only on the temperatures of the
heater and cooler and does not depend on any details of how the machine is
constructed or the working medium employed. To proof this theorem, we
consider two Carnot machines that share the same common heater and
cooler but have efficiencies �1 and �2. In order to make this analysis con-
crete, we shall assume that �1>�2. We will show below that if this
inequality holds, then we contradict Thomson’s postulate. We begin by
allowing machine 1 to perform m1 forward cycles, acquiring heat
jQhj1¼m1q1 from the heater and losing heat jQcj1 to the cooler and in the
process, doing workW1¼ jQhj1� jQcj1 (e.g. the machine may lift a weight
off of the floor). Now, we stop machine 1 and use the potential energy
stored by the weight dangling above the floor to start machine 2, which will
operate in the reverse direction (this is possible since the Carnot cycle
is reversible). When machine 2 performs m2 cycles, it acquires heat jQcj2
from the cooler and losing heat jQhj2¼m2q2 to the heater (i.e. it works
like a refrigerator). During this process machine 2 does negative work
W2¼ jQhj2� jQcj2. Summarizing the results of the actions of both
machines, we find:

� heat jQhj1� jQhj2 was transferred from the heater to the system
� heat jQcj2� jQcj1 was transferred from the cooler to the system
� workW¼W1�W2¼ (jQhj1� jQcj1)� (jQhj2� jQcj2)¼ �1jQhj1� �2jQhj2

was performed.

Since m1 and m2 are, to this point, arbitrary, we can choose them such
that jQhj1� jQhj2¼ 0. In this case, the heater lost no heat, the cooler lost
heat jQcj2� jQcj1¼ (1� �2)jQhj2� (1� �1)jQhj1¼ (�1� �2)jQhj1> 0 to the
system, and the machines produced workW¼ (�1� �2)jQhj1> 0. No other
changes were made to the universe. However, such a process is prohibited
by Thomson’s postulate (i.e. no closed circuit is possible if that produces
only work and transfers heat from a thermal reservoir). Alternatively,
if �1<�2, we would contradict the second law of thermodynamics if
machine 2 does work in the forward direction while machine 1 does work
in the backward direction. Thus, �1 must be equal to �2. This proves that
any Carnot machines sharing the same heater and cooler have the same
efficiency.

Since the efficiency of a Carnot machine does not depend on the type of
the medium, we can simplify our analysis by choosing an ideal gas as the
medium. Because we know how ideal gases behave, we can derive an
expression for Carnot efficiency that is valid for all Carnot machines.
To this end, we first recall that for any isothermal ideal gas �U¼ 0,
jQhj ¼RThlnV2/V1, and jQcj ¼RTc lnV3/V4 (see Section 1.1.3). Thus,
we find

Qhj j
Qcj j ¼

Th ln V2=V1

Tc ln V3=V4
(1:35)
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For adiabatic processes, cVdTþRTdV/V¼ 0. Since cV ¼ @U
@T

� �
V
,

the isochoric heat capacity of an ideal gas depends only on temperature;
hence, Z p:3

p:2

cV
dT

T
¼ �

Z p:1

p:4

cV
dT

T
,

where the limits of the integrals denote points in the p�V diagram in
Fig. 1.5. Since cVdT/T ¼RdV/V, we find:Z p:3

p:2

dV

V
¼ �

Z p:1

p:4

dV

V
; ln

V3

V2
¼ ln

V4

V1
; ln

V3

V4
¼ ln

V2

V1
:

Combining this result with Eq. (1.35) implies

Qhj j
Th
¼ Qcj j
Tc

: (1:36)

Now using Eqs (1.34) and (1.36), we obtain an expression for the Carnot
efficiency:

� ¼ Qhj j � Qcj j
Qhj j ¼ 1� Qcj j

Qhj j ¼ 1� Tc

Th
;

� ¼ Th � Tc

Th
: (1:37)

Recall that although this derivation was for an ideal gas, Eq. (1.37) is
equally valid for any Carnot machine.

Finally, we note that we can rewrite Eq. (1.36) without the absolute value
signs by being careful about the direction of the heat flow,

Qh

Th
þQc

Tc
¼ 0 (1:38)

This expression has the benefit that it looks symmetric with respect to the
identification of the different heat reservoirs as the heater and cooler.

1.2.4 The Clausius inequality

We now consider the general case of a circuit process involving an arbitrary
thermodynamic medium, M. This medium acquires heat Q1 from heat
reservoir R1, heat Q2 from reservoir R2, etc. in this circuit (see Fig. 1.6(a)).
We now isolate the medium M from the reservoirs and connect these
reservoirs to Carnot machines that operate between the reservoirsRi and a
common reservoir, R0, as shown in Fig. 1.6(b). Since we do this after
medium M is isolated, the addition of these Carnot machines does not
change medium M in any way. Let Carnot machine Ci perform a circuit,
taking heat Q0i from reservoir R0 and heat Q0i from reservoir Ri. We now
combine the circuit involving medium M with the processes associated
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with all n Carnot machines into a single complex circuit. In the resultant
complex circuit,

reservoir R0 lost heat Q0 ¼ �iQ0i,
reservoir Ri lost heat Qi þQ0i, and
work W ¼ Q0 þ �i(Qi þQ0i) was performed.
By changing the length of the isotherms in the Carnot cycle (see Fig. 1.5),

we can change the quantity of heat transferred to or from the reservoir.
Without loss of generality, we choose Carnot cycles for whichQi þQ0i ¼ 0.
In this case, the states of all of the reservoirsRi do not change as we traverse
this complex circuit. We can write Eq. (1.38) for Carnot machine Ci in the
following form

Q0i

T0
þQ

0
i

Ti
¼ 0:

Therefore, during the complex circuit of Fig. 1.6, reservoir R0 transfers
heat

Q0 ¼
X
i

Q0i ¼ �T0

X
i

Q0i
Ti
¼ T0

X
i

Qi
Ti

,

and does work W¼Q0. According to the Thomson postulate, this work
cannot be positive, since there are no other changes in the universe.
Therefore,

0 	W ¼ Q0 ¼ T0

X
i

Qi
Ti

X
i

Qi
Ti
� 0: (1:39)

Note that in this derivation, no restrictions were put on medium
M. Rather, our only constraint was that the temperature of all of the

M

Q1

R1
T1

R2
T2

R1
T1

R2
T2

R0 T0

Rn
Tn

Rn
Tn

Q2 Qn

Q�1

Q01 Q02

C1 C2 Cn

Q0n

Q�2 Q�n

M

(a) (b)

Fig.1.6
A schematic process involving (a) work performed by medium M and heat flow between n

distinct heat reservoirs Ri and the medium and (b) work performed by n Carnot machines Ci
and the transfer of heat between these reservoirs and a common reservoir R0. In step (b), the

medium is isolated from all reservoirs.
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reservoirs remain constant as the complex circuit is traversed (in practice,
this means that the reservoirs are large).

We now consider an arbitrary thermodynamic system which makes a
circuit transferring heat to or from its surroundings. In this way, we con-
sider the surroundings as a set of heat reservoirs. We can divide the circuit
into infinitesimal parts where the system exchanges heat with a single heat
reservoir, the temperature of which remains constant. Inequality Eq. (1.39)
can be rewritten for this circuit asX

i

�Qi
Ti
� 0,

where �Qi is the heat transferred during the infinitesimal part, i, of the
circuit. This summation can be replaced by integration; hence,I

�Q

T
� 0, (1:40)

where T is the temperature of the surroundings. This result is known as the
Clausius inequality.

We now examine an important consequence of the Clausius inequality.
If the system exchanges heat with only two heat reservoirs, the inequality in
Eq. (1.39) can be rewritten as:

Qhj j
Th
� Qcj j
Tc
� 0;

Tc

Th
� Qcj j
Qhj j ; � Tc

Th
	 � Qcj j

Qhj j ;

1� Tc

Th
	 1� Qcj j

Qhj j ;
Th � Tc

Th
	 Qhj j � Qcj j

Qhj j :

The left side of this expression is the efficiency of a Carnot machine (see
Eq. (1.37)), while the right side is the efficiency of an arbitrary machine
which exchanges heat with the same heater and cooler as the Carnot
machine. This result is known as the second Carnot Theorem: the efficiency
of any machine cannot be larger than the efficiency of the Carnot machine
with the same heater and cooler.

1.2.5 Entropy

Consider the case of an arbitrary reversible circuit, as shown in Fig. 1.7.
Since in a reversible process the system is always very close to equilibrium,
the temperature of the system must be the same as the temperature of its
surroundings. Therefore, in the case of a reversible process, the temper-
ature in the Clausius inequality should be understood as the temperature of
the system.
For the process 1!

a
2!

b
1

H
�Q=T � 0. Similarly, for the process

1!
b

2!
a

1
H
�Q0=T � 0. Since �Q0 ¼ ��Q in a reversible process, we

must have: I
�Q

T
¼ 0: (1:41)

p

1

2
a

b

V

Fig.1.7
An arbitrary circuit process.
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Equation (1.41) is known as the Clausius equality. We can rewrite this
equality in the following form:I

�Q

T
¼
Z

1!
a

2

�Q

T
þ
Z

2!
b

1

�Q

T
¼
Z

1!
a

2

�Q

T
�
Z

1!
b

2

�Q

T
¼ 0,

where 1 and 2 are arbitrary points on the circuit and a and b are the two
paths that connect these two points. Therefore,Z

1!
a

2

�Q

T
¼
Z

1!
b

2

�Q

T
:

Thus, the integral of �Q/T depends only on the endpoints of the
integral and not on the path of a reversible process. Therefore, �Q/T is a
full differential of a state function for a reversible process:

dS ¼ �Q
T

; �S ¼ S2 � S1 ¼
Z

1!2

�Q

T
: (1:42)

Following Clausius, we name this state function the entropy. Note
that according to Eq. (1.42), the entropy is defined to within an additive
constant. We will return to the question of the value of this additive
constant in Section 1.3.1.

Now, consider the case in which the system irreversibly goes from state 1
to state 2 by path a and then returns from 2 to 1 via a reversible path b.
Since the complete circuit is still irreversible, we have to use sign > in the
Clausius inequality:

0 >

I
�Q

T
¼
Z

1!
a

2

�Q

T
þ
Z

2!
b

1

�Q

T
¼
Z

1!
a

2

�Q

T
�
Z

1!
b

2

�Q

T
¼
Z

1!
a

2

�Q

T
��S

Thus we find that for any irreversible process

�S ¼ S2 � S1 >

Z
1!2

�Q

T
; dS >

�Q

T
: (1:43)

Combining Eqs (1.42) and (1.43), we find

dS 	 �Q
T

, (1:44)

where the equality corresponds to reversible processes and the inequality
corresponds to irreversible processes. Note that for adiabatic systems
�Q¼ 0 and dS	 0.

Equation (1.44) is the analytical statement of the second law of
thermodynamics, first given by Clausius in 1862. It was on this basis that
he first postulated the existence of a new state function—entropy. For
adiabatic systems, the entropy remains constant if the process is reversible
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and always increases if the process is irreversible. The entropy continues to
increase until the system reaches equilibrium. This necessarily implies
that equilibrium is the state of maximum entropy. Since in an adiabatic
system all spontaneous processes increase the entropy, no spontaneous
process that decreases the entropy is possible. This is the first hint that
thermodynamics provides as to which direction a process will go.

Review question

1. Does the change of the entropy depend on the path by which the system
goes from one state to another?

1.2.6 Implications of the second law of thermodynamics

As we discussed at the beginning of this chapter, thermodynamics
makes predictions based upon changes in state functions. The first law of
thermodynamics provides one state function, the internal energy. In
Sections 1.1.2 and 1.1.3, we saw how this function changes during different
processes. The second law of thermodynamics provides another state
function, the entropy. We now examine how this function changes during
different processes. Inserting the first law of thermodynamics (Eq. (1.5))
into the Clausius inequality (Eq. (1.44)) yields:

TdS 	 dUþ �W: (1:45)

This relationship is called the combined statement of the first and

second laws of thermodynamics. The equality pertains for reversible
processes:

TdS ¼ dUþ �W:
If the work of expansion is the only work performed during a process, this
equation reduces to

TdS ¼ dUþ pdV: (1:46)

While the temperature in Eq. (1.45) refers to the temperature of the
surroundings, in Eq. (1.46) it is the temperature of the thermodynamic
system itself. Equation (1.46) can be used to find the change of entropy
associated with different processes. Although Eq. (1.46) refers specifically
to a reversible process, the change of entropy is valid for all processes. This
is because the entropy is a state function and its change depends only on the
initial and final states but not on the path the process takes (i.e. it applies
equally to reversible and irreversible processes).

For isochoric processes, TdS¼ dU¼ cVdT, which can be integrated as
follows:

�SV ¼
Z T2

T1

cV
T

dT: (1:47)
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For isobaric processes, TdS¼ d(Uþ pV )¼ dH¼ cpdT and

�Sp ¼
Z T2

T1

cp

T
dT: (1:48)

These expressions give a definition for the heat capacity in terms of S,
rather than in terms of U and H (Section 1.1.2):

cV ¼ T @S

@T

� �
V

; cp ¼ T @S

@T

� �
p

� (1:49)

For isothermal processes,

�ST ¼ Q
T
: (1:50)

This expression can be used to describe the change in entropy associated
with an isothermal phase transition in terms of the heat of the transition
and the temperature,

�Sp:t: ¼ �Hp:t:
Tp:t:

: (1:51)

The relationships derived above are valid for all systems. We can specialize
to the case of isothermal processes involving an ideal gas,

dU ¼ 0; TdS ¼ pdV ¼ nRT
V

dV;

�ST ¼ nR ln
V2

V1
¼ nR ln

p1

p2
: (1:52)

We now turn our attention to the important case of the mixing of
two ideal gases at constant temperature and pressure. Consider a closed
container, divided by a membrane into two sections; the first section has
volume V1 and contains gas 1, and the second has volume V2 and contains
gas 2. Initially, the gases are at the same temperature and pressure. When
the membrane separating the two sections is removed at constant tem-
perature, both gases expand into the entire volume of the container. The
change of entropy associated with this mixing of the two gasses (i.e. the
entropy of mixing) is determined through Eq. (1.52)

�Smix ¼ n1R ln
V

V1
þ n2R ln

V

V2
, (1:53)

where n1 and n2 are the number of moles of gasses 1 and 2, andV¼V1þV2

is the volume of the container. The total pressure after mixing is the same
as before mixing, therefore,

pV ¼ nRT; pV1 ¼ n1RT:

Combining these equations, we find:

V

V1
¼ n

n1
¼ 1

x1
,
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where x1 is the molar fraction of gas 1 in the mixture. Inserting this rela-
tionship into Eq. (1.53) implies

�Smix ¼ �R n1 ln
n1

n1 þ n2
þ n2 ln

n2

n1 þ n2

� �
¼ �nR x1 ln x1 þ x2 ln x2½ 


(1:54)

(Note: gases 1 and 2 must be different; otherwise, of course, �Smix¼ 0.)

Review questions

1. What are the dimensions of entropy?
2. Does the entropy of the system increase or decrease upon heating a

substance at constant volume or at constant pressure?
3. Does the entropy of the system increase or decrease when two ideal

gases are mixed?

Example problems

1. Calculate the change of entropy associated with the process described in
Example problem 1.1.2.1.

2. 2 moles of nitrogen (N2) change from a state where T1¼ 25�C and
p1¼ 1 atm to one in which T2¼ 200�C and V2¼ 105 cm3. The heat
capacity of 1 mole of nitrogen at constant pressure is cp¼ 3.5R.
Calculate the change of entropy of this process.

3. At T¼ 25�C, 1000 cm3 of nitrogen (N2) at pressure p1¼ 1 atm is mixed
with 2000 cm3 of oxygen (O2) at pressure p2¼ 2 atm. The volume of the
mixture is then changed such that the temperature and pressure in
the final state are T¼ 25�C and p¼ 1 atm, respectively. Calculate the
change of entropy associated with this two-step process.

4. Find the change of entropy atT¼ 1100 K associated with the reaction in
Example problem 1.1.4.1.

1.3 The third lawof thermodynamics

1.3.1 Nernst heat theorem

We begin our discussion of the third law of thermodynamics by reference
to the second law which defines the entropy to within an integration
(additive) constant. Just as we cannot describe the internal energy without
making reference to some standard state, it is necessary to establish a
reference point to fully describe the entropy. Another difficulty with the
definition of entropy occurs at T¼ 0K. Indeed, it is not obvious that the
integral of the differential of the entropy (Eq. (1.42))

ST ¼ ST0
þ
Z T

T0

�Q

T
¼ ST0

þ
Z T

T0

c

T
dT, (1:55)

is convergent as T! 0 (the integrand will diverge as T! 0 provided, for
example, that the heat capacity is finite at T¼ 0).
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We cannot resolve these problems on the basis of the first or second
laws of thermodynamics without the introduction of additional
postulates. The Nernst heat theorem (frequently called the third law of

thermodynamics), formulated in 1906, provides the requisite new postu-
lates. The first statement of this theorem postulates that the heat capacity
of any substance goes to zero as T! 0K. Furthermore, experimental
observations (and quantum mechanics) demonstrate that the heat capa-
city goes to zero as T! 0 in such a way that the ratio c/T does not diverge.
Therefore, the entropy is well defined in the T! 0K limit. The second
statement of the Nernst heat theorem says that at T¼ 0 K all processes
that take a system from one equilibrium state to another occur with no
change of entropy. Furthermore, the Planck postulate states that the
second statement of the Nernst heat theorem will always be valid provided
that the entropy of any equilibrium system goes to zero as T! 0K. This
statement is also frequently called the third law of thermodynamics. The
Planck postulate is very useful from a practical point of view since it
provides a reference point for the entropy (i.e. T¼ 0 K). While these
statements of the third law of thermodynamics are simply postulates, they
can be understood in physical terms through quantum mechanics and
statistical physics.

While the first statement of the Nernst heat theorem is always valid, the
second statement is not valid for all substances, for example, amorphous
materials. This is not a contradiction to the third law of thermodynamics
which applies to equilibrium systems because amorphous materials are not
in equilibrium.

Review question

1. Can entropy be negative?

1.3.2 Determination of absolute entropy

The third law of thermodynamics gives us an opportunity to determine
the absolute value of entropy at any temperature using calorimetric
measurements. In such measurements, a known, small quantity of heat is
introduced into an otherwise adiabatic container (i.e. a calorimeter) and
the corresponding change in temperature is measured. The ratio of the heat
introduced to the temperature change is the heat capacity. The heat
capacity can be measured down to very low temperature (point A in
Fig. 1.8). Debye theory (see Section 13.3.2), which shows that cp�T 3, can
be used to estimate cp down to just a few degrees Kelvin. While we focus on
the high temperature behavior of the heat capacity hereafter, a formal
discussion of the behavior of the heat capacity at low temperature can be
found in Chapters 12 and 13. The heat capacity is a smooth function except
at phase transitions. Figure 1.8 demonstrates two such breaks related to
melting (point B) and evaporation (point D). Every phase transition

Cp

T0

A

B

E
F

DC

Tmelt Tboil

Fig.1.8
The dependence of the heat capacity on

temperature for a substance that exhibits

both melting and boiling.
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adds �Hp.t./Tp.t. to the entropy. If there are no phase transitions in the
condensed states, the entropy of the gas (point F) can be calculated as:

STF
¼
Z Tmelt

0

cp

T
dTþ�Hmelt

Tmelt
þ
Z Tboil

Tmelt

cp

T
dTþ�Hevap

Tboil
þ
Z TF

Tboil

cp

T
dT:

If there is a phase (polymorphous) transition in the solid state, the
corresponding �Hp.t./Tp.t. must be added to the entropy for all T>Tp.t.

Databases usually quote the value of the entropy at T¼ 298 K and
p¼ 1 atm, S 0

298. Note that there is no � before S 0
298 (in contrast with

�H 0
f298) since this is an absolute value.

Example problem

1. Iron (�–Fe) is ferromagnetic at room temperature, but undergoes
a phase transition to the paramagnetic state (�-Fe) at T�!�¼ 768�C.
The heat of this transition is �H�!�¼ 1.53 kJ/mole. A database
gives the following data for �–Fe: S 0

298 ¼ 27:15 J/(K mole); cp¼
23.9þ 8.7 � 10� 3 T J/(K mole). Find the entropy of 1 mole of �–Fe at
T¼ 768�C.

1.4 Helmholtz and Gibbs free energies

1.4.1 Direction of spontaneous processes at constant temperature

We have already seen that entropy determines the direction of spontaneous
processes in adiabatic systems. However, if a system can exchange heat
with its surroundings, the entropy alone does not predict the direction of
spontaneous processes. In this section, we consider the very important case
of isothermal processes. We start from the Clausius inequality (Eq. (1.45)),
which can be rewritten as:

�W � �(dU� TdS):

For isothermal processes, dU–TdS¼ d(U–TS). We can introduce a new
state function, called the Helmholtz free energy, as

A ¼ U� TS: (1:56)

Substituting this definition into the inequality, above, we find

�W � �dA: (1:57)

Thus, the maximum work that can be done by the system is equal to minus
the change of the Helmholtz free energy. Since the equality in Eq. (1.57)
corresponds to reversible processes, we find that the maximum work is
obtained only in reversible processes.

At constant volume, the work of expansion ( pdV) is zero. Therefore,
Eq. (1.57) for isochoric-isothermal processes can be rewritten as:

�Wnon-mechanical � �dA: (1:58)
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At constant pressure, Eq. (1.57) implies:

�Wnon-mechanical � �dA� pdV ¼ �d(Aþ pV):

In this case, it is convenient to introduce a new state function, the Gibbs

free energy, defined as

G ¼ Aþ pV ¼ U� TSþ pV ¼ H� TS: (1:59)

For isobaric-isothermal processes,

�Wnon-mechanical � �dG: (1:60)

In order to prevent a spontaneous process from proceeding, we must do
some work on the system. Obviously, this work must exceed the non-
mechanical work that the system performs during the spontaneous pro-
cess. Therefore, the non-mechanical work can be used to determine
whether a spontaneous process will occur:Wnon-mechanical	 0 implies that
such a process will occur. Using Eq. (1.58), we can rewrite this condition
for isochoric–isothermal processes as:

dA � 0: (1:61)

This implies that all spontaneous processes lead to a decrease of the
Helmholtz free energy at constant T and V. Similarly, Eq. (1.60) implies
that a process will occur spontaneously at constant T and p if the Gibbs
free energy satisfies

dG � 0: (1:62)

The equality in Eqs (1.61) and (1.62) corresponds to equilibrium, that is,
the conditions of equilibrium are

dA ¼ 0, at T ¼ const, V ¼ const (1:63)

dG ¼ 0, at T ¼ const, p ¼ const: (1:64)

When the system is in equilibrium, the process no longer spontaneously
proceeds in any direction. This implies that if a thermodynamic system is in
equilibrium it cannot spontaneously leave this state.

Review questions

1. What are the dimensions of the Helmholtz and Gibbs free energies?
2. Under what conditions is the equation �G¼�H�T�S valid?
3. Can the Gibbs free energy of a substance be negative?

1.4.2 Dependence of the Helmholtz andGibbs free energies
on p,T, and V

Since the Helmholtz and Gibbs free energies determine the direction of
a spontaneous process at constant temperature, it is important to know
how these functions depend on the parameters that describe the system
(e.g. p, T, and V ). We begin by rewriting Eq. (1.46) as:

dU ¼ TdS� pdV: (1:65)
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We can make use of the definition of the enthalpy, H¼Uþ pV, and the
differential identity d( pV )¼ pdVþVdp, to re-express Eq. (1.65) as

dH ¼ TdSþ Vdp: (1:66)

Analogous relations can be obtained from Eq. (1.65) for the Helmholtz and
Gibbs free energies (please confirm these for yourself!)

dA ¼ �SdT� pdV (1:67)

dG ¼ �SdTþ Vdp: (1:68)

Several useful relationships can be obtained directly from Eqs (1.67) and
(1.68). For example, Eq. (1.68) implies

S ¼ � @G

@T

� �
p

(1:69)

V ¼ @G

@p

� �
T

: (1:70)

These equations show how the Gibbs free energy depends on T and p. The
description of the entropy in Eq. (1.69) can be used to obtain another useful
relationship between the Gibbs free energy and the enthalpy:

G¼H�TS¼HþT @G

@T

� �
p

;� H
T2
¼� G

T2
þ 1

T

@G

@T

� �
p

;

@(G=T)

@T

� �
p

¼�H
T2
: (1:71)

This relationship is known as theGibbs–Helmholtz equation. An analogous
equation for the Helmholtz energy takes the following form:

@(A=T )

@T

� �
V

¼ � U
T 2

:

We now investigate the dependence of the Gibbs free energy on pressure.
Integrating Eq. (1.70) for the special case of an ideal gas yields:

G
p2

T ¼ Gp1

T þ
Z p2

p1

Vdp ¼ Gp1

T þ nRT
Z p2

p1

dp

p
¼ Gp1

T þ nRT ln
p2

p1
:

The pressures p1 and p2 in this equation can have arbitrary values (of
course, provided that the ideal gas model is applicable at these pressures!).
Since in most real applications we obtain the free energy from a database
where it is usually tabulated for p¼ 1 atm, it is convenient to set p1¼ 1 atm.
If we express the pressure in atmospheres, we can rewrite the previous
equation as

GT ¼ G0
T þ nRT ln p, (1:72)
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where G0
T is the Gibbs free energy of the gas at the same temperature at

p¼ 1 atm. The value ofG0
T depends only on temperature. Equation (1.72) is

an explicit description of the dependence of the Gibbs free energy of an
ideal gas on pressure.11

Inserting Eq. (1.72) for an ideal gas into Eq. (1.71) we find

H ¼ �T2 d(G0
T=T )

dT
:

The function on the right side depends only on temperature. Therefore, the
enthalpy of an ideal gas depends only on temperature. Since U¼H–nRT
for an ideal gas, the internal energy must also depend only on the
temperature, as we assumed in Section 1.1.3.

We now consider the case of condensed substances. The volume of
condensed substances depends only very weakly upon the pressure.
Therefore, the pressure dependence of the free energy of a condensed
substance can be expressed as

G
p2

T ¼ Gp1

T þ
Z p2

p1

Vdp � Gp1

T þ V(p2 � p1):

Since G¼H–TS, the Gibbs energy has the same order of magnitude as the
enthalpy. Further, since pV is usually small compared with the internal
energy (and, hence, the enthalpy), as demonstrated in Section 1.1.4, we can
rewrite this expression in the following trivial form:

GT � G0
T: (1:73)

Of course, such an expression would be inapplicable to cases where we
want to investigate the pressure dependence of phase transitions or if we
have been sucked into a black hole, where the pressure is not so small.

From Eqs (1.69) and (1.70), it follows that

@V

@T

� �
p

¼ @2G

@T@p
¼ � @S

@p

� �
T

: (1:74)

Equations such as this are known collectively as Maxwell’s relations

and are useful for deriving many important results in thermodynamics.
We show how to mathematically work with such relations in Appendix I.
For example, we can use Eq. (1.74) to find the relationship between
the heat capacities at constant pressure and volume (see Appendix I,
Eq. AI.7):

cp � cV ¼ TV�
2

�T
¼ T�

2

��T
, (1:75)

11 Note that since we have assumed that pressures are expressed in atmospheres, p, in
Eq. (1.72), is a dimensionless number (i.e. the number of atmospheres). This is necessary since
we can only evaluate the logarithm of a number, rather than something with dimensions.
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where V is the volume of 1 mole of the substance, �¼ 1/V is the density
(expressed in mole/m3),

� ¼ 1

V

@V

@T

� �
p

(1:76)

is the coefficient of thermal expansion and

�T ¼ � 1

V

@V

@p

� �
T

, (1:77)

is the isothermal compressibility. Since the isothermal compressibility is
positive for all stable systems (see Section 1.5.2), Eq. (1.75) implies that
cp> cV. Equation (1.75) is a more convenient expression for the difference
in the two heat capacities than the one we derived earlier (Eq. 1.14) since it
only contains quantities that are readily available from databases (i.e. �, �,
and �T) while (@U=@V )T is not. Consider iron at room temperature, as
an example, for which we find (in databases) the density is 7.9 g/cm3 (that
gives �¼ 1.4 � 105 mole/m3); �¼ 3.5 � 10� 5 K� 1; �T¼ 5.9 � 10� 12 Pa� 1 at
T¼ 298 K. Inserting these data into Eq. (1.75), we obtain cp� cV¼
0.44 J/(mole K).Dulong and Petit proposed the empirical rule that the heat
capacity of 1 mole of atoms (in the case of molecular species, this is still per
mole of atoms) of any condensed substance is approximately 3R¼
24.9 J/(mole K). This rule can also be obtained from statistical mechanics
(the Debye theory for the heat capacity). Thus we see that for iron the
difference between the heat capacities at constant pressure and volume is
about 2% of the heat capacity. Since this difference is small, it is commonly
neglected and, hence, we approximate cp� cV for condensed substances.

Review questions

1. Does the Gibbs free energy increase or decrease when a substance is
heated at constant pressure?

2. Does the Helmholtz free energy increase or decrease when a substance
expands at constant temperature?

3. If you know the Gibbs free energy of a substance at some temperature
and pressure and you know its enthalpy as function of temperature and
pressure, how would you calculate the Gibbs free energy at a different
temperature and the same pressure?

4. For what type of material is the equation cp � cV ¼ T�2=��T invalid?

Example problems

1. You are given a substance for which the Gibbs free energy can be
expressed as:

G ¼ �3:5nRT ln Tþ nRT ln p� 12:73nRTþ nbp� nap
RT

,

where p is in Pa, a¼ 0.138 J �m3/mole2, b¼ 3.258 � 10� 5 m3/mole. The
volume of one mole of this substance at T¼ 298 K is V¼ 1000 cm3.
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Under these conditions, what is (1) the pressure, (2) the entropy, (3) the
heat capacity at constant pressure, (4) the isothermal compressibility,
(5) the coefficient of thermal expansion, and (6) the heat capacity at
constant volume?

2. At T¼ 25�C, the molar volume of water varies with pressure as

V ¼ 18:066� 7:15 � 10�4pþ 4:6 � 10�8p2 cm3=mole,

and the coefficient of thermal expansion is

�T ¼ 1

V
4:5 � 10�3 þ 1:4 � 10�6p
� �

cm3=K mole,

(the pressure is in atm in both expressions). Find the change in the internal
energy upon isothermal compression from p1¼ 1 atm to p2¼ 1000 atm at
T¼ 25�C.

1.5 Thermodynamics of open systems

1.5.1 Chemical Potential

Until this point, we focused on systems where the number of moles of each
component was fixed. We now turn our attention to the case where the
number of moles of each component ni can vary, either by exchanging
atoms with the surroundings or as a result of chemical reaction. Therefore,
we must expand our definition of the internal energy to account for vari-
ation in ni (cf. with Eq. (1.65)):

dU ¼ TdS� pdVþ
Xk
i¼1

	idni, (1:78)

where k is the number of components.12 The function

	i ¼ @U

@ni

� �
S,V, nj 6¼i

, (1:79)

is called the chemical potential. According to this definition, the chemical
potential is the work necessary to remove 1 mole of component i from the
system (if the system is so large that this operation does not lead to a
measurable change in the properties of the system). It is clear from the
derivations of Eqs (1.66)–(1.68) that the differentials of H, A, and G also
must also be likewise adjusted:

dH ¼ TdSþ Vdpþ
Xk
i¼1

	idni (1:80)

dA ¼ �SdT� pdVþ
Xk
i¼1

	idni (1:81)

dG ¼ �SdTþ Vdpþ
Xk
i¼1

	idni: (1:82)

12 A rigorous definition of the number of components will be given in Section 2.1.
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These equations imply

	i ¼ @H

@ni

� �
S, p, nj 6¼i

¼ @A

@ni

� �
T,V, nj 6¼i

¼ @G

@ni

� �
T, p, nj 6¼i

(1:83)

Consider the case of a one-component system. The internal energy of
1 mole of the substance is a function of only the molar entropy and volume:

Um ¼ fU(Sm,Vm):

The internal energy of n moles, is thus simply

U ¼ nUm ¼ nfU S

n
,
V

n

� �
:

Analogously,

H ¼ nfH S

n
, p

� �

A ¼ nfA T,
V

n

� �
G ¼ nfG(T, p):

The dependence on the number of moles in the system is explicit only in
the expression for the Gibbs free energy. Differentiating of this expression
with respect to n at constant T and p implies that 	¼ fG(T, p). Therefore,
for pure materials, the chemical potential is the Gibbs free energy per mole:

	 ¼ G=n: (1:84)

The extension of this equation to multi-component systems is given in
Section 3.1. Using Eq. (1.84) and the expressions for the Gibbs free energy
derived above, we can find several important properties of the chemical
potential of a one-component system:

d	 ¼ �SmdTþ Vmdp; Sm ¼ � @	

@T

� �
p

; Vm ¼ @	

@p

� �
T

(1:85)

	T ¼ 	0
T þ RT ln p (1:86a)

	T � 	0
T, (1:86b)

where Eq (1.86a) and (1.86b) are valid for ideal gases and condensed
phases, respectively.

Finally, we consider two important cases: a mixture of ideal gases and a
mixture of mutually insoluble, condensed one-component substances. For
the first, we return to the experiment considered at the end of Section 1.2.6.
Since there are no intermolecular interactions in ideal gases,13 they mix

13 Of course, we do not consider the case where chemical reactions occur in the mixture.
Note that although the assumption that the molecules do not interact in an ideal gas is
convenient for our thermodynamic considerations, some form of interactions is necessary to
obtain almost all kinetic properties (e.g. diffusivity, thermal conductivity, viscosity).
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with no change in enthalpy (i.e. the heat of mixing is zero). Using the
expression for the entropy of mixing found above (Eq. (1.54)), we can write
the Gibbs free energy of the mixture as

G ¼ Ginit
1 þ Ginit

2 þ�Gmix ¼ n1 	
0
1 þ RT ln p

� �þ n2 	
0
2 þ RT ln p

� �
þ RT n1 ln n1 � n1 ln (n1 þ n2)þ n2 ln n2 � n2 ln (n1 þ n2)ð Þ:

Differentiating with respect to n1 we obtain the chemical potential of
component 1 in this mixture:

	1 ¼ 	0
1 þ RT ln pþ RT ln n1 þ 1� ln (n1 þ n2)� n1

n1 þ n2
� n2

n1 þ n2

� �

¼ 	0
1 þ RT ln pþ RT ln

n1

n1 þ n2
¼ 	0

1 þ RT ln px1ð Þ ¼ 	0
1 þ RT ln p1

where p1 is the partial pressure of component 1 in this gas mixture. Thus,
the chemical potential of component i in an ideal gas mixture is:

	i ¼ 	0
i þ RT ln pi (1:87)

where 	0
i is the chemical potential of pure i at the same temperature at

1 atm.
The Gibbs free energy of a system of condensed, mutually insoluble,

one-component substances is the sum of Gibbs energies of these
substances:

G ¼
X
i

Gi ¼
X
i

ni	i �
X
i

ni	
0
i :

Differentiating with respect to ni, we find

	i � 	0
i : (1:88)

This means that if condensed, one-component substances are mutually
insoluble, their chemical potentials do not change upon mixing.

Review question

1. What are the dimensions of the chemical potential?

1.5.2 Conditions for equilibrium

We now identify the conditions under which two sub-systems are in ther-
modynamic equilibrium. Two such conditions are obvious. Mechanical
equilibrium requires that, in the absence of an applied field (stress, mag-
netic, electric, etc.), the pressures in two sub-systems in contact must be the
same.14 Analogously, thermal equilibrium requires that the temperatures
in these two sub-systems must be the same. If the temperatures of the

14 Here, we are discussing systems that cannot support shear stresses, such as liquids or
gases. We return to the important case of mechanical equilibrium in solids in Chapter 7.
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sub-systems are different, heat will spontaneously and irreversibly flow
from the warmer to cooler sub-system. These two conditions, while
necessary for equilibrium, are not sufficient. In fact, the two sub-systems
can exchange atoms or molecules ( just like they exchange heat). Such
exchanges can occur by way of diffusion or through chemical reactions.
When such processes go to completion, the sub-systems are in chemical
equilibrium.

How can we quantitatively express the conditions of chemical equilib-
rium? We can do so through the combined statement of the first and second
law of thermodynamics (see Eq. (1.78)):

dS ¼ 1

T
dUþ p

T
dVþ

Xk
i¼1

	i
T

dni: (1:89)

Consider equilibrium between the two sub-systems (I and II) that compose
an isolated system. Equation (1.89) can be applied to the individual sub-
systems:

dSI ¼ 1

TI
dUI þ p

I

T I
dV I þ

Xk
i¼1

	I
i

T I
dnI
i

dS II ¼ 1

T II
dUII þ p

II

T II
dVII þ

Xk
i¼1

	II
i

T II
dnII
i :

Since the entire system is isolated, dU¼ �Q� pdV¼ 0 or, alternatively,
U¼UIþUII¼ constant. Furthermore, in an isolated system V¼
V Iþ V II¼ constant and nI

i þ nII
i ¼ constant. These can be expressed in

differential form as

dUI þ dUII ¼ 0

dV I þ dV II ¼ 0

dnI
i þ dnII

i ¼ 0:

Using these relationships between the properties of the two sub-systems,
the differential form of the entropy of the entire system becomes

dS¼dSIþdSII¼ 1

TII
� 1

TI

� �
dUIIþ pII

TII
� p

I

TI

� �
dVIIþ

Xk
i¼1

	II
i

TII
� 	

I
i

TI

� �
dnII
i :

(1:90)

Since the entropy is a maximum in equilibrium, the derivatives with respect
to any variable must be zero. Therefore, each of the bracketed terms in
Eq. (1.90) must individually be zero. The first bracketed term gives

T I ¼ T II, (1:91)

that is, the condition for thermal equilibrium. The second bracket gives
the condition for mechanical equilibrium:

pI ¼ pII: (1:92)
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The last bracketed term in Eq. (1.90) yields

	I
i ¼ 	II

i : (1:93)

which is the condition for chemical equilibrium.
The derivation presented above can be easily extended to the case of

three or more sub-systems. Equations (1.91)–(1.93) represent the ther-
modynamically necessary conditions for equilibrium but do not address
how long it takes to achieve equilibrium. In practice, mechanical equilib-
rium is usually achieved very quickly, while it may take a very long time
(even years or centuries) to achieve chemical equilibrium.

Although Eqs. (1.91)–(1.93) are necessary conditions for equilibrium,
even these are not sufficient. While the entropy must be a maximum in
equilibrium, the equilibrium conditions that we obtained only show that
the entropy is an extremum (i.e. the first derivatives with respect to all
variables are zero). The missing equilibrium conditions can be obtained by
analyzing the behavior of the second derivates where the first derivates are
zero. Such an analysis demonstrates that equilibrium requires that the
heat capacity at constant volume and the isothermal compressibility must
be positive. Indeed, if the heat capacity of a body was negative, it could
never achieve thermal equilibrium with its initially higher temperature
surroundings (according to the Clausius postulate, heat would flow from
the warmer surroundings to the body, but since cV< 0 dT¼ �Q/cV< 0, the
temperature of the body would decrease). If the compressibility was
negative, it could never achieve mechanical equilibrium with its surround-
ings (i.e. if the surroundings exerted a positive pressure on the body, the
body would expand).
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Phase equilibria I

This chapter addresses the general features of phase equilibria and
applies them to single component systems. Before extending our study of
phase equilibria to the interesting case of multiphase, multicomponent
systems, we examine the special case of single phase, two-component sys-
tems (Chapter 3). Phase equilibria in multiphase, multicomponent systems
is deferred until Chapter 4.

2.1 Gibbs phase rule

A single substance may exist in different states. For example, H2O can exist
as water vapor, liquid water, or any one of several solid phases (ices).
Different states can co-exist indefinitely under certain sets of conditions.
Under such conditions, the co-existence of these states suggests that they
are in equilibrium with respect to one another, that is, phase equilibrium
has been established. It is convenient to graphically represent phase
equilibria in the form of phase diagrams. An example of such a diagram
for a one-component system (with no solid state allotropes) is shown in
Fig. 2.1. The AO, OB, and OC lines represent conditions for which two
phases are in equilibrium. Since each set of two-phase equilibrium is
represented by a one-dimensional surface (i.e. a line), we see that we can
vary one parameter (either T or p) without entering a one-phase region of
the diagram. For example, if we set the temperature to T1 we can find a
saturated vapor pressure p1 such that the liquid and gas co-exist.1

Three phases simultaneously co-exist at point O, which is called the triple
point. Since the three-phase co-existence surface is zero dimensional (i.e. a
point), three-phase equilibrium only exists at a specific temperature and
pressure, that is, no conditions can be varied. On the other hand, every
single-phase region of the diagram is a two-dimensional area and, hence,
we can simultaneously, vary two parameters (i.e. both the temperature and
pressure) and still remain in the same single-phase region of the diagram.
Equations describing the lines of phase equilibria will be derived in
Section 2.2, below.

2

1 Recall that a saturated vapor is, by definition, a vapor which is in equilibrium with a
corresponding condensed phase.

p

p1

T1 T

A
Liquid

Solid Gas

B

O

C

Fig. 2.1
A typical p–T diagram for a

one-component system.



Unlike the lines describing the solid–liquid or solid–vapor co-existence,
the liquid–vapor co-existence line terminates in a single-phase region of the
diagram. This terminus, labeled as Point C on the phase diagram (Fig. 2.1),
is called the critical point. The vapor and liquid have exactly the same
structure and properties at T>Tc or p> pc; hence, these are single-phase
regions.

The existence of a critical point was first found for CO2 by observation
that increasing the pressure at T> 31�C led to a smooth increase in the
density (1/V ), while for T< 31�C the smooth increase in density was
interrupted by a jump in the density, as represented by the horizontal line in
the p–V diagram (Fig. 2.2). This horizontal line describes the condensation
(to form liquid CO2) of the gas at constant pressure. This figure shows
that the gas can be transformed into a liquid by compression only at
temperatures lower than a critical value, Tc.

We now define some of the terms used above. A phase is a system or part
of a heterogeneous system that is uniform throughout, not only in chemical
composition, but also in physical state. Each phase has a unique equation of
state. Two phases are separated from one another by one or more abrupt
interfaces. In principle, a phase can be extracted from a heterogeneous
system by some macroscopic mechanical method (e.g. by a process of cut-
ting on a scale that is coarse compared to atomic dimensions). A system can
be described by a set of parameters such as the temperature, pressure, and
concentration of each component in each phase of the system. The number
of degrees of freedom, F, is the number of independent parameters that must
be set in order to fully determine the state of a system that is in equilibrium.

The number of components, C, is the number of substances combined to
form the systemminus the number of independent equations describing the
chemical reactions relating these substances. For example, in a system
formed by combining CO, CO2, O2, Fe, and FeO, the number of individual
substances is 5. These can be related to each other through:

2FeþO2 ! 2FeO

FeOþ CO! Feþ CO2

2COþO2 ! 2CO2:

These equations are not independent since the third equation can be
obtained by adding the first equation to two times the second. Thus the
number of independent equations describing chemical reactions between
these substances is 2, such that the the number of components in the
system C¼ 5� 2¼ 3.

Gibbs showed that the number of components (C ), the number of phases
(P), and the number of degrees of freedom (F ) are related when the system
is in equilibrium. To find this relation, we must also consider the number
of conditions that the system must satisfy in equilibrium; for example, the
equality of pressure, temperature, and chemical potentials of each com-
ponent in each phase. We shall explicitly assume that the pressure and
temperature in all phases in equilibrium are the same and that the chemical
potentials within each phase are functions of p, T, and concentrations of all

p

V

T < Tc

T > Tc

Fig. 2.2
A schematic illustration of the p–V

diagram for CO2.
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components. Therefore, the total number of parameters that must be used
to fully describe the system is 2þCP, where the first term corresponds
to the number of external parameters (pressure and temperature here) and
the second term gives the total number of concentrations of each com-
ponent in each phase. (If the system is subjected to external fields, such
as an electrical or magnetic field, the number of parameters describing
these external fields must also be added.) These 2þCP parameters are not
independent, since they are interrelated via equations describing the
equality of chemical potentials between the phases:

	I
i ( p,T, cI1, . . . , c

I
C) ¼ 	II

i ( p,T, cII1 , . . . , cIIC) ¼ . . . ¼ 	Pi ( p,T, cP1 , . . . , cPC):

We can write down P� 1 such equations for each of the C components.
There are C(P� 1) such equations for the entire system. Additionally,
there is one equation of state for each phase in the system:

f �( p,T, c�1 , . . . , c�C) ¼ 0:

There are P such equations. Therefore, the number of degrees of freedom
is F¼ 2þCP�C(P� 1)�P

F ¼ Cþ 2� P: (2:1)

Equation (2.1) is the Gibbs phase rule. Since a negative number of degrees
of freedom has no physical meaning, F	 0 and Eq. (2.1) gives

P � Cþ 2: (2:2)

Hence, the number of phases in equilibrium cannot exceed Cþ 2. For
example, the maximum number of phases in equilibrium with one another
in a one-component system is 3 (i.e. the triple point—see Fig. 2.1).

We frequently work with systems composed solely of condensed phases.
The thermodynamic properties of condensed phases are usually only
weakly dependent on the pressure (at least for the pressures typically see in
the laboratory). Therefore, if we can ignore the dependence of the pro-
perties on pressure, we can treat the system as if the pressure was fixed. In
this case, the degree of freedom associated with pressure is removed and the
Gibbs phase rule takes the following form for condensed systems

F ¼ Cþ 1� P: (2:3)

Equation (2.3) implies, for example, the number of degrees of freedom
associated with an equilibrium solid–liquid mixture is F¼ 1þ 1� 2¼ 0. In
other words, this equilibrium only occurs at a unique temperature—the
melting temperature. This is consistent with our common experience—ice
and water are only in equilibrium at 0�C at p¼ 1 atm.

A system for which F¼ 0 is called invariant, if F¼ 1 it is monovariant,
if F¼ 2 it is bivariant, etc.

2.2 Clausius^Clapeyron equation

We now consider phase equilibrium in a one-component system. In such a
system, only two phases can co-exist (with the single exception of the triple
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point). The phase equilibrium condition in a one-component system can be
written in the form

	I( p,T ) ¼ 	II( p,T ), (2:4)

where p and T are not independent, but are related by p¼ p(T ), which
describes, for example, the co-existence lines AO, OB, and OC lines in
Fig. 2.1. Since along these co-existence lines the chemical potential depends
only upon the temperature, we can take the full derivatives of both sides of
Eq. (2.1):

@	I

@T

� �
p

þ @	I

@p

� �
T

dp

dT
¼ @	II

@T

� �
p

þ @	II

@p

� �
T

dp

dT
:

Using the definitions of the partial derivatives from Eq. (1.85), we can
rewrite this equation as �SI

m þ V I
mðdp=dT Þ ¼ �SII

m þ V II
m ðdp=dT Þ or

dp

dT
¼ S

II
m � SI

m

VII
m � VI

m

¼ �S

�V
: (2:5)

The expression is known as the Clausius–Clapeyron relation. No app-
roximations were used in the derivation of this equation, hence, it is exact.
Since phase transitions in a one–component system at constant pressure
occur at a single temperature, Eq. (2.5) can be rewritten as

dp

dT
¼ �H

T�V
, (2:6)

where �H is the heat generated during the phase transition.
We now consider several particular cases. For the case of the solid–liquid

phase transition (i.e. melting), Eq. (2.6) is

dp

dT
¼ �Hmelt

T(VL � VS)
: (2:7)

Since most solid phases have a larger density than that of their cor-
responding liquids, VL>VS. In this case, an increase in the pressure pro-
duces an increase in the melting temperature. For water, the situation is
opposite, VS>VL, such that an increase in the pressure decreases the
melting temperature.

For the evaporation processes (liquid! vapor),

dp

dT
¼ �Hevap

T(VV � VL)
: (2:8)

If the vapor is an ideal gas (i.e., the system is far from the critical
point VV � VL), Eq. (2.8) can be rewritten as ðdp=dT Þ ¼ ð�Hevap � pÞ=
ðT � RT Þ or

d ln p

dT
¼ �Hevap

RT 2
: (2:9)

Trouton noted that for most liquids �Hevap/Tboil� 92, where Tboil is the
normal boiling temperature (i.e. at a total pressure of 1 atm.). For the case
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of a solid in contact with its saturated vapor, we find

d ln p

dT
¼ �Hsubl

RT 2
, (2:10)

where �Hsubl is the heat of sublimation. Unlike Eq. (2.9), which was only
valid for T� Tc this equation is true at all temperatures because the
density of the solid is always much greater than that of its vapor (there is no
solid–vapor critical point2). Equations (2.9) and (2.10) both suggest that
the saturated vapor pressure increases with increasing temperature.

Equations (2.9) and (2.10) were derived for the case in which there is no
contribution to the pressure other than from the saturated vapor itself.
Other sources of pressure may arise, for example, from the presence of an
inert gas or stresses in the condensed phase. If the additional pressure is
large, it may alter the state functions of the condensed phase and, therefore,
the pressure of the saturated vapor. We now derive an equation to account
for this effect. The chemical potential of the vapor remains

	v ¼ 	0
v þ RT ln p,

and the chemical potential of the condensed phase should include a term
associated with the additional pressure. According to Eq. (1.70), this
chemical potential takes the following form:

	c ¼ 	0
c þ paVm:

where pa is the additional pressure and Vm is the molar volume of the
condensed phase. In equilibrium, the chemical potentials of the vapor and
condensed phase must be equal to each other, such that

p ¼ e(	0
c�	0

v)=RTepaVm=RT:

If pa¼ 0, the pressure reduces to the saturated vapor pressure p¼ ps
described by Eqs. (2.9) and (2.10). Therefore, we can write:

p ¼ pse
paVm=RT: (2:11)

For example, in the case of water at T¼ 273 K under an inert gas of
pressure 1 atm, the factor epaVm=RT ¼ 1:0008. Clearly, this additional
pressure has little effect and we, therefore, ignore it. This demonstrates that
at atmospheric pressure we can safely assume that p¼ ps. If an additional
pressure of �100 MPa is applied (this is not considered a large stress
within most solids), epaVm=RT � 2. Under such conditions, we cannot
neglect this factor.

Example problems

1. Find the change in the melting temperature of tin when the pressure
increases by 100 atm. The following data for tin can be found in a

2 While the atomic structure of crystalline solids always exhibits higher symmetries than
liquids or gasses, liquids and gasses have no difference in symmetry. Therefore there must be
a change in symmetry on going from a solid to a liquid or gas and none going from a liquid
to a gas.
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handbook: Tmelt¼ 231.9�C, �Hmelt¼ 7.07 kJ/mole, and the densities
of liquid and solid tin are dL¼ 6.99 g/cm3 and dS¼ 7.18 g/cm3,
respectively.

2. Find the saturated vapor pressure over carbon tetrachloride at
T¼ 60�C. The normal boiling temperature of CCl4 is equal to 75�C
and the heat of evaporation is �Hevap¼ 45860� 44.06T J/mole.

3. Estimate the saturated vapor pressure over solid argon atT¼ 50 K. The
following Ar properties were found in a standard handbook:
Tboil¼ � 185.9�C, Tmelt¼ � 189.3�C, �Hevap¼ 6.50 kJ/mole, and
�Hmelt¼ 1.19 kJ/mole.
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Thermodynamic theory
of solutions

A solution is a homogeneous mixture consisting of two or more compo-
nents in which the composition can be continuously varied (within some
range) with no change of phase. Solutions can be gases, liquids, or solids.
We have already considered the properties of gaseous solutions (when we
considered a mixture of ideal gases). In this chapter, we focus on condensed
phases (i.e. liquids and solids).

3.1 Thermodynamic description of solutions

The composition of a solution can be described in several ways. Here are
the most common:

1. Themolar fraction of the ith component, xi, is the ratio of the number of
moles of component i, ni, to the total number of moles of all species
within the solution, n:

xi ¼ ni
n
¼ niPk

j¼1 nj
: (3:1)

2. The weight fraction of the ith component, [i ], is the ratio of the mass of
component i, wi, to the total mass of all species within the solution, w:

½i
 ¼ wi
w
¼ wiPk

j¼1 wj
, (3:2)

the weight fraction is often written as a weight percent [wt%]¼ 100[i ].
3. The molarity of the ith component, ci, is the number of moles of com-

ponent i, ni per liter of solution, V:

ci ¼ ni
V
: (3:3)

4. Themolality of ith component (used only for dilute solutions),mi, is the
number of moles of component i, in 1 kg of solvent.

There are several other definitions used to describe the composition of
a solution, but we shall only refer to those described above in this text.
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The reason that there are so many definitions of the composition is related
to how the term ‘‘concentration’’ is applied. For example, from the
physical–chemical point of view, the molar fraction is the most convenient
definition of the concentration since it is on an atomic basis. However,
from the point of view of someone who has to prepare solutions from
separate solutes and solvents, the mass fraction is the most convenient
definition since it is directly related to the mass of the components, rather
than the number of moles of the component. The former is easily meas-
ured, while the latter requires the additional knowledge of the molecular
weight (and a trivial calculation).

We are often called upon to convert between one definition of concen-
tration to another. Here is an example of how we can convert from molality
to molar fraction in a binary (two-component) solution. We start from a
formal definition of that concentration that we wish to obtain:

x2 ¼ n2

n1 þ n2
¼ n2

w1=(M1=1000)þ n2
¼ m2

1000=M1 þm2
,

where M1 is molar weight of the solvent expressed in g/mole. Assuming
that the solution is dilute, we can approximate the last expression as

x2 ffi M1

1000
m2: (3:4)

For an infinitesimal concentration of the solute, the molar fraction is
proportional to the molality. This conclusion is valid for all multi-
component solutions: in the limit that the fraction of the component is
very small, all of the measures of concentration are proportional to one
another.

The properties of a solution are characterized by thermodynamic
functions such asV, S, U, H, A, andG.These values are extensive and refer
to the entire solution. It is convenient to use intensive values (e.g. pressure,
temperature, and concentrations) as parameters since these values do not
depend on the quantity of the solution. In order to estimate the con-
tribution to the extensive property (F ) made by each of the i-components
in the solution, Lewis defined the partial molar values of a property as

Fi ¼ @F

@ni

� �
p,T, nj 6¼i

: (3:5)

The chemical potential is an example of a partial molar value; it is the
partial molar Gibbs free energy.

It is frequently useful to express the properties of a solution relative to
those of the pure components at the same temperature and pressure. For
this purpose, we define the excess values of the thermodynamic function
associated with mixing as

�Fmix ¼ F�
X
i

niF
0
i , (3:6)

where F 0
i is the value of F for one mole of pure component i. �Fmix is also

called the relative integral molar value of F. In some texts, �Fmix is
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denoted as FM and the corresponding partial values as F
M

i (see below).
�Fmix tells us how the extensive property, F, changes when a solution is
formed from its pure components.

To illustrate this concept, consider the change in volume that occurs
when a solution is formed from its pure components. For a solution that
is formed with no change in volume, Eq. (3.6) implies that V ¼Pi niV

0
i .

Differentiating this expression with respect to ni shows that Vi ¼ V 0
i .

However, if the volume of the system does change upon forming a solution
from its individual pure components (�Vmix 6¼ 0), Vi 6¼ V 0

i . Unlike a
physical volume, the partial volume can be either positive or negative (or
zero). Vi < 0 implies that the solution volume decreases upon addition of
component i.

The relative partial molar value of property F is defined, through
Eqs (3.5) and (3.6), as

F
M

i ¼
@�Fmix

@ni
¼ Fi � F 0

i :

F
M

i characterizes the effect on F of dissolving 1 mole of pure i in a very large
quantity of the solution. A solution is considered ‘‘very large’’ if dissolving
1 mole of component i leads to only negligible changes in the properties of
the solution. As an example, the heat of solution of 1 mole of pure i is
H

M

i ¼ Hi �H0
i .

If we double the number of moles of a particular material, all of the
extensive properties will increase by a factor of two. Analogously, if the
numbers of moles of all components increase by a factor of �, all extensive
properties increase �-fold:

F(�n1, �n2, . . . ,�nk) ¼ �F(n1, n2, . . . , nk):

From a mathematical perspective, this implies that any extensive property
is a homogeneous function of the numbers of moles of all of its compo-
nents. Euler’s theorem for homogeneous functions states that

F ¼
Xk
i¼1

@F

@ni
ni:

Inserting the definition of the partial molar value (Eq. (3.5)) into this
expression provides the link between an extensive property and its partial
molar values:

F ¼
Xk
i¼1

Fini: (3:7)

Since F is a homogeneous function of the numbers of moles of the
components of the solution, Eq. (3.7) implies that the partial molar values
are themselves independent of the numbers of moles of each component
and are, therefore, intensive parameters. The partial molar values do,
however, depend on the overall composition of the solution.
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Equation (3.7) can be re-expressed in another form. To this end,
we differentiate Eq. (3.7) with respect to the number of moles of com-
ponent j, nj:

@F

@nj
¼
Xk
i¼1

@Fi
@nj
ni þ

Xk
i¼1

Fi
@ni
@nj
¼
Xk
i¼1

@Fi
@nj
ni þ Fj:

Since the partial molar value of F is defined as Fj ¼ @F
@nj

(Eq. (3.5)), this
implies

Xk
i¼1

@Fi
@nj
ni ¼ 0: (3:8)

Multiplying this equation by dnj and summing over j,

0 ¼
Xk
j¼1

dnj
Xk
i¼1

@Fi
@nj
ni ¼

Xk
i¼1

ni
Xk
j¼1

@Fi
@nj

dnj ¼
Xk
i¼1

nidFi

yields

Xk
i¼1

nidFi ¼ 0: (3:9)

Equations (3.7)–(3.9) are all expressions of the so-called Gibbs–Duhem

relation. Recall that all of these expressions are simple consequences of the
fact that any extensive property is a homogeneous function of the numbers
of moles of each of the components in a solution.

We now examine the relationship between partial molar values of
thermodynamic functions. Equation (3.7) can be immediately applied to
the Gibbs free energy

G ¼
Xk
i¼1

ni	i, (3:10)

where the chemical potential 	i is the partial molar value of the Gibbs free
energy. This equation is the generalization of the Gibbs free energy of one-
component systems, G¼ n	. Differentiating the expression for the Gibbs
free energy (G¼H�TS) with respect to the number of moles of com-
ponent i at constant temperature, pressure and numbers of moles of the
remaining components, shows that

	i ¼ Hi � TSi: (3:11)

Now, inserting the definition of the entropy, S ¼ �(@G=@T )p, ni , into that
for its partial molar value, Si ¼ (@S=@ni)p,T, nj 6¼i , we find

Si ¼ � @	i
@T

� �
p, nj
¼ � @	i

@T

� �
p, xj

, (3:12)

where we are free to replace nj with xj because constant numbers of moles
implies constant mole fractions. We can use the same approach to derive

Thermodynamic theory of solutions44



the Gibbs–Helmholtz equation (Eq. (1.71)) that relates the chemical
potential and the partial molar enthalpy

@(	i=T )

@T

� �
p, xi
¼ �Hi

T 2
, (3:13)

and the equation that relates the chemical potential to the partial molar
volume:

Vi ¼ @	i
@p

� �
T, xi

(3:14)

Finally, we consider the application of Eq. (3.9) to the special case of
binary solutions. Dividing Eq. (3.9) by the total number of moles in the
solution, we obtain

x1dF1 þ x2dF2 ¼ 0: (3:15)

In a binary solution, the mole fraction of components 1 and 2 are not
independent, rather x1þ x2¼ 1 and dx1¼�dx2. Therefore, Eq. (3.15) can
be rewritten in the form

x1
@F1

@x1

� �
p,T
¼ x2

@F2

@x2

� �
p,T
: (3:16)

This relation enables us to calculate the partial molar value of one com-
ponent if the dependence of the partial molar value of the other component
on composition is known.

Example problem

1. The composition of the ternary alloy Al–Ni–Ti is [Ni]¼ 70 wt% and
[Al]¼ 25 wt%. Find the atomic fractions of all components. Note wt%
implies percentage by weight.

2. The density of a 20 wt% solution of methyl alcohol (CH3OH) in water is
0.9666 g/cm3. The partial molar volume of water in this solution is
17.7 cm3/mole. Find the partial molar volume of methyl alcohol in this
solution.

3. Let the partial molar volume of the solute in a binary solution depends
on its molality in the following manner:

V2 ¼ aþ bm2,

where a and b are constants. The molecular weight of the solvent is
M1g/mole, and the volume of 1 mole of the pure solvent isV 0

1 . Derive an
expression for the dependence of the partial molar volume of the solvent
on the solute molality.

3.2 Ideal dilute solutions

The thermodynamic description of solutions developed in the previous
section provides general relations that apply to all solutions. It is, however,
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of limited utility without a supplemental description of the behavior of
specific solutions. This supplemental description cannot be derived from
thermodynamics. For example, a supplemental description may express
the relationship between the saturated vapor pressure and the solute
concentration.

While each solution has a unique description, there are general classi-
fications of types of solutions that share certain features and, hence,
may be treated as members of a special class. The most widely studied
classes represent certain limiting cases. Such classifications are, by nature,
simplifications. But it is such simplifications that allow us to make
thermodynamics a practical tool.

The general schema for developing any theory of solutions is the
following. First, we create an expression for the Gibbs free energy (or,
equivalently, the chemical potentials of all components of the solution) as
a function of the temperature and concentrations of the solution compo-
nents. This can be done for a class of solutions that share some funda-
mental behavior. Next, we employ this free energy function within the
general thermodynamic framework for solutions described in the previous
section. In this way, we can predict all of the thermodynamic properties
of a particular class of solutions.

It is natural to start the study of solutions from the theories for the
simplest classes of solutions; namely, ideal solutions and ideal dilute
solutions.1

3.2.1 Thermodynamic functions

It is simplest to begin our exploration of types of solutions from the theory
of ideal dilute solutions. Ideal dilute solutions

2 are those for which the
molar fraction of the first component (solvent) approaches unity, x1! 1,
while those of the other components (solutes) tend to zero, xi 6¼ 1! 0. In this
limiting case, it is a simple matter to write the Gibbs free energy of the
solution as an expansion in terms of the molar fractions of the individual
solutes. However, such an approach requires some knowledge of statistical
physics (see Section 13.4.1). In order to avoid such a digression here, we
shall employ a different approach. Rather, we shall start from some
experimental observations of dilute solutions that are captured in the form
of Henry’s law, which is described below. Although it is enough to use an
experimentally motivated description to develop the thermodynamics of
these solutions, we will provide a qualitative derivation of this law.

Let us consider how the pressure of a saturated vapor of a solute
depends on its concentration in the solution. Since we cannot obtain this
dependence within the framework of thermodynamics (we still have no

1 While this description of solutions is widespread, it is not convenient. Ideal and ideal
dilute solutions are not the same, as discussed below. For example, ideal solutions properties
are defined in terms of the thermodynamic properties of the pure components only, while
ideal dilute solution theory contains parameters which cannot be derived from the properties
of the pure components.

2 We explain the difference between the ideal dilute and dilute solutions in Section 3.4.

Thermodynamic theory of solutions46



thermodynamic description of the solution), we shall use a kinetic
approach. The rate of the transfer of solute molecules from the vapor to the
solution is proportional to the number of impacts the solute molecules in
the vapor make upon the surface of the condensed (solid or liquid) solution
per unit area of the surface per unit time. The kinetic theory of gases tells
us that this rate of solute molecule impacts is proportional to the vapor
pressure (see Section 12.2.9). Thus the rate of the condensation is equal to

!# ¼ k#p2,

where k# is the proportionality constant. Similarly, the rate of evaporation
must be proportional to the solute concentration in the solution, that is

!" ¼ k"(c2)c2,
where k" is also a proportionality constant. k"must depend on how much
a solute molecule prefers to be in the solution than in the vapor. Clearly,
how much a solute molecule wants to stay in the solutions depends on
its surroundings. Since the mean composition of the surroundings of the
solute molecule depends on the concentration of solute molecules in
the solution, the proportionality constant, k", must depend on the solute
concentration.

In equilibrium the rates of condensation and evaporation must be
equal to each other, therefore

p2 ¼ k"(c2)
k#

c2:

This demonstrates that the saturated vapor pressure of the solute mole-
cules over the solution depends on the solute concentration in the solution.
This, however, should be obvious without any derivation.

Now, we consider what happens when c2! 0. As the illustration in
Fig. 3.1 demonstrates, when the solute concentration is low, the probab-
ility that two solute molecules are adjacent to each other is negligibly
small, such that solute molecules only have solvent molecule neighbors.
In this limit (c2! 0), the coefficient k" does not depend on the solute
concentration. This implies that the saturated vapor pressure of the solute
is proportional to the solute concentration in the solution,

p2 ¼ hc2, (3:17)

where the constant h¼ k"/k#. This law was first stated by Henry and h is
known as Henry’s constant. Note, that since in dilute solutions all of
the measures of the solute concentration are proportional to each other,
we can use any type of concentration in Eq. (3.17), but, of course, the
numerical value of h depends on the type of concentration used.

In our derivation of Henry’s law, we implicitly assumed that the gas
phase constituent and the solute are the same. Consider the case of nitrogen
dissolved in water. Nitrogen is diatomic (N2) both in the gaseous state as
well as when dissolved in water

N2(gas) ! N2(water):

Concentrated solution

Dilute solution

—Solvent molecules

—Solute molecules

Fig. 3.1
An illustration of concentrated and

dilute solutions showing that solute

atoms have a much higher probability of

having solute nearest neighbors in the

concentrated solution and such

neighbors are rare in the dilute case.
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Therefore, according to Henry’s law

pN2
¼ hN2

cN2
:

Diatomic nitrogen is too large to fit in between the atoms of a metal and,
hence, nitrogen dissolves in metals in its atomic form (N rather than N2).
Therefore, before nitrogen dissolves into the metal, it must first dissociate
on the metal surface. In this case, the process of dissolving N into metal
can be described as

N2(gas) ! 2½N
,
(note, the square brackets around the N is a common notation indicating
that the species is dissolved in a metal). In deriving an expression for the
dependence of the partial pressure of N2 in a saturated vapor above its
condensed solution we must account for the fact that evaporation must wait
for two N atoms in the solution to find each other. The rate of such events
is proportional of the square of the nitrogen atom concentration, that is

!" ¼ k"c2½N
:
As in the Henry’s law situation, the rate of condensation of N2 is simply
proportional to its partial pressure within the vapor. Therefore, in equi-
librium where the rate of evaporation and condensation are equal, we find

pN2
¼ sc2½N
: (3:18)

This type of equation is valid for solutions of all diatomic gases (O2, H2,
and others) in metals and is known as Sieverts’s law, where s is Sieverts’s
constant.3

Consideration of the schematic derivations of Henry’s and Sieverts’s
laws presented above provides a means to understand their limitations.
The first limitation is that the solute concentration must be so small that
each solute molecule is unaware of the existence of any other solute
molecule. In the simple model presented above, this would require that no
solute has solute neighbors. This approach would certainly be valid if (and
only if ) the interactions between solute molecules decrease very quickly
with increasing separation. For example, it is widely suitable for organic
solutions, metallic alloys, and solutions of gases in metals, where interac-
tions decrease roughly as 1/rn and n	 3. However, this condition fails for
ionic species dissolved in water (e.g. a solution of NaCl in H2O). In this
case, the ions interact through a very long-range 1/r Coulomb interaction
(see Sections 3.7 and 13.4.4).

Once we know one law (e.g. Henry’s or Sieverts’s law), we can apply the
machinery of thermodynamics to fully describe the ideal dilute solutions.
We start by deriving expressions for the chemical potentials of all of the
components of a solution. While we now focus on the special case of binary
solutions, the final results will be valid for ideal dilute solutions of any
number of components. Consider the case in which the partial pressure in
a saturated vapor obeys Henry’s law. The condition that the vapor is in

3 Computer Laboratory #3 examines dissolving nitrogen in Fe–Mn alloys.
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equilibrium with the solution is the equality of the chemical potentials of
the solute in the solution and in the gas:

	2 ¼ 	2 vapor
:

Replacing the chemical potential of component 2 in the vapor with
Eq. (1.87) and p2 from Henry’s law, yields

	2 ¼ 	2vapor
¼ 	0

2 vapor
þ RT ln p2 ¼ 	0

2 vapor
þ RT ln hþ RT ln c2,

or

	2 ¼  2 þ RT ln c2, (3:19)

where  2 is a concentration-independent constant.  2 can be thought of as
the chemical potential of the solute in a hypothetical solution with solute
concentration c2¼ 1 which, nonetheless, remains an ideal solution where
component 1 is still the solvent. Such a solution is called the standard state
of the solute. As for Henry’s law, we can use any form of the concentration
in Eq. (3.19), however, changing the form of the concentration employed
implies a change in the numerical value of  2.

We now derive an expression for the chemical potential of the solvent
appropriate for an ideal dilute solution. It is convenient to represent the
solute concentration in terms of its molar fraction, in which case Eq. (3.19)
becomes

	2 ¼  x þ RT ln x2:

Combining this equation with the Gibbs–Duhem equation (Eq. (3.16))
yields:

x1
@	1

@x1
¼ x2

@	2

@x2
¼ RT;

Z 	1

	0
1

d	1 ¼
Z x1

1

RT

x1
dx1:

We briefly digress to explain the limits of these integrals. First, while the use
of the same variables in the integrands and the limits of the integrals is
formally improper, we retain this notation because it is unambiguous here
and is consistent with the notation used in most other thermodynamics
texts. Second, the choice of the limits of the integrals was made to cor-
respond to a state of the system in which the chemical potential of the
solvent is known. One such state corresponds to the case of the pure solvent
(x1¼ 1). The chemical potential of the pure solvent, 	1

0 is its Gibbs free
energy per mole. The upper limits of the integrals are chosen to correspond
to the state of interest, that is, one with arbitrary values of the molar
fraction and chemical potential. Evaluating these integrals shows that

	1 ¼ 	0
1 þ RT ln x1: (3:20)

Now that we have derived expressions for the chemical potentials of both
components of the solution, we can employ the thermodynamic methods
of Section 3.1 to obtain all other properties of the solution without any
further approximations.
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For completeness, we examine equilibrium between the solvent in
the solution and in the saturated vapor. The equilibrium condition is

	1 ¼ 	1 vapor
:

Inserting the chemical potential of the solvent in the solution (Eq. (3.20))
and that for a component of an ideal gas mixture (Eq. (1.87)) yields

	0
1 þ RT ln x1 ¼ 	0

1 vapor
þ RT ln p1;

p1

x1
¼ e
�
	0

1
�	0

1 vapor

�
=RT

:

If we call the right-hand side of the last expression p0
1, we can rewrite the

relationship between the partial pressure of the solute in the saturated
vapor and its concentration in the solution as

p1 ¼ p0
1x1: (3:21)

Since p1 ¼ p0
1 in the pure solvent (x1¼ 1), p0

1 is simply the saturated vapor
pressure over the pure solvent. Note that x1 in Eq. (3.21) is the concen-
tration expressed in molar fraction (only). Equation (3.21) was first pro-
posed by Raoult on the basis of a generalization of a body of experimental
data and is widely known as Raoult’s law. Raoult’s law states that the
partial pressure of a solvent in the saturated vapor above a solution is
proportional to its molar fraction in the solution. Consequently, the partial
pressure in the saturated vapor above a solution is always smaller than that
for the pure solvent.

We now proceed to derive several of the thermodynamic functions
associated with the ideal dilute solution. The partial molar entropy,
enthalpy, and volume of the solvent can be obtained from Eq. (3.20) and
the definitions in Section 3.1:

from S1 ¼ � @	1=@Tð Þp;xi¼ �ðd	0
1=dT Þ � R ln x1 we find

S1 ¼ S 0
1 � R ln x1, (3:22)

from H1 ¼ 	1 þ TS1 ¼ 	0
1 þ TS 0

1 we find

H1 ¼ H 0
1 , (3:33)

and finally from V1 ¼ @	1=@pð ÞT;xi¼ @	0
1=@p

� �
T;xi

we find

V1 ¼ V 0
1 , (3:34)

where, of course, S 0
1 ,H 0

1 , andV 0
1 are the entropy, enthalpy, and volume per

mole of the pure solvent, respectively.
We can obtain the corresponding expressions for the partial molar

functions associated with the solute from Eq. (3.19) and the definitions
in Section 3.1:

from S2 ¼ � @	2=@Tð Þp;xi¼ �ðd 2=dT Þ � R ln c2 we find

S2 ¼ _SS2 � R ln c2, (3:35)
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from H2 ¼ 	2 þ TS2 ¼  2 þ T _SS2 we find

H2 ¼ _HH2, (3:36)

and finally from V2 ¼ @	2=@pð ÞT;xi¼ @ 2=@pð ÞT;xi we find

V2 ¼ _VV2, (3:37)

where _HH2, _SS2, and _VV2 are concentration-independent constants. Note that
the values of these constants depend upon the nature of both the solvent
and solute4 and, in fact, are parameters of the theory (i.e. they cannot be
determined from the thermodynamic theory of ideal dilute solutions).

Review questions

1. If the temperature of a solution increases or decreases upon dissolving a
small quantity of solute, can this solution be considered an ideal dilute
solution?

2. How does p0
1 in Raoult’s law vary with temperature? Which equation

describes this?
3. How do the partial molar enthalpy and entropy of the solute in the

ideal dilute solution depend on the solute concentration?

Example problem

1. Two glasses were placed in a sealed chamber and monitored using a
web-cam. The first glass originally contained 100 ml of pure water and
the second contained 100 ml of a solution of urea (CO(NH2)2) in water.
After some time, you observed that the volume of the solution in glass
2 increased and the volume of the pure water in glass 1 decreased. How
can you explain this?

3.2.2 Boiling point

We now consider evaporation in an ideal dilute solution. The change of
the enthalpy of the system (the solution þ the vapor) upon transferring
dn1 molecules of solvent from the solution to the vapor is

dH ¼ H 0
1vapordn1 �H1dn1 ¼ H 0

1 vapor �H1

� 	
dn1:

Therefore, the heat of evaporation of 1 mole of solvent from an ideal dilute
solution5 is

�Hevap ¼ dH

dn1
¼ H 0

1vapor �H1 ¼ H 0
1 vapor �H 0

1 ¼ �H 0
evap:

Note, this result shows that the heat of evaporation of solvent from an ideal
dilute solution is exactly the same as the heat of evaporation from the pure

4 These constants are not the equal to H 0
2 , S 0

2 , and V 0
2 , which are properties of the pure

solute!
5 We assume that the volume of the solution is so large that the evaporation of 1 mole of

the solvent does not significantly modify the properties of the solution.
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solvent. In the case of a non-volatile solute ( p2� p1), the total pressure in
the saturated vapor above the solution is p¼ p1þ p2� p1. Since the solute
concentration does not depend on temperature (assume that we are not
near the saturation limit), the derivation of the Clausius–Clapeyron
equation in Section 2.2 for a one-component system is unchanged upon
adding solute to form an ideal dilute solution. Therefore, the solvent
partial pressure in the saturated vapor satisfies

d ln p1

dT
¼ �H0

evap

RT 2
: (3:38)

How does the boiling point change when a small amount of (low-
volatility) solute is added to the pure solvent? The liquid boils when its total
saturated vapor pressure is equal to the atmospheric pressure. The pressure
of the saturated vapor is approximately p1, which is smaller than that over
the pure solvent (see Fig. 3.2). Therefore, the solution must boil at a higher
temperature than the pure solvent. To derive an expression for the boiling
point of a solution we integrate Eq. (3.38), neglecting the dependence of
�H 0

evap on temperature. This is a reasonable assumption if the difference
between the boiling points of the solvent and solution is small, as for
dilute solutions. We find

Z patm

patmx1

d ln p1 ¼
�H 0

evap

R

Z Tboil

T 0
boil

dT

T 2

ln
patm

patmx1
¼ ��H 0

evap

R

1

Tboil
� 1

T0
boil

� �

ln x1 ¼
�H 0

evap

R

1

Tboil
� 1

T 0
boil

� �
: (3:39)

For a dilute solution

ln x1 ¼ ln (1� x2) � �x2:

Therefore, we can rewrite Eq. (3.39) as

�x2 ¼
�H 0

evap

R

T 0
boil � Tboil

TboilT
0
boil

� �H 0
boil

R

T 0
boil � Tboil

T 0
boil

� �2 :

Introducing the notation �Tboil ¼ Tboil � T 0
boil, we obtain

�Tboil ¼
R T 0

boil

� �2
�H 0

evap

x2: (3:40)

This expression for the change in the boiling point is written in a slightly
different form in many chemistry texts. To rewrite Eq. (3.40) in that

p p1
0

T 0
boil Tboil V

p1

patm

patmx1

Fig. 3.2
The temperature dependence of the

saturated vapor pressure of the solvent

over a liquid solution and pure solvent.

Thermodynamic theory of solutions52



form, we replace the molar fraction of the solute by its molality using
Eq. (3.4):

�Tboil ¼
R T 0

boil

� �2
�H0

evap

M1

1000
m2 ¼

R T 0
boil

� �2
1000
0

m2,

where 
0 is the specific heat of evaporation (in units of J/g). We can
rewrite Eq. (3.40) in the form of

�Tboil ¼ Kbm2 (3:41)

where

Kb ¼ RðT
0
boilÞ2

1000
0
, (3:42)

is known as the ebullioscopic constant and is a function of only the solvent
properties. Equation (3.41) was originally proposed by Raoult.

3.2.3 Freezing point

We now consider the freezing of an ideal dilute solution. We define the
freezing point as the highest temperature for which a crystalline solid
solution is in equilibrium with a liquid solution with the same components.
In other words, the freezing point is the temperature at which we first see
crystals in the liquid as we very slowly cool the liquid solution. For a pure
solvent, the freezing point and the melting point are identical, T 0

freeze. At
this temperature, the chemical potentials of the pure solid and pure liquid
solvent are equal, hence

�	0
1(T

0
freeze) ¼ 	0

1L(T 0
freeze)� 	0

1S(T
0
freeze) ¼ 0: (3:43)

However, for a solution at the freezing point of the pure solvent T0
freeze,

we find

�	1(T
0
freeze) ¼ 	1L(T 0

freeze)� 	1S(T
0
freeze) 6¼ 0:

Therefore, the temperature at which the solution freezes differs from that
of the pure solvent. In a solution, the equilibrium between solid and liquid
occurs at the temperature where the chemical potentials of the solvent in
the solid and liquid are identical: that is,

�	1(Tfreeze) ¼ 	1L(Tfreeze)� 	1S(Tfreeze) ¼ 0: (3:44)

The Gibbs–Helmholtz equations for the chemical potential of the solvent
in ideal dilute liquid and solid solutions take the following form:

@(	1L=T)

@T

� �
p;xi

¼ �H1L

T 2
¼ �H

0
1L

T 2

@(	1S=T)

@T

� �
p;xi

¼ �H1S

T 2
¼ �H

0
1S

T 2
:
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Combining these equations, we obtain:

@(�	1=T)

@T

� �
p;xi

¼ ��H0
melt

T 2
:

(Note: to be consistent we should write�H 0
freeze instead of�H0

melt, however
the latter is the more commonly accepted notation and so we adopt it here.)
We can integrate this expression from T0

freeze to Tfreeze to find

Z �	1(Tfreeze)=Tfreeze

�	1(T
0
freeze

)=T 0
freeze

d
�	1

T

� �
¼ ��H0

melt

Z Tfreeze

T 0
freeze

dT

T2

�	1(Tfreeze)

Tfreeze
��	1(T

0
freeze)

T 0
freeze

¼ �H 0
melt

1

Tfreeze
� 1

T0
freeze

� �
:

Employing the equilibrium conditions from Eqs (3.43) and (3.44), we can
rewrite the previous equation as

0 ¼ �	0
1(T

0
freeze)þ RT 0

freeze ln x1L=x1S

T 0
freeze

þ�H0
melt

1

Tfreeze
� 1

T 0
freeze

� �

or

ln
x1S

x1L
¼ �H0

melt

R

1

Tfreeze
� 1

T 0
freeze

� �
: (3:45)

Interestingly, to this point, this derivation was based only upon expres-
sion for the chemical potential of the solvent and we did not explicitly make
use of the assertion that the solution is dilute. However, if we assume that
the solute molar fractions in both the liquid and solid solutions are much
less than unity, we can simplify Eq. (3.45). Small solute concentration
implies ln x1S/x1L¼ ln x1S� ln x1L��x2Sþ x2L¼ x2L (1�L), where

L ¼ x2S

x2L
, (3:46)

is called the partition coefficient of the solute between the liquid and
solid. (We will show in the next section that L is independent of solute
concentration.) Introducing the notation �Tfreeze ¼ T 0

freeze � Tfreeze, we
obtain

�Tfreeze ¼ R(T 0
freeze)

2

�H0
melt

(1� L)x2L: (3:47)

This result demonstrates that if the solute dissolves in the liquid solvent
better than in the solid solvent (L< 1), the freezing temperature of the
solution is lower than that of the pure solvent. However, if the solute
dissolves better in the solid solvent (L> 1), the solution freezes at higher
temperature than the pure solvent. In practice, freezing point depression
upon adding solute (L< 1) is much more common than freezing point
elevation.
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If we rewrite Eq. (3.47) in terms of molality instead of molar fraction, we
find (analogously to the derivation of Eq. (3.41)):

�Tfreeze ¼ Kf(1� L)m2L (3:48)

where

Kf ¼ R(T 0
freeze)

2

1000q0
, (3:49)

is called the cryoscopic constant and q0 is the specific heat of melting
of the pure solvent (in units of J/g). Like the ebullioscopic constant,
the cryoscopic constant is only a function of the properties of the pure
solvent.

If the solute does not dissolve in the pure solid solvent (L¼ 0), Eq.(3.48)
takes the following form

�Tfreeze ¼ Kfm2: (3:50)

This law too was originally proposed by Raoult. It is interesting to note
that all three of the ideal dilute solution laws ( p1 ¼ p0

1x1, �Tboil¼Kbm2,
and �Tfreeze¼Kfm2) were discovered independently nearly 80 years after
the discovery of Henry’s law. This delay had two main causes: (1) the
thermodynamic methods used here were not yet developed and (2) Raoult
made a fortuitous choice of chemical systems to investigate (e.g. he would
have never discovered these laws if he had studied NaCl in H2O, as we
discuss in Section 3.7).

Review question

1. You are given three solutions. The solutions were prepared by
dissolving 10 g of (1) sucrose—C12H22O11, (2) fructose—C6H12O6,
and (3) urea—CO(NH2)2 in 1000 cm3 of water. Compare the freezing
temperatures of these three solutions.

Example problem

1. By how much is the freezing temperature of liquid iron lowered by the
addition of 1 wt% of sulfur? For simplicity, assume that the sulfur does
not dissolve in solid iron. The following data for iron are from a
handbook: q0¼ 262.5 J/g, T 0

freeze ¼ 1813 K:

3.2.4 Solute partitioning

How is the solute distributed, in equilibrium, between two phases that are
in contact? This partition of the solute between the two phases is known as
solute partitioning. From the condition that the two phases are in equi-
librium with one another, we find:

	I
2 ¼ 	II

2 ;  I
2 þ RT ln cI2 ¼  II

2 þ RT ln cII2 :
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The ratio of the equilibrium solute concentrations in the two phases is the
partition coefficient:

L ¼ c
I
2

cII2
¼ e  II

2
� I

2ð Þ=RT: (3:51)

Since the right-hand side of Eq. (3.51) depends only upon temperature
and the solvent and solute species, the partition coefficient is independent
of the solute concentration. This statement is called the partition law.
Because the expression we used for the chemical potential is appropriate
only for dilute solutions, Eq. (3.51) can only be applied to dilute solutions.
To illustrate this point, consider the partition of iodine (I2) between water
and carbon tetrachloride (CCl4) at room temperature (CCl4 is nearly
immiscible in water) shown in Fig. 3.3. This figure demonstrates that the
partition law for I2 in an H2O/CCl4 mixture is indeed valid for small I2
concentrations.

Example problem

1. Calculate how much iodine can be removed from 500 cm3 of a water
solution containing 0.1 g of iodine by the addition of 80 ml of CCl4 (take
the partition coefficient from Fig. 3.3).

3.2.5 Composition of a saturated solution

What is the maximum amount of a pure substance, A, that can be dissolved
in a solvent? This is determined by the saturation concentration of A in the
solution. The saturation concentration is the concentration of A in the
solution when the solution is in equilibrium with pure A (we neglect
the solubility of the solvent in A). In equilibrium, the chemical potential of
A in the solution is equal to that in pure A,

	0
A ¼  A þ RT ln csA,

where csA is the concentration of A in the saturated solution. Inserting
this equation into the Gibbs–Helmholtz equation we find:

�H
0
A

T2
¼ d(	0

A=T )

dT
¼ d( A=T )

dT
þ R d ln csA

dT
¼ �

_HHA

T2
þ Rd ln csA

dT

or

d ln csA
dT

¼
_HHA �H0

A

RT2
, (3:52)

where _HHA �H0
A is the heat of solution of pure A in the solvent.

Equation (3.52) shows that if dissolving pure A in the solute is exothermic
(produces heat, _HHA �H 0

A < 0), the solubility of A must decrease with
increasing temperature.

Equation (3.52) can be integrated to show that

csA Tð Þ ¼ csA T0ð Þ exp �
_HHA �H0

A

R

1

T0
� l
T

� �
 �
, (3:53)
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where we have neglected any dependence of the heat of solution on
temperature and where T0 is a reference temperature where we know the
saturation concentration.

3.3 Ideal solutions

The theory of ideal dilute solutions is valid only for solutions in which the
solute concentration is very small. While ideally we would like to find a
theory that is capable of describing the thermodynamic properties of all
solutions at all concentrations, no such analytical theory currently exists.
Fortunately, several models exist that work for a wide range of con-
centrations, albeit not for all solutions. The simplest of these is known as
the ideal solution model.

Recall that the first step in deriving any theory of solutions is to obtain
expressions for the chemical potentials. In the theory of ideal dilute solu-
tions, described above, the chemical potentials of the solvent and solute
took the following form:

	1 ¼ 	0
1 þ RT ln x1; 	2 ¼  x þ RT ln x2:

In an ideal solution model, we assume that such expressions are valid for
all solute concentrations. In the pure solute case (x2¼ 1), the logarithmic
term in the second equation is zero and, hence,  x ¼ 	0

2. Thus the chemical
potential of any component of an ideal solution can be described by:

	i ¼ 	0
i þ RT ln xi: (3:54)

In Section 3.2.1, we saw that this equation implies that the pressure of
the saturated vapor of component i obeys Raoult’s law:

pi ¼ p0
i xi: (3:55)

Alternatively, we can state that if all components obey Raoult’s law, the
solution is ideal. Recall, that in an ideal dilute solution, only the solvent
obeys Raoult’s law and the solute obeys Henry’s law. In an ideal solution
model, which describes the entire concentration range, there is no
difference between solute and solvent and hence, we will abandon these
terms here.

Equation (3.54) implies that

Si ¼ S0
i � R ln xi (3:56)

Hi ¼ H 0
i (3:57)

Vi ¼ V0
i : (3:58)

Using these results, the extensive thermodynamic properties that describe
mixing take the form:

�Hmix ¼ 0; �Vmix ¼ 0;
�Smix ¼ �nR x1 ln x1 þ x2 ln x2ð Þ (3:59)
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This set of equations for the extensive thermodynamic properties is
frequently used as a definition of the ideal solution. In other words, an ideal
solution is one in which the heat of mixing is zero, there is no change in
volume upon mixing, and the change of entropy upon mixing takes the same
form as for an ideal gas mixture. The equivalence of the expressions for the
entropy of mixing of an ideal gas and an ideal solution is not coincidental.
Rather, statistical thermodynamics can be used to show that �Smix in Eq.
(3.59) is a natural consequence of the assumption that the molecules of all
types are randomly arranged, as will be discussed in Section 13.4.2.2.

As example of an application of ideal solution theory, consider dissol-
ving a pure solid substance B in the liquid phase of A. By analogy with the
derivation of Eq. (3.52), we find

d ln xs
B

dT
¼ HB �H0

BS

RT 2
¼ H

0
BL
�H 0

BS

RT 2
¼ �H0

B;melt

RT 2
, (3:60)

whereH0
BL

is the enthalpy of the pure, supercooled liquid at temperatureT.
In contrast to Eq. (3.52), this expression does not accurately describe any
real system, but has the advantage that it can approximately describe
many solutions over the entire concentration range. Equation (3.60) can be
integrated to predict the saturation concentration at any temperature,

Z ln xs
B

0

d ln xs
B ¼

�H 0
B;melt

R

Z T

T 0
B;freeze

dT

T 2
,

where we have assumed that B is completely soluble in liquid A. At the
melting point of B, T 0

B;freeze, solid B is in equilibrium with liquid B. Since
liquid B is completely soluble in liquid A, xsB ¼ 1 atT 0

B;freeze. Performing the
integration in the previous equation yields:

ln xs
B ¼

�H 0
B;melt

R

1

T 0
B;freeze

� 1

T

 !
: (3:61)

To obtain the saturation concentration for an ideal dilute solution,
Eq. (3.52), we needed to know both the saturation concentration at one
temperature and the heat of solution. Theory provides no guidance on how
to obtain these quantities. In contrast the saturation concentration for an
ideal solution can be calculated using only properties of pure components,
the heat of melting and the melting temperature, which are both widely
available in handbooks.

As an example, we estimate the solubility of copper in liquid lead at
T¼ 980�C using Eq. (3.61). We obtained the following data from a
standard handbook:

T0
B;freeze(Cu)¼1356K; �H0

melt(Cu)¼12:97kJ=mole;

T0
B;freeze(Pb)¼601K:
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At T¼ 980�C, lead is a liquid and copper is a solid. Using these data
and Eq. (3.61), we find that saturation concentration of Cu in Pb is
x s

Cu ¼ 0:91, while experimental measurement shows that x s
Cu ¼ 0:92. At

least for this case, the ideal solution theory works very well. This level of
agreement is not common! Nevertheless, we emphasize again that ideal
solution theory provides a simple means to estimate the properties of
certain solutions at any concentration using only readily available data for
pure components.

Review questions

1. Some solutions exist for which the heats of formation are zero. Does this
imply that these are all ideal solutions?

2. The saturated vapor pressure of component A in a binary solution
obeys Raoult’s law for all concentrations. Does it follow from this
that Raoult’s law is also valid for the saturated vapor pressure of
component B?

Example problems

1. At T¼ 20�C, the pressure of the saturated vapor over pure methyl
alcohol (CH3OH) is 96 mm of mercury and the pressure of the saturated
vapor over pure ethyl alcohol (C2H5OH) is 44 mm of mercury. Their
densities are 0.7915 and 0.7894 g/cm3, respectively. To prepare a
solution, 1 part methyl alcohol is mixed with 2 parts ethyl alcohol by
volume. Find the composition of the vapor over the solution.

2. Estimate the boiling temperature of a Hg–Sn alloy in which the
Sn concentration is 10 wt%. The following data are known for
the two components: T 0

boil(Sn) ¼ 2620�C,T 0
boil(Hg) ¼ 357�C, and


0(Hg)¼ 272 J/g.

3.4 Non-ideal solutions

3.4.1 Activity

As a rule, real solutions are neither ideal dilute solutions nor ideal solu-
tions. In most cases of interest, the solute concentration is too large for
a solution to be considered dilute. Further, an ideal solution is simply a
model for a solution that we postulated and may, therefore, not be
applicable in any case. So, we are left with the question, ‘‘how can we
describe the thermodynamic properties of real solutions?’’ Even today,
we have little hope of deriving a theory that is capable of predicting
the properties of solutions from ‘‘first principles’’ (i.e. based only upon
fundamental laws of physics or chemistry, such as quantum theory).
A more practical approach is to describe a real solution in terms of how
its properties deviate from that of an ideal or ideal dilute solution.
Two schematic examples of such deviations are shown in Fig. 3.4 for
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Fig. 3.4
Schematic illustrations of the saturated

vapor pressures above two different

non-ideal solutions. The continuous

solid curves represent the behavior of

the real solutions, the dashed lines

represent Raoult’s law and short solid

lines represent Henry’s law.
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the case of the saturated vapor pressure. The upper figure depicts a solution
for which there is a positive deviation from Raoult’s law and a negative
deviation from Henry’s law, while the lower figure shows a negative
deviation from Raoult’s law and a positive deviation from Henry’s law.

Since the vapor pressure of the solute deviates from Henry’s law to a
smaller extent than from Raoult’s law at small solute concentrations (see
Fig. 3.4), it is convenient to focus on the deviations from Henry’s law.
Recall that if Henry’s law is valid, the chemical potential of the solute takes
the following form:

	i ¼  i þ RT ln ci:

We can describe the chemical potential of the solute in a real dilute solution
as that in an ideal solution, plus a correction term which accounts for
the deviation from ideality

	i ¼  i þ RT ln ci þ RT ln fi, (3:62)

where fi measures that deviation. This definition implies that fi> 0. The
standard state (standard solution) for the solute in this case is the hypo-
thetical solution in which the solute concentration is unity ci¼ 1 and the
thermodynamic properties are described by the same equations as for
ideal dilute solution where the first component is the solvent. Below, we
will refer to such a hypothetical solution as a solution with unitary con-
centration. As ci! 0, Eq. (3.62) must reduce to the expression for the
chemical potential of the solute in an ideal dilute solution, therefore,

fi ! 1 as ci ! 0: (3:63)

We can recover an expression for the chemical potential of the solute in
a real solution that looks more similar to that in the ideal dilute solution
by making the substitution

ai ¼ fici (3:64)

into Eq. (3.62):

	i ¼  i þ RT ln ai: (3:65)

The thermodynamic functions ai and fi are known as the activity and
activity coefficient, respectively.

Figure 3.4 shows that in the case of a solvent in a dilute solution (or any
of the components in a concentrated solution), it is more convenient to use
Raoult’s law as our reference. Raoult’s law implies that the chemical
potential of component i in the solutions takes the following form:

	i ¼ 	0
i þ RT ln xi:

Following the procedure we used above, we express deviations from this
for a non-ideal solution, as

	i ¼ 	0
i þ RT ln xi þ RT ln �i; (3:66)
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where �i is also called the activity coefficient. This differs from fi in that
the standard state is now pure component i. From this definition, it
follows that �i> 0 and

�i ! 1 as xi ! 1: (3:67)

Similarly, the activity of component i using this standard state is

ai ¼ �ixi (3:68)

Inserting Eq. (3.68) in Eq. (3.66), we find:

	i ¼ 	0
i þ RT ln ai (3:69)

Equations (3.65) and (3.69) were derived on the bases of different
standard states. We can rewrite these equations in a more general form as

	i ¼ 	st
i þ RT ln ai, (3:70)

where 	st
i indicates the chemical potential of component i in whichever

standard state we choose. This choice affects the value of the activity.
We can now consider the equilibrium between a non-ideal solution and

its saturated vapor. The equilibrium condition takes the following form

	i ¼ 	i vap ¼ 	0
i vap þ RT ln pi:

Using this result, we can relate the chemical potential of component i in the
standard state to its pressure in its saturated vapor above a standard
solution as

	st
i ¼ 	0

i vap þ RT ln pst
i :

Combining these two equations with Eq. (3.70), we find

	0
i vap þ RT ln pi ¼ 	i ¼ 	st

i þ RT ln ai ¼ 	0
i vap þ RT ln pst

i þ RT ln ai,

which implies

pi ¼ pst
i ai (3:71)

ai ¼ pi
pst
i

: (3:72)

Equation (3.72) is frequently used as the definition of the activity.
If the standard state is taken to be a solution with unitary concentration,

we can use Eq. (3.71) and the fact that as ci! 0, ai! ci, and pi/ci¼ h, to
write

pi ¼ hai: (3:73)

This is the generalization of Henry’s law to non-ideal solutions. If we
choose to use the pure component as the standard state, we similarly find

pi ¼ p0
i ai: (3:74)

Note, there are other reasonable choices of the standard state which we
have not discussed here.
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To this point, we have discussed non-ideal solutions in terms of their
deviations from ideality, as represented by the value of the activity.
However, we are no closer to describing non-ideal solutions then before
since we did not specify how to obtain these activities. Thermodynamic
theory is of no use for this; therefore, we must resort either to experiment or
to some more microscopic theory.

Before we discuss experimental and theoretical approaches to determine
the activity, we first relate the activity of one component in a solution
to that of the other component and the activity at one temperature to
that at another. The first problem can be solved with the help of the
Gibbs–Duhem Eq. (3.70). Inserting Eq. (3.16) into Eq. (3.16) yields
the relationship between the activities of the components of a binary
solution:

x1
@ ln a1

@x1

� �
p;T

¼ x2
@ ln a2

@x2

� �
p;T

: (3:75)

If the pure components are chosen as the standard states for both com-
ponents, this equation can be transformed into

x1
@ ln x1

@x1
þ x1

@ ln �1

@x1

� �
p;T

¼ x2
@ ln x2

@x2
þ x2

@ ln �2

@x2

� �
p;T

or

x1
@ ln �1

@x1

� �
p;T

¼ x2
@ ln �2

@x2

� �
p;T

, (3:76)

where we have made use of Eq. (3.68). This equation relates the concen-
tration dependence of the activity coefficient of one component to that of
the other.

The temperature dependence of the activity can be derived from the
expression for the chemical potential and the Gibbs–Helmholtz equation.
If the pure component is chosen as the standard state, we obtain:

�Hi
T 2
¼ @(	i=T )

@T

� �
p;xi

¼ @(	
0
i =T )

@T
þ R @ ln ai

@T
¼ �H

0
i

T 2
þ R @ ln �i

@T

which can be rewritten as

@ ln �i
@T

¼ �Hi �H
0
i

RT 2
: (3:77)

On the other hand, if we choose the standard state to be the solution with
unitary concentration, we find:

�Hi
T 2
¼ @(	i=T )

@T

� �
p;xi

¼ @( i=T )

@T
þ R @ ln ai

@T
¼ �

_HHi
T 2
þ R @ ln fi

@T

or

@ ln fi
@T

¼ �Hi �
_HHi

RT 2
: (3:78)
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Review questions

1. Is the activity always positive?
2. You are told pi > p

0
i xi for component i in a solution. What does this

imply about the activity coefficient of this component (assume that the
standard state is pure component i)?

Example problems

1. In a liquid Pb–Bi alloy, the activity coefficient of Pb depends on its
molar fraction in the following way:

log10 (�Pb) ¼ �0:32(1� xPb)
2:

What is the activity coefficient of Bi at xBi¼ 0.4?
2. The change in the Gibbs free energy upon forming 500 g of an equi-

molar6 solution from SnCl4 and CCl4 is�Gmix¼ � 7.03 kJ. The activity
of SnCl4 in this solution is 0.52. What is the activity of CCl4? Assume
that the standard states are the pure components.

3. The heat liberated upon dissolving Mg in a Mg–Bi alloy with xMg¼ 0.9
at 1000 K is H

M

Mg ¼ �0:84 kJ/mole and the Mg activity coefficient is
found to be �Mg¼ 0.93 (assuming a pure Mg is the standard state).
What is the relative partial molar entropy of Mg in this alloy?

4. At 1693 K, silicon is distributed between iron- and silver-rich phases
that are in contact as xFe-rich

Si ¼ 0:326 and xAg-rich
Si ¼ 0:00847. Find the

activity coefficient of the silicon in the iron-rich phase if �Ag-rich
Si ¼ 0:155

(consider a pure silicon as the standard state in both solutions).

3.4.2 Experimental determination of activity

As we discussed above, the activity of a component in a solution cannot
be derived from thermodynamics unless we make some simplifying
assumptions. For example, if we assume that the solution is ideal, then the
activity is trivially just the concentration (additional simplifying assump-
tions are suggested later in this chapter). In general, however, these
assumptions are of limited utility and the activity must be extracted from
either experiment or a microscopic theory. Recall, that once we determine
the activity, by whatever means, we can then consistently predict all other
thermodynamic properties. We now turn to the question: how can we
experimentally determine the activities of the components of a real solu-
tion? The most common answers to this question are outlined here.

1. The activity can be determined through measurements of the saturated
vapor pressure.
This method is based on the definition of the activity given in
Eq. (3.72). An example of such an approach is the subject of Computer
Laboratory #3.

2. The activity can be determined on the basis of the partition law.

6 That is, equal molar fraction of each component.
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For non-ideal solutions, the partition law, discussed in Section 3.2.4,
can be rewritten in terms of the activities as:

L ¼ a
I
2

aII
2

, (3:79)

where L depends only on the temperature and the properties of the
solvents and solute.

In a experiment, one measures the solute concentrations in each of
the two phases and plots the ratio as a function of one of the con-
centrations, as in Fig. 3.5. In the limit that cI2 ! 0, the solutions in each
of the two phases behave as ideal dilute solutions. Therefore, the
activities are simply equal to the solute concentrations and the partition
coefficient is equal toL ¼ cI2=cII2 . Thus, extrapolating the dependence of
cI2=c

II
2 on cI2 at cI2 ¼ 0 we obtain the partition coefficient. If we know the

activity of the solute in one phase (a fairy told you), we can determine its
activity in the other phase. However, we commonly do not know the
activities in either phase. This is a problem. If we assume that the
solution in which the solute concentration is smallest can be described
as an ideal dilute solution (i.e. where the solute activity is equal to its
concentration), then L � cI2=aII

2 and we can use this expression and our
measurement of cI2=c

II
2 to determine aII

2 .
3. The activity can be determined on the basis of the law of mass action,

which is described in Section 5.4, below.
This method is similar to the previous one and is the subject of

Computer Laboratory #2.
4. The activity can be determined from electric voltage measurements.

This method is widely used for metallic alloys. The experiment is as
follows: an electrode made from the alloy is put in contact with an
electrode made containing solely the less-noble of the alloy components
and the voltage between these electrodes is measured. The difference
between the chemical potentials of the less-noble component in the
two electrodes is

�GT ¼ �	T ¼ 	0
1 þ RT ln a1 � 	0

1 ¼ RT ln a1:

�GT is related to the electrical work done in dissolving the less-noble
component in the alloy; that is, �GT ¼ �zFE, where E is the measured
voltage, F is Faraday’s constant, and z is the number of electrons
involved in dissolving one atom of the less-noble component into the
alloy. Thus, measuring the voltage in this electric cell can be used to
obtain the activity of the less-noble component (from which the activity
of the second component can be calculated from the Gibbs–Duhem
equation).

5. The activity can be determined from the phase diagram.
This method will be considered in detail in Chapter 4.

3.5 Regular solutions

We already noted that in the case of concentrated solutions, it is convenient
to describe their properties in terms of how they deviate from those of ideal

c2
I

c2
I

c2
II

L

Fig. 3.5
Schematic plot of the ratio of the

concentrations in phases I and II versus

the solute concentration in phase I. The

flat region of this plot indicates the range

of concentration over which the solution

can be described as an ideal dilute

solution.
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solutions. Recall, that by definition, the heat of mixing of an ideal solution
from its components is zero

�Hmix ¼ 0

and the entropy of mixing takes the same form as for ideal gases:

�Smix ¼ �nR(x1 ln x1 þ x2 ln x2): (3:80)

Generally speaking, neither of these expressions are valid for non-ideal
solutions. However, it would be difficult to develop a theory that simul-
taneously accounts for deviations of both �Hmix and �Smix from their
ideal values. Of these two, it is the deviation of the enthalpy of mixing
from its ideal solution value that is most important for many solutions
(e.g. metallic alloys). This is known as the regular solution case (discussed
originally by Hildebrant and generalized by Guggenheim) and will be
considered here (i.e. we will continue to treat the entropy of mixing as
per Eq. (3.80)). The opposite case, where the deviation of the entropy of
mixing is central (e.g. in polymer solutions), will be the subject of the next
section.

Since we already have an expression for the entropy of mixing of regular
solutions (Eq. (3.80)), we need only propose an expression for the enthalpy
of mixing �Hmix in order to determine the Gibbs free energy. To do this,
we make the following assumptions for the regular solution model:

(1) the interatomic interactions are pairwise (i.e. the energy of the system
can be described as a summation of interactions between pairs of atoms
plus a constant);

(2) the coordination number, z (the number of the nearest neighbors),
is the same in the solution and each of the pure components;

(3) the interaction between atoms is limited to its z nearest neighbors;
(4) the interaction energy associated with a pair of atoms only depends

on the type of atoms and not their concentration;
(5) the probability that a given atomic site is occupied by an atom of type

i only depends on the concentration of i atoms (independent of the
occupancies of its neighbor sites).

Additionally, we make the standard approximation �Hmix � �Umix

( p�V� �H in condensed phases, as discussed in Section 1.1.4) and
arbitrarily define the zero of energy as that of the isolated atoms.

We can calculate the interaction energy of atoms in pure component 1 in
the pairwise approximation by writing the interaction energy of an atom
with its z nearest neighbor is z"11 and the total energy of the system as the
product of the interaction energy of an atom and the number of atoms,N1.
However, if we blindly follow this approach, we will count each ‘‘bond’’
twice. Therefore, we must divide the result by 2; hence,

U 0
1 ¼

1

2
N1z"11:

We can follow the same procedure to calculate the energy of the solution.
First, consider an atom of component 1. On average, it has zx1 atoms of
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component 1 and zx2 atoms of component 2 as nearest neighbors (see
assumption 5, above). Therefore, the contribution to the total energy
associated with an atom of component 1 is "11zx1 þ "12zx2. Analogously,
the contribution to the total energy associated with an atom of component
2 is "21zx1 þ "22zx2. (Since the interaction energy is pairwise, "21 ¼ "12).
Thus the total energy of solution is

Us ¼ 1

2
N1("11zx1 þ "12zx2)þ 1

2
N2("12zx1 þ "22zx2):

Using these results, we can finally propose an expression for the enthalpy
of mixing within the regular solution model:

�Hmix¼Us�U0
1�U0

2¼
1

2
N1zx1"11þ1

2
N2zx2"22þ1

2
N1zx2"12þN2zx1"12ð Þ

�1

2
N1z"11�1

2
N2z"22¼ N1N2

N1þN2

z

2
(2"12�"11�"22):

Introducing the notation

B12 ¼ zNA

2
(2"12 � "11 � "22) (3:81)

we find

�Hmix ¼ B12
n1n2

n1 þ n2
¼ B12(n1 þ n2)x1x2, (3:82)

where NA is Avogadro’s number and ni is the number of moles of com-
ponent i. The Gibbs free energy of the regular solution is now simply:

G ¼ Gideal þ�Hmix ¼ Gideal þ B12
n1n2

n1 þ n2
; (3:83)

where Gideal is the Gibbs free energy of the ideal solution. For the chemical
potential of component 1, we find:

	1 ¼ @G

@n1

� �
n2

¼ 	ideal
1 þ B12

n2 n1 þ n2ð Þ � n1n2

n1 þ n2ð Þ2

or

	1 ¼ 	0
1 þ RT ln x1 þ B12x

2
2: (3:84)

Comparing this expression with Eq. (3.69), we obtain:

�1 ¼ eB12x
2
2
=RT (3:85)

Note, we have taken the pure components as the standard states.
The magnitude of the parameter, B12, depends on the bond energies "ij

used in the model. Since these are usually not known,B12 can be viewed as a
parameter of the theory that is determined by fitting to experimental data.
Note thatB12 is the only empirical parameter of this theory (recall that even
the theory of ideal dilute solutions has several empirical parameters).
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Figure 3.6 shows how �Hmix, �Smix, and �Gmix vary with the molar
fraction of the second component. If B12< 0 (negative deviation from
Raoult’s law), the �Gmix curve appears to be very similar to that for ideal
solutions. On the other hand, if B12> 0 (positive deviation from Raoult’s
law), regular solution theory predicts a new feature, which is absent in
ideal solution theory. Figure 3.6 shows that at high temperatures�Gmix has
only one minimum (at 0.5), while at low temperatures two minima
(at x

(1)
2 and x

(2)
2 ) and one maximum (at 0.5) are present (x

(1)
2 � 0:5 � x(2)

2 ).
Therefore, if the concentration of the second component lies in the range
x

(1)
2 � x2 � x(2)

2 , theGibbs free energyof the homogeneous solution is higher
than the Gibbs free energy of the heterogeneous system consisting of the two
solutions with concentrations of x

(1)
2 and x

(2)
2 . The free energy of this het-

erogeneous systemdoes not depend on concentration since the two solutions
(of compositions x

(1)
2 and x

(2)
2 ) have the same Gibbs free energy (see the

dashed horizontal line in Fig.). A critical temperature Tc exists such that at
T>Tc, the homogeneous system corresponds to a minimum of the free
energy,while atT<Tc, theminimumfree energy corresponds toamixture of
two solutions with concentrations x

(1)
2 and x

(2)
2 . In other words, Tc is the

temperature below which the system spontaneously separates into a mixture
of two solutions. This is known as phase separation. How is this critical
temperature related to the parameter that defines the regular solution, B12?
The existenceofphase separation implies that the curvatureof the free energy
with respect to concentration (i.e. @2�Gmix=@x

2) is negative over some
composition range (and positive over rest of the composition range).
Therefore, we can find the critical temperature by setting @2�Gmix=@x

2 ¼ 0:

�Gmix ¼ nfRT½(1� x2) ln (1� x2)þ x2 ln x2
 þ B12(1� x2)x2g
@�Gmix

@x2
¼ nfRT½� ln (1� x2)� 1þ ln x2 � 1
 þ B12(1� 2x2)g

@2�Gmix

@x2
2

¼ n


RT

�
1

1� x2
þ 1

x2

�
� 2B12

�
¼ 0

RTx2 þ RT(1� x2)� 2B12x2(1� x2)

x2(1� x2)
¼ 0

2B12x
2
2 � 2B12x2 þ RT ¼ 0:

Phase separation can occur provided that this final equation has solutions
for physically meaningful values of 0< x2< 1 Mathematically, we can
show that this is satisfied provided that B12	 2RT or

Tc ¼ B12

2R
: (3:86)

We shall return to the interesting case of phase separation in Section 4.7.

3.6 Athermal solutionmodel

In this section, we briefly review the athermal solution model. In contrast
to the regular solutions, athermal solutions are formed from pure com-
ponents with no change in energy, that is

�Hmix ¼ 0: (3:87)

B12 < 0

B12 > 0

DSmix

DSmix

DHmix

DHmix

DGmix

DGmix

A Bx2

A B

T < Tc

T > Tc

x2

x2
(1) x2

(2)

Fig. 3.6
The thermodynamic functions of a

regular solution.
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However, the entropy of mixing in an athermal solution is not equal to
that in an ideal solution: �Smix 6¼ �nR(x1 ln x1 þ x2 ln x2). We can define
the excess entropy of mixing in an athermal solution as

�Sexcess ¼ �Smix þ nR(x1 ln x1 þ x2 ln x2) 6¼ 0: (3:88)

The corresponding excess Gibbs free energy of mixing (with respect to the
ideal mixing case) is

�Gexcess ¼ �T�Sexcess: (3:89)

The Gibbs–Helmholtz equation for excess properties takes the following
form:

@(�Gexcess=T )

@T
¼ ��Hexcess

T 2
: (3:90)

Since Eq. (3.87) asserts that �Hexcess¼ 0, Eqs (3.89) and (3.90) imply

@�Sexcess

@T
¼ 0, (3:91)

for athermal solutions. Differentiating this relation with respect to the
number of moles of component i, we find

@�Sexcessi

@T
¼ 0: (3:92)

Since the activity coefficient is

RT ln �i ¼ �Gexcessi ,

we see that

@ ln �i
@T

¼ 0: (3:93)

Thus, in contrast with regular solutions (see Eq. (3.85)), activities in
athermal solutions are temperature independent.

In what circumstances can we expect the entropy of mixing to differ from
that of the ideal solution? We need statistical thermodynamics to answer
this question. (Statistical thermodynamics is the subject of Chapter 13.)
In short, the entropy of mixing is associated with the number of ways the
molecules in the system can be arranged. In an ideal solution, the entropy
of mixing simply accounts for the replacement of molecule of one type with
molecules of another type, with no change in the structure. This is reas-
onable in situations in which the two types of molecules are of about the
same size. On the other hand, if the two types of molecules have very
different size, it is not possible to simply switch one molecule with another
without changing the structure. This change in structure necessarily
implies that there are more ways to arrange the molecules in the solution
than in the case where there is no structure change (i.e. the ideal solution).
Therefore, the excess entropy of mixing should be positive and the
deviation from ideality should be negative. This is indeed observed in
experiments for solutions of substances with large molecules in solvents
composed of small molecules.
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3.7 Ionic solutions

To this point, our discussion focused on solutions of substances for which
the molecules are unchanged on going from the pure substance to a solu-
tion. This is a broad class of solutions, including such materials as metallic
alloys (where the molecules are simply atoms). However, we have already
encountered a case where this assumption fails; namely, dissolving a
diatomic gas in a metal (where the diatomic molecule frequently dissociates
into atoms before going into solution, as discussed in Section 3.2.1). When
dissociation occurs, we must use a different form of solution thermodyn-
amics; for example, Sieverts’s law rather than Henry’s law in the case of a
solution of a diatomic gas in metals. In this section, we consider solutions
of ions in water, where the situation is even more complicated. First, some
molecules can dissociate into multiple (more than two) ions. Second, the
interactions between ions are typically long range (electrostatic), implying
that such solutions are never ideal. We consider both of these effects below.

We first investigate the effect of the dissociation of the solute on the
thermodynamic properties of the solution (we do not yet consider the
deviation from ideality related to electrostatic interactions between ions).
Consider the following dissociation reaction:

B ¼ �þBzþ þ ��Bz� , (3:94)

where zþq and z�q are the charges of the positive and negative ions, �þ
and �� are the numbers of these ions formed from the dissociation of one
molecule and q is the elementary charge carried by one electron. The values
of these parameters are related by the condition that the original molecule
is electrically neutral:

�þzþ þ ��z� ¼ 0: (3:95)

If molecules of B exist in the saturated vapor then, by analogy with
Sieverts’s law, we find

pB ¼ s xBzþð Þ�þ xBz�ð Þ�� : (3:96)

In the case of complete dissociation, Eq. (3.94) implies:

xB ¼ 1

�þ
xBzþ ¼ 1

��
xBz� (3:97)

where xB is the molar fraction of B that would be in the solution if no
dissociation occurred. The chemical potential of the solute can be found
from the condition of equilibrium between the saturated vapor and the
solution:

	B ¼ 	0
Bgas
þ RT ln pB ¼ 	0

Bgas
þ RT ln s �þxBð Þ�þ ��xBð Þ��½ 


¼ 	0
Bgas
þ RT ln s �þð Þ�þ ��ð Þ��½ 
 þ RT �þ þ ��ð Þ ln xB:
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Using the following notation for the total number of ions arising from
the dissociation of a single B molecule

� ¼ �þ þ ��, (3:98)

we find

	B ¼  B þ �RT ln xB; (3:99)

where  B contains all of the terms in the chemical potential that do not
depend on the concentration of B.

In order to derive an expression for the chemical potential of the
solvent A, we insert Eq. (3.99) into the Gibbs–Duhem equation (3.16):

xA
@	A

@xA
¼ xB

@	B

@xBZ 	A

	0
A

d	A ¼ �
Z xB

0

xB

1� xB
�RT

dxB

xB

	A ¼ 	0
A þ �RT ln 1� xBð ÞjxB

0

	A ¼ 	0
A þ �RT ln xA: (3:100)

Since the chemical potential of the solvent in the saturated vapor is

	A ¼ 	0
Agas
þ RT ln pA,

the partial pressure of the solvent in the saturated vapor is

pA ¼ p0
A xAð Þ�: (3:101)

Note that this equation implies that Raoult’s law never works in ionic
solutions (even at very small concentration). However, if we rewrite
Eq. (3.101) using the molar fraction of the solvent consistent with the
complete dissociation of the solute molecules, x�A,7 we find that Raoult’s
law is still valid at small concentration. Indeed, at small B concentrations,
we can relate x�A to xA as

x�A ¼ 1�
X
i

xBi ¼ 1�
X
i

�ixBi ¼ 1� xB

X
i

�i ¼ 1� �xB � 1� xBð Þ�¼ x�A

and Eq. (3.101) can be rewritten as

pA ¼ p0
Ax
�
A: (3:102)

Equations (3.100) and (3.102) imply that the thermodynamic relations
which were derived from the expression for the chemical potential of the
solvent in an ideal dilute solution will also be valid in the case of dissoci-
ating solutes if we replaceR by �R. For example, the change in the freezing

7 While xAþxB¼ 1 in the solution, when B dissociates into Bzþ and Bz� , we write
x�A þ xBzþ þ xBz� ¼ 1.
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temperature induced by the addition of a solute which is soluble in the
liquid, but not in the solid solvent, is:

�Tfreeze ¼
�R T 0

A;freeze

� 	2

1000q
m ¼ �Kfm, (3:103)

whereKf is the cryoscopic constant. Unfortunately, experiments show that
this equation is not accurate even at very small concentration. The problem
is that we derived all of the equations above starting from Eq. (3.96), which
is simply the analog of Sieverts’s law. But we know that Sievert’s law is only
valid for non-ionic solutions! Recall that ideal dilute solution theory is
based on the fact that at small concentrations, the molecules of the solute
do not interact. This cannot be valid in ionic solutions because electrostatic
interactions are extremely long ranged. We use the term ionic solution to
imply a solution in which a solute dissociates into ionic species in a solvent
(where the solvent molecules are electrically neutral).

To account for the deviation from ideality arising from electrostatic
interaction between the ions in the solution, we must consider the activity.
In the case of dissociating molecules, we can consider two types of activity:
the activity of the solute molecule and the activities of its ions (formed upon
dissociation). Equilibrium between the solute molecules and its component
ions implies

�G � �þ	Bzþ þ ��	Bz� � 	B ¼ 0

	B �  B þ RT ln a
�þ
Bzþ a

��
Bz�

� � ¼  B þ �RT ln a� (3:104)

where the value

a� ¼ a�þBzþ a
��
Bz�

� �1=�
: (3:105)

is called the mean ionic activity. Analogously we can define the mean ionic

activity coefficient:

f� ¼ a�
x�
¼ f �þBzþ f

��
Bz�

� �1=�
, (3:106)

where x� ¼ x
�þ
Bzþ x

��
Bz�

� �1=�
.

As is always the case, thermodynamics does not itself provide any tools
that can be used to determine the activity. Therefore, we must resort to
other theories or to experiments. A wide range of experimental data and
Debye–Hückel theory (see Section 13.4.4) suggest that the logarithm of the
activity coefficient is proportional to the square root of the solute con-
centration:

ln fi ¼ Li ffiffiffiffiffiffixB
p

, (3:107)

where Li is independent of the solute concentration, but strongly
dependent upon the charge on the ion.8 Combining this relationship

8 Note that @fi/@xi! constant in the xi! 0 limit for non-ionic solutions considered above.
However, Eq. (3.107) shows that @fi/@xi!1 in the xi! 0 limit for ionic solutions. Therefore,
ionic solutions are never ideal.
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with Eq. (3.106), we find

ln f� ¼ L ffiffiffiffiffiffi
xB
p

: (3:108)

Now, we are in a position to derive an expression for the chemical
potential of the solvent. Inserting the definition of x� and Eq. (3.97)

x� ¼ (��þþ �
��� )1=� x�þB x��B

� �1=�¼ (��þþ �
��� )1=�xB,

into the expression for the chemical potential (Eq. (3.104)), and making use
of Eq. (3.108), we find

	B ¼  0B þ �RT lnxB þ �RT ln f� ¼  0B þ �RT lnxB þ �RTL � ffiffiffiffiffiffi
xB
p

:

The chemical potential of the solvent is easily obtained using the chemical
potential of the solute and the Gibbs–Duhem equation

xAd	A þ xB
�RT

xB
þ �RTL

2
ffiffiffiffiffiffi
xB
p

� �
dxB ¼ 0,

which can be integrated to yieldZ 	A

	0
A

d	A ¼
Z xA

1

�RT

xA
þ �RTL

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xA

p
xA

� �
dxA

	A ¼ 	0
A þ �RT ln xA þ 1

2
�RTL 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xA

p
� ln

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xA

p

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xA

p
� �

¼ 	0
A þ �RT ln xA þ 1

2
�RTL 2

ffiffiffiffiffiffi
xB
p � ln

1þ ffiffiffiffiffiffi
xB
p

1� ffiffiffiffiffiffi
xB
p

� �
:

At small solute concentration (xB « 1), this expression reduces to

	A ¼ 	0
A þ �RT 1þ 1

3
L
ffiffiffiffiffiffi
xB
p� �

ln xA,

which can be rewritten as

	A ¼ 	0
A þ gRT ln xA (3:109)

where

g ¼ � 1þ 1

3
ln f�

� �
: (3:110)

Thus, the expression we previously derived for the effects of solute on the
freezing temperature (Eq. (3.103)) can be extended to the ionic solution
case by replacing � with g:

�Tfreeze ¼ gKfm (3:111)

It is convenient to define a measure of the deviation from ideality as

i ¼ 1��Tfreeze

�Kf m
, (3:112)
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where i¼ 0 implies an ideal solution. Inserting Eqs (3.110) and (3.111)
into Eq. (3.112), we find:

�Kf m(1� i) ¼ � 1þ 1

3
ln f�

� �
Kf m

or

i ¼ � 1

3
ln f�: (3:113)

Equations (3.112) and (3.113) provide a rather simple method to determine
the mean ionic activity of a salt dissolved in water. All you have to do is
measure the freezing temperature of the solution, find the value of i by
using Eq. (3.112), and then apply Eq. (3.113).

Finally we consider the partial pressure of solvent in the saturated
vapor over an ionic solution. Repeating the derivation of Raoult’s law
(see Section 3.2.1) for an ionic solution, we find

pA ¼ p0
A xAð Þg: (3:114)

We see that the solvent vapor pressure over an ionic solution differs
from that in the non-ionic case in that g 6¼ 1. Even if the solution was not
ionic, but resulted from the dissociation of the solute and was ideal, we
would find that the exponent g in Eq. (3.114) depends on the type of solute.
In this case g¼ �, where � is the number of ions created by the dissociation
of the solute (e.g. for NaCl �¼ 2 and for Na2SO4 �¼ 3). However, ionic
solutions are never ideal and g also depends on the solute concentration
(see Eqs (3.108) and (3.110)). Therefore, the equivalent of Raoult’s law
for an ionic solution is more complex than a simple power law:
pA ¼ p0

A xAð Þg(xA).
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Phase equilibria II

4.1 Phase diagrams of two-component systems

In Chapter 2, we considered phase equilibria in a single component system.
In the previous chapter, we considered the thermodynamics of multi-
component solutions. We are now prepared to discuss phase equilibria in
multi-component systems. We consider the case of phase equilibria in a
two-component systems in which all phases are condensed (i.e. solids or
liquids). Under normal laboratory conditions experience suggests that the
free energy of condensed phases is only very weakly dependent on the
pressure and, hence, pressure is usually assumed to be constant. At con-
stant pressure, the Gibbs phase rule (Eq. 2.3) for a two-component system
takes the following form:

F ¼ 3� P, (4:1)

where F is the number of degrees of freedom (i.e. the number of inde-
pendent parameters that must be set in order to fully determine the state
of a system) and P is the number of phases present in equilibrium. This
equation implies that the maximum number of independent parameters is
2; corresponding to the single-phase case. The most commonly used
parameters are the temperature and the composition of the alloy. F¼ 2
implies that these two parameters can be varied over a finite range while the
system remains the same, single phase. If two phases are in equilibrium with
each other (P¼ 2), F¼ 1. This implies that the same two phases will be in
equilibrium as we vary one parameter (the other parameter is not free).
More specifically, we can retain the same two phase equilibrium while
varying the alloy concentration over some range, if the temperature is
described by some function, T(x2). T(x2) describes the curve (locus of
points) along which this two-phase equilibrium occurs. Therefore, it is
convenient to represent the phase equilibria in two-component condensed
systems inT-x2 coordinates (as done below). Equation (4.1) implies that the
maximum number of phases which can be in equilibrium with each other is
three. This corresponds to F¼ 0—any change of temperature and/or alloy
composition will lead to the disappearance of at least one of the phases.

A phase diagram of a two-component, condensed system is simply
the trace of all possible two phase equilibrium curves in temperature–
alloy composition space (T-x2). The ordinate (vertical axis) of the phase

4



diagram is usually chosen to represent the temperature and the abscissa
(horizontal axis) represents the alloy composition. The phase diagram
provides two main types of information. First, it shows us how many
phases are present in equilibrium at any temperature and alloy and,
second, it tells us the composition of each phase. If we know the overall
alloy composition and the composition of each phase, it is a simple
matter to determine the relative amounts of each phase present. This
information is not of purely academic interest. In fact, knowledge of the
phase composition and the relative amounts of the phases present is
central to any description of the structure and properties of an alloy.
The phase diagram can also be used to predict how an alloy changes
during heating or cooling.

The phase diagrams of real two-component systems can be rather
complicated (e.g. see Fig. 4.13). Fortunately, even complicated phase
diagrams can be described as a combination of only six fundamental
phase diagram types. Each of these fundamental phase diagram types is
described separately in the following six sections of this chapter. With this
knowledge, we will be prepared to analyze phase diagrams of arbitrary
complexity, as done in Section 4.8.

4.2 Type I phase diagrams

The first type of phase diagram we shall consider is the ideal case in which a
binary alloy has infinite solubility in the liquid state and zero solubility in
the solid state.1 We shall refer to this as a Type I phase diagram. We will
start by modeling the liquid as an ideal solution. The chemical potential of
component A, therefore, takes the following form:

	A ¼ 	0
A þ RT ln xA:

In Section 3.2.3, we demonstrated that a consequence of this assumption is
that the freezing temperature (i.e. the temperature at which the first crystals
appear upon cooling the liquid solution) satisfies

ln
xAS

xAL

¼ �H 0
A;melt

R

1

TA;freeze
� 1

T 0
A;freeze

 !
, (4:2)

where we recall that xAL
and xAS

are the mole fraction of component A in
the liquid and solid, respectively, T 0

A;freeze and TA,freeze are the freezing

temperature in pure A and in the alloy, respectively, and of course
�H 0

A;melt is the change in enthalpy upon melting pure A. In contrast with

the final formula of Section 3.2.3 (�Tfreeze¼Kf (1�L)m—valid for an
ideal dilute solution), this expression is also valid for an ideal solution.
Moreover, since the chemical potentials of all components in an ideal

1 Actually, the solubility can never be exactly zero (except at zero temperature). The more
realistic case of finite solubility is described in Section 4.4.

Type I phase diagrams 75



solution have the same general form, we can write the same type of relation
as in Eq. (4.2) for component B

ln
xBS

xBL

¼ �H 0
B;melt

R

1

TB;freeze
� 1

T 0
B;freeze

 !
: (4:3)

Equations (4.2) and (4.3) can also be interpreted in a different light; they
indicate the compositions of the solids and liquids which are in equilibrium
at any temperature.

If there is no solubility in the solid state (xAS
¼ xBS

¼ 1), Eqs (4.2) and
(4.3) can be rewritten as

ln xAL
¼ �H 0

A;melt

R

1

T 0
A;freeze

� 1

TA;freeze

 !

ln xBL
¼ �H 0

B;melt

R

1

T 0
B;freeze

� 1

TB;freeze

 !
: (4:4)

From these equations, we obtain two lines TA,freeze(xA) and TB,freeze(xB).
TA,freeze(xA) represents the equilibrium between the liquid alloy and solid A
and TB,freeze(xB) represents the equilibrium between the liquid alloy and
solid B (see Fig. 4.1). When TA,freeze(xA)¼TB,freeze(xB), both solids and the
liquid alloy are in equilibrium. This special point is labeled E in Fig. 4.1.
Such an equilibrium is invariant in the sense that any variation in tem-
perature (or alloy composition) will result in the disappearance of at least
one of the phases. Since the solids of the pure components are stable at low
temperature, the liquid phase does not exist for T<TE.

Consider the changes in the equilibrium phases present as we cool an
alloy of composition 1 from a temperature sufficiently high that the alloy is
completely liquid, T>T1 (see Fig. 4.1). As the alloy is cooled through
T¼T1 (point C in Fig. 4.1), crystals of pure A form within liquid. Recall
that Eq. (4.4) implies thatT1 is the temperature at which crystals of A are in
equilibrium with the liquid alloy of composition 1. However, when crystals
of A appear, the mole fraction of A in the liquid must decrease and, cor-
respondingly, the mole fraction of B in the liquid must increase. An
examination of Fig. 4.1 or Eq. (4.4) shows that the freezing temperature
decreases with increasing B fraction in the liquid alloy. This implies that
freezing of an alloy occurs over a range of temperatures. The alloy
described by the phase diagram freezes over a temperature range from T1

to TE. In addition, the composition of the liquid varies during freezing
from x1

B to xE
B, as described by the curve CE. At the temperature TE, all of

the liquid which has not yet solidified does so at the composition xE
B.

The resulting solid consists of a mixture (not a solution) of crystals of pure
A and pure B. The horizontal in the phase diagram corresponding to
T¼TE separates the two phase A/B solid mixture from the two-phase
regions consisting of the liquid phase (L) and crystals of either A or B.

T

C

A B

E

L

L + A

X1
B XE

B

L + B

T1

TE

T 0
A,freeze

T 0
B,freeze

A + B

Fig. 4.1
A Type I phase diagram.
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The solidification of the liquid solution at T¼TE can be thought of as a
reaction of the form

L! Aþ B:

This is known as a eutectic reactionwhich occurs at the eutectic temperature

TE when the liquid is at the eutectic composition xE
B (see Fig. 4.1). The

spatial distribution of the two solid phases (A and B) is described as a
eutectic microstructure. The curve in the phase diagram above which the
alloy is completely liquid is known as the liquidus (i.e. this is the curve from
the (xB¼ 0, T 0

A;freeze) to (xE
B,TE) to (xB ¼ 1,T 0

B;freeze)).

All that is necessary to construct a phase diagram of Type I within the
framework of ideal solution theory is the melting temperatures and the
heats of melting of the pure components. However, ideal solution theory
usually does a poor job describing real solutions. We can also use a phase
diagram determined from experiment to calculate the activities of the
components along the liquidus. Using pure A as the standard state for A,
we can write the chemical potential of A as

	A ¼ 	0
A þ RT ln aA:

Following the approach used to derive Eq. (4.4), the activity of A in the
liquid in the composition range 0 � xB � xE

B can be written as

ln aAL
¼ �H 0

A;melt

R

1

T 0
A;freeze

� 1

TA;freeze

 !
: (4:5)

The activity of B in the same composition range can now be determined
using this result and the Gibbs–Duhem equation. The activity of B in the
composition range xE

B � xB � 1 is (following the same procedure that led
to Eq. (4.5))

ln aBL
¼ �H 0

B;melt

R

1

T 0
B;freeze

� 1

TB;freeze

 !
, (4:6)

and the activity of A in the same range is given by the Gibbs–Duhem
equation. Provided that the partial molar heats of solution are known, the
activities of the individual components at any other temperature can be
found from Eq. (3.77).

Unfortunately, determination of activities from phase diagrams is
seldom reliable because of the experimental uncertainties inherent in
determining the location of the curves in most diagrams. However, the
same approach can be followed in reverse; that is, the phase diagram is
created (or perfected) based upon other measurements of the activities of
the components.

There are several experimental approaches that can be used to
construct a phase diagram. Kurnakov employed a method based upon

Type I phase diagrams 77



measurements of cooling curves (i.e. measurement of the temperature
versus time profile within an alloy as it cools from the liquid within a cold,
isothermal chamber). You will have the opportunity to determine phase
diagrams from cooling curves in Computer Laboratory #1. Consider the
reverse problem—predicting the cooling curves from the phase diagram.
The most important feature of the cooling curves, for our purposes, is the
existence of discontinuities in the slope of the cooling curves which is
associated with phase transformations (we shall ignore all other features of
the cooling curve). Since we focus only on discontinuities in the slope of the
cooling curves, we shall model the shape of these curves as a series of
straight segments (see Fig. 4.2). Even more importantly, however, is our
assumption that the alloy is in equilibrium at all times during the cooling
process (if we cool too quickly the system will not have sufficient time to
achieve equilibrium).

We start from the cooling curve for the pure component A (see
Fig. 4.2). The segment of the cooling curve labeled I corresponds to
cooling liquid A. At the freezing temperature, the number of degrees of
freedom is zero; this is the only temperature where the solid and liquid
co-exist in a single component system. Although it is difficult to see on
the phase diagram, the pure component is a single solid phase below
T 0

freeze. Therefore, the temperature of the system cannot decrease any

further until liquid disappears. The solidification of all of the liquid does
not happen instantaneously, but rather requires a finite time—this
corresponds to the horizontal segment of the cooling curve, labeled II.
This is bizarre! If heat continues to leave the alloy through the walls
of the container, you should expect that the alloy will get colder.
However, there is a logical explanation. The heat that leaves the alloy
through the walls of the container is exactly compensated by the heat
generated in the freezing process (recall that the heat of melting is
always positive). If we extract heat faster through the walls, the rate of
freezing increases and vice versa. After the solidification process is
complete, the temperature in the alloy resumes falling as we cool the
solid A. Such a cooling curve is characteristic of the solidification of all
pure components (providing that there are no solid–solid phase trans-
formations). This type of cooling curve also describes the eutectic alloy,
where the number of degrees of freedom is also zero at TE.

T T A
I I I I III

II II

II
IIIII

III III III

IV IVIII

1 2E B
L

x1
B x2

B

EL + A

A + B

A B t

L + B

Fig. 4.2
A Type I phase diagram with

corresponding cooling curves.
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Now, consider the cooling of alloy 1 in Fig. 4.2. Segment I of the
cooling curve for this alloy corresponds to the cooling of the liquid (i.e.
no phase transformations occur). Segment II reflects the transformation
of the liquid to crystals of pure A. While all of a pure A liquid solidifies
at one temperature (T0

freeze), the alloy solidifies over a range of tempera-

tures because the liquid composition changes as solidification proceeds.
Since the heat extraction through the walls of the container is partially
compensated by the generation of heat associated with the liquid–solid
transformation, the cooling rate decreases (i.e. the slope of the cooling
curve changes, as seen in Fig. 4.2). At the eutectic temperature, the
number of degrees of freedom is zero and the cooling curve is hori-
zontal (as described above). At T<TE, the alloy is a mixture of solids,
A and B, and no other phase transformations occur (see segment IV).
Note, however, the slope of the cooling curve is different in I than in IV
because the thermal conductivity of the solid and liquid differ. The
cooling curve for alloy 2 is qualitatively similar to that for alloy 1. The
main difference between the two cases is the type of solids produced
(A versus B).

We now return to the original problem of how to create a phase dia-
gram from cooling curves of different compositions that were obtained
from experiment. We focus on temperatures on the cooling curves where
the slope changes discontinuously (including the horizontal sections of
the cooling curves). Every such point on a cooling curve corresponds to a
point on the phase diagram (i.e. each cooling curve is for a known
composition and the discontinuities correspond to a particular temper-
ature). Given a sufficient number of cooling curves, we can trace out all of
the equilibrium lines on the phase diagram. Computer Laboratory #1
provides you with some experience with this approach to determining
phase diagrams.

Example problem

1. The Raoult law is known to accurately describe all Bi–Cd alloys,
regardless of the composition. The following data on the pure
components were found in handbooks:

T 0
Bi;freeze ¼ 544:5 K; �H 0

Bi;melt ¼ 10:88 kJ/mole

T 0
Cd;freeze ¼ 594:2 K; �H 0

Cd;melt ¼ 6:40 kJ/mole.

Find the coordinates (temperature and composition) of the eutectic
point on the phase diagram.

4.3 Type II phase diagrams

The second type of phase diagram we shall consider is the case in which the
binary alloy has infinite solubility in both the liquid and solid states. We
shall refer to this as a Type II phase diagram. We will start by modeling
both the liquid and solid phases as ideal solutions. By analogy with the
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procedure leading to Eqs (4.2) and (4.3), we obtain the following equations
for the phase equilibrium lines:

ln
xAS

xAL

¼ �H 0
A;melt

R

1

TA;freeze
� 1

T 0
A;freeze

 !

ln
xBS

xBL

¼ �H 0
B;melt

R

1

TB;freeze
� 1

T 0
B;freeze

 !
:

(4:7)

Including the condition that the mole fractions of A and B must add to
unity in both solid and liquid,

xAS
þ xBS

¼ 1; xAL
þ xBL

¼ 1, (4:8)

we obtain a set of four equations with four unknowns. Solving this set of
equations yields two functions, xBL

(T ) and xBS
(T ). The two functions

represent the liquidus and solidus (i.e. the line below which the entire
system is solid) lines, respectively. A prototypical Type II phase diagram
and a corresponding cooling curve are shown in Fig. 4.3.

For non-ideal solutions, Eq. (4.7) can be rewritten in the following form:

ln
aAS

aAL

¼ �H 0
A;melt

R

1

TA;freeze
� 1

T 0
A;freeze

 !

ln
aBS

aBL

¼ �H 0
B;melt

R

1

TB;freeze
� 1

T 0
B;freeze

 !
:

(4:9)

However, unlike in the ideal case, there is no condition like Eq. (4.8) in
which the mole fractions (or activities) of A and B sum to unity. Instead, we
rely on the Gibbs–Duhem relation to provide the two additional equations
needed:

xAS

@ ln aAS

@xAS

� �
p;T

¼ xBS

@ ln aBS

@xBS

� �
p;T

xAL

@ ln aAL

@xAL

� �
p;T

¼ xBL

@ ln aBL

@xBL

� �
p;T

:

(4:10)
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Fig. 4.3
A Type II phase diagram with a

corresponding cooling curve.

Phase equilibria II80



If the phase diagram is known, Eqs (4.9) and (4.10) can be used to
determine the activities along the liquidus and solidus lines.

Figure 4.3 shows the cooling curve for an alloy described by a Type II
phase diagram. Segment I of the cooling curve simply corresponds to the
cooling of the liquid alloy. Segment II indicates the solid–liquid
co-existence region, where heat is extracted from the liquid as it solidi-
fies. This leads to a change in slope, even if there is no change in thermal
conductivity. Finally, segment III corresponds to the cooling of the solid
solution (no solid–solid phase transformations occur upon cooling below
the solidus).

At the temperature labeled Tg in Fig. 4.4, the alloy consists of two
phases: solid and liquid solutions. To find the equilibrium composition of
each phase, we draw a horizontal line through point g that terminates on
the solidus and liquidus. This line (fh) is commonly called a tie line. The
compositions of the liquid and solid phases are determined by point f (xf

B)
and h (xh

B), respectively. Frequently, phase diagrams are presented in a
form where the horizontal axis is weight fraction (or weight percent) rather
than atomic fraction (sometimes both weight and atomic fractions axes are
presented).

In this case, we can use the phase diagram to determine the weight
fraction of the phases in the alloy and the weight fraction of the compon-
ents in each phase. The weight fraction of B in the solid and liquid are
simply [B]h and [B]f, respectively. The weight fraction of B in the entire
alloy can be read off of the axis as [B]g or written in terms of the weights of
the solid and liquid phases, WS andWL:

½B
g ¼
½B
fWL þ ½B
hWs

WL þWS
¼ ½B
fWL=WS þ ½B
h

WL=WS þ 1
:

We can rearrange terms in this equation to determine the weight fraction of
the alloy that is liquid as

WL

Walloy
¼ ½B
h � ½B
g½B
h � ½B
f

, (4:11)

or in the solid as

WS

Walloy
¼ ½B
g � ½B
f½B
h � ½B
f

, (4:12)

where Walloy¼WLþWS is the total weight of the alloy. Equations (4.11)
and (4.12) are referred to as the lever rule. This is an analog of a mechanical
lever of length fh with a fulcrum at g which is balanced when the weights at
positions f and g areWS andWL, respectively.

4.4 Type III phase diagrams

The next type of binary phase diagram we shall consider is the case in which
the solubility in the liquid is infinite but is limited in the solids. We shall
refer to this as aType III phase diagram. Clearly, this type of phase diagram

T
L

A B[B]f [B]g [B]h

S

L+S

f g h
Tg

T 0
A,freeze

T 0
B,freeze

Fig. 4.4
A Type II phase diagram with

concentrations expressed in weight

fractions.
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has features in common with both Type I and Type II phase diagrams. We
can distinguish two cases:

(1) the invariant point is below the melting point of both pure components
(this is a eutectic diagram);

(2) the invariant point lies between the melting temperatures of the two
pure components (this is a peritectic diagram).

Figure 4.5 shows a eutectic phase diagram and two cooling curves cor-
responding to different alloy compositions. This phase diagram contains
three different phases: liquid, solid a and solid b. In solid a, A can be
viewed as the solvent and B as the solute and vice versa in solid b. The
cooling curves exhibit no new features as compared with those for Type I
or II diagrams (Figs 4.2 or 4.3). The cooling curve for alloy 1 exhibits no
invariant points (i.e. horizontal sections). On the other hand, cooling alloy
2 brings the alloy across the invariant (eutectic) line and, hence, the cooling
curve exhibits a horizontal (constant temperature) section at this temper-
ature. The corresponding eutectic reaction is

L! aþ b: (4:13)

The liquid at the eutectic temperature has composition E (see Fig. 4.5) and
the solid solutions (a and b) have compositions corresponding to the left
and right ends of the eutectic line, respectively. The lever rule does not
apply at the eutectic temperature since the liquid and solid fractions change
as the reaction proceeds.3

In the case in which the invariant point lies between the melting points
of the two pure components (shown in Fig. 4.6), the situation is more
complicated. Consider the cooling curve corresponding to an alloy of
composition 1. As the alloy is cooled, it goes from a homogenous liquid (I),
to a mixture of liquid and solid a (II), to a mixture of liquid and solid b (IV),
then to single phase solid b (V), and finally to a mixture of solid a and
solid b (VI). Segment III of the cooling curve corresponds to the peritectic
reaction:

Lþ a! b: (4:14)

T T 1 2

tA 1

L + �

L+�
�

�+�

�

2

L

E

B

2 The bottom of this phase diagram corresponds to a finite temperature. The solubility
must go to zero at 0 K.

3 Of course, the phase diagram describes equilibrium and not the kinetics of phase
transformation (which is outside the scope of this book).

Fig. 4.5
A eutectic Type III phase diagram2 with

corresponding cooling curves.
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During this reaction, the liquid composition is described by point P and the
compositions of the a and b solid solutions by points A and B, respectively.
Since three phases are in equilibrium, this transition is invariant and is,
therefore, represented on the cooling curve by a horizontal line segment.
The crystals of a that form first upon cooling the liquid (segment II in the
cooling curve) are collectively referred to as primary a, while that which
forms upon cooling solid b (segment VI) is referred to as secondary a.

4.5 Type IVphase diagrams

The next type of binary phase diagram we shall consider corresponds to the
case in which a compound is present but decomposes at a temperature
below the melting point. Such compounds are called unstable compounds.
We shall refer to this as aType IV phase diagram. Compounds which have a
single, distinct composition such as A2B are known as stoichiometric or
daltonide (Dalton assumed that all chemical compounds have well-defined
composition) compounds. Compounds also exist where the composition
is variable over a finite range and are known as non-stoichiometric or
berthollide (Berthollet assumed that chemical compounds have variable
composition). Usually non-stoichiometric compounds are denoted by
Greek letters on phase diagrams, while stoichiometric compounds are
commonly represented by their chemical formula. The left diagram in
Fig. 4.7 contains a stoichiometric compound A2B and the one on the right
shows a non-stoichiometric compound g.

Consider the cooling curve corresponding to an alloy in the phase
diagram on the right. Upon cooling, the alloy goes from the homogeneous
liquid (I) to a liquid/a two-phase system (II), then to two-phase mixtures of
liquid and g (IV), and g and b (VI). Segment III of the cooling curve cor-
responds to the peritectic reaction

Lþ a! g: (4:15)

Segment V represents the eutectic reaction:

L! gþ b: (4:16)

Finally, we note that cases exist for which the compound is unstable at
both high and low temperatures. Figure 4.8 shows such a case for the
compound g.

T T

B P

A

A
L+�

L+�

�+� �

�

L

B t

I

IIIII

V

VI

IV

Fig. 4.6
A peritectic Type III phase diagram with

a corresponding cooling curve.
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4.6 TypeVphase diagrams

Type V phase diagram describes the case in which a compound is present up
to the melting point. Such compounds are called stable compounds. The
stable compound divides the phase diagram into two parts, each of which
can be described as one of the diagrams discussed above (Types I–IV). Two
examples of Type V phase diagrams are shown in Fig. 4.9. The left diagram
contains two chemical compounds: stable A2B and unstable AB. This
diagram can be represented as one of Type I and one of Type IV. The right
diagram, is a combination of two Type III diagrams.

Since Type V phase diagrams can be divided into simpler diagrams, the
cooling curves for which were discussed above, we now only discuss the
cooling curve for an alloy with the composition of the compound (or for a
non-stoichiometric compound, the composition corresponding to the
highest temperature for which the compound is a solid). Such a cooling
curve is exactly the same as that for a one-component system. The only
feature of interest on this cooling curve is the presence of a horizontal
segment at the melting point of the compound (see Fig. 4.9).

Before leaving the discussion of phase diagrams which contain a
compound which is stable up to the melting point, we point out the
existence of an interesting special case, shown in Fig. 4.10. In this diagram,
the compound is stable up to the melting point, but unstable at low tem-
perature where it decomposes upon cooling into a two-phase mixture.

4.7 TypeVI phase diagrams

The final type of binary (Type VI) phase diagram describes binary alloys in
which phase separation occurs in either the liquid or solid states. We have
already considered phase separation within the framework of the regular
solution model (see Section 3.5). Phase separation occurs when it is thermo-
dynamically favorable for the alloy to break into two phases with the
same structure but different chemical composition. For example, there
exists a critical temperature below which any regular solution with a
positive deviation from ideality (B12> 0) will separate into two phases.
Schematically, such a diagram looks like that shown in Fig. 4.11.

A specific example (the Al–Zn phase diagram) is shown in Fig. 4.12. This
diagram shows a case in which solid a separates into two solid solutions of
different compositions, a1 and a2.
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Fig. 4.7
Two Type IV phase diagrams. The left

and right phase diagrams show

stoichiometric and non-stoichiometric

compounds, respectively. A cooling

curve is shown corresponding to the

phase diagram on the right.
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A Type IV phase diagram showing a
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4.8 Labeling of one- and two-component
regions of a phase diagram

Phase diagrams for most binary alloys can be found in handbooks. Typ-
ically, such diagrams only show the phase equilibrium lines and only (some
of ) the single phase regions are labeled. As a reader, you are expected to
know the identity of all of the remaining regions of the diagram. Fortu-
nately, this is not difficult, and with a little practice you can become expert
in this. The procedure for labeling binary phase diagrams is outlined
below, by reference to the example of the Ce–Ge phase diagram (Fig. 4.13).

The first step is to identify all of the single-phase regions of the diagram
by decomposing it into the six fundamental types of diagrams described
above. In the Ce–Ge system, we find:

1. A diagram of Type I at small Ge concentration (nearly zero Ge
solubility in Ce), as shown in Fig. 4.2.

2. A diagram of Type III at small Ce concentration (finite Ce solubility in
Ge), as shown in Fig. 4.5.

3. A diagram of Type IV (unstable, stoichiometric compound) near
Ce4Ge3, as shown in Fig. 4.7.

4. A diagram of Type IV (unstable, non-stoichiometric compound) near
CeGe, as shown in Fig. 4.7.

5. A diagram of Type V (stable, non-stoichiometric compound) near
Ce3Ge5, as shown in Fig. 4.9.

6. A diagram of Type V (stable, stoichiometric compound) near Ce5Ge3,

as shown in Fig. 4.9.

The remaining sections of the diagram can be identified with the six basic
diagram types described above in an analogous manner. Based upon the
coincidence of segments of the Ce–Ge diagram with the basic diagram
types, we can deduce all of the single-phase regions of the diagram: liquid
(L), Ce (there is negligible Ge solubility so the composition of this phase is
nearly pure Ce), the unstable, stoichiometric compounds Ce3Ge, Ce4Ge3,
and Ce5Ge4, the unstable, non-stoichiometric compound e (with com-
position near CeGe), the stable, non-stoichiometric compound d (with
composition near Ce3Ge5), and the stable, stoichiometric compound
Ce5Ge3.
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Fig. 4.9
Two Type V phase diagrams. The left

diagram shows stoichiometric stable

(A2B) and unstable (AB) compounds

and the phase diagram on the right

shows a non-stoichiometric stable

compound. The cooling curve

corresponds to the phase diagram

on the right.
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A Type VI phase diagram.
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Non-stoichiometric compounds and solid solutions are usually denoted
by Greek letters, although solid solutions are, on occasion, denoted as (A)
where A is the solvent (e.g. we could write (Ge) instead of a). Stoichio-
metric compounds are indicated by chemical formulas. However, if the
composition of the compound corresponds to an obvious stoichiometry
(you need to look at the atomic percent, rather than weight percent scale),
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The Al–Zn phase diagram.
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The Ce–Ge phase diagram.
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a label is often omitted. The table below lists the compositions of the most
common stoichiometric compounds:

Compound Atomic
fraction
of B (%)

Compound Atomic
fraction
of B (%)

Compound Atomic
fraction
of B (%)

A6B 14.3 A5B2 28.6 A4B3 42.9
A5B 16.7 A2B 33.3 A5B4 44.4
A4B 20.0 A5B3 37.5 A6B5 45.5
A3B 25.0 A3B2 40.0 AB 50.0

After you have identified all of the single-phase regions, it is a simple
matter to label all of the two-phase regions. To label the two-phase regions,
you must simply remember that single-phase regions are always separated
from one another by two-phase regions of the diagram. Each two-phase
region is a mixture of the same two phases that make up the neighboring
single-phase regions. Therefore, any horizontal line through a phase dia-
gram will go alternately from one phase to two-phase regions. A word of
caution: if the one-phase region corresponds to a stoichiometric compound
(or a pure component with zero solubility of the other component), it is
simply a vertical line in the binary phase diagram.

Before closing this chapter, it is useful to note a simple visual method
to distinguish between eutectic and peritectic transformation. Corre-
sponding to each eutectic transformation in the binary-phase diagram is
a three-phase stability point where a horizontal line meets a pair of
upward directed lines (see Fig. 4.14). On the other hand, a peritectic
transformation is characterized by a three-phase stability point where a
horizontal line meets a pair of downward-directed lines or one in which
the two downward-directed lines are replaced with a single downward-
pointing vertical line (e.g. see Fig. 4.7).4 Finally, we note that if the
liquid in the eutectic or peritectic reaction is replaced with a solid, these
transformations are called eutectoid or peritectoid transformations,
respectively.

Example problem

1. Label each phase and the constituents of the two-phase regions on the
Mn–Si phase diagram (Fig. 4.15). Simply label each phase with a Greek
letter (you can choose whichever letters are your personal favorites) or
the composition of the compound, respectively.

2. How many phases are in equilibrium at (1) T¼ 1000�C and 10% Si and
(2) T¼ 1200�C and 35% Si in Mn–Si? What are the compositions of
each of the phases you identified?

4 You should demonstrate that this is true by inspection of the phase diagrams in
Sections 4.2, 4.4–4.6.

Eutectic
transformation

Peritectic transformation

Fig. 4.14
Schematic illustrations of the invariant

points corresponding to eutectic and

peritectic transformations in a binary

phase diagram.
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3. Draw the cooling curves for Mn–Si alloys with 17% and 80% Si.
Describe all of the phase transformations occurring in each segment of
the cooling curve.

4. Find the masses of each of the phases and components in each phases at
(1) T¼ 1000�C and 10% Si and (2) T¼ 950�C and 20% Si in 200 g
samples of these Mn–Si alloys.

5. What is the minimum amount (mass) of Mn that you must add to a
300 g sample of a Si–Mn alloy containing 60% atT¼ 1000�C to make it
a single phase alloy (2) same as (1) but add Si instead of Mn.
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The Mn–Si phase diagram.
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Thermodynamics of
chemical reactions

This chapter is devoted to chemical equilibrium. We will use thermo-
dynamics to answer two main questions: (1) ‘‘In which direction will a
chemical reaction proceed?’’ and (2) ‘‘What is the composition of the
system at equilibrium?’’ These are the oldest and most important questions
in all of chemical thermodynamics for obvious reasons. The answers to
these questions represent the foundation upon which all modern chemical
technologies rest.

5.1 Thermodynamic considerations for
chemical reactions

Consider the following chemical reaction:

aAþ bB  ��
��! cCþ dD: (5:1)

A, B, C, and D represent the chemical species participating in the reaction
and a, b, c, and d are the stoichiometric coefficients of these species. We refer
to the species on the left side of this chemical equation as reactants and
those on the right as products. The reaction in Eq. (5.1) can either go for-

ward, from left to right (reactants to products), or backward, from right to
left (products to reactants). Therefore, we see that the definition of which
we call reactants and which products is arbitrary.

Assume that Eq. (5.1) occurs at constant temperature and pressure.
Under these conditions, the direction of the reaction is determined by the
sign of the change of the Gibbs free energy. Following Eq. (1.82), we can
write the change in free energy as

dG ¼ �SdTþ Vdpþ 	AdnA þ 	BdnB þ 	CdnC þ 	DdnD: (5:2)

In a chemical reaction, the variations of the number of moles of each
species are not independent since they are related by the stoichiometry of
the chemical reaction, namely:

� dnA

a
¼ � dnB

b
¼ dnC

c
¼ dnD

d
:

Using these relations, we can rewrite Eq. (5.1) as

dG ¼ �a	A � b	B þ c	C þ d	Dð Þd� ¼ �	d�, (5:3)
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at constant temperature and pressure. We shall refer to �	, defined within
Eq. (5.3), as the stoichiometric difference of the chemical potentials of the
species in the reaction. The progress variable of the chemical reaction � is
related to the number of moles of the species in the reaction as

d� ¼ � dnA

a
¼ � dnB

b
¼ dnC

c
¼ dnD

d
: (5:4)

If the reaction proceeds in the forward direction, the progress variable
increases (d�> 0). We have already seen that the direction in which a
reaction (or any other process) spontaneously proceeds at constant tem-
perature and pressure is the same as the direction in which the Gibbs free
energy decreases. Therefore, the reaction proceeds in the forward direction
provided that

�	 � @G

@�

� �
T; p

< 0: (5:5)

On the other hand, if

�	 � @G

@�

� �
T; p

> 0, (5:6)

the reaction spontaneously proceeds in the backward direction. Finally, in
equilibrium, the stoichiometric difference of chemical potentials satisfies

�	 � @G

@�

� �
T; p

¼ 0: (5:7)

The value (@G/@�)T,p is called the change of the Gibbs free energy of the

chemical reaction. (@G/@�)T,p is commonly written as �GT for the fol-
lowing reason. Consider a case in which the numbers of moles of the species
participating in the reaction are so large that their variations by a few moles
has practically no effect on their concentration (or partial pressures in the
case of gases). In this case, the chemical potentials will not change as the
reaction proceeds. This means that �	 will not change during the reaction
and, hence, we can easily integrate �	 to obtain the change in the free
energy as a result of the reaction:

�GT ¼
Z

�	d� ¼ �	

Z
d� ¼ �	�� � @G

@�

� �
T; p

��:

For the special case in which ��¼ 1, a moles of A and b moles of B have
reacted to form c moles of C and d moles of D, and

�GT ¼ @G

@�

� �
T; p

� �	: (5:8)

This is why we call (@G/@�)T,p the change of the Gibbs free energy of the
chemical reaction, �GT. Analogously, if the reaction occurs at constant
temperature and volume, we find:

�AT ¼ @A

@�

� �
T;V

� �	: (5:9)
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Thus we see that the direction of a reaction and the condition for
chemical equilibrium are determined from stoichiometric difference of the
chemical potentials.

5.2 Thermodynamics of reactions of gases

We again consider the reaction

aAþ bB ¼ cCþ dD, (5:10)

but now we assume that all species are gases. According to Eq. (1.87) the
stochiometric difference of the chemical potentials takes the following
form

�	T ¼ �	0
T þ RT� ln pi:

Again assuming that the system is large enough that the reactions do not
change the partial pressures of the different species (see the discussion
leading up to Eq. (5.8) and operating at constant temperature and pressure,
we see that the left side of this equation is equal to the change of the Gibbs
free energy,�GT. As shown in Eq. (1.84), the chemical potential of the pure
component 	0

T is equal to the Gibbs free energy per 1 mole, so that we can
rewrite Eq. (5.10) as

�GT ¼ �G0
T þ RT� ln pi: (5:11)

This expression is called the van’t Hoff isotherm and is used to determine
the direction of a reaction (if �GT< 0 then the reaction proceeds forward,
while if �GT> 0 it proceeds backward). Note that the form of Eq. (5.11) is
valid if the partial pressure is expressed in atm. �G0

T is called the standard
change of the Gibbs free energy; if the reaction occurs at standard condi-
tions (all species are at 1 atm) �GT ¼ �G0

T. We emphasize again that the
direction of the reaction is determined, in general, solely by the sign of�GT
(not �G0

T).
Equilibrium is achieved when �GT¼ 0. Equation (5.11) implies that the

partial pressures of the gas phase species satisfy

RT ln
pcC p

d
D

paAp
b
B

¼ ��G0
T, (5:12)

where we recall that �G0
T is only a function of temperature. Therefore, the

following ratio of the equilibrium partial pressures also depends only on
temperature:

Kp ¼ p
c
C p

d
D

paAp
b
B

, (5:13)

where Kp is called the equilibrium constant which obviously is also a
function of temperature alone. Equation (5.13) is called the law of mass

action. In order to avoid confusion, we remind the reader that while the
instantaneous partial pressures are used in the van’t Hoff isotherm, the
equilibrium partial pressures should be used in the law of mass action.
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Since the van’t Hoff isotherm actually uses the dimensionless form of the
pressure (i.e. number of atmospheres), the equilibrium constant is always
dimensionless. Inserting Eq. (5.13) into Eq. (5.12), we find

RT ln Kp ¼ ��G0
T: (5:14)

Using this relation, we can re-express the van’t Hoff isotherm as

�GT ¼ �RT ln Kp þ RT� ln pi:

The equilibrium constant can be also written in terms of the molar
fractions of the species in the reaction or their number of moles:

Kp ¼ p�� x
c
Cx

d
D

xaAx
b
B

¼ pP
i

ni

0
@

1
A

��

ncCn
d
D

naAn
b
B

, (5:15)

where�� is the difference of the stochiometric coefficients (cþ d )� (aþ b)
for Eq. (5.10). Since the equilibrium constant does not depend on the total
pressure, Eq. (5.15) shows that if �� < 0, increasing the pressure will
produce more products in equilibrium and vice versa.

We now examine the temperature dependence of the equilibrium con-
stant. Since the Gibbs–Helmholtz equation takes the form of

@(G=T)

@T

� �
p

¼ � H
T 2

,

we can write the change of the Gibbs free energy for a reaction at standard
conditions as

d(�G0
T=T )

dT
¼ ��H 0

T

T 2
:

Combining this equation with Eq. (5.14), yields

d lnKp

dT
¼ �H 0

T

RT 2
: (5:16)

This equation is called the van’t Hoff isobar and is useful for solving two
types of problems: (1) if we know how the equilibrium constant varies with
temperature the van’t Hoff isobar tells us the heat of reaction or (2) if we
know the heat of reaction and the equilibrium constant at some temper-
ature we can use the van’t Hoff isobar to determine the equilibrium con-
stant at any other temperature. Equation (5.16) implies that if the reaction
is exothermic (i.e. �H 0

T < 0), increasing the temperature reduces the
quantity of products in equilibrium (i.e., the equilibrium shifts toward the
reactants).

We can also express the equilibrium constant through the concentra-
tions ci (usually mole/l in chemical thermodynamics) of the species parti-
cipating in the reaction. To do this, we use the equation of state for an ideal
gas, piV¼ niRT, which implies pi¼ ciRT. Inserting this into Eq. (5.13) gives

Kp ¼ p
c
Cp
d
D

paAp
b
B

¼ (RT)��
ccCc

d
D

caAc
b
B
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or

Kp ¼ (RT )��Kc (5:17)

where

Kc ¼ c
c
Cc
d
D

caAc
b
B

, (5:18)

is also called the equilibrium constant and depends only upon the tem-
perature. To determine the temperature dependence of Kc, we insert
Eq. (5.18) into Eq. (5.16):

d ln Kc
dT

¼ d ln Kp

dT
���

d ln RT

dT
¼ �H 0

T

RT 2
���

T
¼ �H 0

T ���RT

RT 2
:

Using the definition of the heat of reaction at constant volume (Eq. 1.32),
we obtain the van’t Hoff isochor:

d ln Kc
dT

¼ �U 0
T

RT 2
: (5:19)

Review questions

1. What are the dimensions of the equilibrium constant?
2. Does Kp increase or decrease with increasing temperature if �H 0

T > 0?
3. Can a chemical reaction proceed in the forward direction if �G 0

T > 0?
4. Under what conditions is the equilibrium composition independent of

the total pressure?
5. Does the heat of a reaction, in which all of the species are ideal gases,

depend on the total pressure?
6. Does �ST, for a reaction in which all species are ideal gases, depend on

the total pressure?

Example problems

1. Kp¼ 1.00 at T¼ 510 K for the reaction

PCl5 ! PCl3 þ Cl2:

What fraction of the initial PCl5 dissociates (degree of dissociation) at a
total pressure p¼ 9 atm?

2. Kp¼ 1.78 at T¼ 525 K for the reaction

PCl5 ! PCl3 þ Cl2:

The reaction proceeds at constant volume. Find the total pressure p0 of
an initial equimolar mixture1 of PCl3 and Cl2 if the partial pressure of
PCl5 in equilibrium is pPCl5

¼ 0.89 atm.
3. Kc¼ 3.24 � 1011 at T¼ 900 K for the reaction

H2 þ Cl2 ! 2HCl:

1 That is, a mixture where the numbers of molecules of PCl3 and Cl2 are the same.
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The degree of dissociation, �, of water at this temperature and p¼ 1
atm is �¼ 2.66 � 10�8. Find the equilibrium constantKp for the reaction
at 900 K:

4HClþO2 ! 2H2Oþ 2Cl2:

4. Kp¼ 4.2 � 10�5 at T¼ 723 K for the reaction

3H2 þN2 ! 2NH3:

Find the direction in which this reaction proceeds if pNH3
¼ 120 atm,

pH2
¼ 80 atm, and pN2

¼ 100 atm.
5. Kp¼ 50 at T¼ 445�C for the reaction

H2 þ I2 ! 2HI:

The initial mixture contained 1 mole of iodine and 1 mole of hydrogen.
Find the partial pressures of all species in the equilibrium mixture if its
volume is 2000 cm3.

5.3 Thermodynamics of reactions of
pure condensed substances

If all species participating in a reaction are in the same phase, the reaction is
called homogeneous. Such reactions include reactions between species in a
gas phase (considered in the previous section) and reactions between spe-
cies in a solution (considered in the next section). If the species are in dif-
ferent phases, the reaction is called heterogeneous.

We begin by considering heterogeneous reactions in which the species in
a gas react with a pure liquid or pure solid. As an example, we investigate
the decomposition of calcium cyanamide in the presence of water vapor:

CaCN2 þ 3H2O(g) ! CaCO3 þ 2NH3(g):

Recall that the chemical potentials of gases and pure condensed sub-
stances take the following forms respectively

	i ¼ 	0
i þ RT ln pi ¼ G0

Ti þ RT ln pi and 	i � 	0
i ¼ G 0

Ti:

Repeating the derivation of the van’t Hoff isotherm from the previous
section, we find

�GT ¼ �G0
T þ RT ln

p2
NH3

p3
H2O

,

where �G0
T ¼ 2G0

T NH3ð Þ þ G0
T CaCO3ð Þ � 3G0

T H2Oð Þ � G0
T CaCN2ð Þ and

Kp ¼
p2

NH3

p3
H2O

:

Note that the standard change of the Gibbs free energy, �G0
T, includes all

of the species in the reaction (i.e. in gas and condensed phases), while the
equilibrium constant only contains terms associated with the gas phase
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species. The van’t Hoff isobar looks exactly the same as it would if all of the
species were in the gas phase.

If there are no species in a gas phase in a heterogeneous reaction, the
equilibrium conditions cannot be described by the law of mass action.
While the direction of a reaction containing species in a gas phase can be
changed by a change in the partial pressure, if no gases are present, the
direction of the reaction is determined solely by the sign of�G0

T (recall that
we have assumed that pressure has a negligible effect on the free energies of
condensed phases). In the latter case, the reactions will proceed to com-
pletion. The simplest condensed phase heterogeneous reaction is melting,
which can be presented as

AS ¼ AL:

At temperatures below the melting point, this reaction proceeds
backward until the system is entirely solid and, at temperature higher than
the melting point, it proceeds forward until all of the solid transforms
into liquid.

Review question

1. In which direction will a reaction proceed if the quantity of one of the
reactants increases in a system that was in equilibrium?

Example problems

1. In which direction does the reaction in Problem 1.1.4.1 proceed at
T¼ 1100 K and p¼ 5 atm, if the gaseous mixture has the following
composition: 60% CH4, 30% CO, and 10% H2O?

2. At T¼ 60�C, the equilibrium constant for the reaction

H2Sþ I2(s) ¼ 2HIþ S(s),

is Kp¼ 1.33 � 10� 5. What is the molar fraction of HI in the equilibrium
gas mixture at a total pressure p¼ 0.1 atm?

5.4 Thermodynamics of reactions with solutions

We can describe reaction thermodynamics in systems containing solutions
by analogy with our discussion of gas phase reactions in Section 5.2.
Depending on the type of solution, the chemical potential takes one of the
following forms (see Chapter 3):

	i ¼  i þ RT ln ci

	i ¼ 	0
i þ RT ln xi

	i ¼ 	st
i þ RT ln ai:

Therefore, either the concentrations or activities of all of the species in a
solution that participate in a reaction must be present in the expressions for
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the van’t Hoff isotherm and the equilibrium constant. For example, if all of
the species in the reaction

aAþ bB ¼ cC,

are in a non-ideal solution, then the equilibrium constant, the van’t Hoff
isotherm and isobar take the following forms:

K ¼ acC
aaAa

b
B

(5:20)

�	i ¼ �	st
i þ RT� ln ai (5:21)

d ln K

dT
¼ �H st

i

RT 2
: (5:22)

Consider the formation of cementite (Fe3C) from austenite (high tem-
perature Fe–C solid solution):

½C
 þ 3Fe! Fe3C:

The van’t Hoff isotherm for this reaction takes the following form:

�GT ¼ �Gst
T � RT ln a½C
a3

Fe


 �
:

The standard state for Fe in austenite is usually taken to be pure Fe and
that for C is either graphite or the standard solution with unit concentra-
tion (this was defined in Section 3.2.1). Depending on the choice of
standard state for C, the standard change of the Gibbs free energy takes
one of the following forms:

�Gst
T ¼ G0

T(Fe3C)�  ½C
 � 3G0
T(Fe)

�Gst
T ¼ G0

T(Fe3C)� G0
T(Cgraphite)� 3G0

T(Fe):

Note that in the last case, the standard change of the Gibbs free energy
looks exactly like that for the reaction

Cgraphite þ 3Fe! Fe3C:

Computer Laboratory #2 provides an opportunity for you to investigate
the thermodynamics of this reaction in an Fe–C solution.

Another example of a reaction involving a species in solution is the
dissolving of one component of a gas into a condensed solvent. This pro-
cess can be represented as

Avapor ! ½A
:
The equilibrium constant and the van’t Hoff isobar for this reaction take
the following form:

K ¼ cA
pA

;
d ln K

dT
¼

_HH½A
 �H 0
Avapor

RT 2
¼ � �HHA

RT 2
,

where �HA is the partial enthalpy of solution of A in the condensed
solvent. Comparing the first expression with the Henry law, we see thatK is
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simply the inverse of the Henry constant h. This implies that the temper-
ature dependence of the Henry constant has the following form:

d ln h

dT
¼ �� �HHA

RT 2
: (5:23)

Review question:

1. Describe the standard conditions for the following reaction:
MnOþH2![Mn]þH2O.

Example problems

1. At T¼ 873 K and a nitrogen (N2) partial pressure of p1¼ 0.01 atm, the
solubility of nitrogen in Co is 0.06%. Will nitrogen dissolve in or
evaporate from Co at this temperature if the nitrogen partial pressure is
p2¼ 0.5 atm and its concentration in Co is 0.5%?

2. A solid Au–Ni alloy with 10% at Ni is exposed to an atmosphere of
water vapor at T¼ 1000 K until equilibrium is achieved. As result, NiO
is formed in/on the alloy and the equilibrium mixture contains 0.35%
H2. The following data pertains:

Niþ 1
2O2 ! NiO; �G0

1000 ¼ �149:12 kJ=mole

H2 þ 1
2O2 ! H2O; �G0

1000 ¼ �192:77 kJ=mole:

Find the activity coefficient of nickel in this alloy using pure nickel as the
standard state.

3. The temperature dependence of the Henry constant (pAg¼ hxAg) for a
solution of silver in liquid gold is described by

ln h ¼ � 40090

T
þ 19:05:

The temperature dependence of the saturated vapor over pure liquid
silver takes the following form:

ln p0
Ag ¼ �

38640

T
þ 18:79:

Find the partial molar enthalpy of solution of pure liquid silver in liquid
gold.

4. At T¼ 1273 K, the molar fraction of carbon in austenite in equilibrium
with a gaseous mixture of H2 and CH4 (pCH4

=p2
H2
¼ 0:227 � 10�3) is

x[C]¼ 0.233 � 10�2 and if pCH4
=p2
H2
¼ 5:31 � 10�3, then x[C]¼ 4.10 � 10�2.

Find the activity coefficient of carbon in the second alloy, assuming that
the first alloy is an ideal dilute solution (use the solution with x[C]¼ 1 as
the standard state for carbon).
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Interfacial phenomena

An interface is a surface across which the phase changes. Interfaces must
be present in all heterogeneous systems, such as those discussed above.
Interfacial properties necessarily differ from those of the bulk phases since
the atomic bonding/structure of an interface represents a compromise
between those of the phases on either side of the interface. For example, an
atom at a free surface, which is an interface between a condensed phase and
a gas (or a vacuum), generally has fewer neighbors with which to bond than
it would have if it were in the bulk, condensed phase. In an equilibrium
multi-component system, the chemical potential of each species must be
the same in all phases, as well as at the interface. Not surprisingly, the
chemical composition of the interface will, in general, differ from that of
the bulk. For example, molecules in a gas (or solute in a condensed phase)
can adsorb (segregate) onto the surface (interface) of a condensed phase.
Interfacial processes play important roles in all areas of materials science
and in many (most) areas of modern technology. As the trend toward
miniaturization in microelectronics continues and interest in nanoscale
structures grows, interfacial phenomena will become even more important.
Clearly, the ratio of the number of atoms at surfaces and interfaces to those
in the bulk grows as system size decreases (70% of the atoms in a nano-
meter diameter particle are on a surface!). Therefore, the thermodynamic
properties of a system become increasingly dominated by interfacial
properties as the dimensions of the system shrink.

We can distinguish several types of interfaces: solid–liquid, liquid–gas,
solid–gas, solid phase �–solid phase �, and grain boundaries. The meaning
of the first four types of interface is self-explanatory. Grain boundaries
represent a special class of interfaces; interfaces across which the phase
does not change. What does change abruptly across this interface is the
spatial orientation of the crystallographic axes. Most crystalline materials
are polycrystalline, which means that they are composed of a large number
of grains, each with a unique crystallographic orientation with respect to
some laboratory frame of reference. We can understand why most solids
consist of a large number of distinct grains by considering how a liquid
freezes. As the temperature decreases, individual crystalline nuclei form at
different places in the liquid. Since one nucleus knows nothing about the
other nuclei, it chooses its orientation at random. As more heat is extracted
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from the system, these nuclei grow to impingement, leaving a solid
composed of many differently oriented grains separated by sharp grain
boundaries.

6.1 Adsorption of gases

Adsorption is the process in which atoms from a gas (adsorbate) impinge
upon the surface of a condensed phase (adsorbent) and stick there, such
that their concentration on the surface is larger than in the gas. In physical

adsorption (physisorption), the adsorbate molecules are bonded to the
surface by relatively weak (van der Waals) forces and do not form com-
pounds. In chemical adsorption (chemisorption), the adsorbate molecules
form chemical bonds to surface atoms.

We can quantify the degree to which adsorption has occurred as the
number of moles of adsorbate per unit area of the adsorbent surface,
� (moles/cm2). Other definitions exist in the literature. For example, � can
be written as the number of moles of adsorbed gas per unit mass of the
adsorbent (mole/g) or the volume the adsorbate would occupy if it were
in a gas under normal conditions (T¼ 0�C, p¼ 1 atm) per unit area of the
adsorbent (cm3/cm2). We will always express � in units of moles/cm2

below.
The main focus of our description of adsorption will be the dependence

of � on gas pressure at constant temperature—this is known as the
adsorption isotherm. The adsorption isotherm can be used to determine
the surface area of the adsorbent from experiment. Next, we will consider
how � varies with temperature.

6.1.1 Langmuir isotherm

The Langmuir isotherm can be derived on the basis of three postulates:

1. The adsorbent surface has a finite number of independent adsorption
sites per unit area, Z, each of which can adsorb only one molecule. In
fact, there are three statements in this postulate. First (and obviously),
this statement says that the number of sites is limited (i.e. the adsorbent
has a finite surface area). Second, independence implies that the
probability a site is occupied does not depend on the occupancy of
any other site. Third is that each site can be occupied by only a single
molecule, such that it is not possible to adsorb one molecule on top of
another one. This implies that multi-layer adsorption is not possible.

2. All adsorption sites are equivalent.
3. The adsorbed molecules interact with the surface of the adsorbent

(otherwise adsorption will not occur) but not with each other.

We derive the Langmuir adsorption isotherm using the same kinetic
approach we used to derive the Henry law (see Section 3.2.1). The main
idea underlying this approach is that in equilibrium, the rate of adsorption
!# of molecules onto the surface must be equal to the rate of desorption !".
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We begin by considering the rate of adsorption. In order for a molecule
to adsorb onto the surface, it must encounter an unoccupied surface site.
The kinetic theory of gases tells us that the number of collisions that gas
molecules make with a surface is proportional to the gas pressure (see
Section 12.2.9). The probability that a particular collision occurs at an
empty adsorption site is proportional to the fraction of unoccupied
adsorption sites. If the fraction of occupied sites is �, the fraction of unoc-
cupied sites is equal to 1� �. Thus, the rate of adsorption can be written as

!# ¼ k # p(1� �), (6:1)

where k# is a constant. The rate of desorption is simply proportional to the
number of adsorbed molecules and, therefore, to the fraction of occupied
adsorption sites

!" ¼ k " �, (6:2)

where k" is also a constant. In equilibrium,

!# ¼ !"; k#p(1� �) ¼ k"�:
We can solve this equation for �

� ¼ bp

1þ bp (6:3)

where

b ¼ k#=k": (6:4)

Since � is the number of adsorbates per unit area of the surface, we can
express it as the product of the number of sites per unit area, Z and the
fraction of sites that are occupied, �¼Z�. Using this relationship and
Eq. (6.3), we find

� ¼ Zbp

1þ bp : (6:5)

This is the Langmuir adsorption isotherm. In the p! 0 limit, this isotherm
reduces to �¼Zbp. If we denote h¼Zb, we see that this isotherm (in the
p! 0 limit) is the gas adsorption analogue of the Henry law

� ¼ hp, (6:6)

and is called the Henry adsorption isotherm.
We now examine the temperature dependence of adsorption within the

Langmuir model. We can write the adsorption process as a chemical
reaction between molecules in the gas and molecules adsorbed onto the
surface:

A(gas) ¼ A(ads):

At low pressure, the equilibrium between the molecules on the surface and
in the gas can be expressed in terms of the equilibrium constant

K ¼ �

p
¼ Zb,
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where, of course, Z does not depend on temperature. Therefore, inserting
this equilibrium constant in the van’t Hoff isobar, we find:

d ln b

dT
¼ �Hads

RT 2
, (6:7)

where �Hads is the heat of adsorption. Experiments show that at a given
pressure, adsorption decreases with increasing temperature. This can be
understood simply: since the van der Waals interactions do not depend on
temperature and the kinetic energy of the molecules is proportional to
temperature, increasing the temperature provides additional kinetic energy
that help molecules escape from the surface (desorb). This experimental
observation, when combined with Eq. (6.7), implies that the heat of
adsorption �Hads is always negative.

Equation (6.5) implies that when p!1, �!Z. This actually follows
directly from the first postulate. Since only one gas molecule can adsorb at
each site, the maximum value for the adsorption, �, must be equal to the
total number of sites per unit area, Z. Figure 6.1 shows a typical Langmuir
isotherm. The adsorption isotherm is linear at small pressure (this is the
Henry law) and saturates at �¼Z at high pressure. The magnitude of the
adsorption depends strongly on temperature at small pressure and it is
almost temperature independent at large pressure.

Note that the Langmuir isotherm can be rewritten as

p

�
¼ 1

Z
pþ 1

Zb
:

This equation implies that if the adsorption is described by the Langmuir
theory, p/� is proportional to the pressure, that is a plot of p/� versus p is a
straight line.

In practice, pure gases are rare. This suggests that most surfaces are
covered with several types of adsorbates. We can describe this situation
via Langmuir theory as well. Let �i be the fraction of sites occupied by
molecules from the gas of type i. By analogy with Eqs (6.1) and (6.2), we
can write the rates of adsorption and desorption as

!#i ¼ k#ipi 1�
X
j

�j

 !
(6:8)

!"i ¼ k"i�i: (6:9)

Introducing bi¼ k#i/k"i we find:

�i ¼ bipi 1�
X
j

�j

 !
: (6:10)

We can determine �i from this equation, as follows. We first sum the left
and right sides of this equation over i:

X
i

�i ¼
X
i

bipi 1�
X
j

�j

 !
¼
X
i

bipi �
X
i

bipi
X
j

�j:

G

Z

T1

T2

T1 < T2 P

Fig. 6.1
A schematic illustration of theLangmuir

adsorption isotherm.
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Next, we replace the summation index i with j on the left hand side of this
expression and rearrange to find:

X
j

�j ¼
X
i

bipi �
X
i

bipi
X
j

�j;
X
j

�j ¼
P
i bipi

1þPi bipi
¼

P
j bjpj

1þPj bjpj
:

Inserting this result into Eq. (6.10) leads to the final result:

�i ¼ Z�i ¼ Zbipi
1þPj bjpj

: (6:11)

This equation shows an interesting effect: increasing the partial pressure of
one gas phase species or the introduction of a new species necessarily
decreases the concentrations of all other gases on the surface (even if the
new species does not interact with the other species!).

Review question
Can the value of � be larger than Z in the Langmuir theory?

Example problem

1. Consider the case where diatomic molecules adsorb onto the surface
and dissociate into two distinct atoms. Derive the adsorption isotherm
using the Langmuir theory postulates. (Hint: it is analogous to the
derivation of Sieverts’s law in Section 3.2.1).

6.1.2 BET theory for multilayer adsorption

The Langmuir theory provides satisfactory agreement with experimental
adsorption data at small and moderate partial pressures of the adsorbate in
the gas. However, for the case where the pressure is large, Brunauer
demonstrated that this theory is often in poor agreement with experiment.
Not surprisingly, the discrepancy occurs where the gas pressure is close to
the pressure of the saturated vapor, ps (i.e. the pressure at which the
adsorbate will condense on the adsorbent surface). In other words, in the
p! ps limit, �!1 (i.e. the quantity of condensate on the surface is much
larger than that of a completely filled monolayer). The Langmuir theory
fails in this case because the first postulate upon which it rests is invalid (i.e.
there is more than one adsorbate molecule per surface site). Clearly, a
theory capable of describing adsorption at high pressure must allow for
multi-layer adsorption. Such a theory was developed by Emmet and
extended by Teller (the Brunauer–Emmet–Teller or BET isotherm). In
multi-layer adsorption, some adsorbate molecules must adsorb upon other
adsorbate molecules. This implies that adsorbate molecules must interact
with each other (otherwise adsorption of more than a monolayer would
not be possible). The description of such molecular interactions is, in
general, a very complex problem. The BET theory considers a very limited
(and artificial) type of molecular interactions: adsorbed molecules interact
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with each other along the vertical direction (i.e. normal to the surface—see
Fig. 6.2) but not along the horizontal direction (i.e. within the same layer).
This type of interaction is motivated solely by mathematical simplicity,
rather than by physical insight. The BET theory further assumes that the
interactions between molecules in the first and second layer are exactly the
same as between those in any other pair of neighboring layers.

We now derive the BET isotherm. Let �i be the fraction of the surface
adsorption sites above which there are i molecules. Obviously,X1

i¼0

�i ¼ 1 (6:12)

� ¼ Z
X1
i¼0

i�i: (6:13)

For the sake of concreteness, we first focus on surface sites that contain only
one molecule. There are four distinct processes that affect the value of �1:
(1) adsorption of amolecule onto an empty adsorbent site, (2) desorption of
a molecule from an adsorption site, (3) desorption from the second layer,
and (4) adsorption onto the first layer. The principle of detailed balance
(see Section 9.5) tells us that processes (1) and (2) must be in equilibrium
with each other and process (3) must be in equilibrium with process (4).
Both equilibria must yield the same occupancy of layer 1. Therefore,
we need only focus on one of these. We consider equilibrium between
processes (1) and (2). By analogue with the derivation of the Langmuir
isotherm presented in the previous section, we can immediately write

!#1 ¼ k#p�0; !"1 ¼ k"�1,

where !1# (!1") is the rate of adsorption of molecules from the gas onto
empty surface sites (desorption of molecules from sites containing one
molecule). Equating the adsorption and desorption rates yields

�1 ¼ bp�0, (6:14)

where b¼ k#/ k". Similarly, for sites containing two molecules, we have:

!#2 ¼ k0#p�1; !"2 ¼ k0"�2

�2 ¼ b0p�1,

where the constant b0 ¼ k0#=k0" is, in general, not equal to b. This inequality
results from the fact that adsorption onto an empty surface site depends on
the interaction of the adsorbate molecules with the adsorbent surface,
while adsorption into a site in the second layer depends on the interactions
between adsorbate molecules. Since we assume that the interaction
between the adsorbed molecules does not depend on the layer number, we
can write

�i ¼ b0p�i�1,

for all remaining layers. Inserting expressions for �i�1, �i�2, . . . �1 in this
recursion relation, we find:

�i ¼ bp(b0p)i�1�0, for i 	 1: (6:15)

Langmuir theory

BET theory

Fig. 6.2
Illustration of monolayer and multilayer

adsorption.
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Using this relation, we can rewrite Eq. (6.12) as

1 ¼
X1
i¼0

�i ¼ �0 þ
X1
i¼1

bp(b0p)i�1�0 ¼ �0 1þ bp
X1
i¼1

(b0p)i�1

( )

¼ �0 1þ bp 1

1� b0p

 �

�0 ¼ 1� b0p
1þ bp� b0p : (6:16)

This is the BET prediction for the fraction of adsorption sites that are
empty. The number of moles of adsorbate per unit area of adsorbent, �,
can then be found by inserting Eqs (6.15) and (6.16) into Eq. (6.13):

� ¼ Z
X1
i¼0

i�i ¼ Z
X1
i¼1

ibp(b0p)i�1�0 ¼ Zbp�0

X1
i¼1

i(b0p)i�1

¼ Zbp�0
d

d(b0p)

X1
i¼1

(b0p)i ¼ Zbp�0
d

d(b0p)
b0p

1� b0p

¼ Zbp 1� b0p
1þ bp� b0p

1� b0pþ b0p
(1� b0p)2

� ¼ Zbp

(1þ bp� b0p)(1� b0p) : (6:17)

Examination of Eq. (6.17) shows that as p! 1/b 0, �!1. Therefore,
b 0 ¼ 1/ps by definition of the saturated vapor pressure (we return to this
point in the next Section). Using this identification, we can rewrite
Eq. (6.17) as

� ¼ Zbp

(1þ bp� p=ps)(1� p=ps)
: (6:18)

This is the BET isotherm. In the p! 0 limit, this isotherm reduces to the
Henry isotherm and as p! ps it describes condensation. Therefore, this
isotherm provides at least a qualitatively correct description of adsorption
at any pressure.

If there is no difference between the interactions of the adsorbate
molecules with other adsorbate molecules or with the adsorbent surface,
b¼ b 0. This limit yields the Emmet isotherm

� ¼ Zp=ps

1� p=ps
: (6:19)

This isotherm also provides a qualitatively correct description of adsorp-
tion at all pressures, but yields somewhat worse quantitative agreement
with experimental data than does the BET isotherm.

The BET isotherm can be also rewritten in the following form:

� ¼ Zgp=ps

(1þ gp=ps � p=ps)(1� p=ps)
(6:20)
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where g¼ bps¼ b/b 0. If g> 2, the BET isotherm has an inflection point, as
seen in Fig. 6.3. Both g> 2 and g< 2 behavior have been seen in experi-
ments. If the number of adsorbate molecules on the surface is approx-
imately equal to the number of available adsorption sites ��Z, two
types of adsorption are possible, as shown in the two illustrations in
Fig. 6.3. If g> 2 case and p� ps, most of the adsorption sites are
occupied by a single molecule and hence the Langmuir isotherm is a good
description of the system. If g< 2, relatively few adsorbent sites are
occupied, but those that are, are occupied by several molecules. The dif-
ference between these two is, of course, dictated by whether adsorbate
molecules prefer bonding to the adsorbent surface (g> 2) or to other
adsorbate molecules (g< 2).

Finally, we note that Eq. (6.18) can be rewritten in the following
form:

p

�(1� p=ps)
¼ 1

Zb
(b� 1=ps)pþ 1

Zb
: (6:21)

If a plot of p/�(1� p/ps) versus p is a straight line, the BET theory
provides a good description of the experimental data.

Review questions

1. What is the difference between the physical models of adsorption
described by the Langmuir and BET isotherms?

2. Which parameters in the BET isotherm depend on temperature?
3. Can � be larger than Z in the BET theory?

Example problems

1. Find the fraction of the free surface sites according to the BET theory if
�¼Z and (1) g¼ 1 and (2) g¼ 100.

2. You perform a series of adsorption experiments in which you put a
solid adsorbent in a chamber and pass an adsorbate gas through it at
fixed temperature and pressure. During the experiment, you measure
the change of mass of the sample until it no longer changes in time.
Since the change of mass of the sample is simply equal to the mass of
the adsorbed gas, you can easily calculate the volume that adsorbed
gas would occupy under normal conditions. You obtained the
following data:

T¼ 250 K
p (atm) 0.016 0.032 0.049 0.065 0.081
V (cm3/g) 80 162 252 352 519

T¼ 350 K
p (atm) 0.416 0.832 1.248 1.664 2.080
V (cm3/g) 81 152 231 311 434

G

0 g > 2 ps p

G

0 g < 2 ps p

Fig. 6.3
A schematic illustration of the BET

adsorption isotherm.
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The following values for the given adsorbate were found in a standard
handbook:

� the area which is occupied by one molecule of the adsorbate on the
adsorbent surface is 19.4 Å2

� �Hevap¼ 24.5 kJ/mole
� Tboil¼ 300 K.

Show that these results can be described in the framework of the BET
theory and find the surface area of the 12 g of the adsorbent and the heat
of adsorption.

6.1.3 Capillary condensation

While the BET theory can at least qualitatively account for condensation,
it implicitly considers only the case of a flat adsorbent surface (this follows
from the assumption that all adsorption sites are equivalent). If the
adsorbent surface is not flat, the surface curvature can result in an addi-
tional pressure, which can change the saturated vapor pressure (see
Section 2.2). Clearly, this change in the saturated vapor pressure will
lead to a more complicated adsorption isotherm than that predicted by the
BET theory. We now investigate the origin of this effect.

We begin by deriving the additional pressure induced by the surface
curvature. For simplicity, we consider an isotropic condensed phase (e.g.
glass). Consider the system as composed of a condensed phase and a gas
under constant volume and temperature conditions. The differential form
of the Helmholtz free energy of the system is (see Eq. (1.67))

dA ¼ �PcdVc�PgdVg�ScdT�SgdTþ�da, (6:22)

where � is the surface tension and da is an element of surface area. The last
term in this equation gives the increase of the free energy associated with
increasing the area of the condensed phase–gas interface (see the next
Section for more details). We use P to represent the pressure, rather than
the saturated vapor pressure. At equilibrium dA¼ 0. Since T and V are
fixed, dT¼ 0 and dVc¼�dVg. Therefore, we obtain the following equation
for the additional pressure:

P ¼ Pc � Pg ¼ � da

dVc
: (6:23)

In the case of a spherical pore in a solid da/dV¼ � (da/dr)/(dV/dr)¼
�d(4
r2)/d(4
r3/3), where r is the sphere radius. Hence,

Psphere ¼ �
2�

r
: (6:24)

In the case of a cylindrical pore in a solid da/dV¼ � (da/dr)/(dV/dr)¼
�d(4
rL)/d(
r2L), where L is the cylinder length, such that

Pcylinder ¼ �
�

r
: (6:25)
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Inserting Eqs (6.24) and (6.25) into Eq. (2.11), we obtain the following
expression for the saturated vapor pressure inside spherical and cylindrical
pores

psphere ¼ pse
�2�Vm=rRT (6:26)

pcylinder ¼ pse
��Vm=rRT: (6:27)

A flat surface corresponds to r!1 and psphere¼ pcylinder¼ ps. Note that
(1) the saturated vapor pressure in a spherical pore is smaller than that
in a cylindrical pore of the same radius and (2) the saturated vapor
pressures inside spherical and cylindrical pores are identical for
rsphere¼ 2rcylinder. (Physically, this is because a sphere is curved in two
directions and a cylinder only in one.) In what follows, we rely on only
these two facts.

Consider the case of adsorption onto the surface of a conical pit, as
shown in Fig. 6.4. Multi-layer adsorption first leads to the formation of a
thin film on the entire solid surface. Then, a (spherical) meniscus forms, as
shown in Fig. 6.4. This occurs for any pressure p> pse

� 2�Vm/rRT (r is the
meniscus radius). The conical pit will continue to fill with condensate until
a meniscus radius is obtained for which p¼ pse� 2�Vm/rRT. Condensation
begins at the bottom of the pit at a vapor pressure that is nearly zero. As the
pressure increases, the pit fills to a greater height. This will continue until
the condensate fills the entire pit. When the meniscus goes around the
corner, its radius of curvature must necessarily increase. Therefore, the
saturated vapor pressure increases and we must raise the pressure of the gas
in order to continue the condensation process. The adsorption isotherm, �
versus p, for the conical pore is shown in Fig. 6.4. The steeply sloped section
is associated with filling the conical pore over a range of pressures. The
following section with a smaller slope corresponds to increasing the pres-
sure as the meniscus goes around the corner. If we reduce the pressure, we
simply traverse the adsorption isotherm in the reverse direction (i.e. the
desorption isotherm).

We now consider a cylindrical pore that is closed at the bottom, as shown
in Fig. 6.5. Once the gas starts condensing at the bottom of this pore, a
hemispherical meniscus forms (for simplicity, focus on the perfect wetting
case). The meniscus has a radius of curvature equal to that of the radius of
the cylinder (see Fig. 6.5). The saturated vapor pressure adjacent to the
wall of the cylindrical pore exceeds that adjacent to the hemispherical
meniscus, pcylinder > psphere. Once the meniscus forms and extends into the
cylindrical section of the pore, condensation will continue—raising the
meniscus at fixed p¼ psphere. Since the radius of curvature of the cylinder
(and hence the meniscus) does not change as the condensate level rises, the
pore will continue filling at p¼ psphere until it reaches the edge of the pore
(i.e. the surface). The adsorption isotherm for the closed cylindrical pore is
shown in Fig. 6.5. The vertical section at p¼ psphere is associated with filling
the cylinder at fixed pressure and the remainder of the isotherm is as
described above for the conical pore.

z

r

G

P

Fig. 6.4
A partially filled conical pore and the

corresponding adsorption isotherm.

Note that the meniscus radius is a

function of the height of the meniscus

above the bottom of the pore.

G

Pcylinder P

z
rcylinder

r

Fig. 6.5
A partially filled cylindrical pore (closed

at one end) and the corresponding

adsorption isotherm. Note that in this

case the meniscus radius r¼ rcylinder does

not depend on the meniscus height.
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We now consider the interesting case of a cylindrical hole, open at
both ends, as shown in Fig. 6.6. At low pressure, the cylindrical hole
interior is not filled, but rather has an adsorbate layer covering its walls
(Fig. 6.6). As the pressure increases, the thickness of the adsorbate layer
slowly increases until the critical pressure, pcylinder, is achieved and the
cylindrical hole fills (Fig. 6.6). This occurs because as we decrease the
cylinder radius, we decrease the saturated vapor pressure in accordance
with Eq. (6.27) and, hence, increase the tendency for condensation.
After filling the pore (Fig. 6.6), two spherical menisci form on its end
with the radius r¼ rsphere¼ 2rcylinder (in order to keep equilibrium with
the adsorbate in the gas phase). Increasing pressure will lead to the
decreasing of the curvature of the menisci and some additional
adsorption. When the pressure is reduced, desorption begins by
reversibly decreasing the radius of the menisci. However, as p¼ psphere,
the menisci move towards the center of the cylindrical hole (Fig. 6.6).
This continues until the two menisci meet and we once again have an
adsorbate geometry as in Fig. 6.6. The adsorption–desorption isotherm
is shown in Fig. 6.6. The vertical jump observed in the isotherm upon
adsorption occurs at p¼ pcylinder and that observed upon desorption
occurs at p¼ psphere. Therefore, the isotherm is multi-valued (hysteretic)
and the observed branch differs according to whether adsorption or
desorption is occurring.

Since no surface of any real material is perfectly flat, adsorptions iso-
therms that show features similar to those in Figs 6.4–6.6 are the rule,
rather than the exception. The geometries of Figs 6.4 and 6.5 are associated
with pores, pits, or damage. Geometries such as seen in Fig. 6.6 can be
associated with the presence of thin channels between interior pores.
Surface profiles other than those considered here explicitly are routinely
observed. Therefore, the adsorption–desorption isotherms of real surfaces
are complex and often hysteretic. Isotherms such as that shown in Fig. 6.7
are common.

6.2 Gibbs interfacial thermodynamics

In this section, we consider the thermodynamic description of interfaces
developed by Gibbs. First, we will give a precise definition of an
interface. While this may seem to be a trivial issue, it is not. Indeed,
consider some extensive property X, with bulk density x (for homo-
geneous regions of the system, x¼X/V). Figure 6.8 shows a possible
dependence of x on z, where z is the coordinate in the direction normal
to the interface. In this plot, the property x varies over some distance as
we go through the interface from phase � to phase �. Interestingly, the
value of x need not be constrained to the range from x� to x�, where
these values represent the bulk values of x. Where is the interface in this
figure? Is it at a single location or does it extend over a finite range? The
answers to these questions are not obvious and depend on the definition
of the interface employed.

Adsorption

Desorption

G

Pcylinder PPsphere

Fig. 6.6
A cylindrical pore that is open at both

ends and the corresponding adsorption

isotherm.

G

P

Fig. 6.7
An adsorption isotherm for an

adsorbent on a surface containing all

of the features of those shown in

Figs 6.4–6.6.
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Gibbs proposed to answer these questions by arbitrarily assuming
that the interface is located at z¼ z0 and then introduced the following
definitions:

1. Both phases are homogeneous, right up to the interface.
2. The interface is perfectly sharp (i.e. of infinitesimal thickness). This

implies that the volume of the entire system is simply the sum of the
volumes of the two phases

V ¼ V � þ V�: (6:28)

3. The interface is homogeneous in all directions perpendicular to z.

Examination of Fig. 6.8 shows that condition 1 is violated (i.e. there is a
variation in property x within phases � and � near the interface). There-
fore, an extensive property of the system, X, cannot be represented by an
expression of the form x�V �þ x�V�. In order to rectify this deficiency,
Gibbs proposed the existence of an interfacial excess X I, such that

X ¼ x �V � þ x �V � þ X I: (6:29)

Since the interface is homogeneous, it is convenient to normalize the
interfacial excess by the interface area

xI ¼ X
I

a
, (6:30)

where xI is the interfacial excess density.
For any extensive property, we can always write

X ¼
Z
V

xdV ¼
Z
V�
x dVþ

Z
V�
xdV:

Inserting this expression into Eq. (6.29), we find

X I ¼ X� x�V � � x�V � ¼
Z
V�
xdVþ

Z
V�
xdV� x�

Z
V�

dV� x �
Z
V �

dV:

¼
Z
V�

(x� x�)dVþ
Z
V�

(x� x�)dV

The integrands in the final expression are non-zero only near the interface.
Near the interface, we can use the following expression for the differential
volume dV¼dadz, where a is the interface area. Using this expression, the
last equation can be written as

xIa ¼ X I ¼
Z z0

�1
(x� x�)dz

Z
daþ

Z 1
z0

(x� x�)dz
Z

da:

Since the interface is homogeneous, the integral over da can be replaced by
the interface area a. Thus,

xI ¼
Z z0

�1
(x� x�)dzþ

Z 1
z0

(x� x�)dz (6:31)

Equation (6.31) implies that the shaded area in the x-z plot of Fig. 6.8 is
equal to the interfacial excess density, xI.

xa

xb

x

0 z0 z

Fig. 6.8
The variation of the density of an

extensive property X with distance

across an interface.
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We can use the definition of the interfacial excess density (Eq. (6.31)) to
derive several important relationships. Consider two extensive properties,
X and Y. Equation (6.31) implies that:

(1) if X¼Y then xI¼ yI;
(2) (axþ by)I¼ axIþ byI, where a and b are constants;
(3) if X ¼ @Y=@T, then XI ¼ @YI=@T.

We now consider the interfacial excess of several specific extensive
thermodynamic properties. First, consider the number of moles of com-
ponent i. Equation (6.29) implies that

ni ¼ c�i V � þ c�i V � þ nIi : (6:32)

�i is the interfacial excess density of the number of moles of component i,
defined as �i ¼ nIi=a, or

ni ¼ c�i V � þ c�i V � þ �ia: (6:33)

Note that this definition of �i differs from that given in Section 6.1, where
we defined �i as number of moles of adsorbate on the adsorbent interface.
Here, �i is defined as the number of moles of component i in the system
minus that which would be present if the bulk phases were each homo-
geneous up to the interface.

The interfacial excess of the thermodynamic function, U, H, A, and G,
can be derived from their differentials with an added term to account for
the presence of the interface. Consider the differential of the internal
energy of a system with no interfaces (Eq. 1.78)

dU ¼ TdS� p dVþ
Xk
i¼1

	idni: (6:34)

When interfaces are present, we must add an additional term that corres-
ponds to the reversible work of increasing the interface area:

�Wint ¼ �� da: (6:35)

The minus sign is chosen in order to keep � positive for the physical case in
which increasing the interface area increases the energy of the system
(negative � in this context implies that the system would be unstable—will
create an infinite amount of interface). � is known as the interface tension.
Since the work appears on the right-hand side of Eq. (6.34) with a minus
sign, we obtain:

dU ¼ TdS� p dVþ
Xk
i¼1

	idni þ � da: (6:36)

Consider the formation of an interface at constant temperature, volume,
and composition (this implies that the chemical potentials are also con-
stant). In this case, Eq. (6.36) can be rewritten as:

d U� TS�
Xk
i¼1

	ini

 !
¼ �S dT� p dV�

Xk
i¼1

nid	i þ �da:
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We can define a new thermodynamic function from this as

� ¼ U� TS�
Xk
i¼1

	ini ¼ A�
Xk
i¼1

	ini, (6:37)

which is called the Gibbs grand potential. The differential form of this
function is:

d� ¼ �S dT� p dV�
Xk
i¼1

ni d	i þ � da: (6:38)

The interfacial excess of the Gibbs grand potential is the term that is
proportional to da in Eq. (6.38):

d�I
� �

T;V;	i
¼ � da:

Integrating both sides of this equation and taking into account the
homogeneity of the interface we obtainZ �I

0

d�I ¼
Z a

0

�da

or

�I ¼ �a: (6:39)

Hence, the interface tension is the interfacial excess of the Gibbs grand
potential. In the bulk, the interfacial potential can be written as (using Eqs
(3.10) and (6.37))

�V ¼ U� TS�
Xk
i¼1

	ini ¼ A� G ¼ A� (Aþ pV):

This implies that

�V ¼ �pV: (6:40)

Now we can express the excess of all other extensive properties through
the interface tension and the interfacial excess density of the number of
moles of the alloy components. For the Helmholtz free energy we obtain:

AI ¼ �þ
Xk
i¼1

	ini

 !I

¼ �I þ
Xk
i¼1

	in
I
i

AI ¼ a �þ
Xk
i¼1

	i�i

 !
: (6:41)

Since G¼Aþ pV and V I¼ 0 (see Eq. (6.28)), we find

GI ¼ AI: (6:42)

Equations (6.38) and (6.39) imply

S ¼ � @�

@T

� �
V;	i;a

and SI ¼ � @�I

@T

� �
V;	i;a
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such that

SI ¼ �a @�
@T

: (6:43)

Inserting Eqs (6.41) and (6.43) into the standard expression for the
internal energy U¼AþTS yields

UI ¼ a �þ
Xk
i¼1

	i�i � T @�
@T

 !
: (6:44)

Finally, since H¼Uþ pV we find

HI ¼ UI: (6:45)

Although the interfacial excesses depend upon the choice of the interface
position z0, the relationships between them do not depend on z0 (recall
we made no assumptions about the interface position in deriving
Eqs (6.41–6.45). We can unambiguously locate the position of the interface
by fixing the value of the excess of one of the properties (provided, of
course, that its value depends on the choice of the interface location).
For example, the interface position would be fixed by asserting that �i¼ 0
as shown in Fig. 6.9, or

Pk
i¼1 �i ¼ 0.

In the special case of x�¼ x�, the value of the interfacial excess does not
depend on interface position (see Fig. 6.10). For example, at equilibrium,
p�¼ p�. Equation (6.40) shows that p is minus the bulk density of the Gibbs
grand potential. Therefore, the interfacial excess density of theGibbs grand
potential (surface tension—see Eq. 6.39) does not depend on the choice of
the interface location. Of course, the condition x�¼ x� is always satisfied in
the case of a grain boundary such that the excesses of all extensive prop-
erties do not depend on the choice of the grain boundary location.

Since the interfacial excesses of all extensive properties can be expressed
through � and �i, it is useful to inquire whether � and �i can be related. We
can divide the Gibbs grand potential into bulk and interface parts such that
d�¼ d�Vþ d�I. Making this division using Eq. (6.38) we have

d�V ¼ �SVdT� pdV�
Xk
i¼1

nVi d	i

d�I ¼ �SIdT�
Xk
i¼1

nI
id	i þ � da:

Inserting the expression for the excess Gibbs grand potential, Eq. (6.39),
into the previous equation, we find

� daþ a d� ¼ �SIdT�
Xk
i¼1

nI
id	i þ � da

d� ¼ �sIdT�
Xk
i¼1

�id	i, (6:46)
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Fig. 6.9
The interface position can be chosen

such that the interface excess density of

a given extensive property X is zero.

xa xb

x

0 z0 z

Fig. 6.10
The density of an extensive property X

as function of distance across a grain

boundary.
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where sI is the interfacial excess density of the entropy. This relation is
called the Gibbs adsorption equation. In the case of an isothermal process,
this reduces to

d� ¼ �
Xk
i¼1

�i d	i: (6:47)

We now consider the case of a binary solution at constant temperature.
We choose the interface position such that the interfacial adsorption of
the first component is zero, that is, �1¼ 0. Then Eq. (6.47) reduces to

d� ¼ ��2d	2:

If the solution is ideal dilute, we obtain

d� ¼ ��2d	2 ¼ ��2d  2 þ RT ln c2ð Þ ¼ �RT�2d ln c2 ¼ �RT�2
dc2
c2

�2 ¼ � c2
RT

@�

@c2
: (6:48)

This equation is routinely used to experimentally determine the degree of
adsorption from the dependence of the surface tension on concentration.
Equation (6.48) implies that if �2> 0 (i.e. the solute is attracted to the
interface), the surface tension decreases when the bulk solute concentra-
tion increases. While Eq. (6.48) is the most commonly used form of the
Gibbs adsorption equation, it is important to remember that it is only valid
for ideal dilute solutions. For non-ideal solutions, Eq. (6.48) must be
rewritten as

�2 ¼ � a2

RT

@�

@a2
: (6:49)

Review questions

1. Does the value of the interfacial excess of the number of moles of
component i depend on the exact location of the interface?

2. Does the value of the interface tension depend on the exact location of
the interface?

3. Does the value of the interfacial excess of the Gibbs grand potential
depend on the exact location of the interface?

4. Under what conditions is the Gibbs equation, �2¼ �(c2/RT )(d�/dc2),
valid?

Example problem

1. Estimate the concentration of the solute at the surface of a 0.1M water
solution, assuming that the solute forms a homogenous surface layer
of thickness �¼ 1 nm. (Note: the surface tension of water is �H2O

¼
72.2 � 10�3 J/m2 and that of a 0.1M solution is �¼ 62.0 � 10�3 J/m2

at T¼ 22�C.)
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6.3 Guggenheim and Zhuhovitsky models

The interface theory developed by Gibbs provides a relationship between
the adsorption and the interface tension, but it does not provide a means to
calculate either of these values. This is not surprising, since thermo-
dynamics can never answer such questions without making explicit
assumptions (e.g. the saturated vapor of the solute above the solution
obeys Henry’s law). Another approach is to provide a reasonable, micro-
scopic model of the system. Although such models are usually over-
simplified, they provide the only approach to make a concrete prediction.
We now consider the model proposed by Guggenheim and apply it to the
simple case of a free surface of a condensed phase (the generalization to an
arbitrary type of interface is straightforward). In this model, we assume
that the surface layer is homogeneous, and is of thickness � and volume
� � a. In this section, we will indicate the properties of this surface solution
by the superscript �. We start by deriving an expression for the excess of
the Gibbs grand potential. Recall that this value is equal to the difference
between the true value of the Gibbs grand potential and its value assuming
that the bulk phase is homogeneous right up to the surface:

�I ¼ �� �V ¼ �p��a� p(V� �a)� �� (�pV ) ¼ �a( p� p�):

Comparison of this expression with Eq. (6.39) yields

� ¼ ( p� p�)�: (6:50)

Since �> 0 we find that p> p�. Therefore, the surface layer is stretched
more than the bulk. Because this additional stress is tensile, we refer to it as
the surface tension (i.e. its sign is such that the surface tries to contract).
Note that this analysis applies directly to the case of a liquid or an
amorphous solid, but in a crystalline solid we must distinguish between the
surface free energy (i.e. the surface tension) and the surface stress tensor, as
we discuss in Section 7.6. Since the surface tension is a function of the
composition of the solution, Eq. (6.50) implies that p�¼ p�(xi).

The conditions of equilibrium between a bulk solution and its surface
were first considered by Zhuhovitsky. The general conditions of equilib-
rium require that the bulk solution and the surface solution have the same
temperature and chemical potentials. The chemical potentials for the bulk
and surface solutions take the following form:

	i ¼ 	0
i þ RT ln ai

	�i ¼ 	st
i p�
� �þ RT ln a�i ,

where 	0
i is the chemical potential of the pure component i and 	st

i p
�

� �
is

the chemical potential of component i in the standard surface solution at
pressure p�. Recall that the chemical potential (as well as the Gibbs energy)
of a pure component is a function of pressure. Equation (3.14) implies that

V �
i ¼

@	�i
@p

� �
T;x�

i

,
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where V
�

i is the partial molar volume of component i in the surface

solution. Since V
�

i depends only weakly on the pressure, we can integrate

this equation

	st
i p

�
� � ¼ 	st

i (p)þ (p� � p)V�

i ¼ 	st
i (p)� �

�
V

�

i

and finally

	�i ¼ 	st
i (p)� �

�
V

�

i þ RT ln a�i :

In equilibrium, the chemical potential of species i on the surface and in the
bulk are the same

	0
i þ RT ln ai ¼ 	st

i (p)� �

Z
þ RT ln a�i ,

where 1/Z is the area per mole of moleculesZ ¼ �=V and we have assumed,
for simplicity, that the partial molar volumes of both components are
the same, that is, V

�

1 ¼ V
�

2 ¼ V. Solving this equation for the surface free
energy yields

� ¼ Z 	st
i (p)� 	0

i

� �þ RTZ ln
a�i
ai
:

The first term in this expression is independent of concentration. In pure i,
the activities on the surface and in the bulk are unity and � ¼ �i. Therefore,
we can write

� ¼ �i þ ZRT ln
a�i
ai
: (6:51)

In the case of a binary solution, we have one equation for each component,
but only one surface energy. Therefore,

�1 þ ZRT ln
a�1
a1
¼ �2 þ ZRT ln

a�2
a2

or

a�2
a2
¼ Ba

�
1

a1
, (6:52)

where

B ¼ exp
�1 � �2

ZRT

n o
: (6:53)

This is the Zhuhovitsky segregation isotherm, which is valid for any type of
solution thermodynamics.

As a concrete example, consider the case in which both the surface and
bulk solutions are ideal. Then Eq. (6.52) can be rewritten as:

x�2
x2
¼ Bx

�
1

x1
¼ 1� x�2

1� x2
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or

x�2 ¼
Bx2

1� x2 þ Bx2
: (6:54)

Inserting this expression into Eq. (6.51), we find

� ¼ �2 þ ZRT ln
x�2
x2
¼ �2 þ ZRT ln

B

1� x2 þ Bx2

¼ �2 þ ZRT �1 � �2

ZRT
� ZRT ln 1� x2 þ Bx2ð Þ

� ¼ �1 � ZRT ln 1� x2 þ Bx2ð Þ: (6:55)

This expression is known as the surface tension isotherm. Figure 6.11
shows a typical surface tension versus concentration profile in this model.
Since the model does not provide a method to determine Z and B, these
quantities should be viewed as parameters.

If the concentration of the second component is small, all measures of
the concentration are proportional to one another, such that Eq. (6.55) can
be rewritten as:

� ¼ �1 � ZRT ln 1þ bc2ð Þ, (6:56)

where b is the product of B� 1 and the constant that relates the molar
fraction of component 2 to its concentration. This is the Shishkovsky
equation (it can be shown to be valid for all dilute, non-electrolyte solu-
tions). Using the Gibbs equation (Eq. 6.48), it is easy to find the corre-
sponding adsorption isotherm:

�2 ¼ � c2
RT

@�

@c2
¼ c2
RT

ZRT
b

1þ bc2

�2 ¼ Zbc2
1þ bc2 : (6:57)

This equation is identical to the Langmuir isotherm, except that now b can
be either positive or negative.

Review question

1. Does the surface tension of an ideal solution obey the Shishkovsky
isotherm?

s

s1

s2

A B

Fig. 6.11
The surface tension as function of

concentration in the Zhuhovitsky

theory.
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Thermodynamics of
stressed systems

As every school child knows, the difference between a solid and a liquid is
that a liquid takes the shape of the container in which it is placed while the
shape of a solid is independent of the shape of the container (providing the
container is big enough). In other words, we must apply a force in order to
change the shape of a solid. However, the thermodynamic functions
described heretofore have no terms that depend on shape. In this chapter,
we extend the thermodynamics discussed above to include such effects and
therefore make it applicable to solids. However, since this is a thermo-
dynamics, rather than a mechanics text, we focus more on the relationship
between stress and thermodynamics rather than on a general description of
the mechanical properties of solids.

7.1 Small deformations of solids

7.1.1 Strain tensor

We start out discussion of mechanical deformation by describing the
change of shape of a solid. We define the displacement vector at any point
in the solid u(x, y, z) as the change in location of the material point (x, y, z)
upon deformation: that is, ux(x, y, z)¼ x0 � x, where the prime indicates the
coordinates of the material that was at the unprimed position prior to the
deformation. In linear elasticity, we explicitly assume that the displacement
vector varies slowly from point to point within the solid

@ui
@xj
� 1, (7:1)

where i and j denote the directions along the three axes, x, y, and z.
Consider the small parallel-piped section of a solid with perpendicular

edges shown in Fig. 7.1. We label the first corner as O, located at position
(xO, yO, zO) and subsequent corners as A, B, . . . located at positions (xA, yA,
zA), (xB, yB, zB), . . .The edge lengths are �x, �y, and �z such that, for
example, xA¼ xOþ�x. As a result of the deformation, the material ori-
ginally at point O is displaced to point O 0 with coordinates (x0O, y0O, z0O).

7

z

b

c

B

C

O Aa x

y

Fig. 7.1
A representative volume element of a

solid, prior to deformation.



Using the definition of the displacement vector u(x,y,z), we find

x0O ¼ xO þ ux(xO, yO, zO)

y0O ¼ yO þ uy(xO, yO, zO)

z0O ¼ zO þ uz(xO, yO, zO): (7:2)

Analogous relations can be obtained for the positions of the other corners;
for example, upon deformation point A goes to A0:

x0A ¼ xO þ�xþ ux(xO þ�x, yO, zO)

y0A ¼ yO þ uy(xO þ�x, yO, zO)

z0A ¼ zO þ uz(xO þ�x, yO, zO): (7:3)

Since u varies slowly in space, we can expand the displacement
vector about point O (e:g: ux xO þ�x, yO, zOð Þ ¼ ux xO, yO, zOð Þþ
(@ux=@x)jxO, yO, zO�x) such that Eq. (7.3) can be rewritten as

x0A ¼ xO þ�xþ ux þ @ux
@x

�x

y0A ¼ yO þ uy þ @uy
@x

�x

z0A ¼ zO þ uz þ
@uz
@x

�x, (7:4)

where u� and its derivatives are evaluated at (xO, yO, zO). Before deforma-
tion, the components of vector a, connecting points O and A, are (�x, 0, 0).
Using Eqs (7.3) and (7.4), we see that deformation changes this vector to

a0x ¼ �xþ @ux
@x

�x

a0y ¼
@uy
@x

�x

a0z ¼
@uz
@x

�x: (7:5)

This relation suggests that a general deformation changes both the length
and direction of a. This implies that deformation can modify both volume
and shape. However, it is convenient to discuss two limiting cases of
deformation. In the first, only the volume changes but the directions of all
vectors remain unchanged upon deformation (this implies that the shape
does not change). Such a deformation is pure dilatation. In the second,
the volume does not change with deformation, but the shape does. This
deformation is pure shear. An arbitrary deformation can be represented as
a combination of these two types of deformation.

We focus first on pure dilatation. Assume that @uy/@x¼ 0 and
@uz/@x¼ 0. Then Eq. (7.5) can be rewritten as

a0x ¼ �xþ @ux
@x

�x

a0y ¼ 0

a0z ¼ 0: (7:6)
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This shows that this type of deformation does not change the direction of a,
only its length. Clearly, this conclusion is valid for any vector if all deriv-
atives of the individual components of the displacement vector are zero
except for @ux/@x, @uy/@y, and @uz/@z. This is shown in Fig. 7.2. The
elongation along the x-axis is the change in vector a normalized by its
original magnitude (see Eq. (7.6)):

a0x � ax
ax

¼ @ux
@x
¼ "xx:

"�� is called a normal strain.1 If the normal strain is positive, the
deformation is tensile and if it is negative, the deformation is compressive.
The scaled change in volume of the section of the solid shown in Fig. 7.1
upon deformation is

V 0 � V
V

¼ (�xþ "xx�x)(�yþ "yy�y)(�zþ "zz�z)��x�y�z

�x�y�z
:

Since "xx, "yy, and "zz are small (see Eq. (7.1)), we need only keep the terms
that are linear in "��, hence

�V

V
� "xx þ "yy þ "zz ¼ "ii: (7:7)

In the last expression, we use the Einstein summation convention and sum
over the three values of the repeated index i (i¼ x,y,z), as described in
Appendix II.

We now consider pure shear and focus upon the angles between vectors.
For example, consider the angle � between the vectors a and b connecting
point O with points A and B (see Fig. 7.3). The vector a in the
deformed state was given in Eq. (7.5), above. Analogously, vector b in
the deformed state is

b0x ¼
@ux
@y

�y

b0y ¼ �yþ @uy

@y
�y

b0z ¼
@uz
@y

�y: (7:8)

Since there is no change in volume, "xx¼ "yy¼ "zz¼ 0, we need only con-
sider derivatives of the form @u�/@x�, where � 6¼ �. Before deformation,
the angle between vectors a and b was 
/2. The new angle is determines
from the following equation:

cos � ¼ a0b0

ja0jjb0j :

B
B�

O

C
C�

Aa

a�

b�

O�
cb
u

c�

A�

Fig. 7.2
The representative volume element

from Fig. 7.1 before (solid lines) and

following (dotted lines) the application

of normal strains.

z

y

x

B�

O�

A�

C�

b�
c�

u
a�

Fig. 7.3
The representative volume element from

Fig. 7.1 following the application of a

shear strain.

1 Note, we use two indices to indicate that this is the derivative of the � component of the
displacement in the �-direction.

Small deformations of solids 119



From Eqs (7.5) and (7.8) we find

ja0j ¼ �xð Þ2þ @uy
@x

�x

� �2

þ @uz
@x

�x

� �2
" #1=2

� �x

jbj � �y

a0b0 � @ux
@y

�x�yþ @uy
@x

�x�y,

where again we kept only the leading order terms. Since the deformation is
small, we can expand � about its undeformed value (
/2), such that

cos � � 

2
� � � @ux

@y
þ @uy
@x

:

Therefore, the change in angle between vectors which were parallel to x�
and x� axes before deformation, is equal to twice "��, where

"ij ¼ 1

2

@ui
@xj
þ @uj
@xi

� �
, i 6¼ j: (7:9)

"�� is called the shear strain.
We now provide a general definition of the strain

"ij ¼ 1

2

@ui
@xj
þ @uj
@xi

� �
: (7:10)

This definition implies that the strain is a second rank tensor. The trace of
this tensor (i.e. the sum of the components on the diagonal) is the scaled
change in volume; the non-diagonal elements represent the shear strains.
According to Eq. (7.10), the strain is dimensionless and the strain tensor is
symmetric tensor,

"ij ¼ "ji: (7:11)

The last equation suggests that in three dimensions the strain tensor only
has six independent components.

7.1.2 Stress tensor

Consider a cubic representative volume element in a solid subjected to a
small deformation. What is the total force acting on this cube? We can
consider this cube as made up of small sub-cubes. The force on sub-cube i
from a neighboring sub-cube j is equal and opposite the force that sub-cube
i exerts on sub-cube j (Newton’s third law). Therefore, the net force on the
cube is simply the sum of all external forces, that is, those on the external
surface of the cube (we do not consider body forces, such as gravity, in this
discussion). If the cube is sufficiently small, it is reasonable to assume that
the force on any of the cube surfaces does not vary over that surface. We
further assume that the forces acting on each pair of parallel faces of the
cube are equal in magnitude but opposite in sign. Consider the right face of
the cube, which is normal to the x-axis in Fig. 7.4(a). The projection of the
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force on this face onto the coordinate directions and normalized by the face
area is denoted as �xx, �xy, and �xz, where the first index denotes the axis
which is normal to the face and the second index denotes the axis along
which we project the force (see Fig. 7.4(a)). The same procedure applies to
the left face with normal parallel to the x-axis, except we must now account
for the fact that the surface normal is –x rather than x (we actually project
along the surface normal and surface tangents parallel to the coordinate
axes). Since the force acting on the left surface is equal and opposite to that
on the right surface, the values of �xx, �xy, and �xz are the same on opposite
sides of the cube. By consideration of the other four surfaces, we can intro-
duce �yx, �yy, �yz, �zx, �zy, and �zz. These force projections per unit area are
called stresses. The stresses �xx, �yy, and �zz act in the directions normal to
the cube faces and are called normal stresses, which can be either com-

pressive (if the force is directed into the face) or tensile (if it is directed
outward from the face). The stresses ��� (where � 6¼ �) act in directions,
which are parallel to the faces, and are called shear stresses. It is a simple
matter to show there are only three independent shear stresses. Indeed, con-
sider again the faces normal to the x-axis, shown in Fig. 7.4(b). Examina-
tion of this figure shows that if �xy 6¼ �yx there is a net torque and the cube
will rotate. This implies that the stress is a symmetric second rank tensor:

�ij ¼ �ji: (7:12)

In the discussion above, we implicitly assumed that stress is constant
throughout the volume element. However, this is not the general case. We
now consider the general case, in which the stress can vary spatially (i.e. the
stress is a function of position). The total force in the x-direction Fx acting
on a small representative volume element with rectangular faces (edge
lengths �x, �y, and �z) has contributions from all of the stresses where the
first index is x and from all six faces:

Fx ¼ �xx(xþ �x, y, z)� �xx(x, y, z)½ 
�y�z
þ �xy(x, yþ �y, z)� �xy(x, y, z)

 �

�x�z

þ �xz(x, y, zþ �z)� �xz(x, y, z)½ 
�x�y

� @�xx
@x
þ @�xy

@y
þ @�xz

@z

� �
�x�y�z,

where we have replaced the finite differences with derivatives. Therefore
the force acting on the unit volume of the deformed solid is

fi ¼ @�ij
@xj

, (7:13)

where we have used the lower case symbol for force to indicate that this is
force per unit volume.

Consider now a representative element of a solid of volume V. The ith
component of the total force acting on this volume element isZ

V

fi dV ¼
Z
V

@�ij
@xj

dV ¼
I
A

�ijnjda, (7:14)
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Fig. 7.4
(a) A representative volume element

of a solid, indicating the stress

components on three orthogonal

surfaces, (b) a view of the volume

element from the þx-direction.
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where the last integral is evaluated over the entire surface of area A (using
the Gauss theorem) and n is the unit vector normal to the surface. Equation
(7.14) demonstrates that �ijnj da is the ith component of the force acting on
a section of the surface, da (with normal n).

Let t be a force per unit area applied on the external surface of a solid
body. In equilibrium, this force has to be compensated by the force acting
on the same surface from inside the solid (i.e. an internal stress). Therefore,

tida ¼ �ijnjda
or

ti ¼ �ijnj: (7:15)

t is also known as the surface traction.
We now consider the special case of pure hydrostatic stress, that is, no

shear stress. This is the stress state in any fluid (liquid or gas). If a solid
body is immersed in a fluid, the tractions on all surfaces will be the same
and will be directed parallel to the local surface normal vectors. This
traction on the surface is balanced by the pressure such that

ti ¼ �pni ¼ �pnj�ij:
Inserting the definition of the traction from Eq. (7.15), we find that the
stress and pressure are related by

�ij ¼ �p�ij (7:16)

or

p ¼ ��ij=3, (7:17)

where we recall that we sum over repeated indices such that �ii is the trace
of the stress tensor and, hence, the value of the pressure does not depend
upon which coordinate system we choose.

7.2 Free energy of strained solids

In Chapter 1, we found that the differential of the free energy of a system
contains a term equal to the work of expansion, pdV (Eq. (1.67)). Above,
we found that in addition to strains associated with volume change, there
are strains associated with shape change (i.e. shear strains). Therefore, it is
reasonable to expect that the free energy of a solid will be a function of all
of the strain components, not just those associated with volume change. In
order to identify this contribution to the free energy, we first consider the
work associated with an arbitrary deformation.

Consider an initially strained solid that is further deformed by the
application of an additional displacement �ui(r). The work required to
produce this displacement is equal but opposite to the work performed by
the system through the internal stresses, that is,Z

V

�wdV ¼
Z
V

fi�uidV,

Thermodynamics of stressed systems122



where �w is the work performed by the element of the strained solid and fi is
the force acting on this volume element. Using Eq. (7.13) we findZ

V

fi�uidV ¼
Z
V

@�ij
@xj

�uidV ¼
Z
V

@(�ij�ui)

@xj
dV�

Z
V

�ij
@�ui
@xj

dV,

where the last result was obtained by integration by parts. We can rewrite
one of the integrals over the volume in the above expression as an integral
over the surface, A, bounding the volume (using the Gauss theorem)Z

V

@(�ij�ui)

@xj
dV ¼

I
A

�ij�uinjda:

If the tractions on the surface are zero (�ijnj¼ 0), this integral is zero and we
obtain

�w ¼ ��ij @�ui
@xj

:

This expression can be rewritten as

�w ¼ ��ij @�ui
@xj
¼ � 1

2
�ij
@�ui
@xj
þ �ij @�ui

@xj

� �
¼ � 1

2
�ij
@�ui
@xj
þ �ji @�uj

@xi

� �
,

where the last expression in the second term follows by simple interchange
of indices. Using the fact that the stress tensor is symmetric, we obtain

�w ¼ � 1

2
�ij

@�ui
@xj
þ @�uj
@xi

� �
¼ � 1

2
�ij�

@ui
@xj
þ @uj
@xi

� �
¼ � 1

2
�ij�(2"ij)

or

�w ¼ ��ijd"ij: (7:18)

Consider the special case of hydrostatic compression: �ij¼ � p�ij and d"ii
is the additional scaled change in volume, d(V�V0)/V0¼ dV/V. There-
fore, the work performed by the entire solid is

�W ¼ Vp�ijd"ij ¼ pVd"ii ¼ pdV:
This is exactly the expression for the work of expansion which we used in
Chapter 1 (Eq. (1.1)). This suggests that Eq. (7.18) is the extension of the
expression for work to the case of solids.

From this point forward, we focus exclusively on elastic deformation;
that is, deformations for which the system returns to its original state
following removal of the external forces (these are reversible deforma-
tions). As per the discussion in the previous chapter, we denote all extensive
properties per unit volume by lower case letters and obtain the total
extensive properties by integrating these over the entire volume.2 We start
our discussion of thermodynamic functions by considering the differential
of the internal energy. Equation (1.45), for the special case of reversible

2 Although strain changes the shape and/or volume of a solid, this integration is always
performed over the volume of the solid assuming it was unstrained. This is because the
integration is actually over a certain set of atoms rather than over the instantaneous volume.
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deformation, reads

du ¼ Tds� �w:
Substituting Eq. (7.18) for the work into this expression we find,

du ¼ Tdsþ �ijd"ij: (7:19)

We can then write the differential of the Helmhotz free energy (cf.
Eq. (1.67)), as

da ¼ �sdTþ �ijd"ij: (7:20)

This provides a thermodynamic definition of the stress

�ij ¼ @a

@"ij

� �
T

: (7:21)

7.3 Hooke’s law

7.3.1 Hooke’s law for anisotropic solids

To find the stress from Eq. (7.21) we must determine the free energy as a
function of the strain. We can find such an expression for the free energy by
expanding it in powers of strain about the unstrained state. We define the
unstrained state as the stress-free state in the absence of any applied force.
We start from the case in which the temperature is uniform throughout the
solid. The expansion of the free energy has the following general form:

a ¼ a0 þ Aij"ij þ 1

2
Cijkl"ij"kl þ � � � :

Since the strains are small, we truncate this expansion after the first two
strain-dependent terms. Since all stresses are zero in the unstrained state
(when all strains are zero), Eq. (7.21) implies that Aij¼ 0. Therefore, the
free energy takes the following relatively simple form:

a ¼ a0 þ 1

2
Cijkl"ij"kl: (7:22)

The coefficient of the leading order term, Cijkl, is a property of the material
and is a fourth-rank tensor. While, in general case, a fourth-rank tensor has
81 components, the number of independent components of Cijkl is much
smaller. First, we note that

"ij"kl ¼ "ji"kl ¼ "ij"lk ¼ "kl"ij:
Since these terms are all equal, they must all enter the expression for the
free energy with the same coefficients; hence,

Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij: (7:23)

These relations reduce the number of independent components from 81 to
21. Because the free energy must be invariant upon the rotation of the
coordinate systems, we remove three more degrees of freedom—thereby
reducing the number of constants to 18. Further reduction in the number
of independent components of Cijkl is possible if the solid has other sym-
metries. For example, many crystalline solids have rotational or mirror
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symmetries. In the special, but common, case of cubic crystals, Cijkl has
only three independent components.

Equation (7.23) implies that the number of independent combinations of
the first pair of indices of Cijkl is 6. A convenient and widely used simpli-
fication of the notation is to write

xx! 1
yy! 2

zz! 3

yz! 4

xz! 5

xy! 6:

In this way, Cxxxx and Cxxyy are written as C11 and C12, respectively. This
makes the fourth-rank tensor Cjhil appear to be a second rank tensor Cij,
where i and j now go from 1 to 6. The student should keep in mind that this
is just a short hand for the full fourth-rank tensor.

In order to find an expression for the stress we need only insert Eq. (7.22)
into Eq. (7.21)

�ij ¼ Cijkl"kl, (7:24)

where we have used the identity

@"kl
@"ij
¼ �ik�jl:

Equation (7.24) is known as Hooke’s law. It shows that all stresses are
linear functions of strain. Note that for crystals with cubic symmetry
Hooke’s law reduces to the following form:

�xx ¼ C11"xx þ C12"yy þ C12"zz

�yy ¼ C12"xx þ C11"yy þ C12"zz

�zz ¼ C12"xx þ C12"yy þ C11"zz

�yz ¼ 2C44"yz

�xz ¼ 2C44"xz

�xy ¼ 2C44"xy,

if x-, y-, and z-axes coincide with the [100], [010], and [001] crystallographic
axes. Components C11, C12, and C44 are the three elastic constants for a
cubic crystal. All other crystals have more than three elastic constants.

7.3.2 Hooke’s law for isotropic solids

All single crystals are, in general, elastically anisotropic—their elastic
properties depend upon direction. A consequence of this fact is that the
elastic constants form the tensor Cijkl. In contrast with anisotropic solids,
the properties of isotropic solids do not depend on direction. Examples of
isotropic solids include amorphous and polycrystalline (provided that we
average over a large number of grains) solids. Therefore, the expansion of
the free energy of an isotropic solid in powers of strains contains only
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scalar material parameters and any function of strain in this expression
must be a scalar.We can construct only one scalar of the first order from "ij :
"ii. Similarly, two scalars of the second order can be formed: "2

ii � "ii"jj
and "2

ij � "ij"ij. Therefore, the expression for the free energy per unit
volume takes the following form:

a ¼ a0 þ a1"ii þ 

2
"2
ii þ 	"2

ij, (7:25)

where a1, 	, and 
 are scalar material properties (the factor of 2 in the term
"ii was included for convenience). Since there is no stress in the unstrained
state, we conclude that a1¼ 0 (see Eq. (7.21)). The first scalar of the second
order in Eq. (7.25), "2

ii, has a clear physical interpretation: it is associated
with changes in the scaled volume "ii as we discussed in Section 7.1.1.
However, the interpretation of the second scalar, "2

ij, is less obvious. It can
be seen more clearly if we rewrite Eq. (7.25) as the sum of a term describing
the change in volume and a term describing the change in shape. To this
end, we rewrite the strain tensor as

"ij ¼ 1

3
�ij"kk þ "ij � 1

3
�ij"kk

� �
:

The first term represents the volume change and is zero in the case of pure
shear, while the second term represents shape change and is zero in the case
of pure dilatation (i.e. all three normal strains are equal and all shear strains
are zero). We can now write the free energy as

a ¼ a0 þ B
2
"2
kk þ 	 "ij � 1

3
�ij"kk

� �2

, (7:26)

where 	 and B are the shear modulus and bulk modulus, respectively. Since
an elastic system spontaneously returns to its unstrained state when the
external forces are removed, the unstrained state corresponds to a min-
imum in the free energy. This implies that

	 > 0, B > 0: (7:27)

In order to obtain an expression for the stress, we can make use of the
thermodynamic definition of stress (Eq. (7.21)), the free energy from
Eq. (7.26) and the simple identity

@"kk
@"ij
¼ �kl @"kl

@"ij
¼ �kl�ik�jl ¼ �il�jl ¼ �ij:

Following this procedure, we find

�ij ¼ 2	 "lm � 1

3
�lm"kk

� �
�il�jm � 1

3
�lm�ij

� �
þ B"kk�ij

¼ 2	 "lm�il�jm � 1

3
"lm�lm�ij � 1

3
�lm"kk�il�jm þ 1

9
�lm"kk�lm�ij

� �
þ B"kk�ij

¼ 2	 "ij � 1

3
"kk�ij � 1

3
"kk�ij þ 1

3
"kk�ij

� �
þ B"kk�ij

or

�ij ¼ 2	 "ij � 1

3
"kk�ij

� �
þ B"kk�ij: (7:28)
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This is Hooke’s law for isotropic solids. If the deformation is purely dila-
tational, the first term is zero and the off-diagonal elements of the stress
tensor are zero. In this case, the bulk modulus is the only material para-
meter that we need to relate stress to strain. If the deformation is pure
shear, the second term is zero. In this case, the shear modulus is the only
material parameter that we need to relate the stress to the strain.

While Eq. (7.28) provides an expression for the stress in terms of the
strain, the inverse relation is also useful. It can be derived as follows. We
start by solving Eq. (7.28) for the strain "ij.

"ij ¼ 1

2	
�ij � B"kk�ij
� �þ 1

3
"kk�ij: (7:29)

The relation between the trace of the strain tensor "kk and the trace of the
stress tensor �ii can also be found from Eq. (7.28)

�ii ¼ 2	 "ii � "kkð Þ þ 3B"kk

or

"ii ¼ �ii
3B

: (7:30)

Inserting this expression into Eq. (7.29) yields Hooke’s law for the strain in
terms of the stress

"ij ¼ 1

9B
�kk�ij þ 1

2	
�ij � 1

3
B�kk�ij

� �
: (7:31)

Recall that in the case of hydrostatic stress, �ii¼�3p (see Eq. (7.17)) and
the scaled change in volume "ii¼�V/V. In this case, Eq. (7.30) reduces to

B ¼ �V @p
@V

:

Comparing this result with Eq. (1.77) demonstrates that the bulk modulus
is the inverse of the isothermal compressibility

B ¼ 1

�T
: (7:32)

At this point, it is interesting to inquire as to what is the difference
between a solid and liquid from the point of view of elasticity. Both phases
are characterized by a positive bulk modulus. However, unlike a solid,
a liquid is incapable of supporting a shear. This simply follows from one of
the conditions for equilibrium in an isothermal liquid—that is, the pressure
is uniform everywhere. This implies that the shear stress is zero everywhere
in a liquid. Since we can always impose an arbitrary strain, including a
shear strain, the shear stress can only be zero if the shear modulus is zero.3

3 This discussion assumes that we wait long enough for the molecules in the fluid to flow to
relax the strain. How long we have to wait depends on the viscosity of the liquid. Clearly, if we
measure the stress in a liquid immediately after imposition of a shear strain we would find a
non-zero shear stress. This suggests that the shear modulus is frequency dependent. A more
detailed discussion of this point is beyond the scope of this book.
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Example problem

1. Write all of the components of the tensor Cij for the case of an isotropic
solid in terms of the two constants 	 and B.

2. Hooke’s law is also commonly written in the following form:

�ij ¼ E

1þ � "ij þ �

1� 2�
"kk�ij

� 	
,

where E is known as the Young’s modulus and � is the Poisson ratio.
How are E and � related to B and 	?

7.4 Relationship between deformation and
change of temperature

In the derivations of Eqs (7.22) and (7.26), we assumed that the temper-
ature is constant throughout the system. We now relax this assumption.
For simplicity, we will consider only case of isotropic solids. Note that the
temperature can change as the result of deformation, by being in contact
with a thermal reservoir, etc. Since, the equilibrium density is, in general, a
function of temperature; we must define an unstrained reference state. We
will define this state as the equilibrium state at a temperature T0 in the
absence of external forces. The free energy of the system at T¼T0 is
described by Eq. (7.26). If the temperature is different from T0, an addi-
tional term will appear in the expansion of the free energy

a(T ) ¼ a0(T )þ a1(T )"ii þ 	 "ij � 1

3
�ij"kk

� �2

þB
2
"2
kk,

where a0(T ) is the free energy per unit volume of the system at temperature
T at the density appropriate for T0 and a1"ii is the additional term asso-
ciated with the change in equilibrium density when the temperature is
changed. Clearly, a1"ii¼ 0 at T¼T0. If jT�T0j � T0 this term should be
proportional toT�T0. Hence, we can write down the following expression
for the free energy

a(T ) ¼ a0(T )� B�(T� T0)"kk þ 	 "ij � 1

3
�ij"kk

� �2

þB
2
"2
kk, (7:33)

where � is independent of strain and temperature (to lowest order).
Inserting this equation into the thermodynamic definition of stress
(Eq. (7.21)), we find

�ij ¼ 2	 "ij � 1

3
"kk�ij

� �
þ B"kk�ij � B�(T� T0)�ij: (7:34)

In the absence of external forces, there are no internal stresses (i.e. �ij¼ 0).
Using this condition in Eq. (7.34), we find

"ij ¼ 1

3
"kk�ij þ B

2	

h
� "kk þ �(T� T0)

i
�ij

"ii ¼ "kk þ 3B

2	

h
� "kk þ �(T� T0)

i

Thermodynamics of stressed systems128



or

"ii ¼ �(T� T0):

Since "ii is the scaled change in volume and T�T0 is small, we can rewrite
this expression as

� ¼ 1

V

@V

@T
:

Therefore, � is the coefficient of thermal expansion (cf. Eq. (1.76)). Note
that we can also define a linear coefficient of thermal expansion as the
change in length of the sample scaled by its length. In an anisotropic
system, this coefficient can have different values in different directions,
while in an isotropic system � is simply three times the single linear coef-
ficient of thermal expansion.

As mentioned above, an elastic deformation can lead to a temperature
change. For the sake of simplicity, we focus on the case of an adiabatic
deformation (this alleviates the need to discuss heat transfer). You can
perform a simple experiment to show a temperature change accompanying
adiabatic deformation by rapidly stretching a thick rubber band. If you
touch the rubber band to your lip before you stretch it and in its highly
stretched state, you will feel a distinct temperature change.

We now derive an equation for the change of temperature as a result of
an adiabatic deformation. We start from the fact that the entropy remains
constant during an adiabatic deformation. To obtain an expression for the
entropy, we differentiate Eq. (7.33) and retain only the first-order terms
with respect to "ij.

s(T ) ¼ s0(T )þ B�"ii: (7:35)

Since the entropy is constant, this implies

ds0 ¼ �B�d"ii

or Z T

T0

ds0 ¼ �B�
Z "ii

0

d"ii:

Recall that s0(T ) is the entropy of the solid at temperature T provided that
its volume is the same as that of the solid at temperature T0. Therefore,
ds0¼ cV dT/T. Inserting this expression into the integral on the left-hand
side of the previous equation and evaluating the integrals, we obtain

cV ln (T=T0) ¼ �B�"ii:
If jT�T0j/T0 � 1, ln(T/T0)� (T�T0)/T0 and

T� T0

T0
¼ �B�

cV
"ii: (7:36)

The sign of the temperature change depends on the sign of the coefficient of
thermal expansion �. For most solids �> 0, however there are cases for
which �< 0 (such as rubber).
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7.5 Equilibrium of stressed solids

We now consider the mechanical equilibrium of stresses in solids. Mech-
anical equilibrium requires that the total force on each volume element of
the solid will be zero. In the absence of an external field (e.g. electrical,
magnetic, gravitational), the forces inside the solid body are exerted only
through internal stresses. Equation (7.13) relating the force to the stresses
implies

@�ij
@xj
¼ 0: (7:37)

While this equation is valid in general, we now make the assumption that
the solid is isotropic such that we can use Hooke’s law for isotropic solids

@�ij
@xj
¼ 2	

@"ij
@xj
� 1

3

@"kk
@xj

�ij

� �
þ B @"kk

@xj
�ij ¼ 0: (7:38)

Using the definition of the strain (Eq. (7.10)), we find

@"ij
@xj
¼ 1

2

@2ui

@x2
j

þ @2uj
@xi@xj

 !

@"kk
@xj
¼ @"kl
@xj

�lk ¼ 1

2

@2uk
@xl@xj

þ @2ul
@xk@xj

� �
�lk ¼ @2uk

@xk@xj
:

Inserting these results into Eq. (7.38), we obtain

2	
1

2

@2ui

@x2
j

þ 1

2

@2uj
@xi@xj

� 1

3

@2uk
@xk@xj

�ij

 !
þ B @2uk

@xk@xj
�ij ¼ 0

or

	
@2ui

@x2
j

þ 	

3
þ B

� 	 @2uj
@xi@xj

¼ 0: (7:39)

This equation can be rewritten as

�uþ B

	
þ 1

3

� �
r(ru) ¼ 0, (7:40)

wherer and � are the gradient and Laplacian operators, respectively (see
Appendix II). This is the equilibrium condition for a strained isotropic
solid. It implies that the components of the displacement vector in equi-
librium are not independent but rather must satisfy this condition. Note,
that this condition does not explicitly show any dependence on externally
applied forces (i.e. surface tractions). Such tractions only enter through
boundary conditions.

Applying the operator r to Eq. (7.40), we obtain (see Appendix II)

r(�u)þ B

	
þ 1

3

� �
�(ru) ¼ B

	
þ 4

3

� �
�(ru) ¼ 0
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or

�(ru) ¼ 0: (7:41)

Applying the operator � to Eq. (7.40), we obtain (See Appendix II):

��uþ B

	
þ 1

3

� �
�(r(ru)) ¼ ��uþ B

	
þ 1

3

� �
r(�(ru)) ¼ 0:

Equation (7.41) shows that the last term in this expression is identically
zero; hence,

��u ¼ 0: (7:42)

Therefore, the equilibrium displacement field must satisfy a biharmonic
equation (Eq. (7.42)).

If the temperature varies through the solid, we must include the modi-
fication to Hooke’s law for thermal expansion (see Eq. (7.34)). Using this
expression in the derivation of @�ij/@xj (as per Eq. (7.38)) and following the
same procedure as above for the isothermal case yields

�uþ B

	
þ 1

3

� �
r(ru) ¼ B�

	
rT (7:43)

instead of Eq. (7.40).

7.6 Surface stress

As we discussed in Section 6.3, we can think of the surface layer as being
stretched to match the bulk material. This creates a surface stress. In this
section, we establish the relationship between the surface stress and the free
energy of the surface.

Consider a slab with dimensions L�L� d, where the thickness of the
slab d�L, as shown in Fig. 7.5(a). Since there are no forces applied to
the free surface, the stresses �iz are all zero on the surface and through the
entire (thin) slab. However, there can be non-zero stresses with compo-
nents parallel to the surface, �xx, �xy, and �yy, as shown in Fig. 7.5(b). We
can always rotate the coordinate system such that �xy¼ 0. Since the total
force acting on the slab is zero, we can write:

Fx ¼
Z L

0

dy

Z d

0

�xx(z) dz ¼ 0: (7:44)

If d�L, the stress does not depend on y and this integral can be trans-
formed as followsZ L

0

dy

Z d

0

�xx(z) dz ¼ L
Z d

0

�xx(z) dz

¼ L
Z �

0

�xx dzþ
Z d��

�

�xxdzþ
Z d

d��
�xx dz

� �
,

where � is the thickness of the surface layer. As can be seen from Fig. 7.5(b),
the stress in the bulk (i.e. in the second integral) only weakly depends on the

sxx

sB
xx

0
0 d

d
d d zz

L

(a) (b)
x

Fig.7.5
(a) A thin slab with two free surfaces and

(b) the stress distribution �xx(z) through

this slab.
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distance from the surface and can be approximated as a constant, �Bxx.
The first and third integrals can be combined into one term:

L

Z �

0

�xxdzþ
Z d

d��
�xxdz

� �
¼ 2Lf�xx,

where f�xx is the force acting on each of the two surface layers in x-direction,
per unit length in the y-direction. Using this notation and the constancy of
the stress in the bulk, Eq. (7.44) can be rewritten as

Fx ¼ 2L f�xx þ L�Bxx(d� 2�) ¼ 0: (7:45)

Since the thickness of the surface layer is limited to a times the spacing
between neighboring atoms, �� d and we can rewrite Eq. (7.45) as

f�xx ¼ ��Bxxd=2:
Of course, an analogous relation can be obtained for f�yy. Rotating the
coordinate system with respect to the material, we find that, in general, f�ij is
a second rank tensor in two-dimensions (i.e. the dimensions that contain
the surface)

f �ij ¼ �� Bij d=2, (7:46)

where i and j are equal to either x or y. The tensor f�ij is called the surface

stress. However, while the stress has dimensions J/m3, the surface stress has
dimensions J/m2.

The surface stress and the surface free energy, �, have the same origin—
the fact that the atomic structure and bonding in the surface is different
than in the bulk. Therefore, these values should be related. We now
derive this relation. Consider a small homogeneous strain, d"ij. The change
of the free energy of this slab consists of two contributions: elastic con-
tribution described by Eq. (7.20) and the contribution associated with the
change of the in the area of the surface

dA ¼ d � S�Bij d"ij þ
@(2�S)

@"ij
d"ij ¼ d � S� Bijd"ij þ 2�

@S

@"ij
d"ij þ 2S

@�

@"ij
d"ij,

where S is the surface area (S¼L�L). Inserting Eq. (7.46) into the pre-
vious relation and setting dA¼ 0 (equilibrium condition), we find

f�ij S ¼ �
@S

@"ij
þ S @�

@"ij
:

The change of the surface area can be expressed through the strain as

�S ¼ S("xx þ "yy):
Therefore @S/@"ij¼S�ij (recall that i and j can be either x or y) and we
finally obtain

f�ij ¼ ��ij þ
@�

@"ij
: (7:47)
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Note, that in a liquid @�/@"ij¼ 0, since it is not possible to elastically strain
the surface of a liquid. This is because any strain in the plane of the surface
is accommodated by liquid flow. Therefore, the surface stress in a liquid is
simply equal to the product of the surface tension and the identity tensor,
f�ij ¼ ��ij. This is in stark contrast to a solid, where all terms in the surface
stress can be non-zero.
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Kinetics of homogeneous
chemical reactions

Kinetics considers the rates of different processes. Chemical kinetics refers
to the rates and mechanisms of chemical reactions and mass transfer
(diffusion). Recall that since thermodynamic equilibrium implies that
the rates of all processes are zero, time is not a thermodynamic variable.
Rather, time is the new parameter introduced by the consideration of
kinetic processes.

The rate of a kinetic process and how it depends on time is determined, in
part, by the degree of the deviation from equilibrium. If the deviation from
equilibrium is small, the rate decreases (without changing sign) as the
system approaches equilibrium. If the deviation from equilibrium is large,
the situation is more complicated. For example, non-monotonic (including
oscillatory) processes are possible. The sign of the rate can change during
such processes; that is, the reaction can proceed in one direction and then
the other. Additionally, if the deviation from equilibrium is large, small
changes to the system can produce very large changes in the rate of the
kinetic process (i.e. chaos). Non-equilibrium, yet nearly stationary states of
the system can arise (i.e. states that exist for a very long time). Finally, if the
deviation from equilibrium is very large, the system can explode (i.e. the
process continues to accelerate with time).

In this chapter, we develop a formal description of the kinetics of rather
simple chemical reactions. Consecutive and parallel reactions will also be
considered here. A more general approach (irreversible thermodynamics)
will be considered in Chapter 9. In Chapter 10, we examine diffusive
processes. Then, in Chapter 11, we consider the kinetics of heterogeneous
processes.

8.1 Formal kinetics of homogeneous reactions

8.1.1 Chemical reaction rate

In order to start the study of chemical reaction kinetics, we must first
define what we mean by the rate of reaction. Consider the following
homogeneous reaction:

Cl2 þ 2NO! 2NOCl: (8:1)

8



The changes of the concentrations of the reactants are related to each
other by the stoichiometric coefficients

�dcCl2 ¼ �
1

2
dcNO ¼ 1

2
dcNOCl:

By definition, the corresponding rate of reaction, or simply the rate, is

! ¼ � dcCl2

dt
¼ � 1

2

dcNO

dt
¼ 1

2

dcNOCl

dt
, (8:2)

where t is time.
We now consider the mechanism by which reaction (8.1) proceeds. The

simplest assumption is that the elementary step in this reaction is
the collision of two NO molecules with one Cl2 molecule. From the
molecular-kinetic theory of gases, we know that the number of such
collisions per unit time is proportional to the Cl2 concentration and the
square of the NO concentration. Therefore, the rate of this reaction can be
written as

! ¼ kc2NOcCl2 , (8:3)

where k is a constant which is independent of concentration and time. k is
referred to as the rate constant of the chemical reaction.

Expressions like that in Eq. (8.3) are known as kinetic equations. The
power with which the concentration of a given species enters the kinetic
equation, is referred to as the order of the reaction in that species. The sum
of these orders for all of the reacting species is called the overall order of the
reaction. According to Eq. (8.3), reaction (8.1) is a third-order reaction; it is
second order with respect to NO and first order with respect to Cl2.
In reality, third-order reactions are rare and higher order reactions never
happen (except if you are a mathematical purist). The reason for this
observation is that although the form of the reaction equation may suggest
that a reaction is of high order, in practice the reaction proceeds through
a sequence of elementary reactions of lower order. The total reaction is
referred to as complex. It is only for elementary reactions that the order
of reaction can be determined directly from the equation of reaction. The
elementary reactions can be characterized by molecularity, which is
the number of reacting molecules: unimolecular reactions, bimolecular

reactions, etc. In contrast with the reaction order, the molecularity is a
theoretical term reflecting the actual mechanism of a chemical reaction.
Most reactions occurring in the real world are complex and their reaction
equation only shows conservation of elemental species and not molecu-
larity. Although the order of the reaction has no physical meaning, it
can be extracted from experiments (as described in Section 8.1.2) and used
to characterize a reaction.

In order to illustrate these ideas, consider the following reaction
occurring in an aqueous solution

2NO�2 þO2 ! 2NO�3 :
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If this equation reflects the actual reaction mechanism, the reaction would
have the overall order three. However, experiments do not support this
conclusion. The actual reaction mechanism was found to be

NO�2 þO2!k1
NO�3 þO

NO�2 þO!k2
NO�3

2O!k3
O2,

where each of these reactions is elementary and proceeds toward the
right-hand side with the rate constant that is written above the arrow.
We now construct kinetic equations corresponding to this mechanism.
The ions NO�3 are formed in the first and second reactions, and their rate
of formation can be written as

d½NO�3 

dt

¼ k1½NO�2 
½O2
 þ k2½NO�2 
½O
,

where the square brackets mean the concentration in the water solution.
The intermediate product, atomic oxygen, participates in all three reac-
tions: it is formed in the first reaction and is consumed in the second and
third reactions. The net rate of formation of atomic oxygen is

d½O

dt
¼ k1½NO�2 
½O2
 � k2½NO�2 
½O
 � 2k3½O
2,

(the factor 2 in front of the last term is associated with the fact that for the
third reaction, the rate includes a factor of a half—! ¼ �(1=2)d½O
=dt).
Experiments have shown that d½O
=dt is small such that we can assume
that d½O
=dt ¼ 0 (this is a steady-state approximation—see Section 8.2.1).
With this assumption, we can solve the previous equation to obtain the
steady-state oxygen concentration

½O
 ¼ k1½NO�2 
½O2

k2½NO�2 
 þ 2k3½O
 :

Inserting this expression into equation for the rate of formation of NO�3 ,
we obtain

d½NO�3 

dt

¼ k1½NO�2 
½O2
 1þ k2½NO�2 

k2½NO�2 
 þ 2k3½O


� �
:

Clearly, the kinetic equation for this reaction is more complicated than
it would be if we were to base it solely on the order of the reaction we would
assume from the reaction equation. However, if the atomic oxygen con-
centration is small (this implies that k2½NO�2 
 � 2k3½O
), the previous
equation reduces to

d½NO�3 

dt

¼ 2k1½NO�2 
½O2
:

In this limit, the reaction rate is given by the product of powers of the
reactant concentrations (i.e. this is consistent with a formal kinetics
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description). However, the reaction is first order with respect to both
the NO�2 and O2 concentrations and has an overall reaction order of 2
(not 3, as we would expect based upon the reaction equation).

8.1.2 Determination of the reaction order and the rate constant

Consider the following reaction:

aAþ bB! cCþ dD: (8:4)

The kinetic equation for this reaction takes the form

! ¼ kcnA

A c
nB

B , (8:5)

where ni is the reaction order in the ith reactant. If at the beginning of the
experiment, there were only reactants and no products and the reactants
concentrations were in stoichiometric proportions

c0A
a
¼ c

0
B

b
, (8:6)

this ratio of the concentrations will not change during the reaction, that is,

cA
a
¼ cB
b
:

Inserting this relation into the right side of Eq. (8.5), and expressing the
reaction rate ! in terms of the concentration of A, we obtain

� 1

a

dcA
dt
¼ kcnA

A cA
b

a

� �nB

:

Introducing a new constant

k1 ¼ ka1�nBbnB , (8:7)

we finally find

� dcA
dt
¼ k1c

n
A, (8:8)

where n is the overall reaction order (n ¼ nA þ nB).
We now consider experimental methods for the determination of the

reaction order and the constant k1 (the rate constant k can be calculated
from k1 through Eq. (8.7) if we know nB).

1. The van’t Hoff method. In this method, the time dependence of the
A concentration cA(t), shown in Fig. 8.1, is found from experiment.
The derivative dcA/dt as a function of time is found from these data.
Equation (8.8) implies

ln � dcA
dt

� �
¼ ln k1 þ n ln cA:

Therefore, the slope obtained from a plot of ln[dcA/dt] versus ln(cA), as
shown in Fig. 8.2, is the overall reaction order n, and the intersection of this
curve with the ordinate (vertical) axis is the constant, ln(k1).

cA

0 t

Fig. 8.1
The time dependence of

the concentration of a reactant.

In v

In k1

In cA0

tan a = n

Fig. 8.2
Aschematic illustrationof the van’tHoff

method for determining the overall

reaction order and constant k1 from

experimental data.
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While this method is simple, it yields the worst accuracy of all of the
methods discussed in this section. This is because the uncertainty in the
derivative is usually much larger than in the initial data.
2. Determination of the overall reaction order and the constant k1 from

the form of the concentration time curve. The time dependence of the
concentration of A can most easily be seen by directly integrating the
differential equation (Eq.(8.8)). If n 6¼ 1, we find

Z cA

c0
A

dcA
cnA
¼ �k1

Z t

0

dt

or

1

cA
� �n�1

¼ 1

c0A
� �n�1

þ (n� 1)k1t for n 6¼ 1: (8:9)

In particular, we obtain

cA ¼ c0A � k1t for n ¼ 0 (8:10)

1

cA
¼ 1

c0A
þ k1t for n ¼ 2: (8:11)

For n¼ 1, we find

ln cA ¼ ln c0A � k1t for n ¼ 1: (8:12)

The main idea of this method is to plot the experimentally determined
concentration versus time in coordinates corresponding to Eqs (8.9)–(8.12)
and see in which the data fall upon a straight line. For example, if the data
lie on a straight line in a plot of ln cA versus t, the overall reaction order is
one (see Eq. (8.12)). The disadvantage of this method is that it is relatively
laborious; several different sets of axis coordinates should be tried. If the
overall order of reaction is a fraction, it may be difficult to identify the
order. Fortunately, this can be done efficiently on a computer. You will
have the opportunity to use this method in Computer Laboratory #5.
3. The half-life method. The half-life is defined as the time required for

one half of the reactants to be consumed. We can obtain the half-life of
species A from Eq. (8.9) by setting the concentration of A equal to one half
of its initial concentration and solving for the time:

2n�1

c0A
� �n�1

¼ 1

c0A
� �n�1

þ (n� 1)k1t1=2

or

t1=2 ¼ 2n�1 � 1

k1(n� 1) c0A
� �n�1

for n 6¼ 1: (8:13)

Analogously, we can obtain the half-life for first order reactions from
Eq. (8.12)

t1=2 ¼ ln 2

k1
for n ¼ 1: (8:14)
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These two equations can be represented in a single form as

ln t1=2 ¼ constþ (1� n) ln c0A:

Therefore, the overall order can be determined from the slope of the
dependence of ln t1/2 from ln c0A (see Fig. 8.3). Note that in the case of a first
order reaction, the half-life does not depend on the initial concentration.
4. The isolation method. To this point, we have focused on how to

determine the overall order of reaction. However, in order to understand
reaction mechanisms, it is necessary to find the order of reaction with
respect to each of the reactants. The simplest approach to do this is to
combine all of the reactants in large excess except for the one under
investigation. For example, for the reaction described by Eq. (8.4), this
implies that

c0A � c0B: (8:15)

In this limit, any relative changes in the B concentration cB(t)� c0B
� �

=c0B
will be very small such that we can assume that cB(t) is constant. Using this
observation, we can rewrite Eq. (8.5) as

� dcA
dt
¼ k0(cA)nA , (8:16)

where

k0 ¼ ka(cB)nB : (8:17)

Equation (8.16) has the same form as Eq. (8.8); therefore we can use one of
the three methods described above to determine the order of the reaction
with respect to A.

Review questions

1. The reaction aAþ bB! cC is first order with respect to both A and B.
When is the equation 1=cA ¼ 1=c0A þ kt valid?

2. The reaction aAþ bB! cC is first order with respect to both A and B.
When is the equation ln cA ¼ ln c0A � kt valid?

3. What is the dimensionality of the rate constant for a reaction that has an
overall order n¼ 0.5?

Example problems

1. A first-order reaction proceeds until 75% of reactant A is consumed
within 10 min. Determine the rate constant.

2. Consider the second-order reaction

Aþ B!k D k ¼ 5:4 l=(mole s):

The initial concentration of the reactants was c0A ¼ c0B ¼ 0:02 mole/l.
Determine the fraction of A which will be consumed during the first
minute.

In t1/2

In c0
A

0

tan a =1– n

Fig. 8.3
The determination of the overall

reaction order and the constant k1 using

the half-life method.
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3. The kinetics of the reaction

Aþ B! C,

proceeding at constant volume and T¼ 300 K was studied by measuring
the total pressure as a function of time. The initial mixture of the reactants
in the vessel was equimolar. The following data were obtained

t (min) 0 5 10 15 21 30
p (atm) 0.953 0.888 0.818 0.769 0.726 0.663

Determine the overall order of this reaction.

8.1.3 Kinetics of chemical reactions near equilibrium

We have considered only forward reactions to this point. This is reasonable
at the beginning of the reaction, provided that the initial concentrations
of the products are zero. If this is not the case, we should also consider
the backward reaction. For example, consider the synthesis reaction of
hydrogen iodide

H2 þ I2 ! 2HI:

We will assume that this equation corresponds to the actual mechanism
of this reaction (i.e. this is an elementary reaction). Then the rate of the
forward reaction is

!1 ¼ k1cH2
cI2

,

and the rate of the backward reaction is

!2 ¼ k2c
2
HI:

The experimentally observed reaction rate is

! ¼ !1 � !2 ¼ k1cH2
cI2
� k2c

2
HI:

From this equation, we see that we can neglect the backward reaction only
if the second term on the right side is small. Certainly it is not the case of
equilibrium, where !¼ 0. In equilibrium,

c2HI

cH2
cI2

¼ k1

k2
¼ const:

This is not a new result; we just derived the law of mass action,1 which
we previously discussed from the thermodynamic point of view. Indeed,
the equilibrium constant Kc for the reaction under consideration takes
the following form:

Kc ¼ c2HI

cH2
cI2

:

1 It was actually first obtained based upon kinetic ideas.
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Therefore, for elementary reactions, the equilibrium constant is the ratio
of the forward and backward rate constants

Kc ¼ k1

k2
: (8:18)

8.1.4 Dependence of the rate constant on temperature

There is ample experimental data that demonstrate that the rate constant
increases with increasing temperature. Without loss of generality, we can
represent the temperature dependence of the rate constant as

d ln k

dT
¼ E

RT 2
, (8:19)

where E is an energy and is called the activation energy. Since
d ln k=dT > 0, we must conclude that E > 0. Equation (8.18) is known as
the Arrhenius law. The forward and backward reaction rate constants
can be expressed as

d ln k1

dT
¼ E1

RT 2
;

d ln k2

dT
¼ E2

RT 2
:

If both of these reactions are elementary, we can use the expression for the
equilibrium constant in Eq. (8.18) together with the van’t Hoff isochore
(5.19) to show

�U0
T

RT 2
¼ d ln Kc

dT
¼ d ln k1

dT
� d ln k2

dT
¼ E1

RT 2
� E2

RT 2

or

�U 0
T ¼ E1 � E2: (8:20)

Equation (8.19) is simply one of many possible forms we could have used
to express the temperature dependence of the rate constant. Its utility
comes from a key experimental observation: for most reactions, the
activation energy, E, is found to be temperature independent. In this case,
the Arrhenius equation can be easily integrated to find

k ¼ Ae�E=RT, (8:21)

where A is an integration constant and, hence, must be independent of
temperature.A is known as the pre-exponential factor. The pre-exponential
factor can be thought of as the rate constant in the T!1 limit.

The observation that the activation energy is independent of temper-
ature is not trivial. The remainder of this section presents a simple, but
not very rigorous, interpretation of the Arrhenius equation on the basis
of a theory known as the theory of the activated complex (see also
Section 12.3.3).

Consider the elementary reaction

Aþ B!k AB (8:22)

the rate of which can be written as

! ¼ kcAcB: (8:23)
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We can describe this reaction as a collision of molecules A and B which
leads to the formation of the new molecule AB. We can monitor this
process in terms of the distance between molecules A and B, dAB. If we start
with well-separated A and B molecules, the energy of the system will
increase as we bring them close together (dAB decreases), as follows from
quantum mechanics. Alternatively, if we start with the AB molecule and
increase the A–B spacing (dAB), the energy must also increase (since the AB
molecule is stable). If the energy increases as we decrease dAB from large
separations and increases when we increase dAB from small separations,
there must be a maximum in the energy at intermediate dAB. Figure 8.4
shows this type of variation of the energy of the system with the separation
between A and B atoms. We can consider this variation as a reaction

path or reaction coordinate. The state corresponding to the maximum
energy ((AB)z in Fig. 8.4) is called the activated complex.

According to the activated complex theory, the reaction in Eq. (8.22)
can be represented as2

Aþ B
!
 

k1

k�1

(AB)z !k* AB (8:24)

and its rate as

! ¼ k*c(AB)z : (8:25)

The reaction described by Eq. (8.24) consists of two stages. The first stage
of this reaction is reversible and the second stage is not (of course, the
reaction AB! (AB)z is also possible, but this is part of the backward
reaction of Eq. (8.22) and is treated separately).

The first stage of the reaction can be thought of as a regular reaction, the
equilibrium of which is described by the following constant:

K zc ¼
c(AB)z

cAcB
: (8:26)

The van’t Hoff isochore for this reaction is

d ln K zc
dT

¼ E1

RT 2
, (8:27)

where E1 is the heat of formation of the activated complex. Inserting
Eq. (8.26) into Eq. (8.25), we find

! ¼ k*KzccAcB: (8:28)

Comparison with the kinetic equation (Eq. (8.23)) for the reaction
AþB!AB shows that

k ¼ k*Kzc: (8:29)

U

(AB)‡

E2

E1

AB
A + B

∆U0
T

dAB

Fig. 8.4
Variation of the energy of the system

with the separation between A and B

atoms.

2 Note that the rate constants k1 and k�1 used in the activated complex theory are not
the same as the rate constants k1 and k2 for the forward and backward reactions used in
Section 8.1.3. The rate constants k1 and k�1 in Eq. (8.24) describe the reaction AþB! (AB)z,
rather than AþB!AB.

Kinetics of homogeneous chemical reactions142



The rate of the second stage of the reaction described in Eq. (8.24)
is determined by the motion of the A–B system along the reaction path.
From the molecular-kinetic theory of gases, we know that this velocity is
proportional to the square root of the temperature (recall that the kinetic
energy of molecules is proportional to temperature). Therefore, we can
assume that the rate constant k* has the same temperature dependence.
The temperature dependence of the equilibrium constant, Kzc is Arrhenius
(i.e. as in Eq. (8.27)); this is a much stronger temperature dependence than
that of k*.

Rewriting Eq. (8.29) as

ln k ¼ ln k*þ lnKzc,

assuming that k* is temperature independent and taking the derivative
with respect to temperature, we find

d ln k

dT
¼ d lnK zc

dT
:

Inserting this relation into Eq. (8.27), we recover the Arrhenius law

d ln k

dT
¼ E1

RT 2
:

Now we see that the activation energy of the forward reaction is no
more than the heat of reaction of the activated complex formation
from the reactants. Analogously, the activation energy of the backward
reaction is the heat of reaction of the activated complex formation from
the products. Examination of Fig. 8.4 clarifies why the heat of reaction
is simply the difference between these two activation energies, as per
Eq. (8.20).

We can re-express the equilibrium constant for the first stage of the

reaction in Eq. (8.24) through K zp using K zc ¼ K zpRT. The change of

enthalpy associated with this reaction is �H z ¼ �U z � RT ¼ E1 � RT.

Finally, recall thatK zp ¼ e��G
z=RT. Inserting these relations into Eq. (8.29),

we find

k ¼ k*K zpRT ¼ k*RTe��G
z=RT ¼ ek*RTe�S

z=Re�E1=RT ¼ Ae�E1=RT, (8:30)

where, of course, e¼ e1. The pre-exponential factor, A, is a product of
constants and only weak functions of temperature, it is clear that the
variation of A from reaction to reaction is dominated by the entropy of
the activated complex formation.

Example problem

1. The half-life for a first-order reaction at T1¼ 260 K is 693 min. The
activation energy for this reaction is E¼ 54.3 kJ/mole. Find the time
required to consume 2/3 of the reactants at T2¼ 350 K.
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8.2 Kinetics of complex reactions

A complex reaction is composed of several elementary reactions. These
reactions can proceed consecutively or in parallel, independently from
each other or not. A full discussion of complex reaction is itself complex
and beyond the scope of this text. In this section we only consider three
simple examples.

8.2.1 Kinetics of consecutive reactions

A consecutive reaction is a reaction consisting of several consecutive stages.
For example, consider the simplest possible consecutive reaction pro-
ceeding at constant volume and consisting of two first-order elementary
reactions

A
k1�!B

k2�!C: (8:31)

We assume that initially the concentration of reactant A is c0A and the
concentrations of the intermediate B and the product C are zero. We can
write kinetic equations for the two stages of the reaction in Eq. (8.31):

� dcA
dt
¼ k1cA (8:32)

dcC
dt
¼ k2cB ¼ k2 c

0
A � cA � cC

� �
, (8:33)

where we have used the conservation law, cA þ cB þ cC ¼ c0A, in the right-
hand side of Eq. (8.33). Integrating Eq. (8.32), we obtain

Z cA

c0
A

dcA
cA
¼ �k1

Z t

0

dt; ln cA ¼ ln c0A � k1t

cA ¼ c0Ae�k1t: (8:34)

As expected, the first reaction, A ! B, is indeed first order. Inserting this
expression into Eq. (8.33), we find

dcC
dt
¼ k2 c

0
A � c0Ae�k1t � cC

� �
or

dcC
dt
þ k2cC ¼ k2c

0
A(1� e�k1t):

This differential equation has a solution of the following form

cC ¼ Ae�k2t:

Inserting this expression into the previous equation, we can solve for A:

A ¼ c0A ek2t � k2

k2 � k1
e k2�k1ð Þt

� �
þ B

Kinetics of homogeneous chemical reactions144



to obtain

cC ¼ c0A 1� k2

k2 � k1
e�k1t

� �
þ Be�k2t:

The constant B can be determined from the initial condition cC (t ¼ 0) ¼
c0C ¼ 0:

B ¼ �c0A 1� k2

k2 � k1

� �
¼ c0A

k1

k2 � k1
:

Inserting this back into the expression for cC, we obtain

cC ¼ c0A 1� k2

k2 � k1
e�k1t

� �
þ c0A

k1

k2 � k1
e�k2t

� �
or

cC ¼ c0A 1� k2

k2 � k1
e�k1t þ k1

k2 � k1
e�k2t

� �
: (8:35)

Using the conservation law, we also obtain expression for the con-
centration of B:

cB ¼ c0A � cA � cC
¼ c0A � c0Ae�k1t � c0A 1� k2

k2 � k1
e�k1t þ k1

k2 � k1
e�k2t

� �
or

cB ¼ c0A
k1

k2 � k1
(e�k1t � e�k2t): (8:36)

Figure 8.5 shows the time dependence of the concentration of each of
the species in the reaction in Eq. (8.31). The concentration of reactant
A decreases monotonically during the reaction. The concentration of
intermediate B first increases, then reaches a maximum at

tmax ¼ ln (k2=k1)

k2 � k1
,

and finally decreases. Product C initially forms very slowly (Eq. (8.35)
implies that dcC/dt¼ 0 at t¼ 0), then the rate of production of C increases
until the concentration of B reaches its maximum, and then decreases.

We now consider two limiting cases. In the first case k1� k2 and
Eq. (8.35) reduces to

cC ¼ c0A(1� e�k2t):

This type of kinetic equation is representative of a first-order reaction with
rate constant k2. Therefore the second reaction (which is slower than the
first one) is the rate-determining step of the entire consecutive reaction.

If k2� k1, Eq. (8.35) reduces to

cC ¼ c0A(1� e�k1t):

This also represents a first-order reaction, but now with rate constant k1

instead of k2. The rate-determining step in this case is the first reaction

cA

cB

cC

c0
A

C

0 t

Fig. 8.5
The time dependence of the

concentrations of the species in the

reaction in Eq. (8.31).
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(which is slower than the second one). Therefore, we can conclude that
the rate of a consecutive reaction is determined by the rate of its slowest
stage (assuming that the rate constant for the rate-determining step is
sufficiently smaller than those of all of the other steps).

If k2� k1, Eq. (8.36) reduces to

cB ¼ c0A
k1

k2
e�k1t:

Comparing this result with Eq. (8.34), we find

cB
cA
¼ k1

k2
¼ const:

Therefore, during most of the reaction, the ratio of the concentrations of
A and B remains approximately constant and the change of the concen-
tration of the intermediate B can be neglected

dcB
dt
¼ d c0A � cA � cC

� �
dt

¼ � dcA
dt
� dcC

dt
¼ k1cA � k2cB � 0:

This result is known as the steady-state approximation. In fact, we have
already used this method in Section 8.1.1.

8.2.2 Kinetics of parallel reactions

In parallel reactions, several independent reactions occur simultaneously.
For example, consider the kinetics of a parallel reaction consisting of two
unimolecular reactions

A!k1
B

A!k2
C: (8:37)

We assume that initially the concentration of reactant A is c0A and the
concentrations of the products B and C are zero. The kinetic equation for
the reaction in Eq. (8.37) takes the following form:

� dcA
dt
¼ k1cA þ k2cA ¼ (k1 þ k2)cA: (8:38)

The solution of this differential equation is

cA ¼ c0Ae�(k1þk2)t: (8:39)

This is representative of a first-order reaction with rate constant k1þ k2.
If the rate constant of the first stage is much larger than that of the second
stage, than namely the first stage will determine the rate of the entire
parallel reaction. Therefore, in contrast with consecutive reactions, the
rate-determining step in parallel reaction is the fastest stage.

We now derive expressions for the time dependences of the concentra-
tions of the products. For product B, we find

dcB
dt
¼ k1cA ¼ k1c

0
Ae� k1þk2ð Þt
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or

cB ¼ � k1c
0
A

k1 þ k2
e� k1þk2ð Þt þD:

The constant D can be determined from the initial condition
cB t ¼ 0ð Þ ¼ c0B ¼ 0; therefore, D ¼ k1c

0
A k1c

0
A(k1 þ k2)

�
and

cB ¼ k1c
0
A

k1 þ k2
1� e� k1þk2ð Þt
� 	

: (8:40)

Analogously for the concentration of C we find

cC ¼ k2c
0
A

k1 þ k2
1� e� k1þk2ð Þt
� 	

: (8:41)

Note that the ratio of the concentrations of B and C at any moment is
cB=cC ¼ k1=k2.

Example problems

1. Nitric oxide decomposes through two parallel reactions

NO!k1 1

2
N2 þ 1

2
O2 k1 ¼ 25:7 s�1

NO!k2 1

2
N2Oþ 1

4
O2 k2 ¼ 18:2 s�1:

The reaction proceeds at constant volume. The initial mixture
contained only nitric oxide at a concentration of cNO¼ 4 mole/l. Find
the concentration of nitrogen and nitrous oxide (N2O) in 0.05 s after the
beginning of the reaction.

2. Consider two possible mechanisms for the synthesis of HI. The first is

H2 þ I2�!k 2HI (8:42)

and the second is

I2�!k1
2I

2I�!k2
I2

2IþH2�!k3
2HI: (8:43)

Derive expressions for the rate of formation of HI for both mechanisms
(in the second case, use the steady-state approximation). Under what
conditions will both mechanisms lead to the same type of kinetic
equation?

8.2.3 Kinetics of chain reactions

The main feature of a chain reaction is that its elementary steps are not
independent as in simple reactions and each one initiates the following.
Hence once started, it continues to propagate until all of the reactants are
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consumed or until a termination event occurs. Consider the synthesis of
HCl from H2 and Cl2 as an example

H2 þ Cl2 ! 2HCl:

Experiments show that if hydrogen and chlorine are combined in a dark
chamber, very little reaction occurs. However, if we shine a light onto
the mixture for just a short time, the rate of formation of HCl dramat-
ically increases. Nernst suggested the following mechanism for this
process:

Cl2 þ h� ! 2Cl���initiation step

ClþH2 ! HClþH

Hþ Cl2 ! HClþ Cl

�
���propagation step

. . . . . . . . . . . . . . . . . . . . .

2Cl! Cl2

2H! H2

�
���termination step,

where h� represents a photon. The chain reaction proceeds through the
formation of thermodynamically unstable intermediates (atomic H and Cl
in the case under consideration), known as radicals, by the absorption of
photons. Note that once radicals are created they take part in the propaga-
tion reaction to form HCl. These reactions do not change the number of
radicals in the system. Therefore, additional propagation reactions can
occur even without the input of any more light. Since each propagation
reaction follows from the previous propagation reaction, we can think of
this as a chain reaction. This process continues until the radicals undergo a
reaction that decreases the number of radicals in the system—that is, the
termination step. The number of links in the chain or the chain length is
equal to the average number of propagation reactions that occur from
initiation to termination. If � is the probability that a chain will terminate
on the next step, the chain length is given by3

I ¼ 1

�
: (8:44)

3 By definition, the average chain length is

I ¼
X1
i¼1

iwi

where wi is the probability that a chain has i links. The probability that a chain has more
than one link is 1��. The probability that a chain has exactly two links is simply equal to
the probability that it has more than one link minus the probability that it has more than two
links (1��)2: 1� �� (1� �)2. Analogously, the probability that a chain has three links
is (1��)2� (1��)3. Inserting these expressions into the definition of the average chain
length, we obtain Eq. (8.44)

I ¼ 1 � � þ 2 (1� �)� (1� �)2
� �þ 3 (1� �)2 � (1� �)3

� �þ � � �
¼ � þ 2(1� �)þ (1� �)2 þ (1� �)3 þ � � �
¼ 1þ (1� �)þ (1� �)2 þ (1� �)3 þ � � �
¼ 1= 1� 1� �ð Þ½ 
 ¼ 1=�:
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The average chain length can be very large. For example, for the synthesis
reaction of HCl the average chain length reaches 105.

Termination steps cannot proceed as bimolecular reactions, as written
above. For example, consider the reaction

HþH! H2:

Clearly, if two hydrogen atoms collide and form a molecule H2, the pro-
duct has sufficient energy to dissociate. Therefore, to stabilize the H2

molecule, a third molecule must participate in the reaction in order to
remove at least part of the energy. The role of this third molecule can be
played by other gas molecules if the pressure is sufficiently high (in this
case, the molecule H2 has no time dissociate since it quickly transfers
energy to other gas molecules by collisions) or by collisions of the H2

molecule with the chamber walls. Substances which lead to a decreasing
in the chain length are called inhibitors.

Chain reactions are divided into reactions that produce simple or
branching chains. In the first case, each radical participating in a propaga-
tion reaction gives rise to one new radical. The synthesis of HCl considered
above is an example of a simple chain reaction. Branching chain reactions
are those for which several new radicals can be formed during the propa-
gation step. As an example of this, consider the oxidation of hydrogen
at low pressure at a temperature of �500�C. Under these conditions, the
reaction proceeds as follows:

HþO2 ! OHþO

OHþH2 ! H2OþH

OþH2 ! OHþH

. . . . . . . . . . . . . . . . . . . . . :

Note that branching occurs in the first and the third stages but not in the
second.

A schematic of an explosive (accelerating) type of chain reaction is
shown in Fig. 8.6. If the pressure is small, no explosion occurs at T¼T1

because the radicals collide with and are absorbed by the chamber wall
(and recombine with other radicals there) prior to any collisions with other
gas phase reactants. Therefore, termination occurs prior to propagation.
An explosion is possible only when the pressure is larger than a critical
value p1, known as the first explosion limit. However, no explosion is
possible at pressures larger than pressure p2, known as the second explosion
limit. This limit is associated with triple collisions, which were negligible at
low pressure. For example, in the case of oxidation of hydrogen a reaction
of the form

HþO2 þM! HO2 þM*,

is possible, where M is a third molecule and M* is a high energy state of
the same molecule. In contrast with H, HO2 is a radical that does not
participate in further reactions and simply recombines on the chamber
walls. Therefore, as a result of this triple collision, the number of active

No explosion

No explosion

Chain
reaction
explosion

Heat
explosion

p

p3

p2

p1

T1 T

A

B
O

Fig. 8.6
Schematic illustration of the three

explosion limits.
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radicals in the system decreases, preventing an explosion. Finally, at
pressures above the third explosion limit p3, a thermal explosion occurs.
This explosion is associated with the fact that if an exothermic reaction
proceeds sufficiently quickly, the system heats up, leading to an increased
rate of reaction. This produces even more heat and the reaction accelerates
(i.e. an explosion occurs).

We now consider a reduced version of the theory of chain reactions with
simple chains. We assume that the source of radicals is present and oper-
ates at a fixed rate, producing r radicals per unit time. Let � be the average
time required for the system to traverse one link (i.e. the inverse of the
number of links traversed per unit time or, equivalently, the average
life time of a radical). During the time �, the chain is either terminated
(with probability �) or proceeds along one more link. Therefore, the rate
of the change of the number of radicals can be written as

dn

dt
¼ r� n�

�
, (8:45)

where the second term is number of radicals terminated in unit time. The
solution of Eq. (8.45) is (see Fig. 8.7)

n ¼ r �
�

1� e��t=�
� 	

: (8:46)

The number of radicals in the system tends towards a constant or steady-
state value in the long-time limit (t!1) : nst ¼ r�=� ¼ r�I. The reaction
rate is

! ¼ n
�
(1� �):

If �� 1 (the chains are long), then

! ffi n
�
, (8:47)

and in the steady-state limit

!st ¼ nst

�
¼ r
�
¼ rI: (8:48)

We now consider a reaction with branching chains. If � is the probability
of the reaction producing two radicals for each radical consumed (the
probability of branching), the rate of production of radicals is

dn

dt
¼ r� n�

�
þ n

�
(1� �)�, (8:49)

where the last term on the right accounts for branching. If �� 1 (very long
chains—see Eq. (8.44)), Eq. (8.49) reduces to

dn

dt
¼ r� n�

�
þ n

�
� ¼ rþ n

�
(� � �): (8:50)

The solution of this differential equation has the following form:

n ¼ r�

� � � 1� e�(���)t=�
� 	

: (8:51)

t

nst

0

n

Fig. 8.7
The time dependence of the number of

radicals for the case of a reaction with

simple chains and constant radical

initiation rate.
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If �> �, then the number of radicals in the system tends to a steady-state
value, nst ¼ r�=(� � �) with an average chain length of I ¼ 1=(� � �). If
� < �, the number of radicals in the system grows exponentially in time.
In other words, an explosion occurs.

Note that, if � < �, an explosion occurs even if we remove the source of
radicals provided that at least ninit radicals are present at the beginning.
Indeed, in this case, Eq. (8.50) reduces to

dn

dt
¼ n

�
(� � �):

The solution of this equation is

n ¼ ninite
�(���)t=�: (8:52)

This means that the rate of production of radicals diverges in the long
time limit (recall that � < �).

The transition from a steady-state reaction to an explosion appears
when �¼ �. The value of � can be varied by changing the reaction condi-
tions. For example, � increases if an inhibitor is added in the reaction
chamber. Opposite, if the chamber walls are covered by an inert substance,
the adsorption of radicals on the chamber walls is decreased and an
explosion is possible.

Example problems

1. Consider the following reaction proceeding in a solution where CCl4
is the solvent:

C2Cl4 þ Cl2 ! C2Cl6:

The chain reaction proceeds through the following steps:

Cl2 þ h�!k0
2Cl���initiation step

Clþ C2Cl4!k1
C2Cl5

C2Cl5 þ Cl2!k2
Clþ C2Cl6

9=
;���propagation step

C2Cl5 þ C2Cl5!k3
C2Cl4 þ C2Cl6���termination step.

The radicals in this mechanism are atomic Cl and the unstable molecule
C2Cl5. Derive an expression for the steady-state (late time) rate of
formation of C2Cl6, assuming that the chains are very long.

2. For a reaction with simple chains, it was found that in 0.1 s after
beginning, the reaction rate is !¼ 0.632!st. Find the ratio nst/r for this
reaction.
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Thermodynamics of
irreversible processes

The thermodynamics of irreversible processes, formulated by Onsager and
Prigogine, considers small deviations from equilibrium in open systems.
Despite the fact that the name contains ‘‘thermodynamics,’’ this is a type
of kinetic theory that describes the rates of irreversible processes.

Since there are no currents of any type in thermodynamic equilibrium,
the concept of a current is never used in classical thermodynamics. On the
other hand, the thermodynamics of irreversible processes introduces cur-
rents as the rates at which processes proceed: the heat or energy current
(measured in J/s), matter current (measured in mole/s or kg/s), charge or
electrical current (measured in C/s or Amps). Since these currents have a
direction and magnitude, they are vectors. The thermodynamics of irre-
versible processes also considers scalar currents (e.g. rates of chemical
reactions) and tensor currents (e.g. momentum currents). In this text, we
will focus on current densities or fluxes (that is the current per unit area)
rather than currents themselves. The dimensions of the currents described
above can be converted to the dimensions of fluxes by dividing through by
area or m2.

Associated with each flux is a driving force. These forces are known as
thermodynamic forces. How can we determine these driving forces? What is
the relation between fluxes and driving forces? The answers to these
questions can be found in the thermodynamics of irreversible processes
briefly described in this chapter.

9.1 Onsager’s ¢rst postulate

Onsager’s first postulate states that the flux of property i ( ji) is a linear
function of all thermodynamic forces, Xk, acting in the system

ji ¼
X
k

LikXk, (9:1)

where Lik are called Onsager (or kinetic) coefficients. This postulate was
formulated as a generalization of a wide body of experimental observa-
tions. In fact, long before Onsager’s work it was known that the heat
fluxes are proportional to temperature gradients (Fourier’s law, 1824),
charge fluxes are proportional to electric potential gradients (Ohm’s law,
1826), and matter fluxes are proportional to concentration gradients

9



(Fick’s law, 1855). However, Onsager’s contribution was the inclusion of
the word ‘‘all’’ in his first postulate. Equation (9.1) implies that, for
example, the flux of heat depends not only on the temperature gradient but
also on the gradients of concentration and electric potential, if they are
present in the system. The dependence of the flux of quantity i on ‘‘foreign’’
thermodynamic forces (e.g. k) are known as cross-effects and were also
known before Onsager’s work. For example, if the two ends of a bimetallic
bar (i.e. a bar of one metal joined to a bar of another) are held at different
temperatures, an electric potential difference exists between the ends of
the bimetallic bar. If these two ends are connected by a wire, an electric
current will flow. This is known as the Seebeck effect (thermal electro-
motive force). Conversely, if an electric potential difference is applied
across the bimetallic bar, heat will be produced at the interface where the
two bars are joined. This is known as the Peltier effect. Onsager was able
to describe both experimental observations with one postulate.

Review questions

1. If the thermodynamic force i is zero, is the flux of quantity i also
necessarily zero?

2. If the flux of quantity k is zero, is the thermodynamic force k also
necessarily zero?

9.2 Onsager’s second postulate

Although we already used the term ‘‘thermodynamic force’’ above, we have
not yet fully defined it. It is natural to require that in mechanical cases, the
thermodynamic force coincides with the mechanical, or Newtonian, force.
For example, consider the motion of particles in a viscous liquid. Let F be a
mechanical force acting on each particle. In a vacuum, the mechanical force
would cause the particle to accelerate. However, in a viscous liquid, there is
a drag force that is proportional to the particle velocity. Therefore, at some
velocity v, this drag will compensate the mechanical force F and the particle
will move with a constant, steady-state velocity, v. At steady-state, the flux
of particles in a systemwith particle concentration c (number per volume) is

j ¼ vc:
The work per unit volume associated with the drag force is

�W ¼ F � cv dt ¼ F � j dt:
All of this work is converted into heat such that the entropy of the system
irreversibly increases

T(ds)irreversible ¼ F � j dt
or

T
@s

@t

� �
irreversible

¼ j � F,

where s is the entropy per unit volume.
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In the case considered above, there was only a single force. However, we
already know that there can be several thermodynamic forces Xi acting
upon the same system. In such cases, Onsager postulated that

T
@s

@t

� �
irreversible

¼
X
i

jiXi: (9:2)

This relation is known as Onsager’s second postulate.

9.3 Thermodynamic forces for the transport
of heat and matter

We now derive expressions for the thermodynamic forces acting in a
system in which concentration and temperature gradients are present.
In order to obtain these expressions, it is useful to rewrite Eq. (9.2) in a
form in which the right side is a sum of terms which are products of a flux
and another quantity. This other quantity will be the thermodynamic
force. Since there is a derivative of the entropy in the left side of Eq. (9.2),
we start from the combined statement of the first and second laws of
thermodynamics (Eq. (1.78)):

T dS ¼ dUþ p dV�
Xk
i¼1

	i dni: (9:3)

In contrast with this equation, Eq. (9.2) contains the entropy per unit
volume. Therefore, we rewrite Eq. (9.3) in terms of densities of extensive
quantities rather than the extensive quantities themselves. We note that
if A is an extensive quantity and a is its density, the following identity is
valid:

d
A

V

� �
¼ dA

V
� A dV

V 2

or

dA

V
¼ daþ A dV

V 2
:

Taking this identity into account, we can transform Eq. (9.3) as follows:

T
dS

V
¼ dU

V
þ p dV

V
�
Xk
i¼1

	i
dni
V

T dsþ S

V 2
dV

� �
¼ duþ U

V 2
dV

� �
þ p dV

V
�
Xk
i¼1

	i dci þ ni
V 2

dV
� 	

T ds ¼ du�
Xk
i¼1

	i dci þ dV

V 2
Uþ pV� TS�

Xk
i¼1

	ini

 !
:
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Since, by definition, G¼Uþ pV –TS and, according to the Gibbs–Duhem
equation,G ¼Pk

i¼1 	ini, the expression in the brackets in the last equation
is zero and we obtain

T ds ¼ du�
Xk
i¼1

	i dci (9:4)

or

T
@s

@t
¼ @u
@t
�
Xk
i¼1

	i
@ci
@t
: (9:5)

If the number of particles and the energy of the system do not change,
we can write the following continuity equations (see Appendix III)

@ci
@t
þr � ji ¼ 0 (9:6)

@u

@t
þr � jE ¼ 0 (9:7)

where ji is the flux of component i and jE is the energy flux. Since the
entropy does not change in reversible processes, we can also write a con-
tinuity equation for such processes

@s

@t

� �
reversible

þr � js ¼ 0: (9:8)

where js is the entropy flux. In the general case, the change of entropy
per unit volume consists of two contributions: the first is the change in
entropy that would occur if the process was reversible and the second
accounts for the irreversibility

@s

@t
¼ @s

@t

� �
reversible

þ @s

@t

� �
irreversible

:

Using the continuity equation for reversible processes (Eq. (9.8)), this can
be rewritten as

@s

@t

� �
irreversible

¼ @s
@t
þr � js: (9:9)

Inserting Eqs (9.6), (9.7) and (9.9) into Eq. (9.5), we obtain

T
@s

@t

� �
irreversible

�Tr � js ¼ �r � jE þ
Xk
i¼1

	ir � ji

or

T
@s

@t

� �
irreversible

¼ Tr � js þ T � 1

T
r � jE þ

Xk
i¼1

	i
T
r � ji

 !
:

We can take the fluxes outside of the divergence by using the following
identity (see Eq. AII.12):

fr � a ¼ r � ( fa)� a � rf : :
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Using this identity, we can rewrite the previous equation as

T
@s

@t

� �
irreversible

¼ Tr � js þ T �r � jE
T
þ jE � r

1

T
þ
Xk
i¼1

r � 	i ji
T
�
Xk
i¼1

ji � r
	i
T

 !
:

This equation has the same general form as Eq. (9.2), if and only if we
adopt the following definitions:

js ¼
1

T
jE �

Xk
i¼1

	i ji

 !
(9:10)

XE ¼ Tr 1

T
¼ � 1

T
rT (9:11)

Xi ¼ �Tr	i
T
: (9:12)

Equations (9.11) and (9.12) provide the definitions of the thermodynamic
forces discussed, rather cavalierly, in the previous sections of this chapter.

9.4 Thermodynamic forces for chemical reactions

We now examine isothermal chemical reactions from the point of view of
the thermodynamics of irreversible processes. The flux, in this case, is
simply the rate of reaction dci/dt. The flux in chemical reactions is a scalar
quantity and is not associated with the motion of a chemical species or
energy. Rather, this flux is a transition (or transformation) from one set
of chemical species to another. As such, the units of this flux are mole/(l s).
If all species are ideal gases, then at constant temperature du¼ 0.
Therefore, Eq. (9.4) can be rewritten as

T
@s

@t
¼ �

Xk
i¼1

	i
dci
dt
:

Equation (9.10) implies that if the heat and diffusion fluxes are absent then
js¼ 0. Then from Eq. (9.9) we obtain

@s

@t
¼ @s

@t

� �
irreversible

:

Combining these results we find

T
@s

@t

� �
irreversible

¼ �
Xk
i¼1

	i
dci
dt
: (9:13)

Comparing this equation with Eq. (9.2) suggests that the chemical thermo-
dynamic force is simply the chemical potential. However, this would imply
that the thermodynamic force is non-zero at equilibrium. We can resolve
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this contradiction as follows. The variation of the free energy at equilib-
rium is zero (dGe¼ 0); therefore,

dGe ¼
Xk
i¼1

	e
i dni ¼ V

Xk
i¼1

	e
i dci ¼ 0

or

Xk
i¼1

	e
i

dci
dt
¼ 0:

Combining this relation with Eq. (9.13), we find

T
@s

@t

� �
irreversible

¼ �
Xk
i¼1

	i � 	e
i

� � dci
dt

(9:14)

and, therefore,

X chem
i ¼ � 	i � 	e

i

� �
: (9:15)

This is the thermodynamic force for chemical reaction. Note that it is
exactly zero when the system reaches equilibrium.

We now apply this method to an example chemical reaction

H2 þ I2
�!k1

 �
k2

2HI:

The reaction rate can be written as

! ¼ !1 � !2 ¼ k1pH2
pI2
� k2p

2
HI ¼ !1 1� k2

k1

p2
HI

pH2
pI2

� �

¼ !1 1� 1

Kp

p2
HI

pH2
pI2

� �
;

and the van’t Hoff isotherm takes the following form:

�G ¼ �RT lnKp þ RT ln
p2

HI

pH2
pI2

¼ RT ln
1

Kp

p2
HI

pH2
pI2

� �
;

where we have used the relationship between rates and rate constants from
Section 8.1.3. Combining these two equations, we find

! ¼ !1 1� e�G=RT
� 	

:

Near equilibrium, �G/RT is small and we can expand this expression and
retain only the leading order term

! ¼ �!1
�G

RT
: (9:16)

The reaction rate can also be expressed through the time derivatives of
the concentrations of each species

! ¼ � dcH2

dt
¼ � dcI2

dt
¼ 1

2

dcHI

dt
:

Thermodynamic forces for chemical reactions 157



Since

�G ¼ �G��Ge ¼ 2 	HI � 	e
HI

� �� 	H2
� 	e

H2

� 	
� 	I2

� 	e
I2

� 	
; (9:16)

we can write the reaction rate in terms of the individual concentrations as
(using Eq. (9.16))

dcH2

dt
¼ � !1

RT
	H2
� 	e

H2

� 	
� !1

RT
	I2
� 	e

I2

� 	
þ 2!1

RT
	HI � 	e

HI

� �
dcI2

dt
¼ � !1

RT
	H2
� 	e

H2

� 	
� !1

RT
	I2
� 	e

I2

� 	
þ 2!1

RT
	HI � 	e

HI

� �
dcHI

dt
¼ 2!1

RT
	H2
� 	e

H2

� 	
þ 2!1

RT
	I2
� 	e

I2

� 	
� 4!1

RT
	HI � 	e

HI

� �
:

(9:17)

Using the definitions of chemical reaction flux, Eqs (9.1), (9.15), and (9.17),
we can write the Onsager coefficients, Lik, as

Lik ¼

!1

RT

!1

RT
� 2!1

RT
!1

RT

!1

RT
� 2!1

RT

� 2!1

RT
� 2!1

RT

4!1

RT

0
BBBBBB@

1
CCCCCCA
: (9:18)

Review question

1. When a chemical reaction flux is non-zero, must something be
transported?

9.5 Onsager’s third postulate�the principle
of detailed balance

The thermodynamics of irreversible processes relates fluxes and thermo-
dynamic forces through Onsager coefficients, Lik, but does not provide a
method to calculate these coefficients. Rather, the Onsager coefficients are
simply parameters that must be determined from experiment or micro-
scopic model. Of course, the problem of the determination of the Onsager
coefficients would be simplified if we know a priori some constraints.
Two such general constraints are described below.

The first such constraint can be obtained by combining Onsager’s first
and second postulates

T
@s

@t

� �
irreversible

¼
X
i;k

LikXiXk; (9:19)

and recognizing that entropy increases for irreversible processes. This
implies that X

i;k

LikXiXk > 0: (9:20)
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A mathematical analysis of this general type of inequality shows that
Eq. (9.20) can only be satisfied provided that

Lii > 0: (9:21)

The second constraint can be obtained from the results of the previous
section, where we found explicit expressions for the Onsager coefficients
for the case of isothermal chemical reactions (Eq. (9.18)). Analyzing these
expressions shows that

Lik ¼ Lki: (9:22)

Although this relation was obtained on the basis of a single example
reaction, the statement that the matrix of Onsager coefficients is symmetric
is general and is known as Onsager’s reciprocity theorem. This theorem
cannot be derived, in general, within the thermodynamics of irreversible
processes framework, but was introduced by Onsager as a postulate
(Onsager’s third postulate). The physical origin of this postulate can be
understood within the framework of statistical thermodynamics and is
outside of the scope of this text. However, it is useful to note that the third
postulate is a consequence of microscopic reversibility, that is, the fact that
the equations of classical and quantum mechanics do not change if time
is run forward or backward (for example, a particle will move along
the same trajectory if time is run forward or backward, albeit in the
opposite direction).

We previously referred to the principle of detailed balance in
Section 6.1.2. We now demonstrate how this principle works using an
example of the reaction of three isomers and show how this principle is
related to Onsager’s third postulate. Consider a circuit process consisting
of six elementary reactions involving the isomers A, B, and D:

k–2k–3

k–1

k1

k2k3

B

D

A

The kinetic equations for this process take the following forms:

dcA
dt
¼ �(k1 þ k�3)cA þ k�1cB þ k3cD

dcB
dt
¼ k1cA � (k�1 þ k2)cB þ k�2cD

dcD
dt
¼ k�3cA þ k2cB � (k�2 þ k3)cD:

(9:23)
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When the system reaches equilibrium, the concentrations no longer change
(i.e. dci/dt¼ 0) and the kinetic equations reduce to

0 ¼ � (k1 þ k�3)c
e
A þ k�1c

e
B þ k3c

e
D

0 ¼ k1c
e
A � (k�1 þ k2)c

e
B þ k�2c

e
D

0 ¼ k�3c
e
A þ k2c

e
B � (k�2 þ k3)c

e
D:

(9:24)

Solving for ceD in the first equation and inserting it into the second equation
yields

k1c
e
A � (k�1 þ k2)c

e
B þ

k�2k�3

k�2 þ k3
ceA þ

k�2k2

k�2 þ k3
ceB ¼ 0

or

K (1)
c ¼

ceB
ceA
¼ k1(k�2 þ k3)þ k�2k�3

k�1(k�2 þ k3)þ k2k3
; (9:25)

where K (1)
c is the equilibrium constant for the reaction A! B:

We now consider the same set of reactions from the point of view of the
thermodynamics of irreversible processes. First, we express the con-
centrations in Eq. (9.23) through the chemical thermodynamic forces.
Equation (9.15) implies that

X chem
i ¼ � 	i � 	e

i

� � ¼ �RT ln
pi
pe
i

¼ �RT ln
ci
cei
:

Near equilibrium, the ratio ci=c
e
i is close to unity and hence we may expand

the logarithm to obtain

X chem
i ¼ �RT ci

cei
� 1

� �
¼ RT c

e
i � ci
cei

such that

ci ¼ cei �
cei
RT

X chem
i : (9:26)

Inserting Eq. (9.26) into Eq. (9.23) and using Eq. (9.24), we find

dcA
dt
¼ (k1 þ k�3)

ceA
RT

X chem
A � k�1

ceB
RT

X chem
B � k3

ceD
RT

X chem
D

dcB
dt
¼ �k1

ceA
RT

X chem
A þ (k�1 þ k2)

ceB
RT

X chem
B � k�2

ceD
RT

X chem
D

dcD
dt
¼ �k�3

ceA
RT

X chem
A � k2

ceB
RT

X chem
B þ (k�2 þ k3)

ceD
RT

X chem
D :

(9:27)
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This set of equations implies that the matrix of Onsager coefficients takes
the following form:

Lik ¼

(k1 þ k�3)
ceA
RT

�k�1
ceB
RT

�k3
ceD
RT

�k1
ceA
RT

(k�1 þ k2)
ceB
RT

�k�2
ceD
RT

�k�3
ceA
RT

�k2
ceB
RT

(k�2 þ k3)
ceD
RT

0
BBBBBB@

1
CCCCCCA
: (9:28)

Onsager’s third postulate implies L12¼L21, such that

�k�1
ceB
RT
¼ �k1

ceA
RT

or

K (1)
c ¼

ceB
ceA
¼ k1

k�1
: (9:29)

This result is very different from that in Eq. (9.25)! Equation (9.29) is what
we would expect to find if we simply considered the reaction

A
�!k1

 �
k�1

B;

rather than the entire six-reaction circuit. Indeed, the kinetic equation for
the A ! B reaction takes the following form:

dcA
dt
¼ �k1cA þ k�1cB;

and since at equilibrium dcA/dt¼ 0, we again obtain Eq. (9.29).
Obviously, the same discussion can be performed for the other two pairs
of reactions in the six-reaction circuit. This suggests that in the case of a
complex process, equilibrium must be achieved for each of the component
reactions. As a consequence, we see that equilibrium of the reaction A ! B
is exactly equivalent to equilibrium in the reaction sequence A !D 

! B:
Therefore, no matter which path in a complex reaction leads to A ! B, the
same A–B equilibrium is achieved. It follows from this conclusion that if
we want to describe equilibrium between two states, we only need to
consider one transition path rather than all possible transition paths (we
used this result in the derivation of the BET isotherm). This conclusion is a
statement of the principle of detailed balance. The process that we fol-
lowed to find this result shows how it is related to Onsager’s third pos-
tulate.

9.6 Rede¢nition of the thermodynamic force

Consider a system in which there are two distinct classes of fluxes: the flux
of atoms of type i and the flux of energy. According to Onsager’s first
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postulate and expressions for the thermodynamic forces (Eqs (9.11) and
(9.12)), we can write

ji ¼ �LiiTr
	i
T

� 	
� LiErT

T
(9:30a)

jE ¼ �LEiTr
	i
T

� 	
� LEErT

T
; (9:30b)

and LiE¼LEi.
These equations are not convenient for application to experiment, since

the flux of heat can be directly measured while the flux of energy cannot.
This simply follows from the fact that the thermodynamic definition of
energy can only be specified to within some arbitrary additive constant.
Consider a flux of particles that is not accompanied by a heat flux. Since the
moving particles ‘‘carry’’ their own enthalpy, their motion produces an
energy flux even though there is no heat flux. Clearly, such an energy flux
cannot be measured in experiment. In general case, the energy flux consists
of the heat flux and the enthalpy flux

jE ¼ jQ þ ji �HHi

or

jQ ¼ jE � ji �HHi: (9:31)

Inserting the expressions for jE and ji from Eq. (9.30) into Eq. (9.31)
yields

jQ ¼ � LEi � Lii �HHið ÞTr 	i
T

� 	
� LEE � LiE �HHið ÞrT

T
: (9:32)

We have replaced the experimentally impractical flux of energy from
Eq. (9.30b) with the flux of heat (Eq. (9.32)). However, comparison of
Eqs (9.30a) and (9.32) shows that the resultant matrix of Onsager coeffi-
cients do not satisfy Onsager’s third postulate (the symmetry of the matrix
of Onsager coefficients). This is not surprising, since we changed which
fluxes we use but did not modify the corresponding thermodynamic forces.
In order to satisfy Onsager’s third postulate, the thermodynamic forces
X should be defined as

Xi ¼ � r	ið ÞT (9:33a)

XQ ¼ XE ¼ �rT
T
; (9:33b)

where the operator (rf )T is the gradient of a function at constant tem-
perature. We now show that Onsager’s third postulate is satisfied using
these definitions of the forces. Inserting the Gibbs–Helmholtz equation
(Eq. (3.13)) into the mathematical statement

r 	i
T

� 	
¼ rT 	i

T

� 	
þ @

@T

	i
T

� 	
rT
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we find

Tr 	i
T

� 	
¼ T r 	i

T

� 	� 	
T
�T

�HHi
T 2
rT ¼ r	ið ÞT�

�HHi
T
rT:

Combining this result with Eqs (9.30a) and (9.32), we obtain

ji ¼ �Lii r	ið ÞT� LiE � Lii �HHið ÞrT
T
¼ �Lii r	ið ÞT�LiQ

rT
T

jQ ¼ � LEi � Lii �HHið Þ r	ið ÞT� LEE � LiE �HHi � LEi �HHi þ Lii �HH2
i

� �rT
T

¼ �LQi r	ið ÞT�LQQ
rT
T
: (9:34)

Since LiE¼LEi (see Eq. (9.30)), we see that Eq. (9.34) satisfies the rule of
symmetry of the Onsager coefficients (Onsager’s third postulate).

Unlike Eq. (9.30), Eq. (9.34) contains only fluxes which can be measured
in experiment. In addition, the new definition ofXi is more convenient than
the old definition, since the latter includes both forces associated with the
inhomogeneous distribution of matter and with a temperature gradient.
However, the thermodynamic force associated with the energy flux also
depends on the temperature gradient. Examination of the thermodynamic
forces associated with matter and heat fluxes (Eq. (9.33)) shows that
the first only depends upon the chemical potential gradient at constant
temperature (i.e. the concentration gradient) and the latter only depends
upon the temperature gradient. This is clearly much more useful than
the forces associated with energy and matter fluxes (Eqs (9.11) and (9.12))
where the former depends on both temperature and chemical potential.

Review question

1. Why is it so difficult (impossible) to experimentally measure the energy
flux jE?

9.7 Procedure for the solution of irreversible
thermodynamics problems

The procedure for the solution of transport problems in irreversible
thermodynamics can be outlined as follows (we will demonstrate this
procedure in Section 10.7):

1. Determine which fluxes are present. If there are some fluxes that can be
neglected—do so, in order to reduce the number of Onsager coefficients
to be included. Determining what to include and what to ignore is
the most difficult and important step (you will get better at this with
practice).

2. Determine the thermodynamic forces that are associated with these
fluxes.

3. Write the thermodynamic equations of motion (Eq. 9.1) and symmetry
relations between Onsager coefficients.
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4. Determine the conditions under which steady-state can be achieved
(we will do this in the problem in Section 10.7). This will give you some
important physical relations.

5. Choose a method to determine the Onsager coefficients from experi-
ment or a microscopic model.
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Diffusion

Diffusion is associated with the random, thermal motion of atoms that
produces a change in the macroscopic concentration profile.1 This process
occurs in gases, liquids, amorphous and crystalline solids of metals,
ceramics, polymers, semiconductors, etc. The investigation of diffusion
provides valuable information about the atomic structure of materials
and the defects within them. Perhaps, most importantly, diffusion controls
the rates of a wide range of kinetic processes associated with the synthesis
of materials, processes by which we modify materials, and processes by
which materials fail.

The most common driving force for diffusion in a single-phase systems
is associated with the entropy of mixing of its constituents (recall that
we showed that the entropy of mixing of gases and the components of
an ideal solution are always positive—see Sections 1.2.6 and 3.3). Since
diffusional processes occur through the thermal motion of atoms (see
below), it will not be surprising to learn that the rate of diffusion increases
with increasing temperature. However, note that while the mechanisms
of thermal motion in gases (random collision of atoms with each other)
and liquids (e.g. Brownian motion) necessarily lead to mixing, the
mechanisms of mixing within a solid are not as obvious. In solids, thermal
motion corresponds to the vibrations of atoms near their equilibrium
positions. Since the amplitude of such vibrations is much smaller than the
nearest-neighbor separation, it would seem that such thermal motions
cannot lead to mixing. Thus, the question ‘‘how do atoms migrate in
solids’’ is not so simple.

10.1 Mathematical description of di¡usion

The equations describing diffusion were suggested by the physiologist
Fick in 1855 as a generalization of the equations for heat transfer suggested
by Fourier in 1824. Fick’s equations for diffusion can be obtained by
analogy with Fourier’s equations for heat transfer by replacing heat
with the number of atoms, temperature with concentration, and thermal
conductivity with diffusivity.

10

1 Recall that the thermodynamics of irreversible processes shows that atom fluxes can also
arise because of other thermodynamic forces. We consider such a problem in Section 10.7.



10.1.1 Fick’s first law

Fick’s first law provides a relationship between atomic currents and con-
centration gradients. As discussed above, this relationship can be under-
stood by analogy with thermal conductivity or electrical conductivity.
Indeed, it is well known that in the simplest cases, the heat current between
two points is proportional to the temperature difference between these
points and the electric current is proportional to the difference of electric
potentials between these points. Since current is a vector, a more general
statement is that these currents are proportional to the gradients of
temperature and electric potentials, respectively. Note that these currents
lead to the equilibration of temperature or electric potential (i.e. heat or
charge flow in the direction to make the system more homogeneous).
Similarly, diffusion leads to the homogenization of the concentration
within the system.2 Therefore, by analogy, with heat and electrical cur-
rents, we can write the current of species i:

Ii ¼ �DiSrci, (10:1)

where S is the area of the surface through which the current passes andDi is
the diffusivity of component i. Equation (10.1) is known as Fick’s first law.
Fick’s first law is often written in terms of a flux rather than a current

ji ¼
Ii

S
¼ �Dirci:

In one-dimensional, this equation reduces to

ji ¼ �Di @ci
@x

:

Note that both Ii and ji are the vectors. Concentration in Eq. (10.1) has
dimension of either kg/m3 or mole/m3 corresponding to currents measured
in kg/s and mole/s, respectively. Therefore, the dimensionality of the dif-
fusivity is m2/s.

Equation (10.1) can be derived from the thermodynamics of irreversible
processes. Consider the case in which the only flux in the system is that of
component i, ji. The corresponding thermodynamic force is Xi¼ � (r	i)T
and Onsager’s first postulate implies that ji¼ �Lii (r	i)T. If the solution is
ideal dilute, Eq. (3.19) implies

r	i ¼ RTr ln ci

or

ji ¼ �LiiRTr ln ci:

The quantityMi¼LiiRT is the mobility of the particle (the velocity of the
particle under the action of a unit force). The flux can then be written as

ji ¼ �Mir ln ci ¼ �Mi

ci
rci ¼ Dirci

2 This is valid only in the simplest cases where the entropy of mixing is the only
contribution to the driving force. Note, however, that cases do exist where diffusion can lead
to increasing heterogeneity (see Section 10.7).
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and the diffusivity is

Di ¼Mi

ci
¼ LiiRT

ci
: (10:2)

This brings us back to Eq. (10.1).
Three types of diffusivities can be distinguished, corresponding to three

physically different types of diffusion processes. The first is associated
with the diffusion of atoms that are labeled. Since atoms are typically
indistinguishable, the closest we can come is to monitor the diffusion of a
diffusant which is a radioactive isotope (e.g. 63Ni) within a material com-
posed of the natural occurring material (e.g. nickel, natNi). A typical
experiment of this type involves coating the surface of a sample composed
of a stable isotope with a film of radioactive isotope, and then monitoring
the concentration of the radioactive isotope as it diffuses into the sample.
Since the stable and radioactive isotopes have nearly the same physical and
chemical properties, we refer to this case as self-diffusion and parameterize
this type of diffusion using the self-diffusion coefficient. The second type of
diffusion refers to the diffusion of one molecular species in another, for
example Ni in Cu. This type of diffusion can be observed by coating a large
Cu sample with a Ni diffusant film and monitoring the Ni concentration
profile in the Cu. This process is called hetero-diffusion and the hetero-
diffusion coefficient should be used in Fick’s first law. Finally, the third
type of diffusion describes the diffusion of two species into each other. For
example, this type of diffusion can be studied by joining two large Ni and
Cu samples together and monitoring the Ni and Cu composition profiles
on both sides of the interface. This process is called mutual diffusion and it
is described by the mutual diffusion coefficient.

Example problems

1. A monoatomic gas (diffusant) is enclosed within a thin metallic
spherical shell at constant temperature. During a t1¼ 100 h period,
some of the gas diffuses through the shell such that the pressure inside
drops from p0¼ 10 atm to p1¼ 9.5 atm. The partial pressure of the
diffusant outside the shell is pout¼ 1 atm. Find the time t2 necessary for
the pressure to drop to p2¼ 8 atm.

2. A diatomic gas (diffusant) is enclosed within a thin metallic spherical
shell at constant temperature. During a t1¼ 100 h period, some of the
gas diffuses through the shell such that the pressure inside drops from
p0¼ 10 atm to p1¼ 9.5 atm. The partial pressure of the diffusant outside
the shell is pout¼ 1 atm. Find the time t2 necessary for the pressure to
drop to p2¼ 8 atm.

10.1.2 Fick’s second law

Fick’s second law is the continuity equation (see Appendix III) for the
conservation of the quantity of component i during diffusion

@ci
@t
þr � ji ¼ 0: (10:3)
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Inserting Fick’s first law into this equation, we obtain

@ci
@t
�r � Dircið Þ ¼ 0: (10:4)

If the diffusivity does not depend on position within the material, it can be
taken outside the differential operator. Using the identity (see Eq. (AII.11))

r rað Þ ¼ r2a ¼ �a

we obtain

@c

@t
¼ D�c, (10:5)

where we omitted the subscript i. In most applications, we assume D is a
constant and hence Eq. (10.5) is the most common form of Fick’s second
law. In Cartesian coordinates, this equation takes the following form

@c

@t
¼ D @2c

@x2
þ @

2c

@y2
þ @

2c

@z2

� �
(10:6)

and in the case of a one-dimensional problem it reduces to

@c

@t
¼ D @2c

@x2
: (10:7)

Equations (10.5)–(10.7) are partial differential equations. Their solu-
tions c(r, t) (or (c(x, t) in the case of one-dimensional problems) depend on
the initial condition and two boundary conditions. Some of the most useful
solutions of Eq. (10.7) will be given in the next section.

10.1.3 Several useful solutions of the one-dimensional
diffusion equation

In this section we consider several solutions to the diffusion equation that
are useful in the experimental determination of the diffusivity. Of course,
these solutions are useful for a wide range of other applications as well. The
forms of the solutions depend on the two boundary conditions and one
initial condition, as discussed in Section 10.1.2. For the case of one-
dimensional diffusion considered in this section, it is useful to distinguish
between the cases of an infinite (or semi-infinite) sample and one that is of
finite thickness. In the first case, the diffusion length xdif (the average
distance over which the solute diffuses during the course of an experiment)
is much smaller the sample length,L. In such a case, the diffusant ‘‘does not
know that the sample has an end,’’ since the diffusant never gets close to the
surfaces. However, when the length of the sample is sufficiently small, some
of the diffusant will reach the far end of the sample during the course of the
experiment and, hence, the diffusion will be influenced by the presence of
the surface.

In order to perform a diffusion experiment, a source of diffusant must be
provided. If the quantity of diffusant is large, the concentration of dif-
fusant at the location where it was originally added to the sample will not
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vary significantly during an experiment—this is an essentially inexhaustible
(constant concentration) source. On the other hand, if the amount of
diffusant provided is small, the concentration of diffusant will change
appreciably during the experiment—this is an exhaustible source.
A common example of an exhaustible source experiment is one in which a
very thin coating of a diffusant is initially deposited on the surface of the
sample, such that the coating thickness � is much smaller than the diffusion
length (�� xdif). A common example of an inexhaustible source experi-
ment is one in which the sample is placed within a chamber through which
a gas passes such that a chemical reaction of gas phase species with the
sample maintains a constant concentration of the reaction product on the
surface at all times (see Computer Laboratory #2).

We now discuss the solutions of the diffusion equation for these exam-
ples. First, we consider the case where the supply of diffusant is exhaustible
and the sample is of infinite extent in both directions. For example, con-
sider the case in which a thin coating of qmoles of diffusant is deposited on
the end of a bar of pure material and an identical bar is bonded to the outer
surface of the coating. The initial condition is

c(x, 0) ¼ q�(x)
where �(x) is the Dirac function which is equal to zero for x 6¼ 0 and is
infinite at x¼ 0, such that Z þ1

�1
�(x)dx ¼ 1:

The appropriate boundary conditions (valid at all times) are

@c

@x

����
x¼�1,t

¼ 0;
@c

@x

����
x¼1,t

¼ 0:

The diffusion equation with these initial and boundary conditions has the
following solution3

c(x, t) ¼ q

2
ffiffiffiffiffiffiffiffiffi

Dt
p e�x

2=4Dt, (10:8)

which is valid for all space and all times (t	 0). This solution is called a
Gaussian and it has a bell shape with two inflection points (at� ffiffiffiffiffiffiffiffi

2Dt
p

), as
shown in Fig. 10.1.1. The area under the curve is equal to the amount of
diffusant, q, at all times. This is not surprising since diffusant atoms are
neither created nor destroyed during the experiment (mass conservation).
During the experiment, the maximum of the concentration profile c(x,t)
does not move but decreases in amplitude as 1=

ffiffi
t
p

: c0 ¼ c(0, t) ¼
q=(2

ffiffiffiffiffiffiffiffiffi

Dt
p

), and the width of the concentration profile (bell) increases. The
concentration profile represented by Eq. (10.8) at any fixed time is a
straight line in a plot of ln c versus x2, the slope of which is�1/(4Dt). If the

3 You should confirm for yourself that this concentration satisfies the diffusion equation,
the boundary conditions and the initial condition (it is always a good idea to confirm the
validity of anything you read in a book yourself!).
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source does not sit at x¼ 0 in the infinite sample but rather at x¼ x0,
the solution in Eq. (10.8) is modified as

c(x, t) ¼ q

2
ffiffiffiffiffiffiffiffiffi

Dt
p e� x�x0ð Þ2=4Dt: (10:9)

The solution of the diffusion equation for the case of a semi-infinite
sample (e.g. a sample that extends from x¼ 0 to x¼1 with the diffusant
coating at x¼ 0) is c(x, t) ¼ (q=

ffiffiffiffiffiffiffiffiffi

Dt
p

)e�x
2=4Dt. Inserting this solution into

the expression for the flux, Eq. (10.1) shows that the flux out of the free
surface at x¼ 0 is exactly zero. This is, in fact, a boundary condition for the
semi-infinite sample (zero flux at the surface). Note that this solution is
exactly twice that for the infinite sample (Eq. (10.8)). The factor of two
arises simply because in the present case the diffusant can only diffuse in
one direction rather than in two.

We now consider the case of an inexhaustible source. The general
solution of the diffusion equation in this case is of the form

c(x, t) ¼ Aþ B � erf x

2
ffiffiffiffiffiffi
Dt
p

� �
, (10:10)

where A and B are constants which can be determined from the boundary
conditions. The function, erf(z), is known as the error function4 and is
described in detail in Appendix IV. Table 10.1 and Fig. 10.1(2)–(5) show

4 An error function is an integral of a Gaussian function, such as the solution in Eq. (10.8).
Since the error function is a superposition of Gaussian solutions to the diffusion equation and
because the diffusion equation is linear, the error function must also satisfy the diffusion
equation.

Table10.1 Several common solutions of the diffusion equation

Case Sample Boundary conditions Initial condition Solution

1 Infinite
@c

@x

����
x¼�1,t

¼ 0;
@c

@x

����
x¼1,t

¼ 0 c(x, 0)¼ q�(x) cðx, tÞ ¼ q

2
ffiffiffiffiffiffiffiffi

Dt
p e�x

2=4Dt

2 Semi-infinite cð0, tÞ ¼ cs; @c

@x

����
x¼1,t

¼ 0 c(x, 0)¼ 0 cðx, tÞ ¼ cserf c x

2
ffiffiffiffiffiffi
Dt
p

� �

3 Semi-infinite cð0, tÞ ¼ 0;
@c

@x

����
x¼1,t

¼ 0 c(x, 0)¼ cs cðx, tÞ ¼ cserf x

2
ffiffiffiffiffiffi
Dt
p

� �

4 Infinite
@c

@x

����
x¼�1,t

¼ 0;
@c

@x

����
x¼1,t

¼ 0 cðx, 0Þ ¼ cs at x � 0
0 at x > 0

n
cðx, tÞ ¼ cs

2
erf c

x

2
ffiffiffiffiffiffi
Dt
p

� �

5 Infinite
@c

@x

����
x¼�1,t

¼ 0;
@c

@x

����
x¼1,t

¼ 0 cðx, 0Þ ¼ 0 at x < 0
cs at x 	 0



cðx, tÞ ¼ cs

2
1þ erf

x

2
ffiffiffiffiffiffi
Dt
p

� �� �

6 Infinite
@c

@x

����
x¼�1,t

¼ 0;
@c

@x

����
x¼1,t

¼ 0 cðx, 0Þ ¼
0 at x < �a
cs at� a � x � a
0 at x > a

(
cðx, tÞ ¼ cs

2
erf

aþ x
2
ffiffiffiffiffiffi
Dt
p

� �
þ erf

aþ x
2
ffiffiffiffiffiffi
Dt
p

� �� �

7 Plate
cð0, tÞ ¼ cs
cðL, tÞ ¼ cs

c(x, 0)¼ 0 cðx, tÞ ¼ cs 1� 4




X1
n¼0

e�ð2nþ1Þ2
2Dt=L2

2nþ 1
sin
ð2nþ 1Þ
x

L

( )

Diffusion170



several solutions of the form given in Eq. (10.10). You should verify that
each satisfies the diffusion equation and the boundary and initial condi-
tions specified in Table 10.1. Note that in cases 2 and 3 in Table 10.1, the
amount of diffusant which enters or leaves the sample through a unit area
of the surface is q ¼ 2cs

ffiffiffiffiffiffiffiffiffiffiffi
Dt=


p
(this value is equal to the area shaded in

Fig. 10.1, cases 2 and 3), where cs is the concentration of the diffusant
on the end of the bar. Now, consider the case in which a finite source exists
in the middle of the bar (case 6). At very short time, the source has not been
exhausted and hence the solution should look inexhaustible. However, at
very long times, the source becomes depleted and hence the source appears
exhaustible. Therefore, the general solution for case 6 should look like a
combination of that for an inexhaustible source (for small t) and an
exhaustible source (for large t). In examining this solution, it is useful to
recall that erf(z) � (2=

ffiffiffi


p

)z for z� 1 and erf(z) � (2=
ffiffiffi


p
z)e�z

2

for z� 1
(this is a practical assumption in most cases for z> 4).
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Fig.10.1
Concentration profiles corresponding to the solutions of the diffusion equation presented in Table 10.1. The shaded area is equal to the

amount of diffusant that will enter or leave the sample during time t1.
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Finally, we consider the case of an inexhaustible source and a sample of
finite thickness (i.e. a plate). The initial and boundary conditions are

c(x, 0) ¼ 0; c(0, t) ¼ c(L, t) ¼ cs:
The solution of the diffusion equation for this case (7) takes the following
form:

c(x, t)=cs ¼ 1� 4




X1
n¼0

1

2nþ 1
e� 2nþ1ð Þ2
2Dt=L2

sin
(2nþ 1)
x

L
(10:11)

and is shown in Fig. 10.1(7). The amount of diffusant which will penetrate
into the sample during time t is

q(t)

qs
¼ 1� 8


2

X1
n¼0

1

2nþ 1ð Þ2 e� 2nþ1ð Þ2
2Dt=L2

,

where qs¼ csLS is the maximum amount of diffusant which can be dis-
solved in the sample and S is the surface area of the plate. The series in
Eq. (10.11) converges rapidly to

c(x, t)=cs � 1� 4



e�


2Dt=L2

sin

x

L

q(t)

qs
¼ 1� 8


2
e�


2Dt=L2

:

For example, if t> 0.05L2/D, the error made in these expressions is smaller
than 1%. Note that the last equation implies that the time dependence of
the amount of diffusant which entered the sample will lie on a straight line
in a plot of ln½1� ðq=qsÞ
 versus t.

Example problems

1. A thin layer of a diffusant is deposited onto the end of a semi-infinite
sample and allowed to diffuse into the sample (one-dimensional
problem). At what position in the sample is d2c/dx2¼ 0 (i.e. the inflec-
tion point)?

2. A thin layer of radioactive copper is deposited onto the end of a long
copper bar and the sample is annealed at fixed temperature for 7.2 h.
The bar is then cut into 1mm thick disks perpendicular to the diffusion
direction and the quantity of radioactive copper in each is measured
using a device similar to a Geiger counter. The detector measured
I1¼ 5000 counts/(min m2) and I2¼ 500 counts/(minm2) for disks taken
from x1¼ 100 mm and x2¼ 500 mm from the end of the bar. Calculate
the self-diffusivity of copper assuming that the count rate is propor-
tional to the concentration of the radioactive isotope.

3. A steel sample with an initial carbon concentration of 0.1 wt% is
carburized atT¼ 927�C such that the carbon concentration is 0.45 wt%
at a depth of 0.05 cm. The concentration of carbon on the surface of the
steel is constant (fixed by a chemical reaction) and equal to 1wt%.
Calculate the carborization time, assuming that the steel sample is
infinitely large. Use the following handbook data: the carbon diffusivity
in steel is D¼ 0.15e�133,900/RT cm2/s, where R¼ 8.314 J/(mole K).
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4. Consider the following one-dimensional diffusion problem: two semi-
infinite bars are placed into contact with each other at x¼ 0. The sample
at x< 0 is a solution of B in A with a concentration cB¼ c0 and the
sample at x> 0 is prepared from pure A (cB¼ 0). After annealing for
16 h at T¼ 800�C the B concentration at x1¼ 0.125 mm is cB¼ 0.3c0.
Calculate the diffusivity of B.

5. Find the annealing time necessary to remove 90% of the hydrogen from
a plate with a thickness of 0.5 cm which was placed into a chamber that
maintains a hydrogen pressure of exactly zero (i.e. a really good
vacuum). The hydrogen diffusivity in the plate at the experimental
temperature is D¼ 10� 4 cm2/s.

6. A semi-infinite austenitic steel sample with a carbon concentration
c0¼ 0.6 wt% is annealed for 4 h at T¼ 1173 K in a gas containing
hydrogen and methane with xCH4

¼ 0:0025 at a total pressure p¼ 1 atm.
Determine the carbon concentration at a depth of 600	m after
annealing. Use the following handbook data: �G0

1173 ¼ 37:2 kJ/mole
for the reaction,

C(graphite) þ 2H2 ¼ CH4:

The variation of the carbon activity with carbon concentration is as
shown in Fig. 10.2. The carbon diffusivity in austenite at 1173 K
is D ¼ 0:15e�133;900=RT cm2/s, where R¼ 8.314 J/(mole K).

10.2 Di¡usion as a randomwalk process

An atomic model of diffusion was developed by Einstein in 1905 (a random
walk model for the Brownian motion of a particle in a liquid). In 1906,
Smoluchowski extended this model to describe the migration of atoms in
crystalline metals. According to this model, diffusion is the result of
random hops (a sequence of random hops is called a random walk) of
atoms. Note that such hops occur even in the absence of a concentration
gradient, however, in this case, the net flux is zero. Randomness means
that there is no correlation between subsequent hops of the same atom and
there is no correlation between hops made by different atoms.

We first consider a simplified version of the Smoluchowski model. In this
version, we restrict each atom to move only to the left or right in one-
dimension and the motion of each atom is independent of the others, as
shown in Fig. 10.3. In this sense, the model is quasi-one-dimensional. Next,
we assume that the length of each individual hop, �, is always the same.
This assumption is natural for atoms moving in a crystal, where � is the
nearest neighbor separation.

Let all atoms start migration at the same moment from the same position
(x¼ 0), as shown in Fig. 10.3. Consider the migration of one atom, which
makes n hops during time t¼ �n and ends up at position xn, where � is the
average time between subsequent atom hops. Hop nþ 1 can be either to the
left or right, such that

xnþ1 ¼ xn ��:
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Fig.10.2
The dependence of the carbon activity

on its molar fraction in austenite steel

(the standard state for C is graphite).
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Fig.10.3
Quasi-one-dimensional random walk.
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Squaring both sides of this equation and averaging over all atoms, we
obtain

x2
nþ1 ¼ x2

n � 2�xn þ�2; x2
nþ1 ¼ x2

n � 2�xn þ�2; x2
nþ1 ¼ x2

n þ�2:

In obtaining the final expression, we used the fact that if atoms jump to the
left or right at random, the average position after any number of hops is
exactly zero (xn ¼ 0). Since this expression is valid for every n, we find

x2
1 ¼ �2, x2

2 ¼ 2�2, x2
3 ¼ 3�2, � � �

or

x2
n ¼ n�2 (10:12)

Since t¼ �n, we can rewrite Eq. (10.12) as

x2
n ¼ �2 t

�
¼ �2�t, (10:13)

where �¼ n/t¼ 1/� is the hopping frequency. On average, the distance
between where an atom starts andwhere it ends up after n hops (or in time t)
is the diffusion length xdif ¼

ffiffiffiffiffi
x2
n

p
:

xdif ¼ �
ffiffiffi
n
p ¼ �

ffiffiffiffiffi
�t
p

¼ �

ffiffiffi
t

�

r
: (10:14)

The main conclusion of the random walk model is that the diffusion length
is proportional to the square root of time. This is consistent with the
solutions to Fick’s second law, we found in Section 10.1.3 for infinite or
semi-infinite samples—that is, that the position where the concentration
has a particular value moves in time in proportion to the square root of
time. This time dependence is characteristic of the diffusion process. Note
that the rate of diffusion decreases with time as

�dif ¼ dxdif

dt
� 1ffiffi

t
p : (10:15)

We now find the relation between the diffusivity and random walk
process. Consider the flux of atoms across the plane x¼ x0 that lies between
two neighboring atomic planes (separated by �). The flux of atoms across
the plane x¼ x0 from x¼ x0��/2 is simply the product of the number of
atoms per unit are on this plane N(x0��/2 )/a, the rate at which those
atoms jump and a factor of 1

2 to account for the fact that each atom jumps
to the left or right with equal probability

1

2

N x0 ��=2ð Þ
a

�:

Similarly, the flux of atoms across the plane x¼ x0 from x¼ x0þ�/2 in
the opposite direction is

� 1

2

N x0 þ�=2ð Þ
a

�:

Diffusion174



These two expressions can be rewritten in terms of concentrations by
noting that c¼N/(a�). The total flux across the plane x¼ x0 is now

j ¼ 1

2
c x0 ��

2

� �
��� 1

2
c x0 þ�

2

� �
�� � � 1

2
�2�

@c

@x
: (10:16)

Comparing this equation with Fick’s first law demonstrates that

D ¼ 1

2
�2� ¼ 1

2

�2

�
: (10:17)

Combining this result with Eq. (10.14), we obtain

xdif ¼
ffiffiffiffiffiffiffiffi
2Dt
p

: (10:18)

Equation (10.17) can be written more generally as

D ¼ ��2� ¼ ��
2

�
: (10:19)

In the case of three dimensions, �¼ 1/6. It can be easily shown that for
cubic lattice D ¼ (1=z)a2�, where a is the traditional cubic lattice para-
meter and z is the number of nearest neighbors.

In many cases in real crystals, the assumption that the atomic hops are
random is not valid. In order to account for the correlations between hops,
a correlation factor f is introduced and Eq. (10.17) is rewritten as

D ¼ f��2�: (10:20)

Usually, the correlation slows down diffusion such that f� 1. It can be
shown that in the case of self-diffusion f� 1� 2/z. For face-centered cubic
(fcc) metals z¼ 12 and f� 0.83 (a more careful analysis shows f¼ 0.78) and
for body-centered cubic metals z¼ 8 and f� 0.75 (a more careful analysis
shows f¼ 0.73).

Example problems

1. Estimate the temperature at which copper atoms hop, on average, once
per second. The following handbook data are available: copper has a fcc
lattice with a cubic lattice parameter of 0.36 nm and a self-diffusion
coefficient D ¼ 0:2e�197,100=RT cm2/s, where R¼ 8.314 J/(mole K).

2. Estimate the diffusion length for copper self-diffusion in 1 h at (1)
T¼ 300 K, (2) T¼ 1200 K, and (3) Tmelt¼ 1355 K. Use the handbook
data from the previous problem.

10.3 Di¡usion inmetals

10.3.1 Main experimental results

Most experimental methods for the determination of the diffusivity are
based upon either a measurement of the concentration profile, c(x, t),
or a measurement of the quantity of diffusant that has penetrated into
a sample, q(t). While we will not describe these methods in detail
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(see Computer Laboratory #6 for a more complete discussion), we
discuss some of the key features of these methods here. All methods can be
divided into two categories: (1) methods which destroy the sample and
(2) methods which are non-destructive. In the first category, the sample
is sliced into thin layers oriented perpendicular to the diffusion flux
following annealing. Then, the diffusant concentration in each layer is
measured. The diffusivity is obtained by comparison of the measured
concentration profile with that found from solving the diffusion equation
(see Section 10.1.3). In the second category, the concentration profile
is measured using non-destructive methods (e.g. X-ray microanalysis, see
Computer Laboratory #6) or the quantity of diffusant that has penetrated
into the sample is measured non-destructively (see the radioactive
absorption method in Computer Laboratory #6).

We now discuss several important experimental observations regarding
diffusion in solid metals. In most cases, the temperature dependence of
the diffusivity can be described by the Arrhenius law

d lnD

dT
¼ E

RT2

or

D ¼ D0e
�E=RT, (10:21)

where E is the activation energy andD0 is the pre-exponential factor. Both
values are nearly temperature independent. Since the diffusivity increases
with increasing temperature, we conclude that E> 0.

The self-diffusion coefficient near the melting temperature is approxi-
mately D� 10� 12 m2/s for most solid metals. For the sake of comparison,
we note that the coefficient of self-diffusion in liquid metals is
DL� 10� 9 m2/s and for gases it is approximately Dg� 10� 5 m2/s. Both of
these values depend only weakly on temperature.

The activation energy for self-diffusion in solid metals can be estimated,
to within �20%, as

E � 18RTmelt � 15:2�Hmelt: (10:22)

Applying Eq. (10.22) to estimate the activation energies of Al
(Tmelt¼ 933 K, �Hmelt¼ 10.8 kJ/mole), Cu (Tmelt¼ 1356 K, �Hmelt¼
13.0 kJ/mole) and Ni (Tmelt¼ 1728 K,�Hmelt¼ 17.5 kJ/mole), we find 140,
203, and 259 kJ/mole, respectively. The corresponding experimental values
are 142, 197, and 275 kJ/mole, respectively.

In order to estimateD, we can useD0� 10� 5 m2/s for most solid metals.
Together with Eqs (10.21) and (10.22), this implies that at 0.4Tmelt

and 0.7Tmelt, the coefficient of self-diffusion is D� 10� 23 m2/s and
D� 10� 16 m2/s, respectively.

In the previous section, we found that xdif ¼
ffiffiffiffiffiffiffiffi
2Dt
p

. Using the estimates
of the diffusivity at 0.4Tmelt, 0.7Tmelt, and Tmelt from above, we estimate
that the diffusion length in a 100-h experiment is 10 nm (just about 30
interatomic separations!), 10	m, and 1 mm, respectively. The main con-
clusion is that diffusion is very slow in solids even at high temperatures.
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The coefficient of hetero-diffusion of the solvent in substitutional
solutions (i.e. a solution where the solvent and solute atoms occupy
equivalent sites in the crystalline lattice) is only slightly different from the
coefficient of self-diffusion. If the melting temperature of a pure solute
is higher than the melting temperature of the solvent, then the solvent
diffusivity decreases with increasing solute concentration (1–2 orders of
magnitude at 0.7Tmelt) and the activation energy increases. The solute
diffusivity in substitutional solutions is usually close to that of the solvent.
If the melting temperature of a pure solute is higher than that of the
solvent, then the solute diffusivity is smaller than the solvent diffusivity
and vise versa.

If the atomic radius of the solute atoms is much smaller than that of the
solvent atoms, the solute atoms tend to go into interstitial sites (i.e. into
the holes between the solvent atoms). In this case, the coefficients of
diffusion for the solvent and solute are very different: D2�D1 and
E2<E1. For example, the activation energy of self-diffusion in �-Fe
(body-centered cubic iron) is EFe¼ 250 kJ/mole and that for carbon
diffusion in �-Fe is EC¼ 105 kJ/mole. Assuming that D0� 10�5 m2/s
in both cases, we estimate that at T¼ 700�C, DFe¼ 10�17 m2/s, and
DC¼ 10�11 m2/s. Note thatDC is larger than the self-diffusion coefficient in
most metals at their melting temperature (�10�12 m2/s).

10.3.2 Diffusion mechanisms in metals

The random walk model does not answer the question ‘‘What is the
mechanism by which atoms hop?’’ Recall that at finite temperature, atoms
vibrate around their equilibrium position with an amplitude that is much
smaller than the nearest neighbor separation. Several different elementary
diffusion mechanisms have been proposed. A few of these are shown in
Fig. 10.4: (1) a simple exchange, in which a pair of neighboring atoms
switch places, (2) a cyclic exchange, in which several atoms sequentially
switch places (e.g. in a four- or six-member ring), (3) by exchanging with a
vacancy (i.e. an empty lattice site), and (4) an interstitial jump in which an
atom sitting in an interstice between lattice atoms jumps to a neighboring,
empty interstitial site.

Experiments show that the most commonly operating self-diffusion and
hetero-diffusion in substitutial solutions is the vacancy mechanism, while
the main mechanism of hetero-diffusion in interstitial solutions is the
interstitial mechanism.

The vacancy mechanism was first proposed by Frenkel in the 1930s.
Frenkel was also the first to propose that vacancies exist in equilibrium
(the minimum in the free energy occurs at a finite vacancy concentration).
In the vacancy mechanism of diffusion, an atom can hop only if it has a
nearest neighbor vacancy into which it can jump. Therefore, the frequency
with which a particular atom can jump is

� ¼ xv!, (10:23)

3

4

2

1

Fig.10.4
Schematic illustration of the four

diffusion mechanisms described in the

text. The diffusing atom is shown in

black.
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where ! is the frequency with which the vacancy jumps and xv is the
vacancy concentration. Since xv� 1 (otherwise the crystal would simply
fall apart), we must conclude that ��!. Inserting Eq. (10.23) into
Eq. (10.20), we find

D ¼ f��2xv!: (10:24)

The frequency with which the vacancy hops depends on the nature of the
atomic interactions in the metal; unfortunately, this interesting topic is
beyond the scope of this book. However, we can adopt a simplified model,
in which an atom adjacent to a vacancy vibrates around its equilibrium
position with a frequency �.5 In order to exchange places with the vacancy,
a neighboring atom must pass over an energy barrier. This energy barrier is
associated with necessity to push other atoms out of the way as the atom
hops into the vacancy.6 This process is similar to the activated complex
theory we discussed in Section 8.1.4. Therefore, by analogy with Eq. (8.30),
we write

! ¼ �e�Sm
v =Re��H

m
v =RT, (10:25)

where �Sm
v and �Hm

v are the entropy and enthalpy of the vacancy
migration.

We now derive an expression for the equilibrium vacancy concentration.
Consider vacancies as the solute and the metal atoms as the solvent. Let the
enthalpy of formation of the solution containing nv moles of vacancies be

�Hf ¼ �Hf
vnv, (10:26)

where �Hf
v is the enthalpy of formation of 1 mole of vacancies. Since the

vacancy concentration is small, a vacancy rarely has a vacancy as a
neighbor. Therefore, �Hf

v does not depend on the vacancy concentration
(just as the partial enthalpy of a solute in an ideal dilute solution does not
depend on solute concentration—see Section 3.2.1). The entropy of
formation of the vacancy solution has two contributions: the first is
associated with the fact that the formation of a vacancy modifies the
vibrational frequencies of neighboring atoms, �Sf

v, and the second is
associated with the numbers of lattice sites where vacancies can be created.
The last term is simply the entropy of mixing. Since we assume that
the vacancy solution is an ideal dilute solution, this term should have the
form

�Smix ¼ �R n1 ln
n1

n1 þ nv
þ nv ln

nv

n1 þ nv

� �
, (10:27)

5 For simplicity we assume that all atoms vibrate with the same frequency. Of course, this is
not really true, but you will have to read a book on condensed matter physics to find out why.

6 Consider a tightly packed array of billiard balls on a billiards table. Remove one atom
from the center and try to push one of the neighboring balls into this vacancy (you cannot lift
the ball off the table because that would be cheating). You will see that this action pushes some
of the other billiard balls away from the migration path.
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where n1 is the number of atoms. Combining these results, we obtain the
following expression for the change in the Gibbs free energy associated
with the formation of nv vacancies in a lattice of n1 atoms.

�Gf ¼ �H f
vnv � T�S f

vnv þ RT n1 ln
n1

n1 þ nv
þ nv ln

nv

n1 þ nv

� �
: (10:28)

As can be seen in Fig. 10.5, this expression has a minimum at a finite
number of vacancies, ne

v, which can be determined from the condition
(@�Gf/@nv)n1,T¼ 0. Using Eq. (10.25), we find

ne
v

n1 þ ne
v

¼ e�S
f
v=Re��H

f
v=RT

or

xe
v ¼ e�S

f
v=Re��H

f
v=RT: (10:29)

Experiments show that atT�Tmelt, x
e
v � 10�4 in most metals. The value

of �H f
v in face-centered cubic metals is roughly �Hf

v � 10RTmelt. For
example, for Al (Tmelt¼ 933 K), this estimate gives �Hf

v � 78 kJ/mole as
compared with experimental value of �H f

v � 73 kJ/mole and for Cu
(Tmelt¼ 1356K) we find�Hf

v � 113 kJ/mole versus the experimental value
�H f

v � 113 kJ/mole, respectively. Equation (10.29) implies that xe
v grows

rapidly with increasing temperature. For example, for Cu at T¼ 300 K,
xe

v ¼ 10�19 and at T¼ 1350 K it is xe
v ¼ 1:3 � 10�4:�S f

v is typically quite
small (usually, 0 � �S f

v � R) and does not greatly influence the value of xe
v.

Note, that if we plot the temperature dependence of the vacancy concen-
tration as ln xe

v versus 1/T the values fall on a straight line with slope
��Hf

v=R.
Inserting Eqs (10.25) and (10.29) into Eq. (10.24) we find

D ¼ f��2�e �S f
vþ�Sm

vð Þ=Re� �H f
vþ�Hm

vð Þ=RT: (10:30)

Comparison with the Arrhenius law (Eq. (10.21)) shows that the pre-
exponential factor is

D0 ¼ f��2�e �S f
vþ�Sm

vð Þ=R: (10:31)

The activation energy for diffusion in the case of the vacancy mechanism is
the sum of the vacancy formation and the vacancy migration enthalpies

E ¼ �H f
v þ�Hm

v : (10:32)

This result can be checked experimentally, since all three variables (E,�H f
v,

and �Hm
v ) can be independently determined. Table 10.2 presents the

results for three face-centered cubic metals. The good agreement between
the numbers in last two columns demonstrates that Eq. (10.32) and the
assumption that diffusion in these systems is controlled by the vacancy
mechanism is reasonable.

We now consider the mechanism of interstitial diffusion. For the case of
self-diffusion, the physical picture is fundamentally identical to that for the

DGf

0
ne

v
nv

Fig.10.5
The change in the Gibbs free energy

associated with the formation nv moles

of vacancies.
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vacancy mechanism: the diffusivity depends on both the equilibrium
interstitial concentration and the rate at which an interstitial migrates.
Therefore, by analogy with Eq. (10.30), we can write

D ¼ f��2�e �S f
i
þ�Sm

ið Þ=Re� �H f
i
þ�Hm

ið Þ=RT, (10:33)

where �H f
i and �S f

i are the changes in enthalpy and entropy associated
with the formation of 1 mole of self-interstitials, and�Hm

i and�Sm
i are the

energy and entropy of interstitial migration. Therefore the activation energy
for interstitial diffusion is E ¼ �H f

i þ�Hm
i . Experiments and computer

simulations commonly show that �H f
i þ�Hm

i > �H f
v þ�Hm

v . This is
why self-diffusion is usually controlled by the vacancy mechanism.

For the case of substitutional solid solutions, the fundamental mech-
anism of hetero-diffusion is the same as for self-diffusion—that is it occurs
by the hopping of solute atoms into a vacancy. On the other hand, the
physical picture for solute diffusion in interstitial solid solutions is quite
different. Since the solutes are already in interstitial sites, interstitials need
not be created. Hence, interstitial solute diffusion only has a contribution
from interstitial migration

Di ¼ f��2�e�S
m
i
=Re��H

m
i
=RT: (10:34)

In this case, the solute diffusivity can be much larger than the solvent
diffusivity.

Example problem

1. Estimate �H f
v and � for nickel. You can use the following handbook

data:
(1) copper is a face-centered cubic with a cubic lattice constant of

a¼ 0.355 nm;
(2) the melting temperature for copper is Tmelt¼ 1355 K;
(3) the self-diffusivity of Ni can be described by D¼ 1.9e�285,000/RT

cm2/s.

10.4 Di¡usion in amorphous metals

In contrast with crystalline materials, amorphous alloys have no regular
crystalline lattice. Atomic order in amorphous materials is rather more

Table10.2 The heat of vacancy formation �H f
v, the vacancy migration enthalpy �Hm

v ,

the proposed activation energy for diffusion �H f
v þ�Hm

v , and the experimentally

measured activation energy for diffusion E for several face-centered cubic metals

Metal Energy (kJ/mole)

�H f
v �Hm

v �H f
v þ�H n

v E

Ag 106 80 186 185

Al 73 60 133 143

Cu 113 77 190 199
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similar to that in liquids. However, diffusivities in amorphous materials are
typically very small as compared with those in the corresponding liquids.
Amorphous materials are generally metastable with respect to crystalline
materials of the same composition. When an amorphous material is
heated, it will crystallize at a temperature known as the crystallization
temperature, Tcr. Note, since amorphous materials are metastable, they
could, in principle, crystallize at any temperature. However, crystallization
kinetics at low temperatures is very slow. The value of the crystallization
temperature and the stability of amorphous alloys are controlled by
kinetics, that is, diffusion. Below, we discuss the diffusion of metals and
non-metals in classical amorphous metallic alloys. Such alloys consist of
transition or noble metals (e.g. Fe, Co, Ni, Pd, Au) and non-metals (e.g. B,
C, P, Si, Ge).7

Diffusivities in amorphous metals are sensitive to the manner in which
they were fabricated. This is associated with the fact that amorphous
materials do not have a unique structure, like crystals; there are very many
different amorphous atomic arrangements. Not surprisingly, some of these
are much more stable than others. When an amorphous material is heated,
it undergoes some type of structural relaxation toward a more stable
amorphous structure. Therefore, it is often difficult to separate the effects
of diffusion from the effects of structural relaxation. In order to avoid
this relaxation effect, amorphous materials are generally annealed at
T¼ 0.96/0.98 Tcr prior to performing a diffusion experiment at a lower
temperature (below 0.9 Tcr).

Experimental studies have shown that the temperature dependence
of the diffusivity is usually well described by the Arrhenius law. This is a
surprising result! Recall that in our development of the theory of dif-
fusion, we have explicitly assumed that diffusion occurs through the
formation and migration of point defects (Section 10.3). This is
important since the regularity of the crystal lattice implies that the point
defect formation and migration energies have unique values (all posi-
tions in the lattice are equivalent). In an amorphous structure, where the
lattice is not regular, we should expect that the defect formation and
migration energies are widely distributed. The observation that the
Arrhenius law is still applicable for diffusion in amorphous alloys may
be the result of the fact that most diffusion studies in these materials
are performed over a relatively small temperature range (typically
�100 K—the temperature must be high enough such that diffusion is
measurable but not too close to the crystallization temperature). Typical
diffusivities at T¼ 0.85 Tcr in simple amorphous alloys are in the range
10�20–10�23 m2/s. For example, at T¼ 573 K (0.85 Tcr) the following
data were obtained for the diffusivities in amorphous Fe40Ni40B20:
DB¼ 10�20 m2/s, DFe¼ 10�23 m2/s. At the same temperature DB¼
10�18 m2/s and DFe¼ 10�27 m2/s in crystal Fe.

Although several mechanisms for diffusion in amorphous alloys have
been proposed, there is no consensus as to the dominant mechanism.

7 There are also amorphous alloys consisting of only metals (e.g. Ni–Zr, Fe–Zr).
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According to one suggestion, the so-called quasi-vacancy mechanism,
diffusion in amorphous alloys occurs by a mechanism akin to the vacancy
mechanism in crystals. However, instead of real vacancies, amorphous
materials have excess of free volume (the density of an amorphous state is
less than that of the corresponding crystalline state) distributed over a
spectrum of hole sizes or quasi-vacancies (they can be larger or smaller
than the atoms of the alloy). The quasi-vacancy mechanism suggests that
atoms can jump into these holes like atoms jump into vacancy sites in
crystals (see Section 10.3 for a description but recall that each hole has its
own formation and migration energy). In another suggested mechanism,
the elementary diffusion event is thought to be a cooperative displacement
of a group of neighboring atoms. Since many atoms participate in this
cooperative displacement, the activation energy is a quantity representing
an averaged over the entire group. This explains why there appears to be
a single activation energy and why the activation energies for the diffusion
of non-metals and metals are similar.

The experimental results for metal atom diffusion within amorphous
semi-conductors are even more complicated. For example, the diffusivity
of some metals (e.g. Li, Ni, Fe, Cu, Pd) in amorphous silicon is even slower
than in crystalline silicon. This observation can be understood as follows:
these metal atoms diffuse in crystalline silicon via an interstitial mechanism
while in amorphous silicon these metal atoms can be trapped in a Si quasi-
vacancy (recall that interstitial diffusion is typically much faster than
substitutional diffusivity). However, some other metals (e.g. Au, Pt, Zr)
diffuse in amorphous silicon faster than in crystalline silicon. This can be
attributed to the fact that such metal atoms can occupy either lattice or
interstitial sites in crystalline silicon. Therefore, the diffusion of these
atoms includes fast migration through interstitials and trapping at Si sites.
In amorphous silicon, such trapping is rarer than in crystalline silicon and
hence diffusion is faster in amorphous silicon.

10.5 Di¡usion in polymers

The last several decades have seen an explosion in the use of polymeric
materials. The annual world production of polymeric materials (by volume
or mass) has overtaken that of metals. Diffusion in polymeric materials is
even more important than in metals since at moderate temperatures the
diffusivities of atoms and small molecules (e.g. O2, H2O, CO2, N2) in
natural rubber are �10�10 m2/s at room temperature.

When small molecules penetrate into a polymer, the polymer chains can
undergo a conformation change near these small molecules. The nature of
the diffusion process is determined by the relative rates of the diffusion of
the penetrant molecules and the conformational relaxation of the polymer
chains. This can been described in terms of the Deborah number De, which
is the ratio of the characteristic time �m of the conformational relaxation of
the polymer chains and the characteristic diffusion time �D

De ¼ �m=�D: (1)
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The characteristic time for diffusion through a polymeric film of
thickness h can be defined as

�D ¼ h2=D, (10:35)

where D is the coefficient of mutual diffusion. If the Deborah number
is small (De< 0.1), conformational relaxation is much faster than dif-
fusion. If the Deborah number is large (De> 10), the polymer structure
remains nearly static during the diffusion process. In both cases, the
penetration can be described by Fick’s laws. However, the situation is
more complicated if the two times are similar, that is, 0.1<De< 10. In this
case, the relaxation can lead to localized trapping of the penetrant mole-
cules, and hence, Fick’s second law is not directly applicable (the number
of molecules that are free to diffuse is variable).

At present, no clear picture for diffusion of metals in polymers has
emerged. For example, noble metals used in contacts in microelectronics
diffuse more slowly than gas molecules of similar or even larger size. This
suggests that either metal atoms diffuse as clusters which are considerably
larger than single atoms or there is a strong interaction between noble
metals and polymers.

10.6 Di¡usion inmultiphase systems

To this point, we have only considered diffusion in single phase systems. In
such systems, the concentration profile, c(x), is a smooth function. While it
can be convex or concave, have inflection points, etc., neither it nor its
derivatives exhibit discontinuities. In this section, we will consider dif-
fusion in multiphase systems and find that such discontinuities are not only
possible but are the rule. In particular, we will focus on the relation
between the concentration profile and phase diagrams. We will not,
however, consider diffusion along interfaces.

Consider the eutectic phase diagram shown in Fig. 10.6(a). At
temperatures below the eutectic temperature, the diagram shows two solid
solution regions (� and �) separated by a two-phase region. Consider
diffusion at temperature T1 in a very long bar, initially composed of a
homogeneous � solid solution of B concentration c0 (c0< c��). The con-
centration of B is fixed at c¼ cs (cs> c��) on the left side of the sample,
as shown in Fig. 10.6(b). The initial and boundary conditions for this
problem are

c(x, 0) ¼ c0

c(0, t) ¼ cs; @c

@x

����
x¼1, t

¼ 0:

As B atoms diffuse from the left side into the sample, a � solid solution
forms near that edge and grows during the diffusion anneal. The concen-
tration of B in the � solid solution varies from cs on the surface to c�� at
the point labeled �1 in Fig. 10.6(b) (�1 is the thickness of the � phase after
some annealing time t1). The B concentration cannot go below c��, since
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Fig.10.6
(a) A eutectic phase diagram,

(b) a semi-infinite bar that is initially

composed of the � phase, where the

concentration of B atoms at one end is

fixed at cs. As B atoms diffuse in,

a section of the bar near the surface will

transform to�while the remainingof the

bar is �, (c) the B atom concentration

profiles, where the variable �i is the

position of the �/� interface at time ti.
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the phase diagram shows that c�� < c< c�� is in the two-phase region of the
diagram. At the point where c¼ c��, an interface between � and � forms;
the concentration of B in the �-phase near the interface is c��. With
increasing distance from the interface, the concentration of B atoms in the
�-phase decreases monotonically. Note that the sample does not have a
region containing both � and �. The point is that these two phases can
co-exist only where they are both saturated in B (c�� and c��, respectively).
Such a region cannot form by diffusion since the fact that these phases are
saturated means there can be no flux through these phases (because no
concentration gradient exists). Therefore, a vertical step in the concen-
tration profile c(x) corresponds to the two-phase region on the phase
diagram. The height of this step, c��� c��, can be determined from the
phase diagram and does not change during diffusion. The step will,
however, move to the right as the � phase grows. In the region where the
concentration of B is less than c��, an � solid solution exists.

Wagner considered different limiting cases for the rate of growth of the �
phase. For example, if we assume that the � phase growth is controlled by
the rate of diffusion of B, the � phase thickens according to (cf. Eq. (10.18))

� ¼ 2b
ffiffiffiffiffiffiffiffi
DBt

p
, (10:36)

where DB is the diffusivity of B in � phase and b is a constant (see below).
Consider the special case in which the initial � solution is saturated

(c0¼ c��). The concentration profile for this case has the form shown in
Fig. 10.7 after an annealing time t. In this case, diffusion occurs only in the
� phase (since the � phase is saturated) and the concentration profile in �
takes the following form (see Section 10.1.3):

c(x, t) ¼ Aþ B � erf x

2
ffiffiffiffiffiffiffiffi
DBt
p

� �
: (10:37)

The coefficients A and B can be found from the initial and boundary
conditions:

c(0, t) ¼ A ¼ cs
c(�, t) ¼ c�� ¼ Aþ B � erf(b); B ¼ cs � c��

erf(b)
:

In general, the rate at which the � phase thickens is found by equating
the amount of B required to grow the � phase and the rate at which B atoms
are supplied to the �/� interface

(c�� � c��) d�

dt
¼ �DB

@c

@x

� �
x¼�
c¼c��

: (10:38)

The derivatives d�/dt and @c=@xð Þ
x¼�
c¼c��

can be found from Eqs (10.36) and

(10.37), respectively. Inserting the results into Eq. (10.38), we obtain

cs � c��
c�� � c�� ¼

ffiffiffi


p
b � exp(b2)erf(b) ¼ F(b): (10:39)

cba

cB

cs

cab

j x

Fig.10.7
Concentration profile for the case

in which the initial � solution is

saturated.
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This equation provides a means by which b can be determined. The
function F(b) is tabulated in Appendix IV. If b� 1, then F(b)� 2b2 and
Eq. (10.39) reduces to

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

cs � c��
c�� � c��

s
: (10:40)

Finally inserting this result into Eq. (10.36), we find

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
cs � c��
c�� � c�� DBt

r
: (10:41)

This relation shows that the rate at which the new phase grows in a multi-
component system increases with increasing diffusivity and the difference
between the concentration of B on the left-side of the sample and the
solubility of A in � (cs – c�� in the numerator) and with decreasing width of
the two-phase region in the phase diagram (c�� – c�� in the denominator).

Example problem

1. Consider an Ag–Zn alloy bar in which the � solution is saturated with
Zn at T¼ 600�C (the phase diagram is shown in Fig. 10.8). The con-
centration of Zn on the left surface of a bar is fixed at 50%. The sample
is annealed at T¼ 600�C for 10h. Estimate the thickness of the � phase
formed. The handbook value of the diffusivity of Zn in the � solution at
T¼ 600�C is D�¼ 7.2 � 10�10 cm2/s.
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10.7 Thermal di¡usion

In our discussion of diffusion, we have focused upon diffusion fluxes
arising as a result of concentration gradients. However, as we know from
the thermodynamicsof irreversible processes (seeChapter 9), other thermo-
dynamic forces can also give rise to a diffusion flux. Consider the following
experiment. A sample prepared from a solution of C in �-Fe (a body-
centered cubic lattice) is annealed for a long time such that the carbon
concentration is constant throughout the sample. Next, the two ends of the
sample are heated such that the temperatures of each are fixed at different
values. This will, of course, produce a heat flux from the hotter end to the
cooler end. This thermodynamic force that gives rise to heat flow can also
create other fluxes as well, for example a diffusion flux. Indeed, experi-
ments similar to that described here have been performed and showed that
carbon tends to diffuse from the cooler to hotter end of the sample. If the
sample is held under these conditions for a very long time, the diffusion flux
stops, leaving behind a constant concentration gradient. This phenomenon
is called thermal diffusion

8 and is an example of a cross-effect in the
Onsager relation (Eq. (9.1)). We now analyze thermal diffusion within the
framework of the thermodynamics of irreversible processes, as outlined in
Section 9.7:

1. First, we determine which fluxes can occur in our system. In the present
case, fluxes of C, Fe, vacancies, and heat are all possible. Since C is an
interstitial in �-Fe, the C flux is much greater than either the Fe or
vacancy flux. Therefore, it is reasonable to restrict our attention to
fluxes of carbon and heat alone.

2. The appropriate acting thermodynamic forces are associated with
gradients in the chemical potential for carbon and temperature.

3. The flux equations (see Section 9.6), according to the thermodynamics
of irreversible processes, are

jC ¼ �LCCrT	C � LCQ
rT
T

jQ ¼ �LQCrT	C � LQQrT
T
: (10:42)

4. The diffusion of carbon toward the hot end leads to a concentration
gradient and, hence, a chemical potential gradient. The chemical
potential will also increase from the cooler to hotter end of the sample.
According to Fick’s first law, this chemical potential gradient should
cause a diffusion flux directed from the hotter to cooler end of the
sample. Steady-state is achieved when the C and temperature profiles no
longer change. This happens when the carbon flux associated with the
chemical potential gradient balances that due to the temperature gra-
dient. Therefore, in steady-state, the first equation in Eq. (10.42) gives

rT	Cð Þsteady�state¼ �
LCQ

LCC

rT
T
: (10:43)
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Note that in steady-state, there is still a flow of heat. Now, consider the
case where no temperature gradient is imposed, but the chemical
potential of carbon is fixed at different values on the two ends of the
sample. In steady-state, Eq. (10.42) implies

jQ

jC

� �
rT¼0

¼ LQC

LCC
¼ Q*: (10:44)

Since JQ ¼ Q*jC we can interpret Q* as the heat carried by 1 mole9 of
carbon atoms in an isothermal diffusion flux. This value is called the
heat of transport. If the carbon forms an ideal dilute solution in �-Fe,
the chemical potential for carbon is 	C ¼  C þ RT ln cC. Combining
this relation with Eqs (10.43) and (10.44), gives

RT rTcCð Þsteady�state¼ �Q*
rT
T

or

@ ln cC
@T

� �
steady�state

¼ � Q*

RT2
: (10:45)

Since carbon diffuses to the heat end, its concentration increases with
the increasing of the temperature, therefore, for given process the heat
of transfer Q*< 0. Experimentally measured value of the heat of
transfer is Q*¼ � 96 kJ/mole.

5. There are three kinetic coefficients in Eq. (10.42): LCC, LCQ and LQQ.
Therefore, we require three experimental measurements to determine
these coefficients.Q*, and hence the LQC /LCC ratio, can be determined
using Eq. (10.45) by measuring c(x) and T(x) at steady-state. The
coefficient LCC can be found from a standard isothermal carbon dif-
fusion experiment using the relation between the Onsager coefficient
LCC and the carbon diffusivityLCC¼DCcC/RT (see Eq. (10.2)). Finally,
measurement of the thermal conductivity 
0 in the absence of a con-
centration gradient10 using Fourier’s law jQ¼ �
0rT allows us to
determine LQQ through LQQ¼
0T.

Example problems

1. Show that at steady-state jQsteady-state¼�
steady-staterT and find the
relation between 
steady-state and Q*, D, and 
0.

2. The thermal diffusion of hydrogen in �-Fe was investigated at
T¼ 300 K in an experiment in which the average hydrogen concentra-
tion was cH¼ 0.01%. In an experiment in which the gradient of ln cH

8 Thermal diffusion in liquid solutions was discovered by Soret at the end of 19th century.
Thermal diffusion can be used to separate isotopes.

9 If the dimension of the flux is mole/(sm2).
10 The concentration gradient is initially zero but is established as a result of thermal

diffusion. As any diffusion in solids, thermal diffusion requires a long time.
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was 1 cm and the gradient of lnT (where T is in Kelvin) was � 3.33 cm,
the flux of hydrogen atoms was measured to be jH¼ 5.7 � 1014 atom/
(cm2s). Find the heat of transport. Use the following hand-book data:
the density of �-Fe is 7.87 g/cm3 and the hydrogen diffusivity in �-Fe
is DH ¼ 2:4 � 10�7 cm2/s at 300 K.
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Kinetics of heterogeneous
processes

Most practical reactions that occur in synthesizing or processing
materials are heterogeneous. These include oxidation, reduction reac-
tions, dissolution of solids in liquids, and most solid-state phase
transformations. Consider the oxidation of a metal by exposure of a
solid metal to an atmosphere with a finite partial pressure of oxygen.
In order for oxidation to occur, molecular oxygen must dissociate into
atomic oxygen on the metal surface. In some cases, atomic oxygen
diffuses into the metal and reacts to form an internal oxide, while in
others, the reaction occurs at the surface. In the latter case, thickening
of the oxide layer requires either metal or oxygen diffusion through the
growing oxide layer. This example demonstrates that heterogeneous
processes commonly involve several steps. The first step is usually
the transport of a reactant through one of the phases to the interface.
The second is the adsorption (segregation) or chemical reaction on the
interface. Finally, the last third step is the diffusion of the products
into the growing phase or the desorption of the product. Since the
entire heterogeneous process is a type of complex reaction, there is
usually one step that controls the rate of the process, that is, is the rate-
determining step. Recall that the rate-determining step is the slowest
(fastest) step for a consecutive (parallel) reaction (see Sections 8.2.1
and 8.2.2).

Consider the case of a consecutive heterogeneous reaction in which one
of the reactants is transported through the fluid phase to the solid–fluid
interface, where a first-order reaction takes place. The reaction rate !r in
such a case is !r¼ kcx, where cx is the concentration of the reactant on the
interface. Since the reactant is consumed at the interface, cx is smaller than
the reactant concentration far from the interface, c0 (see Fig. 11.1). It is
usually easier to measure the reactant concentration in the bulk fluid.
Therefore, it is convenient, to rewrite the reaction rate in terms of the bulk
concentration in the fluid and an effective rate constant

!r ¼ kcx ¼ keffc0: (11:1)

It is easiest to see the relation between keff and k by considering the
steady-state case. Steady-state occurs when the rate of transport of the
reactant to the interface,!1, becomes equal to the chemical reaction rate,!r.

11

Liquid Solid

c

c0

cx

x = –D x = 0 x

Fig.11.1.
Concentration profile for the

consecutive heterogeneous reaction

considered in the text.



If we assume that the concentration decreases linearly from c0 to cx in the
fluid over a distance � from the interface, then

!1 ¼ �(c0 � cx); (11:2)

where � is the mass-transfer coefficient, with dimensionality per second.
In steady-state !1¼!r, such that

�(c0 � cx) ¼ keffc0 ¼ kcx
or

cx ¼ �c0
� þ k ;

where we have used Eqs (11.1) and (11.2). Inserting this relation into
Eq. (11.1), we find

!r ¼ kcx ¼ k�c0
� þ k :

Since, by definition, !r¼ keffc0, we finally obtain

keff ¼ k�

� þ k : (11:3)

If �� k (the rate-determining step is the transport of the reactant to
the interface), then keff¼ �. If �� k (the rate-determining step is the
chemical reaction), then keff¼ k. In both cases, the overall rate of the
process is controlled by the slowest step.

We now consider the case of a parallel heterogeneous reaction. Let the
reactant concentration on the interface (at which the chemical reaction
occurs) be constant (cx¼ const) and the reactant is able to diffuse within
the solid phase (x> 0 in Fig. 11.1). In this case, both reaction and diffusion
can lead to the consumption of the reactant. The quantity qr consumed by
a first-order chemical reaction is

qr ¼ !rtV ¼ kcxtA� (11:4)

where t is time, V, A, and � are the volume, interface area, and an effective
interface thickness (typically measured to be of near atomic dimension).
The quantity of reactant qd which diffuses into the solid is (see
Section 10.1.3)

qd ¼ 2ffiffiffi


p cx

ffiffiffiffiffiffi
Dt
p

A: (11:5)

Hence,

qd
qr
¼ 2ffiffiffi



p

ffiffiffiffiffiffiffiffi
D=t

p
k�

�
ffiffiffiffiffiffi
Dt
p

k�t
: (11:6)

If
ffiffiffiffiffiffi
Dt
p � k�t, then qd� qr and the reactant is consumed primarily by

chemical reaction. If k�t� ffiffiffiffiffiffi
Dt
p

, then qr� qd and most of the reactant
diffuses into the solid. In both cases, while the rate of the total process
depends on both steps, in very many cases, one of the steps contributes
little.
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As described above, heterogenous processes involve both transport of
one or more species and a reaction. If the overall process is controlled by
the reaction, such a process is described as kinetics-limited, while in the
other case it is described as transport-limited. In the latter case, the limiting
transport process can occur in either one of the two phases bounding the
interface. If one of the phases is a fluid, this transport could occur by
convection, turbulent mixing or diffusion, while in the solid, it is by dif-
fusion. Whether the entire process is controlled by the interface reaction or
by transport depends on such factors as temperature, pressure, and con-
centration. At low temperature, the process is usually kinetics-limited since
the rate of chemical reactions commonly decreases more quickly
with decreasing temperature than does the pertinent diffusivity (i.e. the
activation energy for most chemical reactions is larger than that for dif-
fusion). A typical plot of the effective rate constant versus temperature is
shown schematically in Fig. 11.2.

If the process is limited by transport in the fluid, the rate of the process
depends on the flux through the fluid, the rate of consumption of the
reactant is proportional to time, the rate of the process is weakly
temperature-dependent and may be influenced by convection. If the pro-
cess is kinetics-limited, the rate of the process is independent of the flux
through the fluid, the rate of consumption of the reactant depends on the
order of the reaction, the rate of the process is strongly temperature-
dependent and depends strongly on the type of reactants and their con-
centration. If the process is limited by diffusion in the solid, the rate of
consumption of the reactant is proportional to the square root of time,
the sensitivity of the rate of the process to temperature is intermediated
between the other cases and the rate depends on the concentration of the
reactant already in the solid and the structure of the solid.

ln keff

I

T –1

II III

Fig.11.2
A prototypical plot of the effective rate

constant versus temperature. Regions I,

II, and III correspond to the transport-

limited, mixed, and kinetics-limited

regimes, respectively.
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Introduction to statistical
thermodynamics of gases

As we discussed earlier in this book, thermodynamics provides very
general relations between the properties of a system. On the other hand,
thermodynamics is unable to predict any of the individual properties
without the addition of either empirical or microscopic information. For
example, we used thermodynamics to obtain Raoult’s law from Henry’s
law, but we cannot derive Henry’s law from thermodynamic principles.
Statistical mechanics provides an approach to determine individual ther-
modynamic properties from microscopic considerations. When applied in
the realm of physical chemistry, we refer to this approach as statistical
thermodynamics. In this chapter, we provide a simplified derivation
of the Gibbs distribution, which is the basis of much of statistical thermo-
dynamics. We then use statistical mechanics to show how the properties
of an ideal gas can be obtained from a small number of properties of the
molecules in the gas. This will allow us to determine such quantities as
the equilibrium and rate constants of gas phase chemical reactions. As a
result, we will gain new insight into the phenomena which we have already
considered on the basis of phenomenological thermodynamics or formal
kinetics. This approach will also show how to determine some of the
parameters we previously introduced as input data in our thermodynamic
considerations.

12.1 Gibbs statistics

As we have already seen, a finite system will eventually come into equi-
librium with its surroundings. We even showed that when thermodynamic
equilibrium is established, the temperatures, pressures, and chemical
potentials of the system and its surroundings are equal (see Section 1.5.2).
However, we never discussed what equilibrium actually is. For example,
does this mean that the energy of the system is truly constant or is it only
constant on average? When the system has a particular energy, does this
mean that it is in a unique physical state or can it be in any one of several
states that have exactly the same energy? In the latter case, can we simply
talk about the probability the system is in each of these states? If the energy
can fluctuate, what is the probability that the system has a particular

12



energy? A very general approach to these types of questions was suggested
by Gibbs and is now known as Gibbs statistics.

In order to obtain the probability that the system is in a given state, we
could observe the system over time and see what fraction of the time it
spent in this state. Gibbs suggested another approach. He considered the
system to be a member of a large ensemble of copies of our system. Let us
assume that there are N systems in our ensemble and they interact only
very weakly. This interaction is strong enough to ensure that thermal
equilibrium is established between all of the systems in the ensemble, yet
weak enough that it makes only a negligible contribution to the total
energy of the ensemble of systems. This implies that the energy of the
ensemble is simply

Ue ¼
XN
i¼1

Ui, (12:1)

where Ui is the energy of system i. The main idea of Gibbs statistics is that
the probability that a system is in a particular state is simply the fraction of
the systems in the ensemble that are in this state. We can assume thatN is so
large that this fraction is independent of N.

Each member in our ensemble of N systems can be in microstate
1, 2, . . . ,k. These states are numbered in such a way thatUkþ 1 	 Uk, where
Uk is the energy of the system in state k. The state of the ensemble can
be characterized by the numbers of systems in each of these of microstates,
that is, ak systems in state k. How many different states of this ensemble
are there? Elementary combinatorics shows that this number is

� ¼ N!

a1!a2! . . . ak!
: (12:2)

In statistical mechanics, the ensemble entropy is related to the number of
states, � as

Se ¼ kB ln�, (12:3)

where kB is the Boltzmann constant. This definition is consistent with the
properties of entropy that we already know. Since � depends only on the
state of the ensemble, ln� is obviously a state function. Consider now an
ensemble consisting of two parts which are in thermal equilibrium with
each other. Let�1 and�2 be the numbers of states associated with these two
parts. The number of states associated with the entire ensemble is

� ¼ �1�2: (12:4)

The total entropy is thus

Se ¼ kB ln� ¼ kB ln�1 þ kB ln�2 ¼ S1 þ S2,

therefore, we see that entropy is an extensive property. AtT¼ 0, all systems
should be in the state with the lowest energy, therefore, �¼ 1 and S¼ 0.
This is in agreement with the third law of thermodynamics. Below, we

Gibbs statistics 193



will show that this definition of the entropy is consistent with the
thermodynamic relations we found earlier on the basis of classical thermo-
dynamics.

Since the ensemble is an isolated system, the entropy has a maximum in
equilibrium. Therefore, in order to determine the number of systems in the
ensemble that are in each state (i.e. ak), we maximize S (Eq. (12.3)) subject
to the constraints that the number of systems is fixed (at N) and the total
energy is fixed (at Ue): X

k

ak ¼ N (12:5)

X
k

akUk ¼ Ue: (12:6)

Thus, the condition of equilibrium takes the following form:

�Se � �
X
k

�ak � �
X
k

Uk�ak ¼ 0, (12:7)

where � and � are Lagrange multipliers and Se is function of ak. Since N
is large, we can use Stirling’s approximation

lnN! � N lnN�N ¼ N ln (N=e):

Inserting this expression into Eqs (12.2) and (12.3), we find

Se ¼ kBN( lnN� 1)� kB

X
k

ak( ln ak � 1): (12:8)

Next, we employ this expression for Se in Eq. (12.7) to find:

�kB

X
k

ln ak�ak � �
X
k

�ak � �
X
k

Uk�ak

¼ �
X
k

(kB ln ak þ �þ �Uk)�ak ¼ 0:

Since the coefficients ak are independent variables, the multiplier in front of
each �ak must be zero. Therefore, we obtain:

ak ¼ e�(�þ�Uk)=kB :

The first Lagrange multiplier can be determined by inserting this expres-
sion into Eq. (12.5):X

k

e�(�þ�Uk)=kB ¼ N; e��=kB ¼ NP
k e��Uk=kB

:

This implies that

ak ¼ N e��Uk=kBP
k e��Uk=kB

: (12:9)
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The energy and entropy of the ensemble can now be obtained by
inserting this expression into Eqs (12.6) and (12.8), respectively:

Ue ¼ N
P
k Uke

��Uk=kBP
k e��Uk=kB

, (12:10)

Se ¼ kBN( lnN� 1)� KB

X
k

N
e��Uk=kBP
m e��Um=kB

ln Nþ ln
e��Uk=kBP
n e��Un=kB

� 1

� �

¼ kBN( ln N� 1)� kBN( lnN� 1)P
m e��Um=kB

X
k

e��Uk=kB

þ kBNP
m e��Um=kB

X
k

�Uk
kB

e��Uk=kB

þ kBNP
m e��Um=kB

ln
X
n

e��Un=kB

X
k

e��Uk=kB :

Since all of the sums in the last expression are independent we can replace
the summation indices m and n by k. After some simple manipulations,
we obtain:

Se ¼ N�P
m e��Um=kB

X
k

Uke
��Uk=kB þ kBN ln

X
k

e��Uk=kB :

Finally, using Eq. (12.10), we find:

Se ¼ �Ue þ kBN ln
X
k

e��Uk=kB : (12:11)

Although we have assumed that the ensemble is isolated in this derivation,
the final expressions for the energy and entropy of the ensemble
(Eqs (12.10) and (12.11)) are insensitive to this assumption. This must be
the cases since both the energy and entropy are state functions. We now
consider the case in which the ensemble is not isolated but rather is free
to exchange heat with its surroundings such that the temperature T of
the ensemble is fixed. We shall also work under the condition that the
volume of the ensemble is constant. If we change the temperature of the
surroundings, the energy levelsUk will not change (they depend only upon
the internal structure of the systems and the volume). Therefore, changing
temperature only changes the number of systems in each state (for
example, if we add heat to the ensemble, some systems will go from lower
energy to higher energy levels). Therefore, if the ensemble is brought into
contact with some surroundings, the sum on the right hand side of
Eq. (12.11) will not change. From Eq. (12.11), we obtain:

@Se

@Ue

� �
V

¼ �:

Comparing this result with the combined statement of the first and
second laws of thermodynamics (see Eq. (1.46)),

TdS ¼ dUþ pdV,
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we obtain

� ¼ 1

T
: (12:12)

Using this expression for the relation between the Lagrange multiplier �
and the temperature in Eqs (12.9)–(12.11), we obtain

ak ¼ N e�Uk=kBTP
k e�Uk=kBT

, (12:13)

Ue ¼ N
P
k Uke

�Uk=kBTP
k e�Uk=kBT

, (12:14)

Se ¼ Ue

T
þ kBN ln

X
k

e�Uk=kBT: (12:15)

These are the main equations of Gibbs statistics. Equation (12.13),
which relates the occupancy of different states to their energies and
temperature, is called the Gibbs distribution law. This result is very
general—it does not depend on any physical characteristic of the system.
Ue and Se in Eqs. (12.14) and (12.15) are properties of the entire

ensemble, rather than any individual system within the ensemble. Equation
(12.13) demonstrates that even in equilibrium we do not know which state
any individual system is in or, therefore, what its properties are. However,
statistical mechanics does tell us the probability (ak/N) that the system is in
a particular state (k). This probability can be used to determine the average
properties of the system. This average can be thought of as the result of an
ensemble average or, equivalently, a time average. The equivalence of
ensemble and time averages is known as the ergodic hypothesis. These
averages are the classical thermodynamics properties. Therefore, in order
to obtain the thermodynamic energy and entropy of a system, we simply
divide the energy and entropy of the entire ensemble by the number of
copies of the system in the ensemble N:

U ¼
P
k Uke

�Uk=kBTP
k e�Uk=kBT

, (12:16)

S ¼ U
T
þ kB ln

X
k

e�Uk=kBT: (12:17)

In our discussion of thermodynamics in previous chapters, we often
found it more convenient to work directly with the free energy, rather than
other thermodynamic properties. Using the definition of the Helmholtz
free energy,

A ¼ U� TS,
and the expressions for the energy and entropy (Eqs (12.16) and (12.17)),
we find:

A ¼ �kBT ln
X
k

e�Uk=kBT: (12:18)
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We will use this expression as the starting point for the remainder of our
discussions in this chapter.

Review question

1. What is Uk in the following equation:

A ¼ �kBT ln
X
k

e�Uk=kBT?

12.2 Statistical thermodynamics of an ideal gas

12.2.1 Partition function of an ideal gas

As a first application of the method of statistical thermodynamics, we will
focus on the simple case of an ideal gas.Recall that the molecules of an ideal
gas do not interact. This allows us to reduce the problem of determining the
energy of an entire gas system of molecules to that of determining the
energy of a single molecule. The state of an ideal gas can be described in
terms of the set of states occupied by its individual constituent molecules.
The energy of the kth state of the ideal gas system,Uk, can be related to the
energies of the states that the individual molecules occupy "m:

e�Uk=kBT ¼
Y
m

e�"m=kBT:

We shall assume that all molecules are identical such that states of all
molecules are described by the same set of possible values of "m. Therefore,
the sum over all states of the ideal gas system in Eq. (12.18) can be replaced
by sums over all of the states that each molecule can occupy. Since each of
theNmolecules in the system is independent, the summation in Eq. (12.18)
can be written as:

X
k

e�Uk=kBT ¼ 1

N!

X
m

e�"m=kBT

 !N
:

The factor 1/N! is used to take into account the fact that molecules in
the system are physically indistinguishable from one another. In other
words, if we exchange two molecules in the gas with each other, the new
state is indistinguishable from the original one. Inserting this result into
Eq. (12.18), we find

A ¼ �NkBT ln
X
m

e�"m=kBT þ kBT ln N!:

Using Stirling’s approximation

lnN! ¼ N lnN�N ¼ N ln (N=e),

we obtain

A ¼ �NkBT ln
e

N

X
m

e�"m=kBT

" #
¼ �NkBT ln

eZ

N
, (12:19)
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where e¼ 2.718281828 . . . (i.e. ln e¼ 1) and the quantity

Z ¼
X
m

e�"m=kBT (12:20)

is called the partition function of the ideal gas.
It is interesting to note that Eq. (12.20) is sufficient to determine the

equation of state of the ideal gas. First we note that in the absence of an
external (gravitational, electric, magnetic, . . . ) field, the energy of a
molecule in state m can be described by

"m ¼ p
2
m

2m
þ "0m, (12:21)

where the first term is the kinetic energy of the molecule and the second
term is related to the internal structure of the molecule, the vibrations of
the atoms within the molecule and its rotational momentum. This second
term depends on neither the spatial location of the molecule nor the
velocity of its center of mass. Therefore, the partition function of the
ideal gas is

Z ¼
X
m

e�"m=kBT ¼
X
m

e�"
0
m=kBTe

�p2
m=2mkBT

:

Since each state is characterized by the center of mass variables (momen-
tum and position) and the internal variables, we could rewrite the sum over
m as independent sums over the center of mass and internal variables.
Next, we make use of the fact that the position of the molecules and their
momenta are continuous variables by replacing the summation over the
center of mass variables with integrals over position and momentum:

X
. . .!

Z
. . . d�,

where

d� ¼ drdp

(2
�h)3
: (12:22)

The normalization is a result of the Heisenberg uncertainty principle,
as described in elementary quantum mechanics texts, and �h is Planck’s
constant divided by 2
. Thus, the partition function can be written as

Z ¼
X
m

e�"m=kBT ¼
X
m

e�"
0
m=kBT

Z
V

Z
p

e�p
2=2mkBT

2
�hð Þ3 drdp

¼
X
m

e�"
0
m=kBT

V

2
�hð Þ3
Z þ1
�1

e�p
2
x=2mkBTdpx

� �3

¼ V

2
�hð Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
mkBT

p� 	3X
m

e�"
0
m=kBT ¼ V mkBT

2
�h2

� �3=2X
m

e�"
0
m=kBT:
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Inserting this result into Eq. (12.19), we obtain:

A ¼ �NkBT ln
eV

N

mkBT

2
�h2

� �3=2X
m

e�"
0
m=kBT

" #
: (12:23)

Since the molecules of the ideal gas do not interact, the summationX
m

e�"
0
m=kBT

is only a function of temperature (and the type of molecules). Therefore,
Eq. (12.23) can be rewritten as

A ¼ �NkBT ln
V

N
þNkB f (T ): (12:24)

Using Eq. (12.24), we can now derive all other thermodynamic
properties. The equation of state is

p ¼ � @A

@V

� �
T

¼ NkBT

V

or

pV ¼ NkBT: (12:25)

This is the classical ideal gas law. The other common thermodynamic
properties are

G ¼ Aþ pV ¼ AþNkBT ¼ �NkBT ln
Z

N
, (12:26)

S ¼ � @A

@T

� �
V

¼ NkB ln
V

N
�NkB f

0(T ), (12:27)

U ¼ Aþ TS ¼ NkB f (T )�NkBT f
0(T ), (12:28)

H ¼ Uþ pV ¼ NkB f (T )�NkBT f
0(T )þNkBT: (12:29)

Equations (12.28) and (12.29) demonstrate that the internal energy and
enthalpy of an ideal gas depend only upon temperature (we came to the
same conclusion in Chapter 1). Since for an ideal gas, H¼UþNkBT,
we find

cp ¼ cV þNkB (12:30)

This can be rewritten per mole of molecules as cp¼ cVþR.
The thermodynamic properties can be related to the microscopic

properties of the molecules through detailed consideration of the energy of
a molecule in a particular state, ". This energy can be represented as a sum
over its internal energy, the energies associated with its rigid translation
and rotation and the energy associated with the vibrations of the atoms
within the molecule:

" ¼ "0 þ "tran þ "rot þ "vib: (12:31)
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Therefore, the partition function and the Helmholtz free energy can be
rewritten as:

Z ¼ e�"0=kBTZtranZrotZvib (12:32)

A ¼ N"0 �NkBT lnZtran �NkBT lnZrot �NkBT lnZvib

¼ N"0 þ Atran þ Arot þ Avib

(12:33)

(the last two terms on the right hand side of Eq. (12.23) are absent for a
monoatomic gas). As we discussed in Section 12.1, changing the temper-
ature at constant volume does not change the energy spectrum but rather
leads to a redistribution of the gas molecules between the available states.
Therefore,

@Z

@T

� �
V

¼
X
m

"m
kBT2

e�"m=kBT ¼ Z

kBT2
"h i ¼ Z

kBT2

U

N

or

U ¼ NkBT
2 @ lnZ

@T

� �
V

: (12:34)

Rewriting this expression using the separate contributions to the partition
function associated with the different degrees of freedom (Eq. (12.32)),
we find:

U ¼ N"0 þUtran þUrot þUvib (12:35)

cV ¼ cVtran þ cVrot þ cVvib (12:36)

Review questions

1. When can the total energy of a system be represented as a sum of the
energies of the molecules in the system?

2. What does the factor 1/N! in the expression
P
k e�Uk=kBT ¼

1
N!

P
m e�"m=kBT

� �N
account for?

12.2.2 Effect of translational motion of gas molecules

Since the motion of the center of mass of a molecule in the absence of an
external field is always classical, both classical and quantum mechanical
treatments yield the same results. The translational partition function can
be directly integrated as:

Ztran ¼
X
m

e�p
2
m=2mkBT ¼

Z
e�p

2=2mkBT
drdp

2
�hð Þ3

Ztran ¼ V mkBT

2
�h

� �3=2

: (12:37)
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The contributions to the Helmholtz free energy and the other
thermodynamic functions of the ideal gas can now be expressed as:

Atran ¼ �NkBT ln
e

N
Ztran

h i
¼ �NkBT ln

eV

N

mkBT

2
�h

� �3=2
" #

(12:38)

Utran ¼ NkBT
2 @ lnZtran

@T

� �
V

¼ 3

2
NkBT (12:39)

Stran ¼ NkBT
@ lnZtran

@T

� �
V

þNkB ln
e

N
Ztran

h i

¼ NkB ln
eV

N

mkT

2
�h

� �3=2
" #

þ 3

2
NkB

(12:40)

cVtran ¼ @Utran

@T

� �
V

¼ 3

2
NkB (12:41)

The heat capacity per mole is cVtran ¼ 3=2R.

12.2.3 Energy of diatomic molecules

The thermodynamic properties of a diatomic ideal gas differ from those of
a monatomic ideal gas because a diatomic molecule can rotate and its
constituent atoms can vibrate with respect to one another. These differ-
ences are manifested as rotational and vibrational contributions to the
partition function. In order to determine these contributions, we must first
obtain expressions for the vibrational and rotational contributions to the
energy. This requires some knowledge of quantum mechanics. If you
are not familiar with the basic notions of quantum mechanics, you may
choose to skip ahead to the text immediately following Eq. (12.48), where
we simply use the quantum mechanical results.

Since atomic nuclei are much heavier than electrons, we can use the
Born-Oppenheimer or adiabatic approximation: we determine the energy
levels of the electrons assuming that the nuclei are stationary. We can do
this as a function of the distance between nuclei (i.e. determine "e(r)). We
then allow the nuclei to move assuming that the electrons are always in
equilibrium with respect to the instantaneous position of the nuclei.
Therefore, the interaction between the nuclei can be described through
"e(r). The problem of the motion of two interacting particles can be
described through classical mechanics. In this way, we can show that the
energy of two interacting particles with masses m1 and m2 is

"m(r) ¼ "e(r)þ M2

2m0r2
(12:42)

where M is the angular momentum of nuclei and

m0 ¼ m1m2

m1 þm2
(12:43)
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If the total spin of the molecule is zero, its total angular momentum,
J, is the sum of the orbital momentum of the electrons, L, and angular
momentum of the rotation of the nuclei, M. Therefore, Eq. (12.42) can be
rewritten as

"m(r) ¼ "e(r)þ J� Lj j2
2m0r2

* +
(12:44)

where the average implied by the angular brackets is performed in a state
in which the square of the total rotational momentum J

2¼ �h2J(Jþ 1) and
the projection of the electron angular momentum Lz along the axis of the
molecule have particular values. Equation (12.44) can be rewritten as:

"m(r) ¼ "e(r)þ �h2

2m0r2
J(Jþ 1)� JL

m0r2
þ L2

2m0r2

The last term is determined only by the electronic state, therefore, we can
combine it with "e(r). Let ẑz be the unit vector in the direction of the
molecule axis. Since, in the state under consideration, the projection of the
angular momentum of the electrons onto the z-axis is defined, the average
angular momentum L also points in this direction, Lh i ¼ Lzẑz. Classical
mechanics states that the angular momentum of a system consisting of two
particles is the product of the relative momentum of the particles and the
vector connecting these particles:

M ¼ ½r� p
 ¼ r½ẑz� p
:
This definition implies that

Mẑz ¼ 0

and, therefore,

J� Lð Þẑz ¼ 0; Jẑz ¼ Lẑz ¼ Lz; JL ¼ JẑzLz ¼ L2
z :

The last relation demonstrates that the term containing JL also depends
only on the electronic state. Finally, we obtain,

"m(r) ¼ "(r)þ �h2

2m0r2
J(Jþ 1): (12:45)

The relative motion of the nuclei can be considered as a vibration along
the direction between the two atoms, with equilibrium separation re.
Introducing �¼ r� re, we can rewrite the previous equation as

"m(r) ¼ "0 þ B�hJ(Jþ 1)þm
0!2

2
�2, (12:46)

where

B ¼ �h

2m0r2e
¼ �h

2I
, (12:47)
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is the so-called rotational constant, I is the moment of inertia and ! is the
vibrational frequency. Since the last term in Eq. (12.46) is the energy of a
harmonic oscillator, we can rewrite this equation as

"m(r) ¼ "0 þ B�hJ(Jþ 1)þ �h!n, (12:48)

where n is a non-negative integer (we included the energy of the zeroth
vibrational state, (�h/2, in "0).

Equation (12.48) demonstrates that, in the Born–Oppenheimer/
adiabatic approximation, the energy is the sum of three contributions:
electronic (including the Coulomb interaction of the nuclei at r¼ re),
rotational, and vibrational. Equation (12.48) can be used to explain the
adsorption spectra and emission of diatomic molecules.

The only possible transitions in the rotational state satisfy

�J ¼ J 0 � J 00 ¼ �1: (12:49)

Therefore,

�"rot ¼ �hB J 0(J 0 þ 1)� J 00(J 00 þ 1)½ 
 ¼ �hB J 0(J 0 þ 1)� (J 0 � 1)J 0½ 

¼ 2�hBJ 0:

Since �"rot¼ �h!rot,

!rot ¼ 2BJ 0: (12:50)

This implies that the difference between two neighboring lines in the
rotational spectrum (the set of possible rotational energies) is always 2B;
that is, the spectrum consists of equidistant lines. The equilibrium intera-
tomic separation in a diatomic molecule can be determined from its
rotational spectrum (see Eqs. (12.47) and (12.50)). The dipole momentum
of a molecule can be found from the displacement of the spectrum lines in a
homogeneous, external electric field (the Stark effect).

The only possible transitions in the vibrational state satisfy

�n ¼ n0 � n00 ¼ �1: (12:51)

Therefore,

!vibration ¼ !: (12:52)

The vibrational spectrum of a harmonic oscillator contains only one line
with a frequency that coincides with the vibrational frequency. However,
anharmonicity introduces additional lines into the spectrum.

12.2.4 Rotational contributions to thermodynamic functions

In order to obtain the contribution to the partition function associated
with the rotation of the gas molecules, we insert the expression for the
rotational energy in Eq. (12.20) and account for the degeneracy of the
rotational levels (i.e. the Jth rotational level is (2Jþ 1)-fold degenerate):

Zrot ¼
X1
J¼0

(2Jþ 1) e�(�h2=2IkBT )J(Jþ1): (12:53)
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This expression can be evaluated numerically. We can examine the
rotational contribution to the partition function in the limits that T� Tc
and T� Tc, where Tc is the characteristic temperature:

Tc ¼ �h2

2IkB
: (12:54)

The values of Tc for some gases are given in Table 12.1. This table
demonstrates that Tc is much smaller than room temperature for all gases.

In theT � Tc, limit, the summation in Eq. (12.53) can be replaced by the
integration:2

Zrot ¼
Z 1

0

(2xþ 1)e�(Tc=T )x(xþ1) dx:

Replacing x by y¼ x(xþ 1), we can rewrite this integral as

Zrot ¼
Z 1

0

e�(Tc=T )y dy:

Performing the integration, we obtain:

Zrot ¼ T

Tc
: (12:55)

Using this result, we can derive expression for the contribution of
molecular rotation to all thermodynamic functions:

Arot ¼ �NkBT ln
T

Tc
(12:56)

Srot ¼ NkB ln
T

Tc
þ 1

� �
(12:57)

Urot ¼ NKBT (12:58)

CVrot ¼ NKB: (12:59)

The contribution to the heat capacity associated with the rotation per mole
of molecules is cV¼R, or R/2 per rotational degree of freedom.

Table12.1. The characteristic temperatures for some gases.1

Molecule H2 N2 O2 HCl HI

Tc (K) 85.4 2.85 2.07 15.1 9.0

� (K) 6000 3340 2230 4140 3200

Tboil (K) 20.4 77.4 90.2 188.1 237.8

1 � will be introduced in the next section.
2 As the figure on the left demonstrates (where f is the integrand in Eq. (12.53)), replacing

the sum by the integral is only a reasonable approximation at large T (see Eq. (12.55)), where
only the large J contributions are significant.

f

0 2 4 6 8 10 12 14 J
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At low temperature, T� Tc, we need only retain the first two terms in
the sum in Eq. (12.53):

Zrot ¼ 1þ 3e�2ðTc=T Þ: (12:60)

Therefore, in this limit, the thermodynamic functions are:

Arot ¼ �3NkBTe�2ðTc=T Þ (12:61)

Srot ¼ 3NkBe
�2ðTc=T Þ 1þ 2

Tc

T

� �
(12:62)

Urot ¼ NkBT
2 @

@T
ln 1þ 3e�2(Tc=T)
� 	

¼ NkBT
2

1þ 3e�2(Tc=T)ð Þ 3e�2(Tc=T) 2Tc

T2
;

Urot ¼ 6NkBTce
�2(Tc=T) (12:63)

cVrot ¼ 12NkB
Tc

T

� �2

e�2(Tc=T): (12:64)

These expressions demonstrate that as T! 0, Srot! 0, and cVrot! 0.
Moreover, the fact that cVrot! 0 implies that gases of diatomic molecules
behave just like monoatomic gases in the T! 0 limit.

The summation in Eq. (12.53) can be evaluated numerically at any
finite temperature and hence all thermodynamic functions can be deter-
mined at any temperature. The variation of the rotational contribution to
the heat capacity cVrot with temperature is shown in Fig. 12.1. Interestingly,
the heat capacity is not a monotonic function: it exhibits a maximum at
T� 0.81Tc and then decays to NkB with increasing temperature.

In the case of homo-nuclear diatomic molecules, the expression for Zrot,
given above, should be divided by 2, since the rotation of a molecule by 

around an axis perpendicular to the molecule axis is indistinguishable from
its original orientation. Such a mirror symmetry will not change Urot or
cVrot, but will decrease the entropy by NkB ln 2.

Example problem

1. As discussed above, the difference between neighboring rotational
energy levels is the same for the entire rotational spectrum. However,
the number of molecules at each rotational level is different. Find the
most populated level for a gas of diatomic molecules at T�Tc.

12.2.5 Vibrational contributions to thermodynamic functions

Equations (12.48) and (12.20) imply

Zvib ¼
X1
n¼0

e�n�=T, (12:65)
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The rotational contribution to the heat

capacity of a diatomic gas as a function

of temperature.
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where

� ¼ �h!

kB
: (12:66)

Values of � for several diatomic gases are given in Table 12.1 of the
previous section. Examination of the table shows that � is much larger
than room temperature.

Performing the summation in Eq. (12.65), we find:

Zvib ¼ 1

1� e��=T
: (12:67)

Using this relation, we can determine the other thermodynamic functions:

Avib ¼ NkBT ln 1� e��=T
� 	

, (12:68)

Svib ¼ �NkB ln 1� e��=T
� 	

þ �

T e�=T � 1ð Þ
� �

, (12:69)

Uvib ¼ �NkBT
2 @

@T
ln 1� e��=T
� 	

¼ NkB�

e�=T � 1
, (12:70)

cVvib ¼ NkB
�

T

� �2
e�=T

e�=T � 1ð Þ2
: (12:71)

The temperature dependence of cVvib is shown in Fig. 12.2 At low
temperature (T� �), Eq. (12.71) reduces to

cVvib ¼ NkB
�

T

� �2

e��=T (12:72)

and as T! 0, cVvib! 0. At high temperature (T� �),

cVvib ¼ NkB
�

T

� �2
1

�=Tð Þ2 ¼ NkB: (12:73)

For 1 mole of diatomic molecules, we obtain cVvib¼R at high temperature;
that is, the contribution from one vibrational degree of freedom to the heat
capacity is R. However, since at typical temperatures T� �, cVvib� 0 such
that the isochoric heat capacity of a diatomic gas is approximately (5/2)R
(a contribution of (3/2)R from the translation motion and R from rota-
tions) rather than (7/2)R (the high temperature result). Interestingly, the
low temperature heat capacity is different in quantum and classical
mechanics (classically, the heat capacity is temperature independent).

Review question

1. An experiment shows that the contribution of one vibrational degree of
freedom to the heat capacity of a gas can be larger than kB. How can you
explain this observation?
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The temperature dependence of the

vibrational contribution to the heat

capacity of a diatomic gas.
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Example problems

1. The potential energy of a classical harmonic oscillator is

" ¼ �x
2

2
,

where x is the deviation of the atomic separation from its equilibrium
value (e.g. in a diatomic molecule). If the amplitude of the vibration is
not small, the oscillator will be anharmonic and more terms must be
kept in the expansion of its energy:

" ¼ �x
2

2
� �x3 � �x4:

Find the heat capacity of this oscillator.
2. The linear coefficient of thermal expansion of an oscillator (see the

previous Example problem) is defined as

� ¼ 1

a0

@�xx

@T
,

where a0 is the equilibrium interatomic distance atT¼ 0. Find the linear
coefficient of thermal expansion for the anharmonic oscillator of
Example problem 1.

3. Calculate the heat capacity of CO at p¼ 1 atm and T1¼ 298 K and
T2¼ 800 K. Use the following handbook data for CO: the equilibrium
interatomic separation is r¼ 1.128 Å and the vibrational wavenumber3

is ~vv ¼ 2215 cm.
4. Calculate the molar entropy of CO at p¼ 1 atm and T¼ 298 K. Use the

handbook data from the previous example problem.

12.2.6 Polyatomic molecular gasses

Consider the case of a molecule containing v atoms. It has 3 translation
degrees of freedom; the contribution of these degrees of freedom to the
thermodynamic properties was discussed in Section 12.2.3. If the molecule
is linear, it has 2 rotational degree of freedom; the contribution from these
degrees of freedom was considered in Section 12.2.4. If the molecule is non-
linear, it has 3 rotational degrees of freedom. We now derive an expression
for Zrot for this case. Since the moments of inertia for polyatomic mole-
cules, I1, I2 and I3 are always large, we can work in the T »Tc limit. In this
limit, the classical and quantum mechanical descriptions produce the same
rotational energy:

"rot ¼M
2
1

2I1
þM

2
2

2I2
þM

2
3

2I3
, (12:74)

3 By definition, the wavenumber is , ~vv ¼ !=(2
c) where c is the light speed. While this
notation is widely used in spectroscopy, in many other situations the wavenumber is
traditionally labeled as k or q.
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where the subscripts identify the principal axes of inertia.4 For the rota-
tional contribution to the partition function, we obtain:

Zrot ¼
Z 0

e�"rot=kT d�rot, (12:75)

where the prime indicates that the integration should be performed over
physically distinguishable states of the molecule. The number of physically
indistinguishable orientations � is equal to the number of ways a molecule
can be rotated such that it appears, after rotation, unchanged (including
rotations by 2
). However, it is convenient to perform this integration
over the entire space and then to divide the result by �. The element of this
space is

d�rot ¼ 1

(2
�h)3
dM1dM2dM3d’1d’2d’3,

where the ’i are the rotation angles around the principle axes. Integration
over d’1d’2 gives a solid angle of 4
, while integration over d’3 gives 2
.
Hence,

Zrot ¼ 1

(2
�h)3�
4
 � 2


Y
i

Z þ1
�1

e�M
2
i =2IikBT dMi

¼ 8
2

(2
�h)3�
(2I1kBT
 � 2I2kBT
 � 2I3kBT
)1=2

or

Zrot ¼ (2kBT)3=2(
I1I2I3)
1=2

��h3
(12:76)

Arot ¼ � 3

2
NkBT lnT�NkBT ln

(8
k3
BI1I2I3)

1=2

��h3

" #
(12:77)

Srot ¼ 3

2
NkB(1þ lnT )þNkBT ln

(8
k3
BI1I2I3)

1=2

��h3

" #
(12:78)

Urot ¼ NkBT
2 3

2

1

T
¼ 3

2
NkBT (12:79)

cVrot ¼ 3

2
NkB: (12:80)

4 The tensor of inertia can be written, in general, as

Iik ¼
X

m(x2
1�ik � xixk),

where the summation is over all atoms of the molecule. This tensor is symmetric; therefore, it
can be diagonalized by rotation of the coordinate system. The axes of this coordinate system,
x1, x2 and x3, are called the principal axes of inertia and the corresponding components of the
tensor I1, I2 and I3 are called the principal moments of inertia.
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As in the case of diatomic molecules, we find that each rotational degree
of freedom contributes R/2 to the heat capacity (per mole).

Since the total number of degrees of freedom is 3v and there are three
translational degrees of freedom, we conclude that linear and non-linear
molecules have 3v� 5 and 3v� 6 vibrational degrees of freedom, respect-
ively. The contributions of vibrations within the molecules to the thermo-
dynamic properties can be determined by summation over all vibrational
degrees of freedom. The contributions from a particular degree of freedom
can be calculated using formulas derived in the previous section. At high
temperatures, each vibrational degree of freedom gives contribution R to
the heat capacity (per mole).

12.2.7 Electronic contributions to thermodynamic functions

The partition function for the electronic degrees of freedom takes the
following form:

Zel ¼ g0 þ
X1
k¼1

gke
�"k=kBT, (12:81)

where gk is the degeneracy of energy level k and we set the energy of the
ground state to zero, "0¼ 0. If the difference between neighboring energy
levels is much larger than kBT, the sum in Eq. (12.81) can be neglected. If
the ground state is not degenerate,

Zel ¼ g0 ¼ 1,

and there is no electronic contribution to the thermodynamic functions.
However, this is not always the case. For example, the ground state of
alkaline metals is doubly degenerate. Equation (12.19) implies that, for this
case, the Helmholtz free energy is reduced by

Ael ¼ �NkBT ln 2,

and the entropy is increased by

Sel ¼ NkB ln 2:

In some molecules, the ground state is a doublet with a small energy gap,
�. For example, the ground state of NO is a doublet and each of these
levels is doubly degenerate. The ground state of oxygen is a triplet where
the gaps between levels is so small that they can be neglected (i.e. we can
consider the ground state as one level which is triply degenerate). However,
the next level is doubly degenerate and is close to the triplet ground state.
In such cases, the electronic contributions to the thermodynamic func-
tions are significant. If only the two lowest levels are of importance, we
can write

Zel ¼ g0 þ g1e
��=kBT, (12:82)

Ael ¼ �NkBT ln½g0 þ g1e
��=kBT
: (12:83)
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Review questions

1. Does the choice of the origin of the energy scale affect the partition
function?

2. Which thermodynamic functions are affected by the degeneracy of the
ground state?

Example problem

1. The energy gap between the ground state and next levels in NO is
�¼ 15.4 meV. Find the electronic contribution to the molar heat
capacity at T1¼ 50 K and T2¼ 500 K.

12.2.8 Maxwell distribution

In the framework of classical mechanics, the energy of a molecule can
always be represented as a sum of two terms: the kinetic energy p2/2m,
which depends only on the momentum and the potential energy U, which
depends only on its position. This allows us to write the probability that the
molecule has momentum in the range from p to pþ dp and a position in
the range from r to rþ dr as

dw ¼ Ae�(p2=2mþU)=kBTdpdr: (12:84)

Here A is a normalization factor that guarantees thatZ
dw ¼ 1, (12:85)

where the integration is performed over the entire phase space (all possible
molecule positions and momenta).

It is easy to see that the right side of Eq. (12.84) contains two inde-
pendent factors: the momentum distribution

dwp ¼ Ape
�p2=2mkBTdp (12:86)

and the spatial distribution

dwr ¼ Are
�U=kBTdr, (12:87)

such that

dw ¼ dwpdwr;

Z
dwp ¼ 1 and

Z
dwr ¼ 1: (12:88)

Since p¼mv, we can obtain the distribution of molecule velocities from
Eq. (12.86):

dwv ¼ Ave
�mv2=2kBTdv: (12:89)

This is known as the Maxwell distribution of velocities. While, for the sake
of simplicity, we derived this velocity distribution for molecules in a gas, it
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also applies to molecules in condensed phases. This follows from the fact
that the total energy can always be written as the sum of the kinetic and
potential energies and the kinetic energy is always the sum of the kinetic
energies of all of the molecules.

In Cartesian coordinates, dv can be written as dv¼ dvxdvydvz. Therefore,
Eq. (12.89) can be rewritten in the following form:

dwv ¼ Ave
�mv2x=2kBTdvxe

�mv2y=2kBTdvye
�mv2z=2kBTdvz:

This implies that the distribution of the Cartesian components of the
velocities are independent, such that

dwv� ¼ Av�e
�mv2�=2kBTdv�;

Z
dwv� ¼ 1,

where � refers to one of the Cartesian coordinates. Performing the
integration (see Eq. (AV.1)) to determine the normalization constant
allows us to write

dwv� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2
kBT

r
e�mv2

�=2kBTdv� (12:90)

and

dwv ¼ m

2
kBT

� �3=2

e�mv
2=2kBTdv: (12:91)

In spherical coordinates, dv¼ 4
v2dv such that Eq. (12.91) becomes

dwv ¼ 4

m

2
kBT

� �3=2

e�mv
2=2kBTv2dv: (12:92)

We now consider three important consequences of the Maxwell
distribution: expressions for the mean velocity, the mean square velocity,
and the mean velocity in a particular direction. The mean velocity is

v ¼
R1

0 ve�mv
2=2kBTv2dvR1

0 e�mv2=2kBTv2dv
¼

1
2 4(kBT)2=m2

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
(kBT)3=m3

q ¼
ffiffiffiffiffiffiffiffiffiffiffi
8kBT


m

r
: (12:93)

The mean square velocity is

v2 ¼
R1

0 v2e�mv
2=2kBTv2 dvR1

0 e�mv2=2kBTv2 dv
¼

3
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32
(kBT)5=m5

q
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
(kBT)3=m3

q ¼ 3kBT=m: (12:94)

Since the average kinetic energy of a molecule is "kin ¼ mv2=2, we find

"kin ¼ mv2=2 ¼ 3

2
kBT: (12:95)
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The mean velocity in a particular direction can be evaluated as

�vv! ¼
R1

0 vxe
�mv2x=2kBTdvxR1

0 e�mv2x=2kBTdvx
¼ 1=2 2kBT=mð Þ

1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2
kBT=m

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
2kBT


m

r
(12:96)

The Maxwell distribution is central to many important predictions in
the kinetic theory of gases. Examples of this will be considered in the next
two sections.

12.2.9 Collisions of gas molecules with a surface

In this section, we consider collisions of gas molecules with a surface. Our
goal is to derive the number of such collisions per unit area per unit time.
This is important for the theory of heterogeneous chemical reactions,
adsorption, evaporation, and sublimation.

Consider a surface such that z< 0 is a solid and z> 0 is a gas, as
shown in Fig. 12.3. If all of the molecules in the gas have velocity vz
(vz< 0), the number of molecules which hit the surface with area S during
time dt is

vzdtS
N

V
,

where N/V is the gas density. The number of molecules that hit a unit area
of the surface in a unit time is

vz
N

V
:

However, in reality the molecule velocities are not all the same, but are
described by the Maxwell distribution (see Eq. (12.91)). Therefore, the
number of collisions per unit area of the surface per unit time is

� ¼ m

2
kBT

� �3=2Z
vz
N

V
e�mv

2=2kBTdvxdvydvz:

In spherical coordinates (see Fig. 12.3) this is

� ¼ N
V

m

2
kBT

� �3=2Z
e�mv

2=2kBTv cos �v2 sin � dvd�d’

¼ 2
N

V

m

2
kBT

� �3=2Z 
=2

0

cos � sin � d�

Z 1
0

e�mv
2=2kBTv3 dv:

Evaluating these integrals (see Eq. (AV.5)), we find

� ¼ N
V

ffiffiffiffiffiffiffiffiffi
kBT

2
m

r
: (12:97)

Since, for an ideal gas, pV¼NkBT we obtain

� ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
mkBT
p : (12:98)

z

x

y
u

w

Fig.12.3.
The coordinate system used to describe

particle collisions with a solid surface.
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Comparing Eqs (12.97) and (12.96), we find that

� ¼ N
V

�vv!
2

(12:99)

This equation has a simple interpretation. If the molecules can only move
up or down with speed �vv!, then in a time dt half of the molecules with
0 � z � �vv!dt hit the surface. Since the number of molecules within
0 � z � �vv!dt is �vv!dtSN=V, we obtain Eq. (12.99).

Equation (12.98) is a fundamental result that is used in many applica-
tions. Here we consider just one, namely, the rate of evaporation. In
equilibrium, the vapor pressure over any surface is equal to the saturated
vapor pressure ps (this is the definition of ps). On the other hand, in equi-
librium the number of molecules which leave the surface is equal to the
number of molecules which condense from the gas. If we assume that all
gas molecules which hit the surface stick there, the rate of evaporation
must be

! ¼ psffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
mkBT
p (12:100)

Example problem

1. A sample of liquid Cs was placed on a balance in a closed chamber.
One of the chamber walls has a very small circular hole (diameter
d¼ 0.7 mm). The sample was annealed for t¼ 80 s at T¼ 773 K. The
sample mass decreased by �w¼ 604 mg during annealing. Find the
pressure of the saturated vapor over liquid Cs at T¼ 773 K.

12.2.10 Collisions of gas molecules

Any chemical reaction in a gas proceeds via the collisions of molecules.
Therefore, in order to develop a kinetic theory describing chemical reac-
tions, we must first discuss the collisions of molecules per se. Consider a gas
consisting of molecules of two types. Let the density of the molecules of
type i be ni¼Ni/V and their molecular mass be mi. We now derive an
expression for the number of molecules of type j which hit a molecule of
type i in a unit time. We can describe the motion of two molecules as the
sum of the motions of their centers of mass and their relative motion.
Obviously, only the their relative motion matters in our consideration of
collisions. The energy associated with the relative motion of the centers of
mass is:

" ¼ mijv
2
ij

2
, (12:101)

where

mij ¼ mimj
mi þmj , vij ¼ vi � vj: (12:102)
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and vi is the velocity of the center of mass of the molecule of type i. The
probability that a molecule of type j has relative velocity vijwith respect to a
molecule of type i is

dwij ¼ mij
2
kBT

� �3=2

4
e�mijv
2
ij=2kBTv2ij dvij:

Consider now molecules of type j moving in the same direction with a
relative velocity vij with respect to a given molecule of type i. We will use a
coordinate system in which the molecules of type j are fixed and the
molecule of type imoves with velocity vij. In a unit time, this molecule will
hit all molecules j which are in a cylinder with height vij and with a base of
area �ij. �ij is called the collision cross-section (we discuss this term in more
detail in the next section). The number of such molecules of type j is
nj�ijvijdw

!
ij . The integration over all possible directions replaces dw!ij by

dwij. Therefore, the number of molecules of type j with which a molecule
of type i collides in a unit time is

zij ¼
Z 1

0

nj�ij
mij

2
kBT

� �3=2

4
e�mijv
2
ij=2kBTv3ij dvij

¼ nj�ij mij
2
kBT

� �3=2

4

1

2

2kBT

mij

� �2

zij ¼ 4�ijnj
kBT

2
mij

� �1=2

(12:103)

The number of collisions of molecules (per unit time and volume) of
types i and j is simply the product of the number of collisions per molecule
and the density of molecules:

Zij ¼
nizij ¼ 4�ijninj

kBT
2
mij

� 	1=2

, i 6¼ j
1
2 nizii ¼ 2�iin

2
i

kBT
2
mij

� 	1=2

8><
>: (12:104)

The total number of collisions which a molecule of type i suffers in a
unit time is

zii þ zij ¼ 4
�iiffiffiffiffiffiffi
mii
p ni þ �ijffiffiffiffiffiffi

mij
p nj

 !
kBT

2


� �1=2

The inverse of this quantity is the average time between collisions. The
average distance which a molecule goes between two subsequent collisions
is the mean free path. It is the product of the mean molecule velocity
(Eq. (12.93)) and the average time between collisions:


i ¼ �vvi

4 (�ii=
ffiffiffiffiffiffi
mii
p

)ni þ (�ij=
ffiffiffiffiffiffi
mij
p

)nj
� � 2


kBT

� �1=2

Inserting the expression for the mean velocity (Eq. (12.93)), we find


i ¼ 1ffiffiffi
2
p

�iini þ �ijnj 1þ (mi=mj)
� �1=2 (12:105)
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In the case of a one-component gas, this equation reduces to


 ¼ 1ffiffiffi
2
p

�n
: (12:106)

We can consider the physical meaning of the mean free path from
another perspective. Consider the probability w(L) that a molecule
travels along a path of length L without suffering any collisions. The
probability that the molecule continues along its path to Lþ dL without
any collisions is

w(Lþ dL) ¼ w(L)w(dL): (12:107)

Since the path length dL is infinitesimal, the molecule cannot suffer more
than one collision in this distance. The probability that the molecule will
collide with another in this distance is 1�w(dL). Obviously, this prob-
ability should be proportional to the length of this path, dL. Therefore,
1-w(dL)¼ adL, where a is a proportionality constant. Comparing this
result with Eq. (12.107), we find

w(Lþ dL) ¼ w(L)(1� adL)

dw

w
¼ �adL

w ¼ Ae�aL

If L! 0, then w! 1. This implies A¼ 1 and

w ¼ e�aL

By definition, the mean free path can be represented as


 ¼
Z 1

0

LdP(L)

where dP(L) is the probability that the molecule travels a distance L
without collisions but does suffer a collision in the additional infinitesimal
distance dL. The probability of this is

dP(L) ¼ w(L)adL:

Inserting this result in the previous expression for the mean free path,
we find:


 ¼ a
Z 1

0

Le�aL dL ¼ 1

a
:

Thus, the probability that a molecule travels a distance L without
collisions is

w ¼ e�L=
 (12:108)

and the probability that the molecule will suffer its first collision at a dis-
tance L from where it starts is

dP(L) ¼ 1



e�L=
dL: (12:109)

Statistical thermodynamics of an ideal gas 215



We will use this important result below.

12.2.11 Cross-sections

In this section, we return to consider the cross-sections in more detail. We
model all molecules as hard spheres with diameters d1 and d2. A collision
occurs if the target distance r is less than or equal to half of the sum of the
diameters (see Fig. 12.4):

r � rmax ¼ (d1 þ d2)=2:

Therefore, we can define the cross-section as

�12 ¼ 
r2max ¼



4
d1 þ d2ð Þ2: (12:110)

According to the definition of the flux, the number of molecules that will
pass through the area �ij per unit time5 is jij�ij. Therefore, the cross-section
�ij is the number of collisions between molecules of types i and j per unit
time (jij�ij) divided by the relative molecular flux jij. By analogy, we define
the cross-section of a process as the number of elementary events divided by
the relative molecular flux, jij. This generalization accounts for the
observation that not all collisions between the gas molecules result in the
occurrence of the event of interest (e.g. not all collisions result in a chemical
reaction between the molecules).

The number ofmolecules of type jwith target distances in the range from r
to rþ dr which will collide in a unit time is jij2
rdr. Let Pij(r,v) be the
probability that an elementary event occurs as a result of the collision.
Therefore, the number of elementary events per unit time is jij2
Pij(r,v)rdr.
The total number of elementary events is 2
jij

R1
0 Pij(r; v)r dr and, therefore,

�ij ¼ 2


Z 1
0

Pij(r; v)r dr: (12:111)

In the case of collisions of hard spheres, the elementary event is the
collision itself which always occurs provided that r� (d1þ d2)/2. This
implies that

P(r; v) ¼ 1; at r � ðd1 þ d2Þ=2
0; at r > ðd1 þ d2Þ=2




Inserting this result into Eq. (12.111), we find

�ij ¼ 2


Z d1þd2ð Þ=2

0

r dr ¼ 2

1

2

d1 þ d2

2

� �2

¼ 

4
d1 þ d2ð Þ2:

This result coincides with Eq. (12.110).

d1

d2
v

Fig.12.4
Collision of two hard sphere molecules.

5 In reality, the relative velocities are pointed in all possible directions, however this is not
important for the phenomenon under consideration. This is equivalent to considering first all
pairs with relative velocities in one direction and then integration over all directions—as we
did in the previous section.
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In some processes, the cross-section depends on the velocity v. For
example, active collisions refer to events that only occur if

mijv
2
n

2
	 E, (12:112)

where vn is the projection of the relative velocity onto the line connecting
the centers of mass of the molecules and E is a critical or threshold energy
for the event to occur. Examination of Fig. 12.5 shows that

vn
v

� 	2

¼ cos2 � ¼ 1� sin2 � ¼ 1� r2

d1 þ d1ð Þ=2½ 
2 ¼
d1 þ d1ð Þ=2½ 
2�r2
d1 þ d1ð Þ=2½ 
2 :

Inserting this result into Eq. (12.112), we find

mijv
2

2

d1 þ d1ð Þ=2½ 
2�r2
d1 þ d1ð Þ=2½ 
2 	 E:

Therefore, an active collision event will occur provided that

r2 � d1 þ d2

2

� �2

1� 2E

mijv2

� �
:

In this case, the cross-section defined in Eq. (12.111) can be rewritten as

�12 ¼ 2


Z (d1þd2)=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�(2E=mijv2)
p

0

r dr ¼ 2

1

2

d1 þ d2

2

� �2

1� 2E

mijv2

� �

or

�ij ¼ �1ij 1� 2E

mijv2

� �
, (12:113)

where �1ij ¼ (
=4) di þ dj
� �2

:.
We can now find the number of active collisions. By analogy with the

derivation of Eq. (12.103), we obtain6

zij ¼
Z 1ffiffiffiffiffiffiffiffiffiffi

2E=mij
p nj�

1
ij 1� 2E

mijv2

� �
mij

2
kBT

� �3=2

4
e�mijv
2=2kBTv3 dv:

Evaluation of the integral yields

zij ¼ nj�1ij 4

1

2

2kBT

mij

� �2
mij

2
kBT

� �3=2

e�E=kBT ¼ z0ije�E=kBT:

Therefore, the number of active collisions per unit time is

Zaij ¼ Z0ije
�E=kBT, (12:114)

where Z0ij is determined by Eq. (12.104).

r

v
vt

vn

u

(d1+ d2)/2

Fig.12.5
Thegeometryof the collisionof twohard

sphere molecules of different sizes.

6 The collision is not active if mijv
2/2<E.
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Example problems

1. The kinetic diameter of a molecule is defined as.

d ¼
ffiffiffi
�




r
:

The kinetic diameter of Ne is d¼ 2.04 Å. Find the number of collisions
which one Ne atom suffers during 1 s at T¼ 600 K and p¼ 1 atm.

2. Experiment shows that for H2 at T¼ 0
�
C and p¼ 1 atm, the mean free

path is 
¼ 128 nm. Find the kinetic diameter of H2 molecule under
these conditions.

3. Find the number of molecule collisions per unit volume and unit time in
a gas of density n and temperature T for which the relative velocity of
the molecules is larger than v0.

12.3 Statistical theory of chemical reactions

12.3.1 Calculation of the equilibrium constant from
spectroscopic data

In Chapter 5, we already discussed how to calculate the equilibrium
constant for a chemical reaction from thermodynamic data. This obviously
requires us to first obtain such data from experiment (e.g., from calorimetric
experiment) and this is not always simple. Fortunately, we can also deter-
mine the equilibrium constant from spectroscopic data (i.e. the intensity of
the light emitted from or absorbed by the gas as a function of wavelength).

Consider the following reaction

aAþ bB ¼ cCþ dD, (12:115)

where all species are gases. In equilibrium the following relation must be
satisfied:

�G ¼ d	D þ c	C � a	A � b	B ¼ 0: (12:116)

The Gibbs free energy can be expressed via the partition function as (see
Eq. (12.26))

G ¼ �NkBT ln
Z

N
: (12:117)

The partition function is proportional to volume (see Eq. (12.37)) since it
includes integration over the three translation degrees of freedom of a
molecule (the translational degrees of freedom are independent of all other
degrees of freedom). Therefore, it is convenient to normalize the partition
function by the volume of the gas

P ¼ Z
V

, (12:118)

where P is the reduced partition function. Using this definition, we rewrite
Eq. (12.117) as

G ¼ �NkBT ln
V

N
P

� �
: (12:119)
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Since N/V is the concentration of the molecules in the gas, n, and 	¼G/N
for a pure material, we find

	i ¼ �kBT ln (Pi=ni): (12:120)

Finally, inserting this expression into Eq. (12.116), we obtain

PdDP
c
C

PaAP
b
B

¼ n
d
Dn

c
C

naAn
b
B

¼ Kc: (12:121)

Note that the concentrations in this equation are expressed in
molecules/m3.

When calculating the partition function of a gas, it is convenient to
choose the zero of an energy to be that of the molecules at T¼ 0. This is,
of course, an arbitrary choice but since no experimentally measurable
thermodynamics quantities depend on it, we can choose any zero we like.
However, when calculating the equilibrium constant, we must describe the
energy levels of all species consistently. If we have a gas containing many
types of molecules, we must choose the same zero of energy for all of the
species. This introduces additional terms into the energies for each species
i, "i0. This, in turn, leads to additional factors in the partition functions,
e�"

i
0
=kBT. It is easy to see that the combination of these factors in

Eq. (12.121) simply gives a composite factor e��U0=kBT, where �U0 is the
heat of reaction at T¼ 0. Now Eq. (12.121) can be rewritten as

Kc ¼ P
d
DP

c
C

PaAP
b
B

e��U0=kBT: (12:122)

Since for an ideal gas H¼UþNkBT, we find that �U0 ¼ �H0. This
enthalpy of reaction can be found in thermodynamic databases from the
heats of formations of all species at T¼ 0 (�H0

f;0).

Example problem

1. The vapor over a liquid Na sample consists of Na atoms and dimers
(Na2). Analysis of the spectroscopic data implies that the dimer has a
singlet ground state, an equilibrium interatomic separation at T¼ 0 of
r¼ 2.18 Å and a vibrational wavenumber of ~�� ¼ 159:2 cm. The energy
of dissociation of this molecule is �Ed¼ 0.73 eV. Find the molar
fraction of the dimers in the saturated vapor over Na at its boiling
temperature (1163 K).

12.3.2 Theory of active collisions

Consider the bimolecular reaction

A+B=C (12:123)

The theory of active collisions states that molecules A and B react with each
other if their collision energy is larger than the activation energy E for the
reaction. The total angular momentum must be conserved in the collision
of the molecules. In the system of coordinates fixed to molecule A, the total
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angular momentum is equal to m12vt(d1þ d2)/2 (see Fig. 12.5). If we make
the reasonable approximation that the molecule diameters do not change
during collision, the only part of the translational (kinetic) energy which is
available to aid the reaction ism12v

2
n=2 (again, see Fig. 12.5). Therefore, the

chemical reaction will occur as a result of the collision of molecules A and B
provided that

m12v
2
n

2
	 E: (12:124)

Strictly speaking, this conclusion is valid only in the case where A and B
are atoms. The situation is more complex if A or B are polyatomic mole-
cules. Recall that in addition to translational degrees of freedom, such
molecules also have rotational and vibrational degrees of freedom. The
energy associated with these degrees of freedom can also contribute to
the energy available for the chemical reaction. Therefore, the chemical
reaction could occur even if Eq. (12.124) is not satisfied. On other hand,
part of the energym12v

2
n=2 can be transferred from the translational degree

of freedom into the rotational or vibrational degrees of freedom during
collisions. This part of m12v

2
n=2 will not be available to aid the chemical

reaction. If these two effects compensate each other, Eq. (12.124) will still
be reasonable.

Equation (12.114) implies that the number of active collisions between
molecules A and B in a unit time is

Za ¼ Z0e
�E=RT ¼ 4�ABnAnB

kBT

2


� �1=2
1

mA
þ 1

mB

� �1=2

e�E=RT

or

Za ¼ 
 rA þ rBð Þ2 1

mA
þ 1

mB

� �1=2
8kBT




� �1=2

e�E=RTnAnB: (12:125)

where ri is the radius of molecule i. Recall that in Section 8.1.1, we saw that
formal kinetics suggest that the rate of the elementary bimolecular reac-
tion, !, is

! ¼ knAnB, (12:126)

where

k ¼ Ae�E=RT: (12:127)

Comparison of Eqs (12.125) and (12.127) shows that

A ¼ 
 rA þ rBð Þ2 1

mA
þ 1

mB

� �1=2
8kBT




� �1=2

: (12:128)

Thus, we were able to show that statistical thermodynamics can be used to
derive the kinetic equation which we simply postulated in our discussion of
formal kinetics. Moreover, statistical thermodynamics provides a means to
determine the rate constant from microscopic characteristics of the
molecules participating in the chemical reaction (this was a necessary input
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parameter in the formal kinetic theory). Note that according to the theory
of active collisions, the pre-exponential factor A depends on temperature,
but only very weakly compared with the exponential Arrhenius depend-
ence in the rate constant.

Unfortunately, the pre-exponential factor calculated using Eq. (12.128)
is very seldom in agreement with experimental data. In fact, it commonly
overestimates the experimental value by 3–4 orders of magnitude. In order
to explain this disagreement, we introduce the so-called steric factor as the
ratio of the experimental and theoretical values of the pre-exponential
factor:

� ¼ Aexp

Atheory
: (12:129)

When this factor is smaller than unity, it can be interpreted as the prob-
ability that the molecules are favorably oriented at the moment of the
collision for the reaction to occur. In order to illustrate this idea, we
examine the results of quantum–mechanical calculations for the energy
surface for the reaction ClþHI¼HClþ I, shown in Fig. 12.6. This figure
shows that the activation energy for the chemical reaction actually depends
on the angle of attack of the Cl atom. The reaction will occur only if the
angle of attack is within a � 30� window centered on the H atom. This is a
reason why the steric factor can be less than unity. However, there are some
reactions for which the steric factor is larger than unity. We cannot, of
course, rely on arguments based on the angle of attack to explain these.
Our theory of active collisions is clearly too simplistic to provide a rigorous
determination of the steric factor.

Example problem

1. The following rate constant data were measured for the gas phase
reaction

C5H5NþCH3I¼C5H5NCH3I:

T (K) 293.1 323.2
k (102/[mole (min]) 0.713 5.89

The densities of liquid C5H5N and CH3I at room temperature are �¼ 0.98
g/cm3 and �¼ 2.28 g/cm3, respectively. Estimate the steric factor.

12.3.3 Theory of the activated complex

As we saw in the previous section, the theory of active collisions gives a
qualitative explanation of the laws of formal kinetics but is not capable of
providing accurate predictions of the rate constant. The main reason why
this theory does not show better agreement with experiment is that it
does not consider what is actually happening during collisions. The theory

Cl

I

H

Fig.12.6
Schematic illustration of the impact of a

Cl atom and a HI molecule. The plots

show the energy as a function of

separation for the Cl impacting the HI

molecule at the I atomandat theHatom.

Note that in the first case the Cl atom

is repelled while the energy versus

separation curve has a minimum in the

second case when the Cl impacts the H

(i.e. the reaction can occur only in the

latter case).
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of the activated complex, developed by Eyring is an attempt to answer this
question. In this section, we first present a qualitative picture of what is
happening during a bimolecular chemical reaction. We will show that the
discussion of such a reaction is greatly simplified by the introduction of the
concept of a reaction path. We will then apply a statistical mechanics
approach to describe the motion of the system along the reaction path.
Finally, we will show how to predict the rate constant from microscopic
characteristics of the molecules participating in the chemical reaction.

12.3.3.1 Reaction path

In analyzing the reaction path, we will again make use of the so-called
adiabatic approximation (see Section 12.2.3). Recall that the main idea of
this approximation is that the electrons move much faster than the nuclei,
such that they are always in equilibrium with the slowly moving nuclei. In
this approximation, the total energy can be written as

E ¼ Ek þ E (0)
e þUn, (12:130)

where Ek is the kinetic energy of the nuclei, E (0)
e is the ground state energy

of the electrons and Un is the interaction energy of the nuclei with each
other. The two last terms are functions of the coordinates of the nuclei,
q1, . . . , q3�-6(5) (see Section 12.2.6), and hence can be combined into a single
function U(q1, . . . ,q3�� 6(5)). Figure 12.7 shows an example of such a
function for the reaction

Hþ Br2 ¼ HBrþ Br,

in the special case where the hydrogen approaches the Br2 molecule along
its axis.

The set of all of the states through which the system passes as it goes from
reactants to products is called the reaction path. Obviously, there could be
many possible reaction paths for the same reaction. The shortest path from
any point on the energy surface to the energy minimum is a line which is
normal to the constant energy contours. Starting from an arbitrary point in
the reaction coordinates (e.g. the coordinates in Fig. 12.7), minimization of
the energy can lead to either the products or the reactants. The groups of
paths that lead to reactants and those that lead to products are separated
from each other by a dividing surface (in the case of Fig. 12.7, this is just a
curve). Any path that takes the system from reactants to products neces-
sarily crosses this dividing surface. If that path intersects the dividing
surface at a right angle, the intersection point corresponds to the maximum
energy along that path. One of these points has a lower energy than all
other points; this point is the saddle point. We refer to the system at the
saddle point as the activated complex. Let x be the coordinate along the
reaction path that crosses the dividing surface at right angle at the saddle
point. The potential energy U as a function of x is shown in Fig. 12.8(a).
In Fig. 12.8(b), we add the energy of the zeroth vibrational mode of the
system to the potential energy to obtain E(x). In this figure, E0, E

0
0 and Ez0

are the total energies of the reactants, products, and the activated complex,

0.40
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)

Fig.12.7.
Energy contours as a function of the

distances between the Br atoms RBr–Br

and between the H atom and the closest

Br atoms RH–Br for the special case in

which the Br2 molecule axis and the

direction of the H atom movement are

colinear.
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respectively. Ea is the activation energy7 (i.e. the energy that must be
provided in going from reactants to the activated complex) and �U0 is the
heat of the reaction at T¼ 0 (i.e. the difference in energy between the
products and reactants).

12.3.3.2 Calculation of the rate constant

In determining the rate of a reaction, we consider the rate at which the
system traverses the reaction path from reactants to products. It is suffi-
cient to simply discuss the rate at which the system crosses the activated
complex. In the classical theory of the activated complex, we make a
number of simplifying assumptions that help us determine the rate at which
the system crosses the saddle point. In so doing, it is convenient to think of
the system as a set of reactants, as a set of products, or as a special molecule
corresponding to the state of the system at the activated complex. This
allows us to ignore the whole reaction path and just focus on these three
states. We now make three specific assumptions:

1. All reaction paths cross the saddle point on the dividing surface at which
point the system is the activated complex.

2. The concentration of activated complexes can be determined from
Gibbs statistics.

3. The motion of the system along the reaction path is a form of
translational motion.

The first assumption asserts that we can focus on only one reaction path
and, more importantly, one point along that path (rather than the entire
energy surface). The second assumption allows us to determine the con-
centration of activated complexes using the approach developed for
reactions in Section 12.3.1. Finally, the third assumption provides a
method (see Section 12.2.8) for determining how quickly the system moves
along the reaction path.

We will derive the main equations in the theory of the activated complex
by considering the following prototypical reaction

A + B!k C, (12:131)

for which we will assume the following mechanism

Aþ B$k1

k�1

ABz !k2
C, (12:132)

where ABz is the activated complex. The rate of the reaction in Eq. (12.131)
can be described as

! ¼ nABz

�
, (12:133)

where � is the average lifetime of the activated complex. Therefore, we need
to derive expressions for the concentration of the activated complexes and
for their average lifetime.

U

x

E

E 90

E 9a

E‡
0

E0

E a

x

d

(a)

(b)

∆U0

Fig.12.8.
(a) The potential energy U along the

reaction path, (b) the energy (potential

plus the energy of the zeroth vibrational

mode)E along the reaction path.E0,E
0
0,

Ez0, Ea, and �U0 are the energy of the

reactants, energy of the products, energy

of the activated complex, activation

energy, and T¼ 0 heat of reaction,

respectively.

7 In Section 12.3.3.3, we will show that this quantity is not exactly the same as the
activation energy obtained from experiment using the Arrhenius law.
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In order to address the first issue, we assume that the reactants and
the activated complex are in equilibrium with respect to each other (see
Eq. (12.132)). This equilibrium is described by the following equilibrium
constant

Kzc ¼
nABz

nAnB
¼ PABz

PAPB
e�Ea=RT, (12:134)

where Ea is the activation energy.
In order to derive an expression for the average lifetime of the activated

complex, it is useful to consider the activated state as having four trans-
lational degrees of freedom. These are the three usual translational degrees
of freedom associated with motion in three-dimensional space and one
translational degree of freedom associated with the motion of the system
along the reaction path. Since the total number of degrees of freedom of
molecule containing � atoms is 3�, we conclude the activated complex has
3�� 7 vibrational degrees of freedom (3�� 6 for a linear molecule); that
is, it has one vibrational degree of freedom less than a garden variety
molecule. The average lifetime can be expressed via the width of the
activated state, �, and the average velocity along the reaction path

� ¼ �

�uu
: (12:135)

Of course, � is not a well defined quantity. Fortunately, it will cancel
out of the final expressions so its value is irrelevant. Using the molecular
theory of gases, we write the average velocity along the reaction path as
(see Eq. (12.96))

�uu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT


mABz

s
: (12:136)

We can also evaluate the part of partition function associated with the
motion along the reaction path. For one dimensional translational motion,
we can write the partition function as follows:

Z ¼ 1

h

Z �

0

dx

Z 1
0

e�mv
2=2kBTd(mv) ¼ �

h
m

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
kBT

m

r
¼ �

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
mkBT
p

h
:

Therefore, the part of the partition function associated with the motion
along the reaction path takes the following form:

Ppath

ABz
¼ �

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
mABzkBT

p
h

: (12:137)

Combining Eqs (12.133)–(12.137), we obtain

! ¼ K
z
cnAnB

�
¼ P0

ABz

PAPB
e�Ea=RTnAnB

�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
mABzkBT

p
h

1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT


mABz

s
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or

! ¼ kBT

h

P0
ABz

PAPB
e�Ea=RTnAnB, (12:138)

where P0
ABz

is the partition function of the activated complex excluding the
contribution of the motion along the reaction path. Therefore, the rate
constant is

k ¼ kBT

h

P0
ABz

PAPB
e�Ea=RT: (12:139)

This is the main result of the theory of the activated complex. In some cases,
this theory allows us to calculate the rate constant of a bimolecular reac-
tion in reasonable agreement with experiments. However, as mentioned at
the beginning of this section, this theory is based on some oversimplifi-
cations. We now discuss some of the effects of these oversimplifications.

First, we note the theory of the activated complex does not consider the
fate of the reactants (molecule C in Eq. (12.131)) after the reaction. Since
the potential energy of the product is lower than that of the activated
complex, the product has an excess energy. It can loose this energy either by
emission of light, or by collision with another molecule or the chamber
wall. All of these processes require a finite time. During this time, there is
a chance that the inverse reaction will occur (deactivation). Consider the
mechanism where molecule C transfers excess energy to a molecule M of
an inert gas:

Aþ B!ka
ABz (activation)

ABz !kd
Aþ B (deactivation)

ABz !kp

C* (formation of energetic molecule C*)

C*!k�p

ABz (return from C* to the activated complex)

C*þM!ks
CþM* (stabilization of the molecule C)

8>>>>>>>>>><
>>>>>>>>>>:

(12:140)

where * indicates a high energy state.
Note that in the derivation of Eq. (12.139), we only considered the first

three stages. Consider now all stages from the point of view of formal
kinetics. The rate of reaction in Eq. (12.131) is

! ¼ ks½C*
½M
:
In steady state, the concentrations of ABz and C* should be constant,
therefore, we can write

d½ABz

dt

¼ ka½A
½B
 � kd½ABz
 � kp½ABz
 þ k�p½C*
 ¼ 0

d½C*

dt
¼ kp½ABz
 � k�p½C*
 � ks½C*
½M
 ¼ 0,
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from which we obtain

½ABz
 ¼ k�p½C*
 þ ks½C*
½M

kp

½C*
 ¼ ka½A
½B

(kdk�p=kp)þ (kdks=kp)½M
 þ ks½M
 :

Inserting the last result into the equation for the rate of the reaction in
Eq. (12.131), we obtain

! ¼ kskpka½A
½B
½M

kdk�p þ ks kd þ kp

� �½M
 : (12:141)

Since the theory of the activated complex considered only the first three
stages of the reaction in Eq. (12.140), the rate constant can be determined
from the constants ka, kd, and kp alone. Equation (12.141) shows that when
the concentration of M is very large, this is true:

! ¼ kpka½A
½B

kd þ kp

: (12:142)

However, this is a special case. If the concentration of M is small,
Eq. (12.141) reduces to

! ¼ kskpka

kdk�p
½M
½A
½B
, (12:143)

where the rate constant also depends on ks and k� p. Since the concen-
tration of M is constant in steady state, we can consider Eq. (12.143) as the
kinetic equation for a second order reaction. This agrees with our original
theory of the activated complex result (Eq. (12.138)). However, the rate
constant in our extended theory (Eq. (12.143)) depends on the rate con-
stants for each stage of the reaction in Eq. (12.140) and the concentration
of M (ks, k� p, and [M] are absent in the original theory). Therefore, it is not
surprising that the original theory of the activated complex does not
accurately predict experimentally measured rate constants.

In the derivation of Eq. (12.139), we assumed that the probability that a
chemical reaction occurs is unity if the system reaches the activated state
and zero if it does not. Strictly speaking, neither of these assumptions are
valid. Even after reaching the activated state, the system can return to the
original state and a system with energy less than the activation barrier Ea

can react through a process known as tunneling. There are even more
complicated cases, such as when there is a quantum mechanical transition
that takes the system from one potential energy surface to another.
Consider the following example reaction

COþO! CO2:

The oxygen atom has two unpaired electrons with parallel spins in its
ground state, while CO and CO2 molecules each have zero net spin.
Therefore, the reaction can only occur if one of the spins flip. However, this
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means that the electronic state of the system changes abruptly and the
system jumps from one potential energy surface to another.

We can account for the disagreements between the theory of the acti-
vated complex and experiment by writing the reaction rate as

k ¼ � kT

h

P0
ABz

PAPB
e�Ea=RT, (12:144)

where we have combined all of these disappointments into a new constant,
the transmission coefficient �. Of course, the theory of the activated com-
plex is silent on the value of the transmission coefficient.

Review question

1. The reaction OþCO!CO2 has a linear activated complex O–C–O.
How many vibrational degrees of freedom does this activated complex
have?

2. The reaction C2H4þCl!C2H4Cl has the following activated complex
CH2–CH2Cl. How many vibrational degrees of freedom does this
activated complex have?

12.3.3.3 Theory of the activated complex versus the Arrhenius law

The rate constant in the theory of the activated complex is expressed in
terms of the partition functions of the reacting molecules and the activated
complex. We can provide a rough estimate of the temperature dependence
of these partition functions at room temperature. The translational par-
tition function is proportional to T 3=2 (see Eq. (12.37)). The rotational
partition function is proportional to T in the case of linear molecules (see
Eq. (12.55)) or T3=2 in the case of non-linear molecules (see Eq. (12.76)).
Finally, the vibrational partition function is only very weakly temperature
dependent at room temperature, where T� � (see Eq. (12.67)). Therefore,
Eq. (12.139) can be rewritten as

k ¼ ATme�Ea=RT,

whereA is a temperature independent constant and the power,m, depends
on the structure of the reacting molecules and the activated complex. This
result implies that

ln k ¼ lnAþm lnT� Ea
RT

;
d ln k

dT
¼ m
T
þ Ea

RT2
¼ Ea þmRT

RT2
:

On the other hand, the Arrhenius law takes the following form:

d ln k

dT
¼ E

RT2
,

where E is the experimentally observed activation energy. Comparing this
equation with the previous one, we find

Ea ¼ E�mRT: (12:145)

Therefore, the measured activation energy need not be the true activation
energy.
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12.3.3.4 Thermodynamic form of the theory of the activated complex

If we consider the activated complex as a regular molecule, we can write the
expression for the equilibrium constant for the reaction

Aþ B! ABz (12:146)

as (see Eq. (12.122))

Kz
0

c ¼
P0

ABz

PAPB
e�Ea=RT: (12:147)

Inserting this expression into Eq. (12.139), we find

k ¼ kBT

h
Kz

0
c : (12:148)

In physics, we commonly express concentrations in molecules/m3,
while in chemistry we commonly express it in mole/l. Equation (12.248)
is unchanged on going from physics to chemistry (as long as we are con-
sistent). In the rest of this chapter, we will be chemists and express
the concentration in mole/l. We will use the state in which the partial
pressures of all species are 1 atm as our standard state. In this case (see
Section 5.2)

Kp ¼ Kc(R
0T)�1,

where R 0 ¼ 0.0821 (1 � atm)/(K mole). Since –RT ln Kp¼�G, we obtain

Kp ¼ Kc(R
0T)�1,

where �Gz, �Hz, and �Sz are the change of the Gibbs free energy,
enthalpy, and entropy at formation of the activated complex. Inserting this
result into Eq. (12.148), we obtain:

k ¼ kBT

h
R0Te��H

z=RTe�S
z=R, (12:149)

where the rate constant has the dimension l/(mole s). This equation can be
transformed as follows

ln k ¼ 2 lnT��Hz

RT
þ�Sz

R
þ const;

E

RT2
¼ 2

T
þ�Hz

RT2

or

�Hz ¼ E� 2RT: (12:150)

Inserting this expression into Eq. (12.149), we obtain:

k ¼ kBT

h
e2e�S

z=RR0Te�E=RT: (12:151)

Note that both R and R 0 are the ideal gas constants, but are in different
units. Recall that in the theory of active collisions

k ¼ �Ae�E=RT, (12:152)
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where

A ¼ 
 rA þ rBð Þ2 8kBT


mAB

� �1=2

(12:153)

Comparing Eqs (12.151) and (12.152), we obtain the following
relationship:

� ¼ 1

A

kBT

h
e2R0Te�S

z=R: (12:154)

Obviously, the factor A has the same order of magnitude for all bimole-
cular reactions. Therefore, the steric factor � is determined by the entropy
of the formation of the activated complex. According to the theory of
active collisions, all bimolecular reactions fall into one of the following
three categories:

�> 1-‘‘fast reactions’’;
�� 1-‘‘normal reactions’’
�> 1-‘‘slow reactions’’.

Inserting reasonable numbers into Eq. (12.153), we find that A� 1011

l/(mole s). The factor (1=A)(kBTh)e
2R0T is � 104 at room temperature.

Ignoring the steric factor in Eq. (12.152) (i.e. �� 1) is equivalent to
assuming that �Sz � � 80 J/(K mole). For this value of �Sz, the theory of
active collisions should work. We can estimate �Sz as follows. At room
temperature, the vibrational degrees of freedom do not make a significant
contribution to the entropy. In the case of bimolecular reactions, the
reacting molecules together have six translational degrees of freedom and
4–6 rotational degrees of freedom. The activated complex has four trans-
lational degrees of freedom and 2–3 rotational degrees of freedom.
Therefore, �Sz has contributions from two translational degrees of
freedom (� 50 J/(K mole) per degree) and 1–3 rotational degrees of free-
dom (� 20 J/(K mole) per degree) and overall, �Sz < � 100 J/(K mole).
This is why most bimolecular reactions are ‘‘slow reactions’’ and the theory
of active collisions overestimates the rate constants.
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Introduction to statistical
thermodynamics of
condensed matter

In this Chapter we apply statistical thermodynamics to condensed matter.
We start with a description of the structure of liquids and the relation
between this structure and its thermodynamic properties. Taking the low
density limit, we derive a general equation of state appropriate for both
liquids and gases. Next, we turn to a statistical thermodynamic description
of solids. Finally, we consider the statistical theory of solutions.

13.1 Introduction to liquid theory

13.1.1 Correlation functions

Recall that interactions between molecules in an ideal gas can be ignored
for the purpose of determining thermodynamic properties. Therefore, we
can assume that the spatial position of a molecule is independent of the
positions of all of the other molecules in the gas. In real gases under high
pressure and, even more so, in condensed matter, the intermolecular
interactions play an important role and the positions of molecules are not
independent. In other words, intermolecular interactions lead to the
formation of correlations in the location of the molecules or, equivalently,
to the development of structure. The energy of the system and the
other thermodynamic properties depend on this structure. Therefore, we
now turn to a discussion of structure. There are two distinct approaches
to this problem. The first approach is designed for crystalline materials
and is based upon a description of crystal symmetry. The description of
this method is outside the scope of this text. The second is based upon
the introduction of probability functions for atom locations and is
applicable to disordered systems such as dense gases, liquids, and
amorphous solids.

Consider, as we are apt to do, the ideal gas. In this case, the probability
of finding s molecules at points r1, r2, . . . , rs is simply

dw(r1, . . . , rs) ¼ 1

Vs
dr1 . . . drs:

13



In contrast with the ideal gas, the positions of molecules in high density
gases or condensed matter are not independent of each other. Therefore,
we write

dw(r1, . . . , rs) ¼ 1

Vs
Fs(r1, . . . , rs)dr1 . . . drs, (13:1)

where Fs(r1, . . . , rs) is called the s-particle correlation function. Note three
obvious properties of such functions. First, the system does not change
when we exchange two molecules. This implies that the correlation
functions should be symmetric with respect to their arguments. For
example, two-particle correlation functions are invariant upon switching
indices:

F2(r1, r2) ¼ F2(r2, r1):

The second property is associated with the fact that correlation functions
are probability distributions and, hence, must be normalized:

1

Vs

Z
Fs(r1, . . . , rs)dr1 . . . drs ¼ 1: (13:2)

Finally, we can find any of the lower order correlation functions from the
any higher order correlation function, for example,

Fs(r1, . . . , rs) ¼ 1

V

Z
Fsþ1(r1, . . . , rs, rsþ1)drsþ1: (13:3)

Below, we primarily focus on homogeneous systems. In this case, the
probability of finding a single molecule at any point is the same. Therefore,

dw1 ¼ 1

V
dr1

or

F1(r) ¼ 1: (13:4)

It is often useful to write the conditional probability
dwrsþ1;...;rsþp (r1, . . . , rs) that smolecules are at points r1, . . . , rs, while p other
molecules are at points rsþ1, . . . , rsþ p. It is obvious that

dw(r1, . . . , rsþp) ¼ dw(rsþ1, . . . , rsþp)dwrsþ1,..., rsþp (r1, . . . , rs):

Inserting Eq. (13.1) into this relation, we obtain:

1

Vsþp
Fsþp(r1, . . . , rsþp)dr1 . . . drsþp

¼ 1

Vp
Fp(rsþ1, . . . , rsþp)drsþ1 . . . drsþpdwrsþ1;...;rsþp(r1, . . . , rs)

or

dwrsþ1;...;rsþp (r1, . . . , rs) ¼
1

Vs
Fsþp(r1, . . . , rsþp)
Fp(rsþ1, . . . , rsþp)

dr1 . . . drs: (13:5)

Another approach is to describe the structure of a homogeneous
disordered system through pair correlation functions. If the system is
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homogeneous, the probability of finding molecule 2 at a distance r from
molecule 1 does not depend on the position of molecule 1. If the system is an
ideal gas then this probability is simply 4
r2dr/V. In the case of condensed
matter, we must introduce a new factor that accounts for the correlation
between the positions of molecules:

dw(r) ¼ 4
r2 dr

V
g(r): (13:6)

The function g(r) is called the pair correlation function. For an ideal gas,
g(r)¼ 1. However, if the molecules repel each other at short distances (as
quantum mechanics tells us they must), molecule 2 cannot approach too
close to molecule 1. Therefore, at small distances g(r)¼ 0. In disordered
systems (liquids, amorphous solids), there is no correlation between
molecule positions at large r; hence, g(r)¼ 1 at large distances. Figure 13.1
shows a typical pair correlation function for liquid metals.

We can also describe the probability of finding molecule 2 at a distance r
from molecule 1 using the correlation functions introduced earlier (see
Eq. 13.5):

dwr1(r2) ¼
1

V

F2(r2, r1)

F1(r1)
dr2 ¼ 1

V

F2ðr1, r2Þ
F1(r1)

d(r2 � r1)

¼ F2(r1, r2)
4
jr2 � r1j2djr2 � r1j

V
:

Comparing this result with Eq. (13.6) and taking into account that
r¼ jr2� r1j, we find:

F2(r1, r2) ¼ g r1 � r2j jð Þ: (13:7)

Therefore, the two-particle correlation function for homogeneous system
only depends on the scalar separation between molecules. We note, with-
out derivation, that this function can be determined from diffraction
experiments.

Review questions

1. What is dw(r1, . . . , rs) ¼ (1=Vs)Fs(r1, . . . , rs)dr1 . . . drs?

2. What is dwrsþ1;...;rsþp(r1, . . . , rs) ¼ (1=Vs)
Fsþp(r1;...;rsþp)
Fp(rsþ1;...;rsþp)

dr1 . . . drs?

3. For which systems is the following relation F2(r1, r2) ¼ g r1 � r2j jð Þ
valid?

13.1.2 Determination of thermodynamic properties

Since our goal is to obtain the thermodynamic properties from a micro-
scopic description of the system, we now consider how to determine such
properties from the correlation functions and molecular interactions (and
external parameters). Since the correlation functions (structure) are
themselves determined by the molecular interactions, our first step is to

2
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Liquid Fe

r (nm)

Fig.13.1
The pair correlation function of liquid

iron at T¼ 1873 K.
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relate the correlation functions to the molecular interactions. The most
natural approach is to use Gibbs statistics. Recall that the partition
function takes the following form:

ZN ¼ 1

N!

Z
e
� UN(r1,..., rN)þ

PN
i¼1

p2
i =2m

� �
=kBT

d�, (13:8)

whereUN(r1, . . . , rN) is the interaction energy of the molecules (atoms) and

d� ¼ dr1 . . . drNdp1 . . . dpN
(2
�h)3N

: (13:9)

The integration over momenta in Eq. (13.8) can be separated from the
integration over molecule positions. This allows us to rewrite Eq. (13.8) as

ZN ¼ mkBT

2
�h2

� �3N=2
QN
N!

, (13:10)

where the quantity

QN ¼
Z

e�UN(r1;...;rN)=kBTdr1 . . . drN, (13:11)

is called the configuration integral or configurational partition function.
In the case of an ideal gasUN� 0 and, therefore,QN¼VN. Thus, we can

rewrite the partition function for an arbitrary system in terms of that for an
ideal gas Z 0

N and the configuration integral:

ZN ¼ Z 0
N

QN
VN

: (13:12)

Since

A ¼ �kBT lnZN

we can rewrite Eq. (13.12) as

A ¼ A0 � kBT ln
QN
VN

, (13:13)

where A0 is the Helmholtz free energy of an ideal gas ofNmolecules at the
same temperature and volume.

The probability that N molecules are at points r1, . . . , rN is

dwN(r1, . . . , rN) ¼ 1

QN
e�UN(r1;...;rN)=kBTdr1 . . . drN: (13:14)

Comparing this result with Eq. (13.1), we find:

FN(r1, . . . , rN) ¼ V
N

QN
e�UN(r1;...;rN)=kBT (13:15)

Other correlation functions can be found using Eq. (13.3) and will be
discussed in Section 13.1.4.

Now imagine that we know the correlation functions. How can we use
this information to determine thermodynamic functions? We recall that
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any measurable thermodynamic property is, by definition, an averaged
quantity. Any quantity that is a function of atomic coordinates can be
written as a sum over the s-body interactions

Ms(r1, . . . , rN) ¼
XN�1

i1¼1

XN�2

i2¼i1þ1

� � �
XN�s

is¼is�1þ1

f (ri1 , . . . , ris): (13:16)

In principle s¼N, but in many cases it is sufficient to describe the inter-
actions as simply two-body (pairwise) or three-body (bond bending)
interactions. The average of this quantity Ms (i.e. the thermodynamic
quantity) is simply a weighted average of all possible molecular positions:

Ms ¼
Z
Ms dwN ¼ 1

QN

Z
Ms(r1, . . . , rN)e�UN(r1;...;rN)=kBTdr1 . . . drN:

Inserting Eqs (13.15) and (13.16) into this relation, yields

Ms ¼ N!

s!(N� s)!
1

QN

Z
f (r1, . . . , rs)e

�UN(r1;...;rN)=kBTdr1 . . . drN

¼ N!

s!(N� s)!
Z
f (r1, . . . , rs)FN(r1, . . . , rs)V

�Ndr1 . . . drN

¼ N!

s!(N� s)!
1

Vs

Z
f (r1, . . . , rs)Fs(r1, . . . , rs)dr1 . . . drs:

Since we usually work with s�N, this equation reduces to

Ms ¼ N

V

� �s
1

s!

Z
f (r1, . . . , rs)Fs(r1, . . . , rs)dr1 . . . drs: (13:17)

As an example, consider a system in which the molecules only interact
through a pairwise potential ’(r), that is a potential that only depends on
the distance between molecules. In this case, the instantaneous potential
energy is

UN(r1, . . . , rN) ¼
X

1�i< ... <j�N
’ ri � rj
�� ��� �

: (13:18)

Equation (13.17) implies that the mean potential energy is

UN ¼ N

V

� �2
1

2

Z
’ r1 � r2j jð ÞF2(r1, r2)dr1dr2:

If the system is homogeneous, this reduces to

UN ¼ N

V

� �2
1

2

Z
’(r)g(r)drdr2 ¼ 1

2

N

V

� �2

V

Z
’(r)g(r)4
r2dr

and, finally,

UN ¼ 2
N
N

V

Z 1
0

’(r)g(r)r2dr: (13:19)
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This example relates a thermodynamic function to the molecular interac-
tions, the structure and an external parameter, the density.

Review questions

1. What approximations were used to derive the following expression:

Ms ¼ N

V

� �s
1

s!

Z
f (r1, . . . , rs)Fs(r1, . . . , rs)dr1 . . . drs

for the average value of a quantity
Ms(r1, . . . , rN) ¼PN�1

i1¼1 �
N�2
i2¼i1þ1 . . .

PN�s
is¼is�1þ1 f (ri1 , . . . , ris)?

2. What approximations were used to derive the following expression
for the average value of the potential energy,
UN ¼ 2
N(N=V)

R1
0 ’(r)g(r)r2dr?

13.1.3 Equation of state of non-crystalline matter

The equation of state can be obtained from the following thermodynamic
relation:

p ¼ � @A

@V

� �
T

:

Inserting Eq. (13.13) into this relation, we obtain

p ¼ � @A0

@V

� �
T

þ kBT
@ lnQN
@V

� �
T

� kBT
@ lnVN

@V
:

The first term is the equation of state of an ideal gas (p¼NkBT/V ) and is
exactly canceled by the last term. Therefore,

p ¼ kBT
@ lnQN
@V

� �
T

: (13:20)

For simplicity, in the remainder of this section, we consider the special case
in which the molecular interactions are strictly pairwise. In this case, we
can express the potential energy as

UN(r1, . . . , rN) ¼
X

1�i< ...<j�N
’ ri � rj
�� ��� �

:

It is convenient to scale all of the atomic coordinates by a parameter, 
,
such that

V(
) ¼ 
3V:

Differentiating both sides of this expression, we find:

dV(
) ¼ 3
2d
V ¼ 3 d




V

or

dV

V
¼ 3d




:
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Introduction of this scaling parameter also leads to the following changes
in the potential energy and the configuration integral:

UN(
r1, . . . ,
rN) ¼
XN�1

i¼1

XN
j¼iþ1

’ 
 ri � rj
�� ��� � ¼XN

i<j

’ 
 ri � rj
�� ��� �

QN(
) ¼ 
3N

Z
e�UN(
r1;...;
rN)=kBTdr1 . . . drN

Inserting these results into Eq. (13.10), we obtain:

p ¼ kBT
@ lnQN(
)

@V

� �����

¼1

¼ kBT
1

3V




QN

@QN(
)

@


� �

¼1

¼ kBT

3V

1

QN
3N
3N�1

Z
e�UN(
r1;...;
rN)=kBTdr1 . . . drN

�

�
3N
XN
i<j

Z
@’ð
jri � rjjÞ
@jri � rjj

jri � rjj
kBT

e�UN(
r1;...;
rN)=kBTdr1 . . . drN

#

¼1

¼ kBT

3V

1

QN
3NQN

� kBT

3V

1

QN

1

kBT

XN
i<j

Z
@’ðjri � rjjÞ
@jri � rjj jri � rjje�UN(r1;...;rN)=kBTdr1 . . . drN

¼ NkBT

V
� 1

3V

XN
i<j

@’ ri � rj
�� ��� �

@ ri � rj
�� �� ri � rj

�� ��* +
:

The average in the final expression can be evaluated using Eq. (13.17):

p ¼ NkBT

V
� 1

3V

N

V

� �2
1

2

Z
@’ r1 � r2j jð Þ
@ r1 � r2j j r1 � r2j jF2(r1; r2)dr1dr2

¼ NkBT

V
� 1

3V

N

V

� �2
1

2
V4


Z
@’(r)

@r
g(r)r3dr

and finally

p ¼ NkBT

V
� 2


3

N

V

� �2Z
’0(r)g(r)r3dr, ð13:21Þ

where the prime indicates that a derivative is taken with respect to r. This is
the equation of state for non-crystalline matter in which the molecules
interact via a pairwise potential, ’. The first term corresponds to an ideal
gas and the second is determined by the molecular interactions. In the low
density limit, this equation reduces to the equation of state of an ideal gas.
We return to this equation in Section 13.2.1.
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Review questions

1. Under what conditions does the equation
p ¼ (NkBT=V )� (2
=3)� N=Vð Þ2R ’0(r)g(r)r3dr reduce to the equation
of state of an ideal gas?

2. Is it possible to derive an equation of state for a non-ideal gas from the
following equation p ¼ (NkBT=V )� (2
=3) N=Vð Þ2R ’0(r)g(r)r3dr?

13.1.4 Born^Green^Bogoliubov equation

We have already derived expressions for the potential energy (Eq. 13.19)
and the pressure (Eq. 13.21) in non-crystalline matter. Both expressions
require the knowledge of the molecular interactions and the pair correla-
tion function (assuming that the interactions are strictly pairwise). The
intermolecular potential can be fitted to either quantum-mechanical results
and/or experimentally measurable quantities. While a large corpus of
intermolecular potentials exists, a discussion of this issue is outside the
scope of this text. If the intermolecular potential is known, the pair cor-
relation function can easily be determined using atomistic computer
simulation—unfortunately, this is also outside the scope of this text. While
such an approach has clear advantages, it does not yield pair correlation
functions in an analytical form. On the other hand, the modern theory of
liquids, while producing analytical results, does not predict accurate pair
correlation functions. Nonetheless, such theories are useful both con-
ceptually and in practice in some special cases. The remainder of this
section will be devoted to the theory of liquids. This theory will play a
pivotal role in our discussion of non-ideal gases in the next section.

We will again limit our discussion to the case in which the interactions
between molecules is pairwise. In order to derive the relation between the
pair potential and pair correlation function, we start from the general
relation between the correlation functions (see Eq. 13.3):

Fs(r1, . . . , rs) ¼ 1

V

Z
Fsþ1(r1, . . . , rs, rsþ1)drsþ1:

This relation allows us to express the correlation function of any order
through the N-particle correlation function:

Fs(r1, . . . , rs) ¼ 1

VN�s

Z
FN(r1, . . . , rN)drsþ1 . . . drN:

Note that we have an exact expression only for the N-particle correlation
function (Eq. 13.15):

FN(r1, . . . , rN) ¼ V
N

QN
e�UN(r1;...;rN)=kBT:

Inserting this expression into the preceding equation, we obtain

Fs(r1, . . . , rs) ¼ V
s

QN

Z
e�UN(r1;...;rN)=kBTdrsþ1 . . . drN: (13:22)

This, in principle, provides an exact expression for any correlation func-
tion. In practice, however, this expression is not particularly useful.
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For example, in order to calculate the two-particle correlation function, we
must perform integration over N� 2 coordinates. Since N can be very
large, this would be tedious. We can obtain a more practical relation by
taking derivatives of both sides of Eq. (13.22) with respect to the position of
molecule 1:

r1Fs ¼ � V
s

QN

Z r1UN
kBT

e�UN=kBTdrsþ1 . . . drN

¼ � Vs

kBTQN

Xs
i¼2

r1’(jr1 � rij)
Z

e�UN=kBTdrsþ1 . . . drN

� Vs

kBTQN

XN
i¼sþ1

Z
r1’(jr1 � rij)e�UN=kBTdrsþ1 . . . drN

¼ � 1

kBT

Xs
i¼2

r1’(jr1 � rij) V
s

QN

Z
e�UN=kBTdrsþ1 . . . drN

� 1

kBT

N� s
V

Z
r1’(jr1 � rsþ1j)drsþ1V

sþ1

QN

Z
e�UN=kBTdrsþ2 . . . drN,

where r1 implies the derivative with respect to the position of molecule 1,
that is, @/@r1. We can replace the integrals on the right hand side of this
expression using the correlation functions Fs and Fsþ 1 (Eq. 13.22):

r1Fs(r1, . . . , rs) ¼� 1

kBT
Fs(r1, . . . , rs)

Xs
i¼2

r1’(jr1 � rij)

� 1

kBT

N� s
V

Z
r1’(jr1 � rsþ1j)Fsþ1(r1, . . . , rsþ1)drsþ1

or

kBTr1Fs(r1, . . . , rs) ¼ �Fs(r1, . . . , rs)
Xs
i¼2

r1’(jr1 � rij)

�N� s
V

Z
r1’(jr1 � rsþ1j)Fsþ1(r1, . . . , rsþ1)drsþ1: (13:23)

This is the Born–Green–Bogoliubov equation. For s¼ 2, it reduces to

kBTr1 ln g(jr1 � r2j) ¼ �r1’(jr1 � r2j)
�N
V

Z
r1’(jr1 � r3j)F3(r1; r2; r3)

g(jr1 � r2j) dr3: (13:24)

This expression gives the relationship between the pair potential, the pair
correlation function, and the three-body correlation function. This equa-
tion is exact. Unfortunately, Eq. (13.24) cannot be solved unless we know
the three-body correlation function. To make it useful, we need another
equation that express the three-particle correlation function in terms of
the pair correlation function. Unfortunately, at present, no such exact
expression is known. The simplest approximate form can be found using
the superposition approximation. In this approximation, we assert

F3(r1; r2; r3) ¼ F2(r1; r2)F2(r1; r3)F2(r2; r3): (13:25)
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Inserting this into Eq. (13.24), we obtain

kBTr1 ln g(jr1 � r2j) ¼ �r1’(jr1 � r2j)
�N
V

Z
r1’(jr1 � r3j) g(jr1 � r3j)g(jr2 � r3j)dr3: (13:26)

In order to evaluate the pair correlation function from this expression, it
is convenient to introduce a new function:

E(x) ¼
Z x

1
’0(t)g(t)dt: (13:27)

Taking derivatives of both sides of this equation, we obtain:

r1E(jr1 � r3j) ¼ r1’(jr1 � r3j)g(jr1 � r3j):
Inserting this relation into Eq. (13.26) yields

kBTr1 lng(jr1� r2j)¼�r1’(jr1� r2j)�N
V

Z
r1E(jr1� r3j)g(jr2� r3j)dr3:

Integrating this equation shows

kBT ln g(r) ¼ �’(r)�N
V

Z
E(jr� r0j)g(r0)dr0 þ const: (13:28)

We can determine the value of the integration constant by considering
what happens at large r. In this limit, ln g(r) ! 0 and’(r)! 0. This implies

const ¼ N
V

Z
E(jr� r0j)g(r0)dr0: (13:29)

Since E(x) is non-zero at small x, E r� r0j jð Þ at r!1 is only non-zero near
r0 � r. We now use the fact that g(r0) ¼ 1 at large r 0 to write

const ¼ N
V

Z
E(jr� r0j)dr0:

Inserting this result into Eq. (13.28), we find:

kBT ln g(r) ¼ �’(r)�N
V

Z
E(jr� r0j)½g(r0)� 1
dr0: (13:30)

In order to simplify the volume integral, we rewrite this expression in
spherical coordinates:

kBT ln g(r) ¼ �’(r)� 2
N

V

Z 1
0

½g(r0)� 1
r02dr0

�
Z 


0

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos �

p� 	
sin � d�:

This can be further simplified by switching the integration variable from �
to t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos �
p

:

kBT ln g(r) ¼ �’(r)� 2
N

V

1

r

Z 1
0

½g(r0)� 1
r0dr0
Z rþr0

jr�r0 j
E(t)t dt: (13:31)
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This expression is an implicit equation for the pair correlation function in
terms of only the pair potential, temperature, and density. It yields accu-
rate results at low density but is poor at high densities.

13.2 Theory of non-ideal gases

To this point, when we worked with gases, we mainly focused on ideal gases.
At room temperature and atmosphere pressure, most real gases behave as if
they are ideal. However, at high pressure, this is not the case. Moreover, as
we mentioned in Section 2.1, there is no difference between gases and liquids
above the critical point. Obviously, the equation of state ( pV¼NRT) and
other thermodynamic properties derived for ideal gases should not be
applied under these conditions. In this section, we derive more general
equations for gases and consider the critical point in more detail.

13.2.1 Van der Waals equation of state

We start by deriving the equation of state for a non-ideal gas. Since the case
of simultaneous collision of three molecules in a gas (even a dense one) is
rare, we can justifiably limit our consideration to pairwise interactions of
gas molecules. As discussed in the previous sections, we can write the pair
correlation function in the Born–Green–Bogoliubov formalism as

kBT ln g(r) ¼ �’(r)þN
V
F(r);

where F(r) is a function that only weakly depends on T and N/V (via the
pair correlation function). We will consider only the low density (small
N/V ) limit. In this case, the previous equation can be rewritten as:

g(r) ¼ e�’(r)=kBTeðN=VÞF(r)=kBT � e�’(r)=kBT 1þ N

VkBT
F(r)

� �
:

Inserting this expression into the exact equation of state (Eq. (13.21)),

p ¼ NkBT

V
� 2


3

N

V

� �2Z 1
0

’0(r)g(r)r3dr;

we find

p ¼ NkBT

V
� 2


3

N

V

� �2Z 1
0

’0(r)e�’(r)=kTr3dr

� 2


3

N

V

� �3
1

kBT

Z 1
0

’0(r)e�’(r)=kBTF(r)r3dr:

The first term on the right-hand side of this equation gives the equation of
state of an ideal gas. The next two terms represent the first two corrections
as we expand in powers of the density. Keeping only the first of these
(i.e. that proportional to the square of the density), we obtain:

p ¼ NkBT

V
� 2


3

N

V

� �2Z 1
0

’0(r)e�’(r)=kBTr3dr:
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Integration by parts gives

p¼NkBT

V
þ 2


3

N

V

� �2

kBTr
3(e�’(r)=kBT� 1)

����
1

0

� 2
3kBTN
2

3V2

�
Z 1

0

(e�’(r)=kBT � 1)r2dr¼NkBT

V
� 2
N2kBT

V2

Z 1
0

(e�’(r)=kBT� 1)r2dr:

Introducing a new constant

�1 ¼ 4


Z 1
0

(e�’(r)=kBT � 1)r2dr, (13:32)

we obtain the equation of state in the following form:

p ¼ NkBT

V
�N

2kBT

2V 2
�1: (13:33)

The parameter �1 in this equation does not depend on density but does
depend on temperature and the pair potential. We now attempt to simplify
this equation by making some generic assumptions about the interatomic
potential. For example, at very small r, ’(r)� kBT (see Fig. 13.2) such
that e�’(r)=kBT � 0. At very large r, ’(r)j j � kBT such that e�’(r)=kBT �
1� ’(r)=kBT. We now assume that for any r, we are in either one or the
other of these limits. In this way, we can rewrite Eq. (13.32) as

�1 ¼ �4


Z d

0

r2 dr� 4


Z 1
d

’(r)

kBT
r2 dr ¼ � 4
d3

3
� 4


kBT

Z 1
d

’(r)r2 dr,

where d is the intermolecular separation where we divide between these two
limits. Clearly, d is a measure of the molecule diameter. It is convenient to
introduce two new constants

a ¼ �2


Z 1
d

’(r)r2 dr; b ¼ 2
d 3

3
¼ 4�0, (13:34)

such that

�1 ¼ �2bþ 2a

kBT
, (13:35)

where �0 is a measure of the volume of a molecule. The constants a and b
depend only on inherent molecule properties and do not depend on the
external parameters (V and T ). The first constant characterizes the inter-
molecular interaction: �N(N/V )a is the potential energy of a gas in which
the molecules are in random locations but interact through the pair
potential ’(r). Since the potential energy of a non-ideal gas is lower than
the potential energy of an ideal gas under the same conditions (our refer-
ence state), we conclude that a> 0. The second constant simply tells us the
size of the molecules and hence b> 0. Inserting Eq. (13.35) into Eq. (13.33),
we obtain the famous van der Waals equation of state:

p ¼ NkBT

V
þN

2kBT

V 2
b�N

2

V 2
a: (13:36)

w

0
d r

Fig.13.2
A typical pair potential.
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The first term on the right side of this equation corresponds to an ideal gas;
it is proportional to the gas density. The next two terms are corrections that
are proportional to the square of the gas density. The first correction is
associated with the fact that molecules have a finite volume; this decreases
the volume in which the molecules are free to move and therefore, increases
the pressure. This explains why this correction is always positive. The
second correction is associated with the interaction between the gas
molecules; this interaction provides some degree of bonding between
gas molecules. Since any bonding between the molecules decreases the
fraction of the time the molecules can move through the volume, this leads
to a decrease in pressure (i.e. a> 0).

Review question

1. What is the physical meaning of parameters a and b in the van der Waals

equation p ¼ (NkBT=V )þ (N 2kBT=V
2)b� (N 2=V 2)a?

Example problem

1. Construct an expression for the Gibbs free energy of 1 mole of O2 using
the following handbook data: interatomic separation in O2 is
r¼ 1.20735 Å; the vibrational wavenumber is ���¼ 1579.78 cm; the
van der Waals parameters are a¼ 0.138 J m3/mole2 and b¼
3.258 � 10�5 m3/mole.

13.2.2 Critical point

We have already discussed the phase diagram of a one-component system
(see Fig. 2.1 in Section 2.1) and derived the Clausius–Clapeyron equation,
which describes the two-phase coexistence lines in the phase diagram,
except for the gas–liquid line near the critical point. We now focus on the
critical point. Since there is no difference between a gas and a liquid above
the critical point, they must have the same equation of state there.
Unfortunately, we have not yet found an equation of state for a liquid. On
the other hand, the van der Waals equation,

p ¼ NkBT

V
1þNb

V

� �
�N

2a

V 2
, (13:37)

describes a non-ideal gas at high pressure. This expression does not
account for the well-known fact that the pressure in a liquid gets extremely
large when it is compressed by only a few percent from its equilibrium
density (in this equation, p!1 only when the density goes to infinity).

We can correct this problem by using a mathematical slight of hand.
Recall that in our derivation of the van der Waals equation, we performed
an expansion in small values of the density, N/V, only retaining the
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leading order term. To the same level of approximation, we can rewrite
Eq. (13.37) as

p ¼ NkBT

V 1� (Nb=V)ð Þ �
N 2a

V 2
, (13:38)

since both Eqs (13.37) and (13.38) are exactly identical to leading order in
the density. This new version of the van der Waals equation of state has the
feature that p!1 as V/N! b. Thus, Eq (13.38) reduces to the van der
Waals equation at low density and exhibits small compressibility at large
densities. Therefore, we will use this equation to describe fluids in general,
that is, both gases and liquids.

Figure 13.3 shows the isotherms predicted by Eq. (13.38) at several
temperatures. At high temperature, the isotherms are monotonically
decreasing functions of volume and at low temperature, the isotherms
exhibit two extrema. The interesting feature is that at low temperature,
there are conditions for which (@p/@V )T> 0 (segment BCD in Fig. 13.3).
(@p/@V )T> 0 is indicative of a thermodynamic instability. Therefore, we
are forced to conclude that at low temperatures, the isotherms must each
split into two separate parts: the high density branch AB corresponds to a
liquid and the low density branchDE corresponds to a gas. This means that
if we construct a system with an intermediate volume in the range BD, the
system will phase separate into a liquid and a gas.

The critical temperature is the temperature at which the liquid and gas
are indistinguishable. This occurs when the extrema in Fig. 13.3 disappear
upon heating the system. At any temperature belowTc, we can find the two
extrema (V1,V2) by setting @p/@V¼ 0. The critical temperature is the
temperature for which V1¼V2¼Vc. At this point, @2p/@V2¼ 0. Inserting
Eq. (13.38) into these relations implies

@p

@V
¼ � NkBTc

Vc �Nbð Þ2 þ
2N 2a

V 3
c

¼ 0;
@2p

@V 2
¼ 2NkBTc

Vc �Nbð Þ3 �
6N 2a

V 4
c

¼ 0:

Solving these equations for Tc and Vc, we find:

Tc ¼ 8

27

a

bkB
(13:39)

and

Vc ¼ 3Nb: (13:40)

Inserting these values back into Eq. (13.38), demonstrates that

pc ¼ 1

27

a

b2
: (13:41)

All three quantities,Tc,Vc, and pc can be obtained from experiment. Any
two of these can be used to determine a and b from the van der Waals
equation. The third parameter provides a consistency check on the validity
of the van der Waals equation of state. Usually, the agreement is within
an order of magnitude. This shows that the van der Waals equation is

p

A

K

C
D

B

T > Tc

T < Tc

T = Tc
E

V

Fig.13.3
Isotherms obtained from Eq. (13.38).
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reasonable, although not quantitatively accurate. This comes as no
surprise given all of the assumptions we made to get here.

Example problem

1. For oxygen, Vc¼ 97.74 cm3/mole and Tc¼ � 118.82�C. Find pc.

13.2.3 Principle of corresponding states

Since the critical point parameters (Tc, pc, Vc) can be determined from
experiment, it is convenient to recast the van der Waals equation in a form
where the external parameters are scaled by these quantities. First, we
introduce the following dimensionless variables:


 ¼ p

pc
; � ¼ T

Tc
; ! ¼ V

Vc
: (13:42)

The state parameters can be written as (see Eqs (13.39)–(13.41)):

p ¼ 
pc ¼ 1

27

a

b2



T ¼ �Tc ¼ 8

27

a

kBb
�

V ¼ !Vc ¼ 3Nb!:

(13:43)

Using these relations, we can rewrite Eq. (13.38) as

8� ¼ 
þ 3

!2

� �
3!� 1ð Þ: (13:44)

This result is fascinating because it contains no materials parameters.
It implies that all fluids can be described using the same universal equation
of state. The fact that all fluids at the same dimensionless volume and
temperature have the same dimensionless pressure is a statement of the
principle of corresponding states. While we derived this result based upon
the van der Waals equation of state, the same statement can be made on the
basis of more sophisticated equations of state. Although this principle
is not a mathematically exact statement, it is found to work surprisingly
well for a very large variety of gases. In the next section, we will use this
principle to solve a practical problem.

13.2.4 Fugacity

When we considered the thermodynamics of gas phase reactions in
Section 5.2, we derived the van’t Hoff isotherm from the following form
of the chemical potential

	 ¼ 	0 þ RT ln p, (13:45)

which was in turn obtained from the equation of state of ideal gases

pV ¼ NRT, (13:46)
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(see Section 1.5.1). Since we already know that this equation is not valid at
high pressure, all equations based upon it are suspect at high pressures. As
an example, consider the following reaction

N2 þ 3H2 ! 2NH3: (13:47)

If all species were ideal gases, the equilibrium constant of this reaction
would take the following form:

K 0
p ¼

p2
NH3

p3
H2
pN2

¼ 1

p2

x2
NH3

x3
H2
xN2

, (13:48)

where the superscript 0 implies that we are only confident in the validity of

this expression at low pressure. Experimental values of the p2
NH3

=ð p3
H2
pN2
Þ

at equilibrium at T¼ 450�C are shown in Table 13.1. These data show that

p2
NH3

=ð p3
H2
pN2
Þ is nearly independent of the total pressure for p< 10 atm,

but varies strongly with pressure at large total pressure. Hence, we cannot

determine the equilibrium constant as in Eq. (13.48) at high pressure.

In order to adopt the thermodynamic equations to the high pressures, we
introduce a new thermodynamic function, the fugacity f, as

	 ¼ 	0 þ RT ln f: (13:49)

This equation must reduce to Eq. (13.45) in the p! 0 limit, where all gases
are ideal. Therefore, f! p in this limit. Now, consider a mixture of two
gases. In spite of the fact that the gases are not ideal, we will assume that
they form an ideal solution, that is,

�Hmix ¼ 0; �Vmix ¼ 0;
�Smix ¼ �(n1 þ n2)RT(x1 ln x1 þ x2 ln x2),

(13:50)

where ni and xi are number of moles and molar fraction of component i in
the gas. The Gibbs free energy of this mixture is

G ¼ n1 	
0
1 þ RT ln f 0

1

� �þ n2 	
0
2 þ RT ln f 0

2

� �
þ n1 þ n2ð ÞRT x1 ln x1 þ x2 ln x2ð Þ:

Differentiating this expression with respect to ni at constant nj 6¼ i, we
obtain:

	i ¼ 	0
i þ RT ln f 0

i þ RT ln xi ¼ 	0
i þ RT ln fi (13:51)

where

fi ¼ xi f 0
i ; (13:52)

and f 0
i is the fugacity of pure i at the pressure which is equal to the total

pressure in the mixture. Comparison of Eqs (13.45) and (13.51) suggests

Table13.1 Experimental data for the reaction in Eq. (13.47)

p(atm) 1 10 30 50 100 300 600 1000

p2
NH3

=(p3
H2
pN2

) 42.1 42.9 45.0 47.1 51.8 76.3 163.8 519.8
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that the only change in going from ideal to non-ideal gases is to replace the
partial pressure with the fugacity.

By analogy with the activity coefficient in solutions (see Eq. (3.68)), we
can also define the fugacity coefficient as

�i ¼ fi=pi: (13:53)

Using this new variable, we can write the equilibrium constant of the
reaction in Eq. (13.47) as

Kp ¼
p2

NH3

p3
H2
pN2

�2
NH3

�3
H2
�N2

: (13:54)

Note that this expression reduces to Eq. (13.48) when p! 0.
Although we now have a more robust thermodynamic description of

reactions in gases at high pressures, it is of little practical consequence until
we learn how to determine the fugacity. As always, phenomenological
thermodynamics provides no guidance in such situations, so we will have
to resort to other means to determine the fugacity. We discuss two such
approaches below: a method based upon the van der Waals equation of
state and a more practical method based upon the principle of corres-
ponding states.

The van der Waals equation of state for 1 mole of a gas takes the fol-
lowing form (cf. Eq. (13.38)):

p ¼ RT

V� b�
a

V 2
, (13:55)

where V and b are expressed in m3/mole and a in (J m3)/mole2. In order to
find the fugacity, we start from the following general thermodynamic
relation:

@A

@V

� �
T

¼ �p:

For an ideal gas

@Aideal

@V

� �
T

¼ �pideal,

where pideal is the pressure in an ideal gas at the same V and T. Subtracting
the second relation from the first, we find

@(A� Aideal)

@V

� �
T

¼ �( p� pideal):

Integrating both sides of this equation, we obtainZ A�Aideal

0

d(A� Aideal) ¼
Z V

1
( pideal � p) dV

A ¼ Aideal þ
Z V

1

RT

V
� RT

V� bþ
a

V 2

� �
dV ¼ Aideal þ RT ln

V

V� b�
a

V
,
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where we used the fact that (A�Aideal)! 0 as V!1. Since we calculated
the Helmholtz free energy per mole of a pure substance, the Gibbs free
energy and chemical potential (these are identical since we are working
with 1 mole of a pure substance) can be obtained by adding pV:

	 ¼ Aþ pV ¼ Aideal þ RT ln
V

V� b�
a

V
þ pV:

For an ideal gas, pV¼RT, hence,

	ideal ¼ Aideal þ pV ¼ Aideal þ RT
Aideal ¼ 	ideal � RT ¼ 	0 þ RT ln p� RT ¼ 	0 þ RT ln

RT

V
� RT:

Inserting this result into the expression for 	 yields

	 ¼ 	0 þ RT ln
RT

V
� RTþ RT ln

V

V� b�
a

V
þ RTV
V� b�

a

V

¼ 	0 þ RT ln
RT

V� bþ RT
b

V� b�
2a

V
:

Finally, comparing this result with Eq. (13.49) leads to the conclusion that

ln f ¼ ln
RT

V� bþ
b

V� b�
2a

VRT
: (13:56)

Since this expression is based upon the van der Waals equation of state, it
too must be viewed as approximate. We could, however, apply the same
approach for any equation of state.

Another approach to determining the fugacity uses the principle of
corresponding states. An obvious extension of this principle leads to
the conclusion that if two gases have the same values of 
 and �, they
also have the same fugacities. Many handbooks tabulate the coeffi-
cients of fugacity obtained from experimental data in this manner. In
order to illustrate this method we return to the reaction in Eq. (13.47).
Table 13.2 provides the requisite data for all species participating in
this reaction. 
 and � are calculated for T¼ 450�C and p¼ 300 atm.
Assuming that Kp¼ 42.1 (the value at the smallest pressure in Table 13.1),
we obtain:

p2
NH3

p3
H2
pN2

¼ Kp
�2

NH3

�3
H2
�N2

 !�1

¼ 42:1
1:13 � 1:122

0:913
¼ 80:7:

This value is close to that in Table 13.1 for p¼ 300 atm.

Table13.2 Handbook data for the species participating in the reaction in Eq. (13.47)

Species pc (atm) Tc (K) 
 � �

N2 33.6 126.3 8.9 5.73 1.13

H2 12.7 33.0 23.6 21.9 1.12

NH3 111.4 405.5 2.7 1.78 0.91
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Review question

1. Consider the following reaction

COþH2 ! HCOH:

At small pressures, its equilibrium constant takes the following form:

Kp ¼ pHCOH

pCOpH2

and at high pressure the equilibrium constant is

Kf ¼ fHCOH

fCOfH2

:

What is the relation between these two quantities?

13.3 Statistical thermodynamics of solids

13.3.1 Lattice vibrations

In contrast with liquids and gases, the most important contribution of the
motion of atoms in crystals to the thermodynamic functions is associated
with their vibrations around their equilibrium lattice sites. The same
applies to amorphous materials, except that the equilibrium sites are not
arranged in a periodic manner. Therefore, we can consider any solid
consisting ofN atoms as a set of 3N independent oscillators.1 Therefore, we
can express the Helmholtz free energy of a solid as (cf. Eq. 12.68)):

A ¼ N"0 þ kBT
X
�

ln (1� e��h!�=kBT), (13:57)

where N"0 is the energy of the atoms sitting still on their equilibrium
positions and the summation is performed over all 3N vibrational degrees
of freedom. All of the other thermodynamic functions can be obtained
from this expression provided that we know the vibrational spectrum (the
set of !�). However, this spectrum depends on the symmetry of the crystal
lattice (or the structure of an amorphous material) and the interatomic
bonding. The determination of this spectrum is a topic in condensed
matter physics and is, to our great sadness, beyond the scope of this text.
Our goal here is much more modest. We will examine the low and high
temperature limiting cases and then interpolate between them, as suggested
by Debye (1912).

13.3.2 Low temperature limit

At low temperatures, the only vibrational frequencies that make a sig-
nificant contribution to the free energy are those for which !�� kBT/�h or

1 Strictly speaking the number of oscillators is 3N� 6. The six missing degrees of freedom
are associated with translation and rotation of the whole crystal. Since N� 6, it is often
neglected relative to 3N. Although the vibrations of an atom and its neighbors are not
independent, there are 3N� 6 independent collective vibrational modes.
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less (see Eq. (13.57)). These low frequencies correspond to sound waves
with the wavelength 
� c/!, where c is the speed of sound. Therefore, in
this approach, we define low temperatures as

T � �h!

kB
� �hc

kB

� �hc

kBa
, (13:58)

where a is a typical nearest neighbor separation. For simplicity, we will
assume that the solid is isotropic (this applies to amorphous materials, but
rarely to crystals). In the isotropic case, there is one longitudinal sound
wave (velocity c1) and two transverse sound waves (ct).

2 The corresponding
vibrational frequencies are !1¼ c1k and !t¼ ctk, where k is the wave
vector. In our analysis, we ignore the discrete atomic structure of the
solid and view it as a continuous medium. It is important to remember
that this is reasonable for the long wavelengths (
� a)/low frequencies
discussed here.

Consider a solid sample in the form of a parallelepiped with edges A, B,
and C. If the system is a perfect crystal, we assume that this sample is
periodically repeated through all of space (i.e. we use periodic boundary
conditions).3 This is reasonable also for an amorphous material provided
that these edge lengths are very much larger than the typical intermolecular
spacing. A plane wave eikxx must satisfy the following periodicity
requirement:

eikxx ¼ eikx(xþA):

Therefore,

eikxA ¼ 1

and

kx ¼ 2
nx
A

, (13:59)

where nx is an integer. This equation demonstrates that the number of
possible values of kx in the interval dkx is not infinite but equal to dnx¼
(A/2
)dkx. The number of possible wave vectors between k to kþ dk is

dn ¼ dnxdnydnz ¼ ABC
(2
)3

dkxdkydkz:

Rewriting this expression in spherical coordinates yields

dn ¼ V

2
2
k2dk, (13:60)

whereABC¼V. Since there are one longitudinal and two transverse sound
waves corresponding to each wave vector in the interval, the total number
of vibrational states in this range is

dn ¼ V

2
2

!2

c2l

d!

cl
þ 2!2

c2t

d!

ct

� �
:

2 Elastic theory of vibrations in crystals is not explicitly considered herein.
3 The atoms on the top of the parallelepiped interact with atoms on its bottom, atoms on

the right edge interact with atoms on the left edge, etc., as in a torus.
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Introducing the average sound velocity

3

�cc3
¼ 1

c3l
þ 2

c 3
t

, (13:61)

we obtain the following phonon (vibrational) spectrum

dn ¼ 3V

2
2�cc 3
!2d!: (13:62)

Note that this formula is also valid for crystals even though the averaging
must be performed differently because of anisotropy.

As discussed above, at low temperatures, only the low frequency end
of the vibrational spectrum is important in determining thermodyna-
mic properties. This is given by Eq. (13.62). Inserting Eq. (13.62) into
Eq. (13.57) and replacing the summation by an integration, we find

A ¼ N"0 þ kT 3V

2
2�uu 3

Z !max

0

ln (1� e��h!=kBT)!2d!: (13:63)

Since the integral converges quickly, we need not be concerned about the
value of !max and can set it to infinity. We can integrate the second term on
the right in Eq. (13.63) by parts to obtainZ 1

0

ln (1� e��h!=kBT)!2d! ¼ !
3

3
ln (1� e��h!=kBT)

����
1

0

� �h

3kBT

Z 1
0

e��h!=kBT

1� e��h!=kBT
!3d!:

The first term on the right side is zero. The second term isZ 1
0

e��h!=kT

1� e��h!=kTB
!3d! ¼

Z 1
0

!3

e�h!=kBT � 1
d!

¼ kBT

�h

� �4Z 1
0

x3

ex � 1
dx ¼ kBT

�h

� �4
4

15
:

Inserting this into Eq. (13.63), we finally find

A ¼ N"0 � 
2k4
B

30(�h�uu)3
VT 4: (13:64)

Other thermodynamic functions can be determined as

S ¼ � @A

@T

� �
V

¼ 2
2k4
B

15(�h�uu)3
VT 3 (13:65)

U ¼ Aþ TS ¼ N"0 þ 
2k4
B

10(�h�uu)3
VT 4 (13:66)

cV ¼ T @S

@T

� �
V

¼ 2
2k4
B

5(�h�uu)3
VT 3: (13:67)

That cV�T 3 is a well-known result seen in experiments at low temperatures.

Statistical thermodynamics of condensed matter250



13.3.3 High temperature limit

By analogy with Eq. (13.58), the high temperature limit applies when

kBT� �h!: (13:68)

Expanding the exponential in Eq. (13.57) and retaining only the leading
order term, we find:

A ¼ N"0 þ kT
X
�

ln
�h!�
kBT

: (13:69)

Introducing the mean frequency as

ln! ¼ 1

3N

X
�

ln!�, (13:70)

we can rewrite Eq. (13.69) as

A ¼ N"0 þ kBT
X
�

ln
�h

kBT
þ 3N ln!

 !

¼ N"0 þ 3NkBT ln
�h

kB
� 3NkBT lnTþ 3NkBT ln �!!

or

A ¼ N"0 � 3NkBT lnTþ 3NkBT ln
�h!

kB
: (13:71)

The other thermodynamic functions can be obtained from this:

S ¼ � @A

@T

� �
V

¼ 3NkB(1þ lnT )� 3NkB ln
�h!

kB

or

S ¼ 3NkB lnT� 3NkB ln
�h!

kBe
(13:72)

U ¼ Aþ TS ¼ N"0 þ 3NkBT (13:73)

cV ¼ T @S

@T

� �
V

¼ 3NkB: (13:74)

The last expression is exactly the classical result: each vibrational degree of
freedom contributes kB to the heat capacity.

13.3.4 Debye’s interpolation

Now that we have derived expressions for the contributions to the
thermodynamic properties of solids at high and low temperatures, it is
of interest to determine these properties at intermediate temperatures.
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While this requires the determination of the entire vibrational spectrum of
the solid (which is not discussed in this text), we will employ a simpler,
interpolation method proposed by Debye. We start by recalling that the
low temperature results follow simply from the form of the phonon spec-
trum in Eq. (13.62). At high temperatures, the only important point is that
the total number of oscillators is 3N. The simplest way to retain both
of these features is to describe the phonon spectrum using Eq. (13.62) but
to cut it off at a maximum frequency !max, which is determined from the
condition that the total number of vibrational modes is 3N. This condition
takes the following form:

3N ¼ 3V

2
2�cc 3

Z !max

0

!2 d! ¼ 3V

2
2�cc 3

!3
max

3

or

!max ¼ 6
2N

V

� �1=3

�cc: (13:75)

Introducing the Debye temperature, �, as

� ¼ �h!max

kB
, (13:76)

we can rewrite Eq. (13.57):

A ¼ N"0 þ kBT

Z !max

0

3V

2
2 �cc 3
ln (1� e��h!=kBT)!2d!:

Using Eq. (13.75), we can then make the following substitution:

3V

2
2�cc3
¼ 9N

! 3
max

:

Next, we switch integration variables from ! to

z ¼ �h!

kBT
,

such that the Helmholtz free energy becomes

A ¼ N"0 þ kBT
9N

!3
max

kBT

�h

� �3Z �=T

0

ln 1� e�zð Þ z2dz

¼ N"0 þ 9NkBT
T

�

� �3Z �=T

0

ln 1� e�zð Þ z2dz:

Integration by parts yields

A ¼ N"0 þ 9NkT
T

�

� �3
z3

3
ln 1� e�zð Þ

����
�=T

0

� 1

3

Z �=T

0

z3

ez � 1
dz

 !
:
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In order to write this expression in a simpler form, we introduce the Debye
function

D(x) ¼ 3

x3

Z x

0

z3

ez � 1
dz: (13:77a)

Its derivative is

D0(x) ¼ � 9

x4

Z x

0

z3

ez � 1
dzþ 3

x3

x3

ex � 1
¼ � 3

x
D(x)þ 3

ex � 1
: (13:77b)

Replacing the remaining integral in the Helmholtz free energy using the
Debye function yields

A ¼ N"0 þNkBT 3 ln (1� e��=T)�D �

T

� �
 �
: (13:78)

From this, we obtain the energy:

U ¼ �T 2 @A=T

@T

� �
V

¼ N"0 �NkBT
2 � 3

e�=T � 1

�

T 2
�D0 �

T

� �
 �
:

The derivative in this expression can be rewritten using

@

@T
¼ @

@(�=T )

d�=T

dT
¼ � �

T 2

@

@(�=T )
:

This identity, together with Eq. (13.77b) allows us to write

U ¼ N"0 þNkB�
3

e�=T � 1
þNkBT

2 � 3D(�=T )

�=T
þ 3

e�=T � 1


 �
� �

T 2

� �

or

U ¼ N"0 þ 3NkBTD
�

T

� �
: (13:79)

Finally,

cV ¼ @U

@T

� �
V

¼ 3NkB D
�

T

� �
þ T @

@T
D

�

T

� �
 �

or

cV ¼ 3NkB D
�

T

� �
��

T
D0

�

T

� �
 �
: (13:80)

Figure 13.4 shows the heat capacity as a function of temperature. The
Debye temperature is a materials property and is given in Table 13.3 for
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Fig.13.4
The heat capacity in the Debye model.

Table13.3 The Debye temperature for several solids

Substance Pb Ag KBr NaCl Diamond H2O

� (K) 90 210 180 280 2000 192
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several materials. Examination of this table shows that the Debye tem-
perature for most condensed systems is below room temperature (although
there are notable exceptions) and therefore, the high temperature limit is
widely applicable. This is in agreement with the empirical rule proposed by
Dulong and Petit: the heat capacity of 1 mole of atoms of any condensed
substance is approximately 3R¼ 24.9 J/(mole K) (see also Section 1.4.2).

13.4 Statistical thermodynamics of solutions

In this section, we consider several statistical theories for the thermo-
dynamic properties of solutions. Some of these theories were already
discussed in Chapter 3. In such cases, our goal is to derive some of the
fundamental equations that we simply postulated above. This should
provide new insight into the physical nature of solutions. We then discuss
some (hopefully) interesting extensions to these theories.

13.4.1 Ideal dilute solutions

Recall that the main idea underlying the theory of ideal dilute solutions
is that the probability two solute molecules come in contact with one
another is sufficiently small that it can be ignored, such that solute mole-
cules only have solvent molecule nearby. This means that the change in
energy�( p,T,N1) associated with the addition of a single solute molecule to
the solution does not depend on the number of solute molecules already
present. In order to construct an expression for the Gibbs free energy, we
must be cognizant of the fact that solute molecules are indistinguishable.
This decreases the number of physically distinguishable states by a factor
of N2! and, therefore, decreases the partition function by a factor of N2!.
Since A¼�kBT ln Z, indistinguishability increases the free energy of the
solution by kT ln N2!. Therefore, the Gibbs free energy of the solution can
be written as:

G ¼ N1	
0
1( p,T )þN2�( p,T,N1)þ kBT lnN2!, (13:81)

where 	0
1( p,T ) is the chemical potential of the pure solvent (recall that the

Gibbs free energy of a one-component system is always the product of the
chemical potential and the number of atoms (of moles)—see Section 1.5.1).
Applying Stirling’s approximation, ln N!¼N lnN�N¼N ln(N/e), we
obtain:

G ¼ N1	
0
1( p,T )þN2kBT ln

N2

e
e�( p;T;N1)=kBT


 �
:

In order to find the corresponding chemical potentials, the Gibbs free
energy should be written as an explicit function of the number of atoms. To
this end, we note that as with any extensive property, the Gibbs free energy
must be a homogeneous function of the numbers of moles of all of its
components (see Section 3.1). We can satisfy this requirement, if and only if

e�( p;T;N1)=kBT ¼ �( p,T )=N1,
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where �( p,T ) is a function that depends on the properties of the solvent
and solute but not on the solute concentration. Therefore,

G ¼ N1	
0
1( p,T )þN2kBT ln

N2

eN1
þN2kBT ln�( p,T ):

Introducing a new function

 ( p,T ) ¼ kBT ln �( p,T ), (13:82)

we obtain:

G ¼ N1	
0
1( p,T )þN2kBT ln

N2

eN1
þN2 ( p,T ): (13:83)

We can now, write the chemical potential of the solvent as

	1 ¼ @G

@N1

� �
p;T;N2

¼ 	0
1 � kBT

N2

N1
� 	0

1 � kBTx2 � 	0
1 þ kBT ln 1� x2ð Þ

or

	1 ¼ 	0
1 þ kBT ln x1 (13:84)

In the equation preceding Eq. (13.84), we replaced �x2 with ln(1� x2) to
get the result into a form that is widely seen in phenomenological thermo-
dynamics (this substitution works because x2 is small). For the chemical
potential of the solute, we obtain:

	2 ¼ @G

@N2

� �
p;T;N1

¼ kBT ln
N2

eN1
þ kBTþ  ¼  þ kBT ln

N2

N1

or

	2 ¼  þ kBT ln x2: (13:85)

These chemical potentials are exactly those obtained in Section 3.2.1,
except that these are expressed per atom rather than per mole. In
Section 3.2.1 these results were a consequence of the Henry law, which was
postulated based upon a wide range of experimental observations. Recall
that all remaining properties of ideal dilute solutions can be obtained from
these expressions for the chemical potentials (see Section 3.2).

Review question

1. What is the meaning of the term kBT lnN2! in the expression for the
Gibbs free energy for ideal dilute solutions
G ¼ N1	

0
1( p,T )þ N2�( p,T,N1)þ kBT lnN2!?

13.4.2 Substitutional solutions

In this section, we focus on substitutional solutions. Such solutions usually
form in systems in which the solute and solvent atoms (molecules) have
approximately the same size. In our discussion of such solutions, we will

Statistical thermodynamics of solutions 255



follow the theory of substitutional solutions described by Guggenheim.
First, we will describe a general model of substitutional solutions that in
well-defined limits yields the ideal and regular solution models. Then, we
will consider an extension of the regular solution model. While in our
analysis we will assume that the material is a crystalline solid solution, the
results will be equally applicable to amorphous materials and liquids.

13.4.2.1 Basic assumptions

We assume that the energy of the system can be written as the sum of terms
associated with the internal degrees of freedom of the molecules and that
with the positions of the molecules. Therefore, the partition function takes
the following form:

Z ¼ QinternalQtranslational: (13:86)

The second term can, in turn, be divided into two parts: an acoustic part
associated with the vibration of molecules near their equilibrium sites and a
configurational part associated with the occupancy of these sites by
molecules of different types, �:

Qtranslational ¼ Qacoustic�: (13:87)

We will further assume that the internal and acoustic partition functions do
not change upon adding the solute to the solvent. In this case, the change in
the Helmholtz free energy associated with the formation of 1 mole of the
solution from its pure components is

�Amix ¼ �RT ln�� xA ln�0
A � xB ln�0

B

� �
, (13:88)

where�0
i is the configurational partition function of 1 mole of component i.

By definition, the configurational partition function is

� ¼
X

e�U=kBT, (13:89)

where the configurational energy U is the potential energy of the system
when all molecules are sitting still at their equilibrium positions (their
vibrations are taken into account in Qacoustic). We will assume that the
molecular interactions are pairwise and only extend over nearest neighbor
lattice sites. The number of nearest neighbors of a site (coordination
number) is z, which we will assume to be the same for both pure compon-
ents and the solution. The configurational energy of pure component i is
proportional to the number of molecules, that is, �Ni�i (since the con-
figurational energy is set to zero when the molecules are infinitely separated
and the condensed phase is stable, �i> 0). The energy per bond in pure
component i is (there are Niz/2 nearest neighbor bonds)

�Ni�i
Niz=2

¼ � 2�i
z
:

Consider now two pure components, A and B. We take 1 molecule from
A and 1 molecule from B and exchange them. We denote the change in the
configurational energy associated with this exchange as

�U ¼ 2!: (13:90)
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On other hand, this change in the energy can be expressed in terms of the
number of A–A, B–B and A–B bonds:

�U ¼ z"AB þ z"AB � z
�2�A

z
þ z�2�B

z

� �
,

where "AB is the A–B bond energy and, of course, the A–A and B–B bond
energies are "AA¼�2�A/z and "BB¼�2�B/z, respectively. Inserting this
result into Eq. (13.90), we obtain:

2! ¼ 2z"AB þ 2�A þ 2�B

or

"AB ¼ ��A � �B þ !
z

: (13:91)

Finally, we note that since pV is small for condensed phases in typical
laboratory situations (see Section 1.1.4), we neglect the difference between
U and H and between A and G.

13.4.2.2 Ideal solutions

By definition, ideal solutions are formed from pure components without
absorbing or emitting heat, that is, !¼ 0 for such solutions. Therefore, for
an ideal solution, the A–B bond energy is (see Eq. (13.91)):

"AB ¼ ��A � �B

z
¼ 1

2

�2�A

z
þ�2�B

z

� �
:

This is the arithmetic mean of the A–A and B–B bond energies. The key
feature of ideal solutions is that if we exchange two arbitrary molecules A
and B, there will be no change in the energy of the solution. If you remain
unconvinced of this statement, we can prove it as follows. Assume an
A molecule has zAA neighbors of type A and zAB neighbors of type B and a
B molecule has zBB and zBA like and unlike neighbors, respectively. Since the
total number of neighbors is always z,

zAA þ zAB ¼ zBA þ zBB:
The change in the solution energy associated with exchange two arbitrary
A and B molecules is

�U ¼ �zBA
2�A

z
� zBB

�A þ �B

z
� zAB

2�B

z
� zAA

�A þ �B

z

� �zAA
2�A

z
� zAB

�A þ �B

z
� zBB

2�B

z
� zBA

�A þ �B

z

� �

¼ 1

z
�2�Az

B
A � �Az

B
B � �Bz

B
B � 2�Bz

A
B � �Az

A
A � �Bz

A
A

�
þ 2�Az

A
A þ �Az

A
B þ �Bz

A
B þ 2�Bz

B
B þ �Az

B
A þ �Bz

B
A

�
¼ 1

z
�A �2zBA � zBB � zAA þ 2zAA þ zAB þ zBA
� �


þ �B �zBB � 2zAB � zAA þ zAB þ 2zBB þ zBA
� ��

¼ 1

z
�A �zBA � zBB þ zAA þ zAB
� �þ �B �zAB � zAA þ zBB þ zBA

� �
 � ¼ 0:
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Since an ideal solution is formed from its pure components with no
change in energy, its configurational energy is simply the sum of the
energies of its pure components:

U ¼ �NxA�A �NxB�B: (13:92)

There are

N!

NxAð Þ! NxBð Þ! ,

physically distinguishable ways to arrange the molecules in this solution
and all of these configurations have exactly the same energy. Therefore, the
partition function of this solution can be represented as:

� ¼
X

e�U=kT ¼ N!

NxAð Þ! NxBð Þ! e
NxA�AþNxB�Bð Þ=kBT

and its Helmholtz free energy is:

A ¼ �kBT ln� ¼ �kBT lnN!þ kBT ln NxAð Þ!þ kBT ln NxBð Þ!
�NxA�A �NxB�B

¼ �NkBT lnNþNkBTþNxAkBT lnNxA �NxAkBT

þNxBkBT lnNxB �NxBkT�NxA�A �NxB�B

¼ �NxA�A �NxB�B þNkBT xA ln xA þ xB ln xBð Þ:
In a pure component, there is just one physically distinguishable config-
uration, therefore, its partition function takes the following form:

�0
i ¼ eNxi�i=kBT

and its Helmholtz free energy is

A0
i ¼ �Nxi�i:

Thus, the change of the Helmholtz free energy upon the formation of an
ideal solution from its pure components is

�Amix ¼ NkBT xA ln xA þ xB ln xBð Þ: (13:93)

The chemical potential is, therefore,

	i ¼ 	0
i þ kBT ln xi: (13:94)

This expression is the definition of ideal solutions that we postulated in
Section 3.3.

13.4.2.3 Regular solutions

In the previous section, we developed the theory of ideal solutions based on
the fact that in such solutions !¼ 0. In contrast with ideal solutions, ! 6¼ 0
in regular solutions. In this section, we derive general (albeit difficult to
apply) relations for such solutions. In the next two sections, we will con-
sider two approximations that simplify the regular solution theory. As
usually in statistical thermodynamics, we start by deriving an expression
for the partition function. Consider a configuration of the solution with zX
A–B pairs. The total number of neighbors of all A molecules is zNA.
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Therefore, there are z(NA�X)/2 A–A bonds (the factor of 2 arises from
the fact that two A atoms share an A–A bond). By analogy, we can cal-
culate the number of all other pairs and the energy associated with these
pairs. The results are presented in Table 13.4.

The configurational partition function is:

� ¼ eNA�A=kBTeNB�B=kBT
X

e�X!=kBT, (13:95)

where the summation is performed over the N!/(NA!NB!) physically dis-
tinguishable configurations. Introducing an unconventional average value
of X X

� 	
as follows:X

e�X!=kBT ¼ N !

NA!NB!
e�X!=kBT, (13:96)

we can rewrite Eq. (13.95) as:

� ¼ eNA�A=kBTeNB�B=kBT
N !

NA!NB!
e�X!=kBT: (13:97)

The configurational part of the Helmholtz free energy is

A ¼ �kBT ln� ¼ �NA�A �NB�B � kBT ln
N!

NA!NB!
þ X!:

If we expand the logarithm using Stirling’s equation,

ln
N !

NA!NB!
¼ N lnN�N�NA lnNA þNA �NB lnNB þNB

¼ �NA ln xA �NB ln xB,

we can express the Helmholtz free energy as:

A ¼ �NA�A �NB�B þNkBT xA ln xA þ xB ln xBð Þ þ X!: (13:98)

Note that if !¼ 0, this expression reduces to the Helmholtz free energy of
an ideal solution (see the previous section).

The experimentally observed configurational energy of a regular solu-
tion can be written as (see Table 13.4)

U ¼ �NA�A �NB�B þ X!, (13:99)

where zX is the usual statistical average of the number of A–B bonds.
In order to find the relation betweenX andX, we use the Gibbs–Helmholtz
equation:

U ¼ A� T @A
@T

:

Table 13.4 The number of bonds, the energy per bond, and the total energy associated

with different bond types in a regular solution

Bond Number of bonds Energy per bond Energy of all bonds

A–A z(NA�X )/2 �2�A/z �(NA�X)�A

A–B zX (��A ��Bþ!)/z X(��A��Bþ!)

B–B z(NB�X )/2 �2�B/z �(NB�X)�B

All z(NAþNB)/2 � �NA�A�NB�BþX!
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Inserting Eqs (13.98) and (13.99) into this expression, we find:

�NA�A �NB�B þ X! ¼ �NA�A �NB�B þNkBT xA ln xA þ xB ln xBð Þ

þ X!�NkBT xA ln xA þ xB ln xBð Þ � T! @X
@T

or

X ¼ X� T @X
@T
¼ �T 2

@ X=T
� 	
@T

¼ �T 2
@ X=T
� 	
@ 1=Tð Þ

d 1=Tð Þ
dT

¼
@ X=T
� 	
@ 1=Tð Þ :

Integration of this equation yields

Z X=T

0

d
X

T

 !
¼
Z 1=T

0

Xd
1

T

� �
,

where we took into account that X=T! 0 at T!1 (the number of A–B
bonds must always be finite). Evaluation of the left side of this equation,
shows that

X ¼ T
Z 1=T

0

Xd
1

T

� �
: (13:100)

This is the central equation of the theory of regular solutions. While we are

not interested in X per se, if we know X, we can determine the Helmholtz

free energy (through Eq. (13.98)). Of course, if we know A, we then know

all thermodynamic properties.

13.4.2.4 Theory of regular solutions: 0th approximation

In the 0th approximation, we assume that the molecules of type A or B
randomly occupy the crystal lattice sites, despite the fact that ! 6¼ 0. In this
case, A molecules will have, on average, zNB/(NAþNB) B neighbors.
Therefore, the total number of A–B bonds is

zX ¼ NAz
NB

NA þNB

and

X ¼ NANB

NA þNB
: (13:101)

Note that in this approximation, the average number of A–B bonds is
independent of temperature. Inserting Eq. (13.101) into (13.100), we find:

X ¼ X ¼ NANB

NA þNB
: (13:102)

Inserting this result into Eq. (13.98) yields

A ¼ �NA�A �NB�B þNkBT xA ln xA þ xB ln xBð Þ þN!xAxB:
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The other thermodynamic functions are, therefore,

�Amix ¼ NkBT xA ln xA þ xB ln xBð Þ þN!xAxB (13:103)

�Smix ¼ � @A
@T
¼ �NkBT xA ln xA þ xB ln xBð Þ (13:104)

�Hmix ¼ �Umix ¼ Amix þ TSmix ¼ N!xAxB (13:105)

	A ¼ @A

@NA

� �
NB

¼ 	0
A þ kBT ln xA þ !x2

B (13:106)

�A ¼ e(	A�	0
A
�kBT ln xA)=kBT ¼ e!x

2
B
=kT: (13:107)

These thermodynamic properties exactly coincide with those obtained in
our phenomenological thermodynamic theory of regular solutions in
Section 3.5. In other words, the regular solution theory we referred to
previously, is simply the 0th approximation to the statistical thermo-
dynamic regular solution theory. This is not surprising since both deriva-
tions are based on the assumption that A and B molecules randomly
occupy the lattice sites.

13.4.2.5 Theory of regular solutions: 1st approximation

The regular solution theory in the 0th approximation is not self-consistent.
On one hand, we explicitly use the fact that ! 6¼ 0. This implies that the
energies of different configurations are not the same. On the other hand, we
assume that A and B molecules occupy the lattice sites at random. Clearly,
we could lower the energy of the system by imposing some type of ordering
on the configuration of the molecules. However, this will invariably
decrease the entropy of the system. Hence, this ordering makes two com-
peting contributions to the free energy of the system. Therefore, it is not
clear whether such ordering is favorable. Further, if ordering is favorable,
how does it modify the thermodynamic properties of the solution? These
questions are the subject of this section.

Again, consider the impact of exchanging a molecule of type A and a
molecule of type B. Originally the A molecule has zAA neighbors of type A
and zAB neighbors of type B, that is, it has zAA A–A bonds and zAB A–B bonds
(similarly for the B molecule). After the exchange, the A molecule will have
zBB A–B bonds and zBA A–A bonds. Therefore, this exchange can be written,
by analogy with chemical reactions, as follows:

z A
A(A�A)þz A

B (A� B)þ z B
A(A� B)þ z B

B(B� B)

! z A
A(A� B)þ z A

B (B� B)þ z B
A(A�A)þ z B

B(A� B):

We can formally rewrite this equation as follows:

zAA � zBA
� �

(A�A)þ zBB � zAB
� �

(B� B)! zAA þ zBB � zAB � zBA
� �

(A� B):

Since

z A
A � zBA ¼ z� z A

B � zBA ¼ zBB � z A
B ,
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we can divide both sides of the previous expression by z A
A � z B

A

� �
to find a

simplified chemical reaction equation for this exchange process

(A�A)þ (B� B)! 2(A� B): (13:108)

The equilibrium constant for this reaction takes the form (see Table 13.4
in Section 13.4.2.3)

K ¼ X
2

NA � X
� �

NB � X
� � ð13:109Þ

and the van’t Hoff isobar is

d lnK

dT
¼ 2!

zkBT 2
:

Integrating this equation yields

lnK ¼ C� 2!

zkBT
, ð13:110Þ

whereC is an integration constant. When !/kBT! 0, the molecules will be
randomly occupy the lattice sites. This is the 0th approximation, for which
we found

X ¼ NANB

NA þNB
,

(see Eq. (13.101)). We can transform this relation as follows:

NANB � X NA þNBð Þ ¼ 0

X
2 ¼ X 2 þNANB � X NA þNBð Þ

and finally,

X
2 ¼ X�NA

� �
X�NB

� �
: ð13:111Þ

Comparing this result with Eq. (13.109), we find that when !/kBT! 0 (the
condition forwhichEq. (13.111) is valid),K! 1.Therefore,C¼ 0. Inserting
this value into Eq. (13.110) and combining it with Eq. (13.109) yields:

X
2 ¼ NA � X

� �
NB � X
� �

e�2!=zkBT: ð13:112Þ
This equation differs from Eq. (13.111) by the factor e�2!=zkBT:

Equation (13.112) is an implicit expression for the average site occu-
pancy. In order to determine X, the average number of A–B bonds, it is
convenient to write it in the form:

X ¼ NANB

NA þNB

2

� þ 1
, ð13:113Þ

where � is a parameter to be determined. Inserting Eq. (13.113) into
Eq. (13.112) yields:

N2
AN

2
B

NAþNBð Þ2
4

(�þ1)2
¼ NA� NANB

NAþNB

2

�þ1

� �
NB� NANB

NAþNB

2

�þ1

� �
e�2!=zkBT:
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Solving this equation for � gives:

�2 ¼ 1þ 4xAxB e2!=zkBT � 1
� 	

ð13:114Þ

or

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4xAxB e2!=zkBT � 1ð Þ

q
: ð13:115Þ

Equations (13.113) and (13.115) show how interactions between A and B
atoms modify the average number of A–B bonds, X.

Our next goal is to determine the free energy of the solution from
Eq. (13.98). To this end, we must obtain X. Equation (13.100) provides a
means of determiningX fromX. First, we should express d(1/T ) in terms of
d�. Recall that Eq. (13.100) was derived from the Gibbs–Helmholtz
equation at constant xi. Using Eq. (13.114), we find:

2!

zkB
d

1

T

� �
¼ d ln

�2 � 1þ 4xAxB

4xAxB
¼ 2� d�

�2 � 1þ 4xAxB
:

Inserting this into Eq. (13.100), we obtain:

X ¼ T
Z 1=T

0

Xd
1

T

� �
¼ NxAxB

zkBT

2!

Z �

1

4� d�

�2 � 1þ 4xAxBð Þ � þ 1ð Þ:

The lower limit in the last integral was obtained by realizing that 1/T¼ 0
(lower limit in the intermediate integral) implies infinite temperature and
!/kT¼ 0. This is the case where the 0th approximation is valid. Comparing
Eqs (13.115) and (13.113) demonstrates that �¼ 1 in the 0th approxima-
tion. Evaluating the integral in the previous expression yields:

X ¼ NzkBT

2!
xA ln

� þ 1� 2xB

xA(� þ 1)
þ xB ln

� þ 1� 2xA

xB(� þ 1)


 �
: (13:116)

Inserting this result into Eq. (13.98), we are able to write the change in the
Helmholtz free energy upon formation of the solution from the pure
components as:

�Amix ¼ NkBT xA ln xA þ xB ln xBð Þ

þ 1

2
NzkBT xA ln

� þ 1� 2xB

xA(� þ 1)
þ xB ln

� þ 1� 2xA

xB(� þ 1)


 �
: (13:117)

The corresponding chemical potential and the activity coefficient are:

	A ¼ 	0
A þ

@Amix

@NA

� �
T;NB

¼ 	0
A þ kT lnxA þ 1

2
zkT ln

� þ 1� 2xB

xA(� þ 1)
,

(13:118)

�A ¼ e(	A�	0
A
�kBT ln xA)=kBT ¼ � þ 1� 2xB

xA(� þ 1)

� �z=2
(13:119)
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Equations (13.117)–(13.119) describe the influence of the interaction
between A and B atoms on the thermodynamic properties of the solution
(i.e. the 1st approximation). Unfortunately, these equations are not par-
ticularly transparent.

In order to simplify these equations, we recall that the theory of regular
solutions in the 1st approximation reduces to the theory of regular solu-
tions in the 0th approximation when !/kBT! 0. Therefore, it is reasonable
to consider !/kBT as a small parameter. Expansion of the Helmholtz free
energy with respect to !/kBT yields:

�Amix ¼ NkBT xA ln xA þ xB ln xBð Þ þN!xAxB �N !2

zkBT
x2

Ax
2
B . . .

(13:120)

The first term on the right side of this equation corresponds to an ideal
solution, which forms from the pure components with no change in energy.
The second term gives the regular solution in the 0th approximation that
forms from the pure components with a finite change in energy for the case
that the molecules are randomly located on the lattice sites. Finally, the
third term is the leading order correction to the free energy of mixing that
accounts for ordering in the solution. Whether the deviation from ideality
is positive (!> 0) or negative (!< 0), this ordering always lowers the
Helmholtz free energy.

The leading order corrections to the entropy and enthalpy of mixing can
be obtained from Eq. (13.120) as follows:

�Smix ¼ � @Amix

@T

� �
NA;NB

¼ �NkB(xA ln xA þ xB ln xB)�N!
2x2

Ax
2
B

zkBT 2

(13:121)

and

�Hmix ¼ �Amix þ T�Smix ¼ N!xAxB � 2N!2x2
Ax

2
B

zkBT
: (13:122)

The first term on the right side of Eq. (13.121) corresponds to the change of
entropy upon formation of an ideal solution from its pure components.
The change of the entropy in the theory of regular solutions in the
0th approximation is the same as in ideal solutions, therefore, this theory
does not provide any corrections to the entropy of mixing. The last term in
Eq. (13.121) is a correction from the theory of regular solutions in the
1st approximation. It is associated with ordering and is always negative.
Recall that ideal solutions form from their pure components with no
change in energy. This implies that for ideal solutions,�Hmix¼ 0. The first
term in Eq. (13.122) is from the theory of regular solutions in the
0th approximation. It can be either negative or positive depending on the
sign of !. The second term is associated with ordering (1st approximation)
and always lowers the energy of mixing. Comparing Eqs (13.121) and
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(13.122) with Eq. (13.120), we find the following relations for the correc-
tions associated with the ordering:

�A(1)
mix ¼

1

2
�H (1)

mix

T�S (1)
mix ¼

1

2
�H (1)

mix,

where the superscript (1) indicates that this is the leading order term in the
correction associated with ordering in the regular solution model in the 1st
approximation. These relations demonstrate that half of the decrease in the
enthalpy of mixing associated with ordering is compensated in the free
energy by a decrease in the entropy associated with the same ordering.

Review questions

1. What is the difference between the 0th and 1st approximations of the
theory of regular solutions?

2. Which regular solution approximation predicts lower solution
enthalpy?

3. Which regular solution approximation predicts lower solution entropy?

13.4.3 Interstitial solutions

In this section, we briefly discuss a statistical model for interstitial solu-
tions. In particular, we focus on the well-known case of carbon in face-
centered cubic (�) iron (see Fig. 13.5). In this model, proposed by
Schwartsman and Temkin, the carbon can occupy any of the octahedral
interstitial sites, but carbon atoms cannot occupy neighboring octahedral
sites simultaneously. Examination of the central octahedral site in Fig. 13.5
will convince you that carbon can occupy at most one site per cubic unit
cell. Since there are four Fe atoms per unit cell, this implies that the
maximum number of carbon atoms in this structure is a quarter of the
number of Fe atoms,NFe/4. Alternatively, we can state that the number of
sites accessible to the carbon atoms is NFe/4. Assuming that all interstitial
sites are energetically equivalent, we obtain the following expression for
the configurational energy of the solid solution:

U ¼ NFeU0 þNC
_UUC, (13:123)

whereU0 is the configurational energy of pure iron per atom and _UUC is the
change of energy of the system upon addition of one carbon atom. Recall
from Section 3.2 that the dot implies that _UUC is independent of the carbon
concentration.

Taking into account the number of physically distinguishable states, we
obtain the following expression for the partition function:

� ¼ (NFe=4)!

NC!((NFe=4)�NC)!
e�U=kBT: (13:124)

–Fe –C –interstitial site

Figure13.5
The Schwartsman–Temkin model of

carbon in �-Fe, where the filled circles

are the positions of the Fe atoms, the

open circle is an octahedral interstitial

site occupied by carbon and the xs are

unoccupied interstitial sites.
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The configurational part of the Helmholtz free energy can be deter-
mined as:

A ¼ �kBT ln� ¼ NFeU0 þNC
_UUC � kBT ln

NFe

4

� �
!




� lnNC!� ln
NFe

4
�NC

� �
!

�

¼ NFeU0 þNC
_UUC � kBT

NFe

4
ln
NFe

4
þ kBT

NFe

4
þ kBTNC lnNC

� kBTNC þ kBT
NFe

4
�NC

� �
ln

NFe

4
�NC

� �
� kBT

NFe

4
�NC

� �
:

The chemical potential of carbon takes the following form:

	C ¼ _UUC þ kBT(1þ lnNC)� kBT� kBT ln
NFe

4
�NC

� �
� 1

� �
þ kBT

¼ _UUC þ kBT ln
NC

ðNFe=4Þ �NC
¼ _UUC þ kBT ln

4xC

xFe � 4xC

or

	C ¼  C þ kBT ln
xC

1� 5xC
: (13:125)

If we choose the standard state of carbon to be the standard solution with
unit carbon concentration (see Section 3.4.1), we find the following
expression for the carbon activity coefficient:

fC ¼ 1

1� 5xC
: (13:126)

This result is in good agreement with experiment.
Analogously, the chemical potential and activity coefficient for iron are:

	Fe ¼ U0 � kBT

4
1þ ln

NFe

4

� �
þ kBT

4
þ kT 1

4
þ 1

4
ln
NFe

4
�NC

� �� �
� kBT

4

¼ U0 þ kBT

4
ln
NFe � 4NC

NFe
¼ U0 þ kBT

4
ln
xFe � 4xC

xFe

	Fe ¼ 	0
Fe þ

kBT

4
ln

1� 5xC

1� xC
, (13:127)

�Fe ¼ (1� 5xC)1=4

(1� xC)5=4
: (13:128)

13.4.4 Dilute ionic solutions

We previously considered the thermodynamics of ionic solutions in
Section 3.7. We stated that the reason why ionic solutions show deviations
from ideality is the existence of long-range Coulombic interactions
between solute ions. We then derived a very important relation between the
activity coefficient and the freezing temperature, based upon the general
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experimental observation that the logarithm of the activity coefficient is
proportional to the square root of the solute concentration in the solvent

ln fi ¼ Li ffiffiffiffifficBp ,

where Li is a constant (independent of the solute concentration) for ion i.
Note that the value of this constant is sensitive to the charge on the ion. In
this section, we discuss the Debye–Hückel theory, which provides a the-
oretical explanation for this relation and a method to calculate Li.

Since the reason for the deviation from ideality in ionic solution is the
Coulombic interactions between ions, we first determine the contribution
to the Gibbs free energy from these interactions. Then, we will use this
Gibbs free energy to derive expressions for the chemical potentials and the
activity coefficients.

The Coulombic interaction energy is simply the product of the charge on
the ions and the electrostatic potential into which they are embedded.
Therefore, the first step is to determine the electrostatic potential field
associated with the distribution of ions. The distribution of ions in the
solution establishes an electrostatic potential field given by the Poisson
equation:

�’ ¼ r2’ ¼ � 4


"

X
�

e��(r� r�),

where the sum is over all ions, �, in the solution, e� is the charge on ion �,
and " is the dielectric constant of the solution. Averaging this equation over
all ions of type i we can rewrite this expression in terms of the density of
ions of type j,measuredwith respect to the position of an ion of type i, nij (r):

�’i ¼ � 4


"

X
j

nij(r)ej: (13:129)

If the ion concentration is small, we can write nij (r) using the
Born–Green–Bogoliubov equation (see Section 13.2.1) as:

nij(r) ¼ nje�ej’i(r)=kBT,

where nj is the average density of ions of type j. Assuming that e’� kBT,
we expand the exponential to first order to find:

nij(r) ¼ nj 1� ej’i(r)
kBT

� �
: (13:130)

Inserting this expression into Eq. (13.129), we obtain:

�’i ¼ �4

Xk
j¼1

njej="þ 4

Xk
j¼1

nje
2
j ’i="kBT:

The first term is zero in electrically neutral solution. Introducing

�2 ¼ 4


"kBT

Xk
j¼1

nje
2
j , (13:131)
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Eq. (13.129) reduces to

�’i ¼ �2’i: (13:132)

Assuming that the potential is, on average, symmetric around ion i, the
Laplacian can be written explicitly to yield

1

r2

@

@r
r2 @’i
@r

� �
¼ �2’i:

The general form of the solution of this differential equation is

’i(r) ¼ Ae��r

r
þ A

0e�r

r
:

Since ’i! 0 in the r!1 limit, A 0 must be zero. Therefore, the electro-
static potential as a function of distance away from an ion of type i, on
average, is

’i(r) ¼ Ae��r

r
: (13:133)

The potential in Eq. (13.129) contains contributions from each ion
and all its neighbors. Let’i* be the value of this electrostatic potential at the
position of an ion of type i (from Eq. (13.129)) minus the contribution from
the ion itself (and averaged over all ions of type i). Then, the energy
associated with the Coulombic interactions is

UCoulomb ¼ V 1

2

X
i

niei’i*: (13:134)

Wenowfind the relationship between’i (Eq. (13.133)) to’i* by assuming
that each ion is a conducting ball of radius a, with dielectric constant " and
charge ei located at its center. Then the potential inside the ion is:

’i(r) ¼ ei
"r
þ ’i*, (13:135)

where the first term is the Coulomb potential of the point charge and the
second term is the Coulomb potential at r¼ a, associated with the other
ions in the system. The two expressions for ’i (Eqs (13.133 and 13.135))
and their first derivatives must be identical at r¼ a. From these two con-
ditions, we find:

’i(r) ¼ ei
"r

e��(r�a)

1þ �a ; (13:136)

’i* ¼ � ei
"

�

1þ �a : (13:137)

Inserting this result into Eq. (13.134), we obtain an expression for the
Coulombic contribution to the internal energy:

UCoulomb ¼ � V
2"

�

1þ �a
X
i

nie
2
i : (13:138)
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In order to find the corresponding part of the Helmholtz free energy, we
use the Gibbs–Helmholtz equation:

@(ACoulomb=T )

@T
¼ �U

Coulomb

T 2
:

Integration of this expression yields:

ACoulomb ¼ const � T� T
Z
UCoulomb

T 2
dT, (13:139)

where the constant is temperature independent.
The only quantity that depends upon T in Eq. (13.138) is �. It is con-

venient to rewrite Eqs (13.131) and (13.138) as:

UCoulomb ¼ A �

1þ �a ; � ¼ BT�1=2,

where A and B do not depend on T. Now, we can rewrite the integral in
Eq. (13.139) as:

T

Z
UCoulomb

T 2
dT ¼ AT

Z
�

T 2(1þ �a) dT:

Since T¼ (B/�)2, we find that dT¼ � (2B2/�3)d�. Therefore, the integral
can be evaluated as:

T

Z
UCoulomb

T 2
dT ¼ �AT

Z
�

1þ �a
�

B

� 	4 2B 2

�3
d�

¼ � 2AT

B2

Z
�2

1þ �a d� ¼ � 2AT

B2

Z
1

a2

�að Þ2�1þ 1

1þ �a d�

¼ � 2A

�2

1

a2

1

a
ln (1þ �a)þ �

2a

2
� �

� �

¼ � 2

3
A�

3

�að Þ3 ln (1þ �a)þ �að Þ2
2
� �a

 !
:

Inserting this result into Eq. (13.139) and introducing the function:

�(x) ¼ 3

x3
ln (1þ x)þ x

2

2
� x

� �
, (13:140)

we obtain:

ACoulomb ¼ const � Tþ 2

3
A��(�a) ¼ const � T� 2

3

V

2"

X
i

nie
2
i ��(�a)

¼ const � T� �V
3"

�(�a)
X
i

nie
2
i :

When T!1, the ion arrangement becomes random, and Acoulomb is no
longer a function of temperature. This implies that the integration constant
is zero and we finally obtain:

ACoulomb ¼ ��V
3"

�(�a)
X
i

nie
2
i : (13:141)
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Note that combination of Eqs (13.138) and (13.141) yields:

TSCoulomb ¼ UCoulomb � ACoulomb

¼ ��V
"

X
i

nie
2
i

1

2(1þ �a)�
1

3
�(�a)

� �
: (13:142)

It is easy to show that the function in the brackets is always positive and,
therefore, the Coulombic interaction contribution to the entropy
S Coulomb< 0. This is not surprising, since the Coulombic interactions
between ions should lead to some form of ion ordering.

Since we consider a condensed phase, we can use the approximation
that HCoulomb¼U Coulomb and, therefore, G Coulomb¼ACoulomb. Using
Eq. (13.141), we find:

GCoulomb ¼ ��V
3"

�(�a)
X
i

nie
2
i : (13:143)

Now we can obtain an expression for the chemical potential. For the
solvent (water), we find:

	Coulomb
1 ¼ @GCoulomb

@N1

� �
Ni

¼ @GCoulomb

@�

� �
Ni

@�

@N1

� �
Ni

¼ @GCoulomb

@�

� �
Ni

@�

@V

� �
Ni

@V

@N1

� �
Ni

: (13:144)

In order to evaluate the first derivative on the right, we rewrite Eq. (13.143)
in an explicit form as:

GCoulomb ¼ � 1

3"

X
i

Nie
2
i � �

3

�að Þ3 ln (1þ �a)þ 1

2
�að Þ2��a

� �
:

Differentiating this expression with respect to �, we find:

@GCoulomb

@�

� �
Ni

¼ � 1

3"

X
i

Nie
2
i

3

�að Þ3 �2 ln (1þ �a)þ �aþ 1� 1

1þ �a
� �

or, introducing the function

�(x) ¼ 3

x3
1þ x� 1

1þ x� 2 ln (1þ x)
� �

; (13:145)

we obtain:

@GCoulomb

@�

� �
Ni

¼ � 1

3"

X
i

Nie
2
i � �að Þ: (13:146)

The second derivative on the right in Eq. (13.144) can be found from
Eq. (13.131) (which can be written as �¼AV�1/2) and, therefore,

@�

@V

� �
Ni

¼ � 1

2
AV�3=2
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or

@�

@V

� �
Ni

¼ � �

2V
: (13:147)

Finally, the third derivative on the right in Eq. (13.144) is simply the partial
molar volume of the solvent. Combining all of these results, we obtain the
following correction to the chemical potential of the solvent associated
with the Coulombic interaction between ions in the solution:

	Coulomb
1 ¼ 1

3"

X
i

Nie
2
i � �að Þ

�

2V
�VV1: (13:148)

This equation implies that 	Coulomb
1 > 0, that is we find that the deviation

from ideality for the solvent should be positive.
For the chemical potential of the ions of type i, we obtain:

	Coulomb
i ¼ @GCoulomb

@Ni

� �
N1;Nj

¼ @GCoulomb

@Ni

� �
N1;Nj;�

þ @GCoulomb

@�

� �
N1;Nj

@�

@Ni

� �
N1;Nj

¼ @GCoulomb

@Ni

� �
N1;Nj;�

(13:149)

þ @GCoulomb

@�

� �
N1;Nj

@�

@V

� �
N1;Ni

@V

@Ni

� �
N1;Nj

þ @GCoulomb

@�

� �
N1;Nj

@�

@Ni

� �
N1;Nj;V

:

The first term on the right in the final expression can be evaluated using
Eq. (13.143):

@GCoulomb

@Ni

� �
N1;Nj;�

¼ � e
2
i

3"
��(�a):

The second term looks like the right side of Eq. (13.144). Therefore, we
can obtain this term from the right side of Eq. (13.148) by replacing
V1 with Vi. Finally, in order to evaluate the third term, we rewrite
Eq. (13.131) as:

ln � ¼ 1

2
ln

4


"kTV
þ ln

X
i

Nie
2
i

 !
:

Differentiating this with respect to Ni, we obtain:

@�

@Ni

� �
N1;Nj;V

¼ � @ ln�

@Ni

� �
N1;Nj;V

¼ �e2i
2
P
j Nje

2
j :
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Now combining the first and third terms on the right side of Eq. (13.149),
we obtain:

@GCoulomb

@Ni

� �
N1;Nj;�

þ @GCoulomb

@�

� �
N1;Ni

@�

@Ni

� �
N1;Nj;V

¼ � e
2
i

3"
��(�a)� 1

3"

X
j

Nje
2
j �(�a)

�e2i
2
P
j Nje

2
j

¼ � e
2
i

3"
� �(�a)þ 1

2
�(�a)

� �
:

Combination of Eqs (13.140) and (13.145) yields:

�(x)þ 1

2
�(x) ¼ 3

x3
ln (1þ x)þ x

2

2
� xþ 1

2
þ x

2
� 1

2(1þ x)� ln (1þ x)
� �

¼ 3

2(1þ x) :

Using all of these results, Eq. (13.149) reduces to:

	Coulomb
i ¼ � e

2
i �

2"

1

1þ �aþ
1

3"

X
j

Nje
2
j � �að Þ

�

2V
Vi: (13:150)

Recall that the activity coefficient can be determined as:

RT ln fi ¼ 	Coulomb
i ¼ � e

2
i �

2"

1

1þ �aþ
1

3"

X
j

Nje
2
j �(�a)

�

2V
Vi: (13:151)

If the solute concentration is small, the second term on the right side of
Eq. (13.150) can be neglected. In a case in which the solution contains only
one type of salt, Eqs (13.151) and (13.131) imply that the logarithm of the
activity coefficient of the solute is proportional to the square root of the
solute concentration. This is in good agreement with experimental obser-
vations. Moreover, now we can obtain a numerical value for the parameter
Li. For example, in a salt in which each ion carries one elementary charge
(e.g. NaCl) at T¼ 298 K, Eqs (13.131) and (13.151) imply:

ln fi ¼ �1:18
ffiffiffi
c
p
: (13:152)

Table 13.5 shows a comparison of the activity coefficients of NaCl
obtained from experiment and calculated using Eq. (13.152). Overall, the
theory provides reasonable agreement with experiment.

If the solution contains more than one type of solute, the situation is
more complex. In this case, it is convenient to introduce the so-called ionic

strength of the solution:

I ¼ 1

2

X
i

ciz
2
i , (13:153)

where zi is the charge on the ion of type i (in units of the elementary charge)
and ci is its molarity. Equation (13.132) can then be rewritten as:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
e2NA
1000kB

s ffiffiffiffiffiffi
I

"T

r
: (13:154)

Table 13.5 The activity coefficient of

NaCl at T¼ 298 K

c (M) fi
(Experiment)

fi
(Calculation)

0.001 0.98 0.96

0.01 0.92 0.89

0.1 0.77 0.67
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Inserting this result into Eq. (13.152) demonstrates that the activity
coefficient of ions of a given type depends on the ionic strength of the
entire solution rather than just on the concentration of that ion. This is a
surprising result. For example, consider a solution containing two salts
consisting of different ions (e.g. KCl and NaNO3). The theory described
above predicts that if we keep the concentration of one of the salts fixed
and decrease concentration of the second, the activity coefficients of the
second solute ions will go to some finite limit, determined by the first solute
concentration.
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Appendices

The appendices below provide a brief discussion of some of the important
mathematical points employed within this book. Since this is not a math-
ematics text, rather than providing rigorous mathematical derivations, the
presentation is guided by the need for transparency and simplicity.

Appendix I. Working with partial derivatives

We frequently deal with partial derivatives in thermodynamics. Therefore,
we often need to relate different partial derivatives of thermodynamic
functions. The most convenient approach is through the Jacobian.

The Jacobian @(u, v)/@(x, y) is given by the following determinant:

@(u, v)

@(x, y)
¼

@u
@x

� �
y

@u
@y

� 	
x

@v
@x

� �
y

@v
@y

� 	
x

������
������ ¼

@u

@x

� �
y

@v

@y

� �
x

� @u

@y

� �
x

@v

@x

� �
y

, (AI:1)

where u and v are two functions of the variables x and y. The Jacobian has
the following obvious properties:1

@(u, v)

@(x, y)
¼ � @(v, u)

@(x, y)
, (AI:2)

@(u, y)

@(x, y)
¼ @u

@x

� �
y

, (AI:3)

@(u, v)

@(x, y)
¼ @(u, v)
@(s, t)

@(s, t)

@(x, y)
: (AI:4)

Consider three physical variables x, y, and z which are related through
f(x,y,z)¼ 0, where f is some, as of now, unspecified function. Using the
previous three equations, we can write:

@x

@y

� �
z

¼ @(x, z)
@(y, z)

¼ @(x, z)

@(x, y)

@(x, y)

@(y, z)
¼ � @(z, x)

@(y, x)

@(x, y)

@(z, y)

1 It is a useful exercise to derive these for yourself.



or

@x

@y

� �
z

¼ � @z

@y

� �
x

@x

@z

� �
y

: (AI:5)

For example, using the equation of state f(p,V,T )¼ 0, we can show that:

@p

@V

� �
T

¼ � @T

@V

� �
p

@p

@T

� �
V

: (AI:6)

This is valid for any system and any equation of state.
As a second example, we derive the relation between the isochoric and

isobaric heat capacities. First, from the definition of the isochoric heat
capacity (Eq. (1.49)) and formal mathematical transformations we find:

cV ¼ T @S

@T

� �
V

¼ T @(S, V)

@(T, V)
¼ T @(S, V)

@(T, p)

@(T, p)

@(T, V)

¼ T @S

@T

� �
p

@V

@p

� �
T

� @S

@p

� �
T

@V

@T

� �
p

" #
@p

@V

� �
T

¼ T @S

@T

� �
p

@V

@p

� �
T

@p

@V

� �
T

�T @S

@p

� �
T

@V

@T

� �
p

@p

@V

� �
T

:

Using the definition of the isobaric heat capacity (Eq. (1.49)) and the
relationship (@S/@p)T¼�(@V/@T )p (see Eq. (1.74)), we obtain:

cV ¼ cp þ T @V

@T

� �
p

@V

@T

� �
p

@p

@V

� �
T

or

cp � cV ¼ �T @V

@T

� �2

p

@p

@V

� �
T

: (AI:7)

Appendix II. Tensors

Some physical variables (e.g. the mass or the free energy) are characterized
only by their magnitude. Such variables are called scalars. Other variables
(e.g. force or velocity) must be characterized by both a magnitude and a
direction. Such values are called vectors. In three dimension, a vector can
be described by three components. Note that the components of a vector are
numbers but not scalars. This is related to the fact that rotation of the
coordinate system has no effect on scalars or the magnitude and direction
of a vector (these are physical variables), but does change the representa-
tion or components of a vector. For example, the radius-vector r, drawn
from the origin of the coordinate system to a specified point, has com-
ponents x, y, and z. If we rotate the coordinate system about the z-axis,
as shown in Fig. AII.1, the vector r, of course, will not change, but its

y9
y

r

u

x9

x

Fig. AII.1
Rotation of the coordinate system

around the z-axis.
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components will:

x0 ¼ x cos �þ y sin �

y0 ¼ y cos �� x sin �

z0 ¼ z
Consider an equation describing some physical phenomenon that con-

tains both scalars and vectors, for example, Newton’s second law:

F ¼ ma:
We can explicitly write the components of the vector force as:

Fx ¼ max
Fy ¼ may
Fz ¼ maz:

Clearly, the physics cannot change if we choose to translate or rotate the
coordinate system. Since m is a scalar, it does not change upon rotation
of the coordinate system. Therefore, the components of the vectors F and a

must transform in exactly the same way. This is true for any vector,
including the radius vector we discussed above. Hence, we can define a
vector (in three dimensions) as a set of three values which changes upon
rotation of the coordinate system in exactly the same way as the compo-
nents of the radius-vector.

A tensor of rank n in three dimensions is defined as a set of 3n compo-
nents which change upon rotation of the coordinate system in the same
way as products of n the same components of the radius vector. For
example, consider the component "xy of the second-rank tensor "ij. If we
rotate the coordinate system, the value of "xy changes by the same factor as
does the product xy. According to this definition, scalars and vectors are
tensors of rank zero and one, respectively.

A widely used convention for describing sums of components of a tensor
is known as the Einstein summation rule: if in an expression containing
tensors, an index is repeated in the same term, we sum over all values of this
index. Consider the following examples,

Qj ¼ aibij �
P3
i¼1

aibij ¼ axbxj þ aybyj þ azbzj

Rmn ¼ "mn þ "im"in � "mn þ
P3
i¼1

"im"in ¼ "mn þ "xm"xn þ "ym"yn þ "zm"zn:

The dot product of two vectors can be written as:

ab ¼ aibi � axbx þ ayby þ azbz: (AII:1)

It is also convenient to introduce two special tensors:

�ij ¼ 1 if i ¼ j
0 if i 6¼ j



(AII:2)
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and

"ijk ¼ �"jik; "ijk ¼ �"kji; "ijk ¼ �"ikj
"ijk
�� �� ¼ 0 if i ¼ j or i ¼ k or j ¼ k

1 if i 6¼ j and i 6¼ k and j 6¼ k.



(AII:3)

�ij is known as the Kronecker delta and "ijk is the Levi–Civita epsilon. It can
be shown that the components of these two tensors do not change upon
rotation of the coordinate system. Manipulation of these definitions shows
that:

"kij"klm ¼ �il�jm � �im�jl, (AII:4)

where, of course, we sum over k.
The dot and vector products of two vectors can be defined in terms of

these tensors as follows:

a � b ¼ aibi ¼ �ijaibj, (AII:5)

(a� b)k ¼ "kijaibj, (AII:6)

where the index k in the last equation implies the kth component of the
vector. Note that the dot product of two vectors is a scalar and does not
depend upon the orientation of the coordinate system. While aibj is a tensor
of second rank and, hence, depends on the orientation of the coordinate
system, its trace aibi, is identical to the dot product a � b and is independent
of the orientation of the coordinate system. This conclusion is valid for the
trace of any second-rank tensor.

In Chapters 7 and 9, we encounter the gradient operator, r. We can
consider this operator as a vector with components @/@x, @/@y, and @/@z.
We can then write the following definitions:

(grad f )k ¼ (rf )k ¼
@f

@xk
, (AII:7)

diva ¼ r � a ¼ @ai
@xi

, (AII:8)

(curla)k ¼ (r� a)k ¼ "kij
@aj
@xi

, (AII:9)

�f ¼ r2f ¼ (rr)f ¼ @ 2f

@xi@xi
¼ @ 2f

@x2
i

, (AII:10)

(�a)k ¼ (r2a)k ¼ (rr)ak ¼ @ 2ak
@xi@xi

¼ @
2ak

@x2
i

, (AII:11)

where f is a scalar and a is a vector.
In order to demonstrate how to work with these operators, we derive

several useful expressions used in this book:

f
@ai
@xi
¼ @( fai)

@xi
� ai @f

@xi
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or

fr � a ¼ r � ( fa)�a � rf, (AII:12)

@

@xi

@ 2ai
@xj@xj

� �
¼ @ 2

@xj@xj

@ai
@xi

� �

or

r � (�a) ¼ �(r � a), (AII:13)

and

(r� (r� a))k ¼ "kij
@

@xi
"jlm

@am
@xl
¼ "jki"jlm @ 2am

@xi@xl
¼ (�kl�im � �km�il) @

2am
@xi@xl

¼ @

@xk

@am
@xm

� �
� @ 2ak
@xi@xi

¼ (r � (r � a))k ��ak

or

r � (r � a) ¼ �aþr� (r� a): (AII:14)

Finally, we recall the statement of the Gauss theorem:Z
V

@bj
@xj

dV ¼
I
A

bjnj da, (AII:15)

where b is a vector, V is a volume, and A is the surface surrounding this
volume.

Appendix III. Continuity equation

There are several extensive quantities, such as the number of atoms or the
total electrical charge in the system that typically remains constant during
any process. The conservation law for such quantities can be expressed
through continuity equations. In this appendix, we derive such an equation
for the number of atoms of component i.

Consider an arbitrary volumeV inside a system. The number of atoms of
component i in this volume is

Ni ¼
Z
V

ci dV,

where ci is the concentration expressed in mole/m3. The number of atoms
of component i, which leave volume V through its surface element da in
unit time is ji � nda, where ji is the flux of atoms of component i and n is the
normal to the surface element da. Therefore, the number of atoms of
component i, which leaves the entire volume V in unit time is:I

a

jin da:
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The number of atoms leaving the unit volume per unit time can also be
expressed as � @Ni/@t. Equating these two expressions, we find:

� @

@t

Z
V

ci dV ¼
I
a

jin da:

Using the Gauss theorem (Eq. (AII.15)) to evaluate the integral on the
right, we can rewrite this equation as:Z

V

@ci
@t

dVþ
Z
V

r � ji dV ¼ 0:

Since this equality is valid for any arbitrary volume V, we obtain:

@ci
@t
þr � ji ¼ 0: (AIII:1)

This relation is known as the continuity equation.

Appendix IV. Functions erf(z) and F(z)

In this appendix, we describe several functions, which frequently occur in
the solution of the diffusion equation. The first is called the error function:

erf(z) ¼ 2ffiffiffi


p
Z 1

0

e��
2

d�: (AIV:1)

It is tabulated in Table AIV.1 for convenience. erf(z) has the following
properties:

erf(0) ¼ 0; erf(1) ¼ 1 (AIV:2)

erf(�z) ¼ �erf(z) (AIV:3)

½erf(z)
0 ¼ 2ffiffiffi


p e�z

2

: (AIV:4)

The complimentary error function, erfc(z) is defined as:

erfc(z) ¼ 1� erf(z): (AIV:5)

Both of these functions are plotted in Fig. AIV.1.
Another important function that occurs in solutions of diffusion

equations is:

F(z) ¼ ffiffiffi


p
z � exp (z2)erf(z): (AIV:6)

For z� 1, F(z)� 2z2. The function is also tabulated in Table AIV.1.

AppendixV. Integrals that frequently occur
in statistical mechanics

Two types of integrals appear frequently in statistical mechanics problems:Z þ1
�1

x2ne��x
2

dx

Table AIV.1 The functions erf(z) and

F(z)

z erf(z) F(z) ¼ ffiffiffi


p
zez

2

erf(z)

0.00 0.000 0.000

0.05 0.056 0.006

0.10 0.112 0.020

0.15 0.168 0.044

0.20 0.223 0.082

0.25 0.276 0.13

0.30 0.329 0.19

0.35 0.379 0.26

0.40 0.428 0.36

0.45 0.475 0.47

0.50 0.520 0.59

0.60 0.604 0.92

0.70 0.678 1.36

0.80 0.742 2.00

0.90 0.797 2.82

1.00 0.843 4.06

1.20 0.910 8.19

1.40 0.952 16.65

2

1

0

–1

–3 –2 –1 1 2 3 z

erf(z)

erfc(z)

Fig. AIV.1
A plot of the functions erf(z) and erfc(z).
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and Z 1
0

x2nþ1e��x
2

dx,

where n is integer. The first of these can be evaluated using the Poisson
formula: Z þ1

�1
e��x

2

dx ¼
ffiffiffiffi



�

r
: (AV:1)

Taking derivatives of both sides of this equation with respect to � yields:Z þ1
�1

x2e��x
2

dx ¼ 1

2

ffiffiffiffiffi



�3

r
: (AV:2)

Repeating this procedure gives:Z þ1
�1

x4e��x
2

dx ¼ 3

4

ffiffiffiffiffi



�5

r
, (AV:3)

and so forth.
In order to evaluate the second type of integral, we note thatZ 1

0

xe��x
2

dx ¼ 1

2�
: (AV:4)

Then, taking derivatives of both sides of this equation with respect to �, we
obtain: Z 1

0

x3e��x
2

dx ¼ 1

2�2
: (AV:5)
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Example problem solutions

Before providing the solutions to the Example problems in the text, a few
remarks are in order. Solving the Example problems will serve as a good
test to ensure that you understand the material in the section containing the
problem. It is strongly recommended that you follow the problem all of the
way through until you have obtained a numerical answer. A numerical
answer has no meaning unless the units are fully specified. Before checking
your answer, you should apply the reasonableness test. That is, determine
whether your answer is plausible. Note that the examples in the text con-
tain either real experimental data or reasonable estimates of the requisite
quantities.

Chapter 1

1.1.2.1. It is obvious that the equilibrium temperature must be between
273.2 K and 373.2 K (initial temperatures of the ice and water,
respectively). Since the system is in an adiabatic container, it does
not exchange heat with its surrounding, therefore �H¼ 0. The
following three processes occur:

(1) the ice melts;
(2) the water produced from the melting ice warms up to the

equilibrium temperature Te;
(3) the 100�C water that was initially part of the system cools

down to the equilibrium temperature Te.

In order to find the equilibrium state, it does not matter in
which order these processes proceed. Rather, we simply sum
the change in enthalpy for each of the processes and insist
that the change in the total enthalpy is zero. In this way, we
obtain:

0 ¼ �H ¼ mice

M
�Hmelt þmice

M
cp
�
Te � Tmelt

�
þmwater

M
cp
�
Te � Tboil

�
,

whereM is the molecular weight of water,mice andmwater are the
initial masses of ice and water, respectively. Solving this equation



for the equilibrium temperature yields:

Te ¼
cp
�
miceTmelt þmwaterTboil

��mice�Hmelt

cp
�
mice þmwater

�
¼ 75:3(1 � 273:2þ 10 � 373:2)� 1 � 6010

75:3(1þ 10)
¼ 356:9 K:

1.1.3.1. Since the gas is heated at constant pressure, it will expand and,
therefore, perform work. Hence, the answer must be positive.
The ideal gas law and Eq. (1.20) can then be used to obtain the
work performed by the gas:

W ¼ nR�T ¼ p1V1R�T

RT1
¼ p1m�T

T1�1

¼ 1:013 � 105 � 2 � 1
273:2 � 0:00129 � 106

¼ 0:575 J:

1.1.3.2. Since the gas expands, it performs (positive) work. The internal
energy of an ideal gas does not change during an isothermal
process. Therefore, all of the heat added to the gas is converted
into work, that is,Q¼W> 0. Applying Eq. (1.19) to the present
situation yields

Q ¼W ¼ nRT ln
p1

p2
¼ p1V1 ln

p1

p2

¼ 5 � 1:013 � 105 � 2 � 10�3 ln
5

1
¼ 1630 J:

1.1.3.3. Since the gas contracts, the work performed by the gas must be
negative. Application of Eqs (1.23), (1.22), and (1.21) shows:

W ¼ �ncV�T ¼ � m
M
cV�T

pV � ¼ const
pV ¼ nRT

�
) TV ��1 ¼ const

T2

T1
¼ V1

V2

� ���1

; T2 ¼ T1
V1

V2

� ���1

� ¼ cp
cV
¼ cV þ R

cV
¼ 7

5
¼ 1:4

T2 ¼ 290
8

5

� �1:4�1

¼ 350 K

W ¼ � 10

28:02
2:5 � 8:314 � (350� 290) ¼ �445 J:

1.1.3.4. Since the internal energy is a state function, it does not change
when we go around a complete circuit. Therefore, the first law of
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thermodynamics reduces to Q¼W. Writing expressions for the
work associated with each process, we find:

Q ¼W ¼ nR(T2 � T1)þ nRT2 ln
p1

p2
þ nR(T1 � T2)

þ nRT1 ln
p2

p1
¼ nR(T2 � T1) ln

p1

p2
:

1.1.4.1. Equation (1.31) implies:

�H 0
T ¼ �H 0

298 þ
Z T

298

�cpdT

where

�cp ¼ �aþ�b � 10�3Tþ�c � 105T�2:

Performing the integration, we obtain:

�H 0
T ¼ �H 0

298 þ�a(T� 298)þ�b

2
� 10�3(T 2 � 2982)

��c � 105 1

T
� 1

298

� �
:

Using the data provided in the problem, we find:

�H 0
298 ¼ 2 � (�241:81)þ 3 � 0� 2 � (�110:53)

� (�74:60) ¼ �187:96 kJ/mole

�a ¼ 2 � 30:00þ 3 � 16:86� 2 � 28:41� 42:06 ¼ 11:7

�b ¼ 2 � 10:71þ 3 � 4:77� 2 � 4:10� 31:50 ¼ �3:97

�c ¼ 2 � 0:33þ 3 � (�8:54)� 2 � (�0:46)

� (�17:29) ¼ �6:75

�H 0
1100 ¼ �182:45 kJ/mole:

Note that the value of the standard enthalpy at T¼ 1100 K
is not very different from that at T¼ 298 K. Is this always
true? We can analyze how strongly �H 0

T depends on tem-
perature as follows. The heat capacity of inorganic substances
per mole usually does not exceed 20R. Therefore, for a reac-
tion involving inorganic substances �cp� 10R and the change
of �H 0

T is �10R(T� 298). At high temperatures (�1000 K),
this gives approximately 50 kJ/mole (note, this is an upper
bound—usually, �cp< 10R). Therefore, the heat of reaction
changes with temperatures by only 10 kJ/mole. Since the heat
of reaction is typically 100 kJ/mole, its value at T¼ 298 K is a
good approximation for the heat of reaction at other tem-
peratures (of course, if you know the heat capacities of all of
the species you need not make this assumption). If in solving a
problem you found that the heat of reaction changes by
>100 kJ/mole with temperature, you probably made a
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mistake—in any case, this is a hint that you had better check
your calculations one more time.

1.1.4.2. The heat of a reaction occurring at constant volume is �U 0
T. For

the reaction under consideration �U 0
T ¼ �H 0

T þ RT. The heat
of this reaction, if it occurred at constant pressure, can be
found from the data provided, as in Example problem 1.1.4.1.
You should obtain �H 0

700 ¼ �910 kJ/mole and �U 0
700 ¼

�904 kJ/mole. Note, that even for reactions involving gases, the
difference between the heats of reaction at constant pressure and
at constant volume is small in comparison with the values of the
heat of reaction.

1.2.1.1. The processes prohibited by Thomson’s and Clausius’s
postulates are called Thomson’s and Clausius’s processes
(surprising but true), respectively. We must prove that the
impossibility of one process follows from the impossibility of
the other process.

1. Assume that Clausius’s process is possible. Let a medium
receive heat jQhj from a heater, give up heat jQcj to a cooler and
performs workW¼ jQhj � jQcj. Using Clausius’s process we can
take heat jQcj from the cooler and give it to the heater (no other
changes will happen during this process!). As a result, we obtain a
circuit in which the state of the cooler was not changed, the heater
gave up heat jQhj � jQcj in order for the medium to perform work
W¼ jQhj � jQcj and there are no other changes in the universe.
However, this is Thomson’s process! Therefore in order to
prohibit Thomson’s process we must also prohibit Clausius’s
process.

2. Now assume that Thomson’s process is possible. Let a
medium take heat from the cooler and perform a circuit in
which a weight is lifted. No other change occurs in the uni-
verse. The potential energy of the lifted weight can be easily
converted in heat, for example via friction. We can return the
weight to its initial state and give up the resulting heat to the
heater. The only change in the universe as a result of the entire
process was the transfer of heat from the cooler to the heater.
However, this is Clausius’s process. Therefore in order to
prohibit Clausius’s process we must also prohibit Thomson’s
process.

1.2.6.1. We now continue considering Example problem 1.1.2.1 and
find the change of entropy associated with the equilibration
of the system. Since equilibration is a spontaneous process and
the system is adiabatic, the entropy should increase and
therefore its change should be positive. We need not worry
about how the system actually reaches the equilibrium state,
since the entropy is a state function and its change does not
depend on path. As in Example problem 1.1.2.1, we consider

Example problem solutions284



the change of the entropy of the system as a sum of con-
tributions from the three processes:

�S ¼ mice

M
�Smelt þmice

M
cp ln

Te

Tmelt
þmwater

M
cp ln

Te

Tboil

¼ 1

M
mice

�Hmelt

Tmelt
þmicecp ln

Te

Tmelt
þmwatercp ln

Te

Tboil

� �
¼ 0:471 J/K:

1.2.6.2. Since 1 mole of any ideal gas has a volume of 22.4 l under normal
conditions (T¼ 0�C and p¼ 1 atm), 2 moles of a gas atT1¼ 25�C
and p1¼ 1 atm takes approximately 50 l. Hence, as a result of the
process under consideration in this example problem, the gas
expands and gets hotter. The entropy increases as a result of this
expansion and heating and, therefore, overall the change in
entropy must be positive.

The change in entropy depends only on the initial and final
states of a system and does not depend on path. Therefore, we
can consider any process that leads from the initial state to the
final one described in the problem. Of course, we should choose a
path for which we can calculate the change in entropy at each
step. The figure shows four examples of such processes.

p = const

V = const

p = const

Q = 0

T = const

T = const

V = const

T = const

p1

V1

V IV

V2

V2

p1

p2

pIV

T2

T2

T2

T2V9

p0

T-

V1T1p1

Here we calculate the change in entropy using the uppermost
path. Application of Eqs (1.48) and (1.52) yields:

�S ¼ �Sp þ�ST ¼ n
Z T2

T1

cp
T

dTþ nR ln
p1

p2

¼ n cp ln
T2

T1
þ R ln

p1V2

nRT2


 �

¼ 2 3:5 � 8:314 ln
473:2

298:2
þ R ln

1:013 � 105 � 100 � 10�3

2 � 8:314 � 473:2


 �
¼ 31:06 J/K:

In order to test your skills, calculate the change in entropy
associated with the remaining paths and convince yourself that
all paths give the same change in entropy.
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1.2.6.3. This problem can be solved using Eq. (1.53):

�Smix ¼ n1R ln
V

V1
þ n2R ln

V

V2
:

However, when deriving this equation, we assumed that the
temperatures and pressures of both gases are the same before and
after mixing. Therefore, first we should calculate the change
of entropy associated with changing the pressure of the oxygen
to 1 atm. If the oxygen pressure is decreased at constant
temperature to 1 atm, its volume will be V 02 ¼ V2( p2=p1) ¼ 4 l.
The change of entropy associated with this process is �ST ¼
n2R ln (V 02=V2): The change of entropy as a result of entire pro-
cess (including mixing) is, therefore,

�S ¼ �ST þ�Smix ¼ n2R ln
V 02
V2
� R n1R ln

V1

V1 þ V 02




þn2R ln
V 02

V1 þ V 02

�

¼ p1V
0
2

T
ln
V 02
V2
� p1V1

T
ln

V1

V1 þ V 02
� p1V

0
2

T
ln

V 02
V1 þ V 02

¼ p1

T
V 02 ln

V1 þ V 02
V2

þ V1 ln
V1 þ V 02
V1


 �

¼ 1:013 � 105

298:2
10�3 4 ln

1þ 4

2
þ 1 ln

1þ 4

1


 �
¼ 1:79 J/K:

1.2.6.4. Using Eq. (1.48), we can write:

�S 0
T ¼ �S 0

298 þ�a ln
T

298
þ�b � 10�3(T� 298)

��c � 105

2

1

T 2
� 1

2982

� �
:

Applying this expression to the reaction under consideration
yields:

�S0
298 ¼�186:70 J=(moleK); �S0

1100 ¼�178:13 J=(moleK)

1.3.2.1. The entropy increases with increasing temperature (the heat
capacity is always positive) and also during the �!� trans-
formation (since �H�!� >0). Using Eqs (1.48) and (1.51),
we find:

S 0
T�!� (� � Fe) ¼ S 0

298(�� Fe)þ
Z T�!�

298

cp
T

dTþ�H�!�
T�!�

¼ 27:15þ 17:3 ln
1041

298

þ 2:67 � 10�2(1041� 298)þ 1530

1041

¼ 70:10 J=(moleK):
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1.4.2.1. In order to determine the pressure, we must first derive the
equation of state. This equation can be obtained using Eq. (1.70):

V ¼ @G

@p

� �
T

¼ nRT
p
þ nb� an

RT

or

p ¼ nRT

V� nbþ (an=RT )
:

For the conditions specified in the example problem, we find
p¼ 23.9 atm.

Note, that for these conditions, bn/V¼ 0.03 and an/RTV¼
0.06. Expanding the equation of state in a series in these two
small parameters and retaining only the first-order terms, we
obtain:

pV ¼ nRT

1� (nb=V )þ (an=RTV )
� nRT 1þ nb

V

� �
� an

2

V
:

This is the van der Waals equation (see Example problems
13.2.1.1 and 13.2.2.1). According to the molecular theory of
gases, b/4 is the volume of a molecule and the coefficient a is
associated with the interaction between molecules. If b¼ 0 (the
molecule volume is negligible) and a¼ 0 (there is no interaction
between molecules) the van der Waals equation reduces to the
ideal gas law pV¼ nRT. Note that the expression for the Gibbs
free energy given in the example problem corresponds to oxygen
in the van der Waals approximation.

In order to find the entropy, we use Eq. (1.69):

S ¼ � @G

@T

� �
p

¼ 3:5nR(1þ ln T )� nR ln pþ 12:73nR� nap
RT 2

¼ nR½3:5(1þ ln T )� ln pþ 12:73
 � nap
RT 2

:

Since the deviations from ideality are related to non-zero
values of the coefficients a and b, we conclude that the first term
in this expression is the entropy of the ideal gas and the second
term represents the deviations from ideality. For the given con-
ditions: S¼ 178.50� 0.45¼ 178.05 J/(mole K).

Inorder tocalculate the isobaricheat capacity,weuseEq. (1.49):

cp¼T @S

@T

� �
p

¼ 3:5nRþ2nap

RT2
¼ 29:10þ0:91¼ 30:00 J=(moleK):

In order to calculate the isothermal compressibility we note that:

@V

@p

� �
T

¼ � nRT
p2
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and therefore,

�T ¼ � 1

V

@V

@p

� �
T

¼ nRT
p2V

¼ 4:23 � 10�7 Pa�1:

For the coefficient of thermal expansion, we obtain:

� ¼ 1

V

@V

@T

� �
p

¼ 1

V

nR

p
þ an

RT2

� �
¼ 3:62 � 10�3 K�1:

Finally, for the isochoric heat capacity, we use Eq. (1.75):

cV ¼ cp � TV�
2

�T
¼ 30:00� 9:23 ¼ 20:77 J=(moleK):

From this example problem, we see that if we have the Gibbs
free energy as a function of p andT (or the Helmholtz free energy
as function of V and T ), we can calculate any thermodynamic
property of the system under consideration. Further, we will see
that in the case of a solution we also need to know the depend-
ence of the free energy on the concentrations of the components.
This example problem demonstrates the most common approach
for developing a thermodynamic description of any homogen-
eous system. First, we construct an expression for the Gibbs free
energy (or the Helmholtz free energy) using some theoretical
ideas or experimental observation. Then, we derive all other
thermodynamic properties of the system using this function.

1.4.2.2. Equation (1.46) implies

�U ¼
Z
TdS�

Z
p dV:

In order to calculate the first term on the right side of this
expression (the heat absorbed by the system as a result of a
reversible process), we use Eq. (1.74)

(dS )T ¼ �
@V

@T

� �
p

dp:

Integration of this equation gives:Z
TdS ¼ �

Z p2

p1

T
@V

@T

� �
p

dp

¼ �
Z p2

p1

T(4:5 � 10�3 þ 1:4 � 10�6p)dp

� �T 4:5 � 10�3p2 þ 1:4 � 10�6p2
2

� � ¼ �1550 cm3 atm

¼ �1550 � 10�6 � 1:013 � 105 J ¼ �157:0 J

(we neglected the pressure p1 in comparison with pressure p2).
Calculation of the second term (work performed by the
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system) gives:Z p2

p1

p dV ¼
Z p2

p1

p
@V

@p

� �
T

dp

¼
Z p2

p1

(� 7:15 � 10�4pþ 9:2 � 10�8p2)dp

� � 7:15 � 10�4

2
p2

2 þ
9:2 � 10�8

3
p3

2

¼ �327 cm3 atm ¼ �33:1 J:

Finally, for the change of the internal energy, we obtain:

�U ¼ �157:0þ 33:1 ¼ �123:9 J:

Chapter 2

2.2.1. From Eq. (2.7), we obtain:

dp

dTmelt
¼ �Hmelt

Tmelt(VL � VS)

or Z
dTmelt ¼

Z
Tmelt(VL � VS)

�Hmelt
dp:

Since the properties of condensed phases that appear in the integ-
rand only weakly depend on pressure, we can assume that they are
constant and take them outside of the integral. We obtain:

�Tmelt ¼
Tmelt(VL�VS)

�Hmelt
�p¼ TmeltM((1=dL)� (1=dS))�p

�Hmelt

¼ (231:9þ 273:2) � 118:7 � 10�6((1=6:988)� (1=7:184)) � 99 � 1:013 � 105

7070

¼ 0:33 K:

This result supports our assumption that large increases in pressure
produce only small changes in the melting temperature.

2.2.2. Since the saturated vapor pressure monotonically increases with
increasing temperature and is equal to 1 atm at the boiling tem-
perature, the pressure must be less than 1 atm. Equation (2.9) can
be rewritten as:Z ln p

0

d ln p ¼
Z T

Tboil

�Hevap

RT2
dT,

(we used the fact that p¼ 1 atm at Tboil—that is, normal condi-
tions). Performing the integration, we obtain:

ln p ¼ 1

R
�45860

1

333
� 1

348

� �
� 44:06 ln

333

348


 �
¼ �0:480:

Therefore, p¼ 0.62 atm.
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2.2.3. If we neglect the temperature dependence of�Hsubl, integration of
Eq. (2.10) yields:

ln p ¼ ln p1 þ�Hsubl

R

1

T1
� 1

T

� �
:

Therefore, in order to calculate the saturated vapor pressure over a
solid at a given temperatureTwe need to know the saturated vapor
pressure p1 at some other temperature T1 and �Hsubl. The only
temperature in the input data related to the solid is the melting
temperature. At this temperature, the solid argon is in equilibrium
with liquid argon:

Ar(S) ¼ Ar(L):

Since, by definition, the saturated vapor is a vapor which is in
equilibrium with its corresponding condensed phase, this equation
implies that at the melting temperature the saturated vapors over
the solid and liquid phases must be in equilibrium with each other.
This means that the vapor pressure above the two condensed
phases at the melting temperature must be the same. Therefore,
now we should find the saturated vapor pressure over the liquid
phase at the melting temperature. We can do this using the fact that
the saturated vapor pressure over a liquid at the normal boiling
temperature is 1 atm. Analogously to the previous example prob-
lem we obtain:

ln pmelt ¼ �Hevap

R

1

Tboil
� 1

Tmelt

� �
:

Therefore, the saturated vapor pressure over the solid phase is:

ln p ¼ �Hsubl

R

1

Tmelt
� 1

T

� �
þ�Hevap

R

1

Tboil
� 1

Tmelt

� �
:

We now estimate the heat of sublimation �Hsubl from �Hevap and
�Hmelt. These three quantities are equal to the heats of the fol-
lowing reactions:

(1) Ar(S)¼Ar(V), �Hsubl

(2) Ar(L)¼Ar(V), �Hevap

(3) Ar(S)¼Ar(L), �Hmelt.

The first reaction can be written as the sum of the second and third
reactions (recall, that we assumed that the heats do not depend on
temperature), therefore,

�Hsubl ¼ �Hevap þ�Hmelt:

Using the handbook data, we obtain: �Hsubl¼ 7.69 kJ/mole and
p¼ 4.0 � 10� 4 atm.

The experimental value for the saturated vapor pressure over
solid argon at T¼ 50 K is p¼ 3.4 � 10� 4 atm. This is in reasonable
agreement with our estimate.
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Chapter 3

3.1.1. The relation between weight and molar fractions can be found as
follows:

xi ¼ niPk
j¼1 nj

¼ qi=MiPk
j¼1 qj=Mj

¼ ½i
=MiPk
j¼1½j
=Mj

¼ ½%i
=MiPk
j¼1½%j
=Mj

:

The inverse relation can be obtained analogously:

½i
 ¼ xiMiPk
j¼1 xjMj

:

Note that from these relations, it follows that the molar fraction of
the component with the smallest molecular (atomic) weight is
always larger than its weight fraction and the molar fraction of the
component with the largest molecular weight is always smaller
than its weight fraction.

For the molar fractions of the components of the alloy con-
sidered in the example problem, we obtain:

xNi ¼ 70=58:7

70=58:7þ 25=27:0þ 5=47:9
¼ 0:536

xAl ¼ 25=27:0

70=58:7þ 25=27:0þ 5=47:9
¼ 0:417

xTi ¼ 5=47:9

70=58:7þ 25=27:0þ 5=47:9
¼ 0:047:

Of course, we could calculate the final molar fraction from the
fact that xNiþ xAlþ xTi¼ 1. However, if we made a numerical
error in the calculation of the first two molar fractions, we would
probably not see it. It is better to use this relation to check the
results, rather than obtain them. Indeed, the sum of the above three
values is 1.

3.1.2. From the Gibbs–Duhem equation, we obtain:

V ¼ n1V1 þ n2V2 ¼ q1

M1
V1 þ q2

M2
V2

¼ q

100

½%1

M1

V1 þ ½%2

M2

V2

� �
:

Simple transformations yield:

1

�
¼ 1

100

½%1

M1

V1 þ ½%2

M2

V2

� �

V2 ¼ 100

�
� ½%1

M1

V1

� �
M2

½%2
 ¼ 39:85 cm3=mole:

3.1.3. In order to solve this problem, we use the Gibbs–Duhem equation
(Eq. (3.16)):

x1
@V1

@x1

� �
p;T

¼ x2
@V2

@x2

� �
p;T

:
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Since this equation is expressed in terms of molar fraction we
should re-express it in terms of molarity:

m2 ¼ n2

q1
¼ n2

n1M1=1000
¼ 1000

M1

x2

x1
¼ 1000

M1

x2

1� x2
:

Now, integrating the Gibbs–Duhem equation, we find:

x1
@V1

@x1
¼ x2

@V2

@x2
¼ x2

1000b

M1

1

(1� x2)
2

Z V1

V 0
1

dV1 ¼
Z x1

1

1000b

M1

1� x1

x3
1

dx1

V1¼V0
1þ

1000b

M1
� 1

2x2
1

þ 1

x1

� �����
x1

1

¼V0
1þ

1000b

M1
� 1

2x2
1

þ 1

x1
�1

2

� �

¼V0
1�

1000b

2M1

x2
1�2x1þ1

x2
1

¼V0
1�

1000b

2M1

x2
2

x2
1

¼V0
1�

M1

2000
bm2

2:

3.2.1.1. The Raoult law implies that the saturated vapor pressure over the
glass of pure water is larger than the saturated vapor pressure over
the glass containing a solution of urea. Therefore, the water vapor
will diffuse from the glass with pure water toward the glass with
the solution. This will lead to a water vapor pressure above the
glass of the solution that is in excess of its saturated vapor pres-
sure; therefore, some of this water vapor will condense. Analo-
gously, some water will evaporate from the glass of pure water.

The same result can be obtained without consideration of the
evaporation–condensation mechanism. Consider the following
process:

H2O(pure) ! H2O(solution):

The change of the Gibbs free energy associated with this
process is:

�G ¼ 	solution
H2O

� 	0
H2O

< 0,

(the chemical potential of any pure solvent is larger than the
chemical potential of the solvent in a solution). Therefore, the
process under consideration will go in the forward direction.

3.2.3.1. The molar fraction of sulfur in this solution is

xS � nS

nFe
¼ qS=MS

qFe=MFe
¼ MFe

100MS
½%S
 ¼ 55:8

100 � 32:1
1 ¼ 0:017:

Using Eq. (3.47), we obtain:

�Tfreeze ¼ 8:314 � 18132 � 0:017

262:5 � 55:8
¼ 32:4 K:

The experimental value is 32 K.
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3.2.4.1. The mass of iodine which can be extracted from the water is equal
to the mass of iodine dissolved at equilibrium in CCl4. From the
partition law, we obtain:

L ¼ c
CCl4
I2

cH2O
I2

¼ n
CCl4
I2

nH2O
I2

VH2O

VCCl4
¼ q

CCl4
I2

qH2O
I2

VH2O

VCCl4
¼ qCCl4

I2

qH2O
I2

� 	init

�qCCl4
I2

VH2O

VCCl4

qCCl4
I2
¼

L qH2O
I2

� 	init

Lþ VH2O=VCCl4
¼ 85:1 � 0:1

85:1þ 500=80
¼ 0:0932 g:

3.3.1. The molar fraction of the saturated vapor of component i over a
solution is:

xi ¼ piPk
j¼1 pj

¼ p0
i x½i
Pk

j¼1 p
0
j x½ j


,

where x[i] is the molar fraction of component i in solution. For
the molar fraction of CH3OH in the solution we find:

x½CH3OH


¼ n½CH3OH

n½CH3OH
 þ n½C2H5OH


¼ q½CH3OH
=MCH3OH

q½CH3OH
=MCH3OH þ q½C2H5OH
=MC2H5OH

¼ �½CH3OH
V½CH3OH
=MCH3OH

�½CH3OH
V½CH3OH
=MCH3OH þ �½C2H5OH
V½C2H5OH
=MC2H5OH

¼ �½CH3OH
=MCH3OH

�½CH3OH
=MCH3OH þ 2�½C2H5OH
=MC2H5OH

¼ 0:9715=32:04

0:9715=32:04þ 2 � 0:7894=46:07
¼ 0:4189:

Finally, the molar fraction of CH3OH in the saturated vapor is

xCH3OH ¼ 96 � 0:4189

96 � 0:4189þ 44 � (1� 0:4189)
¼ 0:611:

Note that the fraction of the more volatile component (i.e. the
pure component which has the larger saturated vapor pressure)
in the gas phase is larger than its fraction in the solution. In other
words, the gas phase is enriched in the more volatile component.

3.3.2. In order to solve this problem, we shall use Eq. (3.39):

ln x1 ¼
�H 0

evap

R

1

Tboil
� 1

T0
boil

� �
¼ � �H 0

boil

R T 0
boil

� �2 �Tboil:

However, this equation was obtained for ideal dilute solutions.
Can we use this equation for ideal solutions? In order to answer
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this question, recall the assumptions which were used to derive
Eq. (3.55). First, we used the fact that the chemical potential of
the first component can be written as 	1 ¼ 	0

1 þ RT ln x1. This
expression is also valid for ideal solutions. Second, we assumed
that the saturated vapor pressure of the second component
is negligible in comparison with that of the first component.
This is obviously true for dilute solutions where x2! 0. How-
ever, this is not the case for ideal solutions where all components
have comparable concentrations. Since we were unable to make
any general statement, we must consider our specific case more
carefully. Note that the Clausius–Clapeyron equation implies
that the saturated vapor pressure increases monotonically with
increasing temperature, as shown in the figure. At the normal
melting temperature, the saturated vapor pressure is 1 atm. Since
T 0

boil(Hg)� T 0
boil(Pb), we conclude that p0

Hg � p0
Pb at T 0

boil(Hg).
If the boiling temperature for the solution is not very different
from that of pure mercury (as will be supported by the calcula-
tion below), p0

Hg � p0
Pb at the boiling temperature of the solution.

Since the gas phase over the solution is enriched in mercury
(see the previous example problem), we can conclude that
pHg� pPb. Therefore, we can use Eq. (3.39).

p

1 atm

T 0
boil(Hg)

p0
Hg p0

Pb

T 0
boil(Pb) T

We calculate the molar fraction of mercury in the solution
(see Example problem 3.1.1) as:

xHg ¼ ½%Hg
=MHg

½%Hg
=MHg þ ½%Pb
=MPb
¼ 0:842:

For the boiling temperature of the solution, we find:

�Tboil ¼ �
R T 0

boil(Hg)
� �2
l(Hg)MHg

ln xHg ¼ 10:4 K,

and Tboil¼ 357þ 10.4¼ 367.4�C.
3.4.1.1. We solve this problem, using the Gibbs–Duhem equation:

xBi
@ ln �Bi

@xBi

� �
p;T

¼ xPb
@ ln�Pb

@xPb

� �
p;T

¼ xPb ln 10 � 0:64 � (1� xPb):
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We can integrate this equation using the fact that dxPb¼ � dxBi

(since xPbþ xBi¼ 1):Z ln �Bi

0

d ln �Bi ¼ � ln 10 � 0:64

Z xPb

0

xPbdxPb

ln �Bi ¼ � ln 10 � 0:32 � x2
Pb

ln �Bi ¼ �0:32(1� xBi)
2:

For xBi¼ 0.4, we obtain �Bi¼ 0.77.
3.4.1.2. Equation (3.6) implies:

�Gmix ¼ G�
X
i

niG
0
i ¼

X
i

ni	i �
X
i

ni	
0
i ¼

X
i

ni 	i � 	0
i

� �
¼
X
i

ni 	
0
i þ RT ln ai � 	0

i

� � ¼ RTX
i

ni ln ai

¼ nRT
X
i

xi ln ai:

For the equi-molar solution, we obtain:

�Gmix ¼ q

MSnCl4 þMCCl4ð Þ=2RT
1

2
ln aSnCl4 þ ln aCCl4ð Þ

ln aCCl4 ¼
MSnCl4 þMCCl4ð Þ

qRT
�Gmix � ln aSnCl4

¼ � (260:5þ 153:8)

500 � 8:314 � 500
7030� ln 0:52 ¼ �0:747

aCCl4 ¼ 0:474; �CCl4 ¼ 0:947:

3.4.1.3. It is not difficult to show that the relative partial molar quantities
are related to each other by the same relations as the corres-
ponding extensive quantities. Since G¼H�TS, we can write:

	M
Mg ¼ H

M

Mg � TS
M

Mg

or

S
M

Mg ¼
1

T
H

M

Mg � 	M
Mg

� 	
:

Since pure Mg is considered as the standard state here, we can
write:

	Mg ¼ 	0
Mg þ RT ln aMg

or

	MMg ¼ RT ln aMg:
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Thus,

S
M

Mg ¼
1

T
H

M

Mg � RT ln aMg

� 	
¼ H

M

Mg

T
� R ln (xMg�Mg)

¼ 0:64 J=(mole K):

3.4.1.4. Since pure silicon is chosen as the standard state for both solu-
tions, Eq. (3.51) implies that the partition coefficient is L¼ 1.
Therefore, aFe

Si ¼ aAg
Si and

�Fe
Si ¼

xAg
Si

xFe
Si

�Ag
Si ¼ 0:0040:

Chapter 4

4.2.1. In order to calculate the temperature and concentration at the
eutectic point, both equations (4.4) should be solved simultan-
eously. The numerical solution gives Teutectic¼ 408 K and
xeutectic

Bi ¼ 0:448. Experiment shows that Teutectic¼ 417K and
xeutectic

Bi ¼ 0:45.
4.8.1. The phases in each of the fields of the diagram (and for each

compound) are shown in the figure below.

T (°C)

1400

1300

1200

1100

1000

900

800

700

600

d
L + d

L + g

d + g
L + ε

L + b
b + g

b
b + ε

a + b

ε + Mn5Si3 MnSi + MnSi2

L + Mn5Si3

L + MnSi2 L + Si

L + MnSi

Si + MnSi2

Mn5Si3

MnSi +

a a + ε

ε

L

0 10 20 30 40 50 60 70 80 90 100

Mn Si (% at) Si

g

4.8.2 There is only one phase, the �-solid solution, in the alloy at
T¼ 1000�C and 10% Si. The composition of this solid solution
coincides with the alloy composition. There are two phases, a
liquid and the chemical compound Mn3Si5 in the alloy at
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T¼ 1200�C and 35% Si. The composition of the liquid is 29% Si
and 71% Mn, the composition of the chemical compound is 37.5%
Si and 62.5% Mn (percents are atomic).

4.8.3. The cooling curves are shown in the figure.
The cooling curve for the alloy with 17% Si consists of several

segments characterized by:

I. no phase transformations;
II. the formation of the � solid solution from the liquid;

III. the eutectic reaction L!�þ ";
IV. the " solid solution is formed from the � solid solution;
V. the peritectic reaction �þ "!�;

VI. the � solid solution is formed from the � solid solution;
VII. no phase transformations (only a single phase is present, �);

VIII. the " solid solution forms from the � solid solution.

T (°C) T (°C)
1090

1040

900

850

800

VIII

VII

VI
V

IV

IV

III

III

II

II

I I 1300

1150

t t17% Si 80% Si

The cooling curve for the alloy with 80% Si consists of four seg-
ments characterized by:

I. no phase transformations;
II. crystals of pure Si form from the liquid;

III. the eutectic reaction L!MnSi2þ Si proceeds;
IV. no phase transformations.

4.8.4. There is only a �-phase in the alloy at T¼ 1000�C and 10% Si with
the same composition and weight as the alloy.

Both � and " phases are present in the alloy at T¼ 950�C and
20% Si. Since the present diagram provides only atomic fraction
we should calculate the weight fraction. The results are shown in
the figure below.

b

b �

�
14 2320

7.7 11.3 13.2

Alloy

Alloy

Si(% at)

Si(% w)
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Using the lever rule we find:

Q� ¼ 13:2� 11:3

13:2� 7:7
200 ¼ 69:1 g

Q" ¼ 11:3� 7:7

13:2� 7:7
200 ¼ 130:9 g

Q�
Si ¼

7:7

100
69:1 ¼ 5:3 g

Q�
Mn ¼

100� 7:7

100
69:1 ¼ 63:8 g

Q"
Si ¼

13:2

100
130:9 ¼ 17:3 g

Q"
Mn ¼

100� 13:2

100
130:9 ¼ 113:6 g:

4.8.5. There are two phases (MnSi and MnSi2) in the 60% Si alloy at
T¼ 1200�C. If we add more Si, the alloy will have only one phase
when its composition corresponds to MnSi2. Using the lever rule
(see figure) we find:

50 6260

Alloy

Alloy

Si(% at)

33.8 43.4 45.5

Si(% w)

MnSi MnSi2

MnSi2MnSi

0:455 ¼ 300 � 0:434þQadd
Si

300þQadd
Si

Qadd
Si ¼

300(0:455� 0:434)

1� 0:455
¼ 11:6 g

In order to obtain the compound MnSi, we should add more Mn:

1� 0:338 ¼ 300 � (1� 0:434)þQadd
Mn

300þQadd
Mn

Qadd
Mn ¼

300(0:434� 0:338)

0:338
¼ 85:2 g:

Chapter 5

5.2.1 The degree of dissociation at constant pressure does not depend
on the total number of moles. Therefore, for simplicity, we assume
that at the initial moment, the system consisted of 1 mole of PCl5
and 0 moles of PCl3 and Cl2. According to the definition of the
degree of dissociation, � moles of PCl5 will be consumed before
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the system reaches the equilibrium. The number of moles of each of
the species in the system at the initial moment and at equilibrium
can be written as:

Species PCl5 PCl3 Cl2

Initial 1 0 0
Equilibrium 1�� � �P
i ni 1��þ�þ�¼ 1þ�

Using Eq. (5.15), we find:

Kp ¼ p

1þ �
� � �
1� � ¼

p�2

1� �2
�

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ p=Kp

s
¼ 0:32:

5.2.2. If the system initially contained 1 mole of PCl3 and 1 mole of Cl2
and zmoles of PCl5 were produced during the equilibration of the
system, we can indicate the number of moles of each species as:

Species PCl5 PCl3 Cl2

Initial 0 1 1
Equilibrium z 1� z 1� zP
i ni zþ 1� zþ 1� z¼ 2� z

The total pressure in equilibrium is:

p ¼ pPCl5

xPCl5

¼ pPCl5

2� z
z

:

The equilibrium constant can be written as:

Kp ¼ pPCl5

2� z
z

1

2� z
(1� z)(1� z)

z
¼ pPCl5

(1� z)2
z2

and, therefore,

z ¼ 1

1þ (Kp=pPCl5 )
1=2
¼ 0:414:

Using pV¼ nRT, we find:

p0

p
¼ 2

2� z or p0 ¼ 4:29 atm:

5.2.3. In this example problem, we consider the following reactions:

(a) H2 þ Cl2 ¼ 2HCl

(b) H2O ¼ H2 þ 1

2
O2

(c) 4HClþO2 ¼ 2H2Oþ 2Cl2:
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Since c¼ � (2� a)� (2� b), we find �G0c

T ¼ �2�G0a

T � 2�G0b

T

and, therefore,

K c
p ¼

1

(Ka
pK

b
p )2

:

For the first reaction, Kp
a¼Kca. The equilibrium constant of the

second reaction can be expressed through the total pressure and the
degree of dissociation. Analogously to Example problem (5.2.1) we
obatin:

Species H2O H2 O2

Initial 1 0 0
Equilibrium 1�� � 0.5�P
i ni 1��þ�þ 0.5�¼ 1þ 0.5�

Kb
p ¼

p1=2

(1þ0:5�)1=2
� � (0:5�)1=2

1�� ¼
ffiffiffiffiffiffiffi
0:5
p

p�3=2

(1��)(1þ0:5�)1=2
¼ 3:07 �10�12

Kc
p ¼ 1:014:

5.2.4 For this reaction, the van’t Hoff isotherm takes the following
form:

�GT ¼ �RT lnKp þ RT ln
p2

NH3

p3
H2
pN2

:

Using the data given in the example problem, we find
�GT¼ 11.43 kJ/mole. Therefore, the reaction will proceed in the
backward direction.

5.2.5 By analogy with Example problem 5.2.1, we obtain the following
table:

Species H2 I2 HI

Initial 1 1 0
Equilibrium 1� z 1� z 2zP
i ni 1� zþ 1� z þ 2z¼ 2

The variable z can be found from the expression for the equilibrium
constant:

Kp ¼ (2z)2

(1� z)(1� z) ¼
(2z)2

(1� z)2

z ¼
ffiffiffiffiffiffi
Kp

p
2þ ffiffiffiffiffiffi

Kp
p ¼ 0:78:
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Now we can find the partial pressures as follows:

pH2
¼ pI2

¼ 1� z
2

RT

V
¼ 6:5 atm

pHI ¼ 2z

2

RT

V
¼ 46:0 atm:

5.3.1. We use results of Example problems 1.1.4.1 and 1.2.6.4 in order
to calculate �G0

T:

�G0
T ¼ �H0

T � T�S0
T ¼ 13:46 kJ/mole:

Note that at standard conditions, this reaction proceeds in
the backward direction. Using the van’t Hoff isotherm, we obtain:

�GT ¼ �G0
T þ RT ln

1

p

x2
H2O

x2
COxCH4

" #
¼ �8:28 kJ/mole:

Therefore, at the conditions specified in the example problem, this
reaction proceeds in the forward direction.

5.3.2. Since only two gases participate in the present reaction, there is no
need to create a table as we did in Example problem 5.2.1. The
point is that in this case the equilibrium composition of the gas
phase does not depend on its initial composition. This conclusion
follows from the expression for the equilibrium constant:

Kp ¼ p2
HI

pH2S
¼ p x

2
HI

xH2S
¼ p x2

HI

1� xHI
:

Using this expression, we find xHI¼ 1.15 � 10�2.
Note the fact that the equilibrium composition of the gas phase

is independent of its initial composition can be also derived from
the Gibbs phase rule. Indeed, in this case, the number of com-
ponent is C¼ 4� 1¼ 3 (four species and one chemical reaction
relating them). The number of phases is P¼ 3 (two solid phases
and one gas phase). The number of degrees of freedom is
F¼ (Cþ 2)�P¼ (3þ 2)� 3¼ 2. Therefore, if we specify two
parameters (temperature and total pressure), we uniquely deter-
mine the equilibrium composition of the gas phase.

5.4.1. In this example problem we deal with the following reaction:

N2 ¼ 2½N
:

The van’t Hoff isotherm for this reaction takes the following form:

�GT ¼ �RT lnKp þ RT ln
½%N
2
pN2

:
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Since, by definition, the solubility is the equilibrium concentration
of solute at the specified solute partial pressure in the gas phase, we
can find the equilibrium constant as follows:

Kp ¼ 0:062

0:01
¼ 0:36:

The change of the Gibbs free energy at the conditions specified
in the example problem is

�GT ¼ �RT ln 0:36þ RT ln
0:52

0:5
¼ 2:38 kJ/mole:

Therefore, at these conditions, nitrogen will be extracted from
cobalt.

5.4.2. The following reaction proceeds in a water vapor atmosphere:

½Ni
 þH2O ¼ NiOþH2:

The standard change of the Gibbs free energy for this reaction
can be calculated from the standard change of the Gibbs free
energy for the two reactions given in the example problem:

�G0
T ¼ �G0(1)

T ��G0(2)

T ¼ 43:65 kJ=mole

Therefore, the equilibrium constant for the reaction in the example
problem is Kp¼ 5.25 � 10�3. The equilibrium constant relates the
equilibrium concentrations as follows:

Kp ¼ xH2

xH2Ox½Ni
�½Ni

:

Using this expression, we find �[Ni]¼ 6.7.
5.4.3. Equation (5.23) implies

d ln h

dT
¼ �

HAg �H 0
Ag(G)

RT 2
¼ �

HAg �H 0
Ag(L)
þH 0

Ag(L)
�H 0

Ag(G)

RT 2

¼ �H
M

Ag

RT 2
þ�H0

evapAg

RT 2
:

Using the Clausius–Clapeyron equation (Eq. (2.9)), we find:

H
M

Ag ¼ RT 2
d ln p0

Ag

dT
� d ln h

dT

 !
¼ �12:06 kJ/mole:

5.4.4. In this example problem, we have the following reaction:

½C
 þ 2H2 ¼ CH4:

The equilibrium constant for this reaction is:

Kp ¼ pCH4

p2
H2

1

x½C
�½C

:
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Using this expression, we find:

�½C
 ¼ 0:227 � 10�3

0:233 � 10�2

� ��1
5:31 � 10�3

4:10 � 10�2
¼ 1:33:

Chapter 6

6.1.1.1. The solution of this example problem differs from the derivation
of the Langmuir isotherm in Section 6.1.1 in two important
ways. First, in order for a gas molecule to adsorb, there must be
two empty nearest neighbor sites on the adsorbent surface. The
probability of this event is proportional to (1� �)2. Second, two
adsorbate atoms must be nearest neighbors in order for them to
desorb as a molecule. The probability of this event is propor-
tional to �2. Therefore, Eqs (6.1) and (6.2) should be rewritten as
follows:

!# ¼ k#p(1� �)2; !" ¼ k"�2

!# ¼ !"; k#p(1� �)2 ¼ k"�2:

Introducing b2¼ k#/k", we obtain:

� ¼ b
ffiffiffi
p
p

1þ b ffiffiffi
p
p :

Note that at small adsorbate pressures, this equation reduces
to � ¼ Zb ffiffiffi

p
p

. This is the analog of the Sieverts law for adsorp-
tion (recall that the Sieverts law for dissolving a diatomic gas was
derived assuming that the gas molecules dissociate before pen-
etrating into a metal).

6.1.2.1. Introducing x¼ p/ps and inserting �¼Z in Eq. (6.20), we
obtain:

1 ¼ gx

(1þ gx� x)(1� x) :

Using this equation, we find that if g¼ 1, x¼ 1/2, and if g¼ 100,
x¼ 1/11. Equation (6.16) implies that the fraction of unoccupied
sites on the adsorbent surface is:

�0 ¼ 1� x
1þ gx� x :

If g¼ 1, the fraction of unoccupied sites is 0.5. In other words,
in spite of the fact that the number of adsorbed molecules is equal
to the number of sites on the adsorbent surface, half of these
sites are still not occupied. At g¼ 100, the fraction of such sites
is 0.082. In other words, for the same conditions 92% of the sites
are occupied.
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6.1.2.2. First, we determine if it is appropriate to describe these data
within the framework of the Langmuir theory. In order to check,
we plot the data in the coordinates p/V versus p. The figure
shows that data do not fall on a straight line. Moreover, if we
determine 1/Z as the average slope of this curve, we would find
that Z< 0.

0.000200

T = 250 K
p/ V

0.000192

0.000184

0.000176

0.000168

0.000160

0.000152
0.01 0.02 0.03 0.04 0.05

p
0.06 0.07 0.08 0.09

We now try to describe these data with the BET isotherm:

V ¼ Vmaxbp

(1þ bp� p=ps)(1� p=ps)
:

In order to do this, we should plot the data in
p=(V(1� p=ps)) versus p coordinates. Since this requires know-
ledge of the saturated vapor pressure, we estimate this quantity
using the Clausius–Clapeyron equation:

ln ps ¼ �Hevap

R

1

Tboil
� 1

T

� �
:

At T¼ 250 K and T¼ 350 K, we obtain 0.140 atm and 4.07 atm,
respectively. The two plots show that the data fall on straight
lines at both temperatures. Therefore, these data can indeed be
described in the BET theory framework. From these plots, we
find that at T¼ 250 K, b¼ 20 cm3/atm, and Vmax¼ 270 cm3 and
atT¼ 350 K, b¼ 0.77 cm3/atm, andVmax¼ 273 cm3. Note that in
the BET theory Vmax does not depend on temperature. We
can attribute the small discrepancy in Vmax to experimental
errors (when in doubt, blame the experimentalist—everyone
else does).
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0.00036
T = 250 K

tan a = 0.00231

p/V (1–p/ps)

0.00034

0.00032

0.00030

0.00028

0.00026

0.00024

0.00022
0.01 0.02 0.03 0.04 0.05

p
0.06 0.07 0.08 0.09

0.0096

T = 350 K

tan a = 0.00249

p/V(1–p/ps)

0.0088

0.0080

0.0072

0.0064

0.0056
0.3 0.6 0.9 1.2 1.5

p
1.8 2.1

The surface area of 12 g of the adsorbent can be estimated from
Vmax as follows:

S ¼ 12
1:013 � 105 � 271 � 10�6

8:314 � 273:2
19:4 � 10�20 � 6:02 � 1023

¼ 16:9 � 103 m2

The heat of adsorption can be calculated from the temperature
dependence of b as follows:

�Hads ¼ R ln (b2=b1)

1=T1 � 1=T2
¼ �23:7 kJ=mole:
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6.2.1. The Gibbs adsorption equation implies:

�2 ¼ � c2
RT

@�

@c2
� � c2

RT

��

c2
¼ 4:16 � 10�6 mole=m2

¼ 4:16 � 10�8 mole=l:

Assuming that the surface layer is a homogeneous plate, we obtain:

c
2 ¼ c2 þ �2=� ¼ 0:1þ 4:16 � 10�8

10�8
¼ 4:26 mole=l:

Chapter 7

7.3.2.1 In order to express Cijkl in terms of 	 and B, we compare the
versions of Hooke’s law for anisotropic and isotropic solids.
For �xx, we obtain from Eqs (7.24) and (7.28):

�xx ¼ Cxxxx"xx þ 2Cxxxy"xy þ 2Cxxxz"xz þ Cxxyy"yy
þ2Cxxyz"yz þ Cxxzz"zz

�xx ¼ 2	 "xx � 1
3 ("xx þ "yy þ "zz)


 �þ B("xx þ "yy þ "zz)
¼ Bþ 4

3	
� �

"xx þ B� 2
3	

� �
"yy þ B� 2

3	
� �

"zz:

For an isotropic system, these equations must be equivalent for
any set of strains "ij. This is true if and only if:

C11 ¼ Cxxxx ¼ Bþ 4	=3

C12 ¼ Cxxyy ¼ B� 2	=3

C13 ¼ Cxxzz ¼ B� 2	=3

C14 ¼ Cxxyz ¼ 0

C15 ¼ Cxxxz ¼ 0

C16 ¼ Cxxxy ¼ 0:

Since the x, y, and z-directions are equivalent in an isotropic
solid, expressions for components C2j and C3j are equal to C1j.
Therefore, we need only obtain C4j, C5j, and C6j. To this end, we
compare expressions for �xy:

�xy ¼ Cxyxx"xx þ 2Cxyxy"xy þ 2Cxyxz"xz þ Cxyyy"yy
þ 2Cxyyz"yz þ Cxyzz"zz

�xy ¼ 2	"xy:

These equations are valid for arbitrary "ij if and only if:

C61 ¼ Cxyxy ¼ 0

C62 ¼ Cxyyy ¼ 0

C63 ¼ Cxyzz ¼ 0

C64 ¼ Cxyyz ¼ 0

C65 ¼ Cxyxz ¼ 0

C66 ¼ Cxyxy ¼ 	:
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Since the x, y, and z-directions are equivalent in an isotropic
solid, C66¼C55¼C44. Using these relations, we see that in an
isotropic solid

C44 ¼ (C11 � C12)=2:

We can collect all of these results in the following form:

Cij ¼

Bþ 4	=3 B� 2	=3 B� 2	=3 0 0 0

B� 2	=3 Bþ 4	=3 B� 2	=3 0 0 0

B� 2	=3 B� 2	=3 Bþ 4	=3 0 0 0

0 0 0 	 0 0

0 0 0 0 	 0

0 0 0 0 0 	

0
BBBBBBBBB@

1
CCCCCCCCCA
:

There is also another, more elegant method to derive the
expression for Cijkl. First, we note that in an isotropic solid,
the components of Cijkl cannot change upon rotation of the
coordinate system. The only second-rank tensor that does not
change upon rotation of the coordinate axes is the tensor A�ij,
where A is a scalar and �ij is the Kronecker delta (see Appendix
III). Second, examination of Eq. (7.23) shows that the symmetry
condition is only satisfied by the tensors �ij�kl and (�ik�jlþ �il�jk).
Therefore, Cijkl must have the following form:

Cijkl ¼ a�ij�kl þ b(�ik�jl þ �il�jk),
where a and b are scalars. Inserting this expression into Hooke’s
law (Eq. (7.24)), we find:

�ij ¼ a�ij�kl"kl þ b(�ik�jl þ �il�jk)"kl ¼ a�ij"kk þ 2b"ij

¼ (aþ 2b=3)�ij"kk þ 2b("ij � �ij"kk=3):

Comparing this equation with Hooke’s law for isotropic solids
(Eq. (7.28)) we find:

a ¼ B� 2	=3; b ¼ 	
and

Cijkl ¼ (B� 2	=3)�ij�kl þ 	(�ik�jl þ �il�jk):
You should demonstrate to yourself that this expression is

consistent with that found above, where we explicitly wrote
the Cij tensor.

7.3.2.2. We can rewrite the new expression for Hooke’s law as

�ij ¼ E

1þ � "ij � 1

3
"kk�ij

� �
þ E

1þ �
1

3
þ �

1� 2�

� �
"kk�ij:
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Comparing this with Eq. (7.28), we find:

2	 ¼ E

1þ � ; B ¼ E

3(1� 2�)
;

Solving these equations for 	 and B, we find:

E ¼ 9B	

3Bþ 	 ; � ¼ 3B� 2	

2 3Bþ 	ð Þ :

Chapter 8

8.1.2.1. Equation (8.12) implies:

k ¼ 1

t
ln
c0

c
¼ 1

t
ln
c0

c0=4
¼ 1

t
ln 4 ¼ 0:14 min�1:

8.1.2.2. Equation (8.11) implies:

1

cA
¼ 1

c0A
þ kt; cA ¼ c0A

1þ ktc0A
:

The fraction of A which will react during time t is

100% 1� cA
c0A

� �
¼ 100% 1� 1

1þktc0A

� �
�100%

ktc0A
1þktc0A

¼ 86:6%:

8.1.2.3. Since the reactants were taken in the stoichiometric ratio, the
kinetic equation takes the following form:

dpA

dt
¼ �kpnA

(an analogous equation can be written for B). Therefore, in order
to determine the order of the reaction, we should calculate the
pressure of A as a function of time. We notice that the pressures
of A and B will be the same during the reaction. Therefore, the
total pressure is p¼ 2pAþ pC. On the other hand, at t¼ 0, the
total pressure was p0¼ 2pA

0. From the stoichiometry of the
reaction, we find pC¼ pA0� pA. Using these relations, we obtain:

p ¼ 2pA þ pC ¼ 2pA þ p0
A � pA ¼ pA þ p0

A ¼ pA þ p0=2

pA ¼ p� p0=2:

The corresponding numerical results are given in the table:

t(min) 0 5 10 15 21 30
pA(atm) 0.477 0.412 0.342 0.293 0.250 0.186

The figures show these data in coordinates appropriate for
first- and second-order reactions. On the basis of these plots, we
conclude that the reaction is first-order.
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–0.7

ln pA

–0.8
–0.9
–1.0
–1.1
–1.2
–1.3
–1.4
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2.4

3.0

3.6

4.2

4.8

1/pA

0 6 12 18 24 30 36 0 6 12 18 24 30 36
t(min) t(min)

8.1.4.1. The half-life of a first order reaction (see Eq. (8.14)) is:

t1=2 ¼ ln 2

k
:

Using this equation, we find that atT¼ 260 K, k260¼ 0.0010/min.
Using the Arrhenius equation:

ln k2 ¼ ln k1 þ E
R

1

T1
� 1

T2

� �
,

we find that k350¼ 0.64/min. Finally, using the kinetic equation
for a first-order reaction

ln c ¼ ln c0 � kt,
we obtain t ¼ (1=k) ln½c0=(c0=3)
 ¼ 1:7 min:

8.2.2.1. The concentration of N2 can be described using the following
kinetic equation:

2
dcN2

dt
¼ k1cNO:

The kinetic equation describing the evolution of the concentra-
tion of nitric oxide is:

dcNO

dt
¼ �k1cNO � k2cNO

or

cNO ¼ c2NOe�(k1þk2)t:

Inserting this expression into the kinetic equation for N2, we find:

dcN2

dt
¼ 1

2
k1c

0
NOe�(k1þk2)t

cN2
¼ A� 1

2

k1

k1 þ k2
c0NOe�(k1þk2)t,
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where A is a constant. At t¼ 0, cN2
¼ 0. Therefore,

A ¼ 1

2

k1

k1 þ k2
c0NO

and

cN2
¼ 1

2

k1

k1 þ k2
c0NO(1� e�(k1þk2)t) ¼ 1:04 mole/l:

Analogously, we find

cN2O ¼
1

2

k2

k1 þ k2
c0NO(1� e�(k1þk2)t) ¼ 0:74 mole/l:

8.2.2.2. If this reaction was elementary, the kinetic equation would take
the following form:

1

2

dcHI

dt
¼ kcH2

cI2
:

For the second mechanism, we obtain:

1

2

dcHI

dt
¼ k3c

2
IcH2

1

2

dcI
dt
¼ k1cI2

� k2c
2
I � k3c

2
IcH2

¼ 0

cI ¼ k1cI2

k2 þ k3cH2

� �1=2

dcHI

dt
¼ 2k3k1

k2 þ k3cH2

cI2
cH2

:

If k3cH2
� k2, the last equation reduces to:

1

2

dcHI

dt
¼ k3k1

k2
cI2
cH2

:

This equation coincides with the kinetic equation describing the
first mechanism.

8.2.3.1. The kinetic equation for the formation of C2Cl6 takes the
following form:

dcC2Cl6

dt
¼ k2cC2Cl5cCl2 þ k3c

2
C2Cl5

:

Since the chain length (i.e. number of reactions in a chain) is
large, we can neglect the rate of chain termination (the second
term on the right-hand side of the kinetic equation) and the
equation reduces to:

dcC2Cl6

dt
¼ k2cC2Cl5cCl2 :
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At steady-state, the rate at which we form new chains is equal to
the rate of chain termination, therefore,

k0cCl2 ¼ k3c
2
C2Cl5

:

Inserting this result into the previous equation, we find:

dcC2Cl6

dt
¼ k2

ffiffiffiffiffi
k0

k3

s
c
3=2
Cl2
:

8.2.3.2. It was established in Section 8.2.3 that:

nst

n0
¼ �

�
;

!

!st
¼ n

nst
¼ 1� e��t=�:

Combining these equations, we obtain:

nst

n0
¼ � t

ln 1� (!=!st)ð Þ ¼ 0:1:

Chapter 10

10.1.1.1. The pressure of the gas inside the shell is equal to:

p ¼ RT
V
n:

Differentiating this equation we find:

dp

dt
¼ RT
V

dn

dt
:

In order for the gas to pass through the metallic shell, it must
first dissolve into it and then diffuse through it. The loss of the
gas inside the shell is determined by its flux through the shell:

� dn

dt
¼ Sj:

According to Fick’s first law:

j ¼ �D @c
@r
:

The concentrations of the gas on the inner and outer surfaces
of the shell are equal to its solubilities in the metal corres-
ponding to the gas pressures inside and outside of the shell,
respectively. Since the shell is thin, we can replace the derivative
@c/@r in Fick’s law with its finite difference approximation
� (cin� cout)/d (the minus sign takes into account the fact that
the concentration decreases from the inner to outside surfaces),
where d is the thickness of the shell. The gas solubility obeys
Henry’s law c¼ p/h. Thus,

dp

dt
¼ RT
V

dn

dt
¼ �RT

V
Sj ¼ RT

V
SD

@c

@r
¼ �RT

V
SD

pin � pout

hd

¼ �A(pin � pout),
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where A is a constant which does not depend on pressure.
The solution of this equation takes the following form:

pin ¼ pout þ ( p0 � pout)e
�At:

Using this formula we find:

A ¼ � 1

t1
ln
p1 � pout

p0 � pout
¼ 0:00057 l=h

t2 ¼ � 1

A
ln
p2 � pout

p0 � pout
¼ 440 h:

10.1.1.2. The solution of this example problem is analogous to the
previous one with the exception that instead of Henry’s law
we must use Sieverts’s law c ¼ ffiffiffiffiffiffiffi

p=s
p

:

ffiffiffiffiffiffi
pin
p � ffiffiffi

p
p

0 þ
ffiffiffiffiffiffiffiffi
pout
p

ln

ffiffiffiffiffiffi
pin
p � ffiffiffiffiffiffiffiffi

pout
pffiffiffiffiffi

p0
p � ffiffiffiffiffiffiffiffi

pout
p ¼ � 1

2
Bt

B ¼ � 2

t1

ffiffiffiffiffi
p1
p � ffiffiffi

p
p

0 þ
ffiffiffiffiffiffiffiffi
pout
p

ln

ffiffiffiffiffi
p1
p � ffiffiffiffiffiffiffiffi

pout
pffiffiffiffiffi

p0
p � ffiffiffiffiffiffiffiffi

pout
p


 �

¼ 0:00235 atm1=2=h

t2 ¼ � 2

B

ffiffiffiffiffi
p2
p � ffiffiffi

p
p

0 þ
ffiffiffiffiffiffiffiffi
pout
p

ln

ffiffiffiffiffi
p2
p � ffiffiffiffiffiffiffiffi

pout
pffiffiffiffiffi

p0
p � ffiffiffiffiffiffiffiffi

pout
p


 �
¼ 426 h:

10.1.3.1. The solution of the diffusion equation in this case takes the
following form:

c(x; t) ¼ qffiffiffiffiffiffiffiffiffi

Dt
p e�x

2=4Dt ¼ ae�bx2

:

Using this expression, we find:

d 2c

dx2
¼ �2ab(1� 2bx2

0)e
�bx2

0 ¼ 0

x0 ¼
ffiffiffiffiffi
1

2b

r
¼

ffiffiffiffiffiffiffiffi
2Dt
p

:

10.1.3.2. The solution of the diffusion equation in this case takes the
following form:

c(x, t) ¼ qffiffiffiffiffiffiffiffiffi

Dt
p e�x

2=4Dt:

Using this expression, we find:

D ¼ x2
2 � x2

1

4t ln (I1=I2)
¼ 10�12 m2=s:
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10.1.3.3. Since c0¼ c(x, 0)¼ 0.1% and cs¼ c(0, t)¼ 1%, the solution of
the diffusion equation takes the following form:

c� 0:1 ¼ (cs � 1) 1� erf
x

2
ffiffiffiffiffiffi
Dt
p

� �� �
and we find:

erf
x

2
ffiffiffiffiffiffi
Dt
p

� �
¼ 0:61;

x

2
ffiffiffiffiffiffi
Dt
p ¼ 0:61,

(see Appendix IV). At the temperature of the experiment
D¼ 2.2 � 10� 7 cm2/s, therefore,

t ¼ 25 � 10�4

4 � (0:61)22:2 � 10�7
¼ 7:6 � 103 s ¼ 2:1 h:

10.1.3.4. If we assume that D does not depend on concentration and,
therefore, on position, the solution of the diffusion equation
takes the following form:

c(x, t) ¼ c0
2

1� erf
x

2
ffiffiffiffiffiffi
Dt
p

� �� �
:

Since c¼ 0.3c0, we obtain erf x=(2
ffiffiffiffiffiffi
Dt
p

)
� � ¼ 0:4; x=(2

ffiffiffiffiffiffi
Dt
p

) ¼
0:38 (see Appendix IV) and D1¼ 4.7 � 10�13 m2/s.

10.1.3.5. Since 90% of the hydrogen which was originally in the
plate came out, we conclude that the diffusion path has the
same order as the plate thickness L. Assuming that
t 	 0:05(L2=D) ¼ 125 s, we find that the amount of hydrogen
remaining is q ¼ 0:1q0 ¼ (8=
2)q0e

�
2Dt=L2

and, therefore,
t¼ 527 s. This is consistent with our assumption that t> 125 s.

10.1.3.6. The solution of the diffusion equation takes the following form:

c(x; t)� c0 ¼ (cs � c0)erf c x

2
ffiffiffiffiffiffi
Dt
p

� �
:

In order to apply this solution, we need to know the carbon
concentration on the surface of the steel. It is controlled by
equilibrium of the following reaction:

½C
 þ 2H2 ¼ CH4:

Since the standard state for carbon is graphite, the value of�G0
T

for this reaction coincides with that for reaction

C(graphite) þ 2H2 ¼ CH4:

At T¼ 1173 K, we obtain

Kp ¼ e��G
0
1173

=1173R ¼ 0:022:

On the other hand, we can express the equilibrium constant in
terms of equilibrium concentrations:

Kp ¼ 1

p

xCH4

acx
2
H2

:
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We find ac¼ 0.113. Using the plot of the carbon activity versus its
atomic fraction, we determine that the carbon atomic fraction is
0.010. The weight fraction of carbon can be obtained as follows:

cs ¼ MCxC

MCxC þMFexFe
100% ¼ 0:22%:

Finally, using the solution of the diffusion equation and the value
of the carbon diffusivity at T¼ 1173K (DC¼ 1.63 � 10�7 cm2/s),
we find that c¼ 0.45% at a depth of 600mm.

10.2.1. The distance between nearest neighbor sites in an fcc lattice is
� ¼ a= ffiffiffi

2
p

. If the hop frequency is �¼ 1 s, D¼ (1/6)�2�¼
(a2 /12)�¼ 2 � 10�16 cm2/s. Using the temperature dependence
of the diffusivity specified in the example problem, we find
T¼ 675 K.

10.2.2. Using xdif ¼
ffiffiffiffiffiffiffiffi
2Dt
p

, we obtain the following estimations:

(1) at T¼ 300 K xdif¼ 2.6 � 10�16 cm
(2) at T¼ 1200 K xdif¼ 1.9 � 10�3 cm
(3) at Tmelt¼ 1355 K xdif¼ 6.0 � 10�3 cm.

10.3.2.1. The vacancy formation enthalpy can be estimated as
�H f

v � 10RTmelt ¼ 113 kJ/mole. The diffusivity can be
expressed in term of the hop frequency as D¼ a2�/12 (see
Example problem 10.2.1). At Tmelt �¼ 2.5 � 107 s�1 and at
T¼ 300 K, �¼ 10�19 s.

10.6.1. Equation (10.36) implies

� ¼ 2b
ffiffiffiffiffiffiffiffi
D�t

p
:

Using the following equation:

F(b) ¼ cs � c��
c�� � c�� ¼

50� 40

40� 35
¼ 2

and Appendix IV, we find b¼ 0.8 and �¼ 81.6 mm.
10.7.1. Inserting Eq. (10.43) into the second expression in Eq. (10.42),

we find:

jQsteady�state
¼ LQC

LCQ

LCC

rT
T
� LQQrT

T
¼ L2

CQ

LCC
� LQQ

 !
rT
T
:

Taking into account that:

LQC

LCC
¼ Q*, LCC ¼ DCcC

RT
and LQQ ¼ l0T,

we can rewrite this equation as:

jQsteady�state
¼ Q*2DCcC

RT
� l0T

� �rT
T
¼ � l0 �Q

*2DCcC
RT 2

� �
rT:

Therefore,

lsteady�state ¼ l0 �Q
*2DCcC
RT 2

> �:
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10.7.2. Combining the first expression in Eq. (10.42) and the following
relations:

LQH

LHH
¼ Q* and LHH ¼ DHcH

RT
,

we obtain:

jH¼�LHHrT	H�LHQ
rT
T
¼�DHcH r(ln cH)þQ*

RT
r(ln T)

� �
:

The concentration should be expressed in atom/cm3 (in accord-
ance with the dimensionality of the flux):

cH ¼ NH

V
¼ NAnH

V
� xHNAnFe

V
¼ xHNAmFe

MFeV
� xH�NA

MFe

¼ 8:5 � 1018 atom=cm3:

Now, using the previous equation, we obtainQ*¼ 210 kJ/mole.

Chapter 12

12.2.4.1. The number of molecules with an energy corresponding to the
Jth level is

NJ ¼ N (2Jþ 1)e�(Tc=T )J(Jþ1)P1
J¼0 (2Jþ 1)e�(Tc=T )J(Jþ1)

:

At T�Tc, this equation reduces to (see the derivation of
Eq. (12.55))

NJ ¼ NTc

T
(2Jþ 1)e�(Tc=T )J(Jþ1):

The most populated level is the value of J for which NJ is a
maximum with respect to J:

dNJ
dJ
¼ NTc

T
2e�(Tc=T )J(Jþ1) � (2Jþ 1)

Tc

T
(2Jþ 1)e�(Tc=T )J(Jþ1)

� �
¼ 0

or

Jmax ¼ 1

2

ffiffiffiffiffiffiffiffi
2Tc

T

r
� 1

 !
:

12.2.5.1. The partition function of the anharmonic oscillator takes the
following form:

Z ¼
Z þ1
�1

e� (�x2=2)��x3��x4ð Þ=kBTdx

¼
Z þ1
�1

e��x
2=2kBTe �x3þ�x4ð Þ=kBTdx:
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Expanding the second exponent in the last integral and
performing the integration, we find:

Z �
Z þ1
�1

e��x
2=2kBT 1þ �x3

kBT
þ �x4

kBT
þ �2x6

2(kBT )2

� �
dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
kBT

�

s
þ �

kBT

3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2kBT )5

�5

s
þ �2

2(kBT )2
15

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2kBT )7

�7

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
kBT

�

s
1þ 15�2kBT

2�3
þ 3�kBT

�2

� �
:

The average potential energy of the anharmonic oscillator
can be found using Eq. (12.34), which in this case takes the
following form:

U ¼ kBT
2 @ lnZ

@T
:

Expanding the logarithm of the partition function, we find:

lnZ ¼ 1

2
ln

2
kBT

�
þ ln 1þ 15�2kBT

2�3
þ 3�kBT

�2

� �

� 1

2
ln

2
kB

�
þ 1

2
lnTþ 15�2kBT

2�3
þ 3�kBT

�2
:

Inserting this result into the expression for the internal energy
yields:

U ¼ kBT

2
þ 15�2(kBT ) 2

2�3
þ 3�(kBT )2

�2
:

Finally, the heat capacity is:

c ¼ @U
@T
¼ kB

2
þ k2

B

15�2

�3
þ 6�

�2

� �
T:

The first term on the right side of this equation is similar to the
high temperature limit of the heat capacity of the quantum-
mechanical oscillator. In fact, this term is one half that found in
Eq. (12.73) because the present derivation only includes the
contribution from the potential energy (the kinetic energy gives
an equal contribution). Note that this first term does not depend
on temperature. The second term is a linear function of temper-
ature and is the correction associated with anharmonicity.

12.2.5.2. The average deviation of the interatomic distance from its T¼ 0
equilibrium value is:

�xx ¼
Rþ1
�1 xe

� (�x2=2)��x3��x4ð Þ=kBTdxRþ1
�1 e�ð(�x2=2)��x3��x4Þ=kBTdx

¼
Rþ1
�1 xe

��x2=2kBTe �x3þ�x4ð Þ=kBTdxRþ1
�1 e��x2=2kBTe �x3þ�x4ð Þ=kBTdx

:
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Expanding the second exponential in both integrals on the right
side, we obtain

�xx �
Rþ1
�1 xe

��x2=2kBT(1þ (�x3=kBT )þ (�x4=kBT ))dxRþ1
�1 e��x2=2kBT(1þ (�x3=kBT )þ (�x4=kBT ))dx

¼
(3=4)(�=kBT )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2kBT=�)5

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2
kBT=�)

p
(1þ (15�2kBT=2�3)þ (3�kBT=�2))

� 3�kBT

4�2
:

The linear coefficient of thermal expansion is:

� ¼ 1

a0

@�xx

@T
¼ 3�kB

4a0�2
:

Note that the linear coefficient of thermal expansion is zero
in the case of an harmonic oscillator (�¼ 0). Therefore, we must
conclude that thermal expansion is associated with anharmo-
nicity.

12.2.5.3. The contributions of the translational and rotational degrees
of freedom to the molar heat capacities are (see Eqs (12.41)
and (12.59))

cVtran ¼ 3

2
R

and

cVrot ¼ R:
The characteristic temperature for the vibrational degree of
freedom (see Eq. (12.66)) is:

� ¼ hc~��
kB
¼ 6:63 � 10�34 � 3 � 108 � 2215 � 102

1:38 � 10�23
¼ 3187 K:

The vibrational contributions to the molar heat capacity (see
Eq. (12.72)) are cVvib¼ 0.03 J/(K mole) at T¼ 298 K and
cVvib¼ 2.57 J/(K mole) at T¼ 800 K. Summing all three con-
tributions, we obtain the molar isochoric heat capacity of CO
is cV¼ 20.82 J/(K mole) at T¼ 298 K and cV¼ 23.36 J/(K mole)
at T¼ 800 K. The isobaric heat capacities can be obtained by
adding R to these values: cp¼ 29.13 J/(K mole) at T¼ 298 K
and cp¼ 31.67 J/(K mole) at T¼ 800 K. Experiment yields
cp¼ 29.11 J/(K mole) at T¼ 298 K and cp¼ 31.62 J/(K mole)
at T¼ 800 K. This is excellent agreement between experiment
and theory.

12.2.5.4. The contribution to the entropy associated with translational
motion of molecules can be calculated as (see Eqs (12.37) and
(12.40))

Stran ¼ 3

2
Rþ R lnZtran þ R ln

e

N
:

Example problem solutions 317



Using Eq. (12.37), we find:

lnZtran ¼ 3

2
lnMþ 5

2
lnT� ln pþ ln

(2
)3=2k
5=2
B

h3N
1=2
A

¼ 3

2
ln (28 � 10�3)þ 5

2
ln 298� ln (1:013 � 105)

þ ln
(2
)3=2(1:38 � 10�23)5=2

(6:63 � 10�34)3(6:02 � 1023)1=2

¼ 70:33,

and Stran¼ 150.3 J/(K mole). The rotational part of the entropy
can be calculated as (see Eqs (12.55), (12.57), and (12.58))

Srot ¼ Urot

T
þ R lnZrot

where

Urot ¼ RT,

lnZrot ¼ ln Jþ lnT� ln�þ ln
8
2kB

h2

and

J ¼ m1 �m2

m1 þm2
r212 ¼

M1 �M2

NA(M1 þM2)
r212:

Inserting the handbook data in these equations yields
J¼ 1.450 � 10� 46 kg m2, lnZrot¼ 4.674, and Srot¼
47.2 J/(K mole). Equation (12.69) implies that the contri-
bution of the vibrational degree of freedom to the molar
entropy is less than 0.01 J/(K mole). Therefore, we find
that S¼ 197.4 J/(K mole) at T¼ 298 K. Experiment yields
S¼ 197.5 J/(K mole). This is in excellent agreement with this
theoretical prediction.

12.2.7.1. Equation (12.83) implies:

Sel ¼ @Ael

@T
¼ NkB ln g0 þ g1e

��=kBT
h i

þNg1(�=T )e��=kBT

g0 þ g1e��=kBT
:

The electronic contribution to the molar heat capacity is:

cel ¼ T @Sel

@T
¼ NkB

�

kBT

� �2
g0g1

g0 þ g1e��=kBTð Þ g1 þ g0e��=kBTð Þ :

Since, g0¼ g1¼ 2 for NO, this equation yields cel¼
2.82 J/(Kmole) atT¼ 50Kand cel¼ 0.26 J/(Kmole) atT¼ 500K.

12.2.9.1. The mass of the Cs sample changes during the annealing process
because some of the Cs vapor escapes through the hole and
more Cs evaporates to keep the vapor saturated; hence,

�w ¼ m ^ St,
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wherem is the mass of the Cs atom, S is the area of the hole in
the chamber wall, and^ is the number of Cs atoms which cross
through a unit area of the hole in a unit time (i.e. the Cs flux).
The flux can be determined from Eq. (12.98), such that the
change in mass is:

�w ¼ mps
(d=2)2tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
mkBT
p :

Therefore, the pressure of the saturated vapor is:

ps¼4�w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
kBT
p

td2
ffiffiffiffiffiffiffi

m
p ¼4 �604 �10�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �1:38 �10�23 �773 �6:02 �1023
p

80 �(0:7 �10�3)2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 �132:9 �10�3
p

¼1:08 �104 Pa¼0:107atm:

Note that this type of experiment is commonly used to deter-
mine the saturated vapor pressure (the Knudsen method).

12.2.11.1. Using Eq. (12.103), we obtain:

z¼4�n
kBT


m

� �1=2

¼4
d2 p

kBT

kBT


m

� �1=2

¼4d2p



mkBT

� �1=2

¼4 � (2:04 �10�10)2 �1:013 �105

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

 �6:02 �1023

20:18 �10�3 �1:38 �10�23 �600

r
¼1:44 �109:

12.2.11.2. Using Eq. (12.106), we obtain:

l ¼ 1ffiffiffi
2
p

�n
¼ kBTffiffiffi

2
p


d 2p
:

Therefore,

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTffiffiffi
2
p


lp

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:38 � 10�23 � 273ffiffiffi

2
p


 � 1:28 � 10�9 � 1:013 � 105

s

¼ 2:5�10�10 m ¼ 2:5

12.2.11.3. The process cross-section in this case is:

�ij ¼ �0ij at v 	 v0
0 at v < v0



:

Analogously to the derivation of Eq. (12.103), we obtain:

zij ¼ nj�0ij
mij

2
kBT

� �3=2

4


Z1
v0

e�mijv
2
ij =2kBTv3ijdvij

¼ 4nj�0ij
mij

2
kBT

� �1=2

1þ mijv
2
0

2kBT

� �
e�mijv

2
0
=2kBT:

Å
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Combining this result with Eq. (12.104) gives us the number of
such collisions per unit volume and time with relative velocity
greater than v0 as:

Zij(v0) ¼ Z0ij 1þ mijv
2
0

2kBT

� �
e�mijv

2
0
=2kBT,

where Z0ij can be found from Eq. (12.104).
12.3.1.1. Consider the dissociation of the dimers via the following simple

reaction:

Na2 ¼ 2Na:

Its equilibrium constant is

Kp ¼ p
2
Na

pNa2

¼ p (1� xNa2
)2

xNa2

� p 1� 2xNa2

xNa2

,

and, therefore,

xNa2
¼ 1

Kp=pþ 2
:

At the normal boiling temperature of any substance, the pres-
sure of its saturated vapor is p¼ 1 atm. Therefore, the problem
of finding the molar fraction of the dimer is reduced to finding
the equilibrium constant Kp.

The partition function for Na is

P(Na) ¼ Ptran(Na)Pel(Na):

The translational partition function can be calculated as (see
Eqs (12.118) and (12.37)

Ptran(Na) ¼ mkBT

2
�h2

� �3=2

¼ 23:0 � 10�3 � 1:38 � 10�23 � 1163

2
 � 6:022 � 1023 � (1:055 � 10�34)2

� �3=2

¼ 8:21 � 1032

and Pel(Na)¼2 (see Section 12.2.7).
The partition function for Na2 is

P( Na2) ¼ Ptran(Na2)Prot(Na2)Pvib(Na2):

The translational partition function can be calculated as (see
Eqs (12.118) and (12.37))

Ptran(Na2) ¼ mkBT


�h2

� �3=2

:
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The rotational partition function can be calculated as (see Eqs
(12.54) and (12.55))

Prot(Na2) ¼ 1

�

T

Tc
¼ 2IkBT

2�h2

¼ 0:5 � 23:0 � 10�3 � (2:18 � 10�10)2 � 1:38 � 10�23 � 1163

6:022 � 1023 � (1:055 � 10�34)2

¼ 1308:

The characteristic vibrational temperature for Na2 is

� ¼ h~��c
kB
¼ 6:63 � 10�34 � 159:2 � 102 � 3 � 108

1:38 � 10�23
¼ 229:5 K

and the vibrational partition function is (see Eq. (12.67))

Pvib(Na2) ¼ 1

1� e��=T
¼ 5:58:

The equilibrium constant for the dissociation reaction is

Kc ¼ P(Na)2

P(Na2)
e��Ed=kBT

¼ 4(mkBT=2
�h
2)3=2Ptran(Na)

(mkBT=
�h
2)3=2Prot(Na2)Pvib(Na2)

e��Ed=kBT

¼
ffiffiffi
2
p
Ptran(Na)

Prot(Na2)Pvib(Na2)
e��Ed=kBT ¼ 1:1 � 1026:

This expression was written for the special case in which
concentrations are expressed in molecules/m3. The value of Kc

corresponding to the concentrations expressed in mole/l can be
obtained as follows

Kc ¼ 1:1 � 1026

6:022 � 1023 � 103
¼ 0:182:

The equilibrium constant Kp can be now calculated as

Kp ¼ RT � Kc ¼ 0:0821 � 1163 � 0:182 ¼ 17:4

and the molar fraction of dimers is

xNa2
¼ 1

17:4=1þ 2
¼ 0:051:

12.3.2.1. Equations (12.128) and (12.129) can be combined to write the
steric factor as

� ¼ Aexp


 rA þ rBð Þ2 (1=mA)þ (1=mB)ð Þ1=2((8kBT=
 ))1=2
:
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Aexp can be determined from the temperature dependence of
the rate constant (see Eq. 8.21):

Aexp ¼ k1
k2

k1

� �T2=(T2�T1)

¼ 0:713 � 10�2 � 5:89

0:713

� �323:2=(323:2�293:1)

¼ 5:01 � 107 l=(mole min )

¼ 5:01 � 107 � 10�3=(60 � 6:022 � 1023) m3=(molecules s)

¼ 1:39 � 10�21 m3=(molecules s):

The diameter of a molecule can be estimated from the liquid
density. If we assume that the molecules are hard spheres
which form a dense packing then the volume per molecule is
8r3=

ffiffiffi
2
p

.1 This implies that:

Na
8r3ffiffiffi

2
p ¼M

�

and

r ¼ 6:65 � 10�2 M

�

� �1=3

:

Using the data provided in the example problem, we find:

rC5H5N ¼ 2:87 � 10�10 m and rCH3I ¼ 2:64 � 10�10 m:

Combining these results and the first equation, we obtain:

�¼ 1:39�10�21


�(2:87þ2:64)2�10�20 ((1=79)þ(1=142))6:02�1023=10�3

 �1=2

�((8�1:38�10�23�293:1)=
)1=2

¼4:2�10�6:

Chapter 13

13.2.1.1. The expression for the Gibbs free energy consists of two parts:
a term corresponding to the ideal gas and a correction asso-
ciated with deviations from ideality, that is,

G ¼ Gideal þ�GvdW:

The first term is (see Eq. (12.19))

G¼�RT ln (Z=Na)¼�RT( lnZtranþ lnZrotþ lnZel� lnNa),

1 This result was obtained by assuming the molecules are on a face-centered cubic lattice.
If we assume a different packing, the constants in this expression will be only slightly
different.
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excluding the vibrational contribution (see Table 12.1 in
Section 12.2.4). As discussed above (see Example problem
12.2.5.4), we can write the individual contributions as:

lnZtran¼ 3

2
lnMþ5

2
lnT� lnpþ ln

(2
)3=2k
5=2
B

h3N
1=2
A

¼ 5

2
lnT� lnpþ67:81

lnZrot¼ lnJþ lnT� ln�þ ln8
2kB

h2 ¼ lnT�1:42

lnZel¼ ln 3,

(the ground state of oxygen is a triplet—see Section 12.2.7).
Using these results, we obtain the following expression for the
Gibbs free energy of O2 in the ideal gas model approximation:

Gideal ¼ � 7

2
RT lnT� RT ln p� 12:73RT:

In order to calculate the correction associated with deviations
from ideality, we start from the following general thermo-
dynamic relation:

@G

@p

� �
T

¼ V:

Writing the same relation for the ideal gas and subtracting it
from this relation, we find:

@(G� Gideal)

@p

� �
T

¼ V� Videal:

If we use the van der Waals equation (Eq. (13.36)) of state, this
equation can be rewritten as:

@�GvdW

@p

� �
T

¼ N
2kBT

Vp
b� N

2

Vp
a:

Since this is a small correction, we can (with the same accuracy as
the van der Waals equation of state itself) replace the volume in
this equation with NkBT/p:

@�GvdW

@p

� �
T

¼ Nb� N

kBT
a:

Integration of this equation yields:Z �GvdW

0

d�GvdW ¼
Z p

0

Nb� N

kBT
a

� �
dp

�GvdW ¼ Nbp�Nap
kBT

:

Thus, the Gibbs free energy for O2, in the van der Waals
approximation, takes the following form:

G ¼ � 7

2
RT lnT� RT ln p� 12:73RTþNbp�Nap

kBT
:
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Recall that we already used this expression to describe devia-
tions from ideality in Example problem 1.4.2.1 without proof.

13.2.2.1. Using Eqs (13.40) and (13.39), we find that b¼ 3.258 � 10�2

l/mole and a¼ 1.393 atm l2/mole2. Inserting these values into
Eq. (13.41), we obtain pc¼ 48.6 atm. The experimental value is
49.7 atm. Note, that use of the equation of state for ideal gases
predicts p¼ 129.6 atm under the same conditions.
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