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Preface

High-speed heterostructure devices is a textbook on modern high-speed semiconductor
devices intended for both graduate students and practising engineers. This book is
concerned with the physics and processes involved in the devices’ operation as well
as some of the most recent techniques for modeling and simulating these devices.
Emphasis is placed on the heterostructure devices of the immediate future: namely
the MODFET, HBT and RTD. The principle of operation of other devices such as
the Bloch oscillator, RITD, Gunn diode, quantum cascade laser and SOI and LD
MOSFETs is also introduced.

This text was initially developed for a graduate course taught at The Ohio State
University and comes with a complete set of homework problems. MATLAB∗

programs are also available for supporting the lecture material. They can be used
to regenerate a number of the pictures in the book and to assist the reader with some
of the homework assignments.

This book should also prove useful to researchers and engineers, as it presents
research material which is disseminated throughout the research literature and has
never before been presented together in a book.

This text starts with two chapters reviewing the semiclassical theory of het-
erostructure devices. Five chapters are dedicated to presenting a realistic picture
of heterostructures, introducing quantum devices and developing practical tools for
analyzing quantum transport in these devices in the presence of scattering, and at high
frequencies. One chapter is focused on the Boltzmann equation and its application to
the derivation of moment equations for high-field transport. Five chapters are dedi-
cated to reviewing the modeling of long- and short-channel FETs, including charge
control, DC and high-frequency characteristics and the electrothermal modeling of
FETs. This is followed by four chapters providing advanced DC and microwave
modeling techniques, including a detailed analysis of parasitics in these devices.
Finally the book concludes with two chapters dedicated to HBTs. A number of the
chapters also provide practical design examples.

∗ MATLAB is a registered trademark of the MathWorks, Inc.

xix



xx Preface

Required background

This text is intended for graduate students who have been introduced to semiconductor
devices by a textbook of the level of Streetman’s Solid State Electronic Devices. A
more advanced introduction to quantum mechanics, thermodynamics, band structure,
phonons and devices is not assumed, as it is not realistic to request that the reader be
familiar with all these theories. Our strategy is therefore to start from an undergraduate
level and construct a more advanced theory of electronic heterostructure devices on
this basis. However, there are a few concepts that we have not derived. The Boltzmann,
Fermi–Dirac and Bose–Einstein distributions are postulated without a derivation from
more fundamental principles. The results of the harmonic oscillator are also presented
without a derivation. It is hoped that those graduate students not familiar with
these topics will be motivated to take additional courses in classical thermodynamics,
quantum theory, and semiconductor theory to enhance their understanding of those
topics. But again this book is sufficiently self-contained that this is not a requirement.

Outline for the reader

Chapter 1 gives an overview of the device concepts introduced in all the chapters and
motivates the need for these studies. This chapter also introduces MBE technology and
its application to the growth of materials (alloys, pseudomorphic, modulation doped)
for new device structures. The chapter concludes with a review of the cubic crystal
structure and its reciprocal lattice.

Chapter 2 introduces the concept of heterostructures. Both gradually varying
semiconductors (alloys) and abrupt heterojunctions are analyzed using the Anderson
band-diagram model, and dipole correction effects are considered. The generalized
low-field transport equations which apply to heterostructures are reviewed including
the drift-diffusion and thermionic-diffusion models. A phenomenological model of
ballistic electron launching is also presented. The principle of the heterojunction
bipolar transistor is then introduced.

Chapter 3 presents a rigorous introduction to the concept of spatially-varying band
structure using the generalized Wannier picture. Following a derivation of the Bloch
theorem, the Wannier functions are introduced as the Fourier coefficients of the Bloch
states and the Wannier recurrence equation is derived. For abrupt heterojunctions,
the matrix elements of the heterojunction Hamiltonians are derived in the limit of
the maximally transparent heterojunction. A multi-band density of states based on
the impulse response is also introduced for the spatial identification of quantum
resonances. The principal advantages of using the Wannier picture lie in: (1) its
inherent capability to account rigorously for both the spatial variation of the band
structure and its periodicity in k space, and (2) its representation in terms of difference
equations which are easily amenable to numerical solution.
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Chapter 4 presents some fundamental one-dimensional quantum devices realizable
using semiconductor heterostructures. The first class of devices discussed is that
involving an accelerated electron in a band structure subjected to an applied electric
field. Topics covered include the Wannier ladder and the Zener resonant tunneling
effect, the Houston state and the acceleration theorem and finally wave-packets and
squeezed states. The second class of devices considered is quantum wells. Topics cov-
ered include rectangular and triangular wells and the formation of a two-dimensional
electron gas and subbands. The third class of devices considered is resonant tunneling
and resonant interband tunneling diodes. Finally the fourth class of devices discussed
focuses on superlattices, including the formation of minibands, wave-function local-
ization in random superlattices and the fractal spectrum in Fibonacci superlattices.

Chapter 5 introduces the major scattering processes which limit the performance
of quantum devices. Both elastic and inelastic scattering are considered. First
the spectrum of lattice vibrations is presented and a semiclassical phonon model is
introduced. The general form of the electron–phonon interaction Hamiltonian is then
derived and the specific matrix elements for polar, acoustic, and intervalley phonon
scattering processes evaluated. Next interface roughness scattering is analyzed using a
model of uncorrelated terraces with a Gaussian distribution in size, and alloy scattering
is analyzed using the virtual-crystal model. The chapter finishes with a discussion of
electron–electron scattering.

Chapter 6 presents a realistic treatment of the impact of scattering upon tunneling-
based devices using a direct three-dimensional ensemble-average solution of the
Schrödinger equation. The importance of a three-dimensional analysis is first demon-
strated. Next the scattering-assisted tunneling theory is shown to lead to a system of
coupled Wannier recurrence equations enforcing current conservation. The formalism
is then generalized to handle multiple sequential scattering processes and the Pauli
exclusion effect with the introduction of the self-energy and the impulse response.
Results for various resonant tunneling diodes (RTDs) are then presented for each
scattering process, both individually and combined.

Chapter 7 studies tunneling in the presence of a time-varying interaction potential.
The problem of an accelerated electron in a band subjected to both uniform DC
and AC fields is solved exactly. A general rigorous analysis in terms of Fourier
series is then given. The importance of self-consistently solving the Poisson and
Schrödinger equations for calculating the current is demonstrated. Calculated small-
and large-signal device impedances are presented for RTDs and an equivalent circuit
is developed for their microwave simulation. The chapter concludes by studying how
infrared radiation is coupled to ballistic quantum transport, and presents the principles
of operation and recent results for the quantum cascade mid-infrared (10 µm) laser.

Chapter 8 covers the problem of the calculation of the 2DEG concentration in
both gated and ungated MODFET capacitors. The self-consistent solution of the
Schrödinger and Poisson equations is discussed, and an approximate analytic solution
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based on the triangular well approximation is presented. The control of the 2DEG by
a Schottky barrier, its high-frequency response and the MODFET capacitance are then
modeled or analyzed. The chapter finishes with the modeling of the Schottky-barrier
gate under forward bias.

Chapter 9 introduces simple transport models applicable to the MODFET and HBT.
Transport in the electron gas is discussed using the Boltzmann equation. Approximate
solutions are obtained for both small and large electric fields using the assumption
of a drifted and heated Maxwell–Boltzmann distribution, and they are used to derive a
generalized drift-diffusion current equation and its associated energy balance equation.
These equations are solved to obtain the velocity–field relation in bulk silicon and
GaAs, to analyze the Gunn effect, and to discuss transient and stationary overshoot in
short-channel MOSFETs and MODFETs.

Chapter 10 is concerned with the I –V modeling of the MOSFET/MODFET. The
I –V characteristic MOSFET/MODFET is studied using a simple charge control model
and transport model. Emphasis is placed on studying short-channel effects and velocity
saturation, and the threshold for their occurence. A discussion of the two-dimensional
field effects and their impact on the drain conductance is presented. For this analysis
the Grebene–Ghandhi model, the channel opening model, and a full two-dimensional
solution are compared.

Chapter 11 develops and solves the long-channel MOSFET/MODFET wave-
equation. An optimal non-quasi-static equivalent circuit and a large-signal model
approximating the large-signal MODFET wave-equations are then presented. The
large-signal state equations are shown to conserve charge, and a charge-based rep-
resentation suited for a circuit simulator is presented.

In Chapter 12 the velocity-saturated MODFET wave-equation is developed and
solved for the short-channel MODFET. An optimal non-quasi-static equivalent circuit
is presented and compared with the exact solutions. The long- and short-channel model
topologies are also compared. Finally a charge-based large-signal model is presented
for the short-channel MODFET.

Chapter 13 is concerned with the table-based electrothermal modeling of FETs
for use in microwave circuit simulation. This chapter covers various topics such
as device physics and model topology, measurement and characterization, parameter
extraction and data presentation algorithms, and finally circuit design and simulation.
The FET model topology introduced in Chapter 11 is augmented to account for
the low-frequency dispersions associated with self-heating and the parasitic bipolar
transistor. The need for and application of isothermal and pulsed DC and RF
measurement techniques are reviewed. These concepts and modeling techniques
are illustrated with examples from two major technologies: SOI for low-power RF
CMOS and LDMOS for high-power linear amplification. However, the material
presented is general enough that the techniques discussed can be applied to other
devices.
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Chapter 14 develops an accurate analytical model for the DC characteristics of
MODFETs designed in industry for ultimate performance in high-speed communica-
tion and instrument applications. A thorough motivation for the approximate treatment
is given. An overview of materials issues and evolution follows. The high doping and
short gates used for these devices require a refined treatment of the charge control and
transport, respectively. A quasi-two-dimensional model that includes mixed gate and
drain charge control in regions internal and external to the gate is developed. I –V
characteristics and the internal field distribution are obtained. These allow prediction
of basic breakdown characteristics, which, in turn, affect the reliability of the devices,
as is discussed.

Chapter 15 continues the analysis of cutting-edge MODFETs, but switches gear
from DC to AC performance. The equivalent circuit is developed based on the theory
in Chapter 11, and includes some important effects which occur in a velocity-saturated
MODFET. These are studied with classical electrostatic approaches. In addition to
standard capacitances, interesting effects are induced by transit delays in the device.
The output conductance, a notoriously elusive parameter, is analyzed and predicted.
The chapter concludes with an almost-complete extrinsic equivalent circuit. What is
left for later is the inclusion of the distributed gate metalization resistance. First, an
important topic that requires its own chapter has to be covered.

Chapter 16 focuses on an effect that requires a rather deep and different detour
into semiconductor physics. The effect is the interfacial gate resistance which is
of significant importance for device performance and scaling. In its purest form
it is also of interest in the context of Schottky-barrier formation, a topic that has
inspired a plethora of models, several of which are reviewed. Theories for dispersion
and tunneling at the gate–semiconductor interface are developed. These require, in
addition to familiar device and circuit analyses, a quantum mechanical treatment
of a rather complex nature. Bardeen’s powerful view of tunneling is reviewed.
The overlapping metal and semiconductor wave-functions are derived and motivated,
respectively. The tunneling resistance is then derived. The various Schottky-barrier
models can be accommodated by the model to produce theoretical values for the
interfacial gate resistance. These are compared with the typical range of experimental
values. After a summary and discussion of the results, the final extrinsic equivalent
circuit for the velocity-saturated MODFET is arrived at.

After a brief overview of some high-frequency measurement issues, Chapter 17
uses the analytical physics-based MODFET equivalent circuit to predict and optimize
the gain and noise. Two fundamental power gains and their cut-off frequencies
are reviewed, as are three commonly used FET noise models. A general thermal
noise model that accommodates the full extrinsic equivalent circuit is formulated
and exercised. Some process and manufacturability issues affecting performance,
yield, cost, and reliability are discussed. A very brief discussion on reverse modeling
concludes this chapter on high-performance MODFETs.
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Chapter 18 focuses on the modeling of the heterojuction bipolar transistor (HBT).
Compact models for HBTs are developed with the intention of providing tractable
equations for predicting the DC, small-signal AC, and large-signal properties of
high-frequency and high-power devices. The models are connected to fundamental
theory by appealing to results from a microscopic theory of transport based on a direct
solution of the Boltzmann transport equation.

Chapter 19, our last chapter, gives the reader an in-depth look at examples of
the device physics issues that must be faced in realizing the HBT devices described
theoretically in Chapter 18. It covers the application of arsenide and phosphide
compound semiconductor material systems to HBTs in detail. The main device-design
problems for high-speed HBTs, and their interaction with fabrication, are described.
An example of the problems posed by practical III–V surfaces is provided by an
examination of the emitter–base saddle-point effect in AlGaAs/GaAs HBTs. The
effect of material choice on the important area of thermal properties is described.
Finally, this chapter examines long-term device degradation, using beryllium diffusion
as an example to study the defect chemistry behind the problem.

Recommendations for the instructor

This book is best suited for a semester course. By focusing on device concepts rather
than mathematical derivations during the lecture it is possible to cover one chapter
a week. The mastery of the mathematical techniques presented is then acquired by
the students when they complete the homework problems. These homework problems
indeed usually motivate a careful reading of the derivations presented in each chapter.

New graduate students are generally sufficiently prepared by conventional under-
graduate textbooks/courses to take this graduate course. An exception, however, is
the concept of Brillouin zone and k space which is not often well mastered if it has
been covered at all. To address this problem a review of the cubic crystal structure
and its reciprocal lattice is included in Chapter 1. The concept of k space is also
heuristically introduced in Chapter 1 before being rigorously derived in Section 3.2.2
for one dimension and in Section 3.2.4 for three dimensions using the translation
operator.

We have found it to be of critical importance to provide the students with simple
MATLAB∗ programs implementing the techniques presented. These MATLAB∗

programs serve multiple purposes. First they allow many of the figures in the text to
be regenerated. The students can then vary the parameters and do simple experiments.
Sometimes these tools are also used in exercises to verify the validity of analytic
calculations. This is particularly important for the quantum calculations which can be
quite abstract until the students start reproducing the results themselves. This literally
∗ MATLAB is a registered trademark of the MathWorks, Inc.
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brings this material to life. A special web site is available from Cambridge University
Press or from http://eewww.eng.ohio-state.edu/˜roblin/cupbook for downloading these
MATLAB† programs. We will keep adding new problems and programs to support
this text. A correction set for most of the homework problems can also be downloaded
by instructors from the same web site.

For the MATLAB product information, please contact

The MathWorks Inc.
3 Apple Hill Drive,
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7101
E-mail: info@mathworks.com
Web: www.mathworks.com

† MATLAB is a registered trademark of the MathWorks, Inc.
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Introduction

It is the trend in the silicon and compound microelectronic technology to continuously
develop semiconductor circuits which are faster, smaller, and consume less power
for a similar level of integration. This has been recently fueled in part by the rapid
growth of digital wireless communication, which relies on both low-power high-speed
digital and high-frequency analog electronics. As part of this trend, microwave, RF
and IF analog and digital circuits are being integrated in ‘mixed-signal’ circuits for
wireless applications. Both silicon and compound state-of-the-art integrated circuits
presently rely on high-speed state-of-the-art submicron devices. However, research
in microelectronic technology is always expanding its frontier; new heterostructure
semiconductor materials and devices are continuously being developed or improved in
a process often referred to as bandgap engineering. These heterostructure devices, in
particular, and high-speed devices, in general, constitute the subject of this book. In
this book we take the readers on a journey providing them with an understanding
of both fundamental and advanced device-physics concepts as well as introducing
them to the development of realistic device models which can be used for the design,
simulation and modeling of high-speed electronics.

The journey in this book takes the reader from the fundamental physical processes
taking place in heterostructures to the practical issues involved in designing high-
performance heterostructure devices.

Ever shrinking high-speed devices

It is a basic requirement that high-speed devices must be small. Reducing the device
reduces the transit-time and the capacitances in devices. The operating voltage is
also reduced, and this helps with the reduction of the power dissipation. There are
a few exceptions, i.e., devices which do not rely on the transit-time principle, but
essentially this principle holds so far for the field-effect and bipolar transistors which
are the engine of today’s microelectronics. The shrinking of the device is occuring
both horizontally, as defined by lithography, and vertically, as defined by growth and
processing techniques. For example MOSFETs and MODFETs of 0.085 µm or 850 Å
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gate length are becoming very common. Even more striking are the modern growth
techniques which have made possible the vertical growth of new semiconductor
devices with unprecedented control. One of the most versatile growth techniques
available for research is molecular beam epitaxy (MBE) which permits one to deposit
one atomic layer at a time while abruptly or gradually changing the semiconductor
material and doping type. The capability of MBE growth techniques will be reviewed
in Chapter 1.

Quantum effects

In Chapter 2 we will explore the semiclassical modeling of heterostructures by review-
ing how the bulk and junction theory has been extended to deal with them. However, as
the device size keeps shrinking, quantum effects clearly become important and must be
considered. This occurs when the device dimension compares with the mean free path
of the electrons. In fact many fundamental questions are raised when dealing with very
small devices. Traditionally semiconductors are theoretically introduced as crystals
which are by definition periodic structures repeating indefinitely. But how can a band
structure now be rigorously defined in spatially-varying semiconductors? To address
this question we will introduce in Chapter 3 a special quantum picture, the generalized
Wannier representation, which will describe the formation of the bands at the lattice
level. In fact we shall see that it takes typically about ten lattice parameters for the
band structure to be well defined away from an interface or surface. The generalized
Wannier representation will also permit us to discuss in Chapter 4 transport problems
such as the Bloch oscillations which have long both fascinated and challenged device
physicists.

Quantum devices

Quantum devices are devices which directly exploit quantum effects. Various types
of quantum devices have been conceived, including quantum wells, superlattices and
resonant tunneling diodes (RTDs). Superlattices are periodic heterostructures forming
a synthesized one-dimensional crystal. Superlattices can be used, for example, to
generate the elusive Bloch oscillations. The study of random superlattices will permit
us to gain insight into the conductor–insulator transition which takes place when the
superlattice periodicity is destroyed.

With a couple of periods of a superlattice we can form a double-barrier potential
system, which is transparent to electrons when the barrier separation corresponds
to a multiple of half their wavelength. This effect is the basis for the RTD which
exhibits a negative differential up to terahertz. The RTD, which is the fastest active
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semiconductor diode available so far, is a very important test device, as it is based on
a quantum effect and yet operates at room temperature. It also finds applications in
high-speed digital and microwave circuits.

Finally, one of the key quantum effects we shall study is the creation of a two-
dimensional electron gas (2DEG) by quantum confinement. The 2DEG is of particular
importance as it is used as the channel of the fastest FET developed: the MODFET.
Chapter 8 will therefore be dedicated to studying how we can control this 2DEG with
a gate voltage at both DC and high frequency.

From quantum transport to Boltzmann equation

To the first order, transport in quantum devices is typically ballistic. That is the
electrons travel with out being scattered. However, even in quantum devices the
ballistic transport approximation is not realistic, and scattering processes must be
accounted for. How do we solve the Schrödinger equation in the presence of phase-
breaking scattering processes? We shall address this subject in Chapter 6 and develop
a realistic theory bridging the gap between the ideal ballistic transport model and the
semiclassical Boltzmann transport theory. As we shall see, the electron wave-functions
are effectively attenuated in their propagation as they spawn new scattered waves
through various possible scattering processes. The exploitation of quantum effects in
quantum devices is therefore only possible when the spatial variation device structure
is smaller than the mean free path. Indeed, it is only when the electron wave-function
has a well-defined phase that interferences, which are a requirement of quantum wave
effects, can effectively take place.

Ballistic transport versus drift-diffusion transport

Even when quantum effects are negligible we will find it necessary to identify whether
or not ballistic transport or/and drift-diffusion is taking place. These are indeed the two
fundamentally different regimes of transport which can both take place, sometimes
simultaneously, inside a device.

Consider the simple pastoral scene of a lake with a waterfall on one side and a small
creek on the other. There is clearly a continuous flow of water from the waterfall,
through the lake and into the creek. However, if the lake is very wide, the water
drift might not even be perceptible to a fisherman on its bank fishing for trout. But a
fly-fisherman fishing in the creek will see his dry fly quickly drift away and will need
to recast his line often. If a red dye or some kind of liquid trout food is poured into
the lake at one spot we expect it to slowly diffuse and spread throughout the lake. A
drift-diffusion model therefore applies well to the lake area. On the other hand, no
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dye is expected to be able to diffuse up the waterfall into its upper reservoir. Clearly
the waterfall is operating in a ballistic mode. The creek, however, might be operating
in some kind of mixed mode with faster water at the center moving in a near-ballistic
way and pockets of slower water near its bank trapping some of the dye.

In the ballistic regime, drift not only dominates over diffusion but also no thermal-
ization is expected in that region. The particles acquire mostly kinetic energy from
the potential (gravitational in the case of the waterfall, electrostatic in the case of
electrons). However, a release of thermal energy is still expected due to the Joule
effect. In ballistic transport it is in the collector (the lake in our example) that
the particle kinetic energy is converted into thermal energy as is evidenced by the
increased agitation or random motion of the particles in the lake region surrounding
the waterfall.

For ballistic transport in electron devices we shall find that the current is also space-
charge-limited: that is the charge distribution of the electrons actually screens the
applied potential accelerating the electrons. This self-consistent process profoundly
alters the current flow and effectively shapes the I –V characteristic of ballistic devices.

In the course of our study of high-speed devices we shall find that ballistic and
space-charge-limited transport takes place not only in quantum devices (Chapters 4
and 7), but also in the drain region of FETs (Chapters 10 and 14) and in the base
region of heterojunction bipolar transistors (HBTs) (Chapters 2 and 18) with an abrupt
emitter–base junction.

Importance of a microscopic study

We have discussed above some of the key physical processes we must address when
dealing with heterostructure devices with dimensions below 0.1 µm. The very nature
of the junctions is of critical importance in heterostructure devices. New modes
of transport such as ballistic and space-charge limited transport can be expected in
these devices. For even smaller devices, quantum transport is fully required for their
analysis. These effects justify our detailed study in the first half of this book of
the various microscopy processes taking place in devices. Then, equipped with this
physical understanding we will be ready to complete our journey in the second half of
this book on the detailed analysis of the operating principles, modeling, and design of
high-speed heterostructure transistors.
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1 Heterostructure materials

It is as easy to count atomies, as to resolve the propositions of a lover.

As You Like It, WILLIAM SHAKESPEARE

1.1 Introduction

Modern growth technologies have made possible the growth of new semiconductor
devices with unprecedented control on the atomic level. In this chapter we shall
briefly introduce the molecular beam epitaxy (MBE) growth technique and discuss
its application to the growth of materials (alloys, pseudomorphic, modulation doped)
for new device structures. The chapter will conclude with a review of the cubic crystal
structure and its reciprocal lattice, as these concepts are used extensively in Chapters 2
and 3.

1.2 MBE technology

One of the most versatile growth techniques available for research is the MBE. In
this growth technique a semiconductor substrate is placed in a high-vacuum chamber
(see Figure 1.1). Different components such as Ga, Al, As, In, P, and Si are heated
in separate closed cylindrical cells. These components escape through an opening
in the cylindrical cell and form a molecular beam. These beams are directed toward
the substrate. A shutter positioned in front of each cell is used to select the desired
molecular beams. By selecting a low temperature for the substrate growth and a slow
growth rate (a few micrometers per hour), it is possible to grow high-quality crystals,
while making abrupt changes in doping and crystal composition.

This growth technique can be used to grow semiconductor alloys such as
Alx Ga1−x As, Inx Ga1−x As, Inx Al1−x As, and Si1−x Gex , where x , the mole fraction,
specifies the composition of the alloy. For example in Alx Ga1−x As, Al and Ga are
randomly distributed over the same Ga lattice site of the GaAs crystal and x gives the
fraction of Ga sites occupied by Al.

1
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Fig. 1.1. Simplified diagram of an MBE growth chamber.

1.2.1 Lattice-matched systems

The epitaxial growth of one semiconductor on top of another requires that they have
a similar lattice parameter so as to minimize the number of defects in the epitaxial
layer. As can be seen in Table 1.1, Ge, GaAs, and AlAs have nearly the same lattice
parameters. The lattice mismatch measured as �a/a is a fraction of 1%, and these
semiconductors can be grown epitaxially on top of each other with extremely small
concentrations of defects. This is therefore also the case of the alloy Alx Ga1−x As.
Complex heterostructures making use of the bandgap variation between the GaAs
and AlAs bandgaps can then be grown on a binary GaAs substrate as is illustrated
in Figure 1.2.

The Alx Ga1−x As and Ge system is, however, an exceptional case. For example
GaAs, InAs, and their alloy Inx Ga1−x As can be seen in Figure 1.2 to have quite
different lattice parameters leading to a lattice mismatch of up to 7%. In such a case the
growth of lattice-matched semiconductor alloys can be achieved by selecting the mole
fraction such that both semiconductor alloys have the same lattice parameter. From
Figure 1.2 one can verify that Inx Ga1−x As and Inx Al1−x As can be grown epitaxially
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Table 1.1. Material parameters for Ge, GaAs and AlAs.

a( Ā) �a
aGa As

Eg χ (affinity)

Ge 5.6461 1.3 × 10−3 0.663 4.13
GaAs 5.6533 0 1.424 4.07
AlAs 5.6614 1.2 × 10−3 2.16 3.5

Fig. 1.2. Direct (optical) � (plain line) and indirect X (dashed line) bandgaps (see Figure 2.1 for a
definition) of the alloys of the semiconductor binaries GaAs, AlAs, and InAs, plotted versus their
lattice parameters for all mole fractions x .

on an InP substrate when using the In mole fractions x = 0.53 and x = 0.52,
respectively.

1.2.2 Pseudomorphic materials

The MBE growth technique also permits one to grow lattice-mismatched alloys if the
mismatch is only a few percent and the layer is thin. The epitaxial layer grown will
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Fig. 1.3. Conceptual formation (a) of a strained pseudomorphic layer (b) and its relaxation (c) for a
large thickness.

then assume the lattice constant of the substrate semiconductor on which it is grown.
The resulting epitaxial layer is therefore subject to a strain (compression if its natural
lattice parameter is larger than that of the substrate or tension if it is smaller) which
modifies its physical properties. Such a layer is called pseudomorphic as it assumes a
new crystal structure. One can verify, for example, that if the lattice parameter of the
epitaxial layer parallel to the interface is reduced, then the transversal lattice parameter
is increased as is shown in Figure 1.3(b) in which Si1−x Gex is grown on Si.

A pseudomorphic material can only be formed if the epitaxial film thickness is
smaller than a critical thickness hc. This critical thickness corresponds to the thickness
at which it becomes energetically more favorable for the epitaxial layer to generate
dislocations than to maintain the lattice strain [2]. Figure 1.4 shows the critical
thickness for growing Si1−x Gex on Si as a function of the Ge mole fraction x . Note
that thicker defect-free Si1−x Gex films can be grown at a lower growth temperature [3],
but these films are metastable and require appropriate subsequent thermal treatments
[4].

Other examples of pseudomorphic material systems are Inx Ga1−x As and
Inx Al1−x As on GaAs and InP substrates and Alx Ga1−x N on GaN. For example
In0.25Ga0.75As can be grown for a thickness up to 124 Å on GaAs. For pseudomorphic
films of thickness larger than the critical thickness hc, the film relaxes to its original
unstrained bulk lattice, and dislocations are formed, usually rendering the material
unusable for making devices.

Pseudomorphic layers can present much improved physical properties. Consider
the light- and heavy-hole band structures in Figure 1.5 [1]. In the absence of strain
the heavy-hole band is populated due to its higher density of states, and the holes
typically exhibit an effective mass much larger than that of electrons. The presence
of strain breaks the degeneracy of the light- and heavy-hole bands (see Figure 1.5)
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Fig. 1.4. Approximate critical thickness for strained pseudomorphic (full line) and metastable
(dashed line) layer in Si1−x Gex .

at the top of the valence band. When the light-hole band is raised, the light-hole
band is preferentially populated, and a high hole mobility results, due to the smaller
effective mass of the light holes. In Si1−x Gex the heavy-hole mass can even become
smaller than the light-hole mass. Pseudomorphic field-effect transistors (FETs) are
therefore potentially important for the generation of high-speed complementary logic
with p-channel FETs of improved performance.

Other interesting physics can also occur in pseudomorphic materials. For example
the large strain present at the interface of Alx Ga1−x N and GaN can, via the piezoelec-
tric effect, enhance the electron charge density.

1.2.3 The materials game and bandgap engineering

Since each semiconductor alloy has a different bandgap (see Figure 1.2) novel
heterostructure semiconductor devices can be created using either lattice-matched
or pseudomorphic semiconductor epitaxial layers. The most important examples
include the semiconductor laser diodes, the heterostructure field-effect transistors
(HFETs), the heterojunction bipolar transistors (HBTs), and the resonant tunneling



6 Heterostructure materials

Fig. 1.5. Effect of strain on the band structure of an InGaAs layer grown on the (100) surface of
GaAs. The arrows in (a) indicate the direction of the lateral compressive strain and the resulting
tensile perpendicular strain. The heavy-hole band structure shown in (b) has shifted upward for
transverse wave-vectors and downward for longitudinal wave-vectors resulting in a smaller
longitudinal effective mass.

diodes (RTDs). Furthermore, since modern growth techniques can be used to grow
semiconductor structures with dimensions as small as a few lattice parameters, new
devices making use of the quantum properties of electrons are possible. Among these
are quantum wells (applications include laser diodes, HFETs, light switches and so
on), superlattices, and RTDs.

Since so many types of semiconductor materials can be grown epitaxially together, it
is natural that researchers continuously investigate new materials for the improvement
of devices such as HEMTs (High-Electron-Mobility Transistors), HBTs, and RTDs as
well as means for further improving the growth techniques. The Alx Ga1−x As system
was one of the first material systems used to fabricate HEMTs, HBTs, and RTDs due
to its advantageous flexibility when growing lattice-matched structures on the readily
available GaAs substrate.

The Inx Ga1−x As/Inx Al1−x As system has been subsequently investigated on both
InP and GaAs substrates. As we shall see one of its advantages is that it provides a
higher electron concentration and is not afflicted by DX (deep trap) center problems
for In mole fractions below 60%.
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The Si1−x Gex system also permits the fabrication of HEMTs, HBTs, RTDs and
RITDs (Resonant Interband Tunneling Diodes). It has the advantage of being more
easily integrated with other silicon processes. The reader is referred to [5] for a review
of its performance achievements and future potentials.

The Alx Ga1−x N/Alx Al1−x N system has recently attracted a lot of interest. These
materials are based on the binaries InN, GaN, and AlN which have large direct (�)
bandgaps of 1.9, 3.4 and 6.2 eV, respectively. These wide-bandgap materials find
application in the creation of green, blue, and violet lasers. This material system is
also being investigated for use in high-power microwave electronic devices. High-
temperature electronics is also being pursued with this material system and others
such as SiGeC. A more complete review of materials and their impact on HBT and
HEMT performance is given in Chapters 14 and 19.

1.2.4 Limitations and applications of modern growth techniques

MBE provides the means to grow high-quality materials, with an excellent control of
material composition and of epitaxial layer thickness. MBE materials suffer, however,
from morphological defects which can affect the smoothness of the semiconductor
wafer and the yields. In addition, MBE is an expensive growth technique and other
growth techniques such as metal organic chemical vapor deposition (MOCVD) are
usually used for high-volume production. However, both MBE and MOCVD have
been used in a production environment for the growth of the low-cost laser diodes
found in the compact disk recorder and for discrete high-speed HEMT and HBT
devices.

MBE and MOCVD technologies are presently the only viable approaches to devel-
oping semiconductor transistors which operate at millimeter wavelengths. However,
the use of MBE for the production of large-scale digital integrated circuits is limited
by the integrated circuit yield. MBE and MOCVD technologies are therefore finding
mostly low-scale integrated circuit applications, in digital and analog circuits such as
pre-scalers and A/D converters, and in RF (RFIC) and microwave (MMIC) front-end
integrated circuits for wireless applications. Another emerging area in which MBE
and MOCVD technology will have an important impact is the field of OptoElectronics
Integrated Circuits (OEIC). Fiber optics present unrivaled potential for high-speed
communication with gigabit bandwidths. Presently this potential is exploited only
in expensive communication systems. The development of low-cost OEICs and their
integration with the present Si technology will multiply the use of optical local area
networks. Applications include the optical wiring of computers, cars, airplanes and so
on.
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1.3 Crystal and reciprocal lattices

Before discussing heterostructure physics and devices, let us briefly review in this
section crystals and reciprocal lattices.

1.3.1 Crystals and lattices

The semiconductor materials used for making devices are in a crystalline state of
matter. So a brief review of some of the techniques used for the characterization of
crystals is in order.

Crystal structures are defined in terms of a lattice and a basis. The semiconductors
we shall consider in this book have either a zinc-blende and or a diamond crystal
structure which is realized with a face-centered cubic (fcc) lattice and a basis consisting
of two atoms.

The three-dimensional lattice consists of all the points generated by the lattice
vectors

R = n1a1 + n2a2 + n3a3, (1.1)

where n1, n2, and n3 are integers and where a1, a2 and a3 are the lattice translation
vectors.

For a fcc lattice the lattice vector R is given in the orthonormal coordinates of the
Bravais cell (a cube whose side is the lattice parameter a, see Figure 1.6(a) by

R = a

2


 0 1 1

1 0 1
1 1 0




 n1

n2

n3


, (1.2)

where the lattice translation vectors a1, a2 and a3 for the fcc crystal are defined in
Figure 1.6(a).

The fact that fcc or body-centered (bcc) lattices are referred to as cubic lattices
(Figure 1.6) is not due to the cubic appearance of their Bravais cell but rather to the
fact that an fcc or bcc crystal is left invariant under the 48 symmetries of the Oh (or
m3m) group [6] (see Problem 1.2). These 48 symmetries consist of the identity E ,
inversion I and the rotations of angles 2π/2, 2π/3 and 2π/4 (respectively denoted:
C2, C3 and C4) and of their products.

The zinc-blende (or sphalerite) crystal structure of conventional III–V semiconduc-
tors is obtained by selecting a basis with two atoms as shown in Figure 1.7. such that,
for example, for GaAs, the crystal consists of an fcc lattice of Ga and an fcc lattice of
As separated by the vector a/4(x̂ + ŷ + ẑ). For C, Si, and Ge crystals the same atoms
are used for the basis, and the structure is referred to as the diamond structure.
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Fig. 1.6. (a) Bravais cell for a face-centered cubic crystal in (direct) space and (b) Bravais cell of the
associated body-centered cubic crystal in reciprocal (indirect) space.

Ga

As
Basis

Tetrahedral
bonds

Fig. 1.7. Zinc-blende crystal, its two-atom basis, and the tetrahedral bond structure.

It is interesting to note that the zinc-blende structure does not have an inversion
symmetry (I ) but is still invariant under the 24 symmetry operations of the Td subgroup
of Oh (Oh = Td + I × Td ). However, the inversion symmetry is recovered in the band
structure due to the time-reversal symmetry of the Schrödinger equation when spin
degeneracy is neglected.

1.3.2 The reciprocal lattice

A lattice is a periodic structure in three dimensions. As a consequence, any local phys-
ical property of the crystal f (r) is invariant under a translation by a lattice vector R:

f (r) = f (r + R). (1.3)
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L

Γ

K
X

X

X

L

LL

Fig. 1.8. Brillouin zone for the zinc-blende reciprocal lattice.

As f (r) is periodic we can expand it using a Fourier series.

f (r) =
∑

K

AK exp (iK · r),

where K is the so-called reciprocal-lattice vector and AK the Fourier coefficient.
Now using the translation property we have

f (r + R) =
∑

K

AK exp [iK · (r + R)] = f (r).

Therefore we must have exp(iK · R) = 1 such that the reciprocal-lattice vectors verify

K · R = n × 2π

with n an integer.
For the fcc lattice the reciprocal-lattice vectors K satisfying this relation are given

in the orthonormal coordinates of the Bravais cell by

K = 2π

a


 −1 1 1

1 −1 1
1 1 −1




 m1

m2

m3


, (1.4)

where m1, m2, and m3 are integers.
An inspection of K for the fcc lattice (in direct space) reveals that the reciprocal

lattice (in indirect space) is a bcc lattice (see Figure 1.6). The Brillouin zone (the



11 1.3 Crystal and reciprocal lattices

(b)(a)
Fig. 1.9. Top (a) and side (b) views of the partial reconstruction of the bcc reciprocal Bravais cell
using five Brillouin zones.

Wigner–Seitz cell in reciprocal space) is defined by the median boundary between
nearest neighbors in the bcc reciprocal lattice. The three-dimensional Brillouin zone
of a zinc-blende crystal is shown in Figure 1.8. Figure 1.9 shows how five Brillouin
zones can be packed together to reconstruct the bottom half of the bcc Bravais cell.

1.3.3 Application to band structures

Let us briefly review how the semiconductor band structure is formed and how the
concept of the reciprocal lattice can be applied to the band structure.

We have seen that the diamond and zinc-blende structures effectively originate from
the tetrahedral nature of the bonds formed between the atoms. For example, for C, Si,
and Ge the last shell is occupied by four electrons in the s2p2 electronic configuration.
By bonding with four other atoms, each atom reaches a stable rare-gas configuration by
effectively surrounding itself with eight electrons with two electrons per bond. In this
process the tetrahedral bonding structure can be verified to result from a preliminary
hybridization of the four valence electrons in a hybrid state of configuration s1p3

denoted:

|ψhybrid〉 = |ψs〉 ± |ψp,x 〉 ± |ψp,y〉 ± |ψp,z〉.
This hybridization generates four distinct hybrids, which establish the tetrahedral
structure shown on Figure 1.7. The bonding of two hybrids generates an energy level
associated with the valence band, and the anti-bonding (broken bond) generates a high
energy level associated with the conduction band. Therefore in a system with N atoms,
the bonding of the hybrids will form the 4N states constituting the valence band, and
the anti-bonding of the hybrids will form the 4N states constituting the conduction
band. At 0 K the states of the valence band are all filled while the states of the
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Fig. 1.10. One-dimensional band diagram of a uniform semiconductor. The average crystal
potential generated near the surface of that one-dimensional crystal is shown using a dashed line.

conduction band are all empty. As we increase the temperature, the thermal agitation
breaks some of the bonds and introduces holes (broken bond) at the top of the valence
band and electrons at the bottom of the conduction band.

Clearly semiconductors are complex many-body systems. A conventional approach
is to study the motion of a single electron in the average potential defined by all
the other electrons and nucleus. As expected this average crystal potential Epot (r)
is invariant under a translation by a lattice vector R

Epot (r) = Epot (r + R). (1.5)

The periodic potential resulting for the average potential of five atoms near the surface
of a one-dimensional crystal is shown in Figure 1.10 (dashed line). One sees how
no barriers impede the motion of the electron in the conduction band. Similarly the
electrons at the top of the valence band can easily move by tunneling through the po-
tential barriers. In a crystal the propagation (diffraction) of the electron wave-function
throughout the entire crystal is actually facilitated by the crystal periodicity (lattice),
while, as we will find in Chapter 4 (Figure 4.19) when studying random superlattices,
the electron wave-function is localized in a random structure.

Actually our discussion could be generalized to any type of wave. These waves
could be the electron wave-functions, the vibration waves of the atoms in the crystal
structure itself, or even electromagnetic waves as in the case of the X-ray photons used
to analyze a crystal structure. A wave f (r, t) can generally be expressed in the form

f (r, t) = Ak exp[iω(k)t − k · r],

where ω(k) is the wave frequency and k the wave-vector. For crystal vibrations the
ω(k) dispersion relation defines the vibration spectra possible in that crystal. We shall
discuss these further in Chapter 5 and also introduce their particle embodiment in
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Fig. 1.11. Energy dispersion for: (a) a photon, (b) a free electron, and (c) a crystal electron.

phonons with energy E = h̄ω(k). For electrons the ω(k) dispersion relation defines
the electron band structure E(k) = h̄ω(k).

We shall demonstrate in Chapter 3 that waves propagating in a crystal undergo
(Bragg) reflections such that E(k) = h̄ω(k) becomes a periodic function in k space in
the reciprocal lattice. This means that the band structure E(k) = h̄ω(k) is invariant
under a translation of a reciprocal-lattice vector K:

E(k) = E(k + K). (1.6)

In Figure 1.11 we compare the one-dimensional energy dispersion for a photon, a
free electron, and an electron in a crystal. For the photon we have a linear dispersion

E = h̄ω = h̄c|kx |,
where c is the speed of light and kx is the photon wave-vector. For the free electron
we have a parabolic dispersion

E = 1

2
mv2

x = p2
x

2m
= h̄2k2

x

2m
,

where m is the mass, vx is the velocity, px = mvx = h̄kx is the momentum, and kx is
the wave-vector of the free electron.

For the crystal band structure a more complex periodic dispersion is shown in
Figure 1.11 in the one-dimensional Brillouin zone with various bands of energy and
energy gaps. The creation of such an energy spectrum can be intuited by considering
the case of the empty lattice. An empty lattice consists of a free electron system
in which we insist in treating the constant reference potential of the free electron
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π
a

2a
π

π
a0

One-dimensional Brillouin zone

k

E(k  )x

x

Fig. 1.12. Formation of the band structure for a 1D empty lattice (dashed line) and 1D crystal (plain
line).

as a periodic potential along x . The associated periodic energy dispersion can
then be obtained from the construction shown in Figure 1.12 using the parabolic
energy dispersion (dashed line) of the free electron. In a real crystal the electron
wave-function is perturbed by the crystal potential leading to the formation of bands
and energy gaps (full line) in the original periodic band structure of the empty lattice.

The band structures obtained for various semiconductor materials along the � to
X direction in the Brillouin zone are shown in Figure 1.13. These band structures
were calculated using the empirical pseudopotential method of [7] and [8]. The wave-
functions of the three-dimensional empty (see Problem 1.1) fcc lattice are used as a
basis in the empirical pseudopotential method for calculating the three-dimensional
band structures.

1.4 Conclusion

In this chapter we have introduced the new epitaxial materials (alloys, pseudo-
morphic, modulation doped) which can be fabricated with modern growth tech-
niques. The various epitaxial films realized with these materials are the building
blocks of modern heterostructure devices. They provide a seemingly infinitely rich
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Fig. 1.13. Band structure of Si, Ge, AlSb, AlAs, GaAs, and InAs along the � to X direction,
obtained using the empirical pseudopotential method of Cohen and Bergstresser [7]. The band
structures were generated using the code of Dr. Paul von Allmen [8].
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realm of material/doping combinations, stimulating the imagination of the device
researcher.

Having introduced the players and reviewed some basic properties of crystals, we
will now proceed in the next chapters with the development of a semiclassical and
quantum theory of heterostructures, which will permit us to describe their electronic
properties and study their device applications.
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1.6 Problems

1.1 (a) Derive an expression for the wave-functions of the empty lattice for a zinc-blende crystal.

(b) Plot the first four bands of the empty-lattice band structure from � to X .
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Table 1.2. Organization in five classes of the 24 symmetries of the Td group.

E xyz
3C2

4 x̄ ȳz x ȳz̄ x̄ yz̄
6C4 × I yx̄ z̄ ȳx z̄ x̄ z ȳ x̄ z̄ y z̄ ȳx z ȳ x̄
6C2 × I ȳ x̄ z z̄ yx̄ x z̄ ȳ yxz zyx xzy
8C3 zxy yzx zx̄ ȳ ȳ z̄x z̄ x̄ y ȳzx̄ z̄x ȳ yz̄x̄

Fig. 1.14. Pattern to be copied and cut out for building a model of the Brillouin zone of an fcc
crystal (in real space).

1.2 The 24 symmetries of the Td group which can be applied to the zinc-blende crystal are shown
in Table 1.2. The notation used is such that for a rotation of 2π/4 around the z axis, the notation
Si (y, x̄, z) represents the transformation Si f (x, y, z) = f (x ′, y′, z′) = f (y,−x, z), where
f (x, y, z) is a physical property of the crystal.

(a) For each of the five symmetries of the second column, write the associated transformation
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matrix [Si (n,m)]
 x ′

y′
z′


 =


 S11 S12 S13

S21 S22 S23
S31 S32 S33




 x

y
z


.

(b) The 24 symmetries of Td are organized in Table 1.2 in five classes of representative
symmetries. A class is a group of symmetries satisfying the following property: for any
symmetry Si of Td , and any symmetry Tj of the class T , the symmetry S−1

i Tj Si is also a
member of the class T .

Verify that this property indeed holds for the symmetries Tj of the class 3C2
4 when using

the symmetries Si of the 2nd column of Table 1.2.

1.3 Build several Brillouin zones of an fcc crystal using the cutout shown in Figure 1.14 and verify
(in class if each student builds one) that they assemble into a bcc crystal.



2 Semiclassical theory of heterostructures

In Nature’s infinite book of secrecy

A little can I read.

Anthony and Cleopatra, WILLIAM SHAKESPEARE

2.1 Introduction

We start our study of heterostructure devices with a review of the semiclassical theory
of semiconductor heterostructures. Our goals in this chapter are to introduce semi-
conductor heterostructures and to present their application in semiclassical devices.
For this purpose we first introduce various tools, such as band-diagram theory and
transport models. We then discuss the modeling of the p–n heterojunction and its
application to the high-performance heterojunction bipolar transistor (HBT).

2.2 Spatially-varying semiconductors

Semiconductor heterostructures involve semiconductors which vary with position. We
will mostly be concerned with layered heterostructures grown by molecular beam
epitaxy (MBE) which vary along a one-dimensional axis. We will call this axis the
superlattice axis. In the direction perpendicular to the superlattice axis the lattice is
uniform. The variation of the semiconductor material along the superlattice axis can
be either abrupt or gradual.

An example of an abrupt heterostructure or heterojunction is Ge/GaAs. As indicated
in Table 2.1, Ge and GaAs have nearly the same lattice parameters and can therefore
be grown on top of one another with a very small number of defects∗.

∗ Although the Ge/GaAs structure was the first heterostructure to be experimentally studied (Anderson
1960 [13]) it is actually one of the most tricky heterostructures to grow. Ga and As are doping impurities
for Ge, and Ge is a doping impurity for GaAs. To avoid contamination, the Ge and GaAs epitaxial layers
can be grown in separate MBE chambers. The sample is moved from one MBE chamber to the other
without breaking the vacuum. Quasi-ideal Ge/GaAs heterojunctions (ideality factor of 1) have been grown
in this way [11]. However, under thermal cycling (annealing) the heterojunction degrades. A very thin
(10 Å) Si layer at the Ge/GaAs interface can then be used to stabilize the heterojunction. No such
problems are encountered with AlAs/GaAs heterojunctions.

19
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Table 2.1. Bandgap, lattice parameter and electron

affinity of several semiconductors (from [5]).

a (Å) Eg (eV) χ (eV)

Ge 5.6461 0.663 4.13

GaAs 5.6533 1.424 4.07

AlAs 5.6614 2.16 3.5

Si 5.451 1.11 4.01

GaP 5.431 2.25 4.3

InP 5.8687 1.34 4.35

In0.53Ga0.47As 5.8687 0.77 4

In0.52Al0.48As 5.8687 1.49

AlSb 6.136 1.6 3.65

GaSb 6.095 0.68 4.06

InAs 6.058 0.36 4.9

2.2.1 Semiconductor alloys

Gradual variation of the semiconductor material can be achieved with semiconductor
alloys† such as AlmGa1−mAs. In the AlGaAs alloy, the atoms Al and Ga are randomly
distributed over the same lattice sites, say Ga in the GaAs fcc lattice. The Al mole
fraction, m, gives the fraction of Ga sites occupied by Al and varies between 0 and
1. Because Al and Ga both have an s2p electronic structure (see Streetman [1]) we
can expect the alloy AlmGa1−mAs to behave like a semiconductor crystal despite the
random nature of its structure. AlGaAs can therefore be seen as a novel semiconductor
with properties intermediate between the semiconductors GaAs and AlAs. This is
the so-called virtual-crystal approximation. We will see in Chapter 5 that the local
departures of the alloy from this virtual crystal can be treated as crystal defects which
are at the origin of a scattering process called alloy scattering. Alloy scattering is
usually small and the virtual-crystal approximation is quite accurate.

The band structure of an alloy can be obtained to first order using a simple averaging
rule (Vegards’ law). For example, the conduction band of AlmGa1−mAs can be

† The first alloy made by man was bronze. Its introduction in prehistoric times signaled the end of the
‘stone age’ (8000 BC) and the beginning of the ‘bronze age’ (1000 BC). Bronze is an alloy of tin and
copper. It provides an improved material strength over copper or tin alone and its introduction is
considered to be an important step in the evolution of mankind. In some sense we could say that with the
use of semiconductor alloys we have entered the ‘microbronze age’ of semiconductor technology.
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approximated by

Ec,AlGa As(k,m) = m Ec,Al As(k) + (1 − m) Ec,Ga As(k).

Similarly the valence band can be approximated by

Ev,AlGa As(k,m) = m Ev,Al As(k) + (1 − m) Ev,Ga As(k).

In the absence of experimental data or an accurate theory, other physical properties
such as the dielectric constant and density of states can be estimated using this average
rule. For example, to first order the dielectric constant can be estimated by

εAlGa As(m) = m εAl As + (1 − m) εGa As .

Experimental data are available, however, for various mole fractions for the most
common alloys. The physical parameters of AlGaAs, InAlAs, InGaAs, and InP are
given in Tables 2.3 and 2.10 (see chapter appendix) for the mole fractions specified
and can be extrapolated for other values.

To study the dependence of the band structure upon the mole fraction m we have
plotted in Figure 2.1 the GaAs and AlAs band structure and the variation with the
Al mole fraction m of the AlGaAs conduction band Ec(k,m) at the points �, X and
L , and of the valence band Ev(k) at the point � in the Brillouin zone. Note that in
Figure 2.1, GaAs has a direct bandgap and AlAs an indirect bandgap. Note that the
alloy AlmGa1−mAs will switch from a direct to an indirect bandgap when m increases
beyond 0.4.

In graded heterostructures, the mole fraction m varies along the superlattice axis
(say x) and the band structure varies spatially:

Ec(k, x) = Ec(k,m(x)),

Ev(k, x) = Ev(k,m(x)).

The concept of a spatially-varying band structure requires clarification since the band
structure is an eigenvalue derived for infinite crystals. A rigorous quantum model
providing a theoretical justification for this semiclassical picture will be given in the
next chapter.

For GaAs/AlmGa1−mAs it has been found that the variation of the conduction and
valence bands can be obtained from the variation of the bandgap using the so-called
68/32% rule:

�Ec,AlGa As(m) = Ec,Alm Ga1−m As − Ec,Ga As

= 0.68(Eg,Alm Ga1−m As − Eg,Ga As)

= 0.68�Eg(m),
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(a)

(b)

Fig. 2.1. (a) GaAs and AlAs band structure and (b) mole fraction dependence of the AlmGa1−mAs
conduction band at the points �, X and L relative to the top of the valence band (�).
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�Ev,AlGa As(m) = Ev,Alm Ga1−m As − Ev,Ga As

= −0.32(Eg,Alm Ga1−m As − Eg,Ga As)

= −0.32�Eg(m).

Using such a rule we can estimate the conduction and valence-band discontinuities
between two different AlGaAs alloys:

Ec,Alm′ Ga1−m′ As − Ec,Alm Ga1−m As = �Ec,AlGa As(m
′)−�Ec,AlGa As(m),

Ev,Alm′ Ga1−m′ As − Ev,Alm Ga1−m As = Ec,Alm′ Ga1−m′ As − Ec,Alm Ga1−m As

− (Eg,Alm′ Ga1−m′ As − Eg,Alm Ga1−m As).

For InmGa1−mAs and InmAl1−mAs (see Table 2.10 in chapter appendix) 73/27%
and 62/38% rules, respectively, are used. To estimate the conduction and valence
discontinuities between an AlGaAs and InGaAs alloy we could use GaAs as a
reference:

Ec,I nm′ Ga1−m′ As − Ec,Alm Ga1−m As = �Ec,I nGa As(m
′)−�Ec,AlGa As(m),

Ev,I nm′ Ga1−m′ As − Ev,Alm Ga1−m As = Ec,I nm′ Ga1−m′ As − Ec,Alm Ga1−m As

− (Eg,I nm′ Ga1−m′ As − Eg,Alm Ga1−m As).

The band structure discontinuities between InAlAs and InGaAs are calculated simi-
larly using InAs as a reference. Such estimates should be verified against the most
recent experimental data since the use of a third material as a reference (e.g., GaAs
and InAs in the previous examples) means that we are indirectly using the affinity rule
despite its potential inaccuracy.

Within the effective-mass approximation the conduction band can be approximated
by

Ec(k, x) � h̄2k2

2m∗
n(x)

� h̄2k2

2m∗
n(m(x))

,

where the dependence of the effective mass m∗
n upon the mole fraction m can be

obtained from Table 2.3 or from a linear extrapolation using the data of Table 2.10.

2.2.2 Modulation doping

Pure semiconductors grown by MBE have an unintentional (p or n) doping typically
smaller than 1014 cm−3. The semiconductor heterostructures grown by MBE can also
be doped during growth. Silicon is a commonly used dopant. Silicon (s2p2) is an
amphoteric dopant in III–V compounds as it can be either a donor or an acceptor. For
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example, in GaAs (and AlGaAs), a Si impurity is a donor when it occupies a Ga (s2p)
site and an acceptor when it occupies an As (s2p3) site. AlGaAs is usually grown
in an overpressure of As such that Si preferentially occupies vacant Ga sites and is
therefore used as an n dopant. The highest doping concentration that can be achieved
with MBE growth is about 5 × 1018 cm−3. As for the semiconductor material itself,
the doping can be varied through the MBE growth. Such a technique is referred to as
modulation doping. Abrupt variation of doping is called pulse doping. Spike doping,
which involves growing a monoatomic layer of silicon (1012 cm−2), is also sometimes
used. Naturally, the silicon atoms are expected to diffuse. However, the diffusion can
be limited to a few atomic layers (5–10) for low MBE growth temperature.

In a semiconductor such as GaAs the silicon impurities are well modeled by the
conventional hydrogenic model using the effective mass m∗ and dielectric constant ε
of the harboring semiconductor. The ionization energy of the electron of a hydrogenic
donor impurity is given by its ground state Ed :

Ed = Ec − q4m∗
n

2(4πε)2h̄2
= Ec − 13.6

(ε0

ε

)2 m∗
n

m0
eV,

where ε0 is the vacuum dielectric constant and m0 the rest mass of a free electron.
The population of such a donor level is then given by Fermi–Dirac statistics using a

spin degeneracy factor of 2:

N+
D = ND

1 + 2 exp

(
EF − Ed

kB T

) , (2.1)

where EF is the Fermi energy. As the donor concentration ND is increased the donor
hydrogenic potentials overlap (the Bohr radius is of the order of 100 Å) and the donor
energy levels form a band of energies. In the silicon crystal, due to the random nature
of the donor impurity distribution, the electron mobility in this band is that of an
insulator. As the donor concentration is increased above a critical concentration of
about 1017 cm−3, an insulator–metal transition (of the combined Mott and Anderson
type) takes place and the impurity band becomes metallic (conductor).

In GaAs, due to the very small effective mass, the donor energy level is very close
to the conduction-band edge and will merge with the conduction band for high donor
concentration. This can be explained by the screening of the donor potential. Under a
degenerate doping condition a large number of electrons is present in the conduction
band. The electron distribution adjusts itself to screen the Coulombic potential of the
donor impurity [14]. The Coulombic potential of the impurity q2/(4πεr) is replaced
by q2 exp(−λr)/(4πεr), where λ is the Debye length. As a result of the shorter range
of the impurity potential, the donor energy level moves toward the conduction-band
edge. The donor ionization energy can be expressed by the following empirical
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relation [15]:

Ed(ND) = Ed(0)

[
1 −
(

ND

Ncrit

)1/3
]
,

where Ncrit � 2 × 1017 cm−3 is the critical donor ionization for which the donor
ionization energy vanishes. For such high concentrations the donors (or acceptors) are
simply assumed to be all ionized independently of the Fermi energy,

N+
D = ND.

Under degenerate doping conditions a large number of electrons is present in the
conduction band. Electron–electron interactions take place and the band structure
is modified. A reduction of the bandgap is observed experimentally. An empirical
formula for the dependence of the bandgap upon the doping is given by Casey and
Stern [16] for bulk GaAs:

Eg(n, p) = Eg(0, 0)− 1.6 × 10−8(p1/3 + n1/3) eV (2.2)

with p and n in cm−3 units. A reduction of 16 meV occurs for a donor concentration
of about 1018 cm−3.

In AlGaAs the behavior of silicon doping is more complicated. Each silicon donor
impurity seems to be associated with three different states: an ionized donor level,
a donor with one electron in the shallow hydrogenic level (H), and a donor with an
electron in a deep trap level (the so-called DX center). The following model can then
be derived [2] assuming a degeneracy factor of 2 for both the H and DX levels:

N+
H D = ND




2 exp

(
EF − Ed,H

kB T

)

1 + 2 exp

(
EF − Ed,H

kB T

)
+ 2 exp

(
EF − Ed,DX

kB T

)

,

N+
DX = ND




2 exp

(
EF − Ed,DX

kB T

)

1 + 2 exp

(
EF − Ed,H

kB T

)
+ 2 exp

(
EF − Ed,DX

kB T

)

.

The deep donor level dominates in equilibrium since due to its lower energy it is
preferentially populated. The donor ionization energy given in Table 2.3 for the
AlGaAs versus Al mole fraction m is that of the deep donor. However, the capture
and emission time of this deep donor level is very large (sometimes on the order of
seconds) due to an unusually large energy barrier on the order 0.3 eV. Consequently in
transient or AC situations the deep trap does not have time to respond (its population
remains frozen) and only the population of the shallow level is updated.
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Fig. 2.2. Band diagram of an arbitrary heterostructure.

2.3 The Anderson band-diagram model

Equilibrium band diagrams provide a graphical representation which is traditionally
used as a starting point in the analysis of semiconductor devices. The analysis
of heterostructures requires a special extension of band-diagram techniques as the
semiconductor is now allowed to vary with position.

First let us consider the one-dimensional band diagram of a uniform semiconductor
in equilibrium shown in Figure 1.10. The atomic potentials of the crystal atoms are
represented by dashed lines. The vacuum level, E0, is the energy defined at the crystal
surface as the energy required to free an electron from the crystal. The electron affinity,
χ(x), is the energy separation between the conduction-band edge Ec and the vacuum
level.

Consider now the general band diagram of a heterostructure shown in Figure 2.2.
We assume initially that no tunneling is taking place and that no dipoles and surface
states are present in the heterostructures. The conduction-band edge Ec(x) and the
valence band edge Ev(x) now vary spatially according to

Ec(x) = Ec(x)− qV (x) = E0 − qV (x)− χ(x),
Ev(x) = Ev(x)− qV (x) = E0 − qV (x)− χ(x)− Eg(x),

where V (x) is the built-in electrostatic potential in the heterostructure, El(x) is the
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Table 2.2. Valence-band offsets in eV calculated

by Ruan and Ching [6] with (|�Ev |) and without

(|�Ev0|) the dipole correction δEv .

Material |�Ev0| δEv |�Ev |
Ge/Si 0.32 0.10 0.22
Ge/AlAs 1.22 0.30 0.92
Ge/GaAs 0.70 0.19 0.51
Ge/InAs 0.51 0.13 0.38

Si/GaAs 0.38 0.16 0.22
Si/InAs 0.19 0.09 0.10
Si/InP 0.58 0.22 0.36

GaAs/AlAs 0.52 0.16 0.36
GaAs/InAs 0.19 0.03 0.16
GaAs/InP 0.20 0.07 0.13

local vacuum level at the position x , E0 is the local vacuum level El(x) at x = 0, χ(x)
is the spatially-varying electron affinity, Ec(x) = Ec(k = 0, x) is the spatially-varying
bottom edge of the conduction band, and Ev(x) = Ev(k = 0, x) is the spatially-varying
top edge of the valence band.

The electron and hole populations are given by the usual Fermi–Dirac statistics (see
Marshak and Vliet [4] for a demonstration):

n = Nc(x)F1/2

[
EF − Ec(x)

kB T

]
,

p = Nv(x)F1/2

[
Ev(x)− EF

kB T

]
,

where the density of states Nc and Nv now vary spatially (see also Table 2.3):

Nc(x) = 2

(
2πmde(x)kB T

h2

)3/2

,

Nv(x) = 2

(
2πmdh(x)kB T

h2

)3/2

,

with mde and mdh the density-of-states electron and hole effective-masses, respec-
tively:

mde = N 2/3
α m∗ 2/3

tα m∗ 1/3
lα ,

mdh =
(

m∗ 3/2
lh + m∗ 3/2

hh

)2/3
.
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mlh and mhh are the light- and heavy-hole masses, mtα and mlα are the transverse
and longitudinal masses at the conduction-band minimum α, and Nα is the number of
minima of the conduction: Nα = 1, 3 or 4 for α = �, X and L , respectively. For direct
bandgap materials (α = �) we have mde = m∗

t� = m∗
l� = m∗

n .
The Fermi–Dirac integral F1/2(η)

F1/2(η) = 2

π1/2

∫ ∞

0

x1/2

1 + exp(x − η) dx

is tabulated in Appendix B of [5]. For non-degenerate doping the equilibrium
concentration reduces to the simpler Boltzmann expression:

n = Nc(x) exp

[
EF − Ec(x)

kB T

]
, (2.3)

p = Nv(x) exp

[
Ev(x)− EF

kB T

]
. (2.4)

The charge concentration ρ in a heterostructure is then given by

ρ(x) = q( p(x)− n(x)+ N+
D (x)− N−

A (x) ).

The electrostatic potential V (x) is obtained from the Gauss equation

d D(x)

dx
= ρ(x),

where D(x) = ε(x)F(x) is the displacement field and F(x) the electric field. The
Gauss equation for a spatially-varying dielectric constant is then

d

dx
[ε(x)F(x)] = ρ(x)

The electrostatic potential is given by

F(x) = −dV (x)

dx

and the Poisson equation in a spatially-varying heterostructure is given by

ε(x)
d2V (x)

dx2
+ dV (x)

dx

dε(x)

dx
= −ρ(x).

The solution of this Poisson equation is sufficient to calculate the semiclassical band
diagram of a heterostructure. The equilibrium band diagram is obtained by assuming
that the Fermi level is constant over the entire heterostructure.

In Problem 2.2 an exact solution is developed for this general one-dimensional
Poisson equation for the useful case in which the charge distribution is assumed to
be uniform in each atomic layer (lattice parameter wide).
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2.4 The abrupt heterojunction case

The Anderson band-diagram model for heterostructures was presented above for the
general case of a spatially-varying band structure. Let us now consider the simpler and
more common case of an ideal abrupt heterojunction. The heterojunction is located
at x = 0. The semiconductor on the left-hand side (x < 0) is labeled 1. The
semiconductor on the right-hand side (x > 0) is labeled 2.

The conduction-band edge Ec(x) is discontinuous and can be written

Ec(x) = Ec,1 + u(x)(Ec,2 − Ec,1), (2.5)

where u(x) is the step function. The effective density of states Nc(x) is also
discontinuous and can also be written

Nc(x) = Nc,1 + u(x)(Nc,2 − Nc,1). (2.6)

Similar expressions can also be written for the valence band edge Ev and the effective
density of states Nv .

The field boundary conditions at x = 0 are

D(0−) = D(0+),

ε1
dV (0−)

dx
= ε2

dV (0+)
dx

.

Here we are assuming that no surface states are present at the junctions. In lattice-
matched heterostructures such as GaAs/AlGaAs, surface states are usually negligible.
However, the presence of surface states certainly depends on the material and growth
parameters and each case must be considered separately. When the left-hand layer is a
strained material, such as AlGaN pseudomorphically grown on GaN, the piezoelectric
effect must be taken into account by using the boundary condition

D(0−)+ P(0−) = D(0+),

where P is the piezoelectric field (polarization) induced by the tensile strain in the
strained layer [3].

In the absence of an interface dipole layer the electrostatic potential is continuous

V (0−) = V (0+).

The equilibrium band diagram can now be constructed by setting the Fermi level con-
stant across the heterostructure. The electrostatic potential V (x) cannot be expressed
in closed form (a transcendental equation is obtained) and a numerical solution is
required. It is, however, possible to calculate the built-in electrostatic potential which
appears across the heterostructure if we assume a non-degenerate statistic. Using
Equation (2.3) we can express the Fermi level EF as

EF = Ec(x)− qV (x)+ kB T ln n(x)− kB T ln Nc(x). (2.7)
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In equilibrium the Fermi level is constant and we have

0 = d EF

dx
= dEc

dx
− q

dV

dx
+ kB T

d ln(n)

dx
− kB T

d ln(Nc)

dx
.

Integrating from −∞ to ∞ we have

0 = [Ec(∞)− Ec(−∞)] − q[V (∞)− V (−∞)] + kB T ln

[
n(∞)

n(−∞)
]

− kB T ln

[
Nc(∞)

Nc(−∞)
]
.

The built-in potential V0 is then

qV0 = q[V (∞)− V (−∞)] = (Ec,2 − Ec,1)+ kB T ln
n2

n1
− kB T ln

Nc,2

Nc,1
(2.8)

if we define n1 = n(−∞) and n2 = n(∞). Using Ec = E0 − χ we can also express
V0 in terms of the affinity χ :

qV0 = (χ1 − χ2)+ kB T ln
n2

n1
− kB T ln

Nc,2

Nc,1
. (2.9)

The same result can also be obtained from a graphical analysis, as will be shown with
an example below.

As usual, the electrostatic potential V0 cannot be measured. A measurable voltage
always appears between two different Fermi levels, and here the Fermi level is constant
(zero voltage). The physical reason why the variation of the electrostatic potential
V (x) cannot be measured stems from the fact that its variation is canceled by the
variation of the chemical potential µ(x). Indeed the Fermi energy EF used here is a
thermodynamic quantity called an electrochemical potential (often labeled ξ ):

EF = ξ = µ(x)− qV (x),

where the chemical potential µ(x) is easily identified in Equation (2.7).
An example of the graphical construction of the band diagram of a p-Ge–n-GaAs

heterojunction is shown in Figure 2.3(a) and (b). Figure 2.3(a) shows the equilibrium
band diagram before the two semiconductors are joined and Figure 2.3(b) shows the
equilibrium band diagram after the two semiconductors have been joined. For this
heterostructure we have

Ec,2 − Ec,1 = χ1 − χ2 = 0.06 eV,

Ev,2 − Ev,1 = Ec,2 − Ec,1 − (Eg,2 − Eg,1) = 0.06 − 0.772 = −0.712 eV.

An alternative model based on the alignment of the intrinsic energy level was pro-
posed for the construction of heterostructure band diagrams, but unlike the Anderson
theory, it was found not to be self-consistent. However, the use of the affinity in the
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-

Fig. 2.3. Band diagram of a Ge/GaAs heterojunction: (a) equilibrium band diagram before the two
semiconductors are joined. (b) equilibrium band diagram once the two semiconductors have been
joined.

Anderson model is not very practical, because the affinities of semiconductors are
not accurately known. A tabulation of electron affinity is given in Table 2.1 (from
Wolfe [5]). The electron affinities are large numbers (about 4 eV), and the calculation
of conduction and valence-band discontinuities (which are typically on the order of
fractions of an electron volt) is therefore not very accurate. Furthermore, dipoles
arise in heterostructures which offset the effective conduction and valence-band
discontinuities. Thus the use of electron affinities alone is not usually sufficiently
accurate for arbitrary heterostructures. In practice, instead of using the affinity, the
conduction and valence discontinuities are measured experimentally for each type of
heterostructure.

The treatment used here to analyze the heterojunctions is semiclassical. We shall
see that in some heterostructures a large electric field can arise at the interface of the
heterojunction, and the potential barrier created by the conduction or valence band
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Fig. 2.4. Band diagram of a heterojunction showing the valence band edge (a) before and (b) after
the two semiconductors are joined. The charge distribution supported by the electrons tunneling
from material A to material B and the ions of material A which contributed these electrons are
shown in (c).

edges and the electric field can introduce a narrow triangular quantum well. In such
instances a quantum treatment of the heterostructure becomes necessary.

An additional quantum effect which explains the presence of a dipole at the
heterojunction interface is the penetration by tunneling of the valence-band electrons
from the material with the higher valence band into the forbidden band of the material
with the lower valence band (see Figure 2.4(a) and (b)). The resulting charge transfer
leads to the formation of an effective dipole (see Figure 2.4(c)) which induces an
electrostatic potential barrier δEv partially hindering in turn the tunneling of electrons.
This dipole typically extends over a region of about 10 Å wide. The effect of the
resulting electrostatic potential is to reduce the effective band discontinuity by δEv:

|�Ev| = |�Ev0| − δEv
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with

�Ev0 = Ev,A − Ev,B = −(χA + Eg,A)+ (χB + Eg,B).

The valence-band offsets with and without the dipole correction δEv calculated by
Ruan and Ching [6] are given in Table 2.2.

2.5 Drift-diffusion transport model for heterostructures

The calculation of the I –V characteristic of a heterostructure requires the use of a
transport model appropriate for heterostructures. A semiclassical theory of transport
using the Boltzmann equation permits us (see Chapter 7) to derive the following
drift-diffusion current equations for a non-degenerate heterostructure under low-field
conditions (small departure from equilibrium):

J = Jn + Jp, (2.10)

Jn = µn(x)n(x)
dξn
dx
, (2.11)

Jp = µp(x)p(x)
dξp

dx
, (2.12)

where J is the total current, Jn the electron current, Jp the hole current, and where ξn
and ξp are the electrochemical potentials of the electron and hole gases, respectively.
The use of two different electrochemical potentials for electrons and holes implies
that the electron and hole gases are not in equilibrium together but are each in local
equilibrium. For non-degenerate conditions the electron and hole concentrations are
each given by their own Boltzmann distribution

n = Nc(x) exp

[
ξn − Ec(x)

kB T

]
, (2.13)

p = Nv(x) exp

[
Ev − ξp(x)

kB T

]
. (2.14)

Note that the product n × p is not equal to n2
i when electrons and holes are not in

equilibrium with one another (ξn �= ξp). The current Equations (2.11) and (2.12) and
the Boltzmann Equation (2.13) and (2.14) are actually the same as in the case of the
uniform semiconductor except that now the material parameters vary abruptly at the
interface.

Substituting ξn obtained from Equation (2.13) into Equation (2.11) we obtain

Jn = − qµn(x)n(x)
dV

dx
+ µn(x)kB T

dn(x)

dx

+ µn(x)n(x)
dEc

dx
− µn(x)kB T

n

Nc

d Nc

dx
. (2.15)
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The first two terms are easily recognized to be the drift and the diffusion (with the
diffusion constant q Dn = kB Tµn). The third term is a quasi-drift current arising
from the variation of the conduction-band edge, since the latter is equivalent to an
electrostatic potential step accelerating or decelerating carriers. The fourth current
term is a quasi-diffusion term arising from the variation of the effective density of
states.

The continuity of the current Jn is regulated by the conservation of particles, which
is enforced by the usual steady-state continuity equations:

d Jn

dx
= q[R(x)− G(x)], (2.16)

d Jp

dx
= −q[R(x)− G(x)], (2.17)

where R(x) and G(x) are, respectively, the recombination and generation rates of
carriers. For direct (valence- to conduction-band) recombination we have

R(x)− G(x) = r(T )[n(x)p(x)− ni (x)
2]

with r(T ) a temperature-dependent proportionality constant. We can rewrite n(x) =
n0(x) + δn(x) and p(x) = p0(x) + δp(x) in terms of their equilibrium values, n0

and p0 and excess concentrations δn and δp. If space-charge neutrality is enforced we
must have δn(x) = δp(x) and the recombination and generation terms reduce to

R(x)− G(x) = δn

τn
= δp

τp
,

where τn = τp = [r(T )(n0+ p0)]−1 are the electron and hole recombination lifetimes.
Consider now the case of an abrupt heterojunction. Let us first check the continuity

of the current Jn at the junction (x = 0). For this purpose we integrate the continuity
Equation (2.16) across the heterojunction

Jn(0
+)− Jn(0

−) =
∫ 0+

0−

d Jn(x)

dx
dx =

∫ 0+

0−
q(R(x)− G(x)) dx = 0. (2.18)

The right-hand term vanishes if we assume that no impulse function is contained in the
recombination and generation term and therefore in n and p; an assumption which will
be verified to be self-consistent. Note that an electron current discontinuity would be
observed if there were interface states at the junction contributing to the recombination
and generation of carriers. Therefore in the absence of surface states, the electron
current Jn and similarly the hole current Jp are continuous at the interface. However,
their derivatives are not continuous at the interface.

Let us verify whether the electrochemical potentials ξn and ξp are continuous at the
heterojunction:

Jn = µn(x)n(x)
dξn
dx

= µn(x)Nc(x) exp

[
ξn − Ec(x)

kB T

]
dξn
dx
. (2.19)
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Separating the variables and integrating from 0− to 0+ we have

∫ ξn(0+)

ξn(0−)
exp

[
ξn

kB T

]
dξn =

∫ 0+

0−

Jn

µn(x)Nc(x)
exp

[
Ec(x)

kB T

]
dx = 0. (2.20)

This demonstrates that the electrochemical potential ξn(x) (and similarly ξp(x)) is
continuous at x = 0, namely ξn(0−) = ξn(0+) since the integration from 0− to
0+ of an integrand with only step discontinuities and no impulses vanishes. Note
that in the derivation of the continuity of the quasi-Fermi levels ξn(x) and ξp(x)
we assumed that there was no recombination singularity at the interface and that the
drift-diffusion transport model was applicable to an abrupt heterostructure. As we shall
see in Section 2.7 this is a reasonable assumption for small discontinuities.

The derivatives of ξn(x) and ξp(x) will in general be discontinuous at x = 0 in a
heterojunction since we have

Jn(0
−) = µ1n(0−)

dξn(0−)
dx

= µ2n(0+)
dξn(0+)

dx
= Jn(0

+). (2.21)

Using the continuity of the electrochemical potentials we can infer from the Boltzmann
Equations (2.13) and (2.14) that the electron and hole concentrations n and p must be
discontinuous at x = 0:

n(0+)
n(0−)

= Nc,2

Nc,1
exp

[Ec,1 − Ec,2

kB T

]
. (2.22)

Let us verify now that the impulses introduced in the current Equation (2.15) by the
discontinuities of the conduction band Ec(x) and the effective carrier concentration
Nc(x) are canceled by the discontinuity of the electron concentration n. For this
purpose let us evaluate the term dξn/dx . Using Equations (2.5) and (2.6) and writing
n(x) = n1(x)+ u(x)(n2(x)− n1(x)) the following distribution identities are obtained
for each component of dξn/dx :

d(Ec − qV )

dx
= (Ec,2 − Ec,1)δ(x)− q

dV

dx
,

kB T
d ln(n)

dx
= kB T

[
dn1

dx
+
(

dn2

dx
− dn1

dx

)
u(x)

]
+ kB T ln

[
n(0+)
n(0−)

]
δ(x),

−kB T
d ln(Nc)

dx
= −kB T ln

(
Nc,2

Nc,1

)
δ(x).

Summing all these terms and using Equation (2.22) we easily verify that all the
impulses disappear in dξn/dx and that Equation (2.15) gives the drift-diffusion
equations for the left-hand (1) and right-hand (2) sides.
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2.6 I --V characteristics of p--n heterojunctions

An introduction to the semiclassical theory of heterostructures would not be complete
without a discussion of the I –V characteristic of the heterostructure version of the p–n
junction diode. The p–n junction is a fundamental semiclassical device particularly
since its principle of operation is of critical importance in the analysis of the bipolar
transistor. Of particular interest is the impact of the conduction and valence-band
discontinuities on the I –V characteristic.

The analysis of the ideal p–n heterojunction diode within the drift-diffusion trans-
port model is similar to the analysis of the ideal p–n homojunction diode, the only
difference being that the material parameters are different on each side of the junction.
The detailed derivation is therefore left as an exercise to the reader. Here we only
outline the procedure given in [5]. The depletion region is assumed to extend from
−xP to xN . Solving the Poisson equation across the depletion region we have

x2
P = 2εN εP ND(V0 − V )

q NA(εP NA + εN ND)
,

x2
N = 2εN εP NA(V0 − V )

q ND(εP NA + εN ND)
,

where NA and ND are the dopings of the p and n sides respectively. The applied
voltage V is positive on the p side and negative on the n side. The built-in voltage V0

was derived in the previous section to be (now 1 is p and 2 is n)

qV0 = q(VN − VP) = (Ec,N − Ec,P)+ kB T ln
nN

n P
− kB T ln

Nc,N

Nc,P
. (2.23)

The total depletion width is simply W = xP + xN .
If we neglect the recombination and generation of carriers in the depletion region,

the current is given by (see, for example, Streetman [1])

J = q

(
Dp,N

L p,N
�pN + Dn,P

Ln,P
�n P

)
, (2.24)

where �n P and �pN are the excess minority-carrier concentrations, Ln,P and L p,N

the diffusion lengths, and Dn,P and Dp,N the diffusion constants, in the p and n sides,
respectively. The only difference with the homojunction diode theory is that care must
be taken to specify whether the physical quantities D and L are measured on the p side
or the n side of the junction.

To calculate the diode current we must now evaluate the excess minority-carrier
concentrations �n P and �pN on the p and n sides of the depletion region. In
equilibrium we have established a relation (Equation (2.23)) between the built-in
potential and the equilibrium carrier concentration which we can rewrite

qV ′
0 = kB T ln

nN

n P
(2.25)



37 2.6 I --V characteristics of p--n heterojunctions

or equivalently

nN

n P
= exp

qV ′
0

kB T
(2.26)

where the quantity V ′
0 is defined as

qV ′
0 = qV0 − (Ec,N − Ec,P)+ kB T ln

Nc,N

Nc,P
. (2.27)

Under non-equilibrium conditions we can assume that the same expression can be used
to calculate the excess carriers �n P and �pN . (It can be shown that this procedure
is equivalent to assuming that the total (diffusion and drift) diode current is negligible
compared to the drift or diffusion component of the diode current)

n(xN )

n(−xP)
= nN +�nN

n P +�n P
= exp

[
q(V ′

0 − V )

kB T

]
. (2.28)

Using n = n2
i /p, a similar expression results for the hole excess carrier

p(−xP)

p(xN )
= pP +�pP

pN +�pN
= n2

i,N

n2
i,P

exp

[
q(V ′

0 − V )

kB T

]
. (2.29)

We assume that space-charge neutrality is enforced locally outside the space-charge
region so that we have �n P = �pP and �nN = �pN . We can now solve the
resulting system of equations to obtain the excess electron concentration on the p side
of the space-charge region:

�n P = n P




exp

(
qV

kB T

)
− 1

1 − n2
i,N

n2
i,P

exp

[
2q(V − V ′

0)

kB T

]



×
[

1 + n2
i,N

n2
N

exp

(
qV

kB T

)]
. (2.30)

Similarly the excess hole concentration on the n side of the space-charge region is
given by

�pN = pN




exp

(
qV

kB T

)
− 1

1 − n2
i,N

n2
i,P

exp

[
2q(V − V ′

0)

kB T

]



×
[

1 + n2
i,P

p2
P

exp

(
qV

kB T

)]
. (2.31)

The total diode current is then obtained by substituting the excess carriers �n P and
�pN derived into Equation (2.24)

J = q




exp

(
qV

kB T

)
− 1

1 − n2
i,N

n2
i,P

exp

[
2q(V − V ′

0)

kB T

]



(2.32)



38 Semiclassical theory of heterostructures

×
{

Dp,N pN

L p,N

[
1 + n2

i,P

p2
P

exp

(
qV

kB T

)]
+ Dn,Pn P

Ln,P

[
1 + n2

i,N

n2
N

exp

(
qV

kB T

)]}
.

From Equation (2.32) we see that the current is infinite when the term 1 −
(n2

i,N/n
2
i,P) exp

[
2q(V − V ′

0)/kB T
]

is zero. In the regular p–n homojunction diode
this occurs when V is equal to V0. The contact potential V0 is therefore the limiting
forward voltage. In a p–n heterojunction diode the limiting forward voltage has been
changed by the discontinuities of the bandgaps and effective carrier densities to

qV ′
0 − kB T ln

ni,N

ni,P
= qV0 − (Ec,N − Ec,P)+ kB T ln

Nc,N

Nc,P
− kB T ln

ni,N

ni,P

= qV0 − (Ei,N − Ei,P),

where Ei is the intrinsic level which is defined as the Fermi level for which n = p = ni .
Under low injection (V � V0) Equation (2.32) reduces to the simple diode equation

J = q

(
Dp,N

L p,N
pN + Dn,P

Ln,P
n P

)
×
[

exp

(
qV

kB T

)
− 1

]
. (2.33)

For the p–n heterojunction of Figure 2.3(b) where the p side is the narrow-bandgap
semiconductor we see that the injection of electrons will dominate because of the
reduced potential barrier seen by the electrons compared to the large potential barrier
seen by the holes. In general the discontinuity in the bandgap favors the injection of
majority carriers from the larger bandgap material. Note that this injection is nearly
independent of the doping concentration. This is in contrast with the homojunction
which favors the injection of majority carriers from the strongly doped semiconductor.
A demonstration of this effect (using Equation (2.33)) and its application to the bipolar
heterojunction transistor is given in Section 2.9.

2.7 The thermionic model of heterojunctions

The diffusion theory developed above for the p–n junction performs well for graded
heterojunctions. For abrupt p–n heterojunctions the diffusion theory works well when
the band structure discontinuities are small compared with the built-in potential. Under
forward bias the built-in potential is reduced by the applied voltage, and thermionic
emission over the discontinuities becomes a rate-limiting process (see the band
diagram of Figure 2.5). This situation is even more dramatic in n–n heterojunctions for
which the built-in potential is comparable to the band structure discontinuities. In such
instances the current at the heterojunction becomes limited by the thermionic emission
of electrons over the heterojunction barriers. We therefore need to develop a new model
for the heterojunction I –V characteristic which accounts for this thermionic emission
effect in addition to drift diffusion of excess carriers. Our approach follows the analysis
given in [9] for a p–n heterojunction.
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Fig. 2.5. Band diagram of a p–n heterojunction.

An analysis of thermionic emission including tunneling will be given in Chapter 3.
When tunneling is neglected the classical thermionic emission model predicts a diode
current at the heterojunction given by (see Chapter 8 for a derivation)

Jn(0) = A∗
nT 2
{

exp

[
ξn(0+)− Ec(0+)

kB T

]
− exp

[
ξn(0−)− Ec(0+)

kB T

]}
.

This result holds for the case shown in Figure 2.5 in which we have Ec(0+) > Ec(0−).
For simplicity we have assumed that the variation of the effective mass across the
junction is negligible. The constant A∗

n is the Richardson constant given by

A∗
n = 4πm∗

nqk2
B

h̄3
.

Note that in the thermionic model the quasi-Fermi level of the electron ξn will
no longer be continuous at the heterojunction (see Figure 2.5) in contrast with the
diffusion model where it was continuous. Let us rewrite this equation in terms of the
electron concentration:

n(0−) = Nc exp

[
ξn(0−)− Ec(0−)

kB T

]
, (2.34)

n(0+) = Nc exp

[
ξn(0+)− Ec(0+)

kB T

]
. (2.35)

We have introduced Nc = Nc,N = Nc,P since we have assumed that both semicon-
ductors have the same effective mass. The current at the junction can therefore be
rewritten

Jn(0) = qvn,x

[
n(0+)− n(0−) exp

(
−�Ec

kB T

)]
, (2.36)
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with �Ec = Ec(0+)− Ec(0−) the discontinuity of the conduction band, and with vn

given by

vn,x = A∗
nT 2

q Nc
=
(

kB T

2m∗
nπ

)1/2

.

vn,x can be identified to be the average longitudinal velocity 〈vx 〉 of the electrons
moving toward the heterojunction (vx > 0). vn,x is similar to the thermal velocity vth

introduced in Chapter 8.
The quasi-Fermi energies ξn can be assumed to be constant (see Figure 2.5) through

the depletion regions on both sides of the heterojunction. This is equivalent to
assuming that, in the depletion region, the total current (diffusion compensated by
drift) is quite small compared to the large drift and diffusion components. The
variation of the quasi-Fermi level is therefore negligible and the electrons are nearly
in equilibrium with themselves on each side of the depletion region (even though
they are not in equilibrium with the holes: ξn �= ξp). However, the discontinuity
of the conduction band prevents the electron gas on the n and p sides of the depletion
from being in mutual equilibrium and the quasi-Fermi level ξn is discontinuous at the
heterojunction itself. Assuming that this near-equilibrium assumption is valid on both
sides of the depletion region we can write

n(0−) = n(−xP) exp

(
qVB,P

kB T

)
, (2.37)

n(0+) = n(xN ) exp

(−qVB,N

kB T

)
, (2.38)

using the non-equilibrium potential drops on the n and p sides:

VB,N = (V0 − V )× NAεP

εP NA + εN ND
, (2.39)

VB,P = (V0 − V )× NDεN

εP NA + εN ND
. (2.40)

Under low injection the hole concentration on the n side is small and the electron
concentration is approximately the equilibrium value.

n(xN ) = nN = ND = n P exp

(
qV0 −�Ec

kB T

)
, (2.41)

where nN and n P are the equilibrium values on the n and p sides of the depletion
region, respectively. Let us now calculate the excess minority-carrier concentration
n(−xP)−n P on the p side. These minority carriers support a diffusion/recombination
current at −xP :

Jn(−xP) = q Dn,P

Ln,P
[n(−xP)− n P ]. (2.42)
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In the absence of recombination in the depletion region the electron current Jn

is constant through the depletion region. Equating Equations (2.42) and (2.36)
and using Equation (2.37), (2.38), and (2.41), we obtain the excess minority-carrier
concentration:

n(−xP)− n P = n P

Rn
×
[

exp

(
qV

kB T

)
− 1

]
, (2.43)

where Rn is given by

Rn = 1 + Dn,P

Ln,Pvn,x
exp

(−�En

kB T

)

with �En = qVB,P − �Ec (see Figure 2.5) the difference between the electrostatic
barrier on the p side and the conduction band discontinuity. A similar equation can
be derived for the holes. The diode current J is therefore given by the summation of
electron current Jn(−xP) (see Equation (2.42)) with the hole current Jp(xN ):

J = q

(
Dp,N

L p,N Rp
pN + Dn,P

Ln,P Rn
n P

)
×
[

exp

(
qV

kB T

)
− 1

]
, (2.44)

where Rp is given by

Rp = 1 + Dp,N

L p,Nvp,x
exp

(−�Ep

kB T

)
,

with �Ep = qVB,N (see Figure 2.5). The p–n heterojunction diode current
(Equation (2.44)) obtained for the thermionic emission model is the same as the current
obtained for the diffusion model (Equation (2.33)) except for the new prefactors Rn

and Rp.
Under small forward-bias voltages, when the diode built-in potentials are large

enough that qVB,P − �Ec and qVB,N are large (positive) compared to kB T , the
thermionic emission model reduces to the diffusion model (Rp = Rn = 1).

For large forward-bias voltages, �En becomes negative (qVB,P < �Ec), and the
thermionic emission becomes dominant. The I –V characteristic of the diode then
reduces to that of a Schottky barrier

J = Js

[
exp

(
qV

kB T

)
− 1

]
(2.45)

with Js given by

Js = qn P

(
kB T

2πm∗
n

)1/2

exp

(−VD,N

kB T

)
, (2.46)

where VD,N = −�En is the diffusive potential (positive).
The thermionic model derived here assumed that �Ec and �Ev as defined in

Figure 2.5 are both positive. For arbitrary signs of �Ec and �Ev one can verify that
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the following generalized �Ep and �En should be used to handle the four possible
sign combinations:

�Ep = qVB,N + min(0,�Ev),

�En = qVB,P − max(0,�Ec).

The reader is referred to [12] for further examples of p–n and n–n heterojunction
band diagrams and I –V characteristics.

2.8 Ballistic launching

We have seen in the previous section that for large forward bias the built-in potential
in a p–n heterojunction is effectively reduced by the applied voltage and thermionic
emission over the band structure discontinuities becomes the rate-limiting process.
Consider the n–p junction shown in Figure 2.6(a). The current voltage characteristic
of the diode is then of the form of Equation (2.45).

Such an abrupt heterojunction can serve as a launching ramp to inject high-energy
quasi-ballistic electrons into the p side. Figure 2.6(a) shows the n(emitter)–p(base)
heterostructure of a bipolar transistor studied by Pelouard et al. [10] using a Monte-
Carlo simulator. The electron velocity distribution obtained near the heterojunction
is sketched in Figure 2.6(b). In the base (p) region, two electron populations can be
distinguished in Figure 2.6(b): one corresponding to relaxed velocity (or thermalized)
electrons (nR) and the other centered around 108 cm/s corresponding to quasi-ballistic
electrons (nQ B). The electron population with a negative velocity around −108 cm/s
capable of retrodiffusing into the emitter is negligible. This is the required condition
for thermionic emission. The total diode current is still given by Equation (2.45) but
now includes two components: a diffusion current and a quasi-ballistic current (after
[10])

J = JR(x)+ JQ B = Js

[
exp

(
qV

kB T

)
− 1

]
,

JR(x) = q Dn,P
dnR

dx
,

JQ B = Js exp

(
qV

kB T

)
exp

(−x

λ

)
,

where Dn,P is the diffusion constant for the relaxed electron population and λ is the
mean free path of the quasi-ballistic electrons. The quasi-ballistic electrons do not
change the total electron current and have a small impact on the potential dropped
across the diode. However, if such a heterojunction is used as the emitter–base diode
of a bipolar transistor, the fraction of electrons recombining in the base will decrease.
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Fig. 2.6. (a) Band diagram of an n–p heterojunction and (b) electron velocity distribution. vx is
normalized by 108 cm/s.

Indeed the recombination current in the base JB R involves only the thermalized
electron population

JB R = q
∫

BASE

nR − nB

τn,B
dx (2.47)

with τn,B the lifetime of electrons in the base (p) and nB the equilibrium electron
concentration in the base (p). These formulas are used in Problem 2.3 to demonstrate
that the ballistic component of the emitter current increases the current gain of an
HBT. Pelouard et al. [10] quotes a factor 3 increase in β for a 0.1 µm InGaAs HBT
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due to the quasi-ballistic transport in the base (see Problem 2.3). Unfortunately three-
dimensional geometrical effects in HBTs seem to reduce this effect. To date the only
devices to successfully benefit from ballistic transport are quantum devices such as the
resonant tunneling diode (RTD) (see Chapter 3).

2.9 The HBT

The p–n heterojunction diode finds an important application as the emitter–base diode
of a bipolar transistor. Such a transistor is called an HBT. The idea of the HBT
was proposed by W. Shockley [7] and was later developed by H. Kroemer [8].
The advantage provided by using a heterojunction diode for the emitter junction is
evidenced by the ratio of the electron to hole emitter current. Consider an n–p–n
transistor (E–B–C). According to our previous drift-diffusion analysis we have

InE

IpE
= Dn,B

Dp,E

L p,E

Ln,B

nB

pE
= Dn,B

Dp,E

L p,E

Ln,B

ND,E

NA,B

n2
i,B

n2
i,E

= Dn,B

Dp,E

L p,E

Ln,B

ND,E

NA,B

Nc,E Nv,E
Nc,B Nv,B

exp

(
Eg,E − Eg,B

kB T

)
.

The use of a wider bandgap for the emitter (E) region and a smaller bandgap for
the base (B) region permits us to obtain very large InE/IpE ratios, and therefore
to preferentially inject electrons rather than holes. This can be used to improve
the performance of a bipolar transistor. The resulting band diagram of such a
heterojunction bipolar transistor is shown in Figure 2.7.

Consider the transistor current gain α which is given by

α = IC

IE
= IC

InE

InE

InE + IpE
= B γ,

where B is the base transport factor and γ the emitter injection efficiency. Clearly
the emitter injection efficiency approaches unity as the ratio InE/IpE is increased. In
practice the recombination current in the depletion region of the emitter becomes the
limiting factor. The base transport factor is given by the usual ratio

B = τn

τT R
,

where τn is the electron recombination time in the base and τT R is the transit time of
the electron across the base from emitter to collector. Since MBE growth is used, the
base can be made as short as desired to minimize the transit time. However, a base
width which is too small would increase the lateral base resistance and decrease the
high-frequency performance of the HBT.

The current gain can be made very large (close to unity) and very large β =
IC/IB = α/(1−α) can theoretically be obtained. βs as high 1600 have been reported.
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Fig. 2.7. Band diagram of an HBT with (a) a graded emitter–base heterojunction and (b) an abrupt
emitter–base heterojunction.

The presence of the heterojunction also permits one to increase the doping in the
base to lower the base resistance without seriously decreasing the emitter efficiency.
Similarly, a smaller emitter doping can be used to reduce the junction capacitance.
An improved high-frequency performance results from these modifications. The small
base–emitter capacitance and its weak voltage variation permits ones to design HBT
power amplifiers with an extremely high linearity (I P3 of 40 dBm) which greatly
reduces intermodulation distortion. Linearity is particularly important in cellular
phone applications, where a single power amplifier is used at each base-station for
all the frequency channels.

Abrupt heterojunctions feature a spike in the conduction band which can impede
the injection of electrons into the base (see Figure 2.7(b)). A thermionic model is
then required to predict the performance of the emitter–base diode [9]. (The diffusion
analysis applies best to graded heterojunctions such as the smooth heterojunction
shown in Figure 2.7(a).) An accurate analysis of the HBT also requires the inclusion
of the tunneling current [9]. Tunneling through the heterojunction spike can improve
the performance of the HBT by reducing the effective barrier height of the spike. Shur
[9] quotes a factor of 10 increase in β due to tunneling.

The discontinuity of the conduction band can also be smoothed out by grading the
composition of the alloy from the emitter to the base. This grading typically takes
place over a distance of 50–200 Å. A factor of 6 increase in β has been observed
experimentally [9]. Note that grading the heterojunction can also be used to design
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a better launching ramp (avoiding tunneling) for high-energy ballistic electrons (see
previous section).

The reader is referred to Chapters 18 and 19 for a deeper discussion of the device
physics, modeling techniques, and device characteristics of HBTs.

2.10 Conclusion

In this chapter we have presented a semiclassical theory of heterostructures which
relies on simple band-diagram and transport models. Note that the thermionic
and drift-diffusion transport equations introduced in this chapter will be derived in
Chapters 4, 8, and 9. Also these low-field transport models will be extended in Chapter
9 to the case of high-electric-field conditions to account for self-heating effects. Finally
ballistic transport in HBTs will be further studied in Chapter 18 using a direct solution
of the Boltzmann equation.

The semiclassical transport picture adopted in this chapter is only applicable to
relatively large and slowly-varying heterostructures. For small or rapidly-varying
heterostructures the wave nature of the electron plays a dominant role, and a quantum
band and transport picture is required. Chapters 3–7 are dedicated to the development
of such a quantum picture and its application to practical and high-performance
quantum devices.

Appendix: Semiconductor parameter tables

The material parameters presented in Tables 2.3 and 2.10 are based on [17,18,19,20,
21,22]. The temperature is 300 K unless otherwise specified. For a definition of the
various bandgaps refer to Figure 2.8.
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Fig. 2.8. Band structure for the definition of the various direct and indirect bandgaps.

Table 2.3. Parameters of AlmGa1−mAs.

AlmGa1−mAs Values or formula m range Temp. range

Ni (m−3) 1.79 × 1012m−3 (experimental) 0 300 K
Nc (m−3) 4.35 (6.988)× 1023 0 (0.3) 300 K
Nv (m−3) 7 × 1024 0 300 K
ε/ε0 13.18 − 3.12m from 0 to 1 300 K
ε∞/ε0 10.89 − 2.73m from 0 to 1 300 K
m∗

n/m0 (�) 0.067 + 0.083m from 0 to 1 300 K
m∗

lh/m0 0.087 + 0.063m from 0 to 1 300 K
m∗

hh/m0 0.62 + 0.14m from 0 to 1 300 K
Eg (eV) 1.424 + 1.594m + (1.310m − 0.127)m(m − 1) from 0 to 1 300 K

1.52 0 0 K
EgX (eV) 1.991 + 0.005m + 0.245m2 from 0 to 1 300 K
EgL (eV) 1.734 + 0.574m + 0.055m2 from 0 to 1 300 K
a (Å) 5.6533 + 0.008 09m from 0 to 1 300 K
Ed (eV) 0.004, 0.016, and 0.05 0, 0.2 and 0.3 300 K
SBH: Al (eV) 1.1 and 1.3 0.3 and 0.5 300 K
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Table 2.4. 300 K material parameters for the interpolation of the material parameters of the Si1−x Gex ,
Alx Ga1−x As, Inx Ga1−x As, and Inx Al1−x As material systems.

300 K values Si Ge GaAs AlAs InAs In0.53Ga0.47As In0.52Al0.48As InP

a (Å) 5.4309 5.6461 5.6533 5.6614 6.0584 5.8687 5.8687 5.8687
Bandgap indirect indirect direct indirect direct direct direct direct
Eg� (eV) 4.08 0.89 1.424 3.018 0.356 0.77 1.49 1.34
EgL (eV) 1.87 0.663 1.734 2.308 1.08 1.323 1.78 1.93
EgX (eV) 1.124 0.96 1.911 2.161 1.37 1.438 2.048 2.19
χ (eV) 4.05 4.13 4.07 3.5 4.9 4 4.38
m∗

l /m0 0.9163 1.59 0.067 0.15 (�) 0.024 0.043 0.075 0.075
m∗

t /m0 0.1905 0.0823
m∗

lh/m0 0.153 0.043 0.087 0.15 0.025 0.053 0.096 0.12
m∗

hh/m0 0.537 0.284 0.62 0.76 0.37 0.56 0.041 0.56

µn (cm2/(V s)) 1450 3900 8000 400 30 000 5000

µp (cm2/(V s)) 370 1800 400 100 480 180
ε/ε0 11.9 16.2 13.18 10.06 15.15 13.94 12.46 12.61
ε∞/ε0 11.9 16.2 10.89 8.16 12.25 11.61 9.84 9.61
ωL O (meV) 63 37 35 48 30 39.5 43

ρ (g/cm3) 2.329 5.3235 5.3165 3.729 5.667 5.504 4.90 4.791
SBH:Al (eV) 0.72 (n) 0.48 (n) 0.7–0.8 0.53 0.8
SBH:Au (eV) 0.8 (n) 0.59 (n) 0.95 0.47 0.64 0.52
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2.12 Problems

2.1 p-GaAs–n-AlGaAs heterojunction: Consider a p-GaAs–n-Al0.3Ga0.7As heterojunction at
300 K. The acceptor doping on the p side is NA = 1016 cm−3. The donor doping on the n
side is ND = 1016 cm−3. Assume that all donor and acceptor impurities are ionized and that
the doping is non-degenerate. The temperature is 300 K.

(a) Calculate the conduction and valence-band discontinuities. Use the 68/32% rule and the
AlGaAs material parameters given in Table 2.3.

(b) Sketch the band diagram.

(c) Calculate the built-in potential V0. Rank by order of importance the various terms
contributing to V0.

2.2 An efficient one-dimensional Poisson solver: We wish to solve the Poisson equation in a
heterostructure. The heterostructure is divided into series of atomic layers i of width ai and
centered at the position xi . The dielectric constant εi is uniform in each atomic layer i .

(a) We first assume that the charge distribution ρ(x) and dielectric constant εi are uniform in
each atomic layer i :

ρ(x) =
∑

i

ρi

[
u
(

x − xi + ai

2

)
− u
(

x − xi − ai

2

)]
,
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x

i+1

X x x X x X

ρ(x)

i-1 i-1 Xi i i+1 i+1 i+2

a i-1

a i

a

Fig. 2.9. Charge distribution ρ(x) for the step approximation.

where ρi is the value of ρ(x) in the interval i (see Figure 2.9). We assume initially that the
charge distribution ρi is known.

Verify that the following relations are obtained if we integrate the Poisson equation exactly
from the site 1 to the site n:

εn F(X+
n ) = ε1 F(X+

1 ) +
n−1∑
j=1

ρj aj ,

V (Xn) = V (X1) −
n−1∑
j=1

F(X+
j )aj − 1

2

n−1∑
j=1

ρj a2
j

εj

with Xi = xi − ai/2.

(b) Assume now that the charge distribution in each atomic layer is given by an impulse
function (see Figure 2.10):

ρ(x) =
∑

i

ρi ai δ(x − xi ).

Compare the field and potential distribution. Do the expressions given in (a) still hold?
Assume that ρi is known and is the same as in (a).

(c) The charge distribution ρ(x, V ) is now assumed to depend on the voltage V (x) as well as
position x . The charge distribution is assumed to be ρi = ρ(xi , V (xi )) for both the uniform
charge distribution (a) and the impulse distribution (b). Verify that a close-form solution can
easily be obtained with method (b) but not with method (a).

Note: This method of integrating a non-linear Poisson equation using the initial conditions
F(X+

i ) and V (Xi ) gives results quite similar to the Runge-Kutta algorithm. This new
algorithm, however, is much simpler and therefore faster than the Runge-Kutta algorithm.
Note that the solution obtained is exact. However, the uniform charge distribution (a) is
easier to justify than the impulse distribution (b).
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Fig. 2.10. Charge distribution ρ(x) for the impulse approximation.

2.3 Ballistic electrons in the HBT (after Pelouard et al. [8]): Consider a n–p–n HBT of base width
W . We wish to study the impact of the quasi-ballistic electrons launched at the emitter–base
heterojunction upon the performance of the HBT.

The total emitter current which flows in the base includes two components: a diffusion current
and a quasi-ballistic current:

JE = JR(x)+ JQ B(x) = Js

[
exp

(
qVB E

kB T

)
− 1

]
,

JR(x) = q Dn
dnR

dx
,

JQ B(x) = Js exp

(
qVB E

kB T

)
exp

(−x

λ

)
,

where Dn is the diffusion constant for the relaxed electron population and λ is the mean free
path of the quasi-ballistic electrons. Note that the ballistic current JQ B in the base is maximum
at x = 0, which is the location of the emitter–base heterojunction. The x axis is assumed to
be oriented from the emitter to the collector. Therefore Js must be negative for this n–p–n
transistor.

(a) Express the thermalized electron concentration nR(x) at position x in the base in terms of
the electron concentration nR(W ).

(b) Calculate the equilibrium (VB E = VBC = 0) electron concentration nR0(x) at the position
x in the base in terms of nR0(W ).

(c) Calculate the base current JB resulting from the recombination of electrons with holes in
the base

JB = q
∫ W

0

nR(x)− nR0(x)

τn
dx (2.48)

with τn the lifetime of electrons in the base. Note that the excess of electrons at the edge of



52 Semiclassical theory of heterostructures

the collector–base depletion region is controlled by the collector–base diode

�n P = nR(W )− nR0(W ) = n P

[
exp

(
qVBC

kB T

)
− 1

]
,

assuming low injection.

(d) Verify that the common base current gain is

α = 1 − W 2

2L2
n

{
1 + 2λ

W
exp

(−W

λ

)
+ 2

(
λ

W

)2 [
exp

(−W

λ

)
− 1

]}
,

where L2
n = Dnτn is the diffusion length of the electrons in the base. Note that for λ = 0

the current gain α reduces to the classical bipolar expression for the base transport B =
sech(W/Ln) � 1 − W 2/2L2

n . The emitter efficiency γ is assumed to be 1 (α = B) which
is quite reasonable for an HBT.

(e) Plot the ratio of the common emitter current gains β(λ)/β(λ = 0) for a base width W
varying from 0.6 to 0.1 µm and λ = 0.19 µm. Assume that the gate length is much smaller
than the diffusion length so that we can use the approximation β = α/(1−α) � 1/(1−α).



3 Quantum theory of heterostructures

. . . I think I can safely say that nobody understands quantum mechanics.

The Character of Physical Law, RICHARD FEYNMAN

3.1 Introduction

Modern technology has made possible the growth of thin crystalline epitaxial layers
of different semiconductors. These epitaxial layers can be as small as a few lattice
parameters. For small heterostructures (100 Å or less) a quantum treatment of
heterostructures becomes necessary. In this chapter we will attempt to build a
quantum picture of heterostructures. Note that the conventional quantum picture of a
semiconductor crystal cannot be applied to rapidly varying semiconductor heterostruc-
tures since crystals are defined as periodic structures extending up to infinity. New
theoretical techniques are thus required to describe these ‘spatially-varying crystals’.

Our quantum picture will be based upon an envelope model. An envelope model
focuses on calculating the relative distribution of the wave-function from atomic cell
to atomic cell rather than on the detailed distribution of the electron wave-function in
each atomic cell.

The particular envelope picture we shall use is the so-called generalized Wannier
picture. The generalized Wannier picture is capable of handling both the concept of
band structure and the concept of its variation in space in a rigorous fashion. This
model will therefore permit us to understand the impact of the interface upon the band
structure in a heterojunction.

Other envelope pictures have been developed such as the Ben Daniel Duke Hamil-
tonian (effective-mass model [10], see also [11]), the k · p envelope model ([11]), and
the tight-binding model ([8]). The major advantage of the generalized Wannier picture
is that like the tight-binding model, it can handle the full band structure (the very
accurate k · p formalism, introduced in Chapter 16, is limited to the bottom of the
conduction band and the top of the valance band). The generalized Wannier picture
for the conduction band is, however, a much simpler formalism than the tight-binding
and k · p envelope models. Finally, a critical advantage of the Wannier picture is

53
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that the envelope function (electron wave-function) is obtained from the solution of a
difference equation. Analytic solutions are therefore available for simple systems and
numerical solutions are readily obtained for more complicated systems.

We first introduce the Wannier picture for homojunctions (Section 3.2) before
extending it to the case of heterojunctions (Section 3.3). Both the one-dimensional
approximation and the general three-dimensional picture are presented. A major topic
also discussed in this chapter is the definition of electron current in spatially-varying
crystals. The application of the quantum theory of heterostructures presented here to
quantum devices will be covered in the next chapter.

3.2 Band structures, Bloch functions and Wannier functions

In this section we shall review the quantum properties of an electron in a uniform
one-dimensional crystal.

3.2.1 The Schrödinger equation

In classical mechanics the total energy of an electron is the sum of its kinetic energy
K and of its potential energy Epot:

E = K + Epot = p2

2m0
+ Epot(x),

where p is the electron momentum, and m0 the electron mass. In quantum mechanics
the momentum p is replaced by the operator pop

p → pop = −i h̄
∂

∂x
,

so that the Hamiltonian K + Epot is now an operator H0

H0(x) = − h̄2

2m0

∂2

∂x2
+ Epot(x). (3.1)

Similarly the energy is replaced by the operator

E → i h̄
∂

∂t
.

The Schrödinger equation is then obtained by letting these operators operate on the
wave-function ϕ(x, t)

H0(x)ϕ(x, t) = i h̄
∂

∂t
ϕ(x, t).

|ϕ(x, t)|2 is postulated to be the probability of the presence of the electron at position
x at time t .
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In the case of a time-independent Hamiltonian, the Schrödinger equation admits,
using separation of variables, an eigenstate solution of the form

ϕ(x, t) = exp

(−i Et

h̄

)
ϕ(x, E),

where ϕ(x, E) is a solution of the eigenstate equation

H0(x)ϕ(x, E) = Eϕ(x, E)

with the energy E a real eigenvalue because H0 is Hermitian. We will find it
convenient to rewrite this result using the bra-ket notation

H0|E〉 = E |E〉,
where |E〉 is the eigenvector of H in an arbitrary representation. In the position
representation, the eigenvector is then

〈x |E〉 = ϕ(x, E).

3.2.2 Electron in a periodic potential

In a crystal the potential energy Epot is a periodic function of position

Epot(x) = Epot(x + a),

where the period a is the lattice parameter. Let us analyze the properties of the
electron wave-function in a periodic potential. For this purpose we shall introduce
the translation operator.

T (na) = exp

[
i(popna)

h̄

]
= exp

[
na
∂

∂x

]

As indicated by its name the translation operator T (na) operated on a test function
ϕ(x) translates it by a distance na

T (na)ϕ(x) = exp

(
na
∂

∂x

)
ϕ(x)

=
[

1 + 1

1!

(
na
∂

∂x

)
+ 1

2!

(
na
∂

∂x

)2

+ 1

3!

(
na
∂

∂x

)3

+ · · ·
]
ϕ(x)

= ϕ(x + na).

With the use of a test function ϕ(x) (not shown here) we can easily verify that the
translation operator T (na) commutes with H0

T (na)H0(x) = T (na)

[
− h̄2

2m0

∂2

∂x2
+ Epot(x)

]
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=
[
− h̄2

2m0

∂2

∂x2
+ Epot(x + na)

]
T (na)

= H0(x + na) T (na)

= H0(x)T (na).

This commutation property will permit us to classify the eigenvectors of the crystal
Hamiltonian with the eigenvectors of the translation operator. For this purpose we first
need to find the eigenvalues of the translation operator. Consider

T (na) ϕ(x) = λnϕ(x) = ϕ(x + na),

where λn and ϕ(x) are the eigenvalues and eigenvectors respectively. The complex
conjugate of this expression is

λ∗
n ϕ

∗(x) = ϕ∗(x + na).

Multiplying the last two expressions together and integrating over space, we obtain∫ ∞

−∞
|λn|2|ϕ(x)|2 dx =

∫ ∞

−∞
|ϕ(x + na)|2 dx,

which implies that |λn|2 = 1. Let us introduce the variable k defined from λn using

λn = exp(ikna)

Note that k and k + m(2π/a) are equivalent since they are associated with the same
eigenvalue λn . As a consequence of the commutation property we have

T H0 |E〉 = T E |E〉,
H0 T |E〉 = E T |E〉.

This indicates that if |E〉 is an eigenvector of H0 then T |E〉 is also an eigenvector
of H0 with the same eigenvalue E . If there is only one state |E〉 for each energy E
(non-degenerate case) then we must have

T (na) |E〉 ∝ |E〉.

Since this is an eigenvalue equation, the proportionality constant is an eigenvalue λn:

T (na) |E〉 = λn |E〉 = exp(ikan)|E〉.

Consequently, |E〉 is an eigenvector of both T (na) and H0. This result still holds
in the degenerate case (several states |E〉 for a single energy E) by selecting the
eigenvectors |E〉 which simultaneously diagonalize the translation operator T (na)
and the Hamiltonian H0 (see Ziman, pp. 17–19, [8] for a proof). In practice the
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eigenvectors of H0 are always degenerate and we need to establish a system for
labeling the different states |E〉. Since the translation operator T (na) and the crystal
Hamiltonian H0 admit the same eigenvectors we can use the eigenvalue k to label the
states |E〉 using |E(k)〉 or even simply |k〉. The eigenwave-function |k〉 of an electron
in a crystal is a solution of the eigenvalue equation

H0 |k〉 = E(k) |k〉,

where we use E = E(k). The dispersion characteristics E(k) between the energy and
the wave-vector k define the so-called band structure.

Using ϕ(k, x) = 〈x |k〉, we can simply write the same equation in the position
representation:

H0(x)ϕ(k, x) = E(k)ϕ(k, x).

This is called the Bloch equation and ϕ(k, x) is called a Bloch function. Note that
Bloch functions are eigenvectors and therefore verify the orthogonality property

〈k′|k〉 =
∫ ∞

−∞
ϕ∗(k′, x)ϕ(k, x) dx = δ(k′ − k).

We can now very easily verify that the translation of a Bloch state by one lattice
parameter a gives

ϕ(k, x + a) = T (a)ϕ(k, x) = exp( jka)ϕ(k, x).

This is the so-called Bloch theorem which identifies k as a wave-vector. Note that since
k and k +m(2π/a) are equivalent, both the band structure E(k) and the wave-function
ϕ(x, k) are periodic functions of k with periodicity 2π/a.

Properties of the band structure E(k)
Let us state some of the properties of the band structure E(k).

From time-reversal considerations one can show that E(k) is an even function of k:

E(−k) = E(k).

The even and periodic properties of the band structure result in the slope of the band
structure E(k) being zero at k = ±π/a:

dE(k = ±π/a)
dk

= 0.

The Bloch equation admits eigenvectors for energies E(k) located in intervals which
are called bands. The ranges or bands of energy for which the Bloch equation admits
no eigenvector solutions are called forbidden bands. In the case of the one-dimensional
periodic potentials studied here, one can label successive bands of energies in the
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direction of increasing energy in such a way that each band contains the entire
spectrum of eigenvalues k without energy overlap between successive bands. Bands
and wave-functions can thus be labeled by successive integers, which we call band
indices b: Eb(k), ϕb(k, x). In a three-dimensional crystal, however, overlaps of bands
do take place (for a discussion of the three-dimensional case refer to Wannier’s original
paper [7]). This is illustrated in Figure 1.13 of Chapter 1 which shows the various
bands Eb(k) obtained along the � to X direction in the Brillouin zone for various
semiconductor materials.

In the remaining analysis we shall focus our interest on a single band, for example,
the conduction band or valance band. In this one-band approximation we can drop the
band index b.

Since E(k) and ϕ(k, x) are periodic functions of k we can express them in terms of
a Fourier series

ϕ(k, x) =
( a

2π

)1/2 ∞∑
m=−∞

w(m, x) exp(ikma),

E(k) =
∞∑

m=−∞
Em exp(ikma)

where w(m, x) and Em are the Fourier coefficients. w(m, x) is called a Wannier
function after Wannier who first studied them [7].

3.2.3 Wannier functions

In the remaining work we shall adopt the Wannier functions as a basis. The main
motivation as we shall see is that Wannier functions are spatially localized in contrast
with Bloch functions which extend over the entire crystal. Such a localized picture
will provide a better basis for spatially-varying crystals.

First let us derive some of the properties of the Wannier functions. From their very
definition the Wannier functions are the Fourier coefficients of the Bloch waves:

w(m, x) =
( a

2π

)1/2
∫ π

a

− π
a

exp(−ikma)ϕ(k, x) dk.

In the empty-lattice case (Epot = 0), the Bloch function ϕ(k, x) is a plane wave:

ϕ(k, x) = 1

(2π)1/2
exp(ikx),

where we limit the wave-vector k to the first Brillouin zone:

−π
a

≤ k ≤ π

a
,
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Fig. 3.1. Wannier functions of the empty lattice for adjacent sites.

for the first band of the empty lattice. One can then readily calculate the Wannier
function for the empty lattice

w(m, x) =
√

a

2π

∫ π
a

− π
a

exp(ik(x − ma)) dk,

w(m, x) = 1√
a

exp
[
i πa (x − ma)

]− exp
[−i πa (x − ma)

]
2i
π

a
(x − ma)

= 1√
a

sinc
[π

a
(x − ma)

]
.

As can be seen in Figure 3.1, the Wannier function w(m, x) of the empty lattice
appears to be an electron state localized around the lattice site m. The Wannier function
of the empty lattice is a singular example, but it illustrates some of the properties of
the Wannier functions.
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Let us now list some of the properties of the Wannier functions w(m, x) = 〈x |m〉
• Translation invariance:

The Wannier function is invariant under a lattice translation

w(m, x) = w(x − ma).

• Normalization and orthogonality:
Wannier functions are normalized and orthogonal (see Problem 3.1)

〈n|m〉 =
∫ ∞

−∞
w∗(n, x)w(m, x) dx = δnm .

• Hamiltonian matrix elements:
The matrix elements of the lattice Hamiltonian in the Wannier representation are
the Fourier coefficients of the band structure (see Problem 3.1 for a proof)

Hnm = 〈n|H0|m〉 =
∫ ∞

−∞
w∗(n, x)H0w(m, x) dx = Em−n.

• Completeness:
The Wannier functions wq(m, x) form a complete basis. In the one-band
approximation only one band is considered.

• Convergence:
The Bloch functions are defined up to an arbitrary phase. The Wannier functions are
therefore not uniquely defined. Kohn [1] has shown that for a ‘best’ choice of the
Bloch function phase, the Wannier function vanishes exponentially for large x −na.

Proof of translation invariance
Let us now demonstrate the translation invariance property of the Wannier functions:
Consider a Bloch function translated by a distance na. Let us expand it in terms of
Wannier functions

ϕ(k, x − na) =
( a

2π

)1/2 ∑
m

exp(ikma) w(m, x − na).

Using the Bloch theorem we can write

ϕ(k, x − na) =
( a

2π

)1/2 ∑
m

exp(−ikna) exp(ikma) w(m, x).

Let us change the index of summation m − n = m′:

ϕ(k, x − na) =
( a

2π

)1/2 ∑
m′

exp(ikm′a) w(m′ + n, x).
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As a result we have

w(m, x − na) = w(m + n, x).

This justifies using the following notation for the Wannier functions

w(n, x) = w(0, x − na) = w(x − na).

The Wannier picture
We shall now select the Wannier functions as a basis and derive the Hamiltonian in this
representation. We consider the lattice Hamiltonian H0 with a superimposed potential
energy −qV (x) resulting from an electrostatic potential V (x):

H = p2
op

2m0
+ Epot(x)− qV (x)

= H0 − qV (x).

Within the one-band approximation the Wannier functions form a complete basis
with which we can expand the electron wave-function ϕ:

ϕ(x, t) =
∞∑

n=−∞
f (n, t) w(x − na)

or using bra-ket notation

|ϕ〉 =
∞∑

n=−∞
f (n, t)|n〉,

where |n〉 is the Wannier state centered around the site n and f (n, t) is called an
envelope function. | f (n, t)|2 gives the probability of the presence of the electron at
time t at the site n:

H |ϕ〉 = i h̄
d

dt
|ϕ〉

H
∞∑

n=−∞
f (n, t)|n〉 = i h̄

d

dt

∞∑
n=−∞

f (n, t)|n〉.

Multiplying the last equation by 〈m|, we obtain the Wannier recurrence equation

∞∑
n=−∞

〈m|H |n〉 f (n, t) = i h̄
d

dt

∞∑
n=−∞

f (n, t)〈m|n〉
∞∑

n=−∞
Hmn f (n, t) = i h̄

d

dt
f (m, t)

with

Hmn = H0
mn − qVmn = En−m − qVmn
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and with

Vmn = 〈m|V (x)|n〉 =
∫ ∞

−∞
w∗(m, x)V (x) w(n, x) dx .

For an electrostatic potential V (x) slowly varying in space, Vmn reduces to

Vmn � V (ma)δmn = Vm .

Note that if the electrostatic potential is varying too abruptly in space, the one-band
approximation breaks down.

Eigenstate solution

When the Hamiltonian is not time-varying, it is easy to verify that the eigenstate
solutions are of the form

f (n, t) = exp

(
−i

Et

h̄

)
f (n, E)

with f (n, E) given by the stationary Wannier recurrence equation

∞∑
n=−∞

Hmn f (n, E) = E f (m, E).

The tight-binding band

Let us consider the simple but important case of a tight-binding band

E(k) = A − A cos(ka)

= A − A

2
exp(ika)− A

2
exp(−ika).

A section of the resulting Hamiltonian matrix is:

[Hmn] =




. . .
. . .

. . . 0
0 −A/2 A − qV−1 −A/2 0

0 −A/2 A − qV0 −A/2 0
0 −A/2 A − qV1 −A/2 0

0
. . .

. . .
. . .



.

The Hamiltonian matrix takes the form of a band matrix. For the tight-binding band
structure this band matrix is tridiagonal.
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The flat-band case
Consider the case of a band structure represented by N Fourier coefficients

E(k) =
N∑

m=−N

Em exp(−ikma).

We are interested in obtaining the stationary solutions of the Wannier recurrence
equation for the case in which no potential is applied V = 0 (flat band). The Wannier
recurrence equation gives the following eigenvalue problem:

n+N∑
m=n−N

f (m, E)Em−n = E f (n, E),

N∑
m=−N

f (n + m, E)Em = E f (n, E),




(3.2)

where E is the electron energy, Em−n are the Fourier coefficients of the band structure
and m is a dummy integer. This difference equation admits 2N solutions which we
shall label with the index j running from 1 to 2N . The general solution of the Wannier
difference equation is therefore a linear superposition of these:

f (n, E) =
2N∑
j=1

λj f j (n, E).

In the flat-band case, f j (n, E) is of the type

f j (n, E) = [rj (E)]
n.

Substituting rn in the Wannier difference equation (3.2) we have

rn ×
[

N∑
m=−N

rmEm − E = 0

]
.

The rj (E) terms are therefore the roots of the 2N order polynomial obtained by
multiplying by r N

2N∑
m=0

rm (Em−N − E δm N ) = 0. (3.3)

Note that due to the even property of the band structure we have Em = E−m . For
such polynomials one can demonstrate [6] that if rj is a root of Equation (3.3) then
1/rj is also a root. Let us replace rj by exp(ikj a) in this polynomial:

N∑
m=−N

exp(ikj ma)Em = E .
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Fig. 3.2. Graphical solution of E(k) = E . Only the four propagating wave-vectors k are shown (k
real).

The wave-vectors kj are seen to be the solution of

E(kj ) = E .

Figure 3.2 shows a graphical solution which can be used to determine the real wave-
vectors k. For a flat band the Wannier envelope functions f j (n, E) = exp[ jkj (E)na]
are simply the Fourier coefficients of the expansion of a Bloch function |kj 〉 in terms
of Wannier functions. f j (n, E) is therefore a Bloch state which we can write f (n, kj ).
Complex wave-vectors kj are obtained by extending the band structure E(k) to the
complex plane k using analytic continuation. These complex wave-vectors correspond
to damped or evanescent waves which do not propagate. These waves will be excited
if we introduce a discontinuity of the potential energy (for example, heterostructure).
As an example in Figure 3.3, we have plotted as a function of energy E , the amplitude
of the 20 resulting propagating and evanescent waves for the GaAs conduction-band
structure shown in Figure 3.4 and represented using N = 10. Note the disappearance
of two evanescent waves for energies above X when the system switches from two to
four propagating waves.

3.2.4 Three-dimensional crystal

The one-dimensional theory introduced above also applies to the three-dimensional
crystal (see [4]). As we shall see the wave-vector k is the projection of the three-
dimensional wave-vector k along a desired crystal axis (typically the superlattice axis).

Consider a three-dimensional crystal. The crystal potential Epot(r) is invariant
under a translation by a lattice vector R:

Epot(r) = Epot(r + R). (3.4)
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Fig. 3.3. Variation of the amplitude |r(E)| = | exp( jk(E)a)| versus energy E for both the
propagating roots (|r(E)| = 1, k(E) real) and the evanescent roots (|r(E)| <> 1, k(E) complex)
for k⊥ = 0.

For a face-centered cubic (fcc) crystal the lattice vector R is given in the orthonormal
coordinates of the Bravais cell (see Figure 1.6) by

R = n1a1 + n2a2 + n3a3 = a

2


 0 1 1

1 0 1
1 1 0




 n1

n2

n3


, (3.5)

where a is the lattice parameter and n1, n2 and n3 are integers.
For a three-dimensional lattice the translation operator is now

T (R) = exp

(
ipop · R

h̄

)
= exp

(
R · ∂
∂r

)
, (3.6)

where pop is the momentum operator. Its eigenvalue, exp(ik · R), permits us to
define the wave-vector k. Because the translation operator and the crystal Hamiltonian
commute we can label the Bloch functions ϕ(k, r) (eigenvector of H0) and the band
structure E(k) (eigenvalue of H0) using the wave-vector k. The Bloch functions
ϕ(k, r) and the band structure E(k) are then both periodic functions in k space. This
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means that they are invariant under a translation of a reciprocal-lattice vector K:

ϕ(k, r) = ϕ(k + K, r),

E(k) = E(k + K).

It results from the eigenvalue exp(ik · R) of the translation operator T (R) that the
reciprocal-lattice vector K must satisfy K · R = n2π with n an integer. For the
fcc lattice the reciprocal-lattice vector K that satisfies this relation is given in the
orthonormal coordinates of the Bravais cell by

K = 2π

a


 −1 1 1

1 −1 1
1 1 −1




 m1

m2

m3


, (3.7)

where m1, m2, and m3 are integers. An inspection of K for the fcc lattice (in r space)
reveals that the reciprocal lattice (in k space) is a body-centered cubic (bcc) lattice (see
Figure 1.6(b)). Its associated three-dimensional Brillouin zone (Wigner–Seitz cell in
reciprocal space) is shown in Figure 1.8.

Assume now that the uniform crystal (empty superlattice) considered is oriented
along the direction d̂ (the superlattice axis). Let us call aSL the smallest lattice vector
R parallel to the direction d̂. The amplitude aSL = |aSL | is the superlattice parameter.
Any lattice parameter parallel to d̂ is written as R = naSL , with n an integer.

It is easy to verify that for cubic lattices there always exists a reciprocal-lattice
vector K parallel to a given direct lattice vector R. This is equivalent to finding a
constant c such that K = cR. A possible solution is c = 8π/a2

SL , which leads to
 m1

m2

m3


 =


 2 1 1

1 2 1
1 1 2




 n1

n2

n3


. (3.8)

Let us denote by q the amplitude of the smallest reciprocal-lattice vector q parallel to
d̂, so that any reciprocal lattice vector parallel to d̂ can be written K = mq, with m an
integer. Note that q and aSL satisfy q · aSL = 2πp, with p an integer, since we have

R · K = 2πn · m = 2π [n1, n2, n3]


 m1

m2

m3


. (3.9)

For the 〈100〉 direction (R = a(1, 0, 0)), we have [n1, n2, n3] = [−1, 1, 1], and
the smallest reciprocal vector is given by [m1,m2,m3] = [0, 1, 1], so that we have
aSL = a and p = n · m = 2. We can now introduce a one-dimensional wave-vector k
along the superlattice axis d̂ defined by

k = k⊥ + kd̂, (3.10)
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with k⊥ the momentum transverse to the direction d̂. It follows that the three-
dimensional Bloch function and the band structure are one-dimensional periodic
functions of k with period q:

ϕ(k⊥ + kd̂, r) = ϕ(k⊥ + (k + nq)d̂, r),

E(k⊥ + kd̂) = E(k⊥ + (k + nq)d̂)

for n, an integer. Since E(k) and ϕ(k, r) are periodic functions of k we can express
them in terms of a Fourier series:

ϕ(k,k⊥, r) = 1√
q

∞∑
m=−∞

w(m, r,k⊥) exp

(
ikm2π

q

)
,

E(k) =
∞∑

m=−∞
Em(k⊥) exp

(
ikm2π

q

)
,

where w(m, r,k⊥) and Em(k⊥) are the Fourier coefficients:

w(m, r,k⊥) = 1√
q

∫ q
2

− q
2

exp

(−ikm2π

q

)
ϕ(k⊥ + kd̂, r) dk,

Em(k⊥) = 1

q

∫ q
2

− q
2

exp

(−ikm2π

q

)
E(k⊥ + kd̂) dk.

The one-dimensional Wannier function w(m, r,k⊥) that we have defined as the
Fourier coefficients of the Bloch waves along the superlattice axis d̂ is, in fact, a hybrid
state consisting of a Wannier function |m〉 along the superlattice axis and a Bloch func-
tion |k⊥〉 in the transverse direction. This hybrid state will be symbolically denoted
|m,k⊥〉 for arbitrary representation so that we have in the position representation

〈r | m,k⊥〉 = w(m, r,k⊥). (3.11)

Despite the lengthy derivation, essentially the same Wannier picture is obtained for the
three-dimensional crystal.

As an example, consider in Figure 3.4 the band structure of a GaAs, AlAs and
Al0.3Ga0.7As conduction band for wave-vectors k running from � to X along the 〈100〉
direction. One recognizes the � valley and the upper X valley. These band structures
are also periodic (note, however, that the period is 4π/a along 〈100〉). In Figure 3.5 we
see that their Fourier series expansion can be approximately truncated to ten Fourier
coefficients. This is the number of lattice layers required in an epitaxial layer to create
these band structures along the 〈100〉 direction.
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Fig. 3.4. Conduction-band structure along � (�–X ) for GaAs, Al0.3Ga0.7As, and AlAs.

3.3 Spatially-varying band

The Wannier picture introduced in the previous section provided a natural picture for
studying a lattice subject to a smooth, spatially-varying potential energy (for example,
the electrostatic potential −qV (x)). The simplicity of the Wannier picture hinged
on the properties of the Wannier functions, namely that the Wannier functions are
tightly localized at the lattice sites and orthogonal. Also, in the Wannier picture, the
Hamiltonian can be readily evaluated from the band structure.

In this section we shall use the Wannier picture to analyze spatially-varying crystals.
Spatially-varying crystals are defined as consisting of different crystal layers of various
thicknesses. Such a structure is sometimes referred to as a superlattice in the general
sense of the term.

In spatially-varying crystals, the long-range periodicity of the lattice is destroyed
and the translation operator no longer commutes with the lattice Hamiltonian. There-
fore the wave-vector k cannot be defined (k is not a good quantum number) and the
Bloch functions do not exist. As a consequence, it is no longer possible to define
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Fig. 3.5. Fourier coefficients of the � to X band structure shown in Figure 3.4.

the Wannier functions as the Fourier coefficients of the Bloch functions. However,
if we consider a lattice site far from the interfaces we know intuitively that it should
still be possible to use the Wannier functions of the crystal, since these functions are
exponentially localized and do not ‘see’ the interface. However Wannier functions
cannot be defined near the interface. Kohn and Onffroy [3] have shown that it
is theoretically possible to define new orthogonal functions (〈n|m〉 = δnm) with
properties similar to the Wannier functions even near the interface. These functions are
called generalized Wannier functions. Like the Wannier functions these generalized
Wannier functions are tightly localized at a lattice site n and exponentially decay for
large x −na. Consequently, the generalized Wannier functions are also labeled by their
lattice site |n〉. Obviously the generalized Wannier functions are no longer translation
invariant and we have 〈x |n〉 = w(x, n) �= w0(x − na). The generalized Wannier
functionsw(x, n) away from the interfaces approach the Wannier functionw0(x −na)
of the perfect lattice in the following exponential manner:

exp(2hna) [w(x, n)− w0(x − na)] → 0 for n → 0,

where h is a constant which measures the exponential decay. The reader is referred
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Table 3.1. Properties of Wannier and generalized Wannier functions.

Properties Wannier functions: Generalized Wannier functions:

Notation: |n〉 |n〉
Localization: exponentially localized exponentially localized

Orthonormal properties: 〈m′, b′|m, b〉 = δnn′δbb′ 〈m′, b′|m, b〉 = δnn′δbb′

Translation invariance: 〈x |n, b〉 = wb(x − na) NONE: 〈x |n, b〉 = wb(x, n)

Index b: bands generalized bands & surface states

to [2] for an example of calculated generalized Wannier functions near an interface
showing their rapid relaxation to the bulk lattice Wannier function away from the
interface. Like for the Wannier functions, the generalized Wannier functions are
also labeled according to bands of energies. Note that surface states can introduce
novel virtual lattice sites. The generalized Wannier functions are still orthonormal and
also form a complete set. Again we shall rely on the one-band approximation which
assumes that the generalized Wannier functions of the band of interest form a complete
set.

For comparison a summary of the properties of the multi-band Wannier functions
and generalized Wannier functions is given in Table 3.1.

3.3.1 Heterojunction case (tight-binding approximation)

As an application of the generalized Wannier picture we now wish to consider the
problem of the heterojunction between two semiconductors (1 and 2). For simplicity
we shall assume that both have a tight-binding band structure and that no electrostatic
potential is applied. On the left-hand side of the heterojunction, semiconductor 1 has
the band structure:

E1(k) = E1,0 − A1 cos(k1a)

and on the right-hand side of the heterojunction, semiconductor 2 has the band
structure

E2(k) = E2,0 − A2 cos(k2a).

We shall assume that due to the exponential localization of the Wannier functions, the
Hamiltonian is only perturbed at the interface. The Hamiltonian matrix is therefore
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H =




. . .
. . .

. . . 0

0 − A1

2
E1,0 − A1

2
0

0 − A1

2
E1,0 − A12

2
0

0 − A21

2
E2,0 − A2

2
0

0 − A2

2
E2,0 − A2

2
0

0
. . .

. . .
. . .




The only unknown terms are therefore the overlap Hamiltonian matrix elements A12

and A21 at the interface between the semiconductors, namely

A12 = −1

2
〈i |H |i + 1〉,

A21 = −1

2
〈i + 1|H |i〉,

where the interface is assumed to be located between the sites i and i + 1. Quantum
mechanics postulates that a physical system is described by a Hermitian Hamiltonian.
Using the hermiticity of the Hamiltonian we must have

Hnm = H∗
mn

and we have therefore A12 = A∗
21. In this tight-binding model only one Hamiltonian

matrix element is therefore unknown. Using a similar approach one can verify that for
a band structure represented by two Fourier coefficients at least three matrix elements
are unknown [5]. For three Fourier coefficients, at least five are unknown and so on.
The unknown matrix element is therefore a characteristic of the interface as is the band
structure for the lattice.

In Problem 3.4 a simple theory is developed for the tight-binding problem which
permits us to derive the matrix element A12 for the case of an ideal (transparent)
heterojunction. An ideal heterojunction is defined as a heterojunction which is as little
reflective as possible for an incident electron of arbitrary energy E . It is demonstrated
in Problem 3.4 that this occurs when we have

A12 = (A1 A2)
1/2.

The generalization to a band structure with N coefficients will be discussed
in Section 3.3.3. We need first to introduce a definition of current in a general
heterostructure.
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3.3.2 Definition of the electron particle current (flux)

Given a potential energy usually controlled by an applied electrostatic potential, we
can use the Wannier picture to solve for the Wannier envelope f (n, E). The latter
provides us with the electron distribution | f (n, E)|2 in the device. In vertical devices
which rely on the quantum transport properties of the structure we also need to
calculate the electron current. For this purpose we need to introduce a definition of
current to measure the flux of an electron in a spatially-varying band structure.

Conservation equation
First let us start by verifying that the Schrödinger equation enforces the conservation
of particles. This property results from the hermiticity of the Hamiltonian. We first
write the Schrödinger equation and its complex conjugate:

i h̄
d

dt
f (n, t) =

∑
m

Hnm f (m, t),

−i h̄
d

dt
f ∗(n, t) =

∑
m

H∗
nm f ∗(m, t).

We then multiply the above equations by f ∗(n, t) and f (n, t), respectively:

i h̄ f ∗(n, t)
d

dt
f (n, t) =

∑
m

Hnm f ∗(n, t) f (m, t),

−i h̄ f (n, t)
d

dt
f ∗(n, t) =

∑
m

H∗
nm f (n, t) f ∗(m, t).

By subtracting these equations we obtain

i h̄
d

dt
| f (n, t)|2 =

∑
m

Hnm f ∗(n, t) f (m, t)− H∗
nm f (n, t) f ∗(m, t)

= 2i Im

[∑
m

Hnm f ∗(n, t) f (m, t)

]
.

This equation describes the conservation of particles. Let us rewrite it as

d

dt
| f (n, t)|2 = −2

a

∑
p

j (n, n + p, t)

with j (n,m, t) given by

j (n,m, t) = −a

h̄
Im
[

f ∗(n, t) f (m, t)Hnm
]
.

j (n,m, t) is identified to be an elemental particle current from lattice site n to lattice
site m. Note that these elemental particle currents satisfy the following obvious
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Fig. 3.6. (a) Symbolic representation of the two elemental currents contributing to the total current
in a band Hamiltonian with one Fourier coefficient. (b) Symbolic representation of the six elemental
currents contributing to the total current in a band Hamiltonian with two Fourier coefficients.

property:

j (m, n, t) = −a

h̄
Im
[

f ∗(m, t) f (n, t)Hmn
]

= −a

h̄
Im
[

f (n, t) f ∗(m, t)H∗
nm

]
= − j (n,m, t).

Total particle current definition
A total particle current (flux) can be defined by summing these elemental currents in
the following way:

J (n, t) =
N∑

m=1

m−1∑
p=0

j (n − p, n − p + m, t)+ j (n + p − m, n + p, t).

Let us consider the tight-binding band structure for which N = 1. The total current is
then simply

J (n, t) = j (n, n + 1, t)+ j (n − 1, n, t) for p = 0 m = 1

A graphical representation of this is given in Figure 3.6(a). For a band structure with
two Fourier coefficients N = 2

J (n, t) = j (n, n + 1, t)+ j (n − 1, n, t) (for p = 0 m = 1 )

+ j (n, n + 2, t)+ j (n − 2, n, t) (for p = 0 m = 2 )

+ j (n − 1, n + 1, t)+ j (n − 1, n + 1, t) (for p = 1 m = 2 ).

A graphical representation of this is given in Figure 3.6(b).
As an example let us demonstrate that this total particle current is conserved for an

eigenstate (stationary) solution in the case of two Fourier coefficients. To do this we
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need only to demonstrate that J (n + 1) is equal to J (n): J (n + 1) is given by

J (n + 1) = j (n + 1, n + 2)+ j (n, n + 1)

+ j (n + 1, n + 3)+ j (n − 1, n + 1)

+ j (n, n + 2)+ j (n, n + 2).

J (n + 1) and J (n) are equal because both can be written as

J (n + 1) = J (n) = 2 j (n, n + 1)+ 2 j (n − 1, n + 1)+ 2 j (n, n + 2) (3.12)

if we use the following identities derived from the particle conservation equation (with
(d/dt)| f (n, t)|2 = 0 for an eigenstate solution):

j (n − 1, n)+ j (n − 2, n) = j (n, n + 1)+ j (n, n + 2), (3.13)

j (n, n + 1)+ j (n − 1, n + 1) = j (n + 1, n + 2)+ j (n + 1, n + 3), (3.14)

together with j (m, n) = − j (n,m).

Flat-band case
The definition of the total particle current (flux) holds for an arbitrary spatially-varying
one-band system. Let us verify that in the case of a uniform band it reduces to a
well-known result.

We assume that the electron is in a propagating Bloch state

fk(n) = exp(ikna).

Note that we have | fk(n)| = 1, so that this state is not normalized
∑∞

−∞ | f (n)|2 �= 1.
In a uniform band case we have

Hnm = Em−n.

Let us calculate the following elemental current

j (n − p, n − p + m) = −a

h̄
Im
{
exp[−ika(n − p)]

× exp[ika(n − p + m)]Hn−p n−p+m
}

= −a

h̄
Im
[
exp(+ikam)Em

]
= j (n, n + m).

As we can see this elemental current is independent of the lattice site n considered and
the index p can be dropped. Therefore the total particle current is given by

J (n) =
N∑

m=1

m j (n, n + m)− m j (n, n − m)
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Fig. 3.7. Direction of the electron velocity v(k) and the wave-vector k for the various propagating
waves.

=
N∑

m=−N

m j (n, n + m)

= −a

h̄

N∑
m=−n

m Im
[
exp(ikam)Em

]

= −a

h̄
Im

[
N∑

m=−N

m exp(ikam)Em

]

= −a

h̄
Im

[
1

ia

∂

∂k

N∑
m=−N

Em exp(ikam)

]

= 1

h̄

∂

∂k
E(k).

Since we selected the Wannier envelope function fk(n) to be an unnormalized Bloch
state |k〉 with | fk(n)|2 = 1, the particle current J (n) = | fk(n)|2v(k) (flux = number of
electrons × velocity) we calculated is the electron velocity v(k). The velocity v(k) of
an electron in the Bloch state |k〉 in a uniform band, is therefore given by the gradient
of the band structure:

v(k) = 1

h̄

∂

∂k
E(k). (3.15)

Note that the direction of the electron velocity is not necessarily the same as the wave-
vector k as can be seen in Figure 3.7.
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3.3.3 Matching theory

Let us return now to the heterojunction problem discussed in Section 3.3.1. Near the
interface of a heterojunction the matrix elements of the Hamiltonian are unknown.

It is of interest to consider the case of a heterojunction which simulates a homojunc-
tion. A heterojunction is said to be transparent if like a homojunction it enforces the
conservation of the elemental currents at an interface:

j1(n,m) = j2(n,m),

H1nm f ∗
1 (n) f1(m) = H2nm f ∗

2 (n) f2(m),

}
(3.16)

where f1(n) is the Wannier envelope of semiconductor 1 and f2(n) is the Wannier
envelope of semiconductor 2. Both of these envelopes and Hamiltonians are extended
across the interface as is done in Problem 3.4. In the case of a homojunction we simply
have f1(n) = f2(n) and H1nm = H2nm and the conservation of the elemental current is
obvious. Note that the tight-binding heterojunction is always transparent (see Problem
3.1).

A transparent heterojunction is said to be maximally transparent when the matrix
elements are selected such that an electron of arbitrary energy undergoes to a minimum
reflection at the heterojunction. Maximum transparency is achieved in a transparent
heterojunction located between site i and i + 1 when we have

f2(n) = λ f1(n), (3.17)

where n are the 2N sites around the interface (e.g., for N = 2 n = i−1, i, i+1, i+2).
As is demonstrated in [5] for N = 2 and N = 3 maximum transparency can only be
achieved if the band structures of both semiconductors satisfy

E2(k)− E2,0 = λ2[E1(k)− E1,0],

where E1,0 and E2,0 are the DC (zeroth order) Fourier coefficients of the band structures
E1(k) and E2(k), respectively.

For the tight-binding band (N = 1), maximum transparency is achieved (see [9]
and Problem 3.4) for

A12 = (A1 × A2)
1/2.

Similar results can be obtained for higher order band structures. The Hamiltonian for
N = 2 is shown in Figure 3.8. Transparent matching (see Equation (3.16)) is achieved
for [5]

B12 = A12
B1

A1
,

B21 = A12
B2

A2
.


 (3.18)
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Maximum transparency is achieved for A12 = (A1 × A2)
1/2.

The Hamiltonian for N = 3 is shown in Figure 3.9. Transparent matching (see
Equation (3.16)) is achieved for [5]

B12 = A12
B1

A1
C12 = A12

C1

A1
,
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B21 = A12
B2

A2
C21 = A12

C2

A2
.

Maximum transparency is achieved for

A12 = (A1 × A2)
1/2 C = (C1 × C2)

1/2.

3.3.4 Three-dimensional effects

The existence of the generalized Wannier functions in heterostructures has only
been rigorously demonstrated in the case of one-dimensional crystals [1,2]. Their
extension to a three-dimensional layered system should not, however, raise any
problem. The layered heterostructures considered here are spatially varying along
the superlattice axis x and are uniform in the perpendicular direction (y and z).
In such three-dimensional heterostructures the generalized Wannier functions can
still be labeled with the perpendicular wave-vector k⊥ because the heterostructure
Hamiltonian is translation invariant in the transverse direction and therefore commutes
with the transverse translation operator (see Section 3.2.2).

In a spatially-varying crystal the state |k⊥, n〉 is therefore a generalized Wannier
function at the lattice site n along the superlattice direction and a quasi-Bloch state k⊥
in the perpendicular direction.

Like the Wannier functions these generalized Wannier functions are orthogonal:

〈k′
⊥, n

′|k⊥, n〉 = δn′ n δ(k
′
⊥ − k⊥),

and are assumed here to form a complete basis (generalized one-band approximation).
In this three-dimensional picture the electron wave-function |�〉 is expanded in

terms of the generalized Wannier functions |k⊥, n〉 using the envelope function
f (k⊥, n, t)

|�〉 =
∑

n

∫
f (k⊥, n, t)|k⊥, n〉 dk⊥. (3.19)

As for Wannier functions, the matrix element of the heterostructure Hamiltonian He

in the generalized Wannier function basis is

〈k′
⊥, n′ | He | k⊥, n〉 = He

n′n(k⊥)δ(k′
⊥ − k⊥)

with (assuming slowly varying V (x))

He
n′ n(k⊥) = H0

n′ n(k⊥)− eV (na)δn′ n,

where H0
n′ n(k⊥) is the matrix element of the unbiased heterostructure (generalized

band structure) and V (x) is the applied electrostatic potential sampled at the lattice
site x = na.
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In a general superlattice device the generalized band structure varies with position.
For simplicity of presentation we shall now assume that the generalized band structure
is well represented by an effective-mass approximation in the transverse direction so
that we have

He
n′ n(k⊥) = Hn′ n +

(
h̄2k2

⊥
2m∗(n)

)
δn′ n.

In order to handle the longitudinal variation of the transversal mass it is convenient
to treat the effective spatial variation of the transversal kinetic energy like an effective
longitudinal potential:

He
n′ n(k⊥) = H̃n′ n +

[
h̄2k2

⊥
2m∗(0)

]
δn′ n,

where H̃n′ n is defined using

H̃n′ n = Hn′ n + h̄2k2
⊥

2m∗(0)

[
m∗(0)
m(n)

− 1

]
δn′ n

with the perpendicular energy at site 0 arbitrarily selected as a reference energy.
The three-dimensional Wannier recurrence equation is now

 h̄
d

dt
f (k⊥, n, t) = h̄2k⊥2

2m∗(0)
f (k⊥, n, t)+

NB∑
n′=−NB

H̃n n′ f (k⊥, n′, t). (3.20)

Therefore the effective reference potential H̃n n seen by an electron in a heterostructure
will be dependent upon the perpendicular momentum of the electron and therefore the
angle of incidence of the electron upon the layered heterostructure. In particular, elec-
trons of total energy E = Ex + E⊥ with the same longitudinal energy Ex but different
perpendicular energies E⊥ will experience different quantum heterostructures due to
the variation of the (transverse) effective mass m∗(n) from layer to layer as is shown
graphically in Figure 3.10.

3.4 Multi-band tridiagonal Wannier picture

It is advantageous to model full-band structures with a simpler multi-band tridiagonal
Wannier system. This is presented in detail below.

3.4.1 Multi-band tridiagonal Wannier system

The Hamiltonian of a multi-band tridiagonal system is

NB∑
b′=1

n+1∑
n′=n−1

H(b, b′, n, n′,k⊥) f (b′, n, E,k⊥) = E f (b, n, E,k⊥), (3.21)
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Fig. 3.10. Dependence of the conduction-band discontinuity �Ec upon the transverse momentum
k⊥ due to the variation of the transverse effective mass.

where b is the band index, n is the Wannier lattice site, and f () is the Wannier
envelope function. This Hamiltonian therefore represents a system of NB tridiagonal
Wannier bands and NB envelope functions, which are coupled by the Hamiltonian at
each heterojunction present in the heterostructure system. In the flat-band regions of
the left- and right-hand contacts these NB Wannier bands are decoupled. As for any
physical system the Hamiltonian is Hermitian and we have

H(b, b′, n, n′,k⊥) = H∗(b′, b, n′, n,k⊥).

The multi-band electron current JT (n) through the heterostructure is

JT (n) =
∑

b

∑
b′

[
j (b, b′, n, n + 1)+ j (b′, b, n − 1, n)

]
, (3.22)

where j (b′, b, n′, n) is the elemental current

j (b′, b, n′, n) = Im[H(b′, b, n′, n,k⊥) f ∗(b′, n′, E,k⊥) f (b, n, E,k⊥)]. (3.23)

In Problem 3.5, the reader is invited to verify that the hermiticity of the Hamiltonian
leads to the conservation of this current through the heterostructure. This, in turn,
demonstrates the validity of the proposed current definition since this definition relaxes
to the conventional current definition in contacts where the bands are decoupled (no
interband current).
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In the flat-band contacts as well as in the semiconductor regions away from a
material interface, the Hamiltonian consists simply of NB uncoupled tridiagonal
Wannier bands. At a site n the local band structure of the band b is therefore of the
form:

E(b,k, n) = Ec(b, n)− eV (n)− h̄2

2a2m∗
b(n)

[1 ± cos(kx a)] + h̄2k2
⊥

2m∗
b⊥(n)

, (3.24)

where m∗
b(n) and m∗

b⊥(n) are the longitudinal and transverse effective masses of band
b at site n, V (n) is the electrostatic potential, and Ec(b, n) is the bottom edge of the
band b. Note that the − sign is used when the band minimum is at � and the + sign
when the band minimum is at X .

3.4.2 Effective-mass wave-matching for a two-band Wannier system

The effective-mass matching technique presented earlier for a single Wannier band
system can be applied to a system of two coupled Wannier bands (1 and 2) to establish
the Hamiltonian at the junction of two different materials A and B.

Coupling between the two Wannier bands will take place at each heterointerface.
Let us introduce the following notation for the matrix elements associated with the
tridiagonal band of Equation (3.24):

Ab = H(b, b, n A, n A + 1) = H(b, b, n A, n A − 1) = ∓ h̄2

2a2m∗
A,b
,

Bb = H(b, b, nB, nB + 1) = H(b, b, nB, nB − 1) = ∓ h̄2

2a2m∗
B,b
,

HA/B,b(n) = H(b, b, n A/B, n A/B,k⊥)

= h̄2

a2m∗
A/B,b

+ Ec,A/B(b)− eV (n)+ h̄2k2
⊥

2m∗
A/B,b⊥

,




(3.25)

where n A/B is a site in material A/B, m A/B,b is the effective mass in the band b of
material A/B, and Ec,A/B is the bottom of the band b in material A/B.

The two-band Hamiltonian system associated with the interface located at sites n
and n + 1 between materials A and B is:
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H =




. . .
. . .

. . . |
A1 HA,1 A1 |

A1 HA,1 C12 | C13 C14

C21 HB,1 B1 | C23 C24

B1 HB,1 B1 |
. . .

. . .
. . . |

− − − − − − − − + − − − − − − − −
| . . . . . . . . .
| A2 HA,2 A2

C31 C32 | A2 HA,2 C34

C41 C42 | C43 HB,2 B2

| B2 HB,2 B2

| . . .
. . .
. . .




.

The Wannier equations at the interface are then given by

A1 f A(1, n − 1)+ (HA,1(n)− E) f A(1, n)+ C12 fB(1, n + 1)

+ C13 f A(2, n)+ C14 fB(2, n + 1) = 0,

B1 fB(1, n + 2)+ (HB,1(n + 1)− E) fB(1, n + 1)+ C21 f A(1, n)

+ C23 f A(2, n)+ C24 fB(2, n + 1) = 0,

A2 f A(2, n − 1)+ (HA,2(n)− E) f A(2, n)+ C34 fB(2, n + 1)

+ C32 fB(1, n + 1)+ C31 f A(1, n) = 0,

B2 fB(2, n + 2)+ (HB,2(n + 1)− E) fB(2, n + 1)+ C43 f A(2, n)

+ C42 fB(1, n + 1)+ C41 f A(1, n) = 0,




(3.26)

where the Ci j coefficients are the unknown coupling coefficients.
The application of the transparency wave-matching technique to this two-band

system is outlined below. The complete derivation is left as an exercise (see Problem
3.6) [12]. Applied to this two-band system, transparency matching requires that the
following linear dependence:

f A(1,m) = λ12 fB(1,m)+ λ14 fB(2,m),

f A(2,m) = λ32 fB(1,m)+ λ34 fB(2,m),

holds for both m = n and m = n + 1 across the interface of materials A and B.
Extending the waves f A and fB across the interface and enforcing linear depen-

dence one can verify that we must have C13 = C31 = C24 = C42 = 0 and that the λi j
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coefficients are given by

λ12 = C12

A1
= C43 B1

�
, (3.27)

λ14 = C14

A1
= −C23 B2

�
, (3.28)

λ32 = C32

A2
= −C41 B1

�
, (3.29)

λ34 = C34

A2
= C21 B2

�
, (3.30)

with � = C21C43 − C41C23. Using the hermiticity property Ci j = C∗
j i and the fact

that the coefficients Ai are real, it is found that

� = ±(A1 B1 A2 B2)
1/2. (3.31)

Note that A1 B1 A2 B2 must be a positive number. Inspection of AlAs, AsSb, InAs, InP
and GaAs bands (see Figure 1.13 and [13]) reveals that their conduction bands have a
minimum at � and an extremum at X so that this theory is applicable to these materials
and their alloys.

The hermiticity of the Hamiltonian leads to the requirement

1 = |C12|2
A1 B1

+ |C14|2
A1 B2

, (3.32)

which establishes the following relation between |C14| and |C12|:

|C14|2 = A1 B2

(
1 − |C12|2

A1 B1

)
. (3.33)

In practice we can select a real solution for the Ci j since the coefficients Ai are real
and a phase shift is without consequence on the current. Let us now consider the two
cases in which band 2 has a minimum at � or at X while band 1 keeps its minimum at
� for both.

Case 1: Bands 1 and 2 have a minimum at �
In this case all the Ai are negative and the products Ai Aj are positive. Now since
|C14|2 must be positive, we have from Equation (3.33) that

0 ≤ |C12|2 ≤ A1 B1,

such that in turn we have

0 ≤ |C14|2 ≤ A1 B2.

When the coefficients Ai are all negative, it is then natural to select

C14 = −|C14| and C12 = −|C12|.
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Case 2: Band 1 has a minimum at �, band 2 at X
In this case A1 and B1 are negative and A2 and B2 are positive. Since the product
A1 B2 is negative and the product A1 B1 is positive, the property that |C14| must be
positive requires that we have

|C12|2 ≥ A1 B1 ≥ 0.

Once C12 has been selected, C14 is known and the remaining coefficients can then
be calculated. Substituting � from Equation (3.31) in Equations (3.27) and (3.28)
gives then the final expression for the C43 and C23 coefficients which depends on the
sign of �:

C43 = ±C12

(
A2 B2

A1 B1

)1/2

, and C23 = ∓C14

(
B1 A2

A1 B2

)1/2

. (3.34)

It can be verified that the sign of � does not affect the amplitude of the transmission
coefficient. It is natural, however, to select C43 to have the same sign as A2 and B2.

Note that in the absence of band coupling (C13 = C23 = 0), the coupling theory for
C12 and C43 reduces to the one-band effective-mass matching theory.

3.4.3 Comparison with a full-band model

In this section we shall apply the effective-mass matching theory developed in the
previous section for a two-band system, to the modeling of the � and X valleys of the
conduction band. To test the accuracy of this model we will compare simulation results
obtained with the simple two tridiagonal Wannier band system with those obtained
with a single full Wannier band model.

The band structure along the 〈100〉 direction is written

E(k) =
NW∑

m=1

Em(k⊥) cos

(
pkx a

2

)
, (3.35)

with NW the number of Fourier coefficients Em used.
The GaAs, AlAs and Al0.3Ga0.7As band structures along the 〈100〉 direction used

in our comparison are those shown in Figure 3.4 for k⊥ = 0. Ten Fourier coefficients
Em(0) (NW = 10) are used to fit the bands. These Wannier GaAs and AlAs bands are
obtained from a least square fit of band structure data obtained using a pseudopotential
calculation (see Figure 1.13 and [13]). The Al0.3Ga0.7As band is obtained using
a linear weighted average of the GaAs and AlAs bands. Because of the limit of
this approximation we only consider here GaAs–Al0.3Ga0.7As resonant tunneling
structures (RTDs, see next chapter), test structures for which this interface Hamiltonian
is a reasonable approximation due to the low mole fraction of its barrier.

To account in the two-band model for the non-effective-mass effects in both the
� and X valleys of the bands shown in Figure 3.4 it is necessary to use an energy-
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and position-dependent coefficient A(b, n, E) in each of the tridiagonal bands b of
dispersion E(kx ) = A(b, n, E)[1 ∓ cos(kx a/2)]. For energies for which the wave
is propagating in the valley b (wave-vector kx (b, n) with a zero imaginary part),
A(b, n, E) is selected to be

A(b, n, E) = E − Ec,b(n)− eV (n)

1 ∓ cos{Re[kx (b, n)]a/2} . (3.36)

For energies for which the wave is damped in the valley b (wave-vector kx (b, n) with
a non-zero imaginary part), A(b, n, E) is selected to be

A(b, n, E) = E − Ec,b(n)− eV (n)

1 − cosh{Im[kx (b, n)]a/2} . (3.37)

Note that the same expression is used for both the � and X damped waves. This
originates from the fact that the real part of the complex wave-vector kx is equal to π
in the X valley and 0 in the � valley. In both Equations (3.36) and (3.37) kx (b, n) are
the � and X wave-vectors associated with the solution of

E = E(kx ,k⊥)− eV (n), (3.38)

where E(kx ,k⊥) is the full-band structure corresponding to either GaAs or AlAs at
the lattice site n. For a Wannier model using ten cosine harmonics to represent the
GaAs, AlAs and Al0.3Ga0.7As band structures, the solution of Equation (3.38) using
analytical continuation leads to 20 complex numbers for the wave-vector. The correct
� and X (pure imaginary) roots are to be identified for use in Equations (3.36) and
(3.37) for bands b = 1 and b = 2, respectively (the other roots are evanescent waves
with a very fast decay). This energy-dependent effective-mass implements a non-
effective-mass correction which is of critical importance if the resonances and anti-
resonances in the coupled-band model are to occur at energies similar to those of the
full-band model.

Figure 3.11 compares the various plots of both � to � and � to X left-to-right
transmission coefficients versus incident energy, obtained with the full single-band
model (full line) and the effective-mass matching theory (dotted line). The test
structure consists of an RTD with seven-monolayer GaAs spacers, eight-monolayer
Al0.3Ga0.7As barriers and an eight-monolayer GaAs well. The two-band model result
is obtained using the coupling coefficients of Case 2 (A2 and B2 positive) since band
2 has a minimum at X , and using a weak � to X coupling (A1 B1)

1/2/C12 = 0.999.
The �–X resonances are observed to occur at approximately the same energies. An

improved model is, however, achieved by resetting the backward coupling coefficients
to zero (C23 = C32 = 0), leaving all the other coefficients unchanged. The resulting
� and X transmission coefficients (dashed-dotted lines) are then found to be in even
better agreement at high energies.
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Fig. 3.11. � and X transmission coefficients versus incident energies obtained with the full
single-band model (full line), the effective-mass matching theory (dotted line), and the modified
effective-mass matching theory (dashed-dotted line). (P. Roblin, P. Sotirelis, and G. Cao, Physics
Review B, Vol. 58, No. 19, pp. 13 103–13 114, November 15 1998. Copyright 1998 by the American
Physical Society.)

The modified coupled-band model and the full-band model predict the same type
of resonances (T = 1) and anti-resonances (T = 0) as are demonstrated by the more
detailed comparison in Figure 3.12. This indicates that the modified coupled-band
model correctly implements the physical processes of the � and X valley coupling.
However, the improved fit obtained by setting C23 = C32 = 0 points toward the limit
of applicability of the effective-mass matching theory. Such departures from the ideal
effective-mass matching theory are, however, to be expected in real heterostructures.

3.5 Multi-band density of states

The quantum structure analyzed in the previous section exhibited some complex
resonances and anti-resonances into the electron transmission coefficient. To develop
more insights in the electronic characteristics of a quantum structure it is useful to
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Fig. 3.12. Details of the � and X transmission coefficients for incident energies around the �–X
resonance/anti-resonance obtained using the full single-band model (solid line), and the modified
effective-mass matching theory (dashed-dotted line). (P. Roblin, P. Sotirelis, and G. Cao, Physics
Review B, Vol. 58, No. 19, pp. 13 103–13 114, November 15 1998. Copyright 1998 by the American
Physical Society.)

introduce a local density of states N (E, n) at the lattice site n which will permit us to
locate in both position and energy the resonances and anti-resonances in that quantum
structure.

The density of states N (E, n) at site n is defined by

ρ(n) =
∫

fD(E)N (E, n) d E, (3.39)

with fD(E) the Fermi–Dirac function. We can derive the local multi-band density
function N (E, n) by calculating the local total charge ρ(n) in thermal equilibrium.
In general, the charge distribution in a ballistic quantum system is given by summing
over all the individual charge distributions associated with the electrons injected in all
the bands b′ at the left-hand L and right-hand R contacts:

ρ(x) =
∑

b′

[
ρL(x, b

′)+ ρR(x, b
′)
]
,
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with ρL/R(x, b) given by

ρL/R(x, b
′) = 2

(2π)3

∫∫∫
kx,L/R

fD,L/R(E) |ψL/R(k, x, b′)|2 dk,

where fD,L/R is the Fermi–Dirac distribution in the left- and right-hand contacts.
In our multi-band system the wave-function ψL/R(k, x, b′) is expanded in terms of

Wannier functions w(b, n,k⊥) of the band b:

ψL/R(k, x, b′) =
∑

b

f (b, n, b′,k)w(b, n, r,k⊥),

where we have k = (kx ,k⊥) with kx either the longitudinal wave-vector incident on
the left-hand (kx,L ) or right-hand (kx,R) flat-band contact for ψL and ψR , respectively.
Indeed the contact wave-vectors kx,L/R are not translation invariant throughout the
device unlike the transverse wave-vector k⊥.

A site-average probability of presence can then be obtained by integrating the wave-

functionψ over x in the site interval [a(n− 1
2 ), a

(
n + 1

2

)
]. Using the orthogonality of

the Wannier functions of different bands together with the reasonable approximation
of locality around a single site, we obtain the following identity

∣∣ψL/R(k, n, b′)
∣∣2 = 1

a

∫ a(n+1/2)

a(n−1/2)
|ψ(k, x, b′)|2 dx =

∑
b

∣∣ f (b, n, b′,k)
∣∣2 .

The site average charge distribution can now be rewritten as a summation over the
coupled-bands index b and the incident band index b′ of the various wave-function
contributions to the charge:

ρ(n) =
∑

b′

∑
b

[
ρL(n, b, b

′)+ ρR(n, b, b
′)
]
,

where ρL/R(n, b, b′) is given by

ρL/R(n, b, b
′) = 2

(2π)3

∫∫∫
kx,L

fD,L/R(E) | f (b, n, b′,k)|2 dk. (3.40)

In Problem 3.7 the reader is invited to verify that the envelope f (b, n, b′,k) can be
expressed in terms of the impulse response h(b, n, b′, n′,k). For waves f (b, n, b′,kL)

injected in the left-hand contact (site NL ) or right-hand contact (site NR) in band b′,
we have

f (b, n, b′,kL/R) = j
h̄vL/R(b′, E,k⊥)

a
h(b, n, b′, NL/R, E,k⊥) (3.41)

for n ≥ NL or n ≤ NR,

where vL/R is the velocity (selected positive) of the wave of total energy E injected
into the device in band b′, from the left-hand (L) or right-hand (R) contact.
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The impulse response h(b, n, b′′, n′′, E,k⊥) with total energy E and transverse
wave-vector k⊥ for an excitation at site n′′ in band b′′ is by definition obtained from
the following multi-band tridiagonal equation

NB∑
b′=1

[H−(b, b′, n)h(b′, n − 1, b′′, n′′, E,k⊥)

+ Ho(b, b
′, n,k⊥)h(b′, n, b′′, n′′, E,k⊥)

+ H+(b, b′, n)h(b′, n + 1, b′′, n′′, E,k⊥)]
+ δnn′′δbb′′ = E h(b, n, b′′, n′′, E,k⊥).

Using this identity in Equation (3.40), the charge distribution ρL/R(n, b, b′) is

ρL/R(n, b, b
′) = 2

(2π)3

∫∫∫
kx,L/R

fD,L/R(E)
∣∣ f (b, n, b′,k)

∣∣2 dk

= 2

(2π)3

∫∫∫
kx,L/R

fD,L/R(E)
h̄2v2

L/R(b
′, E,k⊥)

a2

∣∣h(b, n, b′, NR/L ,k)
∣∣2 dk

= 1

a2

2

(2π)3

∫∫
dk⊥
∫ ∞

−∞
d E fD,L/R(E) h̄vL/R(b

′, E,k⊥)

× ∣∣h(b, n, b′, NR/L , E,k⊥)
∣∣2 .

Using the hermiticity of the Hamiltonian, the reader is invited in Problem 3.7 to verify
that the impulse response satisfies the following current-conservation property:

−a

h̄
2 Im[h(b, n, b, n, E,k⊥)] =

∑
b′
vL(b

′, kx,L)
∣∣h(b, n, b′, NL , E,k⊥)

∣∣2
+ vR(b

′, kx,R)
∣∣h(b, n, b′, NR, E,k⊥)

∣∣2 , (3.42)

with kx,R/L obtained from E = E(b, kx,R/L ,k⊥, NL/R). The charge distribution in
thermal equilibrium obtained for fD,L(E) = fD,R(E) = fD(E) is then given by

ρ(n) =
∑

b′

[∑
b

ρL(n, b, b
′)+ ρR(n, b, b

′)

]

= −2

a

∑
b

2

(2π)3

∫∫
dk⊥
∫ ∞

−∞
d E fD(E) Im[h(b, n, b, n, E,k⊥)]

= − 1

aπ

∫ ∞

−∞
d E fD(E)

∑
b

Db

∫ ∞

0
d E⊥ Im[h(b, n, b, n, E, E⊥)],

where we used cylindrical symmetry to introduce E⊥ = h̄k2
⊥/(2m∗

b), satisfying
Db d E⊥ = 2/(2π)2 dk⊥ with Db = m∗b/h̄2π the two-dimensional electron gas
density of states in the band b.
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Using Equation (3.39) which relates the local charge ρ(n) to the local density of
states, we can now identify the local density of states N (E, n) as

N (E, n) =
∫ ∞

0
N (E, E⊥, n) d E⊥,

with N (E, E⊥, n) the partial density of states in the channel E⊥ given by

N (E, E⊥, n) = − 1

aπ

∑
b

Db Im[h(b, n, b, n, E, E⊥)].

Note that in the case of a heterostructure consisting of a single flat band, the impulse
response h(n, n′, E, E⊥) is easily evaluated to be h(n, n′, E, E⊥) = ja/[h̄v(kx )],
with kx obtained from E = E(b = 1, kx , k⊥, n). The single-band density of states is
then simply

N (E, E⊥) = D1

π

1

h̄v(kx )
.

The partial multi-band density of states formula derived above is quite helpful for
establishing the location and the origin of resonances (T = 1) and anti-resonances
(T = 0) in a quantum structure. Consider the RTD structure (to be discussed in
more detail in the next chapter), analyzed in Section 3.4.2. For the purpose of the
identification of the various � and X valley resonances and anti-resonances we will
plot separately the impulse response Im[h(b, n, b, n, E, E⊥)] of each band (valleys)
b.

Figure 3.13 shows the � valley density of states versus longitudinal energy and
position for a zero transverse wave-vector. Figure 3.14 shows the X valley density of
states versus longitudinal energy and position for a zero transverse wave-vector. Art
and science overlap in the � density of states in Figure 3.13, which has the appearance
of a human face. Notice the resonant ground state (no node) revealed as the bottom
high-density structures (mouth) at about 0.2 eV and the first excited state (one node)
as the two top structures (eyes) at about 0.75 eV. One also notices a new structure
located mid-way (nose) at about 0.3 eV corresponding to the coupling between the �
valley of the GaAs well and the X valley of the AlAs barrier as is clearly revealed by
the X density of states shown in Figure 3.14. The X density of states also features an
additional resonance just above the GaAs well and spacers.

The multi-band � and X density of states is seen to find an important application in
the additional identification of both the energy band and spatial origin of the resonance
and anti-resonance, which can arise from the coupling of the � and X valleys. We
will find that the density of states introduced above is also used when calculating
the occupation number as a function of position under non-equilibrium conditions for
which the Fermi–Dirac distribution fD is no longer applicable.
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Fig. 3.13. � valley density of states versus longitudinal energy and position for a zero transverse
wave-vector. The � conduction-band edge is shown using a dashed line. (P. Roblin, P. Sotirelis, and
G. Cao, Physics Review B, Vol. 58, No. 19, pp. 13 103–13 114, November 15 1998. Copyright 1998
by the American Physical Society.)

3.6 Conclusion

In this chapter we have introduced a quantum picture of spatially–varying band
structures using the generalized Wannier picture. A multi-band density of states based
on the impulse response was also introduced for the spatial identification of quantum
resonances. The principal advantage of using the Wannier picture lies in: (1) its
inherent ability to account rigorously for both the spatial variation of the band structure
and its periodicity in k space, and (2) its representation in terms of difference equations
which are easily amenable to a numerical solution.

Armed with this quantum picture we shall present in the next chapter the principal
one-dimensional quantum devices which can be realized using semiconductor hetero-
structures.
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Fig. 3.14. X valley density of states versus longitudinal energy and position for a zero transverse
wave-vector. The X conduction-band edge is shown using a dashed line. (P. Roblin, P. Sotirelis, and
G. Cao, Physics Review B, Vol. 58, No. 19, pp. 13 103–13 114, November 15 1998. Copyright 1998
by the American Physical Society.)
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3.8 Problems

3.1 (a) Verify that the Wannier functions are orthonormal:

〈m|n〉 =
∫ ∞

−∞
w∗(m, x)w(n, x) dx = δmn =

{
1 n = m
0 n �= m.

(b) Verify that the crystal Hamiltonian matrix element in the Wannier representation reduces
to the Fourier coefficients of the band structure.

H0
nm = 〈n|H0|m〉 =

∫ ∞

−∞
w∗(n, x)H0w(m, x) dx

= Em−n = a

2π

∫ π
a

− π
a

exp[−ika(m − n)]E(k) dk

3.2 Consider a quantum well of length L = Na with a flat bottom and infinite walls. Assume that
the potential matrix element is diagonal

Vnm = Vn δnm .

The well potential Vn is then given by

Vn = ∞ for n ≤ 0, (3.43)

Vn = 0 for 1 ≤ n ≤ N − 1, (3.44)

Vn = ∞ for n ≥ N . (3.45)
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Assume that the energy band considered is a tight-binding band E(k) = A − A cos(ka)

(a) Using the Wannier recurrence equation obtain the Wannier envelope f (n, Ep) and the
discrete energies Ep for this quantum well.

(b) Verify that the tight band structure can be approximated by a parabolic band structure
(effective-mass approximation) h̄2k2/2m�, where m� is the effective mass for small
wave-vector k.

(c) Compare the first twelve energy levels calculated with the effective-mass approximation
with those allowed by the tight-binding band for A = 2 eV and N = 10.

3.3 Consider a flat band. The band structure is the tight-binding band structure E(k) = A −
A cos(ka).

(a) Verify that rn is a solution of the Wannier recurrence equation and solve for r in terms of
the energy E .

(b) Verify that we have: |r | = 1 for 0 ≤ E ≤ 2A.

3.4 Consider an heterojunction formed by two tight-binding bands (1 and 2). The junction is
assumed to be located between the lattice sites n and n + 1. There is no electrostatic potential
applied (flat band). On the left-hand side of the junction the band structure is A1 − A1 cos(k1a)
and on the right-hand side of the junction the band structure is A2 −�E − A2 cos(k2a).

We shall study the reflection and transmission of a wave of energy E incident on the left-hand
side of the heterojunction.

r1(E)
m = exp[ jk1(E)ma] for m ≤ n.

The reflected wave is

b × r1(E)
−m = b × exp[− jk1(E)ma] for m ≤ n.

The transmitted wave is

c × r2(E)
m = c × exp[ jk2(E)ma] for m ≥ n + 1.

b and c are unknown coefficients. Let us call f1 the total wave on the left-hand side

f1(m) = rm
1 + b r−m

1

Let us call f2 the total wave on the right-hand side

f2(m) = c rm
2 .

(a) Wave-function matching at the heterojunction: Verify that the matching at the heterojunc-
tion can be expressed by the following set of equations:

f1(n) = λ1 f2(n), (3.46)

f1(n + 1) = λ2 f2(n + 1), (3.47)

with

λ1 = A2

A∗
12
,

λ2 = A12

A1
, (3.48)
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where A12 is the overlap Hamiltonian element that appears in the generalized Wannier
equations at the junction:(

− A1

2

)
f1(n − 1)+ (A1 − E) f1(n)+

(−A12

2

)
f2(n + 1) = 0,

(
− A∗

12
2

)
f1(n)+ (A2 −�E − E) f2(n + 1)+

(−A2

2

)
f2(n + 2) = 0.

Hint: First write the flat-band Wannier equations defining f1(n + 1) and f2(n) across the
heterojunction.

(b) Transparent heterojunctions: Note that A12 can be written as

|A12|2 = λA1 A2,

where λ is defined as λ = λ2/λ1. We wish to establish the value of λ which results in
a maximum transparency of the heterojunction (maximum transmission or equivalently
minimum reflection).

(i) Using Equations (3.46) and (3.47) calculate the unknown coefficient b in terms of
λ, r1, r2, and n.

(ii) Calculate |b|2.

(iii) Verify that λ is a real number and calculate the value of λ for which we have

d|b|2
dλ

= 0.

Assume that A1 and A2 have the same sign.

(c) Current conservation: We know that the current is always conserved. This results from
the hermiticity of the Hamiltonian. Let us verify that the conservation of current is indeed
independent on the value of λ. Note: do not substitute the value for λ derived in the previous
question.

(i) Calculate c using the expression obtained for b. Replace r1 and r2 by their exponential
equivalents and set n = 0 for simplicity.

(ii) Calculate |c|2.

(iii) Calculate the ratio

1 − |b|2
|c|2

and verify that it is equal to v2/v1, where v1 and v2 are the electron velocities in
bands 1 and 2, respectively. Note that this ratio is independent of λ.

3.5 Consider the multi-band Hamiltonian of Equation (3.21).

(a) Following the procedure used for the one-band Wannier picture in Section 3.3.2 derive
an equation for the conservation of particle and current for an eigenstate solution of the
multi-band Hamiltonian of Equation (3.21).

(b) The multi-band electron current JT (n) through the heterostructures is defined by Equa-
tions (3.22) and (3.23). Verify that the hermiticity of the Hamiltonian and the current
conservation equation derived above lead to the conservation of this current through the
heterostructure.
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3.6 Derive Equations (3.27)–(3.30) and verify the expression given for � in Equation (3.31).

3.7 In this problem we derive two important properties of the impulse response given by Equa-
tions (3.42) and (3.42). For simplicity we shall limit the derivation to a single Wannier.

(a) Consider the following equation W satisfied by the impulse h(n, i, E)

W = Hnn−1h(n − 1, i, E)+ Hnnh(n, i, E)+ Hnn+1h(n + 1, i, E)+ δni

= Eh(n, i, E).

Using the hermiticity of the Hamiltonian demonstrate that the impulse response verifies the
following current-conservation equation:

−a

h̄
2 Im[h(i, i, E)] = vL |h(nL , i, E)|2 + vR |h(nR, i, E)|2 ,

where vL and vR are the electron velocities in the left- and right-hand flat-band contacts
located at NL and NR respectively. Hint: Evaluate W h∗(n, i)− W∗h(n, i).

(b) Verify that the envelope function f (n, E) solution of

Hnn−1 f (n − 1, E)+ Hnn f (n, E)+ Hnn+1 f (n + 1, E) = E f (n, E)

can be written as (using i = 0)

f (n, E) = j
h̄v(kx )

a
h(n, 0, E) = h′(n, 0, E) for n ≥ NL = 0.

Hint: Note that the envelope equation for f (n, E) and the impulse equation for h(n, 0, E)
are the same everywhere except at n = 0. Since these difference equations are of the second
order, they will admit the same solution for n ≥ 1 if we have f (0, E) = h′(0, 0, E) and
f (1, E) = h′(1, 0, E).



4 Quantum heterostructure devices

I cannot do it without comp[u]ters.

The Winter’s Tale IV, WILLIAM SHAKESPEARE

4.1 Introduction

New devices can now be realized with thin crystalline epitaxial layers of different
semiconductors. These epitaxial layers can be as thin as a few lattice parameters;
where this occurs, quantum effects become dominant. In the previous chapter we
developed a quantum formalism, the generalized Wannier picture, for the analysis
of quantum heterostructures. In particular, this formalism was shown to account for
both the periodicity in k space of the band structure and its spatial variation. Armed
with these tools we shall now study a variety of quantum devices, literally taking
the electrons through different aerobic exercises. We will start with the fundamental
problem of an electron in a band which is accelerated by a uniform electric field.
Both stationary and time-dependent states will be discussed. Next, we will study the
confinement of electrons in quantum wells and the formation of a two-dimensional
electron gas (2DEG). We will then place a quantum well between two barriers and
study the resonant tunneling of electrons through this system. Finally, we will study
the diffraction of electrons in periodic or aperiodic structures called superlattices.

Before starting we must mention that the observation of quantum effects in devices
requires that the electron wave-function (here the Wannier envelope) interacts coher-
ently within the device heterostructure. This is possible if the electron’s mean free
path is large compared with the main features of the device heterostructures. Usually
this criterion is met for structures smaller than 200 Å. An in-depth study of the impact
of scattering upon the electron wave-function will be given in Chapter 6.
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4.2 The accelerated band electron

We shall now consider the problem of an electron in a uniform band accelerated by an
electric field −F0. The electrostatic potential energy is given by

V (x) = −(−F0)x = F0x .

For simplicity we assume that the electron is in a band with a tridiagonal band structure
given by E(k) = A − A cos(ka). The resulting band diagram for this system is given
in Figure 4.1(a). The Wannier recurrence equation for this system is simply

− A

2
f (n − 1, t)+ (A − qaF0n) f (n, t)− A

2
f (n + 1, t) = i h̄

d f (n, t)

dt
.

We shall study the various solutions of this Wannier recurrence equation which
describes this crystal electron accelerated by the external field F0.

4.2.1 Stark states and the Wannier ladder

Eigenstate solutions
First we study the eigenstate solutions. The Wannier recurrence equation for this
system reduces to

− A

2
f (n − 1, E)+ (A − qaF0n) f (n, E)− A

2
f (n + 1, E) = E f (n, E).

We can rewrite it as

f (n − 1, E)+ f (n + 1, E) = 2qaF0

A

(
A − E

q F0a
− n

)
f (n, E)

f (n − 1, E)+ f (n + 1, E) = 2

X
(γ − n) f (n, E),

with

X = A

qaF0
,

γ (E) = A − E

qaF0
= X − E

qaF0
.

As shown in Figure 4.1(a), 2X is the width of the tilted band. The preceding difference
equation for f (n, E) is recognized as the recurrence equation of the Bessel functions.
This second order difference equation admits two independent solutions given by

Jγ−n(X) and (−1)n Jn−γ (X) for γ non-integer,
Jγ−n(X) and Nγ−n(X) for γ integer.

Jν(X) are the Bessel functions and Nν(X) the Newman functions. Figure 4.1(b)
shows a plot of the Bessel function Jν(X) for X = 10 as a continuous function of
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Fig. 4.1. (a) Band diagram of a tridiagonal band tilted by a uniform electric field. (b) Bessel
Function Jν(10) for continuous values of the index ν and argument X equal to 10.

its real index ν. Notice that for large negative values of ν the Bessel function only
converges to zero for integer values of ν. On the other hand the Neuman function is
known to diverge for both large positive and negative integer values of ν.
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The only physical eigenstate solutions of the Wannier recurrence equation are those
satisfying the boundary conditions f (n = ±∞) = 0 for which the electron wave-
function vanishes in the forbidden regions. These physical boundary conditions are
only satisfied when γ is an integer p. Let us call p the integer value of γ . We can then
write

p = γ = A − Ep

qaF0
.

The electron energy is then quantized

Ep = A − p × qaF0.

These quantized energy levels form the Wannier ladder. A symbolic representation of
this is presented in Figure 4.2.

The eigenstate Wannier envelope functions are then

fp(n, t) = Jp−n(X) exp

(
−i

Ept

h̄

)
.

Such a state is called a Stark state. Each Stark state is centered on a lattice site. Note
that the Bessel function satisfies the property

∞∑
n=−∞

J 2
n (X) = 1, (4.1)

so that the Stark state given above is already normalized.
The Wannier ladder has never been experimentally observed in bulk crystals, at least

not without controversy [23]. Phonon scattering, which limits the Stark state lifetime,
is thought to destroy the Wannier ladder by broadening (smearing) the energy levels.
According to the uncertainty principle the energy width �E is given approximately
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by h̄/�t , where �t is the electron lifetime. For the Wannier ladder to exist the energy
width�E must be much larger than the energy broadening associated with scattering.
Most of the experimental searches for the Wannier ladder have been performed for
large electric fields F0 > 100 kV/cm when the energy levels q F0a are spaced far
apart. For such large fields, competing processes such as interband tunneling can then
prevent the observation of Wanner ladders. There has been a revival of interest in the
Wannier ladder. Indeed as we shall see in Section 4.5, smaller bands of energy with
band structures similar to the tight-binding model used in our analysis can be created
in a superlattice. The existence of the Wannier ladder in a superlattice band tilted by
a uniform electric field has been confirmed by optical experiments [22]. There are,
however, no electron devices which make use of it as of yet. However, a device called
the Zener oscillator has been proposed in [27], and its ideal DC quantum states are
described below.

Zener resonant tunneling
In Figure 4.3(a) we show a heterostructure device which has been proposed for feeding
a Zener resonator. We limit our discussion here to the static case in which the applied
electric field is not time-varying.

The wave-function on the left-hand side is simply a plane wave:

f (n) = exp[ik(E)na] + b(E) exp[−ik(E)na],

where k(E) is the electron wave-vector and E the electron energy. The solution of
right-hand side which converges properly for all values of γ (E) is

f (n) = c(E)(−1)n Jn−γ (E)(X).

The matching of the left- and right-hand sides at n = 0 and n = 1 leads to

1 + b(E) = c(E)J−γ (E)(X),

exp[ik(E)a] + b(E) exp[−ik(E)a] = −c(E)J1−γ (E)(X),

giving the reflection coefficient

b(E) = −
J1−γ (E)(X)
J−γ (E)(X)

+ exp(ika)

J1−γ (E)(X)
J−γ (E)(X)

+ exp(−ika)

Since no scattering is allowed for in this DC model we have |b(E)| = 1.
Of interest is the amplitude H(E) of the standing wave inside the tilted band. From

the normalization property of the Bessel function (see Equation (4.1)), the amplitude of
the standing wave Jn(X) is approximately 1/(2X)1/2 since the standing wave extends
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only over 2X lattice sites. It follows that the amplitude H(E) of the standing wave
inside the tilted band is given approximately by

H(E) = |c(E)|
(2X)1/2

= 1

(2X)1/2

∣∣∣∣ 1 + b(E)

J−γ (E)(X)

∣∣∣∣ .
The amplitude squared [H(E)]2 is plotted in Figure 4.3(b) for the case of �E =
0.05 eV, X = 200, and A = 1 eV. This allows �E/(qaF0) = 10 resonant peaks. The
higher the energy, the smaller the effective barrier length and the broader and lower
the peaks. In addition, a shift of the resonant peak from the initial Wannier ladder is
observed. This process can be referred to as Zener resonant tunneling. Such a quantum
heterostructure subjected to a time-varying electric field has been proposed to induce
time-varying Zener oscillations. A discussion of time-varying Zener oscillations is
given next.

4.2.2 Time-dependent solutions and the Houston state

Let us come back to the time-dependent Wannier recurrence equation of an electron
accelerated by an electric field F0

− A

2
f (n − 1, t)+ (A − qaF0n) f (n, t)− A

2
f (n + 1, t) = i h̄

d

dt
f (n, t). (4.2)

This equation admits a time-dependent solution of the following form

fk(0)(n, t) =
(

2π

a

)1/2

exp [ik(t)na] exp

(
−i

At

h̄

)

× exp

{
i A

qaF0
[sin k(t)a − sin k(0)a]

}
,

with k(t) given by

k(t) = k(0)+ q F0t/h̄.

We can rewrite this function in a more general form which holds for any type of band
structure (tridiagonal or not)

fk(0)(n, t) =
(

2π

a

)
exp[ik(t)na] exp

[
− i

q F0

∫ k(t)

k(0)
E(k) dk

]
.

This time-dependent solution is called a Houston state. A Houston state is simply a
phase-modulated Bloch state whose wave-vector k(t) is drifting in reciprocal space.
The Houston state is represented symbolically in Figure 4.2(b) by a line since like a
Bloch function the Houston function extends over the entire crystal.
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Note that the time evolution of the quasi-momentum h̄k(t) obeys Newton’s law for
a classical particle accelerated by the electric field −F0:

d

dt
h̄k(t) = q F0.

This result is referred to as the acceleration theorem in a crystal. Note, however,
that the quasi-momentum assumes a different meaning in a crystal compared to a free
electron system. Indeed, the quasi-momentum h̄k(t) is not the expected value of the
momentum operator in the crystal. The quasi-momentum h̄k(t) is not usually the
product of a velocity times a mass except in the vicinity of an extremum of the band
structure, where we indeed have h̄k(t) = m∗v(t). Elsewhere, the concept of mass has
no practical meaning, and we must resort to another approach to calculate the electron
velocity.

Using the definition of the current given in Section 3.3.2 one can easily verify that
the velocity of the electron in a Houston state is the same as that of an electron in the
Bloch state |k(t)〉 at a time t :

v(t) = 1

h̄

∂

∂k
E(k(t)).

Let us assume that the electron is located at the position x(t) in the lattice. By
integrating the equation

v(t) = dx(t)

dt

we obtain that the electron position is given by

x(t) = x(0)+ 1

q F0

[
E(k(t))− E(k(0))

]
.

As a result of the periodicity of the band structure in k space, the electron oscillates
back and forth in the tilted band. However, the actual position x(0) of the electron is
unknown. This oscillation is called a Bloch oscillation.

4.2.3 The Bloch oscillator

In bulk semiconductors the electron does not remain ballistic long enough for this
oscillation to be observed. The ballistic trajectory of the electron is interrupted by
scattering on the vibrations (phonons) or impurities and defects of the lattice. Esaki
and Tsu have proposed a superlattice device, the Bloch oscillator, which provides a
negative differential resistance if the electrons complete a large enough portion of the
Bloch orbit in the miniband of a superlattice [20]. The electron velocity reduces when
the electrons reach the inflection point of the miniband structure (k = π/2a) and is
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even inverted if they reach the top of the miniband structure. Using a classical analysis,
Esaki and Tsu estimated the average electron velocity vd for a scattering time τ to be

vd = π h̄

m∗
SLaSL

ζ 2

1 + π2ζ 2
,

where m∗
SL and aSL are the superlattice mass and lattice parameters and where

ζ = q F0aSLτ/π h̄ is a normalized field. We assume a tight-binding band structure for
the superlattice. The velocity–field relation vd/F0 reaches a maximum for πζ = 1.
For larger electric fields a negative differential mobility is therefore expected. This
in turn induces a negative differential resistance in the I –V characteristics of the
superlattice. The condition for negative differential resistance is easier to achieve
than the requirement for ballistic Bloch oscillations. The observation of negative
differential resistance in the Bloch oscillator has been reported by Sibille et al. [29].
More work is necessary, however, to improve the performance of this device. The
reader is referred to [52] for further theoretical discussion.

4.2.4 Coherent and squeezed Zener oscillations

In a Houston state, the electron wave-function extends over the entire crystal. Due
to the presence of phonon scattering and impurity scattering, it is more realistic to
picture the electron in a wave-packet of Houston states. Houston states of different
initial wave-vectors fk(0)(n, t) form a complete basis in the one-band approximation
as do also the Stark states fp(n, t). Furthermore, both Houston states and Stark states
are orthonormal

∞∑
n=−∞

fk(0)(n, t) f ∗
k′(0)(n, t) = δ(k(0)− k′(0)),

∞∑
n=−∞

fp(n, t) f ∗
p′(n, t) = δp p′ .

Any electron state f (n, t) solution of Equation (4.2) can therefore be written in terms
of a wave-packet sp of Stark states fp(n, t) or a wave-packet h[k(0)] of Houston states
fk(0)(n, t)

f (n, t) =
∞∑

p=−∞
sp fp(n, t)

=
∫ π

a

− π
a

h(k(0)) fk(0) dk(0).

Wave-packets of Houston states and Wannier states have been studied in detail in
[26] (see also [2] for the case in which no electric field is applied). A wave-packet



106 Quantum heterostructure devices

of Houston states permits us to create a classical-like electron with an effective ‘size’
(range of the electron distribution) calculated using

�n(t) =
(
〈x2〉 − 〈x〉2

) 1
2

with

〈x2〉 =
∞∑

n=−∞
| f (n, t)|2 n2

〈x〉 =
∞∑

n=−∞
| f (n, t)|2 n.

The effective size �n(t) is a periodic function of time for the ballistic electron.
Therefore, unlike the plane wave of an electron in free space, the wave-function of
the ballistic electron in a crystal band does not spread forever since �n(t) is periodic
in time. It is shown in [26] that there exist special wave-packets for which the electron
‘size’ (a) is a fraction of the Zener orbit and (b) remains nearly constant in time. Such
states for which both position and velocity are known may be called coherent states.
They bear similarities to the Glauber states [1,2] (to be discussed in Chapter 5), which
describe the states of the light generated by a laser for which both the amplitude and
phase of the light are known. Note, however, that Glauber states are derived as the
states realizing the minimum uncertainty product possible in the uncertainty principle
governing the phase and amplitude uncertainties. For accelerated electrons it can be
verified [26] that the equality in the uncertainty principle �k�x = 1 is only achieved
by the Houston state �k = 0.

It is also shown in [26] that there exist special wave-packets for the accelerated elec-
tron for which the electron wave-function extends over only a few lattice parameters
for a short duration. This kind of state is called a squeezed state. The period over
which the electron wave-functions can maintain a tight (minimum) spatial extension
is short and usually compares with the lifetime of a Houston function.

So far our quantum analysis of an electron accelerated by an electric field has not
included the scattering in three-dimensional of this electron by vibrations or defects.
A realistic and definitive theory of quantum transport requires the inclusion of these
scattering processes. We postpone such a realistic analysis to Chapter 6 and consider
below other important quantum systems.

4.3 Quantum wells

A quantum well, in the general use of this term, is a potential structure which spatially
confines the electron. The quantum wells grown by MBE most readily provide
a one-dimensional confinement along the superlattice axis. According to quantum
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Fig. 4.4. AlGaAs/GaAs/AlGaAs quantum well.

mechanics, an electron subjected to potential confinement has its energy quantized
and a discrete energy spectrum would be expected for the electron system. However,
the electron remains free to move in the perpendicular direction. As we shall see this
results in the creation of a two-dimensional electron gas.

4.3.1 Rectangular quantum wells

The case of a potential well with infinite walls was studied in detail in Problem 3.2 for
a tight-binding band structure. In practice such a quantum well can be realized at the
bottom of the conduction band and at the top of the valence band by using a narrow-
bandwidth semiconductor sandwiched between two wide-band semiconductors.

An example is the AlGaAs/GaAs/AlGaAs structure shown in Figure 4.4. The
bandgap of AlmGa41−mAs for an Al mole fraction m is given by

Eg = 1.424 + 1.247m(eV).

Note that only 68% of the variation of the bandgap �Eg which results between
AlGaAs and GaAs appears as a shift of the conduction band edge �Ec

�Ec = 0.68�Eg.

A quantum well is present in both the conduction and valence bands. In the valence
band, holes instead of electrons are now trapped in the quantum well. The quantum
well confinement enhances the radiative recombination of electron–hole pairs between
the conduction and valence quantum wells in two ways. It prevents the diffusion of
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Fig. 4.5. Band diagram of an n+-AlGaAs/i-GaAs heterojunction (a) before equilibrium and (b) at
equilibrium. A triangular quantum well is created in the conduction band at the interface.

carriers and enhances the concentration of electron–hole pairs. It provides a dielectric
wave-guide which confines the light emitted in the plane of the quantum well and in
turn enhances stimulated emission. As a result, the threshold current for stimulated
emission is reduced by several orders of magnitude and the lifetime of the device
is increased. The use of a quantum well was therefore an important step in the
development of usable semiconductor lasers.

4.3.2 Quantum well induced by an electric field

Quantum wells can also be realized by the confines of the built-in electrostatic barrier
and the band discontinuity at the interface of a heterojunction. Consider the example
shown in Figure 4.5(a) of a heterojunction formed by growing a strongly doped
n+-AlGaAs layer on top of an intrinsic i-GaAs layer. Due to the large difference
in chemical potential some of the electrons transfer from the n+-AlGaAs layer to
the i-GaAs layer. This creates an electrostatic potential which balances the chemical
potential until the Fermi levels (electrochemical potential) are aligned at equilibrium
(Figure 4.5(b)).

The fabrication of such a structure is made possible thanks to the rapid variation
of the doping concentration which can be realized in MBE growth. This technique,
referred to as modulation doping, was first demonstrated for the n+-AlGaAs/i-GaAS
heterostructure by Dingle et al. [30].

A large built-in electric field F0 results at the interface. The potential at the interface
can be approximated by that of a triangular well:

Ep(x) =
{

q F0x for x > 0
∞ for x ≤ 0 .

According to our discussion of the accelerated electron, the eigenstate inside the
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triangular well (n ≥ 0) is a Bessel function Jγ (E)+n(X), with E the eigenvalue. The
eigenvalue E is obtained by imposing the boundary condition of an infinite wall at
n = 0:

Jγ (E)(X) = 0.

In the effective-mass limit (vanishing lattice parameter a) X is large, and the zeros of
the Bessel function for small energy E reduce to the zeros of the Airy function, which
are approximately given by

z = −
[

3π

2

(
p + 3

4

)]2/3

,

with

z = (γ (E)− X)

(
1

X

)1/3

.

The energies Ep referenced to the bottom of the well are then found to be given for
small indices p by

Ep =
(

h̄2

2m∗

) 1
3
[(

3

2
πq F0

)(
p + 3

4

)] 2
3

,

where m∗ is the electron effective mass. In Chapter 8 we will make use of the triangular
quantum well to analyze the MODFET capacitor.

4.3.3 Quantum wells of arbitrary shapes

Note that calculation of the quantized energy levels in a quantum well of arbitrary
shape is the solution of an eigenvalue problem. The eigenvalue problem can be greatly
simplified if we can introduce infinite walls as boundary conditions. It is usually
possible to do this far from the quantum well itself (after all the sample always has
a finite size). In that case the eigenvalue problem reduces to that of the calculation of
the eigenvalues of the Hamiltonian matrix [H ]

[H ][ f ] = E[ f ],

where the matrix elements of [H ] are Hnm = 〈n|H |m〉.
Note that for a quantum structure NSL lattice parameters long, the matrix H

is an NSL × NSL matrix. The calculation of the eigenvalues for large matrices
requires special numerical techniques. In the case of a tight-binding Hamiltonian, the
Hamiltonian matrix is a tridiagonal matrix, and very powerful techniques are available
to calculate the eigenvalues [38] of large tridiagonal matrices.
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Fig. 4.6. Locus of the energies of a 0.5 eV GaAs well as a function of well width.

4.3.4 Full-band structure effects

To visualize full-band structure effects, consider now a quantum well 0.5 eV deep
but with the same GaAs band structure in the well and the barriers. The locus of the
energies obtained for such a GaAs well is shown in Figure 4.6 as a function of the well
width. The perpendicular wave-vector of the electron is zero. For high energy, one
can see that the quantum well energies associated with the � valley interact with the
quantum well energies of the X valley. These interactions are revealed by the mutual
repulsion of the energy locus at their expected crossings.

4.3.5 2DEG

So far we have only discussed the extension of the electron wave-function along the
superlattice direction. We will now account for the three-dimensional nature of the
electron and the lattice.

We have seen in Chapter 3 that we can assume the electron to be in a Bloch
state |k⊥〉 in the direction perpendicular to the superlattice axis x . Let us consider
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a three-dimensional band structure model consisting of the tight-binding model A −
A cos(kx a) along the superlattice direction x and the effective-mass band structure
perpendicular to the superlattice. The total energy of the electron in a flat band is
therefore given by the crystal band structure E(k):

E(k) = h̄2

m∗a2
[1 − cos(kx a)] + h̄2

2m∗
(

k2
y + k2

z

)

= h̄2

m∗a2
[1 − cos(kx a)] + h̄2

2m∗
(

k2
⊥
)
,

using k2
⊥ = k2

y + k2
z . Note that the Fourier coefficient A of the band structure can

be selected here so that we have for small kx values an isotropic effective-mass band
structure:

E(k) � h̄2

2m∗
(

k2
x + k2

y + k2
z

)
for small kx .

Let us first consider the case in which the superlattice in the x direction is a
quantum well of arbitrary shape. The electrons are confined in the quantum well
along the x direction but remain free to move perpendicular to the superlattice.
The three-dimensional electron gas has been virtually reduced to a 2DEG. Inside
the quantum well, the longitudinal one-dimensional component E(kx ) of the total
three-dimensional electron energy E is quantized and we label it Ep. The total electron
energy E is therefore

E = Ep + E(k⊥) = Ep + h̄2

2m∗ (k⊥)2.

We see that each energy level Ep is associated with a two-dimensional energy subband.
The superlattice therefore has transformed the three-dimensional band structure into
as many two-dimensional subbands as there are quantized energy levels Ep. This is
represented graphically in Figure 4.7(a).

We now wish to calculate the electron concentration (population) of these subbands
when the 2DEG system in the quantum well is in thermal equilibrium.

Density of states in k⊥ space
First, let us calculate the density of states in the k⊥ space. The density of states N (ky)

along the y direction is defined as

N (ky) = number of electron states in the interval [ky, ky + dky]

dky
.

This is usually calculated using the periodic boundary condition. The periodic
boundary condition is a mathematical device which permits us to switch from the
continuous ky wave-vector of the infinite (−∞ ≤ y ≤ ∞) crystal to a discrete set of
ky wave-vectors for a finite crystal of length L y with 0 ≤ y ≤ L y = Nya.
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Fig. 4.7. (a) Two-dimensional subband associated to each energy level Ep . (b) Population of the
subbands at T = 0 K for a Fermi energy EF inside the conduction band.

A sample of length L y = Nya is made of Ny atomic layers. Let us assume that it
can be bent into a circle with a circumference L y . The electron wave-function is now
periodic. In the Wannier picture the envelope function of a Bloch wave ky satisfies

f (ky, n) = f (ky, n + Ny),

exp(ikyna) = exp[iky(n + Ny)a]. (4.3)

Therefore the wave-vector ky is quantized

ky,p Nya = 2pπ (4.4)

ky,p = 2pπ

Nya
= 2pπ

L y
.

Since the wave-vector ky,p is limited to the Brillouin zone

−π
a

≤ ky ≤ π

a
,

the integer p is limited to the range

− L y

2a
≤ p ≤ L y

2a
,

− Ny

2
≤ p ≤ Ny

2
.


 (4.5)
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There are consequently Ny Bloch waves ky,p. Indeed there are as many Bloch states
|ky〉 as there are lattice layers along the y axis.

Since the wave-vectors are uniformly distributed in the Brillouin zone, the density
of states Ny is simply

N (ky) = Ny

2π/a
= L y

2π
.

Note that a quantum well of length L y can be used instead of a periodic boundary
condition to calculate the density of states. It is easily verified that the same density
of states N (ky) results although the quantized stationary waves of the quantum well
have slightly different distributions in k space than the quantized Bloch waves of the
periodic boundary model.

The 2DEG density of states N (k⊥) is now given by

N (k⊥) = 2
L y

2π

Lz

2π
= A

2π2
,

where a factor 2 is used to account for the electron spin degeneracy and where A =
L y Lz is the sample cross-section perpendicular to the superlattice axis.

Density of states in E space
Next we shall calculate the density of states in energy space. The density of states
N (E) at the energy E is defined as

N (E) = number of electron states in the interval [E, E + d E]

d E

N (E) d E = N (k⊥) d S(k⊥),

where we have

E = Ep + h̄2k2
⊥

2m∗ ,

S(k⊥) = πk2
⊥.

Using the following identities:

d E = h̄2

m∗ k⊥ dk⊥,

d S(k⊥) = 2πk⊥ dk⊥,

we obtain

N (E)
h̄2

m∗ k⊥ dk⊥ = A

2π2
2πk⊥ dk⊥.
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After canceling identical terms the 2DEG density of states N (E) is found to be

N (E) = m∗

h̄2

A

π
.

The density of states D per unit area, of the 2DEG,

D = N (E)

A
= m∗

h̄2π
,

is seen to be a constant.

Fermi–Dirac statistics in a 2DEG
Let us now evaluate the 2DEG population of a subband p in thermal equilibrium. The
number of electrons per unit area nS,p populating the subband Ep is calculated using
Fermi–Dirac statistics:

nS,p =
∫ ∞

Ep

D
1

exp

(
E − EF

kB T

)
+ 1

d E

= DkB T ln

[
exp

(
EF − Ep

kB T

)
+ 1

]

where EF is the Fermi level. The total electron concentration per unit area nS of the
2DEG is then given by summing over all the subbands p:

nS =
∞∑

p=1

nS,p

= DkB T
∞∑

p=1

ln

[
exp

(
EF − Ep

kB T

)
+ 1

]
.

This result permits us to calculate the population of a 2DEG system once the discrete
energy levels Ep of the quantum well under consideration have been obtained by
solving the Wannier recurrence equation. Note that since we have used Fermi–Dirac
statistics, the nS–EF relation obtained is valid for both degenerate (metallic) and
non-degenerate (diluted solution) populations of these energy levels. The population
of the energy subbands at 0 K is represented graphically in Figure 4.7(b) for a Fermi
energy EF in the conduction band.

Note that for each subband, the distribution along the x (superlattice) axis of the
2DEG concentration nS,p is given by the normalized eigenvector | f (Ep, n)|2 of the
subband considered. The 2DEG charge distribution in turn affects the built-in potential
seen by each electron, and the Schrödinger and the Poisson equations must therefore
be solved self-consistently. A more complete discussion of the analysis of such a
numerical problem is postponed to Chapter 8.
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The formation of a 2DEG by modulation doping in a heterostructure has been
used to create a new field-effect transistor (FET) often referred to as the Modulation
Doped FET (MODFET). For obvious reasons, the MODFET is also referred to
as a Two-dimensional Electron Gas FET (TEGFET) or a High Electron Mobility
Transistor (HEMT). Indeed, in a MODFET the 2DEG is used as the channel of a
field-effect transistor. The electrons in the 2DEG channel move in an intrinsic material
and experience reduced scattering. The resulting high mobility in the channel has
permitted impressive low-noise and high-speed performance. In Chapter 8 we discuss
the control of this 2DEG channel by a Schottky-barrier contact.

4.4 Resonant tunneling

We shall now study a vertical device which relies on the wave properties of the
electron for its operation. Consider the heterostructure shown in Figure 4.8(a). The
conduction band-edge of this device forms two potential barriers. The region between
the two barriers defines a virtual quantum well since the electrons can escape the
well confinement by tunneling. We shall see that for electrons with an energy
corresponding approximately to the virtual resonant energy level of the quantum
well, the transmission coefficient is 1. That is, an electron with this resonant energy
can cross the double barrier without being reflected. This resonance phenomenon is
similar to that taking place in the optical Fabry–Perot resonator or in a microwave
capacitively-coupled transmission-line resonator.

4.4.1 Double-barrier system

The double-barrier structure is readily studied using the Wannier recurrence equation.
Let us assume that a Bloch wave of energy E is incident on the left-hand side of
this quantum structure. An arbitrary amplitude of 1 is selected for the incident wave.
No attempt is made to normalize the wave-function since this of no consequence for
the calculated transmission and reflection coefficients we calculate below. A reflected
wave of the same energy E and unknown amplitude b(E) is expected. The resulting
envelope function on the left-hand side of the quantum structure is then

f1(n, E) = exp[ik1(E)na] + b(E) exp[−ik1(E)na].

On the right-hand side of the quantum structure we expect a transmitted wave of
unknown amplitude c(E):

f2(n, E) = c(E) exp[ik2(E)na].

Note that the Wannier recurrence equation provides us with the means to calculate
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Fig. 4.8. Band diagram of a double barrier: (a) in equilibrium (V = 0), (b) when the current is
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f1(n + 1, E) from f1(n − 1, E) and f1(n, E)

f1(n + 1, E) = − f1(n − 1, E)+ 2

(
A + Vn − E

A

)
f (n, E),

where Vn is the diagonal potential of the quantum structure considered. Assume
now that the quantum structure is located between site 0 and NSL . We can apply
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the Wannier recurrence equation to cross the heterostructure from n = 0 to n =
NSL + 1 and calculate f1(NSL + 1, E) and f1(NSL + 2, E) in terms of f1(−2, E) and
f1(−1, E). The unknown coefficients b(E) and c(E) are then obtained by solving the
following system of equations:

f1(NSL + 1, E) = f2(NSL + 1, E),

f1(NSL + 2, E) = f2(NSL + 2, E).

From our discussion of the conservation of electron current we know that we must
have

[
1 − |b(E)|2]1

h̄

∂E1(k1)

∂k1
= |c(E)|2 1

h̄

∂E2(k2)

∂k2
.

Introducing v1 and v2, the electron velocities in semiconductors 1 and 2, we can simply
rewrite the current conservation as

v1(1 − |b(E)|2) = v2|c(E)|2

1 − |b(E)|2 = v2

v1
|c(E)|2

1 − R(E) = T (E),

where we have introduced the reflection coefficient R and the transmission coefficient
T defined respectively as

R(E) = |b(E)|2,
T (E) = v2

v1
|c(E)|2.

For a symmetrical double-barrier structure with a well width Ma and with no
voltage applied, the following analytic expression (see Problem 4.1) can be obtained:

T2B(E) = |t2B |2 = 1

1 + 4
RB(E)

T 2
B(E)

sin2[k1(E)Ma − θ(E)]
, (4.6)

where k1(E) is the wave-vector in the well for an incident electron of energy E ; RB

and TB = 1 − RB are the reflection and transmission coefficients respectively of the
barriers; θ is the angle of the scattering parameter of the barrier rB = √

RB exp(−iθ)
(see Problem 4.1).

The transmission is a function of the energy E of the incident electron and a plot
of the transmission coefficient T (E) versus E is shown on Figure 4.9(a) for various
biases. The transmission coefficient varies between 1 and T2B(min). The peaks
(T2B = 1) occur for k1(E)Ma − θ(E) = π . For small values of θ (large barriers)
these peaks occur for energies corresponding to the resonant energy levels of the



118 Quantum heterostructure devices

0 0.1 0.2 0.3 0.4 0.5 0.6

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

T
ra

ns
m

is
si

on
 c

oe
ffi

ci
en

t

Energy (eV)

VD =0 V

VD =0 V

VD =0.8 V

VD =0.8 V

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
–0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

9

Voltage (V)

C
ur

re
nt

 d
en

si
ty

 (
A

/m
  )2

300 K                 
Maximum charge in well
77 K                  

(b)

Fig. 4.9. (a) Transmission coefficient versus incident energy of a symmetric double barrier. (b) I –V
characteristic of this double-barrier diode at 300 K (full line) and 77 K (dashed line). In both plots
the applied voltage varies from 0 to 0.8 V in steps of 0.08 V.
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inner quantum well k1(E)Ma = π . The minimum transmission coefficient T2B(min)
(off-resonance) can be reduced by using a large barrier width (RB = 1 − TB large).
However, if the barriers are too large, the transmission peaks become so narrow that
scattering can easily suppress them by broadening. In this analysis we have assumed
that the electron is ballistic, that is, the electron energy is conserved. In Chapter 6 we
will discuss the impact of phonon scattering upon the transmission coefficient T (E).

For more complex structures and for applied voltages, the transmission coefficient
is readily calculated numerically using the Wannier recurrence equation. The trans-
mission coefficient can only reach unity transmission at resonance when the potential
barriers are symmetric. Therefore, a unity transmission is not achieved in a symmetric
double barrier when a voltage is applied.

For larger wells, the first resonant energies are reduced in energies and smaller ap-
plied voltages are required to suppress the resonant tunneling such that the asymmetry
is reduced. Sometimes a larger barrier is also used on the right-hand side (where the
positive polarity is applied) to compensate for the asymmetry introduced by the applied
electrostatic potential.

A formula which allows us to calculate the total tunneling current is derived in the
next section.

4.4.2 Tunneling current and resonant tunneling

The resonant tunneling effect can be used to make a diode that exhibits a large negative
differential resistance in its I –V characteristics (see Figure 4.9(b)). This was proposed
by Tsu and Esaki [32] and verified experimentally by Chang et al. [19] and more
recently by Sollner et al. [31]. Since then, this device has been extensively studied
because of its high-speed performance and its potential use in the design of high-speed
electronic circuits.

Consider the simplified band diagram shown in Figure 4.8(a). A degenerate
(strongly doped) semiconductor is used on each side of the double-barrier structure.
When no voltage is applied (Figure 4.8(a)) electrons are incident from the left and the
right, and due to the symmetry of the device, no current results as should be the case
in equilibrium. When a small voltage is applied (see Figure 4.8(b)) the symmetry is
broken. Now only electrons from semiconductor 1 can tunnel through the resonant
energy level of the quantum well to semiconductor 2, and a large current is observed.
When a larger voltage is applied (see Figure 4.8(c)), the resonant energy level of
the quantum well is lowered below the energy band of semiconductor 1. Resonant
tunneling is no longer possible and the diode current rapidly drops. For even larger
applied voltages, thermal emission over the barrier and Fowler–Nordheim tunneling
through the barrier become important and the diode current again rises rapidly. Note
that this device is symmetric as are its I –V characteristics.

We now wish to derive an expression that enables us to calculate the current through
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a vertical quantum device such as a double barrier or a superlattice. We start by
calculating an expression relating the three-dimensional electron gas concentration to
the 2DEG concentration.

The three-dimensional electron gas concentration is given by

N =
∫ ∞

−∞
N (k)

1

exp

(
E − EF

kB T

)
+ 1

dk,

where N (k) is the density of states in k space

N (k) = 2
V

(2π)3
= V

4π3
= 1

2π

V

2π2

and V is the crystal volume.
Using

n = N

V
,

E = E1,0 + A − A cos(kx )+ E(k⊥),

k2
⊥ = k2

y + k2
z ,

E(k⊥) = h̄2k2
⊥

2m∗ , (4.7)

we can readily rewrite the three-dimensional electron gas concentration n per unit of
volume as

n = 1

2π

∫ π/a
−π/a

dkx




1

2π2

∫ ∞

−∞

∫ ∞

−∞
dky dkz

1

exp

[E(kx )+ E(k⊥)− EF

kB T

]
+ 1




n = 1

2π

∫ π/a
−π/a

dkx




m∗

π h̄2

∫ ∞

0
dE(k⊥)

1

exp

[E(kx )+ E(k⊥)− EF

kB T

]
+ 1




n = DkB T
1

2π

∫ π/a
−π/a

[
ln

{
1 + exp

[
−E(kx )+ E(k⊥)− EF

kB T

]}]∞
0

dkx

n = DkB T
1

2π

∫ π/a
−π/a

ln

{
exp

[
EF − E(kx )

kB T

]
+ 1

}
dkx

Consider now a quantum structure starting with the band 1 E1(k1x ) on the left-hand
side and ending with the band 2 E2(k2x ) on the right. Electrons incident (k1,x > 0) on
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the left-hand side (1) generate the following current:

J→ = DkB T

2π

∫ π/a
0

qT12(E1(k1x ))v1(E1(k1x )) ln

{
exp

[
EF1 − E1(k1x )

kB T

]
+ 1

}
dk1x

J→ = DkB T

2π

q

h̄

∫ π/a
0

T12(E1(k1x )) ln

{
exp

[
EF1 − E1(k1x )

kB T

]
+ 1

}
dE1(k1x )

dk1x
dk1x

J→ = DkB T

2π

q

h̄

∫ E1(π/a)

E1(0)
T12(E1) ln

[
exp

(
EF1 − E1

kB T

)
+ 1

]
dE1,

where EF1 is the Fermi level of semiconductor 1.
The electrons incident on the right-hand side (2) contribute the current:

J← = DkB T

2π

q

h̄

∫ E2(π/a)

E2(0)
T21(E2) ln

[
exp

(
EF2 − E2

kB T

)
+ 1

]
dE2,

where EF2 is the Fermi level of semiconductor 2. The total diode current per unit area,
JD , is then given by the difference between the left- and right-hand current densities:

JD = J→(EF1)− J←(EF2).

As a consequence of time-reversal symmetry, the transmission coefficient satisfies the
following property (reciprocity):

T12(E) = T21(E).

Assuming that an electrostatic potential V is applied between semiconductors 2 and 1
we have

EF2 − EF1 = −qV .

The diode current per unit area can then be written

JD = DkB T

2π

q

h̄

∫ E1(π/a)

E1(0)
T12(E1, V ) ln




exp

(
EF1 − E1

kB T

)
+ 1

exp

(
EF1 − qV − E1

kB T

)
+ 1


 dE1,

which is the original expression reported by Tsu and Esaki [32]. A rule of thumb
which is often used estimates the voltage at which the peak current is obtained to be
twice the energy in electron volts at which resonance occurs.

4.4.3 Charge distribution inside the well

As in the case of quantum wells, the electron distribution of electrons inside a double-
barrier structure modifies the electrostatic potential barrier. This is particularly the
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case at resonance when the electron amplitude of the wave-function (and therefore the
probability of presence) in the double barrier is very large. The electron distribution is
then required to solve the Poisson equation. The electron distribution per unit area A
can be obtained from the wave-function using

ρ(n) = ρ→(n)+ ρ←(n),

ρ→(n) = q
DkB T

2π

∫ π/a
0

| f (n, E1(k1x ))|2 ln

{
exp

[
EF1 − E1(k1x )

kB T

]
+ 1

}
dk1x ,

ρ←(n) = q
DkB T

2π

∫ π/a
0

| f (n, E2(k2x ))|2 ln

{
exp

[
EF2 − E2(k2x )

kB T

]
+ 1

}
dk2x .




(4.8)

This formula is derived assuming that a Bloch wave of amplitude 1 is incident on the
device and that the flat band on the left-hand side extends for a large length, essentially
equal to the length of the device Lx = Nx a. The amplitude of the wave-function then
approximately satisfies∑
all n

| f (n, E)|2 � Nx .

The term Nx cancels since the density of states is given in the periodic boundary
condition model by

N (k) = 2
Nx

2π

Ny

2π

Nz

2π
= 2

Nx

2π

A

4π2
.

A self-consistent solution of the Schrödinger and Poisson [33] equations is required
and can be implemented by iteratively solving these equations using the charge dis-
tribution of Equation (4.8). Figure 4.10(a) shows the charge distribution at resonance
and the initial and final potential barriers.

The electron charge in the double-barrier diode will effectively screen the applied
potential and shift the resonance peak of the transmission coefficient to a higher energy.
As a result the current peak of the I –V characteristic occurs at a higher voltage. This is
illustrated in Figures 4.10 by plotting the conduction-band edge and charge distribution
for an In0.53Ga0.47As/AlAs RTD with a 30-monolayer undoped spacer on each side of
the double barrier and a donor doping of 1025 m3 in the emitter and collector. Notice
the potential hump when no bias is applied in Figure 4.10(a).

The resonance in the well (see full line in Figure 4.10(b)) occurs for a voltage
smaller than the peak voltage in this double-barrier diode (see ∗ in the I –V char-
acteristic Figure 4.9(b)). Note also in Figure 4.10(b) the presence of an accumulation
of charge (monolayer [60,70]) in the undoped region of the emitter contact and the
presence of a depletion of charge (monolayer [120,140]) in the undoped region of the
collector contact that occurs for higher voltages. This accumulation of charge arises
from the potential hump in the emitter region (monolayer [60,70]) in Figure 4.10(a).
This has motivated the bandgap engineering of this region to reduce the hump and
increase the RTD current [34].
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Fig. 4.10. (a) Conduction-band edge (dotted line) and (b) charge distribution (dotted line) obtained
using a self-consistent solution of the Schrödinger and Poisson equations. In both plots the voltage
applied varies from 0 to 0.8 V in steps of 0.08 V, and a full line is used to indicate the potential
(marked with ∗ on Figure 4.9) for which the charge distribution is maximum in the well.
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4.4.4 Exchange correlation

Another many-body effect to be accounted for is the exchange correlation which
is responsible for the bandgap narrowing in degenerate semiconductors. Exchange
correlation can be implemented using the local density functional formalism following
the approach of Gawlinski et al. [35]. In the local function density approach the
exchange correlation potential is expressed in terms of the local charge distribution
using the formula given in Equations 8 and 9 in [35]. Note, however, that the charge
distribution, like the current, requires only the left- and right-hand contact Fermi levels.
The introduction of a spatially-varying Fermi level to define the charge distribution in
the RTD is incorrect. The validity of the current and charge definition is verified
by applying a time-varying potential. Indeed the total AC charge and AC current
calculated must satisfy the continuity equation (see Chapter 7).

Exchange correlation is a second order many-body effect compared to the contribu-
tion of the self-consistent potential and usually only brings a small correction. Note
that exchange correlation should be differentiated from electron–electron scattering.

4.4.5 Scattering induced broadening

We have assumed so far that the electron is ballistic and therefore conserves its energy
and perpendicular momentum. However, in real devices the electron is scattered by the
lattice vibrations and other types of defects. As a result of scattering an electron can
acquire or lose energy in the scattering process and change perpendicular momentum
k⊥. These scattering processes can permit an electron with a longitudinal energy for
which transmission is not possible to scatter to a state of energy for which resonant
tunneling is possible. This leads to an effective broadening of the transmission
coefficient T (E1). Such a broadening can be represented phenomenologically by a
new transmission coefficient T

′
(E1) given by

T
′
(E1) =

∫ ∞

E1,0

T (E1)
�/π

(E ′
1 − E1)2 + �2

dE ′
1,

where � is the energy broadening which is typically a few millielectron volts at room
temperature. The main consequence of this energy broadening is to reduce the peak-
to-valley ratio of the I –V characteristics of the RTD as is shown in Figure 4.11. A
more rigorous treatment of scattering-assisted tunneling is postponed to Chapter 6.

4.4.6 Full-band structure effects

We have so far limited our analysis to a system with a tight-binding band structure.
For the range of energies typically considered in these devices, this is equivalent to an
effective-mass approximation. The spatial variation of the mass or both the longitudi-
nal and transversal mass can easily be handled with the formalism introduced at the
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Fig. 4.11. Comparison of the I –V characteristics obtained in the absence (dashed line) and the
presence (full line) of scattering.

end of Chapter 3. The transmission coefficient becomes dependent on the transverse
momentum of the electron and the integration over the transverse coordinates must be
performed numerically.

For large applied voltages the bottom of the X valley in the well (see Figure 3.14)
becomes aligned with the bottom of the � valley in the emitter (see Figure 3.13) and it
becomes necessary to consider the impact of the full-band structure on the transmission
coefficient.

To illustrate the coupling between the X and � valleys consider first the case in
which no voltage is applied on a double Al0.3Ga0.7As barrier: GaAs–Al0.3Ga0.7As.
An RTD device with a Ga0.7Al0.3As barrier width and a GaAs well width of eight
monolayers is used. The band structures of GaAs and AlAs in 〈100〉 direction for
k⊥ = 0, were computed with the empirical pseudopotential method and optimized
using a least squares fit (see Chapter 3). Because Ga0.7Al0.3As band is fairly close to
GaAs, an arithmetic average can be used to calculate the Hamiltonian matrix elements
at the interface.
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Fig. 4.12. Transmission coefficients for k⊥ = 0 corresponding to the band structure with the
Al0.3Ga0.7As barriers, specified by (1 − x)EGaAs + x EAlAs for x = 0.3, and no voltage is applied
(VD = 0.0 eV). Full line: T , the transmission coefficient; dashed line: T1, the transmission
coefficient in the � band; dotted line: T2, the transmission coefficient in the X band. Part (a) plots
the energy ranging from 0 to 1 eV, part (b) zooms in the two resonant states between 0.3204 eV and
0.3209 eV, and part (c) further zooms in the two switching points between 0.375 eV.

In Figure 4.12, we show transmission coefficients for k⊥ = 0 as a function of
incident energy for two RTDs. We notice that electrons can go through the double
barrier without any reflection (100% transmission) when their energy is about 0.190 91
eV, 0.320 43 eV, 0.320 84 eV, 0.375 16 eV, and 0.379 14 eV (resonant states). However,
almost no electrons are transmitted when their energy level is lower than 0.1 eV and
around 0.376 4 eV and 0.378 9 eV. The transmission probability reaches a (local)
minimum of about 4% at an energy level around 0.320 55 eV, which is between
the resonant energies of 0.320 43 eV and 0.320 84 eV. The transmission probability
remains less than 5% between 0.376 4 eV and 0.378 9 eV (two off-states). For this
structure the behavior is apparently very similar to conventional resonant tunneling
in the effective-mass approximation (100% transmission at resonance). However,
a closer inspection reveals the presence of sharp variations of the transmission
coefficient from 100% to 4%, and then back to 100% when the incident energy
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Fig. 4.13. Transmission coefficients for k⊥ = 0 corresponding to the band structure with the
Al0.3Ga0.7As barriers, specified by (1 − x)EGaAs + x EAlAs for x = 0.3, and with VD = 0.15 V
applied. Full line: T , the transmission coefficient; dashed line: T1, the transmission coefficient in
the � band; dotted line: T2, the transmission coefficient in the X band.

changes from 0.320 43 eV to 0.320 84 eV, an energy variation of only 0.000 41 eV.
Even more dramatically, the transmission coefficient varies from 100% to 0% when
the incident energy increases from 0.375 16 eV to 0.376 40 eV or decreases from
0.379 14 eV to 0.378 94 eV. These fine structures are associated with a resonance
and anti-resonance between the � valley in the GaAs well and the X valley in the
Al0.3Ga0.7As barriers, as was initially documented for RTDs in [40,25,41]. Indeed
this resonance/anti-resonance is made possible by the fact that the bottom of the X
valley of Al0.3Ga0.7As is at 0.3003 eV in the band structure considered.

When a voltage is applied the upper valley in the collector is lowered compared to
the � valley in the emitter. The anti-resonance coupling between the � and X valleys
then occurs at lower energies. This is illustrated in Figure 4.13 for a bias voltage of
0.15 V.
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4.4.7 High-frequency and high-speed response

The RTD is expected to operate up to terahertz (1000 GHz) [31]. Microwave
oscillators operating around 712 GHz have been fabricated by Brown and coworkers
[4,5]. The maximum power which can be generated from such a microwave oscillator
is approximately limited by the product

1

8
(Vvalley − Vpeak)(Ipeak − Ivalley).

Diamond et al. [7] have analyzed the large-signal switching characteristics of an RTD.
To the first order the switching time τ from peak to valley can be estimated as

τ = CRT D(Vvalley − Vpeak)

Ipeak − Ivalley
= CRT D

Ipeak

Vvalley − Vpeak

1 − Ivalley

Ipeak

, (4.9)

where CRT D , the RTD capacitance, is assumed to be constant and CRT D/Ipeak is
referred to as the speed index. Switching times of a few picoseconds can be achieved
with currently available devices. A more complete discussion of accurate techniques
used to simulate the high-frequency response of RTDs is postponed to Chapter 7. The
reader is also referred to [8] for a review of the application of RTDs in triggering,
pulse forming and sampling, low-power memory cell, analog-to-digital conversion,
high-speed logic and oscillator circuits. The same reference also provides a discussion
of the fabrication process and a comparison of the device performances obtained using
various combinations of materials and widths for the tunnel barrier, quantum well,
spacers and substrate of RTDs.

4.4.8 Resonant interband tunneling diodes (RITDs)

The resonant tunneling diode bears some similarity to the tunnel or Esaki diode [9,10]
The tunnel diode is a bipolar device which relies on the tunneling through the bandgap
of electrons from the conduction band to the valence band. Peak-to-valley current
ratios of 4 and 8.3 have been reported for the alloyed Esaki tunnel diode in Si [11]
and Ge [12]. The combination of the operating principles of the RTD and tunnel
diodes leads to the conception of the RITD. Several approaches for implementing
RITDs are possible, as is illustrated on Figure 4.14. Figure 4.14(a) shows an RITD
for which resonant interband tunneling takes place between the 2DEG of a quantum
well in the conduction band and the two-dimensional hole gas of a quantum well
in the valence band [13,14]. Figure 4.14(b) shows an RITD for which resonant
tunneling takes place from the n+-InAs left-hand emitter to the n+-InAs via the 2DHG
(primarily the light-hole) of the valence band [15]. The barriers are provided by
the bandgap of the AlSb barriers. When a large enough biasing voltage is applied,
interband resonant tunneling is quenched when the valence-band quantum well is
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lowered below the conduction band of the emitter region. Finally a third RITD
structure can be realized using spike doping in a silicon semiconductor [16] as is
sketched conceptually in Figure 4.14(c). The spike doped regions induce a triangular
quantum well in the conduction and valence bands of both the emitter (left-hand side)
and collector (right-hand side) regions. Resonant tunneling then takes place from the
emitter 2DEG to the collector 2DHG. Sb and B are possible dopants for the spike
doped layer in the emitter and collector, respectively. As usual the tunneling region
(barrier/bandgap) should be kept intrinsic to avoid impurity-assisted tunneling which
increases the diode leakage current. Si0.5Ge0.5 instead of Si can be beneficially used
in the intrinsic tunneling region [16] to prevent the diffusion of impurities in this
region during subsequent high-temperature fabrication processes. A peak-to-valley
current ratio of 5.5 with a peak current density of 8 kA/cm2 has been reported for
the Si/SiGe/Si template [17]. The possibility of building RITDs in Si technology is
obviously very exciting, as it offers the prospect of integrating CMOS transistors with
tunnel diodes to realize high-speed and low-power circuits. For example, it has been
demonstrated for memory cells that RTDs can boost the performance of a transistor
technology by reducing by a factor of 3 the number of transistors required [18].

4.5 Superlattice

In the general sense of the term, a superlattice is an MBE heterostructure whose
electronic characteristics result from quantum interferences. In a more restrictive
sense of the term, a superlattice is an artificial lattice fabricated by a periodic epitaxial
growth. A periodic superlattice can be realized by growing alternate layers of two
different semiconductors on top of each other, each semiconductor being grown to
the same thickness and mole fraction each time. Alternatively, a superlattice can
be fabricated in a uniform semiconductor using a periodic modulation of the doping
concentration.

The superlattices fabricated by MBE growth are periodic in one dimension only,
although two- or three-dimensional superlattices can be conceived. Superlattices were
first proposed by Esaki and Tsu [20] and fabricated by Esaki et al. [21].

Note that superlattices are also used in MBE growth to block the diffusion of
impurities from the substrate and to improve the smoothness of the wafer. For example,
an AlAs/GaAs superlattice can be used to remove the roughness of the GaAs substrate.

There are three general types of superlattices: (a) periodic superlattices, (b) random
superlattices, and (c) quasi-periodic superlattices. We will start our discussion with
the important case of the periodic superlattice.
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Fig. 4.15. The superlattice (a) band diagram and (b) band structures realized with 1, 2 and 20 wells.

4.5.1 Periodic superlattices

Let us consider the properties of periodic superlattices. As a result of the periodicity
of the potential of a superlattice, we expect the formation of minibands of energies
and miniforbidden-bands within both the conduction and valence-band structures of
the semiconductors involved.

Consider the formation of a superlattice by NW = 1, 2, and 20 adjacent quantum
wells in the conduction band (see Figure 4.15(a)). Assume that when the wells are
spaced far apart they have two discrete energies, and when the wells are adjacent, these
energies are split into two bands of NW energies. This is in agreement with the Pauli
exclusion principle which states that the electrons cannot all be in the same electron
states at the same time. Consider the case of quantum wells, 10 lattice parameters wide
(10a) separated by a potential barrier 10 lattice parameters wide (10a). The resulting
band structure for N = 20 wells and an effective mass m = 0.12m0 is shown in Figure
4.15(b). Note that these band structures can be approximated by nearest-neighbor band
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Fig. 4.16. Superlattice bands versus the barrier/well width.

structures of the form E1,0 − A1 cos(k1aSL) and E2,0 + A2 cos(k2aSL) for the first and
second bands, respectively. Also note that the superlattice parameter is aSL = 20a. As
a result of the superlattice periodicity, the Brillouin zone of the lattice has been divided
by the superlattice into aSL/a = 20 regions of width 2π/20a.

A plot of the energy bands versus the thickness of the barrier/well is shown in Figure
4.16 for a superlattice with a barrier height of 0.5 eV and the same well width and
barrier width. Note in Figure 4.16 that when the wells are far apart they become
weakly coupled and that the band structure width 2A reduces to the energy level of a
single quantum well.

As discussed at the beginning of this chapter, periodic superlattices find an im-
portant application in the realization of the Bloch oscillator proposed by Esaki [20]
and demonstrated by Sibille et al. [29]. The existence of the Wannier ladder in a
superlattice has also been verified in optical experiments [22]. Figure 4.17 shows (see
[50]) the Stark states calculated in a superlattice with an applied voltage of 0.2 V. The
first (n = 1) and last (n = 19) states are surface states of this finite superlattice.
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This cartoon from [51] illustrates well the diffraction of electrons/Bloch waves in a superlattice. In
this cartoon, Mr. Tompkins explores a fantasy world in which the Planck’s constant is much larger
than normal. The caption reads, ‘Sir Richard was ready to shoot, when the professor stopped him.’
The professor explained, ‘there is very little chance of hitting an animal when it is moving in a
diffraction pattern’.

4.5.2 Random superlattice

In a superlattice the unavoidable fluctuations of the potential energies of the barriers
and wells and the interface position can prevent the formation of crystal bands. Instead
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Fig. 4.17. Wannier Stark ladder in a superlattice: (a) band diagram, energy levels and
wave-functions; (b) wave-functions.
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of propagating Bloch states, non-propagating localized states arise. This phenomenon
is called Anderson localization. It occurs when the fluctuations W of the reference
energy are larger than B, the width of the superlattice miniband (see Problem 4.6):

Bloch waves for B > W,

localized states for B < W.

A study of this effect was initially reported by Schmidt [44] for one-dimensional
structures. The existence of localization in three dimensions was reported by Anderson
(Nobel Prize winner) in 1958 in a paper entitled ‘Absence of Diffusion in Certain
Random Lattices’ [3]. The experimental verification of this effect in a one-dimensional
superlattice was given by Chomette et al. [43].

Figure 4.18 shows (see [50]) the creation of localized states in a superlattice when
the standard deviation of the barrier width is of three monolayers. For small disorders,
the wave-functions extend over the entire superlattice (Bloch waves). For larger
disorders the wave-functions become localized. Transport becomes limited by hopping
(tunneling) from localized states to localized states assisted by the lattice vibrations.
The electron mobility is then greatly reduced. No long-range order is observed in
random superlattices.

4.5.3 Quasi-crystals and Fibonacci superlattices

Quasi-crystals were discovered in 1984 by Shetchman et al. [45] while studying
rapidly cooled Al–Mn alloys. X-ray diffraction patterns revealed the presence
of symmetry of order 5 (rotational symmetry of angle 2π/5) which according to
crystallography theory was previously thought to be incompatible with long-range
order. Quasi-crystals are not periodic, however, but do exhibit long-range order.

Quasi-crystals can be realized in one dimension by using the Fibonacci∗ sequence
[47]. The first experimental study of a GaAs/AlAs quasi-crystal was reported by
Merlin et al. [46]. The Fibonacci model assumes that it takes a generation for a baby
B to become an adult A and that at each new generation an adult procreates a baby B.
The total number of adults A and babies B at generation l is therefore given by

F(l) = F(l − 1)+ F(l − 2).

This recurrence equation admits a solution of the form τ l where τ = (1 ±√
5)/2. The

root τ = (1 + √
5)/2 is called the Fibonacci gold number and gives the growth rate

F(l + 1)/F(l) of the population. The relationship between the Fibonacci number τ
and the rotation of order 5 is expressed by cos(2π/5) = 1/(2τ).

∗ Fibonacci was an italian monk in the XII century. He traveled to the Orient and contributed to the
transfer to Europe of the mathematical advances achieved by the Middle-East and Asian civilizations. He
is known for his own work on the demography of rabbits.
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Fig. 4.18. Spectrum and wave-functions in (a) a perfect and (b) a random GaAs/Al0.3Ga0.7As
superlattice with wells and barriers of an average width of five monolayers and with a standard
deviation of three monolayers in the barrier width of the random superlattice.
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Assuming that we start with a baby B at generation l = −1 and the evolution rules
are given by B → A and A → AB, the adult and baby population admits the following
sequence for successive generations l

−1 B
0 A
1 AB
2 AB A
3 AB AAB
4 AB AAB AB A
5 AB AAB AB AAB AAB
6 AB AAB AB AAB AAB AB AAB AB A

These are the so-called Fibonacci sequences S(l). It can be verified that S(l = ∞)
is not invariant under a translation but is invariant under the dilatation B → A and
A → AB.

To build a GaAs/AlGaAs superlattice using the Fibonacci sequences, the elements
A and B must each consist of a different motif of n1 GaAs and n2 AlGaAs layers.
A periodic Fibonacci superlattice is obtained by repeating a Fibonacci sequence of
order � several times. The transition from a periodic superlattice to a quasi-periodic
superlattice can then be studied by increasing the order � of the Fibonacci sequence
used. Such Fibonacci superlattices were first studied theoretically by Kohmoto and
coworkers [48,49].

Figure 4.19 shows the spectrum of the energy bands obtained for the periodic
approximation of a quasi-crystal. The spectrum of a Fibonacci superlattice admits
a fractal character for increasing �, that is, as � is increased, an increase in the
structure (details) of the spectrum is observed. A quasi-Fibonacci superlattice features
both localized and extended states (some critical energies). The localized states can,
however, be regrouped into minibands, as can be seen in Figure 4.19. Fibonacci and
random superlattices are mostly of scientific interest and have not yet led to device
applications.

4.6 Conclusion

In this chapter we have studied four different classes of quantum effects and associated
devices: (1) Zener oscillators (accelerated electrons), (2) quantum well structures, (3)
RTDs, and (4) superlattices. Special quantum resonance effects were observed when
the electron wavelength was comparable to the heterostructure dimension. However,
these quantum resonances can only be observed in practice in relatively small devices,
when the electron mean free path is large compared with the main features of the
device heterostructures. Therefore an in-depth study of quantum devices requires us
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Fig. 4.19. Spectrum for Fibonacci superlattice sequences of order � varying from −1 to 5 for GaAs
and Al0.3Ga0.7As layers with width (n1, n2) of (5,5) and (5,10) monolayers for motifs A and B,
respectively.

to consider the impact of scattering on these devices. This will be pursued in Chapters
5 and 6, where we will develop a more realistic picture of quantum transport. Finally
the response of these quantum devices at high frequencies, which is also of critical
importance for device applications, will be investigated in Chapter 7.
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4.8 Problems

‘Why’, said the Dodo,‘the best way to explain it is to do it.’

Alice in Wonderland, LEWIS CARROLL

4.1 In this problem we shall derive an analytic formula for the transmission coefficients of a single
and a double barrier (when no voltage is applied). For this purpose we shall introduce scattering
parameters relating the incident and reflected waves. Scattering parameters can simplify the
calculation of a complex system. We can first calculate the scattering parameters of each
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Fig. 4.20. Band diagram for the definition of the S-parameters.

individual section of a system. The total scattering parameters are then obtained by cascading
each section.

Let us now define the scattering parameters of the system (black box) represented by the band
diagram shown in Figure 4.20. Two different flat tridiagonal bands are used on the left- (port
1) and right-hand side (port 2). Note that the wave-functions are labeled on each side with their
own n axis. The n1 axis is directed toward the sytem. The n2 axis is directed away from the
system. The last lattice site before entering the system is n1 = n2 = 0. Consider an eigenstate
of energy E :

E = EC,1 + A1[1 − cos(k1a)] = EC,2 + A2[1 − cos(k2a)].

The incident wave on port 1 is

a exp[ik1(E)n1a] for n1 ≤ 0.

The incident wave on port 2 is

d exp[−ik2(E)n2a] for n2 ≥ 0.

The reflected (1 to 1) or transmitted (2 to 1) wave at port 1 is

b exp[−ik1(E)n1a] for n1 ≤ 0.

The reflected (2 to 2) or transmitted (1 to 2) wave at port 2 is

c exp[ik2(E)n2a] for n2 ≥ 0.

The total wave f1 at port 1 is then

f1(n1) = a exp[ik1(E)n1a] + b exp[−ik1(E)n1a].
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The total wave f2 at port 2 is then

f2(n2) = c exp[ik2(E)n2a] + d exp[−ik2(E)n2a].

We can assume that a and d are coefficients controlled by the user and that b and c are
unknown coefficients to be determined. Since the Wannier equation is a linear equation for
each system, we can express the reflected coefficients in terms of the transmission coefficients
using a scattering matrix S[

b
c

]
=
[

r1 t2
t1 r2

][
a
d

]
= S

[
a
d

]
. (4.10)

Note that these scattering parameters allow us to calculate the transmission and reflection
coefficients. The transmission coefficient T is defined as the ratio of the transmitted current
over the incident current (see Chapter 3):

T12 = v2

v1
|t1|2,

T21 = v1

v2
|t2|2,

where v1 and v2 are the electron velocities in bands 1 and 2, respectively. The reflection
coefficient is defined as the ratio of the reflected current over the incident current (see Chapter
3):

R1 = |r1|2,
R2 = |r2|2.

(a) Calculate the scattering matrix S of band 1 for a uniform potential of length N lattice
parameters (see band diagram in Figure 4.21). Assume that the wave-vector is k1.

(b) Calculate the scattering matrix S for a step potential (see band diagram in Figure 4.22).
Assume that the heterojunction is maximally transparent. The wave-vector on the left-hand
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side is k1 and the wave-vector (sometimes imaginary) on the right-hand side is k2. Use the
boundary conditions derived in Chapter 3 for a maximally transparent heterojunction√

A2 f2(n + 1) =
√

A1 f1(n + 1),√
A1 f1(n) =

√
A2 f2(n).


 (4.11)

Verify that for small wave-vectors k1 and k2 (the effective-mass approximation) we have

[
r1 t2
t1 r2

]
�




k1 − k2

k1 + k2

(
m∗

1
m∗

2

)1/2
2k2

k2 + k1(
m∗

2
m∗

1

)1/2
2k1

k2 + k1

k2 − k1

k1 + k2


. (4.12)

Note that the junction is reciprocal and that we have

TS = T12 = T21 = |t1||t2|,
RS = R1 = R2 = |r2|2 = |r1|2 = |r1||r2|.

(c) Express the scattering matrix S for the reverse step potential (see band diagram in Figure
4.23) in terms of the coefficients r1, t1, r2 and t2 defined in (b).

(d) Calculate the scattering matrix SB of a potential barrier of length N lattice parameters (see
band diagram in Figure 4.24). For this purpose, divide the problem into three regions: a
step, a flat band and a step and calculate the total scattering parameters using flow graph
analysis (show the flow graph).

From the symmetry of the barrier we expect the scattering matrix to be of the form

SB =
[

rB tB
tB rB

]
. (4.13)

Verify that for E ≥ EC,2 (k2 is real) and small wave-vectors k1 and k2 (r2 is real), the
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transmission coefficient TB of the barrier is given by

TB = |tB |2 = T 2
S

1 + R2
S − 2RS cos(2k2 Na)

.

Hint: Use the reciprocity property |t1|2|t2|2 = TS . The reflection coefficient is then given
by RB = |rB |2 = 1 − TB .

For E ≥ EC,2 the transmission coefficient TB of the barrier is seen to be a periodic function
of k2 Na and oscillates between 1 and TB(min)

TB(min) = (1 − RS)
2

(1 + RS)
2
.
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(e) Consider now the case E ≤ EC,2 so that k2 is now imaginary (damped wave). Using
k2 = iγ verify that for small wave-vectors k1 and γ (the effective-mass approximation)
tB can be written:

tB = i4k1γ exp(−γ Na)

(k1 + iγ )2 − (k1 − iγ )2 exp(−2γ Na)
(4.14)

and calculate rB .

Verify that the transmission coefficient TB of the barrier is given by

TB = |tB |2 = 1 − |rB |2 = 1 − RB = 4k2
1γ

2

4k2
1γ

2 + (k2
1 + γ 2)2sinh2(γNa)

.

(f) The scattering matrix S2B of a double-potential barrier with a barrier width of N lattice
parameters and a well width of M lattice parameters can be calculated using the results of
(d) (see band diagram in Figure 4.25). From the symmetry of the double barrier we expect
the scattering matrix to be of the form

S2B =
[

r2B t2B
t2B r2B

]
. (4.15)

Using the result derived in (d) we obtain by inspection

t2B = t2
B exp(ik1 Ma)

1 − r2
B exp(i2k1 Ma)

. (4.16)

Using r2
B = RB exp(−i2θ) we can then calculate the transmission coefficient to be

T2B = |t2B |2 = 1

1 + 4
RB

T 2
B

sin2(k1 Ma − θ)
. (4.17)

The transmission is now a periodic function of k1 Ma and oscillates between 1 and
T2B(min). Specify whether the width of the barrier N should be increased or decreased
in order to minimize the value T2B(min).
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4.2 Consider a double-barrier structure realized using a GaAs well of 51 Å width and Al0.3Ga0.7As
barriers of 34 Å width.

(a) Calculate the transmission coefficient from 0 to 1.0 eV using the result of Problem 4.1 and
the effective-mass approximation.

(b) Calculate the transmission coefficient from 0 to 0.1 eV using the result of Problem 4.1 but
without using the effective-mass approximation.

(c) Compare results (a) and (b)

(d) The advantage of the Wannier picture is that a numerical solution can be readily obtained
for arbitrary potentials and heterostructures. Using the recurrence equations provided by
the Wannier Picture calculate the transmission coefficients when a voltage of 0.1, 0.2 and
0.3 V is applied across the diode. Use the MATLAB∗ function tunnel.m available for this
purpose. See the Preface for the availability of these MATLAB∗ tools.

4.3 Reproduce the plot of Figure 4.1(b) for X equal to 10, 20, 40, 80 and verify that Jn(X) is
approximately 1/(2X)1/2. Can you explain why the wave-function is larger on the edges than
in the center? Use the MATLAB∗ function bessel.m available for this purpose. See the Preface
for the availability of this MATLAB∗ tool.

4.4 The spectrum for the Zener resonator on Figure 4.3 was plotted for A = 1 eV and X =
A/qaF = 200. Plot the Zener spectrum for an electric field F of twice as strong. Use the
MATLAB∗ function zener.m available for this purpose. See the Preface for the availability of
this MATLAB∗ tool. Explain the variations of the height and width of the peaks.

4.5 Generate the Wannier ladder shown in Figure 4.17 for barrier voltages of 0.1, 0.2, and 0.3 eV.
Compare the simulated and theoretical energy spacing for the three Wannier ladders generated.
Use the MATLAB∗ function wannier.m available for this purpose. See the Preface for the
availability of this MATLAB∗ tool.

4.6 We now wish to study the Anderson localization effect. Use the MATLAB∗ function random.m
available for this purpose. See the Preface for the availability of this MATLAB∗ tool. Set the
standard deviation of the barrier width and height to zero. Plot the spectrum and wave-functions
and establish the width B of the miniband. Then successively increase the standard deviation
of the barrier height to 2B, 3B, and 4B, while keeping the standard deviation of the barrier
width at zero. Plot the spectrum and wave-functions for each of these three cases and determine
whether the criterion for the Anderson localization of the wave-function is verified.

∗ MATLAB is a registered trademark of the MathWorks, Inc.



5 Scattering processes in heterostructures

Ships would be safer if they stayed in the shelter of harbors. They are however built for venturing in

deep seas.

ANONYMOUS

5.1 Introduction

So far our study of quantum heterostructure devices in Chapter 4 has assumed that
the devices were small compared to the mean free path of the electron. Transport in
this type of device is referred to as ballistic transport. In real crystals the electron is
always subjected to some type of scattering∗. In Chapter 6 we will study the impact
of scattering on the electron wave-function and develop a simple three-dimensional
quantum transport theory. In preparation for this analysis, we must first study the
scattering mechanisms to which an electron is subjected.

Various scattering mechanisms exist in semiconductors. We will consider first
scattering by the lattice vibrations, and, in particular, discuss polar, acoustic, and
intervalley scattering. Next, we will turn our attention to scattering processes specific
to heterostructures and discuss interface roughness scattering and alloy scattering.
Finally, we will conclude this chapter with a discussion of electron–electron scattering.

Note that quantum heterostructures such as resonant tunneling diodes (RTDs),
superlattices, and quantum wells (e.g., modulation doped field-effect transistors
(MODFETs)) are usually undoped to minimize impurity scattering. Therefore im-
purity scattering is usually small compared to polar scattering and interface roughness
scattering.

5.2 Phonons and phonon scattering

A crystal can be represented as a network of masses connected by springs. The masses
are the atoms and the springs the covalent bonds between the atoms (see Figure 5.1).

∗ A noted exception is the absence of scattering in superconductors under DC conditions.
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Fig. 5.1. Conceptual representation of a crystal as a two-dimensional mattress in which the springs
are the covalent bonds between atoms.

Such a system is represented in classical mechanics by a Hamiltonian (kinetic energy
+ potential energy) of the form

Hph =
∑

i

[
p2

i

2Mi
+
∑

j

Vbond(ri − rj )

]
,

where pi = Mi (dri/dt) and ri are respectively the momentum and position of the
atom of mass Mi at the lattice site Ri . The difference between the atom’s position ri
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and its equilibrium lattice site position Ri is called the lattice displacement U:

Ui = ri − Ri .

For small lattice displacements, the bond potential Vbond can be expanded in a Taylor
series around the equilibrium position Ri . At this position, the bond potential reaches
its minimum Vbond(0) and the crystal Hamiltonian Hph can then be rewritten as (using
Vbond(0) = 0)

Hph =
∑

i

[
p2

i

2Mi
+ 1

2

∑
j

Ui · ∂
2Vbond(Ri − Rj )

∂Ri∂Rj
· Uj

]
. (5.1)

Let us now study the vibrations allowed by this crystal Hamiltonian Hph . We assume
that the vibrations are propagating waves of the form

Ui = wq cos(ωqt − q · ri + φq),

with frequency ω, wave-vector q, polarization wq, and phase φq. Substituting the
proposed solution in the Hamiltonian leads to an eigenvalue problem that associates
each vibration mode q with a specific vibration frequency ωq (eigenvalue). This
occurs because the crystal Hamiltonian commutes with the translation operator and
the vectors q can be used to label the eigenvalues (frequencies). This also implies that
the dispersion relation ωq is a periodic function of q in reciprocal space and is left
invariant by a translation of a reciprocal-lattice vector K (see Chapter 1).

The dispersion relationωq depends on the nature of the bonds which form the crystal
(see Harrison [4]) and is therefore a characteristic of the crystal. The phonon-spectrum
of GaAs is given in Figure 5.2.

The polarization wq is a normalized vector indicating the direction of the vibration.
A vibration with arbitrary polarization can be represented as the superposition of two
fundamental polarizations: transversal and longitudinal. In a transversal mode, the
atoms vibrate in a direction perpendicular to the wave-vector q. In a longitudinal
mode, the atoms vibrate in a direction parallel to the wave-vector q and we have

wq = q
q

= q̂.

An arbitrary displacement U of the atoms from their equilibrium position can be
expressed as a superposition with weight Uq of the vibrations modes q:

Ui = 2√
�

∑
q

Uqwq cos(ωqt − q · ri + φq). (5.2)

To simplify the scattering analysis we will use a continuous displacement wave
approximation (see Kittel [2])
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Fig. 5.2. Phonon–spectrum of GaAs (approximate analytic fit of the experimental data of [5]) along
the � to X direction.

U(r) = 2√
�

∑
q

Uqwq cos(ωqt − q · r + φq), (5.3)

which is accurate for long-wavelength vibrations.
In compound semiconductors two different masses are involved, e.g., Ga and As

in GaAs. This allows us to understand the formation of two major different modes
of vibration in a crystal: the acoustic mode, and the optical mode. In the acoustic
mode, both masses move in the same direction, but in the optical mode, they move in
opposite directions. In Figure 5.2 one can distinguish the longitudinal acoustic mode
(LA), transversal acoustic mode (TA), longitudinal optical mode (LO), and transversal
optical mode (TO).

Consider the acoustic modes. When the wave-vector q is small, the wavelength
(period in space) 2π/|q| of the vibration is large and the frequency of vibration is
small. Conversely, when the wave-vector q is large, the wavelength 2π/|q| of the
vibration is small and the frequency of vibration is large. In our analysis we shall rely
on a simple linear dispersion relation

h̄ωq � vs |q|,
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where vs is recognized as the sound velocity since it can be calculated using the group
velocity formula

vs =
∣∣∣∣∂ωq

∂q

∣∣∣∣ .
Now consider the optical phonons. Note that the phonon frequency in the optical

branch varies little with the wave-vector q. The optical phonon frequency for the
longitudinal mode is about ωL O � 8 THz in GaAs. We will consider only polar
scattering by longitudinal optical phonons and will use the so-called Einstein model
which neglects the wave-vector dependence:

ωq � ωL O .

Note that in order to introduce the vibration modes, we have assumed that the
displacement of the atoms from their equilibrium positions was small and we retained
only the first order term in the expansion of the bond potential. The crystal then
reduces to a harmonic oscillator. Inclusion of the high-order terms in the bond potential
introduces mechanisms which permit the collision of vibrations with other vibrations
and therefore limit their lifetime.

5.2.1 Phonons

We have introduced the vibration of the lattice using a classical Hamiltonian and
this was found sufficient to predict the vibration spectrum ωq. The analysis of
the scattering of an electron by vibrations, however, requires us to treat the crystal
vibrations using quantum mechanics. We shall see that a quantum treatment is
necessary in order to introduce the concepts of spontaneous emission and stimulated
emission and absorption which are of critical importance for a correct picture of
scattering. Once these quantum effects have been established in this section, we shall
develop an intermediate semiclassical picture which incorporates them approximately.

A quantum analysis of the crystal vibration is obtained by replacing the momentum
pi in the Hamiltonian Equation (5.1), by an operator −i h̄(∂/∂ri ). As a result of this
quantum analysis (see [2]) (called second quantization) the vibrations of a crystal must
also be treated as particles called phonons.

As particles, the phonons are attributed an energy E and a momentum p given by

E = h̄ωq,

p = h̄q.

The particle nature of the phonons is revealed in the interaction (collision) of electrons
and phonons. It can be verified that in the collision of an electron of energy E1 with a
phonon of energy h̄ωq of wave-vector q, the electron either absorbs or emits a phonon
and the final electron energy E2 is given by E1 ± h̄ωq.
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In a uniform semiconductor (flat band) one can also derive a three-dimensional
wave-vector conservation rule, k2 = k1 ± q, if we assume the electron to be in the
Bloch states |k1〉 and |k2〉 respectively before and after the electron–phonon collision.
A generalization of this formula including Umklapp processes is discussed in Ziman
[1].

Note that for heterostructures varying along the x direction, we shall derive in
Chapter 6 an alternative two-dimensional wave-vector conservation rule:

k2,⊥ = k1,⊥ ± q⊥,

where k1,⊥ and k2,⊥ are respectively the perpendicular wave-vectors of the electron
before and after the electron–phonon collision.

The conservation of energy and momentum is therefore a manifestation of the
particle nature of both the electrons and the phonons. Other important quantum
effects are the processes of stimulated and spontaneous emission. To introduce these
concepts it is necessary to discuss the quantum picture of the phonons in more detail.
A summary of the quantum treatment of phonons is presented below. The reader is
referred to Loudon [6], or Kittel [2] for a derivation.

Using the mode expansion, the crystal Hamiltonian Hph can be written as the sum
of harmonic oscillators Hq for each mode of vibration q (see Ferry [10], Ziman [1])

Hph =
∑

q
Hq. (5.4)

The crystal state can be obtained by solving the eigenvalue problem for the harmonic
oscillator Hamiltonian Hq for each mode q:

Hq|nq〉 = Enq |nq〉.
A discrete spectrum is obtained (see Figure 5.3) and the eigenvalues (energy) Enq are
labeled with the integer nq and the eigenstates |nq〉. As for any eigenvalue problem,
the eigenstates are orthogonal

〈n′
q|nq〉 = δn′

q nq . (5.5)

It can be demonstrated that the harmonic oscillator Hamiltonian of the mode q can
be written

Hq = h̄ωq

(
a+

q aq + 1

2

)
, (5.6)

where a+
q and aq are the creation and annihilation operators of phonons in the mode

q. The creation and annihilation operators for the phonon of mode q will be defined
here by their operation upon the phonon state |nq〉:
aq |nq〉 = √

nq |nq − 1〉 (5.7)

a+
q |nq〉 = √nq + 1 |nq + 1〉. (5.8)
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Fig. 5.3. Eigenvalues and potential energy of the harmonic oscillator for a given mode q. Multiple
phonons can populate the same vibration mode q. The dashed line shows the classical trajectory of
a particle which is approximated by the Glauber state.

We can easily verify that creation and annihilation operators of the same mode q do
not commute. However, the creation and annihilation operators of different modes do
commute. This is summarized by the property

aqa+
q′ − a+

q′aq = δqq′ . (5.9)

Therefore we have

a+
q aq |nq〉 = nq |nq〉 (5.10)

and the energy of a photon state |nq〉 is then given by

Enq = h̄ωq

(
nq + 1

2

)
. (5.11)

We can now identify the state |nq〉 as a state of lattice vibration for the mode q
involving nq quanta of energy h̄ωq. A quantum of energy h̄ωq is called a phonon.
The state |nq〉 is therefore a vibration state involving nq phonons.

In this quantum picture, the lattice displacement (the displacement of the atoms
relative to their equilibrium crystal site) is given by the following operator [2]:

U = 1

�1/2

∑
q

wq

(
h̄

2ρωq

)1/2 [
aq exp(iq · r)+ a+

q exp(−iq · r)
]
, (5.12)

where � is the crystal volume, ρ the semiconductor density, and wq the polarization
of the phonon.
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Note that the lattice displacement operator of Equation (5.12) is similar to the
classical lattice displacement of Equation (5.3). In both cases, we are summing over all
the modes and are using a continuous position approximation. However, the amplitude
Uq is now replaced by the creation and annihilation operators a+

q and aq.

What is a phonon?
We have introduced the phonon state as an eigenstate of the crystal Hamiltonian for a
given vibration mode q. Phonon states are labeled by their phonon numbers in a given
mode q. Indeed, several phonons can occupy the same phonon state. This classifies
the phonon as a Boson particle (after the scientist Bose who first conceived of them).

The phonon state |nq〉 is an eigenstate and therefore corresponds to a vibration
whose energy is exactly known. However, the phase of this vibration is not known.
This is verified by calculating the expected value of the lattice displacement operator
for a phonon of mode q:

〈nq|U (r)|nq〉 = 1

�1/2

∑
q

wq

(
h̄

2ρωq

)1/2 [〈nq|aq|nq〉 exp(iq · r)

+ 〈nq|a+
q |nq〉 exp(−iq · r)

]
= 0, (5.13)

where we have used the orthogonality property of the phonon states. The average
lattice displacement is zero for a phonon state. This is rather different from the
classical vibration mode and is simply due to the fact that the phase φq of the vibration
is unknown and can assume all possible values (see Figure 5.4).

It is, however, possible to construct a classical vibration for the mode q by
constructing a state of vibration which is a superposition (wave-packet) P(nq) of
various phonon states of the mode q:

|ψq〉 =
∞∑

nq=0

Pψ(nq) exp(−inqωqt)|nq〉.

The phonon distribution that yields the closest approximation to a classical state is the
Glauber state |N 〉, which is generated by

PNq(n) = exp

(
−1

2
|Nq|2

)
N n

q

(n!)1/2

where Nq is the average number of phonons in this state. The phonon distribution
|〈n|Nq〉|2 = P2

Nq
(n) is recognized to be a Poisson distribution (see Figure 5.5). In a

Glauber state |Nq〉, the phase and amplitude of the vibrations are both known with
the minimum possible uncertainty allowed by the uncertainty principle. In the case of
light (photons), this is indeed the state which is approximately generated by a laser.
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Fig. 5.4. Intuitive representation of (a) a phonon and (b) a Glauber state.

For a crystal in equilibrium at temperature T , P(n) is randomly distributed and
time-varying since it is updated by the collision of the phonons with other phonons or
electrons. The ensemble average (〈· · ·〉E .A.) of the phonon distribution is of the form
(maximum disorder)

〈|PT h,q(n)|2〉E .A. =
N n

q

(1 + Nq)n+1
,

where the average number of phonons Nq in the mode q is given by the Bose–Einstein
distribution:

Nq = 1

exp

(
h̄ωq

kB T

)
− 1

Note that the average number of phonons, Nq, becomes infinite for phonons of low
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frequency (acoustic mode). For optical phonons in GaAs, the number of phonons Nq in
each mode q is about 0.34 at room temperature. It is with such a thermal wave-packet
of phonons (vibrations) that the electron is colliding in a crystal.

5.2.2 Spontaneous and stimulated emissions

A rigorous quantum mechanical analysis of the interaction of electrons and phonons
requires the study of the total electron–phonon system. The total Hamiltonian of
this electron–phonon system includes the electron and lattice Hamiltonians and the
interaction Hamiltonians He−ph

Htotal = He− + Hph + He−ph .

In our discussion of the scattering of electrons by phonons (Sections 5.3–5.5), we shall
see that the electron–phonon interaction term is of the form

He−ph = i√
�

∑
q
α(q)

[
aq exp(iq · r)− a+

q exp(−iq · r)
]
,
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where � is the lattice volume and α(q) is the interaction weight for the phonon wave-
vector q (see Sections 5.3–5.5). This interaction Hamiltonian is similar to the lattice
displacement, which is not surprising since it is the lattice displacement which induces
the scattering.

We wish now to discuss the spontaneous and stimulated emission processes. The
electron–phonon Hamiltonian couples together the combined electron–phonon states
|n,q⊥, nq〉 of the non-interacting system. The interaction Hamiltonian He−ph of the
phonon states written in the phonon basis involves for the mode q the matrix element:

〈n′
q|a+

q |nq〉 = (nq + 1)1/2 δn′
q nq+1, (5.14)

〈n′
q|aq|nq〉 = (nq)

1/2 δn′
q nq−1. (5.15)

The matrix element of Equation (5.14) couples a phonon state |nq〉 to a phonon state
|nq + 1〉 and corresponds therefore to the emission of a phonon of mode q. The
matrix element of Equation (5.15) couples a phonon |nq〉 to a phonon state |nq −
1〉 and corresponds therefore to the absorption of a phonon of mode q. According
to Fermi’s golden rule, the rates of absorption and emission are proportional to the
amplitude squared of these matrix elements. The emission rate of photons is therefore
proportional to nq + 1, whereas the absorption rate of photons is proportional to nq.

First, note that the emission and absorption rates of phonons of mode q is enhanced
by the presence of nq phonons. Emission and absorption are said to be stimulated.
The phonon scattering rate will therefore increase when the temperature is raised,
since the Bose–Einstein distribution predicts that the average number of phonons
increases. Conversely, it is possible to decrease the phonon population and therefore
the scattering rate by reducing the temperature. One can then actually eliminate the
absorption of phonons by the electrons at 0 K, since the rate of absorption of phonons
is proportional to the number of phonons nq. However, it is not possible to completely
eliminate the emission of phonons since even in the absence of phonons (nq = 0) the
emission rate remains finite. This is referred to as spontaneous emission. An electron
can spontaneously emit a phonon. This is the physical mechanism which allows an
excited band electron to relax toward the bottom of the band even at 0 K.

A critical point in these absorption and emission processes is that their rates are
different. Note that the coupling coefficient associated with the emission is larger
by a factor of (nq + 1)/nq than the coupling coefficient associated with absorption.
This means that the emission of a phonon by an electron has a higher probability of
occurring than the absorption of a phonon by an electron. This explains why electrons
in equilibrium (electron gas) preferentially populate states with lower energy rather
than states with higher energy.

The processes of spontaneous emission and stimulated emission and absorption are
quantum features that are of critical importance for the development of a scattering
picture which includes the mechanisms which restore equilibrium. In the next section,
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we shall see how we can incorporate these quantum effects in a simpler semiclassical
model.

5.2.3 Semiclassical phonon model

In our treatment of scattering, we shall assume that the electron is coupled to classical
lattice vibrations. However, we use the coupling coefficients derived when the electron
is coupled to quantized lattice vibrations or phonons. This semiclassical treatment
neglects the quantum noise associated with the random thermal distribution of the
lattice vibration over the various phonon states |nq〉 for a given mode q.

To develop this classical model, we start from the electron–phonon interaction
Hamiltonian

He−ph = i

�1/2

∑
q
αq

[
aq exp(iq · r)− a+

q exp(−iq · r)
]
. (5.16)

The semiclassical picture for the phonon interaction Hamiltonian is obtained by
performing the following substitutions:

aq = Aq± exp[−i(ωqt + φq)]

a+
q = Aq± exp[i(ωqt + φq)]

where Aq± is the lattice vibration amplitude of mode q with frequency ωq and phase
φq. Note that in this substitution, we consider two possible amplitudes Aq+ and Aq−
because we intend to use the quantum result that the phonon emission and absorption
rates are weighted by the factors 1 + Nq and Nq, respectively. Aq+ will be used
for both aq (scattering) and a+

q (backscattering) when these operators contribute to
the absorption of a phonon by the incident electron. Aq− will be used for both a+

q
(scattering) and aq (backscattering) when these operators contribute to the emission of
a phonon by the incident electron.

After substitution the following semiclassical interaction Hamiltonian is obtained:

He−ph = 2

�1/2

∑
q
αq Aq± sin(ωqt − q · r + φq). (5.17)

Note that the amplitude Aq± and the phase φq are randomly updated at times set
by the phonon lifetime. For optical phonons we have �ω = 0.012ωL O [7]. The
corresponding phonon lifetime is 8.3 ps and the resulting energy broadening is on
the order of 0.5 meV. For a given device, this introduces a noise in the DC current.
Since we are only interested here in the average current, a simpler model is obtained
by assuming that the phonon amplitude Aq± and phonon phase φq are randomly
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distributed and mutually uncorrelated. The average current is then obtained from an
ensemble average over the phonon amplitude and phase using

〈Aq′± exp(iφq′)Aq± exp(−iφq)〉E .A. = 〈A2
q±〉E .A.δq′q

=
(

Nq + 1

2
∓ 1

2

)
δq′q,

〈Aq′± exp(iφq′)Aq± exp(iφq)〉E .A. = 0.




(5.18)

The notation 〈· · ·〉E .A. indicates that an ensemble average is performed over the
scattering events. Nq is the average number of phonons in the mode q given by the
Bose–Einstein thermal distribution:

Nq = 1

exp

(
h̄ωq

kB T

)
− 1

.

The phonon field extends over the entire heterostructure system (sample) of length
Lx . Note, however, that we shall only study the interaction between electrons and
phonons in the superlattice region (e.g., double barrier) of the heterostructure whose
length L SL is generally much smaller than Lx . It is convenient to assume that the
lattice vibrations vanish at the edges of the sample. Using φqx ,q⊥ = φ−qx ,q⊥ + π we
obtain the desired standing waves:

He−ph = 2

�1/2

∑
qx>0

∑
q⊥

C±(q) cos(ωt − q⊥ · r⊥ + φq) sin(qx x), (5.19)

where we have introduced the constant

C±(q) = 2αq Aq±. (5.20)

qx is now quantized qx L = qx Na = pπ and given by

qx = pπ

L
= p

N

π

a
for 0 ≤ p ≤ N

2
. (5.21)

The number of qx modes in the sample is given by half the number of lattice sites.
If the sample length Lx is large enough compared to L SL , the phonon momentum
quantization does not affect the phonon-assisted tunneling process. The length of the
sample Lx then becomes arbitrary. Indeed, the increase in the number of modes qx

resulting from an increase of Lx is compensated in He−ph by the decrease in the polar
interaction strength since we have � = Lx S, where S = L y Lz is the superlattice area
and Lx its length.

Note that only bulk phonons have been considered here. Scattering by localized and
interface phonon modes is also expected to contribute [8,9]. In the next sections, we
will calculate the constant αq for two important phonon scattering processes.
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5.3 Polar scattering by optical phonons

The optical vibration mode induces a polarization in compound semiconductor crystals
which is an efficient scatterer for the electron. The result is called polar scattering in
which an electron is scattered by the longitudinal optical phonons (LO) through the
interaction of its Coulomb field with the polarization waves of the lattice. We shall
see that the vibration–electron coupling is the strongest for long wavelength vibrations
(small q).

We shall now derive the interaction Hamiltonian by considering the interaction of
a charge distribution ρ(r) with the polarization generated by the lattice displacement.
We derive the interaction potential in SI units. A lattice displacement X has associated
with it a lattice polarization

Plattice = FX,

where F (m1/2C)is the Fröhlich constant [3] (see Kittel [2] for a derivation) given by

F =
[

h̄ωL O

2
ε2
v

(
1

εopt
− 1

εstat

)] 1
2

where εopt, εstat, and εv are, respectively, the optical, static, and vacuum dielectric
constants.

A charge distribution ρ(r) generates an external electric displacement Dext accord-
ing to

∇ · Dext = ρ(r). (5.22)

The external electric displacement in turn induces an external electronic polarization
Pext

Pext =
(
εopt − εv
εopt

)
Dext.

The internal electric field Eint that is built up is related to the external electric
displacement Dext by

Dext = εvEint + Plattice + Pext,

so that

−Eint = FX
εv

− 1

εopt
Dext.

The total electrostatic energy U is then

U = 1

2
εoptE2

int

= 1

2
εopt

[
F

εv
X
]2

+ 1

2
εopt

[
Dext

εopt

]2

− F

εv
X · Dext,
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from which the interaction potential between the external electric displacement and
the lattice polarization is obtained as

�U = − F

εv
X · Dext = − 1

εv
Plattice · Dext,

with

X = 1√
�

∑
q

q̂
[
aq exp(iq · r)+ a+

q exp(−q · r)
]
.

The total interaction is the summation over all the dipoles generated at each lattice
site. For small lattice vectors q (the dominant contribution), the summation can be
approximated by the integral

H L O
e−ph =

∫
�U dr = − F

εv

∫
X · Dext dr. (5.23)

The electron-generated displacement D(r′) at r′ by an electron located at r is

D(r′) = − e

4π

r′ − r
|r′ − r|3 .

The total interaction potential is then

H L O
e−ph = eF

4πεv

1√
�

∑
q

q̂
[

aq

∫
exp(iq · r)

r′ − r
|r′ − r|3 dr′ + cc

]
.

Consequently after integration the interaction Hamiltonian is

H L O
e−ph = −ieF

εv
√
�

∑
q

1

q

(
aq exp(iq · r)− a+

q exp(−iq · r)
)
,

= −i√
�

∑
q,L O

α(q)
{

aq exp(iq · r)− a+
q exp(−iq · r)

}

where αq,LO (J m3/2) in terms of αL O (J m1/2) is given by

αq,L O = e

[
h̄ωL O

2

(
1

εopt
− 1

εstat

)]1/2 1

q
= αL O

q
. (5.24)

These are the coupling coefficients we shall use in Chapter 6 to study polar scattering
by LO phonons.

5.4 Deformation potential scattering by acoustic phonons

Electrons in a crystal are scattered by any deviation of the crystal potential from the
ideal periodic potential. Such deviations can occur due to the displacement of the
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atoms from their lattice sites induced by the crystal vibrations. Such a displacement of
the atoms is equivalent to a local change of the lattice parameter and therefore induces
a modification of the band structure.

For electrons in the conduction band, the interaction potential H AC
e−ph of the acoustic

phonon with the lattice will be given by the variation of the conduction-band edge EC :

H AC
e−ph = δEC ,

induced by the acoustic phonons. Since the phonons deform the crystal in three
dimensions, we can assume for small stress and for an isotropic crystal that δEC is
given by

δEC = � δ�
�

= ��,

where � is the so-called deformation potential and � = δ�/� is the dilatation of the
lattice with � the crystal volume and δ� its variation. The deformation potential is on
the order of 10 eV in compound semiconductors.

In a crystal the phonons introduce a local dilatation�(r). Let us relate this dilatation
to the lattice displacement U(r) of the position r in the lattice

U(r) = r′ − r.

First, we calculate the local variation of the volume resulting from the displacement
U(r). For simplicity, we select r = 0. Consider the cube generated by the orthogonal
vectors a,b, c:

a =




dx
0
0
, b =




0
dy
0
, c =




0
0

dz
.

The volume of the cube is

�� = a · (b × c) = dx dy dz

Upon the displacement U(0), the cube is distorted and the vectors a, b, and c are
transformed into a′, b′, and c′

a′ =




dx + ∂ux

∂x
dx

∂uy

∂x
dx

∂uz

∂x
dx

, b′ =




∂ux

∂y
dy

dy + ∂uy

∂y
dy

∂uz

∂y
dz

, c′ =




∂ux

∂z
dz

∂uy

∂z
dz

dz + ∂uz

∂z
dz

.
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The new volume of the distorted cube is now

��′ = a′ · (b′ × c′) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

dx + ∂ux

∂x

∂ux

∂y
dy

∂ux

∂z
dz

∂uy

∂x
dy + ∂uy

∂y
dy

∂uy

∂z
dz

∂uz

∂x

∂uz

∂y
dy dz + ∂uz

∂z
dz

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For small lattice displacements U(r), ��′ is approximately

��′ = dx dy dz

(
1 + ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
+ · · ·

)
.

Therefore the local dilatation � is

�(r) = δ��

��
= ��′ −��

��
= ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= ∇ · U(r)

and we have

H AC
e−ph = δEc = � �(r) = � ∇ · U(r).

The lattice displacement U(r) for long wavelength phonons (slowly varying U(r)) is
given by

U(r) = 1

�1/2

∑
q

wq

(
h̄

2ρωq

)1/2 [
aq exp(iq · r)+ a+

q exp(−iq · r)
]
,

where ρ is the semiconductor density and wq is the polarization vector. For
longitudinal phonons, the polarization vector is

wq = q
q

= q̂.

The acoustic deformation interaction potential is then

H AC
e−ph = � ∇ · U

= i
1

�1/2

∑
q

wq · q

(
h̄�2

2ρωq

)1/2 [
aq exp(iq · r)− a+

q exp(−iq · r)
]

= i
1

�1/2

∑
q
αq,AC

[
aq exp(iq · r)− a+

q exp(−iq · r)
]
,

with

αq,AC = wq · q

(
h̄�2

2ρωq

)1/2

.

This is the coupling coefficient we shall use in Chapter 6 to study deformation potential
scattering by acoustic phonons.
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5.5 Intervalley scattering by LO phonons

We have seen in the previous chapters that electrons in the conduction band can
elastically transfer from the � valley to the X valley. � to X transfer can also
be induced by inelastic phonon scattering. From symmetry considerations, the only
phonons contributing to the� to X transfer are the LOX phonons [11]. The dependence
of the phonon energy ωq on the phonon wave-vector q is usually neglected (see [12]
for the associated phonon energies). Intervalley scattering arises from the deformation
potential induced by the LOX phonons and we can therefore rely on the calculation
done for deformation potential scattering for acoustic phonons. Assuming that the
deformation potential is isotropic the coupling coefficient of its interaction potential is
then given by [13]

αq,I V =
(

h̄�2
LOX

2ρωLOX

)1/2

,

where the reader is refered to [12] for the deformation potentials �LOX of various bulk
materials. This is the coupling coefficient αq,I V we shall use in Chapter 6 to study
intervalley scattering by phonons.

5.6 Interface roughness scattering

An important scattering process in a heterostructure is the scattering of electrons
by the roughness of the interface of two different semiconductors. A distribution of
terraces, typically of a monolayer thickness, is indeed present at the interface [14]. The
electron is scattered elastically by these terraces, i.e., the total energy of the electron is
conserved E0 = E1.

Interface roughness scattering can be represented by a potential V I R at the interface
which extends the interface by a monolayer

V I R(r) = VB(NI R a) rect

(
x − NI R a

a

)
F(r⊥)

where the function rectangle (rect) is defined as

rect(x) =
{

1 for |x | < 1/2
0 for |x | > 1/2

.

The function F(r⊥) gives the distribution of the terraces and is therefore either 0 or
1 depending on whether or not a terrace is present at the position r⊥. The barrier
height VB arises from the discontinuity of the conduction-band edge at the interface.
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In the mixed Wannier and Bloch function representation, the matrix element of V I R

reduces to

〈n′,k′
⊥|V I R(r)|n,k⊥〉 = VB(NI Ra)δn NI R 〈k′

⊥|F(r⊥)|k⊥〉δn′n,

where the matrix element of F(r⊥) remains to be calculated. As we shall see, the
ensemble-average value of the amplitude squared of the matrix element of F(r⊥) can
be evaluated from the autocorrelation of F(r⊥).

Following Leo and MacDonald [15], we can represent F(r⊥) as a superposition of
square terraces (see Figure 5.6):

F(r⊥) =
∑

T

rect

(
r⊥ − r⊥T

LT

)
,

where r⊥ is the position of the terrace center and LT the terrace width. The average
terrace is now assumed to be of the Gaussian type

1

NT

∑
T inL y Lz

rect

(
r⊥
LT

)
= exp

(
−|r⊥|2

2σ 2

)
= N (r⊥),

where σ 2 is the average area of the terraces and NT is the number of terraces in the
volume L y Lz .

Let us now calculate the autocorrelation function Ryz of F(r⊥) defined as

Ryz = lim
L y→∞
Lz→∞

1

L y Lz

∫ L y/2

−L y/2

∫ Lz/2

−Lz/2
F(r⊥)F(r′

⊥) dr⊥.

We assume that the cross-correlation between different terraces is zero (the terraces
are uncorrelated). The autocorrelation is then

Ryz = lim
L y→∞
Lz→∞

NT

L y Lz

∫ L y/2

−L y/2

∫ Lz/2

−Lz/2
N (r⊥)N (r⊥) dr⊥.

The autocorrelation of N (r⊥) can be estimated using the integral∫ ∞

−∞
exp

[
− (x − a/2)2

σ 2

]
dx = √

π σ exp

(
− a2

4σ 2

)
.

Therefore

Ryz = DT πσ
2 exp

(
−|r⊥ − r′

⊥|2
4σ 2

)
,

where DT is the terrace density

DT = NT

L y Lz
= NT

Area
.
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Fig. 5.6. (a) Three-dimensional and (b) one-dimensional representation of terraces at the interface of
two different semiconductor materials. White and black circles are used to represent materials 1 and
2 respectively. For an interface which is a monolayer deep each circle actually represents two atoms.

This model reduces to the phenomenological model of Prange and Nee [16] who
assume

Ryz = exp

(
−|r⊥ − r′

⊥|2
�2

)
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if we use

� = 2σ,

DT = NT

Area
= 4

π�2
� 1

�2
.

This is equivalent to assuming that the terrace size σ is comparable to the distance
between terraces.

Let us assume that F(r⊥) is a periodic function

F(y + L y, z + Lz) = F(y, z).

The function F(r⊥) can therefore be expanded in a Fourier series

F(r⊥) =
∑
q⊥

Fq⊥ exp(iq⊥ · r⊥).

Note that the Fourier coefficient Fq⊥ is equal to the matrix element of F(r⊥)
(approximating the Bloch waves by plane waves) if we use q⊥ = k⊥ − k′

⊥:

〈k′
⊥|F(r⊥)|k⊥〉 = 1

L y Lz

∫ L y/2

−L y/2

∫ Lz/2

−Lz/2
exp[i(k⊥ − k′

⊥) · r⊥]F(r⊥) dr⊥

= Fq⊥ .

The amplitude squared of the matrix element F(r⊥) is then

|Fq⊥|2 = |〈k′
⊥|F(r⊥)|k⊥〉|2

= 1

L y Lz

∫ L y/2

−L y/2

∫ Lz/2

−Lz/2
exp[i(k⊥ − k′

⊥) · r⊥] F(r⊥) dr⊥

× 1

L y Lz

∫ L y/2

−L y/2

∫ Lz/2

−Lz/2
exp[−i(k⊥ − k′

⊥) · r′
⊥]F(r′

⊥) dr′
⊥

= 1

L2
y L2

z

∫∫ L y/2

−L y/2

∫∫ Lz/2

−Lz/2
exp[i(k⊥ − k′

⊥) · (r⊥ − r′
⊥)]F(r⊥)F(r′

⊥) dr⊥ dr′
⊥.

We can now evaluate the desired ensemble-average value of this matrix element. To
do this we use the ergodic principle

〈F(r⊥)F(r′
⊥)〉E .A. = Ryz,

where 〈 · · · 〉E .A. indicates that an ensemble average is performed. This gives

〈|Fq⊥|2〉E .A. = 〈|〈k′
⊥|F(r⊥)|k′

⊥)〉|2〉E .A

= 1

L2
y L2

z

∫∫ L y/2

−L y/2

∫∫ Lz/2

−Lz/2
exp[i(k⊥ − k′

⊥) · (r⊥ − r′
⊥)]

× exp

(
−|r⊥ − r′

⊥|2
�2

)
dr⊥ dr′

⊥.
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Using R⊥ = r⊥ − r′
⊥ and R⊥ = |R⊥| we have

〈|Fq⊥|2〉E .A. = 1

L y Lz

∫ L y/2

−L y/2

∫ Lz/2

−Lz/2
exp(iq⊥ · R⊥) exp

[
− R2

⊥
�2

]
dR⊥.

We can evaluate this integral by extending the limits of integration to infinity:

〈|F(q⊥)|2〉E .A. = 1

L y Lz

∫∫ ∞

−∞
exp

[
− R2

⊥
�2

]
exp(iR⊥ · q⊥) dR⊥

= 1

L y Lz

∫ ∞

−∞
exp

[
− R2

y

�2

]
exp(i Ry Qy) d Ry

×
∫ ∞

−∞
exp

(
− R2

z

�2

)
exp(i Rz Qz) d Rz .

Using the identity∫ ∞

−∞
exp(−a2x2) exp(iξ x) dx =

√
2π

1

a
√

2
exp(−ξ2/4a2),

with a2 = 1/�2 and ξ = qy we can evaluate the integrals and obtain

〈|F(q⊥)|2〉E .A = 1

L y Lz

√
π � exp(−q2

y/4�
2)

√
π � exp(−q2

z /4�
2)

= 1

L y Lz
π �2 exp

(
−q2

⊥
4
�2

)
, (5.25)

with q2
⊥ = |q⊥|2. The resulting ensemble-average value of the matrix element for

interface roughness scattering is seen to favor variations q⊥ = k⊥ − k′
⊥ of the

perpendicular electron wave-vectors of the order of 1/�.
The terrace size � is found experimentally to be on the order of 70 Å [14]. The

ensemble-average value of the matrix element calculated above will be used in Chapter
6 to study interface roughness scattering.

5.7 Alloy scattering

In an alloy AαB1−αC (e.g., AlαGa1−αAs), the atoms A and B are distributed randomly
over the same sites. If atoms A and B have the same valence the crystal structure can be
assumed to be preserved. The crystal potential V (r), however, is no longer periodic. It
is possible to represent the crystal potential of the alloy in terms of an average potential,
V̄ (r), which is periodic, plus a fluctuating potential δV (r), which accounts for the
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local departure of the actual alloy potential V (r) from the average potential V̄ (r).
This fluctuating potential δV (r) introduces an effective scattering process referred to
as alloy scattering.

For the alloy AαB1−αC, the crystal potential is the superposition of the potential
contributed by the atoms A, B, and C (see Bastard [17])

V (r) =
∑
RA

VA(r − RA)+
∑
RB

VB(r − RB)+
∑
RC

VC (r − RC ).

Let us introduce the mathematical identities

VA(r − RA) = αVA(r − RA)+ (1 − α)VB(r − RA)

+ (1 − α)VA(r − RA)− (1 − α)VB(r − RA),

VB(r − RB) = αVA(r − RB)+ (1 − α)VB(r − RB)

− αVA(r − RB)+ αVB(r − RB).

Using these identities, the crystal potential can be written as the superposition of

V (r) = V̄ (r)+ δV (r),

where V̄ (r) is the average lattice potential:

V̄ (r) =
∑

Ri =RA&RB

αVA(r − Ri )+ (1 − α)VB(r − Ri )+
∑
RC

VC (r − RC ),

and δV (r) is the fluctuating potential:

δV (r) =
∑
RA

(1 − α) [VA(r − RA)− VB(r − RA)]

+
∑
RB

α [VB(r − RB)− VA(r − RB)].

Using δVAB(r) = VA(r)− VB(r) we can rewrite δV (r) as

δV (r) =
∑
RA

(1 − α)δVAB(r − RA)−
∑
RB

αδVAB(r − RB).

Let us assume that we can approximate δVAB(r) by an impulse function

δVAB(r) = �0�VAB δ(r),

with�0 the volume of a unit cell and δ(r) the impulse function. We can now calculate
the correlation function

Rxyz = lim
Lx =L y=Lz→∞

1

Lx L y Lz

∫ Lx
2

L y
2

Lz
2

− Lx
2 − L y

2 − Lz
2

δV (r) δV (r′) dr
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= lim
Lx =L y=Lz→∞

1

Lx L y Lz

{∑
RA

(1 − α)2δ(r − r′)�2
0�V 2

AB

+
∑
RB

α2δ(r − r′)�2
0�V 2

AB

}
.

Considering that of Lx L y Lz/�0 unit cells Ri we have a fraction α at the RA sites and
(1 − α) being at the RB sites, we can rewrite the correlation function as

Rxyz = lim
Lx =L y=Lz→∞

1

Lx Lz Lz
�2

0 �V 2
AB δ(r − r′)

×
{
α · Lx L y Lz

�0
(1 − α)2 + (1 − α) Lx L y Lz

�0
α2
}

= �0�V 2
AB α(1 − α) δ(r − r′).

We assume now that δV (r) is a periodic function:

δV (x, y, z) = δV (x + Lx , y + L y, z + Lz),

so that the function δV (r) can be expanded in a Fourier series

δV (r) =
∑

q
Vq exp(iq · r).

The amplitude squared of this matrix element δV (r) is then

|Vq|2 = |〈k′|δV (r)|k〉|2

= 1

L2
x L2

y L2
z

×
∫∫ Lx/2

−Lx/2

∫∫ L y/2

−L y/2

∫∫ Lz/2

−Lz/2
exp[i(k − k′) · (r − r′)] δV (r) δV (r′) dr dr′.

We can now calculate the ensemble average of this matrix element. To do this we use
the ergodic principle

〈δV (r)δV (r′)〉E .A. = Rxyz,

where 〈· · ·〉E .A indicates that an ensemble average is performed. This gives

〈|〈k′|δV (r)|k〉|2〉E .A. = 〈|Vq|2〉E .A.

= 1

L2
x L2

y L2
z

∫∫ Lx/2

−Lx/2

∫∫ L y/2

−L y/2

∫∫ Lz/2

−Lz/2
exp[i(k − k′) · (r − r′)]

×� ·�V 2
ABα(1 − α)δ(r − r′) dr dr′

= 1

Lx L y Lz
�0 �V 2

ABα(1 − α),
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where α is the alloy mole fraction. The ensemble-average matrix element for alloy
scattering is found to be independent of the initial and final electron wave-vectors k
and k′. Note that �0, the volume of the elementary cell, is given in terms of the
elementary crystal axis by

�0 = |a × b · c| =

∣∣∣∣∣∣∣∣∣∣∣

0
a

2

a

2
a

2
0

a

2
a

2

a

2
0

∣∣∣∣∣∣∣∣∣∣∣
= a3

8
+ a3

8
= a3

4
,

where a, b, and c are the unit cell vectors which in Bravais cell coordinates are given
by

a = a

2




0
1
1
, b = a

2




1
0
1
, c = a

2




1
1
0
.

�VAB is typically selected to be the conduction-band discontinuity between the
crystals AC and BC.

The ensemble-average value of the matrix element derived above will be used in
Chapter 6 to study alloy scattering.

5.8 Electron--electron scattering

To study electron–electron scattering we consider a single electron interacting with a
many-electron system through the Coulomb interaction potential. The Hamiltonian of
a given electron is then

H(r1) = H1(r1)+ Hint (r1).

The Hamiltonian, H1(r1), is the non-interacting single-electron Hamiltonian and
Hint (r1) is the screened Coulomb interaction potential given by

Hint (r1) =
∑

j

V (rj − r1) = e2

4πε

∑
j

exp(−α|rj − r1|)
|rj − r1| . (5.26)

Here, α is the screening constant and V (rj − r1) is the two-body screened Coulomb
potential between electrons at r1 and rj .

It is convenient to rewrite the screened Coulomb interaction potential, Hint (r1),
using the second quantization formalism, which accounts for the Pauli exclusion
principle. To do this, we introduce the many-body field operator defined as

�(r) =
[

2

(2π)3

]1/2 ∫
d3k̃ φk̃(r) bk̃,
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where bk̃ is the creation operator (and b+
k̃

the destruction operator) for the state φk̃(r),
which is the eigenstate corresponding to the single-body Hamiltonian H1(r). The
creation and destruction operators bk̃ and b+

k̃
satisfy the same properties as the phonon

creation and destruction operators aq and a+
q .

The state φk̃(r) is normalized according to∫
d3rφ∗

k̃′(r)φk̃(r) = δ(k̃′ − k̃). (5.27)

The notation k̃ is used to label the above states as energy eigenstates. This is to
differentiate them from the plane wave Bloch states labeled without the tilde.

Rewriting the interaction Hamiltonian, Hint (r1), using the second quantization
formalism results in the following expression:

Hint (r1) = �
∫

d3r2 �
+(r2) V (r2 − r1) �(r2)

= 2�

(2π)3

∫
d3k̃′

2

∫
d3k̃2 V (k̃2, k̃′

2)b
+
k̃′

2
bk̃2
, (5.28)

where

V (k̃2, k̃′
2) =

∫
dr2 φ

∗
k̃′

2
(r2) V (r2 − r1) φk̃2

(r2).

The normalization volume is given by �. The calculation of the matrix element
V (k̃2, k̃′

2) in the Wannier representation is left as an exercise for the reader. Note that
the conservation of particles expected for a many-body electron system is enforced by
the terms b+

k̃′
2

bk̃2
which occur in pairs in the interaction Hamiltonian, indicating that

the destruction and creation of states takes place simultaneously when the single-body
electron 1 scatters on electron 2 of the many-body system.

Let us demonstrate now how the semiclassical approximation introduced for the
scattering of a single electron by the many-body phonon field can also be applied to
the scattering of a single electron by the many-body electron field. To do this, we
use the semiclassical equivalent of the creation and annihilation operators which is
obtained by replacing the creation and annihilation operators by complex numbers

bk̃ ⇒ Ak̃ exp[−i(ωk̃t + ϕk̃)],

b+
k̃′ ⇒ Ak̃′ exp[+i(ωk̃′ t + ϕk̃′)].

The energy, h̄ωk̃, and wave-vector k̃ refer to the single-electron state. The argument
ϕk̃ is the classical phase of the single-electron state. We assume that the many-electron
system is in thermal equilibrium which results in the phases ϕk̃ being randomly and
uniformly distributed (maximum entropy). By performing an ensemble average, a
correspondence is found between the amplitudes, Ak̃, and the Fermi statistical factors.
Consider the operator b+

k̃′bk̃ operating on a state |Nk̃′ 〉|Nk̃〉. The result is

b+
k̃′bk̃|Nk̃′ 〉|Nk̃〉 = (1 − Nk̃′)

1/2 (Nk̃)
1/2 |Nk̃′ + 1〉|Nk̃ − 1〉.
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Only the states |0k̃′ 1k̃〉 lead to scattering events, and the probability of such an event
is then Nk̃(1 − Nk̃′).

In thermal equilibrium the average probability of scattering and backscattering is
therefore given by fk̃(1 − fk̃′), where fk̃ is the Fermi–Dirac statistical factor given for
a specific Fermi energy EF by

fk̃ = fD(Ek̃) = {1 + exp[(Ek̃ − EF )/kT ]
}−1

.

Note that backscattering is the scattering event, b+
k̃

bk̃′ , following the scattering event,

b+
k̃′bk̃. The inclusion of backscattering enforces current conservation during the

scattering process. Other correlated backscattering events are prevented if we assume
that the heat bath randomizes the phases before the next scattering event occurs. The
ensemble-average results are shown below. For a discrete system of finite volume, �,
we obtain:

〈AK̃ exp(iϕK̃) AK̃′ exp(−iϕK̃′) Ak̃′ exp(iϕk̃′) Ak̃ exp(−iϕk̃)〉E .A.

= δK̃ k̃δk̃′ k̃′ fk̃(1 − fk̃′).

The conversion to a continuous system is done by comparing the normalizations of the
wave-function for a discrete and a continuous system. Using�δk̃′ k̃ = (2π)3δ(k̃′ − k̃),
the ensemble average takes the following form:

〈AK̃ exp(iϕK̃) AK̃′ exp(−iϕK̃′) Ak̃′ exp(iϕk̃′) Ak̃ exp(−iϕk̃)〉E .A.

= (2π)6

�2
δ(K̃ − k̃)δ(K̃′ − k̃′) fk̃ (1 − fk̃′). (5.29)

This is the ensemble average which is used in Chapter 6 when evaluating the self-
energy corresponding to electron–electron scattering. We shall also see in Chapter
6 that an additional Pauli exclusion term is also introduced for the single-body test
electron 1.

5.9 Conclusion

In this chapter we have introduced the major elastic and inelastic scattering processes
which limit the performance of quantum devices: electron–phonon, electron–electron,
and other scattering processes specific to heterostructure devices. The general
form of the electron–phonon interaction Hamiltonian was derived and the specific
matrix elements for polar, acoustic, and intervalley phonon scattering processes were
evaluated. Interface roughness scattering was analyzed using a model of uncorrelated
terraces with a Gaussian distribution in size, and alloy scattering was analyzed using
the virtual-crystal model. Armed with these scattering models we are now in position
to study in the next chapter the impact of scattering upon transport in quantum devices.
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5.11 Problems

5.1 Using Equations (5.5), (5.7), and (5.8) verify Equations (5.9), (5.10), (5.11), (5.13) (5.14), and
(5.15).

5.2 Using Equation (5.16) derive Equations (5.17) and (5.19) for the electron–phonon interaction
Hamiltonian inside a layer of width L . Assume the lattice vibrations vanish at the edges of the
sample.

5.3 Consider an effective-mass electron with energy E1 and momentum k1 in a uniform conduction
band. Calculate the range of the electron velocity for which the electron can spontaneously emit
an acoustic phonon. Use the conservation of energy and momentum equations and assume a
linear dispersion model for ωq,AC .



6 Scattering-assisted tunneling

A philosopher once said ‘It is necessary for the very existence of science that the same conditions

always produce the same results’. Well, they do not.

The Character of Physical Law, RICHARD FEYNMAN

6.1 Introduction

Our study of quantum heterostructure devices in Chapter 4 neglected the scattering
processes. Transport in the absence of scattering is referred to as ballistic transport. A
true ballistic electron by definition travels without being scattered, thus conserving its
total energy E and its perpendicular wave-vector k⊥ in layered devices. Note that the
electron’s longitudinal energy E − h̄2k2

⊥/2m∗(n) will, however, vary from site to site
if the device varies spatially along the superlattice axis.

In real crystals the electron always experiences some type of scattering.∗ Therefore,
ballistic transport only exists as an event with a certain probability of occurence.
Ballistic transport through a device can therefore be assumed to take place when
the device length is short compared with the mean free path of the electron between
scattering events.

The description of ballistic transport given above is semiclassical. It is indeed
the nature of quantum mechanics that all electron paths (incident and scattered)
must be considered simultaneously, as they affect each other. Consider an electron
wave incident on a heterostructure device. As a consequence of the imperfection or
vibrations of the lattice, the incident wave of total energy E0 generates a continuum
(in energy) of scattered waves of energy E1 corresponding to new electron paths in
the device (see Figure 6.1). The scattered waves in turn modify the incident wave
in a process called backscattering. Backscattering is responsible for setting the mean
free path of the incident wave. Backscattering also modifies the phase of the incident
wave and the incident wave then interacts differently with the heterostructure potential.
This is referred to as a self-energy effect, because a similar change of phase could be
realized if the energy of the incident electron actually had been changed. Note that, in

∗ A noted exception is the absence of scattering in superconductors under DC conditions.
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InterfaceEnergy

E1x(max)=E0

E0x and E1x

E0x

Transmitted
incident wave

Continuum of
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Incident
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Position

Quasi-bound state
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Fig. 6.1. Representation of the continuum of scattered waves generated by interface roughness (IR)
scattering at one site by changing the electron direction. Electrons can then cross the double barrier
by scattering-assisted resonant tunneling through a quasi-bound state even if it is located below the
conduction-band edge of the emitter contact.

turn, the scattered waves spawn new scattered waves and therefore are also subjected
to backscattering.

All the quantum effects discussed above indicate that in order to properly account
for scattering, it is necessary to include it in the Schrödinger equation. In this chapter,
we will develop a theory which will permit us to analyze the impact of scattering on the
tunneling process in a heterostructure. The test device considered will be the resonant
tunneling diode (RTD).

6.2 Importance of three-dimensional scattering

As we shall see, three-dimensional effects must be accounted for if one wishes
to simulate the broadening of the transmission coefficient introduced by scattering
processes in some modes of operation. Let us motivate it for the case of phonon
scattering.

Consider a plane-wave electron with a total energy E0 incident on a quantum
structure. Let us write the total incident energy E0 in terms of its perpendicular E0⊥
and longitudinal E0x parts

E0 = h̄2k2
0⊥

2m∗ + E0x . (6.1)
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For a single sequential scattering event in which an electron absorbs or emits a phonon
of energy ωq, the total energy E1 of an electron after the collision is E1 = E0 ± h̄ωq.

Let us also write the total energy E1 in terms of its perpendicular E1⊥ and
longitudinal E1x parts:

E1 = h̄2k2
1⊥

2m∗ + E1x . (6.2)

We shall see that in a one-dimensional heterostructure, the perpendicular momentum
satisfies the two-dimensional momentum conservation rule:

k1⊥ = k0⊥ ± q⊥. (6.3)

The longitudinal part E1x of the final energy E1 is then

E1x = E0x ± h̄ωq + h̄2
(
k2

0⊥ − k2
1⊥
)

2m∗ . (6.4)

Note that the electron can be scattered by any phonon q. Since the magnitude k1⊥ of
the final perpendicular momentum given by Equation (6.3) must have a positive value,
the longitudinal part of the energy E1 must satisfy the condition

E1x ≤ E0x ± h̄ωq + h̄2k2
0⊥

2m∗ . (6.5)

Equations (6.4) and (6.5) state that the longitudinal electron energy E1x can have
continuous values within a prescribed range. In a one-dimensional treatment, the per-
pendicular wave-vector is assumed to remain unchanged. Therefore the longitudinal
part of the energy E1 can only assume two values E1x = E0x ± h̄ωq for a single
phonon scattering event. However, a one-dimensional model does not account for all
the possible scattered waves.

Consider the case of the double-barrier heterostructure. For an incident electron
with longitudinal energy E0x for which resonant tunneling is not directly possible,
there exists a family of phonons which will change its perpendicular wave-vector from
k0⊥ to k1⊥ such that its final longitudinal energy E1x is now aligned with the virtual
eigenvalue of the quantum well (provided Equation (6.5) is satisfied). This process
is called phonon-assisted resonant tunneling. Phonon-assisted resonant tunneling can
potentially lead to an effective broadening of the transmission coefficient T (E0x ) by
increasing the transmission coefficient off resonance and decreasing it at resonance.

Note, however, that the transition probability for polar scattering is weighted by
the factor 1/q2. This favors the scattering by small-wave-vector q (large-wavelength)
phonons and therefore prevents too large a variation of the perpendicular momentum.
As a result, phonon-assisted resonant tunneling approximately follows the simplified
selection rule E1x = E0x ± h̄ωq for small wave-vectors. Phonon-assisted resonant
tunneling introduces two additional peaks in the transmission coefficient which can be
observed in the I–V characteristic at low temperature.
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As we shall see, the three-dimensional effects discussed above for phonon scattering
apply also to elastic scattering processes.

6.3 Scattering-assisted tunneling theory

As described above we need to develop a scattering formalism capable of handling
both tunneling and three-dimensional scattering in layered devices. The semiclassical
formalism we shall develop for this purpose is referred to as the Multiple-Sequential
Scattering-Assisted Tunneling (MSSCAT) theory. We shall start, however, by de-
veloping the MSSCAT theory for single sequential scattering (1SS) processes before
generalizing it to multiple-sequential scattering (MSS) processes.

6.3.1 Semiclassical scattering picture

The quantum trajectory of a single electron subjected to various elastic and inelastic
scattering processes i can be described using a total semiclassical Hamiltonian
H consisting of the electron Hamiltonian He plus the various electron-scattering
interaction Hamiltonians:

H = He +
∑

i

Helast,i +
∑

i

He−ph,i (t)+
∑

i

He−e,i (t).

The time-independent interaction Hamiltonians Helast,i will induce elastic scattering
processes for which the total electron energy is conserved.

The time dependence of the electron–phonon scattering process interaction term
He−ph,i (t) results from our assumption in Chapter 5 of a classical field of lattice vibra-
tions which remains in thermal equilibrium despite its interaction with the electrons.
Similarly electron–electron scattering is represented by a time-dependent interaction
He−e,i (t) as it results from the scattering of the test electron by its Coulombic
interaction with all the time-varying wave-functions (see Chapter 5) associated with
the electrons of the many-body system.

The time-dependent interaction Hamiltonians therefore describe the scattering of
our test electron by many-body systems (phonons or electrons) which are assumed to
remain in thermal equilibrium. Note that the time-dependent interaction Hamiltonians
induce inelastic scattering processes, as the incident (total) energy of the test electron
is no longer conserved.

Note that in the single-electron treatment of electron–electron scattering, the
trajectory of the test electron studied is inelastic because it is scattered by a Fermi
many-body system which is assumed not to include it.
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The trajectory of the electron is then given by the solution of the time-dependent
Schrödinger equation:

H |�〉 = i h̄
d

dt
|�〉, (6.6)

in the superlattice region. Our analysis will be limited to a layered heterostructure
which varies spatially along the superlattice axis x and is uniform in the perpen-
dicular directions (y and z). To calculate the trajectory of the electron in such a
one-dimensional superlattice we use the generalized Wannier picture introduced in
Chapter 3. In this picture, the electron wave-function |�〉 is expanded in terms of the
generalized Wannier functions |k⊥, n〉 using the envelope function f (k⊥, n, t):

|�〉 =
∑

n

∫
f (k⊥, n, t)|k⊥, n〉 dk⊥, (6.7)

where n is the lattice site index along the superlattice direction. The Wannier
expansion is limited to a single generalized band (except for interband scattering
processes).

6.3.2 Matrix elements for the heterostructure Hamiltonian

In the generalized Wannier representation, the matrix element of the heterostructure
Hamiltonian He in the generalized Wannier function basis is

〈k′
⊥, m | He | k⊥, n〉 = He

mn(k⊥)δ(k′
⊥ − k⊥),

where He
mn(k⊥) is the matrix element of the biased heterostructure (generalized band

structure).
To simplify the presentation of the MSS theory, we use the effective-mass approxi-

mation for the band structure in the transverse direction, so that we have (see Section
3.3.4)

He
m n(k⊥) = H̃m n +

[
h̄2k2

⊥
2m∗(0)

]
δmn,

with H̃m n given by

H̃m n = Hm n + h̄2k2
⊥

2m∗(0)

[
m∗(0)
m(n)

− 1

]
δmn.

6.3.3 Matrix elements for the interaction Hamiltonian

The scattering processes considered here are inelastic scattering by phonons (acous-
tic, polar, intervalley), electron–electron scattering, and elastic scattering (interface
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roughness and alloy fluctuation) in the heterostructures. As we shall see below, all
these scattering processes are analyzed in a similar fashion except that some of them
are local (occur at one lattice site, e.g. interface roughness) while others are non-local
(occur simultaneously at all the sites, e.g. phonon scattering).

We have seen in Chapter 5 that the electron–phonon interaction potential can be
written in the form

He−ph = 2

�1/2

∑
qx>0

∑
q⊥

Cph±(q) cos(ωt − q⊥ · r⊥ + φq) sin(qx x),

where the constant Cph±(q) was defined in Chapter 5.
In the generalized Wannier representation, the matrix element of the electron–

phonon interaction Hamiltonian is

〈k′
⊥, m|He−ph | k⊥, n〉 = 1

�1/2

∑
qx>0

sin(qx ma) δmn

×
∑
q⊥

Cph±(q)
{
δ(k′

⊥ − k⊥ + q⊥) exp[i(ωqt + φq)]

+ δ(k′
⊥ − k⊥ − q⊥) exp[−i(ωqt + φq)]

}
,

with (see Section 5.2.3) Cph±(q) = 2αq Aq±. As discussed in Chapter 5, the amplitude
Aq and the phase φq of different phonons are randomly distributed and mutually
uncorrelated:

〈Aq′± exp(iφq′)Aq± exp(−iφq)〉E .A. = 〈A2
q±〉E .A.δq′q

=
(

Nq + 1

2
∓ 1

2

)
δq′q,

〈Aq′± exp(iφq′)Aq± exp(iφq)〉E .A. = 0.




(6.8)

where the notation 〈· · ·〉E .A. indicates that an ensemble average is performed over the
phonon scattering events. Phonon scattering is a random process, and we will use these
ensemble average relations to calculate the average transmitted and reflected current
for each scattering trajectory of our test electron.

A similar model can be developed for elastic scattering. A general elastic scattering
process can be represented by an interaction potential Helast(r). It is convenient to use
a periodic boundary condition so that we have

Helast =
∑

q
Vq exp(iq · r) =

∑
q

|Vq| exp(iφq) exp(iq · r),

where q is a reciprocal space vector. The phase φq and the amplitude of |Vq| vary
across the device area due to the random location of the scattering centers (e.g., alloy
scattering and interface roughness scattering). An ensemble average over the scatterer
location will therefore be used to calculate the average transmitted and reflected
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currents. The analysis of elastic scattering processes is therefore similar to that of
phase-breaking scattering processes.

In the generalized Wannier representation, the matrix element of the elastic interac-
tion Hamiltonian for an elastic scattering process at the lattice Ni is

〈k′
⊥, m|Helast,i | k⊥, n〉 = δm Ni δmn

1

S1/2

∑
q⊥

C(q⊥, i)δ(k′
⊥ − k⊥ − q⊥),

where hermiticity requires C(−q⊥, i) = C∗(q⊥, i). In the present theory we assume
that the elastic scattering events are uncorrelated.

〈C(q′⊥, i ′)C(q⊥, i)〉E .A. = 〈|C(q⊥, i)|2〉E .A.δ−q′⊥ q⊥δi ′ i . (6.9)

6.3.4 Envelope equations for sequential scattering

Having calculated the Hamiltonian matrix elements we can rewrite the Schrödinger
Equation (6.6) in the generalized Wannier representation using Equation (6.7). For
simplicity we consider a single inelastic (optical phonon) and a single elastic scattering
process. The envelope function f (k⊥, n, t) is then a solution of the following general
envelope equation

i h̄
d

dt
f (k⊥, n, t) = h̄2k⊥2

2m∗(0)
f (k⊥, n, t)+

NB∑
m=−NB

H̃n m f (k⊥,m, t)

+ 1

�1/2

∑
qx>0

sin(qx na)
∑
q⊥

Cph±(q)
{

f (k⊥ + q⊥, n, t) exp[i(ωqt + φq)]

+ f (k⊥ − q⊥, n, t) exp[−i(ωqt + φq)]
}

+ 1

S1/2

∑
i

δnNi

∑
q⊥

C(q⊥, i) f (k⊥ − q⊥, n, t). (6.10)

The envelope equation derived above is the Schrödinger equation in the Wannier
representation that we must solve to analyze scattering-assisted tunneling in a layered
heterostructure. We shall assume that the incident electron can be represented by an
incident wave of total energy E0, transverse momentum k⊥0 and envelope f0(n, E0x ).
As the incident electron absorbs or emits optical phonons, its energy will be either
increased or decreased by a multiple of h̄ωq. For elastic scattering the total energy
remains unchanged. A steady-state envelope solution will therefore consist of this
incident wave plus all the scattered waves of various energy and transverse momentum
generated. For a 1SS event the total envelope function is therefore given by

f (n,k⊥, t) = f0(n, E0x )δ(k⊥ − k⊥0) exp

(
E0t

h̄

)

+ 1

�1/2
exp

(
−i

E0t

h̄

) ∑
qx>0

∑
q⊥

exp[−i(ωqt + φq)]Cph+(q)
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× f1(n, E1x (q⊥), qx )δ(k⊥ − (k0⊥ + q⊥))

+ 1

�1/2
exp

(
−i

E0t

h̄

) ∑
qx>0

∑
q⊥

exp[i(ωqt + φq)]Cph−(q)

× f1(n, E1x (−q⊥), qx )δ(k⊥ − (k0⊥ − q⊥))

+ 1

S1/2
exp

(
−i

E0t

h̄

)∑
i

∑
q⊥

Celast(q⊥, i)

× f1(n, E1x (q⊥), i)δ(k⊥ − (k0⊥ + q⊥)), (6.11)

with f0(n, E0x ) the incident wave envelope, f1(n, E1x (−q⊥)) the scattered wave
envelope for 1SS and with the longitudinal incident and scattered energies E0x and
E1x defined to be

E0x = E0 − h̄2

2m∗(0)
|k0⊥|2 ,

E1x (±q⊥) = E0 ± h̄ωq − h̄2

2m∗(0)
|k0⊥ ± q⊥|2 for phonon scattering,

E1x (q⊥) = E0 − h̄2

2m∗(0)
|k0⊥ + q⊥|2 for elastic scattering.

The general envelope solution f (k⊥, n, t) in Equation (6.11) for 1SS is expressed
in terms of the envelope functions f0(n, E0x ) and f1(n, E1x (−q⊥)) which remain to
be determined.

We can verify that f (k⊥, n, t) in Equation (6.11) is an ensemble-average solution
of the envelope Equation (6.10) limited to a 1SS event provided that f0 and f1 are
solutions of specific envelope equations. To obtain these envelope equations, we first
substitute the proposed solution (6.11) in the envelope Equation (6.10), and equate the
terms of same energy (frequency) E0, E0 + h̄ωq, and E0 − h̄ωq and weighted by the
same Dirac function δ(k⊥ − k′⊥) (i.e., same perpendicular Bloch wave). Next we
perform an ensemble average using Equations (5.18) and (6.9) assuming that elastic
and phonon scattering are uncorrelated processes

〈Celast(q′⊥, i)Cph±,∓(q) exp(±iφq′)〉E .A. = 0.

Therefore f0 must satisfy the envelope equation

E0x f0(n, E0x ) =
∑

m

H̃n m f0(m, E0x )

+
∑
qx>0

[
G ph+(n, E0x , qx )+ G ph−(n, E0x , qx )

]+∑
i

Gelast(n, E0x , i), (6.12)

where G ph± and Gelast are coupling terms defined below. Similarly, the envelope
function f1 is a solution of the envelope equations

E1x f1(n, E1x , qx ) =
∑

m

H̃n m f1(m, E1x , qx )+ sin(qx na) f0(n, E0x ) (6.13)
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for phonon scattering and

E1x f1(n, E1x , i) =
∑

m

H̃n m f1(m, E1x , i)+ δn,Ni f0(n, E0x ) (6.14)

for elastic scattering.
The coupling terms G ph± and Gelast in Equation (6.12) are found to be

G ph±(n, E0x , qx ) = sin(qx na)
1

�

∑
q⊥

〈C2
ph±(q)〉E .A. f1(n, E0x (±q⊥), qx ), (6.15)

Gelast(n, E0x , i) = δnNi

1

S

∑
q⊥

〈|Celast(q⊥, i)|2〉E .A. f1(n, E0x (q⊥), i). (6.16)

To simplify the evaluation of the G terms it is advantageous to replace the summation
over the perpendicular momentum q⊥ by an integration. For most of the scattering pro-
cesses (except acoustic scattering), the integration over the perpendicular momentum
can be performed analytically and the following expressions result for the coupling
terms G:

G ph±(n, E0x , qx ) = sin(qx na)

×
∫ E0±h̄ωL O

−2AL

f1(n, E1x , qx )HL O±(E1x , qx , E0x , E0⊥) d E1x

for optical phonon scattering and

Gelast(n, E0x , i) = δnNi

∫ E0

−2AL

f1(n, E1x , i)HEL(E1x , i, E0x , E0⊥) d E1x

for elastic scattering. Note that as a result of the three-dimensional analysis the
coupling function Hscat is now a continuous function of E1x , indicating that the
incident electron of energy E0x couples to a continuum of scattered waves with energy
E1x due to the variation of its transverse momentum. In Section 6.9 we shall present
the coupling functions Hscat for the various scatterings discussed in Chapter 5.

Note that a complete MSS solution can be obtained using the same procedure. For
example the envelope function accounting for two sequential scattering events for
elastic scattering only is given by

f (n,k⊥, t) = f0(n)δ(k⊥ − k⊥0) exp

(
−i

E0t

h̄

)

+ 1

S1/2
exp

(
−i

E0t

h̄

)∑
i

∑
q⊥

C(q⊥, i)
[

f1(n,q⊥, i)δ(k⊥ − (k0⊥ + q⊥))

+ 1

S1/2

∑
i ′

∑
q′⊥

C(q′⊥, i ′) f2(n,q′⊥, i ′)δ(k⊥ − (k0⊥ + q⊥ + q′⊥))
]
. (6.17)

Substituting Equation (6.17) into Equation (6.10) we verify that a second sequential
scattering event is implemented by introducing the coupling terms in the Wannier
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Equations (6.13) and (6.14) which couple the waves f1 to the waves f2. The presence
of the coupling terms in both the incident and the scattered Wannier equations accounts
for backscattering. Backscattering, among other things, enforces the conservation of
the current.

6.4 Transmission coefficient for scattering-assisted tunneling

Having established the equations for solving the wave-functions f0 and f1 we are
now in a position to calculate the reflected or transmitted currents in the quantum
device studied. We have seen that for each electron of energy E0x and perpendicular
momentum k⊥0 incident on the superlattice we will have a continuous spectrum of
scattered states of longitudinal energy E1x and transverse energy E1⊥. We are only
interested in the average current obtained from an ensemble average over the scatterers.
For mutually uncorrelated incident and scattered waves, the total current is obtained
by summing of the currents carried by each of those states. As is demonstrated in
Problem 6.3, the total current of the incident and scattered waves is conserved.

Let us assume for simplicity that for a wide range of energies the semiconductor can
be represented by a tight-binding band. We also assume the flat-band condition in the
left-hand (L) contact (sites n < NL ) and the right-hand (R) contact (sites n > NR).
Under such conditions a ballistic electron of energy E0x satisfies

E0x = AL − AL cos(k0x La) = AR − AR cos(k0x Ra),

where k0x R and k0x L (selected positive) are the electron wave-vectors on the left- and
right-hand contacts. We assume below that AL and AR are positive numbers and select
the positive values for k0x L and k0x R .

In the left- and right-hand contacts an incident wave f0(n, E0x ) of energy E0x can
then be written:

f0(n) =
{

exp(ik0x Lna) + b0 exp(−ik0x Lna) for n < NL

c0 exp(ik0x Rna) for n ≥ NR,

where 1, b0, and c0 are the amplitudes of the incident, reflected, and transmitted
subwave components of f0.

The incident, reflected, and transmitted currents for the envelope function f0 are
given respectively by

JI 0(E0x ) = e vL(E0x ),

JR0(E0x ) = e |b0|2 vL(E0x ),

JT 0(E0x ) = e |c0|2 vR(E0x ),

where vL(E0x ) is the velocity of semiconductor L on the left-hand side of the
superlattice and vR(E0x ) is the velocity of semiconductor R on the right-hand side
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of the superlattice. Since we assume here a tight-binding band in the flat-band region
of the L and R contacts, the electron velocity is simply given by

vi (Ex ) = 1

h̄

dEi (kx )

dkx
= a

h̄
Ai sin(k0xi a).

The transmitted current associated with the envelope function f1 is given by

e |c(E1x , qx )|2 vR(E1x ).

The total average transmitted current JT,ph± resulting from the emission or absorption
of all the phonon-scattering events is then given by

JT,ph±(E0x , E0⊥) = e
1

�

∑
qx>0

∑
q⊥

〈C2
ph±(q)〉E .A. | f1(NR, E1x , qx )|2 vR(E1x )

= e
1

Lx

∑
qx>0

∫ E0±h̄ωLO

−2AL

HLO±(E1x , qx , E0x , E0⊥) | f1(NR, E1x , qx )|2 vR(E1x ) d E1x .

The total transmitted current JT,elast resulting from elastic scattering is similarly given
by

JT,elast(E0x , E0⊥) = e
∑

i

1

S

∑
q⊥

〈|Celast(q⊥, i)|2〉E .A. | f1(NR, E1x , i)|2 vR(E1x )

= e
∑

i

∫ E0

−2AL

HEL(E1x , i, E0x , E0⊥) | f1(NR, E1x , i)|2 vR(E1x ) d E1x .

The total forward transmission coefficient for an incident electron of longitudinal
energy E0x and perpendicular momentum k0⊥ is then given in the 1SS approximation
by

TF (E0x , E0⊥) = T0 + Tph + Telast,

using the elementary transmission coefficients:

T0(E0x , E0⊥) = JT 0(E0x , k0⊥)
JI 0(E0x )

,

Tph(E0x , E0⊥) = JT,ph+(E0x , k0⊥)+ JT,ph−(E0x , k0⊥)
JI 0(E0x )

,

Telast(E0x , E0⊥) = JT,elast(E0x , k0⊥)
JI 0(E0x )

.

The various scattering processes are therefore seen to contribute to the total forward
transmission coefficient TF which is why we refer to this physical process as
scattering-assisted tunneling. A total reflection coefficient RF can be defined similarly
(by replacing R by L):

RF (E0x , E0⊥) = R0 + Rph + Relast.
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From current conservation (see Problem 6.3) we have RF + TF = 1. Note that this
result was derived for a 1SS event but it will be generalized in the following sections
for MSS events.

As usual, the total forward diode current per unit area from semiconductor L to
semiconductor R for a given Fermi energy E f L on the left-hand side (see Figure
6.1) is then obtained by summing the transmitted current over all possible incident
momentums k0:

IF (E f L) = 1

4π3

∫ π/a
0

dk0x

∫ π/a
−π/a

∫ π/a
−π/a

dk0⊥
e TF (E0x , E0⊥)vL(E0x )

exp

(
E0 − E f L

kB T0

)
+ 1

.

Introducing the new variables d E0x = vL(E0x )dk0x and dk0⊥ = 2πk0⊥dk0⊥ the
diode current density is now

IF (E f L) = m∗

2π2h̄2

∫ 2AL

0
d E0x

∫ 2AL

0
d E0⊥

e TF (E0x , E0⊥)

exp

(
E0 − E f L

kB T0

)
+ 1

, (6.18)

with E0 = E0x + E0⊥.
The total backward diode current IB per unit area contributed by the electron

incident on the right-hand side of the device is obtained by a similar equation but
using the Fermi energy E f R on the right-hand contact and the reverse transmission
coefficient TR associated with the electron transport from right to left. As for ballistic
transport the total diode current I per unit area is then given by the difference between
the forward and backward currents I = IF (E f L)− IB(E f R).

6.5 Self-energy

We have seen in the previous sections that the ensemble-average solution of the
Schrödinger equation in the presence of phase-breaking scattering for a single scat-
tering event reduced to the solution of a set of coupled difference equations. The
coupling terms G involve an integration over a continuum of energy E1x . For the
numerical calculation we can replace this integration over E1x by a summation over a
discrete set of energies E1x,r . The solution of the Schrödinger equation in the presence
of scattering then reduces to the solution of the difference Equation (6.12) coupled to
a finite set of difference Equations (6.13) and (6.14). For a single scattering event
this can be easily handled. However, for MSS the problem becomes formidable as
the number of scattered waves grows exponentially. For example, if we need say
P = 300 energies E1x,r for each scattering event at a single site then for M sequential
scattering events we need to solve 1+ P + P2 +· · ·+ P M coupled envelope equations.
It is here that it becomes numerically advantageous to introduce the impulse (Green)
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function to solve this problem and reduce the computation for elastic scattering to the
solution of M × P decoupled wave-equations. This approach is also beneficial because
it introduces the physical concept of self-energy, and it will facilitate the generalization
of the 1SS theory presented above to the MSS case. Finally it will also allow us to
develop an extension of the MSS theory which accounts for Pauli exclusion effects.

An efficient method for solving the MSS Hamiltonian system of equations can be
developed if we try to evaluate the coupling terms G(n, ·) before the wave-function f0

is available. Indeed, as can be expected from a linear system, the functions f1(n) can
be expressed as

f1(n, E1x , E1⊥, i) = h(n, i, E1x , E1⊥) f0(i, E0x , E0⊥)

for local scattering and

f1(n, E1x , E1⊥, qx ) =
NR∑

m=NL

h(n,m, E1x , E1⊥) sin(qx ma) f0(m, E0x , E0⊥)

for non-local scattering, where the function h(n,m, E1x , E1⊥) is the impulse response
solution of Equation (6.14) with f0(n, E0x , E0⊥) = 1:

E1x h(n,m, E1x , E1⊥) =
∑

l

H̃n l(E1⊥) h(l,m, E1x , E1⊥) + δnm .

Substituting f1 into Equation (6.13) or (6.14) we find that for a scattering process scat
(ph or elast), the coupling term Gscat (n, E0x , ·) can be written

Gscat (n, E0x , ·) =
NR∑

m=NL

H SE,0
scat,n,m(·, E0x , E0⊥) f0(m, E0x , E0⊥),

where H SE,0
scat,n,m is the so-called self-energy matrix for the scattering process scat . For

inelastic (E1 = E0 ± h̄ωL O ) non-local LO phonon scattering we have

H SE,0
L O±,n,m(qx , E0x , E0⊥) = sin(qx na) sin(qx ma)

×
∫ E0±h̄ωL O

−2AL

h(n,m, E1x , E1⊥)HL O±(E1x , qx , E0x , E0⊥) d E1x

and for elastic (E1 = E0) local scattering we have

H SE,0
E L ,n,m(i, E0x , E0⊥) = δnmδnNi

×
∫ E0

−2AL

h(n, n, E1x , E1⊥)HE L(E1x , i, E0x , E0⊥) d E1x .

Once the self-energy matrix has been evaluated for all the scattering processes, the
incident wave is then simply obtained from the solution of

E0x f0(n, E0x , E0⊥) =
∑

m

[
H̃n m(E⊥)+ H SE,0

n m (E0x , E0⊥)
]

f0(m, E0x ),
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using the total self-energy matrix

H SE,0
n,m (E0x , E0⊥) =

∑
i

H SE,0
E L ,n,m(i, E0x , E0⊥)+

∑
qx

H SE,0
L O+,n,m(qx , E0x , E0⊥)

+
∑
qx

H SE,0
L O−,n,m(qx , E0x , E0⊥)

The self-energy matrix H SE,0 is a non-Hermitian matrix whose matrix elements are
complex numbers. The real part of the self-energy matrix is responsible for shifting
downward the resonant energies in a superlattice device. The imaginary part accounts
for the loss of current carried by the incident wave f0 as it spawns new scattered waves.
The self-energy matrix is diagonal for local scattering processes and non-diagonal for
non-local scattering processes. Note that the global current conservation (R + T =
1) is independent of the energies E1x,r used. However, a reliable evaluation of the
self-energy requires an adaptive integration technique which selects the energies E1x,r

so as to meet a targeted accuracy.
The use of the impulse (Green) function to solve the incident + scattered Hamilto-

nian system has decoupled the calculation of the incident and scattered waves. In the
next section we will also see that this provides us with an efficient numerical method
for handling the general solution for an arbitrary number of sequential scattering
events.

6.6 The MSS algorithm

Our discussion, so far, has focused on a 1SS event. We are, however, now ready to
generalize the scattering theory to an arbitrary number of sequential scattering events.
Indeed, in practice, a single scattering event is only an acceptable assumption for small
quantum devices like small RTDs and weak scattering processes. For large devices like
superlattices and strong scattering processes (e.g., interface roughness scattering), the
electron is most likely to be involved in MSS events.

For simplicity the MSS algorithm is presented here only for local and elastic
scattering processes at various sites l. In practice for a device of finite size, a finite
number M of sequential scattering events is sufficient. The incident electron wave f0 is
then subjected to the sequential uncorrelated scattering events S = 1, 2, . . . ,M spawn-
ing the waves f1, f2, . . . , fS, . . . , fM of total energies E1, E2, . . . , ES, . . . , EM .
Following the methodology presented in the previous section we introduce the impulse
response hS(n, l, ESx , ES⊥) and the self-energy H SE,S

E L (ESx , ES⊥) associated with
the Sth elastic scattering event at site l. This impulse response hS(n, l, ESx , ES⊥) is a
solution of

ESx hS(n, l, ESx , ES⊥) =
∑

m

[
H̃nm(ES⊥)+ H SE,S

E L ,nm(ESx , ES⊥)
]

× hS(m, l, ESx , ES⊥)+ δnl ,
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where the self-energy H SE,S
E L for the (S + 1)th elastic (ES = E0) (local) scattering

event is defined as

H SE,S
E L ,n,m(ESx , ES⊥) = δnm

∫ E0

−2AL

hS+1(n, n, E(S+1)x , E(S+1)⊥)

× HE L(E(S+1)x , n, ESx , ES⊥) d E(S+1)x .

Clearly MSS is simply implemented by including the self-energy H SE,S
E L in the Hamil-

tonian of the impulse response hS itself. This effectively allows for the Sth scattered
waves to be scattered themselves and spawn the (S + 1) scattered waves at the (S + 1)
sequential scattering event. Note that the self-energy H SE,S

E L is indeed calculated from
the hS+1 impulse responses generated at the (S+1)th scattering event. In MSS the M th
sequential scattering event is assumed to be fully ballistic (no-scattering) so that we
have H SE,M

E L = 0. The calculation of the successive self-energies starts therefore from
the last scattering event M . The self-energies H SE,M

E L , H SE,M−1
E L , H SE,M−2

E L , . . . are
therefore successively calculated until the final self-energy H SE,1

E L is reached. When
a sufficiently large number M (depending on the device size and the strength of the
scattering processes involved) of sequential scattering events are accounted for, the
final (S = 0) self-energy converges to a unique value H SE (E0x , E0⊥) and the impulse
response to the unique value h(n,m, ESx , ES⊥). This indicates that events beyond the
(M +1)th event are unlikely and therefore do not have a significant impact on the final
self-energy.

This convergence property of MSS is demonstrated in Figure 6.2 which compares
the transmission coefficients obtained for different sequential scattering processes.
Clearly for the triple barrier structure considered, MSS is found to converge in five
sequential scattering processes. Also included is the perturbation treatment in which
the self-energy is neglected (set to zero). The perturbation results are seen to be
unstable and diverge even though renormalization Rnorm = R/(R + T ) was used
to combat the absence of current conservation (R + T > 1) in that method.

The algorithm described above allows us to calculate the self-energy and the
impulse response for MSS processes. However, a methodology is also required for
calculating the reflected and transmitted currents associated with the MSS processes.
Consider, for example, a tight-binding band. The impulse response is a solution of

H̃nn−1hS(n − 1, l, ESx , ES⊥)+
[

H̃nn + H SE,S
E L ,nn

]
hS(n, l, ESx , ES⊥)

+ H̃nn+1hS(n + 1, l, ESx , ES⊥)+ δnl = ESx hS(n, l, ESx , ES⊥) = F.

From the evaluation of Fh∗
S(n, l)− F∗hS(n, l) we obtain

0 = − j (n − 1, n)+ j (n, n + 1)+ a

h̄
δnl Im [hS(n, l, ESx , ES⊥)]

− a

h̄
|hS(n, l, ESx , ES⊥)|2 Im

[
H SE,S

E L ,n,n(ESx , ES⊥)
]
,
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Fig. 6.2. Comparison of the transmission coefficients calculated in the presence of interface
roughness scattering for 0, 4, and 5 (quasi-exact) MSS-assisted tunneling and using the
renormalized perturbative calculation (Pertb 1, 3, and 5).

using the elemental (flux) current j (n,m) = −(a/h̄) Im[h∗(n, . . .)h(m, . . .)Hn m].
Integrating over the entire device from the left-hand contact NL to the right-hand
contact NR , we obtain the following current-conservation equation

−2a

h̄
Im [hS(l, l, ESx , ES⊥)]

= vL |hS(NL , l, ESx , ES⊥)|2 + vR |hS(NR, l, ESx , ES⊥)|2

− 2a

h̄

∑
n

|hS(n, l, ESx , ES⊥)|2 Im
[

H SE,S
E L ,n,n(ESx , ES⊥)

]
, (6.19)

where vL and vR are the left-hand and right-hand electron velocities. Since the
last equation does not differentiate between the reflected and transmitted current
components carried by the scattered wave it is advantageous to rewrite it as

−2a

h̄
Im [hS(l, l, ESx , ES⊥)] = jR,S(l, ESx , ES⊥)+ jT,S(l, ESx , ES⊥), (6.20)

where the total reflected jR,S and transmitted jT,S currents are obtained from the
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summations:

jR,S(l, ESx , ES⊥) = j0
R,S(l, ESx , ES⊥)

+
∑

n

|hS(n, l, ESx , ES⊥)|2 j1
R,S(n, ESx , ES⊥),

jT,S(l, ESx , ES⊥) = j0
T,S(n, ESx , ES⊥)

+
∑

n

|hS(n, l, ESx , ES⊥)|2 j1
T,S(n, ESx , ES⊥),

involving the reflected and transmitted currents associated with the impulse function
itself hS(n, l) of the scattering event S:

j0
R,S(l, ESx , ES⊥) = vR(ESx )|hS(NR, l, ESx , ES⊥)|2,

j0
T,S(l, ESx , ES⊥) = vL(ESx )|hS(NL , l, ESx , ES⊥)|2,

and the reflected and transmitted currents associated with the scattering states of the
scattering event (S + 1):

j1
R,S(n, ESx , ES⊥) =

∫ E0

−2AL

jR,S+1(n, E(S+1)x , E(S+1)⊥)

× HE L(E(S+1)x , n, ESx , ES⊥) d E(S+1)x ,

j1
T,S(n, ESx , ES⊥) =

∫ E0

−2AL

jT,S+1(n, E(S+1)x , E(S+1)⊥)

× HE L(E(S+1)x , n, ESx , ES⊥) d E(S+1)x .

To summarize, the MSS algorithm starts with the last scattering event S = M for
which a fully ballistic trajectory is assumed H SE,M

E L = j1
R,M = j1

T,M = 0. All the
preceding scattering events are then successively calculated till the incident wave is
reached (S = 0). At each event S, the self-energy H SE,S

E L ,nm(ESx , ES⊥), the impulse
hS(n, l, ESx , ES⊥), and the reflected and transmitted currents jR,S(l, ESx , ES⊥) and
jT,S(l, ESx , ES⊥) for all scattering sites l are calculated is that order. When the
incident state is reached (S = 0 event, ballistic motion) the currents contributed by
all the scattered waves in the MSS processes are then calculated using the incident
wave f0(n, E0x , E0⊥) instead of the impulse h0(n, l, E0x , E0⊥). Note that one could
alternatively calculate the incident wave using the identity:

f0(n, E0x , E0⊥) = j
h̄vL(E0x )

a
h0(n, NL , E0x , E0⊥),

which can be verified to hold for an electron incident on the left-hand contact (NL ).
Note that the MSS algorithm has been presented here for local scattering processes but
it can be extended to non-local scattering using a similar but somewhat more tedious
matrix analysis.
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6.7 Scattering-parameter representation

Having introduced MSS theory and its algorithm for calculating the impulse response,
we will now introduce a discrete scattering parameter representation which will allow
us to recast the MSS calculation of the transmission coefficient into a summation of
scattering parameters over all possible scattering paths. This new symbolic represen-
tation will allow us, in turn, to address in the next section important many-body issues
such as the enforcement of detailed balance and of Pauli exclusion in MSS theory.

To proceed we shall assume for simplicity that LO phonon scattering and elastic
scattering can be represented by a local scattering process at a single site l. The
resulting Hamiltonian for a 1SS event is then

E0x f0(n, E0x , E0⊥) =
∑

m

H̃nm(E0⊥) f0(m, E0x , E0⊥)

+
∑

p

G p(n, E0x , E0⊥), (6.21)

with the scattering terms G p given by

G p(n, E0x , E0⊥) = δnl

∫ E0+ph̄ω

−2AL

f1(n, E1x , E0x , E0⊥)

× Hp(E1x , E0x , E0⊥) d E1x , (6.22)

where f1(n) is obtained from

E1x f1(n, E1x , E0x , E0⊥) =
∑

m

H̃nm(E1⊥) f1(m, E1x , E0x , E0⊥)

+ δnl f0(l, E0x , E0⊥), (6.23)

with

E1p = E1x + E1⊥ = E0 + ph̄ωL O = E0x + E0⊥ + ph̄ωL O with p = −1, 0,+1.

Note that p is −1 for phonon emission, 0 for elastic scattering and 1 for phonon
absorption.

For such a 1SS process the resulting forward current is

IF = m∗

2π2h̄2

∫ 2AL

0
d E0x

∫ 2AL

0
d E0⊥ fD(E0 − E f L) TF (E0x , E0⊥),

with

TF (E0x , E0⊥) = T0 + T01,−1 + T01,0 + T01,+1,

where we have

T0 = | f0(NR, E0x , E0⊥)|2 vR(E0x )

vL(E0x )
,
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T01,p =
∫ E0+ph̄ωL O

−2AL

Hp(E1x , E0x , E0⊥)| f1(NR, E1x , E0x , E0⊥)|2 vR(E1x )

vL(E0x )
d E1x .

Let us now replace the integration by a summation using the integration weight
S(E1x ). We have

G p(n) = δnl

∑
E1x

S(E1x ) Hp(E1x , E0x , E0⊥) f1(l, E1x , E0x , E0⊥),

T01,p =
∑
E1x

S(E1x ) Hp(E1x , E0x , E0⊥) | f1(NR, E1x , E0x , E0⊥)|2 vR(E1x )

vL(E0x )
.

Let us introduce the generalized scattering coupling coefficient

Cp(E0x , E0⊥, E1x ) = [S(E1x ) Hp(E1x , E0x , E0⊥)
]1/2

and the renormalized wave-function

f1,p(n, E1x , E0x , E0⊥) = Cp (E0x , E0⊥, E1x ) f1(n, E1x , E0x , E0⊥). (6.24)

The system of Equations (6.21), (6.22), and (6.23) is now

E0x f0(n, E0x , E0⊥) =
∑

m

H̃nm(E0⊥) f0(m, E0x , E0⊥)

+ δnl

1∑
p=−1

∑
E1x,p

Cp(E0x , E0⊥, E1x ) f1,p(l, E1x , E0x , E0⊥), (6.25)

E1x f1,p (n, E1x , E0x , E0⊥) =
∑

m

H̃nm(E1⊥) f1,p(m, E1x , E0x , E0⊥)

+ δnl Cp(E0x , E0⊥, E1x ) f0(l, E0x , E0⊥). (6.26)

Therefore the 1SS contribution to the transmission coefficient by the scattered waves
is

T01,p =
∑
E1x,p

| f1,p(NR, E1x , E0x , E0⊥)|2 vR(E1x )

vL(E0x )
.

The advantage of this new discrete representation is that it allows us to introduce
an S-matrix representation. Indeed we can attribute a port index i to the channel
of the incident (Si = 0) wave or to each of the 1SS scattered (Si = 1) waves
fi = fSi ,pi (ni , E(Si )x,r ) associated with the scattering process pi and the energy
E(Si )x,r emerging on the left- (ni = NL ) or right-hand (ni = NR) side of the
device. The port index i therefore maps in a unique fashion all the various index
combinations (Si , pi , ri , ni ) possible. We will reserve the port i = 1 for the incident
left-hand wave f0(NL , E0x , E0⊥) and the port i = 2 for the incident right-hand wave
f0(NR, E0x , E0⊥).
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Each of the waves fi can be represented in terms of an incident wave of amplitude
Ai and a reflected/transmitted wave of amplitude Bi :

fi = Ai exp( jkx,i ni a)+ Bi exp(− jkx,i ni a).

For the incident wave (i = 1) we usually select A1 = 1 and A2 = 0. Note that we are
using the contacts (sites NL or NR) as the origin ni = 0 of the axes ni which are taken
as exiting the quantum region under study. We can now introduce normalized incident
ai = √

vi Ai and reflected bi = √
vi Bi amplitudes using the velocity vi of the state

kx,i at the port i . The scattering parameter Si j is then defined as

Sji = v
1/2
i Bi

v
1/2
j Aj

∣∣∣∣∣∣
Ak �= j =0

= bi

aj

∣∣∣∣
ak �= j =0

,

such that using matrix notation we have b = S a.
Since the Hamiltonian system (6.25) and (6.26) is Hermitian, the incident and

reflected waves satisfy the current-conservation property∑
i

|bi |2 =
∑

i

|ai |2,

which in turn implies that S must be unitary S S∗
t = I (with I the identity matrix) or

equivalently S∗
t = S−1.

Note that the Hamiltonian system (6.25) and (6.26) is real and therefore satisfies
the time-reversal property which states that the complex conjugate of any solution is
also a solution. Thus if the incident waves a generate the reflected waves b, then the
incident waves b∗ will, in turn, generate the reflected waves a∗ (see Problem 6.6 for a
proof), such that we have

a∗ = S b∗ = S(S a)∗ = S S∗ a∗,

which implies that S∗ = S−1 and combined with the unitarity gives the reciprocity
property S = St . Using the scattering-parameter representation we can now rewrite
the 1SS transmission coefficient for the scattered waves as

T01,p(E0x , E0⊥) =
∑

i for ni =NR ,Si =1,pi =p

|SL−R(E1(i))|2 ,

where SL−R(E1) is the left-to-right scattering parameter

SL−R(E1(i)) =
[
vR(E1x,ri )

vL(E0x )

]1/2

f1,pi (NR, E1x,ri , E0x , E0⊥) (6.27)

associated with the scattering event E1(i) and process p01(i):

E1 = (E0x , E0⊥)
p01−→ (E1x , E1⊥).
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So far we have only considered a 1SS event (Si = 1). The S parameters can also
be used for an arbitrary number of sequential scattering events. The same scattering-
parameter definition can be used, but one must use the final scattered wave-functions
fSi ,E(i) generated after the Si sequential scattering events. For example, to the event
sequence E2:

E2 = (E0x , E0⊥)
p01−→ (E1x , E1⊥)

p12−→ (E2x , E2⊥)

correspond the scattering parameters for the various energy paths i

SL−R(E2(i)) =
[
vR(E2x,r2,i )

vL(E0x )

]1/2

f2,E2(i)(NR, E2x,r2,i , E1x,r1,i , E0x , E0⊥), (6.28)

where p01(i) and p12(i) are the specific scattering processes involved in the scattering
path E(i). The transmission coefficient for all the S sequential scattering events is then

T0S(E0x , E0⊥) =
∑

i for ni =NR ,Si =S

∣∣SL−R(ESi (i))
∣∣2 .

We can symbolically write the total transmission coefficient as the sum of the forward
(L–R) scattering parameters over all the scattering paths E possible:

T (E0x , E0⊥) =
∑
E

|SL−R(E)|2 .

Similarly the total reflection coefficient is the sum of the reflected (L–L) scattering
parameters over all the scattering paths E possible:

R(E0x , E0⊥) =
∑
E

|SL−L(E)|2 .

We will now find it particularly useful to introduce the impulse function in the
calculation of the scattering parameters for arbitrary MSS events. For the local
scattering example selected with a single scatterer located at site l, the impulse
response hS at the Sth scattering event is obtained from

ESx hS(n, l, ESx , ES⊥) =
∑

m

H̃nm(ES⊥)hS(m, l, ESx , ES⊥) + δnl

+ H SE,S
ll (ESx , ES⊥) hS(l, l, ESx , ES⊥),

where H SE,S
ll is the self-energy at the scatterer site l:

H SE,S
ll (ESx , ES⊥) =

1∑
p=−1

∑
E(S+1)x,p

|Cp(ESx , ES⊥, E(S+1)x )|2

× hS+1(l, l, E(S+1)x , E(S+1)⊥).
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The magnitude of the S parameter of Equation (6.27) associated with the scattering
event E1 is now:

|SL−R(E1)|2 = h̄2

a2
vL(E0x ) |h0(l, NL , E0x , E0⊥)|2

× |Cp01(E0x , E0⊥, E1x )|2 |h1(NR, l, E1x , E1⊥)|2 vR(E1x ),

where we have used for f1,p the expression given in Equation (6.24):

f1,p(n, E1x , E0x , E0⊥) = Cp(E0x , E0⊥, E1x ) f1(n, E1x , E0x , E0⊥)
= Cp(E0x , E0⊥, E1x ) f0(l, E0x , E0⊥)h1(n, l, E1x , E1⊥)

as well as (see Chapter 3)

f0(n, E0x , E0⊥) = j
h̄vL(E0x )

a
h0(n, NL , E0x , E0⊥).

The S parameter of Equation (6.28) associated with the event E2 is similarly derived
to be:

SL−R (E2) = h̄2

a2
vL (E0x ) |h0(l, NL , E0x , E0⊥)|2 |Cp01 (E0x , E0⊥, E1x )|2

× |h1(l, l, E1x , E1⊥)|2 |Cp12(E1x , E1⊥, E2x )|2 |h2(NR, l, E2x , E2⊥)|2vR(E2x ).

It is now obvious that the scattering parameters of any sequence of scattering events
can be simply written by inspection in terms of the successive impulse responses and
scattering coupling coefficients involved at each scattering site. We are now armed
with an efficient evaluation technique, which will be used in the next section to address
important many-body issues.

6.8 Detailed balance and Pauli exclusion in MSS

In equilibrium (i.e. when there is no applied voltage, temperature gradient or light) a
zero average total current is expected from a device and must therefore be predicted
by the MSS theory even for non-symmetric structures. We shall see in Chapter 9 while
studying the Boltzmann equation that a zero total current in equilibrium results from
detailed balance which is usually established in momentum space (see Chapter 9). To
establish detailed balance in MSS we will need instead to inspect the paths from one
contact to another. In MSS many paths (scattering events) connecting an incident state
(Eix , Ei⊥) to a final state (E f x , E f ⊥) are possible. However, detailed balance will also
be achieved if we demonstrate that for each path connecting (Eix , Ei⊥) to (E f x , E f ⊥)
there exists a reciprocal path, connecting (E f x , E f ⊥) to (Eix , Ei⊥), which will carry
the same current.
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In the previous section we saw that time reversal was responsible for the reciprocity
property. However, time reversal is not at the origin of the detailed balance in
scattering-assisted tunneling. Indeed, the time-reversal argument can only be applied
when the same Hamiltonian is used to describe both the forward path from i to f
and the backward path from f to i . Consider a system with three energy levels.
The 1SS Hamiltonian system connecting f0(E1) to f1(E1), f1(E2), and f1(E3) is
different from the 1SS Hamiltonian system connecting f1(E1) to f0(E1), f0(E2), and
f0(E3). Now recall that these Hamiltonians are created using the ensemble average. It
is therefore the ensemble average which has destroyed the time-reversal property for
the many-body system. However, it is still present for a single ballistic electron, and
we have

T0,F = | f0,F (NR, E0x , E0⊥)|2 vR(E0x )

vL(E0x )

= h̄2v2
L(E0x )

a2
|h0(NR, NL , E0x , E0⊥)|2 vR(E0x )

vL(E0x )

= | f0,R(NL , E0x , E0⊥)|2 vL(E0x )

vR(E0x )
= T0,R

after we make use of the property:

|h0(NL , NR, E0x , E0⊥)|2 = |h0(NR, NL , E0x , E0⊥)|2.

Even though time reversibility cannot be applied to the many-body system as a whole,
it is applicable to each individual one-electron scattering event. This guarantees that
for each sequence of scattering events there exists a reverse sequence of scattering
events returning the final scattered state to its initial state. In MSS such a process also
contributes to current conservation in a process referred to as backscattering.

Let us now study under which conditions detailed balance is established. Indeed in
equilibrium the total current must be zero:

0 = IF − IB

= m∗

2π2h̄2

∫ 2AL

0
d E0x

∫ 2AL

0
d E0⊥ fD(E0 − EF )[TF (E0x , E0⊥)− TB(E0x , E0⊥)].

We have seen that the transmission coefficient is obtained from a summation of the
scattering parameters over all the scattering paths (E) possible. For an electron incident
on the left-hand contact with energy (E0x , E0⊥) the forward transmission coefficient
is

TF (E0x , E0⊥) =
∑
E

|SL−R(E)|2.
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‘As I mentioned next week in my talk on reversible time . . . ’ by Sidney Harris.

Similarly for an electron incident on the right-hand contact with energy (E0x , E0⊥)
the backward transmission coefficient is

TB(E0x , E0⊥) =
∑
E ′

|SR−L(E ′)|2.

Now since to any event E corresponds an event E ′ corresponding to the reverse event,
symbolically written −E , we can write the zero total equilibrium current as

0 = m∗

2π2h̄2

∫ 2AL

0
d E0xi

∫ 2AL

0
d E0⊥i (6.29)

×
∑

E(E0xi ,E0⊥i )

[
fD(E0i − EF ) |SL−R(E)|2 − fD(E0 f − EF ) |SR−L(−E)|2

]
,

where E0i (E) = (E0xi , E0⊥i ) and E0 f (E) = (E0x f , E0⊥ f ) are, respectively, the
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initial and final total energies for the |SL−R(E)|2 path. Note that E0 f is the initial total
energy and E0i is the final total energy of the event −E .

Thus detailed balance will be enforced for MSS if we have

fD(E0i − EF ) |SL−R(E)|2 = |SR−L(−E)|2 fD(E0 f − EF ). (6.30)

As was stated earlier, time reversal is not applicable here to demonstrate this reci-
procity requirement because the same Hamiltonian is not used for electrons injected
in the left- and right-hand sides. Instead, we shall demonstrate for elastic scattering
that detailed balance results from the convergence of the impulse response when an
infinite number of 1SS events are used for MSS. When we generalize this proof to
the inelastic case we will establish the impact of the Fermi–Dirac boundary condition
upon the matrix element to be used in MSS.

In theory, we need to demonstrate the reciprocity for all events. In practice, it
is sufficient to demonstrate the procedure for a few sequential events. We consider
here the two events E1 and E2 discussed earlier. The transmission coefficients for the
reciprocal events −E1, −E2 are:

|SR−L(−E1)|2 = h̄2

a2
vL(E0x )vR(E1x ) |Cp10(E1x , E1⊥, E0x )|2

× |h1(NL , l, E0x , E0⊥)|2 |h0(l, NR, E1x , E1⊥)|2,

|SR−L(−E2)|2 = h̄2

a2
vL(E0x ) vR(E2x ) |Cp21(E2x , E2⊥E1x )|2

× |Cp10(E1x , E1⊥, E0x )|2 |h0(l, NR, E2x , E2⊥)|2

× |h1(l, l, E1x , E1⊥)|2 |h2(NL , l, E0x , E0⊥)|2.

First let us demonstrate that the impulse response hS( j, ESx , ES⊥, i) is independent of
the sequential event S for an infinite number of 1SS events. Indeed we have seen that
when a sufficiently large number of sequential scattering events is used, the impulse
response and the self-energy converge. Under such conditions we have

h0( j, i, ESx , ES⊥) = h1( j, i, ESx , ES⊥) = hS( j, i, ESx , ES⊥) = h( j, i, ESx , ES⊥)

so that the Sth index can be dropped from the impulse response notation. Thus for
event E1and −E1 we have

fD(E1 − EF ) |SR−L(−E1)|2 = |SL−R(E1)|2 fD(E0 − EF ),

if we have

|Cp10(E1x , E1⊥, E0x )|2 fD(E1 − EF ) = |Cp01(E0x , E0⊥, E1x )|2 fD(E0 − EF ).
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For elastic scattering (p10 = p01 = 0), the total energy is constant E1 = E0 and
reciprocity results from the time-reversal property of elastic scattering:

|Cp10(E1x , E1⊥, E0x )|2 = |Cp01(E0x , E0⊥, E1x )|2.

For inelastic scattering (p = ±1) the original matrix element used in MSS for
phonon scattering satisfied

1

nL O + 1
|C−1(ESx , ES′x )|2 = 1

nL O
|C1(ES′x , ESx )|2,

where p = −1 is used for phonon emission and p = 1 is used for phonon absorption,
and where nL O is the average number of phonons of energy h̄ωL O :

nL O = 1

exp(h̄ωL O/kB T )− 1
.

Hence the detailed balance condition of Equation (6.30) is achieved for p01 = −1 if
we have

(nL O + 1) fD(E0 − EF ) = nL O fD(E0 − h̄ωL O − EF ),

which is satisfied if a Boltzmann distribution is used as a boundary condition:

fD(E0 − EF ) = exp

(
EF − E0

kB T

)
.

To allow for having a Fermi–Dirac distribution as boundary conditions it is necessary
to add the Pauli exclusion factor in the definition of the Cp(ESx , ES⊥, E(S+1)x )matrix
element such that it satisfies

1

nL O + 1

1

1 − fD(ES+1 − EF )
|C−1(ESx , E(S+1)x )|2

= 1

nL O

1

1 − fD(ES − EF )
|C1(E(S+1)x , ESx )|2.

The detailed balance condition of Equation (6.30) is achieved for event E1 with p01 =
−1 if we have

(nL O + 1) fD(E0 − EF )[1 − fD(E0 − h̄ωL O − EF )]

= nL O fD(E0 − h̄ωL O − EF )[1 − fD(E0 − EF )],

which admits as a solution the Fermi–Dirac distribution as desired

fD(E0 − EF ) = 1

exp

(
E0 − EF

kB T

)
+ 1

.
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For event E2 with p01 = p12 = −1, we have

fD(E0 − EF )(nL O + 1)2[1 − fD(E0 − h̄ωL O − EF )][1 − fD(E0 − 2h̄ωL O − EF )]

= fD(E0 − 2h̄ωL O − EF )n
2
L O [1 − fD(E0 − h̄ωL O − EF )][1 − fD(E0 − EF )]

and detailed balance is also enforced.
Having established the detailed balance condition for inelastic and elastic scattering,

let us now extend the formalism to non-equilibrium. The total current is given by using
the left- and right-hand Fermi levels EF L and EF R

I = m∗

2π2h̄2

∫ 2AL

0
d E0xi

∫ 2AL

0
d E0⊥i

×
∑

E(E0xi ,E0⊥i )

fD(E0i − EF L) |SL−R(E)|2 − fD(E0 f (E)− EF R) |SR−L(−E)|2

= m∗

2π2h̄2

∫ 2AL

0
d E0xi

∫ 2AL

0
d E0⊥i

×
∑

E(E0xi ,E0⊥i )

|SL−R(E)|2 [ fD(E0i − EF L)− fD(E0i − EF R)], (6.31)

where the equilibrium detailed balance identity has been used to rewrite the non-
equilibrium backward current in terms of the non-equilibrium forward current. Note
that the transmission coefficient |SL−R(E)|2 must be calculated using the occupation
number fO N at site i so that the phonon matrix elements are related by the relation:

1

nL O + 1

1

1 − fO N (i, ES′x , ES′⊥)
|C−1(ESx , ES′x )|2

= 1

nL O

1

1 − fO N (i, ESx , ES⊥)
|C1(ES′x , ESx )|2.

The calculation of the occupation number fO N at position i can be done using the
non-equilibrium occupation number fO N in the absence of scattering obtained from
the charge [6]

ρ(i) = m∗

π h̄2

∫ 2AL

0
d E0⊥

∫ 2AL

0
d E0x fO N (i, E0x , E0⊥) D(i, E0x , E0⊥)

where D is the density of states

D(i, E0x , E0⊥) = − 1

aπ
Im[h(i, i, E0x , E0⊥)]

and where the spectral charge density (see Chapter 3) is

fO N (i, E0x , E0⊥) D(i, E0x , E0⊥) = h̄

2πa2

[
vF (E0x )|h(NL , i, E0x , E0⊥)|2

× fD(E0 − EF L)− vR(E0x )|h(NR, i, E0x , E0⊥)|2 fD(E0 − EF R)
]
,
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so that the occupation number is

fO N (i, E0x , E0⊥) = − h̄

2a

{ fD(E0 − EF L)vL(E0x ) |h(NL , i, E0x , E0⊥)|2
Im [h(i, i, E0x , E0⊥)]

− fD(E0 − EF R)vR(E0x |h(NR, i, E0x , E0⊥)|2
Im [h(i, i, E0x , E0⊥)]

}
.

The analysis of detailed balance has allowed us to extend MSS theory so that it now
includes the Pauli exclusion effect. With the introduction of the local Pauli exclusion
weight factors (1 − fO N (n)) MSS-assisted tunneling theory now enforces detailed
balance for the general case of Fermi–Dirac statistic as boundary conditions.

6.9 Coupling functions for various scattering processes

In this section we calculate the self-energy for the various scattering processes
discussed in Chapter 5.

The first scattering process considered is polar scattering, in which an electron is
scattered by the LO phonons through the interaction of its Coulomb field with the
polarization waves of the lattice. The coupling constant was derived in Chapter 5 to be
[1]

αq,L O = e

[
h̄ωL O

2

(
1

εopt
− 1

εstat

)]1/2 1

q
= αL O

q
, (6.32)

where q is the amplitude of the phonon wave-vector q. For GaAs the optical phonon
frequency ωL O/(2π), which is assumed to be independent of q (the Einstein model),
is 8.55 THz. The coupling function H obtained after integration of 〈C2

L O〉E .A. (see
Equations (5.19) and (6.15)) over the perpendicular momentum is

HL O,±(E1x , qx ) =

m∗

2π h̄2Lx

4α2
L O

(
Nq + 1

2
∓ 1

2

)
{[

q2
x + 2m

h̄2
(E0x ± h̄ωL O − E1x )

]2

+ 4q2
x k2

0⊥

}1/2
. (6.33)

We have seen that electrons in a crystal are also scattered by the displacement of the
atoms from their lattice sites. The displacement of the atoms induces a local change
of the bandgap, which acts as a potential, scattering the electrons. For longitudinal
acoustic phonons the coupling constant was found in Chapter 5 to be [2]

αq,AC =
(

h̄�2

2ρωq

)1/2

,
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where� is the so-called deformation potential and ρ is the semiconductor density. For
GaAs � is 7 eV and ρ is 5.37 g/cm3.

The number of phonons Nq given by the Bose–Einstein distribution is approximated
using the so-called equipartition approximation by

Nq � kB T0

h̄ωq
for Nq � 1.

For long wavelengths (q small) we have ωq = qvs where vs is the sound velocity.
Despite the simplicity of the model used, the wave-vector-dependent frequency ωq

prevents the integration over the perpendicular momentum being carried out analyt-
ically (see Conwell [3]). We can then elect to treat acoustic scattering as an elastic
scattering process. This underestimates the emission process and overestimates the
absorption process. The coupling constant H obtained after integration of 〈C2

AC 〉E .A.

(see Equations (5.19) and (6.15)) over the perpendicular momentum is simply

HAC,±(E1x ) � 1

2π

m∗

h̄2

(
2�2 kB T0

ρv2
s

)1/2

. (6.34)

Another phonon-scattering process is deformation potential LO phonon scattering
which can induce � to X intervalley transfer. The coupling constant for intervalley
scattering by LOX phonons was found in Chapter 5 to be

αq,I V =
(

h̄�2
L O X

2ρωL O X

)1/2

,

where �L O X is the deformation potential for LOX phonons. The coupling function H
obtained after integration over the perpendicular momentum [8] is

HI V,±(E1x ) = 1

2a

(
NωL O X + 1

2
∓ 1

2

)
(2αq,I V )

2 1

(2π)2
2πm∗

1

h̄2
g(A(E1x )), (6.35)

with NωL O X the number of LOX phonons and with the energy selection rule

A(E1x ) = 1 − m∗
X k2

0⊥
m∗
�K 2

0⊥
+ 2m∗

X

h̄2 K 2
0⊥
(E1x − E0x +�X� ∓ h̄ωL O X ),

where we have introduced K⊥ = k⊥ − X⊥, with X⊥ the displacement of the X valley
in the transverse direction. The function g(X), which ranges in value from 0 to 1, is
defined by

2πg(X) = 2



π X < 0
2 cos−1(X1/2) 0 < X < 1
0 X > 1.
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To derive the coupling term HI V,±(E1x ) a summation over qx is performed using the
identity

∑
qx>0

sin(qx na) sin(qx ma) = Lx

2a
δnm . (6.36)

The δnm result obtained demonstrates that an isotropic phonon-scattering process with
constant phonon energy (no dependence on q) reduces to a local scattering process.

An important scattering process in a heterostructure is the scattering of electrons by
the roughness of the interface between two different semiconductors. A distribution
of terraces typically of a monolayer thickness is present at the interface [4]. The
electron is scattered elastically by these terraces, i.e., the total energy of the electron
is conserved. However, the longitudinal and perpendicular energies of the electron
change in the process.

In Chapter 5 we showed that the ensemble average of the coupling coefficient was
of the form proposed Prange and Nee [5]

〈|CI R(q⊥, i)|2〉E .A. = V 2
B(Ni a)π�2 exp

(
q2
⊥�

2

4

)
,

where VBi is the conduction-band discontinuity at the interface located at the lattice
site Ni .

The coupling constant HI R at the lattice site Ni obtained after integration of
〈|CI R|2〉 (see Equation (6.16)) over the perpendicular momentum is

HI R(E1x , i) = V 2
Bi (Ni a)

2
�2 m∗

h̄2
exp

[
− m∗�2

2h̄2
(E0 − E1x + E0⊥)

]

× I0

{
m∗

h̄2
�2
[

E1/2
0⊥ (E0 − E1x )

1/2
]}

where I0[x] is the modified Bessel function of order 0. Note that the terraces are
usually one monolayer wide, and a should be selected to be half a lattice parameter (the
normal choice for the [100] direction (see Chapter 3)). Alternatively, if a is selected to
be the lattice parameter, VBi should be divided by 4.

In an alloy AαB1−αC the crystal potential is not periodic. We saw in Chapter 5
that the crystal potential of the alloy can be represented in terms of a non-periodic
fluctuating potential superposed on an average potential which is periodic. This
fluctuating potential introduces an effective scattering process referred to as alloy
scattering (AL). The ensemble average of the coupling constant was derived in Chapter
5 to be:

〈|CAL(q⊥, i)|2〉E .A. = �V 2
AB αi (1 − αi )

�0

a
,
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where αi is the mole fraction at the lattice site i , �0 is the volume of the elementary
cell which is given in terms of the elementary crystal axis by �0 = a3/4, and where
�VAB is essentially the variation of the conduction band at � between alloys AC and
BC. After integration over the perpendicular momentum of 〈|CAL |2〉E .A. the following
coupling constant HAL is obtained:

HAL(E1x , i) = 1

2π
�V 2

ABαi (1 − αi )
�0

a

m∗

h̄2
.

Finally we conclude with electron–electron scattering. It is not possible to calculate
a coupling constant for electron–electron coupling analytically without some serious
approximations. We therefore provide instead only the self-energy term:

G(n1) = 1

(2π)2

∫
d2q⊥

2

(2π)3

∫
d3k̃2

∫
dk̃′

2x

× f1(n1,q⊥, k̃2, k̃
′
2x ) fk̃2

(1 − fk̃′
2x ,k2⊥+q⊥)

× 4π |R(q⊥, k̃2, k̃
′
2x , n1)|2, (6.37)

where R is given by

R(q⊥, k̃2, k̃
′
2x , n1) = e2

4πε

2π

(q2
⊥ + α2)1/2

×
∑
n2

f ∗
U (n2, k̃

′
2x ,k2⊥ + q⊥) fU (n2, k̃2)

× exp[−(q2
⊥ + α2)1/2|n1 − n2|a], (6.38)

in terms of the unscattered open states fU of the device and with α the screening factor.

6.10 Results for resonant tunneling structures

We shall now demonstrate the application of the scattering-assisted tunneling theory
developed in this chapter by showing some results obtained for an RTD. The device
used to test the scattering-assisted tunneling theory, developed in this chapter, is the
resonant tunneling structure shown in Figure 6.3. This resonant tunneling structure
consists of a conventional undoped AlGaAs/GaAs/AlGaAs double-barrier structure
sandwiched between two strongly doped GaAs n+ contacts.

We shall consider two double-barrier structures with barrier and well widths of 6
and 9 lattice parameters (� 34 and 50 Å) respectively. A barrier height of 0.25 eV
corresponding to an Al mole fraction of 0.3 is used. A donor concentration ND =
1018 cm−3 is used in the contacts of this test device.

We first analyze the individual impacts of polar, acoustic, alloy, interface roughness,
intervalley, and electron–electron scattering mechanisms upon resonant tunneling
before considering their combined effect.
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Fig. 6.3. Band diagram of the test resonant tunneling structure. The double-barrier structure is
sandwiched between two degenerately doped n+ structures.

Let us consider polar scattering. We show in Figure 6.4 the equilibrium (no bias
applied) transmission coefficient TF (E0x , E0⊥) plotted versus the incident energy E0x

for E0⊥ = 0 for a 50/50/50 Å diode at the lattice temperature of 4.2 K (dashed line),
100 K(dashed-dotted line), and 300 K (dotted line). Also shown is the transmission
coefficient in the absence of scattering (full line).

Three different transmission peaks are observed. Indeed, the total transmission co-
efficient plotted results from the superposition of direct tunneling and phonon-assisted
tunneling by emission and absorption of optical phonons. The main peak centered at
the energy Eres � 86 meV corresponds to direct resonant tunneling T0 by unscattered
electrons. Note the 3.5 meV self-energy shift of the central resonant transmission peak
relative to the peak (full line) obtained in the absence of scattering Eres,0 � 90 meV.
The right-hand peak centered upon Eres,0 + h̄ωL O corresponds to resonant tunneling
assisted by emission of phonons. The left-hand peak centered upon Eres,0 − h̄ωL O

corresponds to resonant tunneling assisted by absorption of phonons. The absorption
peak is not noticeable at 4.2 K due to the negligible number of LO phonons at low
temperature.

We next examine the impact of polar scattering upon the I–V characteristic of a
50 Å barrier diode at 4.2 K and a 34 Å barrier diode at 100 K. The I–V characteristic
calculated in the presence (dashed line) and absence (full line) of polar scattering
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Fig. 6.4. Equilibrium (no bias) transmission coefficient TF (E0x , E0⊥ = 0) versus E0x in the
presence of polar scattering for 50/50/50 Å diode at the lattice temperature of 4.2 K (dashed line),
100 K (dashed-dotted line), and 300 K (dotted line). Also shown is the transmission coefficient in
the absence of polar scattering (full line). (P. Roblin and W. R. Liou, Physics Review B, Vol. 47, No.
4, Pt II, pp. 2146–2161, January 15 1993. Copyright 1993 by the American Physical Society.)

shown in Figures 6.5(a) and (b) is seen to induce both a decrease in the peak current
and an increase in the valley current. Polar scattering therefore contributes to the
reduction of the peak-to-valley current ratio. At 4.2 K the phonon emission peak of
the transmission coefficient has introduced a secondary peak in the I –V characteristic
at around VD = 0.6 V. At higher temperature (here 100 K) the variation of the
Fermi–Dirac occupation is more gradual around the Fermi energy, and a phonon peak
is usually not resolved because its small contribution is smoothed out in the current
integration. Note that the detection of a phonon peak in the I –V characteristic is
facilitated when plotting higher order derivatives of the I –V characteristic.

The reader is referred to [7] for results on acoustic phonon scattering which usually
induces a weak scattering-assisted tunneling component to the diode current.

The next phonon-scattering process considered is �–X intervalley scattering in-
duced by LOX phonons. The transmission coefficient shown in Figure 6.6(a) is seen
to be subjected to a self-energy shift. 5% of the current remains carried by the � valley.
Intervalley scattering is seen to leave the valley current unchanged but does effectively
increase the classical diode leakage current at high voltages.
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Fig. 6.5. I –V characteristic in the presence (dashed line) and absence (full line) of polar scattering
calculated for (a) a 50/50/50 Å diode at 4.2 K and (b) a 34/34/34 Å diode at 100 K. (P. Roblin and
W. R. Liou, Physics Review B, Vol. 47, No. 4, Pt II, pp. 2146–2161, January 15 1993. Copyright
1993 by the American Physical Society.)

Next we consider interface roughness scattering. We show in Figure 6.7 the
equilibrium (no bias applied) transmission coefficient TF (E0x , E0⊥) plotted versus
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Fig. 6.6. (a) Transmission probability and (b) I –V characteristic with and without intervalley
scattering from � to X . (P. Sotirelis and P. Roblin, Physics Review B, Vol. 51, No. 19, pp.
13 381–13 388, May 15 1995. Copyright 1995 by the American Physical Society.)
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Fig. 6.7. Equilibrium (no bias) transmission coefficient TF (E0x , E0⊥ = 0) versus E0x in the
presence of interface roughness scattering for a 34/34/34 Å diode for 0 (dotted line), 1 (dashed line),
3 (dashed-dotted line), and 6 (full line) sequential scattering events. (P. Roblin and W. R. Liou,
Physics Review B, Vol. 47, No. 4, Pt II, pp. 2146–2161, January 15 1993. Copyright 1993 by the
American Physical Society.)

Fig. 6.8. Current–voltage characteristic of a 34/34/34 Å diode at 100 K after 0 (full line), 1(∗), and
2(+) sequential IR scattering events. (P. Roblin and W. R. Liou, Physics Review B, Vol. 47, No. 4, Pt
II, pp. 2146–2161, January 15 1993. Copyright 1993 by the American Physical Society.)
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Fig. 6.9. I–V characteristics calculated in the presence of IR scattering with terrace widths varying
from 0 to 125 Å. (P. Roblin, R. C. Potter and A. Fathimulla, Journal of Applied Physics, Vol. 79,
No. 5, pp. 2502–2508, March 1 1996.)

E0x for E0⊥ = 0 for a 34/34/34 diode for 0, 1, 3 and 6 sequential scattering events
and an average terrace size of � = 70 Å. No temperature dependence is expected for
interface roughness scattering. The transmission coefficient is seen to clearly converge
after a few sequential scattering events (6 for the 34 Å diode). The importance of
interface roughness scattering is measured by the large self-energy shift (about 11 meV
for the 34 Å diode) it induces. The final transmission coefficient has a characteristic
shark-fin shape. The slow decrease of the transmission coefficient at large energies
can be expected to strongly increase the diode (leakage) valley current. The total
area under the transmission coefficient does not, however, vary appreciably and the
peak current will remain approximately constant. The resulting I–V characteristic
supporting these predictions is shown in Figure 6.8. The I–V characteristic was
calculated for 0, 1, 2 sequential IR scattering events at 100 K. Convergence toward
the final I–V characteristic is found to take place for a smaller number of sequential
scattering events than for the transmission coefficient. This is due to the fact that
the diode current involves an integration of the transmission coefficient. Clearly
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Fig. 6.10. Equilibrium (no bias) transmission coefficient TF (E0x , E0⊥ = 0) versus E0x for
E0⊥ = 0 in the presence of LO, AC, IR and AL scattering for a 50/50/50 Å diode at the lattice
temperature of 4.2 K (dotted line), 100 K (full line), and 300 K (dashed line). Also shown is the
transmission coefficient in the absence of scattering (dotted-dashed line). (P. Roblin and W. R. Liou,
Physics Review B, Vol. 47, No. 4, Pt II, pp. 2146–2161, January 15 1993. Copyright 1993 by the
American Physical Society.)

interface roughness scattering is seen to be a very strong scattering process which
greatly impacts the valley current. Figure 6.9 shows the I–V characteristic calculated
for an AlAs/InGaAS RTD with an InAs subwell [9], using an average terrace width
varying from 0 to 125 Å. The valley current is seen to reach a maximum value for an
average terrace width of 65 Å. It is natural to expect the existence of such a critical
value. Indeed, when the terrace size is much larger than the electron wavelength the
electrons experience a smooth surface and IR scattering is suppressed. Similarly when
the terrace size is much smaller than the electron wavelength the electrons cannot
resolve the fast spatial variation of the interface potential and only experience an
average and therefore smooth interface potential and IR scattering is suppressed. The
reader is referred to [7] for results on alloy scattering, which usually induces a weak
scattering-assisted tunneling component to the diode current.

We now consider the combined impact upon resonant tunneling of these four
scattering mechanisms. We show in Figure 6.10 the equilibrium (no bias) transmission
coefficient TF (E0x , E0⊥) plotted versus E0x for E0⊥ = 0 for 50/50/50 Å diode
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Fig. 6.11. I–V characteristic obtained for the 50/50/50 Å diode at 100 K in the presence of LO, AC,
IR and AL scattering (stars) and in the absence of scattering (full line). (P. Roblin and W. R. Liou,
Physics Review B, Vol. 47, No. 4, Pt II, pp. 2146–2161, January 15 1993. Copyright 1993 by the
American Physical Society.)

at lattice temperatures of 4.2, 100, and 300 K. Also shown is the transmission
coefficient in the absence of scattering. Clearly the transmission coefficient exhibits
complex structures resulting from the superposition of each scattering mechanism.
However, one can recognize the dominant contribution of both polar (LO) and
interface roughness (IR) scattering.

The I–V characteristic obtained for the 50/50/50 Å diodes at 100 K is shown in
Figure 6.11. The various scattering processes (dominated here by IR) cooperate to
reduce the peak-to-valley current ratio of the diode.

6.11 Conclusion

In this chapter we have introduced the MSS formalism in order to account for
scattering in quantum devices. Note that other formalisms, such as the Wigner
distribution and the non-equilibrium Green function (NEGF) formalisms, have also
been developed (see [10] for a review). The Wigner distribution [10], like the
Boltzmann distribution, is a function of both momentum and position (see Chapter



216 Scattering-assisted tunneling

9). Unfortunately, the Wigner distribution takes negative values and cannot therefore
be equated to a probability density and its interpretation (like its calculation) is
difficult. The NEGF formalism starts from a more rigorous many-body picture and
its application relies on complex but controlled approximations. However, the NEGF
formalism can be verified to give results equivalent to MSS [11].

The principal advantage of the MSS approach presented here is its simplicity and
intuitive nature as the scattering of electrons by the many-body electron or photon
systems is reduced to a single-electron problem. This simple single-electron system
admits a simple wave-packet physical solution for 1SS. The extension to the MSS
case then relies on the introduction of the self-energy and the impulse response
(Green function). MSS exactly enforces current conservation and when Pauli exclusion
weights are introduced it also enforces detailed balance. The MSS method is not,
however, without limitations of its own. We have assumed for example that the phonon
field remains in equilibrium. This neglects any phonon-drag effects in which the
phonon field is strongly modified by the electrons. Also by treating interface and
alloy scattering as phase randomizing processes we neglect any possible correlation
of scattering events in interface and alloy scattering. Strong correlation effects could
localize the electron as in Anderson localization in random superlattices (see Section
4.5.2). Such effects are believed to be important in wide bandgap material systems
[12].

This chapter has focused on the calculation of the DC characteristics of devices
which are subjected to incoherent (stochastic) excitations. In the next chapter we
will focus on the calculation of the AC characteristic of quantum devices which are
subjected to coherent harmonic electromagnetic excitations.
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6.13 Problems

6.1 The semiclassical electron–phonon interaction potential can be written in the form

He−ph = 2

�1/2

∑
qx>0

∑
q⊥

C±(q) cos(ωqt − q⊥ · r⊥ + φq) sin(qx x).

Verify that in the generalized Wannier function basis the matrix element of the electron–phonon
interaction is

〈k′
⊥, m|He−ph | k⊥, n〉 = 1

�1/2

∑
qx>0

sin(qx ma) δmn

×
∑
q⊥

C±(q)
{
δ(k′

⊥ − k⊥ + q⊥) exp[i(ωqt + φq)]

+ δ(k′
⊥ − k⊥ − q⊥) exp[−i(ωqt + φq)]

}

Approximate the Bloch function by a plane wave

ϕ(k⊥, r⊥) = 1

2π
exp(ik⊥ · r⊥).

Note that∫ ∞

−∞
exp[i(ky − k′

y)y] dy = 2πδ(ky − k′
y).
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6.2 Interface roughness scattering at site Ni can be represented by the potential

H I R
i (r) = VB(Ni a) rect

(
x − Ni a

a

)
F(r⊥),

where VB is the barrier height and the function rectangle (rect) is defined as

rect(x) =
{

1 for |x | < 1/2
0 for |x | > 1/2.

The function F(r⊥) gives the distribution of the terrace. Let us assume that F(r⊥) is a periodic
function

F(y + L y , z + Lz) = F(y, z).

The function F(r⊥) can therefore be expanded in a Fourier series

F(r⊥) =
∑
q⊥

Fq⊥ exp(iq⊥ · r⊥).

Verify that in the generalized Wannier function basis the matrix element of interface roughness
scattering process i at lattice Ni is

〈k′
⊥, m|H I R

i | k⊥, n〉 = δm Ni δmn
1

S1/2

∑
q⊥

C(q⊥, i)δ(k′
⊥ − k⊥ − q⊥).

Calculate C(q⊥, i).
6.3 In this problem we wish to demonstrate that the current is conserved in 1SS-assisted tunneling.

To do this, let us consider the equivalent coupled Hamiltonian system of an incident electron f0
coupled to multiple scattered waves f1r :

E0x f0(n) =
∑
m

Hn m f0(m) +
∑

r
Cr (n) f1r (n), (6.39)

E1x,r f1r (n) =
∑
m

Hn m f1r (m) + C∗
r (n) f0(n), (6.40)

where Cr (n) is the coupling constant.

(a) Multiply Equations (6.39) and (6.40) by f ∗
0 (n) and f ∗

1r (n) respectively, and take the
imaginary parts to derive the following elemental-current conservation equations:

0 =
∑
m

j0(n,m)+
∑

r
j0,1r (n),

0 =
∑
m

j1r (n,m)+ j1r,0(n), (6.41)

with

ji (n,m) = q(−a/h̄) Im[Hn m f ∗
i (n) fi (m)],

j0,1r (n) = q(−a/h̄) Im[Cr (n) f ∗
0 (n) f1r (n)],

j1r,0(n) = q(−a/h̄) Im[C∗
r (n) f ∗

1r (n) f0(n)].

ji (n,m) is the elemental electron current from lattice site n to lattice site m for the state i
(0 or 1r ) and j0,1r (n) and j1r,0(n) are, respectively, the electron currents from the state 0
to the state 1r and from the state 1r to the state 0 (both at the lattice site n).
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(b) For mutually uncorrelated incident and scattered states, the total ensemble-average cur-
rent 〈JT OT 〉E .A. in the left- and right-hand sides of the quantum system is given by
〈JT OT 〉E .A. = J0 + ∑r J1r . Demonstrate that the total ensemble-average current for
the states 0 and 1r is conserved. For simplicity, assume a tight-binding Hamiltonian, so
that the total current for a state i is simply Ji (n) = ji (n, n + 1) + ji (n − 1, n). For your
demonstration rely on the continuity Equation (6.41) and the elemental-current properties
ji (n,m) = − ji (m, n) and j0,1r (n) = − j1r,0(n).

6.4 Derive the coupling coefficients Hscat for: (a) phonon scattering, (b) acoustic phonon scattering,
(c) interface roughness scattering, (d) alloy scattering, (e) intervalley scattering, and (f)
electron–electron scattering.

6.5 Consider the impulse response (Green function) h(n, i, E1x ) solution of

E1x h(n, i, E1x ) = − A

2
h(n − 1, i, E1x )+

{
[A − qV (n)] + H SE

nn

}
h(n, i, E1x )

− A

2
h(n + 1, i, E1x )+ δn,i .

(a) Using the hermiticity of the Hamiltonian and the associated current conservation property
demonstrate that for H SE

nn = 0 the impulse function satisfies the identity:

−a

h̄
2 Im[h(i, i, E1x )] = vL (b

′, kx,L ) |h(NL , i, E1x )|2

+ vR(b
′, kx,R) |h(NR, i, E1x )|2 , (6.42)

where NL and NR are the positions of the emitter and collector on the left and right
respectively of the RTD structure and where vL and vR are the left- and right-hand electron
velocities.

(b) Demonstrate that in the presence of scattering (non-zero self-energy H SE
nn ) the current-

conservation property is now given by Equation (6.19).

(c) Verify that in the presence of scattering the current conservation property can then be
rewritten in the form of Equation (6.20).

6.6 We wish to demonstrate the reciprocity property of the scattering parameters introduced in
Section 6.7. Assume that the following plane waves measured at port 1 (left-hand, flat-band
contact) and port 2 (right-hand, flat-band contact) of the quantum system:

f1(n, E) = A1 exp( jkx,1 n1a)+ B1 exp(− jkx,1 n1a),

f2(n, E) = A2 exp( jkx,2 n2a)+ B2 exp(− jkx,2 n2a),

}
(6.43)

are a solution of the Hamiltonian H .

(a) Verify in the Wannier picture that if f (n, E) is a solution of H f = E f then f (n, E)∗
is also a solution of H f = E f . Hint: From the time-reversal invariance of the crystal
Hamiltonian we know that the band structure is symmetric E(k) = E(−k).

(b) Demonstrate the reciprocity property S21 = S12 where the scattering parameters Si j are
defined as

Si j = vi
1/2 Bi

vj
1/2 Aj

∣∣∣∣∣
Ak �= j =0

Hint: Start with the solution for f (n) satisfying the boundary conditions A1 = 1, A2 = 0
and form a new solution f (n) + λ f (n)∗ satisfying the new boundary conditions A1 = 0,
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A2 = 1. Calculate S12 and verify that it is equal to S21 if the current-conservation property
|S12|2 + |S11|2 = 1 is used.



7 Frequency response of quantum devices
from DC to infrared

Dauer im wechsel (Duration in change).

JOHANN WOLFGANG VON GOETHE

7.1 Introduction

In this chapter we will analyze the response of quantum devices to time-dependent
excitations. Devices are only useful if they can process time-varying information.
We will mostly focus our discussion on steady-state AC excitations. We will first
consider the canonic case of a uniform (not spatially-varying) time-varying potential
applied to an arbitrary device. Next we will consider a time-varying potential which
is linearly varying in position (constant AC electric field). Finally we will introduce
the formalism used to obtain a steady-state solution of a general time-varying quantum
system and apply it to the case of the resonant tunneling diode (RTD). We will then
discuss the frequency response of the RTDs and the importance of time-dependent
space-charge-limited transport. We then conclude by studying the interaction of
quantum devices with electromagnetic waves and the application to the quantum
cascade lasers.

7.2 Analytic solution for a uniform time-dependent potential

Let us consider a closed quantum system whose electron envelope function f (n, t) is
a solution of

i h̄
d f (n, t)

dt
=

∞∑
n=−∞

Hmn f (n, t).

221
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We shall look for eigenstate solutions of the form exp[−i Ept/h̄] fp(n), where fp(n)
is a solution of the following Wannier recurrence equation:

Ep fp(m) =
∞∑

n=−∞
Hmn fp(n).

Consider now the new time-varying quantum system obtained from the original
quantum system by adding a time-varying potential V (t). We assume V (t) to be
uniform in space. We must now solve the following Wannier recurrence equation:

i h̄
d

dt
f (m, t) =

∞∑
n=−∞

Hmn f (n, t)+ V (t) f (m, t). (7.1)

One easily verifies that Equation (7.1) admits solutions of the form

f (m, t) = exp

{
− i

h̄

[
Ept +

∫ t

0
V (t ′)dt ′

]}
fp(m). (7.2)

A Fourier transform of the electron wave-function f (n, t) reveals that the electron
energy is now broadened by the potential V (t). If a periodic potential V (t) of period
ω is used this time-varying solution consists of a superposition of the states of energies
Ep + r h̄ω, where r is an integer.

This time-varying quantum system is not by itself a very useful system to study as
the same time-varying potential is applied all over the world (uniform in space) and
we would not know how to prepare such a system. Furthermore for the time variation
of the potential V (t) to be of interest, we need to define a reference (ground) for the
potential somewhere at a specific position in the device. This therefore requires the AC
potential to be spatially varying as well as time varying. The spatially-uniform time-
dependent solution we have obtained will, however, be useful as a boundary condition
for modeling the anode contact of a quantum system when an AC voltage is applied
between the anode and cathode and we assume the cathode is grounded.

7.3 Radiation coupling with an external modulated electric field

In this section we shall study the problem of a time-dependent field of the form

V (x, t) = −q [FDC + FAC cosωt] x,

applied over a uniform crystal. Note that we are particularly interested in the situation
in which the frequency of the AC field signal corresponds to that of the Wannier ladder
energy spacing h̄ω = q FDC a in order to study any resonant coupling possible [1]. It
is not actually possible to treat as a perturbation a term of the form qaFAC n, even for
small values of FAC , because of the divergence for large n. Indeed, for large n, the
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wave-function converges as 1/n! which does not admit any power series expansion
such as would be generated by perturbation methods. An exact solution will therefore
be pursued.

The Bloch functions are very suitable as a choice for the representation, and we
shall expand the wave-function as a wave-packet of Houston functions. Let us write
the Houston function

|kx (0)〉 = exp

[
− i

q FDC

∫ kx (t)

kx (0)
E(k)dkx

]
|k(t)〉,

with kx (t) = kx (0)+ q FDC t/h̄ and |k(t)〉 a Bloch function |kx (t), k⊥〉. The Houston
states verify the following orthogonality:

〈k′
x (0)|kx (0)〉 = δ[k′

x (0)− kx (0)],

if the electron is assumed to be in a Gaussian wave-packet centered around |k⊥〉 which
normalizes to 1. We assume a one-band representation so that

HDC |kx (0)〉 = i h̄
∂

∂t
|kx (0)〉,

where HDC is the Hamiltonian of the crystal plus the DC potential supported by the
static field

HDC = Hcrystal − q FDC x .

The total Hamiltonian H is

H = HDC − q FAC cos(ωt) x with h̄ω = q FDC a.

The Schrödinger equation is

i h̄
∂

∂t
|ψ〉 = H |ψ〉

and we shall seek |ψ〉 as a wave-packet f (kx (0)) of Houston functions

|ψ〉 =
∫ π/a

−π/a
f (kx (0), t) |kx (0)〉 dkx (0).

Substituting this wave-packet into the total Hamiltonian we have

∫ π/a
−π/a

i h̄
∂

∂t
[ f (kx (0), t) |kx (0)〉] dkx (0)

=
∫ π/a

−π/a
[HDC − q FAC cos(ωt)x] f (kx (0)) |kx (0)〉 dkx (0).
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Multiplying by 〈k′
x (0)| and integrating over the x axis we obtain

i h̄
∂

∂t
f (k′

x (0), t) = −q FAC cos(ωt)
∫ π/a

−π/a
〈k′

x (0)|x |kx (0)〉 f (kx (0), t) dkx (0). (7.3)

The matrix element in the last expression is

〈k′
x (0)|x |kx (0)〉 = exp

[
− i

q FDC

∫ kx (t)

kx (0)
E(k) dkx + i

q FDC

∫ k′
x (t)

k′
x (0)

E(k)dkx

]

× 〈k(t ′)|x |k(t)〉, (7.4)

where approximating the Bloch states by plane waves we have

〈k(t ′)|x |k(t)〉 � i δ
[
k′

x (0)− kx (0)
] ∂

∂kx (0)
.

We need the derivative

∂

∂kx (0)
exp

[
− i

q FDC

∫ kx (0)+ q FDC
h̄ t

kx (0)
E(k) dkx

]

=
[
− i

q FDC
E (k(t))+ i

q FDC
E (k(0))

]
exp

[
− i

q FDC

∫ kx (t)

kx (0)
E(k) dkx

]
.

Equation (7.3) now reads

i h̄
∂

∂t
f (kx (0), t) = −iq FAC cos(ωt)

×
{

∂

∂kx (0)
f (kx (0), t)+ f (kx (0), t)

i

q FDC
[E(k(0))− E(k(t))]

}
(7.5)

or

∂

∂t
f (kx (0), t) = −q FAC

h̄
cos(ωt)

∂

∂kx (0)
f (kx (0), t)

− i

h̄

FAC

FDC
[E(kx (0))− E(kx (t))] cos(ωt) f (kx (0), t).

Let us introduce the constants C and B and band structure E(kx )

C = q FAC

h̄
, B = − i

h̄

FAC

FDC
A and E(k) = −A cos(ka),

so that we can rewrite the master equation for the Houston wave-packet as

∂

∂t
f (k, t)+ C cos(ωt)

∂

∂k
f (k, t)

+B cos(ωt)[cos(ka)− cos(ka + ωt)] f (k, t) = 0. (7.6)
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We shall now solve Equation (7.6) to obtain the evolution in time of the Houston wave-
packet f (k, t) assuming an initial wave-packet f (k, 0) = f0(k). For this purpose we
use the method of characteristics and seek the characteristic curves {k(s), t (s) for
s > 0} given by

dt

ds
= 1

dk

ds
= C cos(ωt),

so as to reduce Equation (7.6) to

d f

ds
+ B cos(ωt)[cos(ka)− cos(ka + ωt)] f = 0. (7.7)

Let t (s) = s for t (s = 0) = 0, then

k(s) = C

ω
sin(ωs)+ τ,

with τ a constant. The inversion gives

s(k, t) = t and τ(k, t) = k − C

ω
sin(ωt). (7.8)

The initial condition in the s space is then

f (0) = f (s = 0) = f (k(0), t (0)) = f (τ, 0) = f0(τ ).

Let us write Equation (7.7) as

d f (s)

ds
+ f (s) B cos(ωs)

×
{

cos

[
τa + aC

ω
sin (ωs)

]
− cos

[
τa + aC

ω
sin (ωs)+ ωs

]}
= 0,

which takes the form

d f (s)

ds
+ f (s) G(s, τ ) = 0

and integrates to

f (s) = f (0) exp

[
−
∫ s

0
G(s, τ )ds

]
.

Let us rewrite G(s, τ ) using aC/ω = FAC/FDC

G(s, τ ) = − i

h̄

FAC

FDC
A cos(ωs)

{
[cos(τa)− cos(τa + ωs)] × cos

[
FAC

FDC
sin(ωs)

]

+ [sin(τa + ωs)− sin(τa)] sin

(
FAC

FDC
sin(ωs)

)}
. (7.9)
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For large s (time) the integral of G(s, τ ) is s times the DC component of the periodic
function G(s, τ ). For a small field, we evaluate G(s, τ ) to the first order in FAC/FDC :

G(s, τ ) � − i

h̄

FAC

FDC
A cos(ωs)[cos(τa)− cos(τa + ωs)]

= − i

h̄

FAC

FDC
A
[

cos(τa) cos(ωs)− cos(τa) cos2(ωs)

+ sin(τa) sin(ωs) cos(ωs)
]

= − i

h̄

FAC

FDC
A

[
−1

2
cos(τa)+ cos(τa) cos(ωs)− 1

2
cos(τa + 2ωs)

]
.

The DC-component of G(s, τ ) is iα cos(τa) with

α = 1

2

FAC

FDC

A

h̄
,

so that for large values of s the integral of G(s, τ ) is∫ s

0
G(s, τ ) ds = iα cos(τa)s.

Then for long times the Houston wave-packet is

f (s) = f (0) exp[−iα cos(τa)s]

and back in the original time and momentum space using Equations (7.8), the Houston
wave-packet for long times is

f (k, t) = f0

[
k − FAC

aFDC
sin(ωt)

]
exp

{
−iαt cos

[
ka − FAC

FDC
sin(ωt)

]}
. (7.10)

Having obtained a solution of the evolution of the Houston wave-packet for long times
and a small FAC/FDC ratio, we shall now study its behavior. For this purpose we
calculate the expectation value of the position 〈x〉 using

〈x〉 =
∫ ∫

dk′ dk f ∗(k′) f (k)〈k′
x (0) |x |kx (0)〉 = i

∫ π/a
−π/a

f ∗(k)
d

dk
f (k) dk

+ 1

q FDC

∫ π/a
−π/a

| f (k)|2
[

E

(
k + q FDC

h̄
t

)
− E(k)

]
dk,

using the matrix element of Equation (7.4) and defining k = kx (0). Let f (k) =
| f | exp(iφ). Let

〈 (· · ·) 〉 =
∫ π/a

−π/a
(· · ·) dk

It follows using the periodicity of f on the limits of integration

i

〈
f ∗ d

dk
f

〉
= i

〈
| f | d

dk
| f |
〉
−
〈

dφ

dk
| f |2
〉

= −
〈

dφ

dk
| f |2
〉

(7.11)
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that the position expectation is

〈x〉 = −
〈

dφ

dk
| f |2
〉
+ 1

q FDC

〈
| f |2
[

E

(
k + q FDC

h̄
t

)
− E(k)

]〉
(7.12)

For a small FAC/FDC ratio we can neglect the additional oscillation in the large time
solution of Equation (7.10) and write

f (k, t) = f0(k) exp[−iαt cos(ka)] = | f | exp(iφ)

Let f0(k) be a Gaussian wave-packet as our initial condition

f0(k) = (2πσ 2)−1/4 exp
[
−(k − k0)

2/4σ 2
]

= N 1/2 (k0, σ ),

where σ = �k is the variance and k0 is the center of the wave-packet. Then we have

| f | = f0(k) and φ = −α t cos(ka).

Let us evaluate the two terms on the right-hand side of Equation (7.12). The second
term on the right-hand side of Equation (7.12) includes expressions of the form:〈
| f |2 E

(
k + q FDC

h̄
t

)〉
= −A

∫
N (k0, σ ) cos(ka + ωt) dk

= −A
∫

N (0, σ ) cos(ka + k0a + ωt) dk

= −Aβ cos(k0a + ωt),

where β � exp(−σ 2a2/2) is the relative amplitude of the Zener oscillation. The first
term on the right-hand-side of Equation (7.12) is:

−〈dφ

dk
| f |2〉 = −α ta

∫
sin(ka) N (k0, σ ) dk

= −α ta
∫

N (0, σ ) sin(ka + k0a) dk

= −α ta β sin(k0a).

Therefore the expectation value of the electron position is

〈x〉 = −α ta β sin(k0a)+ βA

q FDC
[cos(k0a)− cos(k0a + ωt)]. (7.13)

The first term on the right-hand side is the drift of the electron and the second is
the Zener oscillation. The drift of the electron is weighted by α sin(k0a), where k0a
is the phase of the Zener oscillation relative to the AC applied. Depending on this
product, the Zener oscillation is moving toward either the right or the left of the device.
When the Zener oscillation is moving toward the left, the electron is simultaneously
gaining energy by climbing the tilted conduction band. One can say that the electron
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is taking energy from the applied modulation field to climb the potential barrier.
When the Zener oscillation is moving toward the right, the electron is converting
its DC potential energy into RF energy. This is the regime under which the Zener
oscillations are radiative. This is represented in Figure 7.1. A possible conceptual
device implementation [2] for both launching these Zener oscillations and inducing
the radiation coupling with the AC field is shown in Figure 7.2.

7.4 Time-dependent tunneling theory

We shall now consider time-varying potentials with an arbitrary position dependence
and present a general numerical methodology for analyzing them. An example of such
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a structure is the resonant tunneling structure shown in Figure 7.3.
The analysis of time-dependent tunneling in a general layered quantum device can

be obtained by solving the one-electron Schrödinger equation:

i h̄
∂�(x, t)

∂t
= [H0(x)− qV (x, t)]�(x, t), (7.14)

where H0(x) is the crystal Hamiltonian and V (x, t) is the DC + AC electrostatic
potential.

We shall limit our analysis of time-dependent tunneling to harmonic electrostatic
potentials of the form

V (x, t) = VDC (x)+
∑

p

Vp(x) exp(i pωt), (7.15)

with Vp(x) = V ∗−p(x).
Our approach for the electron problem is based on the generalized Wannier picture

[3] for which the electron wave-function |�〉 is expanded in terms of the generalized
Wannier functions

|�〉 =
∞∑

n=−∞
f (n, t) |nk⊥〉,
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where f (m, t) is the Wannier envelope function and m the lattice site index. Scattering
is not considered and the transverse wave-vector k⊥ is conserved across the device.

The analysis is presented for a tight-binding band structure of the form:

E(k, n) = Ec(n)+
h̄2k2

⊥
2m∗ + h̄2

m∗a2
[(1 − cos(kx a)], (7.16)

where kx is the electron wave-vector along the x direction from the cathode to the
anode and Ec(n) is the conduction-band reference energy at the position x = na.

The electron envelope function f (m, t) is then a solution of the Wannier equation

i h̄
∂

∂t
f (n, t) = − A

2
f (n − 1, t)− A

2
f (n + 1, t)

+
{

Ec(n)+ A − qV0(na)− q

[∑
p

Vp(na) exp (i pωt)

]}
f (n, t), (7.17)

with A = h̄2/(m∗a2). For simplicity of presentation we assume here that mass does
not vary along the superlattice direction.

We are interested in the steady-state response of the quantum device for the
harmonic electrostatic potential applied. In the steady state the envelope function is
also periodic and can be expanded in terms of a Fourier series

f (n, t) =
∑

p

fp(n) exp

(
−i

E0x

h̄
t − i pωt

)
(7.18)

where to each harmonic component fp(n) is associated an energy E0x + ph̄ω. Clearly
the electron transport is no longer ballistic as the electron energy can increase or
decrease by quantum of energy h̄ω. Substituting Equation (7.18) into Equation (7.17)
we verify that the harmonic components fp(n) are themselves solution of

(E0x + ph̄ω) fp(n) = − A

2
[ fp(n + 1)+ fp(n − 1)] + [Ec(n)+ A − qV0(na)] fp(n)

− q
∑

m

[
V−m(na) fp−m(n)+ Vm(na) fp+m(n)

]
. (7.19)

The set of Equations (7.19) for all the harmonics fp(n) forms a linear system of
coupled difference equations which can be readily solved numerically.

To calculate the forward (backward) current we can use an incident wave with unit
amplitude injected in the left (right) flat-band contact of the device. For the forward
current calculation the reference potential (ground) is selected to be on the emitter
(left) side such that the conduction-band edge on the collector (right) side varies with
the applied AC voltage. The analytic solution obtained in Section 7.2 can be used
as a boundary condition for the transmitted waves on the time-varying collector side.
However, in a numerical solution in which a finite number of harmonics is targeted
inside the device, the same truncation in the Fourier series expansion should be used
on the collector side.
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The time-dependent electron current between sites n and n + 1 is then given by the
usual summation over incident energy E0x [4]:

IF/B(n, t) = DkB T

2π

q

h̄

∫ 2A

0
T (n, t) ln

[
exp

(
EF,L/R − Ec,L/R − Ex

kB T

)
+ 1

]
d Ex ,

(7.20)

where EF,L/R(t) is the left/right Fermi level associated with the forward/backward
current IF/B respectively and T (n, t) is a time- and position-dependent transmission
coefficient defined as the ratio of the instantaneous transmitted to incident currents

T (n, t) = j (n, n + 1, t)+ j (n, n − 1, t)
a A

h̄
sin(kx a)

, (7.21)

with j (n,m, t) = −(a/h̄) Im[ f ∗(n, t) f (m, t)Hn,m] the elemental current. For a
uniform band (constant mass) the transmission coefficient reduces to

T (n, t) = Im
[

f ∗(n, t) f (n + 1, t)
]

sin(kx a)
. (7.22)

Substitution of the Fourier expansion of the envelope function given by Equa-
tion (7.18) into Equation (7.20) permits us to expand the current in a Fourier series:

IF/B(n, t) = I0,F/B(n)+
∑

p

Ip,F/B(n) exp(i pωt) (7.23)

where I0,F/B(n) is the DC forward/backward current, and I ∗
p,F/B(n) = I−p,F/B(n) is

the pth harmonic current component.
The electron distribution ρ(n) at each lattice site n is similarly calculated using the

following expression:

ρF/B(n, t) = DkB T

2π
q
∫ π

a

0
| f (n, t)|2

× ln

{
exp

[
EF,L/R(t)− Ec,L/R − Ex (kx )

kB T

]
+ 1

}
dkx , (7.24)

with Ex (kx ) = A[(1 − cos(kx a)]. Again the substitution of the Fourier expansion
of the envelope function given by Equation (7.18) into Equation (7.24) permits us to
expand the electron distribution in a Fourier series:

ρF/B(n) = ρo,F/B(n)+
∑

p

ρp,F/B(n) exp(i pωt), (7.25)

where ρ0(n) is the DC charge density, and ρp(n) = ρ∗−p(n) is the pth harmonic
charge density. The current and charge derived above for each harmonic p satisfy
the continuity equation

Ip,F/B(N + 1)− Ip,F/B(1) = pω
N∑

n=2

ρp,F/B(n). (7.26)



232 Frequency response of quantum devices from DC to infrared

As the electrons are injected on both the emitter and collector contacts the total
electron current Ielec,p for the harmonic p is the difference between the forward (F)
and backward (B) currents

Ielec,p = Ip,F − Ip,B, (7.27)

whereas the total charge is the sum of the forward and backward charge

ρp(n) = ρp,F + ρp,B . (7.28)

7.5 Small-signal response without self-consistent potential

To test the time-dependent tunneling theory we shall apply it to the RTD of Figure 7.3.
This RTD consists of a conventional undoped AlGaAs/GaAs/AlGaAs double-barrier
(DB) structure with two lightly doped spacers, one on each side, sandwiched between
two strongly doped GaAs n+ buffers. The barrier and well widths are six lattice
parameters wide (34 Å). A barrier height of 0.25 eV corresponding to an Al mole
fraction of 0.3 is used. A donor concentration ND = 1018 cm−3 is used in the buffers,
and the area of the test device is 4.5 × 10−8 cm2. The diode I –V characteristic is
shown in Figure 7.4.

To test the quantum AC modeling technique presented above let us first apply it
to the calculation of the small-signal frequency response of an RTD device model,
where the electrostatic potential across the RTD is approximated by a linearly-varying
electrostatic potential

V (n, t) = [VD,DC + VD,AC cos(ωt)
] n − NL

NR − NL
for NL < n < NR . (7.29)

In this approximate model we are neglecting the impact of the RTD DC and AC
internal charges on the electrostatic potential. The small-signal admittance of the RTD
in the negative differential conductivity (NDC) region is plotted versus frequency in
Figure 7.5. It is seen that the device admittance (to be defined in the next section)
of the intrinsic RTD remains constant up to terahertz frequencies. The small-signal
frequency response obtained is consistent with the results reported by [7,8,9,10,11].
This potential for operating at very high-frequencies explains the interest in RTDs.
The decrease of the negative resistance at high frequency is attributed to the inertia
of the electron. Note that the small-signal admittance shown in Figure 7.5 does not
include the displacement current which is required to calculate the diode maximum
frequency of operation. Also the approximate DC and AC electrostatic potentials were
not solved self-consistently from the DC and AC charges present in the RTD device.
A more rigorous analysis of the RTD response at high frequencies is developed in the
next section.
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7.6 Self-consistent solution

Transport in RTDs like in any ballistic device is space-charge-limited. That is the
electrostatic potential in the device must be calculated self-consistently from the
charge distribution inside the device. Indeed we have seen in Chapter 4 that a
self-consistent solution of the Poisson and Schrödinger equations is required to obtain
a realistic calculation of the DC characteristic of the RTD [12]. Similarly we can
expect that a self-consistent solution of the Poisson and Schrödinger equations is
required in order to obtain more a realistic AC response of RTDs.

As for DC self-consistency, AC self-consistency is achieved when the AC electro-
static potential for each harmonic is obtained using the Poisson equation from the
calculated AC charge distribution across the device:

d

dx

[
ε(x)

dV0(x)

dx

]
= ρ0(x)− q N+

D (x), (7.30)
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d

dx

[
ε(x)

dVp(x, t)

dx

]
= ρp(x, t). (7.31)

The external boundary conditions applied across the RTD consist of a DC voltage VD

and an AC voltage VAC for the first harmonic:

VD(t) = VD + VAC cos(ωt). (7.32)

All higher harmonic voltages are shorted outside the device but not inside the device.
These boundary conditions are used to calculate all the harmonic components of the
RTD current for both the small- and large-signal responses.

For small AC signals, only the first harmonic of the current and internal potential
is required. For a large AC signal, higher harmonics of both the internal electrostatic
potential and the current must be included due to the non-linearity of the RTD. The
minimum number of harmonics required for an accurate numerical solution is given
approximately by X = qVAC/(h̄ω). This can be inferred from the analytic envelope
function of Equation (7.2) which admits an expansion in terms of Bessel functions
Jp(X) and therefore vanishes as 1/p! for harmonics p > X .

The total diode current at a position n for each harmonic p is given by

Itotal,p(n) = Ielec,p(n)+ Idispl,p(n), (7.33)
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i.e. the sum of the electron current Ielect,p of Equation (7.27) and the displacement
current Idispl,p, which is calculated from the AC electric field using

Idispl,p(n) = −ε(n) j pω
dVp(na)

dx
. (7.34)

The small- and large-signal RTD admittance Y (ω, VD, VAC ) for the first harmonic
for a given DC bias VD and AC voltage VAC is then calculated using Kurokawa’s
definition [13]:

Y (ω, VD, VAC ) = Itotal,1(ω, VD, VAC )

VAC
= G(ω, VD, VAC )+ j B(ω, VD, VAC ),

(7.35)

where G(ω, VD, VAC ) is the device conductance and B(ω, VD, VAC ) the device
susceptance. For small-signal AC voltages (qVAC � h̄ω), the quantities Y , G and
B are effectively independent of VAC and only depend upon the DC bias VD and the
frequency ω.
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Let us now demonstrate the impact of the DC and AC self-consistent analysis on the
AC current and charge distributions. Consider the case in which the RTD is biased in
the negative differential resistivity (NDR) region (VD = 0.48 V) with a small-signal
AC excitation. Figure 7.6 shows a plot versus frequency of the imaginary part of the
displacement current Im[Idispl,1(n)] and electron current Im[Ielec,1(n)] at the emitter
side (n = NL ) and the collector side (n = NR) of the RTD for the first harmonic. We
define here the emitter and collector sides as the positions at which the buffer ends and
the spacer starts.

Similarly Figure 7.7 shows a plot versus frequency of the real part of the dis-
placement current Re[Idispl,1(n)] and electron current Re[Ielec,1(n)] at the emitter side
(n = NL ) and collector side (n = NR) of the RTD for the first harmonic.

Finally Figure 7.8 shows a plot versus frequency of both the real part Re[Itotal,1(n)]
and imaginary part Im[Itotal,1(n)] of the total current at the emitter side (n = NL )
and collector side (n = NR) of the RTD for the first harmonic. Clearly the left-
and right-hand total currents overlap and cannot be distinguished in Figure 7.8. This
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demonstrates the continuity of the total current. However, the displacement and
electron currents on the left- and right-hand sides are clearly different, justifying the
need for the self-consistent treatment used for the AC analysis. Indeed, the calculation
of the displacement and electron currents should not be decoupled in a rigorous
analysis of space-charge-limited devices.

7.7 RTD conductances and capacitances

Examination of Figure 7.8 indicates that for a small AC voltage VAC both the
imaginary and real parts of the total current Itotal,1 = Y (ω, VD)VAC and therefore
the conductance G(ω, VD) and susceptance B(ω, VD) have a complex frequency
dependence.

However, for small frequencies (ω � 100 GHz) the conductance can be ap-
proximated by a frequency-independent conductance which is simply obtained by
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differentiating the DC I –V characteristic of the RTD

G(ω, VD) � d ID

dVD
for small ω, (7.36)

as is verified in Figure 7.9.
For small frequencies (ω � 500 GHz) we can verify in Figure 7.8 that the RTD

susceptance increases linearly with frequency and is therefore well approximated by a
frequency independent capacitance C

B(ω) � ωC(VD), (7.37)

where the capacitance C is the RTD capacitance.
Figure 7.10 shows the capacitance versus voltage for different spacer lengths

calculated directly from the AC current using Equation (7.37). For each of these
various RTDs the capacitance is observed to exhibit a large peak in the NDC region.
The voltage dependence of the capacitance can be explained by analyzing Figure 7.11,
where the imaginary parts of the electron and displacement currents are plotted on
the left- (n = NL ) and right- (n = NR) hand sides at a low frequency (1 GHz)
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as a function of bias voltage. The RTD capacitance measured is contributed by the
imaginary parts of both the electron and displacement currents. The contribution of
the displacement current to the capacitor is dominant outside the NDC region (below
0.4 V and above 0.51 V). This indicates that the effective RTD capacitor extends
approximately from the emitter buffer to the collector buffer for bias voltages outside
the NDC region. However, for bias voltages inside the NDC region (0.4–0.51 V)
the contribution of the electron current to the capacitance becomes dominant. Notice
also that the displacement current is null on the collector side where all the current
is carried by the electron component. This indicates that the charge distribution
in the collector side is frozen and that the width of the RTD capacitor has shrunk.
This reduction of the RTD capacitor width explains the calculated increase of the
RTD capacitance. The RTD capacitor is being supported by the accumulation charge
in the emitter spacer on the left-hand side and the accumulation charge inside the
RTD well on the right-hand side. This AC result is supported by the analysis of
the DC distribution of the charge in the RTD shown in Figure 7.12. Indeed, the
charge distribution in the RTD plotted in Figure 7.12 for different DC voltages
around the bias point of maximum NDC indicates that the DC charge in the RTD
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Fig. 7.13. Small-signal equivalent-circuit models of the RTDs for (a) low and (b) high frequencies.

quantum well varies in the opposite direction to that of the DC charge in the left-hand
(emitter) spacer region. For example, to a differential decrease of the charge in
the emitter spacer corresponds a differential increase of the charge in the quantum
well.

The rapid increase of the capacitance in the region of maximum NDC predicted by
this AC theory is in agreement with the experimental C–V characteristic reported by
Sammut and Cronin [5] and with the experimental results presented in Section 7.9.

7.8 High-frequency response of the RTD

We have seen that at low frequencies the susceptance of the RTD in the NDC region
could be modeled by a capacitor and a negative resistor in parallel. At higher
frequencies the finite velocity of the electrons in the device will limit the rate at
which the RTD charge can redistribute itself inside the device given the instantaneous
variation of the external AC voltage. This results in the device admittance exhibiting
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Fig. 7.14. RTD conductance versus bias voltage for 1 GHz (full line), 250 GHz (dashed line),
500 GHz (dashed-dotted line) and 1000 GHz (dotted line). (W.-R. Liou and P. Roblin, IEEE
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a more complex frequency dependence at high frequencies.
At low frequencies the RTD is well represented by the circuit shown in Fig-

ure 7.13(a), where G(VD) is the RTD conductance, C(VD) the RTD capacitance and
RS the series resistance of the ohmic contact. We can rely on a frequency-dependent
capacitor C( f, VD) = B( f, VD)/(2π f ) and G( f, VD) to study the range of validity
of this model. At higher frequencies and in the bias range where these elements are
frequency-dependent a more complex equivalent circuit is needed to represent the RTD
admittance Y ( f, VD) = G( f, VD)+ j B( f, VD).

Figures 7.14, 7.15 and 7.16 show the real part (conductance) and imaginary part
(susceptance) and capacitance of the RTD admittance versus the bias voltage for
different frequencies. From these figures, we can see that the admittance is only
strongly frequency-dependent in the region of maximum NDC and almost frequency-
independent outside the NDC region.

We note in Figures 7.14 and 7.16 the decrease of both the RTD conductance
and capacitance with increasing frequency. The reduction of the capacitance and
the conductance with high frequency can be well modeled by the equivalent circuit
of Figure 7.13(b), which uses a quantum inductance in series with the negative
conductance of the RTD [6]. Such an equivalent circuit with a frequency-independent
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element is more physical and is applicable to large-signal simulations.

To investigate this effect further we show in Figures 7.17 and 7.18 the frequency
dependence of the RTD conductance and susceptance when the RTD is biased in the
NDC region at 0.46 and 0.48 V (full line) and in the positive differential region (PDC)
at 0.3 V (dashed line).

Clearly the conductance for bias voltage in the NDC region is strongly frequency-
dependent compared to the PDC region. Furthermore, departure of the conductance
from its DC value arises at the relatively low frequency of 150 GHz and the 3-dB break
frequency is 800 GHz. Note that here we define the break frequency as the frequency
where the negative conductance is halved. We obtained a 3-dB break frequency
of nearly 1 THz at 0.48 V. and 2 THz at 0.5 V in Figures 7.5 and 7.8, when we
calculated the conductance without self-consistency. The self-consistent solution of
the Schrödinger and Poisson equations for both DC and AC has reduced the 3-dB break
frequency of the RTD conductance to a more realistic value. The RTD nevertheless
remains a very high-frequency device.
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Fig. 7.18. Susceptance versus frequency curve, in the PDC region VD = 0.3 V (dashed line) and in
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The maximum frequency of an RTD is given by the conventional formula [14]

fmax(VD) = 1

2πC( f, VD)

[−G( f, VD)

Rs
− G( f, VD)

2
]1/2

. (7.38)

At high frequencies when the conductance and capacitance are both frequency-
dependent, the expression for fmax becomes a transcendental equation. One can
verify that fmax is relatively weakly modified by the frequency dependence of the
conductance and the susceptance. This is due to the fact that both the capacitance and
conductance decrease with frequency.

As mentioned earlier the time-dependent tunneling theory presented can also handle
large AC signals. To handle large signal excitations (qVAC � h̄ω), more harmonics
are required to solve the Schrödinger and Poisson equations self-consistently. Figures
7.19 and 7.20 show the variation of the large AC signal conductance G( f, VAC , VD =
0.48 V) and susceptance B( f, VAC , VD = 0.48 V) (see Equation (7.35) for a
definition) with the frequency f for different AC voltages VAC .

The negative conductance is observed to decrease in amplitude when the amplitude
of the AC voltage VAC increases. Also like for the small-signal response, the negative
conductance decreases in amplitude when the frequency increases.
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Fig. 7.21. Calculated current (full line) and capacitance (dashed line) as a function of bias. The
capacitance has a maximum at the inflection-point voltage in the I –V characteristic corresponding
to the maximum NDR region.

7.9 Microwave measurement of the C--V characteristics

We have presented in the previous sections a quantum simulation technique which
allows one to study the high-frequency response of RTDs for both small- and large-
signal AC voltages. This simulation technique calls for the solution of the Poisson
and Schrödinger equations self-consistently using a harmonic balance technique. This
quantum simulation technique guarantees that the total displacement plus electron
current is continuous and allows us to predict effects such as the anomalous RTD
capacitance effect.

To experimentally verify the peak in the C–V characteristic predicted by the theory
described above (see Figure 7.21), we now discuss results obtained on an InP-based
RTD. The RTD heterostructure considered was grown using molecular beam epitaxy
(MBE) on an InP substrate. The undoped tunneling structure had two 45 Å InAlAs
([Al] = 0.48) barriers and a well consisting of 20 Å InGaAs, 20 Å of InAs, and 20 Å
of InGaAs ([Ga] = 0.47). There is a 150-Å undoped InGaAs spacer on either side
of the tunneling structure. The heavily doped InGaAs contact layers (Si at 1019 cm3)
are about 2000 Å thick. The I –V characteristic of a 6 × 60 µm2 device is shown
in Figure 7.22. To stabilize the device and keep it from oscillating [15] the DC I –V
characteristic needs to be measured using a cascade probe station. The cascade probe
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Fig. 7.22. The I –V characteristics of the 6 × 60 µm2 RTD measured with on-wafer probing. Note
that the I –V characteristic is stable even in the NDR region.

is connected to a network analyzer via a bias tee. The network analyzer is used to
characterize the diode at microwave frequencies and also provides a 50 � impedance
termination which reduces the chances of RF and microwave instabilities in the DC
I –V characteristic.

On-wafer one-port S-parameter data were taken using an HP8510 network analyzer
[17] and are shown in Figure 7.23 for the 6 × 60 µm2 device. Each set of data
represents a frequency scan from 0.1 to 18 GHz for each bias point. When the
reflection coefficient is greater than 1, the device has a net NDR. Obtaining data in
the NDC region can be difficult because the device may oscillate, even when it is in
a 50-� system. The S-parameter data (at each bias point) can be fitted to the model
shown in Figure 7.13(a). From this fitting, the device series resistance, capacitance and
conductance are obtained for each bias point. A bias-independent series resistance
of RS = 4 � is found to give a good fit. The dependence of the capacitance and
conductance upon the diode bias voltage is shown in Figure 7.24. The conductance
calculated from the I –V characteristic is also shown in Figure 7.24 (dashed line) and
is in good agreement with the conductance (full line) extracted from the microwave
data.
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Fig. 7.23. The on-wafer, one-port S-parameter data are shown for different DC biases. When the
reflection coefficient is outside of the Smith chart (� ≥ 1), the device has a net NDR.
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Fig. 7.24. Device capacitance and conductance (full lines) as a function of bias obtained by fitting
the S-parameter data with the model shown in Figure 7.13(a). The conductance calculated from the
I –V characteristic is also shown (dashed line).
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The capacitance (dotted line) has a peak at the voltage that corresponds to the
maximum in the device negative conductance. A similar peak in the capacitance has
also been reported [5] for a double-barrier RTD made from the GaAs-based system.

7.10 DC bias instabilities

As discussed above the measurement of the I –V characteristics of an RTD can be
hampered by instabilities in the NDC region.

Consider the biasing circuit shown in Figure 7.25. The inductor is a stray inductor
associated with the bonding or contact. It is critically important for understanding the
bias instabilities even if it is extremely small. The response of the circuit for constant
CD can be obtained by solving the non-linear differential equation [15]

d2v

dt2
+
(

R

L
+ 1

CD

diD

dv

)
dv

dt
+ 1

LCD
[v + RiD(v)] = Vb(t)

LCD
.

Analysis of this differential equation reveals that the circuit is DC stable when the
circuit parameters satisfy the following conditions [16]:

R <
Vv − Vp

Ip − Iv
,

L

R
< CD

∣∣∣∣ di

dv

∣∣∣∣
−1

.

If these stability conditions are not enforced, oscillations will start in the NDC
region. The time-average DC measured will then be modified in the presence of these
oscillations. To demonstrate this effect and to study the impact of the capacitance peak
in the NDC, the transient simulation [17] of an RTD with its DC biasing circuit are
presented in Figure 7.26. In these simulations the DC voltage source is swept from
0.55 to 1.05 V.
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Fig. 7.26. Impact of the capacitance peak in the NDC in transient simulations of the RTD circuit
shown in Figure 7.25. The top figures show the DC I –V characteristic (top left) and the C–V
characteristic (top right) used for the RTD model of Figure 7.25. The middle and bottom figures
compare the instantaneous (middle) and time-averaged (bottom) I –V characteristics obtained in a
circuit simulator for an RTD without (left) and with (right) a capacitance peak in the NDR.

These simulation results demonstrate the development of oscillations in the NDC
region when a sufficiently large parasitic inductor is placed in series with the device.
The impact of the peak of the capacitance in the NDC on the time-average I –V
characteristic and the microwave oscillations in the NDC region is also demonstrated.

7.11 Infrared response of quantum devices

Our discussion so far has focused on the high-frequency response of quantum devices
for time-varying electrostatic potentials. In this section we generalize our discussion
to that of the coupling of quantum devices to infrared electromagnetic waves. We will
first briefly describe the physical wave-guide system under which the interactions can
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Fig. 7.27. (a) Layered structure/superlattice. (b) Wave propagation inside the active layer.

take place. We then study the coupling between the infrared electromagnetic field and
the electrons, and present some simulation results. Finally we briefly describe infrared
quantum cascade lasers.

7.11.1 Modeling the infrared wave-guide

The geometry of the test heterostructure used in this chapter is shown in Figure 7.27(a).
The device consists of an active layer of thickness 2d sandwiched between two layers
of n-type AlAs. The active layer itself consists of different layers as shown on the right
of Figure 7.27(a). The conduction-band bottom edge is also plotted, and we clearly
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see that a quantum well is formed due to the bandgap discontinuity between GaAs and
Alx Ga1−x As. Such a simple RTD structure is used here instead of the more complex
superlattice and quantum cascade structures to demonstrate our approach.

A cross-section of the active layer is outlined in Figure 7.27(b). This layer, which
we shall refer to as ‘the core’, is pictured as a layer of dielectric material (actually a
semiconductor) of effective refractive index n1 and thickness 2d, sandwiched between
two layers of material of effective refractive index n2, where n1 > n2. Those two
layers, which we shall refer to as ‘the cladding’, are treated as being semi-infinite,
and the effective refractive index is considered to be constant everywhere except at
the boundaries between different layers where it changes abruptly from one value
to another. In such a structure a wave can be made to propagate down the active
layer through total reflections. We only consider TM waves (Hz = 0 and Ez �= 0)
which will couple with the active device. Solving Maxwell equations, assuming no
electron current and charges in the slab wave-guide, we can calculate the first TM
mode potential vector in the core to be:

A = − A0

ω2ε1
[k1z cos(k1x x) sin(ωt − k1zz)x + k1x sin(k1x x) cos(ωt − k1zz)z], (7.39)

with k1z = k1 sin θ1 = n1k0 sin θ1 obtained from the transcendental equation:

tan

[
n1k0 cos θ1d − nπ

2

]
=
[
(n2

1 − n2
2)− n2

1 cos2 θ1

n2
1 cos2 θ1

]1/2

. (7.40)

The amplitude A0 of the TM mode can be related to the total power flow P obtained
from integration of the Poynting vector over x (core and cladding):

P =
∫ ∞

−∞
1

2
E × H∗ dx

= A2
0k1z

2ω

{
1

ε1

[
d + sin(2k1x d)

2k1x

]
+ 1

ε2

cos2(k1x d)

γ2

}
z (W/m), (7.41)

with P , the optical power per unit width (in the y direction), flowing only in the
z direction. In a simulation P can be used to calculate the value of A0 from
Equation (7.41).

Note that a self-consistent solution of the potential vector might be required, as
the assumption of zero charges and potential in the core is not satisfied by the
semiconductor quantum devices. An effective dielectric constant should be sufficient
to account for the presence of a superlattice in the core region. The analysis presented
here stresses the need for varying the active region across the core of the dielectric
wave-guide so as to account for the varying TM field.
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7.11.2 Coupling of quantum transport with infrared radiation

To analyze the impact of the infrared radiation emitted or absorbed on the quantum
transport, we shall limit our analysis to the ‘first quantization picture’ in which the
electron is quantized, but the electromagnetic fields are not. This is quite justifiable for
the relatively large infrared fields present in lasers, where the large stimulated emission
dominates the spontaneous emission. The electron Hamiltonian is therefore given by

[
Hel |ψ〉 − q

m
A(x, z, t) · p

]
|ψ〉 = ı h̄

∂

∂t
|ψ〉,

with A(x, z, t) the potential vector of the TM wave introduced in the previous section.
Note that the Hamiltonian used here assumes that the electromagnetic field strength is
not excessively large so that we can neglect the term (q2/2m)A2 of the exact electron–
photon Hamiltonian.

To solve this Schrödinger equation we expand the electron wave-function in terms
of generalized Wannier functions

|ψ〉 =
∑

n

∫
f (k⊥, n, t)|k⊥, n〉 dk⊥. (7.42)

In the above expression |k⊥, n〉 is the generalized Wannier function (electron state)
and f (k⊥, n, t) is the Wannier envelope function. The generalized Wannier state
|k⊥, n〉 is a hybrid state, being a localized one-dimensional state centered around
lattice site n along the superlattice axis and a quasi-Bloch state with wave-vector k⊥
in the perpendicular direction.

An exact solution can be obtained in terms of a Fourier series expansion. When the
quantum structure is located at the center of the slab wave-guide we have for the case
of an expansion up to the second harmonics:

f (k⊥, n, t) = f0(n)δ(k⊥ − k⊥0) exp

(
− j

E0

h̄
t

)

+ f−1(n)δ(k⊥ − k⊥0 + k1z) exp( jωt) exp

(
− j

E0

h̄
t

)

+ f+1(n)δ(k⊥ − k⊥0 − k1z) exp(− jωt) exp

(
− j

E0

h̄
t

)

+ f−2(n)δ(k⊥ − k⊥0 + 2k1z) exp(2 jωt) exp

(
− j

E0

h̄
t

)

+ f+2(n)δ(k⊥ − k⊥0 + 2k1z) exp(−2 jωt) exp

(
− j

E0

h̄
t

)
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where the envelope functions fp(n) are obtained from the Hamiltonian equation [18]:
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,

with the electron–photon coupling constant λ = |q|A0k1z h̄/(4ω2ε1m∗a) [18]. The
results presented here hold for the case of a single tight-binding Wannier band of the
form

E(k′
⊥, n) = Ec(na)+ h̄2k2

⊥
2m∗ + A[1 − cos(kx a)], (7.43)

where Ec(na) is the energy of the conduction-band edge at the lattice site n and A =
h̄2/(m∗a2) with m∗ the effective mass of the electron.
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7.11.3 Optical absorption/emission coefficient

The Schrödinger equation presented above allows us to calculate the quantum ballistic
trajectory of an electron in the presence of an induced or applied infrared radiation
field. One can verify both theoretically and numerically that the electron current is
conserved:∑

b

Jb(NL) =
∑

b

Jb(NR),

with Jb the current associated with the harmonics b. Also conserved is the power flow
between the electron and photon via Hint = −qp · A/m:

0 = −
∑

b

[
Jb(NL)

2
− Jb(NR)

2

]
δ(0⊥)(bh̄ω)+ 〈ψ |∂Hint

∂t
|ψ〉 (7.44)

In Figure 7.28 the different current density components are outlined for an electron
incident on the left-hand side of the quantum well.

Writing Jb(NL) = −JbR and Jb(NR) = JbT we define three attenuation factors:

α(E0x , E0⊥, P) = − 1

δ(0⊥)
〈ψ |∂Hint

∂t
|ψ〉 = αa(E0x , E0⊥, P)− αe(E0x , E0⊥, P)

where αa and αe are coefficients for the absorption and the emission processes,
respectively, and are defined as

αa(E0x , E0⊥, P) = 1

P

∑
b>0

(JbR + JbT )
bh̄ω

2
,

αe(E0x , E0⊥, P) = 1

P

∑
b<0

(JbR + JbT )
bh̄ω

2
.
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We note that both αa and αe take positive values. The total absorption coefficient for
injection on the left side is obtained by integration over kx and k⊥:

αtotal,L(P) = 1

4π3

∫ π/a
0

dkx

∫ π/a
−π/a

∫ π/a
−π/a

dk⊥
1

1 + exp
(

EF,L−E0
kB T

)α(E0x , E0⊥, P).

(7.45)

The total absorption coefficient is finally given as the sum of the absorption coefficients
for electrons incident on the left-hand side and for electrons incident on the right-hand
side, that is,

αtotal(P) = αtotal,L(P)+ αtotal,R(P). (7.46)

This total absorption coefficient becomes negative when the device is amplifying the
optical field. The laser condition is therefore given by the usually lasing condition

0 = αtotal(P)+ αloss + 1

L
ln

1

R
(7.47)

with αloss the sum of the unaccounted losses per unit length (contacts, cladding), L the
resonator length, and R the reflectivity of the mirrors. The solution of Equation (7.47)
yields therefore the power flow for both the forward and backward waves since in our
approach αtotal(P) is dependent on the optical power P . Note that our approach also
treats the photon semiclassically but the electron transport is treated fully quantum
mechanically.

Simulation verification
Consider a RTD (two periods of a superlattice) with a barrier of six monolayers
and a well of twelve monolayers. The I –V characteristic for this structure is
shown in Figure 7.29(a). In Figure 7.29(b) the transmission coefficient is plotted
for each harmonic for a potential of 0 V across the quantum region. We observe in
Figure 7.29(b) that the transmission probability T0 presents two peaks, each of which
corresponds to a resonant energy level of the quantum well. For the other harmonics
the transmission coefficients T−1 and T+1 present two pairs of peaks around each peak
of T0. One of the peaks in each pair occurs at the same longitudinal energy as the peak
of T0. The other peak occurs at energy values h̄ω above (for the case of T−1) or below
(for the case of T+1) the energy for which the peak of T0 occurs. These new peaks arise
from the stimulated emission (T−1, full line) and stimulated absorption (T+1, dotted
line) of infrared photons.

The attenuation factors are shown in Figure 7.30. As Figure 7.30 clearly outlines,
there is a voltage range for which emission dominates and the total attenuation is
negative. Maximum emission is observed around 0.35 V. However, the value of the
negative attenuation coefficient (gain) is very small (−αtotal = 10−3 m−1) since only
a narrow active region of about 100 Å out of a 10 µm core region was modeled. The
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Fig. 7.29. (a) I –V characteristic. (b) Transmission coefficients. The potential across the quantum
region is 0 V.



259 7.11 Infrared response of quantum devices

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
–2

0

2

4

6

8

10
x 10

–3

Voltage (V)

A
tte

nu
at

io
n 

(1
/m

)

––

– –  |emission|

– .   absorption

total

Fig. 7.30. Total (full line), emission (dashed line) and absorption (dashed-dotted line) power
attenuation factors.

filling factor is therefore about 1000. If the active region is filled with such RTD
structures, the absorption coefficient scaled by the filling factor gives about a total
gain of 1 m−1 = 10−2 cm−1. The emission and absorption coefficients remain small.
Only one resonant tunneling energy level was involved in the stimulated emission
and absorption processes in Figure 7.30. We consider now a structure where, as in
a laser, the infrared photon energy is comparable to the difference between the two
resonant energy levels. As is shown in the middle plot of Figure 7.31, when the photon
energy exactly satisfies h̄ω = E2 − E1, the emission coefficient T−1 (full line) then
reaches a resonant emission peak, because its emission peak is aligned with the second
resonance (E2) in T0 (dashed-dotted line). A smaller transmission peak is observed
when the photon energy is slightly smaller (left-hand plot) or larger (right-hand plot)
than E2 − E1. Similar results hold for the resonant absorption (dotted lines).

7.11.4 Quantum cascade laser

In this section we now describe the quantum cascade laser which has been developed
for the generation of laser light in the infrared from 4 to 13 µm [19,20]. This laser
relies on the quantum engineering of the device to create the laser levels inside
the conduction bands. The principle of the quantum cascade laser is described
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Fig. 7.32. Schematic description of the operation of the quantum cascade laser.
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schematically in Figure 7.32. The quantum laser involves multiple wells where
the photons are generated. These wells are separated by a superlattice to create a
miniband between the wells with regions of forbidden energies around the state |3〉.
The electrons originating from the previous well are injected via the miniband into
level |3〉. The electrons relax from the state |3〉 to the energy state |2〉 by radiating
infrared photons of energy h̄ω = E3 − E2. The electrons in state |2〉 must then be
rapidly transfered to state |1〉 and the miniband so as to establish a population inversion
between state |3〉 and |2〉. This is achieved by selecting the energy spacing between
state |2〉 and |1〉 to correspond to the optical phonon energy h̄ωL O = E2 − E1.

We show in Figure 7.33 the density of states calculated for a quantum cascade
structure. The density of states reveals the various laser states and minibands in the
well and superlattice of the quantum cascade laser, respectively.

The advantage of the quantum cascade laser is that a large band of infrared
frequencies can be realized with the same material by engineering the superlattice.
Wavelengths from 4 to 13 µm have been realized. The power obtained with such
a laser is also very high because for a laser with N wells, an electron will emit N
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photons. The power generated can be expressed [21] by

P = ηNh̄ω
I − Ithreshold

q
,

where η is the collection efficiency, I is the laser current and Ithreshold is the current
required to create a sufficiently large population for lasing to take place. Note that the
threshold current is very high (on the order of kA/cm2) in a quantum cascade laser
due to the relatively short lifetime (on the order of tenth of picoseconds) of the state
|3〉. The power generated by these lasers is typically on the order of 100 mW. The
development of sources working at even longer wavelengths (far infrared) remains a
technical challenge.

7.12 Conclusion

In this chapter we have studied several canonical problems of quantum devices
subjected to external time-varying excitations.

Using an exact wave-packet solution we established the condition for conducted
radiation emission or absorption of the electron undergoing Bloch oscillations. We
also derived a methodology for obtaining the steady-state response of quantum de-
vices (RTD, quantum cascade) subjected to harmonic electrostatic or electromagnetic
excitations.

A direct measure of the speed of devices is established by the decrease of their gain
or negative resistance at high frequencies. For the RTD, the resonant tunneling process
is intrinsically limited to terahertz frequencies as a result of the inertia associated with
the electron mass. This effect is measured by the so-called quantum inductance.

However, we verified that in practice the limitation of quantum devices arises
from their capacitances. Indeed, transport in quantum devices is fundamentally
space-charge-limited. In fact we saw that the self-consistency between the field and
transport equations must be enforced for both DC and AC, as this led to the prediction
of the experimentally observed anomalous-capacitance effect in RTDs.

The final topic of this chapter was the generalization of steady-state analysis to
quantum devices subjected to electromagnetic excitations. It is important to note that
in this chapter our modeling of the electromagnetic excitations relied on a classical
electromagnetic field. This classical field approximation is justified by the fact that
our analysis was indeed targeted to the practical case of coherent (classical-like)
electromagnetic fields (see the Glauber state in Section 5.2.1) which are achieved in
lasers. In such classical fields the number of photons is very large, and stimulated
emission or absorption is therefore largely dominant over spontaneous emission.



263 7.13 Bibliography

Spontaneous emission of photons or phonons remains, however, of critical im-
portance as it is the key force permitting the relaxation of quantum or semiclassical
systems toward equilibrium, as is discussed respectively in both Chapters 6 and 9.

The reader might then wonder how incoherent phonon scattering and coherent
photon scattering could be simultaneously considered? As can be inferred by the
inquisitive reader, the impact of phase-breaking scattering on the steady-state response
of time-dependent systems can be accounted for with the use of a self-energy (see
Chapter 6) calculated using the steady-state impulse response of the time-dependent
quantum system.
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8 Charge control of the two-dimensional
electron gas

Asked by a politician about the practical worth of electricity, Michael Faraday answered: ‘One day,

Sir, you may tax it.’

Discovery, R. A. GREGORY

8.1 Introduction

As was discussed in Chapter 4, the confinement of electrons in a quantum well along
the superlattice direction leads to the formation of a two-dimensional electron gas
(2DEG). Such a quantum well can directly arise at the interface of a heterojunction
due to the combined confinement provided by the heterojunction band structure
discontinuities on one side and the potential barrier created by the large built-in electric
field on the other side. In this chapter we shall calculate the equilibrium population
in such a heterojunction and see how the 2DEG population can be controlled by a
Schottky junction. As we shall see in Chapter 10, such a controllable 2DEG is the basis
for a high-speed FET, the HEMT (also called MODFET or TEGFET), (see chapter 10
for the definitions of the abbreviations).

8.2 2DEG population as a function of the Fermi energy

Let us consider the 2DEG system shown in Figure 8.1. The region on the left-hand
side of the heterostructure is labeled 2 and the region on the right is labeled 1. For
simplicity we assume that the semiconductor materials of regions 1 and 2 are both
lattice-matched to the substrate and are therefore not strained.

For a general heterostructure, the eigenstates in a quantum well are obtained from
the Wannier eigenstate equation

NB∑
n=−NB

Hmn fp(n) = Ep fp(m).

265
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Fig. 8.1. The 2DEG system at the interface of a heterojunction.

In the tight-binding approximation, the Wannier equation reduces to

− A

2
fp(m + 1) + [A + Ec(m)− qV (ma)] fp(m) − A

2
fp(m − 1) = Ep fp(m)

where A = h̄2/(m∗a2) and Ec(m) is the conduction band edge which includes the
conduction-band discontinuities. V (na) is the electrostatic potential which is obtained
by solving the Poisson equation (see Chapter 2)

ε(x)
d2V [x]

dx2
+ dV [x]

dx

dε(x)

dx
= −ρ(x).

The charge distribution ρ(x) is given at each lattice site by the unintentional concen-
tration of donor or acceptors and the electron distribution in the well:

ρ(na) = q N+
D (na) − q N−

A (na) − q
∞∑

p=1

nS,p| fp(n)|2,

with nS,p the electron concentration in the subband p. In Chapter 4 we found nS,p to
be given by

nS,p = DkB T ln

[
exp

(
EF − Ep

kB T

)
+ 1

]
,

where D = m∗/(h̄2π) is the 2DEG density. The use of the wave-function to calculate
the electron distribution ρ is not justifiable for a single electron since the wave-function
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only gives the probability of the presence of the electron at a lattice site but does not
guarantee its presence (an electron is indivisible and can only be at one lattice site
at a time). However, in a 2DEG, the presence of many electrons with similar wave-
functions guarantees that several electrons will always be present at each lattice site
with the wave-function, giving the relative population of each lattice site. Obviously
the wave-function of each eigenstate must be normalized

∞∑
n=−∞

| fp(n)|2 = 1.

Note that the charge distribution can be assumed to be uniform in each lattice site n in
the region of width an (the lattice parameter). The integration of the Poisson equation
for such types of charge distribution can be expressed in a simple analytic form which
is derived in Problem 2.2.

Clearly this eigenvalue problem requires the self-consistent solution of the Wannier
equation and the Poisson equation. Indeed, the wave-functions | fp(n)|2 are required
to solve the Poisson equation, and the potential V (na) is required to obtain the wave-
function from the Wannier equation.

The solution to this problem can be somewhat simplified by dividing the het-
erostructure shown in Figure 8.1 into three regions: Regions I, II and III. A full
quantum treatment is only applied to Region II. Regions I and III are described
semiclassically, i.e., no quantum wells are present in these regions. Region I will
be studied in more detail in the next two sections. Wave-functions on the edge of
Regions I and III can be assumed to be zero. This is a reasonable approximation,
as the wave-functions die quickly inside the potential barrier reducing the eigenvalue
problem to the calculation of the eigenvalues and eigenvector of a finite size square
matrix ([Hnm]). Integration of the Poisson equation across the quantum Region II of
width W gives

ε2 FI = ε1 FB + q
∑

p

nS,p + q(N−
A − N+

D )W,

where FI is the electric field at the interface of Regions I and II, and FB is the electric
field at the interface of Regions II and III. For a uniformly doped substrate or bulk, one
can easily integrate the Poisson equation in Region III and verify that the field FB is
related to the Fermi level EF B (measured relative to the conduction-band edge at the
II/III interface) by the relation

FB = kB T

q

2

L D
[(U0 − U ) sinh(U0)+ cosh(U )− cosh(U0)]

1/2 , (8.1)

where L D is the intrinsic Debye length

L D =
(
ε1kB T

q2 Ni

)1/2
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with U0 and U given by

U0 = sinh−1
(

− NA

2Ni

)
, U = EF B

kB T
− ln

(
Ni

Nc

)
. (8.2)

Assume that we wish to calculate the 2DEG concentration given a Fermi level
EFi specified relative to the bottom of the triangular well. The solution of such
eigenvalue problems can proceed iteratively. Starting from a guess potential V1(na)
the eigenenergies and wave-functions can be calculated. The Poisson equation can
then be solved for the calculated charge distribution ρ(na) and the boundary condition
FB = FB(EF B) such that the Fermi level remains constant across Regions II and
III. The resulting potential V2(na) can then be used as a guess for again solving
the eigenvalue problem. In practice, for this simple procedure to converge, it is
necessary to damp the updated potential by averaging it with its previous guess:
0.5× [V2(na)+ V1(na)]. An improved updating technique would rely on the Jacobian
associated with the Poisson equation to calculate the potential update. Repeating this
iterative procedure one obtains a self-consistent numerical solution of this eigenvalue
problem giving the 2DEG concentration nS = ∑p nS,p, and the population of each
subband, the eigenenergies Ep and the fields FB and FI for a given Fermi level EFi .

Note that we have assumed that the semiconductor materials of Regions 1 and 2,
were both lattice-matched to the substrate and were therefore not strained. In the
case of pseudomorphic materials, the tensile strain can induce a large piezoelectric
field (polarization) which must be accounted for in the 2DEG calculation (see Section
2.4). The reader is referred to [4] for an AlGaN/GaN HEMT example in which the
piezoelectric field induced by the strained AlGaN layer pseudomorphically grown on
GaN is demonstrated to be the primary source of the 2DEG charge.

Approximate treatment

For the sake of simplicity, it is interesting to present an approximate analytic solution.
The charge stored in the buffer (Region III) is usually very small compared to the

charge nS stored in the quantum well (Region II). When this is the case we can neglect
the bulk field FB , and we have

ε2 FI = qnS.

For a wide region of operation the Fermi level lies between the first eigenenergies E1

and E2. Because these energy levels are sufficiently separated, the first subband is
usually mostly populated, and the inclusion of two subbands is sufficient to describe
the 2DEG system. The total electron concentration then reduces to

nS = DkB T ln

[
exp

(
EF − E1

kB T

)
+ 1

]
+ DkB T ln

[
exp

(
EF − E2

kB T

)
+ 1

]
.
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This relation can be easily inverted (see Kim et al. [5])

EFi (nS) = kB T ln

{
−1

2

(
exp

E1

kB T
+ exp

E2

kB T

)

+
[

1

4

(
exp

E1

kB T
+ exp

E2

kB T

)2

+
(

exp
nS

kB T
− 1

)
exp

E1 + E2

kT

] 1
2




Finally the eigenvalues E1 and E2 can be obtained using the triangular well approxi-
mation (see Chapter 4)

Ep =
(

h̄2

2m∗

) 1
3 [(3

2
πq F0

)(
p + 3

4

)] 2
3

.

Given that the triangular potential is not a very accurate approximation, an improved
model can be obtained [1] if only the field dependence is retained

En = αn F2/3
I

and a fitting constant αn is introduced. Since the field is proportional to the charge
concentration we have

E1 = γ1n2/3
S ,

E2 = γ2n2/3
S ,

where γ1 and γ2 are two constants which are obtained experimentally. This approxi-
mate model provides us with an analytic expression allowing us to calculate the Fermi
energy EFi , the field FI = qnS , the population of each subband, and the eigenenergies
E1 and E2 given a specific 2DEG concentration nS .

8.3 Equilibrium population of the 2DEG

So far our analysis has been limited to Regions II and III, and Region I was left
unspecified. In this section we consider the case in which Region I consists of a
strongly doped wide-bandgap semiconductor (labeled 2) (e.g., n-AlGaAs) as shown
in Figure 8.2. Our goal is to calculate the equilibrium concentration in the 2DEG.

The built-in potential in Region I can be obtained by solving the Poisson equation
in this region (see Chapter 2)

ε2
d2V

dx2
= −ρ = − q ND(x)

1 + 2 exp

(
EF − Ed + qV

kB T

) + q NcF1/2

[
EF − Ec + qV

kB T

]

(8.3)
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for non-degenerate doping or simply

ε2
d2V

dx2
= −ρ = −q ND(x)+ q NcF1/2

[
EF − Ec + qV

kB T

]
(8.4)

for degenerate doping where the donors are assumed to be fully ionized (see Section
2.2.2). In general the donor distribution ND can be spatially varying. The interesting
case of pulse doping is studied in Problem 8.2. We shall consider here the case of a
uniformly doped heterostructure. A small undoped region of width e, called the spacer
region, is used to separate the intrinsic GaAs from the n-doped AlGaAs material.
Indeed, the wave-function of the electron penetrates a few lattice parameters inside
the heterojunction barrier near the interface, and the electron in the state |n,k⊥〉 has
a non-negligible probability to be scattered by the donor impurities in AlGaAs. The
spacer region permits us to reduce the possibility of scattering and therefore improve
the mobility of the electrons in the 2DEG.

Let us now calculate the built-in potential. Note that in the case of a uniform donor
distribution ND , the Poisson Equation (8.3) or (8.4) can be integrated analytically if
we use the following approximate identity for the Fermi–Dirac integral:

F1/2[x] � exp x

1 + 1
4 exp x

.

For the sake of simplicity, we shall rely instead on the depletion approximation used
in the pioneering paper of Delagebeaudeuf and Linh [1]. We assume that the depletion
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extends over the width W − e. The origin of the axis is set at the beginning of the
depletion (see Figure 8.2):

d F

dx
= q ND

ε2
for 0 ≤ x ≤ W − e,

d2V

dx2
= −q

ND

ε2
for 0 ≤ x ≤ W − e.

Using the boundary condition V (0) = 0 and F[0] = 0 we obtain

F2[x] = q ND

ε2
x for 0 ≤ x ≤ W − e.

V2[x] = −q
ND

2ε2
x2 for 0 ≤ x ≤ W − e. (8.5)

The field F[W −] at the heterojunction interface is

F[W −] = F[W − e] = q ND

ε2
(W − e).

The potential V [W ] at the heterojunction interface is

V [W − e] = −q ND

2ε2
(W − e)2

V [W ] = V [W − e] − F[W − e] e

= −q ND

2ε2
(W − e)2 − q ND

ε2
(W − e)e

= − q

2ε2
ND(W

2 − e2).

Let us define the potential V2:

V2 = −V [W ] = q

2ε2
ND(W

2 − e2).

The width W is then

W =
(

2ε2V2

q ND
+ e2
) 1

2

and the interface field F[W −] is

F[W −] = q ND

ε2

[(
2ε2V2

q ND
+ e2
) 1

2

− e

]

ε2 F[W −] =
(

2ε2q NDV2 + q2 N 2
De2
) 1

2 − q NDe.
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The interface field can be calculated once we can evaluate V2. From the band diagram
in Figure 8.2 we have

�Ec = qV2 + δ + EFi [nS],

with δ = Ec[−∞]− EF the distance between the Fermi level and the conduction band
in n-AlGaAs far from the interface. The equilibrium charge concentration can then be
obtained by solving the following transcendental equation

qnS = ε2 F[W −] =
{

2ε2 ND[�Ec − δ − EFi (nS)] + q2 N 2
De2
} 1

2 − q NDe. (8.6)

The equilibrium charge concentration nS0[e, ND] is seen to be a function of the doping
level ND and the spacer width e. Typically nS0 is on the order of 1012 cm−2

Delagebeaudeuf and Linh [1], who reported this expression, verified that nS0 is
maximum for e = 0. Typically e � 100 Å is used so as to reduce Coulombic
scattering. This permits us to achieve very large mobilities approaching the intrinsic
mobility of GaAs.

8.4 Charge control of the 2DEG with a Schottky junction

We shall now see how the population of the 2DEG can be controlled using a Schottky
junction. Consider the Au–n-AlGaAs–i-GaAs structure. The band diagram of such
a structure is shown in Figure 8.3 for a thick and a thin layer of AlGaAs region. In
the case of a thick AlGaAs layer (Figure 8.3(b)) the depletion regions of the Schottky
junction and the 2DEG do not overlap, and a parasitic n channel is present in the
AlGaAs region. For a narrower AlGaAs region, the depletion regions overlap, and
the entire AlGaAs region is depleted. The electrons provided by the donors are then
shared between the metal and the 2DEG. By applying a voltage between the metal
and the 2DEG Fermi level one can modify this charge partitioning. Such a biasing
scheme can be realized with the so-called MODFET (a discussion of the MODFET
is given in Chapter 10). A negative potential on the metal increases the number of
uncompensated donors imaging the charge on the metal and therefore decreases the
fraction of donor contributing electrons to the 2DEG. A positive potential on the metal
decreases the number of uncompensated donors imaging the charge on the metal and
therefore increases the fraction of donors contributing electrons to the 2DEG. Once the
depletion region of the 2DEG and the Schottky junction separate, the 2DEG population
saturates to its maximum value nS0, and the applied voltage ceases to control the
2DEG. The metal will be referred to as the gate and the applied voltage as the gate
voltage.

We shall develop a simple model to predict the variation of the 2DEG concentration
nS with the gate voltage VG . Again, we shall rely on a depletion approximation
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Fig. 8.3. Equilibrium band diagram of the Au–n-AlGaAs–i-GaAs structure: (a) before connection,
(b) for a thick AlGaAs region, and (c) for a thin AlGaAs region.

which assumes that the entire n-AlGaAs region of width d2 is depleted. The depletion
approximation therefore holds when the depletion regions of the Schottky junction and
the 2DEG overlap. We also assume that the Schottky diode is reverse-biased, so that
no current is flowing through the heterostructure. The Gauss and Poisson equations in
the AlGaAs region are then respectively:

d F

dx
= q

ND

ε2
for 0 ≤ x ≤ d2 − e,
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d2V

dx2
= −q

ND

ε2
for 0 ≤ x ≤ d2 − e.

The origin of the x axis and the potential is selected to be the metal–semiconductor
junction (see Figure 8.4). The field F[x] and potential V [x] are then:

F[x] = q
ND

ε2
x + F[0+],

V [x] = −1

2
q

ND

ε2
x2 − F[0+]x .

The field at the heterojunction interface is

F[d2] = F[d2 − e] = q
ND

ε2
(d2 − e)+ F[0+] (8.7)

and the potential V [x] can be rewritten

V [x] = −1

2
q

ND

ε2
x2 +

[
q

ND

ε2
(d2 − e)− F[d2]

]
x .

Next we evaluate the potential at x = d2 − e:

V [d2 − e] = −1

2
q

ND

ε2
(d2 − e)2 + q

ND

ε2
(d2 − e)2 − F[d2](d2 − e)

= 1

2
q

ND

ε2
(d2 − e)2 − F[d2](d2 − e).

The potential V2 at the heterojunction interface is then

V2 = V [d2] = −F[d2]e + V (d2 − e)
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= 1

2
q

ND

ε2
(d2 − e)2 − F[d2]d2

= VP − F[d2]d2,

where VP is the so-called pinch-off voltage:

VP = 1

2
q

ND

ε2
(d2 − e)2.

The interface field F2 is therefore given by the relation

ε2 F[d2] = ε2

d2
(VP − V2).

From the band diagram shown in Figure 8.4 we can obtain the following identity:

qV2 +�Ec = qφB − qVG + EFi (nS).

The 2DEG concentration nS is then given by

qnS = ε2 F[d2] = ε2

d2

(
VP − φB + VG + �Ec

q
− EFi [nS]

q

)
.

This is a transcendental equation, since EFi is a function of nS . If we neglect the
variation of EF with nS , the following linear relation is obtained:

qnS = ε2

d2
(VG − VT ) for VT ≤ VG ≤ VG,MAX, (8.8)

where VT is the so-called threshold voltage:

VT = φB − �Ec

q
+ EF [nS0]

q
− VP , (8.9)

and where ε2/d2 is the so-called gate capacitance. An improved calculation can be
obtained by linearizing the variation of EFi with nS [2] (see Problem 8.1). A more
accurate analytic expression for the threshold voltage and gate capacitance can then be
derived.

Figure 8.5 shows the variation of the 2DEG charge qnS with the applied gate
voltage. As indicated in Equation (8.8), the linear charge control only applies to a
limited gate voltage range. For gate voltages smaller than the threshold voltage, the
exact EFi (nS) relation should be used, with the result that the 2DEG is never pinched
off completely. This region is called the subthreshold region. For gate voltages larger
than VG,M AX � qnS0d2/ε2, the depletion regions of the Schottky junction and the
2DEG cease to overlap, and the depletion approximation is no longer valid and the
2DEG charge qnS saturates toward its equilibrium value nS0 (see previous section).
Typically, the useful gate voltage range is of about 1 V. For larger gate voltages a
parasitic channel is formed in the AlGaAs region.
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8.5 C--V characteristics of the MODFET capacitor

The metal–semiconductor system we have studied permits us to control the 2DEG
charge with a gate voltage. Such a system is in fact a non-linear capacitor as long as
the Schottky junction is reverse-biased, since the only current we would expect through
the heterostructure is the displacement current. Let us now calculate the capacitance
CG M measured between the metal (gate) and the 2DEG Fermi level. This capacitance
is given by the variation of the charge density QM on the metal for a variation of the
gate voltage:

CG M = d QM

dVG
= ε2d F[0+]

dVG
.

A plot of the capacitance CG M measured experimentally is shown in Figure 8.6 (full
line). The C–V characteristic can be divided into three different regions [3]: the
subthreshold Region A, the 2DEG Region B and the Shottky diode Region C.

In the subthreshold Region A, the AlGaAs is fully depleted, the 2DEG is essentially
unpopulated (nS � 0), and the field F[0+] at the Schottky diode is essentially only
supported by the charge in the GaAs bulk (Region III). The capacitance CG M measured
at the gate is then the capacitance of the AlGaAs region ε2/d2 in series with the
capacitance of the GaAs buffer (Region III) CB :

CG M = 1

d2/ε2
+ 1

CB
,
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where CB is defined from the bulk field FB (see Equation (8.1)) by

CB = ε1q
d FB[U ]

dU
.

Since the buffer is undoped, the bulk capacitance CB is quite small. One can verify
[6] that the minimum value of the bulk capacitance CB is obtained in the subthreshold
region for U equal to

Umin � −U0 − 2 ln 2 − ln |U0|.

The capacitance CG M measured at the gate therefore reaches a minimum value in the
subthreshold region. The measurement of this minimum capacitance permits us to
estimate the effective unintentional doping in the buffer [6].

In Region B of the C–V characteristic (see Figure 8.6), the population of the 2DEG
is rapidly varying with the applied gate voltage. Indeed, if we assume that the AlGaAs
Region II is fully depleted, Equation (8.7) holds and the capacitance CG M measured
at the gate is the 2DEG capacitance CG :

CG M = ε2d F[0+]

dVG
= ε1d F[d2]

dVG
= qdnS

dVG
= CG .
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Fig. 8.7. Sketch of the DC (full line) and pulsed (dashed line) ns(2DEG)–VG characteristics at four
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This is demonstrated in Figure 8.6, where the 2DEG C–V characteristic (CG–VG) is
plotted (dashed line) in addition to the measured CG M –VG characteristic (full line).

Note that the 2DEG capacitance curve CG–VG is slightly shifted from the CG M –VG

curve. This results from the modulation of donor charges in the AlGaAs region. This
modulation was neglected by the depletion approximation which assumes that all the
donors are fully ionized.

For larger gate voltages (Region C), the 2DEG capacitance CG decreases when the
2DEG approaches its equilibrium concentration nS0, but, the measured capacitance
CG M continues to increase. This originates from the variation of the ionized donor
population in AlGaAs, which occurs when the depletion region of the 2DEG and the
Schottky junction cease to overlap.

As the 2DEG capacitance vanishes for large gate voltages, the capacitance measured
at the gate is uniquely that of the Schottky diode. For large positive gate voltages, the
capacitance is actually seen to diverge when the Schottky diode turns on.

So far, our discussion has been limited to quasi-static (low-frequency) conditions.
Let us now discuss the frequency dependence of the C–V characteristic of the
MODFET capacitor. At high frequency, the population of the deep donors present
in AlGaAs (see Section 2.2.2) does not have time to respond. Indeed, the capture
and emission times of deep donors is much larger than that of shallow donors.
Furthermore, the AlGaAs region, when depleted, provides a highly resistive path so
that relaxation toward equilibrium is slow. As a result of the difficulty in modulating
the charge of the donors in AlGaAs the measured capacitance is decreased. However,
since the deep donor population is frozen, the donors do not shield the AC potential
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applied at the gate, and the resulting AC field will modulate the 2DEG charge.
Note that the 2DEG charge can easily respond since the 2DEG channel provides a
high-speed path (quasi-metallic) for the AC voltage applied. As a result at microwave
frequencies we must use the maximum 2DEG capacitance CG = ε2/d2 even for
large gate voltages in order to account for the transient response of the 2DEG. This is
illustrated in Figure 8.7 with a sketch of the transient response of the 2DEG population
for various initial biasing conditions (see Chandra and Foisy [8] for the calculated
results). As is discussed in Chapter 13, this effect is also of consequence for parameter
extraction, as the low-frequency dispersion introduced by deep-donors or traps in FETs
can contribute to the discrepancy in values between the DC and microwave gm’s and
gd ’s extracted.

8.6 I --V modeling of the Schottky junction

There exist two types of MODFET capacitors: the normally on and the normally off.
For a normally on MODFET capacitor, the AlGaAs region is large enough so that
the 2DEG population is already maximum (nS0) for zero applied gate voltage. The
quenching of the 2DEG population in a normally on MODFET capacitor is achieved
with a negative gate voltage. The Schottky diode therefore remains reverse-biased.
For a normally off MODFET capacitor, a small AlGaAs region is used for the 2DEG
population to be a negligible fraction of nS0 for zero applied gate voltage. The
population of the 2DEG can then be increased by applying a positive voltage at the
gate. However, this will also forward bias the Schottky junction.

To conclude this chapter on the MODFET capacitor it is appropriate to discuss the
modeling of the I –V characteristic of the Schottky junction. The band diagram of a
Schottky diode is shown in Figure 8.8.

The gate current through the Schottky junction can be calculated starting from the
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general thermionic diode current derived in Chapter 4 (with current inverted)

JG = DkB T

2π

q

h̄

∫ E(max)

E(min)
T [E, V ] ln




exp

(
EFm − qVG − E

kB T

)
+ 1

exp

(
EFm − E

kB T

)
+ 1


 dE,

where EFm is the Fermi level on the metal side. A classical approximation provides
a reasonable initial model. In the classical approximation, the transmission coefficient
T (E, V ) is 0 for energies smaller than the electron affinity χS of the semiconductor
and is 1 for larger energies (see Figure 8.8). As the Fermi level is usually several
kB T below the transmitted energies, we can use the approximation ln(1 + x) � x (the
Boltzmann approximation). The diode current then reduces to

JG = DkB T

2π

q

h̄

∫ ∞

χS

[
exp

(
EFm − qVG − E

kB T

)
− exp

(
EFm − E

kB T

)]
dE

= A∗T 2 exp

(
−qφB

kB T

)[
exp

(
qVG

kT

)
− 1

]
, (8.10)

where qφB = χS − EFm is the barrier height and A∗ is the so-called Richardson
constant:

A∗ = Dk2
B

2π

q

h̄
= 4πm∗qk2

B

h3
.

The ideal diode characteristic we have derived neglects the contribution of tunneling
and the image force (the barrier lowering due to the repulsive Coulombic potential of
the electron). Non-ideal effects cannot be neglected in practice. Typically the non-
ideal I –V characteristic of a Schottky diode of area SG can be modeled using the
modified expression

IG = SG A∗T 2 exp

(
−qφB0

kB T

){
exp

[
q(VG − RIG)

nkB T

]
− 1

}
, (8.11)

where φB0 is the zero voltage barrier height, n is the ideality factor and R the series
resistance.
φB0 , n and R can then be obtained using a least-square fit of the measured IG–

VG characteristic. It is possible to interpret the ideality factor as a lowering of the
effective barrier φB introduced by the applied diode voltage VG [9]. The gate (Schottky
junction) current can be written

IG = SG A∗T 2 exp

(
−qφB[V ′]

kB T

)[
exp

(
qV ′

kB T

)
− 1

]
,

with V ′ = VG − IG R and with the barrier height given by

φB[V ′] = φB0 +
(

n − 1

n

)
V ′.
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According to Figure 8.8, the flat-band barrier qφB F = χS − EFm is obtained when a
voltage V ′ = V0 is applied

φB[V0] = φB0 +
(

n − 1

n

)
V0 = φB F .

From the band diagram of Figure 8.6 we also have

V0 + δ = φB F ,

where qδ = Ec − EFs is the separation between the conduction-band edge and the
Fermi level in the semiconductor side. Consequently we have

φB0 +
(

n − 1

n

)
(φB F − δ) = φB F

φB0 = φB F

n
+
(

n − 1

n

)
δ.

This last formula states that the effective barrier φB0 obtained at zero voltage is
essentially the flat-band barrier qφB F = χS − EFm divided by the ideality factor
n, assuming that we can neglect δ (the strong doping limit). This simple theory,
proposed by [9], permits us to qualitatively justify the use of an ideality factor n in
Equation (8.11) on the basis of the possible voltage dependence of the effective barrier
height φB . The latter could result from quantum effects (e.g., tunneling) or image force
barrier lowering. However, the use of an ideality factor n that strongly departs from
1 (e.g., 2) is usually a sign of a poor metal–semiconductor junction, possibly due to
structural defects or the presence of an anomalous oxide layer at the interface. These
defects could change the diode electrical characteristics by introducing surface states
or built-in dipoles at the junction.

The band diagram in Figure 8.4 really indicates the presence of two barriers: one
at the Au–AlGaAs junction and the other at the AlGaAs–GaAs heterojunction. The
current from the gate to the 2DEG channel therefore is crossing two back-to-back
Schottky diodes. The barrier height of the 2DEG, however, is much smaller than
that of the Au–AlGaAs junction and the AlGaAs–GaAs junction can be represented
by a small resistance. Therefore there is a negligible Fermi level bending in the
AlGaAs–GaAs heterojunction and most of the applied voltage is dropped across the
Au–AlGaAs junction. However, under strong forward bias Ponse et al. [10] have
demonstrated for a normally off 2DEG (MODFET) that the Fermi level bends in
the spacer region near the AlGaAs–GaAs heterojunction (see Figure 8.9). For gate
voltages larger than qφB0−�C−EFi , the 2DEG can be increased above its equilibrium
value.
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8.7 Conclusion

In this chapter we have studied the 2DEG and its control with a gate contact. Our
approach was based on the original models reported in the literature in order to obtain
simple analytical results. A simple piece-wise linear charge-control model will be used
in Chapters 10–12 for our initial study of the DC and AC responses of MODFETs. A
more accurate charge-control model will then be presented in Chapter 14, in order to
obtain a more realistic fit of the MODFET DC characteristics. The impact on FETs
of low-frequency dispersions like those generated by deep donors and traps will be
addressed in Chapter 13.

A simple model for the Schottky gate diode in MODFETs was also introduced in
this chapter. In Chapter 16, we will return to this topic with an in-depth treatment of
Schottky contacts and the gate resistance, as parasitics play a critical role in limiting
the performance of high-speed devices.
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characteristics of modulation-doped field effect transistors,’ IEEE Transactions on Electron
Devices, Vol. ED-30, No. 3, pp. 207–212, March 1983.
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8.9 Problems

8.1 Consider the MODFET structure analyzed by Delagebeaudeuf and Linh [1]. The variation of
the chemical potential (Fermi level) EFi with the 2DEG concentration nS was neglected in the
calculation of the equilibrium 2DEG concentration nS0 and the gate capacitance CG ,

(a) Calculate a more accurate gate capacitance CG = d(qnS)/dVG which accounts for the
dependence of the chemical potential (Fermi level) EFi upon the 2DEG concentration nS .
Verify that the gate capacitance can be written

CG = ε2

d2 +�d
,

where d2 is the AlGaAs width and with �d a term to be derived. Note that the function
EFi (nS) has not been specified at this point.

Elaborate on the physical origin and contribution of the term �d.

(b) Let us consider the impact of the variation of the chemical potential (Fermi level) EFi with
the 2DEG concentration nS upon the threshold voltage VT for the range of nS considered.
For this purpose we linearize EFi − nS for values of nS in the vicinity of a chosen 2DEG
concentration nS1:

EFi [nS] = EFi [nS1] + d E f i [nS1]

dnS
(nS − nS1) = b + anS .

Derive the new threshold voltage VT . Note that the threshold voltage must be a constant,
and therefore is independent of nS or VG !

(c) Assume that the self-consistent solutions of the Schrödinger and Poisson equations yields
an EFi − nS relationship which can be approximated by

EFi (eV) = 0.234

(
nS

1016

) 1
3 − 0.153,
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where nS is the number of electrons per m2.

Calculate the 2DEG concentration nS0 using the transcendental equation derived by
Delagebeaudeuf and Linh [1]:

qnS =
[
2ε2 ND(�Ec − δ − EFi [nS])+ q2 N 2

De2
] 1

2 − q NDe.

Use the following parameters:

Silicon doping: ND = 1024 m−3

Dielectric constant: ε2 = 13.1ε

Conduction-band-edge shift: �Ec = 0.25 eV

Fermi level position: δ = 0.005 eV

Spacer width: e = 100 Å

(d) Using the expression for EFi given in part c, calculate a, b and �d when nS1 is the
equilibrium 2DEG concentration nS0, 5 × 1015 m−2 and 1 × 1015 m−2. Calculate also
the fractional capacitance reduction d2/(d2 +�d) using an AlGaAs width d2 = 300 Å.

8.2 Consider an Au–AlGaAs–GaAs MODFET capacitor in which only a narrow region of width
Wp is doped with silicon impurities in the AlGaAs region (see Figure 8.10). Such a structure is
called a pulse-doped MODFET.

(a) Calculate the potential drop between the gate and the interface V2 = V [d2] − V [0].

(b) Demonstrate that the threshold voltage can be written

VT = φB − �Ec

q
+ EF0

q
− VP ,

where the pinch-off voltage is now

VP ∝ Wp

(
We − Wp

2

)
,

with We = d2 − e. Calculate VP .
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(c) Elaborate on the reason why an improved control of the threshold voltage results with the
pulse-doped MODFET. For this purpose compare the derivative

∂VP

∂(NDpWp)

for the pulse-doped MODFET and the derivative

∂VP

∂(ND We)

for the uniformly doped MODFET assuming that the same areal doping is used (NDpWp =
ND We).
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S = k log�.

Carved on the tombstone of Ludwig Boltzmann

9.1 Introduction

In Chapter 8 we studied the two-dimensional electron gas (2DEG) and its control with
a gate electrode. As we shall see in Chapter 10, the 2DEG is used as the channel of a
high-speed FET, the MODFET. We therefore need to develop a picture of horizontal
transport in the 2DEG before studying the MODFET. The transport equations devel-
oped in this chapter will also be used for the analysis of the heterojunction bipolar
transistor (HBT) in Chapter 18

Our analysis of transport in Chapters 4–7 assumed that the electron transport was
mostly ballistic, i.e., the mean free path was longer than or comparable to the quantum
device length. In this chapter we shall assume instead that the scale upon which
the device variation takes place is large compared to the electron mean free path
so that no appreciable quantum effects are expected. Indeed, multiple scattering
events randomize the phase of the electron so that neglecting quantum interferences
is a reasonable approximation in devices of length larger than 1000 Å. As a result a
semiclassical analysis that describes the electrons as a gas of classical (known position
and momentum) particles in a band (e.g., the conduction band) should be sufficient to
study horizontal transport in submicron gate-length FETs (0.1–1 µm).

In this chapter we shall review the existing picture of transport developed for the
three-dimensional electron gas (3DEG) based on the Boltzmann equation formalism.
We will see, for example, how we can derive the semiclassical transport equations
introduced in Chapter 2 for heterostructures. But the focus of this chapter is on the
development of a transport model for high and non-uniform electric fields. Indeed
the electrostatic potential varies rapidly from source to drain in submicron MODFETs
leading to very high electric fields in the drain region. To handle transport in such a
non-uniform high electric field we shall see that modified drift and diffusion equations
are required.

286
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Our analysis of high-field transport will be limited to electrons in the conduction
band since we are mostly interested in n-channel FETs. Although the derivations are
carried out for a 3DEG, to first order the application to a 2DEG of the simple transport
models derived here will simply involve replacing the 3/2 equipartition energy factor
by the 2/2 factor.

9.2 The Boltzmann equation

In thermal equilibrium the electron distribution in the conduction band of a uniform
semiconductor is given by the Fermi–Dirac distribution:

fF D = 1

exp

(
E − EF

kB T0

)
+ 1

,

where E is the total electron energy, T0 is the lattice temperature and EF is the Fermi
level. In the conduction band, the total electron energy is E = Ec + 1

2 m∗v2 = Ec −
qV + 1

2 m∗v2, where Ec is the bottom of the conduction band, v = |v| is the electron
velocity, and m∗ is the electron effective mass. We assume that the conduction band is
parabolic so that we have h̄k = m∗v.

For a non-degenerate system (Ec − EF � kT0), fF D reduces to the Maxwell–
Boltzmann distribution

fM B = exp

(
− m∗v2

2kB T0

)
exp

(
EF − Ec

kB T0

)
.

The total number of electrons n in the conduction band is then given by

n =
∫ ∞

−∞
D(k) fM B(v) dk = m∗3

4π3h̄3

∫ ∞

−∞
fM B(v) dv =

∫ ∞

−∞
f0(v) dv,

with f0 given by

f0(v) = 2m∗3

h3
fM B = 2m∗3

h3
exp

(
− m∗v2

2kB T0

)
exp

(
EF − Ec

kB T0

)
(9.1)

= n

(
m∗

2πkB T0

) 3
2

exp

(
− m∗v2

2kB T0

)
.

f0(v), which gives the electron distribution in velocity space, is called the Boltzmann
function.

The average electron kinetic energy for such a distribution is〈
1

2
m∗v2

〉
=
∫∞
−∞

1
2 m∗v2 f0 dv∫∞

−∞ f0 dv
= 3

2
kB T0.
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The average thermal velocity vth of the 3DEG is defined from the average electron
energy

1

2
m∗v2

th = 3

2
kB T0.

Note, however, that the average electron velocity along any direction is zero. For
example the average electron velocity 〈vx 〉 is

〈vx 〉 =
∫∞
−∞ vx f0 dv∫∞
−∞ f0 dv

= 0.

The Maxwell–Boltzmann electron distribution we have introduced holds only for the
uniform semiconductor under equilibrium conditions. In a non-uniform semiconduc-
tor under transient conditions, we can also describe the semiclassical electron gas with
its distribution f in velocity space v = (vx , vy, vz). However, this distribution is now
a function of position r = (x, y, z) and time t :

f = f (x, y, z, vx , vy, vz, t) = f (r, v, t).

The total number of electrons at position r = (x, y, z) and time t is still given by

n(r, t) =
∫ ∞

−∞
f (r, v, t) dv.

The net current density Jx flowing along the x axis is obtained from the average
electron velocity vx by

Jx = −qn〈vx 〉 = −q
∫ ∞

−∞
vx f (r, v, t) dv.

The conservation of particles is expressed in the absence of scattering by the total
differential:

d f =
∑

i=x,y,z

∂ f

∂vi
dvi +

∑
i=x,y,z

∂ f

∂xi
dxi + ∂ f

∂t
dt = 0. (9.2)

In the presence of scattering, the conservation of particles is governed by

d f (v, r, t)
dt

=
∫ ∞

−∞
S(v′, v) [1 − f (v, r, t)] f (v′, r, t) dv′

−
∫ ∞

−∞
S(v, v′)

[
1 − f (v′, r, t)

]
f (v, r, t) dv′,

where S(v′, v) is the probability of scattering per unit time from the initial state v′ to
the final state v. Note that the density of states factor m∗3/(4π3h̄3) is included in the
scattering probability S for notational simplicity. This equation states that the number
of electrons in the state (v, r) is increased by the electrons scattered in this cell and
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decreased by the electrons scattered out of this cell. Note that the integrand of the
scattering-in term from v′ to v is proportional to the number of electrons f (v′, r, t)
available in the state v′. Similarly, the scattering-out term from v to v′ is proportional
to the number of electrons f (v, r, t) available in the state v. Both the scattering-in
and scattering-out terms include a factor (1 − f ) associated with the final state so
as to satisfy the Pauli exclusion principle which does not allow for more than one
electron per state. We shall assume in the rest of this chapter that the electron gas is
not degenerate (dilute solution) so that the electron state occupation is much smaller
than 1 and the Pauli exclusion terms can be neglected. Under such dilute solution
conditions we can then simply write

d f (v, r, t)
dt

=
∫ ∞

−∞
S(v′, v) f (v′, r, t) dv′ −

∫ ∞

−∞
S(v, v′) f (v, r, t) dv′. (9.3)

Combining Equations (9.2) and (9.3), we obtain the so-called Boltzmann equation:

∑
i=x,y,z

∂ f

∂vi

dvi

dt
+
∑

i=x,y,z

∂ f

∂xi

dxi

dt
+ ∂ f

∂t

=
∫ ∞

−∞

[
S(v′, v) f (v′, r, t)− S(v, v′) f (v, r, t)

]
dv′.

Let us now consider a semiconductor with an electric field F(x) applied along the
x axis. The electron distribution f (x, v, t) then varies in space along the x axis only.
Furthermore, from the acceleration theorem we have

dvx

dt
= −q F(x)

m∗ and
dvy,z

dt
= 0.

The Boltzmann equation for this system reduces to

∂ f

∂t
= q F(x)

m∗
∂ f

∂vx
− vx

∂ f

∂x
+
∫ ∞

−∞

[
S(v′, v) f (v′)− S(v, v′) f (v)

]
dv′. (9.4)

The solution of this Boltzmann equation gives the electron distribution f (x, v, t) in
a semiconductor subjected to the spatially-varying electric field F(x). Let us note
that if we integrate this Boltzmann equation in velocity space we obtain the so-called
continuity equation

∂n

∂t
= − ∂

∂x
(n〈vx 〉) = ∂

∂x

(
J

q

)
,

which enforces the macroscopic conservation of particles.
Note that for a uniform semiconductor in the absence of an electric field, the steady-

state Boltzmann equation reduces to∫ ∞

−∞

[
S(v′, v) f0(v′)− S(v, v′) f0(v)

]
dv′ = 0,
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where f0(v′) is the Boltzmann distribution. By virtue of the principle of detailed
balance this identity is satisfied provided that we have

S(v, v′)
S(v′, v)

= f0(v′)
f0(v)

= exp

[
m∗(v2 − v′2)

2kB T0

]
. (9.5)

For elastic scattering, the kinetic energy of the electron does not change in the
scattering process and the identity results from the Hermiticity of the matrix element.
For inelastic scattering the kinetic energy of the electron changes and the different
scattering rate results from the fact that stimulated emission is favored over stimulated
absorption. Assume, for example, that the scattering process S(v, v′) corresponds to
the emission of a phonon ωq. The scattering process S(v′, v) then corresponds to the
absorption of a phonon and we have (see Chapter 5)

S(v, v′)
S(v′, v)

= Nq + 1

Nq
= exp

(
h̄ωq

kB T0

)
(9.6)

with Nq, the average number of phonons, given by the Bose–Einstein distribution.
The identification of Equation (9.5) with Equation (9.6) is completed when we use the
conservation of energy identity 1

2 m∗v2 = 1
2 m∗v′2 + h̄ωq.

9.3 Electron transport in small electric fields

9.3.1 Uniform semiconductor case

Let us now consider the case of a uniform semiconductor subjected to a constant
electric field F applied along the x axis. We shall now search for a steady-state solution
of the Boltzmann equation. The electron distribution f (v) is uniquely a function of
velocity v:

∂ f

∂t
= 0 and

∂ f

∂xi
= 0.

The Boltzmann equation then reduces to

0 = q F

m∗
∂ f (v)
∂vx

+
∫ ∞

−∞

[
S(v′, v) f (v′)− S(v, v′) f (v)

]
dv′.

In the limit of a small electric field F , a solution can be obtained using a Taylor series
expansion

f (v) = f0(v)+ f1(v)+ · · · = f0 + Fh + F2g + · · · ,
where f0 is the equilibrium distribution and f1 = Fh a small perturbation (first order
in F). The first order equation (i.e., ∝ F) obtained is

0 = q F

m∗
d f0(v)

dvx
+
∫ ∞

−∞

[
S(v′, v) f1(v′)− S(v, v′) f1(v)

]
dv′.
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For isotropic scattering, S(v′, v) is even in v′ and v. Since f0 is even in v, f1 must
be odd in v, and we have∫ ∞

−∞
S(v′, v) f1(v′) dv′ = 0.

The Boltzmann equation then reduces to the following equation:

q F

m∗
d f0(v)

dvx
= f1(v)

∫ ∞

−∞
S(v′, v) dv′ = f1(v)

τm(v)
,

where we define τm = τTOT as the integral

1

τTOT(v)
=
∫ ∞

−∞
S(v, v′) dv′.

τTOT is the lifetime of an electron in the state v since 1/τTOT is the total scattering
rate. For non-randomizing elastic scattering, the momentum scattering rate τm can be
demonstrated to be [3]

1

τm(v)
=
∫ ∞

−∞
S(v, v′)(1 − cos θ) dv′

where θ is the angle between v and v′.
We can now calculate f1, the first order correction to the electron distribution,

f1(v) = τm(v)q F

m∗
d f0(v)

dvx
= −τm(v)q F

kB T0
f0(v)vx . (9.7)

Once the electron distribution is known, the drift current J is calculated using

J = −qn〈vx 〉 = −q
∫ ∞

−∞
vx f dv = −q

∫ ∞

−∞
vx f1 dv.

It is customary to rewrite J as J = qnvd = qµnnF , where the drift velocity is defined
by vd = −〈vx 〉 and the electron mobility µn is defined by

µn = −〈vx 〉
F

= vd

F
= − 1

F

∫∞
−∞ vx f (v) dv∫∞
−∞ f (v) dv

. (9.8)

Substituting Equation (9.7) into the mobility definition of Equation (9.8) we obtain the
following low-field mobility:

µn = q

kB T0

∫∞
−∞ τm(v)v

2
x f0 dv∫∞

−∞ f0 dv

For isotropic τm(v) the low-field mobility can be written after integration in the form

µn = q

m∗ 〈τm〉,



292 High electric field transport

where the average relaxation time 〈τm〉 is defined to be

〈τm〉 = 1

�( 5
2 )

∫ ∞

0
τm(v)X

3/2 exp(−X) d X,

with X = m∗v2/(2kB T0). When the momentum relaxation time τm follows the power
law

τm = αvr = τ0(T0)X
r
2 with τ0(Te) = α

(
2kB Te

m∗

) r
2

(r = −1 for acoustic deformation potential phonon scattering and r = 3 for ionized
impurity scattering) one can verify that we have

〈τm〉 = τ0
�( r

2 + 5
2 )

�( 5
2 )

, (9.9)

where the Gamma function is defined by

�(p) =
∫ ∞

0
X p−1 exp(−X) d X = (p − 1)�(p − 1).

For a small electric field, the total electron distribution f is well represented by the
equilibrium distribution f0 shifted by the drift velocity vd = µn F along the x axis.
Indeed, one can easily verify by a Taylor series expansion that we have

f = f0 + f1 � n

(
m∗

2πkB T0

) 3
2

exp

(
− m∗

2kB T0
|v + vd |2

)
,

with vd = −〈v〉 = vd x̂ .

9.3.2 Non-uniform semiconductor case

Let us now solve the Boltzmann equation for a non-uniform semiconductor in a steady
state for small gradients of the forces applied. We start from the Boltzmann equation
derived in Section 9.2:

0 = q F(x)

m∗
∂ f (x, v)
∂vx

− vx
∂ f (x, v)
∂x

− f (x, v)− f0(x, v)

τm
,

where we have replaced the collision integral by the relaxation expression −( f −
f0)/τm = − f1/τm which holds for small departures of f from f0 (see previous
section).

For small gradients of the potentials, we can use the following approximation:

vx
∂ f (x, v)
∂x

� vx
∂ f0(x, v)

∂x
.
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According to Equation (9.1) the equilibrium distribution f0 in a spatially-varying
semiconductor is given by

f0(x, v) = 2m∗3

h3
exp

[
EFi (x)− 1

2 m∗v2

kB T0

]
,

where EFi (x), the chemical potential, is given by EFi (x) = EF (x) − Ec(x) with
Ec(x) = Ec(x) − qV (x) the absolute conduction band edge at position x . This leads
to

vx
∂ f (x, v)
∂x

� vx f0(x, v)
1

kB T0

d EFi (x)

dx
.

We can then use the method of perturbation ( f = f0 + f1) and evaluate f1 to be

f1(x, v) = −τm q

kB T0

[
F(x)+ 1

q

d EFi (x)

dx

]
vx f0(x, v).

We see that f1 has the same form as in the previous section if we introduce the
generalized electric field F

F(x) = F(x)+ 1

q

d EFi (x)

dx
.

Since the chemical potential EFi is related to the Fermi level (electrochemical
potential) by EFi = EF − Ec = EF − Ec + qV , we have F = (1/q)(d Ec/dx)
and we can express the generalized electric field F in terms of the Fermi energy:

F(x) = 1

q

d EF (x)

dx
.

The current density J = qnµnF is then given by

J = µn(x) n(x)
d EF (x)

dx
,

where the Fermi energy EF (x) is obtained from

n(x) = Nc(x) exp

[
EFi (x)

kB T0

]
= Nc(x) exp

[
EF (x)− Ec(x)+ qV (x)

kB T0

]
. (9.10)

Our derivation was general and this equation applies also to semiconductor het-
erostructures (see Marshak et al. [1] for a deeper discussion). Extracting the Fermi
level from Equation (9.10) we obtain

EF (x) = Ec(x)− qV (x)+ kT0 ln n(x)− kT0 ln Nc(x).

The current density obtained is then

J = −qµnn
dV

dx
+ q Dn

dn

dx
+ µn

dEc

dx
− kT0µn

n

Nc

d Nc

dx
,
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where the first term is the drift current, the second is the diffusion current with the
diffusion constant q Dn = kT0µn , the third is a quasi-drift current arising from the
variation of electron affinity Ec, and the fourth is a quasi-diffusion current arising from
the variation of the effective carrier density Nc. This current equation was used in
Chapter 2 to study the p–n heterojunction.

9.4 Electron transport in a large electric field

We shall now consider the solution of the Boltzmann equation when a large electric
field is applied. We shall first study the case of a uniform semiconductor before
considering the non-uniform semiconductor.

9.4.1 Uniform semiconductor case

For a uniform material subjected to a constant electric field F we found that the
Boltzmann equation under steady-state conditions was

−q F

m∗
d f (v)
dvx

= ∂ f

∂t

∣∣∣∣
coll

=
∫ ∞

−∞

[
S(v′, v) f (v′)− S(v, v′) f (v)

]
dv′.

Let us now write f in terms of its even part feven and its odd part fodd:

f = feven + fodd.

Consequently, we can symbolically split the collision term (∂ f/∂t)|coll

∂ f

∂t

∣∣∣∣
coll

= ∂ fodd

∂t

∣∣∣∣
coll

+ ∂ feven

∂t

∣∣∣∣
coll
.

In equilibrium when feven = f0, electrons should be scattered in and out of state v at
the same rate so that

∂ f

∂t

∣∣∣∣
coll

=
∫ ∞

−∞

[
S(v′, v) f0(v′)− S(v, v′) f0(v)

]
dv′ = 0.

This is the so-called principle of detailed balance. Since the departure of feven from f0

introduces a new scattering contribution in the even collision integral (∂ feven/∂t)|coll

we shall approximate it by

∂ feven

∂t

∣∣∣∣
coll

= − feven − f0

τE
,

where τE will be called the energy relaxation time. τE is typically on the order of
picoseconds.
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Following the low-field analysis, the odd collision integral can be written

∂ fodd

∂t

∣∣∣∣
coll

= − fodd

τm
,

where the momentum relaxation time τm is on the order of 0.1–0.01 ps. Substituting
f = feven + fodd into the Boltzmann equation and equating the even and odd terms,
we obtain

−q F

m∗
d feven

dvx
= − fodd

τm
,

−q F

m∗
d fodd

dvx
= − feven − f0

τE
.


 (9.11)

Substituting the first equation into the second, we obtain the following equation for
feven

q2 F2

m∗2
τm

d2 feven

dv2
x

= feven − f0

τE
. (9.12)

Let us try the following approximate solution for feven

feven = n

(
m∗

2πkB Te

) 3
2

exp

(
− m∗v2

2kB Te

)
.

Using this approximate solution and the equation for feven one can demonstrate
(see Problem 9.1) that the electron temperature Te must satisfy the following energy
balance equation:

3
2 kB(Te − T0)

〈τE 〉 = q F2 q〈τm〉
m∗ = q Fvd .

This equation states that the electron gas is heated by the electric field by the Joule
effect. The electron energy gained is then dissipated by the lattice at a rate set by the
energy relaxation time 〈τE 〉. When the Joule effect is suppressed (F = 0) the electron
temperature Te relaxes to the lattice temperature T0.

The odd part of the distribution can then be calculated from the even part of the
distribution. The total electron distribution can still be approximated by a displaced
Maxwell–Boltzmann distribution (see Problem 9.2) but now with temperature Te

f = feven + fodd � n

(
m∗

2πkB Te

) 3
2

exp

(
−m∗|v + vd |2

2kB Te

)
.

The drift velocity vd is calculated from the energy balance equation. In silicon the
energy relaxation time τE can be approximated by [2]

〈τE 〉 � 4 × 10−12
(

Te

T0

)1/2

= α
(

Te

T0

)1/2

.
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Assuming that the dominant scattering process is the acoustic deformation potential,
τm varies as 1/v [3] and one can easily derive (see Problem 9.3) that the dependence
of µn upon the electron temperature Te is given by

µn(Te) = µn(T0)

(
T0

Te

)1/2

.

This equation states that the electron mobility will decrease with the electron temper-
ature if the electron gas has a Maxwellian distribution. We can rewrite the energy
conservation as follows:

3

2
kB

(Te − T0)

α (Te/T0)
1/2

= qµn(T0)

(
Te

T0

)1/2

F2,

from which we obtain the electron temperature Te

Te = T0 + 2

3

α

kB
µn(T0)F

2.

The electron drift velocity is then

vd = µn(Te)F = µn(T0)F[
1 + 2

3

α

kB T0
µn(T0)F

2
]1/2

vd = µn(F)F = µn(T0)F(
1 + F2/F2

c

)1/2 .
The resulting velocity-field relation is plotted in Figure 9.1. One observes that

the drift velocity saturates for large electric fields. Note that the concept of a
field-dependent drift velocity vd(F) and a field-dependent electron mobility µn(F) =
vd(F)/F , is only valid for a uniform semiconductor when there is no diffusion current.
This will be demonstrated in the next section.

9.4.2 Non-uniform semiconductor case

Under high-field conditions the even and odd Boltzmann equations are easily verified
to be

vx
∂ feven

∂x
− q F

m∗
d feven

dvx
= − fodd

τm
,

vx
∂ fodd

∂x
− q F

m∗
d fodd

dvx
= − feven − f0

τE
.

Let us assume (the temperature model) that feven is of the form:

feven = 2m∗3

h3
exp

[
− m∗v2

2kB Te(x)

]
exp

[
EFi (x)

kB Te(x)

]
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c

Fc

µF

Fs

vd

F

µv = 

Fig. 9.1. Drift velocity versus electric field for a uniform (bulk) semiconductor in the single-valley
approximation.

and let us evaluate the following term:

vx
∂ feven

∂x
= vx feven

[
1

kB Te

d EFi

dx
−
(

EFi − 1
2 m∗v2

kB

)
1

T 2
e

dTe

dx

]
.

We recognize the diffusion term involving d EFi/dx and a new term involving the
temperature gradient dTe/dx . This new term introduces a new component into fodd :

fodd = fodd|drift+diffusion + τm
(

EFi − 1
2 m∗v2

kB

)
1

T 2
e

dTe

dx
feven vx .

This in turn introduces a new component into the average velocity 〈vx 〉:

n〈vx 〉 = n〈vx 〉|drift+diffusion + 1

T 2
e

dTe

dx

∫ ∞

−∞
τm

(
EFi − 1

2 m∗v2

kB

)
fevenv

2
x dv. (9.13)

Let us now assume that the momentum relaxation time τm follows the power law
τm = αvr = τ0(Te)X

r
2 with X = m∗v2/(2kB Te). For acoustic deformation

potential phonon-scattering r = −1 and for ionized impurity scattering r = 3. Using
Equation (9.9) and the identity

�

(
r

2
+ 7

2

)
=
(

r

2
+ 5

2

)
�

(
r

2
+ 5

2

)

we obtain after integrating Equation (9.13)

n〈vx 〉 = n〈vx 〉|drift+diffusion + nµn(Te)
1

q

[
EFi

Te
− kB

(
r

2
+ 5

2

)]
dTe

dx
.
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The conduction current J is then defined as

J = −qn〈vx 〉
= µn(Te)n(x)

{
d EF (x)

dx
+
[(

r

2
+ 5

2

)
− EFi

kB Te

]
kB

dTe(x)

dx

}
, (9.14)

where EF (x) = EFi (x) + Ec(x) − qV (x) is the Fermi energy (the electrochemical
potential) and EFi (x) the chemical potential obtained from

n = Nc(Te) exp

[
EFi (x)

kB Te(x)

]
,

with Nc(Te) the effective density of states:

Nc(Te) = 2

(
2πm∗

nkB Te

h2

)3/2

.

Substituting EF in Equation (9.14) one can easily verify (see Problem 9.4) that for a
uniform material (Ec not spatially varying) the current density J can be rewritten as

J = −qµn(Te)n(x)
dV (x)

dx
+ q

d

dx
[Dn(Te)n(x)], (9.15)

where the diffusion constant Dn(Te) is defined by the Einstein relation

Dn(Te)

µn(Te)
= kB Te

q
.

This equation is similar to the regular drift-diffusion equation except that now the
diffusion constant is inside the spatial derivative and we must know the electron
temperature Te to calculate the mobility and the diffusion constants.

Note that Equation (9.15) can be rewritten in a form showing explicitly the
contribution of the temperature or energy gradient

J = −qµn(Te)n(x)
dV (x)

dx
+ q Dn(Te)

d

dx
[n(x)] + (r + 2)µn(Te)n(x)

du

dx
, (9.16)

where u = 1
2 kB Te.

In the non-uniform semiconductor, the electron temperature Te is given by the
following approximate energy balance equation

∂

∂t

(
n

3

2
kB Te

)
= ∂

∂x

[
− J

(−q)

3

2
kB Te

]
+ J · F − n

3
2 kB(Te − T0)

τE (Te)
. (9.17)

This equation is obtained using a procedure similar to the one employed in the uniform
case (see Problem 9.1). This energy balance equation gives the rate of variation of the
electron gas energy (left-hand side). The terms on the right-hand side are recognized
to be respectively the gradient of energy flux, the Joule effect term and the energy
relaxation term.
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As we can see this transport picture proposed for non-uniform semiconductors relies
on a temperature-dependent mobility µn(Te) and diffusion constant Dn(Te) instead of
a field-dependent mobility µn(F) and diffusion constant Dn(F). In fact, the use of
field-dependent mobility µn(F) and diffusion constant Dn(F) which we introduced
for a bulk semiconductor is incorrect for non-uniform semiconductors. To demonstrate
this, consider a semiconductor in equilibrium. By definition the lattice and the
electron gas are in equilibrium when the electron temperature Te relaxes to the lattice
temperature T0. However, a large electric field can be present inside non-uniform
semiconductors. For example, consider the case of a p–n junction in equilibrium. A
large built-in electric field is usually present at the p–n junction. The electron gas is
not heated however by the large built-in electric field via the Joule effect J · F since the
total current J is zero. The drift and diffusion currents therefore are evaluated using
the low-field mobility µn(T0) and diffusion constant Dn(T0), respectively. The use of
the field-dependent mobility and diffusion constants to calculate the equilibrium drift
and diffusion currents is therefore incorrect.

Note, however, that as soon as the current J departs from zero, a large Joule effect
J · F results in the presence of a large built-in electric field F0. Gunn [4] has indeed
demonstrated rigorously that in the presence of an equilibrium built-in field F0 the
effective mobility of the electron for a small departure from equilibrium is the chordal
electron mobility which would result if the equilibrium built-in field F0 was applied
by some external means. Therefore if the total electric field is F = F0 + F1 with F0

the equilibrium built-in electric field and F1 a small DC applied perturbation electric
field, the resulting current is given by

J = qnµn(F0)F1

with µn(F0) the chordal mobility given by

µn(F0) = vd(F0)

F0
.

9.5 High-field transport: two-valley model

In compound semiconductors such as GaAs, low-field conduction by electrons takes
place in the � central valley. However, under high-field conditions some of the
electrons can acquire enough energy from the electric field to transfer to the upper
X and L valleys (whichever is the lowest) (see Figure 9.2). The electrons transfer
from the � valley to the upper valleys by collision with optical phonons through the
deformation potential.

Consider now such a two-valley system. We shall assume that the semiconductor is
uniform. Let us call n1 and n2 the number of electrons in bands 1 and 2, respectively.
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Fig. 9.2. Two-valley model of band structure. In GaAs the lower valley is the � valley, and the
upper valley is the L valley.

Conservation of particles in this uniform two-valley system is expressed by the
following continuity equations written by inspection:

∂n1

∂t
= − n1

τ12
+ n2

τ21
,

∂n2

∂t
= − n2

τ21
+ n1

τ12
,

where τi j is the scattering time from valley i to valley j . Let us assume that the
electrons in valleys 1 and 2 are in equilibrium and therefore have the same electron
temperature. This assumption is not quite correct but greatly simplifies the analysis.
The populations of the valleys 1 and 2 are given by the Boltzmann distribution:

n1 = Nc1 M1 exp

(
EF − Ec

kB Te

)
,

n2 = Nc2 M2 exp

(
EF − Ec −�

kB Te

)
,

with M1 and M2 the number of equivalent valleys 1 and 2. For example, in GaAs, we
have M1 = 1 since there is only one � valley and M2 = 1

2 8 = 4 since there are 8 L
valleys shared by each adjacent Brillouin zone. The ratio of the population of valley 2
to that of valley 1 is then

n2

n1
=
(

Nc2 M2

Nc1 M1

)
exp

(
− �

kB Te

)
= τ21

τ12
= R exp

(
− �

kB Te

)
.
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Momentum conservation in this two-valley system is enforced by the following
equations:

dp1

dt
= q F − p1

τm1(Te)
− p1

τ12(Te)
,

dp2

dt
= q F − p2

τm2(Te)
− p2

τ21(Te)
,

where pi = m∗
i vi is the momentum and τmi the momentum scattering rate in the valley

i . These momentum conservation equations assume that the intervalley scattering
process is randomizing so that in the transfer from valley i to valley j there is a loss of
momentum pi/τi j in valley i but no gain of momentum on average in valley j .

In steady state, the electron mobilities in valleys 1 and 2 are then

µ1(Te) = p1

m∗
1 F

= q

m∗
1

[
1

τm1(Te)
+ 1

τ12(Te)

]−1

,

µ2(Te) = p2

m∗
2 F

= q

m∗
2

[
1

τm2(Te)
+ 1

τ21(Te)

]−1

.

The electron temperature Te is obtained from the energy balance equation. Since we
are assuming that valleys 1 and 2 are in equilibrium we shall rely for simplicity on the
simple one-valley energy conservation:

∂

∂t

(
n

3

2
kB Te

)
= nqvd F − n

3

2
kB

Te − T0

τE
,

with n = n1 + n2 and J = qnvd = q(n1v1 + n2v2).
In steady state, the electron temperature Te of the two-valley system subjected to

the uniform electric field F is

Te(vd , F) = T0 + τE
2

3kB
q Fvd .

The drift velocity is then the average electron velocity in the two-valley system:

vd = n1

n
v1 + n2

n
v2.

Assuming as is the case in GaAs that v2 is much smaller than v1, the drift velocity is

vd(F) � n1

n
v1 = µ1 F

1 + n2

n1

= µ1 F

1 + R exp

[
− �

kB Te(vd , F)

] . (9.18)

This is a transcendental equation which is easily solved by iteration. The resulting
velocity-field relations calculated for GaAs are given in Figure 9.3 for the temperatures
T0 of 350 K, 300 K , 250 K, and 200 K. The parameters used are µ1 = 0.8 m2/(V s),
� = 0.3 eV, τE = 10−12 s and R = 100. The velocity–field relation exhibits a region
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Fig. 9.3. Drift velocity versus electric field predicted by the two-valley one-temperature model for
bulk GaAs.

of negative differential mobility. Such a velocity–field relation can be the source of
instabilities as is discussed in the next section.

Obviously, the simple model developed here only provides a rough estimate of the
effective velocity relation. The following parameters have been measured at 300 K in
pure GaAs:

µ0 = 0.8 m2/V s,

vp = 2.2 × 107 cm/s,

vS = 1.14 × 107 cm/s,

FT = 3.2 kV/cm.

Note that the peak electron velocity vp is not much smaller that the equilibrium thermal
velocity vth(Te):

vth(Te) =
(

3kTe

m∗

)1/2

� 4.4 × 107
(

Te

T0

)1/2

cm/s for T0 = 300 K.

Therefore the use of the simple drifted Maxwellian distribution is not fully justified.
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Nonetheless, the temperature model permits us to develop insight into the physical
process. This transport model was developed using the effective-mass model for the �
valley which does not set a limit on the electron velocity. As was established in Chapter
3, the maximum velocity of an electron in a band is limited by the band structure. The
maximum velocity of an electron in the conduction band of GaAs is

vmax(GaAs) = 1

h̄

∂E(k)
∂k

∣∣∣∣
max

= 9.5 × 107 cm/s,

which is much larger than vp. The effective-mass approximation is therefore accept-
able in this particular example.

Once again let us emphasize that the concept of a velocity–field relation does not
hold for spatially-varying systems in which large built-in electric fields are present.
In fact, as we shall see in Section 9.8, non-local effects in an FET channel lead the
electron velocity to overshoot or undershoot the stationary velocity predicted from
vd(F) using the local value of the field F .

9.6 Negative differential mobility and the Gunn effect

Consider a sample of a material such as GaAs which features a two-valley system
conduction band. This sample of length L is terminated by an ohmic contact on
each side. The sample is uniformly doped with a donor concentration ND and the
equilibrium electron concentration n0 in the sample is given by n0 = ND assuming
all donors are ionized. A voltage V is applied across the sample. The uniform electric
field F0 raised in the sample by the applied voltage V is

F0 = −V

L
.

One expects the current J0 flowing through this uniform sample then to be

J0 = qn0vd(F0),

using the velocity–field relation vd(F). Note that vd(F0) is an odd function
(vd(−F0) = −vd(F0)) and µn(F0) is an even function (µn(−F0) = µn(F0)).

Assume now that the electron distribution n(x, t) accidentally departs from its
equilibrium concentration n0 in the interval [x1, x2]. The electric field F across the
sample is given by Gauss’s law:

ε
∂F(x, t)

∂x
= q[n0 − n(x, t)].

The electric field F(x, t) integrated over the sample must satisfy the potential
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boundary condition

V = −
∫ L

0
F(x, t) dx = −

∫ L

0
[F(x, t)− F0(t)] dx −

∫ L

0
F0(t) dx

= −
∫ x2

x1

(F(x, t)− F0(t)) dx − F0(t)L .

Thus the uniform field F0(t) outside the domain departs from its equilibrium value F0.
Let φ be the excess potential drop arising across the interval [x1, x2]:

φ(t) = −
∫ x2

x1

[F(x, t)− F0(t)] dx .

We will now study the variation in time of the excess potential φ(t)when it is subjected
to the DC boundary condition

V = φ(t)− F0(t)L .

We must solve the continuity equation

q
dn

dt
= −d J

dx
,

where J is the drift-diffusion current. From Gauss’s law we have

n = n0 − ε

q

∂F

∂x
. (9.19)

We can simultaneously solve Gauss’s law and the continuity equation by introducing
the total current JT :

JT = J + ε ∂F0(t)

∂t
,

which satisfies the generalized continuity equation

d JT

dx
= 0.

The total current through the unperturbed regions ([0, x1] and [x2, L]) is

JT (t) = qn0vd(F0(t))+ ε ∂F0(t)

∂t
.

The total current through the perturbed region ([x1, x2]) is

JT (t) = qn(x, t)vd(F(x, t))+ ∂

∂x
[q Dn(x, t)n(x, t)] + ε ∂F(x, t)

∂t
.

Enforcing the continuity of the total current we have

ε
∂(F − F0)

∂t
= qn0vd(F0)− qnvd(F)− ∂

∂x
(q Dnn).
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Using Gauss’s law (Equation (9.19)) the following identity is obtained:

ε
∂(F − F0)

∂t
= qn0[vd(F0)− vd(F)] + vd(F)ε

∂F

∂x
− ∂

∂x
(q Dnn).

Integrating this equation from x1 to x2 we obtain

ε
d

dt

∫ x2

x1

(F − F0) dx = qn0

∫ x2

x1

[vd(F0)− vd(F)] dx,

since we have∫ x2

x1

[
− ∂

∂x
(q Dnn)+ vd(F)ε

∂F

∂x

]
dx = 0.

For a small perturbation, a small-signal analysis can be performed by expanding the
velocity in a Taylor series

vd(F) = vd(F0)+ dvd(F0)

d F
(F − F0) = vd(F0)+ µdiff (F0)(F − F0).

The identity now reduces to

d

dt

∫ x2

x1

(F − F0) dx = −qn0

t

dvd(F0)

d F

∫ x2

x1

(F − F0) dx .

Identifying the excess potential φ, we obtain an equation describing its time evolution:

dφ

dt
= −qn0

ε

dvd(F0)

d F
φ = − φ

τd
,

where τd = ε/[qn0µdiff (F0)] is the so-called dielectric relaxation time. A solution is
then

φ(t) = φ(0) exp

(
− t

τd

)
.

When the differential mobility µdiff = dvd(F0)/d F is positive, the perturbation
of the electron distribution rapidly decays and space-charge neutrality is recovered.
In electromagnetic theory, the inverse of the dielectric relaxation time is called the
plasma frequency. For microwave frequencies smaller than the plasma frequency, the
semiconductor is transparent. For frequencies larger than the plasma frequency the
semiconductor is reflective. When the differential mobility is negative as is the case
in semiconductors such as GaAs for fields F > Fp, the perturbation will grow. The
sample therefore is unstable for electric fields F > Fp. Such an instability will arise
when the applied voltage V is larger than Fp L , where Fp is the peak velocity of the
stationary velocity–field relation vd(F0).

A large-signal analysis (see, for example, Carroll [5]) reveals that the perturbation
grows into a domain of width d which drifts through the sample starting from the
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Fig. 9.4. Charge distribution in a dipole in the ideal limit of zero diffusion.

cathode and moving toward the anode. The velocity of the domain is vd(F0), where
F0 is the field outside the domain. The domain consists of a dipole which in the limit
of zero diffusion (Dn = 0) is represented by the following electron distribution:

n(x) = n0 + n0d δ[x − x(t)] − n0 {u[x − x(t)] − u[x − x(t)− d]},
where x(t) = x(0)+v(F0)t is the position of the domain, δ[x] is the impulse function
and u[x] is the step function. The electron distribution in a domain therefore consists
of an accumulation and a depletion region (see Figure 9.4) forming a dipole. The field
F0 outside the domain is given by the solution of the transcendental equation set by
the boundary condition

V = φ(F0)+ F0L .

The potential drop φ(F0) across the domain is easily evaluated to be (see Problem 9.6)

φ(F0) = ε

2qn0
[F0 − Fpeak(F0)]

2, (9.20)

where Fpeak the peak field inside the domain is related to the field F0 by the equal-area
rule (see Carroll [5]):∫ Fpeak(F0)

F0

[vd(F)− vd(F0)] d F = 0.
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The field F0 obtained is smaller than the peak field Fp even though we have (Fp <

V/L) so that no other instabilities can arise elsewhere once one domain has been
created.

This domain drifts toward the anode and is discharged upon reception. A new
domain is then launched at the cathode. The frequency of domain launching f is
therefore

f = vd(F0)

L
.

The generation and destruction of these domains generates a high-frequency fluctua-
tion of the current which can be observed when a voltage is applied. The resulting
‘apparent’ noise was discovered by Gunn at IBM in 1963 [6] while studying high-field
transport in GaAs. This effect had been predicted by Ridley and Watkins [7] and
Hilsum [8] in 1962.

The differential negative resistance presented by such a device is used to make a
microwave source which is called a Gunn diode. Since only one domain is formed in a
Gunn diode, the frequency of operation of the Gunn diode is given by f = vd(F0)/L .
The Gunn diode belongs therefore to the family of transit-time devices. A MESFET
(metal–semiconductor field-effect transistor) with a resistive gate of 10–50 µm [9] has
been developed for use as a microwave source operating at a frequency of 40 GHz.
This device permits the generation of multiple domains and the frequency of operation
is limited by the number of domains times the device transit frequency. In a regular
field-effect transistor (FET), however, the generation and discharge of domains would
introduce undesirable noise and could potentially burn the FET. In an FET, the channel
width �d is usually too small for the generation of traveling domains and static
domains are formed instead toward the drain region. Applying the work of Kroemer
[13] and Kino and Robson [14] on Gunn diodes to FETs, one can infer following [10]
that the following criteria must be verified for traveling Gunn domains to be formed
and sustained in a GaAs MESFET of channel doping n0, length Lg and channel width
�d:

n0 · Lg > 1012 cm−2,

n0 ·�d > 2 × 1011 cm−2.

However, stable FET operation has been observed even when Gunn oscillations would
be expected according to the above criteria. As is discussed by Yamaguchi et al. [10],
a more accurate stability criterion for GaAs MESFETs should also be dependent on
the FET gate length and the applied gate voltage. Two types of stable FET operation
with and without negative output conductance are also possible [10] depending on
the formation or not of a static domain in the FET. MESFETs with stable negative
output conductance have been reported for a 3 µm gate by Tucker and Young [11].
Such an effect is not, however, usually observed in smaller gate-length MESFETs
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and MODFETs (modulation doped FETs) due to the effect of velocity overshoot.
Indeed, our analysis was developed for a uniform sample and relied on the concept
of a field-dependent velocity. As we have stated earlier such an analysis does not
apply to devices such as the short-channel FET in which large built-in electric fields
are present.

9.7 Transient velocity overshoot in a time-varying field

The velocity-field relation in Sections 9.4 and 9.6 for the one- and two-valley systems
applies to uniform samples under stationary conditions. When the electric field in a
uniform sample is switched abruptly at time t = 0, from 0 to a value F , non-stationary
effects lead the electron drift velocity vd to overshoot its stationary value vd(F) for
a short period τE . This originates from the fact that the energy relaxation time τE is
much larger than the momentum relaxation time τm .

Consider a uniform two-valley system such as GaAs. Let us assume that the upper
and lower valleys are in equilibrium such that we have

n2

n1
= R exp

[
− �

kB Te(t)

]
.

The drift velocity is still

vd = v1(t)

1 + R exp [−�/kB Te(t)]
,

but now the electron velocity and the temperature vary in time. The electron
temperature is obtained from the energy conservation equation

∂Te

∂t
= ∂

∂t
(Te − T0) = 2qvd F

3kB
− Te − T0

τE

which admits the solution

Te(t) = T0 + τE
2

3kB
qvd F

[
1 − exp

(
− t

τE

)]
.

The time-varying electron velocity v1(t) is obtained from the momentum conservation
equation

d

dt
(m∗

1v1) = −q F + m∗
1v1

τM1
,

with τ−1
M1 = τ−1

m1 + τ−1
12 . The electron velocity v1(t) obtained is then

v1(t) = q FτM1

m∗
1

[
1 − exp

(
− t

τM1

)]
.
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The drift velocity vd is a solution of the following transcendental equation:

vd(t) =
µ1 F
[
1 − exp

(
− t
τM1

)]
1 + R exp

(
kB

�

{
T0 + τE

2

3kB
qvd(t)F

[
1 − exp

(
− t

τE

)]}) .
The drift velocity first quickly rises to the velocity µ1 F in a time on the order of τM1

and then relaxes to the stationary velocity vd(F) = µn(F)F for time on the order of
τE . We have assumed that the electron gases in valleys 1 and 2 were in equilibrium,
an assumption which should be relaxed in a more accurate model so as to account for
the finite intervalley relaxation times τ12 and τ21.

Velocity overshoot is also possible in the single-valley system since the electron
mobility is also reduced as the electron temperature is increased. The effect in silicon
is, however, small and can be usually neglected.

9.8 Stationary velocity overshoot in short devices

Velocity overshoot can also arise under stationary conditions in the presence of
spatially-varying electric fields. Consider the energy balance equation

n
3

2

kB(Te − T0)

τE
= d

dx

(
J

q

3

2
kB Te

)
+ J F(x).

Assuming current continuity d J/dx = 0 as is the case in a field-effect transistor we
obtain

Te = T0 + τE
2

3kB
q

J F

n
+�Te,

with

�Te = τE
J

n

dTe

dx
.

�Te is the departure of the electron temperature Te(non-local) from the electron
temperature Te(local) which would arise in a uniform field. When the electrons are
accelerated by an increasing (negative) electric field as is the case in an FET channel
from source to drain, the current J is negative (J < 0), the temperature gradient
dTe/dx is positive, and the influx of colder electrons reduces the electron temperature
Te from its local stationary value since we have �Te < 0. Therefore, the electrons
remain longer in the lower valley (valley 1) than in the case of a uniform field. As a
consequence the drift velocity overshoots its local stationary value.

In simple device modeling of short-channel devices, the following simple modified
drift velocity–field relation has been used with some success:

vd = µn F for F ≤ Fc,

vd = vS for F ≥ Fc,
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where vS is an effective saturation velocity–field relation and Fc = vS/µn . The
effective saturation velocity vS represents the saturation velocity which effectively
sets the transconductance of a short-channel FET. It has been proposed by Rohdin
[12] from the analysis of the high-frequency characteristics measured on MODFETs
with gate lengths varying from 0.25 to 0.7 µm that the effective saturation velocity vS

is actually the stationary peak velocity vp = vd(Fp) for a wide range of gate lengths.

9.9 Conclusion

In this chapter we have derived drift-diffusion current and energy-balance equations
using a drifted and heated Maxwell–Boltzmann distribution as an approximate solution
of the Boltzmann equation. These simple transport equations can be useful for the
modeling of the MODFET and HBT. However, as was discussed in Chapter 1, simple
transport models may no longer be applicable in devices in which ballistic transport is
important.

In Chapters 3–7, ballistic transport was studied in depth in the quantum transport
regime (electron wavelength comparable to the device size). For devices operating in
the semiclassical transport regime, we have seen (see Figure 2.6) that ballistic effects
can also strongly impact the electron energy distribution. A phenomenological model
of ballistic-electron launching was introduced in Chapter 2, and its impact on the HBT
was studied in Problem 2.3. A detailed discussion of ballistic transport in HBTs using
a direct solution of the Boltzmann equation will be presented in Chapter 18.
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9.11 Problems

9.1 The following approximate solution feven of Equation (9.12) is proposed:

feven = n

(
m∗

2πkB Te

) 3
2

exp

(
− m∗v2

2kB Te

)
.

Using this approximate solution verify that we obtain the following energy conservation
equation:

3

2
kB(Te − T0) = τE q F2 qτm

m∗ = τE q Fvd .

To do so start from Equation (9.12), rewrite feven as

feven = f0 + q2 F2

m∗2
τE τm

d2 feven

dv2
x

and calculate the average kinetic energy〈
1

2
m∗v2

〉
feven

=
∫∞
−∞

1
2 m∗v2 feven dv∫∞

−∞ feven dv
.

For simplicity, assume that the relaxation times τE and τm are constant (independent of the
electron velocity v).

9.2 Calculate fodd from Equation (9.11) and verify using a Taylor expansion that the displaced
Maxwell–Boltzmann distribution is an approximate solution for vd small:

f = feven + fodd � n

(
m∗

2πkB Te

) 3
2

exp

(
−m∗|v + vd |2

2kB Te

)
.
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9.3 Verify that the dependence of µn upon the electron temperature Te is

µn(Te) = µn(T0)

(
Te

T0

) r
2

if τm(v) varies as vr .

Hint: Start from the definition of the mobility

µn(T0) = − q

kB T0

∫∞
−∞ τm(v)v

2
x f0 dv∫∞

−∞ f0 dv
= q

m∗ 〈τm〉,

with f0 given by

f0(v) = n

(
m∗

2πkB T0

) 3
2

exp

(
− m∗v2

2kB T0

)
.

You do not need to evaluate this integral but can use a simple change of variables to calculate
the ratio µn(Te)/µn(T0).

9.4 Verify that the expressions given for the current density J in Equations (9.14), (9.15) and (9.16)
are all equivalent for a uniform material (Ec not spatially varying). To do so verify that each of
these three equations can be written

J = −qµn(Te)n(x)
dV (x)

dx
+ q Dn(Te)

d

dx
[n(x)] +

( r

2
+ 1
)
µn(Te)n(x)

dTe

dx
, (9.21)

where we assume that τm(v) varies as vr . Note that the temperature dependence of the mobility
µ(Te) (see Problem 9.3) and the effective density of states Nc(Te) are used together with the
Einstein relation to establish these equivalences.

9.5 Solve the transcendental Equation (9.18) at 300 and 200 K and plot the electron drift velocity vd
versus the electric field from 0 to 20 kV/cm. Use the following parameters µ1 = 0.8 m2/(V s),
� = 0.3 eV, τE = 10−12 s and R = 100.

9.6 Calculate the electric field and derive the potential drop given by Equation (9.20) across the
domain shown in Figure 9.4.



10 I --V model of the MODFET

The best material model of a cat is another, or preferably the same, cat.

Philosophy of Science, Vol. 12, 1945. A. ROSENBLUETH AND N. WIENER

10.1 Introduction

In Chapter 8 we studied the charge control of the 2DEG (two-dimensional electron
gas). In Chapter 9 we studied high-field transport models applicable to horizontal
transport in the 2DEG. The motivation for these studies was the application of the
2DEG as the channel of a field-effect transistor (FET). The resulting FET is referred
under the various names of MODFET (modulation doped FET (University of Illinois,
USA)), HEMT (high electron mobility FET (Japan)), TEGFET (two-dimensional
electron gas FET (France)), and SDHT (segregation doping heterojunction transistor
(Bell Lab., USA)) depending on the different laboratories which simultaneously
developed it. The AlAs–InGaAs–InP lattice-matched MODFET [2] which provides
power gain at millimeter frequencies ( fmax = 405 GHz) is presently with the HBT one
of the fastest semiconductor transistors. The microwave characteristic of the MODFET
will be discussed in Chapters 11, 12, 13, 15 and 16.

We compare in Figure 10.1 the layout of an AlGaAs–GaAs MODFET (c) with that
of that of a silicon MOSFET (a) and a GaAs MESFET (b). Although the layout of the
MODFET is similar to that of the MESFET, its normal principle of operation (control
of a 2DEG with a gate voltage) is similar to that of the MOSFET. Other semiconductors
can be used to fabricate MODFETs (see [1] for a review). A semiconductor with a
bandgap much wider than that of AlGaAs can also be used to simulate an insulator.
These transistors are called MISFETs (metal–insulator semiconductor FETs). Due
to the large variety of MODFET layouts and material possibilities, the general name
of HFET (heterojunction FET) has been proposed. In the general sense of the term
heterojunction a MOSFET is an HFET, even though the oxide is not a semiconductor.

In this chapter we shall study the ideal three-terminal MODFET or MOSFET. By
ideal we mean that we will use piece-wise linear charge control and velocity-field
expressions. Although no real device exists with such idealized characteristics, this

314
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Fig. 10.1. Comparison of the layout of (a) a silicon MOSFET, (b) a GaAs MESFET and (c) an
AlGaAs–GaAs MODFET.

ideal device model will permit us in this chapter and the next to obtain exact analytic
solutions for its DC and AC characteristics and to study the principle of operation of
FETs. In this chapter we start by studying the DC characteristics of the long- and
short-channel MODFET.
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10.2 Long- and short-channel MODFETs

Let us consider a long-channel MODFET. We wish to calculate the drain current ID for
a given gate-to-source voltage VGS and drain-to-source voltage VDS . For simplicity,
we shall assume initially that the current is well described by drift alone. As we shall
see later, this assumption is acceptable for the region of the channel below the gate (see
Figure 10.2). Park and Kwack [9] have demonstrated that the inclusion of diffusion
in the gated region of the channel introduces only a small correction in the effective
threshold voltage (see Problem 10.1) of the MODFET.

In the gated region of the channel, the drain current ID measured from drain to
source (see Figure 10.2) is given by

ID = qWg NSvd , (10.1)

where NS is the DC 2DEG charge concentration, Wg the gate width and vd the electron
drift velocity. We know from our discussion of transport in Chapter 9 that the velocity
versus field characteristic which approximates the velocity overshoot in FETs is

vd = µ(F)F =
{
µF for F ≤ Fc

vS for F ≥ Fc
, (10.2)

where µ(F) is a field-dependent mobility, µ is a constant electron mobility (not
necessarily the low-field mobility), and Fc = vS/µ is the critical field at which the
electron gas reaches its effective saturation velocity. An improved description of the
short-channel MODFET characteristics can be obtained if a smoother velocity–field
relation is used [4] (see Problem 10.2).

In Chapter 8 we saw that the DC 2DEG charge NS could be approximately described
by the following piece-wise linear relation:

q NS =




0 for VGC ≤ VT

CG(VGC − VT ) for VT ≤ VGC ≤ VGmax

q NS0 for VGC ≥ VGmax

, (10.3)

where CG is the 2DEG capacitance per unit area and where VGC = VG − VC =
VGS − VC S is the gate voltage between the Fermi level of the gate metal and the Fermi
level of the 2DEG EF,2DEG. Note that we shall use the source as a potential reference
VS = VC (x = 0) (see Figure 10.2).

This is the piece-wise linear charge-control model which was used in the first
I –V model reported for the MODFET [3]. An improved description of the I –V
characteristic of MODFETs for small (subthreshold regime) and large gate voltages
can be achieved by using the smoother charge-control model proposed by Rohdin and
Roblin [4] (see Problem 10.4).

The drain current in Equation (10.1) neglects the diffusion effect. A more general
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expression for the drain current can be obtained from the 2DEG Fermi level using (see
Chapter 8)

ID = −Wgµ(F)NS
d EF,2DEG

dx
.

When we neglect diffusion, the variation of the chemical potential is assumed to
be small, and the spatial derivative of the Fermi level (electrochemical potential)
EF,2DEG = EFi − qVC of the 2DEG reduces simply to the spatial derivative of the
channel potential −qVC . The total drain current equation in the absence of diffusion
is then the differential equation:

ID � qWgµ(F)NS
dVC

dx
= qWg NSvd

= Wgµ(F)CG(VGS − VC S − VT )
dVC S

dx
. (10.4)

Note that we have used for NS the charge-control expression of Equation (10.3) which
was obtained by solving the Poisson equation along the y axis alone (see Chapter 8).
In an FET with an applied drain-to-source voltage, the channel potential also varies
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along the x axis, and the Poisson equation should be solved in two dimensions (x
and y axes). We therefore are assuming in Equation (10.4) that the one-dimensional
solution is approximately correct. This is the so-called gradual-channel approximation
(GCA) which holds if the longitudinal variation of the channel potential VC S is small
and can be neglected.

Let us first consider the long-channel mode where the electric field F is smaller
than the critical field Fc. The mobility then reduces to µ(F) = µ. Integrating
Equation (10.4) from the intrinsic source position (x = 0) to the channel position
x (see Figure 10.2) we obtain∫ x

0
ID dx = β

∫ VC S(x)

0
(VOUT − VC S)dVC S

x ID = β(VOUT)VC S(x)− 1

2
βV 2

C S(x), (10.5)

where we have introduced β = WgµCG and VOUT = VGS −VT . The channel potential
VC S measured from the source S is given by the second order polynomial

V 2
C S − 2VOUT VC S + 2x ID

β
= 0.

The physical GCA solution which satisfies VC S(ID = 0) = 0 is therefore

VC S(x) = VOUT −
(

V 2
OUT − 2x ID

β

)1/2

(10.6)

and the 2DEG charge NS(x) in the channel is given by

q NS(x) = CG(VOUT − VC S) = CG

(
V 2

OUT − 2x ID

β

)1/2

. (10.7)

The longitudinal electric field in the channel is then

F(x) = −dVC S

dx
= − ID

β
(
V 2

OUT − 2x ID/β
)1/2 . (10.8)

The drain current ID is obtained from Equation (10.6) using the boundary condition
VC S(Lg) = VDS = VD − VS at the intrinsic drain position x = Lg:

ID(VGS, VDS) = β

Lg

(
VOUT VDS − 1

2
V 2

DS

)
. (10.9)

In Chapter 11 we will find it convenient to introduce a normalized biasing parameter
k defined as:

k = VDS

VGS − VT
= VDS

VOUT
.

The drain current can then be rewritten

ID = β

Lg
V 2

OUT
1

2
(2k − k2) (10.10)
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and the drain conductance gd is

gd = ∂ ID(VDS, VGS)

∂VDS
= β

Lg
(VOUT − VDS) = β

Lg
VOUT (1 − k) (10.11)

and the transconductance gm is

gm = ∂ ID(VDS, VGS)

∂VGS
= β

Lg
VDS = β

Lg
VOUT k. (10.12)

The channel potential can be rewritten as

VC S(x) = VOUT

{
1 −
[

1 + (k2 − 2k)
x

Lg

]1/2
}

(10.13)

and the 2DEG charge as

q NS(x) = CG VOUT

[
1 + (k2 − 2k)

x

Lg

]1/2

. (10.14)

Finally the channel electric field can be rewritten as

F(x) = −VOUT

Lg

2k − k2

2

[
1 + (k2 − 2k)

x

Lg

]1/2
. (10.15)

The solution obtained holds for k in the range [0, 1] or equivalently 0 ≤ VDS ≤
VGS − VT . Indeed for k = 1 or VDS = VGS − VT , the channel concentration NS is
zero at the drain side (x = Lg) (see Equation (10.14)) and the channel is said to be
pinched off. Simultaneously for k = 1, the electric field F(x) at x = Lg is infinite (see
Equation (10.15)). Clearly the gradual-channel approximation can no longer be used
in pinch-off (k ≥ 1), and Equation (10.4) and its solution (10.9) do not apply for k > 1.
Since the drain conductance is zero at pinch-off (gd(PINCH) = gd(k = 1) = 0), the
drain current is usually assumed to remain constant for large drain voltages VDS ≥
VGS − VT . This is justified as follows. Once the MOSFET has reached pinch-off,
the effective drain voltage VC S at x = Lg remains VC S(Lg) = VGS − VT even if the
drain voltage is increased. The excess drain voltage VDS − VC S(Lg) is indeed dropped
across a narrow region on the drain side of the gated channel (x ≥ Lg). The drain
current in pinch-off is therefore independent of the drain voltage:

IDS(PINCH) = β

Lg

1

2
V 2

OUT = β

Lg

1

2
(VGS − VT )

2. (10.16)

The transconductance in saturation is then given by

gm(PINCH) = ∂ IDS(PINCH)

∂VGS
= β

Lg
VOUT = β

Lg
(VGS − VT ). (10.17)

The transconductance in pinch-off is seen to be inversely proportional to the gate
length. This long-channel model predicts therefore that the transconductance can be
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Fig. 10.3. I –V characteristics of an ideal long-channel MOSFET/MODFET.

increased by decreasing the gate length of the MOSFET/MODFET. However, as the
gate length is decreased below a certain value, velocity saturation takes place in the
channel and the long-channel MOSFET model we are using must be replaced by a
short-channel model. The I –V current voltage characteristic of the ideal long-channel
MOSFET/MODFET is shown in Figure 10.3.

The quadratic dependence of the drain voltage IDS(PINCH) in pinch-off upon
VOUT (see Equation (10.16)) is experimentally observed in the I –V characteristics
of MOSFET/MODFET with a gate length larger than 2 µm. The simple model
derived above therefore provides a correct qualitative description of the long-channel
MOSFET and MODFET. In the short-channel MODFET, the electric field in the drain
side can become very large and induce the saturation of the electron drift velocity. As
a result, the saturation of the drain current takes place before pinch-off is reached.

Fc is the electric field required for velocity saturation to take place. From
Equation (10.8) we can verify that the electric field is largest at the drain side (x = Lg).
In short-channel devices current saturation will take place at a drain current IDS when
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the channel field at the drain side x = Lg reaches the critical field Fc:

F(Lg) = − IDS

β

(
V 2

OUT − 2Lg IDS

β

)1/2
= −Fc.

We can rewrite this equation

IDS = βFc

(
V 2

OUT − 2Lg IDS

β

)1/2

I 2
DS + (βF2

c 2Lg)IDS − β2 F2
c V 2

OUT = 0.

The positive saturation drain current IDS solution is then

IDS = −βF2
c Lg +

[
(βF2

c Lg)
2 + β2 F2

c V 2
OUT

]1/2
(10.18)

and the transconductance in saturation is given by

gm(SAT) = ∂ IDS

∂VGS
= βVOUT

Lg

(
1 + V 2

OUT

F2
c L2

g

)1/2
. (10.19)

For large gate voltages VGS , the saturation drain current becomes

IDS � βFcVOUT = WgµFcCG(VGS − VT ), (10.20)

where CG = ε2/d2 is the gate capacitance per unit area (see Chapter 8). The maximum
transconductance in saturation is then given by

gm,max(SAT) = ∂ IDS

∂VGS
= βFc = WgCGvS. (10.21)

The maximum transconductance gm,max(SAT) of a short-channel MOSFET/MODFET
in saturation is seen to be a constant. This is in contrast with the transconductance
gm(PINCH) (see Equation (10.17)) of the long-channel MOSFET/MODFET which is
proportional to VOUT and inversely proportional to the gate length.

Note that as the critical field Fc is increased, the short-channel model should reduce
to the long-channel model. We shall now see that in the ideal MOSFET/MODFET
the transition from the long- to the short-channel mode takes place when the ratio
α−1 = (VGS −VT )/(Fc Lg) becomes larger than 1. To demonstrate this let us calculate
the ratio of the drain current at the onset of velocity saturation IDS(SAT) to the drain
current in pinch-off IDS(PINCH) for the same gate voltage VGS:

IDS(SAT)

IDS(PINCH)
= −βF2

c Lg + [(βF2
c Lg)

2 + β2 F2
c V 2

OUT

]1/2
β

Lg

1

2
V 2

OUT

= 2α2

[(
1 + 1

α2

)1/2

− 1

]
= w1(α).
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Similarly, we can calculate the ratio of the transconductance gm(SAT) at the onset of
saturation to the maximum transconductance gm,max(SAT)

gm(SAT)

gm,max(SAT)
= βVOUT

Lg

(
1 + V 2

OUT

F2
c L2

g

)1/2

1

βFc

= α−1[
1 + (α−1)2

]1/2 = w2(α
−1).

The weight functions w1(α) (full line) and w2(α
−1) (dashed line) are plotted in Figure

10.4 versus α and α−1, respectively. From the tangential dashed-dotted lines shown
in Figure 10.4, we see that the transition from the long- to the short-channel mode
occurs for α = 1/2 for the saturation current ratio w1 and α−1 = 1 for the saturation
transconductance ratio w2. Therefore α = 1 gives the location of the long- to short-
channel transition for the FET small-signal characteristics. Note that this criterion is
only applicable in the range of validity of the GCA approximation. A GCA region
is always expected in the case of high-aspect ratio (Lg/d2) FETs, where d2 is the



323 10.3 Saturation and two-dimensional effects in FETs

gate to channel spacing. Small-aspect ratio FETs, where two-dimensional field effects
are important over the entire gated channel, are not considered here. According to
Equation (10.3), the capacitive charge-control model used here will fail when the gate
voltage VGS reaches VGmax and the channel charge NS saturates to NS0. In a MODFET
this occurs when the parasitic MESFET turns on (AlGaAs (Region 2) is no longer
depleted) [5]. The ratio α therefore is more correctly defined by

α = Fc Lg

min[VGmax, VGS] − VT
. (10.22)

As a consequence, it is not possible in practice to turn on the short-channel mode in a
long gate-length FET (e.g., 10 µm). To summarize, we have established that the ideal
MOSFET/MODFET switches from the long-channel mode to the short-channel mode
when the ratio α−1 = (min[VGmax, VGS] − VT )/(Fc Lg) becomes larger than 1. This
will also be confirmed in Chapter 12 by the dependence of the current-gain cut-off
frequency fT upon α.

10.3 Saturation and two-dimensional effects in FETs

The analysis of the ideal MOSFET developed in the previous section was based on the
GCA approximation. The GCA relies on a one-dimensional solution of the Poisson
equation which holds as long as the longitudinal electric field F (parallel to the x axis)
is small compared to the transverse electric field (parallel to the y axis) F⊥ = q NS/ε1

supporting the 2DEG charge. Once the device has reached pinch-off, the perpendicular
field is zero, and the transverse field is infinite. Therefore the GCA cannot be used in
the drain region, and a two-dimensional solution of the Poisson equation is required to
describe the FET in saturation.

10.3.1 The Grebene--Ghandhi model

Grebene and Ghandhi have developed for the MESFET an approximate two-
dimensional solution of the Poisson equation which is useful in understanding the
saturation regime of the MODFET.

The gated region of the channel (see Figure 10.2) is divided into two parts: the GCA
region and the two-dimensional region. In the GCA region, a one-dimensional solution
of the Poisson equation is sufficient, and the charge-control models developed in Chap-
ter 8 can be used. In the two-dimensional region, an approximate two-dimensional
solution of the Poisson equation will be obtained. The drain voltage applied VDS is
then

VDS = VC S(X S)+ VSAT ,



324 I --V model of the MODFET

where VSAT is the potential drop across the saturation region. A main hypothesis is to
assume that the two-dimensional region starts at the position X S in the channel when
velocity saturation occurs. This is justified only on the basis that both effects take place
for large electric fields. From the electric field given by Equation (10.8), the position
X S is given by

F(X S) = −dVC S

dx
= − ID

β

(
V 2

OUT − 2X S ID

β

)1/2
= −Fc

F2
c

(
V 2

OUT − 2X S ID

β

)
= I 2

D

β2

2X S ID

β
= V 2

OUT − I 2
D

β2 F2
c
, (10.23)

X S = βV 2
OUT

2ID
− ID

2βF2
c

for ID ≥ IDS (10.24)

The position X S at which the GCA region stops can therefore be calculated from
the drain current ID once the device is in saturation (ID ≥ IDS) with IDS given by
Equation (10.18)). The channel potential VC S(X S) is then obtained by substituting
Equation (10.23) into Equation (10.6)

VC S(x) = VOUT −
(

V 2
OUT − 2X S ID

β

)1/2

= VOUT − ID

βFc
for ID ≥ IDS.

The current in the two-dimensional region is given by

ID = qWg NS(X S)vS.

Since under stationary conditions the current in the channel is uniform (constant), the
2DEG concentration NS(X S) in the channel is also constant:

NS(x) = NS(X S) for X S ≤ x ≤ Lg.

We now need to calculate the potential drop VSAT across the two-dimensional region.
The Poisson equation in this region is

∂2V (x ′, y)

∂x ′2 + ∂2V (x ′, y)

∂y2
= −q ND(y)

ε2
, (10.25)

where V is the electrostatic potential and where the charge distribution in the depleted
AlGaAs region (Region 2) consists of the ionized donor distribution. Note that the
axis x ′ is defined by x ′ = x − X S . The boundary conditions used for integrating the
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Poisson equation in the two-dimensional region are shown in Figure 10.5(a). These
boundary conditions are (setting the reference of the electrostatic potential at y = 0)

V (x ′, 0) = 0 (reference)

V (0, y) = VGC A(y)

V (LG − X S, y) = unknown

ε2
dV (x, d2)

dy
= q NS(X S), (10.26)

where VGC A(y) is the electrostatic potential (see Chapter 8) solution of the one-
dimensional Poisson problem

d2VGC A

dy2
=

 −q ND

ε2
for 0 ≤ y ≤ d2 − e

0 for d2 − e < y ≤ d2

VGC A(0) = 0

−dVGC A(d2)

dy
= q NS(X S).

Using the superposition principle (Equation (10.25) is linear), we can write V (x ′, y)
as the superposition of two potentials V1(x ′, y) and V2(x ′, y) with the boundary
conditions shown in Figure 10.5(b).

V (x ′, y) = V1(x
′, y)+ V2(x

′, y)

∂2V1(x ′, y)

∂x ′2 + ∂2V1(x ′, y)

∂y2
= −q ND(y)

ε2

∂2V2(x ′, y)

∂x ′2 + ∂2V2(x ′, y)

∂y2
= 0. (10.27)

The boundary conditions for V1(x ′, y) are

V1(x
′, 0) = 0

V1(0, y) = VGC A(y)

V1(LG − X S, y) = VGC A(y)

− ε2
dV1(x, d2)

dy
= q NS(X S). (10.28)

The solution is simply V1(x ′, y) = VGC A(y). The boundary conditions for V2(x ′, y)
are

V2(x
′, 0) = 0

V2(0, y) = 0

V2(LG − X S, y) = unknown

−ε2
dV2(x, d2)

dy
= 0. (10.29)
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Note that the addition (superposition) of the boundary conditions of V1(x ′, y) and
V2(x ′, y) gives the boundary conditions of V (x ′, y).

The electrostatic potential V2 can be obtained using the method of separation of
variables:

V2(x
′, y) = V2(x

′)V2(y)
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d2V2(x ′)
dx ′2

V2(x ′)
= −

d2V2(y)

dy2

V2(y)
= K .

The first order solution satisfying the boundary conditions is

V2(x
′, y) = 2d2 Fc

π
sin

(
πy

2d2

)
sinh

(
πx ′

2d2

)
.

We have used the boundary condition (Fc is positive)

−dV2(0, d2)

dy
= −Fc

to replace the unknown boundary condition at x = Lg . The potential drop in the
two-dimensional region is then

VSAT = V (Lg − X S, d2)− V (0, d2) = 2d2 Fc

π
sinh

[
π(Lg − X S)

2d2

]
.

The drain voltage VDS in saturation can then be obtained from the drain current ID

using

VDS[ID] = VOUT − ID

βFc
+ 2d2 Fc

π
sinh

[
π(Lg − X S)

2d2

]
.

The simple Grebene–Ghandhi model [6] predicts that as the drain current increases
slightly above IDS , the voltage across the two-dimensional region will increase at
an exponential rate (because of the hyperbolic sine). Note that the channel potential
VC S(X S) across the GCA region remains approximately constant for a small increase
in drain current. Conversely, as the drain voltage is increased, the drain current
and the potential VC S(X S) remain approximately constant and the excess potential
VDS −VC S(X S) is dropped across the two-dimensional region. The Grebene–Ghandhi
model therefore predicts a drain conductance gd in saturation which is essentially zero.

It is valuable to verify whether a more accurate analysis including diffusion as well
as drift and a full two-dimensional solution of the Poisson equation predicts the same
results as the Grebene–Ghandhi model. Such a two-dimensional charge-control model
was reported by Kim and Roblin [7]. In this model the channel current is obtained
using the transport model

ID = −Wgµ(F)NS
d EF,2DEG

dx
, (10.30)

where the 2DEG Fermi level EF,2DEG = EFi (NS) − qV (x, d2) is the chemical
potential EFi (NS) calculated using the analytic expression derived in Chapter 8
plus the electrostatic potential energy −qV (x, d2). The electrostatic potential V is
calculated using the charge distribution ρ(x, y) shown in Figure 10.6(a).
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As can be verified, the region studied now extends beyond the gated region of the
channel on the source and drain sides. The Poisson equation in this region is

∂2V (x, y)

∂x2
+ ∂2V (x, y)

∂y2
= −ρ(x, y)

ε2
. (10.31)

These boundary conditions (see band diagram in Figure 10.6(b)), setting the potential
reference at the origin V (0, 0) = 0, are

V (x, 0) =




0 for δS ≤ x < 0
VGS − φB − δ for 0 ≤ x ≤ Lg

VDS for Lg < x ≤ Lg + δD

V (−δS, y) = VEQUI(y)

V (Lg + δD, y) = VEQUI(y)+ VDS

− dV (x, d2)

dy
= q NS(x)

ε2
,
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where VEQUI(y) is the electrostatic potential in the ungated 2DEG structure (see
Figure 10.6(b)) obtained from the solution of the following one-dimensional Poisson
problem (see Section 8.3)

d2VEQUI

dy2
=




0 for 0 ≤ y < d2 − W

−q ND

ε2
for d2 − W ≤ y ≤ d2 − e

0 for d2 − e < y ≤ d2

VEQUI(0) = 0

−dVEQUI(d2)

dy
= q NS0.

For a large aspect ratio d2/Lg , the channel potential V (x, y) is given approximately
by

VC (x) = V (x, d2) � V2D(x, d2)− d2 FI + qd2 NS0

ε2

= V2D(x, d2)− qd2(NS(x)− NS0)

ε2
, (10.32)

q NS = ε2 FI , (10.33)

where the two-dimensional potential V2D(x, y) satisfies the same boundary condition
as V (x, y) except for the electric field at y = d2:

V2D(x, 0) =




VS for δS ≤ x < 0
VG − φB − δ for 0 ≤ x ≤ Lg

VD for Lg < x ≤ Lg + δD

V2D(0, y) = VEQUI(y)

V2D(LG + δD, y) = VEQUI(y)+ VDS

−dV2D(x, d2)

dy
= q NS0

ε2
.

Note that it is assumed that the channel concentration satisfies

NS(−δS) = NS(Lg + δD) � NS0.

Plots of the electrostatic potential V2D(x, y) and of its value in the channel (d2) for
various drain and gate voltages are given in Figure 10.7 for a 1 µm MODFET.

Once V2D(x, d2) is known, the integration of the current equation reduces to

ID = −Wgµ(F)

[
d EFi (NS(x)

dx
− q

dV2D(x, d2)

dx
+ q

qd2

ε2

d NS(x)

dx

]
.

A numerical solution can be facilitated if this non-linear differential equation is first
transformed into an integral equation [7]. The advantage of the partitioning used for
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Fig. 10.7. Plot of: (a) V2D(x, y), (b) V2D(x, d2) for various drain voltages and (c) V2D(x, d2) for
various gate voltages. (Y. M. Kim and P. Roblin, IEEE Transactions on Electron Devices, Vol.
ED-33 No. 11, pp. 1644–1651, 1986. c©1986 IEEE.)
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the electrostatic potential V is that the two-dimensional potential V2D needs only to
be calculated once for each gate-to-source voltage and drain-to-source voltage. This
greatly reduces the calculation time, since a time-consuming numerical technique such
as the finite difference method must be used to calculate V2D(x, y).

The channel potential, the channel 2DEG charge and the channel electric field
calculated with this model for a 1 µm MODFET and for various drain-to-source
voltages are shown in Figure 10.8. The inclusion of the diffusion current now permits
us to take into account part of the ungated channel region and the built-in potential
appearing on both sides of the gated channel. Indeed, the MODFET channel is an
effective n+–n–n+ structure when the channel charge NS controlled by the gate is
smaller than the equilibrium concentration NS0 expected on both sides of the gate.
As in the p–n junction, a built-in potential is then raised to balance the diffusion
from the n+ regions into the n region. The resulting potential barrier in the source
region is seen in Figure 10.8(a) to remain constant for all the various drain-to-source
voltages applied. On the drain side the built-in potentials remain constant for small
drain-to-source voltages. However, once the MODFET enters in saturation for say
VDS > VDS,SAT , the excess drain voltage VDS − VDS,SAT is mostly dropped across the
built-in potential barrier region on the drain side such that the channel potential under
the gate (the GCA region) remains essentially unchanged. The 2DEG concentration
NS(x) in the channel shown in Figure 10.8(b) shows the pinch-down of the channel
for increasing drain-to-source voltages. Current saturation, however, is reached before
pinch-off. In saturation the 2DEG distribution in the channel varies little. Finally, the
channel electric field shown in Figure 10.8(c) demonstrates the rapid increase with
increasing drain-to-source voltages of the electric field in the drain region compared to
the gated part of the channel and the source region. A negligible increase of the drain
current at saturation is then observed in the simulated I –V characteristics shown in
Figure 10.9 (full line)

10.3.2 Channel opening: MOSFET saturation model

As we shall see in the next chapter a small drain conductance improves the power gain
of FETs at microwave frequencies. The drain conductance is therefore an important
figure of merit after the transconductance. The drain conductance predicted by the
Grebene–Ghandhi model is essentially null. However, the DC drain conductance
measured for FETs is larger than predicted by the Grebene–Ghandhi model. A larger
DC drain conductance can be obtained if we account for the channel opening, that is
the width of the channel.

The boundary condition we have used for the electric field at d2 is

FI = −dV (x, d−
2 )

dy
= q NS(x)

ε2
.
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Kim and P. Roblin, IEEE Transactions on Electron Devices, Vol. ED-33 No. 11, pp. 1644–1651,
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In Chapter 8 we saw that a uniform 2DEG in equilibrium satisfied (Gauss’s law)

ε2 FI = ε1 FB + q NS, (10.34)

where FB is the bulk field which is negligible when the 2DEG is on.
In a MODFET, the 2DEG concentration NS(x) varies with position, and this

boundary condition is only valid if we treat the 2DEG as a surface charge and therefore
neglect its thickness. In a MODFET the width �y of the 2DEG depends upon the
2DEG concentration NS . Here we arbitrarily define the width �y of the 2DEG as the
width of the AlGaAs–GaAs triangular well (Region 1) including 95% of the 2DEG
charge. For high NS concentrations the electric field is high, and the 2DEG width is
small (see Figure 10.10(a)). For low NS concentrations the electric field is small, and
the 2DEG width is large (see Figure 10.10(b)). A plot of the variation of �y versus
NS is given in Figure 10.11 for different GaAs bulk doping NA.

As can be seen, 95% of the 2DEG charge extends up to 400 Å in GaAs. It
therefore becomes necessary to solve the Poisson equation in the 2DEG region. An
approximate treatment is proposed below. We start by writing the Poisson equation
in the 2DEG region (Region 1) assuming that the 2DEG concentration NS(x) is
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c©1986 IEEE.)



335 10.3 Saturation and two-dimensional effects in FETs

uniformly distributed over a region of width �y(x)

∂2V (x, y)

∂x2
+ ∂2V (x, y)

∂y2
= q NS(x)

�y(x)ε1
. (10.35)

Next we integrate this Poisson equation across the 2DEG width:

∫ d2+�y

d2

∂2V (x, y)

∂x2
dy +

∫ d2+�y

d2

∂2V (x, y)

∂y2
dy =

∫ d2+�y

d2

q NS(x)

�y(x)ε1
dy

�y
d2VC (x)

dx2
+ dV (x, d2 +�y)

dy
− dV (x, d+

2 )

dy
= q NS(x)

ε1

ε1�y
d2VC (x)

dx2
+ ε2 FI − ε1 FB = q NS(x), (10.36)

where we define the channel potential VC (x) as the average of the potential V (x, y)
over the 2DEG channel width

VC (x) =
∫ d2+�y

d2
V (x, y) dy

�y
,

assuming that�y(x) is slowly varying with x . The boundary equation FI = q NS/ε2 is
now replaced by the differential Equation (10.36). Note that for �y = 0 the boundary
condition (10.36) reduces to the boundary condition (10.34).

Using this new boundary condition (10.36) instead of (10.34), we can numerically
integrate the current Equation (10.30) and obtain the I –V characteristics shown in
Figure 10.9 [8].

One observes that the drain conductance is essentially null for a channel width of
0 Å (full line) and increases as the channel width is increased (dashed and dashed-
dotted lines). Note that the fitting of the drain conductance of a real MODFET might
require even larger channel widths than predicted from the equilibrium theory. Further
increases of the channel width could result from the heating of the 2DEG. Indeed for
a three-dimensional gas in a triangular potential well

NS = Nc exp

[
EF − Ec(y)

kB Te

]

= Nc exp

[
EFi − q FI y

kB Te

]

∝ exp

[−y

�y

]
, (10.37)

with �y = kB Te/(q FI ). We can see from this simple model that the channel width
will increase with the electron temperature Te.
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An analytic model can be developed if we neglect the bulk field FB and assume
that for a small aspect ratio d2/Wg the interface field FI is obtained using a one-
dimensional solution of the Poisson equation in the AlGaAs region (Region 2):

ε2 FI = CG(VGC − VT ).

Equation (10.36) can now be rewritten

ε1�y(x)
d2VC (x)

dx2
+ CG(VGC − VT ) = q NS(X S). (10.38)

The reader is referred to Problem 10.4 for an analytic solution of this equation.
Here we shall limit our analysis to the saturation region and assume that the interface

field FI is negligible compared to the longitudinal field. Equation (10.36) can then be
rewritten

ε1dS
d2VC (x)

dx2
= q NS(X S). (10.39)

We have also further assumed that in the saturation region the channel width is constant
�y = dS . The carrier NS(X S) in saturation is obtained from the drain current ID using

q NS(X S) = ID

WgvS
.

The saturation voltage drop across the two-dimensional region is therefore

VSAT = VC (Lg)− VC (X S) = ID

2Wgε1dSvS
(Lg − X S)

2 + Fc(Lg − X S),

using the boundary condition dVC (X S)/dx = Fc. The total drain-to-source potential
is then

VDS = VOUT + ID

βFc
+ ID

2Wgε1dSvS
(Lg − X S)

2 + Fc(Lg − X S).

Because a parabola increases less rapidly than a hyperbolic sine, the potential drop
across the saturation region is smaller for a given current ID than in the Grebene–
Ghandhi model. Conversely, an increase of the drain current does not require a
large applied drain-to-source voltage. The drain conductance predicted by the channel
opening model is therefore larger. The channel opening model thus provides a better
fit to the experimental drain conductance than the Grebene–Ghandhi model although
both two-dimensional effects are present. Such a model was first reported by Park
and Kwack [9] for the MODFET. Note that an increase of the drain current requires a
decrease of the GCA region width X S . The saturation region can therefore occupy
a large fraction of the gate length in saturation when the current increases above
IDS(SAT). This effect is called gate-length modulation.



337 10.4 The extrinsic MODFET

gs

V
GS

Vds

V

S

Intrinsic
MODFET

S

G

R

R
D

R

V

G

D

DS

+

–

–

–

+

– +

+

Fig. 10.12. Extrinsic and intrinsic MODFET.

10.4 The extrinsic MODFET

Our analysis of the ideal MODFET has so far been concerned with the intrinsic
MODFET, that is no parasitics have been included. Figure 10.12 shows an extrinsic
FET consisting of the intrinsic FET with a source resistance RS , a drain resistance RD ,
and a gate resistance RG in series with the intrinsic source, drain and gate terminals.

The extrinsic drain and source voltages VDS and VGS can then be expressed in terms
of the intrinsic drain and source voltages using

VGS = Vgs + ID RS,

VDS = Vds + ID(RS + RD).

Note that because the gate is insulated, the DC characteristics are not affected by the
gate resistance RG . To demonstrate the impact of the source and drain resistances
on the FET characteristics, we can express the extrinsic drain conductance and the
transconductance in terms of the intrinsic drain conductance and transconductance
[10]. One can easily obtain the following relations (see Problem 10.5):

gD = gd

1 + gd(RS + RD)+ gm RS
,

gM = gm

1 + gd(RS + RD)+ gm RS
,
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where we have used the definitions:

gD = ∂ ID(VDS, VGS)

∂VDS
,

gM = ∂ ID(VDS, VGS)

∂VGS
,

gd = ∂ ID(Vds, Vgs)

∂Vds
,

gm = ∂ ID(Vds, Vgs)

∂Vgs
.

Clearly both the drain conductance and the transconductance are reduced by the
parasitics. It is therefore critical to reduce the source and drain resistances for the
extrinsic MODFET to maintain the high performance of the intrinsic MODFET.
Note that the source and drain resistance model used here assumes that the I –V
characteristics of the parasitics are linear. However, experimental and theoretical
evidence points to the fact that the source and drain resistances increase with the drain
current [11]. Non-linear source and drain resistances seem to account for the decrease
of the transconductance measured at large gate voltages in MODFETs.

10.5 Conclusion

This chapter was concerned with the DC I –V modeling of the MODFET. The cur-
rent voltage characteristic MOSFET/MODFET was studied using simple piece-wise
charge-control and transport models. A more accurate and realistic modeling of the
MODFET will be developed in Chapter 14. The motivation for our approach in this
chapter was to introduce the short-channel field and velocity-saturation effects, and the
thresholds for their occurence. Armed with these tools we are now ready to study in
the next two chapters the AC responses of the long- and short-channel MODFETs.
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modulation doped FETs and MODFET characterization.’ IEEE Transactions on Electron
Devices, Vol. ED-31, pp. 29–35, January 1984.

[6] A. B. Grebene and S. K. Ghandhi, ‘General theory for pinched operation of the junction-gate
FET’, Solid-State Electronics, Vol. 12, p. 573, 1969.

[7] Y. M. Kim and P. Roblin, ‘Two-dimensional charge control model for the MODFETs’, IEEE
Transactions on Electron Devices, Vol. ED-33 No. 11, pp. 1644–1651, 1986.

[8] P. Roblin, H. Rohdin, C.J. Hung and S. W. Chiu, ‘Capacitance–voltage analysis and current
modeling of pulse-doped MODFETs’, IEEE Transactions on Electron Devices, Vol. ED-36,
No. 11, pp. 2394–2404, November 1989.

[9] K. Park and K. D. Kwack, ‘A model for the current–voltage characteristics of MODFETs’,
IEEE Transactions on Electron Devices, Vol. ED-33, pp.673–676, 1986.

[10] S. Y. Chou and D. A. Antoniadis ‘Relationship between measured and intrinsic
transconductances of FET’s’, IEEE Transactions on Electron Devices, Vol. ED-34, pp.
448–450, February 1987.

[11] P. Roblin, L. Rice and S. Bibyk, ‘Non-linear parasitics in MODFETs and the MODFET IV
characteristics’ IEEE Transactions on Electron Devices, Vol. ED-35, No. 8, pp. 1207–1214,
(1988)

10.7 Problems

10.1 In this problem we shall calculate the I –V characteristics in the GCA approximation of a
MODFET using the current equation

ID = −WgµNS
d EF,2DEG

dx
, (10.40)

where EF,2DEG is the 2DEG Fermi level. The 2DEG Fermi level is given by

EF,2DEG = EFi (NS)− qVC (x),

where EFi (NS) is the chemical potential (see Chapter 8) and VC is the channel potential.

(a) Verify that the ratio D/µ can be expressed in terms of the chemical potential EFi . We
shall assume for the remainder of the problem that this ratio can be linearized:

D(NS)

µ
= D(NS1)

µ
+ 1

µ

d D(NS1)

d NS
(NS − NS1) = β + αNS .
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Calculate α and β at NS1 = 1012 cm−2 for the chemical potential given by

EFi (eV) = 0.234

[
NS

1012

] 1
3 − 0.153

with NS in cm−2.

(b) We now wish to calculate the I –V characteristics in the GCA approximation. We use
the piece-wise linear charge-control model given by Equation (10.3) and use a constant
mobility model µ(F) = µ. For this purpose it is sufficient to verify that the drain current
can be written in the form

ID = Wgµ
′CG(VGS − VC S − V ′

T )
dVC S

dx
,

where µ′ and V ′
T are, respectively, the new mobility and threshold voltage to be expressed

in terms of µ, VT , CG , α, β and q . Calculate the ratio µ′/µ and the difference V ′
T − VT

for a MODFET with a gate capacitance ε2/(d2 +�d) using d2 +�d = 400× Å.

10.2 Calculate the I –V characteristics in the GCA approximation of a MODFET using the silicon
velocity-field relation:

vd = µ(F)F = µF

1 + F/Fc
.

Assume that the drain current is given by the drift component only:

ID = qWg NSvd .

Use the piece-wise linear charge-control model given by Equation (10.3).

10.3 Calculate the I –V characteristics of a MODFET in the GCA approximation using the
following charge model:

NS = NS0

[
α + (1 − α) tanh

(
VGC − VG M

V1

)]
.

Assume that NS0, α, V1 and VG M are known constants used to fit the NS–VGS relation
obtained using the numerical techniques described in Chapter 8. Assume that the drain current
is given by the drift component only:

ID = qWg NSvd

and use a constant mobility model vd = µF .

Hint:
∫

tanh x dx = ln[cosh(x)].

10.4 Consider the equation for the channel potential VC in the saturation region:

ε1dS
d2VC S(x)

dx2
+ CG(VGS − VC S − VT ) = q NS(XS), (10.41)

where dS is the channel width in the saturation region.

Assume that the GCA approximation holds at the edge of the saturation region:

q NS(XS) = CG(VGC (XS)− VT ).

Integrate this equation across the saturation (two-dimensional) region of length Lg − XS and
calculate the saturation potential VSAT in terms of the drain current. Verify that the saturation
voltage is of the form

VSAT = α1/2 Fc sinh

(
Lg − XS

α1/2

)
.
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10.5 Consider an extrinsic FET consisting of an intrinsic FET with a source resistance RS , a drain
resistance RD and a gate resistance RG in series with the intrinsic source, drain and gate
terminals (see Figure 10.12).

(a) Express the extrinsic drain conductance gD and extrinsic transconductance gM defined
by

gD = ∂ ID(VDS, VGS)

∂VDS
,

gM = ∂ ID(VDS, VGS)

∂VGS
,

in terms of the intrinsic drain conductance gd and transconductance gm defined by

gd = ∂ ID(Vds , Vgs)

∂Vds
,

gm = ∂ ID(Vds , Vgs)

∂Vgs
.

(b) Express the ratio gD/gM in terms of the ratio gd/gm .



11 Small- and large-signal AC models for the
long-channel MODFET

Music is a hidden arithmetic exercise of the soul . . . .

From The World is Sound: Nada Brahma, Music and the Landscaper of Consciousness, Joachim-Ernst Berendt.

GOTTFRIED WILHELM LEIBNIZ

11.1 Introduction

In this chapter we shall study the high-frequency modeling of the MODFET (modula-
tion doped field-effect transistor). Like any other FET, the MODFET is a transit-time
device and its high-frequency performance is controlled by its gate length. For a given
gate length, the MODFET has achieved higher frequencies of operation than other
FETs [1]. This originates from the high mobility and high effective velocity saturation
of the 2DEG (two-dimensional electron gas), which leads to a high transconductance
and low source and drain resistances. However, the high-frequency principle of
operation of the MODFET/MOSFET does not differ from that of other FETs. It should
therefore be possible to generalize the results of the analysis given in this chapter to
other FETs such as the MESFET (metal semiconductor FET).

In this chapter we shall focus on the long-channel MODFET and study both its
small- and large-signal modeling.

11.1.1 fT and fmax figures of merit

Traditionally, transistors are characterized using figures of merit such as the unity
current-gain cut-off frequency fT and the unilateral power gain cut-off frequency fmax.
It is therefore appropriate to first discuss these figures of merit.

Consider a transistor characterized by the following small-signal y parameters

i1 = y11(ω) v1 + y12(ω) v2,

i2 = y21(ω) v1 + y22(ω) v2,

342
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or z-parameters

v1 = z11(ω) i1 + z12(ω) i2,

v2 = z21(ω) i1 + z22(ω) i2.

The currents and voltages are defined in Figure 11.1(a). For example, we shall use the
y parameters of an FET in the common source configuration (see Figure 11.1(b)):

ig = ygg(ω) vgs + ygd(ω) vds,

id = ydg(ω) vgs + ydd(ω) vds .

The unity short-circuit current-gain cut-off frequency fT is defined as the frequency
at which the short-circuit current gain is unity:

h21(ωT ) = |y21(ωT )|
|y11(ωT )| = |z21(ωT )|

|z22(ωT )| = 1. (11.1)

For the MODFET in the common source configuration, the maximum short-circuit
current gain can be approximated by

|y21(ω)|
|y11(ω)| = |ydg(ω)|

|ygg(ω)| � gm

ωCG Wg Lg
.

Notice the 1/ω decrease with frequency (20 dB per decade) using 20log(|y21|/|y11|)
of the short-circuit current gain. In the long-channel mode (Lg ≥ (VG,max − VT )/Fc),
the maximum transconductance is obtained for k = 1 and VGS = VG,max (see Chapter
10)

gm,max(PINCH) = g0 = µCG Wg

Lg
(VG,max − VT ).

The maximum unity current-gain cut-off frequency of the long-channel MODFET is
therefore

ωT = 2π fT = µ

L2
g
(VG,max − VT ),

which is varying as 1/L2
g . In the short-channel mode (Lg < (VG,max − VT )/Fc), the

maximum transconductance saturates to

gm,max(S AT ) = µCG Wg Fc = vSCG Wg.

The maximum transconductance is set by the effective saturation velocity in the FET
channel. The maximum unity current-gain cut-off frequency of the short-channel
MODFET is therefore

ωT = 2π fT = vS

Lg
,

which is varying as 1/Lg . As stated above, the current-gain cut-off frequency is seen
to be controlled by the gate length. However, in the short-channel MODFET, the
saturation velocity and parasitics also play an important role.
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Fig. 11.1. Small-signal representation with a two-port network (a) of a three-terminal transistor and
(b) of a common source FET. (c) Two-port network with source and load impedances.

11.1.2 MAG and MSG

The microwave performance of a transistor is usually characterized by its maximum
transducer power gain as a function of frequency (the same as both the maximum
available power gain, MAG, and the maximum power gain). The transducer power
gain GT is defined as the ratio of the power delivered to a load PL (see Figure 11.1(c))
given the power available from the source PS:

GT = PL

PS
.
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The maximum power gain is obtained (when it exists) by simultaneously matching the
input and output to obtain a conjugate match. Conjugate match means that the source
impedance ZS and the load impedance ZL satisfy simultaneously:

ZS = Z∗
I N ,

ZL = Z∗
OU T ,


 (11.2)

where Z I N is the input impedance of the two-port network measured at port 1 with the
load impedance ZL connected at port 2 and where Z OU T is the output impedance of
the two-port network measured at port 2 with the source impedance ZS connected at
port 1.

The maximum transducer power gain (GT,max or MAG) is found to be [2]

MAG =
|y21|2

2 Re(y11)Re(y22)− Re(y12 y21)+ {[2 Re(y11)Re(y22)− Re(y12 y21)]2−|y12 y21|2}1/2

= |z21|2
2 Re(z11)Re(z22)− Re(z12z21)+{[2 Re(z11)Re(z22)− Re(z12z21)]2−|z12 y21|2}1/2

The maximum transducer power gain (or MAG) can be rewritten

MAG = GT,max = |y21|
|y12|

[
K − (K 2 − 1

)1/2]

= |z21|
|z12|

[
K − (K 2 − 1

)1/2]
,

where K is the Rollett stability factor [2]

K = 2 Re(y11)Re(y22)− Re(y12 y21)

|y21 y12|
= 2 Re(z11)Re(z22)− Re(z12z21)

|z21z12| .

This maximum transducer gain (or MAG) only exists when the stability factor K is
larger than 1. When the stability factor is smaller than 1, the transistor is unstable
for the conjugate matched loads and must be stabilized (K ≤ 1) using, for example,
resistive loading (a series or shunt resistor at the input or the output port) or feedback.
The maximum stable gain (MSG), defined as the MAG for K = 1, is then used to
characterize the transistor:

M SG = |y21|
|y12| = |z21|

|z12| .
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Fig. 11.2. Example of the unilateralization of a two-port device by lossless feedback (from Mason).

11.1.3 Unilateral power gain of the wave-equation model

The comparison of the high-frequency performance of two-port devices is usually done
using the unilateral power gain U derived by Mason [3]:

U = |y21 − y12|2
4[Re(y11)Re(y22)− Re(y12)Re(y21)]

= |z21 − z12|2
4[Re(z11)Re(z22)− Re(z12)Re(z21)]

. (11.3)

U is the maximum available power gain (MAG introduced in the previous section)
of a device once it has been been unilateralized (y12 = z12 = 0) using lossless
feedback techniques. Figure 11.2 shows a possible feedback circuit (proposed by
Mason himself) to unilateralize a three-terminal device.

Let us estimate the frequency dependence of the unilateral power gain. In our study
of the y parameters of the MODFET we shall verify the well-known fact that ygg

and ygd are essentially capacitive ( jωCgg and jωCgd ) and that their real components
originate from the channel resistance in series with these capacitors:

ygg = jωCgg

1 + jωRggCgg
,

ygd = − jωCgd

1 + jωRgdCgd
.

Thus for small frequencies ω the real parts of ygg and ygd , are the second order terms
−( jω)2 RggC2

gg or ( jω)2 RgdC2
gd , respectively:

Re(y11) = Re(ygg) ∝ ω2,

Re(y12) = Re(ygd) ∝ −ω2.
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Using the approximate identities y22(ω) � gd , and y21 − y12 � y21 � gm , the
unilateral power gain is seen to satisfy

U (ω) ∝ 1

ω2
.

The maximum frequency of oscillation fmax is then defined as the frequency at which
U is unity. fmax is often referred to as the frequency at which a three-port device
switches from active to passive. U can then be rewritten

U (ω) =
(ωmax

ω

)2
.

The unilateral power gain will then decrease at the rate of 20 dB per decade (using 10
log U ) like the short-circuit current gain.

The importance of U and fmax for characterizing a device hinges on their invariance
upon lossless coupling (feedback and loading) (see Mason’s derivation [3]). However,
because the feedback network required to unilateralize a device can only be achieved
at a single frequency with lossless passive components, fmax is a narrow-band figure of
merit. A narrow-band figure of merit is useful in classifying transistors for the design
of tuned amplifiers and oscillators. fmax is therefore used as an RF or microwave
figure of merit. This is in contrast with fT which is a broad-band figure of merit and
is therefore more relevant for classifying transistors for the design of broad-band and
large-signal circuits.

11.1.4 On the ordering of fT and fmax

Let us now address the issue of the ordering of fT and fmax. We show in Figure 11.3
that by the use of a sufficiently large series gate resistance, it is possible to reduce
the extrinsic unilateral power gain U while maintaining a constant extrinsic fT (ext)
until fmax(ext) is smaller than fT (ext). Large gate resistances are indeed a problem
in submicron gate FETs and mushroom T- and L-shaped gates are used to circumvent
it.

As mentioned above, fT is a broad-band figure of merit and fmax a narrow-band
figure of merit, and they are therefore essentially decoupled figures of merit. It
is possible, however, to introduce a narrow-band fT which can be meaningfully
compared with fmax. For this purpose we shall introduce a narrow-band short-circuit
current gain and open-circuit voltage gain. By definition, a narrow-band figure of
merit is a quantity tuned to give the maximum figure of merit possible. Using lossless
loading (a series or shunt lossless load at ports 1 and 2) the tuned short-circuit current
gain h21(tuned) is

h21(tuned) = |y21|
Re[y11]

= |z21|
Re[z22]

(11.4)
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Fig. 11.3. Unilateral power gain (dashed and dotted-dashed lines) and short-circuit current gain (full
line) versus frequency for a 0.3 µm extrinsic MODFET (VGS = 0 V and VDS = 1 V) with
parasitics RS = RD = 2�, and CGS = CDS = 50 fF using two different gate resistances RG = 5
� (dashed line) and 25 � (dotted-dashed line). fmax is smaller than fT for the largest gate
resistance. (P. Roblin, S. Kang and H. Morkoç, Proceedings of the 1990 International Symposium
on Circuits and Systems, Vol. 2, pp. 1501–1504, IEEE, Picataway, 1990. c©1990 IEEE.)

and the tuned open-circuit voltage gain A21(tuned) is

A21(tuned) = |y21|
Re[y22]

= |z21|
Re[z11]

. (11.5)

These narrow-band quantities are invariant under lossless loading but not under
lossless feedback. Improved figures of merit can be obtained if the device is first
unilateralized using the feedback circuit of Figure 11.2. Note that this unilateralization
is not unique. For example, we could invert ports 1 and 2 and obtain a different
unilateralized device. However, the feedback circuit selected by Mason has the ad-
vantage of transforming a bilateral transconductance amplifier into a similar unilateral
transconductance amplifier. The resulting unilateralized z′-parameters are given in
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terms of the z-parameters (zi j = ρi j + j xi j ) by

z′
11 = ρ22z11 − ρ12z21

ρ22
,

z′
12 = 0,

z′
21 = z21 − z12,

z′
22 = ρ22

ρ12
z12.




(11.6)

The unilateralized FET now has the following tuned short-circuit current gain Uh21:

Uh21 = |z′
21|

Re[z′
22]

= |z21 − z12|
Re[z22]

= |y21 − y12|
Re[y11]

(11.7)

and the following tuned open-circuit voltage gain UA21:

UA21 = |z′
21|

Re[z′
11]

= Re[z22] |z21 − z12|
Re[z11] Re[z22] − Re[z12] Re[z21]

= Re[y11] |y21 − y12|
Re[y11] Re[y22] − Re[y12] Re[y21]

. (11.8)

Note that these gains can only be meaningfully defined if we have U larger than 1 and
Re[z22] larger than 0.

One notices that the product of UA21 and Uh21 is invariant under lossless feed-
back/loading since it is related to the unilateral gain. Indeed, we have

U =
(

1

2
Uh21

)
×
(

1

2
UA21

)
. (11.9)

This is demonstrated graphically in Figure 11.4 for an extrinsic MODFET.
Unilateral cut-off frequencies fU T and fU A can now be defined from the halved

unilateral current and voltage gains:

1

2
Uh21(ωU T ) = 1,

1

2
UA21(ωU A) = 1.


 (11.10)

The unilateral power gain is usually monotonously decreasing with increasing fre-
quency and these unilateral cut-off frequencies must now satisfy either one of the
following ordering relations:

fU T ≤ fmax ≤ fU A,

fU A ≤ fmax ≤ fU T .

}
(11.11)

An FET is usually expected to follow the first relation (see Figure 11.4) if the gate
resistance and drain conductance are not too large.

In the remainder of this chapter, we shall make use of fT and fmax to characterize
the high-frequency performance of the ideal MODFET.
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Fig. 11.4. Unilateral power gain (full line), halved open-circuit voltage gain UA21/2 (dotted-dashed
line) and halved short-circuit current gain Uh21/2 (dashed line) versus frequency for a 0.3 µm
extrinsic MODFET (VGS = 0 V and VDS = 1 V) with parasitics RS = RG = RD = 5�, and
CGS = CDS = 50 fF. (P. Roblin, S. Kang and H. Morkoç, Proceedings of the 1990 International
Symposium on Circuits and Systems, Vol. 2, pp. 1501–1504, IEEE, Picataway, 1990. c©1990 IEEE.)

11.2 The MOSFET wave-equation (long-channel case)

11.2.1 The large-signal MOSFET wave-equation

Our study of the high-frequency response of the MODFET will be based on the de-
velopment of a wave-equation which accounts for the transit-time delay in the channel
of the MODFET. The wave-equation for the ideal long-channel MODFET/MOSFET
is referred to as the MOSFET wave-equation. The derivation and the solution of the
MOSFET wave-equation given below is based on the original calculation of Burns
[14] for the MOSFET in pinch-off (k = 1). Here his calculation is generalized to hold
for both the linear (0 ≤ k < 1) as well as the pinch-off regime (k = 1).

The MOSFET wave-equation is derived from the continuity equation and the current
equation. The channel current I (x, t) is given by the drift equation as in Chapter 10

I (x, t) = −µCG WgvGC (x, t)
∂vGC (x, t)

∂x
, (11.12)
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with vGC (x, t) the gate-to-channel voltage.
The continuity equation is

∂ I (x, t)

∂x
= −qWg

∂nS(x, t)

∂t
= −CG Wg

∂vGC (x, t)

∂t
. (11.13)

Differentiating Equation (11.12) on both sides with respect to x and substituting in
Equation (11.13) yields the following equation for vGC (x, t):

∂2

∂x2
[v2

GC (x, t)] = 2

µ

∂vGC (x, t)

∂t
. (11.14)

This is the large-signal MOSFET wave-equation. This equation will permit us to
characterize both the small-signal response and large-signal response of a long-channel
MOSFET.

11.2.2 Exact small-signal solution of the MOSFET wave-equation

We shall now study the small-signal AC response of the long-channel MOSFET.
Our goal is to calculate the y parameters of the MOSFET in the common-source
configuration:

ig = ygg(ω) vgs + ygd(ω) vds,

id = ydg(ω) vgs + ydd(ω) vds .

Note that once the y parameters in a given configuration are available, the y parameters,
z-parameters, and S-parameters in any configuration (common drain, source, or gate)
can be readily be obtained [4].

For small-signal analysis, we need to decompose the large-signal MOSFET wave-
equation (11.14) into its DC part and small-signal AC part. The total AC gate-to-
channel voltage is

vGC (x, t) = VGC (x)+ vgc(x, t), (11.15)

with VGC the DC gate-to-channel voltage and vgc the AC small signal gate-to-channel
voltage. In Chapter 10 the DC gate-to-channel voltage VGC (x) was calculated to be
given by

VGC (x) = VGS − VT − VC S(x) (11.16)

= (VGS − VT )

[
1 − (2k − k2)

x

Lg

]1/2

(11.17)

where k = VDS/(VGS − VT ).
In small-signal analysis the second order terms v2

gc(x, t) can be dropped and
v2

GC (x, t) can be approximated by

v2
GC (x, t) ≈ V 2

GC (x)+ 2VGC (x)vgc(x, t).
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Substituting Equation (11.17) into the above equation and simplifying yields

v2
GC (x, t) ≈ (VGS − VT )

2
[

1 − (2k − k2)
x

Lg

]

+ 2(VGS − VT )

[
1 − (2k − k2)

x

Lg

]1/2

vgc(x, t)

= (VGS − VT )
2 Z + 2(VG − VT )Z

1/2 vgc(z, t), (11.18)

with

Z = 1 − (2k − k2)
x

Lg
.

The new variable Z is introduced to simplify the notation. We will need the derivative

dx

d Z
= − Lg

2k − k2
.

The procedure to differentiate Equation (11.18) is as follows

∂2

∂x2
v2

GC (x, t) =
[
− (2k − k2)

Lg

]2
∂2

∂Z2
[v2

GC (x, t)]

= 2
(2k − k2)2(VG − VT )

L2
g

∂2

∂Z2
[Z1/2vgc(Z , t)]

= 2
(2k − k2)2(VG − VT )

L2
g

∂

∂Z

(
1

2Z1/2v + Z1/2

∂vgc

∂Z

)

= 2
(2k − k2)2(VGS − VT )

L2
g

×
(

− 1

4Z3/2
v + 1

2Z1/2

dvgc

d Z
+ 1

2Z1/2

dvgc

d Z
+ Z1/2 d2vgc

d Z2

)

= 2
(2k − k2)2(VGS − VT )

L2
g

(
Z1/2 d2vgc

d Z2
+ 1

Z1/2

dvgc

d Z
− 1

4Z3/2
vgc

)
.

(11.19)

Replacing Equation (11.19) in Equation (11.14) yields

∂vgc(x, t)

∂t
= µ(VGS − VT )(2k − k2)2

L2
g

×
[

Z1/2 d2vgc(x, t)

d Z2
+ 1

Z1/2

dvgc(x, t)

d Z
− 1

4Z3/2
vgc

]

= ω0k

[
Z1/2 d2vgc(x, t)

d Z2
+ 1

Z1/2

dvgc(x, t)

d Z
− 1

4Z3/2
vgc(x, t)

]
, (11.20)
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where

ω0k = µ(VGS − VT )(2k − k2)2

L2
g

.

The Laplace transform of Equation (11.20) is

Z2 ∂
2vgc(s′, Z)

d Z2
+ Z

dvgc(s′, Z)

d Z
−
(

1

4
+ s′Z3/2

)
vgc(s

′, Z) = 0, (11.21)

where s′ = s/ω0k .
Equation (11.21) is the s space representation of the MODFET wave-equation. This

is a modified Bessel’s differential equation so that one can find an analytic solution.
The complete solution is written as

vgc(Z , s
′) = C1 I2/3

[
4

3
s1/2 Z3/4

]
+ C2 I−2/3

[
4

3
s′1/2 Z3/4

]
, (11.22)

where C1 and C2 are arbitrary constants to be determined from the boundary condi-
tions.

Once the wave-equation is solved we need to calculate the AC small-signal drain
and gate currents. To do this, we need to calculate the AC current in the channel of the
MOSFET. The AC channel current is obtained by decomposing Equation (11.12) into
its DC and AC components while neglecting second order terms:

i(Z , s′) = −µCG Wg
d

dx
[vgc(Z , s

′)VGC (Z)]

= −µCG Wg

(
−2k − k2

Lg

)
(VGS − VT )

d

d Z

(
vgc Z1/2

)
= Gd0

d

d Z

(
vZ1/2

)

= Gd0

(
1

2Z1/2
vgc + Z1/2 dvgc

d Z

)
, (11.23)

where

Gd0 = µCG Wg(VGS − VT )(2k − k2)

Lg
.

Equation (11.23) has to be expanded in terms of C1 and C2 in order to apply the
boundary conditions. To simplify the calculation, we introduce the new variable y

y = 4

3
s′1/2 Z3/4,

dy

d Z
= s′1/2 Z−1/4.

Note that the modified Bessel function has the following properties:

d In(x)

dx
= 1

2
[In+1(x)+ In−1(x)],

In(y) = y

2n
[In−1(y)− In+1(y)].
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First dvgc/d Z will be expanded in terms of C1 and C2

dvgc

d Z
= dy

d Z

dvgc

dy
= s′1/2 Z−1/4 d

dy
[C1 I2/3(y)+ C2 I2/3(y)]

= s′1/2 Z−1/4
{

C1

2
[I5/3(y)+ I−1/3(y)] + C2

2
[I1/3(y)+ I−5/3(y)]

}
. (11.24)

Substituting Equations (11.24) and (11.22) into Equation (11.23) gives

i(Z , s′) = Gd0

(
1

2
Z−1/2[C1 I2/3(y)+ C2 I−2/3(y)]

+ s′1/2 Z1/4
{

C1

2
[I5/3(y)+ I−1/3(y)] + C2

2
[I1/3(y)+ I−5/3(y)]

}

= Gd0

(
C1

2
Z−1/2

4
3 s′1/2 Z3/4

2 2
3

[I−1/3(y)− I5/3(y)]

+ C2

2
Z−1/2

4
3 s′1/2 Z3/4

2(− 2
3 )

[I−5/3(y)− I1/3(y)]

+ S1/2 Z1/4
{

C1

2
[I5/3(y)+ I−1/3(y)] + C2

2
[I1/3(y)+ I−5/3(y)]

})

= Gd0

2
s′1/2 Z1/4[C1 I−1/3(y)− C1 I5/3(y)− C2 I−5/3(y)+ C2 I1/3(y)

+ C1 I5/3(y)+ C1 I−1/3(y)+ C2 I1/3(y)+ C2 I−5/3(y)]

= Gd0s′1/2 Z1/4[C1 I−1/3(y)+ C2 I1/3(y)].

Now both the AC voltage and the AC current in the GCA channel can be obtained
in terms of C1 and C2:

vgc(Z , s) = C1 I2/3(y)+ C2 I−2/3(y), (11.25)

i(Z , s) = Gd0s′1/2 Z1/4[C1 I−1/3(y)+ C2 I1/3(y)]. (11.26)

The solution of the wave-equation across the entire channel requires a set of
boundary conditions to be enforced at x = 0 and x = Lg and at the boundary between
the GCA and saturation region. The boundary conditions to be used at x = 0 and
x = Lg for the common source configuration are

vgc(0) = vgs, (11.27)

vgc(Lg) = vgs − vds . (11.28)

For simplicity, Equations (11.27) and (11.28) may be rewritten as

vgc(Lg) = A11C1 + A12C2 = vgs − vds,

vgc(0) = A21C1 + A22C2 = vgs,

}
(11.29)
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where we have introduced the constants

A11 = I2/3(ys)

A12 = I−2/3(ys)

A21 = I2/3

(
4

3
s′1/2
)

A22 = I−2/3

(
4

3
s′1/2
)

ys is defined from Zs as

ys = 4

3
s′1/2 Z3/4

s ,

Zs = Z(x = Lg) = (1 − ks)
2.

From Equation (11.29) it is obvious that

C1 = A22(vgs − vds)− A12vgs

�

= A22 − A12

�
vgs − A22

�
vds

= C1gsvgs + C1dsvds,

C2 = A11vgs − A21(vgs − vds)

�

= A11 − A21

�
vgs + A21

�
vds

= C1gsvgs + C1dsvds,

with � = A11 A22 − A12 A21 and with

C1gs = (A22 − A12)

�
,

C2gs = (A11 − A21)

�
,

C1ds = − A22

�
,

C2ds = − A21

�
.

Using Equation (11.25) the gate and drain currents are expressed in terms of C1 and
C2 as

id = i(x = Lg) = i(Zs, s
′)

= Gd0s′1/2 Z1/4
s [C1 I−1/3(ys)+ C2 I1/3(ys)]

ig = i(x = 0)− i(x = Lg)
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= Gd0s′1/2
[

C1 I−1/3

(
4

3
s′1/2
)

+ C2 I1/3

(
4

3
s′1/2
)]

− Gd0s′1/2 Z1/4
s [C1 I−1/3(ys)+ C2 I1/3(ys)].

The y-parameters of the saturated MODFET are then

ydg = id

vgs

= Gd0s′1/2 Z1/4
s [C1gs I−1/3(ys)+ C2gs I1/3(ys)],

ygg = ig

vgs

= Gd0s′1/2
{

C1gs I−1/3

(
4

3
s′1/2
)

+ C2gs I1/3

(
4

3
s′1/2
)

− Z1/4
s [C1gs I−1/3(ys)+ C2gs I1/3(ys)]

}
,

ydd = id

vds

= Gd0s′1/2 Z1/4
s [C1ds I−1/3(ys)+ C2ds I1/3(ys)],

ygd = ig

vds

= Gd0s′1/2
{

C1ds I−1/3

(
4

3
s′1/2
)

+ C2ds I1/3

(
4

3
s′1/2
)

− Z1/4
s [C1ds I−1/3(ys)+ C2ds I1/3(ys)]

}
.

The modified Bessel function can be calculated numerically using its power series
expansion:

In(y) =
( y

2

)n ∞∑
p=0

(y/2)2p

p!�[n + p + 1]
. (11.30)

11.2.3 Frequency power series expansions of the y parameters

The exact solution of the small-signal MOSFET wave-equation developed in the
previous section gives little insight into the frequency response of the MOSFET and a
simpler approximate solution is desirable.

Small-signal y parameters holding up to high frequencies can be obtained by
expanding the exact y parameters in the frequency power series initially proposed by
Van Der Ziel and Eno (see also [11]):

yi j = gi j + jωαi j + ( jω)2βi j , (11.31)

where gi j are the DC y parameters
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An expansion of the y parameters in frequency power series (11.30) yields the
following results [12,7,8]:

ygg = ω2C2
0

g0
Rgg(k)+ jωC0Igg(k)

ygd = −ω
2C2

0

g0
Rgd(k)− jωC0Igd(k)

ydg = kg0 − ω2C2
0

g0
Rdg(k)− jωC0Idg(k)

ydd = (1 − k)g0 + ω2C2
0

g0
Rdd(k)+ jωC0Idd(k),

using

g0 = µCG Wg(VGS − VT )

Lg
and C0 = Wg LgCG .

The coefficients Ii j (k) and Ri j (k) are given by [12,7] (see [21] for a derivation):

Rgg(k) =
1
12 − 1

6 k + 9
80 k2 − 7

240 k3 + 1
360 k4

(1 − 1
2 k)5

,

Igg(k) = 1 − k + 1
6 k2

(1 − 1
2 k)2

,

Rgd(k) = (1 − k)( 1
24 − 41

720 k + 1
45 k2 − 1

360 k3)

(1 − 1
2 k)5

,

Igd(k) = (1 − k)(1 − 1
3 k)

2(1 − 1
2 k)2

,

Rdg(k) =
1
24 − 1

10 k + 43
480 k2 − 3

80 k3 + 11
1440 k4 − 1

1600 k5

(1 − 1
2 k)6

,

Idg(k) =
1
2 − 3

4 k + 1
3 k2 − 1

20 k3

(1 − 1
2 k)3

,

Rdd(k) = (1 − k)( 1
45 − 7

180 k + 17
720 k2 − 1

160 k3 + 9
14 400 k4)

(1 − 1
2 k)6

,

Idd(k) = (1 − k)( 1
3 − 1

4 k + 1
20 k2)

(1 − 1
2 k)3

.

A plot of the functions Ii j (k) and Ri j (k) versus the bias parameter k is shown in
Figure 11.5. The frequency power expansions given above hold for a large frequency
range but do not degrade gracefully at high frequencies.

An alternative expansion of the y parameters has been developed by Van Nielen
[13]. It can be derived using an iterative procedure or can be obtained directly by
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Fig. 11.5. Plot of the functions Ii j (k) and Ri j (k) versus the bias parameter k.

expanding the Bessel functions in a frequency power series in the exact solution
of the small-signal MOSFET wave-equation. The first order iterative small-signal
y parameters obtained are of the following form:

yi j = gi j + jωCi j

1 + jωτ
,

with τ a common time constant shared by all y parameters. The second order iterative
small-signal y parameters obtained are of the following form:

yi j = gi j + jωai j + ( jω)2bi j

1 + jωc + ( jω)2d
. (11.32)

The second order iterative small-signal y parameters admit a frequency power series
expansion valid up to power 2. Compared to the y parameters obtained by the
frequency power series [6], the iterative y parameters hold for higher frequencies and
have the advantage of providing a more graceful degradation outside their frequency
range of validity. However, we shall see in the next sections that an optimal equivalent
circuit can be developed from the frequency power series y parameters expansion,
using the RC topology of the first order iterative y parameters.
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11.2.4 Dimensionless representation of the y parameters

One can easily verify directly from the MOSFET wave-equation or its solution that
the exact small-signal y parameters obtained from the MOSFET wave-equation can be
written in terms of dimensionless parameters:

yi j

g0
= fi j

(
k,
ω

ω0

)
,

where k = VDS/(VGS − VT ), g0 is the channel conductance:

g0 = µCG Wg(VGS − VT )

Lg

and ω0 is a normalization frequency given by

ω0 = 2π f0 = µ(VGS − VT )

L2
g

. (11.33)

This normalization can also be applied to the frequency power series solution given
in the previous section. These approximate y parameters can then be rewritten in the
following normalized fashion:

ygg

g0
= j

ω

ω0
Igg(k)+

(
ω

ω0

)2

Rgg(k),

ygd

g0
= − j

ω

ω0
Igd(k)−

(
ω

ω0

)2

Rgd(k),

ydg

g0
= k − j

ω

ω0
Idg(k)−

(
ω

ω0

)2

Rdg(k),

ydd

g0
= (1 − k)+ j

ω

ω0
Idd(k)+

(
ω

ω0

)2

Rdd(k).

The existence of a normalized representation is useful as it permits one to establish
results which are device-independent and hold for all bias conditions. This property is
used in the next section to study the range of validity of the equivalent circuit model
proposed.

11.2.5 First order equivalent circuit I

To improve the degradation of the y parameters obtained from the frequency power
series for frequencies ω larger than ω0, we shall introduce a simple RC equivalent
circuit model. The RC model selected consists of the DC (ω = 0) small-signal
parameters gi j shunted by a capacitor Ci j in series with a charging resistor Ri j . The
resulting intrinsic y parameters are

ygg = jωCgg

1 + jωRggCgg
,
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Fig. 11.6. Approximate small-signal equivalent circuit for the intrinsic long-channel MOSFET.

ygd = jωCgd

1 + jωRgdCgd
,

ydg = gm + jωCdg

1 + jωRdgCdg
,

ydd = gd + jωCdd

1 + jωRddCdd
.

The associated equivalent circuit I for the intrinsic MOSFET is shown in Figure 11.6.
For frequencies ω � 1/(Ri j Ci j ) these y parameters admit the frequency power

series (11.31):

yi j = gi j + jωCi j + ω2 Ri j C
2
i j . (11.34)

We can now readily identify the resistors and capacitors to be

Cgg = g0(VGS)Igg(k)

ω0
, Rgg = Rgg

g0(VGS)I2
gg(k)

,

Cgd = −g0(VGS)Igd(k)

ω0
, Rgd = − Rgd

g0(VGS)I2
gd(k)

,

Cdg = −g0(VGS)Idg(k)

ω0
, Rdg = − Rdg

g0(VGS)I2
dg(k)

,

Cdd = g0(VGS)Idd(k)

ω0
, Rdd = Rdd

g0(VGS)I2
dd(k)

.

The time constants τi j = Ri j Ci j in the small-signal y parameters are then given by

τgg = RggCgg = 1

ω0

60 − 120k + 81k2 − 21k3 + 2k4

15(2 − k)3(6 − 6k + k2)
,

τgd = RgdCgd = 1

ω0

30 − 41k + 16k2 − 2k3

15(2 − k)3(3 − k)
,

τdg = RdgCdg = 1

ω0

600 − 1440k + 1290k2 − 540k3 + 110k4 − 9k5

30(2 − k)3(30 − 45k + 20k2 − 3k3)
,

τdd = RddCdd = 1

ω0

320 − 560k + 340k2 − 90k3 + 9k4

30(2 − k)3(20 − 15k + 3k2)
.
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To demonstrate the graceful degradation provided by this equivalent-circuit repre-
sentation I, Figure 11.7(a) shows the magnitude and Figure 11.7(b) shows the phase
of ygg/g0 for k = 0.65, obtained with the RC equivalent circuit (dashed-dotted line,
EQ), the exact solution (full line, EXACT), the frequency power series (dashed line,
POWER), and the second order iterative y parameters derived in [6] (dashed line, B).

11.2.6 Range of validity of the RC small-signal equivalent circuit I

We wish now to establish the range of validity of the RC circuit representation I
introduced above for all bias conditions. For this purpose, we have calculated for each
parameter yi j the frequency f5%(yi j ) for which an error Err(yi j ) of 5% is obtained
between the exact Bessel solution (see for example [9]) and the approximate results.
The error Err(yi j ) is

Err(yi j ) = |yi j (exact)− yi j (approximate)|
|yi j (exact)|

For the sake of comparison, we have plotted in Figure 11.8, f5%(yi j )/ f0 for each yi j

parameter as a function of the biasing parameter k for the frequency power series
model (dashed line, POWER), the second order iterative results [6] (dashed line,
B2), the first order iterative results [6] (dashed line, B1) and the simple RC circuit
representation of the frequency power series model (dashed-dotted line, EQ). One
observes that the simple RC representation I of the frequency power series holds for
all bias conditions up to a higher frequency than both the frequency power series and
the iterative results. On the same graph we have also plotted the unity current-gain
cut-off frequency fT / f0 (dashed line, FT) and the maximum frequency of oscillation
fmax/ f0 (full line, FMAX) (the frequency at which the unilateral gain is 1 [3]). Both
fT and fmax are calculated using the exact Bessel solution.

All approximate small-signal models except the first order iterative model hold for
frequencies larger than the cut-off frequency fT for all bias conditions. The RC circuit
representation holds for frequencies larger than the maximum frequency of oscillation
fmax for k smaller than ∼ 0.9. However, for k larger than ∼ 0.9, f5% is smaller
than fmax. Note that both the exact and the approximate models predict an infinite
maximum frequency of oscillation at k = 1. Obviously in the extrinsic device the
unavoidable source, drain, and gate resistances and drain output conductance will limit
fmax to a finite value.

To conclude, note that the normalization frequency f0 is bias-dependent. For gate
voltages approaching the threshold voltage, the normalization frequency f0 is small
and none of these so-called high-frequency approximate models can account for the
distributed effects arising even at low frequencies.
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Fig. 11.7. Comparison of (a) the amplitude and (b) the phase of ygg/g0 for k = 0.65, obtained with
the RC equivalent circuit I (dashed-dotted line, EQ), the exact solution (full line, EXACT), the
frequency power series (dashed line, POWER), and the second-order iterative y parameters reported
(dashed line, B). (P. Roblin, S. C. Kang and W. R. Liou, IEEE Transactions of Electron Devices,
Vol. 38, No. 8, pp. 1706–1718, August 1991. c©1991 IEEE.)
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results (dashed line, B1), the second order iterative results (dashed line, B2), the RC equivalent
circuit (dashed-dotted line, EQ). Also shown are the unity current-gain cut-off frequency fT / f0
(dashed line, FT), and the maximum frequency of oscillation fmax/ f0 (full line, FMAX). (P.
Roblin, S. C. Kang and W. R. Liou, IEEE Transactions of Electron Devices, Vol. 38, No. 8, pp.
1706–1718, August 1991. c©1991 IEEE.)

11.2.7 Alternative equivalent circuits for the intrinsic MODFET/MOSFET

Given the frequency power series (11.31) or even the expansion (11.32), it is not
possible to extract a unique small-signal equivalent circuit model. A generic equivalent
circuit commonly used for FETs is given in Figure 11.9. The y parameters are given
by

ygg = y1 + y2,

ygd = − y2,

ydg = y3 − y2,

ydd = y4 + y2.
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Fig. 11.9. Conventional small-signal equivalent circuit for the unsaturated intrinsic MODFET: (a)
with generic impedances yi and (b) with an RC topology for y1, y2, and y3.

In the long-channel Model B, y1, y2, y3, and y4 are given by

yi = gi + jωCi

1 + jωRi Ci
. (11.35)

Alternatively in the short-channel Model A, y3 is selected to be

y3 = gm exp( jωτs)

1 + jωτ3
. (11.36)

In Figure 11.10, we compare the performance of these various equivalent circuits
against the exact solution obtained for the ideal FET wave-equation. To do so, the
model elements (e.g., the capacitor and resistance or time delays τs and τ3) of each
y parameter are selected such as to admit the exact second order frequency power
series derived for the y parameter of the MOSFET wave-equation. As can be seen,
each equivalent circuit perfectly fits the exact MODFET wave-equation solution at
low frequencies as intended and exhibits a graceful degradation at high frequencies.
However, we shall see in the next section that the non-quasi-static equivalent circuit
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Fig. 11.10. Comparison of |ydg | obtained using the exact FET wave-equation solution (full line),
the conventional equivalent circuit Model A (dotted-dashed line) and Model B (dashed-dashed line)
and the equivalent circuit I of Figure 11.6 (dashed line).

I introduced in Figure 11.6 for the unsaturated MODFET can be readily implemented
in a high-performance non-quasi-static charge-conserving large-signal model.

11.3 Large-signal model of the long-channel MODFET/MOSFET

The large-signal response of the ideal long-channel MOSFET is regulated by the large-
signal wave-equation (11.14). This wave-equation is a non-linear partial differential
equation which must be solved numerically in the general case. Burns [15], Oh et
al. [16], and Mancini et al. [17] have reported a numerical solution of the transient
response of the large-signal MOSFET wave-equation.

These simulations established that when the MOSFET is turned on abruptly by
a step voltage applied at the gate the drain current remains zero for a time τd
corresponding to the time for the channel charge to move from the source to the drain.
This delay time τd was found to be approximately

τd � 0.38µ(VGS − VT )

L2
g

.
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Fig. 11.11. Large-signal equivalent-circuit for the long-channel MODFET.

The numerical solution of the large-signal MOSFET wave-equation is time-
consuming and therefore cannot be used in circuit simulators. Alternatively, the
RC equivalent circuit developed for the small-signal MOSFET wave-equation can be
readily transformed into a simplified large-signal model which is more suitable for
circuit simulation.

This large-signal model can be obtained by simply replacing gm and gd with
the drain current source ID of the MOSFET I–V characteristics and by substituting
instantaneous values of the DC gate and drain voltage VGS and VDS in the resistors
and capacitors and in ID . The gate, drain and source currents are then given by (see
Figure 11.11)

iG = iGG + iG D,

iD = ID + iDD + iDG,

iS = iG + iD,

with

ID = CG Wgµ

2Lg

[
(vGS − VT )

2 − (vGS − VT − vDS)
2
]
,

iGG = Cgg(vGS, vDS)
d

dt

[
vGS − Rgg(vGS, vDS)iGG

]
,

iG D = Cgd(vGS, vDS)
d

dt

[
vDS − Rgd(vGS, vDS)iG D

]
,

iDG = Cdg(vGS, vDS)
d

dt

[
vGS − Rdg(vGS, vDS)iDG

]
,
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iDD = Cdd(vGS, vDS)
d

dt
[vDS − Rdd(vGS, vDS)iDD].

To test this RC large-signal model, we can submit it to the four large-signal computer
experiments used by Mancini et al. [17] and Chai and Paulos [10] for testing their
four-terminal MOSFET large-signal models. The mobility (µ = 609 cm2/V) and gate
length (Lg = 10 µm) given in [17] and [10] are used for our three-terminal MOSFET
together with VT = 0.

In the first test, the drain voltage is vDS = 1 V and the gate voltage vGS varies from
2 to 10 V in 1 ns. The currents calculated using the RC model (full lines) are shown in
Figure 11.12(a) and (b). For comparison we have also plotted in Figure 11.12(a) and
(b) the currents obtained using the transcapacitor model (dashed lines) which relies on
the same capacitors Ci j but neglects the charging resistors Ri j = 0. In the second test,
the drain voltage is vDS = 1 V and the gate voltage vGS varies from 10 to 2 V in 1 ns.
The currents calculated using the RC model (full lines) and using the transcapacitor
model (dashed lines) are shown in Figure 11.13(a) and (b). In the third test, the gate
voltage is vGS = 10 V and the drain voltage vDS varies from 1 to 10 V in 1 ns. The
currents calculated using the RC model (full lines) and using the transcapacitor model
(dashed line) are shown in Figure 11.14(a) and (b).

The currents calculated with the three-terminal RC large-signal model exhibit the
same type of transient obtained with the numerical results reported by Mancini et al.
[17] for the four-terminal MOSFET. The success of the RC model is attributed to the
fact that for these biases the MOSFET is operating in the triode region and the Ci j
and Ri j vary slowly with the instantaneous bias.

In the fourth test, the drain voltage is vDS = 4 V and the gate voltage vGS varies
from 0.0001 to 10 V in 1 ns. The currents calculated using the RC model (full lines)
and using the transcapacitor model (dashed line) are shown in Figure 11.15(a) and (b).

When compared with the results reported by Mancini et al. [17] (for the four-
terminal MOSFET), the (three-terminal) RC model suffers from the following two
problems. The RC large-signal model predicts a negative drain current between t = 0
and t � 0.35 ns, which is not present in the exact numerical solution [17]. In addition,
it introduces a rapid increase of the drain and gate currents at t = 0.4 ns, when the
MOSFET switches from the pinch-off to the triode mode. This rapid variation of the
current, not observed in the exact solution [17], originates from the rapid variation
of Ci j and Ri j near pinch-off. As we shall see, this problem can be great reduced if
charge conservation is enforced.

Chai and Paulos [10] have reported a unified large- and small-signal model derived
using an iterative technique which permitted them to reproduce the numerical results
of Mancini et al. quite well [17]. For small-signal analysis, their first order iterative
technique reduces to the first order iterative solution of the MOSFET wave-equation
(see [13] and [5]). Their work suggests the use of the following alternate set of
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Fig. 11.12. Plot of (a) iD , iS and iDC and (b) iG and iDG calculated for vDS = 1 V and vGS
varying from 2 to 10 V in 1 ns using the RC model (full lines), the transcapacitor model (dashed
lines) and the state equations (dashed-dotted lines). (P. Roblin, S. C. Kang and W. R. Liou, IEEE
Transactions of Electron Devices, Vol. 38, No. 8, pp. 1706–1718, August 1991. c©1991 IEEE.)
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Fig. 11.13. Plot of (a) iD , iS and iDC and (b) iG and iDG calculated for vDS = 1 V and vGS
varying from 10 to 2 V in 1 ns using the RC model (full lines), the transcapacitor model (dashed
lines) and the state equations (dashed-dotted lines). (P. Roblin, S. C. Kang and W. R. Liou, IEEE
Transactions of Electron Devices, Vol. 38, No. 8, pp. 1706–1718, August 1991. c©1991 IEEE.)
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Fig. 11.15. Plot of (a) iD , iS and iDC and (b) iG and iDG calculated for vDS = 4 V and vGS
varying from 0.0001 to 10 V in 1 ns using the RC model (full lines), the transcapacitor model
(dashed lines) and the state equations (dashed-dotted lines). (P. Roblin, S. C. Kang and W. R. Liou,
IEEE Transactions of Electron Devices, Vol. 38, No. 8, pp. 1706–1718, August 1991. c©1991
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differential equations:

iGG = Cgg(vGS, vDS)
dvGS

dt
− d

dt

[
Cgg(vGS, vDS)Rgg(vGS, vDS)iGG

]
,

iG D = Cgd(vGS, vDS)
dvDS

dt
− d

dt

[
Cgd(vGS, vDS)Rgd(vGS, vDS)iG D

]
,

iDG = Cdg(vGS, vDS)
dvGS

dt
− d

dt

[
Cdg(vGS, vDS)Rdg(vGS, vDS)iDG

]
,

iDD = Cdd(vGS, vDS)
dvDS

dt
− d

dt
[Cdd(vGS, vDS)Rdd(vGS, vDS)iDD].




(11.37)

The response of the intrinsic MOSFET to the gate and drain voltage ramps as
predicted with these new differential equations is shown in Figures 11.12–11.15
using dashed-dotted lines. It is not possible to distinguish this modified RC model
(dashed-dotted lines) from the RC model (full lines) except in Figure 11.15(a) and (b),
where a smoother response in agreement with the numerical simulation [17] results
when the MOSFET enters the triode mode.

The modified large-signal model still predicts a negative drain current in Figure
11.15. As is explained by Mancini et al. [17], the drain current cannot be negative
for large drain voltages. Indeed, for large drain voltages, when the device is biased in
the saturation region, a fraction of the applied drain voltage is dropped in the built-in
potential barrier in the drain region. The resulting increase in the potential barrier at the
drain prevents the electrons from diffusing from the drain to the channel to charge the
channel. A negative drain current charging the depleted channel is, however, possible
in the triode mode (Figures 11.12 and 11.13) since in this case the built-in potential
barrier is not increased by the drain voltage (see for example [18]). The boundary
conditions of the simple wave-equation used here (see Section 11.2) do not take
diffusion into account and cannot therefore predict this effect. Note that large built-in
potentials at the drain arise only when the device is biased in saturation (pinch-off).
Therefore both the small- and large-signal RC models proposed here should be correct
for the unsaturated MOSFET and moderately saturated (long-channel) MOSFET.
A more complicated equivalent circuit is required for the saturated MOSFET (see
next chapter). Note that the use of improved boundary conditions to drive the state
equations presented here might not be sufficient by itself to avoid the negative drain
current in Figure 11.15. Indeed, the failure to reproduce the exact response (no
negative current) in Figure 11.14 also originates from the fact that for small gate
voltages VG the frequency f0 becomes very small and the channel of the MOSFET
quickly behaves like a transmission line. Indeed, the (RC) state equations derived
above cannot be used for excitation with a frequency component much in excess of f0

(or f5%). Note, however, that the non-quasi-static state equations generate a current
response (dashed-dotted line) far superior to the quasi-static model (dashed line).
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11.3.1 Charge conservation

Charge conservation is an important issue in circuit simulation. The charge �Q
transferred to a device through a terminal X in a time �t by an in-going current iX (t)
is simply given by

�qX =
∫ �t

0
iX (t) dt.

Global charge conservation in the FET model results from Kirchhoff’s current law
iS = iG + iD , as is verified by integration over time. This global charge conservation
does not, however, prevent the gate and channel of a large-signal FET model from
continuously accumulating charge over time [19]. Such an accumulation of charge in
the channel is inconsistent with the assumption of DC I–V characteristics that are not
history-dependent. Furthermore, it is known that such unphysical charge accumulation
adversely affects the external circuits in a circuit simulator [22].

The gate (or channel) charge QG in the MOSFET in the steady state is given by

QG(VGS, VDS) = Wg

∫ Lg

0
q NS(x) dx

= WgCG Lg
2

3

(VGS − VT − VDS)
3 − (VGS − VT )

3

(VGS − VT − VDS)2 − (VGS − VT )2
.

The variation of the gate charge predicted by the DC model from the steady-state bias
condition 1 to steady-state bias condition 2 is

�QG(1, 2) = QG[VGS(2), VDS(2)] − QG[VGS(1), VDS(1)].

Let us verify that the FET state equations (11.37) predict a variation of gate and
channel charge which is compatible with the DC model. The instantaneous charge
transferred to the gate�qG (which is also the charge accumulated in the FET channel)
is

�qG(t1, t2) =
∫ t2

t1
iG dt =

∫ t2

t1
(iGG + iG D) dt

= �QG(t1, t2)−
∫ t2

t1

[
d

dt
(RggCggiGG)+ d

dt
(RgdCgdiG D)

]
dt,

where �QG(t1, t2) is

�QG(t1, t2) =
∫ t2

t1

[
Cgg

dvGS(t)

dt
+ Cgd

dvDS(t)

dt

]
dt. (11.38)

The variation of the instantaneous gate charge is then

�qG(t1, t2) = �QG(t1, t2)− τgg[vGS(t2), vDS(t2)]iGG(t2)

+ τgg[vGS(t1), vDS(t1)]iGG(t1)− τgd [vGS(t2), vDS(t2)]iG D(t2)

+ τgd [vGS(t1), vDS(t1)]iG D(t1).
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If the device is in the steady state at times t1 and t2, iGG and iG D must be zero at these
times, and we have �qG(t1, t2) = �QG(t1, t2).

One can easily verify that the capacitor Cgg and Cgd can be obtained from the gate
(or channel) charge QG by

Cgg(vGS, vDS) = ∂QG(vGS, vDS)

∂vGS
,

Cgd(vGS, vDS) = ∂QG(vGS, vDS)

∂vDS
.

Since in the unsaturated MOSFET (0 ≤ k < 1) the gate charge QG admits continuous
partial derivatives, its time derivative is then given by

d QG

dt
= Cgg(vGS, vDS)

dvGS

dt
+ Cgd(vGS, vDS)

dvDS

dt
.

�QG(t1, t2) as defined by Equation (11.38) can now be written

�QG(t1, t2) =
∫ t2

t1

d QG

dt
dt = QG[vGS(t2), vDS(t2)] − QG[vGS(t1), vDS(t1)],

which is path-independent. Therefore �qG(t1, t2) is equal to �QG(1, 2) if the FET is
in the steady-state biasing conditions 1 and 2 at times t1 and t2, respectively.

The modified large-signal model using the alternative differential equation topology
of [10] enforces the desired conservation of charge for the unsaturated FET. Charge
conservation is also enforced in the saturated MOSFET (vDS(t) > vGS(t) − VT ).
Indeed, the saturated MOSFET follows the same state equations since we use k = 1
to calculate the RC elements in saturation. Using k = 1 is equivalent to applying
an effective drain voltage vDS(t) = vGS(t) − VT . However, as we would expect
in an ideal pinched-off MOSFET, this effective time-varying drain-to-source voltage
vDS(t) does not induce any charging currents in the saturated FET since we have
Cgd(k = 1) = Cdd(k = 1) = 0.

11.3.2 Charge conservation in circuit simulators

Note that the capacitors Cdg and Cdd can be obtained from the partial derivatives of a
charge Q D:

Cdg(vGS, vDS) = ∂Q D(vGS, vDS)

∂vGS
,

Cdd(vGS, vDS) = ∂Q D(vGS, vDS)

∂vDS
,

where Q D is the portion of the gate (or channel) charge QG associated with the drain
and is given by

Q D(vGS, vDS) = CG Wg Lg



375 11.3 Large-signal model of the long-channel MODFET/MOSFET

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

k

τ ij
✕

ω
 

 
0

τgg

τgd

τdg

τdd

Fig. 11.16. Plot of τgg , τgd , τdg , and τdd normalized by 1/ω0 versus the biasing parameter k.

× 2

15

−15(vGS − VT )
3 + 25(vGS − VT )

2vDS − 15(vGS − VT )v
2
DS + 3v3

DS

4(vGS − VT )2 − 4(vGS − VT )vDS + v2
DS.

These identities cannot be used here to reduce the number of differential equations.
The large-signal model introduced here therefore requires four differential equations
making use of the four time constants τgg , τgd , τdg and τdd shown in Figure 11.16. By
setting τgg = τgd = τG and τdg = τdd = τD , one can then easily verify that the four
differential equations reduce to the following two differential equations:

(iGG + iG D) = d QG

dt
− d

dt
[τG(iGG + iG D)],

(iDG + iDD) = d Q D

dt
− d

dt
[τD(iDG + iDD)].

}
(11.39)

The use of four differential equations instead of two is expected to increase the
frequency range of the model. This is demonstrated for the small-signal parameters
in Figures 11.8(a)–(d) where the first order y parameters (EQ) resulting from the
four differential Equations (11.37) are seen to be valid for k > 0.1 to a frequency
f5%, 4–12 times that of the first order iterative y parameters (B1) resulting from
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the two differential equations 11.39. However, the less accurate two-time-constant
(τG and τD) model may be advantageous as it is a charge picture. Indeed, charge
conservation is also a numerical issue as non-conservation of charge can also result
in practice in models intrinsically conserving charge from numerical errors associated
with the calculation of derivatives when voltages are used as state variables in circuit
simulators. This problem has been recognized and prompted the development of
charge-based quasi-static MODFET models for use in circuit simulators. Such
charge-based models are now the default model in microwave circuit simulators.

In a charge-based model the total gate, drain and source currents are given by:

iG = idisp,G,

iD = ID(vGS, vDS)+ idisp,D,

iS = iD + iG,


 (11.40)

where idisp,X is the displacement current associated with the charge element Q X and
is given by

idisp,X = d Q X (vGS, vDS)

dt
− d

dt
[τX (vGS, vDS)idisp,X]. (11.41)

Note that τX is the non-quasi-static charge-redistribution time constant associated with
the charge-element Q X .

Figure 11.17(a) shows a possible topology for implementing this charged-based
large-signal model. This charge model which relies on two non-quasi-static time
constants (τG and τD) will be used in Chapter 13 for building an electrothermal FET
model. An alternative and equivalent topology (for τG = τD = τS) is also shown in
Figure 11.17(b). In this alternate topology the current I ′ and charges Q′ are given by:

I ′
D(vGS, vG D) = ID(vGS, vDS)

Q′
D(vGS, vG D) = Q D(vGS, vDS)

Q′
S(vGS, vG D) = −QG(vGS, vDS)− Q D(vGS, vDS).


 (11.42)

Note that following [24] a fully symmetric topology is obtained by switching
from common-source state-variables (vGS, vDS) to common-gate state-variables
(vGS, vG D). This alternate topology is particularly recommended to handle charge
conservation when vDS switches from positive to negative voltages.

11.4 Parasitics, extrinsic MODFET and parameter extraction

So far we have mostly discussed the modeling of the intrinsic MODFET. The extrinsic
MODFET model is obtained by adding the parasitics equivalent circuit to the intrinsic
MODFET model. Typical parasitic equivalent circuits used for the small- and large-
signal models are shown in Figure 11.18(a) and (b). Cgd f and Cgs f are the fringe
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alternative topology shown in (b) is recommended to enforce charge conservation when vDS
switches from positive to negative voltages.

capacitors of the gate. The Schottky diode of the gate contributes the two diodes
(or resistance) between gate-and-source and gate-and-drain. RS , RD and RG are the
source, drain and gate resistances. Cpd and Cpg are the pad capacitors and L S , L D

and LG are the bond inductances if any. This is the conventional topology used for
MESFETs and MODFETs.

Physical models can also be developed for the parasitics. A small-signal analysis
of the distributed effect arising from the gate width predicts that the maximum power
gain (MAG) of the transistor will decrease if the gate width Wg is larger than λ/12,
where λ is the wavelength of the applied AC signal in the semiconductor. For gate
widths smaller than λ/12, the distributed effects along the gate width can be accurately
represented by the resistor RG in series with the gate. Note that it is also sometimes
necessary to account for the frequency dependence of the source and drain resistances
[20]. However, the frequency dependence of the parasitics is usually only important
at high frequencies. Finally, the large RC time delay associated with the variation
of charge of the deep donors in the MODFET capacitor (see Chapter 8) can also
contribute to the dispersion (variation with frequency) of the transconductance gm

observed at low frequency. Indeed, the DC transconductance gm(I–V) calculated from
the measured I–V characteristics is usually smaller than the gm(RF) extracted from
the RF data using an equivalent circuit. Similarly, the drain conductance gd (I–V) and
gd(RF) can be found to be different. This topic will be further explored in detail in
Chapter 13.
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11.5 Conclusion

In this chapter we have developed and solved the long-channel MOSFET/MODFET
wave-equation. Optimal non-quasi-static small-signal equivalent-circuit and large-
signal models were derived.

The non-quasi-static large-signal model introduced in this chapter relied upon a
new charge-conserving circuit element consisting of a charge and a time constant. It
is interesting to note that this new circuit element also finds application in the accurate
modeling of reverse recovery in diodes as has been demonstrated by Yang et al. [23].

The calculations in this chapter were based on the long-channel MOS-
FET/MODFET wave-equation which does not account for velocity saturation effects
and is therefore only applicable to the long-channel MODFET. In the next chapter we
will generalize our results by studying the velocity-saturated MODFET wave-equation
which is applicable to the short-channel MODFET.
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11.7 Problems

11.1 Consider the feedback circuit used to unilateralize a two-port device shown in Figure 11.2. In
this problem the two-port device is represented by its z small-signal parameters.

(a) Calculate the ratio N of the transformer and the reactance X needed to give z′
12 = 0.

(b) Express the parameters z′
i j of the unilateralized two-port device in terms of the parameters

zi j of the original two-port device.

11.2 Consider the MOSFET wave-equation

∂2V 2(x, t)

∂x2
= 2

µ

∂V (x, t)

∂t
.

For the three-terminal MOSFET the voltage V is simply vGC − VT . The channel current
I (x, t) is given by

I (x, t) = WgCGµV (x, t)
∂V (x, t)

∂x
.

(a) Verify that for small-signal excitation the MOSFET wave-equation reduces to

d2

dx2

[
V0(x)v(x, ω)

] = j
ω

µ
v(x, ω)

and that the AC channel current i(x, ω) is given by

i(x, ω) = WgCGµ
d

dx

[
V0(x)v(x, ω)

]
,

where the DC potential V0(x) is given by

V0(x) = VGC (x)− VT = (VGS − VT )

[
1 + (k2 − 2k)

x

Lg

]1/2
,

with k = VDS/(VGS − VT ).

(b) Verify directly from the MOSFET wave-equation derived in part (a) and not from its
solution that we can predict that the exact small-signal y parameters obtained from the
MOSFET wave-equation can be written in terms of dimensionless parameters:

yi j

g0
= fi j

(
k,
ω

ω0

)
,

with g0 the channel conductance:

g0 = µCG Wg(VGS − VT )

Lg
,

and with ω0 a normalization frequency given by

ω0 = 2π f0 = µ(VGS − VT )

L2
g

.

Hint: Introduce a normalized position x ′ = x/Lg and a normalized frequency ωn =
ω/ω0. Note also that the small-signal wave-equation is a linear second order differential
equation and therefore admits a solution of the form:

v(x ′) = C1v−(x ′, ωn, k)+ C2v+(x ′, ωn, k).
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11.3 (a) Derive the channel charge QG in the MOSFET given by

QG = Wg

∫ Lg

0
q NS(x) dx,

where q NS(x) is the DC 2DEG channel charge per unit area at position x .

(b) Verify the following identities:

Cgg(vGS, vDS) = ∂QG(vGS, vDS)

∂vGS
,

Cgd (vGS, vDS) = ∂QG(vGS, vDS)

∂vDS
,

(c) Derive Q D the portion of the channel charge QG associated with the drain and given by

Q D = Wg

∫ Lg

0

x

Lg
q NS(x) dx,

where q NS is the DC 2DEG channel charge per unit area at position x .

(d) Verify the following identities:

Cdg(vGS, vDS) = ∂Q D(vGS, vDS)

∂vGS
,

Cdd (vGS, vDS) = ∂Q D(vGS, vDS)

∂vDS
.

(e) Verify that the gate charge satisfies

QG(vGS, vDS) = Cgg(vGS, vDS)× (vGS − VT )+ Cgd (vGS, vDS)× vDS .

(f) Demonstrate that the relation above originates from the fact that the charge is a linear
homogeneous function as it satisfies

QG(λ(vGS − VT ), λvDS) = λ× QG(vGS − VT , vDS).

11.4 Consider the RC integrator circuit shown in Figure 11.19. The resistance R is implemented
using the N-MOSFETs M1 and M2. The ideal opamp 2 and the FETs M3 and M4 act simply
as a current mirror which sets the current I3 equal to I4 because M3 and M4 have the same
source, drain and gate voltages. The capacitor current is then IC = I1 − I2.

(a) Verify that we have IC = GC VI N and calculate GC . Use the three-terminal MOSFET
model given by Equation (10.9). M1 and M2 are the same FETs but have two different
gate voltages.

(b) This configuration permits one to obtain a very high RC C integration time constant with
a transistor of reasonable size GC � |ydd |. How does one select Vg1 and Vg2 to obtain
very large RC = 1/GC ?

(c) Typically a large resistance is desired and a gate length of 100 µm is used for M1 and M2.
Calculate RC = 1/GC . Assume that the gate voltages Vg1 and Vg2 are 4 and 5 V; the
threshold voltage is 1 V; the gate width is Wg = 10 µm; the mobility is 0.0265 m2/(V s);
the oxide thickness is 400 Å; the oxide dielectric constant is 3.5 × 10−11 SI; and the
source and drain resistances are negligible.
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Fig. 11.19. RC integrator.

(d) For a 100 µm gate-length distributed effects might become important at low frequencies.
Calculate for each MOSFET, the frequencies f0 given by Equation (11.33) at which
distributed effects dominate (see Section 11.2.4).

(e) Calculate the small-signal admittance yc given by ic = yc(ω)vin , where ic is the current
through the capacitor. Express yc in terms of the yi j parameters of Section 11.2.5. Hint:
The gate and source voltages are an AC ground. Note also that is = ig + id (see Figure
11.1(b)).

(f) Verify that the same results are obtained for parts (e) and (a) for DC.

(g) Plot |GC/yc| versus frequency from 0 to 100 MHz. Assume that the DC part of the input
voltage VI N is 0. Note that the gm of M1 and M2 is 0 when VI N = 0. Describe your
result.



12 Small- and large-signal AC models for the
short-channel MODFET

Time is but the stream I go fishing in.

Walden, Beacon Press 1854, HENRY DAVID THOREAU

12.1 Introduction

The small-signal MOSFET wave-equation introduced in the previous chapter for
the intrinsic MOSFET holds only for the region of the channel for which the
gradual-channel approximation (GCA) holds. In saturation, it becomes necessary to
account for the contribution of the built-in potential in the drain region. We have
seen in Chapter 10 that in short-channel MODFETs (modulation doped field-effect
transistors), velocity saturation was also taking place in the drain region in saturation.
A new wave-equation accounting for space-charge-limited transport therefore needs
to be solved in this region. A more complex equivalent circuit will then result for the
short-channel MODFET in which the equivalent circuit introduced in Chapter 11 for
the MOSFET wave-equation will just be a subcircuit.

Once we have derived the velocity-saturated MODFET wave-equation we will use it
in this chapter to develop both a small- and a large-signal model for the short-channel
MODFET. The long- and short-channel model topologies will then be compared and
their respective merit established.

12.2 Small-signal model for the short-channel MOSFET

12.2.1 The velocity-saturated MOSFET wave-equation

In the short-channel MODFET model introduced in Chapter 12, the FET channel is
divided into the GCA and saturation regions of length X S = Lg −� and �, respectively.
In the saturation region, the electron velocity is assumed to saturate (to a value vS)

384
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while the GCA is failing. The channel potential in the saturation region is then
assumed to be supported uniquely by the electron distribution in the channel.

In the GCA region, the GCA holds and the 2DEG (two-dimensional electron gas)
concentration nS is controlled by the gate-to-channel potential:

qnS(x, t) = CG [vGS(t)− vC S(x, t)− VT ], (12.1)

where CG is the 2DEG gate capacitance. In the saturation region, two-dimensional
field effects dominate and the channel potential vC S can be approximately obtained by
solving the Poisson equation along the 2DEG channel only (see Chapter 10):

d2vC S(x, t)

dx2
= qnS(x, t)

dSε1
= α I (x, t), (12.2)

where α = 1/(ε1vSWgdS). Following the DC model (Chapter 10), we assume that
the boundary between the GCA and saturation regions occurs when the channel field
−dvC S/dx reaches the critical field −Fc.

Let us now establish the wave-equation for this short-channel model. The wave-
equation for the GCA region was derived in the previous chapter. The gate length Lg

needs to be replaced by X S and k by ks = VC S(X S)/(VGS − VT ), where VC S(X S) is
the DC channel-to-source potential across the entire GCA region.

The channel current in the saturation region can be expressed as

I (x, t) = ID + i(x) exp( jωt) = qWgnS(x, t)vS (12.3)

and the continuity equation in the channel as

∂ I (x, t)

∂x
= qWg

∂vSnS(x, t)

∂x
= −qWg

∂nS(x, t)

∂t
= − 1

vS

∂ I (x, t)

∂t
. (12.4)

Extracting the AC part from Equation (12.4) and retaining the first order terms yields

di(x)

dx
= − j

ω

vS
i(x). (12.5)

In the saturation region the AC current is related to the AC voltage by the Poisson
Equation (12.2). Decomposing Equation (12.2) into DC and AC parts yields the
following relationship between the AC voltage vgc(x) and current i :

d2vgc(x)

dx2
= −αi(x). (12.6)

Equations (12.5) and (12.6) make up the wave-equation for the saturation region.
The solution of the wave-equation across the entire channel requires a set of

boundary conditions to be enforced at x = 0 and x = Lg and at the boundary between
the GCA and saturation region. Like for the unsaturated case, the boundary conditions
used at x = 0 and x = Lg for the common source configuration are

vgc(0) = vgs, (12.7)

vgc(Lg) = vgs − vds . (12.8)
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At the GCA/saturation boundary we shall enforce the continuity of the 2DEG carrier
concentration, the channel electric field and channel potential, the electron velocity
and the current. These are naturally enforced by the continuity of the AC voltage vgc

and AC current i at the boundary.
Note that according to our saturation picture, the channel electric field at the floating

boundary between the GCA and the saturation region is the DC (constant) critical field
Fc. The AC channel field is therefore null at the boundary, and the GCA/saturation
boundary must move when AC voltages are applied at the device’s terminals so as to
maintain a zero AC channel field. In the small-signal analysis, the total (DC + AC)
position of the GCA/saturation boundary is written

xS(t) = X S + xs exp( jωt), (12.9)

where X S is the DC position and xs the AC motion of the boundary. Let us now derive
the relationship between the AC motion xs of the GCA/saturation boundary and the
GCA AC field v′

gc. The total (DC + AC) channel field at the floating boundary xS is
the spatial derivative of the total potential vgc at this boundary:

v′
GC (xS) = V ′

GC (xS)+ v′
gc(xS) exp( jωt). (12.10)

Then neglecting second order terms the AC electric field at the floating boundary is

v′
gc(xS) = V ′′

GC (X S)xs + v′
gc(X S). (12.11)

Setting the AC electric field at the floating boundary to zero yields the boundary motion
xs as a function of v′

gc:

xs = − 1

V ′′
GC (X S)

v′
gc(X S), (12.12)

where one can easily calculate V ′′
GC (X S) to be given by:

V ′′
GC (X S) = −k2

s (1 − 1
2 ks)

2

(1 − ks)3

VGS − VT

X S
. (12.13)

The solution of the wave-equation across the entire intrinsic MODFET relies on the
continuity of the AC voltage and AC current at the floating boundary. It is therefore
necessary to calculate the AC voltage at the floating boundary and to account for the
motion of the GCA/saturation boundary. Let us derive the modified GCA channel
potential obtained at the floating boundary. The total (DC + AC) channel potential at
the floating boundary is given by

vGC (xS, t) = VGC (xS)+ vgc(xS) exp( jωt), (12.14)

where vgc is the AC potential obtained by solving (see previous chapter):

Z2 ∂
2vgc(s′, Z)

d Z2
+ Z

dvgc(s′, Z)

d Z
−
(

1

4
+ s′Z3/2

)
vgc(s

′, Z) = 0, (12.15)
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where s′ = s/ω0k .
Expanding Equation (12.14) with a Taylor series around the DC boundary position

X S for small variations xs of the boundary position yields the AC voltage vgc(xS) at
the floating boundary xS (second order terms are neglected)

vgc(xS) = V ′
GC (X S)xs + vgc(X S) (12.16)

= −Fcxs + vgc(X S). (12.17)

The potential drop across the saturation region is also modified by the motion of the
boundary which modulates the width of the saturation region. Integrating the Poisson
equation

d2[vGC (x)]

dx2
= −α I (x, t) = −α[ID + i(x) exp( jωt)] (12.18)

across the time-varying saturation region yields the AC potential at x = Lg

vgc(Lg) = (Fc + α IDl) xs + vgc(xS)+�vgc(l), (12.19)

where l = (Lg − X S) is the DC width of the saturation region and �vgc(l) is the AC
potential vgc(x) obtained by solving the Poisson Equation (12.6) for a fixed saturation
region width l, and zero AC potential, vgc(X S) = 0, and zero AC field, v′

gc(X S) = 0,
at X S . Substituting Equation (12.17) into Equation (12.19) gives

vgc(Lg) = α IDlxs +�vgc(l)+ vgc(X S). (12.20)

One observes that the contribution of the motion xs of the GCA/saturation boundary
is to add the AC potential term α IDlxs .

Finally, note that the AC current at the floating boundary xS is to first order equal
to the AC current at the fixed boundary X S . This originates in the fact that the DC
current ID is constant along the channel.

12.2.2 Exact solution of the velocity-saturated MOSFET wave-equation

The solution of the wave-equation in the GCA region is the same as in Section 11.2
except that Lg must be replaced by X S and k by ks = VC S(X S)/(VGS − VT ):

vgc(Z , s) = C1 I2/3(y)+ C2 I−2/3(y), (12.21)

i(Z , s) = Gdoss
′1/2 Z1/4[C1 I−1/3(y)+ C2 I1/3(y)], (12.22)

with C1 and C2 two arbitrary constants and

Gdos = µCG(VGS − VT )(2ks − k2
s )

Xs
,

y = 4

3
s′1/2 Z3/4,
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Z = 1 − (2ks − k2
s )

x

X S
,

s′ = s/ω0k,

ω0k = µ(VGS − VT )(2ks − k2
s )

2

X2
S

.

The wave-equation in the saturation region is readily solved. The current wave is
obtained by integrating the continuity Equation (12.5)

i(x ′) = i(X S) exp

(
− j

ω

vS
x ′
)
. (12.23)

The voltage wave is obtained by integrating the Poisson Equation (12.6). Using the
zero AC field and zero voltage boundary conditions,�v(�) the voltage drop across the
saturation region is found to be

�vgc(�) =
{
α
(vS

ω

)2
[

exp

(
− j

ω

vS
�

)
− 1

]
+ jα

vS

ω
�

}
i(X S). (12.24)

Like for the unsaturated wave-equation, the boundary condition at x = 0 is

vgc(0) = A21C1 + A22C2 = vgs,

with the same A21 and A22 coefficients:

A21 = I2/3

(
4

3
s′1/2
)
,

A22 = I−2/3

(
4

3
s′1/2
)
,

and like for the unsaturated wave-equation, the boundary condition at x = Lg is

vgc(Lg) = α IDlxs +�vgc(l)+ vgc(X S)

= A11C1 + A12C2 = vgs − vds,

where the new coefficients A11 and A12 are after a few manipulations now found to be

A11 = I2/3(ys)+ Gdoss
′1/2 Z1/4

s

{
α
(vS

ω

)2
[

exp

(
− j

ω

vS
�

)
− 1

]
+ jα

vS

ω
�

}

× I−1/3(ys)− α ID�
(1 − ks)

3 X Ss′1/2 Z1/4
s

ks

(
1 − 1

2 ks

)
Vout

[I−1/3(ys)+ I5/3(ys)],

A12 = I−2/3(ys)+ Gdoss
′1/2 Z1/4

{
α
(vS

ω

)2
[

exp

(
− j

ω

vS
�

)
− 1

]
+ jα

vS

ω
�

}

× I1/3(ys)− α ID�
(1 − ks)

3 X Ss′1/2 Z−1/4
s

ks

(
1 − 1

2 ks

)
Vout

[I1/3(ys)+ I−5/3(ys)]

with Zs = (1 − ks)
2.
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The remaining calculation of the y-parameters then proceeds like for the unsaturated
MOSFET wave-equation. The resulting y-parameters are:

ydd = Gdoss
′1/2 Z1/4

s exp

(
− j

ω

vS
�

)
[C1ds I−1/3(ys)+ C2ds I1/3(ys)],

ygd = Gdoss
′1/2
{

C1ds I−1/3

(
4

3
s′1/2
)

+ C2ds I1/3

(
4

3
s′1/2
)

− Z1/4
s exp

(
− j

ω

vS
�

)
[C1ds I−1/3(ys)+ C2ds I1/3(ys)]

}
,

ydg = Gdoss
′1/2 Z1/4

s exp

(
− j

ω

vS
�

)
[C1gs I−1/3(ys)+ C2gs I1/3(ys)],

ygg = Gdoss
′1/2
{

C1gs I−1/3

(
4

3
s′1/2
)

+ C2gs I1/3

(
4

3
s′1/2
)

− Z1/4
s exp

(
− j

ω

vS
�

) [
C1gs I−1/3(ys)+ C2gs I1/3(ys)

]}
.

These y-parameters are of the same form as for the unsaturated y-parameters except
for the introduction of the multiplicative term exp [− j (ω/vS)�] which accounts for
the phase shifting of the channel current in the saturation region of length � (see
Equation (12.23)). The coefficients C1gs , C2gs , C1ds and C2ds have the same
definitions as previously:

C1gs = (A22 − A12)

�
,

C2gs = (A11 − A21)

�
,

C1ds = − A22

�
,

C2ds = − A21

�
,

� = A11 A22 − A12 A21.

12.2.3 Equivalent circuit of the velocity-saturated MOSFET wave-equation

Like the exact solution of the unsaturated MOSFET wave-equation the exact solution
of the velocity-saturated MOSFET wave-equation is impenetrable. Hopefully, an exact
equivalent circuit can be readily developed. This exact equivalent circuit is obtained
by rewriting the resulting y-parameters yi j (sat) in terms of the y-parameters of the
GCA region yi j (GCA) of reduced gate length X S = Lg − �. The procedure is left as
an exercise (see Problem 12.1 or [5]). The following expressions are obtained

ygg(sat) = ygg(GCA)+ ygd(GCA)δs (12.25)

+ ydg(GCA)+ ydd(GCA)δs
1 + ydd(GCA)ZS(ω)

[1 − exp(− jωτSAT)− ZS(ω)ygd(GCA)],
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ygd(sat) = ygd(GCA)γs + ydd(GCA)γs

1 + ydd(GCA)ZS(ω)

× [1 − exp(− jωτSAT)− ZS(ω)ygd(GCA)],

ydg(sat) = ydg(GCA)+ ydd(GCA)γs

1 + ydd(GCA)ZS(ω)
exp(− jωτSAT),

ydd(sat) = ydd(GCA)δs
1 + ydd(GCA)ZS(ω)

exp(− jωτSAT),

where τSAT = vS/� is the transit time in the saturation region, ZS(ω) a generalized
impedance

ZS(ω) = γs

{
ID�Bα −

(vS

ω

)2
[

exp

(
− j

ω

vS
�

)
− 1

]
− jα

vS

ω
�

}

and δs and γs two constants given by

γs = 1 − δs = 1

1 + α ID�A

with

A = 2X S(1 − ks)

(2ks − k2
s )(VGS − VT )

= 1

Fc
,

B = 4X S(1 − ks)
2

Gdos(2ks − k2
s )

2(VGS − VT )
= 1

βF2
c
.

These y-parameters can be represented by the equivalent circuit given in Figure 12.1,
where the impedance ZS(ω) is approximated by a first order RC network providing
the correct second order frequency power series expansion:

ZS(ω) = R1 + R2

1 + jωCs R2
, (12.26)

with

Rs1 = α IDC�B − 1
6α�

2

1 + α ID�A
,

Rs2 = 2α�2

3(1 + α ID�A)
,

Cs = 3

8
τSAT

(1 + α ID�A)

α�2
,

using α = 1/(ε1vSWgdS) [2].
The resulting equivalent circuit provides an optimal first order non-quasi-static

equivalent circuit admitting the correct second order frequency power expansion as
well as a graceful degradation. This is demonstrated in Figure 12.2 for an intrinsic
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Fig. 12.1. First order non-quasi-static equivalent circuit II for the short-channel MODFET.

Table 12.1. Device parameters for the intrinsic short-channel MODFET.

Parameters Value

Lg Gate length (µm) 1
Wg Gate width (µm ) 290
µ Mobility (cm2/V s) 4400
vS Saturation velocity (m/s) 3.45 × 105

VT Threshold voltage (V) −0.3
d Gate to channel spacing (Å) 430
dS Channel width in saturation (Å) 1500
ε1 Channel dielectric constant 13.1ε0
ε2 Gate dielectric constant 12.2ε0

MODFET with the parameters given in Table 12.1 and for an intrinsic bias of VDS =
3 V and VGS = 0 V. The phase and amplitude of ydg versus frequency calculated
using this first order RC equivalent circuit (dashed-dotted line, EQUI), the exact
solution (full line, EXACT), and the frequency power series approximation (dashed
line, POWER) are compared in Figure 12.2(a) and (b). The optimal first order RC
model (EQUI) is seen to hold to a much higher frequency than the frequency power
series approximation (POWER).

The equivalent circuit described above gives a natural interpretation of the impact
of saturation upon the high-frequency response of the short-channel MODFET. The
GCA region with its RC topology is easily recognized. The phase shift τSAT in the
saturation region is implemented by a current source acting as a time delay element.
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Fig. 12.2. Comparison of (a) the amplitude and (b) the phase of ydg for VDS = 3 V and VGS = 0 V,
obtained with the RC equivalent circuit (dashed-dotted line, EQUI), the exact solution (full line,
EXACT), and the frequency power series (dashed line, POWER). (P. Roblin, S. C. Kang and W. R.
Liou, IEEE Transactions on Electron Devices, Vol. 38, No. 8, pp. 1706–1718, August 1991. c©1991
IEEE.)
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This phase shift also induces an additional gate current since the gate images the
AC channel charge in the saturation region (space-charge neutrality). The impedance
Zs(ω) accounts for the voltage drop in the saturation region (real part Rs1 + Rs2) and
charge modulation in the saturation region (imaginary part). Finally, the factors γs and
δs account for the effect of channel-length modulation. It is interesting to note that the
complicated solution of the velocity-saturated MOSFET wave-equation admits such a
simple (and exact if the exact yi j (GCA) and Zs(ω) are used) representation in terms
of an equivalent circuit.

12.2.4 High-frequency performance of the short-channel MODFET

The principal features of this non-quasi-static small-signal AC model for the short-
channel MOSFET/MODFET are to account for velocity-saturation and channel-length
modulation which greatly modify the performance of short-channel MODFETs. This
is verified in Figure 12.3(a) where the unity current-gain cut-off frequency fT plotted
versus gate length Lg is seen to vary as 1/L2

g for large gate lengths and as 1/Lg

for small gate lengths assuming a fixed effective saturation velocity. This result was
predicted using a simpler approach in Section 11.1.

In Figure 12.3(b) the unity current-gain cut-off frequency fT is plotted versus gate
length α = (VGS − VT )/Fc Lg . Note that the transition from long to short channel is
taking place for α = 1 as was predicted in Chapter 12. For the saturation velocity and
mobility of Table 12.1 and VDS = 1 V the corner point α = 1 corresponds to a gate
length of 1 and 1.66 µm for VGS = 0 and 0.2 V, respectively.

If the effective saturation velocity vS were to increase with decreasing gate length
Lg one would have in the submicron regime a 1/Lγg law with 1 ≤ γ ≤ 2.
However, Rohdin [6] has demonstrated that despite the expected occurence of velocity
overshoot the effective saturation velocity is essentially independent of gate length for
MODFETs with gate lengths varying from 0.9 to 0.3 µm. His analysis is based on
the systematic reverse modeling of a large number of FETs on different wafers. In
Table 12.1 a constant saturation velocity of 1.85 × 105 m/s is used.

The new AC-model is seen to predict in Figure 12.4 that for small gate-length
MODFETs the decrease of the extrinsic unilateral gain with frequency switches from
20 dB per decade to 40 dB per decade for frequencies larger than the extrinsic fMAX

[7] when the parasitics are accounted for.
High-frequency analysis [8] of the wave-equation reveals the existence of unilateral

power gain resonances in the intrinsic MODFET at the frequencies approximately
given by fn � (n + 1

2 )/2τs with τs the bias-dependent transit time through the
saturation region. Steady-state power gain is therefore conceptually possible in the
intrinsic MODFET at frequencies above its (first) maximum frequency of oscillation
fMAX(int). The same frequency analysis for the extrinsic MODFET predicts, however,
that realistic lossy parasitics will suppress these unilateral power gain resonances.
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Fig. 12.3. Unity current-gain cut-off frequency plotted versus: (a) Lg and (b)
αT = (VGS − VT )/Fc Lg for an intrinsic MODFET with VGS = 0 V (dashed-dotted line), 0.1 V
(dashed line) and 0.2 V (full line) and VDS = 1 V. (P. Roblin and S. C. Kang, IEEE Transactions on
Electron Devices, Vol. 39, No. 6, pp. 1490–1495, June 1992. c©1992 IEEE.)

The parasitics (fringe capacitors and source, drain and gate resistors) which cap the
intrinsic device are seen to have a very important effect on the performance of the
device. Parasitics are further discussed at the end of this chapter and in Chapters 13–
17.
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Fig. 12.4. Unilateral power gain versus frequency for the extrinsic MODFET for Rd = 0.01 (full
line), 0.1 (dashed dotted line), 1 (dashed-dashed line) and 5 (dashed-line) �. (P. Roblin and S. C.
Kang, IEEE Transactions on Electron Devices, Vol. 39, No. 6, pp. 1490–1495, June 1992. c©1992
IEEE.)

12.2.5 Alternate equivalent circuit for the short-channel MODFET

Let us compare the graceful degradation of the novel non-quasi-static equivalent circuit
II shown in Figure 12.1 which was developed for the saturated short-channel MOD-
FET, with that of the conventional non-quasi-static equivalent shown in Figure 11.9.
For this purpose, we compare in Figure 12.5 the amplitude of ydg as calculated using
the exact wave-equation solution (full line), the non-quasi-static equivalent-circuit
Model A of Figure 11.9 with y3 given by Equation (12.28) (dotted-dashed line) and
the novel non-quasi-static equivalent circuit II of Figure 12.1 (dashed line).

Recall that the y-parameters are given by

ygg = y1 + y2,

ygd = −y2,

ydg = y3 − y2,

ydd = y4 + y2.

In the long-channel Model B, y1, y2, y3 and y4 are given by

yi = gi + jωCi

1 + jωRi Ci
. (12.27)
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Fig. 12.5. Comparison of |ydg | obtained from the conventional (A and B) and novel equivalent
circuits (I and II) for the ideal short-channel intrinsic MODFET biased in saturation. (P. Roblin,
Proceedings of the IEEE Catalog No. 93THO333-3, Vol. II, pp. 359–372, 1993. c©1993 IEEE.)

Alternatively in the short-channel Model A, y3 is selected to be

y3 = gme jωτSAT

1 + jωτ3
. (12.28)

Also shown are the long-channel equivalent circuit I of Figure 11.6 and Model B
of Figure 11.9 with y3 given by Equation (12.27) which do not provide a good
degradation for the short-channel MODFET since they do not account for the drain
delay τSAT .

Apparently, both equivalent-circuit Model A and equivalent-circuit II fit perfectly
the exact MODFET wave-equation solution at low frequencies as intended and exhibit
a graceful degradation at high frequencies. However, the equivalent circuit of Model
A is sometimes forced to rely on negative elements for its output capacitors. This
problem cannot be suppressed by using an inductor shunted by a resistor in series with
gd . We shall therefore rely in the next sections on the more physical non-quasi-static
equivalent circuit II shown in Figure 12.1 to develop a charge-conserving large-signal
model for short-channel MODFETs.

12.3 Large-signal model for the short-channel MOSFET

This section is concerned with the development of a large-signal model for the
velocity-saturated MOSFET wave-equation.
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Fig. 12.6. Location of the DC saturation boundary.

We will start by developing a first order non-quasi-static model for the velocity-
saturated MOSFET wave-equation. We then introduce the large-signal model before
verifying that under small-signal excitation it reduces to the small-signal model. A
charge base simplified version of the model will be presented next.

12.3.1 First-order non-quasi-static approximation

The velocity-saturated MOSFET model divides the FET into two region: the GCA
region and the velocity saturation region as shown in Figure 12.6. The DC (static)
position of the boundary between the GCA region and the saturation region located at
X S is referred as D′. In the presence of AC signals the GCA/saturation boundary varies
with time. The instantaneous position of this boundary located at xs(t) is referred as
D′′′. In the presence of AC excitation, one can still introduce the DC position D′ if we
define it as as the time-average value of xs(t). In the presence of non-periodic transient
excitation D′ is not physically defined. For the development of the large-signal model
we will therefore need to introduce a third quantity, the position D′′ which is the
low-frequency instantaneous value of the position D′′′ when displacement currents
are negligible. D′′ is therefore positioned at xs(ω � 0, t) = X S(t). In small-signal
analysis the position D′ is constant with time whereas the positions D′′ and D′′′ are
time-dependent.

In the mathematical expressions given in the remaining part of this chapter it is
necessary to specify which internal node, D′, D′′ or D′′′, is used for the voltage
dependence when switching from the small-signal to the large-signal model. The
following symbolic notation is then adopted to reduce the weight of the mathematical
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expressions:

(D′) = (VGS, VD′S),

(D′′) = (vGS, vD′′S),

(D′′′) = (vGS, vD′′′S).


 (12.29)

Note that the position of the GCA/saturation boundary X S(D′′) is given in the velocity-
saturated MOSFET model by

X S(D
′′) = (vGS − VT )

2Fc

k(2 − k)

1 − k
, (12.30)

where k is given by

k = vD′′S
vGS − VT

.

The exact solution of the velocity-saturated MOSFET wave-equation leads to the
following equations for the small-signal currents:

ig = ig,GCA + ig,SAT

id = id ′ exp[− jωτSAT(D
′)],

with

ig,SAT = id ′ {1 − exp[− jωτSAT(D
′)]},

ig,GCA = y0
gg(D

′) vgs + y0
gd(D

′) vd ′s,

id ′ = y0
dg(D

′) vgs + y0
dd(D

′) vd ′s,

where y0
i j (D

′) are the long-channel y-parameters of the GCA region with gate length
X S(D′). The AC voltage vd ′s at the internal drain node D′ is related to the external
drain voltage vds by (see Equation 12.20)

vds = vd ′s − xs(α IDC�)−�vgc, (12.31)

where �vgc is given by (see Equation 12.24)

�vgc =
{
α
(vS

ω

)2
[exp(− jωτSAT)− 1] + jα

(vS

ω

)
�

}
id ′ . (12.32)

Note that in Equations (12.31) and (12.32) � = Lg − X S is the width in the
saturation region, τSAT = �/vS is the traversal time of the saturation region and
α = 1/(ε1vSWgdS) is a constant specific to the saturation model used [2]. Finally,
xs is the AC motion of the GCA/saturation region boundary which is given by (see
[5])

xs = −Bi ′d + A(vgs − vd ′s).
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Unnecessarily complicated expressions for A and B were reported in [1]. When X S

(see Equation (12.30)) is substituted in them, one simply obtains A = 1/Fc and B =
1/(βF2

c ) so that we have

xs = − 1

βF2
c

i ′d + 1

Fc
(vgs − vd ′s). (12.33)

These formulas permit us to rederive the exact solution of the velocity-saturated
MOSFET wave-equation if the exact y0

i j (D
′) parameters of the GCA region (expressed

in terms of Bessel functions) are used.
For the development of the large-signal model we shall replace the y0

i j (D
′) parame-

ters of the GCA region by their first order optimal non-quasi-static RC approximation:

y0
i j (D

′) = g0
i j (D

′)+ jωCi j (D′)
1 + jωτi j (D′)

,

with τi j (D′) = Ri j (D′)Ci j (D′).
The expressions for g0

i j , Ci j , Ri j and τi j are those given in Section 11.2.5 with the
gate length Lg replaced by X S (see Equation (12.30)). For example we have

g0
m = kβ

VGS − VT

X S
= βFc

2(1 − k)

2 − k
,

g0
d = (1 − k)β

VGS − VT

X S
= βFc

2(1 − k)2

(2 − k)k
.

Since a first order non-quasi-static approximation is used for the y0
i j (D

′) parameters,
a first order non-quasi-static approximation should also be used for −�vgc. To obtain
this we expand −�vgc in a frequency power series

−�vgc = id ′

[
1

2
α�2 − jω

(
1

6
α�2τSAT

)
− ω2

(
ατ 2

SAT�
2

24

)]
.

We shall use a model consisting of a resistor RSAT,1 in series with a negative inductor
−LSAT shunted by a negative resistor −RSAT,2 to represent �vSAT :

−�vgc = RSAT,1 id ′ − jωLSAT

1 + jω
LSAT

RSAT,2

id ′ = ZSAT(ω)id ′ .

The values of RSAT,1, LSAT and RSAT,2 which generate the required frequency power
series expansion of �vSAT are then:

RSAT,1(D
′) = 1

2
α�2,

LSAT(D
′) = 1

6
α �2τSAT ,

LSAT(D′)
RSAT,2(D′)

= 1

4
τSAT .
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Note that the fact that we selected an effective inductor (−LSAT) which is negative is
not a problem. An equivalent circuit RSAT,1||(R′

SAT,2 + 1/( jωCSAT)) could be used
with a series resistance R′

SAT,2 and a capacitor CSAT which are positive. The motivation
for the use of a negative inductor is the simplicity of the relaxation time constant
τSAT/4 and the inductance LSAT . Note, however, that the time delay LSAT/RSAT,2 is
positive so that the model −RSAT,2||(−LSAT) is indeed deterministic.

Similarly we need to develop a first order non-quasi-static model for the saturation
part of the gate current:

ig,SAT � id ′ [1 − exp(− jωτSAT)]

� id ′ jωτSAT (1 − 1/2 jωτSAT)

= jωτSAT

1 + jω 1
2 τSAT

id ′ . (12.34)

Thus id and id ′ are related by

id = id ′ − ig,SAT = id ′

[
1 − jω 1

2τSAT

1 + jω 1
2τSAT

]
,

where vd ′′′s is defined as

vd ′′′s = Fcxs + vd ′s .

These first order non-quasi-static expressions will be used later to develop a new
equivalent circuit.

12.3.2 Small-signal equivalent circuit for the D′′ internal node

The derivation of the large-signal model from the small-signal one presented above
is not immediate. The reason is that the small-signal wave-equation relies on the
AC drain voltage measured at the point D′ which is the time-average DC (constant)
position of the GCA/saturation boundary. As stated above the point D′ is not defined
in transient large-signal analysis, and the large-signal model must rely instead on
the GCA drain voltage at location D′′ which is the instantaneous DC (and therefore
time-dependent) position of the GCA/saturation boundary given by X S(t). A change
from D′ to D′′ is required and is performed below.

First we shall evaluate the AC position xs of the boundary D′′′ which in turn will
permit us to change the reference position from D′ to D′′. Note that for small-signal
excitation, the AC boundary position xs is related to the instantaneous and DC
boundary position xS(t) by

xS(t) = X S(D
′)+ xs exp( jωt).
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An expression for xs can be derived by comparing the drain currents at D′ and D′′′.
The drain current at the position D′ is

id ′ = y0
dg(D

′) vg′s + y0
dd(D

′) vd ′s . (12.35)

The drain current at the position D′′′ is

id ′′′ = WgCg µFc(vgs − vd ′′′s)

= βFc(vgs − vd ′′′s) (12.36)

with β = WgCGµ. Equation (12.36) holds simply because by definition the electron
velocity at D′′′ is vS = µFc and the channel charge at D′′′ is still controlled by the
potential vgd ′′′ (GCA approximation).

Now we know that the potentials vd ′′′s and vd ′s are related by

vd ′′′s = Fcxs + vd ′s . (12.37)

Because the DC current IDC is constant along the channel, the currents id ′, id ′′′ (and
also id ′′) are equal (to first order) despite the AC motion of the boundary. Setting
Equations (12.35) and (12.36) equal and using Equation (12.37) leads to

−β F2
c xs = (y0

dg(D
′)− βFc) vgs + (y0

dd(D
′)+ βFc) vd ′s .

Separating xs into its low-frequency (DC) part xs,dc and its frequency-dependent (AC)
part xs,ac,

xs = xs,dc + xs,ac(ω),

we have

xs,dc =
[
g0

m(D
′)− βFc

]
vgs +

[
g0

d(D
′)+ βFc

]
vd ′s, (12.38)

−βF2
c xs,ac =

[
jωCdg(D′)

1 + jωτdg(D′)

]
vgs +

[
jωCdd(D′)

1 + jωτdd(D′)

]
vd ′s . (12.39)

Now we can use the DC motion xs,dc to derive the expression relating the drain
potential vd ′′s at point D′′ to the drain potential vd ′s at the point D′:

vd ′′s = vd ′s + Fcxs,dc. (12.40)

This permits us to evaluate xs,dc in terms of vgs and vd ′′s . Substituting Equation (12.40)
into Equation (12.38) we find

xs,dc =
[

g0
m(D

′)− βFc

g0
d(D

′)Fc

]
vgs +

[
g0

d(D
′)+ βFc

g0
d(D

′)Fc

]
vd ′′s . (12.41)
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One can further derive the following identities

g0
m(D

′)− βFc

g0
d(D

′)Fc
= ∂X S(D′)

∂VGS
= − 1

Fc

k2

2(1 − k)2
,

g0
d(D

′)+ βFc

g0
d(D

′)Fc
= ∂X S(D′)

∂VD′S
= 1

Fc

2 − 2k + k2

2(1 − k)2
.




(12.42)

We are now in position to perform the change of reference point from D′ to D′′

using Equations (12.40) and (12.41). Note that as far as the quantities y0
i j (D

′) and
X S(D′) are concerned a change of variable from (D′) to (D′′) introduces a second
order contribution which is therefore neglected in a first order small-signal analysis.

First we can rewrite the gate current in terms of vd ′′s :

ig,GCA =
(

y0
gg − Fc y0

gd
∂X S

∂VGS

)
vgs +

(
y0

gd − Fc y0
gd
∂X S

∂VD′S

)
vd ′′s

= y1
ggvgs + y1

gdvd ′′s, (12.43)

which defines y1
gg and y1

gd . Similarly the drain current rewritten in terms of vd ′′s is
now:

id ′′ =
(

y0
dg − Fc y0

dd
∂X S

∂VGS

)
vgs +

(
y0

dd − Fc y0
dd
∂X S

∂VD′S

)
vd ′′s (12.44)

= y1
dgvgs + y1

ddvd ′′s,

which defines y1
dg and y1

dd . Finally we can rewrite Equation (12.39)

−βF2
c xs,ac =

[
jωCdg(D′)

1 + jωτdg(D′)
− Fc

∂X S(D′)
∂VGS

jωCdd(D′)
1 + jωτdd(D′)

]
vgs

+
[

jωCdd(D′)
1 + jωτdd(D′)

− Fc
∂X S(D′)
∂VGS

jωCdd(D′)
1 + jωτdd(D′)

]
vd ′′s .

The last equation is identified as the displacement current (AC) component of the AC
drain current id ′′ given by Equation (12.44). Indeed we can separate the drain current
id ′′′ = id ′′ = id ′ into its low-frequency (dc) part id ′′,dc and its frequency-dependent
(ac) part id ′′,ac:

id ′′ = id ′′,dc + id ′′,ac(ω).

One can then write the following identities:

id ′′,dc = βFc(vgs − vd ′′s) = βFc(vgs − vd ′s − Fcxs,dc), (12.45)

id ′′,ac = −βF2
c xs,ac. (12.46)

Equation (12.45) holds because we have

g0
m − Fcg0

d
∂X S

∂VGS
= −
(

g0
d − Fcg0

d
∂X S

∂VD′S

)
= βFc.
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Fig. 12.7. Alternative small-signal topology for the short-channel MOSFET.

Equations (12.45) and (12.46) could have been derived directly from Equation (12.33).
This self-consistent result therefore demonstrates that the change of reference from D′

to D′′ was performed correctly.
To complete the derivation of this small-signal equivalent circuit which uses D′′ as

the internal node, we need to give an expression directly relating vds and vd ′′s :

vds = vd ′′s − Fcxs,dc − α IDC� xs + ZSAT(ω)id ′′

= vd ′′s + C(ω)vgs + D(ω)vd ′′s + ZSAT(ω)id ′′, (12.47)

where we define C and D to be

C = −(Fc + α IDC�)
∂X S(D′)
∂VGS

+ α IDC�

βF2
c

[y1
dg(ω)− y1

dg(ω = 0)],

D = −(Fc + α IDC�)
∂X S(D′)
∂VD′S

+ α IDC�

βF2
c

[y1
dd(ω)− y1

dd(ω = 0)].


 (12.48)

The new small-signal equivalent circuit using D′′ instead of D′ for the internal node is
shown in Figure 12.7.

12.3.3 Large-signal model

Having derived the small-signal using D′′ as the internal node we are now in position
to derive the large-signal model for the velocity-saturated MOSFET wave-equation.

This large-signal model must satisfy the following three conditions: (1) its small
signal must reduce to that of the first order non-quasi-static model of the velocity-
saturated MOSFET wave-equation; (2) it must be expressed in terms of a first order
state-equation; and (3) it must conserve charge.

For clarity we first present the state equations (Condition (2)) of this large-signal
model and in the process demonstrate Condition (2). We will then verify that
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Condition (1) is enforced when this is not immediate. We postpone the verification
of Condition (3) to the next two sections.

The general topology of the large-signal model is shown in Figure 12.8. This large-
signal model makes use of six state equations which are defined below. The gate
current is given by

iG = iGG + iG D′′ + iG,SAT ,

with

iGG = Cgg(D
′′)

dvGS

dt
− d

dt

[
τgg(D

′′)iGG
]
, (12.49)

iG D′′ = −FcCgd(D
′′)
∂X S(D′′)
∂VGS

dvGS

dt
+
[

Cgd(D
′′)− FcCgd(D

′′)
∂X S(D′′)
∂VD′′S

]

× dvD′′S
dt

− d

dt
[τgd(D

′′)iG D′′], (12.50)

iG,SAT = Cg,SAT(D
′′)
(

dvGS

dt
− dvD′′′S

dt

)
− d

dt

[
1

2
τSAT(D

′′)iG,SAT

]
, (12.51)

where Cg,SAT , the capacitance associated with the saturation region, is

Cg,SAT(D
′′) = [Lg − X S(D

′′)]WgCG .

Note that the state equation for iG,SAT is driven among other things by the voltage
vD′′′S which is related to vD′′S by the following definition:

vD′′′S = vD′′S + Fc xS,displ,
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where xS,displ is the displacement portion of the instantaneous GCA/saturation bound-
ary:

xS(t) = X S(D
′′)+ xS,displ

Therefore xS,displ becomes a force term like vD′′S and vGS in the state equation for
iG,SAT . The following relation directly relates xS,displ to the displacement part of the
drain current (to be introduced below) by the following relation:

−βF2
C xS,displ = iD′′,displ = iD′′G + iD′′ D′′ . (12.52)

The drain current at the node D is given by

iD = iD′′ − iG,SAT ,

with iD′′ the drain current at position D′′. The drain current iD′′ is given by

iD′′ = IDC (D
′′)+ iD′′,displ = IDC (D

′′)+ iD′′G + iD′′ D′′,

where IDC is the DC current at D′′ given by

IDC (D
′′) = βFc(vGS − VT − vD′′S)

and where iD′′G and iD′′ D′′ are the displacement drain currents which satisfy the
following state equations:

iD′′G = Cdd(D
′′)

dvGS

dt
− d

dt

[
τdg(D

′′)iD′′G
]
, (12.53)

iD′′ D′′ = −FcCdd(D
′′)
∂X S(D′′)
∂VGS

dvGS

dt

+
[

Cdd(D
′′)− FcCdd(D

′′)
∂X S(D′′)
∂VD′′S

]
dvD′′S

dt
− d

dt
(τgd(D

′′)iD′′ D′′).

(12.54)

The internal drain voltage vD′′S is obtained from the applied voltage vDS using

vDS = vD′′S + vSAT,DC + vSAT,displ,

where vSAT,DC is the instantaneous voltage drop across the saturation region between
D′′ and D:

vSAT,DC = 1

2
α iD′′[Lg − xS(D

′′)]2 + Fc[Lg + X S(D
′′)].

Note that vSAT,DC indirectly involves some displacement terms because it is ex-
pressed in terms of the instantaneous drain current iD′′(t) and the instantaneous
GCA/saturation boundary position xS(D′′).
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vSAT,displ is the displacement part of the saturation voltage that is associated with the
high-frequency response of the saturation region, and is obtained from the following
state equation:

vSAT,displ = LSAT(D
′′)

diD′′

dt
− d

dt

[
1

4
τSAT (D

′′) vSAT,displ

]
,

with

LSAT = 1

6
α [Lg − X S(D

′′)]2τSAT(D
′′).

Note that now six state equations are required for the short-channel FET model instead
of the four state equations for the long-channel FET model. As before, four of the
state equations are used to account for the GCA region. One state equation is used to
account for the drain current delay and its impact on the gate current. The final state
equation is used for the motion of the voltage drop across the saturation region.

We need to verify that this large-signal model admits a small-signal model which
reduces to that of the first order non-quasi-static model of the velocity-saturated
MOSFET wave-equation. This verification of Condition (1) is for the most part
immediate.

Equation (12.43) is the small-signal version of the large-signal Equations (12.49)
and (12.50) if we define

iGG + iG D′′ = ig,GCA exp( jωt).

Equation (12.44) is the small-signal version of the large-signal Equations (12.49) and
(12.50) if we define

iD′′,displ = iD′′G + iD′′ D′′ = id ′′,ac exp( jωt).

We can also demonstrate that the large-signal Equation (12.51) for iG,SAT reduces to
the small-signal Equation (12.34) for ig,SAT . Letting iG,SAT = ig,SAT exp( jωt) in
Equation (12.51) we have (using τSAT = (Lg − X S)/vs)

ig,SAT = (Lg − X S)
WgCg jω(vgs − vd ′′′s)

1 + jω 1
2τSAT

= jωτSAT

1 + jω 1
2τSAT

id ′′′,

which is the same as Equation (12.34) since we have id ′ = id ′′′ . Note that X S and τSAT

are dependent on D′′ or equivalently D′ for small-signal analysis.
Equation (12.46) is the small-signal equation resulting from the large-signal Equa-

tion (12.52) relating xs,displ to iD′′,displ if we replace xs,displ by

xS,displ = xs,ac exp( jωt).

We have now verified that the proposed large-signal model indeed reduces for small-
signal analysis to the velocity-saturated MOSFET wave-equation small-signal model.
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12.3.4 Charge-based representation

In the next section we will verify that the large-signal model presented above enforces
charge conservation. However the practical implementation of charge conservation in
a circuit simulator is also a numerical issue. It is well recognized that the use of charges
as state variables instead of voltages allows the elimination of the non-conservation of
charge which arises from the approximate numerical integration techniques used by
the circuit simulator. The use of charge also reduces the number of state equations.
Unfortunately the introduction of charges in a non-quasi-static model requires the use
of only one [3,1] or two [4] relaxation-time constants instead of the four possible with
the use of capacitors.

Let us first introduce the definition of the various charges. The charge in the
saturation region QSAT and its normalized version Q′

SAT are defined from the DC
channel charge NS by

QSAT = qWg

∫ Lg

X S

NS(X S) dx = (Lg − X S)q NS(X S)

= [Lg − X S(D
′′)]WgCG(vGS − VT − vD′′S)

= (Lg − X S)Q
′
SAT(D

′′).

The gate charge QG and its normalized version Q′
G are (see previous chapter)

QG = X S Q′
G

= X SCG Wg(vGS − VT )
2

3
× −3 + 3k − k2

k − 2
,

where k is given by

k = vD′′S
vGS − VT

.

The drain charge Q D and its normalized version Q′
D are (see previous Chapter)

Q D = X S Q′
D

= X SCG Wg(vGS − VT )
2

15
× −15 + 25k − 15k2 + 3k2

4 − 4k + k2
.

The resulting new state equations are presented below. The gate current is given by

iG = iG,GCA + iG,SAT

iG,GCA = X S(D
′′)

d QG(D′′)
dt

− FcCgd(D
′′)

d X S(D′′)
dt

− d

dt
[τG(D

′′)iG,GCA]

(12.55)

iG,SAT = [Lg − X S(D
′′)]

d Q′
SAT(D

′′′)
dt

− d

dt

[
1

2
τSAT(D

′′′) iG,SAT

]
. (12.56)
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Finally the displacement drain current iD′′,displ is now given by

iD′′,displ = X S(D
′′)

d Q D(D′′)
dt

− FcC ′
dd(D

′′)
d X S(D′′)

dt
− d

dt
[τD(D

′′)iD′′,displ].

(12.57)

12.3.5 Charge conservation

We need now to verify that both of these large-signal models conserve charge.
Following the approach used in Chapter 11, this is equivalent to verifying that the
instantaneous charge transfer to the gate is path-independent:

�qG(t1, t2) =
∫ t2

t1
iG dt = QG,tot[VGS(2), VDS(2)] − QG,tot[VGS(1), VGS(1)]

if the device is in a steady state at times t1 and t2. Note that we can rewrite

X S
d Q′

G

dt
= d

dt
(X S Q′

G)− Q′
G

d X S

dt

(Lg − Xs)
d Q′

SAT

dt
= d

dt
[(Lg − Xs)Q

′
SAT ] + Q′

SAT
d Xs

dt
.

Note also that the following term vanishes:

∫ t2

t1

(−Q′
G − FcCgd + Q′

SAT

)d X S

dt
dt = 0

because of the identity (Problem 12.2)

−Q′
G + Q′

SAT = FcCgd = (vGS − VT )
1

3
CG Wg

(3 − k)k

k − 2
. (12.58)

This leads to

�qG(t1, t2) =
∫ t2

t1
(iG,GCA + iG,SAT) dt

= [QG(VGS(2), VD′′S(2))+ QSAT(VGS(2), VD′′S(2))

− QG(VGS(1), VD′′S(1))+ QSAT(VDS(1), VD′′S(1))
]

= QG,tot(VGS(2), VDS(2))− QG,tot(VGS(1), VDS(1)),

which is path-independent as required. This derivation of charge conservation holds
for both the charge-based (two-τ ) and the capacitor-based (four-τ ) models.
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12.3.6 Model topology

In this section we will conclude our theoretical study of the MOSFET wave-equation
with the derivation of a large-signal model for the velocity-saturated MOSFET wave-
equation of short-channel MOSFET/MODFET. The large-signal model presented is
fairly complicated. Yet the voltage dependences of the y parameters are too simplistic
due to the model assumptions of constant capacitor, mobility and saturation velocity.
Consequently the increased complexity does not by itself provide an improved fit to
the voltage dependence observed in real devices.

The major motivation of this work, however, is to establish as rigorously as possible
the large-signal model topology associated with the velocity-saturated MOSFET
wave-equation. The topologies of models are of importance because they determine
the dispersion (frequency dependence) of the model. Topology does not specify
the voltage dependence of the current sources, capacitors or charges, which must
be obtained separately. For example, we shall see in the next chapter that the
tensor product B-spline can be used in a table model to accurately represent, at a
moderate numerical cost, the complex voltage dependence of the model elements
while enforcing continuity of the derivatives up to the order desired. With the use of
such accurate tools to represent the voltage dependences, the limit in device modeling
becomes the topology which establishes the dispersion using circuit-elements which
are frequency-independent.

The topology obtained from the velocity-saturated MOSFET wave-equation is more
complex than that of the long-channel MOSFET wave-equation. Two additional state
equations are introduced and an internal node is required. This originates from the
rather complex self-consistent motion of the GCA/saturation boundary.

The large-signal equation of iG,GCA and iD,displ can be rewritten in terms of the
voltage D′ as

iG,GG A = Xs(D
′′)

d Q′
G(D

′)
dt

− d

dt
[τG(D

′′) iG,GCA],

iD′′,displ = Xs(D
′′)

d Q′
D(D

′)
dt

− d

dt
[τD(D

′′) iD,displ],

if we introduce the non-physical voltage vD′S:

vD′S = vD′′S − Fc X S(D
′′).

We can represent the charge-based large-signal topology shown in Figure 12.9 using
Q charge elements with the current given by

i j = Xs(D
′′)

d Q′
j (D

′)
dt

− d

dt
[τj (D

′′) i j ]

and using an L circuit element with current given by

vj = L j (D
′′)

dij

dt
− d

dt
[τj (D

′′) vj ].
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Fig. 12.9. Charge-based large-signal topology.

The topology derived from the short-channel MOSFET wave-equation introduces
the displacement current iG,SAT which is supported by the charge QSAT . This topology
clearly indicates that even though in the saturation region the gate-to-channel voltage
no longer controls the channel charge (the GCA approximation is not applicable), the
charge in the velocity-saturated part of the channel remains imaged in the gate inducing
the new additional displacement current iG,SAT in the gate terminal.

12.4 Conclusion

The velocity-saturated MODFET wave-equation analyzed in this chapter and the large-
signal model developed from it have provided us with a physical description of the
frequency dispersions and partitioning of the charges and of their voltage-dependences
in the intrinsic short-channel MODFET. The reader is referred to [2] for an example
of its application to the physical modeling of MODFETs and to Chapter 15 for further
in-depth analyses.

To conclude Chapter 12, let us note that, as was found in Figure 12.5, the non-
quasi-static large-signal model topology (MOD B) developed in Chapter 11 for the
long-channel FET is applicable to the short-channel FET up to f0 which is on the
order of fmax . Indeed, the new frequency dispersion effects introduced by the non-
quasi-static model topology developed for the short-channel FET are usually above
fmax . Therefore the simpler long-channel model topology established in Chapter 11
is usually sufficient for fitting the frequency response of FETs for frequencies below
fmax and will be adopted in Chapter 13 for the development of more complex model
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topologies accounting for electrothermal effects and other low-frequency dispersion
effects.
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12.6 Problems

12.1 Derive the equivalent circuit of Figure 12.1. Note that the exact equivalent circuit is obtained
by rewriting the resulting y-parameters yi j (sat) in terms of the y-parameters of the GCA
region yi j (GCA) of reduced gate length XS = Lg − �.

12.2 Verify the charge conservation identity given by Equation (12.58).



13 DC and microwave electrothermal modeling
of FETs

Patrick Roblin and Siraj Akhtar

The purpose of models is not to fit the data but to sharpen the questions.

11th R. A. Fisher Memorial Lectures, Royal Society, 20 April 1983, SAMUEL KARLIN

13.1 Introduction

The design and simulation of microwave circuits with a circuit simulator requires the
availability of fast and accurate models for all components in the circuit. From a
design perspective, the reliability of the simulations of microwave circuits is usually
limited by the device models that are available in the computer simulation tools used.
Accurate and computationally efficient device models, that are easy to extract from
measured data and can easily be incorporated into a circuit simulator, are therefore
needed to improve and speed up the design of high-frequency circuits.

Although a model can come close, it can never exactly reproduce the performance
of a device. Hence it is important to realize that the modeling effort may need to be
tailored towards the kinds of circuits being simulated. This can be very important
given the fact that not only accuracy, but also speed and convergence are important
factors that need to be addressed.

In this chapter, we will present the methodology for the development of a universal
field-effect transistor (FET) model for the DC, thermal and microwave modeling of
three-terminal FET devices using some of the results derived in Chapter 11. Universal
models are models that are applicable to a wide range of technologies. In this chapter
we focus on the application of the universal microwave FET models to: (1) SOI
(silicon on insulator) MOSFETs [1] for low-power RFIC integrating RF and digital
circuitry on a single chip, and (2) LD MOSFETs [2] (laterally diffused MOS) for
high-power, linear amplification. These devices are of particular interest as they
present some interesting challenges due to their large self-heating (SOI and LD) and
the presence of kinks in their DC I –V characteristics (SOI).

412
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Of particular interest is the use of these models for RF/microwave power amplifier
design and simulation and associated self-heating and self-biasing effects. The
discussion in this chapter is, however, general enough that the methods presented
can easily be applied to other devices, technologies and circuits. The reader is
referred to [3,4,5] for the application of universal FET models to GaAs FETs and
high-electron-mobility transistors (HEMTs).

13.2 Modeling for power amplifier design

For low-cost, low-power, mobile applications (cellular phones and pagers), monolithic
microwave integrated circuits (MMICs) and RF CMOS are used to completely
integrate the subcomponents of a transceiver system. These components include power
amplifiers (PAs), low-noise amplifiers (LNAs), mixers and voltage controlled oscilla-
tors (VCOs). Because power consumption is the driving element in such designs, class
C and higher amplifiers are used. These amplifiers give high power-added efficiency
(PAE) (50–60%) but tend to be very non-linear [6]. The non-linearity is acceptable
since constant envelope modulation is used.

For RF CMOS technologies, PAs for transmitters are designed using ‘low-frequency
techniques’ whereby the aspect ratio of the transistor is varied until the desired gain is
achieved. For matching purposes, the output resistance of the transistor is transformed
to 50 � and the capacitance may be canceled by an inductor. For receivers, noise
performance is of greater concern than maximizing gain. In such designs where
low-cost mass production is essential, it would be very impracticable to extract a
device model from measured data for each transistor. In general, the approach has
been to try to use available transistor models (such as BISIM3). Once a good design,
relatively insensitive to the transistor characteristics, has been achieved, the circuit can
be mass produced. As long as device parameter fluctuations are small enough, the
circuit performance will be acceptable due to the low power of the signals.

For PAs that are used in expensive and large infrastructure applications (cellular
base-stations and high-power transmitters), maximizing output power and linearity
is highly important since a number of channels are simultaneously combined and
amplified before being sent to the antenna. Since both linearity and PAE are important
in such applications, class A or AB biasing is preferred. This inherently implies
that DC power consumption will be high (PAE from 12% to 40%) and hence the
temperature of the PA will significantly increase, necessitating the need for cooling
units. The high power and RF current densities imply that packaged devices and
microstrip technology has to be used in such applications. ‘Microwave’ design
techniques that rely on measuring the high-power large-signal S parameters of the
transistor at the desired bias point and frequency and then building an input and
output matching circuit are used for these amplifiers. Load pull techniques can
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also be used to obtain data for building matching networks giving constant power
gain. Because maximizing gain is very difficult in light of the high power and very
low inherent device impedance, the matching circuits must be individually tuned to
optimize performance [7].

Extensive circuit simulations are often not performed for such amplifiers due to
the unavailability of models that can accurately predict important PA characteristics
such as gain harmonics, PAE, two-tone intermodulation distortion (for FDMA AMPS
cellular systems), spectral regrowth and adjacent channel power (for CDMA) over a
wide bias, temperature and frequency range.∗ Hence such device models are essential
to streamline the design of PAs and to provide a virtual testbed for the designer to carry
out all sorts of tests on the amplifier and to optimize the performance accordingly.

Such a model will have to be extracted from measured device data. The substantial
variation in transistor parameters calls for a scheme whereby the model extracted for
one device can be fitted to another device with the smallest number of additional
measurements.

13.3 Physical versus table-based models

SPICE-based FET models, such as versions of BISIM, use physics-based equations to
model the device [8].† In order to account for any additional physical effect, a new
equation is added. This leads to an increasing number of different, and somewhat
complex, equations that have to be accounted for by the model.

In the table-modeling approach, a generic set of equations is used to interpolate
between model parameters. This can lead to a reduction in complexity of the equations,
while allowing for charge conservation [9,3] and continuity of derivatives, provided
that the original set of generic equations can handle this. Table modeling begins with
the selection of the right model topology for the device. The disadvantage of the
table-modeling approach is that usually the model parameters extracted do not have
physical meanings and are simply chosen to give the best fit.

Physics-based models have found increasing use for bipolar type devices, while FET
modeling, particularly at high power, is dominated by table-modeling approaches. Yet
perhaps, it is the combination of these two methods that will yield the best results.
In this chapter, emphasis is given to explaining table-based approaches for device
modeling that incorporate physical constraints.

∗ FDMA = frequency division multiple access; AMPS = advanced mobile phone service; CDMA = code
division multiple access.
† SPICE = simulation program for integrated circuits emphasis.
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Fig. 13.1. Electrothermal and microwave measurement setup.

13.4 Device characterization

For modeling to be successful, accurate data acquisition is vital. This includes not only
current and voltage information, but also microwave and temperature data. The latter is
critical for electrothermal modeling, which needs a setup allowing for both substrate
heating and cooling. Figure 13.1 shows the setup for an automated data acquisition
system under computer control.

Device probing is the best way to acquire accurate data for on-chip devices.
However, for large devices that are formed by the parallel combination of many
small devices, current crowding and the inherent low impedance of the device makes
it difficult to simply combine the extracted model for a unit device. For large
packaged devices, DC measurements can be very difficult due to thermal instability,
while microwave measurements can be challenging due to the low impedance of the
device. It is therefore necessary to ensure that the biasing methodology used for both
measurement and circuit design are the same.
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Fig. 13.2. Measured I –V –T of an LD MOSFET for a constant substrate temperature of 29 ◦C.

13.4.1 DC I --V --T

Figure 13.2 shows the measured I –V –T characteristics (noted ID,DC (VGS, VDS,

Tsub)) of an LD MOSFET. Superimposed on the figure are the measured device
temperature, Tdev, at the given bias point. In a measurement such as this, the substrate
temperature, Tsub, is kept constant. It is clear that there can be a substantial build up of
temperature in the device. This high temperature leads to a reduction in the electron
mobility in the channel, which gives rise to the negative drain conductance at high bias.
This phenomenon is known as self-heating and is one of the causes of low-frequency
dispersions in the S parameters of a device.

13.4.2 Pulsed I --V characteristics

Pulsed I –V characteristics, also referred to as transient I –V characteristics, are
another type of measurement that is very useful for modeling purposes [10,11,12,13].
In pulsed I –V characteristics, the device is biased at a fixed point that establishes the
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operating point and device temperature (VGS, VDS, IDS, Tdev). Pulses of short duration
and low duty rate are applied to reach new transient biases (vGS, vDS, iDS, Tdev) at
which the drain current is recorded. The pulse duration and duty rate are short enough
that the device does not have time to respond to low-frequency effects such as traps,
parasitic bipolar transistor and thermal effects. The pulse duration should not be too
short to allow the FET capacitances to finish updating their charge. Typically the
pulse duration is on the order of a microsecond and the duty rate is smaller than 1%.
Hence the device operation is isothermal. The pulsed I –V characteristics, which
are denoted ID,tran(vGS, vDS, VGS, VDS, Tdev), provide us with the effective I –V
characteristics followed by the transistor at high frequencies when its DC operating
point is (VGS, VDS, Tdev).

Pulsed I –V test systems can be commercially acquired. However, it is possible to
construct such a system using pulsers and an oscilloscope. Figure 13.3 shows such a
setup. The trajectory of the voltages and current showing the starting DC bias point is
depicted in Figure 13.4 for a measured pulsed I –V characteristic.
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13.4.3 Isothermal I --V characteristics

While pulsed I –V characteristics bypass low-frequency dispersions as a result of both
traps, parasitic bipolar transistor and thermal effects, isothermal I –V characteristics
bypass only thermal effects. Isothermal I –V characteristics have a constant device
temperature yet include the effects of traps and other low-frequency dispersion
phenomena. The term isothermal I –V characteristics can be misleading since pulsed
I –V characteristics are also isothermal in nature. However, as mentioned earlier,
pulsed I –V characteristics are more than just isothermal.

Figure 13.5 shows a pulsed I –V characteristic compared with an isothermal I –V
one for a SOI MOSFET. Although both curves have the same average Tdev, it is clear
that the curves are not the same. Notice that the two I –V characteristics agree at
the bias point, indicated by a star, used for measuring the pulsed I –V characteristic.
Indeed, at the DC bias point the transient (ID,tran) and the isothermal (ID,iso) I –V
characteristics are equal:

ID,tran(vGS = VGS, vDS = VDS, VGS, VDS, Tdev) = ID,iso(VGS, VDS, Tdev).
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The isothermal I –V characteristics of the SOI MOSFET feature a characteristic kink
in the drain current associated with the activation in the SOI MOSFET of the parasitic
bipolar transistor by the holes generated by impact ionization (see Figure 13.6) at high
drain voltages. No such kinks are present in the transient I –V characteristic as the
parasitic bipolar transistor does not respond to fast variations of the drain and gate
voltages.

Notice further in Figure 13.5 that neither of the two I –V characteristics shows the
self-heating-induced negative drain conductance. We shall see in the model section
that under DC operation the DC (ID,DC ) and isothermal (ID,iso) I –V drain currents
are related by:

ID,DC (VGS, VDS, Tsub) = ID,iso(VGS, VDS, Tdev) (13.1)

with Tdev = Tsub + Rth(Tsub)× Pavg,

where Tsub is the substrate temperature, Rth is the effective thermal resistance and Pavg

is the average power dissipated by the FET. It is to be noted that Tdev is the average
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device temperature in the channel. For large devices a large surface temperature
gradient might be present among the gate fingers and a distributed thermal network
becomes necessary.

Isothermal I –V characteristics can be measured directly by using an efficient
automated data acquisition system that searches for all bias points with the desired
Tdev as the substrate temperature is varied [14]. Isothermal I –V characteristics can
also be extracted directly from a full data set of IDS and Tdev, obtained by varying
VGS , VDS and Tsub. Such an approach allows for the isothermal I –V characteristic at
any Tdev to be mathematically computed [14].

Both pulsed and isothermal I –V characteristics are important in understanding the
behavior of RF circuits such as PAs. In such a circuit, the isothermal I –V characteristic
establishes the device bias point, while the pulsed I –V ones are an indication of the
device response under RF drive. As the RF power output increases, non-linearities will
cause the device operating point and temperature to change. Hence a new isothermal
I –V characteristic (one with a different Tdev) establishes the new bias point and a
different pulsed I –V characteristic predicts the RF behavior.

While isothermal I –V characteristics can be readily obtained using the technique
mentioned previously, pulsed I –V characteristics cannot, in general, be repeatedly
measured for each bias point. Hence a model must be able to predict pulsed I –V
characteristics. This can be accomplished by using the microwave characteristics of
the device.
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13.5 Small-signal modeling

13.5.1 Microwave data acquisition

The measurement techniques for isothermal I –V characteristics already discussed can
be used to acquire isothermal microwave data for a device. This is an acceptable
method if the DC bias dependence of the isothermal charge can be neglected. Another
approach is to determine the pulsed I –V characteristic followed by pulsed RF
measurements. Commercial test systems capable of performing these measurements
are available.

In order to deembed the impact of the network analyzer and the measurement
test bed, thorough microwave calibrations must be performed. The most ubiquitous
calibration scheme used to remove errors from measured S parameter data is SOLT
(short, open, load and thru). However, because of the difficulty of fabricating a
good load standard, SOLT is not very desirable. The TRL (thru, reflect and line)
technique is better since it does not rely on known standard loads but rather uses
simple connections to allow for the error boxes to be characterized completely [15].
The ‘thru’ is a direct connection between the two ports at the desired reference plane.
The ‘reflect’ uses a load with a large reflection coefficient, such as a short or an open. It
is not necessary to know the reflection coefficient since it is extracted during the TRL
calibration procedure. This then gives an additional verification of the accuracy of the
TRL calibration performed. In the ‘line’ connection, a length of matched transmission
line is connected between the two ports. The length of the line need not be known
and it need not be lossless, since these parameters will be determined by the TRL
procedure [16]. However, the length of the lines used determines the frequency band of
validity for the TRL calibration. Further loss has been shown to increase the calibration
accuracy, hence a lossy line can provide a usable calibration over a broader band.

In order to span a large frequency band, a multi-line method can be used such that
shorter lines are used for higher frequencies and longer lines for lower frequencies.

13.5.2 Small-signal topology

Table modeling begins with the selection of a model topology that fits the bias-
dependent small-signal S parameters of the device. Figure 13.7 shows the extrinsic
version of the small-signal model topology which was introduced in Chapter 11 for
three-terminal FETs.

The y parameters of the intrinsic FET model can be written as:

Yi j = gi j + jωCi j

1 + jωτi j
, (13.2)



422 DC and microwave electrothermal modeling of FETs

R d Ld

R s

L s

vds
22RR11

C11

vgs

221/g
11

1/g

C22

RgLg

vds12y

vgs21y

R11

22R C22

C11

s

=

τ

τ11

22 =

g d
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where Ci j , gi j and τi j are the bias-dependent capacitance (transcapacitance), con-
ductance (transconductance) and non-quasi-static time constants, respectively. The
non-quasi-static time constants τi j introduce a redistribution time for the charge, which
becomes important at frequencies approaching fmax [17].

13.5.3 Parasitic deembedding

Although the intrinsic model is quite simple, the extrinsic model is complicated by a
transformation from y to z parameters. Also deembedding of the parasitics associated
with the FET and the package does not have an easy solution because of the fact
that a DC gate current does not flow in many FETs. In the presence of resistive and
inductive parasitics at the terminals, one verifies [18] that the extrinsic zi j for the
non-quasi-static model selected assumes a frequency dependence similar to that of the
quasi-static model [19,20]:

Re(zextr,ij) = Ri j + Ai j

ω2 + B2
r
, (13.3)

1

ω
Im(zextr,ij) = Li j + Bi j

ω2 + B2
r

+ Gi j

ω2
(
ω2 + B2

r

) , (13.4)

where the various coefficients Ri j are now given by

R12 = Rs + δR12 with δR12 = C12τD

A
,
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Table 13.1. zextr,ij fit parameters in terms of the model parameters.

L11 = Lg + Ls L22 = Ld + Ls

L12 = L21 = Ls G22 = G12 = 0

B = C11gd − C12gm Br = B

A
A12 = Br B12 B12 = −Br δR12 − C12

A
A22 = Br B22 B22 = C11

A2
(BτD + A)

Ip11 = (τG + τD)gd + C22 Ip21 = −(τG + τD)gm − C21

A11 = gd

A
+ Br B11 B11 = −Br δR11 + Ip11

A

A21 = − gm

A
+ Br B21 B21 = −Br δR21 + Ip21

A

G11 = −Bgd

A2
G21 = Bgm

A2

R22 = Rs + Rd + δR22 with δR22 = −C11τD

A
,

R11 = Rs + Rg + δR11 with δR11 = −τGτDgd + C22τG

A
,

R21 = Rs + δR21 with δR21 = τGτDgm + C21τG

A
,

with A = C12C21 − C11C22 + τD(gmC12 − gdC11) and δRi j the non-quasi-static
corrections. The remaining parameters are given in Table 13.1.

The measured z-parameter data can be mathematically fitted to Equations (13.3)
and (13.4) using least squares methods. The common denominator across all the z pa-
rameters can be used to obtain parametric curves between two extrinsic z parameters
[21]. The intercept of these linear regressions gives the Ri j and Li j coefficients in
terms of R11 and L12, respectively. Next the independent coefficients R11, Ai j and
B2

r can be obtained from a simultaneous least square fit of the Re(zi j ) after rewriting
Equation (13.3) in terms of a fraction. Finally G21 and L12 can be obtained from a
simultaneous fit of all the Im(zi j ) with the use of the theoretical model constraints:
Ai j = ±gi j/A + Br Bi j . Figure 13.8 shows an obtained fit for the S parameters of an
LD MOSFET.

The model parameters (parasitics plus intrinsic elements) can be expressed in terms
of the fitting parameters of Equations (13.3) and (13.4) by inverting their original
relationships [18]. One obtains the formulas given in Table 13.5.3 for calculating the
extrinsic and intrinsic model parameters in terms of the known fit parameters Ai j ,
Ri j , Li j , B2

r and Gi j [19] and the unknown source resistance Rs . For the two-τ
non-quasi-static model considered there exists therefore a continuum of solutions as
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signs) for VGS = 4.5 V, VDS = 20 V and Tdev of 90 ◦C for an LD MOSFET. (P. Roblin, S. Akhtar
and J. Strahler, IEEE Microwave and Guided Wave Letters, Vol. 10, No. 8, pp. 322–324, August
2000. c©2000 IEEE.)

a function of Rs which yield the exact same fit to the zi j or Si j parameters. Note
however, that the capacitances C11 and C12, the extrinsic gD and gM , and the parasitic
inductances Ls , Lg and Ld are independent of Rs and hence are uniquely extracted.

A range analysis, such that all extracted parameters have the correct sign, can
be used to limit the final solution. Assuming that extrinsic parameters are bias-
independent, a multi-bias analysis can be used to pin the values of the parasitics.
Figure 13.9 shows such an analysis whereby the parasitic drain and gate resistances
are plotted as functions of the source resistance. Points of convergence in the curves
indicate the final solution.

Once parasitic elements have been deembedded, the intrinsic data can be fitted to ex-
tract the small-signal parameters. It must be noted that the gm (g21, transconductance)
and gd (g22, drain conductance) obtained may be very different from the DC gm(I –V )
and gd(I –V ) values. This will be the case if there is low-frequency dispersion in the
measured microwave data. The extracted parameters are the AC gm(RF) and gd(RF).
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Table 13.2. Model parameters in terms of the zextr,ij fit parameters.

Ls = L12 = L21 Lg = L11 − Ls

Ld = L22 − Ls Br = B11 B2
r − G11

A11

C11 =
(

− G11

B2
r

+ A12

A22

G21

B2
r

)−1
C12 =

(
− G21

B2
r

+ A22

A12

G11

B2
r

)−1

gM = −G21

G11(R22 + A22/B2
r )− G21(R12 + A12/B2

r )
gD = G11

G11(R22 + A22/B2
r )− G21(R12 + A12/B2

r )

Rd =
(

−1 + A22

A12

)
Rs +

(
R22 − R12

A22

A12

)
τD = Rs − R12

Br

(
R12 − Rs + A12/B2

r

)
c11p = − A22

A12
Rs +

(
A22

B2
r

+ R12
A22

A12

)
c12p = Rs − R12 − A12

B2
r

B = − B2
r

c11pG11 + c12pG21
Rp21 = (Rs − R21)

B

Br

gm = BG21

B2
r

gd = − BG11

B2
r

Ip21 = B21
B

Br
+ B(R21 − Rs) τG = − Ip21

2gm
±
[(

Ip21

2gm

)2
+ Rp21

gm

]1/2

C21 = −[Ip21 + (τD + τG)gm ] C22 = − B

C11

(
1

Br
− C12C21

B
+ τD

)

Rp11 = τGτDgd + τGC22 Rg = R11 − Rs + Rp11 Br

B

13.6 Large-signal modeling

While the small-signal model describes the device behavior under low power, a large-
signal model is needed to predict device performance for higher-power operation.
Obviously the large-signal model used must reduce to the small-signal model under
low power.

13.6.1 Model formulation

Figure 13.10 shows an intrinsic large-signal model topology for a three-terminal FET
type device. This large-signal model features three distinct subcircuits. The first
subcircuit consists of the non-quasi-static FET model derived in Chapter 11 except that
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Fig. 13.11. Non-quasi-static transient simulation. The full line is the drain current, the dashed line is
the source current, and the dotted line is the gate current.

the drain current is denoted Iwi i (without impact ionization). The second subcircuit
is the parasitic bipolar transistor driven by the impact ionization current Iii . The
parasitic transistor is responsible for introducing kinks in the I –V characteristics of
SOI MOSFETs and an associated low-frequency dispersion effect. The third subcircuit
is the thermal network which is driven by the power dissipated by the FET and
accounts for the self-heating effect.

Let us start with the non-quasi-static FET model. In order to better understand the
contribution of the various elements of the large-signal model, Figure 13.11 shows the
simulated output currents of an SOI MOSFET for an input gate ramp. A voltage ramp
from 0.5 to 5.0 V with a 20 ps rise time is applied to the gate while the drain is held
at 1.5 V and the source is grounded. In Figure 13.11, if only the large-signal current
element existed in the model, both the drain and source current components would be
the same. But the charge element introduces a transient gate current which causes the
drain and source current to be different. The non-quasi-static times constants give rise
to the smooth relaxation in the currents at the points where the slope of the applied
voltage changes.
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The large-signal representations can be obtained from the extracted small-signal
model parameters using the following equations:

ID,trans(vGS, vDS, VGS, VDS, Tdev) =∫ vGS

VGS

g21(V
′
GS, VDS, Tdev) dV ′

GS +
∫ vDS

VDS

g22(vGS, V ′
DS, Tdev) dV ′

DS,

QG(vGS, vDS, VGS, VDS, Tdev) =∫ vGS

VGS

C11(V
′
GS, VDS, Tdev) dV ′

GS +
∫ vDS

VDS

C12(vGS, V ′
DS, Tdev) dV ′

DS,

Q D(vGS, vDS, VGS, VDS, Tdev) =∫ vGS

VGS

C21(V
′
GS, VDS, Tdev) dV ′

GS +
∫ vDS

VDS

C22(vGS, V ′
DS, Tdev) dV ′

DS,




(13.5)

with ID,trans(VGS, VDS, VGS, VDS, Tdev) � ID(VGS, VDS, Tsub). Note that we will
neglect the possible DC bias dependence (VGS, VDS) of the isothermal gate charge QG

and drain charge Q D . We will also neglect the dependence of ID,trans on the internal
body to source voltage, VBS . Such is the case in LD MOS technology where the source
is connected to the body and ground through a sinker diffusion step (see Figure 13.12).
In partially depleted SOI MOSFETs, even in the absence of internal body ties, this can
be verified to be a good assumption (see Figure 13.18 for a verification). However,
for other technologies where traps play an important role, this assumption can be the
cause of discrepancies between measured and simulated results.

We shall assume that IG can be set to zero, which is the case for LD MOSFETs
and SOI MOSFETs, but not for other FETs such as MESFETs and HEMTs. The total
non-quasi-static current flowing through the charge elements QG or Q D of Figure 13.7
can be written as (using i for G or D):

idisp,i (t) = d Qi (vGS, vDS, Tdev)

dt
− d

dt

[
τi (vGS, vDS, Tdev)idisp,i

]
, (13.6)

where τi is the non-quasi-static charge redistribution time associated with the particu-
lar charge element, Qi [17].

The total gate and drain currents can then be expressed as:

iG(t) = idisp,G(t),

iD(t) = ID,trans(t)+ idisp,D(t).

}
(13.7)

13.6.2 Tensor product B-splines

In order to extract the large-signal model parameters, the small-signal parameter data
(AC gs and Cs) need to be fitted over the entire bias range and integrated.

This is where table methods for modeling give an advantage by using a generic set
of equations to represent important model parameters. The tensor product B-spline
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metallic body tie, greatly reducing the floating body and associated parasitic bipolar effects.

(TPS) is one such set of equations [22,23,4]. TPS can be used to represent a bivariate
function as follows [24]:

S(VGS, VDS) =
m∑

i=1

n∑
j=1

ai j Bi,kVGS ,tVGS
(VGS) Bj,kVDS ,tVDS

(VDS), (13.8)

where kVGS and kVDS are the B-spline orders in the VGS and VDS directions,
respectively, tVGS and tVDS are the knot sequences in the VGS and VDS directions,
respectively, Bi,kVGS ,tVGS

and Bj,kVDS ,tVDS
are one-dimensional B-spline polynomial

functions, and ai j are the TPS coefficients that need to be determined.
Storage requirements for the TPS method are very reasonable, since for m = 20

and n = 20, only 400 ai j coefficients are required. For kV G = 4 and kV D = 4,
only 16 coefficients are required to compute functional and derivative values at any
particular bias point, due to the variation diminishing property of B-splines. Hence
computation proceeds rapidly. By using B-splines of order 4, second order continuity
is guaranteed. Also, mixed derivatives match, ensuring that the TPS method will be
charge conserving. The TPS method can be used in a least squares approach to extract
the ai j coefficients from small-signal gradient and functional data [25]. Using the least
squares technique leads to a unique solution, hence avoiding the need to go through
time-consuming parameter optimization algorithms.

The TPS method can also be extended to represent multi-variate functions. For
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example, temperature can be included as follows:

S(VGS, VDS, Tdev) =
m∑

i=1

n∑
j=1

p∑
l=1

ai jk Bi,kGS,tGS (VGS)Bj,kDS,tDS (VDS)Bl,kdev,tdev(Tdev).

Such a formulation can be used to extract isothermal I –V characteristics from a full
data set of IDS and Tdev, obtained by varying VGS , VDS , and Tsub.

13.6.3 I --V characteristics

TPS can be used to perform the integration of the AC gm(RF) and gd(RF) together
with a DC bias forcing condition. Figure 13.13 shows the AC gm(RF) obtained using
TPS (full lines) compared with that extracted from the small-signal fit (circles). This
integration yields a pulsed I –V characteristic. The forcing condition is necessary
because pulsed I –V characteristics are bias-point-dependent and hence there are as
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many pulsed I –V characteristics as bias points. However, from a modeling point of
view, it is not feasible to redo a complete integration for each new bias point. This is
especially true for non-linear circuits where the bias point can easily depart from its
initial value and hence is dynamically set.

In order to bridge the gap between the isothermal I –V characteristics (which predict
the device biasing) and transient I –V characteristics, a parasitic bipolar transistor
with a floating base driven by the impact ionization current is used in the model
in Figure 13.10 to handle this low-frequency dispersion [26]. Other approaches
use a low-pass filter [27] to map this dispersion. The use of a parasitic bipolar
is based on physical considerations, since FETs contain a parasitic bipolar junction
transistor (BJT). However, depending upon the technology being used, the role of this
parasitic can be either substantial (in partially depleted floating body SOI MOSFETs)
or minimal (in LD MOSFETs due to the source sinker).

An RF I –V characteristic can be defined as one with derivatives agreeing with
the AC gm(RF) and gd(RF), while at the same time agreeing with the isothermal
I –V characteristic in low-drain-voltage regions. This is based upon observations that
low-frequency dispersions are more profound at higher drain voltages. For an SOI
MOSFET, the onset of the kink can be used to define the low-drain-voltage region
[28].

The model can then predict the appropriate transient I –V characteristics
ID,trans(vGS, vDS, VGS, VDS, Tdev), from the isothermal, ID,iso(vGS, vDS, Tdev), and
the RF, ID,RF (vGS, vDS, Tdev), I –V characteristics for any bias VGS, VDS . TPS can
be used to represent both the isothermal and RF I –V characteristics as shown for an
SOI device in Figure 13.14.

13.6.4 Parasitic bipolar topologies

Model topologies for the internal parasitic bipolar transistor are presented in Fig-
ure 13.15. For a wide range of drain to source voltages, the internal BJT operates
in the active mode, for which model (a) in Figure 13.15 can be used to represent the
BJT. For this model Iwi i and Iii can be expressed in terms of ID,iso(vGS, vDS, Tdev)

and ID,RF (vGS, vDS, Tdev) as follows:

Iwi i (vGS, vDS, Tdev) = 1

α

[
ID,RF (vGS, vDS, Tdev)− ID,iso(vGS, vDS, Tdev)

]
+ ID,iso(vGS, vDS, Tdev), (13.9)

Iii (vGS, vDS, Tdev) = 1 − α
α

[
ID,iso(vGS, vDS, Tdev)− ID,RF (vGS, vDS, Tdev)

]
.

(13.10)
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The transient I –V characteristic associated with this model can then be written as:

ID,trans(vGS, vDS, VGS, VDS, Tdev) = Iwi i (vGS, vDS, Tdev)+ Iii (vGS, vDS, Tdev)

+ α

1 − α Iii (VGS, VDS, Tdev), (13.11)

where VGS , VDS and Tdev are the DC bias point around which the transient I –V
characteristic is generated.

From Equation (13.11), it is clear that ID,trans(vGS = 0, vDS = 0, VGS, VDS, Tdev)

does not equal zero, yet this is what is measured in reality [29]. The reason for this
is that model (a) does not hold when the parasitic BJT goes into cut-off (vDS < 0.5
V). In order to correct for this small deviation for VDS below 0.5 V, model (b) in
Figure 13.15 can be used. This general model for the bipolar transistor holds for the
entire bias range.
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13.6.5 Charge

The isothermal gate charge, QG , can be extracted by fitting C11 and C12 to the
derivatives of the TPSs. Figure 13.16(a) shows the extracted charge. For comparison,
the gate charge obtained from a physical device simulator is given in Figure 13.16(b).
Excellent agreement is observed between the recovered and measured gate charges.
Likewise, the drain charge, Q D , can be extracted by fitting C21 and C22 to the
derivatives of the TPSs. The non-quasi-static time constants, τ11−22, can be fitted
using TPSs in order to provide interpolation between data points.

13.7 Electrothermal modeling

In power devices where device temperatures can soar, thermal modeling and its
feedback on the device current and charge, are important to correctly predict circuit
behavior.

Figure 13.10 shows a simple thermal network topology which calculates the
steady-state isothermal temperature of an FET as a function of the power dissipated
by the FET. The computed device temperature is used to compute the corresponding
isothermal I –V characteristic and charge. Based on this thermal topology, the thermal



434 DC and microwave electrothermal modeling of FETs

0
1

2
3

4
5

0

1

2

3

4
0

0.2

0.4

0.6

0.8

1

x 10
–14

Gate–source voltage (V)Drain–source voltage (V)

G
at

e 
ch

ar
ge

(a)

0
1

2
3

4
5

0

1

2

3

4
0

0.2

0.4

0.6

0.8

1

x 10
–14

Gate–source voltage (V)Drain–source voltage (V)

G
at

e 
ch

ar
ge

(b) 

Fig. 13.16. Comparison of gate charge obtained from: (a) TPS and (b) a physical device simulator.
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Fig. 13.17. Prediction of device temperature for an LDMOSFET using a single Rth for a Tsub of
29 ◦C.

response is given by:

Pinst(t) = Cth
dTdev(t)

dt
+ Tdev(t)− Tsub

Rth,dev(Tsub)+ Rth,sub

= vDS(t)iD(t)+ vGS(t)iG(t), (13.12)

where Pinst(t) is the instantaneous device power dissipated by the FET, Rth,dev(Tsub)

is the device thermal resistance, Rth,sub(Tsub) is the substrate thermal resistance, and
Cth is the device thermal capacitance. The contribution of the thermal capacitance
is to average the instantaneous power dissipation in the FET. Hence for steady-state
operation, the device temperature is linearly related to the power dissipated.

The simple thermal subcircuit, using a single Rth , is able to predict well the entire
thermal map of the device. Figure 13.17 shows the measured device temperature
(circles) for an LD MOSFET, while the device temperature predicted by the model
is given by the full lines. Although a single Rth can do an excellent job of predicting
the steady-state response, to obtain better accuracy for the transient thermal response,
a distributed thermal topology would have to be used [30].
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13.8 Circuit simulations

Any model developed must be easily implementable in a microwave circuit simulator
environment. Many commercial simulators allow for implementation of compiled
user-defined models by writing external code. Simulators that allow for harmonic
balance simulations are well suited for designing and optimizing microwave circuits.
Once a model has been implemented, the simulator becomes a virtual test bed.

13.8.1 Pulsed I --V characteristics

The model’s ability to predict pulsed I –V characteristics is highlighted in Fig-
ure 13.18. In this simulation, a fixed DC bias point of VGS = 3 V and VDS = 2.6 V
is used. The simulated pulsed I –V characteristic is given by the full lines, while that
measured is given by circles. The figure also includes an I –V characteristic recovered
by the direct integration of the AC gm(RF) and gd(RF) plus a bias point force (dashed
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Fig. 13.19. Simulated (full lines) output voltage across 50 � load resistance for different input
power levels versus measured data (dashed lines). (S. Akhtar and P. Roblin, Analog Integrated
Circuits and Signal Processing, Vol. 25, No. 2, pp. 115–131, November 2000.)

lines). The model using isothermal and RF I –V characteristics is actually able to do a
better job and can predict pulsed I –V characteristics for any bias point.

13.8.2 Power amplifier

Figures 13.19–13.21 compare the simulated response with the measured data of
a power amplifier circuit using a single SOI MOSFET biased in class A with a
simple output matching circuit at a fundamental frequency of 2 GHz. Figure 13.19
compares the output voltage across a 50 � load resistance for various input power
levels obtained on a circuit simulator (full lines) with measured data (dashed lines).
Figure 13.20 compares the simulated output power and power gain (left-hand axis),
and power-added efficiency (right-hand axis), for various input power levels Pin (dBm)
(full lines) with measured data (dashed lines with circles). Finally, Figure 13.21
compares the first three output power harmonics for various input power levels
obtained on a circuit simulator (full lines) with measured data (dashed lines with
circles). For input power levels greater than the dashed vertical line, the range of
the model is exceeded. In this region, the model can use linear extrapolation, which
leads to a graceful degradation in the model predictions.
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13.9 Conclusion

This chapter has examined approaches to the microwave modeling of three-terminal
FET devices using table methods that incorporate physical constraints. The tech-
niques, however, can easily be applied to other types of FETs and bipolar devices,
provided that the correct topology is first developed.

Device modeling is a very interdisciplinary study. It demands a thorough knowledge
of not only device physics, but also measurement and characterization techniques,
computational algorithms, programming aspects, and circuit design, simulation and
measurement. Combination of this knowledge makes for better device modeling. This
chapter has attempted to highlight all of these areas.
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13.11 Problems

13.1 (a) Rederive the expressions given in Table 13.1.

(b) Rederive the extraction formula given in Table 13.2.

13.2 Demonstrate that model (b) in Figure 13.14 leads to the experimentally verified condition of

ID,trans(vGS = 0, vDS = 0, VGS, VDS, Tdev) = 0.

13.3 Using a resistor R of arbitrary value and in series with a regular quasi-static charge element i =
d QQS/dt , develop a simple circuit which permits the implementation in a circuit simulator of
the non-quasi-static charge element of charge Qi (vGS, vDS) and time constant τi (vGS, vDS)

satisfying the equation:

idisp,i (t) = d Qi (vGS, vDS)

dt
− d

dt

[
τi (vGS, vDS)idisp,i

]
.

Hint: Use a quasi-static charge which is a function of three voltages QQS(vGS, vDS, vR)

where vR is the voltage across the resistor R.



14 Analytical DC analysis of short-gate
MODFETs

The most creative theories are often imaginative visions imposed on facts.

STEPHEN J. GOULD

14.1 Introduction

Of the various three-terminal devices proposed or demonstrated over the last couple
of decades, the modulation doped field-effect transistor (MODFET) (or high-electron-
mobility transistor (HEMT)) and the heterojunction bipolar transistor (HBT) (Chap-
ters 2, 18 and 19) are the most successful. The two-terminal resonant tunneling diode
(RTD) (Chapters 4 and 6) is also of great interest because of the extremely compact
low-power high-speed digital circuitry it makes possible when integrated, for instance,
with HEMTs (see e.g. [1]). Table 14.1 shows, for several transistor technologies,
representative values (1999) for circuit frequency range, device cut-off frequencies,
off-state breakdown voltage, maximum output power, power-added efficiency and
noise figures with associated gain. The SiGe HBT is very attractive because of the
potentially low cost of manufacturing and cut-off frequencies high enough for most
wireless applications. For applications in a similar frequency range that require larger
microwave output power, the GaAs-based HBT is an even better candidate. This
device also shows very low 1/ f noise, which translates into low oscillator phase noise.
In addition to its speed, one advantage of the InP-based HBT is its surface properties
which allow smaller devices. When special processing techniques are employed such
down-scaling can result in very impressive power-gain cut-off frequency and circuit
performance [2, 3].

When high frequencies and low noise are required the device of choice is typically a
III–V Schottky-barrier-gate field-effect transistor FET (SBGFET), several examples of
which appear in Table 14.1. GaAs-based metal–semiconductor field-effect transistors
(MESFETs) and pseudomorphic HEMTs (PHEMTs) with gate lengths approaching
0.1 µm can be produced at low cost (e.g. [4]). From a speed standpoint the most
advanced III–V SBGFETs are sub-0.1-µm InP-based HEMTs. These have record
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current-gain cut-off frequencies [5, 6] and noise figures (e.g. [7]). Applications
include: wireless millimeter-wave communications [8]; fiber-radio personal commu-
nication systems [9]; automobile collision avoidance radar; and low-noise receivers for
communication by optical fiber and satellites (DBS) [10]. Because of their impressive
performance, important applications, and interesting device physics, these FETs are
a main topic of Chapters 14–17. These chapters build on the theory in Chapters 8, 9
and 11, but take the very practical perspective of an engineer interested in designing
a state-of-the-art MODFET technology and bringing it to the market, or using such a
technology to design high-performance circuits and systems. Since much interesting
and basic physics is encountered on the way, this perspective is not as limiting as it
may seem at the outset. Compared to earlier treatises (e.g. [11]) the present focus is
on short-gate devices where previously neglected effects can no longer be avoided.
Despite the increased complexity, we maintain an analytical modeling approach.

Faced with the task of designing, optimizing and fabricating high-frequency III–V
MODFETs, with integration into an MMIC (monolithic microwave integrated circuit)
process often the ultimate goal, models yielding physical insight are very useful. They
should be able to help answer the question ‘Is what we’re producing what it could or
should be?’ This is a question that both a process engineer and a circuit designer
might have. Commercially available two-dimensional numerical models, intended
to encompass all pertinent physics, some covered in the preceding chapters, can in
principle do this job. Indeed, there are physical effects, such as those related to
reliability (Section 14.7), which ultimately require a numerical solution. However,
because of the time it takes to learn the intricacies and idiosyncrasies of such programs,
the time it takes to run them, and the hurdles that are often encountered (convergence
problem, bugs etc.), this approach can be cumbersome and expensive. Also, there
are often important effects that occur in a ‘real life’ fabrication environment that are
overlooked. In this respect, not even fundamental numerical models can be used
blindly as ‘black-box’ tools. Analytically tractable models, developed with physically
meaningful parameters, can be of great help in at least two respects. First, they
allow quick mapping of the parameter space and thus provide guidance in process
development. Second, they can actually be quite accurate; sometimes accurate enough
to allow deeper physical insight. In fact, the analytical modeling approach that
we take has helped uncover, or elucidate, two effects of practical and fundamental
importance, namely the on-state breakdown in InP-type MODFETs (Section 14.6.5),
and the interfacial gate resistance in SBGFETs (Chapter 16).

The final element in a high-performance, uniform, reproducible and reliable IC
process is an interface to the circuit designer. This interface is the CAD model. This
must be accurate and computationally efficient. The first of these required features
disqualifies most analytical models, including the ones to be developed here. The
second feature disqualifies the fundamental numerical models. The most practical and
efficient solution to this dilemma is to use fit- or measurement-based CAD models
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which store in lookup tables the bias-dependent currents and charges, measured
and extracted on fabricated devices [12, 13]. Such extractions can also be made on
solutions by a complete numerical physics-based model [14]. This allows designers
to evaluate circuit and system performance before significant investment is made in
process development. Despite being inadequate for providing a CAD tool, the analysis
that we are about to embark on has helped to clarify how to do a CAD model extraction
for a more scalable result (Section 16.3). Without scalability, a time-consuming model
extraction has to be made on each device used in the circuit design, a very unpractical
and expensive scenario.

14.2 Background to the FET DC modeling approach

A realistic DC model for the MODFET is required in order to address important large-
signal issues. It also lays the groundwork for the small-signal equivalent circuit and
Y parameters (Chapter 15) which are of primary importance for a high-speed device.
With a deeper understanding of the gate resistance (Chapter 16), one can then model
the high-frequency figures of merit (Chapter 17). The physics of the intrinsic part of
the device will be captured in experimentally validated terms that are less complex
than many of those used in preceding chapters. However, we now include important
extrinsic effects that cannot be neglected for the short-gate lengths of interest.

Figure 14.1 depicts a 0.1-µm recessed-gate SBGFET, and defines many of the
parameters and quantities to be used and referred to in Chapters 14–17. The source and
drain electrodes should be ohmic contacts that let electrons in and out of the channel
with a small resistance RC for each contact. The source- and drain-side caps have
been removed laterally Lus = Lud , preferably by a vertically selective recess etch
as discussed in Section 17.7. The rectifying Schottky-barrier gate electrode has the
dimension Lg (length) in the direction (y) of electron flow between the source and
drain, and Wg (width) in the perpendicular direction (z) along the gate finger. The gate
is spaced in the x direction to the effective center of the channel by the distance dgc.
For gate bias VG less positive than the Schottky-barrier height  B , the gate controls
the concentration of electrons available for conduction in the channel. A positive
voltage VD on the drain causes a flow of electrons from the source to the drain. VD

generates a lateral channel drift field Fc = dVc/dy which gives the electrons their
drift velocity v = µFc, where µ is the electron mobility. We use F for electric field to
distinguish it from energy (E), and, because of the negative charge –q on the electron,
it is convenient to define Fc = +dVc/dy, rather than using the conventional −dVc/dy
definition. As shown in Section 9.3.1, the mobility is given by

µ = q〈τm〉
m∗ (14.1)

where 〈τm〉 is average momentum relaxation time, and m∗ is the electron effective
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mass in the channel. m∗ is significantly smaller than the free electron mass m0 (e.g.
m∗ = 0.044m0 in In0.53Ga0.47As).

Because the surface potential is held constant by the gate, while the channel
potential Vc is increasing towards the drain, the channel is increasingly reversed-biased
and pinched down as the electrons approach the drain-side edge of the gate, more so
the higher the drain voltage. The DC drain or output conductance gds0 = ∂ ID/∂VD

decreases (indicated by the 1 − k term in Ydd in Section 11.2.4). At the same time,
the DC transconductance gm0 = ∂ ID/∂VG , a most important parameter for gain and
high-frequency performance, increases (indicated by the k term in Ydg). Diffusion
is neglected since this does not change the total current significantly [15]. Current
continuity in the low-field source-side part of the gated channel is then maintained
by the electrons moving faster to compensate for the reduced concentration as the
drain is approached. The increased velocity is sustained by an increase in the lateral
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drift field. For a sufficiently large VD , the field near the drain-side edge of the gate
becomes too large for the electron velocity to continue to increase in proportion.
Instead, the electron velocity becomes effectively saturated at a value denoted vsat.
The magnitude of vsat correlates in magnitude with the mobility [16]. For current
continuity to be maintained, the electron channel sheet concentration ns becomes
constant. Thus, velocity saturation prevents classical pinch-off from occuring. The
large increase in the lateral drift field in this region helps support (through Gauss’s law)
the channel charge. This shift of charge support from the gate to the drain-induced field
is enhanced by spreading of the electrons as they gain energy and escape the epitaxially
defined channel (Section 10.3.2, [17]).

This simple picture is adequate for explaining the essential features of even very
short gate (< 0.1 µm) FETs. It thus provides for rather good understanding and
optimization of the device. From a practical standpoint, this is convenient, but it
is also quite surprising since electron transport over short distances in high fields is
considerably more complicated than assumed here. The electron velocity is more
correctly described as being tied to the local electron energy rather than to the local
field, as discussed in Chapter 9. The net gain in energy over some distance depends
on the local electric field and the scattering rate. When analyzing and optimizing the
device, one should then solve Equation (9.17) to account for the fact that it takes time
for an electron (even in a constant field) to gain, or lose, enough energy to reach its
steady-state velocity associated with this field. To account accurately for transient
velocity one should really account for two-valley transport (Section 9.5), and also
solve for momentum balance [18]. Even with today’s computer power, these important
effects generally have to be neglected. In the practical commercial device modeling
software packages that the authors have experience with, they certainly are, as are
most quantum mechanical effects. In an FET, such as that depicted in Figure 14.1, the
field varies rapidly. Thus, an electron is unlikely to have its velocity coincide with the
steady-state velocity associated with the local field at any point; its velocity is always
either ‘undershooting’ or ‘overshooting’. Despite these fundamental complications,
the simple field-based picture is consistent with a large body of experimental work
(e.g. [19, 20, 5, 6]).

14.3 Brief semiconductor materials history for SBGFETs

Device engineers look for semiconductor channels with large electron mobility,
saturation velocity, and full-channel sheet concentration ns0. In addition to being
beneficial for the intrinsic and extrinsic small-signal performance, these increase the
maximum drain current:

I (max)
D = qWgns0vsat. (14.2)
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A large current is good for driving interconnect capacitances in digital applications,
increases the signal output power, and improves the large-signal linearity of the
device. The first step towards better µ and vsat in FET materials was to reduce m∗

by fanning out in the periodic table from the column-IV element silicon to compounds
of column-III and -V materials. In undoped form, these materials have peak electron
velocities that are 2–3 times higher than the ∼ 1 × 107 cm/s in silicon. GaAs was first
to be tried, in doped form, for the fabrication of MESFETs [21]. InP MESFETs were
first fabricated by Barrera and Archer [22], and some interesting transport-induced
difference between MESFETs on the two binary compounds were observed [23].
With the ionized impurity scattering in doped material, which reduces 〈τm〉, a III–V
MESFET does not take full advantage of the potential transport properties. The
remedy for this originated in the pioneering work by Dingle et al. [24] who, by
growing the wide-bandgap III–V alloy AlGaAs epitaxially on GaAs, and doping only
the AlGaAs, managed to separate the donors from the mobile electrons. The electrons
energetically favor the undoped GaAs where, by the attraction to the remote donors,
they form a two-dimensional electron gas (2DEG) adjacent to the AlGaAs/GaAs
heterojunction. The method was named modulation doping, soon thereafter leading to
the term MODFET for a FET made on such an epitaxial structure. The most popular
alternative name is HEMT, for high electron mobility transistor. The introduction
of In in the channel reduces the bandgap and improves ns0 significantly. It also
reduces m∗ even further. GaInAs channels with up to 25% In mole fractions, with
∼ 125 Å thickness can be grown on GaAs substrates. FETs made on such material
are called pseudomorphic MODFETs, or PHEMTs. These FETs exhibit an excellent
combination of speed and output power. Lattice mismatch of GaInAs to GaAs prevents
In mole fractions larger than ∼ 30% on GaAs, unless special growth techniques are
employed (Section 17.7). With InP substrate, In mole fractions can approach 100%
for sufficiently thin layers [25]. In this material system, the wide-bandgap electron
supply layer typically is AlInAs, although InP can also be employed (e.g. [26]). The
lattice-matched (and most common) In mole fractions for GaInAs and AlInAs on InP
are 53% and 52%, respectively. Because of their very high vsat (∼ 3 × 107 cm/s) and
ns0 (∼ 3 × 1012 cm−2), FETs in this material system (and variations thereof) have
shown the best noise and speed performance of any transistor (e.g. [5]). High-speed
MODFETs, including several applications, are reviewed in the tutorial article by
Nguyen et al. [27].

14.4 2DEG gate charge control in a heavily dual pulse-doped MODFET
structure

Figure 14.2(a) illustrates, with the important parameters defined, a typical conduction-
band diagram EC (x) along the cut-line C under the gate in Figure 14.1. At this stage
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of the analysis VD = 0, and it does not matter where under the gate (0 < y < Lg)
the cut is made. As in Chapter 8, we are interested in the gate control of the 2DEG
concentration, i.e. the ns(VG) curve in Figure 14.2(b). For increased generality, we
now consider a double-heterojunction double-sided pulse-doped MODFET structure.
Pulse doping [28] is particularly important in the AlInAs/GaInAs system because of
the rather low Schottky-barrier height of AlInAs ( B ≈ 0.7 eV). An undoped top layer
thickness dt = 50–200 Å is typically used. The additional pulse below the channel
[29] is beneficial in increasing the maximum 2DEG concentration ns0.

In the vicinity of the optimum operating point (ns = nsi ∼ ns0/2) ns(Vg) is
approximately linear, as will be assumed in the AC modeling (Chapters 11, 12, 15, 17):

ns(VG) = ε(VG − VT )

qdgc
(14.3)

(cf. Equation (8.8)). VT is the threshold voltage (Figure 14.2(b)), defined by linear
extrapolation from the optimum inflection-point gate bias VG = VGm , and can be
shown to be given by (Problem 14.1)

VT =  B −�EC + EF0

q
− q Nd1dp1(dt + dp1/2)

ε

− q Nd2dp2(dt + dp1 + ds1)

ε
. (14.4)

For dual doped structures with sufficiently large back-side pulses (in particular for
the extreme case of an ‘inverted’ structure where Nd1 = 0) there is no meaningful
inflection point in ns(VG), and no obviously optimum gate bias. For such structures,
the threshold voltage has to be defined differently. Inverted, or almost inverted,
structures are rather uncommon, however, for at least two reasons. The most
fundamental is that the back-side heterojunction generally is rougher, leading to lower
mobility of electrons residing in its vicinity. It is also more difficult to make contact to
the 2DEG (cf. Section 14.6.2) when there is no or little doping in the front. Thus, we
will not consider such structures here.

The effective gate-to-channel distance in Equation (14.3) is given by

dgc = dt + dp1 + ds1 +�d. (14.5)

The two parameters EF0 and �d result from the Fermi level (Figure 14.2(a)) moving
up in the well as this is filled with electrons (cf. Problem 8.1(b)). In analytical
treatments the linear relationship

EF (ns) = EF0 +
(

q2�d

ε

)
ns (14.6)

is typically assumed, although one could for better accuracy also include a quadratic
term in ns . The term EF0 is typically rather small, and the constant of proportionality
between EF and ns has been written in a form that includes what turns out in
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Fig. 14.2. (a) Conduction-band diagram and (b) 2DEG charge control of a dual doped MODFET.

Equation (14.5) to be the effective distance �d from the top heterojunction to the
center of the 2DEG.

In a MESFET (�EC = 0), the channel electrons move among the charged
donors, and Coulomb scattering reduces the electron velocity compared to a MODFET.
Because of the absence of a confining well, the electron concentration in a MESFET
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channel remains essentially constant, and the gate modulates the channel width (and
thus dgc). In a well-designed MODFET, the gate modulates the channel electron con-
centration, while the width of the channel, and thus dgc, is relatively VG-independent in
a rather wide range. In terms introduced by Foisy et al. [30], such a MODFET exhibits
‘efficient charge modulation’, in the sense that little parasitic charge (QSL ) in the top
supply layer is being induced and modulated by the gate voltage near VG = VGm . One
accomplishes this by designing for large ns0. A well-designed MODFET with large
ns0 is somewhat similar to a Si MOSFET, with the top wide-band electron supply layer
playing the role of the gate oxide. Of course, as VG approaches  B/q the MODFET
gate will start to conduct non-negligible current (Section 8.6), and prior to this, as ns

approaches ns0, parasitic charge in the form of neutralized donors and free electrons
will be induced in the supply layer [30]. Typically the concentration of free electrons is
small, and with the low electron mobility in the doped wide-bandgap supply layer, the
contribution to the current of the so-called parasitic MESFET [31] can be neglected.

For single-sided doping, the maximum 2DEG concentration is approximately [32]

ns0 =
(

N 2
d1(ds1 +�d)2 + 2εNd1�E (eff )

C /q2
)1/2 − Nd1(ds1 +�d), (14.7a)

where the effective conduction-band offset is given by

�E (eff )
C (Nd1) = �EC + EFC (Nd1)− Ex (Nd1)− EF0. (14.7b)

This explicit expression follows from Equation (8.6) by inserting the approximate
EF (ns) expression in Equation (14.6)∗. Equation (14.7) is derived with the conduction
band in the supply layer pulled down by a positive gate bias, to essentially replicate the
semiinfinite uniformly doped situation in Figure 8.2. EFC (Nd1) in Equation (14.7b)
is the position of the Fermi level relative to the conduction-band edge far from the
heterojunction, i.e. it is −δ in Figure 8.2. With symmetric double-sided doping
(Nd2 = Nd1), ns0 is still given by Equation (14.7), after the following substitutions
in Equation (14.7a): Nd1→2Nd1, �d → 2�d, and �E (eff )

C → 2�E (eff )
C (Problem

14.2).
Doping concentrations in typical pulses are well into the 1018 cm−3 range, and

can be as high as ∼ 1019 cm−3 in thin pulses. At these levels the semiconductor is
degenerate, a situation that actually starts at a rather low doping level Nd ∼ NC where

NC = 2

(
m∗kT

2π h̄2

)3/2

∼ 5 × 1017cm−3 (14.8)

is the effective density of states in the conduction band. Assuming isolated donor
levels, a calculation of electron concentrations n in bulk AlInAs (with m∗ = 0.085m0)
doped with Si to [Si] ∼ 1019 cm−3 results in n ∼ 1018 cm−3, while, in fact, Hall
measurements show that n is very close to [Si]. The reason for the discrepancy

∗ The same insertion into Equation (8.9) is what makes the threshold voltage an explicit function of the
structural parameters (Equation (14.4); Problems 8.1(b) and 14.1).
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is that the donor levels are not isolated, but form a band which merges with the
conduction band to form a metal-like conduction band, as discussed in Section 2.2.2.
In a degenerately doped semiconductor EFC is approximately given by

EFC (Nd1) = kT ln


a

(
Nd1

NC

)2

+
[

a2
(

Nd1

NC

)4

+
(

Nd1

NC

)2
]1/2

 . (14.9)

This expression comes from a modified Ehrenberg approximation [33] for the electron
concentration:

n = NC
exp(EFC/kT )[

1 + 2a exp(EFC/kT )
]1/2 , a = 2−3/2, (14.10)

This approximation for n(EFC ) has four useful properties. First, it approaches the
correct Boltzmann expression for −EFC > kT . Second, a Taylor expansion in
exp(EFC/kT ) has the right first order correction. Third, as opposed to the original
Ehrenberg approximation, it does not saturate for EFC � kT . This correctly allows
more electrons in the conduction band as EFC increases, albeit at a higher rate than
the ‘metallic’ free-electron-gas limit

n = 1

3π2

(
2m∗EFC

h̄2

)3/2

(14.11)

[34], which would be a better approximation in this limit. Fourth, Equation (14.10) is
easily inverted to give EFC as a function of n = ND (Equation (14.9)). To allow
analytical treatment, it is assumed that the conduction band maintains its intrinsic
effective mass. This will introduce some error into the analysis [35, 36] which we
cannot account for analytically.

As the degenerate conduction band forms, the energy of each electron is reduced
by the attractive interaction with its ‘exchange hole’ of charge +q associated with the
ionic background. This interaction is denoted Ex (> 0) in Equation (14.7b), and can
be estimated by (Problem 14.3)

Ex (Nd1) = 3

2

q2

4πε
(Nd1)

1/3 . (14.12)

This expression is quite consistent with careful treatments of the shift of the
conduction-band edge (e.g. [37]), as well as with Equation (2.2). The exchange
interaction considered here is similar to that which causes the image potential as an
electron is removed from a metal. The difference is that in this case the hole remains
behind on the image plane just inside the metal surface, and flattens out to a disk as
the electron is further removed [38]. The reason for the correction −Ex in �E (eff )

C
is illustrated in Figure 14.3(a). Equation (14.7) was derived assuming non-degenerate
electron concentration (EFC < 0, |EFC | > kT ) in the neutral supply layer, and
using the depletion approximation between this and the heterojunction. First of all,
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doped layer (x < 0) uniformly, including the partially depleted screening layer.

using the depletion approximation in the regime indicated with the shaded circle in
Figure 14.3(a) is questionable, and to check the validity of Equation (14.7), we will
take an alternative approach based on Figure 14.3(b). Secondly, EFC , which goes
into the potential problem that yields ns0, is the uncorrected value, denoted E ′

FC in
Figure 14.3(a), but this is in fact equal to the actual EFC in the bulk of the supply layer
minus Ex , as the figure illustrates. The exchange interaction in the neutral supply layer
pulls EC down by Ex , but must bring EF with it since n must remain essentially equal
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to Nd1. Since EF is constant throughout the structure it is brought down also where
the 2DEG is, and thus ns suffers. Many-body effects, such as the exchange interaction,
in the 2DEG [39] are assumed to be contained in EF0 and �d.

The alternative expression for ns0 is based on Figure 14.3(b), and assumes degen-
erate doping as used in most designs. We now assume a metallic free electron gas
(Equation (14.11)) in the neutral supply layer, and a constant exchange interaction Ex

for x < 0 where the degenerate doping resides. This results in a small conduction-band
discontinuity at x = 0, which tends to confine the supply-layer electrons, and it is
assumed that the spacer layer (0 < x < ds1) is depleted (n = 0). The supply layer,
however, is only partially depleted, and the depletion drops exponentially away from
x = 0. The situation is analogous to Thomas–Fermi screening at the surface of a metal.
Poisson’s equation is solved in x < 0, where the charge density is q(Nd1 − n(x)). The
conduction-band edge deviates only moderately from its bulk value at x = −∞, and
we thus expand Equation (14.11) only to first order in EFC . From the field at x = 0
we arrive at

ns0 = ε�E (eff )
C

q2 (Ld1 + ds1 +�d)
, (14.13a)

where

Ld1 = h̄

q

( ε
m∗
)1/2
(
π4

3Nd1

)1/6

(14.13b)

is the characteristic Thomas–Fermi screening length for the supply layer. Because
of the small (1/6) exponent, Ld1 is only weakly dependent on Nd1. A typical
value of Ld1 is 30 Å. The spacer layer (ds1), inserted to reduce Coulomb scattering,
reduces ns0 somewhat, but can be kept sufficiently small compared to the unavoidable
Ld1 + �d (∼ 90 Å), not to have a large effect. ds1 = 20 Å is a typical value.
Similarly to Equation 14.7 above, Equation (14.13) can also, after the exchanges
�d → 2�d and �E (eff )

C → 2�E (eff )
C in Equation (14.13a), be used to calculate

the maximum improvement in ns0 with double-sided doping. Figure 14.4 shows ns0

calculated by the two methods, for both single- and double-sided doping. Somewhat
surprisingly, the two agree very well for large doping levels, where one would expect
Equation (14.7) to fail. Mathematically, this is because the two expressions have
the same ε�E (eff )

C /[q2(ds1 + �d)] limit as Nd1 → ∞. At low doping levels,
where Equation (14.7) becomes increasingly accurate, the two methods deviate.
Thus, Equation (14.7) is quite accurate for all doping levels. The sought-after
large ns0 requires a large effective conduction-band discontinuity and a large donor
concentration. Given typical specifications for threshold voltage and gate leakage, the
latter requires the use of pulse-doping.

One major reason for the success of MODFETs is that the concentration of
heterojunction interface states that could trap electrons can be made negligible [40].
However, early MODFETs were plagued by another trap phenomenon, one associated
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with the Alx Ga1−x As supply layer donor species (typically Si). The trap was denoted
DX (see Section 2.2.2) to indicate a donor complex [41], and shows up for x > 0.2.
Later work (see [17] for a good review) indicates that the DX center is due to the
substitutional donor itself. This is supported by the theory of Chadi and Chang [42].
For x < 0.2, the DX center is resonant with the Alx Ga1−x As conduction band,
and is typically not seen. For larger x it enters the wider bandgap and becomes
a deep trap with large emission and capture barriers associated with large lattice
relaxation. This in effect makes EFC (Nd) a relatively significant negative number,
thus reducing ns0. It also leads to low-frequency dispersion in the AC parameters, and
other ‘misbehaviors’ [40]. In digital circuits the result can be loss and distortion of
pulses due to time-dependent threshold shifts [43, 44]. The DX center concentration
can be reduced by concentrating the Si, as much as possible, into a plane [45], using
Se as the dopant [46], or by using InGaP as the supply-layer material (e.g. [47]).
Another solution [48] employs a short-period (∼ 40 Å) AlAs/GaAs superlattice as
the supply layer, with the Si doping only in the GaAs. Even with a large average
Al mole fraction, resulting in a large effective �EC , DX centers can be eliminated
with this method. The most practical and therefore common solution for GaAs-based
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MODFETs, however, has become to simply reduce the Al mole fraction in the supply
layer to below ∼ 20%. This unfortunately reduces the conduction-band discontinuity
to the GaAs channel, with continued low ns0 as a result. Because of the large ns0

you can get in a MESFET (which goes a long way in compensating for the lower
mobility), this made it hard for early MODFETs to compete. The PHEMT and the
InP-based HEMT with their high-mobility InGaAs channel and large �EC s came
to the rescue, allowing MODFETs to significantly outperform MESFETs. AlInAs
exhibits no DX -related problems for Al mole fractions less than 60% [49].

Fully numerical self-consistent calculation solving both Schrödinger’s and Pois-
son’s equations (e.g. [50, 39, 27]), now available commercially, can be used to deter-
mine �d and EF0 for a particular material system. This is done by comparing the
linear part of the numerical ns(VG) curve to Equations (14.3–5). As an example of
particular interest, �d ≈ 58 Å for the Ga0.47In0.53As/Al0.48In0.52As system. These
calculations also show that, in order to avoid reducing the electron concentration in
the high-mobility channel below the value predicted by Equation (14.7), dc should
not be much smaller than 2�d. This is not surprising given the interpretation of �d
above: the center of the 2DEG needs to be spaced from the bottom heterojunction by at
least the same amount �d as it is from the top. This avoids having the electron wave-
function excessively spilling over into the wide-bandgap lower-mobility material. EF0

is roughly proportional to d−2
c (like the energy levels in a square potential), and can

typically be neglected. For double-sided doping, dc ∼ 2�d is a good choice. If dc

is much larger, the channel separates into two parallel channels, with non-optimum
composite gate-modulation characteristics, and potentially larger output conductance.
With double-sided doping, the back-side of the channel starts filling up with electrons
at a more negative gate voltage than indicated by the inflection-point-based threshold
voltage (Equation (14.4)). The shift is −q Nd2dp2dc/ε, and is another reason not to
use a thicker channel than necessary.

The analytical expressions for VT and ns0 are quite accurate and useful, and are,
together with �d (which is essentially a channel/heterojunction material parameter),
in many respects sufficient for a design. Still, it is advisable to do some cross-checking
with a full numerical Poisson–Schrödinger calculation. A numerical calculation is
necessary if it is important to know accurately the gradual non-linear approaches of ns

to 0 and ns0 (Figure 14.2(b)). The result of the numerical simulation can be used to
best pick the parameters α and VGm in the analytical representation (cf. Problem 10.3)

ns(VG) = ns0

[
α + (1 − α) tanh

(
VG − VGm

V1

)]
(14.14)

for the non-linear charge control, where (VGm , ns(VGm) = αns0) is the inflection
point. Equation (14.14) allows analytical integration in the gradual channel of the
FET, which is one step in the development of the ID(VG, VD) model (Section 14.6).
In addition, the analytical non-linear charge-control representation in Equation (14.14)
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has the good features of producing the experimentally observed smooth bell-shaped
gm0(VG) curve, and the correct finite I (max)

D (Equation (14.2)). α must be chosen
< 0.5 for the predicted ID(VG, VD) to pinch off. A purely analytical design could
start with layer thicknesses and doping levels being picked to give desired VT and dgc.
Then α would be chosen and ns0 calculated (Equation (14.7)). VGm is given by

VGm = VT + αqns0dgc

ε
, (14.15)

and the remaining parameter V1 by

V1 = (1 − α)qns0dgc

ε
. (14.16)

For better accuracy, the choice of parameters in Equation (14.14) can be boiled down
to a least-squares fit (with V1 as the one floating parameter) to a numerically calculated
ns(VG) [51].

14.5 An analytically manageable 2DEG transport model

As outlined in the introduction, the transport model is based on the two-piece
velocity-field curve in Figure 14.5. For fields below a critical value Fsat, where the
steady-state electron velocity peaks (III–V materials) or saturates (silicon), one can
assume a linear relationship v = µF between the velocity and the local electric field.
For larger fields, one can assume, for the prediction of the basic performance of even
ultra-short FETs, that the velocity remains equal to an effective saturation velocity,
independent of any further increase in the field. For III–V materials, empirically, the
effective saturation velocity essentially coincides with the peak velocity. The fact that
the ultimate scattering limited velocity v′

sat (Figure 14.5) is no larger than in silicon
appears to be of little consequence. Thus, velocity overshoot does, in some respect,
appear to show up as a measurable effect, but, surprisingly, the effective saturation
velocity does not increase as the gate length is reduced, and does not exceed the
peak velocity by much. This experimentally based notion of a gate-length-independent
effective saturation velocity has also been suggested by Monte Carlo simulations [52],
although these simulations tend to overestimate the experimental value.

Considering the constancy of vsat, it may at first seem odd to include a gate-length
dependence in the low-field mobility. Nevertheless, a significant (almost an order of
magnitude) reduction in effective mobility, as the gate length is reduced from 1 to
0.1 µm, has been inferred from the same Monte Carlo simulations [52] that suggested
a constant effective saturation velocity. Velocity saturation in III–V materials used for
FETs requires acceleration of the electrons in the fast central � valley to an energy
E (sat)
� where significant scattering to slower satellite valleys can take place. This

led Foisy et al. [30] to point out that the drain voltage VDsat at onset of velocity
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Fig. 14.5. Qualitative electron velocity-field curves for Si and III–V compounds. The solid
two-piece linear approximation, possibly with a correction for the moderate non-linearity at low
fields, is appropriate for analytical modeling of III–V FETs.

saturation cannot be lower than E (sat)
� /q∗. At the same time, however, as Lg → 0,

VDsat approaches Fsat Lg . A gate-length-dependent phenomenological mobility

µ(Lg) = µ0

[
1 − exp

(
− Lg

Lµ

)]
, (14.17a)

where we have defined

Lµ = E (sat)
�

q Fsat0
, (14.17b)

accounts for the finite VDsat asLg → 0, and correctly approaches the bulk mobility µ0

as Lg → ∞. The �–L separation is ∼ 0.5 eV in In0.53Ga0.47As and ∼ 0.3 eV in GaAs,
and the critical field is ∼ 4.9 and ∼ 4.0 kV/cm, respectively [53]. This corresponds to a
characteristic length Lµ of 1.3 and 0.6 µm for In0.53Ga0.47As and GaAs, respectively.
These values are in reasonable accordance with the 0.8–1.1 µm that the gate-length-
dependent mobility in [52] corresponds to. However, for our analytical modeling, we
are really after the average energy the electrons have gained at the point they travel at
their peak average velocity (vpeak = vsat in Figure 14.5). Monte Carlo simulations of
GaAs transport [54] show this energy to be ∼ 55 meV. This leads to Lµ = 1670 Å,
a value that is suggestively close to the electron mean free path in the GaAs � valley
[55].

∗ This was done in the context of inefficient charge modulation. The parasitic supply-layer charge (QSL )
dominates the loss of efficiency for VGm < VG <  B , while the ‘excess’ gradual-channel charge �QGC
(the ‘slow’ extra electron charge in the gradual channel necessary to satisfy current continuity) dominates
for VT < VG < VGm . Near VGm the two conspire to reduce the maximum modulation efficiency (M E) to
less than 100%, thus reducing the apparent vsat . The onset of QSL can be moved out to higher VG by
increasing ns0, thus increasing the modulation efficiency. However, the minimum VDsat prevents pushing
the onset of �QGC to arbitrarily low VG . The effect was analyzed at DC for 1-µm devices [30]. It does
not seem to prevent extracting a physical vsat at microwave frequencies on AlGaAs/GaAs and
AlGaAs/InGaAs MODFETs with 0.07–0.7 µm gate length, biased for maximum current-gain cut-off
frequency and with parasitics properly removed [20, 88]. AlInAs/InGaAs MODFETs, with their larger
�EC , are even less affected.
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The velocity-field curve up to Fsat is not quite linear, as indicated in Figure 14.5. A
field dependence in the mobility can be included within the analytical framework with
the velocity-field curve

v(F) = µ(Lg)F

1 + F/F1(Lg)
, F ≤ Fsat(Lg) (14.18a)

= vsat, F ≥ Fsat(Lg), (14.18b)

where

Fsat(Lg) = Fsat0

1 − exp(−Lg/Lµ)
, (14.18c)

and

F1(Lg) = Fsat(Lg)

(µ0 Fsat0)/vsat)− 1
. (14.18d)

Assuming the simplified linear charge control in Equation (14.3), one can derive

VDsat = VG − VT + Fsat Lg

1 − �

−
[(

VG − VT + Fsat Lg

1 − �
)2

− 2(VG − VT )Fsat Lg

1 − �

]1/2

. (14.19a)

for the intrinsic drain voltage at onset of velocity saturation voltage. � is given by

� = Fsat(Lg)

F1(Lg)
= Fsat0

F1(∞) = µ0 Fsat0

vsat
− 1, (14.19b)

and is independent of Lg . The drain saturation voltage approaches the classical
gradual-channel value VG − VT as Lg → ∞. As Lg → 0, VDsat approaches Fsat Lg ,
which in turn approaches E (sat)

� /q as intended.

14.6 Quasi-two-dimensional model for electrostatics and I --V
characteristics

With the models chosen for gate charge control ns(VG) and transport v(F), we can
now move on to calculate the channel potential Vc(y) and lateral channel drift field
Fc(y) = dVc/dy, as well as the drain current ID(VG, VD). The equation that yields
this information is that for the continuity of channel current:

ID = qWg

{
ns
(
Vsurf (y)− Vc(y)

)+ εδc

q

d2Vc

dy2

}
v

(
dVc

dy

)
, (14.20)

where diffusion and gate current have been neglected. The application of a drain bias
VD > 0 has affected the 2DEG charge control, i.e. the factor in braces, in three ways.
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First, the channel potential (equal to 0 in the one-dimensional gate charge control
ns(VG)) is now the position-dependent Vc(y). As Vc(y) increases under the gate
towards the drain, ns is reduced, i.e. the channel is pinched down. Second, with a
drain bias large enough to velocity-saturate the device, one has to consider the charge
control outside the gate region (0 < y < Lg). This is particularly important for the
cutting-edge short-gate FETs, where the laterally etched access regions adjacent to the
gate become increasingly important to the performance. Thus VG is replaced with
a position-dependent effective gating voltage Vsurf (y) (Figure 14.1). Under the gate
(0 < y < Lg), Vsurf (y) = VG as before, while outside the gate Vsurf (y) will approach
a rather large positive value at the edges of the gate trough, corresponding to the large
ns in the capped regions (y < −Lus and y > Lg + Lud in Figure 14.1). Third, the
channel charge will be supported, not only by the vertical field (the one-dimensional
ns(Vsurf − Vc)), but also by the lateral drift field. Assuming a position-independent
effective channel thickness δc in the saturation region ys < y < yus , the second term
in the braces of Equation (14.20) models this effect. This is what gives the model its
two-dimensional nature. A more accurate version of this term was developed by Foisy
[17].

14.6.1 The low-field gradual channel

Equation (14.20) is quite a complicated equation for the channel potential Vc. For the
analytical approach taken, we benefit from the choices of ns(VG) (Equation (14.14))
and v(Fc) (Equation (14.18)). For the low-field gradual-channel region (0 < y < ys),
Equation (14.20) is simplified by neglecting the lateral charge support (second term in
the braces). Integration of Equation (14.20) in the gradual channel, and rearrangement
of terms and factors, yield (see Problem 10.3)

ys = ys (VG, ID) = Lg −�Li

= qWgns0µV1

ID


α

Vc(ys)− Vc(0)

V1

+ (1 − α) ln




cosh

(
VG − Vc(0)− VGm

V1

)

cosh

(
VG − Vc(ys)− VGm

V1

)



− Vc(ys)− Vc(0)

F1
(14.21a)

for the end of the gradual channel, i.e. the location for onset of velocity satura-
tion. The channel potential at this point, Vc(ys), is obtained from the condition
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ID = qWgns(VG − Vc(ys))vsat for onset of velocity saturation:

Vc(ys) = VG − VGm − V1 tanh−1




ID

I (max)
D

− α

1 − α


 ≡ Vsat. (14.21b)

The practically unavoidable parasitic voltage at the intrinsic source (y = 0) is
expressed as

Vc(0) = VSlin + VSugt(ID, Lus) ≡ V0, (14.21c)

where

VSlin = Vc(−Lus) =
[

RC + R(Lgs − Lus)

Wg

]
ID (14.21d)

is the linear part of the parasitic voltage on the source side. VSlin is due to two simple
linear resistors. RC is the contact resistance normalized to unit gate width, and R is
the sheet resistance of the full unetched epitaxial structure. Similarly, the linear part
of the drain-side parasitic voltage is given by

VDlin = VD − Vc(Lg + Lud) =
[

RC + R(Lgd − Lud)

Wg

]
ID. (14.22)

VSugt is non-linear in ID and is the voltage that drops over the source-side part
of the ungated etched trough. The two parameters Vsat (Equation (14.21b)) and
V0 (Equation (14.21c)) have been defined for later use. The DC source resistance
is RS = Vc(0)/ID . The AC source resistance, appropriate for the small-signal
high-frequency performance (Chapters 15–17), is given by Rs = ∂Vc(0)/∂ ID . The
measurement of these and the prediction of RC are discussed in a separate subsection
below.

VSugt limits the drain current that can be passed through the device. There are
two non-linear effects at work. The primary is that the potential of the free etched
surface is modulated very ineffectively by the adjacent gate. Thus, as the gate voltage
becomes sufficiently large, the current is limited by the carrier concentration that
the free surface depletion allows. A free (unmetallized) III–V surface tends to have
similar surface potential and band-bending as when metallized. This has to do with
similar mid-gap defects being generated by metallization, oxidation, or deposition
of typical passivating dielectric films. These mid-gap defects pin the Fermi level
at the surface. Some of these effects will be discussed in Chapter 16. The free
surface can be particularly detrimental to the current for enhancement-mode FETs,
i.e. FETs with positive threshold voltage. A second non-linear effect in VSugt has to
be considered to account for the small drain current that can flow even in the extreme
case of the free surface pinching off the channel in −Lus < y < 0. A finite ID
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results from the lateral charge support in the presence of a drain bias. The effect
is qualitatively the same as that modeled by the second term in the square brackets
of Equation (14.20), but is quantitatively typically much smaller on the source side.
To find an analytical solution for VSugt, we simplify Equation (14.20). First, the
y-dependent Vsurf (y)−Vc(y) is replaced with an effective constant surface-to-channel
voltage VGugt. Second, the two-piece velocity-field curve (Equation (14.18) is replaced
with an effective one-piece Si-like expression [56]. We are then left to solve the
non-linear differential equation

Id = qWg

[
ns(VGugt)+

εδc

q

d2Vc

dy2

] µugt
dVc

dy

1 + µugt

vugt

dVc

dy

(14.23)

for Vc(y) in −Lus < y < 0. An approximate solution can be found by Taylor
expanding Vc to second order in y + Lus . The result is

VSugt(ID, Lus) =
[

F2 + (F2
2 + F2

3

)1/2]
Lus, (14.24a)

where we have defined

F2 = 1

2

{
RID

Wg
+
[
ID − qWgns(VGugt)vugt

]
Lus

2εWgδcvugt

}
(14.24b)

and

F2
3 = ID Lus

2εWgδcµugt
. (14.24c)

In the non-velocity-saturated part of Lud on the drain side, we assume an average field
Fugt that is the same as in Lus , i.e.

Fugt = VSugt

Lus
. (14.25)

Within the analytical framework, the treatment of the low-field parts of the ungated
trough is rather crude because of the complex non-linear effects accounted (approx-
imately) for. The problems of the gradual channel under the gate (Equation (14.21),
and the velocity-saturated part in the following subsection, are actually solvable with
less questionable assumptions. Since Fugt is relatively small under typical conditions,
errors introduced by the approximate analysis should not be critical. The approach
can quantitatively account for the maximum current of FETs being considerably
smaller than the hypothetical full channel current I (max)

D (Equation (14.2)). One central
parameter that controls this is the effective gating voltage VGugt, since ns(VGugt) is the
channel electron concentration allowed by the surface. As an example, for a MODFET
with Nd1dp1 + Nd2dp2 = 4.5 × 1012 cm−2, with a 25-Å Pt gate and silicon nitride
passivation, we would choose VGugt = +0.37 V. Of this, 0.15 V comes from the
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ungated passivated AlInAs having approximately this amount less band bending than
when gated [57], and 0.22 V comes from the Pt gate sintering ∼ 35 Å into the AlInAs
Schottky-barrier layer (Section 17.7), thereby shifting the effective threshold voltage
associated with the adjacent free AlInAs surface by −0.22 V [58].

The other central parameter controlling the maximum current allowed by the free
surface is the effective saturation velocity vugt. When Lus is sufficiently short, one
would choose vugt equal to the standard saturation velocity vsat used in the high-field
drain-side region. For sufficiently large Lus , however, vugt approaches the significantly
lower high-field stationary saturated velocity v′

sat (6.5 × 106 cm/s for In0.53Ga0.47As).
One could account for this, for instance, by assuming an exponential drop in vugt with
Lus :

vugt = vsat − (vsat − v′
sat)
[
1 − exp(−Lus/Lugt)

]
. (14.26)

Based on Monte Carlo simulations of high-field steady-state 2DEG transport in GaAs
[54] the mean free path between �–L scattering events ranges from negligible at
very high fields to 0.5 µm at fields close to that corresponding to onset of velocity
saturation. Based on this one might choose an intermediate value Lugt = 0.25 µm for
the characteristic length in Equation (14.26). This is comparable to the characteristic
length Lµ used for the gate-length-dependent mobility (Equation 14.17)). The final
parameter to choose is the effective mobility µugt. Without further consideration,
this could simply be set to µ0. Alternatively, it could be considered an adjustable
parameter.

14.6.2 Source, drain and contact resistances

Source and drain resistances can be measured rather accurately with DC methods (e.g.
[59–65]. The following measurement recipe has proved to be quite accurate for the
DC source resistance:

RS = ∂VG

∂ ID

∣∣∣∣
IG=const>0,VD<VDsat

. (14.27)

As indicated, the measurement should be taken in the linear drain-bias regime,
with a constant forward current sent through the gate. This avoids contributions
to the measured RS from the gate metallization (Chapter 16) and diode resistances.
A fraction of the channel resistance will contribute to the measured RS , but this
component can be minimized by using as large a gate current as is deemed safe
(VG = VGmax). The exponential voltage dependence of the gate current will crowd
the current towards the source. A good test for whether a channel resistance correction
is necessary is to check whether the slope of VG(ID) drops significantly if a larger
IG is used. Typically, this is not the case, but if it is, some of the corrections in the
references given above may be useful. RD can be measured by reversing source and
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Fig. 14.6. Resistive network representing an unetched MODFET structure with non-alloyed ohmic
contacts.

drain, or by other methods described in [59–65]. One way of estimating the AC source
and drain resistances at a particular ID , is to multiply the DC values (Equation (14.27))
with Rds(ID)/Rds(0), where Rds is the small-signal drain-source resistance measured
as

Rds = ∂VD

∂ ID

∣∣∣∣
VG=VGmax

. (14.28)

If the cap layers are depleted, the unetched parts between the source and the drain can
also contribute to the non-linearity in source and drain resistance.

Non-alloyed tunneling contacts (see also Section 17.7) are preferable to alloyed
contacts if the contact resistance RC can be kept low enough. Representing the
contacts and epitaxial structure by the resistive network in Figure 14.6, it is shown
in Problem 14.4(a) that RC of a non-alloyed contact is given by

RC = R

Wgk

k

κ
+
(κ

k

)2

1 −
(κ

k

)2
. (14.29a)
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R is the sheet resistance of the full unetched epitaxial structure, and results from the
parallel combination of the 2DEG (R1) and the cap layer(s) (R2):

R = R1 R2

R1 + R2
; (14.29b)

k and κ are exponential decay constants given by

k2 = R1 + R2

rt12
, (14.29c)

and

κ2 = 1

2

(
R1

rt12
+ R2

rt12
+ R2

rc2

)
− 1

2

[(
R1

rt12
+ R2

rr12
+ R2

rc2

)2

− 4R1 R2

rt12rc2

]1/2

. (14.29d)

It is possible to make rc2, the specific metal contact resistance to the top layer 2, small
by using a doped narrow-bandgap material. However, if rt12, the specific tunneling
resistance from the cap layer to the channel, becomes large, RC becomes unacceptable.
This is illustrated by the full curves in Figure 14.7, which show the dependence of RC

on rc2, with rt12 as a parameter, assuming typical sheet resistances. As rt12 approaches
10−6 � cm2, RC starts to become unacceptable. This situation typically arises with
a larger Al mole fraction in the Schottky-barrier layer. One is then forced to use an
alloyed ohmic contact for which there is typically less understanding and predictability
of RC . Alloyed ohmic contacts are also necessary when a depleted cap is used. In
this case R2 = ∞, and the tunneling resistance directly to layer 1 is prohibitively
large. The analysis leading to Equation (14.29) is similar to that in [66]. The diagonal
dashed line in Figure 14.7 corresponds to the standard expression RC = (rc2 R)1/2 for a
single channel [67]. As required, Equation (14.29) approaches this case when rt12→0.
The horizontal lines in Figure 14.7 correspond to the hypothetical case of contacting
layer 1 directly with the metal, with a specific contact resistance rc1 = rt12. The
derivation of this RC is similar to that of Equation (14.29). The result is included in
Figure 14.7 to test another limit of Equation (14.29), i.e. rc2→0, corresponding to the
metal essentially replacing layer 2 under the contact. The two RC ’s do indeed coincide
in this limit. It is interesting that RC given by Equation (14.29) has a minimum below
this limit (Problem 14.4(b)).

For the AC case there is a possibility of dispersion because of the capacitive
coupling [68] between the metal and layer 2, and layers 1 and 2. One can predict
the effect of this by replacing 1/rt12 in Equation (14.29) with 1/rt12 + jωC12, where
C12 is the specific capacitance between layer 1 and 2, and similarly for 1/rc2.

14.6.3 The high-field velocity-saturated region

Equation (14.21) gives explicitly the position y = ys for onset of velocity saturation,
and the potential Vc(ys) there, as functions of drain current ID and gate voltage
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hypothetical case of contacting the first (bottom 2DEG) layer directly with the metal, assuming a
specific contact resistance rc1 = rt12. This case approaches RC when rc2 approaches zero.

VG . The rest of the problem boils down to calculating analytically and explicitly the
drain voltage VD = VD(VG, ID) = Vc(Lg + Lgd) + RC ID . With a root-finding
algorithm, one can alternatively calculate ID as a function of applied bias, i.e. ID =
ID(VG, VD). Either way, one must calculate Vc(y) for ys < y < Lg + Lgd . In the
velocity-saturated region Equation (14.20) is simplified by the electron velocity being
independent of the field. The remaining complexity is the non-linear characteristic of
ns(·) introduced in Equation (14.14) to model the gradual pinch-off and saturation.
These important aspects of MODFET charge control, however, are accounted for in
the I –V characteristics by the gradual channel, i.e. Equation (14.21). In order to solve
for Vc(y) for y > ys analytically, we approximate Equation (14.20) in the saturated
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region by

Id = qWgns

(
Vsurf (y)− Vc(y)+ a2 d2Vc

dy2

)
vsat, (14.30)

where

a2 = εδc

q
dns

d(Vsurf − Vc)
(ys)

= εδcV1

q(1 − α)ns0
cosh2

(
VG − VGm − Vc(ys)

V1

)
. (14.31)

Since Id = qWgns(Vsurf (ys) − Vc(ys))vsat, we can rewrite Equation (14.30) as the
linear second order differential equation

d2Vc

dy2
= [Vsurf (ys)− Vc(ys)] − [Vsurf (y)− Vc(y)]

a2
(14.32)

for the channel potential. As the channel is further pinched down under the gate
beyond the point of velocity saturation, i.e. when the numerator in the right-hand side
of Equation (14.32) is positive, the channel field will continue to increase. Beyond
the gate, as Vsurf increases, the field will eventually peak (at y = ymax), and start
decreasing. At a point y = yus = Lg + �Lx further towards the drain, the transport
in the channel will again become linear (subscript us for un-saturation). The channel
field, which would be essentially constant between the source and drain without a gate
(barring Gunn-domain formation (Section 9.6)), becomes instead strongly peaked a
small distance ymax − Lg beyond the drain-side edge of the gate. The rate of change
in the field is determined by Vsurf (y) and the characteristic distance a. With a given
by Equation (14.31), Equation (14.30) is only an approximation based on a first order
series expansion of Equation (14.20). As Vc(y) increases rapidly beyond ys , higher
orders would in principle have to be accounted for. This would, however, preclude
an analytical solution of Vc(y). Instead, we maintain the simple soluble form of
Equation (14.32), but adjust the choice of a based on the following considerations. For
sufficiently large drain bias, Vc(y)will indeed increase well beyond the small deviation
that was the basis for Equations (14.30–14.31), and at some point y = ydc < Lg

under the gate, Vc will reach a value Vc(ydc) that makes ns(VG − Vc(ydc)) equal to
zero. From the standpoint of one-dimensional (VD = 0) gate charge control, this
corresponds to pinch-off of the channel, which, with the gate charge control assumed
(Equation (14.14)), occurs at the gate bias

VGoff = VG − Vc (ydc) = VGm − V1 tanh−1
(

α

1 − α
)
. (14.33)

In the actual two-dimensional case (VD > 0), the situation corresponds to total
transfer of charge support from the gate to the drain. For y > ydc, when the
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drain-voltage-induced lateral field fully supports the channel charge, the channel
potential is governed by:

d2Vc

dy2
= ID

Wεδcvsat
. (14.34)

For ys < y < ydc we integrate Equation (14.32), and pick a so that, in addition to
Vc and dVc/dy, also dV 2

c /dy2 is continuous at y = ydc. The result is an alternative
expression for a2 that is a function of the gate voltage and drain current:

a2(VG, ID) =
[

VG − VGoff − Vc(ys)

ID
εWgvsat

]
δc. (14.35)

This ensures that Equations (14.20) and (14.30) are equivalent not only close to y = ys

where dV 2
c /dy2 is negligible, but also at y = ydc where dV 2

c /dy2 totally dominates.
a2 given by Equation (14.35) reflects a mixture of gate and drain charge control
in the regime ys < y < ydc, i.e. between onset of velocity saturation and local
loss of gate charge control. The gate control is evident in the appearance in square
brackets of an effective gate-to-channel spacing. The drain control occurs because of
the finite channel thickness δc. This mixture becomes even clearer with the simple
linear charge control in Equation (14.3), when a2 becomes dgcδc, using either of
the Equations (14.31) or (14.35). Also with the realistic non-linear charge control
in Equation (14.14) the two expressions for a2 give very similar values.

Once gate charge support is lost, Vc(y) is governed by Equation (14.34) up to the
point y = yrc > Lg where the effective forward bias of the free surface reintroduces
the mixed charge control. Analytical solutions for the different points of interest (ys ,
ydc, yrc, ymax and yus) require a manageable Vsurf (y). As mentioned, for typical III–V
semiconductors, a free surface and a metallized surface have a similar Fermi-level
pinning position, and thus a similar depletion width. However, along a free surface,
the potential can vary. For analytical modeling we assume that the effect of the free
surface adjacent to the gate is that of a linearly varying gating potential, illustrated in
Figure 14.1, similar to [69, 70]. In reality, the electrostatic potential, obeying Poisson’s
equation, will vary in a more complicated way along the surface, with a larger slope
near the gate and cap. For the present level of modeling the assumption of a linearly
varying Vsurf is as complex as can be handled analytically, and we thus assume, in
each of the three regions, that

Vsurf (y) = VG + Fsurf (y − y0). (14.36)

Fsurf and y0 are region-dependent. Under the gate, Fsurf = 0, while in the unmetallized
part of the trough Fsurf and y0 are given by

Fsurf = −
VSlin + VGcap − VG

Lus
≡ −FsurfS, y0 = 0, (14.37a)

for −Lus ≤ y ≤ 0,
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and

Fsurf =
VD − VDlin + VGcap − VG

Lud
≡ FsurfD, y0 = Lg, (14.37b)

for Lg ≤ y ≤ Lg + Lud .

VGcap is an effective gate voltage (free to float above the channel potential) that
would fill the channel under the unetched cap to its appropriate carrier concentration
(Equation (14.14)).

To capture its general behavior also at lower currents, the channel thickness in the
saturated region is assumed to have the following dependence on ID:

δc(ID) = γ ID/Wg

1 + γ ID/Wg

δ
(max)
c

. (14.38)

δ
(max)
c can be used to adjust the output conductance of the FET in its active on-state

region (cf. Section 10.3.2). However, as will be shown in Section 15.4, realistic
output conductance can be predicted by considering the capacitive coupling between
drain and source. Thus, we typically leave δ(max)

c at the nominal epitaxial channel
layer thickness dc. In the other limit, as threshold is approached and ID is reduced,
Equation (14.38) allows the channel thickness to be reduced in a way consistent
with the punch-through voltage VDpt, the drain voltage necessary to force a current
through a nominally off channel (VG < VGoff ). This requires that the channel
charge is supported solely by the drain-induced field. ID is zero before the onset of
punch-through, so the parasitic voltages are negligible. VDpt is typically large enough
for it to be assumed that the entire channel 0 < y < Lg + Lud is velocity-saturated.
Equation (14.34) can then be used and integrated to yield

VDpt = (Lg + Lud)
2

2εγ vsat
. (14.39)

In short-gate devices, punch-through is likely to occur before off-state breakdown due
to impact ionization or gate tunneling current. Thus, the off-state breakdown voltage
measured at a low ID (∼ 1 mA/mm) [71, 72] can often be a reasonable estimate of
VDpt, from which γ can be chosen.

14.6.4 Impact ionization in the channel and gate tunneling

With the field and potential in the channel, the breakdown characteristics can be
estimated. Two mechanisms are of particular interest: impact ionization in the channel
and tunneling of electrons from the gate to the channel. Off-state breakdown in
InP-type HEMTs has been proposed to be due to a combination of the two [73].
Numerical models (e.g. [74]) are required to include these effects self-consistently.
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With an analytical model one can study breakdown effects by doing first order
calculations using the unperturbed electrostatics.

The drain current with impact ionization in the channel is

I ′
D = Mn ID, (14.40)

where Mn is the electron multiplication factor. This is given by

Mn = 1

1 − Inp
, (14.41a)

where

Inp =
∫ yus

ys

dy αn(y) exp

(
−
∫ y

ys

dy′ [αn(y
′)− αp(y

′)
])
. (14.41b)

This expression comes from considering in one dimension the generation rate (αn Jn +
αp Jp)/q of electron–hole pairs, the individual continuity equations for the electrons
and holes and the constancy of the total current density J = Jn + Jp [75]. With
impact ionization based on the local field F , the electron ionization coefficient is often
expressed as [76]

αn(F) = αn0 exp

(
− Fn

F

)
, (14.42)

where αn0 is a constant. The exponential term originates from a Boltzmann factor,
where the activation energy is the threshold energy ET n for an electron to generate an
electron–hole pair, and the temperature is the temperature Tn of an electron accelerated
in the high field F to its saturation velocity. Assuming a constant mean free path ln for
the energy relaxation, Equation (14.42) results, and the characteristic field Fn is given
by [76]

Fn = 3ET n

2qln
. (14.43)

By considering momentum and energy balance of the impact event, one derives

ET n = 2me + mh

me + mh
EG, (14.44)

for the threshold energy [76]. With the effective mass me of electrons typically being
significantly smaller than that for holes (mh), ET n exceeds the energy bandgap EG of
the channel only by a rather small amount.

Avalanche breakdown occurs when Inp = 1, but long before then the presence of
impact ionization in the channel can have profound effects on the device. One example
is the kink phenomenon in InP-type HEMTs, which causes the DC drain current to be
depressed for moderate drain biases. Although there may be several alternative origins
for the kink phenomenon (e.g. [77]), a commonly occuring kink in these devices is
due to a subtle interplay between the unmetallized part of the gate trough and impact
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ionization [78]. The depression in ID is caused by negatively charged surface states,
primarily in −Lus < y < 0. In terms of our analytical model, this corresponds to a
low VGugt and a high Vc(0) (Section 14.6.1). However, because of holes generated
by impact ionization in the velocity-saturated region, starting at a rather low VD

(∼ ET n/q ∼ 0.8 V), the negative surface charge is reduced, allowing a larger ID to
flow. The quantitative treatment of this phenomenon requires full numerical methods
and a more fundamental energy-based viewpoint of the impact ionization [78].

The most straightforward estimate of Mn is one based on the unperturbed field, and
is simplified further if one can assume that the hole ionization coefficient is given by
αp = kpαn . The double integral Inp will then only involve the single integral

In =
∫ yus

ys

αn(y) dy, (14.45)

and will be given by

Inp = 1 − exp(−(1 − kp)In)

1 − kp
. (14.46)

For Ga0.47In0.53As channels, αp = kpαn is less good an assumption with Urquhart’s
[79] αn(F) and αp(F), compared to Pearsall’s [80] and Osaka’s [81]. Since the
large fields (> 300 kV/cm) of most importance force us to use the αn(F) and αp(F)
expressions beyond the fields used for their measurements, it is not always clear what
the best choice for kp is. kp = 0.5 has been used [82], but with the later experimental
data [79] kp = 1 may be a better choice.

Having calculated Fc(y) and Vc(y), one can also estimate the tunneling reverse
gate current IGt . Using the low-temperature limit of the reverse I –V characteristics
derived by Padovani and Stratton [83], and assuming a triangular barrier defined by
the Schottky-barrier height  B and the electric field Fg(y) at the gate–semiconductor
interface (again with opposite sign to the convention), one arrives at (e.g. [84])

IGt = q3mM Wg

8πhmSBL B

∫ Lg

0
dy F2

g (y) exp

(
−4(2mSBL)

1/2 
3/2
B

3qh̄Fg(y)

)
, (14.47)

where mM and mSBL are the electron mass in the metal and Schottky-barrier layer,
respectively. In the region 0 < y < ys , where the lateral field is neglected, Fg(y) is
given approximately by

Fg(y) = q
(
Nd1dp1 + Nd2dp2

)
ε

− VG − VT − Vc(y)

dgc
. (14.48)

This comes out as a byproduct as one derives Equation (14.4) for the threshold voltage.
For ys < y < Lg one cannot neglect the lateral field. Since the field of interest is
now at the gate (x = 0), while the boundary conditions for the field are known in
the channel (x = dgc), we face the full two-dimensional problem in 0 < x < dgc,
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ys < y < Lg . This is the Grebene–Ghandhi [85] problem solved in Section 10.3.1.
The solution to the potential V is thus the sum of a y-independent (since the doping
is y-independent) particular solution Vp(x), and a homogeneous solution Vh(x, y)
satisfying Laplace’s equation. The one-dimensional gradual-channel solution, with
the channel potential set to Vc(ys), is the natural choice for Vp(x), since this leads
to the simplest boundary conditions for Vh(x, y). Two of the boundary conditions,
Vh(x, ys) = 0 and Vh(0, y) = 0, are satisfied by the solution

Vh(x, y) = B sin (βx) sinh (β (y − ys)). (14.49a)

β and B are constants determined by the boundary conditions ∂Vh/∂y(dgc, ys) = Fsat

and ∂Vh/∂y(dgc, Lg) = Fc(Lg) to be

β =
cosh−1

(
Fc(Lg)

Fsat

)
Lg − ys

(14.49b)

and

B = Fsat

β sin
(
βdgc
) , (14.49c)

respectively. In the saturated region ys < y < Lg , the field at the gate thus becomes

Fg(y) = q(Nd1dp1 + Nd2dp2)

ε
− VG − VT − Vc(ys)

dgc
+ Fsat

sinh (β(y − ys))

sin(βdgc)
.

(14.50)

The integrals in Equations (14.45) and (47) are calculated most easily with Simpson’s
formula.

In the saturated channel (x = dgc, ys < y < Lg), the solution Vp(x) + Vh(x, y)
to the full two-dimensional problem is identical to the solution to the one-dimensional
problem for the channel potential (Equation (14.32)) with Vsurf (y) = VG . The two
parameters a and β are related by aβ = 1. The simple one-dimensional second order
linear differential equation (Equation (14.32)) for the channel potential was developed
primarily to allow straightforward, albeit approximate, incorporation of the regions
external to the gate. With the choice of a in Equation (14.35), the approach has the
additional benefit of effectively (and approximately) incorporating the effect of higher
order terms in the potential, i.e. additional terms of the form in Equation (14.49a) with
increasing β’s. With the choice of a linear Vsurf (y), the solution to Equation (14.32),
and the determination of ydc, ymax, yrc, yus etc., are straightforward compared to
solving a two-dimensional electrostatic problem.

14.6.5 Application examples and some large-signal issues

The first application example of the DC model is the potential and field profiles shown
in Figure 14.1 for an InP-type MODFET biased at VD = 1.5 V, near maximum
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transconductance. After the field reaches Fsat at ys , it increases exponentially under
the gate. Beyond the gate, Vsurf is free to increase to its value VD − VDlin + VGcap

(cf. Equation (14.37b)) at the drain-side edge of the gate trough. The field no longer
increases exponentially, but instead peaks at y = ymax, and then drops down to a point
where the channel transport becomes linear again. The surface-induced high-field
domain differs from the common view of saturation in a MESFET, dominated by
a transport-induced stationary Gunn domain beyond the gate [86]. Fully numerical
MODFET modeling [87] appears to validate the approach. In velocity-saturated
regions with mixed charge control, Equation (14.32) has the solution

Vc(y) = Vc(ys)+
[
VG − Vsurf (ys)

]+ Fsurf (y − y0)

+ V+ exp(y/a)+ V− exp(−y/a), (14.51)

where V+ and V− are given by the known channel potential and field at the beginning
of the region. The use of a linear Vsurf (y) allows us to find any point y of interest
associated with a particular field, or derivative of the field. ydc, for instance, is most
conveniently found by the condition

(
d2Vc/dy2

)
(ydc) = ID/(Wεδcvsat), which, per

Equation (14.34), is a condition for the channel charge being fully supported by the
lateral field. Starting at y = ydc, Vc(y) is determined by Equation (14.34) which is
trivial to solve. The point y = yrc, where the surface gating voltage has risen enough
to re-introduce the mixed charge control, is determined by Vsurf (yrc) − Vc(yrc) =
VGoff . For y > yrc, Vc(y) is once again governed by Equation (14.32), with
Equation (14.51) as the formal solution. The point y = ymax of maximum field((

d2Vc/dy2
)
(ymax) = 0

)
, and y = yus of ‘unsaturation’ ((dVc/dy)(yus) = Fsat) are

easily found. The evolution of the interesting points as VD increases is shown in
Figure 14.8 for a PHEMT [88].

Typically velocity saturation sets in under the gate, and Vsurf (ys) − VG in Equa-
tion (14.51) is zero. However, for sufficiently large drain voltage (and short gates)
the entire channel can become velocity-saturated, and the point of onset moves into
the source side of the ungated trough as shown in Figure 14.8 for VD ∼ 2 V. This
is the onstate version of the punch-through situation discussed above, and results in
a larger output conductance since the channel is now modulated by the free surface
with a varying gating voltage. Only in this situation does the source-side Vsurf (y)
(Equation (14.37a)) enter into the calculation. Punch-through starts when Vc(0)
(Equation (14.21c)) becomes larger than Vc(ys) (Equation (14.21b)), i.e. when V0 >

Vsat. Under the gate, analytical treatment of linear transport is possible because of the
constant Vsurf = VG , which allows direct integration of Equation (14.20), leading to
Equation (14.21a). As we saw when developing expressions for VSugt and FSugt, this
is not the case in −Lus < y < 0, because of the varying Vsurf (y). For the present
case with ys < 0, we assume that the effective field Fugt (Equations (14.24)–(14.25))
can still be used for −Lus < y < ys . The saturation point ys is determined by
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increased.

ID = qWgns
(
Vsurf (ys)− Vc(ys)

)
vsat, where Vc(ys) = VSlin + Fugt(ys + Lus). This

results in

ys = −
(

V0 − Vsat

Fugt + FsurfS

)
, when V0 > Vsat. (14.52)

Further towards y = −Lus , the free surface rapidly ‘unpinches’ the channel, prevent-
ing ys(VD) from moving far into negative-y territory, and making the use of Fugt in
−Lus < y < ys a reasonable simplification.

Figure 14.8 also shows that for sufficiently large drain biases yus will move out
into the drain-side cap region. In this typically highly conductive (sheet resistance R)
region, Fsurf is assumed equal to its value RID/Wg in the linear part. Thus,

Vsurf (y) = VD − VDlin + VGcap + RID

Wg

[
y − (Lg + Lud)

]
, (14.53)

Lg + Lud < y < Lg + Lgd ,

in this fourth region of potential velocity saturation.
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Saturated velocity limit: 
Equation (14.54)
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Fig. 14.9. Maximum intrinsic transconductance with parameters representative of InP-type
MODFETs versus gate length. Filled circles are calculated with the full DC model. Dashed lines
are the two limits.

Figure 14.9 shows calculated maximum intrinsic transconductance versus gate
length for a typical InAlAs/InGaAs MODFET structure. To this end RC , R, Lus ,
VGugt, vugt, etc. were picked to produce negligible parasitic voltage Vc(0). For the
short-gate lengths of primary interest in this chapter, the intrinsic DC transconductance
in saturation approaches the limit∗

g(i)m0,sat = εWgvsat

dgc
, (14.54)

which is directly proportional to the saturation velocity, and independent of the gate
length and mobility. This expression will be used for the small-signal analysis in
Chapters 15 and 17. For longer gates the transconductance will begin to be degraded

∗ The notation introduced here for small-signal parameters is heavy on sub- and superscripts, and may
appear cumbersome. However, it is important to be aware of whether the parameter is intrinsic (i) or
extrinsic (x), whether it is the DC (0) or AC (ω) value, and finally whether the parameter is associated with
the gradual channel (gc) or the velocity-saturated region (sat). Capacitances and gate leakages are
generally understood to be intrinsic parameters, i.e. there are no parasitic resistors hidden inside of them.
In the case of transconductance and output conductance, however, it is not always clear whether their
quoted values are for the intrinsic or extrinsic case. Thus, we are careful to carry along the appropriate
identifying superscript.
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by the low-field, essentially resistive, part of the device. It eventually approaches
Shockley’s [89] original gradual-channel limit, where

g(i)m0,gc = qWgns(VG)µ0

Lg
(14.55)

(Problem 14.5), even though the channel never totally pinches off, and the field
remains finite [51]. In this limit, the maximum transconductance does not correspond
to the maximum slope of ns(VG), but rather its maximum value ns0. Note that
(g(i)m0,gc)

−1 is the open (VD = 0) channel resistance. Since the same vsat was
used throughout the gate-length range in Figure 14.9, it illustrates that a gate-length
dependence in the transconductance (e.g. [90]) is not necessarily a sign of velocity
overshoot. It is interesting that, based on g(i)m0 − Lg curves which do not saturate as
Lg → 0, experimental observation of velocity overshoot in Si NMOSFETs has been
claimed (e.g. [91]). The room temperature saturation velocity, even at Lg = 50 nm,
however, is only ∼ 30% above the steady-state v′

sat.
Figure 14.10(a) shows the modeled drain current characteristic for an AlI-

nAs/GaInAs MODFET with the 0.1-µm geometry in Figure 14.1. Because of the
short gate and lateral charge support the channel also conducts for VG ≤ VGoff ,
particularly above the ∼ 3 V punch-through voltage that results from our choice of
γ . Mn ID is shown in dashed lines. The impact ionization contributes directly to
the drain current only moderately, by adding to the output conductance beyond a
VG-dependent VD . Recall, however, that a small amount of impact ionization at
lower VD’s can affect the drain current and output conductance indirectly through the
kink effect [78]. A small amount of impact ionization (much smaller than that which
would correspond to bulk avalanche breakdown) is also responsible for the on-state
breakdown (= burn-out) voltage for InP-type MODFETs. Because of the low level of
impact ionization current relative to the primary drain current, one cannot generally
distinguish an upturn in ID before the FET breaks down. The presence of impact
ionization is, however, clearly evident as a negative gate current, corresponding to
holes being collected by the gate. Figure 14.10(b) shows burn-out biases (BV (on)

ds ,
ID) for 0.1-µm In0.53Ga0.47As-channel MODFETs with two gate widths (2 × 11
and 2 × 75 µm) across a wafer, at various current levels. Superimposed from
Figure 14.10(a) are the top ID(VD) curve, and three curves of constant predicted
secondary current (Mn − 1)ID . Added are five loci of constant DC power dissipation,
and two potential load-lines for power amplifier design. Several things are noteworthy.
First, unlike the situation for MESFETs [92] and PHEMTs [93], the burn-out biases
do not follow a constant-power curve. Instead, they track rather closely the locus
of (Mn − 1)ID = 10 mA/mm, calculated using the approximate method described
above, with published field-dependent impact ionization coefficients [79], and kp = 1.
Relative to the 22-µm FETs, the 150-µm zapping points tend to deviate somewhat
towards a constant power locus, but not in a major way. One might interpret this as
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indicated.

a small thermal burn-out component, caused by the increase in the impact ionization
for In0.53Ga0.47As with temperature [94]. Typically one expects impact ionization to
be reduced with temperature because of increased scattering. For narrow-bandgap
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material, however, the reduction in bandgap with temperature [75] can reverse the
trend. Overall, the adherence of BV (on)

ds (ID) to the impact ionization curves is striking,

particularly the increase in BV (on)
ds for the smaller FETs at the highest currents. This is

due to the reduced channel field as the channel becomes more uniformly filled. Since
the field appears exponentially in the impact ionization coefficients this overwhelms
the moderate increase in primary drain current. Near off-state, it is the increase in
primary current that causes the fast drop in BV (on)

ds (ID).
As a consequence of these results, the often quoted off-state breakdown voltage

BV (off )
ds is not that relevant for these InP-type FETs. With load-line A in Fig-

ure 14.10(b) the classical back-of-the-envelope estimate for the maximum output
power available from a device is

P(max)
out = 1

8
I (knee)

D

(
BV (off )

D − V (knee)
D

)
(14.56)

for class-A operation. With the device biased at the midpoint of the load-line,
near maximum transconductance, class-A allows the highest bandwidth (e.g. [27])∗.
Although the predicted millimeter-wave output power would be impressive with
load-line A in Figure 14.10(b), the FET would be biased in (and the voltage would
swing further into) the region of destructive breakdown. For reliable operation one
should back off to load-line B, which accounts for the smaller on-state breakdown
voltage with some margin �B . The breakdown voltage has a flat minimum near ID

of maximum transconductance (∼ I (max)
D /2). This minimum, BV (on,min)

D , becomes
a more conservative and significant measure of breakdown for high-speed narrow-
bandgap FETs, and the maximum output power available from such a device is better
expressed as

P(max)
out = 1

4
I (knee)

D

(
V (bias)

D − V (knee)
D

)
, (14.57a)

where

V (bias)
D = BV (on,min)

D −�B . (14.57b)

Note that it is the knee current that counts†. Although there is a rather small difference
in the values of I (knee)

D and I (max)
D in the analytical DC model, the difference can be

significant in real cases where there is a large output conductance. This situation can,
for instance, occur for very short gates, or in FETs with a large In mole fraction in the
channel.
∗ It is, however, not the most efficient class due to the large quiescent power PDC being dissipated. As the
name implies, the power-added efficiency (P AE) listed in Table 14.1 is defined as
P AE = (Pout − Pin)/PDC , where Pin is the input microwave power [27]. The P AE will peak at a
smaller input power than what is required to reach maximum output power. The maximum conceivable

P AE in class A is 50%, and would correspond to the hypothetical situation of V (knee)
D = 0.

† We have assumed a typical class-A design where the knee point in the drain characteristics is one
‘anchor’ for the load-line. For a device with high maximum current, and low on-state breakdown voltage, a
shallower load-line that does not reach the knee point, but allows a larger voltage swing, may have to be
considered.
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The simple DC expressions for maximum output power can be quite accurate even at
high frequencies (e.g. [58]), provided that the device has reasonably low trap-related
dispersion, is not too non-linear and sees the proper load at the output. Finding the
optimum load admittance Y (opt)

L experimentally involves so-called load-pull measure-
ments, where a plethora of loads are presented to the device and the optimum one is
picked. With a good large-signal CAD model, simulation should be able to produce
the same result. The problem is inherently large-signal and non-linear, and requires
one of the two approaches. Nevertheless, a good first guess is

Re
(

Y (opt)
L

)
= I (knee)

D

2
(

V (bias)
D − V (knee)

D

) (14.58a)

Im
(

Y (opt)
L

)
= −2π f0C (x)22 , (14.58b)

where f0 is the center of the frequency band of operation, and C (x)22 is the extrinsic
small-signal output capacitance of the FET at the bias point. This and other small-
signal properties of the device are the topics of Chapter 15.

14.7 Reliability

Determining the reliable operating regime is much more complex a process than the
discussion of Figure 14.10(b) may have suggested. It is an important task that must be
done for any process destined for manufacturing. In addition to a repeatable uniform
process and a representative CAD model, the end user needs to know that the devices
are reliable in the specified gate and drain voltage ranges. Establishing reliability
involves measures both DC stress at elevated temperatures (HTOL = high-temperature
operating lifetime), and large-signal RF stress (RFOL), often performed at room
temperature. The bottom-line outcome of the stressing is an extrapolated mean time
to failure (MTTF). An MTTF of 106 hour at 125 or 150◦ C channel temperature (T0)
is typically required. 106 hours (= 114 years) may seem excessive, particularly with
today’s product lifetime, but it is a number with a history, and does leave room for
the ∼ 50% fraction of devices that fail before the mean time. The following is a
very brief discussion centered around InP-type MODFETs. For a thorough review
of testing methods and degradation mechanisms, an interested reader can consult the
rich literature on reliability (e.g. [95–97]).

Reliability work is difficult and time-consuming. Most often, it is not just a matter
of establishing the MTTF, but also of improving it. Fully closing the loop between
the two is a major undertaking, and can only be done for a major process upgrade.
Determining the MTTF from HTOL is a long process that has to be done with great
care. One has to start with sufficiently many devices to make the MTTF meaningful.
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The devices have to be packaged, and ‘infant deaths’ prudently removed from the
population. The degradation is accelerated by elevating the channel temperature T
well above T0. The channel temperature is determined by liquid crystal measurements,
or thermal modeling of its rise over the base temperature. At least three T ’s should be
used, so that a linear fit to log10(MTTF) vs 1/T can be made with some confidence,
and the activation energy determined:

E A = k

log10(e)

d log10(MTTF)

d (1/T )
. (14.59)

The choice of the T ’s is a tradeoff, and a judgement call. T has to be large enough
so that the degradation is sufficiently accelerated to be determined, but not so large
that the dominant failure mechanism differs from the one at specified operating
temperatures. The sought-after MTTF is found by extrapolation from an elevated
temperature Te:

MTTF (T0) = MTTF (Te) exp

(
E A

k

(
1

T0
− 1

Te

))
. (14.60)

A typical HTOL failure criterion for FETs is a 10–15% drop in maximum extrinsic
transconductance or IDSS (= ID(VG = 0, VD > VDsat + (RS + RD)ID)). The use of
IDSS as a failure criterion hails from the days when threshold voltages were very
negative (by today’s standards), and IDSS was essentially equal to the maximum
drain current. Today, for a typical depletion-mode (VT < 0) device, the maximum
transconductance occurs near VG = 0. Thus, IDSS will depend on VT , g(i)m0,sat, g(i)ds0,sat,
RS , and RD , and therefore on the large number of underlying physical parameters that
we have encountered. The number of basic parameters and device regions that go into
the maximum drain current are fewer, making it more telling and fundamental. For
an enhancement-mode device (VT > 0), the choice is even more clear. As one learns
more about the mechanisms of degradation, other failure criteria, such as a maximum
increase in RD (e.g. [98–100]), may have to be considered.

With regard to improving the reliability, there is not much quantitative help from
modeling, although the type of analysis that established the correlation between
impact ionization and burn-out voltage in Figure 14.10(b) can be helpful in guiding
the process development. It also suggests loci of similar reliability, which is useful
considering that the rather involved process outlined in the last paragraph was for
a single bias. The modeling is also useful in prescribing acceptable load-lines,
both for power amplifier design and RFOL. The physics of degradation, however,
is mostly too complex even for the most sophisticated models available. For the
case of primary interest here, Ga0.47In0.53As/Al0.48In0.52As MODFETs, it is clear
that impact ionization plays an important role (e.g. [99, 100]), particularly with its
positive temperature coefficient [94]. Impact ionization by itself, however, is not
necessarily a bad thing. After all, there are devices (avalanche photodiodes) installed
in communication systems that rely on it. The search continues for the mechanism
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that ultimately causes the degradation (possibly a recombination process). In addition,
there are many other potential degradation mechanisms at elevated temperatures and/or
high fields. These include gate sinking (e.g. [101, 98]), degradation (oxidation) of the
AlInAs surface (e.g. [102, 103]), indiffusion (potentially field-enhanced) of foreign
atoms that compensate the donors (e.g. [104]), hot-electron-induced degradation of
the passivation–semiconductor interface (e.g. [105]), and degradation of the ohmic
contacts (e.g. [106]). Complicating the task of drawing general conclusions is that
different mechanisms appear to dominate in ostensibly similar processes and epitaxial
structures from different labs. Examples of lessons learned in one laboratory can be
found in [107].

14.8 Conclusion

This chapter has begun to introduce the reader to some advanced topics on MODFETs.
The goal has been to thoroughly analyze important practical issues for DC and large-
signal operation, while maintaining an analytical approach. We have been able to
gain insight into and model charge control and transport in degenerately dual-doped
structures. We have managed to take the modeling far enough to predict breakdown
characteristics that affect output power and reliability. In the following three chapters
we will continue the analytical approach, but will shift the focus to the high-frequency
performance.
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14.10 Problems

14.1 Derive the threshold voltage expression (Equation (14.4)) for the dual-doped MODFET.
Assume that the field is zero below the bottom pulse, and that near the inflection point in
ns(VG) where ns ∼ ns0/2, there is negligible change in the potential across the 2DEG.

14.2 (a) Show that Equation (14.7) applies to the symmetrically dual-doped case after the

substitutions Nd1→2Nd1, �d → 2�d, and �E(eff )
C → 2�E(eff )

C .

(b) Discuss the design of the backside pulse (Nd2 and dp2) in a practical MODFET.

14.3 Derive Equation (14.12) for the electron exchange interaction. Hints: Pick a manageable
geometry for the ‘exchange hole’, i.e. the surrounding fixed ionic background that can be
‘assigned’ to the electron. Calculate the Coulomb interaction energy.

14.4 (a) From the resistive network in Figure 14.6 develop the expression for the resistance of a
non-alloyed ohmic contact (Equation (14.29).

(b) Why is there a minimum in Rc vs rc2 in Figure 14.7?

14.5 Derive Equation (14.55) for the intrinsic transconductance in the limit of long gate lengths.
Note that ns(VG) is not assumed to be linear. Hint: For long gate lengths, saturation can be
assumed to coincide with pinch-off at the drain-side edge of the gated channel.



15 Small-signal AC analysis of the short-gate
velocity-saturated MODFET

That must be wonderful, I don’t understand it at all.

MOLIÈRE

15.1 Introduction

This chapter develops the small-signal equivalent circuit and Y parameters for a
short-gate high-speed MODFET. We start with the intrinsic device, and discuss in
detail the effects of the velocity-saturated region. Finally, we incorporate extrinsic
elements, in particular the access resistances. Of these, the source and drain resistances
were discussed in Section 14.6.2. The gate resistance is a considerably more complex
component, with multiple physical origins, and distributed incorporation into the
equivalent circuit. Detailed discussion of this is deferred to Chapter 16.

15.2 Equivalent circuit for the intrinsic device

We are interested in a bias near optimum for small-signal performance. This
means biasing the gate where the charge control is essentially linear (as assumed
in Chapter 11). This occurs near the inflection point VGm in the ns(VG) curve in
Figure 14.2(b), and produces maximum intrinsic capacitance,

C0 = q K Wg Lg, (15.1)

where

K =
(

dns

dVG

)
max

= ε

qdgc
. (15.2)

This bias point minimizes the degrading effects of parasitic capacitances which do
not modulate the two-dimensional electron gas (2DEG). The associated open-channel
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C  gs,gc

C  gd,gc

G
ig

vgs

id

vds
R  gs,gc

R  gd,gc
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g
m,gc(ω)vgs
(i ) g

ds,gc(ω)(i )

Fig. 15.1. Equivalent circuit for the linear MODFET analyzed in Section 11.2. It is similar to those
in Figure 11.9, and its topology is more conventional than the original one in Figure 11.6. Six of the
eight elements that describe the AC characteristics (Equations (15.7), (15.8), (15.13)–(15.16)) are
easily identifiable components in the equivalent circuit. The remaining two are the time delays that
go into the frequency dependence of the output conductance and transconductance
(Equations (15.9), (15.10)). The controlling voltage for the transconductance is shown explicitly.

conductance is

g0 = 1

R0
= qµnsi Wg

Lg
, (15.3)

where R0 is the open-channel (VD = 0) resistance at VG = VGm and nsi is the
2DEG inflection-point carrier concentration. With the non-linear gate charge control in
Equation (14.14), nsi = αns0. The optimum drain bias for speed produces a moderate
saturation which balances the benefits of high electron velocity under the gate with
the detrimental effect of the external delay associated with �Lx (Section 15.4). A
significant fraction of the channel under the gate (0 < y < ys in Figure 14.1)
will typically still be linear, and we base the development of the equivalent circuit
on the linear-case topology in Figure 15.1. Even before the modifications we will
make to account for velocity saturation, this is quite similar to the final topology, used
universally by experimentalists and designers, even deep in saturation. As shown in
Problem 15.1 the elements in Figure 15.1 are determined by the coefficients Ii j (k)
and Ri j (k) derived in Section 11.2. These are functions of the dimensionless bias
parameter

k = VD

VG − VT
. (15.4)

One finds:

g(i)m,gc (ω) = g(i)m0,gc exp(− jωτ(T L)
d,gc )

sin(ωτ (s)d,gc)

ωτ
(s)
d,gc

, (15.5)

g(i)ds,gc (ω) = g(i)ds0,gc exp(− jωτ(T L)
d,gc )

sin(ωτ (s)d,gc)

ωτ
(s)
d,gc

, (15.6)

g(i)m0,gc = g0k, (15.7)
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g(i)ds0,gc = g0(1 − k), (15.8)

τ
(T L)
d,gc = τ (1)d,gc, (15.9)

τ
(s)
d,gc =

√
3

[(
τ
(2)
d,gc

)2 −
(
τ
(1)
d,gc

)2
]1/2

, (15.10)

τ
(1)
d,gc = C0

g0

Idg(k)− Igd(k)

k
, (15.11)

τ
(2)
d,gc = C0

g0

[
2

Rdg(k)− Rgd(k)

k

]1/2

, (15.12)

Cgs,gc = C0
[
Igg(k)− Igd(k)

]
, (15.13)

Cgd,gc = C0 Igd(k), (15.14)

Rgs,gc = R0
Rgg(k)− Rgd(k)[
Igg(k)− Igd(k)

]2 , (15.15)

Rgd,gc = R0
Rgd(k)

I 2
gd

. (15.16)

The subscript gc stands for the gradual channel to distinguish these parameters from
those to be introduced for the velocity-saturated part of the channel. τ (1)d,gc and τ (2)d,gc
are the delays in the drain current appearing in the expansion to second order in jω of
g(i)x,gc(ω) (x = m, ds):

g(i)x,gc(ω) = g(i)x0,gc

[
1 − jωτ(1)d,gc − 1

2

(
ωτ

(2)
d,gc

)2
]
. (15.17)

In Equations (15.5) and (15.6) we have replaced τ (1)d,gc and τ (2)d,gc with the drain delays

τ
(T L)
d,gc and τ (s)d,gc, respectively, and rewritten g(i)x,gc(ω) in a form which has the correct

second-order Taylor expansion of Equation (15.17), but which does not blow up as
ω → ∞. The functional form in Equations (15.5)–(15.6) degrades ‘gracefully’
[1]. At the present stage in the analysis, the choice of functional form may appear
arbitrary. Considering the gradual-channel case, where the charge control resembles a
parallel-plate capacitor with some series resistance, it may have been more natural

to use a factor 1/
(

1 + jωτ(RC)
d,gc

)
instead of sin

(
ωτ

(s)
d,gc

)
/
(
ωτ

(s)
d,gc

)
. The latter

functional form, however, is one we will encounter for the velocity-saturated case, and
we might as well use it here too. It accounts for the degradation in magnitude, while the

transmission-line-like factor exp
(
− jωτ(T L)

d,gc

)
accounts for the increased phase delay

for higher frequencies. Note that, as developed in Chapter 11 and in this section, the
controlling voltage for the transconductance is the entire intrinsic gate voltage, i.e. not
just the fraction that drops across Cgs,gc. This is the physical way of approaching the
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problem, since we do not know a priori the values for Cgs,gc and Rgs,gc. Compared to
more phenomenological models where the controlling voltage is assumed to be across
Cgs,gc, the drain delays will be longer.

It is interesting that the frequency dependences of g(i)ds,gc and g(i)m,gc are identical.
The gradual-channel current responds to an AC stimulus from the gate very similarly
to one from the drain. It is only the k-dependent magnitude of the response that is
different. (At the ‘half-way’ point (k = 1

2 ) between open channel (k, VD = 0) and
classical pinch-off (k = 1, VD = VG − VT ), the magnitudes are also the same.)
Note that the output impedance of the linear FET appears inductive: 1/g(i)ds,gc (ω) ≈
1/g(i)ds0,gc + jωτ(T L)

d,gc /g
(i)
ds0,gc.

In Figure 15.2 we have plotted, in the normalized form of Chapter 11, the six
non-linear fundamental parameters in Equations (15.9), (15.10) and (15.13)–(15.16)
against the dimensionless saturation parameter k. (With their simple linear k depen-
dence, g(i)m0,gc and g(i)ds0,sat were not included.) In addition, we have plotted the two RC
gate delays

τ (RC)
gs,gc = Rgs,gcCgs,gc (15.18)

and

τ
(RC)
gd,gc = Rgd,gcCgd,gc, (15.19)

also in normalized form. Like the two drain delays, the two RC delays are quite similar
in magnitude. Despite the strong k dependence of Rgd,gc and Cgd,gc individually,
their product is rather independent of k even up to k = 1. Similarly, although Cgs,gc

increases, and Cgd,gc decreases, as k increases, the sum of the two is practically
constant up to k ∼ 0.5. With finite saturation velocity, preventing classical pinch-off,
k is less than 1 for all gate lengths ([2]; Section 14.6.5)). The DC model in Chapter 10
can be used to calculate k = Vc(ys)/(VG − VT ) associated with the gradual channel.
The value is indeed less than 1, but will depend somewhat on Lg , VG , and the value
we assign to E (sat)

� (Section 14.5). Given the relative insensitivity to k of the time
constants and the total gradual-channel capacitance, it is quite reasonable for the short
gates of interest to evaluate the parameters at k = 0.

In saturation, several effects occur that force us to modify the equivalent circuit.
Before going into the more fundamental quantitative analysis in Sections 15.3 and
15.4, we take the qualitative approach illustrated in Figure 15.3. Referring again to
Figure 14.1, the high-field region extends by �Li towards the source, and by �Lx

towards the drain. The partially depleted high-field region �Li + �Lx separates the
large concentration of electrons in the ohmic gradual channel from the similar situation
at the drain. Thus a drain–source capacitance develops. �Lx also increases the
charge separation between the input (gate) and the output (drain). This will physically
redistribute Cgd,gc (∼C0/2) largely to an internal node S′ which is separated only by
a small resistance (associated with the gradual channel) from the source S, but by a
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k
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Cgd,gc

Rgs,gc

Rgd,gc

Rgd,gcCgs,gc Cgd,gc+

Fig. 15.2. The eight fundamental equivalent circuit elements, two RC gate delays, and the total gate
capacitance for a linear MODFET vs the bias parameter k. All parameters are normalized as in
Chapter 11.

large resistance (associated with the velocity-saturated region) to the drain D. There
will still be a capacitance from the gate to the drain, but this can be considerably
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Fig. 15.3. Heuristic development of the equivalent circuit for an intrinsic short-gate
velocity-saturated MODFET. (a) The gradual part of the channel (y < ys in Figure 14.1) is still
described by the equivalent circuit in Figure 15.1. This part is indicated by the lighter shaded area.
The prime attached to the R’s and C’s merely indicates that the length of this region is no longer
Lg , but Lg −�Li . Elements in the darker shaded area are added, as discussed in the text, to model
the velocity-saturated part of the channel (y > ys ). The border (y = ys ) between the two regions is
associated with the node denoted alternatively by S′ and D′, depending on whether the element is
connected to it from the drain (D) or source (S) side, respectively. (b) A simplified equivalent circuit
resulting from letting the low-voltage S′/D′ node ‘collapse‘ to the source node (ground), as
discussed in the text. This happens to be the standard equivalent circuit also for longer-gate FETs,
even though the S′/D′-collapse is less warranted then.

smaller because of the reverse bias. For the low voltage at S′ (corresponding to a small
k), particularly for the short gates of interest here, the conductance g(i)d′s,gc is very large,
and can be approximated by a short. What little resistance is overlooked by doing this
can appear as a small component in the extrinsic source resistance Rs (Section 14.6.2).
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The transconductance g(i)m,gc can be neglected beside g(i)d′s,gc. The equivalent circuit for
the intrinsic MODFET will thus ‘collapse’ into that shown in Figure 15.3(b). The two
RC branches on the input side in Figure 15.3(a) can be combined into the one-series
combination Rgs,gc − Cgs,gc in Figure 15.3(b), where now

Cgs,gc = C0
Lg −�Li

Lg
= q K Wg

(
Lg −�Li

)
. (15.20)

As indicated by the appended subscripts gc and sat in Figure 15.3(b), the input of the
saturated FET will be dominated by the source-side gradual channel, while the output
and feedback characteristics will be dominated by the drain-side velocity-saturated
region.

The gate delay associated with the gradual channel of a short-gate MODFET is
estimated as

τ (RC)
g,gc = Rgs,gcCgs,gc

∣∣
k=0 = Rgd,gcCgd,gc

∣∣
k=0 = 1

12
τgc, (15.21)

where the time constant τgc is associated with the gradual channel:

τgc =
ε
(

Lg −�Li

)2

qµnsi dgc
. (15.22)

The series charging resistance associated with the gate-source capacitance then
becomes

Rgs,gc = τ
(RC)
g,gc

Cgs,gc
= 1

12

Lg −�Li

qµnsi Wg
. (15.23)

The delays in the transconductance and output conductance, also evaluated at k = 0,
are

τ
(T L)
d,gc = 1

6
τgc (15.24)

and

τ
(s)
d,gc = 1√

30
τgc. (15.25)

For the gate lengths of interest, the transconductance g(i)m0,sat is given by its saturated-
velocity limit, i.e. by Equation (14.54). Unlike the transconductance, however, the
output conductance depends strongly on the gate length. Empirically, with the FETs
biased for maximum speed, i.e. moderately into saturation with �Lx small, the
relationship is approximately inverse:

g(i)ds0,sat = g(sq,i)
ds0,sat

Wg

Lg
. (15.26)
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Fig. 15.4. Measured extrinsic output capacitance of a 0.1-µm InGaAs/AlInAs MODFET near
maximum transconductance versus drain bias.

Some observations [3] indicate that the factor g(sq,i)
ds0,sat is not a constant, but instead

is proportional to dgc. This has some intuitive appeal since the output conductance
would then explicitly improve with the gate aspect ratio Lg/dgc, consistent with
‘conventional wisdom’. For larger�Li and�Lx , g(i)ds0,sat is reduced to an extent which
depends in a rather complex way on geometry and transport. The output admittance is
g(i)ds0,sat + jωCds,sat, where the drain–source capacitance Cds,sat can be quite large once
it appears, but typically drops as VD (and thus�Li +�Lx ) is further increased. Such
a case is shown in Figure 15.4. Note that the capacitance is negative for VD < 0.4 V,
before velocity saturation has set in. This is due to the inductive nature of g(i)ds,gc. The
gate-drain feedback capacitance Cgd,sat in Figure 15.3 is the remnant of the ‘original’
Cgd,gc which does not terminate on the gradual channel, but on channel points external
to the gate.

It is clear that the simple picture used so far will not be able to predict Cgd,sat, or
explain the intricate behavior of g(i)ds0,sat and Cds,sat. A semiempirical, and essentially

one-dimensional model was useful for predicting g(i)m0,sat and Cgs,gc, and the associated
time constants and delays, but the other three components are determined by the two-
dimensional nature of the high-field velocity-saturated drain region. This can certainly
warrant fully numerical methods, but we will be able to learn quite a bit in the next
two sections by developing, with some simplifying assumptions, a semianalytical two-
dimensional model.
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15.3 Displacement currents

The heuristic approach to developing an equivalent circuit for the velocity-saturated
MODFET in the last section could not take us all the way. It does, however, suggest
a convenient division of the device into two parts. One consists of the metal contacts,
any heavily doped cap layers and the low-field ohmic parts of the channel. The other is
the velocity-saturated part of the channel. If we view the first part as a set of metallic
conductors, this division becomes very fruitful as we can then apply some powerful
electrostatic approaches. As the theory for vacuum tubes was developed it became
clear that terminal currents to conductors with applied voltages and charged particles
moving in the space between them are the sum of two components. The first is due
to the capacitive coupling between the conductors. The second current component is
induced by the moving charges, in our case the velocity-saturated electrons. This will
be dealt with in the following section. We first address the capacitance problem.

We apply the method of conformal mapping [4] to the simplified geometry in Fig-
ure 15.5(a), which we let represent the intrinsic MODFET. We will use it to estimate
the charges induced on two grounded FET terminals by applying V0 = 1 V on the
third (either the drain or gate). This immediately yields estimates for the capacitances
of interest. We map the space inside the path in the z-plane (Figure 15.5(a)) onto the
upper half of the w-plane (Figure 15.5(b),(c)). The counter-clockwise path, hugging
the conductors in the z-plane, should map onto the entire real axis in the w-plane,
so that the conductor with voltage V0 maps onto the negative part, and the grounded
conductors map onto the positive part. The resulting potential in the upperw-halfplane
(0 ≤ arg(w) ≤ π ) is then given by (Problem 15.2(b))

Vw(w) = V0
arg(w)

π
. (15.27)

The potential of ultimate interest is that in the z-plane. This is given by Vz(z) =
Vw(w(z)) (Problem 15.2(c)), and the problem thus boils down to determining the
transform w(z). Of particular use for us is the expression

Qi j = −εWgV0

π
ln

(
xj2

xj1

)
(15.28)

(Problem 15.2(d)) for the charge induced between points zj1 and zj2 on a grounded
conductor j when one of the other conductors i is biased at a voltage V0, while all
the other conductors are grounded. xj1 and xj2 are the points on the real w axis
corresponding to zj1 and zj2.

For the path in the z-plane in Figure 15.5(a) we can use the Schwartz–Christoffel
transform for polygons [4]:

dz

dw
= A
∏

j

(
w − bj

)−ϕj/π . (15.29)
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Fig. 15.5. Conformal mapping of a simplified FET geometry from the z-plane (a) to the upper half
of the w-plane for two different biases: (b) VD = V0, VG = 0; (c) VD = 0, VG = V0. The electron
path across the velocity-saturated region has been indicated in both the z- and w-planes.

The bj ’s are the points on the real w axis that correspond to the corners of the
polygon(s) in the z-plane, and the ϕj ’s are the corresponding left-turn angles as one
follows the circumference of the polygon in the counterclockwise manner. A is a
constant to be determined. The z points that separate conductors at zero potential from
those at V0 should map onto either w = ±∞ or w = 0. Of these, only the one at
w = b = 0 enters into the product in Equation (15.29). To make the number of
unknowns equal to the number of equations, we have to pick a value for one of the
bj ’s. The rest of the bj ’s, together with A and an integration constant, are determined
by solving the equations resulting from plugging w = bj into the z(w) expression.

We are interested in charges induced on the gate and source by a voltage on
the drain, as well as the charges induced on the source and drain by a voltage on
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the gate. The two bias conditions are VD = V0, VG = 0 and VG = V0, VD = 0,
respectively, as indicated in Figure 15.5 and Table 15.1. Figure 15.5 (b) and (c) define
the transformations for the two cases, and Table 15.1 summarizes all the information
necessary to calculate semianalytical estimates for the four charges. The capacitances
of interest are trivially related to these charges:

Cgs,gc = Qgs

V0
, (15.30a)

Cds,sat = Qds

V0
, (15.30b)

and

Cgd,sat = Qgd

V0
. (15.30c)

The two non-linear coupled equations f1(·) = 0 and f2(·) = 0 in Table 15.1 are not
solvable by analytical means. The root (b4, b6) or (b6, b2), respectively, is best found
with Newton’s method. With the bounds and initial guesses given in Table 15.1, this
is a very fast and robust process. When a sequence of various �Li , �Lx or dgc are of
interest, the best choice of initial guess is obviously the last solution. The problem is
considerably less numerically involved than a full two-dimensional numerical solution
involving typically thousands of grid points.

We have made a couple of simplifications in Figure 15.5(a). First, contrary to the
case of an actual FET where the gate is surrounded on top by either air or a finite
passivating oxide or nitride layer, we consider the three conductors to be embedded in
the semiconductor. Conformal mapping with a position-dependent dielectric constant
would appear impossible (except in special coplanar situations [5]), since the whole
concept is based on analytical functions where the real and imaginary parts satisfy
the two-dimensional Laplace equation. Second, we treat the conductors as infinitely
thin semiinfinite sheets. We do this so we can determine the conformal mapping
analytically. Making turns in the z-plane by angles that are multiples of π leads to
a nicely integrable dz/dw expression. Neglecting the finite thickness of the channel
does not introduce much error. Neglecting the actual thickness of the gate is, however,
a significant simplification, which we have to account for. The amount of correction
will depend on the geometry of the actual gate and the passivation.

When we calculate the capacitances of interest, we only add up the charge to the
appropriate position on the semiinfinite conductor (Equation (15.28)). For instance,
to calculate the charge Qdg induced on the gate by a drain voltage, we add the
contributions from z = id to z = −Lg + id on both sides of the infinitesimally
thin gate sheet. Similarly, when we calculate the charge Qgs induced on the source
by a voltage on the (semiinfinite) gate, we add the contributions from z=- �Li to
z = −Lg on both sides of the infinitesimally thin source sheet. This would correctly
account for the parallel-plate part of Cgs under the gate, as well as fringing capacitance
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Fig. 15.6. Semianalytical conformal-mapping solution for the FET output and feedback
capacitance. The geometry and parameter values are those defined in Figure 15.5 and Table 15.2.

at the right-hand edge of the source (z = −�Li ). However, it would miss the fringing
capacitance, denoted �Cgs , at the left-hand edge (z = −Lg) of the actual finite gate.
Rather than simply adding �Cgs to Qgs/V0 calculated to z = −Lg , we instead, as
indicated in Table 15.1, calculate Qgs to z = −Lg −�L(s)g , where

�L(s)g = �Cgsdgc

εWg
(15.31a)

is the effective fringing length. This allows �Li to approach Lg (and actually exceed
it) without sudden unphysical changes in Cgs .

For the gate-drain feedback capacitance Cgd,sat we use Qgd/V0 (Equation (15.30c))
rather than Qdg/V0, or some combination of the two. The reason is that the feedback
capacitance should not be a strong function of Lg (and Qdg is). Qgd is the charge
induced on the drain from z = �Lx to z = �Lx + �Ld (again on both sides of
the drain conductor), where �Ld is an adjustable parameter to allow our simplified
geometry to yield realistic feedback capacitance. The source-side fringing capacitance
�Cgs in Equation (15.31a) can be calculated as

�Cgs = Cgd,sat (�Li → 0,�Lx → 0). (15.31b)

Figure 15.6 shows Cds,sat and Cgd,sat versus �Li for the representative high-speed
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Fig. 15.7. Output and feedback capacitance versus the internal extent of the velocity-saturated
region. Circles: full two-dimensional numerical solution for the geometry in Figure 15.8. Filled
circles: with nitride passivation. Open circles: no passivation. Dashed line: semianalytical solution
in Figure 15.6 for the simplified example FET (Figure 15.5 and Table 15.2) with different �Ld .

MODFET defined in Table 15.2. We will use these parameters throughout this section.
Note the rapid drop in Cds,sat, as already indicated experimentally in Figure 15.4.
Cgd,sat varies much less rapidly despite �Lx increasing 50% faster than �Li . This is
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Table 15.2. MODFET parameters used in Sections 15.3 and 15.4.

Type Parameter Value Ref.

Semiconductor
material

Relative dielectric constant

Effective saturation velocity

ε = 13.18ε0

vsat = 2.8 × 107 cm/s

Equations (15.2)
and (14.54)
Equation (14.54)

Cross-sectional Gate-channel spacing dgc = 250 Å Equations (15.2)
two-dimensional and (14.54)
geometry Gate length Lg = 100 nm Equation (15.1)

Source-side extent of lateral recess Lus = 100 nm Equation (15.54)
Gate-source spacing Lgs = 1 µm Figure 14.1
Effective length of drain for Cgd �Ld = 0.2 µm Section 15.3
Source-side intrinsic fringing �Cgs = 160 fF/mm Equation (15.31)
capacitance Figure 15.6

Bias- Extent of velocity saturation external �Lx = varied Figure 14.1
dependent to gate (set by VD and VG ) Equation (15.54)

Ratio of extents of external and �Lx/�Li = 1.5 Figure 14.1
internal velocity saturation Equation (15.54)

because, as �Li and �Lx increase, and Cds,sat drops rapidly, a larger fraction of the
field lines emanating from the drain will terminate on the gate. This will to some extent
negate the reduction in Cgd,sat due to the wider depletion (�Lx ) between the gate and
drain. Figure 15.7 compares semianalytical calculations with fully numerical two-
dimensional solutions of the Laplace equation using Silvaco International’s ATLAS
simulator. The FET-like structure is shown in Figure 15.8. It is similar to that in
Figure 14.1, and is a realistic structure with a gate of finite thickness, and conductors
representing heavily doped cap layers. The thickness for the 2DEG was chosen to be
50 Å. Figure 15.7 shows results with and without nitride passivation. With the finite
gate, this makes a big difference in Cgd,sat. However, it has little effect on Cds,sat, since
the associated field lines are to a much larger extent confined to the semiconductor.
This, and the huge initial value, should make Cds,sat a good indicator of the onset of
velocity saturation. Because of the finite thickness used for the channel in Figure 15.8,
Cds,sat calculated with the fully numerical approach is larger than that calculated with
the semianalytical solution, particularly as�Li +�Lx gets small. Although the values
differ from the full two-dimensional solution, the simplified semianalytical solution
predicts the general shape of the curves well, i.e. the relative constancy of Cgd,sat, and
the rapid variation of Cds,sat. By choosing�Ld judiciously we can represent the shape
and magnitude of Cgd,sat(�Li ) quite well.

Figure 15.9 shows the gate-source capacitance Cgs,gc versus �Li for the ex-
ample FET. The value calculated with the conformal-mapping method (curve (b);
Equation (15.30a)) is larger than that calculated using the simple formula (curve a;
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Fig. 15.8. Realistic FET-like geometry for full two-dimensional solution of Laplace’s equation.

Equation (15.20)) because of the fringing fields. For �Li less than ∼dgc the fringing
effect is only on the source side (�Cgs), extending the length of the modulated
channel by ∼�L(s)g . For larger �Li , fringing occurs at the drain-side edge of the
gradual channel, and the slope of the curve (b) correctly approaches that predicted by
Equation (15.20). Curve (c) will be discussed in Section 15.4.

With the approximate semianalytical method for calculating the intrinsic capaci-
tances, we can now estimate the displacement part of the gate and drain currents in
saturation:

i (displ)
g,sat = jωCgs,gc

1 + jωτ(RC)
g,gc

vg + jωCgd,sat

1 + jωτ(RC)
g,gc

(
vg − vd

)
, (15.32)

i (displ)
d,sat = jωCds,sat

1 + jωτ(RC)
g,gc

vd + jωCgd,sat

1 + jωτ(RC)
g,gc

(
vd − vg

)
. (15.33)

We have reintroduced the charging time constant (Equations (15.21), (15.22)) to
approximately account for the fact that the channel conductor is not a perfect metal,
but rather the gradual part of the semiconductor 2DEG. Figure 15.2 showed that the
charging time constants for the gate-source and the gate-drain capacitances are quite
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Fig. 15.9. Solutions for the gate-source capacitance for the example FET.

similar, even up to the hypothetical situation of total pinch-off (k = 1), where the
field would become infinite. We have assumed in Equations (15.32) and (15.33) that
this continues to be the case also in the less extreme case of velocity saturation, and
that it also applies to the intrinsic drain–source capacitance. Considering the fringing
modulation, a more conservative estimate for not only τ (RC)

g,gc (Equations (15.21) and
(15.22)), but also Rgs,gc, τ (T L)

d,gc and τ (s)d,gc (Equations (15.23)–(15.25)), results if we

replace Lg with Lg +�L(s)g . In effect�L(s)g is the increase in the electrical gate length
on the source-side due to fringing fields. For the example MODFET in this section,
�L(s)g = 34 nm. This is non-negligible compared to the 100-nm gate (as is the similar
effect on the drain-side associated with Cgd,sat). As indicated by Figure 15.7, the actual
effect could be larger or smaller, depending on the passivation. �Cgs is one reason to
keep the aspect ratio Lg/dgc large. In Chapter 17, where we push for performance, we
will be a bit more aggressive in our choice of dgc.

15.4 Conduction-induced currents and delays

We now move to address the second component in the drain and gate currents,
i.e. the one induced by the velocity-saturated electrons. For the drain current we
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Fig. 15.10. General three-dimensional geometry and biasing for deriving the currents induced in the
wires to arbitrarily shaped conductors (in this case conductor i) by a moving electron. In addition to
the electron there can be any distribution of fixed charge in the space not occupied by the n
conductors. This space can have position-dependent dielectric constant.

certainly expect two conductive components due to the transconductance and the
output conductance. We will, however, also find a less obvious additional capacitive
component in the gate current, as indicated by curve (c) in Figure 15.9. This important
result will explain why the FET current-gain cut-off frequency does not improve
further, but actually drops, as the drain bias increases deeper into saturation. The
drain delays that cause this were analyzed mathematically by Moll [6]. The analysis
is very general and instructive, and it will be included in the following.

Currents induced by moving charges were first analyzed by Shockley [7] and
Ramo [8], for the case of a uniform dielectric between the conductors, no fixed
charge in the dielectric, and constant voltages on the conductors. The result has
more recently been shown to be valid also for arbitrary position-dependent dielectric
constant and fixed charge, and with time-dependent voltages on the conductors [9].
We are interested in the currents induced on the gate and drain by the electrons
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traveling in the velocity-saturated region from the end of the gradual channel at y = ys

(Figure 14.1) to the point y = yus of ‘unsaturation’ (Section 14.6). Induced currents
in essentially one-dimensional devices such as HBTs and pin mesa photodetectors are
rather straightforward [10, 11]. In an FET the problem is more complicated because of
the two-dimensional electrostatics, something we began to deal with in the last section.
Before becoming FET-specific, however, we can learn some important general lessons
about currents induced by moving electrons in a three-dimensional geometry. We
make use of the following alternative form of Green’s theorem introduced by Kim et
al. [9]:∫

dS · ( ε∇� −�ε∇ ) =
∫

dV ( ∇ · (ε∇�)−�∇ · (ε∇ )). (15.34)

As with the more familiar forms of Green’s theorem, this is easily derived from
the divergence theorem. We refer to Figure 15.10, which depicts an arbitrary
three-dimensional geometry of conductors embedded in a medium with arbitrary
dielectric constant ε(r) and fixed space-charge density ρ(r). Equation (15.34) allows
us to derive the general expression for the current Ii induced in the wire to conductor
i by the electron charge −q at r0, moving at velocity v between the conductors. We
do this by choosing  in Equation (15.34) to be the electrostatic potential that results
from setting q = 0 and ρ = 0, and applying a voltage Vi to conductor i . We will
attach an identifying subscript i to  , and divide by Vi to make  i dimensionless
(normalized to 1 V). It satisfies

∇ · (ε∇ i ) = 0 (15.35)

in the space between the conductors. This is the problem we addressed in the last
subsection for the FET, generalized to three dimensions. The solution yields the
capacitances Ci j between conductor i and the other conductors ( j �= i). � is chosen
to be the electrostatic potential (not normalized) that results from the moving electron,
and the fixed space charge, with all conductor voltages set to zero. � satisfies Poisson’s
equation:

∇ · (ε∇�) = −ρ + qδ (r − r0). (15.36)

Vi i + � is then the solution to the entire linear electrostatic problem illustrated in
Figure 15.10, of which our simplified model of an FET is a special case. As mentioned,
the first term yields currents due to direct capacitive coupling between the conductors.
The second term will yield the additional currents induced by the moving charges.
Performing the integrations in Equation (15.34), remembering that i = � = 0 on all
the conductor surfaces, with the exception  i = 1 on the i th conductor’s surface (Si ),
we arrive at

Qi =
∫

Si

dS · (ε∇�) = −
∫

dV  iρ + q i (r0), (15.37)
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where Qi is the charge induced by the moving electron on conductor i of interest.
Since ρ represents fixed charge, the current induced to the conductor is

Ii = d Qi

dt
= q

d i (r0)

dr0
· dr0

dt
= q∇ i · v. (15.38)

∇ i has the dimension of m−1, and depends only on the geometry of the conductors.
If the electron charge −q moves from conductor j to conductor i �= j , the time integral
of the current induced to conductor i should equal q, and it does:∫ ti

tj

dt Ii = q
∫ ti

tj

dt ∇ i · v = q
∫ ri

rj

dr · ∇ i

= q
[
 i (ri )− i

(
rj
)] = q (1 − 0) = q. (15.39)

In this classical picture the current is delivered to conductor i during the entire time the
electron travels; i.e. the terminal current is not a delta-function at the time the electron
arrives at the conductor. This view is appropriate in devices in which many electrons
are involved, and is of importance for the proper predictions of instantaneous currents
from Monte Carlo simulations where ‘superparticles’ consisting of many electrons are
considered [12]. One can similarly show that when a charged particle travels from
conductor j �= i to k �= i , the time integral of the current induced to conductor i is
zero. However, during the transit, there will be a time-dependent current (with no DC
component). Note also that, in the electrostatic approximation used [9], Kirchhoff’s
current law is still valid, i.e.∑

i

Ii =0 (15.40)

(Problem 15.3). Except for a rare occasion when a three-dimensional time-domain
solution of Maxwell’s equations is included (e.g. [13]), all FET simulations use the
electrostatic approximation, i.e. only Poisson’s equation is solved self-consistently
with the solid-state transport equations.

In the particular case we are interested in, the velocity-saturated MODFET, we
continue to assume the simplified conductor geometry in Figure 15.5. We are
interested in the velocity-saturated electrons transiting in the z-plane from point z6 to
point z2. We will assume that they follow a straightline trajectory, i.e. that they do not
leave the channel. The corresponding paths in the w-plane are indicated qualitatively
in Figure 15.5(b) and (c). y will be the coordinate along the real z axis, consistent with
Figure 14.1, but now with y = 0 at the drain-side edge of the gate. During the transit,
the electrons will induce currents in the drain and gate according to Equation (15.38).
With a constant saturation velocity (vsat ) in the channel, the time dependence of the
induced currents will trace out the y dependence of the ‘field’ ∇ i

∗. Figure 15.11

∗ It should be reiterated that this field has the unit of inverse distance, and is only a function of the
conductor geometry. It should not be confused with the actual total electric field in the device.
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Fig. 15.11. The gradients of  g and  d along the saturated part of the channel for the example
FET. The time dependences of the currents induced by an electron traversing with constant
saturation velocity have the same shapes.

shows ∂ g/∂y and ∂ d/∂y for the example FET, with �Li = 50 nm. There is
no DC component in the gate current, i.e. the integral of ∂ g/∂y is zero. Although
currents are indeed induced during the entire transit of the electrons, there will be
some ‘spikiness’ at the beginning and end due to the large slopes in  g and  d .
Finding the solutions for  g and  d is straightforward, having earlier solved for the
transformation z(w) for the two bias cases in Table 15.1. It is a matter of finding
the w(y) trajectories from b6 to b2 in Figure 15.5 (b) and (c), which boils down to
solving the two simultaneous equations Re[z(w)] = y and Im[z(w)] = 0. As in the
last section, this is preferably done by Newton’s method. Solving from y = −�Li to
y = �Lx as we did in Figure 15.11, the obvious initial guess for each new y is the
solution for the last y. At y = −�Li the solution is b6 + j0. With w(y) determined,
 g(y) and  d(y) are given by the right-hand side of Equation (15.27).

We add up the current from all the electrons in the saturated part of the channel:

Ii (t) = qW gvsat

∫ yus(t)

ys(t)
dy
∂ i (ys(t), yus (t) , y)

∂y
n′

s (y, t), (15.41)
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where n′
s is the 2DEG concentration in the saturated region ys < y < yus . We consider

small-signal modulation of the gate voltage:

Vg(t) = VG + vg exp( jωt), (15.42)

and analogously for the drain voltage Vd(t). The voltage Vs(t) at the point ys of onset
of velocity saturation is given by

Vs(t) = VS + (γgvg − γdvd
)

exp( jωt), (15.43)

where

γg = ∂VS

∂VG
(15.44)

and

γd = − ∂VS

∂VD
. (15.45)

In the present context, we neglect the phase in γg and γd (Section 12.3.2). Both γg

and γd are larger than zero, and can be estimated by the DC model in Chapter 14. The
2DEG carrier concentration at the saturation point ys is

n′
ss(t) = ns

(
V g(t)− Vs(t)

) = nsi + K
[
(1 − γg)vg + γdvd

]
exp( jωt), (15.46)

where K is given by Equation (15.2). In the limit of small signals, the carrier
concentration further into the saturated region ys < y < yus is

n′
s (y, t) = n′

ss

(
t − y − ys0

vsat

)
, (15.47)

where ys0 is the DC value of ys(t). The parameters in the small-signal time-
dependence of ys and yus (corresponding to γg and γd for Vs in Equation (15.43))
will not enter into Ii after we ‘filter out’ the j (2ω)t harmonic terms by replacing the
time-dependent integration limits in Equation (15.41) with their DC values ys0 and
yus0. With these geometrical parameters now fixed we only need to maintain the y
dependence in  i

∗. We arrive at

Ii = qWgvsat
{
nsi [ i (yus)− i (ys)]

+ K
[
(1 − γg)vg + γdvd

]
Fi (ω) exp( jωt)

}
(15.48)

for the current induced to conductor i by the electrons in the velocity-saturated region.
The term in first square brackets yields a DC current. For the induced gate current
(i = g),  i (yus) =  i (ys) = 0, and this term is zero. For the induced drain current
(i = d), however,  i (yus) = 1, and this term yields the DC drain current qWgnsivsat .

∗ We have altogether left out the x dependence (Figure 14.1), since we are considering straight electron
trajectories in the channel.
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The second term in the braces is the small-signal modulation of ns , which yields an
AC current in both cases. Fi (ω) in this term is given by

Fi (ω) =
∫ yus0

ys0

dy
∂ i

∂y
exp

(
− jω

y − ys0

vsat

)
. (15.49)

In a one-dimensional geometry with a velocity-saturated drift region of extent d
(applicable for instance in the base–collector depletion region in a bipolar transistor
or the i-region in a pin diode), Fi (ω) becomes the factor [14]

F (1D)
i = exp (− jωτ)

sin(ωτ)

ωτ
, (15.50)

where τ is half of the transit time d/vsat . With the 2D geometry we face for our FET
structure, we will, analogously to the gradual-channel case in Section 15.2, expand
Fi (ω) to second order in jω, and rewrite the result in a form which degrades gracefully
as ω → ∞. We use the sin(ωτ)/ωτ frequency dependence suggested by the one-
dimensional case, and arrive at

i (cond)
d,sat =

(
g(i)m0,satvg + g(i)ds0,satvd

)
exp
(
− jωτ(T L)

d,sat

) sin(ωτ (s)d,sat)

ωτ
(s)
d,sat

(15.51)

for the conduction-induced drain current. This belatedly explains why we chose
this functional form in the gradual-channel case above (Equations (15.5) and (15.6)).
The transconductance and output conductance continue to have the same frequency
dependence. Their DC values are

g(i)m0,sat = qWg K (1 − γg)vsat , (15.52)

g(i)ds0,sat = qWg Kγdvsat . (15.53)

γg contains the gate-length dependence in the transconductance, introduced by the
gradual channel and illustrated in Figure 14.9. It approaches 0 for short gates where
g(i)m0,sat is given by Equation (14.54). γd is also small, as predicted by the DC
model in Chapter 14. The actual output conductance is typically significantly larger
than predicted by Equation (15.53). In Chapter 10 it was shown that an increase
in the effective channel thickness increases g(i)ds0,sat. The channel thicknesses that
are required to explain experimentally observed output conductances are often much
larger than the epitaxial thickness of the channel (e.g. [15]). One physical effect
that has been proposed to explain this observation is the spreading into the buffer
that can occur as electrons are heated in the high fields [16]. This would mean
that complexities introduced by non-stationary transport can no longer be ignored
if we expect to understand and predict the elusive parameter g(i)ds0,sat, including its
empirical inverse gate-length dependence (Equation (15.26)). This would force us to
abandon the analytical approach, and resign to a fully numerical alternative. However,
there is a less complex effect that we can evaluate by taking the same semianalytical
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approach as in Section 15.3, and this is the direct modulation of the gradual-channel
2DEG concentration by the drain voltage. When we calculated Cds,sat we allowed
the drain voltage to modulate charge all the way back to the source ohmic contact
(a = −(Lg + Lgs) for Qds in Table 15.1). In the case of g(i)ds0,sat however, we are only
interested in the drain voltage modulation of the part of the 2DEG where the electrons
have a significant (but unsaturated) drift velocity. Thus, we should go no further back
than to y = −Lus in Figure 14.1. Between y = −Lus and y = ys in Figure 14.1, the
electrons accelerate from essentially zero drift velocity to vsat . In our simple estimate
we will assume that the electrons in this low-field source side of the channel all travel
at the ‘average’ velocity vsat/2. With a recalculated drain–source capacitance, this
time setting a = −(Lg + Lus) and denoting the result C ′

ds,sat, the output conductance
due solely to two-dimensional electrostatics becomes

g(i)ds0,sat = C ′
ds,sat (vsat/2)

Lg + Lus −�Li
= g(i)m0,sat

1

2π

dgc

Lg + Lus −�Li
ln

(
x ′

s2

x ′
s1

)
. (15.54)

Thus, considering only drain-induced charge modulation as the cause of output
conductance, the parameter γd is given approximately by

γd = 1

2π

dgc

Lg + Lus −�Li
ln

(
x ′

s2

x ′
s1

)
. (15.55)

The first equality in Equation (15.54) is directly analogous to the expression for
transconductance, with the capacitance in the numerator describing the total charge
being modulated, and the denominator being the extent of the channel involved in
the modulation. x ′

s1 and x ′
s2 are calculated as prescribed for Qds in Table 15.1, with

a = −(Lg + Lus). Note the appearance of an inverse dependence on gate length
as suggested by experiments. With Lus , �Li and the logarithmic factor, the overall
geometrical dependence is more complicated. This is illustrated in Figure 15.12 for
the example MODFET. Figure 15.12(a) shows the predicted dependence of g(i)ds0,sat
on �Li . The upper limit is obviously not infinity as suggested here, but rather ∼g0

(Equation (15.3)). The predicted gate-length dependence in Figure 15.12(b) is less
steep than inverse, but the overall predictions are quite in agreement with experiments,
as is the reduction in g(i)ds0,sat with increasing Lus that Equation (15.54) predicts. The
simple transport model thus continues to be quite adequate in most respects.

The transmission-line delay in i (cond)
d,sat is given by

τ
(T L)
d,sat = τ (1)d,sat = 1

vsat

∫ yus0

ys0

dy [1 − d(y)]. (15.56)

The delay τ (s)d,sat responsible for reducing the magnitude of i (cond)
d,sat is given by

τ
(s)
d,sat =

√
3

[(
τ
(2)
d,sat

)2 −
(
τ
(1)
d,sat

)2
]1/2

, (15.57)
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Fig. 15.12. Output conductance of the example FET, versus (a) the extent of the velocity-saturated
region, and (b) the gate length with the extent of the velocity-saturated region as a parameter.
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where

τ
(2)
d,sat = 1

vsat

{
2
∫ yus0

ys0

dy (y − ys0) [1 − d(y)]

}1/2

. (15.58)

τ
(1)
d,sat and τ (2)d,sat are the delays appearing in the expansion of Fd(ω):

Fd(ω) = 1 − jωτ(1)d,sat − 1

2

(
ωτ

(2)
d,sat

)2 + · · · , (15.59)

analogously to Equation (15.17).
For the conduction-induced gate current we arrive at

i (cond)
g,sat = jωg(i)m0,satτ

(1)
g,sat

1 + jωτ(RC)
g,sat

vg + jωg(i)ds0,satτ
(1)
g,sat

1 + jωτ(RC)
g,sat

vd , (15.60)

where τ (1)g,sat is analogous to τ (1)d,sat:

τ
(1)
g,sat = 1

vsat

∫ yus0

ys0

dy g(y), (15.61)

and the gate RC delay is

τ
(RC)
g,sat = 1

v2
satτ

(1)
g,sat

∫ yus0

ys0

dy (y − ys0) g(y). (15.62)

The total gate and drain currents are given by the sum of their respective dis-
placements (Equations (15.32) and (15.33)) and conduction-induced components
(Equations (15.51) and (15.60)). Expressed in terms of the intrinsic Y parameters,
the result is (with the notation in Chapter 11, and a superscript (i) to emphasize that
this is for the intrinsic device):

Y (i)gg = jω
(
Cgs,gc + Cgd,sat

)
1 + jωτ(RC)

g,gc

+ jωg(i)m0,satτ
(1)
g,sat

1 + jωτ(RC)
g,sat

, (15.63a)

Y (i)gd = − jωCgd,sat

1 + jωτ(RC)
g,gc

+ jωg(i)ds0,satτ
(1)
g,sat

1 + jωτ(RC)
g,sat

, (15.63b)

Y (i)dg = g(i)m0,sate
− jωτ(T L)

d,sat
sin(ωτ (s)d,sat)

ωτ
(s)
d,sat

− jωCgd,sat

1 + jωτ(RC)
g,gc

, (15.63c)

Y (i)dd = g(i)ds0,sate
− jωτ(T L)

d,sat
sin(ωτ (s)d,sat)

ωτ
(s)
d,sat

+ jω
(
Cds,sat + Cgd,sat

)
1 + jωτ(RC)

g,gc

. (15.63d)

The effects of the conduction-induced delays on the capacitances measured/extracted
at sufficiently low frequencies are: (1) an increase in the gate-source capacitance by(

g(i)m0,sat + g(i)ds0,sat

)
τ
(1)
g,sat; (2) a decrease in the gate-drain feedback capacitance by
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g(i)ds0,satτ
(1)
g,sat; and (3) a decrease in the output capacitance by g(i)ds0,satτ

(T L)
d,sat . Curve (c) in

Figure 15.9 illustrates the first effect for the example FET (Table 15.2). The rapid drop

in Cgs,gc is more than compensated for by
(

g(i)m0,sat + g(i)ds0,sat

)
τ
(1)
g,sat. This is expected,

since the capacitance εWg�Li/dgc subtracted out in Cgs,gc (Equation (15.20)) has to
reappear at some point, since, after all, the charge in the saturated region is modulated.
The capacitive ‘price’ for modulating the charge external to the gate is, however, less
than εWg�Lx/dgc, as indicated by the factor 0.37 in Figure 15.9. The effect on Cgd,sat

and Cds,sat is less dramatic, at least in an absolute sense, and is shown in Figure 15.13.
The velocity-saturation region has redistributed some capacitance from Cgd to Cgs .

The final effect of the conduction-induced delays is on the transconductance, which
will be degraded in magnitude (τ (s)d,sat) and in phase (τ (T L)

d,sat ). Figure 15.14 shows the
drain and gate delays introduced by the velocity-saturated region for the example FET.
τ
(1)
g,sat will always be smaller than τ (1)d,sat; in marginal saturation significantly so. This

is because  g is always < 1 −  d as illustrated in Figure 15.15. For typical bias,
such as the 1.5 V drain bias in Figure 14.1, �Li and �Lx are on the order of 0.1 µm.
The delays in Figure 15.14 are then more than two orders of magnitude larger than
the time constants associated with the gradual part of the channel. It is evident that
the velocity-saturated part of the device will play the dominant role in the small-signal
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frequency performance of a device biased for optimum speed. The major effect of the
gradual channel is its contribution to the gate-source capacitance.

Efforts have been made to express the rather complex two-dimensional geometrical
dependence of the capacitance and delay components in an FET in simple linear
terms of �Li and �Lx . This can work to some extent for τ (T L)

d,sat and τ (s)d,sat, because
1 −  d will always go from 1 at y = −�Li to 0 at y = �Lx (Figure 15.15),
with moderate changes in shape as �Li are �Lx are varied. Even so, it is
difficult to assign coefficients with wide applicability. This is even more the case
for Cgs . With the simple numerical analysis involved, we are better off doing an
approximate two-dimensional analysis using the conformal-mapping method. The
phenomenological dimensionless coefficient α = (dgc/εWg

) (
∂Cgs/∂�Lx

)
(defined

similarly as in [17]) only approaches a constant (∼0.4) rather deep in saturation
as illustrated in Figure 15.9. In weaker saturation, α is better approximated by 0.
The difficulty in assigning a universal constant value to α stems from the complex
dependence of the shape and maximum value of  g (Figure 15.15) on �Li and �Lx .
For �Li + �Lx small compared to dgc, the equipotentials of  g are not able to
significantly penetrate the �Li + �Lx gap, and  (max)

g will be depressed. The good
news is that this particular feature contributes to making the non-trivial development
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Fig. 15.15.  g and 1 − d along the saturated part of the channel for the example FET.

task of scaling the gate length into the deep submicron regime (Section 17.7) worth
while. But it also shows that the operating drain voltage may have to be scaled down
for reasons other than breakdown and reliability. An ideal FET material system for
scaling down Lg would be one with good transport properties, and a sufficiently large
channel bandgap to allow scaling down also of Lud (Figure 14.1), without introducing
unacceptable breakdown voltage. This would limit �Lx , and allow more maintained
high-frequency performance as Vd is increased deep into saturation. A good candidate
to achieve this situation is GaN/AlGaN. Of course, one has to balance the benefits of
a lower gate-source capacitance with the drawbacks of a larger feedback capacitance.
The two-dimensional analysis in this section, augmented by the parasitic elements
introduced in the Section 15.5 and Chapter 16, will allow us to do this with minimal
numerical analysis.

15.5 Y parameters and equivalent circuit for the extrinsic device

We are now able to estimate rather accurately all the components in the equivalent
circuit in Figure 15.3(b). This circuit was developed phenomenologically from the
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simpler gradual-channel case, and has the topology used almost universally by device
and circuit designers. We now need to include the unavoidable parasitic elements.
Figure 15.16(a) shows the conventional equivalent circuit for the extrinsic MODFET,
including the parasitic access resistances. Cgs , Cgd and Cds are the total capacitances
resulting from the displacement-current and conduction-induced components. There
can be some additional gate capacitance due to field lines from the actual thicker gate
to the ohmic metallization (or a heavily doped cap) through a passivation layer. We can
use�Ld to adjust this (Figures 15.7 and 15.8). Alternatively, or in addition, we include
corrective components C ( f )

gs (to the source) and C ( f )
gd (to the drain). These allow us to

account for any asymmetry in the gate. If the dielectric constant is sufficiently small
the corrections could be negative, as shown for the air case in Figure 15.7. Either
way, the correction can be approximated rather well by a constant. Similarly, we allow
for a drain–source corrective fringing capacitance C ( f )

ds , which is expected to be quite
small. These corrective fringing capacitances do not show up as separate components
in Figure 15.16. We will simply consider them additive parts of the total Cgs , Cgd and
Cds . In terms of the physical quantities introduced in the analysis, the capacitances are
given by

Cgs = Cgs,gc +
(

g(i)m0,sat + g(i)ds0,sat

)
τ
(1)
g,sat + C ( f )

gs , (15.64a)

Cgd = Cgd,sat − g(i)ds0,satτ
(1)
g,sat + C ( f )

gd , (15.64b)

Cds = Cds,sat − g(i)ds0,satτ
(1)
d,sat + C ( f )

ds . (15.64c)

We have also included the two components ggs and ggd associated with the gate
diode parallel conductance∗. These should be small and of secondary importance near
the optimum bias point for small-signal high-frequency operation, but do affect gain
and the noise figure at low frequencies (Chapter 17). We have also included a gate
resistance Rg .

Rgs , Rgd and τ in the conventional equivalent circuit are merely fitting parameters,
unable to account for the full dispersion. For device optimization (Chapter 17) we
instead will make use of the full physics-based expressions for the Y parameters.
The ‘true’ equivalent circuit with elements containing the full and rather complex
dispersion of the Y parameters is shown in Figure 15.16(b). Here we have augmented
the intrinsic Y parameters in Equation (15.63) with the fringe capacitance corrections
and gate conductances, as indicated by the prime in the (i ′) superscript:

Y (i
′)

11 = Y (i)gg + ggs + ggd + jω
(

C ( f )
gs + C ( f )

gd

)
, (15.65a)

Y (i
′)

12 = Y (i)gd − ggd − jωC ( f )
gd , (15.65b)

∗ Like most of the components (but unlike the transconductance and output conductance) ggs and ggd are
understood to be intrinsic parameters, i.e. to be ‘inside’ the access resistances.
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Y (i
′)

21 = Y (i)dg − ggd − jωC ( f )
gd , (15.65c)

Y (i
′)

22 = Y (i)dd + ggd + jω
(

C ( f )
gd + C ( f )

ds

)
. (15.65d)

These are conveniently used as the components in a matrix Y (i
′), and we therefore

now use standard numeric indices, as opposed to alphabetical. The Y -matrix Y (x
′)

for the extrinsic case with non-zero parasitic resistances is determined by accounting
for the parasitic gate, drain, and source voltage drops Rgig , Rdid , and Rs(ig + id),
respectively∗. The current flowing in the source resistance is the sum of the gate and

∗ The prime in the superscript (x ′) indicates that we have one more effect to account for before we arrive at
the final extrinsic Y parameters. This will be done in Section 16.8.
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drain currents since Kirchhoff’s current law is still valid. The delays appearing in the
analysis, even those we have referred to as ‘transmission-line’ delays, are introduced
by transport and electrostatic charge control, not by electromagnetic wave propagation.
Thus, they do not show up as phase delays between, say, the source and drain current.
We get for the extrinsic Y -parameter matrix:

Y (x
′) = A−1Y (i

′), (15.66a)

where

A =


 1 + Rs

(
Y (i

′)
11 + Y (i

′)
12

)
+ RgY (i

′)
11 Rs

(
Y (i

′)
11 + Y (i

′)
12

)
+ RdY (i

′)
12

Rs

(
Y (i

′)
21 + Y (i

′)
22

)
+ RgY (i

′)
21 1 + Rs

(
Y (i

′)
21 + Y (i

′)
22

)
+ RdY (i

′)
22


.
(15.66b)

The inversion of a 2×2 matrix is a quickly executed command in modern programming
environments. Alternatively, the following is a more explicit way of expressing the
extrinsic Y parameters:

Y (x
′)

11 = F
(

Y (i
′)

11 + D (Rs + Rd)
)
, (15.67a)

Y (x
′)

12 = F
(

Y (i
′)

12 − DRs

)
, (15.67b)

Y (x
′)

21 = F
(

Y (i
′)

21 − DRs

)
, (15.67c)

Y (x
′)

22 = F
(

Y (i
′)

22 + D
(
Rs + Rg

))
, (15.67d)

where

D = Y (i
′)

11 Y (i
′)

22 − Y (i
′)

12 Y (i
′)

21 (15.67e)

and

F−1 = 1 + Rs
(
Y (i

′)
11 + Y (i

′)
12 + Y (i

′)
21 + Y (i

′)
22

)+ RdY (i
′)

22 + RgY (i
′)

11 + R2
sdg D. (15.67f)

In Equation (15.67f) we have used

R2
sdg = Rs Rd + Rs Rg + Rd Rg. (15.67g)

We are often interested in moderate frequencies, where a Taylor expansion to ( jω)2,
suffices, and we can neglect ggs and ggd . The Y parameters with fringe capacitance
corrections but no parasitic resistances included (Equation (15.65)) are then given by

Y (i
′)

11 = jωC (i
′)

11 + ω2 B(i
′)

11 : (15.68a)

C (i
′)

11 = Cgs,gc + Cgd,sat + g(i)m0,satτ
(1)
g,sat + C ( f )

gs + C ( f )
gd = Cgs + Cgd , (15.68b)

B(i
′)

11 = (Cgs,gc + Cgd,sat
)
τ (RC)

g,gc + g(i)m0,satτ
(1)
g,satτ

(RC)
g,sat ; (15.68c)
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Y (i
′)

12 = − jωC (i
′)

12 − ω2 B(i
′)

12 : (15.68d)

C (i
′)

12 = Cgd,sat − g(i)ds0,satτ
(1)
g,sat + C ( f )

gd = Cgd , (15.68e)

B(i
′)

12 = Cgd,satτ
(RC)
g,gc − g(i)ds0,satτ

(1)
g,satτ

(RC)
g,sat ; (15.68f)

Y (i
′)

21 = g(i)m0,sat − jωC (i
′)

21 − ω2 B(i
′)

21 : (15.68g)

C (i
′)

21 = g(i)m0,satτ
(1)
d,sat + Cgd,sat + C ( f )

gd , (15.68h)

B(i
′)

21 = 1
2 g(i)m0,sat

(
τ
(2)
d,sat

)2 + Cgd,satτ
(RC)
g,gc ; (15.68i)

Y (i
′)

22 = g(i)ds0,sat + jωC (i
′)

22 + ω2 B(i
′)

22 : (15.68j)

C (i
′)

22 = Cds,sat + Cgd,sat − g(i)ds0,satτ
(1)
d,sat + C ( f )

ds + C ( f )
gd , (15.68k)

B(i
′)

22 = (Cds,sat + Cgd,sat
)
τ (RC)

g,gc − 1
2 g(i)ds0,sat

(
τ
(2)
d,sat

)2
. (15.68l)

The two constants D and F become:

D = jωD1 + ω2 D2 : (15.69a)

D1 = g(i)ds0,satC
(i ′)
11 + g(i)m0,satC

(i ′)
12

= g(i)ds0,sat

(
Cgs + Cgd

)+ g(i)m0,satCgd , (15.69b)

D2 = g(i)ds0,sat B
(i ′)
11 + g(i)m0,sat B

(i ′)
12 − C (i

′)
11 C (i

′)
22 + C (i

′)
12 C (i

′)
21 ; (15.69c)

F = F0

(
1 − jωF1 − ω2 F2

)
: (15.69d)

F0 = 1

1 + Rs

(
g(i)m0,sat + g(i)ds0,sat

)
+ Rd g(i)ds0,sat

, (15.69e)

F1 = F0

(
Rs

(
C (i

′)
11 − C (i

′)
12 − C (i

′)
21 + C (i

′)
22

)
+ RdC (i

′)
22 + RgC (i

′)
11 + R2

sdg D1

)
; (15.69f)

F2 = F0

(
Rs

(
B(i

′)
11 − B(i

′)
12 − B(i

′)
21 + B(i

′)
22

)
+ Rd B(i

′)
22 + Rg B(i

′)
11 + R2

sdg D2

)
+ F2

1 . (15.69g)

The extrinsic Y parameters expanded to ( jω)2 are given by:

Y (x
′)

11 = jωC (x
′)

11 + ω2 B(x
′)

11 : (15.70a)

C (x
′)

11 = F0

(
C (i

′)
11 + (Rs + Rd) D1

)
, (15.70b)

B(x
′)

11 = F0

(
B(i

′)
11 + (Rs + Rd) D2

)
+ F1C (x

′)
11 ; (15.70c)

Y (x
′)

12 = − jωC (x
′)

12 − ω2 B(x
′)

12 : (15.70d)
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C (x
′)

12 = F0

(
C (i

′)
12 + Rs D1

)
, (15.70e)

B(x
′)

12 = F0

(
B(i

′)
12 + Rs D2

)
+ F1C (x

′)
12 ; (15.70f)

Y (x
′)

21 = g(x)m0,sat − jωC (x
′)

21 − ω2 B(x
′)

21 : (15.70g)

g(x)m0,sat = F0g(i)m0,sat, (15.70h)

C (x
′)

21 = F0

(
C (i

′)
21 + Rs D1 + F1g(i)m0,sat

)
, (15.70i)

B(x
′)

21 = F0

(
B(i

′)
21 + Rs D2 + F2g(i)m0,sat + F1

(
C (i

′)
21 + Rs D1

))
; (15.70j)

Y (x
′)

22 = g(x)ds0,sat + jωC (x
′)

22 + ω2 B(x
′)

22 : (15.70k)

g(x)ds0,sat = F0g(i)ds0,sat, (15.70l)

C (x
′)

22 = F0

(
C (i

′)
22 + (Rs + Rg

)
D1 − F1g(i)ds0,sat

)
, (15.70m)

B(x
′)

22 = F0

(
B(i

′)
22 + (Rs + Rg

)
D2 − F2g(i)ds0,sat

+ F1

(
C (i

′)
22 + (Rs + Rg

)
D1

))
. (15.70n)

Note that the factor F0 (< 1; Equation (15.69e)) degrades the extrinsic transconduc-
tance and output conductance identically (Equations (15.70h), (15.70l)). F0 is also a
factor in the extrinsic capacitances (e.g. Equation (15.70b)), but an additional term
reduces the effect.

15.6 Conclusion

This chapter built on the treatment in Chapter 11 in developing expressions for calcu-
lating the Y parameters for the extrinsic short-gate MODFET. We developed analytical
tools for estimating the capacitances and the output conductance in saturation, as well
as the effect of delays on the small-signal terminal currents. Before we are ready
to make full use of these methods and tools in design and optimization, we must,
however, take a closer look at what determines the gate resistance Rg . This parameter
significantly impacts gain and noise, and its origins, as we will learn in the next chapter,
are quite rich in nature and content.
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and fT analysis of pseudomorphic MODFETs with gate lengths down to 0.1 µm’,
Proceedings of the International Symposium on Gallium Arsenide and Related Compounds,
Insitute of Physics, pp. 41–45, 1994.

[4] P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Pt I, McGraw-Hill, New York,
1953.

[5] R.E. Collin, Foundations for Microwave Engineering, 2nd ed., McGraw-Hill, New York, 1992.

[6] N. Moll, ‘Delay and current due to charged particles in generalized space-charge regions’,
unpublished manuscript, 1991.

[7] W. Shockley, Journal of Applied Physics, Vol. 9, p. 635, 1938.

[8] S. Ramo, ‘Currents induced by electron motion’, Proceedings of the IRE, Vol. 27,
pp. 584–585, 1939.

[9] H. Kim, H.S. Min, T.W. Tang and Y.J. Park, ’An extended proof of the Ramo–Schockley
theorem’, Solid State Electronics, Vol. 34, pp. 1251–1253, 1991.

[10] S.E. Laux and W. Lee, ‘Collector signal delay in the presence of velocity overshoot’, IEEE
Electron Device Letters, Vol. 11, pp. 174–176, 1990.

[11] J.E. Bowers and C.A. Burrus, Jr, ‘Ultrawide-band long-wavelength p-i-n photodetectors’,
Journal of Lightwave Technology, Vol. 5, pp. 1339–1350, 1987.

[12] S. Babiker, A. Asenov, N. Cameron, S.P. Beaumont and J.R. Barker, ‘Complete Monte Carlo
RF analysis of ‘real’ short-channel compound FET’s’, IEEE Transactions on Electron
Devices, Vol. 45, pp. 1644–1652, 1998.

[13] S.M.S. Imtiaz and S.M. El-Ghazaly, ‘Performance of MODFET and MESFET: A comparative
study including equivalent circuits using combined electromagnetic and solid-state simulator’,
IEEE Transactions on Microwave Theory and Techniques, Vol. 46, pp. 923–931, 1998.

[14] J.M. Early, ‘P–N–I–P and N–P–I–N junction transistor triodes’, Bell Systems Technical
Journal, Vol. 33, pp. 517–533, 1954.

[15] H. Rohdin and A. Nagy, ‘A 150 GHz sub-0.1-µm E/D MODFET MSI process’, Technical
Digest of the International Electron Devices Meeting, IEEE, Piscataway, pp. 327–330, 1992.

[16] M.C. Foisy, ‘A physical model for the bias dependence of the modulation-doped field-effect
transistor’s high-frequency performance’, PhD. Thesis, Cornell University, 1990.

[17] P.H. Ladbrooke, ‘Reverse modelling of GaAs MESFETs and HEMTs’, GEC Journal of
Research, Vol. 6, pp. 1–9, 1988.

15.8 Problems

15.1 Translate the Ri j (k) and Ii j (k) coefficients, derived in Section 11.2 from the long-channel
MOSFET wave-equation, into the equivalent circuit in Figure 15.1; i.e., derive Equa-
tions (15.11)–(15.16).

15.2 Consider the two-dimensional electrostatic problem consisting of several conductors of
arbitrary shape embedded in a uniform dielectric. Use Cartesian coordinates x and y to
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describe the geometry. All conductors are grounded except for one which is held at potential
V0. Assume that the conductors are ‘almost touching’; i.e. that, as you completely trace their
circumferences without lifting the pen, only relatively short dual parallel-line segments are
necessary to bridge the gaps between the conductors. Now think of x and y as the coordinates
in the complex z-plane (z = x + iy), and the potential V (x, y) as the real part Vz(z) of a
complex potential Vz(z) + iUz(z). Assume that you have an analytical function w(z) that
maps the area outside the conductors in the z-plane onto the upper half-plane in the complex
w-plane, such that the segment that traces the conductor held at potential V0 maps onto
the entire negative real w axis. This leads to a simple geometry for the complex potential
Vw(w)+ iUw(w) in the w-plane.

(a) Show that the equipotentials of Uz(z) are field lines of Vz(z). Hint: Recall Cauchy–
Riemann’s equation for analytical functions.

(b) Show that Vw(w) is given by the simple expression in Equation (15.27). Hint: Recall that
a function is the electrostatic potential of the problem if it satisfies Laplace’s equation and
the boundary conditions.

(c) Show that Vz(z) is given by Vw(w(z)), i.e., that the potential in thew-plane can be directly
used to calculate the more complicated potential in the z-plane once we have determined
w(z).

(d) Derive the charge formula (Equation (15.28)). Hint: Do the charge integration in the w-
plane.

15.3 By direct application of Equation (15.38), show that Kirchhoff’s current law (Equa-
tion (15.40)) holds in the ‘electrostatic approximation’. Hint: What is the solution to Laplace’s
equation when all conductors are biased to 1 V?



16 Gate resistance and the Schottky-barrier
interface

Make everything as simple as possible, but not simpler.

ALBERT EINSTEIN

16.1 Introduction

The gate resistance Rg (Figure 15.16) has long been recognized as a very important
parasitic parameter that can be difficult to reduce to an acceptable value. Rg degrades
the noise figure and power gain. For the field-effect transistor (FET) depicted in
Figure 14.1, the gate and drain voltages (and source ground) are applied to metal
pads outside the active FET area. The gate, drain and source metallizations carry the
currents laterally in the yz-plane onto the active FET area, and deliver the currents in an
essentially uniform fashion in the x direction to the semiconductor. For the source and
drain this is typically not a problem because of their larger extension in the y direction,
and the thick interconnect metallizations available (neither is shown in Figure 14.1,
which only depicts the central core of the device). The source and drain resistances
(Rs and Rd ) are thus not limited by the metallization resistance, but by the contact
and semiconductor components discussed in Section 14.6.2. The situation is different
for the gate because of its much smaller extension in the y direction. Consequently,
in order to reduce the gate resistance for submicron gates, much effort has gone into
developing T-gate processes (Figure 14.1; Section 17.7). This chapter will show that
there is much more to the gate resistance, and therefore that there are additional
ways to reduce it. In particular, we will discuss an interfacial component which, in
its purest form, is intimately tied to the mechanism responsible for Schottky-barrier
formation.

527
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16.2 Components in the input resistance

The gate metallization resistance contributes to Rg in a distributed way, which reduces
the effect to a third of the end-to-end gate finger resistance [1, 2]:

Rga = rgaWg

3N 2
f

. (16.1a)

We have introduced the subscript a in this component to indicate access resistance
along the gate finger. rga is the normalized end-to-end gate metallization resistance
given by

rga = ρ

Agx
. (16.1b)

ρ is the gate metal bulk resistivity. Agx = A(T )gx + A(S)gx is the gate cross-sectional

area (Figure 14.1), enhanced by the fat top of the T (A(T )gx ) over the thin stem (A(S)gx ).
As before, Wg is the total gate width. Nf is the number of parallel fingers (of width
Wg/Nf ) that make up the gate. Increasing Nf is obviously a very effective way of
reducing Rga .

The skin effect will introduce frequency dependence in the AC gate metallization
access resistance. Using an expression for the skin effect that is a good approximation
for isolated metal strips [3], we can express the frequency dependence of the gate
metallization access resistance as:

r (ac)
ga ( f ) = rga

(
1 + f

fse

)1/2

. (16.2a)

fse is a characteristic frequency for onset of significant skin effect:

fse = βse
rga

µ0
. (16.2b)

µ0 = 4π × 10−7 V s/(A m) is the vacuum permeability (not mobility in this case), and
βse is a geometric factor, approximately equal to 3.5 for a square cross-section. For a
typical rga = 150 �/mm, fse is 420 GHz. It has been shown with three-dimensional
numerical modeling that the gate skin effect in a realistic 0.1-µm MODFET T-gate
structure is well described by Equation (16.2), and is quite negligible [4].

The other resistive components on the input side of the FET are the charging
resistances Rgs and Rgd in Figure 15.16(a). With VD > 0, Rgd can be much larger
than Rgs , as we saw in Figure 15.2 for the linear MODFET. Nevertheless, it is most
often omitted in the equivalent circuit. This is because Rgd is difficult to extract,
which is to say that it is still too small to have an effect on the measured Y parameters.
One reason for this is that, while Rgd is large, what really counts is the time constant
RgdCgd , and this is, as we saw for the linear MODFET in Figure 15.2, actually smaller
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than RgsCgs . An extrinsic gate-drain fringe capacitance could reduce the importance
of Rgd even further. Thus, the important intrinsic resistive component is Rgs , given by
Rgs,gc in Equation (15.23), and often referred to as Ri . Introducing

Rsq = 1

qµnso
(16.3)

for the sheet resistance of a full two-dimensional electron gas (2DEG), Equa-
tion (15.23) implies that

Rgs ≈ 1

12
Rsq

(
Lg +�L(s)g

Wg

)(
I (max)

D

ID

)
=
(

Lg +�L(s)g

)
vsat

12µID
, (16.4)

before onset of deep velocity saturation (�Li ∼ 0). We have included the source-
side fringing effect (Equation (15.31)). Deeper in saturation, as τ (1)g,sat and τ (RC)

g,sat

(Section 15.4) become significant, Rgs will increase beyond the estimate in Equa-
tion (16.4), and at the same time the effective mobility µ can be reduced below its
long-gate ‘bulk’ value µ0 (Section 14.5).

Equivalent circuit extraction methods have difficulty separating Rg from Rgs .
However, the total gate-side input resistance Rg + Rgs is well captured by these
methods [5]. Experimental values of this sum are typically significantly larger
than predicted by Equations (16.1) and (16.4), suggesting an additional unaccounted
component in the input resistance [4]. There are very few regions in the device, not
already accounted for in the preceding sections, that could be physically acceptable
origins for the ‘missing’ resistance. One is the metal–semiconductor interface, which
could lead to an additional gate resistance

Rgi = rgi

Wg Lg
, (16.5)

where rgi is a normalized (or specific) interfacial gate resistance. The other is the
resistance associated with current flow in the x direction in the stem of the gate
(Figure 14.1). Including so-called gate ‘necking’ ([6]; Section 17.7), described by
the geometrical parameters δg , hg , and Lg in Figure 14.1, the gate stem resistance is
given by

Rg,stem = ρhg

Wg Lg

[
− Lg

2δg
ln

(
1 − 2δg

Lg

)]
. (16.6)

The Wg scaling of the two components is the same. With no necking (δg = 0), the
Lg scaling is also the same. The constant of proportionality (effectively rgi ) would
then be ρhg . For a state-of-the-art 0.1-µm e-beam T-gate process (Section 17.7),
ρhg ∼ 4 × 10−11 � cm2. If we, instead of bulk resistivity, use a thin film value
for the stem resistance, the estimate might increase to ∼ 2 × 10−10 � cm2. The
use of high-resistance refractory gate metallization can bring the value up by two
orders of magnitude [7]. With necking, the correction factor in square brackets in
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Fig. 16.1. Correction factor in the stem resistance (Equation (16.6)) due to necking.

Equation (16.6) will deviate from unity as shown in Figure 16.1. Necking, i.e., δg > 0,
results from a gate process in which the gate cut (in resist or dielectric) has steep
walls. The more advantageous situation, δg ≤ 0, results from oxide spacer processes
(Section 17.7), or from resist processes where the resist walls slope outwards. Either
way, Figure 16.1 shows that the correction factor is rather moderate, except near
δg = Lg/2 where the wide top of the gate is completely dislodged from the stem.
In this extreme case the gate resistance goes back to being properly described by Rga ,
i.e., proportional to Wg , but with a large rga corresponding to the cross-sectional area
A(S)gx of the now triangular stem.

16.3 Measurement and scaling of the gate resistance

As implied by the discussion, determining the origins of the gate resistance involves
measuring/extracting its value versus gate width and frequency. In order to accurately
determine the components that make up the gate resistance, several gate widths, in
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Fig. 16.2. (a) Gate resistance and number of gate fingers for multi-finger 0.2-µm PHEMTs versus
total gate width [8]. (i) Full fit → rga = 885 �/mm, rgi = 5.3 × 10−7 � cm2. (ii) Fit with
614 �/mm estimate of DC end-to-end rga → rgi = 5.9 × 10−7 � cm2. Rga and Rgr are the gate
metallization access resistance and the residual fixed resistance, respectively, for fit (i). (b) Gate
resistance of two-finger 0.1-µm AlInAs/GaInAs MODFETs versus total gate width. (i) Full fit
→ rga = 560 �/mm, rgi = 9.2 × 10−7 � cm2. (ii) Fit with 82 �/mm end-to-end DC measurement
of rga → rgi = 8.1 × 10−7 � cm2. (H. Rohdin, N. Moll, C. -Y. Su and G. Lee, IEEE Transactions
on Electron Devices, Vol. 45, pp. 2407–2416, 1998.)

a wide range, should be used. For fixed frequency, the measured values can then be
fitted with confidence to the equation

Rg(Wg) = Rgr + rgaWg

3N 2
f

+ rgi

Wg Lg
. (16.7)

The first term allows for a possible fixed offset related to probing, layout and/or
calibration (Section 17.2). The other two terms were introduced above, and the
associated constants rga/(3N 2

f ) and rgi/Lg are determined from the fit. Ideally, one
should, in addition, do the measurement and fitting with FETs of various gate lengths.
This would be difficult for a couple of reasons. First, for longer gates, Rgs may
start to become significant even at VD = 0, where Rg , Rs and Rd measurements
are made. Since it is difficult to separate Rgs from Rg , the result could be distorted.
Second, and more serious, the task would require several well-defined gate lengths
of submicron dimension, all with the same metal–semiconductor interface properties.
Most processes do not have this flexibility.

If the extracted rga at high frequencies is significantly larger than the DC value
r (DC)

ga measured on special end-to-end structures, or estimated by Equation (16.1b),
necking could be an issue. This should then be further investigated with a cross-section
SEM (scanning electron microscope), and, if necessary, a process fix developed. If, on
the other hand, rga is on the order of r (DC)

ga , and/or rgi is larger than the estimate for
the stem resistance, the metal–semiconductor interface is a likely origin of the ‘excess’
gate resistance.

Figure 16.2 shows two examples of the gate resistance of MODFETs plotted versus
gate width. They are good examples because of both their similarities and their
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differences. They are similar in that neither process suffers from necking, and in
that the results extracted are based on several gate widths. This promotes accurate
separation of the three terms in Rg . In both cases the measurements were done
with VD = 0 V. The Rg(Wg) data in Figure 16.2(a) were taken on 0.2-µm power
pseudomorphic high-electron-mobility transistors (PHEMTs) with various number of
fingers [8]. These gates were intentionally trapezoidal (no T) with rather large access
resistance rga . The extraction was done with the gate forward biased (drawing a
significant current) using the technique of Dambrine et al. [9]. A low frequency
(∼ 1 GHz) gives the best accuracy for this method. In Figure 16.2(b) are Rg(Wg)

data for two-finger 0.1-µm symmetric-T-gate InP-type MODFETs (Section 17.7). The
following simple formula for estimating the gate resistance from the measured Y
parameters was used:

Rg = Re

(
1

Y11

)
− 1

4 Re (Y22)
. (16.8)

The resistance of the gated channel is already small because of the short gate. By
biasing the gate for full channel occupation, without significant DC gate leakage, it is
further reduced, and is neglected beside the Rs and Rd . For a symmetric device (Rs =
Rd ), the second term subtracts out the resistance made up of Rs and Rd in parallel.
Under the full-channel zero-VD condition, Rgs (Equation (16.4)) is also particularly
small. Rg is evaluated by Equation (16.8) at sufficiently high frequencies where the
measure becomes unaffected by ggs and ggd , and is frequency independent. With
ggs , ggd , Rgs , Rgd and (gds)

−1 negligible, Equation (16.8) is easily derived from the
equivalent circuit in Figure 15.16(a). Despite the differences in material, gate process
and extraction technique, the main features of the two sets of data in Figure 16.2 are
very similar. Both exhibit a prominent inverse gate-width scaling of Rg with excellent
fit to Equation (16.7). The values for rgi are similar (5–9×10−7 � cm2), and are much
larger than the stem resistance. In the first case there is no separate stem, and in the
second case the stem resistance is very small (∼ 10−10 � cm2). In neither case is there
a sign of frequency dependence. Less accurately estimated values for rgi , based on
fixed gate-width data in the literature, fall in a range 5×10−8–10−6 � cm2 [4]. Another
interesting data point is provided by the complete Monte Carlo RF analysis by Babiker
et al. [10] of a 0.12-µm PHEMT biased at VD = 1.5 V, and their comparison with
measurements on an actual device with the same nominal structure. In this case, with
the device biased in saturation, the predicted Rgs (Ri ) is ∼ 4 times larger than predicted
by Equation (16.4), presumably due to delays and effective mobility degradation. Even
so, the measured value is even larger, and the discrepancy corresponds to rgi = 2 ×
10−7 � cm2.

The interfacial gate resistance has several interesting and important consequences
for the device AC performance and optimization. Some of these will be covered
in Chapter 17. In addition, there is a very important practical consequence for
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device model extraction. As an example we consider the Agilent EEsof Root FET
Model, although the lesson is easily implemented in other models. When the
measurement-based large-signal device model [11] is extracted for an FET under
test, the first step is to determine the parasitic resistances from S parameter data
(Section 17.2) with VD = 0 and VG > 0 (‘cold-FET configuration’) as in the
first example above (Figure 16.2(a)). Once these have been calculated, and the S
parameters of the FET have been measured in the entire active biasing regime, the
non-linear voltage-controlled charge and current functions of the three intrinsic nodes
can be determined. The result, an accurate large-signal non-quasi-static table-based
model of the device, can then be used for reliable circuit design. Although several
gate widths were used in the two examples above, this is not always practical. Instead,
the extraction is typically done on a representative FET. During the design of a circuit
using various gate widths, the simulator assumes the proportional gate width scaling of
Equation (16.1). The software determines the constant of proportionality rga/(3N 2

f )

during the extraction. Since the gate resistance is actually dominated by a term which
scales inversely with Wg , it is clear that this can lead to large scaling errors, and
inaccurate circuit modeling. The way around this problem for the Agilent EEsof Root
FET Model is to replace the total extracted Rg with a separately measured or calculated
(and typically much smaller) Rga in the ‘Model Variable Table’. An internal time
constant model parameter will then approximately take care of the remaining dominant
W −1

g -term Rgi . The time constant, which is determined by the extraction algorithm,
accounts approximately for the internal delay RgsCgs . By replacing Rg with Rga ,
we have then essentially set Rgs = Rgi . This redistribution of the input resistance
may not be correct physically, but it does lead to correct Wg scaling, and thus a more
accurate and reliable circuit simulation. The different gate-length scaling of Rgs and
Rgi (Equations (16.4) and (16.5)) is not an issue since, as mentioned earlier in this
section, a particular process typically only produces one submicron gate length. Even
if several gate lengths were available, there are no gate-length scalings established for
the other parameters in the model, and separate models for each gate length would
have to be extracted.

The interfacial gate resistance scales as a contact resistance, and is in this respect
reminiscent of JFET behavior. There the effect is well understood in terms of a
standard ohmic contact resistance, such as rc2 in Figure 14.6. The origin of an
interfacial component in the gate resistance of an SBGFET (SBG = Schottky-barrier
gate) would have to be very different, and needs to be clarified for a more complete
understanding of FET operation. We proceed by reviewing Schottky-barrier formation
(Section 16.4), a field that remains a topic of research, and some controversy. We
then analyze what goes on electronically at the metal–semiconductor interface as we
modulate the gate voltage at high frequencies. The analysis is done in two steps. First,
we investigate the frequency dependence of the interfacial admittance and show how
this is related to the measured rgi (Section 16.5). Second, as an underlying physical
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mechanism, we will analyze tunneling between the gate and localized states in the
semiconductor near the interface (Sections 16.6 and 16.7). A reader more interested
in the bottom line, and satisfied with a cursory treatment of the physical origin of
the interfacial gate resistance, can skip to Section 16.8, where we go through the
modifications to the equivalent circuit and Y parameters introduced by the two gate
resistance components.

16.4 Interfacial gate resistance and Schottky barriers

The evidence encountered points to an interfacial origin for Rgi . As more and
more data have been collected, and techniques for minimizing contamination and
oxide formation at the metal–semiconductor interface implemented (Section 17.7), it
appears, for InP- and GaAs-based SBGFETs, that there is a minimum reproducibly
achievable value r (min)

gi ∼ 10−7 � cm2 for the specific interfacial gate resistance.
The question then arises whether this is a fundamental limit. If so, it is expected
to be closely related to Schottky-barrier formation. Interestingly, the most widely
used and analytically tractable model for Schottky barriers specifically invokes an
interfacial layer between the metal and semiconductor. Cowley and Sze [12] did this
to explain the fundamental barrier height  B0 in Si, GaP, GaAs and CdS, for a variety
of metals. There were two requirements put on the interfacial layer. First, it should
have a thickness on the order of a few atomic layers. It would then be transparent
to electrons as the metal and semiconductor were conceptually brought together,
allowing the Fermi levels of the metal and semiconductor surface states to freely line
up. Second, the interfacial layer had to withstand a potential across it. This was
necessary to accomplish the primary goal of the model, i.e. to account for the deviation
of experimental  B0’s from the classical Schottky limit  M − XSC , where  M is
the metal work function and XSC the semiconductor affinity. An interfacial layer
of 4–5 Å thickness, with vacuum electronic properties, was assumed. Section 16.5
extends this static model to the microwave and millimeter-wave frequencies of interest.
A tunneling analysis (Sections 16.6 and 16.7) quantifies the transparency of the
interfacial layer. It turns out that this layer presents an AC resistance that cannot
be ignored, and is in fact very close in magnitude to the experimentally observed rgi .
We have to realize, however, that although it can explain the static characteristics of
a wide variety of barriers with a few physically reasonable macroscopic parameters,
and can provide a remarkably good prediction of rgi , the Cowley–Sze picture is not
a precise representation of physical reality. The AC tunneling behavior is much more
sensitive to microscopic details than the barrier height is, and it becomes important to
understand more precisely the actual physical situation that the Cowley–Sze interfacial
layer represents. We therefore now briefly review alternative, more microscopically
specific, physical Schottky-barrier models from the literature.
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First-principles models for Schottky-barrier formation typically assume an ideal
barrier in the sense that the metal and semiconductor atoms are nearest neighbors
with no interpenetration of materials. In the most ideal case (e.g. [13]), metal
electron wave-functions penetrate into the semiconductor, where they populate part
of a continuum of gap states, which are referred to as MIGSs (metal-induced gap
states). Despite their name, MIGSs are semiconductor Bloch states, like those in the
conduction and valence bands, except that they are in the forbidden gap between
these. Thus, they have complex wave-vectors, and decay away from the surface.
The Fermi level is pinned near a ‘canonical’ energy, where the gap states switch
from valence to conduction-band character, a point that corresponds to local charge
neutrality [14]. This picture of Schottky-barrier formation is elegant but controversial.
Its failure, upon closer inspection [15–18] to predict the generally observed essentially
metal-independent Fermi level pinning suggests that the problem is more complicated.
The most likely complication is that defects, with associated energy levels pinning the
Fermi level inside the forbidden gap, form in the semiconductor close to the interface.
There are many possible alternative microscopic origins of these defects, including
anti-sites (for III–V compounds) and vacancies [16, 18], new chemical compounds
and changes in atomic geometry [15]. The relative importance of these can be
affected by such factors as morphology, stoichiometry, surface reconstruction, surface
preparation and metal reactivity [19]. One prominent defect model, developed by
Spicer and coworkers [20, 21], relies on semiconductor native defects, and is in its
final refined form [21] referred to as the advanced unified defect model (AUDM).
Another proposed complication is the formation of a thin bond-disordered layer in the
semiconductor near the interface, resulting in a continuum of disorder-induced gap
states (DIGS) [22, 23]. Similar to the MIGS case, the Fermi level is proposed to be
pinned near a ‘neutral level’, which depends only on the bulk semiconductor band
structure. Some combination of these [24] and other mechanisms [25, 26] may be
involved in determining the barrier height.

While the details of why the mid-gap states come to exist differ radically in all
these pictures, the existence of a dipole layer between the metal and semiconductor is
not controversial. Thus in some sense, the Cowley–Sze model can be adapted to any
physical reality, whether it corresponds to a barrier dominated by MIGSs, defects or
bond-disorder, through judicious choice of the properties of the interfacial layer and
mid-gap states. For some interfacial conditions the Cowley–Sze model would not just
be a convenient construct for analytical modeling, but also a good physical represen-
tation. In addition to the case of a thin native oxide, surface reconstruction of GaAs
has been proposed to result in true MIS-like Schottky barriers [27]. Sections 16.5 and
16.6 use the Cowley–Sze picture to lay the theoretical groundwork for the existence of
the interfacial gate resistance, without tying it to any particular physical interpretation.
Section 16.7 examines the interfacial gate resistance for different choices of interfacial
layer properties, appropriate to different physical models.
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16.5 Admittance analysis of a Schottky barrier with semiconductor surface
states

Figure 16.3 is based on Figure 15 in Sze’s Chapter 5 [28], and uses similar notation.
Cowley and Sze’s solution of the static band lineup problem lead to the following
important expression for the fundamental (i.e. without image force lowering) barrier
height:

 B0 = γ ( M − XSC )+ (1 − γ ) (Eg − E0
)
. (16.9)

E0 is the ‘neutral level’ measured from the top of the valence band. This is the energy
below which the surface states must be filled for the surface to be charge neutral. The
other important parameter in Equation (16.9), not defined in Figure 16.3, is γ , given
by

γ = 1

1 + q2 DSdi/εi
. (16.10)

The density of states DS was assumed to be constant in Cowley and Sze’s analysis.
With a finite interfacial-layer thickness di , γ decreases from 1 to 0 as DS increases
from zero to infinity. The DS = 0 limit thus yields the classical ideal Schottky
expression  B0 =  M − XSC . The other limit DS = ∞ yields perfect pinning:
 B0 = Eg − E0. The neutral level E0 corresponds to the canonical pinning
position in the MIGS and DIGS models. Equations (16.9–10) express the reduced
sensitivity ∂ B0/∂ M = γ of the Schottky-barrier height to metal work function
in the presence of surface states and an interfacial layer. The experimental value for
GaAs is γ = 0.074 ± 0.05 [12].

The Cowley–Sze model has been extended to analyze I –V and low-frequency C–V
characteristics [29–33]. This subsection extends the model to show quantitatively
how an interfacial layer can produce a component in the parasitic gate resistance
of SBGFETs. It examines the effect of modulating the metal (gate) voltage at
microwave and millimeter-wave frequencies. At these frequencies, and normal bias,
recombination of bulk semiconductor carriers at the surface state can be neglected.
This makes the admittance analysis less complicated than in some of the I –V and
C–V references above.

Section 16.7 considers situations where the interfacial layer is not a vacuum, and
we therefore introduce an affinity Xi , a conduction-band edge ECi and a valence band
edge EV i for the interfacial layer. A non-stationary voltage V is applied to the metal.
This results in a varying electron quasi-Fermi level EF SC in the semiconductor (SC),
and a Fermi level split EFi = EF S − EF M across the thin interfacial layer, where EF S

and EF M are the Fermi levels for the surface states and the metal, respectively. The
built-in voltage Vbi in the semiconductor will also change, and we denote this modified
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Fig. 16.3. Cowley–Sze’s [12] energy-band diagram for a metal–semiconductor (n-type) contact with
an interfacial layer. The electron energy E is referenced to the bottom of the metal conduction band.
The voltage drops Vi and VSC , and the Fermi energy split, EFi , are positive as drawn. (H. Rohdin,
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voltage VSC . Ideally, VSC = Vbi −V , but even at DC this is generally not the case [32].
We are interested in small-signal AC variations, prefixed by δ, in a bias and frequency
regime not dominated by DC conduction across the semiconductor barrier (i.e. ggs

and ggd in Figure 15.16(a) are negligible). There will be a deviation from ideality due
to the voltage division between the semiconductor and the interfacial layer. The AC
driving force, δV , results in similarly denoted AC variations in the ‘primary’ variables
EFi , Vi and VSC . Variations in QSC , QM , QS and J can be expressed in terms of
these. The other parameters in Figure 16.3 are fixed, independent of V .

The voltage division is expressed by

δV = −δVi − δVSC . (16.11)

Charge conservation requires that

δQSC + δQM + δQS = 0, (16.12)
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where

δQSC = cD(VSC )δVSC , (16.13)

δQM = −ciδVi (16.14)

and

δQS = −cS(δVi + δEFi/q). (16.15)

cD(VSC ) is the doping- and structure-dependent semiconductor depletion capacitance
per unit area. The other two normalized capacitances are

ci = εi

di
(16.16)

for the interfacial layer, and

cS = q2 DS (16.17)

for the surface states, where DS is the density of surface states at the bias position
of EF S . Cowley and Sze assumed a constant DS . Some defect models involve sharp
peaking of DS(E) at the pinning position [20]. The MIGS model suggests a rather
uniform distribution with an increase in DS(E) near the valence and conduction-band
edges. In the DIGS model the Fermi level is pinned near a pronounced minimum in
DS(E). These details do not affect the small-signal AC analysis. For small δEFi ,
the tunneling current density δ Jt can be expressed in terms of a linear resistance rit ,
the interfacial tunneling resistance. δ Jt is a real (in-phase) conductive current in the
interfacial layer and the metal; i.e. unlike the parallel displacement current, it does not
contribute to the metal charge QM . Like the displacement current, however, δ Jt is
an AC current, since in the high-frequency operating regime of interest here (ggs , ggd

negligible) there is negligible DC charging (or discharging) of the surface states. δ Jt

is proportional to the small AC ‘unpinning’ of the Fermi level, described by δEFi :

δ Jt = dδQS

dt
= jωδQS = δEFi/q

rit
. (16.18)

The preceding equations lead to solutions, first for the voltage division:

δVSC

δV
= − 1

1 + cD

ci + cS

1 + jωcSrit

, (16.19)

and ultimately for the admittance per unit area:

y(ω) = δ J

δV
= jωcD

(−δVSC

δV

)
= jωcD

1 + cD

ci + cS

1 + jωcSrit

. (16.20)
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For the total AC current density δ J in Equation (16.20), we used the expression
jωcD(−δVSC ), which is valid in the depletion region. The expression δ Jt +
jωci (−δVi ), valid in the metal and interfacial layer, leads to the same result, as it
should. The denominator in Equation (16.19) is the AC ideality factor associated with
a non-ideal (ci < ∞) interface. Not surprisingly, the result in Equation (16.20) is
very similar to that of Terman’s [34] MOS admittance analysis. Terman’s ‘energy
loss mechanism’, associated with charging and discharging the surface states through
the semiconductor, becomes in the present case the loss due to tunneling through the
interfacial layer.

The equivalent circuit for the admittance in Equation (16.20) is shown in Fig-
ure 16.4(a). We also show the circuit in Figure 16.4(b) because it corresponds to
the zero-drain-bias SBGFET equivalent circuit (without the source and drain access
resistances) used to extract the gate resistance (Equation (16.8)). It has the simple
one-pole admittance

y(ω) = jωcg

1 + jωrgi cg
. (16.21)
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With

rgi = rit(
1 + ci

cS

)2
(16.22)

and

cg = cD

1 +
(

cD

ci + cS

) (16.23)

the circuit in Figure 16.4(b) has the same admittance as that in Figure 16.4(a), to
second order in jω (Problem 16.1). The phenomenological, experimentally inferred,
interfacial gate resistance rgi has thereby been identified in terms of the underlying
physical tunneling resistance rit , the interfacial layer capacitance ci and capacitance
cs associated with the surface states. The normalized SBGFET gate capacitance cg

is identified as cd and ci + cs in series. The denominator in Equation (16.23) is the
DC limit of the AC ideality factor discussed above. The value is close to unity for a
physically ideal Schottky barrier. For GaAs one can demonstrate this by assuming,
as suggested by Cowley and Sze [12], interfacial-layer parameters di = 5 Å and
εi = ε0, and using their expression for γ (Equation (16.10)). With γ = 0.074,
one calculates DS = 1.38 × 1014 cm−2/eV. This results in cs = 22 µF/cm2 and
ci = 2.0 µF/cm2 ∗. With a typical depletion capacitance cD = 0.45 µF/cm2,
corresponding to a 25-nm gate-channel spacing, the DC limit of the ideality factor
is 1.02. With the same parameters, Figure 16.5 shows the frequency dependence of
y (Equation (16.20)), in terms of the equivalent series capacitance −1/[ω Im(1/y)],
and the rgi estimate Re(1/y). rit = 5.18 × 10−7 � cm2 is the result of the theory
in Section 16.6, with di = 5 Å. It leads to rgi = 4.37 × 10−7 � cm2, which is
remarkably close to the experimentally observed r (min)

gi . Up to about 50 GHz the
equivalent series resistance and capacitance equal those given by Equations (16.22)
and (16.23). At frequencies > 100 GHz significant deviations develop. For the lower
end of Cowley–Sze’s interfacial-layer thickness range (4 Å) the dispersion is much
lower.

16.6 Theory for the interfacial tunneling resistance

The results in the last section indicate that the minimum interfacial gate resistance
is consistent with metal-to-surface-state tunneling, and does not go away at typical
frequencies of interest. The next step is to calculate the basic underlying tunneling
resistance rit . With appropriate approximations, this becomes an analytically manage-
able example of applied quantum mechanics, with interesting ties to both theoretical
∗ It is worth noting that this value for ci is quite similar to values extracted on metal–Si diodes by fitting
interfacial-layer theory to experimental DC I –V curves [31].
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Equation (16.20), with a typical value for the interfacial gate resistance (rgi ∼ r (min)

gi ).

and experimental solid-state physics, and with important consequences for technology
and design. For clarity, we divide the analysis into subsections, starting with general
tunneling theory. Ultimately (Section 16.7), we can make quantitative predictions in
the context of the various Schottky-barrier pictures discussed in Section 16.4.

16.6.1 General formalism for tunneling between metal and surface states

The tunneling problem to be solved here is illustrated in Figure 16.6. An expression
for tunneling current can be derived from Fermi’s golden rule, i.e. the expression for
the probability per unit time of transition from an initial state i to a final state state f
(e.g. [35, 36]):

Pi f = 2π

h̄

∣∣Mi f
∣∣2 ρ f fi

(
1 − f f

)
. (16.24)

Mi f is the matrix element for the transition, ρ f is the density of final states, and fi and
f f are the probabilities of occupation of state i and f , respectively. We apply this to
the metal–semiconductor system (i → S, f → M) of interest. Energy E (referenced
to the bottom of the metal conduction band), transverse momentum kxy and spin are
assumed to be conserved. The densities of states are thus calculated for fixed kxy
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and E , spin not included. The occupation probabilities for electrons are given by the
Fermi–Dirac distribution function, denoted by f (E). As is often done in tunneling
analyses, we will in the end assume zero temperature so that f (E) becomes an easily
manageable step function (going from 1 to 0 at the Fermi energy). For the tunneling
current, one integrates ρS PSM − ρM PM S over E , sums over all kxy , and multiplies by
2q for electrons with two possible initial spins [36]. The sum over kxy becomes an
integral:

∑
kxy

= Axy

(2π)2

∫
d2kxy, (16.25)

where Axy is the cross-sectional area in the xy-plane, and Axy/(2π)2 is the density
of states in two-dimensional k space. With the Fermi level raised by EFi on the
semiconductor side by the applied bias V (Figure 16.3), the tunneling current density



543 16.6 Theory for the interfacial tunneling resistance

becomes:

Jt = q

π h̄

∫
d2kxy

∫
d E [ f (E − EFi )− f (E)] ρS (E − EFi )

× ρM
(
E, kxy

) ∣∣MSM
(
E, kxy

)∣∣2 . (16.26)

With cosine wave-function solutions (Figure 16.6) and associated (non-periodic)
boundary conditions, the one-dimensional density-of-states in the metal is given by

ρM
(
E, kxy

) = L M

π

(
∂E

∂kz

)−1

= L M mM

π h̄2kz
(
E, kxy

) , (16.27)

where L M is the thickness of the metal, kz is the component along the z axis of the
wave-vector, and mM is the electron effective mass in the metal. Assuming isotropic
effective mass, kz is given by

k2
z

(
E, kxy

) = 2mM E

h̄2
− k2

xy . (16.28)

The density of surface states is

ρS(E) =
∑

s′
δ (E − ES′), (16.29)

where the ES′’s are the energies of the surface states. We will solve for the tunneling
current from a single localized surface state (energy ES) to the metal, and then perform
the sum, which (similar to the sum in kxy space above) can be expressed as an integral:

∑
S′

= Axy

∫
d ES′ DS (ES′). (16.30)

The integral should be taken over the EFi gap in Figure 16.3. For small excursions
from equilibrium, the sum becomes the factor Axy DS EFi .

The matrix element for electrons tunneling from the semiconductor surface state to
the metal is calculated by Bardeen’s method [35]:

MSM
(
E, kxy

) = − h̄2

2mi

∫
Si

dS · (�∗
S∇�M −�M∇�∗

S

)
. (16.31)

mi is the electron effective mass in the interfacial tunneling barrier. �M and �S

are solutions with the same energy to two simplified problems: (1) metal (M) +
semi-infinite barrier (B), and (2) semi-infinite barrier (B) + surface state (S) +
semi-infinite semiconductor (SC), respectively. The perturbation to this situation
occurs by thinning the barrier B to an interfacial layer i so that the two exponential tails
start overlapping. The parts of the tails that extend into the other region are assumed to
remain exponential. Si is a simple, but arbitrarily-shaped, surface that completely sep-
arates the surface state from the metal, and lies in the interfacial-layer barrier between
the metal and semiconductor. There is a similarity between Equation (16.31) and the
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standard expression for probability current in quantum mechanics. The original full
proof of Equation (16.31) was given by Bardeen [35], from the many-particle point
of view, for the case of constant band structure. Harrison [36] built on this, took an
independent–particle point of view, and allowed a spatially-varying band structure. We
offer a simplified derivation, which is similar to one given by Duke [37], but tailored
to our particular problem. The matrix element is given by

MSM =
∫

M+i+S+SC
dV �∗

S (H − E)�M

=
∫

SC+S+δi
dV
[
�∗

S (H − E)�M −�M (H − E)�∗
S

]
. (16.32)

The first volume integral, taken over the entire space of the problem, is the well-known
result from perturbation theory in quantum mechanics. The operator is the difference
between the total (H ) and unperturbed (H (0)) Hamiltonian. We have used H (0)�M =
E�M , where E is the energy of our two states. It is assumed that �M is a solution to
the Schrödinger equation in the metal and in the barrier, but not in the semiconductor
since it is exponential (as opposed to oscillatory) there [35]. The converse is assumed
for �S . This means that we only have to integrate over the semiconductor and the
attractive core of the surface state. But we can also extend the volume of integration
to any fraction δi of the barrier region between the surface state and the metal, where
both �M and �S are assumed to be good solutions. This is what we do in the second
step in Equation (16.32). However, in this volume, since �S is a good solution there,
we can subtract �M (H − E)�S∗ (= 0) from the original integrand. The two terms
involving E simply cancel, and we are left with the two Hamiltonian terms. For a
position-dependent effective mass, the Hamiltonian is [38]

H = −∇ · h̄2

2m(r)
∇ + V (r), (16.33)

where the mass can no longer be brought entirely outside the kinetic energy operator.
Although we ultimately assume constant masses for the metal and the surface state,
we have to have an r dependence in the effective mass in Equation (16.33) since the
integration volume includes part of the tunneling barrier where the effective mass can
be different. Inserting the generalized Hamiltonian into Equation (16.32), the two
terms with V (r) as a factor will cancel, and we are left with

MSM = − h̄2

2

∫
SC+S+δi

dV

[
�∗

S∇ ·
(

1

m
∇�M

)
−�M∇ ·

(
1

m
∇�∗

S

)]

= − h̄2

2

∫
Si

dS ·
[
�∗

S

(
1

m
∇�M

)
−�M

(
1

m
∇�∗

S

)]
. (16.34)

The last step makes use of the alternative form of Green’s theorem in Equation (15.34).
The integration surface Si should lie outside the attractive core of the surface state. We
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can make it consist of two infinitely large parts, one with a disk-like shape in the
interfacial layer between the semiconductor and the metal, the other a hemispherical
shell in the semiconductor, infinitely removed from the surface state. With the
exponential drops in the wave-functions, the latter contributes nothing. Since the
contributing integration surface is in the interfacial barrier, where we assign a constant
effective mass mi , Equation (16.31) follows.

16.6.2 Interfacial tunneling barrier

Before we can determine the two wave-functions in Equation (16.31), we must
define the barrier. Considering that we are interested in very thin layers with only
approximately known characteristics, details in the barrier shape are neglected, as are
changes to the barrier induced by the AC voltage. We express the tunneling barrier in
terms of quantities on the semiconductor side in Figure 16.6:

EB =  B0 + XSC − Xi . (16.35)

Using (with our notation) Blakemore’s [39] asymptotically correct expression

(EF M + EB)
2

EF M + EB + q2

16πε(∞)i (di − z)

(16.36)

for the barrier lowered by the image force (dashed curve in Figure 16.6), the range of
the metal potential is extended beyond the background ionic core by

�di = q2

16πε(∞)i EB

EF M

EF M + EB
, (16.37)

at E = EF M . In the simple free-electron-gas model, EF M is expressed as

EF M = h̄2k2
F M

2mM
, (16.38)

where the Fermi sphere radius is given by:

kF M =
(

3π2nM

)1/3 ≈ 1.2 Å
−1

(16.39)

[40]. nM is the concentration of metal carriers, assumed to be equal to the atomic
concentration (∼ 6 × 1022 cm−3). ε

(∞)
i is the high-frequency dielectric constant

appropriate for tunneling [41]. The tunneling distance for electrons at the Fermi level
will be reduced from the geometrical interfacial-layer thickness di to

d ′
i = di −�di . (16.40)

A representative choice for mM appears to be one half of the free electron mass m0

[42]. The corresponding �di is 0.5 Å for a metal–vacuum interface, and 0.3 Å for a



546 Gate resistance and the Schottky-barrier interface

metal–GaAs interface. Additional effects that occur for real atomic metals are either
too small, or too complex [43], to include in a simple barrier model. The assumption
of a constant barrier (and barrier lowering) is reasonable [44], particularly considering
uncertainties in parameter values. It allows direct integration of Equation (16.26).

To estimate the lowered barrier

E ′
B = EB −�EB, (16.41)

we again apply Equation (16.36), and use, as a uniformly lowered barrier E ′
B , the value

calculated at the midpoint z = (di − �di )/2. Thus, the barrier lowering is estimated
as

�EB = EF M + EB − (EF M + EB)
2

EF M + EB + q2

8πε(∞)i (di +�di )

. (16.42)

16.6.3 Metal wave-function tail and tunneling effective mass

The wave-function and the associated probability current density should be conserved
across boundaries [36]. With different effective masses, we determine the metal wave-
function in the tunneling region by matching �M and m−1∂�M/∂z at the effective
metal-barrier interface z = d ′

i = di −�di (Figure 16.6). The metal wave-function tail
in the tunneling layer is then given by (Problem 16.2):

�M =
(

2

Axy L M

)1/2 mi kz(
m2

Mη
2
i + m2

i k2
z

)1/2 exp
(−ηi (d

′
i − z)

)
exp
(
ikxy · rxy

)
.

(16.43)

kxy and kz are related by Equation (16.28), with E = EF M (Equation (16.38)), i.e.,

k2
xy + k2

z = k2
F M . (16.44)

ηi is the decay factor in the tunneling barrier:

ηi (kxy) = 1

h̄

(
2mi E ′

B + h̄2k2
xy

)1/2
. (16.45)

rxy is the transverse component of r in Figure 16.6, i.e. the projection of r onto the
xy-plane. If the tunneling barrier is a Cowley–Sze interfacial layer with vacuum
properties, the choice for mi is obvious (= m0). If it is the semiconductor itself, or an
oxide, the choice is less obvious. The effective masses for conduction-band electrons
(me) and valence-band holes (mh) may be known, but we are dealing with tunneling
in the forbidden gap. A simple continuation of the valence and conduction bands into
the forbidden bandgap is illustrated in Figure 16.7. The two bands are joined together
smoothly by simply adding k−2 for the two cases. The decay factor for a state at energy
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ES can then be estimated∗. If we identify EC − ES as the tunneling barrier (to which
we apply the lowering discussed in the previous section) the tunneling effective mass
is

mi = mei mhi
(
ES − EV i

)
mhi
(
ES − EV i

)+ mei (ECi − ES)
, (16.46)

where we have attached a subscript i for interfacial layer. We used the partitioning of
k2(ES) into the transverse propagating component k2

xy and the decaying component
−η2

i . As a more fundamental alternative to the phenomenological continuation of the
bands in Figure 16.7, we can use a result of a k · p theory [45]. For a ‘small gap’
isotropic semiconductor Kane derived the following cubic secular equation

(E − EC ) (E − EV ) (E − EV +�)− h̄2k2

2m0
EP

(
E − EV + 2

3
�

)
= 0 (16.47)

for calculating E(k) of the conduction band (E = EC at �), light-hole band (E =
EV at �) and split-off band (E = EV − � at �). � is the valence-band spin-orbit
split at � (0.34 eV for GaAs), and EP is an interaction energy (≈ 23 eV for III–V
semiconductors). Higher order k terms have been neglected. Rather than calculating
E(k), we are interested in k2(ES) = k2

xy − η2
i . Inserting this into Equation (16.47), a

comparison with Equation (16.45) (again with EB = EC −ES as the tunneling barrier)
yields

mi = m0
(ES − EV i ) (ES − EV i +�)

EP (ES − EV i + 2�/3)
(16.48)

for the tunneling effective mass in the interfacial layer. For GaAs, the k2(E) relation
resulting from the simple continuation in Figure 16.7 is essentially the same as that
given by the ‘small gap’ k · p result, if mhi in Equation (16.46) is set to the light-hole
mass. For a GaAs interfacial-layer tunneling barrier, with EB = EC − ES = 0.85 eV,
the tunneling effective mass is 0.031m0. This is a very small value, about one half of
the conduction-band effective mass (me = 0.067m0 [46]). It corresponds to a 6.3 Å
characteristic distance 1/2ηi (0) for the radial exponential drop in electronic charge of
the individual state. This value compares well with the 2.8-Å one-dimensional decay
length of MIGS (dMIGS) [13]. The smaller value for the latter is expected since it
results from averaging the electronic charge parallel to the interface.

In case of an oxide interfacial layer, we still attempt to apply Equation (16.48),
although the term ‘small-gap’ would not seem to apply in this case. For a typical
oxide barrier (ECi − ES = 4 eV, ES − EV i = 5 eV, Eg = 9 eV, Xi = 1 eV), assuming
that the interaction energy EP is the same as for III–V semiconductors (23 eV), and
that the spin-orbit splitting � is negligible, one calculates mi = 0.22m0. This is quite
close to the 0.29m0 used by Stratton [41] for Al2O3.

∗ Point B in Figure 16.7, which has the shortest decay length, is the branch point in the complex band
structure thought to be the ‘canonical’ pinning position in the MIGS model.



548 Gate resistance and the Schottky-barrier interface

Conduction band:

Valence band:

2m  (E – E  )e c
=

h2

k2
1

2m  (E  – E)h v
=

h
2

k2
1

E

k2

0

cE

vE

sE

Propagation
in xy-plane

Decay in
z direction

Continuation of the two 
bands into the bandgap 
by summing the two 
expressions for 1/k2

k (E  ) = k    -     (E  ) < 02 η22
xys s

B

Fig. 16.7. Continuation of the conduction and valence bands of an oxide or semiconductor tunneling
barrier into its forbidden bandgap. This can be used for estimating the decay constant of the metal
tail in the z direction. B is the point in the complex band structure with the fastest decay.

16.6.4 Surface-state wave-function

The surface states are assumed to be localized. We will take the integration surface
Si in Equation (16.31) to be a hemispherical shell, with radius aS , around the surface
state, outside the attractive core, plus the z = 0+ plane outside the radius aS . We
refer to Figure 16.6, but initially consider the mid-gap state of energy ES to be a
semiconductor bulk state. For this, we assume a spherically symmetric square-well
potential [47] of short-range ws/2. This approximates the potential felt by an electron
from an atomic core, screened by deeper-lying electrons. The potential is EC for
r > ws/2. The ground state will be a spherically symmetric s-type state. We let
aS approach zero in order to integrate Equation (16.31) analytically. This, in effect,
requires that we assume a three-dimensional delta-function potential, which has no
bound excited states. In this limit, the wave-function has the simple form

�S =
(ηsi

2π

)1/2 exp(−ηr)

r
, (16.49)

where η is a decay constant, and ηsi is determined by normalization. For the
spherically symmetric delta potential, ηsi = η. For a bulk semiconductor defect state
η = ηs , where

ηs = 1

h̄
[2mS (EC − ES)]

1/2 (16.50)

The effective mass mS in this equation is given by Equation (16.48) (or Equa-
tion (16.46)), without the i subscript. As good as the predictions of the decay constant
and effective mass seem to be with the k · p-based approach, it should be noted
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that it is only approximate when dealing with deep localized levels. This is because
wave-functions associated with such levels can have components with ks significantly
larger than the k · p theory can account for.

When the state is a surface state, it is no longer spherically symmetrical, since it is
adjacent to a potential barrier> EC −ES . The wave-function then decays more slowly
into the semiconductor than it does into the tunneling barrier. We cannot solve this
quantum mechanical problem analytically, and we instead account for the spherical
asymmetry approximately. We simply assume that the surface state decays with η =
ηs into the semiconductor (π/2 < θ ≤ π ), and with η = ηi (0) ≡ ηi0 into the barrier
(0 ≤ θ < π/2)∗. The resulting normalization constant in Equation (16.49) will be
given by

ηsi = 2ηsηi0

ηs + ηi0
(16.51)

16.6.5 Tunneling resistance and capture cross-section

With the metal and surface-state wave-functions in Subsections 16.6.3 and 16.6.4 the
tunneling matrix element MSM (Equation (16.31)) becomes:

MSM = −h̄2
(

4πηsi

Axy L M

)1/2 kF M[
(mMηi0)

2 + (mi kF M )
2]1/2 exp(−d ′

iηi (kxy)), (16.52)

where, by evaluating the pre-factor at kxy = 0, we have made use of the fact that
the strongest dependence on kxy occurs in the exponential factor. This approximation
allows us to perform the integral in Equation (16.26) analytically. We get for the tunnel
current density

Jt = 2qh̄ DS EFi

mi d ′
i
2

(mMηsi ) (mi kF M )

(mMηi0)
2 + (mi kF M )

2

(
1 + 2d ′

iηi0
)

exp
(−2d ′

iηi0
)
. (16.53)

The expression for the gate tunneling resistance (Equation (16.18)) becomes

rit = δEFi/q

δ Jt
= mi d ′

i
2

2q2h̄ DS

(mMηi0)
2 + (mi kF M )

2

(mMηsi ) (mi kF M )

exp
(
2d ′

iηi0
)

1 + 2d ′
iηi0

. (16.54)

The accuracy of this solution is limited to a large degree by how well the actual surface-
state potential is approximated by the (θ -dependent) delta-function. A more realistic
potential with a non-zero range ws/2 (Figure 16.6) would lead to a smaller ηsi than
predicted by Equation (16.51). This would reduce the wave-function tail outside the
attractive core of the defect potential, where the integral in Equation (16.31) is taken.
This would increase the tunneling resistance.

Freeman and Dahlke [29] developed a similar theory for tunneling through the
insulator between metal and surface states in an MOS structure. Theirs differs
∗ This approximation leads to minor differences compared to the more gradual θ dependence assumed in
[42].
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from the present analysis mainly in the quantum mechanical representation of the
surface state. Freeman and Dahlke treated the surface states as a 2DEG confined
in the interface plane by a one-dimensional delta potential. The effects of lateral
localization were accounted for by a tunneling capture cross-section σT introduced
phenomenologically, independent of the tunneling problem. In applying the theory to
problems of interest, a value for σT has to be chosen. In the theory developed in this
section, the wave-function parameters, which are the result of the microscopic model
for the surface state, lead directly to an analytical solution for the tunneling current.
There is no need for an independent cross-section. Nevertheless, capture cross-section
is a very useful quantity. Together with the energy level, it describes many of the
experimentally observed properties of a localized state. There is a large number of
published experimental cross-sections for bulk traps (e.g. [48]). By requiring that
the two theories give the same result, we have an opportunity to compare a simple
theoretical estimate of the tunneling capture cross-section with experimental bulk
values. This can give us a feeling for the accuracy to be expected from the model.
With some minor modifications to Freeman and Dahlke’s model, one can derive an
alternative expression for rit [42] which differs from Equation (16.54) only in an
additional factor 2π/(σT η

2
i0). The two expressions for rit , derived under otherwise

identical assumptions, allow us then to identify

σT = 2π

η2
i0

. (16.55)

This is the effective tunneling cross-section that corresponds to the model for the
surface state in Section 16.6.4. Equation (16.55) expresses the interesting point that the
tunneling cross-section depends on the barrier. For non-spherical (ηi0 > ηs) tunneling
cases, the cross-section can be significantly smaller than the cross-section σ (B)T for the
spherically symmetric bulk case (ηi0 = ηs). With GaAs parameters, for a bulk trap
located at 0.85 eV (≈ B0) below the conduction band we get σ (B)T = 1.0×10−13 cm2.
The experimental range for such traps is from about 10−14 to 10−11 cm2 [48].
Neglecting experimental errors, the wide range is due to the different, and basically
unknown, bulk impurity potentials. If one assumes that the uncertainty in surface-state
potential is equally large, one conservatively concludes that the predictions of rit in
the next section could have error bars of ±2 orders of magnitude.

16.7 Application to various Schottky-barrier models

We now apply the theory developed in Sections 16.5 and 16.6 by adapting the
parameters to represent alternative pictures of Schottky-barrier formation. The most
critical tunneling parameters describe the interfacial layer and its interface with the
semiconductor. These parameters are varied, as shown in Table 16.1, and explained in



551 16.7 Application to various Schottky-barrier models

Oxide IL

50 GHz

Interfacial layer thickness in GaAs monolayers

In
te

rf
ac

ia
l g

at
e 

re
si

st
an

ce
 (

Ω
 c

m
  )2

5 Å

Representative
experimental
range of  rgi

Vac.
IL

AUDM'*

MIGS*

*Semiconductor interfacial layer ( IL)

10 Å 15 Å 35 Å 50 Å

AUDM*

1e-13

1e-12

1e-11

1e-10

1e-09

1e-07

1e-08

1e-06

1e-05

0 5 10 15 20

Estimated stem resistance
for typical 0.1-µm T-gate

Fig. 16.8. Calculated interfacial gate resistance at DC (solid symbols) and 50 GHz (open symbols)
versus interfacial-layer (IL) thickness for the five cases defined in Table 16.1. (H. Rohdin, N. Moll,
A.M. Bratkovsky and C.-Y. Su, Physical Review B, Vol. 59, pp. 13 102–13 113, 1999.)

footnotes. The remaining parameters, those describing the metal and semiconductor,
are fixed as shown in the first footnote. The resulting interfacial gate resistance at DC
and at 50 GHz is shown in Figure 16.8.

Cowley–Sze’s 4–5 Å vacuum picture leads to the observed values for the minimum
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interfacial gate resistance, and the observed lack of dispersion. The sensitivity to
thickness is, however, particularly strong here because of the large intrinsic barrier
(the metal work function) and interfacial-layer effective mass (= the free electron
mass). The effect of including barrier lowering (and narrowing) is also particularly
large, because of the low dielectric constant. The strong exponential dependence on
interfacial-layer thickness is evident in Figure 16.8, and also in Figure 16.9 where we
let di and DS vary independently. Figure 16.9 shows rgi and rit versus surface-state
density for an interfacial-layer thickness range extended 1 Å above and below that
suggested by Cowley and Sze. In the 1013–1015 cm−2/eV DS range, which should
cover reasonable experimental conditions, rgi varies less than the underlying rit

because of Equation (16.22). In fact, rgi has a maximum at DS = εi/q2di before
it starts to approach zero as DS approaches zero. In this ideal limit, the FET-degrading
gate-resistance parameter rgi approaches zero, even as rit , for a finite di , approaches
infinity.

A moderately thick oxide can also lead to predictions consistent with experiments
as seen for the 10-Å case in Figure 16.8. Thicker oxides, however, quickly approach
the MOS case, where there is a very large (ideally infinite) tunneling resistance, which
does not degrade the FET performance since it is bypassed at very low frequencies.
The large low-frequency value (off-scale at 1.3 × 10−4 � cm2) and dispersion for the
15-Å case in Figure 16.8 are inconsistent with experimental observations on normal
FETs. However, the larger average and experimental spread in rgi sometimes seen
during process development [4] could well be due to an interfacial oxide and possibly
organic residues. A III–V surface can be sensitive to even a small controlled exposure
to oxygen [20], and real device wafers in a fabrication environment can get a significant
amount of uncontrolled exposure. Measures can be taken to minimize the detrimental
effect resulting from this, as discussed in Section 17.7. An effective cleanup dip just
prior to gate metal deposition, and a sintered Pt gate typically lead to rgi ∼ 10−7 � cm2

with little dispersion up to 50 GHz. The PtAs2–semiconductor interface resulting
from the sintering may be as close to an ideal intimate metal–semiconductor Schottky
contact as one can expect to get in a practical processing environment.

The MIGS case in Table 16.1 and Figure 16.8 represents the most ideal Schottky
barrier physically conceivable. In this case there is no physical tunneling barrier. If,
however, we still represent the situation with an interfacial layer, as was done in [13]
to estimate γ (Equation (16.10)), we can get an upper conceivable rgi limit. di/εi

was replaced by dT F/ε0 + dM I GS/εSC , where dT F (= 0.5 Å) is the Thomas–Fermi
metal screening length [40]. This results in γ = 0.13 for GaAs, which is in the upper
part of the experimental range. For our upper-limit tunneling calculation we choose
di = dT F + dM I GS and εi = εSC . The predicted value for rgi in Figure 16.8 is still
exceedingly small, ∼ 6 orders of magnitude lower than experimental observations, and
∼ 3 orders of magnitude smaller than the estimate for the stem resistance.

From the preceding results and discussion it appears that there remains, in SG-
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N. Moll, A.M. Bratkovsky and C.-Y. Su, Physical Review B, Vol. 59, pp. 13 102–13 113, 1999.)

BFETs produced in practical fabrication environments, even with sintered gates,
a significant interfacial tunneling barrier. The gate resistance is too large to be
reconciled with an ideal defect-free intimate metal–semiconductor contact, but it can
be accounted for by a thin oxide, or a vacuum interfacial layer. The oxide picture
is troublesome, however, in the context of sintered gates. The vacuum picture is
unsatisfactory in that it is physically somewhat unrealistic. There is, however, a
third alternative, denoted AUDM in Table 16.1 and Figure 16.8. Here, the barrier is
composed of metal in intimate contact with the semiconductor, like in the MIGS case,
but with defects in the semiconductor near (and not just at) the interface. This is an
important distinction, since such defects will act as terminal states for tunneling from
the metal, with a non-zero barrier in the semiconductor itself. The original importance
of the defects, and their location away from the surface, was that this picture explains
the experimentally observed insensitivity of the Schottky-barrier height on GaAs to
the choice of metal, i.e. the small γ . This was shown by van Schilfgaarde and
Newman [18], using a first-principles numerical model. They also showed [17, 18]
that the defect-free MIGS model cannot explain this important feature. This may be
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surprising considering the rather good prediction of γ based on the interfacial-layer
analysis above. However, other analyses have resulted in similar criticism of the MIGS
model [15, 16]. Given the intimate contact, it may well be that an interfacial-layer
representation fails in the MIGS case. The interfacial gate resistance would then
indeed be even lower than the 10−13 � cm2 in Figure 16.8.

The physical picture of [18] is based in spirit on the advanced unified defect model
[21], which is the reason AUDM is used to denote this case. A likely defect to be
involved in Schottky-barrier formation on GaAs, and the one used in [18], is the AsGa

anti-site, which is believed to be the same as the deep donor EL2. The Schottky-barrier
height and EL2 bulk binding energy are very similar. It is worth noting that the capture
cross-section of 10−13 cm2 that we effectively use (Equation (16.55)) is relatively close
to the experimental values of 10−14–10−12 cm2 for this level [48]. In [18], all the EL2
defects were located in a monolayer at various distances from the interface. It was
shown that, for the experimentally observed pinning, the defects need to be located
in the second monolayer from the surface, or deeper. In reality, the defects will be
spread over several monolayers. To account in the tunneling analysis for the spatial
distribution of the defect states, we generalize the dispersion analysis of Section 16.5
as illustrated in Figure 16.10. The normalized admittance, with tunneling to nM L
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layers, is given by the following set of expressions (Problem 16.3):

y(nM L ) =
(

1

jωcD
+ znM L

1 + qnM L

)−1

, (16.56a)

zk = r (k)i t + 1

jωc(k)S

, k = 1, 2, . . . , nM L (16.56b)

qk = pk

1 + pk−1

1 + qk−1

, q0 �= −1, (16.56c)

pk = jωcM L zk, p0 = 0, (16.56d)

where r (k)i t is the tunneling resistance to layer k, c(k)S = q2 D(k)S is the ‘surface’ state
capacitance associated with layer k, and cM L = εSC/dM L is the capacitance for a
semiconductor monolayer thickness dM L . In the present case we assume that all D(k)S
are equal, and are given by DS/nM L , where DS is determined from [18]. The earlier
Equation (16.20) for tunneling to one layer of states is recovered by setting nM L = 1
and cM L = ci . We ignore that the top capacitor in Figure 16.10 is somewhat larger
than the others because of the barrier narrowing (�di ≈ 0.3 Å ≈ 0.1 × dM L ). The
result for bulk-like defects spread over nM L monolayers, with nM L between 2 and 20,
is shown in Figure 16.8.

A variation on the AUDM is denoted AUDM′ in Table 16.1 and Figure 16.8. Instead
of using the theoretical DS from [18], we use the experimental γ . To determine
the experimentally based DS , we use the analytical connection [22] between γ and
a volume (bulk) defect density-of-states DV distributed over a thickness di in the
semiconductor. With DS = DV di , this connection is (Problem 16.4)

γ = 1

cosh


(q2 DSdi

εSC

)1/2


. (16.57)

This expression was derived in the context of the DIGS model. However, it is not
limited to a particular view of the microscopic origin of the defects. It is simply
the general bulk-defect analog of the surface-state case in Equation (16.10). It
is interesting how similar the results in Figure 16.8 are for the theoretically- and
experimentally-based DS . For both the AUDM and the AUDM′ cases, the predicted
interfacial gate resistance is quite close to the experimental values for defect depths of
15–20 monolayers. This is a quite reasonable finding. Based on a striking correlation
between the Fermi level pinning position at metal–semiconductor interfaces and in
irradiated bulk material, Walukiewicz [49] has developed a more detailed defect model
for Schottky-barrier formation than the ones above, which relies on amphoteric native
defects∗ in a surface layer of similar thickness.
∗ VGa and AsGa + VAs in a balance that depends on doping.
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It is worth reemphasizing that the curves of Figure 16.8 are subject to a variety of
uncertainties which may move the curves up or down by an order of magnitude. As
mentioned, an actual deep level may confine more of the wave-function to the attractive
core potential, leading to a larger value of rit . The effective cross-section σ (B)T is close
enough to experimental values for EL2 that this source of variation should not be
more than an order of magnitude. The dependence on DS is qualitatively similar to
that shown in Figure 16.9 for the Cowley–Sze vacuum picture. rgi peaks quite near
DS = 1014 cm−2/eV. An order-of-magnitude variation in rgi would require more than
an order of magnitude change in DS , and could only decrease rgi . The sensitivity to
a variation in the metal effective mass is also rather weak; in a typical case a factor
of 2 change from the nominal mM = 0.5m0 changes rgi only by 25%. However,
if the tunneling effective mass were larger or smaller than the original estimate of
0.031m0 the rgi curve would move up or down considerably. Figure 16.11 shows
the effect for the case of a semiconductor barrier with bulk-like defects spread over
the first 10 monolayers (28 Å). A moderate increase of mi to 0.06m0 increases the
predicted rgi from 10−9 � cm2 to 10−8 � cm2, with negligible increase in dispersion.
In addition to explaining Fermi level pinning during Schottky-barrier formation, the
defect model can thus get quite close to predicting the experimentally observed
interfacial gate resistance. Deep penetration of defects leads to larger dispersion, as
seen in Figure 16.8. This may be one reason that one can occasionally observe FETs
with large rgi and dispersion.

16.8 Summary and modifications to the equivalent circuit and
Y -parameters

Sections 16.3–16.7 have covered in some depth a generally overlooked component in
the gate resistance Rg of SBGFETs. We found that the always ‘larger-than-expected’
Rg is caused by a component Rgi which scales inversely with gate width. We
interpret Rgi as a metal–semiconductor interfacial gate resistance. The dominance
of Rgi profoundly affects model scaling and device optimization. For GaAs- and InP-
based SBGFETs there appears to exist a smallest practically achievable normalized
interfacial gate resistance rgi on the order of 10−7 � cm2. Using the Cowley–Sze
representation of a Schottky barrier, we showed that this lower practical bound is
conceptually and quantitatively well explained by electron tunneling between metal
and semiconductor surface states. Physical models for Schottky-barrier formation
involving near-surface crystal imperfections are also quite consistent with the experi-
mental rgi on practical III–V FETs. The dispersion in the measured rgi is insignificant
up to the maximum frequencies used in typical measurements (26–50 GHz). In fact,
it appears to be lower than predicted in Sections 16.5 and 16.7. Realizing that several
effects could not be included in the analytical treatment, it then seems prudent to
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Fig. 16.11. Calculated interfacial gate resistance at DC and 50 GHz versus tunneling effective mass
mi for bulk-like defects distributed over ten monolayers. (H. Rohdin, N. Moll, A.M. Bratkovsky
and C.-Y. Su, Physical Review B, Vol. 59, pp. 13 102–13 113, 1999.)

neglect dispersion altogether, and thus to identify Rg in Figure 15.16 with the simple
resistance Rgi . In particular, one of the effects neglected is tunneling or hopping [30]
between defect states. Another is the possibility of a resistive interfacial layer, in
addition to the defects in the semiconductor. This could be a very thin oxide or some
other residue, a layer with intermixing of atoms from the metal and semiconductor,
or the surface reconstruction layer proposed by Freeouf et al. [27]. These neglected
effects could well make the interfacial gate resistance more DC-like, with little
dispersion. The similar rgi s extracted with the two different methods in Figure 16.2
would suggest such a picture, since the data in Figure 16.2(a) were extracted under
near-DC conditions in heavy forward bias, while the data in Figure 16.2(b) were
extracted at high frequency in a bias regime where the DC conduction is negligible.
Electron conduction current across the Schottky barrier thus appears to experience
a resistance of similar magnitude to that observed at microwave frequencies. This
supports the standard placement of the two diode conductances ggs and ggd ‘inside’ Rg

(= Rgi ) in Figure 15.16(a). The apparent similarity between the DC and microwave
interfacial gate resistances is not at all obvious. Prediction of the former would be
significantly more complicated than our analysis at microwave frequencies, and maybe
not as worthwhile, considering the main applications for these FETs. It would appear
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Fig. 16.12. Equivalent circuit for the distributed FET. The admittance (rectangles) and
transconductance elements have been expressed in the Y parameters calculated with
Equation (15.66), normalized to unit gate width.

that the gate resistance is best extracted at the high frequencies intended for the device
operation.

The reason why we have not yet included the metallization access resistance Rga

in Rg is that the distributing effect of rga should be included more carefully [1] than
suggested by Equation (16.1). We have to consider small width-segments (dz) of the
FET, each with the equivalent circuit in Figure 15.16. The gate voltage is fed laterally
along the resistive gate finger (z direction). The equivalent circuit of this situation is
shown in Figure 16.12, where two things should be noted. First, as discussed in the
introductory part of this section, we neglect distributed resistance associated with the
source and drain. Second, the lower case used for the Y parameters indicates that these
are the values derived from Equation (15.66), but then normalized to unit gate width.
This means, for instance, that Rg in Equation (15.66b) is not Rgi , but rgi/Lg . The full
extrinsic Y parameters for the distributed FET (allowing us to finally drop the ′ in the
superscript) are (Problem 16.5(a)):

Y (x)i j = Y (x
′)

i j Fga, i j �= 22, (16.58a)

Y (x)22 = Y (x
′)

22

[
1 − Y (x

′)
12 Y (x

′)
21

Y (x
′)

11 Y (x
′)

22

(
1 − Fga

)]
, (16.58b)

where Y (x
′)

i j = y(x
′)

i j Wg , i.e. the Y -parameters for an FET of width Wg with rga = 0,
and

Fga =
tanh

([
Y (x

′)
11

(
rgaWg/N 2

f

)]1/2)
[
Y (x

′)
11

(
rgaWg/N 2

f

)]1/2 (16.58c)

is a factor containing all the distributed effects due to rgaWg > 0.
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Fig. 16.13. Lumped equivalent circuit for the full distributed FET. The elements are given by
Equations (16.59)–(16.61).

Alternatively, the effect of rga can be represented by a gate impedance Zga in series

with the input to the two-port described by Y (x
′)

i j , i.e the device with rga = 0. It is easy
to show (Problem 16.5(b), (c)) that Zga is given by

Zga = 1

Y (x
′)

11

(
1

Fga
− 1

)
−−−−−−−−→

rga Wg→0

rgaWg

3N 2
f

. (16.59)

As indicated, this has the limiting value given without a derivation in Equation (16.1a).
We can represent the distributed FET with the lumped equivalent circuit in Fig-
ure 16.13. As in Figure 15.16, the ‘almost-intrinsic’ Y parameters in Equation (15.65)
have been represented by the three admittances:

Ygs = Y (i
′)

11 + Y (i
′)

12 , (16.60a)

Yf = −Y (i
′)

12 , (16.60b)

Yds = Y (i
′)

22 + Y (i
′)

12 (16.60c)

and the transadmittance

Ym = Y (i
′)

21 − Y (i
′)

12 , (16.60d)

where we have now dropped the somewhat cumbersome superscript. The parasitic
elements not contained in Equation (15.65) have been lumped into the three series
impedances

Zg = Rgi + Zga + jωLgx , (16.61a)

Zs = Rs + jωLsx (16.61b)
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and

Zd = Rd + jωLdx , (16.61c)

where we allow for fixed (Wg-independent) series inductances external to the device.
These would typically come about from bonding wires. Representing these with
lumped inductors is only valid for sufficiently low frequencies. At higher frequencies,
or if the additional series impedances are of a different nature, the jωL’s have to be
replaced with the appropriate frequency-dependent impedances.

Given that Zga (Equation (16.59) is not independent of the other components in
the equivalent circuit, the lumped equivalent circuit in Figure 16.13 is not helpful in
predicting the Y parameters. One still has to use Equation (16.58), where a source
(or drain) inductance is easily included by simply replacing Rs with Rs + jωLsx (or
Rd with Rd + jωLdx ). A gate inductance is accounted for by doing another Fga-like
correction (Equations (16.58a), (16.58b)), this time to Y (x)i j , and using the correction
factor

Fgx = 1

1 + jωLgx Y (x)11

. (16.62)

The expression for Fgx becomes obvious by inspecting Equation (16.59). If we wish
to account for the skin effect (Equation (16.2)) and an inductance lga per unit length
of the gate finger, we can replace rga in Equation (16.58c) with r (ac)

ga + jωlga . The
inductance can be estimated as

lga = εgaWg

c2
(
Cgs,gc + Cgd,sat + C ( f )

gs + C ( f )
gd

) , (16.63)

where c is the speed of light in vacuum, and εga is an average of the relative
dielectric constants of the semiconductor and passivation. The main usefulness of
the lumped equivalent circuit in Figure 16.13 is in noise calculations, as we will see in
Section 17.6.

One very important III–V FET application is power amplifiers in wireless commu-
nication. Designing and optimizing for large microwave or millimeter-wave output
power with good efficiency is a bigger challenge than suggested by the cursory
discussion in Section 14.6.5∗. The total gate width can be many millimeters, and
the gate then has to be divided up into many parallel fingers. The input signal has to
be distributed to these in a way that does not lead to unacceptable phase difference
between fingers near the center of the device, and fingers furthest away at the edges.
Devices extending less than about 1/16 of a wavelength can be modeled well with
lumped elements (e.g. [50]). For large-power FETs, however, electromagnetic wave

∗ For long battery life, hand-held single-supply applications require enhancement-mode devices (VT > 0)

with very low drain-current leakage in the off-state (VG = 0). The concurrent requirements of high I (max)
D

and g(max)
m , and the finite  B , present the device and process designers with their own set of challenges.
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propagation delays† must be properly accounted for with distributed elements [50].
With aggressive shrinking of the device, the drain resistance and inductance may have
to be accounted for in the same distributed way as the gate access resistance. This
leads to more complicated expressions than Equation (16.58) which may also include
the mutual inductance between gate and drain [51]. For power FETs the ground
is typically ideally distributed on the back-side of the wafer, and one can account
for the inductance and resistance of source ground vias with lumped elements (cf.
Equation (16.61b)).

16.9 Conclusion

This chapter has covered in great detail the last building block in our analytical
model for the high-frequency performance of MODFETs. The analysis of the gate
resistance has brought us to physical depths not normally reached with analytical
device modeling. In particular, we have had to review and evaluate, from a practical
device standpoint, various models of Schottky-barrier formation, a continuing topic
of basic research since the 1930s. In Section 16.8 we put everything together for a
physics-based small-signal model applicable to real extrinsic FETs. We are thus ready
for a real optimization example. This is one of the topics of the next chapter.
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16.11 Problems

16.1 Derive the Equations (16.22) and (16.23) for the low-frequency limit of the components in the
standard series RC equivalent circuit for the gate-to-channel admittance.

16.2 By properly matching the sinusoidal and exponential parts of the metal wave-functions and
their derivatives (see text), derive the normalized wave-function tail in the interfacial layer
(Equation 16.43). Hints: Use WKB wave-functions (see any textbook on quantum mechanics)
for the z-dimension, and the factor A−1/2

xy exp(ikxy · rxy) for the unconfined transverse
component. (Convince yourself that this factor is normalized.) Allow L M to be large enough
for the interior of the metal to totally dominate the normalization integral in z.

16.3 Derive Equation (16.56) for the admittance resulting from direct tunneling between the gate
and defect states located in equidistant layers in the underlying semiconductor. Hints: Use
the equivalent circuit part of Figure 16.10 and work downward to the next monolayer. Each
time check what the resulting admittance would be if this were the last monolayer containing
defects. Take note of the recursive pattern developing, and generalize to an arbitrary number
of layers.

16.4 Consider a metal in intimate contact with a semiconductor that has acceptor-like bulk defects
distributed evenly to a depth di below the interface. The position-dependent charge density
associated with the defects is −q DV EF0(z) (0 < z < di ), where DV is the defect density
(units = cm−3/eV), and EF0 is the energy between the Fermi level and the neutral level
([12, 28]; Section 16.5). Show that the Schottky-barrier height is given by Equation (16.9),
and that its sensitivity γ to the metal work function is given by Equation (16.57). Hints:
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Solve Poisson’s equation, neglecting the field beyond the interfacial layer. A review of the
Cowley–Sze analysis for the case of semiconductor surface states separated from the metal by
a defect-free insulator [12, 28] might be helpful.

16.5 (a) With the aid of Figure 16.12, derive the full extrinsic Y parameters in Equation (16.58).

(b) Show that the alternative representation using an external element Zga (Equation (16.59))
produces the same Y parameters.

(c) What is the physical reason for the factor 1/3 in the low-frequency limit (Equa-
tion (16.59))?



17 MODFET high-frequency performance

Few things are harder to put up with than the annoyance of a good example.

MARK TWAIN

17.1 Introduction

As one reason for delving into our rather deep analysis of the device, we stated in
the introduction of Chapter 14 that we, as device physicists, process engineers or
circuit designers, would like to be in the position to answer the question ‘Is what we’re
producing what it could or should be?’ In this chapter we put everything together,
so that we can finally predict various important figures-of-merit, and answer that
question. The measurements that we compare our AC predictions with will be done at
high frequencies, and we start with a brief review of some practical basics in this area.
Since the question posed above implies that we are also involved or at least interested
in fabricating devices and circuits, we will towards the end take a look at some of
the issues involved in this the most essential task. Finally, we will briefly outline the
process of reverse modeling which can be useful if the answer to the question above is
‘no’.

17.2 Some high-frequency measurement issues

The FET’s frequency-dependent performance is most naturally described by the small-
signal Y parameters, which relate the AC currents resulting from applied AC voltages:

ig = Y11vg + Y12vd (17.1a)

id = Y21vg + Y22vd . (17.1b)

The Y parameters, however, are not directly measurable at the high frequencies we
are interested in. The reason is the wave-nature of the voltages and currents along the
transmission-line cables connecting the network analyzer (NWA) and the device under

567
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Fig. 17.1. Overview of a network analyzer (NWA) connected to a device under test (DUT).

test (DUT), as depicted in Figure 17.1. We are interested in the Y parameters at the
‘planes’ 1 and 2 that define the extent of the DUT, but can only do the measurements
at ports 1 and 2 of the NWA. In between, the magnitude and phase of the voltage and
current waves vary. By connecting and measuring known passive structures in place of
the DUT, corrections for the phase shift and loss of the cables can be made, effectively
moving the measurement ports to coincide with the device planes. This is done in the
calibration menu on the front panel of the NWA. There are three standard calibration
structures for each port: a short, an open and a resistive load. There is also a ‘thru’
line connecting the two ports. The user needs in effect to supply numbers describing
the calibration structures, primarily the capacitance of the open, the inductance of the
short, the resistance of the load and the delay of the thru. The calibration method
requiring a short, an open, a load and a thru is referred to as the SOLT method. Other
methods are available. The line-reflect-match (LRM) method has the advantage of not
requiring the short and open which are more difficult to model at high frequencies than
transmission lines and loads [1].

Given the distributed nature of the measurement system and the wave nature of the
voltages and currents, the NWA reports the ‘scattering’ of power waves [2] by the
DUT. The incoming power waves to the two ports of the DUT, launched from either
of the two ports of the NWA, are denoted a1 and a2, respectively. The power waves
emanating from the device, either from reflection or amplification of a1 or a2, are
denoted b1 and b2, respectively. The power waves are related to the forward (away
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from the NWA; +) and backward (toward the NWA; −) traveling voltage waves, and
the characteristic impedance Z0 of the cables (essentially always 50 �), by

aj =
v
(+)
j

Z1/2
0

(17.2a)

and

bj =
v
(−)
j

Z1/2
0

, j = 1, 2. (17.2b)

These are complex quantities, generally expressed by magnitude and phase. The
forward and backward traveling current waves are related to the voltage waves through
Z0:

i (+/−)j =
v
(+/−)
j

Z0
. (17.3)

The total voltage at a point along the transmission line is given by the sum of the
forward and backward traveling waves:

vj = v(+)j + v(−)j ; (17.4)

while the net forward traveling current is given by the difference:

i j = i (+)j − i (−)j . (17.5)

The forward and backward traveling powers are given by

p(+)j = v(+)j

(
i (+)j

)∗ = ∣∣aj
∣∣2 (17.6a)

and

p(−)j = v(−)j

(
i (−)j

)∗ = ∣∣bj
∣∣2 , (17.6b)

respectively, which is the reason for the naming and definition of ai and bi . For small
signals, the power waves are linearly related by the scattering (or S) parameters:

b1 = S11a1 + S12a2, (17.7a)

b2 = S21a1 + S22a2. (17.7b)

It is these S parameters that are displayed and reported by the NWA. For passive
(non-amplifying) devices the magnitudes of the S parameters are less than 1, i.e. they
fall inside the unit circle in the complex plane. For an amplifying FET, S21 will fall
outside. Before a calibration and measurement is started it is advisable to study the
(uncorrected) frequency dependence of |S11| and |S22| without a DUT. This could
reveal a loose connection, while a smooth gradual drop with frequency indicates that
there are no major discontinuities in the 50-� environment.
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Fig. 17.2. Typical layout of a discrete probable two-finger microwave FET, with fixed pad
capacitances indicated.

Equations (17.1)–(17.5) and (17.7) yield the Y parameters in terms of the measured
S parameters (Problem 17.1):

Y11 = 1

Z0

(1 − S11) (1 + S22)+ S12S21

(1 + S11) (1 + S22)− S12S21
, (17.8a)

Y12 = 1

Z0

−2S12

(1 + S11) (1 + S22)− S12S21
, (17.8b)

Y21 = 1

Z0

−2S21

(1 + S11) (1 + S22)− S12S21
, (17.8c)

Y22 = 1

Z0

(1 + S11) (1 − S22)+ S12S21

(1 + S11) (1 + S22)− S12S21
. (17.8d)

A typical layout for on-wafer testing is shown in Figure 17.2 for a two-finger FET.
The pad geometries to the left of L and to the right of R are short segments of an
on-wafer 50-� coplanar transmission line, long enough to be contacted with coplanar
probes connected by cables to the measurement system. All of these components are
designed for Z0 = 50 � to keep reflections outside the device itself to a minimum.
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Fig. 17.3. Calibration patterns designed to make the S-parameters measured on the FET in
Figure 17.2 correspond closely to the active device core. Capacitances and inductances external to
the device will be ‘taken out’ by the calibration. The primary ‘cal kit’ parameters should be set as
indicated. Indicated in the circles (radius = 1) are the locations in the complex plane of the S
parameters when measured on the calibration standards after the calibration is completed.

The loss, phase-shift and reflections in the cables and probes are accounted for by
the calibration. Typical on-wafer calibration patterns are shown in Figure 17.3. As
illustrated in Figure 17.2, efforts are generally made to keep the 50-� environment as
close to the device as possible. The approach is to taper gradually the metal feeds
between L and L ′, and between R′ and R, keeping the ratio S/W constant. For
uniform (non-tapered) coplanar transmission lines, S/W determines the characteristic
impedance [3], assuming: (1) negligible thickness of the metal, (2) thick substrate and
(3) wide ground planes. The tapering tends to preserve the transmission-line nature
of the pad layout up to quite close to the device. The deviation from an ideal uniform
transmission line can be accounted for by laying out the calibration patterns similarly
(Figure 17.3). On the gate side, in particular, there will be a transition region (L ′–L ′′)
that can be described and modeled rather well by fixed (Wg-independent) lumped
capacitances, denoted C (2)gs,pad and C (2)gd,pad for the two-finger case in Figure 17.3. It
is reasonable to assume that layouts with more than two (but still an even number of)
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fingers are laid out so that

C
(Ng f )

gx,pad = Ng f

2
C (2)gx,pad, x = s, d; Ng f = 4, 6, 8, . . . . (17.9)

There is also a small additional gate inductance associated with L ′–L ′′. A major
reason for S-parameter measurement is to determine a model for the core of the device
between L ′′ and R′ in Figure 17.2. This is the part for which we have scaling rules
for Wg and Ng f . Although the measurement is small-signal, a large-signal table-based
model for computer-aided circuit design can be generated by doing the small-signal
measurements in a wide biasing regime, including deep pinch-off where the currents
and intrinsic semiconductor mobile charge are negligible. The Y parameters can then
be integrated in bias space to generate bias-dependent total currents and charges for the
drain and gate (e.g. [4]). Device engineers are primarily interested in the small-signal
characteristics of the core of the device, near optimum channel modulation. The SOLT
calibration patterns in Figure 17.3, with the main cal kit parameters indicated, are
designed for this purpose, since they in effect move the measurement right up to the
L ′′- and R′-planes. With the LRM calibration method, the same can be accomplished
after calibration, by contacting the open and adjusting the port extensions on the NWA
so that, as the frequency is swept, the displayed traces of S11 and S22 fall as close
as possible to a dot at (1, 0). Circuit designers cannot avoid the problem of fixed
parasitics by simply calibrating them out. Instead, an important task is to determine
them. One practical way is to start with a calibration with well-known standards, then
measure the S parameters of device-like layout such as those in Figure 17.3, and finally
back out fixed capacitances and inductances associated with the device layout. Another
approach is to calculate numerically the scattering matrix associated with segments
such as L–L ′′ and R′–R in Figure 17.2, and then include the results in the circuit
design. Such problems are three-dimensional, but linear, i.e. the result is independent
of the voltages that will appear in the segments. Commercial software packages are
available for this task. For very high frequencies, well into the millimeter-wave regime,
neither of these approaches may be accurate enough, and a full three-dimensional
numerical solution of the entire circuit, including the active devices, may be warranted
[5].

17.3 Recap of procedure and parameters for calculating MODFET Y
parameters

Chapters 15 and 16 went into some depth to develop physically based expressions for
Y11, Y12, Y21 and Y22. The intrinsic Y parameters are given by Equation (15.63). These
include the important effects of delays introduced by the velocity-saturated region. The
delays (Equations (15.56)–(15.58), (15.61) and (15.62)), as well as the three intrinsic
capacitances (Equation (15.30)) and the output conductance (Equation (15.54)), can
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be calculated semianalytically using the conformal-mapping recipe in Table 15.1.
The generally small gradual-channel time constant is given by Equations (15.21)
and (15.22), with the gate length increased by the source-side fringing modulation
(Equation (15.31)). The DC transconductance is given by Equation (14.54). In
sufficiently weak saturation, the time constants for the drain current will be those of
the gradual channel, although, as discussed in Chapter 15, very quickly the saturated
region will start to dominate, as assumed in Equations (15.63c) and (15.63d)). For a
smooth transition we make the substitution

τ
(x)
d,sat →

[(
τ
(x)
d,gc

)2 +
(
τ
(x)
d,sat

)2
]1/2

, x = s, T L . (17.10)

in these equations. Equation (15.65) introduced parasitic gate conductances and fringe
capacitance corrections, proportional to Wg , into the Y parameters. The parasitic
source and drain resistances (Section 14.6.2), as well as the interfacial part of the gate
resistance (Sections 16.2, 16.3 and 16.8), scale inversely with gate width Wg , and are
accounted for in Equation (15.66). We included in Equations (16.58) the effect of the
gate metallization resistance, which is to a small degree increased by the skin effect
(Equation (16.2)), and gate metallization inductance (Equation (16.63)).

Table 17.1 lists in an organized way all the parameters that go into predicting the
small-signal frequency performance of the MODFET. There are references to where
the parameters are introduced and discussed in detail. In the following we will vary
some of the parameters and study the effect on performance. In particular, we will
optimize the device with respect to gate length and width, and study the effect of the
interfacial gate resistance and the extent of the velocity-saturated region. Most of the
parameters will be left at their default values. We will assume the semiconductor
material parameters in Table 17.1, which are representative for AlInAs/GaInAs
MODFETs. Except for the gate length, and a brief look at the effect of reducing the
gate–channel spacing significantly (2×), we will leave the cross-sectional geometry
at its default, which is representative for a high-frequency device with acceptable
gate leakage. We have reduced the default gate–channel spacing by 20% compared
to Chapter 15, since we will consider very short gates, and would like to keep the
aspect ratio Lg/dgc reasonably large. dgc and �Ld will affect �Cgs as shown in

Figure 17.4. We have left the parasitic gate capacitances C ( f )
gs and C ( f )

gd at zero
since the values for �Cgs and Cgd,sat (Figure 15.6) are quite realistic (i.e. consistent
with measurement) by themselves. We allow for a small fixed (i.e. Wg-independent)

parasitic gate–source and gate–drain capacitances C
(Ng f )
gs and C

(Ng f )

gd . The default
values in Table 17.1 are zero, however, indicating that in most cases we assume that
they were calibrated out as discussed above. We do not concern ourselves with a
parasitic drain-source capacitance, either a fixed component or one proportional to
Wg , since this will not affect either the current or power gains of primary interest to
us. The parasitic impedances in Table 17.1 are typical, based on measurements and
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Table 17.1. Parameters determining the MODFET high-frequency performance. Default values are for a
typical and/or optimized InP-based device. No tweaking of external impedances (Lgx = Ldx = Lsx = 0;
Equations (16.61) and (16.62)).

Type Parameter Default value Ref.

Semiconductor (Average) relative dielectric ε = 12.7ε0 Equations (15.2)
material constant and (14.54)

Effective saturation velocity vsat = 2.8 × 107 cm/s Equation (14.54)
Full channel sheet resistance Rsq = 200 �/sq. Equation (16.3)
Characteristic length in µ(Lg) Lµ = 167 nm Equation (14.17)

Cross- Gate–channel spacing dgc = 200 Å Equations (15.2)
sectional and (14.54)
two- Gate length Lg = 100 nm Equation (15.1)
dimensional Source-side extent of lateral recess Lus = 100 nm Equation (15.54)
geometry Gate–source spacing Lgs = 1 µm Figure 14.1
(Figure 14.1) Effective length of drain for Cgd �Ld = 0.2 µm Section 15.3

Source-side intrinsic fringing �Cgs = 160 fF/mm Equations (15.31),
capacitance Figure 15.6

Layout Total gate width Wg = 50 µm Equations (16.7), (16.58),
geometry (16.59)

Number of parallel gate fingers Ng f = 2 Equations (16.7), (16.58)

Parasitic Gate–source parasitic capacitance C( f )
gs = 0 fF/mm Equation (15.65)

gate correction

admittances Gate–drain parasitic capacitance C( f )
gd = 0 fF/mm Equation (15.65)

(∝ Wg) correction
Gate–source parasitic conductance ggs = 100 µS/mm Equation (15.65)
Gate–drain parasitic conductance ggd = 50 µS/mm Equation (15.65)

Parasitic Source resistance (∝ W−1
g ) Rs = 0.35 �mm Equations (14.27)–(14.29)

impedances Drain resistance (∝ W−1
g ) Rd = 0.40 �mm Equations (14.27)–(14.29)

Interfacial gate resistance (∝ W−1
g ) rgi = 3 × 10−7 � cm2 Sections 16.2, 16.3, 16.8,

Equations (16.5), (16.7)
Gate metallization resistance (∝ Wg) rga = 100 �/mm Equations (16.1), (16.7),

(16.58), (16.59)
Effective dielectric constant for the εga = 9ε0 Equation (16.63)
inductance of the gate metallization
Geometric factor in the expression βse = 3.5 Equation (16.2)
for the skin effect

Pad Fixed gate–source capacitance for a C(2)gs,pad = 0 fF Section 17.2

parasitics two-finger FET Figure 17.2

(Wg Fixed gate–drain C(2)gd,pad = 0 fF Section 17.2

independent) capacitance for a two-finger FET Figure 17.2
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Table 17.1. Continued.

Type Parameter Default value Ref.

Bias Drain current normalized to maximum ID/I (max)
D = 0.5 Equation (16.4)

dependent channel current (set by VG )
Extent of velocity saturation external �Lx = 400 Å Figure 14.1
to gate (determined by VD and VG ) Equation (15.54)
Ratio of extents of external and �Lx/�Li = 1.5 Figure 14.1
internal velocity saturation Equation (15.54)
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Fig. 17.4. Source-side fringing capacitance versus gate-to-channel distance with �Ld as a
parameter. �Cgs is proportional to ε. Here, ε = 12.7ε0.

calculations. The parasitic gate conductances ggs and gds can vary significantly with
process and bias. Unless they are abnormally large, ggs and gds will not affect the
performance at high frequencies. The extents �Li and �Lx of the velocity-saturated
regions can be calculated with the DC model in Chapter 14, but here we simply assume
that �Lx = 1.5�Li , as we did in Chapter 15.
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17.4 Current gain, optimum power gain and cut-off frequencies

The most widely used measures of performance for a high-frequency device are the
cut-off frequencies of various gains; i.e. the frequencies where these gains are unity.
The cut-off frequencies are usually significantly larger than can be measured, and
extrapolation has to be employed. This has to be done prudently, in order not to
misrepresent the actual performance. The frequency dependences of the three most
common gains are shown in Figure 17.5 for the default parameters in Table 17.1. The
most basic of the gains, involving no matching circuitry at the input or output of the
device, is the current gain with the output short-circuited∗:

Gi ≡
∣∣∣∣ id

ig

∣∣∣∣
2

vd=0
=
∣∣∣∣Y21

Y11

∣∣∣∣
2

. (17.11)

With a normal device and a good calibration, the current gain follows very closely
a −20 dB/decade slope up to very high (and usually untestable) frequencies. This
is illustrated in Figure 17.5(a). Considering the increased difficulty of getting and
maintaining a good calibration at the highest test frequencies, it has become the rule [6]
among device and process researchers to estimate the extrinsic cut-off frequency f (x)T ,
by extrapolating Gi from low-to-intermediate frequencies, using a −20 dB/decade
slope. The actual cut-off frequency is larger, but cannot be reliably determined for
cutting-edge devices. f (x)T is important to a device/process engineer, particularly early
in the development, since it indicates an upper frequency of potential transistor opera-
tion. This is because Gi of the active device core (Figure 17.2) is not severely degraded
by the source and drain resistances, and not at all by the gate resistance. Although gate
fringe capacitances will degrade f (x)T , it is a rather good measure of the intrinsic device
speed, and thus the potential of the technology. The reasons for this become clear as
we use the Taylor series expansion of the extrinsic Y parameters in Equations (15.68)–
(15.70) to find the proper −20-dB/decade-based expression for f (x)T [7]:

f (x)T = g(i)m0

2π
(

Cgs + Cgd +
{
(Rs + Rd)

[
g(i)ds0

(
Cgs + Cgd

)+ g(i)m0Cgd

]}) . (17.12)

Cgs + Cgd is the total gate capacitance given by Equations (15.64a) and (15.64b).
Equations (15.70h), (15.70b), (15.68b) and (15.69b) were used to arrive at Equa-
tion (17.12). The factor F0 (Equation (15.69e)) initially appears in both numerator

∗ In this section we drop the superscript identifying parameters as extrinsic (x) or intrinsic (i), except for
the transconductance, output conductance and current-gain cut-off frequency where there is often
confusion on this issue. Without (x) or (i), the parameter is understood to be extrinsic, i.e. it includes all
parasitic access resistances, fringe capacitances and distributed effects. We also drop the sat subscript for
the transconductance and output conductance, since it is understood that we are interested only in the case
where the device is velocity-saturated. For the capacitances, we must keep the subscripts to avoid
confusing, say, Cgs,gc with the total gate–source capacitance Cgs (Equation (15.64a)).
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Fig. 17.5. (a) Current gain and (b) power gain versus frequency for the default MODFET (Table
17.1).
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and denominator of fT x . Despite generally being significantly less than unity (∼ 0.66
for the default FET), and thus significantly reducing the extrinsic transconductance
(Equation (15.70h)), F0 has no direct effect on f (x)T . However, f (x)T is still reduced
below its intrinsic value

f (i)T = g(i)m0

2π
(
Cgs + Cgd

) , (17.13)

by the additional capacitive term {· · ·} in the denominator of Equation (17.12). Like
F0, this is introduced by the presence of source and drain resistances. However, the
two terms in g(i)m0Cgd +g(i)ds0

(
Cgs + Cgd

)
(= D1; Equation (15.69b)) are each products

with one rather small component (Cgd and g(i)ds0, respectively). The result of this, and

the canceling of F0, is that f (x)T is less degraded by the source and drain resistances

than g(x)m0 is.

Once sufficiently high f (x)T has been demonstrated, and backend processes have
been developed, the device can become attractive for MMIC circuit application,
provided its power gain, noise figure (Section 17.6) and reliable output power
(Sections 14.6.5 and 14.7) are adequate. The small-signal power gain can be optimized
at a particular frequency with the right feedback and input/output matching networks,
which generally involve segments of coplanar or microstrip transmission lines [8]. For
a device embedded in a lossless network N (i.e. no resistive components) Mason [9]
showed that the quantity

Gu = |Y21 − Y12|2
4 [Re(Y11)Re(Y22)− Re(Y12)Re(Y21)]

(17.14)

(U in Section 11.1.3) is independent of N . This includes the situation in Figure 17.2,
i.e. the device by itself, in which case N is the null network. Figure 17.5(b) includes
Gu( f ) using the default device parameters in Table 17.1. For any fixed frequency
of interest, one can design N such that the resulting embedded device is unilateral
(Y12 = 0), and input and output resistances are positive (⇒ Re(Y11), Re(Y22) > 0).
Mason identified Gu as the available power gain for this situation. As a result, Gu is
referred to as Mason’s unilateral power gain. Parasitic capacitors between extrinsic
nodes of the device (i.e. ‘outside’ the parasitic gate, drain and source resistances in
Figure 15.16), do not degrade Gu . The reason is that the parasitic admittance of
such a capacitance can be exactly canceled by a parallel lossless inductor, at the fixed
frequency of interest. The fixed pad capacitances in Table 17.1 and Figure 17.2 are
of this nature. If not calibrated out, however, they would degrade Gi . As mentioned
in Section 17.3, we do not consider a fixed drain-source pad capacitance, since this
would degrade neither Gu nor Gi .

The cut-off frequency of Gu is most often referred to as fmax (Section 11.1.3).
This quantity, almost exclusively determined experimentally by extrapolation at
−20 dB/decade, is a frequently used figure-of-merit, for several reasons. One is that



579 17.4 Current gain, optimum power gain and cut-off frequencies

Gu is defined by Equation (17.14) for all frequencies (like Gi ), including typical test
frequencies. Except for situations where Gu exhibits resonances [10, 11], this eases the
task of extrapolation for the tester. For the circuit designer, Gu and fmax are attractive
since they indicate the ultimate gain and maximum possible frequency of operation to
expect from the device in a well-designed circuit. For the device/process engineer fmax

is important since it indicates how well parasitics are kept under control. Power gain
is more sensitive to feedback capacitance, output conductance and gate leakage than
the current gain. In particular, power gain is, unlike current gain, degraded by the gate
resistance Rg . At low frequencies Gu is limited by ggs and ggd (Figure 17.5(b))∗. For
a well-designed device with low parasitics, the extrapolated fmax can be significantly
larger than f (x)T . As with f (x)T (Equation (17.12)) we can get an explicit analytical
expression for fmax extrapolated at −20 dB/decade:

fmax = g(x)m0

4π
(

g(x)m0 B(x
′)

12 + g(x)ds0 B(x
′)

11

)1/2
. (17.15)

The four quantities in this expression are given by Equations (15.67g) and (15.68)–
(15.70), with Rg = Rga + Rgi (Equations (16.1) and (16.5)). Unlike f (x)T the
expression for the extrapolated fmax does not collapse into an expression in terms
of intrinsic parameters and parasitic elements that would fit on one line. Note
in Figure 17.5 that Equation (17.12) conservatively underestimates the generally
unmeasurable actual f (x)T , while Equation (17.15) significantly overestimates the
actual fmax.

It is important to realize two things about Gu . First, it is a narrow-band concept,
since, strictly speaking, the lossless network N works as intended only at the fixed
frequency it was designed for. Second, as pointed out by Mason, Gu is not necessarily
the largest gain obtainable from the device. A lossy network, as would typically be
involved for conjugate match [8], can give larger gain. A gain based on simultaneous
conjugate match of input and output of the device was introduced by Rollett [12]. This
becomes the maximum available gain

Gma =
∣∣∣∣Y21

Y12

∣∣∣∣ [k − (k2 − 1)1/2
]

(17.16a)

(M AG in Section 11.1.2), where k is the ‘stability factor’

k = 2 Re(Y11)Re(Y22)− Re(Y12Y21)

|Y12Y21| . (17.16b)

For k > 1, which occurs for sufficiently large frequencies (> 100 GHz for 0.1-µm InP-
type MODFETs), the FET is unconditionally stable, i.e. it will not oscillate with any
passive loads. For these high frequencies, Equation (17.16) is valid for the maximum
available gain. For most applications (< 100 GHz) the device is potentially unstable.
∗ So is Gi , but the effect, barely noticeable in Figure 17.5(a), sets in at much lower frequencies.
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It can be stabilized by input and/or output shunt resistors [13] without affecting Y21 or
Y12. Thus, for k ≤ 1 the maximum stable gain is

Gms =
∣∣∣∣Y21

Y12

∣∣∣∣ . (17.17)

Gms and Gma can indeed be larger than Gu , as illustrated by the example in Figure 17.5
in a small frequency range near k = 1. Generally Gma is not easily extrapolated since
it is only defined at large (usually untestable) frequencies, and there its slope varies
significantly. However, as illustrated in Figure 17.5(b), its actual cut-off frequency is
equal to the actual fmax. While this has been proven to be fundamentally true [14], the
fact that the actual f (x)T in Figure 17.5 is also essentially equal to the actual fmax, is a
coincidence.

For optimization purposes, focusing, as we will in the following section, on the
actual power gain cut-off frequency is a good choice for several reasons. First,
the two power gains considered reflect how the device could ultimately work in a
well-designed system. Second, it avoids misleading extrapolation. Third, by focusing
our attention on the power gain cut-off frequency, rather than on some fixed frequency
range, we avoid having to deal with possible resonances (Gu) and the stability border
(Gma/Gms) moving in and out of this range as we vary physical parameters. We are
interested in a general ‘broad-band’ optimization of the device physical parameters.
Narrow-band optimization is left to the circuit designer. Fourth, the equality of the
actual power gain cut-off frequencies lends an important uniqueness to the common
value, which is also referred to as the maximum frequency of oscillation. The actual
fmax is easily found with a bisectioning root-finding algorithm. With regards to
resonances in Gu , it is interesting that these occur much more rarely with the consistent
treatment of output capacitance and output conductance in Sections 15.3 and 15.4, as
compared to choosing the two independently [10, 11]. Resonances in Gu do still occur,
but generally only for very small rga and rgi .

17.5 Optimization of fmax

Figure 17.6 shows the dependence of the cut-off frequencies as the device is taken
into velocity saturation, for various gate lengths. f (x)T peaks near �Lx = 400 Å,

essentially independently of Lg . Further into saturation f (x)T drops because the
gate–source capacitance increases faster (Figure 15.9) than the gate–drain capacitance
drops (Figure 15.6). This is qualitatively consistent with all experimental data.
However, the effect is more severe in actual devices than indicated by Figure 17.6.
This is because of three related effects. First, the effective electron saturation velocity
eventually drops below the peak velocity in Figure 14.5 as the high-field region gets
wider and the electrons scatter more. Second, the peak velocity itself is reduced
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Fig. 17.6. Extrapolated current-gain cut-off frequency (full lines) and actual power gain cut-off
frequency (dotted lines) versus the external extent of the velocity-saturated region. The gate length
is varied in steps of 50 nm from 50 to 300 nm. Other parameters have default values (Table 17.1).
The vertical dashed-dotted line indicates an essentially gate-length-independent flat optimum for
f (x)T at �Lx = 400 Å.

due to lattice heating as phonons are emitted in these scattering events. Third, with
increased scattering the electrons will not traverse the velocity-saturated region in a
simple straightline trajectory. Our assumptions will thus fail deep in saturation, and
the delays will be longer than we have predicted. For more accurate predictions in
this regime fully numerical models that include energy balance have to be employed.
The lower effective saturation velocity will also reduce the DC transconductance. The
effect on fmax is that in reality it does not continue to increase with�Lx as indicated in
Figure 17.6, but rather tends to saturate before dropping at a lower rate than f (x)T . Up to

peak f (x)T our semianalytical model is adequate, and we will thus do our optimization
at �Lx = 400 Å. Another figure-of-merit sometimes quoted for the device (mostly
when it is large) is fmax/ f (x)T . The higher this quotient is, the lower is the relative

effect of parasitics. As Figure 17.6 illustrates, it is difficult to keep fmax/ f (x)T large as
the gate length is shrunk.

Figure 17.7 shows the cut-off frequencies for the MODFET in Table 17.1 versus
gate length with the interfacial gate resistance rgi as a parameter. rgi is varied from



582 MODFET high-frequency performance

E
xt

ra
po

la
te

d 
cu

rr
en

t a
nd

 a
ct

ua
l p

ow
er

 g
ai

n 
cu

t-
of

f f
re

qu
en

cy
 (

G
H

z)

0

fmax

fT
(x)

2
4

6
8

10

(a)

r   (10       cm  )gi
-7 2Ω

L  (µm)g

0

fmax

fT
(x)

2
4

6
8

10

(b)

r   (10       cm  )gi
-7 2Ω

Fig. 17.7. Current gain (full lines) and power gain cut-off frequency (dotted lines) versus gate length
for two values of gate-to-channel spacing: (a) dgc = 200 Å, (b) dgc = 100 Å. The interfacial gate
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583 17.5 Optimization of fmax

the ideal (but unrealistic) value of zero to the excessively high (but still occasionally
occuring) value of 1 × 10−6 � cm2. The 3 × 10−7 � cm2 default value in Table
17.1 appears to be the lowest value that is reproducibly achievable in a practical
fabrication environment (Sections 16.3 and 16.8). In this first optimization step we
are interested in the basic performance of the device, not degraded by distributed
effects and fixed layout-related capacitances. We thus set rga and lga to zero for
the calculations in Figure 17.7, and leave the pad parasitics to their zero default
value. While f (x)T is unaffected by the gate resistance, rgi strongly degrades fmax,
and causes the optimum gate length to increase as rgi increases. As opposed to
earlier optimizations [11], f (x)T (Lg) does not peak, but continues to increase as Lg

is reduced (albeit significantly more slowly than L−1
g ). The main reason is that the

intrinsic output conductance g(i)ds0, degrading f (x)T according to Equation (17.12), is
now calculated as described in Section 15.4, with a resulting gate-length dependence
(Figure 15.12(b)) less steep than the L−1

g dependence assumed in the earlier work

(Equation (15.26)). The more analytical estimate of g(i)ds0 is also the reason why fmax

is now predicted to peak at shorter gates. Thinning the gate-to-channel distance
by a factor of 2 reduces the output conductance and the feedback capacitance
(relative to the total gate capacitance). The result in Figure 17.7(b) is a moderate
increase in both cut-off frequencies for shorter gates. However, 0.1 µm remains
approximately the optimum gate length for general broad-band circuit applications.
0.1-µm gates can be fabricated with good yield by several methods, as discussed in
Section 17.7, and are viable for production. Experimental gates as short as 30 nm
have been made [15]. The rather simple semianalytical model is remarkably accurate
in predicting the cut-off frequencies even for this extreme cutting-edge case (by year
2000 standards).

With the cross-sectional geometry determined, we now look at the effect of gate
metallization resistance. Figure 17.8 shows the two cut-off frequencies of interest
versus total gate width of the two-finger FET in Table 17.1. Included is the case of
a small (0.5 fF) fixed capacitance associated with the pads, one for each of the two
gate branches (Figure 17.2). A pad-related capacitance could come about because
the calibration does not take it out, or because the system drifts out of calibration.
As illustrated by Figure 17.8, fmax is unaffected by this, while f (x)T for small FETs

can be significantly affected. If the cause is a calibration drift, f (x)T of smaller FETs
could appear either high or low. With the optimization being based on fmax, the
width of a gate finger should not be much larger than 25 µm for the default rga . If
a total gate width significantly larger than 50 µm is required for high output power
at high frequencies (Section 14.6.5), it has to be made up of more than two fingers.
As discussed briefly at the end of Chapter 16, the simultaneous distribution of gate
voltage to the fingers of large FETs can become an additional challenge and design
issue. From the practical standpoint of process evaluation it is valuable to have a
variety of gate-finger widths. Occasionally, as was demonstrated in Chapter 16, a little
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frequency (solid line) for the two-finger MODFET in Table 17.1 versus total gate width. Two values
for pad parasitics were assumed: C(2)gs,pad = C(2)gd,pad = 0 and 0.5 fF.

splurging with mask and wafer real estate can lead to a deeper understanding of the
device physics.

Figure 17.9 shows how the performance of the optimized device is affected if
the components in the gate resistance differ from the assumed default values. The
dependence of fmax on the standard metallization resistance is rather weak, while
a change in the Schottky interface properties can have a large effect. If rgi could
be reduced significantly, sub-0.1-µm gates would become worth pursuing for further
improvement in the power gain.

17.6 Noise, noise figure and associated gain

In addition to the high-frequency gains discussed in the preceding section and the
maximum output power discussed briefly in Section 14.6.5, the noise characteristics
of the device are of great importance. While the high-frequency noise tends to be
lower in devices with higher cut-off frequencies because of reduced channel resistance
(the intrinsic source of thermal noise), the opposite is the case for low-frequency
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excess noise [16]. Low-frequency noise is particularly difficult to model because
of the multiple complex origins and intricate frequency dependence. The dominant
origin of low-frequency noise for MESFETs and MODFETs appears to be generation–
recombination at traps in a depletion region of the device, but the amount of noise,
and even the spectral shape (1/ f α , α = 1–2) is next to impossible to predict with
much accuracy. Easier to predict is the upconversion of the low-frequency noise
to oscillator phase noise [17]. Heterojunction bipolar transistors (HBTs) with their
low low-frequency noise are better suited for oscillator applications. Beyond the
corner frequency where the low-frequency noise drowns in the background noise of
thermal origin, MODFETs are quieter than HBTs, and are thus well suited for the
high-frequency amplification that we have just optimized for.

Also high-frequency noise modeling can be quite complex. There are thermal noise
sources associated with all resistive elements in the device, i.e. channel and parasitic
access resistances (Figure 17.10(a)). Thermal noise, or Johnson noise, occurs in a
resistor because of random electron thermal motion. In a bandwidth B of the frequency
domain that we are working in, a resistor R at temperature T can be represented by a
noiseless resistor R in series with a phasor noise voltage eR with a mean-square value
given by

|eR|2 = e∗
ReR = 4kT RB. (17.18a)

This is the famous Nyquist theorem, which is most easily arrived at by connecting
the resistor to a capacitor and equating the energy stored in the capacitor due to
the noise voltage with kT/2 according to the equipartition theorem (e.g. [18]). The

thermal noise from the resistor is practically white, i.e. the spectral density |eR|2/B
has no frequency dependence up to 1012–1014 Hz [19, 20]. By Norton’s theorem, an
alternative equivalent representation is the noiseless resistor in parallel with a white
noise current source jR :

| jR|2 = j∗R jR = 4kT
1

R
B. (17.18b)

The voltage (e) and current ( j) noise sources in Figure 17.10(a) do in general have
a frequency dependence, but only because they are the result of having applied
Thevenin’s or Norton’s theorem to the subnetworks that make up the respective
impedance (Z ) or admittance (Y ). In fact, a linear one-port (like an individual Y and Z
in Figure 17.10(a)) with all its resistive components at the same temperature T can be
represented by its noiseless impedance Z in series with an AC noise voltage eZ with

|eZ |2 = e∗
Z eZ = 4kT Re (Z) B, (17.19a)

or by its noiseless admittance Y in parallel with an AC noise current jY with

| jY |2 = j∗Y jY = 4kT Re (Y ) B. (17.19b)
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noise sources still inside. (c) Short-circuit noise current sources brought outside a now noiseless
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In (d) is indicated how one would use the network for amplifying a signal from a generator with an
admittance YG . The output load admittance is YL and Yi is the input impedance loading the
generator. Noise currents are denoted by j , noise voltages by e.

A frequency dependence in Re(Z) and Re(Y ) will show up in the associated noise
source spectrum. Just like an internal one-port component can be represented
by a noiseless element attached to a noise source, so can the entire two-port in
Figure 17.10(b), except that two noise sources are required. Determining the terminal
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noise sources in Figure 17.10(c) or (d) becomes a circuit analysis problem. The two
equivalent representations in Figure 17.10(c) or (d) are related by:

j ′1 = j1 − Y11

Y21
j2; (17.20a)

e1 = − j2
Y21
. (17.20b)

The internal sources are uncorrelated, and all cross-terms (e.g. j∗gs jds) will be zero.
The two terminal sources, however, will be correlated, since each internal source will
contribute to both.

The noise figure F is the most common description of the noisiness of an amplifier.
It depends on both the individual rms values and the correlation cross-product of the
terminal noise sources. F also depends on the admittance YG = GG + j BG of the
generator driving the amplifier (Figure 17.10(d)). The generator is at the temperature
T0, which under most test conditions is near the so-called standard temperature 290 K
(typical room temperature), and generates noise accordingly (Equation (17.19)). The
maximum noise power that can be delivered to the amplifier, the so-called available
noise power, is (Problem 17.2)

PANi = kT0 B. (17.21a)

We have attached a subscript N for noise, and i for input (to the amplifier). The only
parameter of the generator that affects its available noise power is its temperature T0.
The available signal input power is given by (Problem 17.2)

PASi = |iG |2
4 Re (YG)

. (17.21b)

Whether noise or signal, the power delivered to the amplifier is maximum with so-
called conjugate matching, i.e. when Yi = Y ∗

G . The input noise is amplified, and to
this the amplifier adds its own internally generated noise. The noise figure F is defined
as the total noise power (in the bandwidth B) coming out of the amplifier divided by
the fraction which is purely amplified input noise. Thus,

F ≡ PANo

G A PANi

= PASi /PANi

PASo/PANo

= (S/N )i
(S/N )o

, (17.22)

where subscript o stands for output from the amplifier. G A is its so-called available
gain defined by

G A = PAS0

PASi

(17.23)

Defining the gain of an amplifier in terms of available (rather than the actual) input
and output powers is a fairer measure of the amplifier, since it also reflects how well
the input is matched to the preceding stage. It would not do much good to design
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an amplifier in which the power absorbed by the input is amplified with a large gain,
if only a small fraction of the incoming power is actually absorbed. In the last two
steps of Equation (17.22) we have rewritten the noise figure in terms of input and
output signal-to-noise ratios. In dB (F (d B) = 10 log10(F)), the noise figure becomes
the inevitable loss in signal-to-noise ratio from input to output, a number a circuit
designer would strive to minimize. This may make it clearer why it is F (as opposed
to, say, PNo ) which is typically the object of minimization. For a hypothetical noiseless
amplifier F = 1. In reality F > 1, and the design of a low-noise amplifier (LNA)
involves minimizing F . The circuit designer does this, for the device at hand, by
choosing an optimum generator admittance YG for the frequency band of interest. A

device designer is interested in minimizing Fmin( f ) = F
(

Y (F)G ( f )
)

, where Y (F)G ( f )
is the generator admittance for minimum noise figure at frequency f . For fixed f ,
Fmin depends only on device parameters, since these determine the optimum YG .

The noise figure of a multi-stage amplifier can be expressed in terms of the noise
figures and available gains of the individual stages (Problem 17.3):

F123...n = F1 + F2 − 1

G A1

+ F3 − 1

G A2 G A1

+ · · · + Fn − 1

G An−1 · · · G A2 G A1

. (17.24)

In the present context, the main importance of Equation (17.24) is to illustrate
that the first stage (subscript 1) is the most important for overall low noise, if its
gain is sufficiently large. InP-type MODFETs are thus of particular interest as
gain elements in the first stage of an amplifying system. At the end of the chain,
output power becomes more important. Because of the breakdown issues discussed
in Section 14.6.5, pseudomorphic high-electron-mobility transistors (PHEMTs) are
better suited here.

17.6.1 The FET noise model by Pucel, Haus and Statz

Pucel, Haus and Statz (PHS) [21] developed a theory for noise in GaAs metal–
semiconductor FETs (MESFETs) that has been the basis for much of the later work,
including that which led to the famous Fukui equation for Fmin [22]. The PHS
theory neglects several elements in the equivalent circuit (Figure 15.16(a)) that are
of secondary importance to the noise figure. The intrinsic elements considered were
Cgs , Rgs and g(i)m0. In addition, Rs and Rg , the two most important parasitic resistors
to degrade the gain and generate noise, were included. Transit-time effects leading
to the ω dependence in Equation (15.63c) were neglected. The first part of the
PHS analysis concerned the intrinsic device. j1 was modeled as induced by the
channel noise coupling capacitively to the gate electrode. j2 is more directly tied
to the channel noise, which was assumed to have two origins associated with the
two regions under the gate. The gradual channel contributes thermal noise, enhanced
by field-dependent electron heating [23]. The velocity-saturated part of the channel
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contributes what amounts to diffusion noise. This comes about as follows. Using the
Einstein relationship D = kTµ/q for the diffusion constant D, the thermal noise
current (Equation (17.18b)) in a segment (y, y + �y) of the FET channel can be
reformulated in terms of D:

| jc (y,�y)|2 = 4q2 B D(y)ns(y)Wg
1

�y
. (17.25a)

Thus the thermal noise picture can be extended into the velocity-saturated region,
where the mobility is non-applicable, but where diffusion still takes place. How-
ever, to make this picture compatible with neglecting diffusion in the DC analysis

(Chapter 14), Statz et al. [24] reinterpreted | jc (y,�y)|2 in the saturated region as an
effective shot noise current. Shot noise occurs when a current I flows from a cathode
as a result of electrons being randomly emitted at an average rate r = I/q. The
probability of a certain number of electrons being emitted in a time interval is given by
the Poisson distribution, which is characterized by having the same average as it has
variance. The shot noise rms current is given by

| jI |2 = j∗I jI = 2q I B. (17.25b)

In [24] an effective Ieff was considered such that | jc (y,�y)|2 = 2q Ieff B. Noise
current pulses occur in parallel with a channel element �y at an average rate r =
Ieff /q = 2Dns Wg/�y. Each event creates a noise dipole which is assumed to
drift unchanged, at the saturated velocity, towards the drain while inducing a drain
open circuit noise voltage. The analyses leading to expressions for the intrinsic FET
equivalent gate and drain noise currents are quite complex. The two extrinsic elements
Rs and Rg are then introduced, and the three-term Taylor series

Fmin = 1 + 2K 1/2
g

[
ωCgs

g(i)m0

](
Kr + g(i)m0

(
Rg + Rs

))1/2

+ 2Kg

[
ωCgs

g(i)m0

]2

g(i)m0

(
Kc Rgs + Rg + Rs

)
(17.26a)

for the minimum noise figure was derived for T = T0. A correction factor T/T0

should be applied to the resistances if T �= T0. The three new parameters that appear
are given by

Kg = P
{[

1 − C (R/P)1/2
]2 + (1 − C2)R/P

}
, (17.26b)

Kr =
(
1 − C2

)
R[

1 − C (R/P)1/2
]2 + (1 − C2

)
R/P

, (17.26c)

Kc = 1 − C (R/P)1/2[
1 − C (R/P)1/2

]2 + (1 − C2
)

R/P
, (17.26d)
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where the real and dimensionless P , R and C are the basic noise parameters
determined by the average powers of the intrinsic gate and drain noise currents, and
the correlation between the two:

P = | j2|2
4kT0 Bg(i)m0

, (17.26e)

R = g(i)m0| j1|2
4kT0 Bω2C2

gs
, (17.26f)

jC = j∗1 j2(
| j2|2 | j1|2

)1/2
. (17.26g)

Note in Equation (17.26a) that, except for Rg and Rs , the equivalent circuit elements
are intrinsic, and only three of these appear. In particular, Cgd is not included,
which means that the item inside the square brackets in Equation (17.26a) is smaller
than f/ f (i)T . Note also that Rgs only appears explicitly in the ω2 term. It also
shows up implicitly to some degree in Kr , but apparently not to the extent that
Kr + g(i)m0

(
Rg + Rs

)
can be replaced by the suggestive form g(i)m0

(
Rgs + Rg + Rs

)
.

17.6.2 The Fukui equation and Pospieszalski’s thermal model

It is probably clear from the brief description of the theory in [21, 24] that the
basic parameters P , R and C are quite difficult to calculate, and vary with bias in
complicated ways. Even so, there are several effects left out, such as external velocity
saturation and non-stationary transport leading to electron heating not directly related
to the local field. These are important effects for today’s deep submicron devices, as
are some of the equivalent circuit elements left out of the analysis. Device researchers
have in general taken the semiempirical approach introduced by Fukui [22]. He found
that the expression

Fmin = 1 + K f

(
ωCgs

g(i)m0

)[
g(i)m0

(
Rg + Rs

)]1/2
, (17.27a)

with the fitting parameter K f ∼ 2.5, gave good predictions for the minimum noise
figure of GaAs MESFETs at ambient temperature Ta = T0, regardless of what bias was
required for Fmin. The Fukui factor K f has always been considered a materials-related
parameter. Its value has been reduced over the years as devices with higher-mobility
channels have been developed. The Fukui equation (Equation (17.27a)) is a simplified
and truncated form of Equation (17.26a). The theory in [21, 24] would say that

K f = 2K 1/2
g . (17.27b)

The Fukui equation suggests that Rgs should not appear in any form as a noise source.
Of course, we know from Chapter 16 that it is hard to separate Rgs and Rg , so it is
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not inconceivable that Rg in Equation (17.27a) should actually be Rgs + Rg . It seems
natural that Rgs should appear beside Rg with similar weight. A difference in the
weight would arise if Rg and Rgs were associated with different temperatures. This
viewpoint was introduced by Pospieszalski [25] whose noise model is an interesting
alternative to the Fukui and PHS models. Pospieszalski’s is a thermal model for the
intrinsic device using the two resistive components Rgs and g(i)ds0 in Figure 15.16(a)
as the intrinsic noise sources. These are associated with the temperatures Tg and Td ,
respectively. The benefit of the approach is that it contains the basic physics prescribed
by Nyquist’s thermal noise theorem, while lumping all the complexity, which can
never be accounted for with analytical models anyway, into just the two adjustable
parameters Tg and Td . The approach is supported by two experimental observations.
First, the two temperatures are frequency-independent, as expected for resistive noise
sources. Second, Tg is essentially equal to the ambient temperature Ta , as expected for
a component largely associated with a region of the device (the gradual channel) where
there is only moderate electron heating. Deeper into velocity saturation, as discussed
briefly in Sections 16.2 and 16.3, delays increase the effective Rgs , and Tg may at the
same time increase. However, low-noise FETs usually are not biased in a regime where
this would be a dominant effect. Another reason for Tg to be close to Ta arises when
the interfacial gate resistance Rgi is accounted for by Rgs (Chapter 16), since Rgi is
expected to be even less affected by electron heating in the channel. Td is significantly
larger than Ta , but quite reasonably so, considering the heating of the electrons in
the velocity-saturated part of the channel which dominates the output conductance
g(i)ds0. We can attempt a very rough estimate of Td for a typical InP-type MODFET
(Figure 14.1). Even for typical low-noise biases (VD ∼ 1 V) there will be some
impact ionization in the channel (Section 14.6.5). That means that a fraction of the
electrons will have gained at least the threshold energy ET n ∼ 0.8 eV (Section 14.6.4).
For �Li + �Lx smaller than, or on the order of, the mean free path, this applies to
a substantial fraction of the electrons. As the electrons traverse the high-field region,
starting out at ∼ 0.1 eV, a reasonable estimate for their average energy then is ∼ 0.4 eV.
Equating this with 3kTd/2 leads to Td ∼ 3100 K. An alternative estimate, based on
electron energies in published energy-based numerical modeling of various HEMTs,
suggests Td in the range 2200–4600 K. The two estimates are consistent with each
other and, generally, with published measured noise figures.

Pospieszalski’s model is equivalent to that in [21] if C = (R/P)1/2, which leads
to Kr = R, Kg = P − R, and Kc = 1. In terms of the two noise temperatures,

Kg =
(

g(i)ds0Td

)
/
(

g(i)m0T0

)
and Kr = g(i)m0 Rgs

(
Tg/T0

)
. Insertion of these into

Equation (17.26a), keeping only the first two terms, produces the modified Fukui
equation

Fmin = 1 + K f

(
ωCgs

g(i)m0

)[
g(i)m0

(
Rgs

Tg

T0
+ Rg

Ta

T0
+ Rs

Ta

T0

)]1/2

. (17.28a)
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This is richer in content than the original equation for two reasons. First, Rgs is
included explicitly beside Rs and Rg , as argued intuitively above. Second, K f can
now be estimated from physical electron transport considerations with the formula

K f = 2K 1/2
g = 2

(
g(i)ds0Td

g(i)m0T0

)1/2

. (17.28b)

Note that, although g(i)ds0 � g(i)m0, the fact that Td � T0 makes g(i)ds0 an important

noise source. With g(i)m0 tied to the electron saturation velocity vsat (Equation (14.54)),

K f is indeed affected by material quality. g(i)ds0 depends on the gate length and the
extent of the velocity-saturation region (Figure 15.12). There is thus also geometry
and VD dependence in K f . The strongest VD dependence, more than compensating
for the drop in g(i)ds0 with VD , however, comes from Td , as argued above. Alternative
expressions for K f that include an explicit drain current dependence have been
proposed (e.g. [26, 27]). The powerful and physically appealing simplification of
introducing Td and Tg is somewhat analogous to lumping the complexities of high-field
transport into the two parameters µ(Lg) and vsat (Section 14.5). However, compared
to these (and Tg), Td is more variable, and less predictable.

17.6.3 General formalism for noise figure and power gain

We have neglected the effect of the resistive (and therefore noisy) components ggs

and ggd . For high-speed FETs used at lower frequencies, e.g. DBS (direct broadcast
satellite) applications, the noise contribution from these can become non-negligible
[28]. At high frequencies, the neglect of delays, feedback capacitance, etc., also
introduces errors. With the lumped equivalent circuit we developed in Chapters 15 and
16 (Figure 16.13), the general thermal noise source expressions in Equation (17.19)
and Pospieszalski’s thermal model, we can take the noise analysis a bit further. The
theory for dealing with noise in linear two-ports was developed by Rothe and Dahlke
[29]. This work is the foundation for most transistor noise models. Appendix L of
Gonzalez’s textbook [20] provides a nice rendition that we will essentially follow.
We use the representation in Figure 17.10(d). PNi in the definition of noise figure
(Equation (17.22)) is as always given by Equation (17.21a). PN0 is most easily found
by applying Norton’s theorem to the bracketed portion of Figure 17.10(d). We then
find that

F = 1 +
∣∣ j ′1 + e1YG

∣∣2
| jG |2

. (17.29)

We split j ′1 into two parts, one correlated with e1 through an admittance Yc, the other
( j ′1u) uncorrelated:

j ′1 ≡ Yce1 + j ′1u . (17.30a)
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The correlation admittance is given by

Yc = e∗
1 j ′1

|e1|2
= Gc + j Bc. (17.30b)

We also define an effective noise resistance

RF ≡ |e1|2
4kT0 B

(17.31)

and an effective noise conductance

Gu ≡
∣∣ j ′1u

∣∣2
4kT0 B

=
∣∣ j ′1∣∣2

4kT0 B
− RF |Yc|2 . (17.32)

Yc, RF and Gu can be evaluated once we get specific about the device (Section 17.6.4).
Inserting Equations (17.30) and (17.31) into Equation (17.29) yields

F = 1 + Gu

GG
+ RF

GG

[
(GG + Gc)

2 + (BG + Bc)
2
]
. (17.33)

The minimum noise figure requires the generator admittance YG = Y (F)G = G(F)G +
j B(F)G , where

B(F)G = −Bc (17.34a)

and

G(F)G =
(

G2
c + Gu

RF

)1/2

. (17.34b)

The minimum noise figure is

Fmin = 1 + 2RF

(
G(F)G + Gc

)
, (17.35)

and for non-optimum loads the noise figure is given by

F = Fmin + RF

GG

[(
GG − G(F)G

)2 +
(

BG − B(F)G

)2
]
. (17.36)

Loci in the YG-plane of constant noise figures (‘iso-noise figures’) are non-concentric
circles. With the effective noise resistance RF appearing in both terms of Equa-
tion (17.36), it is not surprising that a small Fmin (determined by the device) is
important, not only in itself, but also in promoting broad-noise circles [30], i.e. in
producing a flatter minimum.

It is clear from Equation (17.24) that, for an overall low noise figure of a system
that includes several stages of amplification, the first stage should not only have a
low noise figure, but also a high gain. The available gain for the device is given by
(Problem 17.4) [31]

G A = |Y21|2 Re (YG)

Re (Y22) |Y11 + YG |2 − Re
[
Y12Y21 (Y11 + YG)

∗] . (17.37)
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The often quoted ‘associated gain’ is the available power gain at F = Fmin. This is
in general not the maximum gain, which occurs at an optimum generator admittance
Y (G A)

G generally different from Y (F)G . The admittance Y (G A)
G = G(G A)

G + j B(G A)
G is

most easily found by first solving ∂G−1
A /∂BG = 0, yielding

B(G A)
G = − Im (Y11)+ Im (Y12Y21)

2 Re (Y22)
, (17.38a)

and then solving
(
∂G−1

A /∂GG

)
BG=B(

G A)
G

= 0, yielding

G(G A)
G = |Y12Y21|

2 Re (Y22)

(
k2 − 1

)1/2
, (17.38b)

where k is the stability factor (Equation (17.16b). Inserting these optimum values into
Equation (17.37) one finds that this equals Rollett’s maximum available gain, quoted
without derivation in Equation (17.16a). During the derivation of Equation (17.38) it
becomes clear that the denominator in Equation (17.37) consists of two second order
polynomials in GG and BG , with no cross-terms, and with the same coefficient for B2

G
as for G2

G . We can thus write

1

G A
= 1

Gma
+ RG A

GG

[(
GG − G(G A)

G

)2 +
(

BG − B(G A)
G

)2
]
, (17.39a)

where we have defined the resistance

RG A = Re (Y22)

|Y21|2
. (17.39b)

The form in Equation (17.39a) was used by Fukui [31] because of its interesting
similarity with the noise figure (Equation (17.36)). Loci in the YG-plane of constant
gain (‘iso-gains’) are also non-concentric circles. Unfortunately, the noise figure is not
minimum for the same source impedance that maximizes the gain, and a compromise
has to be made. If RG A and RF are small, the loss in gain and/or noise figure as a
result of the compromise can be kept small.

17.6.4 Noise figure and associated gain of the MODFET

We apply this general theory to the noisy FET in Figure 17.10 (cf. [32]). The first
step is to derive the two terminal noise currents in Figure 17.10(c). In addition to j1
and j2, there are three unknown currents, namely those flowing through Ygs , Yf and
Yds . Solving two node current and three loop voltage equations yields expressions
for the five unknowns. The elements in the equivalent circuit in Figure 17.10(a) are
given by Equations (16.59)–(16.61). The associated noise sources are determined by
Equation (17.19). The noise temperature for the sources is assumed to be the ambient
temperature Ta , except for Yds , which we associate with Td . External capacitors do not
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contribute to the short-circuit noise currents j1 and j2, but do affect the Y parameters as
discussed in Section 17.2. This ultimately influences the noise figure to some degree,
because of the transformation of ( j1, j2) to ( j ′1, e1) (Equation (17.20)). The initial
circuit analysis leads to

j1 = (1 + A22) I1 − A12 I2

�A
, (17.40a)

j2 = (1 + A11) I2 − A21 I1

�A
, (17.40b)

where we have introduced

A11 = Ygs
(
Zg + Zs

)+ Yf Zg, (17.41a)

A12 = Ygs Zs − Yf Zd , (17.41b)

A21 = Yds Zs + Ym
(
Zg + Zs

)− Yf Zg, (17.41c)

A22 = Yds (Zd + Zs)+ Ym Zs + Yf Zd (17.41d)

and

�A = (1 + A11) (1 + A22)− A12 A21. (17.41e)

These are dimensionless parameters, and functions of the equivalent circuit elements.
I1 and I2 are ‘composite’ noise currents:

I1 = jgs + jf + (Ygs + Yf
)

eg − Ygses − Yf ed , (17.42a)

I2 = jds − jf + (Ym − Yf
)

eg − (Ym + Yds) es + (Yds + Yf
)

ed . (17.42b)

The transformation to input-side noise sources yields

e1 = Z1 I1 + Z2 I2, (17.43a)

j ′1 = K1 I1 + K2 I2, (17.43b)

where we have introduced

Z1 = A21

Y21�A
, (17.44a)

Z2 = −1 + A11

Y21�A
(17.44b)

and

K1 =
1 + A22 + A21

Y11
Y21

�A
, (17.45a)

K2 = −
A12 + (1 + A11)

Y11
Y21

�A
. (17.45b)
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Recall that our goal is to calculate RF , Yc and Gu (Equations (17.30)–(17.32)). These

involve |e1|2,
∣∣ j ′1∣∣2 and e∗ j ′1, which are given in terms of the quantities introduced:

|e1|2 = |Z1|2 |I1|2 + |Z2|2 |I2|2 + 2 Re
[

Z∗
1 Z2

(
I ∗
1 I2

)]
, (17.46a)

∣∣ j ′1∣∣2 = |K1|2 |I1|2 + |K2|2 |I2|2 + 2 Re
[

K ∗
1 K2

(
I ∗
1 I2

)]
, (17.46b)

e∗ j ′1 = Z∗
1 K1|I1|2 + Z∗

2 K2|I2|2 + Z∗
1 K2

(
I ∗
1 I2

)
+ Z∗

2 K1

(
I ∗
1 I2

)∗
. (17.46c)

Remaining to be evaluated are the three quantities |I1|2, |I2|2 and
(

I ∗
1 I2
)
. Remem-

bering that the individual noise sources on the right-hand side of Equation (17.42) are
uncorrelated, this is easily done with the help of Equation (17.19):

|I1|2 = 4kTa B Re
(

Ygs + Yf + ∣∣Ygs + Yf
∣∣2 Zg + ∣∣Ygs

∣∣2 Zs + ∣∣Yf
∣∣2 Zd

)
, (17.47a)

|I2|2 = 4kTa B Re

[(
Td

Ta

)
Yds + Yf + ∣∣Ym − Yf

∣∣2 Zg

+ |Ym + Yds |2 Zs + ∣∣Yds + Yf
∣∣2 Zd

]
, (17.47b)

(
I ∗
1 I2

)
= 4kTa B

[− Re
(
Yf
)+ (Ygs + Yf

)∗ (
Ym − Yf

)
Re
(
Zg
)

+Y ∗
gs (Ym + Yds)Re (Zs)− Y ∗

f

(
Yds + Yf

)
Re (Zd)

]
. (17.47c)

Equations (17.41) and (17.44)–(17.47) allow us to calculate all the noise parameters
in Section 17.6.3, and in particular the two central device parameters, Fmin and the
associated gain. Since here we are interested exclusively in the device itself, we
do not include external impedances (Lsx = Ldx = Lgx = 0), but use the full
complex lumped equivalent Zg = Zga + Rgi (Equations (16.59) and (16.61a)) for
the gate ‘resistance’. Figure 17.11 shows minimum noise figure and gain versus
frequency, for the default MODFET in Table 17.1. The noise parameter values are
Tg = T0 = 290 K and Td = 3100 K. In Figure 17.11(a) we adjusted five of the
default parameters to make the device in effect have the simplified equivalent circuit
in [21]. Thus, we set the drain resistance and gate leakage to zero, and choose values
for C ( f )

gs and C ( f )
gd that result in zero total drain-source and gate–drain capacitance. We

can then compare the full noise model with Equations (17.28) and (17.26a), setting

Kg =
(

g(i)ds0Td

)
/
(

g(i)m0T0

)
, Kr = g(i)m0 Rgs

(
Tg/T0

)
and Kc = 1. It is clear that a first

order equation is insufficient to model Fmin at high frequencies of interest for InP-type
MODFETs. The second order expression, although not strictly applicable∗, comes
much closer (within ∼ 0.05 dB at 50 GHz). Actually, the full model predicts F (d B)

min to

∗ The Kg , Kr and Kc that lead to equivalency between the PHS model and Pospieszalski’s are, strictly
speaking, only applicable up to first order in frequency [33].
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Fig. 17.11. (a) Comparison of the minimum noise figure predicted by Equations (17.26) and (17.28)
with that predicted by the full noise model in Sections 17.6.3–17.6.4. The default parameters in
Table 17.1 were modified to make the comparison meaningful. (b) Similar, but with the default gate
leakage, drain resistance, gate–drain capacitance and drain-source capacitance reinstated.
Associated and maximum stable gain are included in (b). The noise temperatures are the same for
(a) and (b).
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be almost linear with frequency (cf. [34]). Thus a better, more conservative estimate
for the minimum noise figure with the simplified equivalent circuit might actually be

Fmin = exp

(
K f

(
ωCgs

g(i)m0

)[
g(i)m0

(
Rgs

Tg

T0
+ Rg

Ta

T0
+ Rs

Ta

T0

)]1/2
)
. (17.48)

In Figure 17.11(b), we have reinstated the full set of default parameters in Table
17.1, keeping the noise temperatures the same. For this realistic case, we have also
included the gain, both the associated gain and the maximum stable gain (Equa-
tion (17.17)). The discrepancy with the second order estimate of Fmin (which does not
include drain resistance, gate leakage and gate–drain and drain-source capacitance) is
now larger. At low frequencies the discrepancy is mainly due to the gate leakage. At
50 GHz it is mostly due to the neglect of gate–drain feedback capacitance (∼ 0.13 dB),
while Rd contributes to a smaller degree (∼ 0.04 dB). Figure 17.11(b) also shows
the gain traded off for low noise at high frequencies (∼ 2 dB at 50 GHz). For
low-frequency applications, one may have to reduce the gain below the optimum for
noise in order to stabilize the device.

With a fixed Td (and Tg) Fmin, as predicted with the ‘full’ noise model, has a
minimum with respect to�Lx rather close to where f (x)T peaks in Figure 17.6. Below

the optimum �Lx , Fmin increases primarily because g(i)ds0 increases (Figure 15.12),
while above the optimum, Fmin increases primarily because the gate–source ca-
pacitance increases (Figure 15.9). The noise model is, however, not completely
‘full’, since there are several effects still not accounted for. The most important of
these is the dependence of Td on bias, and thus on �Lx . For InP-type MODFETs
Td = 3100 K was chosen, based on the electron energy, to be a representative
intermediate value between two rather well-defined limits. The lower limit is the
onset of velocity saturation, required for large g(i)m /g

(i)
ds and good gain. The upper

limit is the onset of impact ionization in the channel, which initially may cause a
kink, eventually will degrade the noise, and ultimately will cause breakdown and
degradation (Section 14.6.5 and 14.7). It is clear that Td will increase as VD increases
and the electrons attain higher energies. Another effect not accounted for is the
dependence of g(i)m on �Lx . Below the optimum �Lx the reduced g(i)m and the
reduced Td counteract one another in their effect on Fmin. Above the optimum�Lx the
continued increase in Td causes a significant increase in Fmin. The actual optimum
�Lx is thus shifted negatively. In addition to its VD dependence, Td increases rapidly
at a fixed VD , as the device is turned on by an increasing VG [35]. This leads to
an optimum ID for noise that is less than that at maximum transconductance, which
is the bias point assumed for the small-signal AC modeling. Still, the model in
Sections 17.6.3–17.6.4, together with a representative, physically based choice of Td ,
provides a tool for the device engineer to optimize for low noise.

If a deeper understanding of noise-related complexities is required, it takes methods
(e.g. [36, 37]) which go beyond the analytical modeling approach we have adopted
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throughout these sections as a practical aid to understanding and optimizing a
MODFET.

17.7 Process and manufacturability issues

Figure 17.12(a) shows a three-stage MMIC amplifier using 0.1-µm InP-type HEMTs.
In addition to three 100-µm wide four-finger FETs, there are other important com-
ponents. The circuit is coplanar in the sense that everything is on top of the wafer,
including the ground plane. This is a convenient and workable choice for this circuit.
A back-side via process and ground plane would allow microstrip transmission lines
to be used. In Figure 17.12(a) the coplanar transmission lines feed the signals to and
from the chip, and perform interstage matching. Thin film resistors are used as loads
in the first two stages, in the feedback loops of the first and last stages, and in the
biasing of the gates. Spiral inductors are used in the optimization of the frequency
response, a measurement of which is shown in Figure 17.12(c). The design of this
high-frequency MODFET-based circuit, with all its additional lumped and distributed
components, requires the CAD tools that we have sprinkled references to throughout
our treatise of the device itself. The very high gain over a very wide frequency range is
made possible by the careful device optimization that the previous sections have dealt
with, and serves as a good illustration of why MODFET technology is of great interest.
Figure 17.12(b) illustrates the uniformity and yield possible even in a cutting-edge FET
technology like this, when sufficient thought and work has gone into the process. This
crucial aspect will be discussed briefly in this section. Reliability, the third important
component of a successful process, was discussed in Section 14.7.

Figure 17.13 shows the epitaxial structure, grown by molecular beam epitaxy
(MBE) (Chapter 1), of a state-of-the art InP-type HEMT. It may not be the most basic
or typical structure for this type of device, but the heart of the structure, comprising
the channel, spacer, supply and Schottky-barrier layers, is quite typical. As we have
seen, these layers determine the basic device characteristics. The rest of the structure
is designed with manufacturability in mind. There are many alternative approaches to
achieve this, but the example in Figure 17.13 is good in that it illuminates several
issues. We are careful to refer to this HEMT as InP-type, rather than InP-based,
since there actually is no InP in this structure. The high-mobility channel material is
Ga0.47In0.53As, which usually requires InP as a substrate. Relative to GaAs, however,
InP substrates are more expensive and brittle, particularly for larger wafer sizes (≥ 3′′).
One can, as illustrated in Figure 17.13, overcome this obstacle by implementing a
buffer technology that allows the use of GaAs substrates [39, 40]. The first layer grown
is a linearly-graded low-temperature buffer (LGLTB) in which the lattice constant is
varied from that of GaAs (5.65 Å) to that of InP (5.89 Å), by gradually replacing Ga
in Al0.48Ga0.52As with In. After ∼ 1 µm of material growth, the grading is complete.
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Fig. 17.12. Three-stage MODFET feedback amplifier (based on [38]): (a) chip photo; (b) V-band
gain for several amplifiers on a 2′′ wafer; (c) wide-band gain measurement of a reoptimized
amplifier. ((a) and (b) reproduced with permission from H. Rohdin, A. Wakita, A. Nagy,
V. Robbins, N. Moll and C.-Y. Su, Solid State Electronics, Vol. 43, pp. 1645–1654, 1999.)

The buffer is completed by a ∼ 0.25-µm layer of Al0.48In0.52As on which any desired
combination of layers lattice-matched to InP can be grown. Misfit dislocations are
generated during the grading, but the vast majority remains confined to the LGLTB.
The threading dislocation density in the device layers does not reduce the yield of
typical circuits of interest below that on wafers utilizing InP as a substrate. Equally
important is that the device/circuit performance [41, 10] and reliability [42] do not
suffer. The LGLTB adds to the growth time, but subtracts substrate cost and wafer
breakage. It provides for a seamless fit of this high-performance InP-type FET
process with existing GaAs IC manufacturing infrastructure. This can be an overriding
economic advantage, particularly with 6′′ GaAs substrates.
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Fig. 17.13. Epitaxial structure and gate definition of a 0.1-µm In0.5Ga0.5As-channel MODFET on
GaAs substrate. (H. Rohdin, A. Wakita, A. Nagy, V. Robbins, N. Moll and C.-Y. Su, Solid State
Electronics, Vol. 43, pp. 1645–1654, 1999.)

One interesting aspect of the LGLTB approach is that it allows some freedom in
the choice of In mole fraction. The conduction-band offset �EC for the 2DEG is
maximum for ∼ 30% In, which could lead to a larger maximum carrier concentration
ns0 (Section 14.4) and breakdown voltage BVD (Section 14.6.5) [43]. However, it
also makes it harder, if not impossible, to achieve good contact resistance (Rc) with
non-alloyed ohmic contacts, because of the ∼ 70% Al in the Schottky-barrier layer.
Non-alloyed ohmic contacts are in general preferable to alloyed ones because of their
good reproducibility. The control and reproducibility of MBE and metal deposition
are typically better than of alloying processes. One of the two purposes of the top two
layers in Figure 17.13 is to provide for low parasitic source and drain resistances. Low
contact resistance is accomplished by the choice of material (GaInAs and GaAs) and
by high Si doping (6 × 1018–3 × 1019 cm−3). This results in a low barrier for the
electrons, and thus low tunneling resistance (Section 14.6.2).
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The second purpose of the top two layers in Figure 17.13 is to provide for a well-
defined, uniform and reproducible threshold voltage. This is obviously of importance
for circuit yield. Threshold control is accomplished by a two-step selective recess
process [44]. The first (wet) etch should remove the top GaInAs layer at a rate that is
significantly higher than in the underlying GaAs. This allows for sufficient lateral etch
of the GaInAs before the GaAs layer is consumed. The amount of lateral etch affects
several of the DC parameters encountered in Chapter 14, such as I (max)

D and BV (off )
D

[10, 41], as well as V (knee)
D since RS and RD will have a non-negligible component

associated with the etched higher-resistance regions ([45]; Section 14.6.1). Excessive
lateral etch can introduce an unacceptably large ‘kink’ in the drain I –V characteristics
[46], which degrades I (knee)

D . There is no lateral etch stop, but with good etching
procedures the lateral extent can be kept under repeatable control [44]. The second
etch (for the remaining GaAs) can be a dry (plasma) reactive ion etch (RIE) which
stops on Al-containing layers [47, 48, 49]. Alternatively, wet chemical etches that stop
on the underlying layers with a large (∼ 50%) In mole fraction, can be used [44]. The
selectivity of the second etch, whether wet or dry, is the key to threshold control.

The thickness of the GaAs etch layer (started on a thin GaInAs layer [44]) has
to be chosen with care. If it is too thick it will not be coherent with the layers
below (i.e. dislocations will be generated), and the doping efficiency will be reduced
dramatically, preventing a low Rc. If it is too thin, the first etch will consume it and
some uncontrollable fraction of the underlying AlInAs Schottky-barrier layer, leading
to a non-uniform VT . Although Matthews and Blakeslee’s [50] theory leads to a 40 Å
critical thickness for GaAs clad by Ga0.47In0.53As, the actual critical thickness for
layers in tensile stress can be significantly larger than the theoretical one [51]. The
layer structure in Figure 17.13 was designed for standard solid-source MBE. With
MOCVD, an approach utilizing an InP etch-stop layer [46] is an excellent alternative.

The T-shaped gate illustrated in Figure 17.13 is defined by: (1) direct e-beam
writing in a trilayer resist [52], (2) development of the exposed resist [52], (3) RIE
of the bottom thin nitride layer, (4) recess etching (as just discussed), (5) metal
evaporation, and (6) ‘lifting off’ the excess metal sitting on the unexposed resist stack
(by immersing the wafer in a solvent). The gate length is defined by the cut in the
bottom layer resist. The cut in the top layer resist, which is of the same kind as the
bottom, is larger because of a more concentrated developer. The different middle
layer resist has after selective development the widest lateral extent, allowing for easy
lift-off. Gates on the order of 0.1 µm can be defined with this approach. The one-step
exposure self-aligns the top of the T-shaped gate with its stem. The approach relies on
the excellent selectivity of the developers. In special single-layer resists gate cuts as
short as 30 nm can be defined [15]. In this case an additional optical exposure is used
to define the wider top of the gate.

In lithography for very short gates, the aspect ratio in the resist cut (resist height
divided by the gate length) can become quite large. Since gate metal is not only
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Fig. 17.14. Mechanism for forming a deep narrow notch during conformal PECVD
(plasma-enhanced chemical vapor deposition) growth of SiO2. Prior to this step, ohmic contact
metal and SiO2 were evaporated with the same mask. A self-limiting process develops for t > t2,
when the growth rate in the notch is reduced below that in the field [56]. (H. Rohdin and A. Nagy,
Technical Digest of the International Electron Devices Meeting, IEEE, Piscataway, pp. 327–330,
1992.)

deposited on the semiconductor at the bottom of the cut, but also on the resist
edges, the gate mask becomes progressively smaller during the deposition. Starting
with a rectangular cut, the resulting bottom stem of the T-gate will be trapezoidal
(Figure 14.1). This is the necking phenomenon discussed in Chapter 16. If the aspect
ratio is too large, the opening closes completely, thus detaching the then triangular
stem from the top of the T. The problem is managed by using a sufficiently thin resist,
and can be avoided if the bottom resist layer has sufficiently outward-sloping walls.

The low through-put of direct e-beam writing is a manufacturing and cost issue.
Alternative methods for defining ultra-short gates, but based on high through-put
optical lithography, have also been developed. These techniques include angle
evaporation [53], phase-shifting techniques [54, 55] and self-limiting oxide spacers
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(a) (b)

Fig. 17.15. Formation of an ultra-short gate cut by optical lithography and spacer technology: (a)
deep notch after completion of the conformal oxide growth illustrated in Figure 17.14; (b) 0.1-µm
gate cut created after RIE back-etching [56]. (H. Rohdin and A. Nagy, Technical Digest of the
International Electron Devices Meeting, IEEE, Piscataway, pp. 327–330, 1992.)

[56]. The last is based on the behavior of conformal growth of oxide between optically
defined ohmic contacts. Figure 17.14 shows schematically, and Figure 17.15(a)
actually, how a deep notch can develop. After anisotropic RIE back-etch of the
oxide, a deep submicron gate cut remains, as shown in Figure 17.15(b). One of the
interesting features of this approach is that the uniformity of the final cuts is better
than the uniformity of the micrometer-size interohmic spacing. This is a result of the
self-limiting feature of the notch formation. This type of approach has been shown
to be well suited for production [57]. With the slope of the oxide in Figure 17.15(b),
there is no necking problem with this approach.

In a good T-gate process, the gate metallization access resistance rga (along the
dimension into the paper in Figures 17.13–17.15) is kept low (≤ 100�/mm). However,
as we have seen in Chapter 16, this is only one of two components that make up the
total gate resistance of the FET. A typically more dominant one is associated with the
metal–semiconductor interface. Measures should be taken to improve the quality of
this interface as much as possible. Some measures that work well are: (1) using an
effective cleanup dip prior to evaporation; (2) minimizing the delay to evaporation;
and (3) using a gate metal that can be controllably sintered into the semiconductor,
while consuming remaining native oxide and/or contaminants. From the standpoints
of a clean interface and of barrier height, a good gate metal appears to be Pt, which
has been studied and used by workers in the III–V FET field for quite some time [58].
Because of the ∼ 1.4 scaling factor between sintering depth and initial Pt thickness,
the Pt thickness must be limited [59, 60, 44].

Other steps necessary to complete the MMIC process include device isolation,
nitride deposition for device encapsulation (or passivation) and capacitors, and at least
two levels of interconnect metallization. We refer the interested reader to Williams
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[61] where these ‘back-end’ processes and many other process-related topics are
discussed.

17.8 Reverse modeling

If the answer to the question that we posed in the introductions to Chapters 14 and
17 is ‘no’, inverse, or reverse, modeling [62, 63, 64] can be quite useful. As the name
implies, this involves using measured device data, and backing out underlying basic
physical parameters, the most important intrinsic ones being Lg , vsat and dgc. To get
good estimates of these, one preferably measures the Y parameters of the device under
conditions that make the theory in Chapters 14 and 15 particularly applicable, and easy
to ‘invert’. First, intermediate frequencies are used, so that Equations (15.68)–(15.70)
are valid. Second, the gate is biased for optimum modulation near maximum g(x)m0

and f (x)T , so that Equations (14.54), (15.1) and (15.2) and are applicable, and the
degrading effects of parasitic capacitances are kept to a relative minimum. The
drain bias should be large enough to velocity saturate the device, but small enough
to leave the intrinsic fringing essentially symmetric (Cgd,sat = �Cgs), and τ (1)g,sat

negligible. If we assume also that the extrinsic fringing is symmetric (C ( f )
gs = C ( f )

gd ),
and that Rs and Rd can be measured at DC as discussed in Section 14.6.2, Equa-
tions (15.68b), (15.68e), (15.69b), (15.69e), (15.70b), (15.70e), (15.70h) and (15.70l)
can be used to calculate the intrinsic parallel-plate gate capacitance C0 (Equa-
tions (15.1) and (15.2)), and the intrinsic transconductance (Equation (14.54)). This
gives us two equations for the three unknowns Lg , vsat and dgc. The third piece of
information can come from either Y11 measurements on a FATFET [63], or direct
measurement of Lg in an SEM (scanning electron microscope). A FATFET is a FET
with larger well-known gate length (typically several micrometers). Using this as
a ‘reference’, however, has two limitations. First, there may be some uncertainty
in the gate bias at which to evaluate the gate capacitance [63]. Second, it requires
that the recess depth is gate-length-independent. This in turn requires either a very
good wet etching technique (e.g. [44], Figure 3), or a selective etch. Neither may
be available at the time of troubleshooting by reverse modeling. The SEM approach
has the disadvantage of being destructive unless done on a lithographically nominally
identical test structure. Its advantage is its accuracy, and, when done on a cleaved
FET, it provides an opportunity to check the lateral recess determining Lus and
Lud .

An alternative way of getting the third piece of information is to rely on lessons
learned from earlier reverse modeling. One such important lesson on GaAs-based
MODFETs is the constant vsat for gate lengths ranging from 0.07 to 0.7 µm, and the
essential equality of vsat and vpeak (Figure 14.5) [63, 56]. Based on measured f (x)T and
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forward modeling, this also holds true for InP-based MODFETs, even down to 30 nm
gates [15].

The experimental threshold voltage that corresponds to the theoretical VT in
Equation (14.4) is measured at a fixed low VD (< VDsat ). The inflection-point tangent
of ID(VG) is then used to extrapolate to zero ID at VG = V ′

T . The threshold voltage
can then be calculated as VT = V ′

T −VD/2. The materials parameters that go into VT (
 B , �EC , EFo, ε) are rather well established, as is �d (Equation (14.5)). Thus, with
some additional reliable MBE-related information (doping and/or layer thicknesses)
the properly measured VT can also be of help when troubleshooting a process.

We will not delve further into the topic of reverse modeling, and simply refer the
interested reader to the references, with the one further comment that, as processes
evolve, so can the assumptions used in the reverse modeling. One example is the
determination of the source resistance. In the 0.25–0.7 µm gate symmetric self-aligned
process studied in [63] extra care was taken when determining Rs . In later 0.1-µm
non-self-aligned processes the relative contribution to the measured Rs from the gated
channel is negligible, and the DC measurement outlined in Section 14.6.2 is typically
sufficient. Another parameter that could excessively degrade the device performance,
particularly the gain and noise figure, is the parasitic gate resistance. Its measurement
and separation into physical components, were discussed in Section 16.3.

17.9 Conclusion

In this last chapter on MODFETs we have, as an example, applied the analytical theory
developed over several chapters to the optimization of an InP-type MODFET. We
focused on the actual fmax since this cut-off frequency is particularly fundamental.
We went on to cover noise in some depth, and included a physically based thermal
noise model that includes all equivalent circuit elements. Processing issues that affect
not only the performance, our primary focus, but also manufacturability and yield,
were briefly discussed by means of examples from industry. Finally, an even briefer
discussion of reverse modeling rounded off the section on MODFETs. The last two
chapters in the book deal with modeling and material/processing issues of another
important device for high-speed applications: the heterojunction bipolar transistor.
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‘Alloying effects on the critical layer thickness in Inx Ga1−x As/InP heterostructures analyzed
by Raman scattering’, Applied Physics Letters, Vol. 72, pp. 436–438, 1998.

[52] A.S. Wakita, C.-Y. Su, H. Rohdin, H.-Y. Liu, A. Lee, J. Seeger and V.M. Robbins, ‘Novel
high-yield trilayer resist process for 0.1 µm T-gate fabrication’, Journal of Vacuum Science
and Technology B, Vol. 13, pp. 2725–2728, 1995.



611 17.11 Problems

[53] N. Moll, M.R. Hueschen and A. Fischer-Colbrie, ‘Pulse-doped AlGaAs/InGaAs
pseudomorphic MODFETs’, IEEE Transactions on Electron Devices, Vol. 35, pp. 879–886,
1988.

[54] H.-Y. Liu, C.-Y. Su, N. Farrar and B. Gleason, ‘Fabrication of 0.1 µm T-shaped gates by
phase-shifting optical lithography’, Proceedings of SPIE, Vol. 1927, Pt. 1, pp. 42–52, 1993.

[55] J.G. Wang, K.Y. Hur, L.G. Studebaker, B.C. Keppeler and A.T. Quach, ‘0.15 micron gate
AlInAs/GaInAs MHEMT fabricated on GaAs using deep-UV phase-shifting mask
lithography’, Technical Digest of the Gallium Arsenide IC Symposium, IEEE, Piscataway,
pp. 74–77, 1997.

[56] H. Rohdin and A. Nagy, ‘A 150 GHz sub-0.1-µm E/D MODFET MSI process’, Technical
Digest of the International Electron Devices Meeting, IEEE, Piscataway, pp. 327–330, 1992.

[57] J.-E. Müller, A. Bangert, T. Grave, M. Kärner, H. Riechert, A. Schäfer, H. Siweris,
L. Schleicher, H. Tischer, L. Verweyen, W. Kellner and T. Meier, ‘A GaAs HEMT MMIC chip
set for automotive radar systems fabricated by optical stepper lithography’, Technical Digest
of the Gallium Arsenide IC Symposium, IEEE, Piscataway, pp. 189–192, 1996.

[58] V. Kumar, ‘Reaction of sputtered Pt films on GaAs’, The Journal of Physics and Chemistry of
Solids, Vol. 36, pp. 535–541, 1975.

[59] N. Harada, S. Kuroda and K. Hikosaka, ‘N-InAlAs/InGaAs HEMT DCFL inverter fabricated
using Pt-based gate and photochemical dry etching’, IEICE Transactions on Electronics,
Vol. E75-C, pp. 1165–1171, 1992.

[60] K.J. Chen, T. Enoki, K. Maezawa, K. Arai and M. Yamamoto, ‘High-performance
enhancement-mode InAlAs/InGaAs HEMT’s using non-alloyed ohmic contact and Pt-based
buried-gate’, Proceedings of the International Conference on Indium Phosphide and Related
Materials, IEEE, Piscataway, pp. 428–431, 1995.

[61] R.E. Williams, Gallium Arsenide Processing Techniques, Artech House, Dedham, 1984.

[62] P.H. Ladbrooke, ‘Reverse modelling of GaAs MESFETs and HEMTs’, GEC Journal of
Research, Vol. 6, pp. 1–9, 1988.

[63] H. Rohdin, ‘Reverse modeling of E/D logic submicrometer MODFET’s and prediction of
maximum extrinsic MODFET current gain cut-off frequency, IEEE Transactions on Electron
Devices, Vol. 37, pp. 920–934, 1990.

[64] S.J. Mahon, ‘The modelling and inverse modelling of high electron mobility transistor devices
and circuits’. PhD Thesis, University of Sydney, 1992.

17.11 Problems

17.1 Translate the measured S parameters into Y parameters, i.e. derive Equation (17.8).

17.2 Show that the available noise and signal powers from the generator are given by Equa-
tion (17.21), and that the maximum power is delivered when generator and amplifier are
conjugately matched (Yi = Y ∗

G ).

17.3 Express the noise figure of a chain of amplifiers in terms of the noise figures and available gains
of the individual stages, i.e. derive Equation (17.24). Hints: Remember that the noise figure is
always defined (Equation (17.22)) with respect to the generator-independent available noise
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power (Equation (17.21a)). Start by expressing the noise power generated by the last stage in
terms of its gain and noise figure. Then work backward.

17.4 Derive Equation (17.37) for the available gain (Equation (17.23)) of a two-port. Hint: Apply
Norton’s theorem to the network comprising the two-port and input signal generator.



18 Modeling high-performance HBTs

D.L. Pulfrey

And we must take the current when it serves,

or lose our ventures

King Lear, Act 4, Scene 3, WILLIAM SHAKESPEARE

18.1 Introduction

Epitaxial-layer, bipolar transistors are intrinsically well suited to high-frequency
applications because their critical, physical dimensions are mainly in the direction of
the semiconductor film growth, which can be controlled on a near-atomic scale. This
is in contrast to field-effect transistors (FETs), where the critical dimension of gate
length must be determined lithographically.

Among the family of bipolar transistors, heterojunction bipolar transistors (HBTs)
are particularly attractive for operation at high frequencies because their employment
of a wide-bandgap emitter allows a highly doped base region to be used without
compromising the current gain [1]. With a highly doped base, the base width can
be reduced while still maintaining an acceptable base resistance. A short base width
leads directly to an improved cut-off frequency, fT , which, when coupled with the
lower base resistance, leads to an improved oscillation frequency, fmax. These, and
other, attributes of HBTs have been reviewed [2].

In this chapter, some important aspects of modeling high-performance HBTs are
discussed. The aims are twofold: (i) to gain some insight into the workings of an
HBT at the microscopic level; (ii) to use this insight to examine, or develop, analytical
expressions which may be useful in the engineering design of high-frequency and
high-speed devices.

At the microscopic level, the emphasis is on the collector current density, JC . This
is an important parameter for high-frequency devices because, via the charge-control
method, it is involved in the calculation of the overall signal delay time, τEC , which,
in turn, is related to the common-emitter, unity gain, current cut-off frequency, fT

which, in its turn, is related to the unity gain, power cut-off frequency, fmax. These
two frequencies are the main performance metrics for a high-frequency device. At the
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engineering level, the emphasis is on providing compact models for JC , fT and fmax.
Brief consideration is also given to the incorporation of the compact model for JC

into a large-signal equivalent circuit suitable for the simulation of HBTs in switching
applications.

18.2 Microscopic modeling of HBTs

18.2.1 Introduction

A complete microscopic model of the HBT would invoke the Boltzmann transport
equation (BTE) to describe charge flow in the bulk regions of the device, the
Schrödinger wave-equation (SWE) to describe charge concentrations and flows at
regions of abruptly changing potential, and Poisson’s equation (PE) to link internal
charge distributions to external voltages. Less demanding models might be realized
by, for example, using the drift-diffusion equation (DDE) as an approximate solution
of the BTE, using the Jeffreys–Wentzel–Kramers–Brillouin (JWKB) approximation as
a solution for the SWE, and not requiring these solutions to be consistent with PE.

In this chapter, as an example of a tractable microscopic model for HBTs, an
iterative approach is described which solves directly the one-dimensional BTE in a
field-free base, and accounts for quantum-mechanical tunneling at the emitter base
junction via the JWKB approximation [3,4]. Limiting the quantum mechanical
treatment to tunneling through junctions is reasonable as other quantum aspects, such
as bound energy states, are unlikely to be of importance because of the near-negligible
depth of any potential notches in the device (see Figure 18.1). Limiting the bulk-
transport treatment to the base is reasonable, at least when computing the collector
current density, JC , because this is the zone of the associated minority-carrier flow.
Limiting base transport to the field-free case is also reasonable, at least in instances
of uniform doping and composition, because the high doping in the base ensures
that low-level injection conditions apply. Limiting the problem to one dimension is
reasonable, at least for the calculation of JC , as the quasi-neutral base width, WB , is
short compared to any relevant lateral dimension of a modern HBT.

18.2.2 Direct solution of the BTE

When subjected to the restrictions listed above, the BTE reduces to [4]:

vz
d f (z, k, θ)

dz
= Cin(z, k, θ)− Cout (z, k, θ)

= Cin(z, k, θ)− f (z, k, θ)

τ (k)
, (18.1)
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Fig. 18.1. Conduction-band profiles for abrupt- and graded-emitter Alx Ga1−x As/GaAs HBTs
operating under similar forward-bias conditions. In the abrupt case x = 0.3; in the graded case x is
linearly changed over a distance of 0.02 µm. The base region extends from 0.40–0.45 µm. Note the
presence of a small barrier at the base–collector junction. This is caused by bandgap narrowing in
the base region. This phenomenon is also responsible for the slight spike remaining in the
conduction band at the emitter–base junction of the graded device. Note also the two different
definitions of the peak barrier height Epk , depending on whether the emitter–base junction is abrupt
or graded.

where vz is the electron velocity, k is the magnitude of the electron wave-vector
and is directed at an angle θ to the z axis, Cin and Cout are the incoming- and
outgoing-collision integrals, respectively, and τ is the scattering lifetime. The last
three properties can be expressed in the non-degenerate case as, respectively:

Cin(z, k, θ) = 1

(2π)3

∫
k′

f (z, k′, θ ′)S(k′,k) dk′,

Cout (z, k, θ) = 1

(2π)3

∫
k′

f (z, k, θ)S(k,k′) dk′ = f (z, k, θ)

τ (k)
,

where S(k,k′) is identified with a particular scattering mechanism and describes the
rate of transition of carriers from an occupied state with wave-vector k to an empty
state with wave vector k′. The scattering mechanisms considered here are those due to
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Fig. 18.2. Montage illustrating the injected and reflected electron fluxes at the emitter–base
junction, and the collected and back-injected fluxes at the base–collector junction [4]. Note that W
in the figure is equivalent to WB in the text. (A.R. St Denis and D.L. Pulfrey, Journal of Applied
Physics, Vol. 84, pp. 4959–4965, 1998.)

screened, ionized impurities and polar-optical phonons; these are the most important
ones for the Alx Ga1−x As/GaAs material system, from which the examples in this
chapter are drawn. Equation (18.1) is a first order, ordinary differential equation and,
in principle, can be solved using an integrating factor. The difficulty lies in not being
able to evaluate the integration constant because f , the distribution function, is not
fully specified at any boundary. However, by splitting up f into forward-going ( f +)
and negative-going ( f −) parts, the known partial boundary conditions are sufficient to
allow an iterative solution to be obtained [4,5]. The basic forms of the two components
of the distribution are:

f +(z, k, θ) = f +(0, k, θ) exp(−z/vzτ)+
∫ z

0
exp[(z′ − z)/vzτ ]

1

vz
Cin dz′, (18.2)

f −(z, k, θ) = f −(WB, k, θ) exp[(WB − z)/vzτ ]

+
∫ z

WB

exp[(z′ − z)/vzτ ]
1

vz
Cin dz′. (18.3)

For an abrupt junction, electrons are injected by thermionic emission over the
barrier, and by tunneling through it, giving rise to a distribution function f +

TTE(0, k, θ).
Additionally, electrons backscattered in the base can be reflected into the forward-
going ensemble by the potential spike at the junction, giving rise to a distribution
function f +

RF L(0, k, θ). These features are illustrated in Figure 18.2. Thus, the
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boundary condition at z = 0 for the forward-going part of the electron ensemble in an
abrupt-junction device is [4]:

f +(0, k, θ) = f +
TTE(0, k, θ)+ f +

RF L(0, k, θ), (18.4)

where

f +
TTE(0, k, θ) = nE

Nc
exp(−Ebe/kB T ) exp(−Ek/kB T )T (k, θ), (18.5)

f +
RF L(0, k, θ) = f −(0, k, π − θ)[1 − T (k, θ)]. (18.6)

In the above, nE is the equilibrium (Maxwellian) electron concentration in the emitter
at the distal edge of the emitter–base space-charge region, from which the injected
flux originates, Nc is the effective density of states in the conduction band, Ebe is
the potential energy difference shown in Figure 18.2, kB T is the thermal energy and
T (k, θ) is the JWKB approximation for the tunneling transmission probability. The
electron energy, Ek , is computed here by assuming parabolic bands and spherical
constant-energy surfaces, i.e.,

Ek = h̄2

2m∗ (k
2
x + k2

y + k2
z ), (18.7)

where m∗ is the electron effective mass.
For graded-emitter junctions, the absence of a dominant potential spike (see

Figure 18.1) means that f +(0, k, θ) can take the form of a simple hemi-Maxwellian.
At the other end of the base, z = WB , a classical homojunction is assumed

(see Figure 18.2), regardless of the type of emitter–base junction. The collector is
considered to be perfectly absorbing, but is also capable of injecting electrons into the
base under appropriate bias conditions. The distribution for this flux is taken to be
hemi-Maxwellian and, analogously to the emitter case, is given by

f −(WB, k, θ) = nC

Nc
exp(−Ebc/kB T ) exp(−Ek/kB T ), (18.8)

where nC is the equilibrium electron concentration in the collector, and the barrier Ebc

is shown in Figure 18.2.
Substituting the appropriate boundary conditions and collision integrals into Equa-

tions (18.2) and (18.3) permits an iterative solution for the forward- and backward-
going parts of the electron distribution function to be obtained. These can be summed
at any position to determine f (z, k, θ), from which it is straightforward to compute
useful parameters such as: carrier concentration, carrier mean velocity and current
density.

The results which follow are for Alx Ga1−x As/GaAs HBTs, with the mole fraction,
x , being 0.3 for abrupt-junction devices. For graded-emitter devices, the barrier for
electron flow in the npn devices considered here is determined by the height, and not
by the shape, of the conduction-band barrier (see Figure 18.1). Thus it is appropriate
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to set x = 0.0 for the purpose of estimating JC in a graded-emitter HBT when using
the microscopic model. For both graded and abrupt devices, the emitter, base and
collector doping densities in cm−3 are, respectively, 5 × 1017, 1 × 1019 and 5 × 1016.
In presenting the results, the base width is often normalized to the the overall mean free
path length, lsc, which is computed from the individual energy-dependent scattering
lengths for screened, ionized impurity (SII) scattering, and polar-optical phonon (POP)
scattering, as follows:

lsc = 1

n

2

(2π)3

∫
k

[
1

lsc,SI I (k)
+ 1

lsc,P O P(k)

]−1

fMB(k) dk. (18.9)

A Maxwell–Boltzmann distribution function, fM B , is used only for the purpose of
computing this normalizing value of lsc. Its value here is 46 nm, which is in reasonable
agreement with the value estimated from actual time-of-flight measurements on
similarly doped material [7].

Components of the distribution function
The components of the distribution function for the case of an abrupt-junction HBT
with base width WB = 1lsc are shown in Figure 18.3; the distribution function is
normalized with respect to nE exp(−Epk/kB T )/Nc, where Epk is the peak barrier
height at the base–emitter junction (Epk(abrupt) in Figure 18.1); the energy is
normalized to the POP energy (0.036 eV); the operating voltages are VBC = 0 and
VB E = 0.8 Vbi , where Vbi is the built-in potential at the emitter–base junction. The
carriers injected into the base from the emitter form the ballistic component at z = 0;
the distribution is sharply peaked in energy and strongly focused about the z axis
(θ = 0). This distinctive shape of the distribution is characteristic of tunneling through
a conduction-band spike. The maximum tunnel flux occurs, irrespective of bias, at an
energy which is close to 80% of the peak barrier height [8]; below this energy tunneling
is reduced by the increasing thickness of the barrier; above this energy tunneling is
reduced by the decreasing electron population. The distribution is focused around the
z axis because of the dependence of tunneling on the longitudinal component of energy
(Ez = h̄2k2

z /2m).
The ballistic component is reduced by scattering as it transits the base. The

corresponding scattered component is shown in row 3 of Figure 18.3; there is a
noticeable step at the phonon energy in this distribution at z = WB due to the loss
of carriers by electron–POP interactions. Notice also that this distribution approaches
the form of a hemi-Maxwellian, i.e., it is nearly exponential in shape over the full range
of the forward angle. This is somewhat surprising in view of the fact that the base has
a width of only one scattering length. Similar behavior in short-base Si homojunction
devices has been reported by others and discussed in [9]. In Equation (18.2), the
first term on the right-hand side represents those carriers that are still traveling
ballistically at some point z: this fraction can be written as exp[−z/(lsc cos θ)].
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(A.R. St Denis and D.L. Pulfrey, Journal of Applied Physics, Vol. 84, pp. 4959–4965, 1998.)
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Fig. 18.4. Base width dependence of the carrier profile for two different sets of scattering
mechanisms for a graded-emitter HBT under operating conditions of VB E = 0.8Vbi and VBC = 0
[3]. Note: W ≡ WB . (A.R. St Denis, PhD thesis, University of British Columbia, 1999.)

Therefore, for WB = 1lsc, it is clear that even for the least favorable scattering case
of cos θ = 1, over 60% of the carriers will scatter before exiting the base. Thus,
there is significant scattering from the entire, injected distribution, which produces
a near-thermalized, scattered component of electrons at the collector end of a short
GaAs base. Further scattering, which is experienced by the backscattered electrons,
serves to drive the scattered component of the distribution even closer to that of a
hemi-Maxwellian. A large fraction of the backscattered electrons at z = 0 is reflected
by the conduction-band spike, which accounts for the near-hemi-Maxwellian nature of
the reflected distribution shown in Figure 18.3.

The bottom row of Figure 18.3 shows both the forward- and backward-directed
components of the total distribution. While the backward component builds into a
near-hemi-Maxwellian distribution at the emitter end of the quasi-neutral base, the
full distribution is far from thermalized at any point in the base.

For the case of the graded-emitter HBT, the components of the distribution are not
nearly so interesting. In the absence of a conduction-band spike at the emitter–base
interface, the distribution is injected as a near-equilibrium hemi-Maxwellian, and
remains in this condition across the base, as any scattering serves only to drive it closer
to its equilibrium form.
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Fig. 18.5. Normalized carrier concentration profiles in an abrupt-junction HBT for various base
widths and the same bias conditions as in Figure 18.4. The abscissae are z/WB and the ordinates are
n(z)/n∗

E [3]. Note: W ≡ WB . (A.R. St Denis, PhD thesis, University of British Columbia, 1999.)

Profiles of electron concentration and velocity
The electron concentration profiles for the graded-emitter case and various base
widths are shown in Figure 18.4. The concentration is normalized to n∗

E =
nE exp(−Epk/kB T ), i.e., to twice the value of the concentration in the hemi-
Maxwellian distribution injected over the emitter–base potential barrier of height
Epk (i.e., Epk(graded) in Figure 18.1). As the base width shrinks, the profiles
become progressively non-linear, and the mean gradient decreases as the flow moves
from being diffusion-limited to ballistic-limited. This sort of behavior has been
documented before for Si-like bipolar transistors [5], for which acoustic phonons
provide the dominant scattering mechanism. Figure 18.4 shows that, for the case of a
graded-emitter device, the concentration profiles are barely sensitive to the nature of
the scattering mechanism. This is a consequence of the forward- and backward-going
components of the distribution maintaining near-hemi-Maxwellian forms over the
entire base width.

The concentration profiles for the abrupt-junction case are shown in Figure 18.5.
The normalization is again to n∗

E but, note that in this case, normalized values in excess
of unity occur. This is because of both forward tunneling through the barrier and
reflection of backscattered electrons at the interface (see Figure 18.2). The tunneling
probability, T (k, θ), for the backscattered component, under the conditions of the
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Fig. 18.6. Normalized, mean forward-velocity profiles for both graded-junction HBTs (full lines)
and abrupt-junction HBTs (dashed lines) for three different base widths and the same bias
conditions as in Figure 18.4 [4]. Note: W ≡ WB . (A.R. St Denis and D.L. Pulfrey, Journal of
Applied Physics, Vol. 84, pp. 4959–4965, 1998.)

JWKB approximation, is the same as for the injected component, but the backward
tunneling current is orders of magnitude less, because of the huge difference between
nE and n(0).

The mean, forward-velocity profiles for each type of junction are shown in Fig-
ure 18.6. For the graded-emitter HBT, the hemi-Maxwellian nature of the injected dis-
tribution fixes the boundary condition of v+(0) = 2vR , where vR = [kB T/(2πm∗)

]1/2
is the Richardson velocity. Scattering tends to drive any distribution towards a
Maxwellian, as Figure 18.3 illustrates, so v+(z) remains close to 2vR over the entire
width of the base in the graded-emitter case. There is a slight increase towards the
collector end of the base, where the forward-directed flow is not mitigated by scattering
in the immediate vicinity of the absorbing collector [6,9].

The v+(z) profiles for the abrupt-junction HBT differ from those for the graded-
emitter HBT, not only in magnitude, but also in the fact that they are thickness-
and voltage-dependent. In a short-base, abrupt-junction device, v+(z) is high, in
accordance with the highly focused, energetic nature of the tunneling contribution to
the injected distribution. As the base thickens, there is more backscattering and, from
this component of the distribution, which tends towards a hemi-Maxwellian, reflection
into the forward direction occurs at the conduction-band spike. Thus, the mean
velocity of the forward component falls and, at WB = 10lsc, the situation is almost
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Fig. 18.7. Normalized current density as a function of base width for both graded- and
abrupt-junction HBTs operating at VB E = 0.8Vbi and VBC = 0 [10]. For both devices the current
is normalized to its ballistic value. (D.L. Pulfrey, A.R. St Denis and M. Vaidyanathan, Proceedings
of the IEEE Conference on Optical and Microelectronic Materials and Devices, IEEE, Piscataway,
pp. 81–85, 1998.)

identical to that in a graded-emitter transistor, i.e., scattering and reflection essentially
destroy the focused, high-energy character of the injected electron distribution.

Collector current
The collector current density as a function of base width for the two types of HBT is
shown in Figure 18.7 [10]. The normalization in this case is to the ballistic current
density, which is not the same for the two devices, i.e.,

Jbal,graded = −q
n∗

E

2
2vR,

Jbal,abrupt = −qn+
TTEv

+
TTE.


 (18.10)

In the abrupt-junction case, n+
TTE is the concentration of injected carriers arising from

tunneling and thermionic emission, and v+
TTE is their mean velocity. For the conditions

cited in Figure 18.7, it is found that n+
TTEv

+
TTE = 17.1 n∗

EvR .
The most surprising feature of Figure 18.7 is the near constancy of JC in the abrupt-

junction case, at least for base widths up to about WB = 10lsc. As WB increases,
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the backscattered component of the electron distribution increases, but due to specular
reflection at the emitter–base junction, there is no contribution of this flux to the net
current which, therefore, continues to be dominated by the injected component. It
is only when n(0) builds up to the extent that backward tunneling into the emitter
becomes significant that JC drops appreciably below its ballistic value.

18.3 Compact modeling of HBTs

18.3.1 Introduction

Microscopic models, such as the one described in the previous section, provide quan-
titative information on the details of carrier transport within a device. This knowledge
comes at the expense of a significant investment, both in model development and
in program execution time. For engineering device-design purposes, at least in the
early iterations of the design cycle, models that are less time-intensive, and more
easily mastered, are more likely to find widespread application. Particularly useful are
compact models, in which insight into the key factors determining device performance
is provided by a set of analytical expressions that relate the terminal behavior of
a device to its composition and layout. Ideally, the simplifications inherent in the
analytical expressions can be justified by appeal to the more rigorous results of a
microscopic model. In this vein, compact models for JC are presented here, and
are contrasted with the results from the microscopic model considered above. With
confidence in the expressions for JC , it is then possible to proceed to compact models
for the related high-frequency performance metrics, fT and fmax, and also to a model
suitable for assessing high-speed performance.

18.3.2 Compact models for the collector current

The path towards a compact model for JC starts at the second moment of the BTE [11]
or, alternatively, at Equation (9.16), which can be written as:

Jn = qµnnE + q Dn
∂n

∂z
+ 2µnn

∂u

∂z
− τsc

∂ Jn

∂t
(18.11)

where τsc is an average time related to scattering processes, µn is the mobility, Dn is
the diffusivity, and u is the average z-directed kinetic energy, defined by the following
expressions:

1

τsc
=
∫

[vz/τ
�(v)] f (z, v, t) dv∫
vz f (z, v, t) dv

, (18.12)

µn = qτsc

m∗ , (18.13)



625 18.3 Compact modeling of HBTs

Dn =
[

2u

q

]
µn, (18.14)

u =
∫

[m∗v2
z /2] f (z, v, t) dv∫
f (z, v, t) dv

, (18.15)

where, with respect to the variables used in Equations (18.1)–(18.3), f (z, v, t) ≡
f (z, k, θ, t) and τ �(v) ≡ τ(k, θ) = τ(k) for isotropic scattering.

To proceed further, the term involving ∂ J/∂t in (18.11) can be safely dropped in the
static case. If the energy-gradient term involving ∂u/∂z could also be ignored, then
the non-equilibrium DDE would result:

Jn = qµnnE + q Dn
∂n

∂z
. (18.16)

The validity of dropping the energy-gradient term can be judged by studying Fig-
ure 18.8, which shows the concentration gradient (diffusion) and energy-gradient terms
from Equation (18.11) for a field-free base. For both graded and abrupt devices the
magnitudes of the two terms are similar in the region close to the collector. This is
a consequence of the specified nature of the collector. Its absorbing property leads
to an increase in the mean forward-going velocity, and its non-injecting property (in
the normal, active mode of operation) leads to a decrease in the mean backward-going
velocity. Thus, there is a strong energy gradient in this region which opposes the
flow due to the concentration gradient. Apart from this, for graded-emitter HBTs it
would appear from Figure 18.8(a) to be not unreasonable to build a compact model
on consideration of the diffusion term alone. For the abrupt-junction device, it would
appear that a similar construction should not be attempted with so much confidence.

If Equation (18.16) is judged to be appropriate, then a final simplification would
follow if the velocity distribution function, f (z, v, t), could be considered to maintain
a form close to its equilibrium Maxwellian value over the base region. Under
these circumstances, Equation (18.16) would reduce to the equilibrium drift-diffusion
equation (DDE):

Jn = qµn0nE + q Dn0
∂n

∂z
. (18.17)

From the foregoing discussion and the results of the microscopic model it can be
appreciated that Equation (18.17) may be applicable to graded-emitter HBTs, but not
even Equation (18.16) is likely to be valid for abrupt-emitter HBTs [12].

Graded-emitter HBTs
It is sine qua non that high-frequency devices must have small dimensions, so any
compact model for JC must acknowledge the increasing importance of the boundary
conditions as the base width shrinks. This can be elegantly done by invoking the
one-flux method to represent the forward- and backward-going carrier flows at the
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Fig. 18.8. Contributions to the collector current of the concentration-gradient term (dashed line) and
the energy-gradient term (dashed-dotted line), as specified by the second and third terms,
respectively, in Equation (18.11). The simulations are for WB = 1lsc and JC ≈ 50 A cm−2: (a)
graded-junction HBT; (b) abrupt-junction HBT. (Data courtesy of A. St Denis.)
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Fig. 18.9. Incoming and outgoing fluxes at the junctions to the base of a graded-emitter HBT [6].
Here, v−(0) = 2vR , as is appropriate for a hemi-Maxwellian distribution. Note: W ≡ WB . (A.R.
St Denis and D.L. Pulfrey, Solid State Electronics, Vol. 38, pp. 1431–1436, 1995.)

interfaces to the base [13], as depicted in Figure 18.9. The one-flux model is, in
effect, a one-speed solution to the near-equilibrium BTE because it treats all fluxes as
hemi-Maxwellians with a velocity of 2vR . This is a fair representation of the situation
in the base of a graded-emitter device, as the microscopic results of Figure 18.6
indicate. The use of a constant velocity means that the energy-gradient term in the
BTE (Equation 18.11) can be ignored, and the use of the equilibrium value for this
velocity means that the one-flux method is equivalent to solving the equilibrium DDE
with appropriate boundary conditions [14]. The relevant boundary conditions were
proposed by Hansen [15]. In the derivation that follows, the exit velocity v+(WB) is
not explicitly set to 2vR in order that the influence of a real, non-absorbing collector
may be considered later, i.e.,

v+(WB) = vcoll. (18.18)

It is implicit that the collection velocity vcoll does not differ from 2vR to an extent
that the conditions for application of the equilibrium DDE are violated. Thus, with
reference to Figure 18.9, the boundary conditions are:

J (0) = −q

(
n∗

E

2
− nL

)
2vR,

J (WB) = −q

(
nRvcoll − n∗

C

2
2vR

) (18.19)
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Fig. 18.10. Normalized collector current as a function of normalized base width for a graded-emitter
HBT, from Equation (18.21) for different values of vcoll. The curves are for operating conditions of
VB E = 0.8Vbi and VBC = 0. The circles are experimental data, and are plotted using
lsc = 52.5 nm [21]. These data have been scaled to coincide with the predicted curves at the
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and

n(0) = n∗
E/2 + nL ,

n(WB) = n∗
C/2 + nR .

(18.20)

For operation in the normal, active mode, n∗
C ≈ 0, so combining the expressions for

J with the field-free, equilibrium version of the DDE (Equation 18.17), and ignoring
recombination in the base, gives:

JC = −qn∗
E(

WB

Dn0
+ 1

2vR
+ 1

vcoll

) . (18.21)

The form of Equation (18.21), with each of the denominator terms being a reciprocal
effective velocity, is characteristic of serial-flow transport situations [16,17]. It is
useful in identifying the bottleneck to charge flow [18] which, in this case, can be the
base (veff = Dn0/WB), or either of the two junctions (veff = 2vR for the emitter–base,
or veff = vcoll for the base–collector). Results are shown in Figure 18.10 for various
values of the collection, or exit, velocity, vcoll.
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When vcoll = 2vR , the agreement with the prediction from the microscopic model
(Figure 18.7) is excellent. Similar agreement for the case of Si homojunction bipolar
transistors has been observed and commented upon previously [6,10,15]. However,
as pointed out in [10], this agreement should not be construed as evidence that Equa-
tion (18.17) is rigorously valid on a microscopic level. The assumptions made about
the point value of Dn , the insignificance of the energy-gradient term and the departure
of vcoll from 2vR , all give cause for concern as the base width shrinks. If one of these
assumptions is removed, e.g., by making vcoll = 1.15×2vR , as suggested by the results
of the microscopic model, then, as Figure 18.10 indicates, Equation (18.21) actually
gives poorer agreement with the results from the microscopic analysis. This suggests
that the assumptions made in the analytical model are somehow compensatory [6].
Nevertheless, Equation (18.21) captures sufficient of the physics and gives adequate
agreement with more sophisticated models to be viewed as a useful compact model.

Giving further consideration to vcoll, the assumption made in the microscopic model
of an absorbing collector may need modification because, in real devices, phenomena
such as velocity saturation and velocity overshoot could determine the effective value
of the collection velocity. In homojunction devices, this velocity is often taken to
be vsat, the high-field saturation velocity [19,pp. 236–237]. In HBTs, because of the
high doping density in the base, bandgap-narrowing phenomena are likely to induce
a heterojunction at the base–collector interface (see Figure 18.1), even if there is no
change in material composition, and this may further reduce vcoll [20]. Some idea of
the importance of these collection-velocity-limiting factors can be obtained by using
vcoll = vsat in Equation (18.21), and also displaying some experimental data from
GaAs homojunction devices [21], which behave in the same way as the graded-emitter
devices being considered here. As Figure 18.10 indicates, setting vcoll = vsat does
significantly reduce the current, but, judging from the experimental data shown, a
more realistic value of vcoll would appear to lie closer to the absorbing limit of 2vR .

Because of the widespread use of commercial, DDE-based simulators, such as
MEDICI∗, it is instructive to demonstrate their capabilities for predicting the current in
short-base devices. In the heterojunction mode, MEDICI employs current balancing at
the interface but, in essence, uses Maxwellian distributions throughout, so the velocity
of n∗

E electrons injected into the base, for example, is vR . This leads to the factor
of 1/2vR in Equation (18.21) being doubled. For the case of vcoll = vsat, this has
only a slight effect on the predicted current, as demonstrated by the lowest curve in
Figure 18.10.

Abrupt-junction HBTs

The results from the microscopic model for JC in abrupt-junction HBTs, as shown
in Figure 18.7, indicate that a compact model should focus on describing the tunnel

∗ Available from Avant! Corp., www.avanticorp.com
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and thermionic-emission currents, as the base width has little influence on the
charge flow. Accordingly, it is reasonable to start with the JWKB approximation
and consider additional simplifications to produce an analytical expression for the
interfacial current. As noted in the discussion of Figure 18.3, the tunneling flux reaches
a maximum at some energy, which turns out to be about 0.8Epk [8]. By making a
second order Taylor series expansion about this point, the integral for the tunneling
current can be greatly simplified. Further, if the limits to the integration are allowed
to extend to ±∞, rather than being limited by the bounds of the tunneling barrier, a
particularly convenient expression materializes [8]:

JTTE = JTUN + JT E

= J0C exp
[
−E ′

pk tanh(U ′
oo)/(U

′
oo)
]

+ J0 exp(−E ′
pk), (18.22)

where

J0 = −qnEvR,

C =
[

4πE ′
pk sinh(U ′

oo)(U
′
oo)

cosh3(U ′
oo)

]1/2

,

U ′
oo = h̄q

2kB T

(
NE

m∗
EεE

)1/2

,

where NE , m∗
E and εE refer to the emitter parameters of doping density, electron

effective mass, and permittivity, respectively, and E ′
pk is the peak barrier height

normalized to kB T .
JTTE from Equation (18.22) agrees almost exactly with the prediction from the

microscopic model, as shown in Figure 18.11. Note that the normalization in this
figure is not to the ballistic current, as is the case in Figure 18.7, but, instead, to the
thermionic-emission current:

JT E = J0 exp(−E ′
pk) = −qn∗

EvR . (18.23)

Practical, high-frequency HBTs are likely to have WB ≈ 1lsc, so the comparison in
Figure 18.11 suggests that the compact model of Equation (18.22) should prove useful
in the prediction of the collector current in these devices.

The remaining curve on Figure 18.11 is from MEDICI simulations. In this simula-
tor, for abrupt-junction devices, the interfacial current resulting from the balancing of
currents computed from the JWKB approximation is coupled to drift-diffusion currents
in the bulk regions of the device [23,34]. Analytically, the allowance for tunneling,
and the presence of a conduction-band spike, can be represented by the addition of
two symbols, γ and δ, respectively, to Equation (18.21):

JC = −qn∗
E/δ(

WB

Dn0
+ 1

γ δvR
+ 1

vcoll

) (18.24)
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Fig. 18.11. Normalized collector current as a function of normalized base width for an
abrupt-emitter HBT. The curves are for operating conditions of VB E = 0.8Vbi and VBC = 0. The
data points are experimental results [22], and are plotted using the same mean free path length as in
Figure 18.10. The circles refer to high-gain devices (TA series) and the squares to normal-gain
devices (TB series). The data have been extracted from information given in [22], and correspond to
operation at the same bias conditions as used for the model calculations. These data have been
scaled so that the current for the thinnest high-gain device coincides with the current predicted by
the microscopic model.

where γ = JTTE/JT E is the ratio of the total current to the thermionic-emission
current and δ = exp(−�En/kB T ), with �En being the barrier height shown on
Figure 18.1. Typically, γ does not exceed 10, but δ can be as small as 10−4, so
γ δvR � vcoll and, as WB → 0, JC → JTTE, as desired. Even though Equation (18.24)
has a thickness-dependent term, it turns out that the effective base transport velocity,
Dn0/WB , is orders of magnitude higher than the effective injection velocity, γ δvR , so
this expression predicts a current that is essentially constant, with the same value as
that given by the compact model of Equation (18.22)∗.

Some results from experimental, abrupt-junction, Alx Ga1−x As/GaAs devices, with
x = 0.25 [22], are also displayed in Figure 18.11. The ratio of the highest value of
JC/JT E to the lowest value is 1.3 for the high-gain devices (TA series), and 1.5 for the
TB devices.
∗ Note that Equation (18.24) is derived assuming full-Maxwellian distributions, consistent with the
treatment in MEDICI. If a hemi-Maxwellian flux approach is used, consistent with the treatment used to
derive Equation (18.21), then Equation (18.24) is modified slightly (see Problem 18.3).
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Over the same thickness range (W/ lsc ≈ 1–3), the corresponding ratio for the
graded-emitter devices is 1.9 (see Figure 18.10). While this value is higher than those
for the abrupt-junction devices, clearly more experimental data are needed before
any definite corroboration can be claimed for the theory that abrupt-junction devices
exhibit less thickness dependence of JC than graded-emitter devices.

18.3.3 Compact models for fT

The charge-control method
The frequency response of a transistor is related in some way to the rate at which
the charge distribution within the device responds to a change in applied bias. One
such relation, from basic charge-control theory [25], links the total emitter-to-collector,
signal-delay time, τEC , to the changes in regional charge, �Qi , that are induced by a
small change in collector current, �IC , with the collector–emitter voltage, VC E , held
constant:

τEC = 1

2π fT
=
∑

i

τi =
∑

i

�Qi

�IC

∣∣∣∣
VC E

. (18.25)

With appropriately chosen boundaries, Q can refer to the charge of either the electrons
or the holes contained within the specified region [20]. Before identifying convenient
boundaries for the regions, i , it is instructive to show that Equation (18.25) is
equivalent to the familiar result from the small-signal, hybrid-π , equivalent circuit.
To do this involves a bit of calculus:

Q = Q(VB E , VC B)

�Q = ∂Q

∂VB E

∣∣∣∣
VC B

�VB E + ∂Q

∂VC B

∣∣∣∣
VB E

�VC B

�Q = ∂Q

∂VB E

∣∣∣∣
VC B

�VB E + ∂Q

∂VBC

∣∣∣∣
VB E

�VB E

�Q

�IC

∣∣∣∣
VC E

= ∂Q

∂VB E

∣∣∣∣
VC B

�VB E

�IC

∣∣∣∣
VC E

+ ∂Q

∂VBC

∣∣∣∣
VB E

�VB E

�IC

∣∣∣∣
VC E

= Cπ
1

gm
+ Cµ

1

gm
,

where Cπ and Cµ are the capacitances associated with charge changes due to changes
in VB E and VBC , respectively, and gm is the transconductance. This is the same as
the result obtained from the hybrid-π equivalent circuit when parasitic resistances are
neglected [19, p. 175]. If these resistances need to be considered, as they are in the
full hybrid-π circuit shown in Figure 18.12, then they can be factored into the charge-
control derivation by distinguishing between terminal voltages and junction voltages∗.
∗ See Problem 18.5.
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Fig. 18.12. Hybrid-π equivalent circuit for an HBT [35]. The total collector–base junction
capacitance is given by Cjc =∑n

i=1 Ci , and, for operation in the active mode, is equal to Cµ, as
introduced following Equation (18.25). (M. Vaidyanathan and D.L. Pulfrey, IEEE Transactions on
Electron Devices, Vol. 46, pp. 301–309, 1999.)

A convenient separation of the device into ‘quasi-neutral’ and ‘space-charge re-
gions’ is shown in Figure 18.13. Based on this partition, the following regional delay
times may be defined:

τE = �QE

�IC

∣∣∣∣
VC E

, (18.26)

τB = �Q B

�IC

∣∣∣∣
VC E

, (18.27)

τC = �QC

�IC

∣∣∣∣
VC E

, (18.28)

where τE accounts for the signal delay through the quasi-neutral emitter and the
emitter–base space-charge region, τB represents the delay of the quasi-neutral base
region, and τC represents the delay through the collector–base space-charge region
and the quasi-neutral collector.

To compute the changes in stored charge, access is needed to some simulator that
can represent the entire device, from emitter terminal to collector terminal. In the
section on compact models for JC , it was shown that a numerical simulator, such as
MEDICI, can provide adequate results for the collector current, even in short-base
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Fig. 18.13. (a) Conceptual partition of an HBT into quasi-neutral and space-charge regions
(shaded). (b) Sample plots of the local charge changes and (c) corresponding plots of the integrated
charge changes, versus position z for JC = 3 × 104 A cm−2. For (b) and (c) the MEDICI
simulations were for a graded-emitter device with the metallurgical base extending from 0.4 to
0.5 µm and a subcollector commencing at 0.9 µm [20]. (D.L. Pulfrey, S. Fathpour, A.R. St Denis,
M. Vaidyanathan, W.A. Hagley and R.K. Surridge, Journal of Vacuum Science and Technology A,
Vol. 18, No. 2, pp. 775–779, 2000.)

devices. It is convenient, therefore, to use this simulator to determine the changes
in regional stored charge needed to evaluate the regional delay times. The changes
in stored charge can be found simply as the integrated change in electron or hole
concentration in each region: �Qi ≡ q

∫
i �n(z) dz = q

∫
i �p(z) dz, where �n(z)

and�p(z) represent the concentration changes brought about by the change in current
�IC . The values of τE , τB and τC so calculated can then serve as the benchmarks
against which compact expressions for the regional delay times can be judged.

Extraction of the regional delay times from the numerical simulations is straight-
forward, provided the edges of the quasi-neutral base are taken to demarcate the
three regions of the device associated with the delay times τE , τB and τC , as shown
in Figure 18.13(a). In a quasi-neutral region the changes in electron and hole
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concentration must be equal at each point (see Figure 18.13(b)): �p(z) = �n(z)
and, furthermore, on integrating entirely across a quasi-neutral region, the total
change in stored electron and hole concentrations must be equal (see Figure 18.13(c)):∫

QN�p(z) dz = ∫QN�n(z) dz. This region is sharply defined in the base of HBTs
because of the very high doping density that exists in this region∗. Numerically,
equality of the electron and hole quantities involved can be defined to exist if the
difference between the quantities is a small fraction of either quantity taken alone.

Unfortunately, it is not feasible with this scheme to subdivide τE into portions that
can be associated with the quasi-neutral emitter and the emitter space-charge layer.
This is because such a boundary is blurred by the large number of free charges present
during forward-bias operation. Thus, if the numerical condition used to define equality
of the electron and hole quantities involved is changed by a small amount, the resulting
space-charge-region edge in the emitter changes by an unacceptable amount.

Regional signal-delay expressions
Traditionally in bipolar transistor analysis and design, and also commonly in HBT
studies [26], the following expressions are used to estimate the regional signal-delay
times:

τE = εA

WB E gm
, (18.29)

τB = W 2
B

2Dn0
+ WB

vcoll
, (18.30)

τC = εA

WBC

(
1

gm
+ WE

AσE
+ WC

AσC

)
+ WBC

2vsat
, (18.31)

where the new symbols are as follows: ε is the permittivity; A is the cross-sectional
device area; σE and σC are the conductivities of the emitter and collector materials;
WE and WC are the quasi-neutral widths of the emitter and collector; WB E and WBC

are the space-charge region widths at the emitter–base and collector–base junctions,
respectively. The expression for τE accounts only for the charging and discharging of
the emitter–base junction capacitance via the dynamic resistance, 1/gm ; the effects of
stored free charge in the neutral emitter and in the emitter–base space-charge region
are ignored. The expression for τB assumes a finite electron velocity vcoll at the
collector side of the quasi-neutral base. The expression for τC accounts for the effects
of charging and discharging the collector–base junction capacitance via the dynamic
resistance and the parasitic emitter and collector resistances; the delay due to stored
free charge within the collector–base space-charge region is also included, with the
factor of 1

2 arising specifically from the simplifying assumption of a uniform electron

∗ The onset of the space-charge regions at either end of the base can also be identified by the relatively
large change in majority-carrier concentration, as required to charge and discharge the majority-carrier,
space-charge capacitance.
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velocity [19, pp. 238–240]. Equations (18.29) and (18.31) are most easily applied
when the region widths are estimated by invoking the depletion approximation.

To test the suitability of the above compact expressions for estimating the re-
gional delay times in Alx Ga1−x As/GaAs HBTs, a comparison is made below with
results from MEDICI, using the relevant, resident models for mobility, recombina-
tion, Fermi–Dirac statistics and bandgap narrowing. The devices studied here are
n-Al0.3Ga0.7As/p-GaAs HBTs with metallurgical emitter and base widths of 4000
and 1000 Å, respectively, and associated doping densities of 6 × 1017 cm−3 and
3 × 1019 cm−3. The collector and subcollector have widths of 3000 and 4000 Å,
respectively, with doping levels of 4 × 1016 cm−3 and 4 × 1018 cm−3. Two devices are
considered: an abrupt-junction device and a graded device with 200 Å of linear grading
in the emitter. Unless indicated otherwise, the results presented are for VC E = 2 V and
JC ≡ IC/A = 1 × 104 A/cm2, which represents a reasonable operating point prior to
the onset of high-current effects.

Emitter delay
Figure 18.14(a) shows values of τE versus JC for the graded device. In employing
Equation (18.29) to obtain the analytical predictions, the terminal parameter gm was
set equal to that employed in the MEDICI simulation, and WB E was estimated
from the depletion approximation. As shown, τE is significantly underestimated by
Equation (18.29), with the error increasing at high bias. In general, the failure of
Equation (18.29) can be attributed to two factors, namely: (i) the breakdown of the
depletion approximation due to the presence of large numbers of free carriers in the
emitter–base, space-charge region, as noted earlier; (ii) the presence of significant
stored charge in the quasi-neutral emitter, which is ignored in writing Equation (18.29).
Figure 18.14(b), which shows

∫ z
0 �p(z) dz in the metallurgical emitter, illustrates that

stored emitter charge is unimportant in the graded device, but is very significant in the
abrupt device. This is because the hole barrier is actually lower in the abrupt-junction
case, due to the larger value of VB E required to produce a given collector current.

Attempts have been made to improve the accuracy of the analytical expression
for τE by including terms to account for the above factors [27,28]. However, the
suggested terms are either unwieldy, limited in their bias range of applicability, or
require knowledge of poorly defined effective junction velocities.

The best that can be offered at present is to note from Figure 18.14 that, for graded-
junction devices, where stored charge in the quasi-neutral emitter can be neglected, τE

from Equation (18.29) can be made to match the simulation results by multiplying by
a correction factor of value around 2 [20].

Practically, the emitter delay is usually the least likely to be of concern because it
can be reduced, without adversely affecting the other delay components, by operating
at current densities at least twice as high as used in this comparison. Such currents can
be obtained at a low enough forward bias to avoid neutral-emitter storage problems,



637 18.3 Compact modeling of HBTs

10
3

10
4

10
5

1

10

MEDICI
Equation (18.29)

Collector-current density  (A / cm  )2

E
m

itt
er

 d
el

ay
 (

ps
)

0.0 0.1 0.2 0.3 0.4
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Graded
Abrupt

Position  (µm)

C
um

ul
at

iv
e 

de
la

y 
(p

s)

(a)

(b)
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638 Modeling high-performance HBTs

0.1 1.0

0.1

1

10

100

vcoll = 0.28 x vsat

vcoll = vsat

vcoll = vT

vcoll = vTTE

MEDICI (graded)

MEDICI (abrupt)

Base width (µm)

B
as

e 
de

la
y 

(p
s)

Fig. 18.15. Base delay τB as a function of quasi-neutral base width WB [20]. The curves are from
Equation (18.30) for various values of vcoll. Note that vT ≡ 2vR . (D.L. Pulfrey, S. Fathpour, A.R.
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even in abrupt-junction GaAs HBTs, by using, for example, an emitter of InGaP, which
has a favorably high bandgap and low conduction-band offset.

Base delay
In Figure 18.10 the importance of the collection velocity, vcoll, in determining the
collector current in short-base, graded-junction HBTs is apparent. The lower the
velocity, the greater the charge needed to carry a given current and, consequently, the
larger the stored charge in the base. This effect is embodied in Equation (18.30) by the
term WB/vcoll, which arises analytically from the supposed trapezoidal shape of the
minority-carrier charge profile. Figure 18.5 indicates that this is not a bad description
of the charge profile, even in a short-base, abrupt-junction device. The predictions
of Equation (18.30) for τB are shown in Figure 18.15. The MEDICI simulations
predict vcoll = 0.28vsat, and when this value is used in Equation (18.30), the agreement
between the analytical and numerical results is excellent. What may be surprising is
that MEDICI gives the same result for both graded-emitter and abrupt-emitter HBTs.
This is because in this type of DDE simulator, at least when the energy-balance option
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is not operative, the full height and width of the induced heterojunction barrier at
the base–collector interface are ‘felt’ by the flux exiting the base. This serves, in
our examples, to reduce vcoll to the pessimistic value of 0.28vsat. In reality, the
forward-going flux in a short-base device will be less affected by the presence of a
base–collector barrier because its velocity is not vR , as implied by the full-Maxwellian
description of charge concentrations in a classical DDE simulator, but is, as we have
seen from the microscopic model, either 2vR in a graded device, or v+

TTE in an abrupt
device. In practical HBTs, therefore, τB can be expected to lie closer to the limit given
by Equation (18.30) when employing either of these velocities, rather than when using
vcoll as predicted by MEDICI.

With short bases and potentially high electron velocities, τB is no longer the major
contributor to the overall delay in modern bipolar transistors. It can be further
reduced by employing compositional grading in the base, in which case a convenient
expression for τB is∗:

τB = W 2
B

bDn0

[
1 − [1 − exp(−b)]

b

]
+ WB

vcoll

[1 − exp(−b)]

b
, (18.32)

∗ See Problem 18.7.
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where b = �Eg/kT and �Eg is the bandgap change in the base due to linear
compositional grading. The results in Figure 18.16 show how useful a graded base
could be in mitigating the effect of a low collection velocity.

Collector delay

Figure 18.17 shows values of τC versus JC for the graded device (similar results are
obtained for the abrupt-junction device); results from MEDICI are presented along
with the predictions of Equation (18.31). In employing Equation (18.31), the terminal
parameter gm was set equal to that employed in the MEDICI simulation, and the
value of WE was set equal to the metallurgical emitter width. The value of WBC was
computed by employing the usual, one-sided, depletion approximation in two different
circumstances. In the first instance, the space-charge region on the collector side of the
junction was assumed to be fully depleted, giving a charge density of magnitude q NC ,
where NC is the collector doping density. In the second instance, the magnitude of the
charge density was taken to be q(NC − nc), where nc accounts for the finite electron
concentration required to support the collector current, JC = −qncvsat. The results
emphasize the importance of accounting for this mobile charge in the space-charge
region, even at current-density magnitudes below the onset of the Kirk effect [29],
which occurs in these devices when |JC | > q NCvsat ≈ 4 × 104 A/cm2.

Further subtle effects in the space-charge region can occur due to: (i) the de-
pendence of the electron velocity on both the electric field and the junction self-
heating [30]; (ii) the sensitivity of the velocity profile to the electron space-charge
density [30,31]. The former effect can increase τC with increasing collector voltage,
while the latter can decrease the delay at high currents. For a fully depleted collector
these effects can be incorporated in an improved expression for the transit-related term
in Equation (18.31) [30]:

τCd = [κ0 + κ2(�T )]
WBC

2
+ κ1

Vbi − VBC

2
+ κ1

q(NC − 2n̄)W 2
BC

12ε
, (18.33)

where n̄ is the average electron density in the space-charge region, �T is the rise
in junction temperature, and the coefficients κ come from a linear fit to the inverse
velocity versus field relation for GaAs at high field strengths.

As τC is presently the most significant of the delay times in high-performance
HBTs, there is no shortage of collector designs to reduce this portion of the signal de-
lay. Exploiting velocity overshoot, by engineering a low-field region in the part of the
space-charge region proximal to the base, can be worthwhile [32]. From calculations
using a phenomenological model, it has been suggested that this improvement can be
simply quantified in GaAs junctions by changing the factor of 1

2 in Equation (18.31)
to 1

3 [33].
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18.3.4 Compact models for fmax

Base–collector network
The cut-off frequency, fT , relates to the current gain of a transistor. While this is
an important property of a device, of more practical significance is the ability of a
transistor to produce a power gain at high frequencies. The appropriate figure of merit
is fmax, which has long been described by the compact expression [19, p. 177]:

fmax =
(

fT

8πRC

)1/2

, (18.34)

where RC is some base–collector time constant, as discussed below. fmax refers to the
frequency at which the power gain becomes unity, when determined by extrapolation at
−20 dB/decade from lower frequencies. It is relevant to employ an extrapolated figure
of merit because, in reality, electronic instrumentation is presently incapable of directly
measuring the high values of fmax which are characteristic of high-performance HBTs.

In early transistors it was permissible to view the base resistance, rb, and the
collector–base junction capacitance, Cjc, as lumped elements, i.e., RC = rbCjc. More
recently, the distributed nature of the base–collector RC network has been accounted
for by choosing an effective value for this time constant, namely: RC = (rbCjc)eff

[34]. In the equivalent circuit of Figure 18.12, for example, rb and Cjc are each
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shown as being distributed into n components. The case of n = 3 for a conventional,
mesa-style HBT is worth considering briefly as the three components relate directly
to obvious features of the physical structure. With reference to Figure 18.18, the
three features are the intrinsic, extrinsic and contact regions of the device, and are
represented by (rbi , Cjci ), (rbx , Cjcx ) and (rbc, Cjcc), respectively. It can be shown∗

that, at high frequencies, the appropriate base–collector network is given by the circuit
in Figure 18.18(b), where rcv is the purely vertical part of the base contact resistance
[35]. In this network, the three components of rb and Cjc to substitute into Figure 18.12
are clearly identifiable.

Extrapolated fmax

If Equation (18.34) is to remain useful for modern, high-performance HBTs, the RC
time constant in this compact expression must be further modified. Modification
is necessary because of violation of one of the assumptions on which the original
derivation of Equation (18.34) is based, namely: that the collector and emitter
resistances, rcc and ree, and the dynamic resistance, 1/gm , are negligible compared
to the base resistance. This assumption is invalid for high-performance HBTs due to
the employment of very highly doped base regions.

To find the appropriate form for RC in order that Equation (18.34) can be
applied to high-performance HBTs, it is necessary to start with an equivalent circuit,
such as in Figure 18.12, and move towards the small-signal parameters on which
Equation (18.34) is based [36], systematically dropping terms of relatively minor
importance. The approach has been carefully documented [35,37], and leads to
compact expressions for RC , which can then be substituted into Equation (18.34) to
compute fmax. When fmax is based on the extrapolation of Mason’s unilateral gain, U ,
to 0 dB [38], the relevant expression for RC is:

RC = (RC)Ueff = (rbCjc)
U
eff + (2π fT rccCjc)

(
ree + 1

gm

)
Cjc, (18.35)

where (rbCjc)
U
eff accounts for the distributed nature of the base resistance and the

collector capacitance [34]. This expression has been tested against results from the
SPICE simulation of the circuit in Figure 18.12 for the case of a high-performance
device in which ree = 6.2 � and rcc = 16 � [35]. Excellent agreement was
demonstrated. By contrast, if the new terms in Equation (18.35) are neglected, (RC)Ueff
is underestimated by about 30%.

It can be appreciated from Equation (18.35) that the collector resistance must be
minimized if extremely high values of fmax are to be obtained. It is noteworthy in this
regard that the world-record device described at the end of the following chapter has
negligible rcc, due primarily to its employment of a Schottky-barrier collector contact.

∗ See Problem 18.8.
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Fig. 18.18. (a) Schematic cross-section of a mesa-type HBT, identifying the components of base
resistance and collector capacitance. (b) Reduced equivalent circuit for the base–collector network
[35]. (M. Vaidyanathan and D.L. Pulfrey, IEEE Transactions on Electron Devices, Vol. 46,
pp. 301–309, 1999.)

18.3.5 Compact model for large-signal analysis

In the previous two sections we considered the small-signal modeling of HBTs, such
as would be appropriate for high-frequency amplifiers, for example. In this section we
briefly examine large-signal modeling, which has relevance for applications in high-
speed switching, for example.

An Ebers–Moll model
The well-known Ebers–Moll representation of a three-terminal bipolar device is a
convenient starting point for the formulation of a large-signal model for HBTs. In fact,



644 Modeling high-performance HBTs

the traditional model for BJTs applies without modification to graded-emitter HBTs, at
least in those cases where there is no significant conduction-band spike due to bandgap
narrowing (see Figure 18.1). This is because the electronic collector current, JC , has
the same ideal Boltzmann dependence (exp(qV/kB T )) as the hole currents considered
in the intrinsic model. This follows from Equation (18.21), where

n∗
E = nE exp(−Epk/kB T ) = nE exp(−qVbi/kB T ) exp(qVB E/kB T ). (18.36)

On the other hand, in an abrupt-junction HBT, the presence of a large conduction-
band spike at the emitter–base junction causes the electron- and hole-injection currents
to have different voltage dependences. In an equivalent circuit, such as the one shown
in Figure 18.19, this phenomenon can be represented by using ideal diodes for the hole
currents (IPC and IPE), a current source based on non-ideal diodes for the collector
electron current (ICT) and non-ideal diodes for the quasi-neutral base current (INC +
INE). Details of this circuit are given elsewhere [2,40]: here we concentrate on the
representation of ICT in an abrupt-junction HBT.

Although quasi-neutral base recombination is an important contributor to the base
current in some HBTs [22], it can usually be ignored in computing JC , as we have done
throughout this chapter. Under these circumstances, and for short-base transistors,
Equation (18.24) yields:

JC ≈ −γ qn∗
EvR, (18.37)

which is then precisely equal to JTUN + JT E , as given by Equation (18.22). There
are two ways in which the conduction-band spike contributes to the non-ideal nature
of these components of JC . Firstly, because Epk is now determined by the potential
energy difference across only the emitter side of the junction, rather than across the
entire junction, the thermionic emission component of the current is not dependent on
the full value of VB E . Instead, elaborating on Equation (18.23), it is given by [8]:

JT E = J0 exp(−E ′
pk)

= J0 exp(−q NratVbi/kB T ) exp(−q NratVB E/n2kB T ), (18.38)

where Nrat = εB NB/(εB NB + εE NE ), and the new diode ideality factor is n2 =
1/Nrat. In reality, because of the very high base doping density in HBTs, n2 ≈ 1.0,
so this deviation from ideality is barely significant. However, the second factor, which
concerns the tunneling current, is significant. The deviation from ideality of JTUN is
due to not only the splitting of the potential drops at the junction, but also to the fact
that the tunneling current is carried by electrons of energy less than Epk . These effects
are embodied in Equation (18.22) which, when written out in more detail, leads to
another diode current, namely [8]:

JTUN = J0C∗ exp[(−q NratVbi/kB T ) tanh(U ′
oo)/U ′

oo] exp(qVB E/n1kB T ), (18.39)
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Fig. 18.19. Equivalent circuit for large-signal simulations. The only components not described in the
text are the diodes IRC and IRE: these represent space-charge-region recombination currents [39].
(S. Searles and D.L. Pulfrey, IEEE Transactions on Electron Devices, Vol. 41, pp. 476–483, 1994.)

where C∗ is C from Equation (18.22) evaluated at the desired VB E , and the diode
ideality factor is n1 = U ′

oo/Nrat tanh(U ′
oo). Thus, when using Figure 18.19 for an

abrupt-junction HBT, ICT (= JC · Area) can be represented by a current source
controlled by the voltage across two parallel diodes, with characteristics described
by Equations (18.38) and (18.39).

Regarding the resistive components RB, RE and RC in Figure 18.19, these are the
parasitic resistances equivalent to rb, ree and rcc, respectively, introduced previously
in the small-signal equivalent circuit of Figure 18.12. Similarly, the capacitances CE
and CC are equivalent to Cπ and Cµ, respectively. In a SPICE implementation of
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the large-signal equivalent circuit, the storage component of CE would be represented
by (ICT · TF/Vt ), where Vt is the thermal voltage and TF is the forward transit time.
A reasonable value for the latter parameter can be obtained by adding the base and
collector transit times, as given by Equations (18.32) and (18.33).

Thermal considerations
In practical n–p–n HBTs the barrier height presented to electrons attempting to enter
the base is either Epk , in the case of thermionic emission, or somewhat less than this
if tunneling is the dominant flow mechanism (see Equation (18.22)). In either case,
this barrier is less than the corresponding barrier height, say Eval, which inhibits holes
from being back-injected into the emitter. Thus, the emitter injection efficiency is
approximately ∝ exp(Eval−Epk/kB T ). Because there is very little quasi-neutral-base
recombination in high-performance HBTs, it follows that the common-emitter current
gain, β, will fall with temperature. This can present a problem in devices built upon
substrates of poor thermal conductivity, such as GaAs. Transient local heating can
occur when the collector current is switched to high densities, and this would lead to a
negative differential output conductance, which is usually not desirable.

A simple way of accounting for thermal effects is to add the electrical equivalent
of a thermal network to the main electrical equivalent circuit discussed in the
previous subsection. The subcircuit shown in Figure 18.19 comprises a current source
IPW ≡ IC VC E (W), a resistor RTH representing the thermal resistance (◦C/W), a
capacitor such that CTH · RTH is equivalent to the thermal time constant (s), and
a DC voltage source VSUB which represents the substrate temperature (◦C) [41].
Thus, the voltage at node X of the subcircuit corresponds to the temperature of the
device. This temperature can then be used to recompute the temperature-dependent
model-parameter values for the elements in the main electrical equivalent circuit. In
this manner, some thermoelectric feedback is included in the large-signal simulation.

18.4 Conclusion

From the material presented in this chapter on the modeling of short-base, high-
performance HBTs, the following observations can be made:

1. Microscopic modeling is able to show that, over most of the base region of a graded-
emitter device, the electron distribution function maintains a near-equilibrium form,
and the concentration-gradient term in the BTE dominates over the energy-gradient
term. These factors suggest that the equilibrium DDE, with appropriate boundary
conditions, may adequately describe base transport in these devices. For abrupt-
emitter HBTs this is not the case.

2. Guided by the microscopic results, compact models for the collector current in both
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abrupt and graded devices can be developed. The different dependences of JC on
base width for these two types of device can be largely reproduced by the compact
models.

3. Compact models for the signal delay time can adequately represent the contribu-
tions to fT from delays in the base and collector regions of HBTs.

4. A compact model for fmax can be derived which takes into account the effects of
emitter and collector resistances, as demanded in the modeling of modern HBTs
exhibiting low values of base resistance.

5. It is possible to incorporate the compact model for JC into a simple Ebers–Moll
large-signal equivalent circuit which can aid in the evaluation of the high-speed
switching performance of HBTs.
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heterojunction bipolar transistors’, Solid State Electronics, Vol. 33, pp. 389–390, 1990.

[29] J.C.T. Kirk, ‘A theory of transistor cut-off frequency ( fT ) falloff at high current densities’,
IRE Transactions on Electron Devices, Vol. 9, pp. 164–174, 1962.

[30] L.H. Camnitz and N. Moll, ‘An analysis of the cut-off frequency behavior of microwave
heterostructure transistors’, S. Tiwari, Ed., IEEE Press, New York, pp. 21–45, 1993.

[31] Y. Betser and D. Ritter, ‘Reduction of the base–collector capacitance in InP/GaInAs
heterojunction bipolar transistors due to electron velocity modulation’, IEEE Transactions on
Electron Devices, Vol. 46, pp. 628–633, 1999.

[32] C.M. Maziar, M.E. Klausmeier-Brown and M.S. Lundstrom, ‘A proposed structure for
collector transit-time reduction in AlGaAs/GaAs bipolar transistors’, IEEE Electron Device
Letters, Vol. EDL-7, pp. 483–485, 1986.

[33] H. Zhou and D.L. Pulfrey, ‘Computation of transit and signal delay times for the collector
depletion region of GaAs-based HBTs’, Solid State Electronics, Vol. 35, pp. 113–115, 1992.

[34] M. Vaidyanathan and D.J. Roulston, ‘Effective base–collector time constants for calculating
the maximum oscillation frequency of bipolar transistors’, Solid State Electronics, Vol. 38,
pp. 509–516, 1995.

[35] M. Vaidyanathan and D.L. Pulfrey, ‘Extrapolated fmax of heterojunction bipolar transistors’,
IEEE Transactions on Electron Devices, Vol. 46, pp. 301–309, 1999.

[36] R.L. Pritchard, Electrical Characteristics of Transistors, McGraw-Hill, New York, Ch. 8,
1967.

[37] M. Vaidyanathan, ‘Compact models for the high-frequency characteristics of modern bipolar
transistors’, PhD thesis, University of British Columbia, 1998.

[38] S.J. Mason, ‘Power gain in feedback amplifier’, Transactions of the IRE, Vol. CT-1,
pp. 20–25, 1954.

[39] S. Searles and D.L. Pulfrey, ‘An analysis of space-charge-region recombination in HBT’s’,
IEEE Transactions on Electron Devices, Vol. 41, pp. 476–483, 1994.

[40] J.J.X. Feng, D.L. Pulfrey, J. Sitch and R.K. Surridge, ‘A physics-based HBT SPICE model for
large-signal applications’, IEEE Transactions on Electron Devices, Vol. 42, pp. 8–14, 1995.

[41] P. Roblin, personal communication, January 2000.

18.6 Problems

18.1 Derive Equation (18.24) for the collector current in an abrupt-junction HBT by balancing the
diffusion current in the base against both the net current at the emitter–base junction and the
exit current (−qn(WB)vcoll) at the base–collector junction.
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18.2 Is it of any consequence that the equilibrium diffusivity is used in Equation (18.24), rather
than some effective diffusivity that would account for not only the non-Maxwellian nature of
the distribution (see Figure 18.3), but also for the presence of an appreciable charge flow due
to changes in the electron kinetic energy (see Figure 18.8)?

18.3 Equation (18.24) can be improved if a hemi-Maxwellian flux approach is used in the derivation
of JC , in the same manner as described in the development of Equation (18.21). The key to
the derivation is a proper accounting for the flux that is reflected back into the base from the
energy barrier at the emitter–base junction (see Figure 18.2).
Show that the above considerations lead to:

JC = −q
n∗

E
2
(1 − γ + 2/δ)

/[
WB

Dn0
+ (2 − γ δ)
γ δ2vR

+ 1

vcoll

]
.

Note that this equation reduces to Equation (18.21) in the case of a homojunction, and that it
reduces to Equation (18.24) if γ δ � 2, as will usually be the case for a heterojunction when
an appreciable band spike is present.

18.4 In Figure 18.15 it is shown that the presence of a barrier at the base–collector junction, through
its influence on vcoll, has a large effect on τB . However, from Equation (18.24), it can be shown
that this barrier barely affects the collector current density in a short-base, abrupt-emitter HBT.
Is there a contradiction here? Explain.

18.5 Amend the derivation of (�Q/�IC )|VC E
at the beginning of Section 18.3 so that the effects

of parasitic resistance in the emitter and collector are taken into account.
Confirm that the result obtained is identical to the expression for 1/(2π fT ) resulting from
the hybrid-π equivalent circuit in Figure 18.12, for the case of a lumped representation of the
collector capacitance.

18.6 Establish the conditions under which the differential charge formulaton for the emitter–
collector delay, �Q/�IC , is equivalent to the integral formulation, Q/IC .
Are these conditions met for an abrupt-junction HBT?

18.7 Derive Equation (18.32) for the delay in the linearly graded base region of an abrupt-junction
HBT.

18.8 Starting from the schematic cross-section of an HBT shown in Figure 18.18, draw a general
equivalent circuit for the base–collector RC network, and show that it reduces to the circuit
given in Figure 18.18(b).
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Nicolas Moll

The test of all knowledge is experiment. Experiment is the sole judge of scientific ‘truth’.

The Feynman Lectures on Physics, RICHARD FEYNMAN

19.1 Introduction

In the previous chapter, we laid the foundation for quantitative understanding of the
performance of heterojunction bipolar transistors (HBTs) with a particular emphasis
on fT and fmax. In particular, the connection of these quantities to microscopic
physics such as carrier transport was described, as was their connection to higher-level
parametric descriptions of the transistor, as embodied in an equivalent circuit.

In this chapter, we will discuss the practical constraints imposed by real material
systems, epitaxial growth techniques and fabrication processes. The effect of these
constraints on fT and fmax will be studied using the results of Chapter 18. The
overall goal of the chapter is to develop physical insight into three areas: (i) the key
elements which distinguish material technologies that are suitable for HBTs, and the
relationship between the choice of material system and device performance; (ii) the
interplay of process development issues and device performance; (iii) other factors
than transport, doping behavior, and device geometry (such as reliability) that further
constrain device performance. In particular, we will cover the history and evolution
of material systems, from AlGaAs/GaAs to InP/GaAsSb, which have been used for
HBTs, and we will describe a representative fabrication sequence. Armed with this
background knowledge, we will apply some of the theoretical results of Chapter 18
to a state-of-the-art production HBT, and examine the prospects for improving its
performance. We will also look at some examples of other problems that arise when a
device is scaled and operated for maximum fT and fmax. These include the effect of
a large emitter periphery-to-area ratio on current-gain, thermal problems, particularly
for HBTs with multiple emitter fingers, and constraints on the collector current density
that arise from reliability considerations.

651



652 Practical high-frequency HBTs

19.2 Material choices for HBTs

19.2.1 History and evolution

The basic concepts underlying the heterojunction bipolar transistor (HBT) were
outlined in 1948 by William Schockley [1] as a specific claim in his patent on the
transistor. About ten years later, Herbert Kroemer published the first journal article that
described the remarkable advantages that an HBT holds over a conventional bipolar
transistor [2]. Another decade passed before a meaningful experimental realization
of an HBT was reported on [3]. The growing experimental interest in HBTs was
fueled in large part by the growing experimental abilities of the semiconductor research
community in III–V epitaxy. III–V semiconductors were important in the early
practical development of HBTs for at least four key reasons.

First, it turns out that heterojunctions in many III–V material systems, and in
particular in the AlGaAs/GaAs material system, can be grown with a very low density
of interface states. This is particularly a key feature for HBTs, because too many
interface states at the emitter–base junction could lead to a large recombination at this
interface, and low current gain. Figure 19.1 shows schematically the various charged
carrier fluxes which may flow in a single heterojunction n–p–n HBT (an HBT with a
heterojunction only at the emitter–base). From that figure, we see that base current may
arise from a number of mechanisms, including bulk recombination in the neutral base,
space-charge recombination, recombination at an electrostatic potential saddle-point
where the emitter–base space-charge region meets the emitter mesa, recombination at
the base surface and reverse injection of holes into the emitter:

Ib = Irec + Iscr + Isp + Isurf + Iinj. (19.1)

The space-charge recombination current will be strongly influenced by interface states
that appear in the forbidden gap, and which may originate because of impurities, strain,
local bonding defects or other crystalline imperfections. These interface states turn out
to be low in density for the material system considered here, partly out of good fortune,
and partly for fundamental reasons. If the two materials composing the heterojunction
could not be well matched in lattice constant, the resulting dangling bonds, vacancies
and dislocations would likely lead to a high concentration of interface states. But in
fact it is possible to independently adjust the lattice parameter and bandgap of III–V
alloys. This is illustrated in Figure 19.2, which shows bandgap energy versus lattice
parameter for a variety of III–V semiconductors. Some study of this figure will show
the reader that, once a particular substrate is chosen, thereby fixing the target lattice
parameter, there is a variety of alloys, and hence of bandgaps, which can at least be
considered for lattice-matched growth on that substrate. The nearly vertical tie-line
between GaAs and AlAs, for example, means that on GaAs substrates, nearly any
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Fig. 19.1. Schematic of electron flow in an n–p–n HBT. Electron fluxes that end inside the device, in
the bulk emitter, emitter–base space-charge region, base or saddle-point, will be matched by hole
flux. In most real devices, nearly all of the electrons are collected, and only one or two of the other
charge paths will be important.

alloy of the form Ga(1−x)Alx As will be close enough to being lattice matched, that it
can be considered as a potential semiconductor for use in an HBT fabricated on a GaAs
substrate. Conversely, only one composition of the Inx Ga(1−x)P system is so suited.
At this writing, GaAs and InP are the practical commercially available substrates. It
is left as an exercise to work out the approximate alloy compositions of ternary alloys
that can be lattice-matched to InP. We have also mentioned in passing one feature of
the AlGaAs alloy system that made it such an interesting starting point for early hetero-
junction work: lattice matching is automatic. That is to say, it is not sensitive to compo-
sition. In the early days of III–V epitaxy, this was an advantage not to be taken lightly.

Second, the transport properties of GaAs are significantly better than the transport
properties of silicon. It has roughly 10 times the electron mobility, comparable hole
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Fig. 19.2. The direct bandgap energy versus lattice parameter for various ternary III–V alloys. Note
that, since GaP and AlAs are indirect gap semiconductors, alloys close to them will also be indirect,
with a smaller bandgap than is shown.

mobility, and a higher effective saturation velocity. This leads, for reasons that we shall
see later, to significantly better potential performance for III–V HBTs than for existing
Si bipolar junction transistors. Without this performance advantage, the technological
driving force behind work on HBTs would have been too weak to proceed on a
comparatively complex and immature technology.

Third, if the devices can be realized at all, they can be easily realized on a
semiinsulating substrate. This is a key advantage, already well demonstrated by early
work in GaAs FET integrated circuits (ICs), for a technology that is being driven by
high-speed applications because of the ease with which matching elements can be
incorporated into circuits [4].

Fourth, Molecular beam epitaxy of III–V compounds is relatively easy. The advent
of MBE, which allowed structures to be grown with practical doping levels, desirable
band offsets and reasonably low background defect levels, was clearly the enabling
technology that lead to early reports of good HBT microwave performance [5].
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All of these factors put together led to rapid development of an HBT with an
AlGaAs emitter and GaAs base, collector and substrate, and much pioneering work
in understanding of device physics issues, growth issues, and fabrication techniques.
However, the range of theoretically possible systems is much larger than just this one,
and other material systems have proved to offer their own advantages for high-speed
devices. Since the chapter is organized more around physical effects than material
systems, we will only mention these material systems here, and cover the details in the
relevant section. Before we do that, we should observe that throughout this chapter
we will focus on n–p–n transistors. While interesting work has been done on p–n–p
HBTs, including some that shows promise for high fmax devices, only n–p–n devices
are characterized by the high fT that is an essential figure-of-merit for high-speed
devices. The reason for this is the poor hole transport, reflected in the poor low-field
mobility, for practically every III–V material system, as well as for silicon. This in turn
leads to a long base delay; additionally p–n–p transistors present daunting bandgap
engineering problems in some material systems.

The closest variation to the AlGaAs emitter GaAs base HBT is the InGaP emitter
GaAs base HBT which features a band lineup suitable for an abrupt emitter–base
junction, lower Iscr, and improved reliability. There is also a family of HBTs grown
on InP substrates with lattice-matched InGaAs bases. The emitter material in these
devices can be either InP or AlInAs. These devices operate at substantially lower
emitter–base bias than GaAs base devices, which is a significant advantage in some
power-sensitive applications. They have other performance advantages as well, but
at the expense of less technological maturity. The ‘single’ HBT (SHBT) device by
definition has an emitter–base heterojunction and a collector–base homojunction, and
hence an InGaAs collector drift region, which leads to poor high-power characteristics.
The double HBT (DHBT) typically has an InP collector drift region, which should
lead to excellent high-power characteristics, while retaining all the other performance
advantages of InGaAs base SHBTs. However, they do present a thorny collector–base
junction design problem.

An interesting and different HBT technology that started to show significant
promise around the same time as the InGaAs base HBTs is the SiGe base HBT. In
this device the base layer is significantly strained, and the strain plays a beneficial
role in determining the band lineup at the heterojunctions. The result is a device with
negligible conduction-band discontinuity, and many other desirable characteristics that
derive from the deep understanding of how to do silicon processing. They do not quite
match the best III–V devices for high-speed applications, however, because of their
intrinsically poorer transport properties. Their growth and fabrication technology is
quite different from that for the III–V devices, and we will not go into much further
detail on this topic.

Another interesting and different HBT technology is the AlGaN/GaN SHBT [6].
The material technology for these devices is difficult and still embryonic. They present
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two main attractions that both derive from the large bandgap of the nitrides: the
potential for very-high-temperature operation, and the potential for very-high-voltage
operation because of the high avalanche field expected in a GaN collector drift
region. This comes at the expense of poor low-field transport and p-type doping
properties. These disadvantages are least important for high-speed high-voltage
applications, where the device delay is dominated by transit through the collector drift
region.

The last material-based variation worth mentioning at the time of writing is the
GaAsSb/InP DHBT. Good results for these devices have been obtained only since
1998, in spite of early work that pointed out the potential of this interesting material
[7]. GaAsSb has been described as in some sense an alternative to InGaAs as a
base material in InP DHBTs. That is, it has a comparable bandgap, and retains
the advantage of a low emitter–base bias voltage. It also presents an assortment
of tradeoffs both desirable and problematic. The most interesting feature of the
InP/GaAsSb heterojunction is its type II band lineup. Although GaAsSb has a
substantially smaller bandgap than InP, its conduction-band energy is slightly higher
than that of InP, by an amount on the order of 0.1 eV. This energy is both small enough,
and of the right sign, that HBT layers can be grown with abrupt heterojunctions
without major negative consequences for the emitter–base junction, while presenting a
theoretically ideal collector–base junction which is completely free of the design issues
related to electron pile-up that plague InGaAs/InP DHBTs. Also, GaAsSb can easily
be doped with carbon, a desirable p-type dopant, to high concentrations, and excellent
p ohmic contacts can be obtained. However, the hole mobility in this material is quite
poor, and devices with high fmax have yet to be demonstrated.

19.2.2 Growth techniques

There are two main techniques that are used for the epitaxial growth of HBT layer
structures. These are MBE and organometallic vapor phase epitaxy, or OMVPE. MBE
started out as an ultra-high vacuum evaporation technique from elemental sources
such as metallic gallium, aluminum, and arsenic, onto a heated substrate. The flux
from each source is precisely controlled by adjusting the source temperature, and by
opening and closing shutters, so that beams of the elemental constituents of the desired
semiconductor, as well as of dopant atoms, impinge simultaneously on the substrate.
Typical growth rates are on the order of 1 µm per hour so that exquisite control over
layer thickness and dopant concentration can easily be obtained. In its modern form
MBE still reflects the basic approach demonstrated in early work. However, sources
for both the semiconductor constituents and dopants have evolved considerably. Many
group V elements are now supplied by hydride gases such as arsine. Control over
their flux is thus effected by mass flow controllers and is more precise than ever.
The p-type dopant of choice has become CBr4 which is also supplied in gas form
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through a mass flow controller. The precise choice of growth conditions represents a
tradeoff between various aspects of material quality such as morphology, background
defect concentration, dopant activation and the desired material composition. As MBE
hardware has evolved, along with the understanding of detailed growth mechanisms,
these tradeoffs have actually become less difficult.

Today the device designer can obtain practically any epitaxial layer structure
imaginable from a knowledgeable and well-equipped crystal grower. Of course, the
laws of physics still apply, so that a transistor made with highly strained base material
which is doped to 1020 carbon per cubic centimeter will perform poorly. Some
heterojunctions will be easier to grow than others; abrupt ones are easily obtained by
opening and closing the appropriate source shutters. Smooth but rapidly graded ones
are more difficult because of the thermal time constants of the sources. Morphology
is good, but not perfect. The main problem is a small density of oval defects, on the
order of 10–100 per square centimeter, which are thought to be related to the use of
elemental group III sources.

In OMVPE, the source atoms that will become epitaxial semiconductor layers are
supplied as organometallic vapors such as trimethyl gallium. The substrate is heated
to a high enough temperature that the source molecules, as well as dopant molecules,
are cracked (thermally broken apart) when they impinge on the substrate. As a growth
technology, OMVPE scales to large numbers of substrates quite gracefully. In volume
production it offers considerable economic advantages over MBE, and some technical
advantages as well as some technical drawbacks. The general consensus is that it
is a superior growth technique for the production of optical devices such as lasers;
this is due to a slightly lower non-radiative recombination rate than in comparable
MBE material. Since composition is controlled by the gas flow rates through mass
flow controllers, linear grading or more complicated grading can easily be obtained
in OMVPE. Atomically abrupt interfaces are more difficult. Its suitability for optical
devices also makes it an attractive growth technology for other minority-carrier devices
such as HBTs; low non-radiative recombination is important both in the neutral base,
and in the emitter–base and collector–base depletion regions. Growth from the vapor
phase can result in nearly perfect surface morphology, and HBT ICs based on OMVPE
layers can be made with very high manufacturing yield.

There are two main difficulties with this technology. Some source gases can be
adsorbed, and then later reemitted, from the reactor walls. This ‘memory effect,’ when
present, makes it difficult to effectively turn off certain dopants such as Mg for p-type
doping, and Te, Se, and S for n-type doping [8, 9, 10]. The higher growth temperature,
relative to MBE, can also result in a more difficult tradeoff of the growth conditions.
In particular, the p-type dopant may either diffuse if magnesium or zinc is used, or
fail to incorporate if carbon (the dopant of choice if diffusion is to be minimized) is
used. Carbon doping turns out to be fairly easy in GaAs and GaAsSb, but less so in
InGaAs.
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19.3 Processing techniques and device design

19.3.1 Introduction

From the simplest point of view, a bipolar transistor is fundamentally a one-
dimensional device. As illustrated schematically in Figure 19.1, the main current
flow is along a single path perpendicular to the emitter base and collector base
junctions. This point of view leaves out issues related to contacts; since in practice
contacts have to be included, the realization of this one-dimensional device has to
be two-dimensional. The starting point for the device designer contemplating the
development of an HBT technology is to understand those two-dimensional effects,
and then to minimize them as much as possible. In other words, the task is to make
the device function as if it were one-dimensional. This amounts to minimizing Rb,
minimizing Rc, minimizing periphery-related recombination, and minimizing the ratio
of the extrinsic collector–base capacitance to the intrinsic collector–base capacitance.
The final outcome of this piece of design work is the definition of the lateral device
geometry. The three most important ingredients that go into the design are base
spreading resistance considerations, fabrication technology considerations and thermal
considerations. Neither the base spreading resistance issues nor the thermal issues are
different, from a fundamental point of view, from the issues that arise in silicon bipolar
device design. However, the quantitative outcome for the spreading resistance is quite
different. Likewise, fabrication of III–V devices tends to be quite different from their
silicon counterparts. So we will start by outlining the fabrication technology, then
move on to the problems of spreading resistance and other issues.

19.3.2 III--V processing technology

With rare exceptions, III–V HBTs are mesa-style transistors. In a typical fabrication
sequence the starting point is a complete set of epitaxial layers grown on a semi-
insulating substrate. As can be inferred from Figure 19.1, the finished device will
be an emitter-up device so that the epitaxial layers consist, from top to bottom, of
a heavily doped InGaAs contact layer, the wide bandgap emitter material, the base
layer, the collector drift layer and a highly conductive subcollector layer. A typical
fabrication process, loosely based on [11], might begin with lithographic definition of
the isolation pattern, and implant isolation through the subcollector layer. This step
defines the extent of the subcollector and of part of the collector base junction. This
is followed by the formation of a dummy photoresist and silicon nitride emitter. This
same lithography step also leaves photoresist outside the outer boundary of the base
contact metal pattern. The epitaxial layers are now etched away by dry etching down
to the base layer, the base contact metal is evaporated and the excess lifted. Note that,
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particularly for small devices, with the emitter sizes on the order of a micrometer,
clever choice of the isolation geometry can significantly reduce the parasitic collector
base capacitance. This is illustrated in Figure 19.3(a) and (b), where we see that much
of the material underneath the base contact metal has been rendered semi-insulating
by the isolation implant. Next the nitride in the field, but not the dummy emitter,
is removed and the epitaxial layers are etched with a wet etchant to finish defining
the emitter. This etch step typically stops just short of the metallurgical base leaving
behind a so-called emitter ledge; the ledge is required for devices with gallium arsenide
bases, for reasons that we will discuss later. It may be unnecessary in other material
systems. After emitter mesa formation, the side walls of the emitter mesa are protected
with a dielectric such as silicon oxynitride. This protects the area between the emitter
and the base contact, and another etching step is performed to etch away the material
outside the base contact metal. A second etching step is performed to etch away the
material outside the base contact metal. This last etching step exposes the subcollector
layer. Finally, the dummy emitter is removed, and a photoresist mask is patterned to
define the n-type ohmic contact metal to the emitter and subcollector. That metal is
then evaporated, and the excess is lifted away. At this point, the transistor itself is
complete. All that remains to be done is the formation of any additional dielectric
layers and metal layers. In a typical IC technology, resistors and capacitors will also
be added. All this is done in a manner similar to silicon IC processing and gallium
arsenide FET IC processing.

19.4 Further discussion of fT , fmax

19.4.1 Origin and distribution of delay times

In our discussion so far, we have outlined the general set of material and processing
choices faced by the device designer. We now turn to a more detailed discussion of
the effect of these choices on microwave performance, as measured by fT and fmax.
These figures-of-merit are carefully discussed in Section 18.3 from a theoretical point
of view. What we would now like to do is to connect that discussion with some of
the limitations imposed by practical material choices and fabrication technology. As a
starting point, let us consider an InGaP emitter HBT process in production at Agilent
Technologies [12]. Typical device parameters for a 2×4 µm emitter transistor realized
with that process are shown in Table 19.1.

Note that the expression for collector delay shown in Equation (18.31) can be
rewritten as

τC = CBC

(
1

gm
+ RE + RC

)
+ WBC

2vsat
. (19.2)

These devices have a typical total delay of 2.15 ps, at 6 × 104 A/cm2 and Vce of 1.5 V.
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Fig. 19.3. Cross-sectional and top views of a mesa and ion-implantion-isolated HBT. The
cross-section shown in (a) is taken along a horizontal cut of (b). In (b) the broken line indicates the
boundary of implant isolation, the lightest gray indicates implant isolated subcollector, and the
medium gray indicates implant isolated base–collector–subcollector layers. The darkest gray
indicates unimplanted active device area. Note the use of base-layer isolation, seen in (b), to reduce
the collector–base area.



661 19.4 Further discussion of fT , fmax

Table 19.1. Typical parameters for a 2 × 4 µm emitter

InGaP/GaAs abrupt single-heterojunction bipolar transistor at

Vce = 1.5 V and Ic = 4.8 mA.

fT fmax β RE (�) RB(�) RC (�) CBC ( f F)

74 83 132 7.2 43 9.0 14.2

Equation (19.2) shows that 0.31 ps can be attributed to collector charging (the first
term). The emitter charging time can be estimated from the slope of the delay versus
1/Jc as 0.4 ps. Note that the effect of CBC must be accounted for in this procedure.
As discussed in Section 18.3.3, the base delay depends on the exit velocity into the
collector. From Figure 18.15, we get an estimated base transit time of 0.4–0.8 ps for
an 800 Å base, depending on the exact choice of exit velocity. This leaves 0.65–1.05 ps
of delay that can be attributed to collector transit time through a 4000 Å collector.

19.4.2 Improvement of delay times

In analyzing these delays, our ultimate objective is to shorten them as much as
possible, preferably without degrading any other device characteristics. In turn, such a
reduction will depend either on a different material choice, or on changes in the device
structure and concomitant improvements in process technology.

The first observation, which practically leaps out, is that collector delay is the
single largest contribution to the total delay. A second observation, however, must
go with this first one: the collector delay that we estimated from our analysis of the
other delay components is far less than the delay calculated by blind application of
Equation (19.2). That calculation would lead to a collector transit delay of 2.5 ps for
an optimistic vsat of 8×106 cm/s – more than the total measured delay at a finite current
density! In general, this discrepancy must have its origin in a significant variation in
electron velocity through the collector drift region. This could be due to non-stationary
transport in the collector region (i.e. velocity overshoot) which we expect always to be
present in III–V semiconductors, and which leads to high electron velocity close to
where the electron enters the collector drift region. It could also be due to the static
dependence of electron velocity on the electric field [13]. Most likely both effects
play a role; the difference between the delay calculated from the high-field velocity
and the delay estimated from actual measurements is really too large to be due only to
the variation of static electron velocity with field. This points to the importance of the
non-stationary transport properties of the collector material as a key factor in the choice
of a material system. Monte Carlo results [14] show that, theoretically, an InP collector
should show substantially more overshoot than a GaAs one, at comparable bias. InAs
and InGaAs lattice-matched to InP show even more, but at very low collector bias.
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Examination of Equation (19.2) also shows that there is less benefit than might
be thought to be gained from shortening of the collector drift region. While the
contribution of the transit term can obviously be reduced, the charging delay will
actually increase as the drift region is shortened. As shown in Problem 19.2, control
of this time is critical if the collector length is to be scaled.

The collector charging time, base delay and emitter charging time are all comparable
in the device we are considering here. So in terms of performance gain, there is no
a priori advantage in focusing on any one of them. In other words, in the absence
of any other knowledge, we might expect that halving any of these delays could be
equally problematic. Let us then examine in more detail what would be required to
reduce each of these delays by a significant amount. The resistive contribution to
the collector charging time arises from the sum of the dynamic emitter resistance,
parasitic emitter contact and body resistance, and the series collector resistance. In the
case considered here, this amounts to about 22 �. None of these contributions can be
reduced easily. The dynamic emitter resistance cannot easily be altered. Operation at
a higher current density would have a substantial negative impact on reliability, both
through weak current activation of the device’s failure mechanism, and because of
the higher junction temperature that comes with greater power density. The parasitic
emitter resistance is less than specific contact resistances that are typically described
in the literature as excellent. Substantial improvement in this parameter would be
difficult at best. The parasitic collector resistance can only be reduced by changes in
device layout, or by decreasing the sheet resistance of the subcollector layer either
through increased doping or with a thicker layer. Changes in the device layout would
require, in this case, scaling of the lithographically defined dimensions. As shown in
Problem 19.3, RC responds well to scaling. The practical difficulties of doing this in a
manufacturing environment should not be underestimated, however. Reduction of the
subcollector sheet resistance by increasing its doping is not necessarily possible, due
to limitations of the growth process, or to reliability considerations [15]. Increasing its
thickness would require changes to the isolation process that carry with them serious
manufacturability issues, either in terms of required implantation energy, or device
topography. Even if RC could be reduced by 50%, the overall impact on the collector
charging time would be small – on the order of 20%.

The capacitive contribution to the collector charging time is a different story. If
we think of the problem as reducing the collector area while keeping the emitter area
constant, it becomes clear that either clever layout tricks or scaling may have benefits.
Two examples of layout tricks are: use of an isolation implant that overlaps part of
the base contact, and use of a single base contact finger between two emitter mesas.
The first approach is, of course, process-dependent. The second requires scaling of the
lithography process to keep the base spreading resistance equivalent. Straightforward
scaling of the base lithography will produce comparable results. Reduction of the
base lithography CD (critical dimension) would reduce CBC , typically, by 30%. This
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will translate directly into a comparable reduction in collector charging time, of about
0.1 ps.

Earlier in this section, we estimated the base delay to be between 0.4 and 0.8 ps,
based on Figure 18.15. The spread in this estimate depends on the effective
exit velocity for injected electrons as they pass from the base into the collector
space-charge region; this velocity has a direct and substantial impact on the total
stored minority-carrier charge in the base. As pointed out in the preceding chapter,
microscopic modeling tends to favor the view that the exit velocity is high. However,
it is not possible to be certain that all of the necessary physics has been put into
even elaborate microscopic models, without verification through comparison with
experiment. In the particular case of base delay time in short bases, convincing
experimental evidence about the exit velocity does not exist. We can then only say
that several tenths of a picosecond might be shaved from the delay by improving
the carrier dynamics at the end of the neutral base, or that no improvement can be
had because the carrier dynamics are already excellent. The surest way to reduce
base delay is by scaling the thickness of the base (the base width). Even if this
results in an only marginal increase in the carrier velocity across the base, it will
still reduce the stored base charge, and the transit time, in proportion to the scaling
factor. From Figure 18.15 in the preceding chapter, we see that reducing the base
width from 800 to 400 Å will reduce the base delay by 0.2–0.4 ps, with the likely
improvement, according to microscopic models, being on the low end. However,
scaling the base width still entails other technological considerations. The processing
technology used for emitter mesa and base contact formation has to be consistent
with maintaining good process yield and reliability with the thinner base layer. And
the lithography has to be scaled by the same factor to maintain a roughly equivalent
base resistance. This scaling can only be avoided if the base sheet resistance can be
maintained by increasing the doping. Typically, this is not possible, because the base
doping will already be at some maximum value set by other considerations. Such
considerations include the onset of Auger recombination, reliability issues or dopant
solubility.

To summarize then, even dramatic changes in the scaling of the 2 ps transistor
that we have been considering here, say by a factor of 2, lead to rather smaller
improvements in fT . We could expect to gain about 0.1 ps in collector charging time,
or 0.2–0.4 ps in base transit time. Note, however, that the lithography scaling which
we must do when scaling the base width excludes scaling to reduce τcc. Halving the
collector length will also produce an improvement of the same order, but at the expense
of operating voltage. Thus to dramatically improve the fT of an HBT technology that
has been optimally designed, scaling alone will not suffice. Major changes, such as
adoption of a different material system, dramatic improvement of the safe operating
current density, or a totally different approach to device fabrication that greatly reduces
CBC/CB E , must be made.
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The other figure-of-merit, fmax, can be described as arising from a time constant
that is the geometric mean of the total forward delay, τEC , and another time-constant
4(rbCc) that is related to charging of the collector capacitance through the base resis-
tance. As pointed out in the preceding chapter, this problem is actually more complex
than the charging of a single capacitor through a single resistor, and computation of
the effective value of (rbCc) is equally complex. We can set aside these complexities
in this discussion because we are more interested in the overall scaling behavior than
in precise predictions. Using, then, the inaccurate but simple expression

τmax = 2 (rbCcτEC )
1/2 (19.3)

we note that fmax is quite insensitive to changes in the collector drift length: the
increase in τEC roughly balances the decrease in Cc that accompanies an increase
in the collector length. On the other hand, it is quite sensitive to changes in rb. If
we consider the effect of lithography scaling on the four components of rb shown in
Figure 18.18(b), we observe that rcv is constant, but the other three components scale.
Although rb does not quite decrease proportionally when the lithography shrinks, Cc

remains essentially constant, so shrinking is an excellent way to improve fmax without
degrading fT . However, use of a low-contact-resistance base contact is a key element
of this strategy.

There is a more radical approach than straightforward (but not easy) device scaling
to the problem of reducing HBT delay times. As we saw above, both τC and τmax

are sensitive to the collector capacitance, which is determined mainly by the extrinsic
collector area. As shown in Equation (18.35), τmax also contains a term that depends
on the series collector resistance. In 1995, Rodwell’s group at UCSB demonstrated
a method of minimizing the collector capacitance by nearly eliminating the extrinsic
collector–base junction, and of eliminating the series collector resistance by replacing
the subcollector with a Schottky contact [16]. This was accomplished by an ambitious
and clever process flow [17] in which a thick dielectric layer is deposited over the
transistor after the emitter and base mesas, and metal traces to contact these layers,
have been formed in the usual manner. Gold thermal vias are then formed through the
dielectric to the emitter mesa, and a carrier is bonded to the emitter side of the wafer.
Finally, the substrate is etched away, a Schottky contact that is scarcely larger than
the active device is formed on the back of the collector drift region, and the collector
material outside this contact is partially etched away. The resulting structure is shown
in Figure 19.4.

Because this structure eliminates the problematic scaling issues associated with poor
scaling of Ccb and counterproductive scaling of rb, extremely high-speed results have
been demonstrated using it. As the device has evolved, mostly by scaling the collector,
its performance has steadily improved. The cut-off frequency fT has gone from 127
to 252 GHz, and fmax from 277 to 820 GHz, for 0.6–0.7 µm emitters as the collector
lithography has shrunk to 0.6 µm [17, 18]. A delay analysis similar to the one above
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Fig. 19.4. Cross-section of a finished transferred-substrate HBT. The emitter is insulated from the
thermal via by a thin layer of Si3N4. Note the small extrinsic collector area.

shows that τB + τC is 0.41 ps for a device with a 40 nm InGaAs base and 200 nm
InGaAs collector. Further reduction of parasitic emitter resistance and the use of InP
for the collector seem likely to lead to fT well over 400 GHz.

19.5 III--V surfaces and the emitter base saddle-point

One of the distinguishing features of most III–V semiconductor systems is their poor
surface properties, compared to silicon. This comes about because they typically have
a large number of surface states, which pin the Fermi level at the surface somewhere
in the forbidden gap. These surface states also enhance the surface recombination
velocity. In the case of gallium arsenide, which is the oldest and best studied III–V
semiconductor, controversy over the exact physics which gives rise to these surface
states has raged for years [19]. However, it is generally agreed that in n-type material,
the Fermi level is pinned close to mid-gap. In p-type material it is pinned 0.4–0.5 eV
above the valence band [20]. Early in the development of the AlGaAs emitter HBT
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it was realized that this surface pinning leads to an unusual shape for the electrostatic
potential at the mesa surface of the emitter base junction [21]. Figure 19.5 shows the
conduction-band energy near the bottom of the emitter mesa, at roughly 1 V forward
bias. This plot reveals the existence of a saddle point in the potential energy, inside
the emitter base space-charge region, close to the intersection of the emitter mesa
surface and the base. Transistor operation is based on thermal injection of carriers
perpendicularly over the emitter–base potential barrier into the neutral base. As shown
in the figure, this saddle-point provides a potential path for electron injection laterally
into the surface depletion region of the extrinsic base. Electrons that are injected into
this region are then swept directly to the surface where they can recombine with holes
through the surface states. If, as is the typically the case, the surface recombination
velocity is large, the local current density for this lateral injection will be orders of
magnitude larger than the normal injection current. All this lateral current appears as
a periphery-related base current, which then reduces the current gain in devices with a
large perimeter-to-area ratio, that is to say small devices. As shown in [21], the current
gain of a device with a perimeter-to-area ratio of 104 cm−1 will not be much over 10.
Thus in order to scale devices for high-frequency performance, this problem must be
overcome.

There are two ways to accomplish this. Either the recombination velocity for later-
ally injected electrons must be reduced, or the saddle-point potential must be increased
so that fewer electrons are injected. The use of a ledge – a thin layer of depleted emitter
material in the extrinsic base region – accomplishes both of these objectives and
has been shown to be effective in eliminating the periphery-associated recombination
current in the AlGaAs/GaAs and InGaP/GaAs material systems [22, 23]. Use of a
different material system can also reduce or eliminate this problem; for example
InGaAs/InP HBTs can be fabricated with negligible periphery current and no ledge
[24, 25]. This comes about through more favorable pinning potentials and lower
surface recombination velocity.

19.6 Thermal considerations

High-frequency transistors must be operated at high current density in order to
minimize the emitter charging delay, and the portion of the collector charging delay
associated with 1/gm . In applications where output power is a consideration, the
collector voltage may also be high. As a consequence, the operating power density
of these devices can easily exceed 105 W/cm2, and thermal effects play an important
role in their operation. Typical thermal resistances for HBTs on GaAs substrates are
on the order of 2 × 103 K/W for 10-µm-long emitters, or 3 × 103 K/W for 5-µm-long
emitters, on very thin (75 µm) substrates with 25 ◦C heat sinking [26]. In realistic
applications, heat-sink temperatures can easily be 50–75 ◦C. The thermal conductivity
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1.0 eV

2.0 eV

Fig. 19.5. Perspective view of the conduction-band energy of a graded-junction AlGaAs/GaAs HBT
with no ledge. The main current path is indicated by the thick arrow. Note the low potential of the
saddle point, which leads to the parasitic electron injection as shown.

of GaAs is actually temperature dependent; it has the general form [27]

K = A/T 1.2. (19.4)

A depends on the doping concentration, falling from 544 W K0.2 cm−1 for very pure
material to 357 W K0.2 cm−1 for heavily doped material. Figure 19.6 compares
the thermal conductivity of undoped GaAs, InP [28], and InGaAs as a function of
temperature. That figure shows that we should generally expect substantially lower
thermal resistances for HBTs grown on InP; this is indeed the case. Devices on thick
(375 µm) substrates have been shown to have a thermal resistance of 1.8 × 103 K/W
for 10-µm-long emitters [29]. One caveat is worth pointing out regarding InP-based
HBTs. Often these devices will incorporate a layer of heavily doped InGaAs in the
subcollector layer, to facilitate formation of the collector contact and to enhance the
subcollector sheet conductance. InGaAs lattice-matched to InP is thought to have
an extremely low thermal conductivity – 0.05 W K−1cm−1 – compared to InP [29].
This figure, however, is for the lattice conductivity [30]. The combination of low
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Fig. 19.6. Thermal conductivity, in W/cm2 K, of three common collector materials, vs. temperature.

lattice thermal conductivity and high electron mobility leads to a situation where
the electronic component of the thermal conductivity is significant. For strongly
degenerate semiconductors [31],

ke = π2k2
bσT/q2, (19.5)

which has a room temperature value of 0.05 W K−1 cm−1 for 2 × 1019 cm−3 n-type
material. Nonetheless, positioned as it is directly below the collector drift region
where most of the power is dissipated, such a layer has the maximum deleterious
effect possible. Heat flow through layered structures with layer thickness on the order
of the lateral device dimensions is fairly complex, and numerical modeling is the
surest way of accurately solving these problems. Qualitatively, use of InP instead
of GaAs, avoidance of InGaAs layers and scaling of devices to long, skinny emitters,
is desirable.

Junction temperature is only one of the thermal design problems presented by
HBTs. Multi-emitter-finger devices can exhibit a variety of thermal runaway problems,
depending on the details of the temperature coefficients associated with a particular
device, and its thermal resistance. The origin of any thermal runaway problem is
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the temperature dependence of the injection current. We saw in the previous chapter
that the exact form of JC depends on whether the emitter–base junction is abrupt, or
graded. However, from (18.21) and (18.24) we see that it always has the form

JC = −qn∗
Eveff /δ, (19.6a)

where

δ = exp (−�En/kB T ) (19.6b)

n∗
E = nE exp

(−Epk/kB T
)

(19.6c)

and�En is the height of the conduction-band spike (hence, 0 in the graded case). The
temperature dependence of veff is small compared to that of n∗

E . Then at fixed voltage
across the emitter–base junction, i.e., ignoring resistive drops,

1

JC

∂ JC

∂T
≈ 1

T

Epk −�En

kB T
. (19.7)

When the emitter–base junction heats up, the collector current density increases
substantially. In a typical circuit application no transistor will be biased at constant
vbe; in fact the collector bias current will be held more or less constant. But in a
multi-emitter device, each emitter finger is at substantially the same vbe. If one emitter
finger starts to heat up, it can rob current from the other fingers without affecting the
total collector current. In so doing, its temperature will rise further, and it will draw
even more current. Whether this process in fact runs away depends on the thermal
resistance of each finger, the thermal coupling between fingers, the parasitic emitter
resistance associated with each emitter finger and the bias point. Given knowledge of
the thermal resistance emitter resistance, and electrical temperature coefficients, a set
of non-linear equations can be solved to determine a critical current as a function of
VC E [29, 32]. Operation above this current can lead to thermal instability. However,
since the interfinger thermal coupling is typically left out of these analyses, transistors
with very tight thermal coupling between emitter fingers can be successfully operated
above the critical current. If the transistor does enter the thermally unstable regime,
one emitter finger may hog most of the emitter current; i.e., it will find itself carrying
current intended to be spread out among several fingers, at a junction temperature
and current density well beyond intended design limits. At the least, this will result
in rapid degradation, or even burn-out, of the affected device. It may also result in
pathological electrical behavior. For example AlGaAs/GaAs HBTs have a negative
temperature coefficient for current gain, so when runaway current-hogging occurs,
it is accompanied by a substantial decrease in β. This phenomenon is called gain
collapse, and its signature is a marked collapse of the common emitter family curves
beyond the region where thermal instability occurs. A similar phenomenon has
been observed in InP-based HBTs, although the β of these devices is essentially
temperature-independent [29]. However, the devices studied in [29] do have a
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current-dependent β, so they still exhibit a collapse phenomenon. A multi-finger
transistor that had perfectly temperature- and current-independent electrical properties
would be free of obvious electrical misbehavior like current collapse. Current-hogging
will still occur with the wrong combination of bias point, thermal characteristics and
emitter resistance. In turn, early failure or device burn-out at less than the expected
power dissipation will result.

19.7 Reliability issues

19.7.1 Introduction

Compound semiconductor HBTs present some very interesting problems in reliability
physics. The manifestations of reliability problems are disparate, ranging from a
significant increase in emitter–base voltage, to a significant increase in emitter–base
leakage, to increases in collector–base mesa side wall leakage, to name just a few.
Still, most of these problems can be tied together as a single theme with two unifying
elements. The first element is the involvement of defect chemistry. In other words,
the appearance or movement of some lattice imperfection (and in this sense even
intentionally introduced dopants are defects) either in the bulk semiconductor or at the
semiconductor surface takes place. These changes in turn lead to an irreversible change
in the electrical characteristics of the device over the course of operation. This is the
definition of a reliability problem. The second element is that the defect chemistry is
driven by quanta of energy deposited into the lattice by non-radiative recombination.
To be sure, not all reliability problems fit into this schema; it is always possible to
create a device that will fail, for example, through a purely thermally driven process
by making a poor choice of metallization. But the theme holds up well enough that the
beryllium diffusion problem is a useful paradigm.

19.7.2 The beryllium diffusion problem

Historically, the p-type dopant with the most predictable and most material-
independent incorporation properties for MBE-grown material has been beryllium,
so this has been the earliest and most popular choice of dopant. As it turns out, the
beryllium atom can be displaced from its substitutional gallium site, where it acts as
an acceptor, fairly easily. Once out, the interstitial atom is a fast diffuser [33]. So
the diffusivity of beryllium is determined by the rate at which it is displaced from
its substitutional site, and the rate at which interstitial beryllium can be returned to
a substitutional site. One example of the defect chemistry that would govern this
behavior is the reaction equation

Ga−
Be + 2p+ ↔ I0

Be + V+
Ga, (19.8)
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which describes the displacement of a beryllium atom from a substitutional gallium
site to an interstitial site, leaving behind a gallium vacancy. Two holes are consumed
in the process, to conserve charge. Some energy must be supplied to break the Be–As
bonds. Before proceeding further, we should note that the precise equations which
govern these processes remain controversial [34]. There is not full agreement on what
the charge states of interstitial and vacancy defects really are; but the choice of charge
state can have a profound effect on how well a given model based on a particular
set of defect reactions fits the experimental data. The true charge states are slowly
yielding to numerical calculation [35, 36], but much work still needs to be done in this
area, and the numerical results have to be adopted by other workers. Equation (19.8)
should thus be viewed as an example, rather than as a necessarily precise description.
Nonetheless, it leads to qualitatively correct predictions about various aspects of Be
diffusion. It leads to the equilibrium constant

K = [I0
Be][V+

Ga]

p2[Ga−
Be]

(19.9)

whose form shows that production of interstitial beryllium, and hence the diffusivity
of beryllium, is enhanced by high hole concentration. This makes HBTs particularly
susceptible to beryllium diffusion problems because of the scaling considerations
which always favor high base doping. Conversely, diffusion can be reduced by having
a high gallium vacancy concentration; this can at least be achieved during MBE growth
by using a high arsenic flux [33].

There is more to beryllium, however, than diffusion during high-temperature
exposure over the course of epitaxial growth [33, 37]. It was eventually noticed that the
emitter–base voltage of AlGaAs/GaAs HBTs exhibited a significant and irreversible
increase after high-current device operation. An example of the effect is shown in
Figure 19.7. This behavior is due to beryllium diffusion into the emitter, at junction
temperatures too cold to cause purely thermally activated diffusion. Soon after the first
reports [38, 39], Uematsu and Wada showed compelling evidence of the same effect
in tunnel diodes, which had the advantage that the effective diffusion coefficient for
beryllium could be determined directly from the device characteristics [40]. Their data
can be reanalyzed to show that the diffusion coefficient has the form:

DBe( j) = 0.6 × 10−11
(

J

1000 A/cm2

)3.9

exp (−0.59q/kT ) cm2/s (19.10)

for current densities between 1000 and 2000 A/cm2. The activation energy for purely
thermal diffusion is 1.8 ± 0.23 eV. The 0.59 eV activation energy for current-activated
diffusion shows that the physics of the two processes are very different. The obvious
difference is that current flow is accompanied by non-radiative recombination events.
Each of these events delivers energy to the crystal lattice in a packet that is less than
the bandgap energy, but of the same order of magnitude. Ordinarily, the defects
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Fig. 19.7. Gummel plots for and AlInAs/InGaAs HBT with a 4 × 1019 beryllium-doped base,
before and after current stress at elevated temperature. The plot shows the shift in vbe characteristic
of beryllium diffusion. (Courtesy of S. Bahl.)

responsible for non-radiative recombination are roughly mid-gap defects, so the energy
delivered will be roughly half the bandgap. The energetics of this process are probed
in more depth in Problem 19.4, where we see that non-radiative recombination can
be argued to deliver energy in quanta of at least half the bandgap (e.g. 0.7–1.4 eV
for GaAs). This energy will be delivered to a single defect, which can thereby be
raised to a highly excited state. If we think of the defect as comprising either an atom
or a vacancy, and the surrounding atoms that it is bonded to, then the idea that the
defect will undergo some profound change such as migration, or even dissociation
into daughter defects, is plausible. The most likely explanation for the decrease in
activation energy then is that the recombination energy results in the creation of a new
kind of defect that is not otherwise present. In turn, this new defect enables a different
diffusion mechanism with a lower activation energy, which therefore dominates over
the process governing purely thermal diffusion. For example, if thermal Be diffusion
is indeed completely described by the interstitial-substitutional model and the defect
chemistry of Equation (19.8), the activation energy would correspond to the energy
required to remove the substitutional beryllium from a gallium lattice site.
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19.7.3 Beryllium diffusion solutions

A common speculation is that recombination-enhanced generation of interstitial Ga
defects is at the root of the current-induced diffusion problem [40]. Interstitial Ga
is expected to exchange sites with some of the substitutional Be. In fact, there is
not consensus that this hypothesis is correct in a detailed sense [41], but there is
growing agreement on the idea that defect creation through recombination, as well
as the interaction of these defects with beryllium, plays a key role in causing the
beryllium diffusion [42]. Even if it is not a perfect representation of the details, the
general picture outlined here is accurate enough to be useful in reducing the beryllium
diffusion problem, and thus improving the reliability. There are essentially three
elements to this picture. First, the physical process of recombination-current-induced
defect generation plays an essential role. Second, the defects so generated cause
the production of interstitial beryllium through some defect reaction. Once this
happens, the interstitial beryllium then diffuses rapidly. Third, since beryllium is
a fast interstitial diffuser which is susceptible to displacement from the lattice, it is
also particularly susceptible to this class of reliability problem. This suggests several
means which might be used to improve HBT reliability: reduction of the non-radiative
recombination current, reduction of the emitter–base junction material’s susceptibility
to defect production, or outright elimination of the beryllium.

The first approach is generally not fruitful since most non-radiative recombination
paths will have been wrung out of a technology early in its development, because of
their impact on current gain. The second approach has turned out to be quite viable.
Streit et al. demonstrated one of the earliest improvements in beryllium-based HBT
reliability, by carefully controlling the MBE conditions during layer growth [41]. By
adjusting those conditions to increase the concentration of gallium vacancies grown
into the base, they were able to demonstrate an extrapolated mean time to failure
(MTTF) of > 108 hours at a 125 ◦C junction temperature, and a collector current
density of 3 kA/cm2. While this particular extrapolation is open to criticism [42, 43],
and the strong dependence of beryllium diffusion on current density suggests that
these devices will not be reliable at the bias conditions required for high-frequency
performance, the result still demonstrates that attention to the defect problem improves
the reliability. The basis of the improvement is the large number of grown-in Ga
vacancies; these vacancies act as a sink for any interstitial Ga that might be created
during current stress, as well as any interstitial beryllium that might subsequently be
created. An even greater improvement can be obtained by changing material systems.
By using an InAlAs emitter and InGaAs base, the amount of beryllium diffusion
into the emitter can be reduced considerably compared to that in an AlGaAs/GaAs
HBT [44]. In fact, devices with MTTF in excess of 106 hours at a 125 ◦C junction
temperature, and a collector current density of 70 kA/cm2, can easily be obtained
[45, 46]. In these devices, most of the non-radiative recombination takes place in
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InGaAs, whose small bandgap leads to a much smaller release of energy by each
recombination event.

The most straightforward solution to the beryllium problem has been to replace it
with carbon [47]. This completely eliminates diffusion problems, but a new assortment
of problems appears. These range from increased emitter–base leakage due to trap
formation in that junction’s space-charge region, to changes in the effective base
doping when large amounts of grown-in hydrogen are driven from the base [43], to
creation of carbon precipitates at the junction [48]. All of these mechanisms exhibit
strong dependence on the bias current, suggesting that recombination-induced defect
reactions continue to play an essential role in the degradation mechanism. More-
over, the use of an InGaP emitter, which dramatically reduces space-charge-region
recombination current (because of the large, abrupt valence-band discontinuity) raises
the current density at which these various failure mechanisms become a problem
[43, 48, 49]. Carbon-doped InGaP devices have an MTTF > 106 hours, at a 125 ◦C
junction temperature and a collector current density of 60 kA/cm2. At the slightly
higher current density required for operation at maximum fT , the reliability will not
be as good, but quite adequate for many applications. As material systems evolve and
further progress is made in this area, the details of the failure mechanisms will certainly
change, but it seems likely that the fundamentals – non-radiative recombination driving
microscopic changes in the location of atoms – will not.

19.8 Conclusion

We have examined some of the key problems in realizing practical high-speed HBTs.
The following general features have emerged from that examination.

1. Successful material systems for III–V HBTs exhibit four important properties: (i) a
low density of heterointerface states; (ii) significantly better transport than in Si; (iii)
semiinsulating substrate; (iv) relatively easy epitaxial growth, with nearly atomic
scale accuracy.

2. Scaling of vertical device dimensions to improve fT centers around reduction of
the total collector delay; however, this is difficult to do because any decrease in the
transit delay is accompanied by an increase in the collector charging time.

3. Velocity overshoot plays a significant role in collector transport.

4. Scaling of the emitter size can be constrained by the problem of periphery-
dependent base current, depending on the details of fabrication technology and
material properties.

5. Careful thermal design is essential for multi-emitter transistors.

6. Reliability considerations place an upper limit on the practical operating current
density, through the combination of thermal effects and recombination-enhanced
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defect reactions. In the examples considered, the base dopant plays a central role
in the important defect reactions, and hence in failure. The role of the base dopant
may not be central in all material systems, but the general theme of defect reactions
driven by large quanta of energy delivered to the lattice will be.
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GaAs 0.565 32
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19.10 Problems

19.1 The lattice parameters, in nanometers, of InP, AlAs, InAs, GaAs, and GaSb are shown in
Table 19.2. All materials have a cubic zinc-blende crystal structure.

(a) Assuming that lattice parameter is a linear function of composition, work out the
compositions of the four ternary alloys (alloys of the form A1−x Bx C which can be formed
from these materials, and lattice-matched to InP.

(b) Which alloys might be most suitable as an emitter material, and which as a base? Explain.

19.2 Assume that the collector drift region is fully depleted, and that the capacitance is given by
the appropriate parallel-plate capacitance. Calculate ∂τC/∂WBC vs WBC , with Ac/Ae as a
parameter. Scale the values from Table 19.1 for RE .

19.3 Assume that the subcollector is a 1 µm thick layer containing 2 × 1019 electrons/cm3, with
a mobility of 1000 cm2/V s. If the collector contact has a specific contact resistance of 3 ×
10−7 � cm2, estimate RC for a one-sided contact to a 2 × 4-µm emitter device. Calculate and
plot RC as the emitter width is scaled, keeping the emitter area constant.

19.4 In a semiconductor under forward injection conditions, i.e. pn � n2
i , non-radiative recombi-

nation takes place through a process where a trap level alternately captures an electron and a
hole.

(a) Draw an energy diagram that shows the energy dissipated in each capture event.

(b) Plot the energy that must be dissipated by the trap, as a function of the energetic position
of the trap within the bandgap. Assume that the trap energy is the same for the occupied
and unoccupied trap.
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InGaP emitter GaAs base HBT 655
linearity aspects 45
MBE growth 44, 654–7
n–p–n HBTs 652–3
OMVPE growth technique 657
reliability, the beryllium diffusion problem 670–4
Richardson velocity 622
semiinsulating substrates 654
SiGe base HBT 442–3, 655
thermal considerations 666–70

gain collapse 669–70
thermal runaway 668–9

HBT (heterojunction bipolar transistor) modeling
abrupt-junction 615–19, 621–3, 625–6, 629–32,

636–40, 644–6
Al mole fraction 617
applications and characteristics 443, 613–14
base widths in units of the mean free path 623
BTE (Boltzmann transport equation) direct solution

614–24
collector current density 623–4
compact model collector current 624–32

abrupt-junction 629–32
graded-emitter 625–29

compact models for cut-off frequencies 632–42
base–collector network 633, 641–2
extrapolated fmax 641–2

compact models for large-signal analysis 643–6
Ebers–Moll model 643–6
thermal considerations 646

compact models for regional delay 632–41
base delay 638–40
charge control method 632–5
collector delay 640–1
emitter delay 636–8
regional signal-delay expressions 635–41

conduction-band profiles 615
DDE-based simulators 627–29

distribution function components 618–20
electron concentration and velocity profiles 620–3
forward velocity profiles 622
injected and reflected electron fluxes at

emitter–base junction 616
microscopic modeling 614–24
tunneling probability 621

HEMT (high-electron-mobility transistor)
applications and characteristics 442, 457
and bandgap engineering 6–7
and MODFETs 115
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HEMT (cont.)
process/manufacturability issues 600–6
see also MODFETS anf PHEMTs

Hermitian Hamiltonian 71, 80–1, 83, 89, 196
heterojunction between two semiconductors with tight

binding 70–1
HFETs (heterostructure field-effect transistors), and

bandgap engineering 5–7
high electric field electron transport 286–310

Boltzmann equation/function 287
chordal mobility 299
energy balance equation 295–6
Gunn effect/Gunn diode 307
Joule effect 298
momentum conservation 301
negative differential mobility 303–8
non-uniform semiconductor case 296–9
stationary velocity overshoot in short devices

309–10
transient velocity overshoot in a time-varying field

308–9
two-valley model 299–303, 308, 448
uniform semiconductor case 294–6

high speed technologies, table of comparisons 443–4
hole bands, pseudomorphic materials/layers 4–5
Houston functions/states/wave packet 102–4, 105–6,

223–6
hybridization 11–12

I –V characteristics
isothermal 418–20
and large-signal modeling 430–1
MODFET, quasi-two-dimensional model for

548–80
p–n heterojunctions 35–8

diode current calculation 36
excess carriers calculation 36–7
and the injection of majority carriers 38
and resonant tunneling structures 215
and thermionic emission effects 38–9
total depletion width 36

pulsed/transient 416–17, 418, 436–7
impact ionization 477–8

in channel and gate tunneling, short-gate
MODFETs 470–3

impulse function 190, 197
and MSS (multiple-sequential scattering) 197

InAs
band structure 15
bandgap, lattice parameter and electron affinity 20

infrared response of quantum devices 251–62
optical absorption/emission coefficient 256–9
quantum cascade laser 259–62
and quantum transport coupling 254–6
simulation verification 257–9
wave guide modeling 252–3

InP, bandgap, lattice parameter and electron affinity
20, 600, 678

input resistance see gate resistance
interface roughness 206

scattering from 165–9, 210–14
interfacial gate resistance 529–34

and Schottky barrier formation 534–5

interfacial tunneling calculation application 550–7
AUDM 535, 551, 552, 554–6
barrier thickness effects 553
calculated interfacial gate resistance at DC and 50

GHz 551
Cowley–Sze’s vacuum picture 551–2, 554
equivalent circuits and Y parameters 557–62
interface parameter table for Vacuum IL, Oxide IL,

MIGS and AUDM 552
MIGS 551, 552, 553–5
oxygen exposure problems 553
SGBFETs 553–4
Thomas–Fermi metal screening length 553

interfacial tunneling resistance theory 540–50
Bardeen’s method 543–4
Cowley–Sze interfacial layer 546
Freeman and Dahlke’s model 549–50
general formalism for tunneling between metal and

surface states 541–5
Green’s theorem 544–5
interfacial tunneling barrier 545–6
metal wave-function tail 546
surface-state wave-function 548–9
tunneling effective mass 546–8
tunneling resistance and capture cross-section

549–50
intervalley scattering, LO phonons 165
isothermal I –V characteristics 418–20

Joule effect term 298

knee current and voltage short-gate MODFETs 479
Kurokawa’s definition 235

laser, quantum cascade 259–62
lattice structures see crystal and lattice structures
lattice-matched systems 2–3
LD (laterally diffused) MOSFETs

characterization 416
modeling 428

LGLTB (linearly-graded low-temperature buffer)
600–2

LNA (low noise amplifier) 589
LO phonons, intervalley scattering 165

MAG (maximum available (transducer power) gain),
long- and short-channel MODFETs 344–5, 579

manufacturability see process and manufacturability
Maxwell–Boltzmann distribution 287–9
MBE (molecular beam epitaxy) growth technique 1–7

application 7
bandgap engineering 5–7, 11–14
bandgap variation between GaAs and A1As 2–3
Brillouin zone 10–11, 13–14, 15
HBT growth technique 656
hybridization 11
lattice-matched systems 2–3
limitations 7
morphological defects 7
pseudomorphic materials/layers 3–5, 6, 603
and quantum wells 106, 108
reciprocal lattice 9–11
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measurement at high frequencies 567–72
network analyzer (NWA) measurement 567–9
on-wafer testing 570–2
SOLT (short, open, load thru) calibration 421, 568,

572
MESFET see MODFETs
microwave data acquisition 421 see also network

analyzer
microwave measurements of C–V characteristics,

RTDs 247–50
MIGS (metal-induced gap state) model 535–6, 538,

547, 551, 553–5
interface parameters for tunneling calculation 552

MMIC (monolithic microwave integrated circuit) 413,
445, 578

three-stage amplifier/process/manufacturability
issues 600–1, 605

MOCVD (metal organic chemical vapor deposition) 7
modeling

an analytically manageable transport model 458–60
circuit simulations 436–8
electrothermal modeling 433–5
large-signal 426–33

charge 433
I –V characteristics 430–1, 460–70
LD MOSFETs 428
model formulation 426–8
non-quasi-static model 427
parasitic bipolar topologies 431–3
SOI MOSFETs 428
tensor product B-splines 428–30

physical-based models (vs. table-based) 414
power amplifier circuit simulations 437, 438, 561–2
power amplifiers 413–14, 477
pulsed I –V circuit simulations 436–7
quasi-two-dimensional model for electrostatics and

I –V characteristics 460–80
small-signal 421–6

microwave data acqisition 421
parasitic deembeding 423–4, 425
topology 421–2

SPICE-based FET models 414
table-based modeling 414
thermal modeling 433–5
see also device characterization

MODFETs (modulation doped FETs) 115
2DEG concentration 333, 452
2DEG gate charge control 449–58, 272–6

conduction-band diagram and gate 273, 451
doping concentrations 452
DX trap phenomenon 25, 455–6
Thomas–Fermi screening 454

and the 2DEG structure 329
applications and characteristics 442–5
capacitor C–V characteristics 275–9, 279–81

frequency dependence 278–9
and the Schottky junction modeling 279–81

and charge control with a Schottky junction 272
drain (or output) conductance 335, 514–15
extrinsic 337–8
GCA (gradual-channel approximation) 318
Grebene–Ghandhi model 323–31, 473
I –V model 314–38, 460–70

layout 315, 317
long- and short-channel 316–23
maximum short-circuited current gain 343
MOSFET saturation model 331–7
and MOSFETs 320–3
saturation and two-dimensional effects 323–37
Y parameters see Y parameters
see also HEMT (high-electron-mobility transistor);

MOSFET; PHEMTs
MODFETs (modulation doped FETs) high frequency

performance 567–607
current gain 576, 577
cut-off frequencies 576–80, 580–4
effective electron saturation velocity 580–1
gate metallization resistance 583, 585
gate-finger widths 583
interfacial gate resistance 585
measurement issues 567–72
power gain 577–80
procedure and parameters for calculating Y

parameters 572–5
reverse modeling 606–7
see also noise, noise figure and associated gain;

process and manufacturability
MODFETs, short-channel (short-channel modulation

doped FETs) 384–411
alternate equivalent circuit 395–6
charge conservation 408
charge-based representation 407–8
equivalent circuit for the

large-signal D internal node model 403–6
small-signal D internal node model 400–7

high-frequency performance 393–4, 395
MAG (maximum available (transducer power)

gain) 344–5
maximum frequency of oscillation 347–50
maximum unity current-gain cut-off frequency 343,

347–50
model topology 409–10
MSG (maximum stable gain) 345
power gain resonances 393
unilateral power gain of the wave-equation model

346–7
see also MOSFET wave-equations, short channel

case
MODFETs, long-channel (long-channel modulation

doped FETs) 342–79
MAG (maximum available (transducer power)

gain) 344–5
maximum frequency of oscillation 347–50
maximum transconductance 343
maximum unity current-gain cut-off frequency 343,

347–50
MSG (maximum stable gain) 345
parasitic physical models 376, 378
unilateral power gain of the wave-equation model

346–7
see also MOSFET wave-equations, long-channel

case; MOSFET/MODFET long-channel
large-signal model

MODFETs, short-gate (short-gate modulation doped
FETs) DC analysis 442–82
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MODFETs, short-gate DC analysis (cont.)
2DEG gate charge control in a heavily dual

pulse-doped MODFET structure 449–58
analytically manageable 2DEG transport model

458–60
DC modeling approach 446–8
high-field velocity-saturated region 466–70
impact ionization in the channel and gate tunneling

470–3
low-field gradual channel 461–4
quasi-two-dimensional model for electrostatics and

I –V characteristics 460–80
reliability 480–2
SBGFET semiconductor materials history 448–9
source, drain and contact resistances 464–6
see also quasi-two-dimensional model for

electrostatics and I –V characteristics
MODFETs, short-gate (short-gate modulation doped

FETs) velocity saturated, small-signal AC
analysis 490–524

capacitances calculations 496–507, 520
conduction-induced currents and delays 507–19
conformal mapping for charge estimation 498–503
displacement currents 498–507
drain delays 491–4, 508, 514, 516–18
equivalent circuit discussion 491, 495, 519–21
equivalent circuit for intrinsic device 490–7
gate delay 496, 516, 518
gate-source capacitance 496, 505, 507
Green’s theorem 509
output (or drain) conductance 514, 515
saturation effects 493–5
transmission-line delay 514, 522
Y parameter calculations 516, 519–24, 559–61

modulation doping 23–6
AlGaAs models 25
degenerate doping conditions 25, 452–5
history 449
and quantum wells 108
silicon as a amphoteric dopant 23–4
spike doping 24

mole fraction 21, 172, 449, 456–7, 466, 479, 602–3
HBTs 617, 639

molecular beam epitaxy 1–3, 7, 19, 23–4, 44, 106,
108, 129, 247, 600, 602–3, 654–7, 670–1

momentum conservation, high electric field transport
301

Monte-Carlo simulator 42, 458–9, 464, 510, 532, 661
MOSFET saturation model, channel opening 331–7
MOSFET wave-equations, long-channel case 350–65

alternative equivalent circuits for the intrinsic
MODFET/MOSFET 363–5, 366

dimensionless representation of the y parameters
359

equivalent circuit 359–63
validity range of RC 361–3

exact small-signal MOSFETs 351–6
gate and drain currents 353–6
space representation of MODFET wave-equation

535
frequency power series expansions of the y

parameters 356–8
large signal 350–1

MOSFET wave-equations, short channel case 384–96
equivalent circuit of velocity saturated MOSFET

389–93
exact solution of velocity-saturated MOSFET

387–9
GCA (gradual-channel approximation) region

384–7
GCA/saturation boundary 386–7

MOSFET/MODFET long-channel large-signal model
365–76

charge conservation 373–6
in circuit simulators 374–6, 377

FET state equations verification 373–4
model derivation 366
RC large signal model testing 367–72

MOSFET/MODFET short-channel large-signal model
396–7

velocity saturated
first-order non-quasi-static approximation

397–400
exact solution 398–400

MOSFETs, additional devices and features see
MODFETs

MSG (maximum stable gain), long- and short-channel
MODFETs 345, 580

MSS (multiple-sequential scattering) 181, 185, 188
and 1SS Hamiltonian system 199–201
backward transmission coefficient 200
detailed balance 198–204
Fermi–Dirac distribution 201–3
forward transmission coefficient 199
and the impulse function 197
and LO phonon scattering 194
MSS algorithm and scattering processes 190–3
occupation number 204
Pauli exclusion 194, 202, 204
and self-energy 189
time reversal 199–201

multi-band density of states 86–91
and the Fermi–Dirac function 87–90
partial multi-band density 90

NDC (negative differential conductivity) region,
RTDs 244

NEGF (non-equilibrium Green function) 215–16
network analyzer (NWA) measurement and

calibration 567–71
Newman functions 98–9
noise, noise figure and associated gain 584–600

correlation admittance 594
and DBS (direct broadcast satellite) applications

593
effective noise conductance 594
effective noise resistance 594
equivalent representations of an FET with noise

587
formalism for noise figure and power gain 593–5
Fukui equation 591–3
high-frequency noise sources 586
LNA (low noise amplifier) 589
low-frequency noise 586
MODFET noise analysis 595–600
noise figure F (total noise figure) 588–9
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noise, noise figure and associated gain (cont.)
Norton’s theorem 586
PHS (Pucel, Haus and Statz) noise model/analysis

589–91
Pospieszalski’s thermal model 591–3
Rollett’s maximum available gain 595

occupation number 204
OEIC (optoelectronics integrated circuits) 7
OMVPE (organometallic vapor phase epitaxy) HBT

growth technique 657
on-wafer testing 570–2
optical absorption, and infrared response 256–9
optical phonons 152

polar scattering by 161–2
output conductance 514, 572–3
oxide IL, interface parameters for tunneling

calculation 552

parasitic bipolar topologies, modeling 431–2, 433
parasitic deembeding 422–4, 425
Pauli exclusion principle 131–3, 194, 202, 204
periodic superlattices 131–3
PHEMTs (pseudomorphic HEMTs)

applications and characteristics 442, 444, 457, 474,
477, 531–2, 589

history 449
phonons and phonon scattering 148–60

acoustic phonons, deformation potential scattering
by 162–4

and the Bose–Einstein distribution 156–7
and the conservation of energy and momentum 153
and creation and annihilation operators 154
and the Einstein model 152
electron and lattice Hamiltonian 157–8
and the Fermi golden rule 158
Glauber state 155
interaction Hamiltonian 157–8, 159, 161–2
intervalley scattering by LO phonons 165
and the lattice displacement operator 155
optical phonons 152
particle nature of 152–3
phonon states 155
phonon-assisted resonant tunneling 179
polar scattering by optical phonons 161–2
quantum analysis of crystal vibration 152
scattering analysis 150–1
semiclassical phonon model 159–60
spontaneous and stimulated emissions 157–9

physics-based (vs. table-based) models 414
piezoelectric effect 29
pinch-off voltage, 2DEGs 274–5
Poisson equation

and resonant tunneling 122
in a spatially-varying heterostructure 28

polar scattering 204–5, 208–9, 210
power amplifiers

circuit simulation 437, 438, 561–2
modeling 413–14

process and manufacturability 600–6
gate process 463, 603–5
HEMT (high-electron-mobility transistor) 600
and LGLTB 600–2

misfit dislocations 601
MMIC (monolithic microwave integrated circuit)

three-stage amplifier 600–1
threshold control 603
yield considerations 602–3

pseudomorphic materials/layers 3–5, 6
light/heavy-hole bands 4–5

pulsed I –V
characteristics 416–17, 418
circuit simulations 436–7

punch-through, short-gate MODFETs 470, 474, 477

quantum cascade laser 259–62
quantum properties of electrons 54–68
quantum transport coupling, and infrared response

254–6
quantum wells 106–15

2DEG 110–15
arbitrary shapes 109
density of states

in E space 113–14
k space 111–13

eigenstate in triangular wells 108–9
electric field induced 108–9
Fermi level alignment 108
Fermi–Dirac statistics in a 2DEG system 114–15
full-band structure effects 110
Hamiltonian 109
and MBE growth technique 106, 108
rectangular 107–8

quasi-crystals and Fibonacci superlattices 135–7, 138
quasi-two-dimensional model for electrostatics and

I –V characteristics, short-gate MODFETs
460–80

avalanche breakdown 471–2
continuity equation for channel current 460–1
gate tunneling 472–3
Grebene–Ghandi problem 473
Gunn domain 474
high-field velocity-saturated region 466–70
impact ionization 470–2, 477
intrinsic transconductance versus gate length 476–7
knee current 479
low-field gradual channel 461–4
output conductance 470
punch-through 470, 474, 477
velocity saturation 474

radiation coupling with an external modulated electric
field 222–8

random superlattices 133–5
reciprocal lattice 9–11

vector 10
reliability

the beryllium diffusion problem for HBTs 670–4
short-gate MODFETs 480–2

resistances
2DEG full channel sheet resistance 529, 574
Agilent EEsof Root FET Model, gate resistance 533
contact resistances 465–6
effective noise resistance 594
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resistances (cont.)
gate metallization resistance 583
necking, and gate resistance 529–30
source, drain resistances 464–5
see also gate resistance/input resistance; interfacial

gate resistance; interfacial tunneling resistance
theory

resonant tunneling 115–29
and charge distribution inside the well 121–3
double-barrier system/structure 115–19
and exchange correlation 124
full-band structure effects 124–7
high-frequency and high-speed response 128
RITDs 128–9
and scattering induced broadening 124
and three-dimensional electron gas concentration

120
time-dependent theory 228–32
tunneling current 119–21

reverse modeling 606–7
Richardson constant/velocity 39, 280, 622
RITDs (resonant interband tunneling diodes) 128–9
Rollett’s maximum available gain 579, 595
RTDs (resonant tunneling diodes) 44, 178

application of scattering-assisted tunneling theory
207–15

and bandgap engineering 6–7
capacitances 238–41
conductances 237–8
DC and AC self-consistent analysis 236–7
DC bias instabilities 250–1
high-frequency response 241–7
I –V characteristics 247, 248, 249, 250
maximum frequency 245–6
microwave measurements of C–V characteristics

247–50
NDC (negative differential conductivity) region 244
self-consistent solution 233–7
small-signal response without self-consistent

potential 232–3
and time-dependent tunneling theory 232–3

S-matrix representation 195–8
SBGFET (III–V Schottky-barrier gate FET)

applications and characteristics 442–5
interfacial tunneling barrier considerations 553–4,

557
materials history 448–9
modeling 446–8
parasitic gate resistance 536, 533–4

scattering assisted tunneling see tunneling, scattering
assisted

scattering induced broadening, and resonant tunneling
124

scattering processes 148–74
1SS (single-sequential scattering) 194–5, 197
acoustic phonon deformation scattering 162–4
AL (alloy scattering) 206–7
alloy scattering 169–72
backscattering 174
coupling functions 204–7
deformation potential LO phonon scattering 205–6

elastic scattering 185
electron–electron scattering 172–4
envelope equations for scattering 183–6
�–X intervalley scattering 209–13
interface roughness 165–9, 206, 210–14
LO phonon intervalley scattering 165
optical phonon polar scattering 161–2
optical phonon scattering 185
phonons and phonon scattering 148–60, 185
polar scattering 204–5, 208–9, 210
scattering analysis 150–1
three-dimensional 178–80
see also tunneling, scattering assisted

Schottky barrier
admittance analysis with semiconductor surface

states 536–40
and interface gate resistance 534–5
various models 535, 550–7
see also gate resistance/input resistance; interfacial

tunneling calculation application; interfacial
tunneling resistance theory; SBGFET

Schottky junction, and 2DEGs 272–5
Schrödinger equation 54–5

and the conservation of particles 72–3
and coupling quantum transport with infrared

radiation 254
and resonant tunneling 122
and semiclassical scattering 181
and time dependent tunneling theory 229
and tunneling between metal and surface states 541

self energy, and scattering-assisted tunneling 188–90
semiconductor material parameter tables 47, 48
semiinsulating substrates 654, 674
SHBT (single-heterojunction bipolar transistor) 655–6
Si

as an amphoteric dopant 23–4
band structure 15
bandgap, lattice parameter and electron affinity 20

simulations see modeling
skin effect, and gate resistance 528, 530, 574
small electric field electron transport 290–4

Boltzmann equation 290–2
Fermi level 293
Gamma function 292
non-uniform semiconductor case 292–4
uniform semiconductor case 290–2

SOI (silicon on insulator) MOSFETs, modeling 427–8
SOLT (short, open, load thru) calibration of NWA

421, 568, 572
source resistances 464–6
spatially-varying crystals 68–79

electron particle current (flux) 72–5
heterojunction between semiconductors 70–1
matching theory 76–8
three-dimensional effects 78–9

spatially-varying semiconductors 19–26
modulation doping 23–6 s
emiconductor alloys 20–3

SPICE-based FET models 414
spike doping 24
Stark states and the Wannier ladder 98–102, 105

eigenstate solutions 98–101
Zener resonant tunneling 101–2, 103
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superlattices 129–38
and Anderson localization 135
application 129
and the Bloch oscillator 132–3
periodic superlattices 131–3
quasi-crystals and Fibonacci superlattices 135–7,

138
random 133–5
superlattice axis 19
and the Wannier ladder 132, 134

surface-state wave-function, and interfacial tunneling
resistance 548–9

table-modeling 414
TEGFET (two-dimensional electron gas FET)

and MODFETs 115
see also MODFETs

tensor product B-splines 428–30
terraces and terrace density 166–9
thermal considerations, HBTs 666–70
thermal modeling 433–5
thermionic models 38–42

excess minority-carrier concentration 41
and the I –V diode characteristic 41
and the quasi-Fermi level 39–40
and the Richardson constant 39

Thomas–Fermi screening 454, 455, 553
three-dimensional band structure model, and quantum

wells 111
three-dimensional scattering 178–80
threshold voltage, 2DEGs 274–5, 450
time-dependent tunneling theory 228–32 tested by

application to RTD 232–3
time-reversal 196
time-varying quantum systems 221–2
TM mode, and infrared response 253
total particle current, definition 73–4
TPS (tensor product B-splines) 428–30
translation invariance, Wannier functions 60
translation operator, and electron in a periodic

potential 55–6
transmission line delay 514–16, 522, 568
transparency wave-matching technique for two-band

system 82–3
tunneling see interfacial tunneling calculation

application; interfacial tunneling resistance theory;
resonant tunneling; RTDs (resonant tunneling
diodes); tunneling, scattering assisted

tunneling, scattering assisted 177–216
and ballistic transport 177
envelope equations for sequential scattering 183–6
and the Hermitian Hamiltonian system 196
matrix elements for the

heterostructure Hamiltonian 181
interaction Hamiltonian 181–3

NEGF formalisms 215–16
RTD (resonant tunneling diode) 178
scattering-parameter representation 194–8
self-energy 188–90
semiclassical scattering picture 180–1
theory of 180–6
transmission coefficient 186–8
see also MSS

two-dimensional electron gas see 2DEG
two-dimensional model for electrostatics and I –V
characteristics see quasi-two-dimensional model

two-valley model, high-field transport 299–303,
308

vacuum IL, interface parameters for tunneling
calculation 552

valence band 6, 21–2
valence band offsets 27

Vegard’s law 21
velocity saturation short-gate MODFETs 474
virtual-crystal approximation/average potential 20,

169

Wannier expansion, and semiclassical scattering 181
Wannier functions 58–64

and 2DEG as a function of the Fermi level 265–7
and the Bloch function/state 64, 67
and the Bloch theorem 60, 65–6
bra-ket notation 61
completeness 60
convergence 60
eigenstate solutions 62, 66
envelope function 75
flat-band case 63
generalized 69–70
Hamiltonian derivation 61–2
Hamiltonian matrix elements 60
heterojunction between semiconductors 70–1

and interface roughness scattering 166
and multi-band density of states 88

normalization and orthogonality 60
properties table 70
three-dimensional crystal 64–8
three-dimensional Wannier recurrence equation 79

and time-dependent tunneling theory 229–30
translation invariance 60

proof of 60–1
Wannier recurrence equation 61–3

Wannier ladder 98–101
and superlattices 132

Wannier ladder energy spacing 222
Wannier multi-band tridiagonal system 79–86

effective-mass wave-matching for two-band system
81–4

full-band model comparison 84–6
Hamiltonian 79–80
Hermiticity of the Hamiltonian 80–1, 83, 89
transparency wave-matching technique 82–3

Wannier recurrence equation 98–101, 222
and double-barrier systems 115–19

Wannier state, and coupling quantum transport with
infrared radiation 254

wave guide modeling, and infrared response 252–3

Y parameters 516
calculation procedures and parameters recap 572–5
equivalent circuit, gate resistance and Schottky

barrier interface 557–62
measurement problems 567–8
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Y parameters (cont.)
MOSFET wave equations, long-channel case

356–8, 359
short-gate MODFETs 519–24

Zener oscillations 227–8
coherent and squeezed 105–6

Zener resonant tunneling 101–2, 103
zinc-blende crystal structure 8–11
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