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Preface to the First Edition

Courses in the mechanical behavior of materials are standard in both

mechanical engineering and materials science/engineering curricula.

These courses are taught, usually, at the junior or senior level. This

book provides an introductory treatment of the mechanical behavior

of materials with a balanced mechanics--materials approach, which

makes it suitable for both mechanical and materials engineering stu-

dents. The book covers metals, polymers, ceramics, and composites

and contains more than sufficient information for a one-semester

course. It therefore enables the instructor to choose the path most

appropriate to the class level (junior- or senior-level undergraduate)

and background (mechanical or materials engineering). The book is

organized into 15 chapters, each corresponding, approximately, to

one week of lectures. It is often the case that several theories have

been developed to explain specific effects; this book presents only

the principal ideas. At the undergraduate level the simple aspects

should be emphasized, whereas graduate courses should introduce

the different viewpoints to the students. Thus, we have often ignored

active and important areas of research. Chapter 1 contains introduc-

tory information on materials that students with a previous course

in the properties of materials should be familiar with. In addition,

it enables those students unfamiliar with materials to ‘‘get up to

speed.” The section on the theoretical strength of a crystal should

be covered by all students. Chapter 2, on elasticity and viscoelas-

ticity, contains an elementary treatment, tailored to the needs of

undergraduate students. Most metals and ceramics are linearly elas-

tic, whereas polymers often exhibit nonlinear elasticity with a strong

viscous component. In Chapter 3, a broad treatment of plastic deform-

ation and flow and fracture criteria is presented. Whereas mechanical

engineering students should be fairly familiar with these concepts,

(Section 3.2 can therefore be skipped), materials engineering students

should be exposed to them. Two very common tests applied to mater-

ials, the uniaxial tension and compression tests, are also described.

Chapters 4 through 9, on imperfections, fracture, and fracture tough-

ness, are essential to the understanding of the mechanical behavior

of materials and therefore constitute the core of the course. Point,

line (Chapter 4), interfacial, and volumetric (Chapter 5) defects are

discussed. The treatment is introductory and primarily descriptive.

The mathematical treatment of defects is very complex and is not

really essential to the understanding of the mechanical behavior of

materials at an engineering level. In Chapter 6, we use the concept

of dislocations to explain work-hardening; our understanding of this

phenomenon, which dates from the 1930s, followed by contemporary

developments, is presented. Chapters 7 and 8 deal with fracture from

a macroscopic (primarily mechanical) and a microstructural view-

point, respectively. In brittle materials, the fracture strength under
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tension and compression can differ by a factor of 10, and this differ-

ence is discussed. The variation in strength from specimen to speci-

men is also significant and is analyzed in terms of Weibull statis-

tics. In Chapter 9, the different ways in which the fracture resistance

of materials can be tested is described. In Chapter 10, solid solu-

tion, precipitation, and dispersion strengthening, three very import-

ant mechanisms for strengthening metals, are presented. Martens-

itic transformation and toughening (Chapter 11) are very effective

in metals and ceramics, respectively. Although this effect has been

exploited for over 4,000 years, it is only in the second half of the

20th century that a true scientific understanding has been gained;

as a result, numerous new applications have appeared, ranging from

shape-memory alloys to maraging steels, that exhibit strengths higher

than 2 GPa. Among novel materials with unique properties that have

been developed for advanced applications are intermetallics, which

often contain ordered structures. These are presented in Chapter 12.

In Chapters 13 and 14, a detailed treatment of the fundamental mech-

anisms responsible for creep and fatigue, respectively, is presented.

This is supplemented by a description of the principal testing and

data analysis methods for these two phenomena. The last chapter of

the book deals with composite materials. This important topic is, in

some schools, the subject of a separate course. If this is the case, the

chapter can be omitted.

This book is a spinoff of a volume titled Mechanical Metallurgy writ-

ten by these authors and published in 1984 by Prentice-Hall. That

book had considerable success in the United States and overseas, and

was translated into Chinese. For the current volume, major changes

and additions were made, in line with the rapid development of the

field of materials in the 1980s and 1990s. Ceramics, polymers, compos-

ites, and intermetallics are nowadays important structural materials

for advanced applications and are comprehensively covered in this

book. Each chapter contains, at the end, a list of suggested reading;

readers should consult these sources if they need to expand a spe-

cific point or if they want to broaden their knowledge in an area.

Full acknowledgment is given in the text to all sources of tables and

illustrations. We might have inadvertently forgotten to cite some of

the sources in the final text; we sincerely apologize if we have failed

to do so. All chapters contain solved examples and extensive lists of

homework problems. These should be valuable tools in helping the

student to grasp the concepts presented.

By their intelligent questions and valuable criticisms, our students

provided the most important input to the book; we are very grateful

for their contributions. We would like to thank our colleagues and

fellow scientists who have, through painstaking effort and unselfish

devotion, proposed the concepts, performed the critical experiments,

and developed the theories that form the framework of an emerging

quantitative understanding of the mechanical behavior of materials.

In order to make the book easier to read, we have opted to mini-

mize the use of references. In a few places, we have placed them
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in the text. The patient and competent typing of the manuscript

by Jennifer Natelli, drafting by Jessica McKinnis, and editorial help

with text and problems by H. C. (Bryan) Chen and Elizabeth Kristofetz

are gratefully acknowledged. Krishan Chawla would like to acknow-

ledge research support, over the years, from the US Office of Naval

Research, Oak Ridge National Laboratory, Los Alamos National Lab-

oratory, and Sandia National Laboratories. He is also very thankful

to his wife, Nivedita; son, Nikhilesh; and daughter, Kanika, for mak-

ing it all worthwhile! Kanika’s help in word processing is gratefully

acknowledged. Marc Meyers acknowledges the continued support of

the National Science Foundation (especially R. J. Reynik and B. Mac-

Donald), the US Army Research Office (especially G. Mayer, A. Crowson,

K. Iyer, and E. Chen), and the Office of Naval Research. The inspir-

ation provided by his grandfather, Jean-Pierre Meyers, and father,

Henri Meyers, both metallurgists who devoted their lives to the pro-

fession, has inspired Marc Meyers. The Institute for Mechanics and

Materials of the University of California at San Diego generously sup-

ported the writing of the book during the 1993--96 period. The help

provided by Professor R. Skalak, director of the institute, is greatly
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Preface to the Second Edition

The second edition of Mechanical Behavior of Materials has revised and

updated material in every chapter to reflect the changes occurring

in the field. In view of the increasing importance of bioengineering,

a special emphasis is given to the mechanical behavior of biologi-

cal materials and biomaterials throughout this second edition. A

new chapter on environmental effects has been added. Professors Fine

and Voorhees1 make a cogent case for integrating biological materi-

als into materials science and engineering curricula. This trend is

already in progress at many US and European universities. Our sec-

ond edition takes due recognition of this important trend. We have

resisted the temptation to make a separate chapter on biological and

biomaterials. Instead, we treat these materials together with tradi-

tional materials, viz., metals, ceramics, polymers, etc. In addition,

taking due cognizance of the importance of electronic materials, we

have emphasized the distinctive features of these materials from a

mechanical behavior point of view.

The underlying theme in the second edition is the same as in

the first edition. The text connects the fundamental mechanisms to

the wide range of mechanical properties of different materials under

a variety of environments. This book is unique in that it presents,

in a unified manner, important principles involved in the mechani-

cal behavior of different materials: metals, polymers, ceramics, com-

posites, electronic materials, and biomaterials. The unifying thread

running throughout is that the nano/microstructure of a material

controls its mechanical behavior. A wealth of micrographs and line

diagrams are provided to clarify the concepts. Solved examples and

chapter-end exercise problems are provided throughout the text.

This text is designed for use in mechanical engineering and mater-

ials science and engineering courses by upper division and graduate

students. It is also a useful reference tool for the practicing engineers

involved with mechanical behavior of materials. The book does not

presuppose any extensive knowledge of materials and is mathemat-

ically simple. Indeed, Chapter 1 provides the background necessary.

We invite the reader to consult this chapter off and on because it

contains very general material.

In addition to the major changes discussed above, the mechan-

ical behavior of cellular and electronic materials was incorporated.

Major reorganization of material has been made in the following

parts: elasticity; Mohr circle treatment; elastic constants of fiber rein-

forced composites; elastic properties of biological and of biomaterials;

failure criteria of composite materials; nanoindentation technique

and its use in extracting material properties; etc. New solved and

1 M. E. Fine and P. Voorhees, ‘‘On the evolving curriculum in materials science & engin-

eering,” Daedalus, Spring 2005, 134.
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A Note to the Reader

Our goal in writing Mechanical Behavior of Materials has been to produce

a book that will be the pre-eminent source of fundamental knowl-

edge about the subject. We expect this to be a guide to the student

beyond his or her college years. There is, of course, a lot more mate-

rial than can be covered in a normal semester-long course. We make

no apologies for that in addition to being a classroom text, we want

this volume to act as a useful reference work on the subject for the

practicing scientist, researcher, and engineer.

Specifically, we have an introductory chapter dwelling on the

themes of the book: structure, mechanical properties, and perfor-

mance. This section introduces some key terms and concepts that

are covered in detail in later chapters. We advise the reader to use

this chapter as a handy reference tool, and consult it as and when

required. We strongly suggest that the instructor use this first chap-

ter as a self-study resource. Of course, individual sections, examples,

and exercises can be added to the subsequent material as and when

desired.

Enjoy!





Chapter 1

Materials: Structure,

Properties, and Performance

1.1 Introduction

Everything that surrounds us is matter. The origin of the word mat-

ter is mater (Latin) or matri (Sanskrit), for mother. In this sense, human

beings anthropomorphized that which made them possible – that

which gave them nourishment. Every scientific discipline concerns

itself with matter. Of all matter surrounding us, a portion comprises

materials. What are materials? They have been variously defined. One

acceptable definition is ‘‘matter that human beings use and/or pro-

cess.” Another definition is ‘‘all matter used to produce manufac-

tured or consumer goods.” In this sense, a rock is not a material,

intrinsically; however, if it is used in aggregate (concrete) by humans,

it becomes a material. The same applies to all matter found on earth:

a tree becomes a material when it is processed and used by people,

and a skin becomes a material once it is removed from its host and

shaped into an artifact.

The successful utilization of materials requires that they satisfy a

set of properties. These properties can be classified into thermal, optic-

al, mechanical, physical, chemical, and nuclear, and they are in-

timately connected to the structure of materials. The structure, in its

turn, is the result of synthesis and processing. A schematic framework

that explains the complex relationships in the field of the mechanical

behavior of materials, shown in Figure 1.1, is Thomas’s iterative tetra-

hedron, which contains four principal elements: mechanical prop-

erties, characterization, theory, and processing. These elements are

related, and changes in one are inseparably linked to changes in the

others. For example, changes may be introduced by the synthesis and

processing of, for instance, steel. The most common metal, steel has

a wide range of strengths and ductilities (mechanical properties), which

makes it the material of choice for numerous applications. While low-

carbon steel is used as reinforcing bars in concrete and in the body

of automobiles, quenched and tempered high-carbon steel is used in

more critical applications such as axles and gears. Cast iron, much

more brittle, is used in a variety of applications, including automobile
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Forging
Rolling
Stamping
Drawing
Extrusion
Casting
Pultrusion
Chemical vapor deposition
Pulsed laser ablation
Molecular beam epitaxy
Metal-Organic CVD
Liquid-Phase epitaxy
Melt spinning
Powder processing

Mechanical testing
Optical microscopy
X-ray diffraction
Scanning electron microscopy
Scanning probe microscopy
Auger electron spectroscopy
Transmission electron microscopy

Creep
Fatigue
Strength
Toughness
Dynamic response
Constitutive response

Characterization

Mechanical
Properties

Processing

TheoryContinuum mechanics
Computational mechanics
Quantum mechanics
Crystallography, defects
Diffraction
Thermodynamics
Phase transformations
Electrochemistry

Fig. 1.1 Iterative materials

tetrahedron applied to mechanical

behavior of materials. (After G.

Thomas.)

engine blocks. These different applications require, obviously, differ-

ent mechanical properties of the material. The different properties

of the three materials, resulting in differences in performance, are

attributed to differences in the internal structure of the materials.

The understanding of the structure comes from theory. The determina-

tion of the many aspects of the micro-, meso-, and macrostructure of

materials is obtained by characterization. Low-carbon steel has a primar-

ily ferritic structure (body-centered cubic; see Section 1.3.1), with some

interspersed pearlite (a ferrite–cementite mixture). The high hardness

of the quenched and tempered high-carbon steel is due to its martens-

itic structure (body-centered tetragonal). The relatively brittle cast

iron has a structure resulting directly from solidification, without

subsequent mechanical working such as hot rolling. How does one

obtain low-carbon steel, quenched and tempered high-carbon steel,

and cast iron? By different synthesis and processing routes. The low-

carbon steel is processed from the melt by a sequence of mechani-

cal working operations. The high-carbon steel is synthesized with a

greater concentration of carbon (>0.5%) than the low-carbon steel

(0.1%). Additionally, after mechanical processing, the high-carbon

steel is rapidly cooled from a temperature of approximately 1,000 ◦C

by throwing it into water or oil; it is then reheated to an intermedi-

ate temperature (tempering). The cast iron is synthesized with even

higher carbon contents (∼2%). It is poured directly into the molds and

allowed to solidify in them. Thus, no mechanical working, except for

some minor machining, is needed. These interrelationships among
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structure, properties, and performance, and their modification by

synthesis and processing, constitute the central theme of materials

science and engineering. The tetrahedron of Figure 1.1 lists the princi-

pal processing methods, the most important theoretical approaches,

and the most-used characterization techniques in materials science

today.

The selection, processing, and utilization of materials have been

part of human culture since its beginnings. Anthropologists refer

to humans as ‘‘the toolmakers,” and this is indeed a very realistic

description of a key aspect of human beings responsible for their

ascent and domination over other animals. It is the ability of humans

to manufacture and use tools, and the ability to produce manufac-

tured goods, that has allowed technological, cultural, and artistic

progress and that has led to civilization and its development. Mater-

ials were as important to a Neolithic tribe in the year 10,000 bc as

they are to us today. The only difference is that today more complex

synthetic materials are available in our society, while Neolithic tribes

had only natural materials at their disposal: wood, minerals, bones,

hides, and fibers from plants and animals. Although these naturally

occurring materials are still used today, they are vastly inferior in

properties to synthetic materials.

1.2 Monolithic, Composite, and
Hierarchical Materials

The early materials used by humans were natural, and their structure

varied widely. Rocks are crystalline, pottery is a mixture of glassy and

crystalline components, wood is a fibrous organic material with a cel-

lular structure, and leather is a complex organic material. Human

beings started to synthesize their own materials in the Neolithic

period: ceramics first, then metals, and later, polymers. In the twen-

tieth century, simple monolithic structures were used first. The term

monolithic comes from the Greek mono (one) and lithos (stone). It means

that the material has essentially uniform properties throughout.

Microstructurally, monolithic materials can have two or more phases.

Nevertheless, they have properties (electrical, mechanical, optical, and

chemical) that are constant throughout. Table 1.1 presents some of

the important properties of metals, ceramics, and polymers. Their

detailed structures will be described in Section 1.3. The differences

in their structure are responsible for differences in properties. Metals

have densities ranging from 3 to 19 g/cm−3; iron, nickel, chromium,

and niobium have densities ranging from to 7 to 9 g/cm−3; alu-

minum has a density of 2.7 g/cm−3; and titanium has a density of

4.5 g/cm−3. Ceramics tend to have lower densities, ranging from

5 g/cm−3 (titanium carbide; TiC = 4.9) to 3 g/cm−3 (alumina; Al2O3 =
3.95; silicon carbide; SiC = 3.2). Polymers have the lowest densities,

fluctuating around 1 g cm−3. Another marked difference among these
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Table 1.1 Summary of Properties of Main Classes of Materials

Property Metals Ceramics Polymers

Density (g/cm3) from 2 to 20 from 1 to 14 from 1 to 2.5
Electrical conductivity high low low
Thermal conductivity high low low
Ductility or

strain-to-fracture (%)
4–40 <1 2–4

Tensile strength (MPa) 100–1,500 100–400 –
Compressive strength

(MPa)
100–1,500 1,000–5,000 –

Fracture toughness
(MNm−3/2)

10–30 1–10 2–8

Maximum service
temperature (◦C)

1,000 1,800 250

Corrosion resistance low to medium superior medium
Bonding metallic (free-electron

cloud)
ionic or

covalent
covalent

Structure mostly crystalline
(Face-centered
cubic; FCC

complex
crystalline
structure

amorphous or
semicrystalline
polymer

Body-centered cubic; BCC
Hexagonal closed packed;

HCP)

three classes of materials is their ductility (ability to undergo plastic

deformation). At room temperature, metals can undergo significant

plastic deformation. Thus, metals tend to be ductile, although there

are a number of exceptions. Ceramics, on the other hand, are very

brittle, and the most ductile ceramics will be more brittle than most

metals. Polymers have a behavior ranging from brittle (at tempera-

tures below their glass transition temperature) to very deformable (in

a nonlinear elastic material, such as rubber). The fracture toughness

is a good measure of the resistance of a material to failure and is

generally quite high for metals and low for ceramics and polymers.

Ceramics far outperform metals and polymers in high-temperature

applications, since many ceramics do not oxidize even at very high

temperatures (the oxide ceramics are already oxidized) and retain

their strength to such temperatures. One can compare the mechan-

ical, thermal, optical, electrical, and electronic properties of the dif-

ferent classes of materials and see that there is a very wide range of

properties. Thus, monolithic structures built from primarily one class

of material cannot provide all desired properties.

In the field of biomaterials (materials used in implants and life-

support systems), developments also have had far-reaching effects. The

mechanical performance of implants is critical in many applications,

including hipbone implants, which are subjected to high stresses,

and endosseous implants in the jaw designed to serve as the base for
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(b)(a)

(d)

(c)

Fig. 1.2 (a) Complete

enclosures implant, (b) A hole is

drilled and (c) a titanium post is

screwed into jawbone. (d) Marking

of site with small drill. (Courtesy

of J. Mahooti.)

teeth. Figure 1.2 (a) shows the most successful design for endosseous

implants in the jawbone. With this design, the tooth is fixed to the

post and is effective. A titanium post is first screwed into the jaw-

bone and allowed to heal. The tooth is then fixed to the post, and is

effectively rooted into the jaw. The insertion of endosseous implants

into the mandibles or maxillae, which was initiated in the 1980s, has

been a revolution in dentistry. There is a little story associated with

this discovery. Researchers were investigating the bone marrow of rab-

bits. They routinely used stainless steel hollow cylinders screwed into

the bone. Through the hole, they could observe the bone marrow.

It so happened that one of these cylinders was made of titanium.

Since these cylinders were expensive, the researchers removed them

periodically, in order to reuse them. When they tried to remove the

titanium cylinder, it was tightly fused to the bone. This triggered the

creative intuition of one of the researchers, who said ‘‘What if . . .?”

Figure 1.2(c) shows the procedure used to insert the titanium

implant. The site is first marked with a small drill that penetrates

the cortical bone. Then successive drills are used to create the orifice

of desired diameter (Figure 1.2(d)). The implant is screwed into the

bone and the tissue is closed (Figure 1.2(c)). This implant is allowed to

heal and fuse with the bone for approximately six months. Chances

are that most readers will have these devices installed sometime in

their lives.

Hip- and knee-replacement surgery is becoming commonplace.

In the USA alone between 250,000 and 300,000 of each procedure

are carried out annually. The materials of the prostheses have an
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Acetabular 
component

Femoral 
component

Stem
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(a) (b)
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component

Spacer

Tibial 
component

Fig. 1.3 (a) Total hip

replacement prosthesis;

(b) total knee replacement

prosthesis.

important bearing on survival probability. Typical hip and knee pros-

theses are shown in Figure 1.3.

The hip prosthesis is made up of two parts: the acetabular compo-

nent, or socket portion, which replaces the acetabulum; the femoral

component, or stem portion, which replaces the femoral head.

The femoral component is made of a metal stem with a metal

ball on the extremity. In some prostheses a ceramic ball is attached

to the metal stem. The acetabular component is a metal shell with a

plastic inner socket liner made of metal, ceramic, or a plastic called

ultra-high-molecular-weight polyethylene (UHMWP) that acts like a

bearing. A cemented prosthesis is held in place by a type of epoxy

cement that attaches the metal to the bone. An uncemented prosthesis

has a fine mesh of holes on the surface area that touches the bone.

The mesh allows the bone to grow into the mesh and become part of

the bone. Biomaterial advances have allowed experimentation with

new bearing surfaces, and there are now several different options

when hip-replacement surgery is considered.

The metal has to be inert in the body environment. The preferred

materials for the prostheses are Co–Cr alloys (Vitalium) and titanium

alloys. However, there are problems that have not yet been resolved:

the metallic components have elastic moduli that far surpass those of

bone. Therefore, they ‘‘carry” a disproportionate fraction of the load,

and the bone is therefore unloaded. Since the health and growth of

bone is closely connected to the loads applied to it, this unloading

tends to lead to bone loss.

The most common cause of joint replacement failure is wear of

the implant surfaces. This is especially critical for the polymeric com-

ponents of the prosthesis. This wear produces debris which leads to

tissue irritation. Another important cause of failure is loosening of

the implant due to weakening of the surrounding bone. A third source

of failure is fatigue.
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Biocompatibility is a major concern for all implants, and cer-

amics are especially attractive because of their (relative) chemical

inertness. Metallic alloys such as Vitalium r© (a cobalt-based alloy)

and titanium alloys also have proved to be successful, as have poly-

mers such as polyethylene. A titanium alloy with a solid core sur-

rounded by a porous periphery (produced by sintering of powders)

has shown considerable potential. The porous periphery allows bone

to grow and affords very effective fixation. Two new classes of mater-

ials that appear to present the best biocompatibility with bones are

the Bioglass r© and calcium phosphate ceramics. Bones contain cal-

cium and phosphorus, and Bioglass r© is a glass in which the silicon

has been replaced by those two elements. Thus, the bone ‘‘perceives”

these materials as being another bone and actually bonds with it.

Biomechanical properties are of great importance in bone implants,

as are the elastic properties of materials. If the stiffness of a mater-

ial is too high, then when implanted the material will carry more

of the load placed on it than the adjacent bone. This could in turn

lead to a weakening of the bone, since bone growth and strength

depends on the stresses that the bone is subjected to. Thus, the elas-

tic properties of bone and implant should be similar. Polymers rein-

forced with strong carbon fibers are also candidates for such appli-

cations. Metals, on the other hand, are stiffer than bones and tend

to carry most of the load. With metals, the bones would be shielded

from stress, which could lead to bone resorption and loosening of the

implant.

Although new materials are being developed continuously, mono-

lithic materials, with their uniform properties, cannot deliver the

range of performance needed in many critical applications. Compos-

ites are a mixture of two classes of materials (metal–ceramic, metal–

polymer, or polymer–ceramic). They have unique mechanical proper-

ties that are dependent on the amount and manner in which their

constituents are arranged. Figure 1.4(a) shows schematically how dif-

ferent composites can be formed. Composites consist of a matrix and

a reinforcing material. In making them, the modern materials engi-

neer has at his or her disposal a very wide range of possibilities. How-

ever, the technological problems involved in producing some of them

are immense, although there is a great deal of research addressing

those problems. Figure 1.4(b) shows three principal kinds of reinforce-

ment in composites: particles, continuous fibers, and discontinuous

(short) fibers. The reinforcement usually has a higher strength than

the matrix, which provides the ductility of the material. In ceramic-

based composites, however, the matrix is brittle, and the fibers pro-

vide barriers to the propagating cracks, increasing the toughness of

the material.

The alignment of the fibers is critical in determining the strength

of a composite. The strength is highest along a direction parallel to

the fibers and lowest along directions perpendicular to it. For the

three kinds of composite shown in Figure 1.4(b), the polymer matrix

plus (aramid, carbon, or glass) fiber is the most common combination

if no high-temperature capability is needed.
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Fig. 1.4 (a) Schematic representations of different classes of composites. (b) Different

kinds of reinforcement in composite materials. Composite with continuous fibers with

four different orientations (shown separately for clarity).
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Table 1.2 Specific Modulus and Strength of Materials Used in Aircraft

Elastic Modulus Tensile Strength

Material
Density
(GPa/g · cm−3)

Density
(MPa/g · cm−3)

Steel (AISI 4340) 25 230
Al (7075-T6) 25 180
Titanium (Ti-6Al-4V) 25 250
E Glass/Epoxy composite 21 490
S Glass/Epoxy composite 47 790
∗Axamid/Epoxy composite 55 890
HS (High Tensile Strength) 92 780

Carbon/Epoxy
composite

HM (high modulus)
Carbon/Epoxy
composite

134 460

Composites are becoming a major material in the aircraft indus-

try. Carbon/epoxy and aramid/epoxy composites are being introduced

in a large number of aircraft parts. These composite parts reduce

the weight of the aircraft, increasing its economy and payload. The

major mechanical property advantages of advanced composites over

metals are better stiffness-to-density and strength-to-density ratios

and greater resistance to fatigue. The values given in Table 1.2 apply to

a unidirectional composite along the fiber reinforcement orientation.

The values along other directions are much lower, and therefore the

design of a composite has to incorporate the anisotropy of the mater-

ials. It is clear from the table that composites have advantages over

monolithic materials. In most applications, the fibers are arranged

along different orientations in different layers. For the central com-

posite of Figure 1.4(b), these orientations are 0◦, 45◦, 90◦, and 135◦ to

the tensile axis.

Can we look beyond composites in order to obtain even higher

mechanical performance? Indeed, we can: Nature is infinitely

imaginative.

Our body is a complex arrangement of parts, designed, as a whole,

to perform all the tasks needed to keep us alive. Scientists are looking

into the make-up of soft tissue (skin, tendon, intestine, etc.), which

is a very complex structure with different units active at different

levels complementing each other. The structure of soft tissue has

been called a hierarchical structure, because there seems to be a rela-

tionship between the ways in which it operates at different levels.

Figure 1.5 shows the structure of a tendon. This structure begins

with the tropocollagen molecule, a triple helix of polymeric protein

chains. The tropocollagen molecule has a diameter of approximately
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Fig. 1.5 A model of a

hierarchical structure occurring in

the human body. (Adapted from

E. Baer, Sci. Am. 254, No. 10 (1986)

179.)

Fig. 1.6 Schematic illustration of

a proposed hierarchical model for

a composite (not drawn to scale).

(Courtesy of E. Baer.)

1.5 mm. The tropocollagen organizes itself into microfibrils, sub-

fibrils, and fibrils. The fibrils, a critical component of the struc-

ture, are crimped when there is no stress on them. When stressed,

they stretch out and then transfer their load to the fascicles, which

compose the tendon. The fascicles have a diameter of approxi-

mately 150–300 μm and constitute the basic unit of the tendon. The

hierarchical organization of the tendon is responsible for its tough-

ness. Separate structural units can fail independently and thus absorb

energy locally, without causing the failure of the entire tendon. Both

experimental and analytical studies have been done, modeling the

tendon as a composite of elastic, wavy fibers in a viscoelastic matrix.

Local failures, absorbing energy, will prevent catastrophic failure of

the entire tendon until enormous damage is produced.

Materials engineers are beginning to look beyond simple two-

component composites, imitating nature in organizing different

levels of materials in a hierarchical manner. Baer1 suggests that the

study of biological materials could lead to new hierarchical designs

for composites. One such example is shown in Figure 1.6, a layered

structure of liquid-crystalline polymers consisting of alternating core

and skin layers. Each layer is composed of sublayers which, in their

1 E. Baer, Sci. Am. 254, No. 10 (1986) 179.
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turn, are composed of microlayers. The molecules are arranged in dif-

ferent arrays in different layers. The lesson that can be learned from

this arrangement is that we appear to be moving toward composites

of increasing complexity.

Example 1.1 (Design problem)

Discuss advanced materials used in bicycle frames.

This is a good case study, and the instructor can ‘‘pop” similar ques-

tions on an exam, using different products. For our specific example

here, we recommend the insightful article by M. F. Ashby, Met. and Mat.

Trans., A 26A (1995) 3057. Ashby states that ‘‘Materials and processes under-

pin all engineering design.”

FF1

F2

M2
T2

T1
M1

Fig. E1.1 Bending moments (M1 and M2) and torsional torques (T1 and T2)

generated in bicycle frame by forces F1 and F2 applied to pedals.

Figure E1.1 shows a bicycle, with forces F1 and F2 applied to the

frame by the pedals. These forces produce bending moments and

torsions in the frame tubes. In bicycle frames, weight and stiffness are

the two primary requirements. Stiffness is important because excessive

flexing of the bicycle upon pedaling absorbs energy that should be used
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to propel the bicycle forward. This requires the definition of new prop-

erties, because just the strength or endurance limit (the stress below

which no failure due to fatigue occurs) and Young’s modulus (defined

in Chapter 2) are not sufficient. In conversations, we always say that

aluminum bicycles are ‘‘stiffer” than steel bicycles, whereas steel pro-

vides a more ‘‘cushioned” ride. An aluminum bicycle may indeed be

stiffer than a steel bicycle, although Est ( = 210 GPa) ≈ 3 EA1 ( = 70 GPa).

We will see shortly how this can happen and what is necessary for it to

occur. The forces F1 and F2 cause bending moments (M1 and M2), respect-

ively. The bending stresses in a hollow tube of radius r and thickness t

are2

σ = Mr

I
,

where I is the moment of inertia, M the bending moment, and r the

radius of the tube. Setting σ = σ e, the endurance limit, and substitut-

ing the expression for the moment of inertia I = πr3t, we obtain the

thickness of the tube, t, from:

M = σeπ
3t

r
.

From strength considerations, the mass per unit length of the

bicycle frame is

m

L
= 2πr tρ = 2M

r

(
ρ

σe

)
, (E1.1.1)

where ρ is the density of the frame. Now, the radius of curvature ρ ′ of a

circular beam under bending is given by the Bernoulli–Euler equation,

1

ρ ′ = d2ν

dx2
= M

E I
,

where ν is the deflection of the beam. Substituting for I, we obtain

1

ρ ′ = M

E πr 3t
, or πr t = Mρ ′

r 2 E
.

From bending considerations, the mass per unit length is

m

L
= 2πr tρ = 2Mρ ′

r 2

( ρ

E

)
(E1.1.2)

A similar expression can be developed for the torsion, which is

important in pedaling. The torsion is shown in Figure E1.2 as T1 and

T2. Since M, the applied moment, is given by the weight of cyclist, it

is constant for each frame. Likewise, the maximum curvature 1/ρ ′ can

be fixed. The quantity m/L has to be minimized for both strength and

stiffness considerations. Ashby accomplished this by plotting (σ e/ρ) and

(E/ρ), whose reciprocals appear in Equations (E1.1.1) and (E1.1.2), respect-

ively. (See Figure E1.2.) The computations assume a constant r, but

2 Students should consult their notes on the mechanics of materials or examine a book

such as Engineering Mechanics of Solids, by E. P. Popov (Englewood Cliffs, NJ: Prentice Hall,

1990).
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varying tube thickness t. The most common candidate metals (steels,

titanium, and aluminum alloys) are closely situated in the figure. The

expanded window in this region shows a clearer separation of the vari-

ous alloys. Continuous carbon fiber reinforced composites (CFRPs) are

the best materials, and polymers and glass/fiber reinforced polymer

composites (GFRPs) have insufficient stiffness. By relaxing the require-

ment of constant r and allowing different tube radii, the results are

changed considerably. This example illustrates how material properties

enter into the design of a product and how compound properties (E/ρ,

σ/ρ) need to be defined for a specific application. It can be seen from

Equations (E1.1.1) and (E1.1.2) that strength scales with r and stiffness

with r2. By varying r, it is possible to obtain aluminum bicycle frames

that are stiffer than steel. Now the student is prepared to go on a bike

ride!
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Fig. E1.2 Normalized strength (σ e/ρ) versus normalized Young’s modulus (E/ρ) for

potential bicycle frames. (Adapted from M. F. Ashby, Met. and Mat. Trans., A26 (1995)

3057.)

Example 1.2

Suppose you are a design engineer for the ISAACS bicycle company.

This company traditionally manufactures chromium–molybdenum

(Cr–Mo) steel frames. The racing team is complaining that the bi-

cycles are too ‘‘soft” and that stiffer bicycles would give them a com-

petitive edge. Additionally, the team claims that competing teams

have aluminum bikes which are considerably lighter. You are asked to



14 MATERIALS : STRUCTURE , PROPERTIES , AND PERFORMANCE

redesign the bikes, using a precipitation hardenable aluminum alloy

(7075 H4).

(a) Calculate the ratio of the stiffness of the two bikes if the tube diam-

eters are the same.

(b) What would you do to increase the stiffness of the two bikes?

(c) If the steel frame weighs 4 kg, what would the aluminum frame

weigh? State your assumptions.

Given:

σ e (MPa) ρ (kg/m3) E(GPa) G(GPa)

7075 Al 500 2700 70 27
4340 Steel 1350 7800 210 83

Steel tube diameter, 2r = 25 mm

Wall thickness, t = 1.25 mm

Solution: The mass per unit length, from strength considerations, is

m

L
= 2πr tρ = 2M

r

(
ρ

σe

)
.

The mass per unit length, from bending considerations, is

m

L
= 2πr tρ = 2Mρ ′

r 2

( ρ

E

)
.

where ρ ′ is the radius of curvature and M is the bending moment

applied by cyclist.

The radius of curvature ρ ′ is a good measure of the stiffness; the

larger ρ ′, the higher is the stiffness, for a fixed M.

(a) rAl = rSt = 12.5 mm.

For the two metals, we have:

Steel Aluminum

ρ/σ e 5.77 5.4
ρ/E 37.14 38.57

The mass-to-length ratios are

(
m
L

)
St(

m
L

)
Al

=
2M

r

(
ρ

σe

)
|St

2M
r

(
ρ

σe

)
|Al

= 1.06.

For the same weight, we calculate the ratio of the radii of curvature

from bending:

1.06
ρ ′

Al

ρ ′
St

=
(

ρ

E

)
St(

ρ

E

)
Al

= 0.96,

ρ ′
Al

ρ ′
St

= 0.96

1.06
= 0.91.

Thus, the stiffness is approximately the same for each metal.
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(b) We increase diameter of the tubes. This is possible because the wall

thickness of aluminum bikes is approximately three times the wall

thickness of steel bikes.3 For instance, we can increase the diameter

to 50 mm!4

(c) Let us assume that, for aluminum, 2rAl = 50 mm. Then(
m
L

)
St(

m
L

)
Al

= x =
2Mρ′

St

r2
St

(
ρ

E

)
St

2Mρ′
Al

r2
Al

(
ρ

E

)
Al

,

x
ρ ′

Alr
2
St

ρ ′
Str

2
Al

=
(

ρ

E

)
St(

ρ

E

)
Al

.

Going back to the strength equation, we obtain

x =
(

m
L

)
St(

m
L

)
Al

=
2M
rSt

(
ρ

σe

)
St

2M
rAl

(
ρ

σe

)
Al

= 2
5.77

5.4
= 2.14.

If the total weight of the steel frame is 4 kg, then

wAl

wSt

=
(

m
L

)
Al(

m
L

)
St

.wSt = 4

2.14
= 1.86.

The stiffness ratio will be

ρ ′
Al

ρ ′
St

= 1

x

r 2
Al

r 2
St

(
ρ

E

)
St(

ρ

E

)
Al

= 4

2.14

37.14

38.54
= 1.80,

or

ρ ′
Al = 1.8ρ ′

St.

The aluminum bike is almost twice as stiff!

1.3 Structure of Materials

The crystallinity, or periodicity, of a structure, does not exist in gases or

liquids. Among solids, the metals, ceramics, and polymers may or may

not exhibit it, depending on a series of processing and composition

parameters. Metals are normally crystalline. However, a metal cooled

at a superfast rate from its liquid state – called splat cooled – can have

an amorphous structure. (This subject is treated in greater detail in

Section 1.3.4.) Silicon dioxide (SiO2) can exist as amorphous (fused

silica) or as crystal (crystoballite or trydimite). Polymers consisting of

molecular chains can exist in various degrees of crystallinity.

Readers not familiar with structures, lattices, crystal systems, and

Miller indices should study these subjects before proceeding with

3 Since the wall thickness is larger, we can produce larger tube diameters without danger

of collapse by buckling.
4 A 50-mm steel tube would have walls that would be exceedingly thin; indeed, it could

be dented by pressing it with the fingers.
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the text. Most books on materials science, physical metallurgy, or

X-rays treat the subjects completely. A brief introduction is presented

next.

1.3.1 Crystal Structures
To date, seven crystal structures describe all the crystals that have

been found. By translating the unit cell along the three crystallo-

graphic orientations, it is possible to construct a three-dimensional

array. The translation of each unit cell along the three principal direc-

tions by distances that are multiples of the corresponding unit cell

size produces the crystalline lattice.

Up to this point, we have not talked about atoms or molecules;

we are just dealing with the mathematical operations of filling

space with different shapes of blocks. We now introduce atoms and

molecules, or ‘‘repeatable structural units.” The unit cell is the small-

est repetitive unit that will, by translation, produce the atomic or

molecular arrangement. Bravais established that there are 14 space

lattices. These lattices are based on the seven crystal structures. The

points shown in Figure 1.7 correspond to atoms or groups of atoms.

The 14 Bravais lattices can represent the unit cells for all crystals.

Figure 1.8 shows the indices used for directions in the cubic system.

The same symbols are employed for different structures. We simply

use the vector passing through the origin and a point (m, n, o):

V = mi + nj + ok.

When the direction does not pass through the origin, and we have

the head of the vector at (m, n, o) and the tail at (p, q, r), the vector V

is given by:

V = (m − p)i + (n − q )j = (o − r )k.

The notation used for a direction is

[m n o].

When we deal with a family of directions, we use the symbol

<m n o>.

The following family encompasses all equivalent directions:

<m n o> ⇒ [m n o], [m o n], [o m n], [o n m], [n m o], [m n̄ o],

[m o n̄], [o m n̄], [o n̄ m], [n̄ m o], . . .

A direction not passing through the origin can be represented by

[(m − p)(n − q (o − r ))].

Note that for the negative, we use a bar on top. For planes, we use

the Miller indices, obtained from the intersection of a plane with the

coordinate axes. Figure 1.9 shows a plane and its intercepts. We take

the inverse of the intercepts and multiply them by their common
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Cubic P

Tetragonal P

Orthorhombic
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Monoclinic P Monoclinic C Triclinic P

Rhombohedral Hexagonal P

Orthorhombic
C

Orthorhombic
I

Orthorhombic
F

Tetragonal I

Cubic I Cubic F

Fig. 1.7 The 14 Bravais space

lattices (P = primitive or simple;

I = body-centered cubic;

F = face-centered cubic;

C = base-centered cubic).
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Fig. 1.8 Directions in a cubic

unit cell.
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Fig. 1.9 Indexing of planes by

Miller rules in the cubic unit cell.
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Fig. 1.10 Hexagonal structure

consisting of a three-unit cell.

denominator so that we end up with integers. In Figure 1.9 (a), we

have

1

1
,

1

1
,

1

1/2
⇒ (112).

Figure 1.9(b) shows an indeterminate situation. Thus, we have to

translate the plane to the next cell, or else translate the origin. The

indeterminate situation arises because the plane passes through the

origin. After translation, we obtain intercepts (−1, 1, ∞). By inverting

them, we get (1̄ 10). The symbol for a family of planes is {m n o}.
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For hexagonal structures, we have a slightly more complicated situ-

ation. We represent the hexagonal structure by the arrangement

shown in Figure 1.10. The atomic arrangement in the basal plane

is shown in the top portion of the figure. Often, we use four axes

(x, y, k, z) with unit vectors (	i, 	j, 	k, 	l ) to represent the structure.

This is mathematically unnecessary, because three indices are suffi-

cient to represent a direction in space from a known origin. Still, the

redundancy is found by some people to have its advantages and is

described here. We use the intercepts to designate the planes. The

hatched plane (prism plane) has indices

1

1
,

1

−1
,

1

∞ ,
1

∞ .

After determining the indices of many planes, we learn that one

always has

h + k = −i.

Thus, we do not have to determine the index for the third horizontal

axis. If we use only three indices, we can use a dot to designate the

fourth index, as follows:

(11̄ · 0).

For the directions, we can use either the three-index notation or a

four-index notation. However, with four indices, the h + k = −i rule

will not apply in general, and one has to use special ‘‘tricks” to make

the vector coordinates obey the rule.

If the indices in the three-index notation are h′, k′, and �′, the four

index notation of directions can be obtained by the following simple

equations;

h = 1

3

(
2h′ − k′)

k = 1

3

(
2k′ − h′)

i = −1

3

(
h′ + k′)

� = �′

It can be easily verified that h + k = −i . Thus, the student is equipped

to express the directions in the four-index notation.

1.3.2 Metals
The metallic bond can be visualized, in a very simplified way, as an

array of positive ions held together by a ‘‘glue” consisting of elec-

trons. These positive ions, which repel each other, are attracted to

the ‘‘glue,” which is known as an electron gas. Ionic and covalent

bonding, on the other hand, can be visualized as direct attractions

between atoms. Hence, these types of bonding – especially covalent
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Example 1.3

Write the indices for the directions and planes marked in Figure E1.3.

Intercepts
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2
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1
1

1
1

1
1

1
2
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x

x

k

y

y

z

z

Fig. E1.3

bonding – are strongly directional and determine the number of

neighbors that one atom will have, as well as their positions.

The bonding – and the sizes of the atoms in turn – determines

the type of structure a metal has. Often, the structure is very com-

plicated for ionic and covalent bonding. On the other hand, the

directionality of bonding is not very important for metals, and

atoms pack into the simplest and most compact forms; indeed, they

can be visualized as spheres. The structures favored by metals are

the face-centered cubic (FCC), body-centered cubic (BCC), and hex-

agonal close-packed (HCP) structures. In the periodic table, of the

81 elements to the left of the Zindl line, 53 have either the FCC

or the HCP structure, and 21 have the BCC structure; the remain-

ing 8 have other structures. The Zindl line defines the boundary

of the elements with metallic character in the table. Some of them

have several structures, depending on temperature. Perhaps the most
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MoMo 3.153.15 A
[001][001]

0

Fig. 1.11 Transmission electron

micrograph of atomic resolution of

(001) plane in molybdenum

showing body-centered cubic

arrangement of atoms. (Courtesy

of R. Gronsky.)

Face-centered cubic Body-centered cubic

Hexagonal close-packed

a 3/2a

a

2

c

PLANE (00.1)

Fig. 1.12 Most closely packed

planes in (a) FCC; (b) BCC; (c)

HCP.

complex of the metals is plutonium, which undergoes six poly-

morphic transformations.

Transmission election microscopy can reveal the positions of the

individual atoms of a metal, as shown in Figure 1.11 for molybdenum.

The regular atomic array along a [001] plane can be seen. Molybdenum

has a BCC structure.

Figure 1.12 shows the three main metallic structures. The positions

of the atoms are marked by small spheres and the atomic planes by

dark sections. The small spheres do not correspond to the scaled-up

size of the atoms, which would almost completely fill the available

space, touching each other. For the FCC and HCP structures, the co-

ordination number (the number of nearest neighbors of an atom) is

12. For the BCC structure, it is 8.
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The planes with the densest packing are indicated in the figure.

They are (11̄1), (11̄0), and (00.1) for the FCC, BCC, and HCP structures,

respectively. These planes have an important effect on the direction-

ality of deformation of the metal, as will be seen in chapters 4 and

6. The distances between the nearest neighbors are also indicated in

the figure. The reader should try to calculate them as an exercise.

These distances are a
√

2, (a
√

3/2), and a for the FCC, BCC, and HCP

structures, respectively.

The similarity between the FCC and HCP structures is much

greater than might be expected from looking at the unit cells. Planes

(111) and (00.1) have the same packing, as may be seen in Figure 1.13.

This packing, the densest possible of coplanar spheres, is shown in

Figure 1.13(a). The packing of a second plane similar to, and on top

of, the first one (called A) can be made in two different ways; Fig-

ure 1.13(b) indicates these two planes by the letters B and C. Hence,

either alternative can be used. A third plane, when placed on top

of plane B, would have two options: A or C. If the second plane is

C, the third plane can be either A or B. If only the first and second

layers are considered, the FCC and HCP structures are identical. If

the position of the third layer coincides with that of the first (the

ABA or ACA sequence), we have the HCP structure. Since this packing

has to be systematically maintained in the lattice, one would have

ABABAB . . . or ACACAC . . . In case the third plane does not coincide

with the first, we have one of the two alternatives ABC or ACB. Since

this sequence has to be systematically maintained, we have ABCAB-

CABC . . . or ACBACBACB . . . This stacking sequency corresponds to the

FCC structure. We thus conclude that the only difference between

the FCC and HCP structures (the latter with a theoretical c/a ratio of

1.633) is the stacking sequence of the most densely packed planes. The

difference resides in the next neighbors and in the greater symmetry

of the FCC structure.

Layer A Layer C Layer B

(a)

(b)

A
Layer

A
Layer

(c)

(d) A
Layer

A
Layer

C
Layer

B
Layer

B
Layer

Fig. 1.13 (a) Layer of most

closely packed atoms

corresponding to (111) in FCC

and (00.1) in HCP. (b) Packing

sequence of most densely packed

planes in AB and AC sequence. (c)

Photograph of ball model showing

the ABAB sequence of the HCP

structure. (d) Photograph of ball

model showing the ABCABC

sequence of the FCC structure.

Mn SnCu

Fig. 1.14 β-ordered phase in

Heusler alloys (Cu2MnSn).

(Reprinted with permission from

M. A. Meyers, C. O. Ruud, and

C. S. Barrett, J. Appl. Cryst, 6 (1973)

39.)

Figures 1.13(c) and (d) show photographs of ideal ball stackings.

The ABA . . . sequence of layers, characteristic of HCP structure (Figure

1.13(c)) is compared with the ABCA . . . sequence for the FCC structure

(Figure 1.13(d)).

In addition to the metallic elements, intermediate phases and

intermetallic compounds exist in great numbers, with a variety of

structures. For instance, the beta phase in the copper–manganese–tin

(Cu–Mn–Sn) system exhibits a special ordering for the composition

Cu2MnSn. The unit cell (BCC) is shown in Figure 1.14. However, the

ordering of the Cu, Mn, and Sn atoms creates a superlattice composed

of four BCC cells. This superlattice is FCC; hence, the unit cell for the

ordered phase is FCC, whereas that for the disordered phase has a

BCC unit cell. This ordering has important effects on the mechanical

properties and is discussed in Chapter 11.

Table 1.3 lists some of the most important intermetallic com-

pounds and their structures. Intermetallic compounds have a bonding

that is somewhat intermediate between metallic and ionic/covalent

bonding, and have properties that are most desirable for high-

temperature applications. Nickel and titanium aluminides are
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Table 1.3 Some Important Intermetallic Compounds and Their Structure

Compound Melting Point (◦C) Type of Structure

Ni3Al 1,390 Ll2 (ordered FCC)
Ti3Al 1,600 DO19 (ordered hexagonal)
TiAl 1,460 Ll0 (ordered tetragonal)
Ni–Ti 1,310 CsCl
Cu3Au 1,640 B2 (ordered BCC)
FeAl 1,250–1,400 B2 (ordered BCC)
NiAl 1,380–1,638 B2 (ordered BCC)
MoSi2 2,025 C11b (tetragonal)
Al3Ti 1,300 DO22 (tetragonal)
Nb3Sn 2,134 A15
Nb5Si3 2,500 (tetragonal)

candidates for high-temperature applications in jet turbines and air-

craft applications.

Example 1.4

Determine the ideal c/a ratio for the hexagonal structure.

Solution: The atoms in the basal A plane form a closely packed array,

as do the atoms in the B plane going through the mid plane. If we

take three atoms in the basal plane, with an atom in the B plane rest-

ing among them, we have constructed a tetrahedron. The sides of the

tetrahedron are 2r = a, where r is the atomic radius. The height of

this tetrahedron is c/2, since the distance between planes is c. Hence,

the problem is now reduced to finding the height, c/2, of a regular

tetrahedron. In Figure E1.4, we have

D F = C

2
,

AB = AC = B C = AD = D B = D C = a.

A B

C

D

E

F

Fig. E1.4
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For triangle AEC,

AE 2 + E C 2 = AC 2,

AE =
√

a2 − a2

4
= a

2

√
3.

For triangle DFE,

E F 2 = D F 2 = D E 2.

But

E F = 1

3
AE = a

6

√
3,

D E = AE = a

2

√
3,

D F =
(

3a2

4
− 3a2

36

)1/2

,

c

2
= a

(
2

3

)1/2

,

c

a
= 2

(
2

3

)1/2

.

Thus,

c

a
= 1.633.

Example 1.5

If the copper atoms have a radius of 0.128 nm, determine the density

in FCC and BCC structures.

(i) In FCC structures, 4r = √
2a0

a0 = 4√
2

r = 4√
2

× 0.128 nm

a0 = 0.362 nm

There are 4 atoms per unit cell in FCC. Atomic mass (or weight) of copper

is 63.54 g/g.mol. So, density of copper (ρ) in FCC structures is

ρ = 63.54 × 4

(0.362 × 10−7)3 × (6.02 × 1023)
= 8.89 g/cm3

↑
Avogadro’s number

(ii) In BCC structures, 4r = √
3a0

a0 = 4√
3

r = 4√
3

× 0.128 nm

a0 = 0.296 nm

There are 2 atoms per unit cell in BCC structures.

ρ = 63.54 × 2

(0.296 × 10−7)3 × (6.02 × 1023)
= 8.14 g/cm3
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Fig. E1.5

The stable form of Cu is FCC. Only under unique conditions, such as Cu

precipitates in iron, is the BCC form stable (because of the constraints

of surrounding material).

1.3.3 Ceramics
The name ceramic comes from the Greek KERAMOS (pottery). The pro-

duction of pottery made of clay dates from 6500 bc. The production

of silicate glass in Egypt dates from 1500 bc. The main ingredient

of pottery is a hydrous aluminum silicate that becomes plastic when

mixed, in fine powder form, with water. Thus, the early utilization

of ceramics included both crystalline and glassy materials. Portland

cement is also a silicate ceramic; by far the largest tonnage produc-

tion of ceramics today – glasses, clay products (brick, etc.), cement –

are silicate-based.

However, there have been dramatic changes since the 1970s and a

wide range of new ceramics has been developed. These new ceramics

are finding applications in computer memories (due to their unique

magnetic applications), in nuclear power stations (UO2 fuel rods), in

rocket nose cones and throats, in submarine sonar units (piezoelectric

barium titanate), in jet engines (as coatings to metal turbine blades)

as electronic packaging components (Al2O3, SiC substrates), as electro-

optical devices (lithium niobate, capable of transforming optical into

electrical information and vice versa), as optically transparent materi-

als (ruby and yttrium garnet in lasers, optical fibers), as cutting tools

(boron nitride, synthetic diamond, tungsten carbide), as refractories,

as military armor (Al2O3, SiC, B4C), and in a variety of structural

applications.

The structure of ceramics is dependent on the character of the

bond (ionic, covalent, or partly metallic), on the sizes of the atoms,

and on the processing method. We will first discuss the crystalline
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Example 1.6

Sketch the 12 members of the <110> family for a cubic crystal. Indicate

the four {111} planes. You may use several sketches.

Fig. E1.6

ceramics. Transmission electron microscopy has reached the point of

development where we can actually image individual atoms, and Fig-

ure 1.15 shows a beautiful picture of the zirconium atoms in ZrO2.

The much lighter oxygen atoms cannot be seen but their positions

are marked in the electron micrograph. By measuring the atomic dis-

tances along two orthogonal directions, one can see that the structure

is not cubic, but tetragonal. The greater complexity of ceramics, in

comparison to metallic structures, is evident from Figure 1.15. Atoms

of different sizes have to be accommodated by a structure, and bond-

ing (especially covalent) is highly directional. We will first establish

the difference between ionic and covalent bonding.

The electronegativity value is a measure of an atom’s ability to

attract electrons. Compounds in which the atoms have a large dif-

ference in electronegativity are principally ionic, while compounds

with the same electronegativity are covalent. In ionic bonding one
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Fig. 1.15 Transmission electron

micrograph of ZrO2 at high

resolution, showing individual Zr

atoms and oxygen sites. (Courtesy

of R. Gronsky.)

atom loses electrons and is therefore positively charged (cation). The

atom that receives the electrons becomes negatively charged (anion).

The bonding is provided by the attraction between positive and nega-

tive charges, compensated by the repulsion between charges of equal

signs. In covalent bonding the electrons are shared between the neigh-

boring atoms. The quintessential example of covalent bonding is dia-

mond. It has four electrons in the outer shell, which combine with

four neighboring carbon atoms, forming a tridimensional regular dia-

mond structure, which is a complex cubic structure. Figure 1.16 shows

the diamond structure. The bond angles are fixed and equal to 70◦

32′. The covalent bond is the strongest bond, and diamond has the

highest hardness of all materials. Another material that has covalent

bonding is SiC.

As the difference of electronegativity is increased, the bonding

character changes from pure covalent to covalent–ionic, to purely

ionic. Ionic crystals have a structure determined largely by opposite

Fig. 1.16 Crystal structure of

diamond.

charge surrounding an ion. These structures are therefore established

by the maximum packing density of ions. Compounds of metals with

oxygen (MgO, Al2O3, ZrO2, etc.) and with group VII elements (NaCl, LiF,

etc.) are largely ionic. The most common structures of ionic crystals

are presented in Figure 1.17. Evidently, one has more complex struc-

tures in ceramics than in metals because the combinations possible

between the elements are so vast.

Ceramics also exist in the glassy state. Silica in this state has the

unique optical property of being transparent to light, which is used

technologically to great advantage. The building blocks of silica in

crystalline and amorphous forms are the silica tetrahedra. Silicon

bonds to four oxygen atoms, forming a tetrahedron. The oxygen atoms

bond to just two silicon atoms. Numerous structures are possible, with
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Be (Zn)

O (S)

(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)

Ti4+

Ca2+

O2–

Na+

Cl–

Al3–

O2–

Zn

S

Ca

F

O2–

site
octahedral

Cation in 
tetrahedral
site

O2–

Si4+

Cation in

Fig. 1.17 Most common

structures for ceramics. (a) Zinc

blende (ZnS, BeO, SiC). (b)

Wurtzite (ZnS, ZnO, SiC, BN).

(c) Perovskite (CoTiO3, BaTiO3,

YCu2Ba3O7–x). (d) Fluorite

(ThO2, UO2, CeO2, ZrO2, PuO2).

(e) NaCl (KCl, LiF, KBr, MgO,

CaO, VO, MnO, NiO). (f) Spinel

(FeAl2O4, ZnAl2O4, MoAl2O4).

(g) Corundum (Al2O3, Fe2O3,

Cr2O3, Ti2O3, V2O3). (h)

Crystobalite (SiO2 – quartz). The

CsCl stucture, which has one Cs+

surrounded by four Cl− ions in

cube edges, is not shown.

different arrangements of the tetrahedra. Pure silica crystallizes into

quartz, crystobalite, and trydimite. Because of these bonding require-

ments, the structure of silica is fairly open and, consequently, gives

the mineral a low density. Quartz has a density of 2.65 g/cm−3, com-

pared with 3.59 g/cm−3 and 3.92 g/cm−3, for MgO and A12O3, respect-

ively. The structure of crystobalite (Figure 1.17 (h)) shows clearly that

each Si atom (open circle) is surrounded by four oxygen atoms (filled

circles), while each oxygen atom binds two Si atoms. A complex cubic

structure results. However, an amorphous structure in silica is more

common when the mineral is cooled from the liquid state. Condensa-

tion of vapor on a cold substrate is another method by means of which

thin, glassy films are made. One can also obtain glassy materials by

electro-deposition, as well as by chemical reaction. Chapter 3 describes

glassy metals in greater detail. Figure 1.18 provides a schematic rep-

resentation of silica in its crystalline and glassy forms in an idealized

two-dimensional pattern. The glassy state lacks long-range ordering;

the three-dimensional silica tetrahedra arrays lack both symmetry

and periodicity.
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 Si
 O

(a) (b)

Fig. 1.18 Schematic

representation of (a) ordered

crystalline and (b) random-

network glassy form of silica.

Example 1.7

Determine the C–C–C–bonding angle in polyethylene.

The easiest manner to visualize the bonding angle is to assume that

one C atom is in the center of a cube and that it is connected to four

other C atoms at the edges of the cube. (See Figure E1.7.) Suppose all

angles are equal to α.

x3

x1

C
C

C

C’

C‘‘

x2

V1V2

Fig. E1.7

The problem is best solved vectorially. We set the origin of the axes

at the center of the carbon atom and have

	V1 = 1

2
	i + 1

2
	j + 1

2
	k,

	V2 = 1

2
	i + 1

2
	j + 1

2
	k.

The angle between two vectors is (see Chapter 6 or any calculus

text)

cos α =
1
2

(− 1
2

) + 1
2

(− 1
2

) + 1
2

· 1
2√

1
4

+ 1
4

+ 1
4

·
√

1
4

+ 1
4

+ 1
4

= −1

3
.

so

α = 109.47◦.

(Note: When we have double bonds, the angle is changed.)
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Fig. 1.19 Specific volume

(inverse of density) as a function of

temperature for glassy and

crystalline form of a material.

1.3.4 Glasses
As described earlier, glasses are characterized by a structure in which

no long-range ordering exists. There can be short-range ordering, as

indicated in the individual tetrahedral arrays of SiO−4
4 in Figure 1.18,

which shows both the crystalline and glassy forms of silica. Over dis-

tances of several atomic spacings, the ordering disappears, leading to

the glassy state. It is possible to have glassy ceramics, glassy metals,

and glassy polymers.

The structure of glass has been successfully described by the

Zachariasen model. The Bernal model is also a successful one. It con-

sists of drawing lines connecting the centers of adjacent atoms and

forming polyhedra. These polyhedra represent the glassy structure of

glass. Glassy structures represent a less efficient packing of atoms

or molecules than the equivalent crystalline structures. This is very

easily understood with the ‘‘suitcase” analog. We all know that by

throwing clothes randomly into a suitcase, the end result is often a

major job of sitting on the suitcase to close it. Neat packing of the

same clothes occupies less volume. The same happens in glasses. If

we plot the inverse of the density (called specific volume) versus tem-

perature, we obtain the plot shown in Figure 1.19. Contraction occurs

as the temperature is lowered. If the material crystallizes, there is a

discontinuity in the specific volume at the melting temperature Tm. If

insufficient time is allowed for crystallization, the material becomes

a supercooled liquid, and contraction follows the liquid line. At a

temperature Tg, called the glass transition temperature, the supercooled

liquid is essentially solid, with very high viscosity. It is then called

a glass. This difference in specific volume between the two forms is

often referred to as excess volume.

In ceramics, reasonably low cooling rates can produce glassy struc-

tures. The regular arrangement of the silica tetrahedra of Figure

1.18(a) requires a significant amount of time. The same is true for

polymeric chains, which need to arrange themselves into regular
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crystalline arrangements. For metals, this is more difficult. Only

under extreme conditions it is possible to obtain solid metals in a

noncrystalline structure. Figure 1.20 shows a crystalline and a glassy

alloy with the same composition. The liquid state is frozen in, and

the structure resembles that of glasses. It is possible to arrive at these

special structures by cooling the alloy at such a rate that virtually

no reorganization of the atoms into periodic arrays can take place.

(a)

(b)

Fig. 1.20 Atomic arrangements

in crystalline and glassy metals. (a)

Crystalline metal section. (b)

Glassy metal section. (Courtesy of

L. E. Murr.)

The required cooling rate is usually on the order of 106 to

108 K/s−1. It is also possible to arrive at the glassy state by means

of solid-state processing (very heavy deformation and reaction) and

from the vapor.

The original technique for obtaining metallic glasses was called

splat cooling and was pioneered by Duwez and students.5 An

alloy in which the atomic sizes are quite dissimilar, such as

Fe–B, is ideal for retaining the ‘‘glassy” state upon cooling. This

technique consisted of propelling a drop of liquid metal with

a high velocity against a heat-conducting surface such as cop-

per. The interest in these alloys was mainly academic at the

time. However, the unusual magnetic properties and high strength

exhibited by the alloys triggered worldwide interest, and subse-

quent research has resulted in thousands of papers. The splat-

cooling technique has been refined to the point where 0.07- to

0.12-mm-thick wires can be ejected from an orifice. Production rates

as high as 1,800 m/min can be obtained. Sheets and ribbons can be

manufactured by the same technique. An alternative technique con-

sists of vapor deposition on a substrate (sputtering). This seems a

most promising approach, and samples with a thickness of several

millimeters have been successfully produced.

1.3.5 Polymers
From a microstructural point of view, polymers are much more com-

plex than metals and ceramics. On the other hand, they are cheap

and easily processed. Polymers have lower strengths and moduli and

lower temperature-use limits than do metals or ceramics. Because of

their predominantly covalent bonding, polymers are generally poor

conductors of heat and electricity. Polymers are generally more resist-

ant to chemicals than are metals, but prolonged exposure to ultra-

violet light and some solvents can cause degradation of a polymer’s

properties.

Chemical Structure

Polymers are giant chainlike molecules (hence, the name macro-

molecules), with covalently bonded carbon atoms forming the back-

bone of the chain. Polymerization is the process of joining together

many monomers, the basic building blocks of polymers, to form the

5 W. Klement, R. H. Willens, and P. Duwez, Nature, 187 (1960) 869.
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chains. For example, the ethyl alcohol monomer has the chemical

formula

H C C O

H

H

H

H H

The monomer vinyl chloride has the chemical formula C2H3Cl, which,

on polymerization, becomes polyvinyl chloride (PVC). The structural

formula of polyvinyl chloride is represented by

C C

H H

H Cl
n

where n is the degree of polymerization.

Types of Polymers

The difference in the behavior of polymers stems from their molecular

structure and shape, molecular size and weight, and amount and type

of bond (covalent or van der Waals). The different chain configurations

(a) Linear

(b) Branched

(c) Cross-linked

(d) Ladder

Fig. 1.21 Different types of

molecular chain configurations.

are shown in Figure 1.21. A linear polymer consists of a long chain of

atoms with attached side groups (Figure 1.21(a)). Examples include

polyethylene, polyvinyl chloride, and polymethyl methacrylate. Note

the coiling and bending of the chain. Branched polymers have branches

attached to the main chain (Figure 1.21(b)). Branching can occur with

linear, cross-linked, or any other types of polymers. A crossed-linked

polymer has molecules of one chain bonded with those of another

(Figure 1.21(c)). Cross-linking of molecular chains results in a three-

dimensional network. It is easy to see that cross-linking makes sliding

of molecules past one another difficult, resulting in strong and rigid

polymers. Ladder polymers have two linear polymers linked in a regular

manner (Figure 1.21(d)). Not unexpectedly, ladder polymers are more

rigid than linear polymers.

Yet another classification of polymers is based on the type of the

repeating unit (see Figure 1.22.) When we have one type of repeat-

ing unit – for example, A – forming the polymer chain, we call it a

homopolymer. Copolymers, on the other hand, are polymer chains hav-

ing two different monomers. If the two different monomers, A and B,

are distributed randomly along the chain, then we have a regular, or

random, copolymer. If, however, a long sequence of one monomer A is

followed by a long sequence of another monomer B, we have a block

copolymer. If we have a chain of one type of monomer A and branches

of another type B, then we have a graft copolymer.

Tacticity has to do with the order of placement of side groups on a

main chain. It can provide variety in polymers. Consider a polymeric



1 .3 STRUCTURE OF MATERIALS 33

(a) Homopolymer

(b) Random copolymer

(c) Block copolymer

(d) Graft copolymer

A A A A A A A

A A B A B B A B B A

A A A A B B B B B

A A A

B

B

B

B

B

B

A A A A A A

Fig. 1.22 (a) Homopolymer: one

type of repeating unit.

(b) Random copolymer: two

monomers, A and B, distributed

randomly. (c) Block copolymer: a

sequence of monomer A, followed

by a sequence of monomer B. (d)

Graft copolymer: Monomer A

forms the main chain, while

monomer B forms the branched

chains.
backbone chain having side groups. For example, a methyl group

(CH3) can be attached to every second carbon atom in the polypro-

pylene chain. By means of certain catalysts, it is possible to place

the methyl groups all on one side of the chain or alternately on the

two sides, or to randomly distribute them in the chain. Figure 1.23
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Fig. 1.23 Tacticity, or the order

of placement of side groups.

shows tacticity in polypropylene. When we have all the side groups

on one side of the main chain, we have an isotactic polymer. If the

side groups alternate from one side to another, we have a syndiotactic

polymer. When the side groups are attached to the main chain in a

random fashion, we get an atactic polymer.

Thermosetting Polymers and Thermoplastics

Based on their behavior upon heating, polymers can be divided into

two broad categories:

(i) thermosetting polymers,

(ii) thermoplastics.

When the molecules in a polymer are cross-linked in the form of a

network, they do not soften on heating. We call these cross-linked

polymers thermosetting polymers. Thermosetting polymers decompose

upon heating. Cross-linking makes sliding of molecules past one

another difficult, which produces a strong and rigid polymer. A typi-

cal example is rubber cross-linked with sulfur, i.e., vulcanized rubber.

Vulcanized rubber has 10 times the strength of natural rubber. Com-

mon examples of thermosetting polymers include phenolic, polyester,

polyurethane, and silicone. Polymers that soften or melt upon heat-

ing are called thermoplastics. Suitable for liquid flow processing, they

are mostly linear polymers – for example, low- and high-density poly-

ethylene and polymethyl methacrylate (PMMA).

Polymers can have an amorphous or partially crystalline struc-

ture. When the structure is amorphous, the molecular chains are

arranged randomly, i.e., without any apparent order. Thermosetting

polymers, such as epoxy, phenolic, and unsaturated polyester, have

an amorphous structure. Semicrystalline polymers can be obtained

by using special processing conditions. For example, by precipitat-

ing a polymer from an appropriate dilute solution, we can obtain

small, platelike crystalline lamellae, or crystallites. Such solution-

grown polymer crystals are characteristically small. Figure 1.24 shows

a transmission electron micrograph of a lamellar crystal of poly
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Fig. 1.24 Electron micrograph of

a lamellar crystal showing growth

spirals around screw dislocations.

(Courtesy of H. D. Keith.)

(ε-caprolactone). Note the formation of new layers of growth spirals

around screw dislocations. The screw dislocations responsible for

crystal growth are perpendicular to the plane of the micrograph.

(a)

Random coil

Folded chain

Extended chain

Fringed micelle

(b)

(c)

(d)

Fig. 1.25 Some important chain

configurations. (a) A flexible,

coiled chain structure. (b) A

folding chain structure.

(c) An extended and aligned chain

structure. (d) A fringed micelle

chain structure.

Polymeric crystals involve molecular chain packing, rather than

the atomic packing characteristic of metals. Molecular chain pack-

ing requires a sufficiently stereographic regular chemical structure.

Solution-grown polymeric crystals generally have a lamellar form, and

the long molecular chains crystallize by folding back and forth in a

regular manner. Lamellar polymeric crystals have straight segments of

molecules oriented normal to the lamellar panes. Figure 1.25 depicts

some important chain configurations in a schematic manner. The

flexible, coiled structure is shown in Figure 1.25(a), while the chain-

folding configuration that results in crystalline polymers is shown in

Figure 1.25(b). Under certain circumstances, one can obtain an

extended and aligned chain structure, shown in Figure 1.25(c) Such a

structure, typically obtained in fibrous form, has very high strength

and stiffness. A semicrystalline configuration called a fringed micelle

structure is shown in Figure 1.25(d). Almost all so-called semi-

crystalline polymers are, in reality, mixtures of crystalline and

amorphous regions. Only by using very special techniques, such as

solid-state polymerization, is it possible to prepare a 100% crystalline

polymer. Polydiacetylene single crystals in the form of lozenges and

fibers have been prepared by solid-state polymerization.

Partially crystallized, or semicrystalline, polymers can also be

obtained from melts. Generally, because of molecular chain en-

tanglement, the melt-formed crystals are more irregular than those

obtained from dilute solutions. A characteristic feature of melt-

formed polymers is the formation of spherulites. When seen under

cross-polarized light in an optical microscope, the classical spherulitic

structure shows a Maltese cross pattern. (See Figure 1.26(a).)

Figure 1.26(b) presents a schematic representation of a spherulite

whose diameter can vary between a few tens to a few hundreds of

micrometers. Spherulites can nucleate at a variety of points, as, for
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(a)

(b)

(c)

Fig. 1.26 Spherulitic structures.

(a) A typical spherulitic structure

in a melt-formed polymer film.

(Courtesy of H. D. Keith.) (b)

Schematic of a spherulite. Each

spherulite consists of an assembly

of radially arranged narrow

crystalline lamellae. (c) Each

lamella has tightly packed polymer

chains folding back and forth.

Amorphous regions fill the spaces

between the crystalline lamellae.

example, with dust or catalyst particles, in a quiescent melt and

then grow as spheres. Their growth stops when the neighboring

spherulites impinge upon each other. Superficially, the spherulites

look like grains in a metal. There are, however, differences between

the two. Each grain in a metal is a single crystal, whereas each

spherulite in a polymer is an assembly of radially arranged, narrow

crystalline lamellae. The fine-scale structure of these lamellae, consist-

ing of tightly packed chains folding back and forth, is shown in Figure

1.26(c). Amorphous regions containing tangled masses of molecules

fill the spaces between the crystalline lamellae.

Degree of Crystallinity

The degree of crystallinity of a material can be defined as the frac-

tion of the material that is fully crystalline. This is an important

parameter for semicrystalline polymers. Depending on their degree

of crystallinity, such polymers can show a range of densities, melt-

ing points, etc. It is worth repeating that a 100% crystalline poly-

mer is very difficult to obtain in practice. The reason for the dif-

ficulty is the long chain structure of polymers: some twisted and

entangled segments of chains that get trapped between crystalline

regions never undergo the conformational reorganization necessary

to achieve a fully crystalline state. Molecular architecture also has

an important bearing on a polymer’s crystallization behavior. Linear

molecules with small or no side groups crystallize easily. Branched

chain molecules with bulky side groups do not crystallize as easily.

For example, linear, high-density polyethylene can be crystallized to

90%, while branched polyethylene can be crystallized only to about

65%. Generally, the stiffness and strength of a polymer increase with

the degree of crystallinity.

Like crystalline metals, crystalline polymers have imperfections.

It is, however, not easy to analyze these defects, because the topo-

logical connectivity of polymer chains leads to large amounts and
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numerous types of disorder. Polymers are also very sensitive to dam-

age by the electron beam in TEM, making it difficult to image them.

Generally, polymer crystals are highly anisotropic. Because of covalent

bonding along the backbone chain, polymeric crystals show low-

symmetry structures, such as orthorhombic, monoclinic, or triclinic.

Deformation processes such as slipping and twinning, as well as phase

transformations that take place in monomeric crystalline solids, may

also occur in polymeric crystals.

Molecular Weight and Distribution

Molecular weight is a very important attribute of polymers, espe-

cially because it is not so important in the treatment of nonpoly-

meric materials. Many mechanical properties increase with molecular

weight. In particular, resistance to deformation does so. Of course,

concomitant with increasing molecular weight, the processing of

polymers becomes more difficult.

The molecular weight of a polymer is given by the product of

the molecular weight of the repeat unit (the ‘‘mer”) and the num-

ber of repeat units. The molecular weight of the ethylene repeat unit

(–CH2–CH2–) is 28. We write the chemical formula: H (–CH2–CH2–)n H.

If n, the number of repeat units, is 10,000, the high-density polyethy-

lene will have a molecular weight of 280,002. In almost all polymers,

the chain lengths are not equal, but rather, there is a distribution of

chain lengths. In addition, there may be more than one species of

chain in the polymer. This makes for different parameters describing

the molecular weight.

The number-averaged molecular weight (Mn) of a polymer is the

total weight of all of the polymer’s chains divided by the total number

of chains:

Mn =
∑

Ni , Mi

/ ∑
Ni ,

where Ni is the number of chains of molecular weight Mi.

The weight-averaged molecular weight (Mw ) is the sum of the

square of the total molecular weight divided by the total molecular

weight. Thus,

Mw =
∑

Ni M 2
i

/ ∑
Mi Ni .

Two other molecular weight parameters are

Mz =
∑

Ni M 3
i

/ ∑
Ni M 2

i ,

and

Mv =
[∑

Ni M
(1+a)
i

/ ∑
Ni Mi

]1/a

,

where a has a value between 0.5 and 0.8.

Typically, Mn: Mw : Mz = 1:2:3. Figure 1.27 shows a schematic mole-

cular weight distribution curve with various molecular weight param-

eters indicated. Molecular weight distributions of the same polymer



1 .3 STRUCTURE OF MATERIALS 37

Mn Mv Mw Mz

MOLECULAR WEIGHT OF SPECIES i

A
M

O
U

N
T

 O
F

 P
O

LY
M

E
R

Fig. 1.27 A schematic molecular

weight distribution curve. Various

molecular weight parameters are

indicated.

obtained from two different sources can be very different. Also, mole-

cular weight distributions are not necessarily single peaked. For

single-peaked distributions, Mn is generally near the peak – that is,

the most probable molecular weight. The weight-averaged molecular

weight, Mw , is always larger than Mn. The molecular weight character-

ization of a polymer is very important. The existence of a very high-

molecular-weight tail can make processing very difficult because of

the enormous contribution of the tail to the melt viscosity of a poly-

mer. The low end of the molecular weight distribution, however, can

be used as a plasticizer.

It is instructive to compare some monomers with low- and high-

molecular-weight polymers. A very common monomer is a molecule

of water, H2O, with a molecular weight of 18. Benzene, on the other

hand, is a low-molecular-weight organic solvent; its molecular weight

is 78. By contrast, natural rubber has a molecular weight of about 104,

and polyethylene, a common synthetic polymer, can have a molecu-

lar weights greater than this. Polymers having such large molecular

weights are sometimes called high polymers. Their molecular size is

also very great.

Example 1.8

A polymer has three species of molecular weights: 3 × 106, 4 × 106,

and 5 × 106. Compute its number-averaged molecular weight Mn and

weight-averaged molecular weight Mw .

Solution: For the number-averaged molecular weight, we have

Mn =
∑

Ni Mi∑
Ni

= 3 × 106 + 4 × 106 + 5 × 106

3
= 4 × 106.
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The weight-averaged molecular weight is

Mw =
∑

Ni M 2
i∑

Ni Mi

= (3 × 106)2 + (4 × 106)2 + (5 × 106)2

3 × 106 + 4 × 106 + 5 × 106

= 50 × 1012

12 × 106
= 4.17 × 106.

Example 1.9

Estimate the molecular weight of polyvinyl chloride with degree of

polymerization, n, equal to 800.

Solution: The molecular weight of each mer of polyvinyl chloride

(C2H3Cl) is

2(12) + 3(1) + 35.5 = 62.5.

For n = 800, the molecular weight is 800 × 62.5 = 50,000 g/mol.

Example 1.10

Discuss how a polymer’s density changes as crystallization proceeds

from the melt.

Answer: The density increases and the volume decreases as crystalliza-

tion proceeds. This is because the molecular chains are more tightly

packed in the crystal than in the molten or noncrystalline polymer.

This phenomenon is, in fact, exploited in the so-called density method

to determine the degree of crystallinity.

Quasi Crystals

Quasi crystals represent a new state of solid matter. In a crystal,

the unit cells are identical, and a single unit cell is repeated in a

periodic manner to form the crystalline structure. Thus, the atomic

arrangement in crystals has positional and orientational order.

Orientational order is characterized by a rotational symmetry; that is,

certain rotations leave the orientations of the unit cell unchanged.

The theory of crystallography holds that crystals can have twofold,

threefold, fourfold, or sixfold axes of rotational symmetry; a fivefold

rotational symmetry is not allowed. A two-dimensional analogy of this

is that one can tile a bathroom wall using a single shape of tile if and

only if the tiles are rectangles (or squares), triangles, or hexagons, but

not if the tiles are pentagons. One may obtain a glassy structure by

rapidly cooling a vapor or liquid well below its melting point, until

the disordered atomic arrangement characteristic of the vapor or

liquid state gets frozen in. The atomic packing in the glassy state is
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dense but random. This can be likened to a mosaic formed by taking

an infinite number of different shapes of tile and randomly joining

them together. Clearly, the concept of a unit cell will not be valid in

such a case. The atomic structure in the glassy state will have neither

positional nor orientational order.

Quasi crystals are not perfectly periodic, but they do follow the

rigorous theorems of crystallography. They can have any rotational

symmetry axes which are prohibited in crystals. It is worth remind-

ing the reader that a glassy structure shows an electron diffraction

pattern consisting of diffuse rings for all orientations. A crystalline

structure has an electron diffraction pattern that depends on the

crystal symmetry.

Schectman et al. discovered that a rapidly solidified (melt-spun)

aluminum-manganese alloy showed fivefold symmetry axis.6 They

observed a metastable phase that showed a sharp electron diffraction

pattern with a perfect icosahedral symmetry. (Remember that sharp

electron diffraction patterns are associated with the orderly atomic

arrangement in crystals and icosahedral symmetry is forbidden in

crystals.) At first, this was thought to be a paradox. However, some very

careful and sophisticated electron microscopy work showed conclu-

sively that it was indeed an icosahedral (twentyfold) symmetry. Al-Mn

alloys containing 18 to 25.3 weight percent Mn examined by transmis-

sion electron microscopy showed the same anomalous diffraction. In

particular, Al-25.3 wt% Mn alloy consisted almost entirely of one phase

which has a composition close to Al6Mn. The selected area diffraction

pattern of Al6Mn showed a fivefold symmetry. This new kind of struc-

ture is neither amorphous nor crystalline; rather, the new phase in

this alloy had a three-dimensional icosahedral symmetry.

Perhaps, it would be in order for us to digress a bit and explain

this icosahedral symmetry. Icosahedral means twenty faces. An icosa-

hedron has twenty triangular faces, thirty edges, and twelve vertices.

Consider the two-dimensional case. As pointed out earlier, one can tile

a bathroom wall without leaving an open space (a crack) by hexagons.

Three hexagons can be tightly packed without leaving a crack. Three

pentagons, however, cannot be tightly packed. The reader may try this

out. In three dimensions, four spheres pack tightly to form a tetra-

headron. Twenty tetrahedrons can, with small distortions, fit tightly

into an icosahedron. Icosahedrons have fivefold symmetry (five trian-

gular faces meet at each vertex) and they cannot fit together tightly,

i.e., complete space filling is not possible with them. An icosahedron,

therefore, cannot serve as a unit cell for a crystalline structure. There-

fore, structures, are known as quasi crystals.

1.3.6 Liquid Crystals
A liquid crystal is a state of matter that shares some properties of

liquids and crystals. Like all liquids, liquid crystals are fluids; how-

ever, unlike ordinary liquids, which are isotropic, liquid crystals can

be anisotropic. Liquid crystals are also called mesophases. The liquid

6 D. Schectman, I. A. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett., 53 (1984) 1951.
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crystalline state exists in a specific temperature range, below which

the solid crystalline state prevails and above which the isotropic li-

quid state prevails. That is, the liquid crystal has an order between

that of a liquid and a crystalline solid. In a crystalline solid, the

atoms, ions, or molecules are arranged in an orderly manner. This

very regular three-dimensional order is best described in terms of a

crystal lattice. Because of a different periodic arrangement in differ-

ent directions, most crystals are anisotropic. Now consider a crystal

lattice with rod-shaped molecules at the lattice points. In this case,

we now have, in addition to a positional order, an orientational order.

An analogy that is used to qualitatively describe the order in a liquid

crystal is as follows: If a random pile of pencils is subjected to an

external force, it will undergo an ordering process very much akin

to that seen in liquid crystals. The pencils, long and rigid, tend to

align themselves, with their long axes approximately parallel. By far

the most important characteristic of liquid crystals is that their long

molecules tend to organize according to certain patterns. The order of

orientation is described by a directed line segment called the director.

This order is the source of the rather large anisotropic effect in liquid

crystals, a characteristic that is exploited in electrooptical displays or

the so-called liquid-crystal displays. Another important application of

liquid crystals is the production of strong and stiff organic fibers such

as aramid fiber, in which a rigid, rodlike molecular arrangement is

provided by an appropriate polymer solution in the liquid crystalline

state.7 When a polymer manifests the liquid crystalline order in a

solution, we call it a lyotropic liquid crystal, and when the polymer

shows the liquid crystalline state in the melt, it is called a thermotropic

liquid crystal. The three types of order in the liquid crystalline

state are nematic, smectic, and cholesteric, shown schematically in

Figure 1.28. A nematic order is an approximately parallel array of

polymer chains that remains disordered with regard to end groups or

chain units; that is, there is no positional order along the molecular

axis. Figure 1.28(a) shows this type of order, with the director vec-

tor n as indicated. In smectic order, we have one-dimensional, long-

range positional order. Figure 1.28(b) shows smectic-A order, which

has a layered structure with long-range order in the direction per-

pendicular to the layers. In this case, the director is perpendicular

to the layer. Other more complex smectics are B, C, D, F, and G. The

director in these may not be perpendicular to the layer, or there

may exist some positional order as well. Cholesteric-type liquid crys-

tals, shown in Figure 1.28(c), have nematic order with a superimposed

spiral arrangement of nematic layers; that is, the director n, pointed

along the molecular axis, has a helical twist.

1.3.7 Biological Materials and Biomaterials
The mechanical properties of biological materials are, of course, of

great importance, and the design of all living organisms is optimized

7 See K. K. Chawla, Fibrous Materials (Cambridge, U.K.: Cambridge University Press, 1998).
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(a) Nematic

(b) Smectic-A (c) Cholesteric
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Fig. 1.28 Different types of

order in the liquid crystalline state.

for the use of these properties. Biological materials cover a very broad

range of structures. The common feature is the hierarchical organ-

ization of the structure, so that failure at one level does not gen-

erate catastrophic fracture: The other levels in the hierarchy ‘‘take

up” the load. Figure 1.29 demonstrates this fact. Figure 1.29(a) shows

the response of the urether of three animals: guinea pig, dog, and

rabbit. This muscle is a thick-walled cylindrical tube that has the

ability to contract until the closure of the inner hole is complete.

With a nonlinear elastic mechanical response, the urether is not

unlike other soft tissues in that regard: its stiffness increases with

loading, and the muscle becomes very stiff after a certain strain is

reached. The unloading and loading responses are different, as shown

in the figure, and this causes a hysteresis. Increases in length of 50%

can be produced. Bone, on the other hand, is a material with drast-

ically different properties: its strength and stiffness are much higher,

and its maximum elongation is much lower. The structure of bones

is quite complex, and they can be considered composite materials.

Figure 1.29(b) illustrates the strength (in tension) of dry and wet bone.

The maximum tensile strength is approximately 80 MPa, and Young’s

modulus is about 20 GPa.

The abalone shell and the shells of bivalve molluscs are often

used as examples of a naturally occurring laminated composite mater-

ial. These shells are composed of layers of calcium carbonate, glued

together by a viscoplastic organic material. The calcium carbonate

is hard and brittle. The effect of the viscoplastic glue is to provide

a crack-deflection layer so that cracks have difficulty propagating

through the composite. Figure 1.30 shows cracks that are deflected

at each soft layer. The toughness of this laminated composite is vastly

superior to that of a monolithic material, in which the crack would

be able to propagate freely, without barriers. The effect is shown

at two scales: the mesoscale and the microscale. At the mesoscale,

layers of calcium carbonate have a thickness of approximately

500 μm. At the microscale, each calcium carbonate layer is made

up of small brick-shaped units (about 0.5 × 7.5 μm longitudinal sec-

tion), glued together with the organic matter. The formation of this

laminated composite results in a fracture toughness and strength
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Fig. 1.29 Stress–strain curves

for biological materials. (a)

Urether. (After F. C. P. Yin and

Y. C. Fung, Am. J. Physiol. 221

(1971), 1484.) (b) Human femur

bone. (After F. G. Evans, Artificial

Limbs, 13 (1969) 37.)

(about 4 MPa/m1/2 and approximately 150 MPa, respectively) that are

much superior to those of the monolithic CaCO3. The composite

also exhibits a hierarchical structure; that is, the layers of CaCO3

and organic glue exist at more than one level (at the micro- and

mesolevels). This naturally occurring composite has served as inspira-

tion for the synthesis of B4C–Al laminate composites, which exhibit

a superior fracture toughness.8 In these synthetic composites, there

is a 40% increase in both fracture toughness and strength over mono-

lithic B4C–Al cermets. Biomimetics is the field of materials science in

which inspiration is sought from biological systems for the design of

novel materials.

Another area of biomaterials in which mechanical properties have

great importance is bioimplants. Complex interactions between the

8 M. Sarikaya, K. E. Gunnison, M. Yasrebi, and I. A. Aksay, Mater. Soc. Symp. Proc., 174 (1990)

109.



1 .3 STRUCTURE OF MATERIALS 43

Deflection
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Fig. 1.30 (a) Cross section of

abalone shell showing how a crack,

starting at left, is deflected by

viscoplastic layer between calcium

carbonate lamellae (mesoscale).

(b) Schematic drawing showing

arrangement of calcium carbonate

in nacre, forming a miniature

“brick and mortar” structure

(microscale).
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musculoskeletal system and these implants occur in applications

where metals and ceramics are used as replacements for hips, knees,

teeth, tendons, and ligaments. The matching of material and bone

stiffness is important, as are the mechanisms of bonding tissue to

these materials. The number of scientific and technological issues is

immense, and the field of bioengineering focuses on these.

1.3.8 Porous and Cellular Materials
Wood, cancellous bone, styrofoam, cork, and insulating tiles of the

Space Shuttle are examples of materials that are not compact; their

structure has air as a major component. The great advantage of cel-

lular structures is their low density. Techniques for making foam

metals, ceramics, and polymers have been developed, and these cellu-

lar materials have found a wide range of applications, in insulation,

in cushioning, as energy-absorbing elements, in sandwich panels for

aircraft, as marine buoyancy components, in skis, and more.

The mechanical response of cellular materials is quite different

from that of bulk materials. The elastic loading region is usually fol-

lowed by a plateau that corresponds to the collapse of the pores,

either by elastic, plastic buckling of the membranes or by their frac-

ture. The third stage is an increase in the slope, corresponding to final

densification. Figure 1.31(a) shows representative curves for polyethyl-

ene with different initial densities. The plateau occurs at differ-

ent stress levels and extends to different strains for different initial

densities. The bulk (fully dense) polyethylene is shown for compari-

son purposes. Cellular mullite, an alumina–silica solid solution,

exhibits a plateau marked by numerous spikes, corresponding to the

breakup of the individual cells (Figure 1.31(b)). Materials with initial

densities as low as 5% of the bulk density are available as foams.

Figure 1.31(c) shows a very important use of foams: Sandwich struc-

tures, composed of end sheets of solid material in which a foam forms

the core region, have numerous applications in the aerospace indus-

try. The foam between the two panels makes them more rigid; this is

accomplished without a significant increase in weight.

There are many biological examples of sandwich structures. The

toucan beak (Figure 1.32(a)) is a structure with very low density

(0.04 g cm−3) that consists of an external layer of compact keratin.

Figure 1.32(b) shows the keratin layer. It is composed of superim-

posed scales. The inside of the toucan beak is a cellular material

with extremely low density, Figure 1.33(b). The function of the cel-

lular material is to provide structural rigidity to the system. In the

absence of this foam, the external shell would buckle easily. Hence

the toucan can fly without taking a nose dive.

As examples of foams in synthetic and naturally occurring mater-

ials, we show in Figure 1.33 two structures. Figure 1.33(a) shows an

open-celled aluminum foam. We sectioned the beak of the toucan and

observed that the inside is composed of a foam with similar length

scale. Nature uses foams for the same purposes we do: to provide
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Fig. 1.31 Compressive
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Cellular Solids: Structure and
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Schematic of a sandwich structure.

rigidity to structures with the addition of minimal weight. In Chapter

12 we give a detailed analysis of stresses involved in foams.

1.3.9 Nano- and Microstructure of Biological Materials
Biological materials are more complex than synthetic materials.

They form complex arrays, hierarchical structures, and are often

multifunctional, i.e., one material has more than one function. For
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Exterior of the 

(a)

beak (keratin) 

Hollow Foam 

 

(b) 

Fig. 1.32 (a) Toucan beak; (b)

external shell made of keratin

scales. (Courtesy of Y. Seki.)

example, bone has a structural function and serves as a producer of

red blood cells (in marrow). We classify biological materials, from the
(a) 

(b)

Fig. 1.33 Cellular materials: (a)

synthetic aluminium foam; (b) foam

found in the inside of toucan beak.

(Courtesy of M. S. Schneider and

K. S. Vecchio.)

mechanical property viewpoint, into soft and hard. Hard mater-

ials provide the skeleton, teeth, and nails in vertebrates and

the exoskeleton in arthropods. Soft biological materials build

skin, muscle, internal organs, etc. Table 1.4 provides the distri-

bution (on a weight percentage) of different constituents of the

body.

Here are some examples of ‘‘hard” biological materials:

� Calcium phosphate (hydroxyapatite-Ca10(PO4)6(OH)2): teeth, bone
� Chitin: nails
� Keratin: bird beaks, horn, hair
� Calcium carbonate (aragonite): mollusc shells, some reptile eggs

(calcite): bird’s eggs, crustaceans, molluscs
� Amorphous silica (SiO2(H2O)n): spicules in sponges
� Iron oxide (Magnetite – Fe3O4): teeth in chitons (a weird-looking

marine worm), bacteria.
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Table 1.4 Occurrence of Different Biological Materials in

the Body

Weight Percentage in
Biological Material Human Body

Proteins 17
Lipids 15
Carbohydrates 1
Minerals 7
DNA, RNA 2
Water 58

Of the above, iron oxide, calcium phosphate, silica, and iron oxide

are minerals. Chitin and keratin are proteins.

Figure 1.34(a) shows the atomic arrangement of the calcium, phos-

phorus, and oxygen atoms in hydroxyapatite. The unit cell is quite

complex and consists of four primitive hexagonal cells juxtaposed.

We should remember that the hexagonal cell is composed of three

primitive cells, brought together at their 120◦ angles (3 ×120 = 360).

In the case of the hydroxyapatite unit cell, there are four unit cells:

two at the 60◦ angle and two at the 120◦ (2 × 60 + 2 × 120 = 360).

Figure 1.34(b) shows the aragonitic form of calcium carbonate.

Aragonite has the orthorhombic structure. However, it is important

to recognize that the minerals do not occur in isolation in living

organisms. They are invariably intimately connected with organic

materials, forming complex hierarchically structured composites. The

resulting composite has mechanical properties that far surpass those

of the monolithic minerals. Although we think of bone as a cellular

mineral, it is actually composed of 60% collagen (on a volume per-

centage basis) and 30–40% hydroxyapatite (on a weight basis). If the

mineral is dissolved away, the entire collagen framework is retained.

The principal organic building blocks in living organisms are the

proteins. The word comes from Greek (Proteios) which means ‘‘of first

rank” and indeed proteins play a key role in most physiological pro-

cesses. The soft tissues in the body are made of proteins. As seen

above, they are also an important component of biominerals. In order

to fully understand proteins, we have to start at the atomic/molecular

level, as we did for polymers.

Actually, proteins can be conceived of as polymers with a greater

level of complexity. We start with amino acids, which are compounds

containing both an amine (–NH2) and a carboxyl (–COOH) group. Most

of them have the following structure, where R stands for a radical:

H

NH2

CR COOH
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(a)

(b)

Fig. 1.34 Atomic structure of

hydroxyapatite: (a) small white

atoms (P), large gray atoms (O),

black atoms (Ca). (b) Atomic

structure of aragonite: large dark

atoms (Ca), small gray atoms (C),

large white atoms (O).

Table 1.5 shows eight main amino acids. There are currently 20

amino acids in proteins. In addition to these eight, we have the

following: aspartic acid, glycine, methionine, asparagine, glutamine,

arginine, threonine, valine, tyrosine, isoleucine, phenylalaline, and

tryptophan.

In DNA, the four amino acids present are designated by the let-

ters ACTG: adenine, cytosine, thymine, and guanine. In both DNA

and proteins, these amino acids combine themselves by forming links

between the carboxyl group of one amino acid and the amino group

of another. These linear chains, similar to polymer chains, are called

polypeptide chains. The polypeptide chains acquire special configur-

ations because of the formation of bonds (hydrogen, van der Waals,

and covalent bonds) between amino acids on the same or different

chains. The two most common configurations are the alpha helix and

the beta sheet. Figure 1.35(a) shows how an alpha helix is formed. The

NH and CO groups form hydrogen bonds between them in a regular

pattern, and this creates the particular conformation of the chain

that is of helical shape. One such bond is shown in Figure 1.35(a). In
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Table 1.5 Eight Amino Acids Found in Proteins

Name Chemical Formula

Alanine C OH

O

C

H

NH2

CH3

Leucine CH CH2 C COOH

O

NH2

CH3

CH3

Phenylalanine C CH2 C COOH

H

NH2

CH

CH

CH

CH

CH

Proline CH2 CH2 C COOH

H

N HCH2

Serine CH2 C COOH

H

NH2

OH

Cysteyne CH2 C COOH

H

NH2

SH

Glutamate O C CH2 CH2 C COOH

O H

NH2

Lysine CH2 CH2 C COOH

H

NH2

CH2 CH2NH3

Figure 1.35(b) several hydrogen bonds are shown, causing the polypep-

tide chain to fold. The radicals stick out. This is shown in a clear

fashion in Figure 1.36(a). The hydrogen bonds are also shown.

Another common conformation of polypeptide chains is the beta

sheet. In this conformation, separate chains are bonded. Figure 1.36(b)

shows two anti-parallel chains that are connected by hydrogen bonds.

We can see that the radicals (large grey balls) of two adjacent chains

stick out of the sheet plane on opposite sides. Successive chains can

bond in such a fashion, creating pleated sheets.
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Fig. 1.35 (a) Structure of alpha

helix; dotted double lines indicate

hydrogen bonds. (b) Structure of

beta sheet with two anti-parallel

polypeptide chains connected by

hydrogen bonds (double-dotted

lines).
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Fig. 1.36 (a) Hydrogen bond

connecting a CO to an NH group

in a polypeptide. (b) Successive

hydrogen bonds on same

polypeptide chain leading to

formation of a helical arrangement.

(Adapted from A. Vander, J.

Sherman, D. Luciano, Human

Physiology, 8th ed. (New York:

McGraw Hill, 2001).)
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8.6 nm

0.87 nm

Fig. 1.37 Triple helix structure

of collagen. (Adapted from Y. C.

Fung, Biomechanics: Mechanical

properties of Living Tissues (Berlin:

Springer, 1993).)

We describe below the most important proteins: collagen, actin,

myosin, elastin, resilin and abductin, keratin, cellulose and chitin.

Collagen

Collagen is a rather stiff and hard protein. It is a basic structural

material for soft and hard bodies; it is present in different organs

and tissues and provides structural integrity. Fung9 compares it to

steel, which is the principal load-carrying component in structures.

In living organisms, collagen plays the same role: it is the main load-

carrying component of blood vessels, tendons, bone, muscle, etc. In

rats, 20% of the proteins are collagen. Humans are similar to rats

in physiology and behavior, and the same proportion should apply.

Figure 1.37 shows the structure of collagen. It is a triple helix, each

strand being made up of sequences of amino acids. Each strand is

itself a left-handed helix with approximately 0.87 nm per turn. The

triple helix has a right-handed twist with a period of 8.6 nm. The

dots shown in a strand in Figure 1.37 represent glycine and differ-

ent amino acids. There are over 10 types of collagen, called Type

I, II, X, etc. Fiber-forming collagens organize themselves into fibrils,

Figure 1.38. Figure 1.38(c) is a transmission electron micrograph of

tendon fibrils. Each fibril has transverse striations, which are spaced

approximately 68 nm apart. These striations are caused by the stag-

gering of the individual collagen molecules. This staggering is repre-

sented in a schematic manner in Figure 1.38(b). The length of each

collagen molecule is 4.4 times the distance of stagger, 68 nm. This is

equal to 300 nm. The diameter of the fibrils varies between 20 and

40 nm.

Fibrils, in turn, arrange themselves into fibers. Fibers are bundles

of fibrils with diameters between 0.2 and 12 μm. In tendons, these

fibers can be as long as the entire tendon. In tendons and ligaments,

the collagen fibers form primarily one-dimensional networks. In skin,

blood vessels, intestinal mucosa and the female vaginal tract, the

fibers organize themselves into more complex patterns leading to two-

and three-dimensional networks.

The hierarchical organization of a tendon starts with tropocolla-

gen (a form of collagen), and moves up, in length scale, to fascicles.

There is a crimped, or wavy structure shown in the fascicles that

9 Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Berlin, Springer, 1993)
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(a)

(b)

(c)

Collagen fibril

Collagen fibril

N C

Collagen molecule

68 nm

Triple helix

   chain

67 nm

Fig. 1.38 Hierarchical

organization of collagen, starting

with triple helix, and going to

fibrils. (From H. Lodish et al.,

Molecular Cell Biology, 4th ed. (New

York, W.H. Freeman & Company,

1999).)

has an important bearing on the mechanical properties. Figure 1.39

shows an idealized representation of a wavy fiber. Two parameters

q
0

l
0

Fig. 1.39 Idealized configuration

of a wavy collagen fiber.

define it: the wavelength 2l0 and the angle θ0. Typical values for the

Achilles tendon of a mature human are l0 = 20–50 μm and θ0 = 6–8◦.

These bent collagen fibers stretch out in tension. When the load is

removed, the waviness returns. When the tendon is stretched beyond

the straightening of the waviness, damage starts to occur. Figure 1.40

shows a schematic stress–strain curve for tendons. The tendon was

stretched until rupture. There are essentially three stages:

� Region I: toe part, in which the slope rises rapidly. This is the phys-

iological range in which the tendon operates under normal condi-

tions.
� Region II: linear part, with a constant slope.
� Region III: slope decreases with strain and leads to failure.

The elastic modulus of collagen is approximately 1 GPa and the max-

imum strain is in the 10–20% range. Cross-linking increases with age,

and collagen becomes less flexible.

Actin and Myosin

These are the principal proteins of muscles, leukocytes (white

blood cells), and endothelial cells. Muscles contract and stretch
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through the controlled gliding/grabbing of the myosin with respect

to the actin fibers. Figure 1.41(a) shows an actin fiber. It is composed

of two polypeptides in a helical arrangement. Figure 1.41(b) shows

the myosin protein. It has little heart-shaped ‘‘grapplers” called

cross-bridges. The tip of the cross-bridges bind and unbind to the actin

filaments. Figure 1.41(c) shows the myosin and actin filaments, and

the cross-bridges at different positions. The cross-bridges are hinged

to the myosin and can attach themselves to different positions along

the actin filaments as the actin is displaced to the left. Thus, the

muscles operate by a micro-telescoping action of these two proteins.
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Fig. 1.40 Stress–strain curve of

collagen with three characteristic

stages.

Figure 1.42 shows how the filaments organize themselves into

myofibrils. Bundles of myofibrils form a muscle fiber. The Z line repre-

sents the periodicity in the myosin–actin units (that are called sarco-

meres) and is approximately equal to 3 μm in the stretched config-

uration. It shortens when the muscle is contracted. This gives the

muscle a striated pattern when observed at high magnification. They

resemble a coral snake in the microscope. Myofibrils have a diameter

of approximately 1–2 μm.

Elastin

Elastin is found in skin, walls of arteries and veins, and lung tissue.

A prominent place is in the ‘‘ligamentum nuchae,” a long ligament

that runs along the top of the neck in horses and is constantly under

tension. Other vertebrates have it too, but it is less pronounced. In this

manner, the horse can keep the head up without using muscles. The

‘‘ligamentum nuchae” plays a role similar to the cables in a suspension

bridge. It is a rather robust cylinder.

Resilin and Abductin

They are found in arthropods. They have properties similar to those

of elastin, but occur in totally different animals and have a different

structure.

Keratin

Keratin is found in hair, horn, bird beaks and feathers, and whale

baleen. The toucan beak presented in Section 1.3.8 is made of keratin.

It has a structure similar to collagen (three interwoven helices). These

helices combine themselves to form microfibrils with a diameter of

8 nm. Interestingly, it undergoes a phase transformation under tensile

load, which increases its elongation.

Cellulose

Cellulose is the most abundant biological structural material, and is

present in wood (which is a composite of cellulose and lignin) and

cotton (almost pure cellulose). Cellulose is a cross-linked crystalline

polymer. Its basic building block is a fibril with 3.5 nm diameter and

4 nm periodicity.
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(a) Actin

(c)

(b) Myosin

Cross-bridge

Actin-binding sites

Cross-bridge

Actin
filament

Myosin
filament

Movement

Power
stroke

Fig. 1.41 Molecular structure of

(a) actin and (b) myosin; (c) action

of cross-bridges when actin

filament is moved to left with

respect to myosin filament; notice

how cross-bridges detach

themselves, then reattach

themselves to actin.

Chitin

Chitin is a polysaccharide found in many invertebrates. The exoskel-

eton of insects is made of chitin.

Silk

Silk is composed of two proteins: fibroin (tough strands) and sericin,

a gummy glue. The mechanical properties (strength and maximum

elongation) can vary widely, depending on the application intended

by the animal. For instance, among the silks produced by spiders

are: dragline and spiral. Dragline, used in the radial components of

the web, is the structural component, and has high tensile strength

(600 MPa) and a strain at failure of about 6%. The spiral tangential
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Fig. 1.42 Structure of muscle,

from (a) the sarcomere units, to

(b) myofibril, and finally to (c)

fibers.

components are intended to capture prey, and are ‘‘soft” and ‘‘sticky.”

The strain at failure in this case can exceed 16, i.e. 1,600%.

Example 1.11

Determine the maximum strain that the collagen fibers can experience

without damage if their shape is as given in Figure 1.39 with a ratio

between amplitude and wavelength of 0.2

We can assume a sine function of the form:

y = k sin 2πx/λ.

The maximum of y is reached when x = π/4.

Hence:

ymax = k = λ/5.

We can integrate over the length of the sine wave from 0 to 2π . However,

this will lead to an elliptical integral of difficult solution. A simple

approximation is to consider the shape of the wavy protein as an ellipse

with major axis 2a and minor axis 2b. The circumference is given by the
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approximate expression (students should consult a mathematics text to

obtain this expression):

L ≈ π

[
3

2
(a + b) − (ab)1/2

]
.

In the sine function, we have two arms, one positive and one negative.

Their sum corresponds, in an approximate manner, to the circumfer-

ence of the ellipse. The strain is equal to:

ε = L − 4a

4a
= π

[
3
2

(a + b) − (ab)1/2
] − 4a

4a
.

Thus:

ε = π

4

[
3

2

(
1 + b

a

)
−

(
b

a

)1/2
]

− 1.

The following ratio is given:

b

2a
= 0.2 and

b

a
= 0.4.

The corresponding strain is:

ε = 0.53.

Beyond this strain, the collagen will break.

1.3.10 The Sponge Spicule: An Example of a
Biological Material

Marine sponges have long tentacles that are called spicules. These

spicules act as antennas, which are subjected to marine currents and

other stresses. These long silica rods have properties that dramati-

cally exceed the strength of synthetic silica. Figure 1.43 shows the

flexure strength of both spicule and synthetic silica. The difference

in flexure strength between sponge spicule and synthetic silica is

remarkable. The synthetic silica fractures at a relatively low stress

of 200 MPa compared to the yield stress of the spicule at 870 MPa.

The area under the stress–strain curve gives a reasonable idea of the

toughness. Clearly the toughness of the spicule is many times higher

than that of synthetic silica. As evidenced by Figure 1.43, failure does

not occur catastrophically in the spicule. Instead, the spicule fails

‘‘gracefully,” which is a considerable advantage.

Figure 1.44 shows the microstructure of a fracture surface. The

spicule consists of many concentric layers. This onion-like structure

is responsible for the strengthening effect observed. When stress is

applied to a silica rod, a crack will initiate at the weakest point in

the material and propagate through the silica rod in a catastrophic

manner. In contrast, crack propagation in the spicule will be arrested

at each interface. This type of ‘‘graceful” failure is extremely useful.

We can truly learn and apply this lesson from nature to modern

material applications.
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Fig. 1.43 Stress-deflection

responses of synthetic silica rod

and sponge spicule in flexure

testing. (Courtesy of M. Sarikaya

and G. Mayer.)

Fig. 1.44 SEM of fractured

sponge spicule showing

two-dimensional onion-skin

structure of concentric layers.

(Courtesy of G. Mayer and M.

Sarikaya.)

1.3.11 Active (or Smart) Materials
Technology puts greater and greater demand on materials and there

is a constant push to develop materials with enhanced capabilities.

The term multifunctional materials has been coined to describe mater-

ials with more than one capability. This is inspired by nature, where

materials often have more than one function. For example, the trunk

of a tree is at the same time a structural component and a carrier

for the sap. Bones have a structural as well as a red-blood-producing

function.

Another category of advanced materials are active materials. They

are also called ‘‘smart” materials. Active materials have responses that

can be used in all kinds of devices. Given below are the main classes

of active materials.
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� Shape memory alloys: The most common is a NiTi alloy known as

Nitinol. It can undergo strains of 1–5% through a martensitic trans-

formation that is reversible. A detailed description of these alloys is

given in Chapter 11. There are numerous applications through two

effects: the shape memory effect and the superelastic (or pseudo-

elastic) effect: dental braces, stents, etc. They are presented in

Chapter 11.
� Magnetorheological materials: These materials exhibit a viscosity

that depends on an externally applied magnetic field. The suspen-

sion system of a US-made luxury automobile uses this material. The

stiffness can be adjusted by varying the magnetic field.
� Piezoelectric ceramics and ferroelectricity:10 These materials gener-

ate an electric field when strained. Conversely, if an electric cur-

rent is passed through them, they change their dimension. Bar-

ium titanate, lead zirconate titanate (Pb(Zr, Ti)O3) are examples.

They have the perovskite structure with composition ABO3, where A

and B are metals. They are characterized by a linear strain–electric

field response. The maximum strain is on the order of 0.2%. Appli-

cations include vibration control, micropositioning devices, ultra-

sonics, and non-destructive evaluation.

It is a property of ferroelectrics to exhibit polarization in the absence

of an electric field. Polarization is defined as dipole moment per unit

volume or charge per unit area on the surface. The material is divided

into domains, which are regions with uniformly oriented polar-

ization. Ferroelectrics are characterized by a linear relationship

between stress σ and polarization P:

P = dσ.

There is a converse relationship between strain ε and electric field,

E:

ε = d E ,

where d is called the polarizability tensor. Figure 1.45(a) shows how

E

ε

E

(b)

(a)

Fig. 1.45 (a) Effect of applied

field E on dimension of

ferroelectric material. (b) Linear

relationship between strain and

electric field. (Courtesy of G.

Ravichandran.)

the application of an externally applied electric field E results in a

change in length of the specimen. Figure 1.45(b) shows the linear

relationship between the strain and the field. This is a property of

ferroelectric crystals, certain noncentrosymmetric crystals (e.g.

quartz, ZnO), textured polycrystals, and polycrystals with a net sponta-

neous polarization. Applications include adaptive optics, active rotors

and control surfaces, robotics, and MEMS/NEMS (microelectromechan-

ical systems/nanoelectromechanical systems) actuators.

1.3.12 Electronic Materials
Electronic materials are composed, for the most part, of thin films

arranged in several layers and deposited on a substrate. The most

10 K. Bhattacharya and G. Ravichandran, Acta Mater., 51 (2003) 5941.
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Fig. 1.46 Cross section of a

complementary metal-oxide

semiconductor (CMOS). (Adapted

from W. D. Nix, Met. Trans., 20A

(1989) 2217.)

common substrate is monocrystalline silicon (the silicon wafer). Inte-

grated circuits form the heart of modern computers and the silicon

chip is a primary example. Figure 1.46 shows a schematic of the mater-

ials and structure used in a CMOS (complementary metal oxide semi-

conductor) transistor device. The pn junctions form transistors. The

substrate is silicon, which in this case is n doped. The thin film layers

are vapor deposited and there are a number of mechanical aspects

that are of considerable importance. In Figure 1.46, we have mono-

crystalline and polycrystalline silicon, oxide, glass, metal, and a

dielectric passivation layer.

The thin films deposited on the substrate have dimensions of a few

nanometers to a few micrometers. These films may be under residual

stresses as high as 500 MPa. These stresses are due to:

� Thermal expansion coefficient effects. When the film cools it con-

tracts. The thermal expansion coefficients of the different layers

can be different, creating internal stresses.
� Phase transformations. The phases in thin films are often non-

equilibrium phases.

There are a number of mechanical problems associated with these

stresses. Dislocations at the interface between substrate and thin film,

cracking of the passivation layer, bending of the substrate/thin film

system are a few examples. We will briefly describe these effects in

chapters 2, 6, 9, and 13.

Magnetic hard disks are also made of thin films. The aluminum

disk, upon which a thin layer of magnetic material is deposited,

rotates at surface velocities approaching 80 km per hour, while

the ‘‘head” flies aerodynamically over it. The distance between head

and disk is as low as 0.3 μm. Some of the mechanical problems

are friction, wear, and the unavoidable collisions between disk and

head.
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1.3.13 Nanotechnology11,12

Nanotechnology refers to the structure and properties of mater-

ials and devices at the nanometer level. Developments in synthesis

and characterization methods have resulted in materials that are

designed from the ‘‘bottom up,” rather than from the ‘‘top down.”

(a)

(b)

(c)

Fig. 1.47 Three configurations

for single wall carbon nanotubes:

(a) armchair; (b) “zig-zag”; (c)

chiral. (Adapted from M. S.

Dresselhaus, G. Dresselhaus, and

R. Saito, Carbon, 33 (1995) 883.)

These terms were first used by the famous physicist Richard Feynman.

The traditional method used in the design of new materials is

to develop synthesis and processing techniques at the macro-

scale, and then to carry out detailed characterization at the micro-

meter and nanometer scale. The new approach is to start with atoms,

then assemble them into small arrays and characterize their struc-

ture and properties at that level. This approach was led by the

semiconductor revolution. As the sizes of devices become smaller,

we approach atomic dimensions. At that level, it is being found

that many materials possess unique properties. Many biological pro-

cesses also use the bottom-up approach. Atoms aggregate them-

selves into molecules and complex arrays through genetic messages.

The atoms come together and self-organize themselves into complex

arrays of amino acids, which in their turn form proteins. It is hoped

that we will be able to fully harness this approach in the future.

There are already applications of nanotechnology in the market-

place.

A material that is showing great potential because of unique

characteristics is the carbon nanotube. The first nanotube was pro-

duced in Japan by S. Iijima. One can envisage a carbon nanotube

by rolling a single layer of carbon atoms into a hollow cylin-

der. The ends can be semi-spherical caps (one half of a ‘‘Bucky-

ball”). There are three morphologies for carbon nanotubes, shown

in Figure 1.47: armchair, zig-zag, and chiral. They differ in the

following:

� Armchair: the hexagons have the ‘‘pointy” side perpendicular to

cylinder axis.
� Zig-Zag: the hexagons have the pointy side aligned with the cylinder

axis.
� Chiral: The hexagons are inclined with respect to the cylinder axis,

and the carbon sheet wraps itself helically around cylinder.

These carbon nanotubes have typically a diameter between 5 and

20 nm and length between 1 and 100 μm. They have outstanding

mechanical properties, since they are based on the C–C bond, the

strongest in nature. There are varying estimates of their strength, and

values between 45 and 200 GPa are quoted. This would make them

the strongest material known, ranking with diamond. Although the

nanotubes are very short, one can envisage a day where continuous

11 C. P. Poole and F. J. Owens, Introduction to Nanotechnology (Hoboken, NJ, Wiley-

Interscience, 2003).
12 M. Ratner and D. Ratner, Nanotechnology (Englewood Cliffs, NJ, Prentice Hall, 2003).
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Fig. 1.48 Array of parallel

carbon nanotubes grown as a

forest. (From R. H. Baughman,

A. A. Zakhidov and W. A. de Heer,

Science, 297 (2002) 787.)

nanotubes are manufactured. Their incorporation as reinforcements

in composites presents a bright prospect.

Figure 1.48 shows how arrays of parallel carbon nanotubes can be

produced. The individual nanotubes, approximately 10 μm in length,

form a dense forest. The carbon nanotube is only one example of

nanotechnology. The mechanical properties of metals are significantly

increased when their grain size is reduced to the nanometer range.

This topic, nanostructured materials, is treated in Chapter 5.

1.4 Strength of Real Materials

Materials deform and fail through defects. These defects (cracks, point

defects, dislocations, twins, martensitic phase transformations, etc.)

are discussed in chapters 4 through 8. The two principal mechanisms

are crack growth and dislocations and plastic flow.

Crack growth: Real materials can have small internal cracks, at

whose extremities high-stress concentrations are set up. Hence, the

theoretical cleavage strength can be achieved at the tip of the crack at

applied loads that are only a fraction of that stress. Griffith’s theory

(see Chapter 7) explains this situation very clearly. These stress con-

centrations are much lower in ductile materials, since plastic flow

can take place at the tip of a crack, blunting the crack’s tendency to

grow.

Dislocations and plastic flow: Before the theoretical shear stress is

reached, dislocations are generated and move in the material; if they

are already present, they start moving and multiply. These disloca-

tions are elementary carriers of plastic deformation and can move at

stresses that are a small fraction of the theoretical shear stress. They

will be discussed in detail in Chapter 4.

In sum, cracks prevent brittle materials from obtaining their the-

oretical cleavage stress, while dislocations prevent ductile materials

from obtaining their theoretical shear stress.
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Fig. 1.49 Theoretical strength of

tridimensional materials,

continuous fibers, and whiskers.

The strength of the SiC whisker

produced by the Philips Eindhoven

Laboratory is indicated by (A).

To achieve the theoretical strength of a crystalline lattice, there

are two possible methods: (1) eliminating all defects and (2) creat-

ing so many defects, that their interactions render them inopera-

tive. The first approach has yielded some materials with extremely

high strength. Unfortunately, this has been possible only in spe-

cial configurations called ‘‘whiskers.” The second approach is the

one more commonly pursued, because of the obvious dimensional

limitations of the first; the strength levels achieved in bulk metals

have steadily increased by an ingenious combination of strengthening
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Fig. 1.50 Stress–strain curve of

a copper whisker with a fiber

direction <100>. The whisker

diameter is 6.8 μm. (Adapted with

permission from K. Yoshida, Y.

Goto, and M. Yamamoto, J. Phys.

Soc. Japan, 21 (1966) 825.)

mechanisms, but are still much lower than the theoretical strength.

Maraging steels with useful strengths up to 2 GPa have been produced,

as have patented steel wires with strengths of up to 4.2 GPa; the latter

are the highest strength steels.

Figure 1.49 compares the ambient-temperature strength of tri-

dimensional, filamentary, and whisker materials. The whiskers have

a cross-sectional diameter of only a few micrometers and are usually

monocrystalline (although polycrystalline whiskers have also been

developed). Whiskers are one of the strongest materials developed

by human beings. The dramatic effect of the elimination of two

dimensions is shown clearly in Figure 1.49. The strongest whiskers are

ceramics. Table 1.5 provides some illustrative examples. Iron whiskers

with a strength of 12.6 GPa have been produced, compared with

2 GPa for the strongest bulk steels. The value 12.6 GPa is essentially

identical to the theoretical shear stress, because the normal stress

is twice the shear stress. In general, FCC whiskers tend to be much

weaker than BCC whiskers and ceramics. For instance, Cu whiskers

have a strength of about 2 GPa. This is consistent with the much

lower theoretical shear strength exhibited by copper whiskers. It

turns out that silver, gold, and copper have τmax/G ratios of 0.039

(see chapter 4). Hence, they are not good whisker materials. Figure

1.50 shows a stress–strain curve for a copper whisker. The specimen

had a length between 2 and 3 mm and a cross-sectional diameter

of 6.8 μm. The stress drops vertically after the yield point, with

a subsequent plateau corresponding to the propagation of a

Lüders band.
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Table 1.6 Tensile Strength of Whiskers at Room Temperature∗

Material
Maximum Tensile
Strength (GPa)

Young’s Modulus
(GPa)

Graphite 19.6 686
Al2O3 15.4 532
Iron 12.6 196
SiC 20–40 700
Si 7 182
AlN 7 350
Cu 2 192

∗Adapted with permission from A. Kelly, Strong Solids (Oxford, U.K.: Claren-

don Press, 1973), p. 263.

In the elastic range, the curve deviates slightly from Hooke’s law

and exhibits some temporary inflections and drops (not shown in the

figure). In many cases, for both metals and nonmetals, failure occurs

at the elastic line, without appreciable plastic strain. When plastic

deformation occurs, as, for example, in copper and zinc, a very large

yield drop is observed. Although the strength of whiskers is not com-

pletely understood, it is connected to the absence of dislocations. It

is impossible to produce a material virtually free of dislocations –

in other words, perfect. However, for whiskers, dislocations can eas-

ily escape out of the material during elastic loading. Their density

and mean free path are such that they will not interact and prod-

uce other sources of dislocation. Hence, the yield point is the stress

required to generate dislocations from surface sources. The irregular-

ities observed in the elastic range indicate that existing dislocations

move and escape out of the whisker. At a certain stress, the whisker

becomes essentially free of dislocations. When the stress required to

activate surface sources is reached, the material yields plastically, or

fails.

Example 1.12

Calculate the stresses generated in a turbine blade if its cross-sectional

area is 10 cm2 and the mass of each blade is 0.2 kg.

This is an example of a rather severe environment where the mater-

ial properties must be predicted with considerable detail. For example,

the blade may be in a jet engine. Figure E1.12 shows a section of the

compressor stage of a jet. The individual blades are fixed by a dovetail

arrangement to the turbine vanes. Assume a rotational velocity ω =
10,000 rpm and a mean radius R = 0.5 m. The centripetal acceleration

in the bottom of each turbine blade is

ac = ω2 R =
[

10,000 × 1

60
× 2π

]2

× 0.5 = 5.4 × 105 m/s2
.
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The stress that is generated is

σ = F

A
= mac

A
= 0.2 × 5.4 × 105

10 × 10−4
= 100 MPa,

where F is the centripetal force and A is the cross-sectional area. This

stress of 100 MPa is significantly below the flow stress of nickel-based

superalloys at room temperature, but can be quite significant at higher

temperatures.

Blades

Disc

Detail of
blade

Turbine rotor

F
F s

w

R

Fig. E1.12 Turbine blade subjected to centripetal force during operation.
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Exercises

1.1 A jet turbine rotates at a velocity of 7,500 rpm. Calculate the stress acting

on the turbine blades if the turbine disc radius is 70 cm and the cross-sectional

area is 15 cm2. Take the length to be 10 cm and the alloy density to be 8.5

g/cm3.

1.2 The material of the jet turbine blade in Problem 1.1, Superalloy IN 718,

has a room-temperature yield strength equal to 1.2 GPa; it decreases with

temperature as

σ = σ0

(
1 − T − T0

Tm − T0

)
,
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where T0 is the room temperature and Tm is the melting temperature in K (Tm

= 1,700 K). At what temperature will the turbine flow plastically under the

influence of centripetal forces?

1.3

(a) Describe the mechanical properties that are desired in a tennis racket,

and recommend different materials for the different parts of the racket.

(b) Describe the mechanical properties that are desired in a golf club, and

recommend different materials for the different parts of the club.

1.4 On eight cubes that have one common vertex, corresponding to the origin

of axes, draw the family of {111} planes. Show that they form an octahedron

and indicate all <110> directions.

1.5 The frequency of loading is an important parameter in fatigue. Estimate

the frequency of loading (in cycles per second, or Hz) of an automobile tire in

the radial direction when the car speed is 100 km/h and the wheel diameter

is 0.5 m.

1.6 Indicate, by their indices and in a drawing, six directions of the <112>

family.

1.7 The density of Cu is 8.9 g/cm3 and its atomic weight (or mass) is 63.546.

It has the FCC structure. Determine the lattice parameter and the radius of

atoms.

1.8 The lattice parameter for W(BCC) is a = 0.32 nm. Calculate the density,

knowing that the atomic weight (or mass) of W is 183.85.

1.9 Consider the unit cell of the CsCl which has NaCl structure. The radius of

Cs+ is 0.169 nm and that of Cl is 0.181 nm. (a) Determine the packing factor

of the structure, assuming that Cs+ and Cl− ions touch each other along the

diagonals of the cube. (b) Determine the density of CsCl if the atomic weight

of Cs is 132.905 and of Cl is 35.453.

1.10 MgO has the same structure as NaCl. If the radii of O2− and Mg2+ ions

are 0.14 nm and 0.070 nm, respectively, determine (a) the packing factor and

(b) the density of the material. The atomic weight of O2 is 16 and that of Mg

is 24.3.

1.11 Germanium has the diamond cubic structure with interatomic spacing

of 0.245 nm. Calculate the packing factor and density. (The atomic weight of

germanium is 72.6.)

1.12 The basic unit (or mer) of polytetrafluoroethylene (PTFE) or Teflon is

C2F4. If the mass of the PTFE molecule is 45,000 amu, what is the degree

of polymerization?

1.13 Using the representation of the orthorhombic unit cell of polyethylene

(see Figure E1.13), calculate the theoretical density. How does this value com-

pare with the density values of polyethylene obtained in practice?

1.14 A pitch blend sample has five different molecular species with molecular

masses of 0.5 × 106, 0.5 × 107, 1 × 107, 4 × 107, and 6 × 107. Compute the

number-averaged molecular weight and weight-averaged molecular weight of

the sample.

1.15 Different polymorphs of a material can have different mechanical prop-

erties. Give some examples.
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Fig. E1.13 Crystalline form of

polyethylene with orthorhombic

unit cell.

1.16 What are smart materials? Give some examples.

1.17 What are glass-ceramics? Explain their structure and properties. (Hint:

Think of Corning ware.)

1.18 Explain how the scale of microstructure can affect the properties of a

material. Use steel, an alloy of iron and carbon as an example.

1.19 For a cubic system, calculate the angle between

(a) [100] and [111],

(b) [111] and [112],

(c) [112] and [221].

1.20 Recalculate the bicycle stiffness ratio for a titanium frame. (See Examples

1.1 and 1.2) Find the stiffness and weight of the bicycle if the radius of the

tube is 25 mm. Use the following information:

Alloy: Ti ---6% Al ---4% V,

σy = 1, 150 MPa,

Density = 4.5 g/cm3,

E = 106 GPa,

G = 40 GPa.

1.21 Calculate the packing factor for NaCl, given that rNa = 0.186 nm and

Rcl = 0.107 nm.

1.22 Determine the density of BCC iron structure if the iron atom has a radius

of 0.124 nm.

1.23 Draw the following direction vectors in a cubic unit cell:

a [100] and [110], b [112], c[1̄10], d[3̄21̄].
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1.24 Calculate the stress generated in a turbine blade if its cross-sectional area

is 0.002 m2 and the mass of each blade is 0.5 kg. Assume that the rotational

velocity ω = 15,000 rpm and the turbine disk radius is 1 m.

1.25 Suppose that the turbine blade from the last problem is part of a jet

turbine. The material of the jet turbine is a nickel-based superalloy with the

yield strength, σ y = 1.5 GPa; it decreases with temperature as

σ = σ0[(1 − (T − T0))/(Tm − T0)],

where T0 = 293 K is the room temperature and Tm = 1,550 K is the melting

temperature. Find the temperature at which the turbine will flow plastically

under the influence of centripetal forces.

1.26 Calculate the lattice parameter of Ni(FCC) knowing that the atomic dia-

meter of nickel is 0.249 nm.

1.27 A jet turbine blade, made of MARM 200 (a nickel-based superalloy) rotates

at 10,000 rpm. The radius of the disk is 50 mm. The cross-sectional area is 20

cm2 and the length of the blade is equal to 12 cm. The density of MARM 200

is 8.5 g/cm3.

(a) What is the stress acting on the turbine blade in MPa?

(b) If the room temperature strength of MARM 200 is equal to 800 MPa, what

is the maximum operational temperature in kelvin?

The yield stress varies with temperature as:

σ = σ0

[
1 −

(
(T − T0)

(Tm − T0)

)m]
,

where Tm is the melting temperature (Tm = 1,700 K) and T0 is the room

temperature; m = 0.5.

1.28 Generate a three-dimensional unit cell for the intermetallic compound

AuCu3 that has a cubic structure. The Au atoms are at the cube corners and

the Cu atoms at the center of the faces. Given:

rCu = 0.128 nm A.N. Cu = 63.55 amu

rAu = 0.144 nm A.N. Au = 196.97 amu

(a) Find the lattice parameter in nanometers.

(b) What is the atomic mass of the unit cell in grams?

(c) What is the density of the compound in g/cm3?

x

y

z

Ex1.29

1.29 Draw the following unit cells with the planes (one plane per cube with

the coordinate axes shown below):

(a)
(
101

)
,

(b)
(
111

)
,

(c)
(
012

)
,

(d) (301).

1.30 Show how the atoms pack in the following planes by drawing circles

(atoms) in the appropriate spots:

(a) (111) in FCC,

(b) (110) in FCC,

(c) (111) in BCC,

(d) (110) in BCC.
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1.31 BET is a technique for measuring the surface area of particles, which is

of obvious importance in nanomaterials. Describe this technique. Don’t forget

to mention what the acronym BET stands for.

1.32 ‘‘Tin plate” is one of the largest tonnage steel products. It is commonly

used for making containers. If it is a steel product why is it called tin plate?

1.33 Using Figure 1.7, list the important symmetry operations in the following

crystal systems:

(a) Triclinic,

(b) Monoclinic,

(c) Orthorhomic.

1.34 The only possible rotation operations that can be used to define crystal

systems are rotations of type n = 1, 2, 3, 4, and 6. Using other values of n

will result in unit cells which, when joined together, will not fill all space.

Demonstrate this by giving a simple mathematical proof. (Hint: consider two

lattice points separated by a unit translation vector.)

1.35 Calculate the APF (atomic packing factor) for BCC and FCC unit cells,

assuming the atoms are represented as hard spheres. Do the same for the

diamond cubic structure.

1.36 Draw the following crystallographic planes in BCC and FCC unit cells

along with their atoms that intersect the planes:

(a) (101),

(b) (110),

(c) (441),

(d) (111),

(e) (312).

1.37 A block copolymer has macromolecules of each polymer attached to the

other as can be seen in Figure 1.22(c). The total molecular weight is 100,000

g/mol. If 140 g of A and 60 g of B were added, determine the degree of

polymerization for each polymer. A: 56 g/mol; B: 70 g/mol.

1.38 Sketch the following planes within the unit cell. Draw one cell for each

solution. Show new origin and ALL necessary calculations.

(a) (011),

(b) (102),

(c) (002),

(d) (130),

(e) (212),

(f) (312).

1.39 Sketch the following directions within the unit cell. Draw one cell for

each solution. Show new origin and ALL necessary calculations.

(a) [101],

(b) [010],

(c) [122],

(d) [301],

(e) [201],

(f) [213].
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1.40 Suppose we introduce one carbon atom for every 100 iron atoms in an

interstitial position in BCC iron, giving a lattice parameter of 0.2867 nm. For

the Fe–C alloy, find the density and the packing factor.

Given:

Atomic mass of C = 12,

Atomic mass of Fe = 55.89,

a(Fe) = 0.2867 nm,

Avogadro’s number, N = 6.02 × 1023.

1.41 Determine the maximum length of a polymer chain made with 1,500

molecules of ethylene, knowing that the carbon bond length is 0.13 nm.



Chapter 2

Elasticity and Viscoelasticity

2.1 Introduction

Elasticity deals with elastic stresses and strains, their relationship,

and the external forces that cause them. An elastic strain is defined as

a strain that disappears instantaneously once the forces that cause it

are removed. The theory of elasticity for Hookean solids -- in which

stress is proportional to strain -- is rather complex in its more rigor-

ous treatment. However, it is essential to the understanding of micro-

and macromechanical problems. Examples of the former are stress

fields around dislocations, incompatibilities of stresses at the inter-

face between grains, and dislocation interactions in work hardening;

examples of the latter are the stresses developed in drawing, and

rolling wire, and the analysis of specimen--machine interactions in

testing for tensile strength. This chapter is structured in such a way

as to satisfy the needs of both the undergraduate and the graduate

student. A simplified treatment of elasticity is presented, in a man-

ner so as to treat problems in an undergraduate course. Stresses and

strains are calculated for a few simplified cases; the tridimensional

treatment is kept at a minimum. A graphical method for the solution

of two-dimensional stress problems (the Mohr circle) is described. On

the other hand, the graduate student needs more powerful tools to

handle problems that are somewhat more involved. In most cases,

the stress and strain systems in tridimensional bodies can be bet-

ter treated as tensors, with the indicial notation. Once this tensor

approach is understood, the student will have acquired a very helpful

visualization of stresses and strains as tridimensional entities. Import-

ant problems whose solutions require this kind of treatment involve

stresses around dislocations, interactions between dislocations and

solute atoms, fracture mechanics, plastic waves in solids, stress con-

centrations caused by precipitates, the anistropy of individual grains,

and the stress state in a composite material.
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Fig. 2.1 Sketch of screw-driven

tensile-strength testing machine.

2.2 Longitudinal Stress and Strain

Figure 2.1 shows a cylindrical specimen being stressed in a machine

that tests materials for tensile strength. The upper part of the speci-

men is screwed to the crosshead of the machine. The coupled rotation

of the two lateral screws causes the crosshead to move. The load cell

is a transducer that measures the load and sends it to a recorder; the

increase in length of the specimen can be read by strain gages, extens-

ometers, or, indirectly, from the velocity of motion of the crosshead.

Another type of machine, called a servohydraulic machine, is also

used. Assuming that at a certain moment the force applied on the

specimen by the machine is F, there will be a tendency to ‘‘stretch”

the specimen, breaking the internal bonds. This breaking tendency

is opposed by internal reactions, called stresses. The best way of visu-

alizing stresses is by means of the method of analysis used in the

mechanics of materials: The specimen is ‘‘sectioned,” and the mis-

sing part is replaced by the forces that it exerts on the other parts.

This procedure is indicated in the figure. In the situation shown,

the ‘‘resistance” is uniformly distributed over the normal section and

is represented by three modest arrows at A. The normal stress σ is

defined as this ‘‘resistance” per unit area. Applying the equilibrium-of-

forces equation from the mechanics of materials to the lower portion

of the specimen, we have∑
F = 0

F − σ A = 0

σ = F

A
. (2.1)

This is the internal resisting stress opposing the externally applied

load and avoiding the breaking of the specimen. The following
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stress convention is used: Tensile stresses are positive and compres-

sive stresses are negative. In geology and rock mechanics, on the

other hand, the opposite sign convention is used because compres-

sive stresses are much more common.

As the applied force F increases, so does the length of the speci-

men. For an increase dF, the length l increases by dl. The normalized

(per unit length) increase in length is equal to

dε = dl

l
,

or, upon integration,

ε =
∫ l1

l0

dl

l
= ln

l1

l0

, (2.2)

where l0 is the original length. This parameter is known as the longi-

tudinal true strain.

In many applications, a simpler form of strain, commonly called

engineering or nominal strain, is used. This type of strain is defined

as

εn = εe = �l

l0

= l1

l0

− 1. (2.2a)

In materials that exhibit large amounts of eleastic deformation (rub-

bers, soft biological tissues, etc.) it is customary to express the defor-

mation by a parameter called ‘‘stretch” or ‘‘stretch ratio.” It is usually

expressed as λ:

λ = εe + 1.

Hence, deformation starts at λ = 1.

When the strains are reasonably small, the engineering (or nom-

inal) and true strains are approximately the same. We will use sub-

scripts t for true values and e for engineering values. It can be easily

shown that

εt = ln(1 + εe ). (2.2b)

The elastic deformation in metals and ceramics rarely exceeds

0.005, and for this value, the difference between εt and εe can be

neglected.

In a likewise fashion, a nominal (or engineering) stress is defined as

σe = F

A0

, (2.2c)

where A0 is the original area of cross-section.

The relationship between the true stress and the engineering

stress is

σt

σe

= A0

A
.
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Fig. 2.2 Stress–strain curves in

an elastic regimen. (a) Typical

curve for metals and ceramics. (b)

Typical curve for rubber.

During elastic deformation, the change in cross-sectional area is less

than 1% for most metals and ceramics; thus σ e
∼= σ t. However, during

plastic deformation, the differences between the true and the engin-

eering values become progressively larger. More details are provided

in Chapter 3 (Section 3.1.2).

The sign convention for strains is the same as that for stresses:

Tensile strains are positive, compressive strains are negative. In

Figure 2.2, two stress--strain curves (in tension) are shown; both speci-

mens exhibit elastic behavior. The solid lines describe the loading

trajectory and the dashed lines describe the unloading. For perfectly

elastic solids, the two kinds of lines should coincide if thermal effects

are neglected. The curve of Figure 2.2(a) is characteristic of metals

and ceramics; the elastic regimen can be satisfactorily described by a

straight line. The curve of Figure 2.2(b) is characteristic of rubber; σ

and ε are not proportional. Nevertheless, the strain returns to zero

once the stress is removed. The reader can verify this by stretching

a rubber band. First, you will notice that the resistance to stretch-

ing increases slightly with extension. After considerable deformation,

the rubber band ‘‘stiffens up,” and further deformation will eventu-

ally lead to rupture. The whole process (except failure) is elastic. A
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conceptual error often made is to assume that elastic behavior is

always linear; the rubber example shows very clearly that there are

notable exceptions. However, for metals, the stress and strain can be

assumed to be proportional in the elastic regimen; these materials are

known as Hookean solids. For polymers, viscoelastic effects are very

important. Viscoelasticity results in different trajectories for loading

and unloading, with the formation of a hysteresis loop. The area of the

hysteresis loop is the energy lost per unit volume in the entire defor-

mation cycle. Metals also exhibit some viscoelasticity, but it is most

often neglected. Viscoelasticity is attributed to time-dependent micro-

scopic processes accompanying deformation. An analogy that applies

well is the attachment of a spring and dashpot. The spring repre-

sents the elastic portion of the material, the dashpot the viscoelastic

portion.

In 1678, Robert Hooke performed experiments that demonstrated

the proportionality between stress and strain. He proposed his law as

an anagram -- ‘‘ceiiinosssttuv,” which rearranged, forms the Latin Ut

tensio sic vis. The meaning is ‘‘As the tension goes, so does the stretch.”

In its most simplified form, we express this law as

E = σ

ε
, (2.3)

where E is Young’s modulus. For metals and ceramics, E has a very

high value -- for example, 210 GPa for iron. Chapter 4 devotes some

effort to the derivation of E for materials from first principles.

E depends mainly on the composition, crystallographic structure, and

nature of the bonding of elements. Heat and mechanical treatments

have little effect on E, as long as they do not affect the former param-

eters. Hence, annealed and cold-rolled steel should have the same

Young’s modulus; there are, of course, small differences due to the for-

mation of the cold-rolling texture. E decreases slightly with increases

in temperature.

In monocrystals, E shows different values for different crystallo-

graphic orientations. In polycrystalline aggregates that do not exhibit

any texture, E is isotropic: It has the same value in all directions. The

values of E given in tables (e.g., Tables 2.3--2.5 later in this chapter)

are usually obtained by dynamic methods involving the propagation

of elastic waves, not from conventional stress--strain tests. An elastic

wave is passed through a sample; the velocities of the longitudinal

and shear waves, V� and Vs, respectively, are related to the elastic con-

stants by means of the following mathematical expressions (ρ is the

density, E is Young’s modulus, and G is the shear modulus):1

V� =
√

E

ρ
Vs =

√
G

ρ
.

1 For more details, see M. A. Meyers, Dynamic Behavior of Materials (New York: Wiley, 1994).
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Example 2.1

Calculate the material properties E, G, and ν of SiC, given the graphs of

the longitudinal and shear sound velocities obtained using ultrasonic

equipment. (See Figure E2.1). Here, ρ = 3.18 × 103 kg/m3 and the length

of specimen is L = 4 mm.

Fig. E2.1

Solution: We take equivalent peaks, marked by arrows, in sequential

signal packets. We must remember that the pulse reflects at the free

surface, and therefore, we have to take twice the length of the pulse.

We have

V� = 2L

t2 − t1

= 2 × 4 × 10−3

(1.16 − 0.52) × 10−6
= 12.5 × 103 m/s,

V� =
√

E

ρ
,

E = ρV 2
� = 3.18 × 103 × (12.5 × 103)2 = 496.9 × 109 Pa = 496.9 GPa,

Vs = 2L

t4 − t3

= 2 × 4 × 10−3

(2.15 − 1.10) × 10−6
= 7.62 × 103 m/s
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Vs =
√

G

ρ
,

G = ρV 2
s = 3.18 × 103 × (7.62 × 103)2 = 184.6 × 109 Pa = 184.6 GPa.

Since, according to Table 2.2,

G = E

2(1 + v )
,

where ν is Poisson’s ratio, as explained in Section 2.4, it follows that

v = E

2G
− 1 = 496.9

2 × 184.6
− 1 = 0.346.

(Note: The preceding calculations were conducted assuming uniaxial

stress and without the dispersion correction; hence, the results are

only approximate.)

A correct equation for the elastic modulus would be

V� =
√

Ē

ρ
, Ē = (1 − v )

(1 + v )(1 − 2v )
E .

This is because the length of the pulse is much shorter than the lateral

dimension of the specimen, and therefore, the specimen is stressed in

uniaxial strain.2

2.3 Strain Energy (or Deformation
Energy) Density

When work is done on a body, its dimensions change. The work done

(W ) is converted into heat (Q ) and an increase in internal energy (U)

of the body. We can write as per the first law of thermodynamics

dU = dQ − dW.

For most solids, the elastic work produces an insignificant amount

of heat. Hence, the work done on a body during deformation is con-

verted into internal energy, which is stored in the deformed material

and we call it strain energy or strain energy density when referring to

the stored strain energy per unit volume. In elastic springs the energy

is stored, while in a damping element the energy is dissipated as heat.

Quite frequently, in mechanics, we use the principle of minimization

of energy to arrive at useful expression.

Consider an elemental cube under uniaxial tension, σ 11, as shown

in Fig. 2.3(a). The work done is given by product of force and change

in length. Figure 2.3(b) shows the plot of tensile force vs. displace-

ment, where we have converted the stress into force and strain into

2 The interested student can obtain more information in M. A. Meyers, Dynamic Behavior

of Materials (New York: Wiley, 1994).
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Fig. 2.3 (a) Cube under a tensile

stress, σ 11. (b) Tensile force vs.

displacement. (c) Cube under a

shear stress, σ 31. (d) Shear force

vs. displacement.

displacement. The work done is the area under the force vs. displace-

ment curve:

Total work done = 1

2
[σ11(σ x2σ x3)ε11σ x1] = 1

2
[σ11ε11(σ x1σ x2σ x3)],

where σ 11 is the tensile stress component in direction 1, ε11 is the

corresponding tensile strain, σx1, σx2 and σx3 are the lengths of side

of the cube.

The work done per unit volume is

W11 = 1

2
σ11ε11.

We can obtain similar expressions for the work done by other stress

components. The reader can show that for the shear stress, σ 31, the

work done per unit volume (see Figure 2.3(c) and (d)) is given by

W31 = 1

2
σ31γ31,

where σ 31 and γ 31 are the shear stress and shear strain components,

respectively, acting in direction 3.
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Using the principle of superposition, i.e., combining the results

for two or more stresses (or strains), we can write for the total work

done per unit volume or the strain energy density as

W = 1

2
(σ11ε11 + σ22ε22 + σ33ε33 + 2σ12γ12 + 2σ23γ23 + 2σ31γ31).

In more compact indicial notation, we can write

U = W = 1

2
σi jεi j ,

where the subscripts i and j represent the plane normal on which

the stress is acting and the direction in which the stress is acting,

respectively. This notation is explained in Section 2.9. The units of

strain energy density are J/m3 or N · m/m3, or N/m2. The last one is

the same as the units of stress. It should not cause any confusion if

the reader will recall that the strain is a dimensionless quantity. Note

that strain energy density is a scalar quantity, hence no indexes.

For a linearly elastic solid under a uniaxial stress we can use the

Hooke’s law (σi j = E εi j ) to obtain an alternate expression for the strain

energy density:

U = W = 1

2
σi jεi j = 1

2
E ε2

i j = 1

2E
σ 2

i j .

One can extend the concept of elastic strain energy density to region

of inelastic behavior by defining the strain energy density as the area

under the stress--strain curve of a material. Sometimes, we take this

area under the stress--strain curve as a measure of the toughness of

a material.

Example 2.2

A bar of a material with Young’s modulus, E, length, L, and cross-

sectional area, A, is subjected to an axial load, P. Derive an expression

for strain energy stored in the bar.

Solution: In order to determine the total elastic strain energy stored in

a body under a general stress, σ , we need to integrate the elastic strain

energy density over the original volume of the material. Thus, the total

elastic strain energy for a material of volume V, can be written as

U total =
∫
V

σ 2

2E
dV .

For the simple case of a tensile force P acting on an area, A, we can

write this as

U total =
L∫

0

P 2

2E A2
dx = P 2 L

2E A2
.
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Fig. 2.4 (a) Specimen subjected

to shear force. (b) Strain

undergone by small cube in shear

region. (c) Specimen (cylinder)

subjected to torsion by a torque T.

2.4 Shear Stress and Strain

Imagine the loading arrangement shown in Figure 2.4(a). The speci-

men is placed between a punch and a base having a cylindrical orifice;

the punch compresses the specimen. The internal resistance to the

external forces now has the nature of a shear. The small cube in

Figure 2.4(b) was removed from the region being sheared (between

punch and base). It is distorted in such a way that the perpendicular-

ity of the faces is lost. The shear stresses and strains are defined as

τ = F

A
, γ = dl

l
= tan θ ∼= θ. (2.4)

The sign convention for shear stresses is given in Section 2.6. The area

of the surface that undergoes shear is

A ∼= π

(
D 1 + D 2

2

)
h.
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The average of the two diameters is taken because D2 is slightly larger

than D1.

A mechanical test commonly used to find shear stresses and strains

is the torsion test. The equations that give the shear stresses and

strains in terms of the torque are given in texts on the mechanics of

materials. Figure 2.4(c) shows a cylindrical specimen subjected to a

torque T. The relationship between the torque and the shear stresses

that are generated is given by3

τmax = T c

J
,

where c is the radius of the cylinder and J = πc4/2 is the polar

moment of inertia. Tubular specimens are preferred over solid cylin-

ders because the shear stress can be approximated as constant over

the cross section of the cylinder. For a hollow cylinder with b and c as

inner and outer radii, respectively, we subtract out (the hollow part

to obtain)

J = πc4

2
− πb4

2
.

For metals, ceramics, and certain polymers (the Hookean solids), the

proportionality between τ and γ is observed in the elastic regimen.

In analogy with Young’s modulus, a transverse elasticity, called, the

rigidity, or shear modulus, is defined as

G = τ

γ
. (2.5)

G, which is numerically less than E, is related to E by Poisson’s ratio,

discussed in Section 2.5. Values of G for different materials are given

in Table 2.5; it can be seen that G varies between one-third and one-

half of E.

Example 2.3

A cylindrical steel specimen (length = 200 mm, diameter = 5 mm), is

subjected to a torque equal to 40 N · m.

(a) What is the deflection of the specimen end, if one end is fixed?

(b) Will the specimen undergo plastic deformation?

Given:

E = 210 GPa,

v = 0.3,

σ y = 300 MPa (tensile yield stress).

3 See E. P. Popov, Engineering Mechanics of Solids (Englewood Cliffs, NJ: Prentice Hall,

1990).
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Solution:

(a) τmax = T · c

J
. (1)

Given

T = 40 N·m, c = d

2
= 2.5 mm.

To calculate τmax, we need to know J:

J = π
c4

2
. (2)

Substitute (2) into (1).

τmax = T · c

π
(

c4

2

) = 2T

πc3
= 2 · 40

π · (2.5)3
N·m
mm3

= 1630 MPa

= 1.63 GPa.

Shear stress and shear strain are related as

τ = G γ.

G can be calculated from E and ν.

G = E

2(1 + v )
= 210

2(1 + 0.3)
= 81 GPa,

γ = τmax

G
= 1.63

81
= 0.02.

But,

γ = cθ

L
,

where θ is the angle of rotation.

Torsional deflection = angle of rotation

= γ L

c

= 0.02 × 200

2.5
= 1.6 radians.

(b) τmax = 1.63 GPa.

The shear stress required to cause permanent deformation is related to

the yield stress as follows:

τy = σy

2
.

When the stress is σ y,

τy = 300

2
= 150 MPa.

But from (a), τmax = 1.63 GPa > 150 MPa. Therefore, the specimen will

undergo plastic deformation.
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Example 2.4

What is the strain energy density in a low-carbon steel sample loaded

to its elastic limit of 500 MPa?

Solution: Take E for a low-carbon steel to be 210 GPa. For such a

material under a stress σ , we have a strain energy density given by

U = 1

2

σ 2

E
= 1

2

(500 × 106)2

210 × 109

= 595 kJ/m3
.

2.5 Poisson’s Ratio

A body, upon being pulled in tension, tends to contract laterally. The

cube shown in Figure 2.5 exhibits this behavior. The stresses are now

defined in a tridimensional body, and they have two indices. The first

indicates the plane (or the normal to the plane) on which they are

acting; the second indicates the direction in which they are point-

ing. These stresses are schematically shown acting on three faces

of a unit cube in Figure 2.5(a). The normal stresses have two iden-

tical subscripts: σ 11, σ 22, σ 33. The shear stresses have two different

subscripts: σ 12, σ 13, σ 23. These subscripts refer to the reference system

Ox1x2x3. If this notation is used, both normal and shear stresses are

designated by the same letter, lower case sigma. On the other hand,

in more simplified cases where we are dealing with only one normal

and one shear stress component, σ and τ will be used, respectively;

this notation will be maintained throughout the text. In Figure 2.5,

the stress σ 33 generates strains ε11, ε22, ε33. (The same convention is

used for stresses and strains.) Since the initial dimensions of the cube

are equal to 1, the changes in length are equal to the strains. Poisson’s

ratio is defined as the ratio between the lateral and the longitudinal

strains. Both ε11 and ε22 are negative (signifying a decrease in length),

and ε33 is positive. In order for Poisson’s ratio to be positive, the neg-

ative sign is used. Hence,

v = − ε11

ε33

= −ε22

ε33

. (2.6)

In an isotropic material, ε11 is equal to ε22. We can calculate the value

of ν for two extreme cases: (1) when the volume remains constant and

(2) when there is no lateral contraction. When the volume is constant,

the initial and final volumes, V0 and V, respectively, are equal to

V0 = 1,

V = (1 + ε11) (1 + ε22) (1 + ε33).
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Fig. 2.5 (a) Unit cube in body

subjected to tridimensional stress;

only stresses on the three exposed

faces of the cube are shown. (b)

Unit cube being extended in

direction Ox3.

Neglecting the cross products of the strains, because they are orders

of magnitude smaller than the strains themselves, we have

V = 1 + ε11 + ε22 + ε33.

Since V = V0,

ε11 + ε22 + ε33 = 0.

For the isotropic case, the two lateral contractions are the same

(ε11 = ε22). Hence,

2ε11 = −ε33. (2.7)

Substituting Equation 2.7 into Equation 2.6, we arrive at

v = 0.5.
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For the case in which there is no lateral contraction, ν is equal to zero.

Poisson’s ratio for metals is usually around 0.3. (See Table 2.5.) The

values given in the table apply to the elastic regimen; in the plastic

regimen, ν increases to 0.5, since the volume remains constant during

plastic deformation.

Poisson’s ratio for cork (and other cellular materials) is about

0.2, which means that we can push cork into a glass bottle with-

out expanding the bottle. The student should try to do this with a

rubber stopper (v ∼ 0.5)!

It is possible to establish the maximum and minimum for Pois-

son’s ratio. We know that G and E are positive. This is a consequence

of the positiveness and definiteness of the strain energy function (a

subject that we will not treat here -- in simple words, the unloaded

state of the body is the lowest energy state).

In the equation below:

G = E

2(1 + υ)

we set:

E , G ≥ 0.

Thus:

G

E
= 1

2(1 + υ)
≥ 0

This leads to:

υ ≥ −1.

The lower bound for Poisson’s ratio is obtained by deforming a body

and assuming that its volume remains constant, as was done earlier

in this section. Thus:

0.5 ≥ υ ≥ −1.

2.6 More Complex States of Stress

The relationships between stress and strain described in sections 2.2

and 2.4 are unidimensional or uniaxial stress states, and do not apply

to bidimensional and tridimensional states of stress. The most gen-

eral state of stress can be represented by the unit cube of Figure 2.5(a).

The generalized Hooke’s law (as the set of equations relating tridimen-

sional stresses and strains is called) is derived next, for an isotropic

solid. It is assumed that shear stresses can generate only shear strains.

Thus, the longitudinal strains are produced exclusively by the normal

stresses. σ 11 generates the following strain:

ε11 = σ11

E
. (2.8)
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Since v = −ε22/ε11 = −ε33/ε11 for stress σ 11, we also have

ε22 = ε33 = −vσ11

E
.

The stress σ 22, in its turn, generates the following strains:

ε22 = σ22

E
and ε11 = ε33 = −vσ22

E
. (2.9)

For σ 33,

ε33 = σ33

E
and ε11 = ε22 = −vσ33

E
. (2.10)

In this treatment, the shear stresses generate only shear strains:

γ12 = σ12

G
, γ13 = σ13

G
, γ23 = σ23

G
.

The second simplifying assumption is called the ‘‘principle of super-

position.” The total strain in one direction is considered to be equal

to the sum of the strains generated by the various stresses along

that direction. Hence, the total ε11 is the sum of ε11 produced by

σ 11, σ 22, and σ 33. Adding strains from Equations 2.8 through 2.10, we

obtain the generalized Hooke’s law:

ε11 = 1

E
[σ11 − v (σ22 + σ33)].

ε22 = 1

E
[σ22 − v (σ11 + σ33)].

ε33 = 1

E
[σ33 − v (σ11 + σ22)].

γ12 = σ12

G
, γ13 = σ13

G
, γ23 = σ23

G
.

(2.11)

Applying these equations to a hydrostatic stress situation

(σ 11 = σ 22 = σ 33 = −p), we can see perfectly that there are no

distortions in the cube (γ 12 = γ 13 = γ 23 = 0) and that ε11 = ε22 = ε33.

The triaxial state of stress is difficult to treat in elasticity (and even

more difficult in plasticity). In the great majority of cases, we try to

assume a more simplified state of stress that resembles the tridimen-

sional stress. This is often justified by the geometry of the body and

by the loading configuration. The example discussed in Section 2.2 is

the simplest state (uniaxial stress). It occurs when beams are axially

loaded (in tension or compression). In sheets and plates (where one

dimension can be neglected with respect to the other two), the state of

stress can be assumed to be bidimensional. This state of stress is also

known as plane stress, because normal stresses (normal to the surface)

are zero at the surface, as are shear stresses (parallel to the surface)

at the surface. In Figure 2.5(a), one would be left with σ 11, σ 12, σ 22

if Ox1x2 were the plane of the sheet. Since the sheet is thin, there is

no space for buildup of the stresses that are zero at the surface. The
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solution to this problem is approached graphically in Section 2.7. The

opposite case, in which one of the dimensions is infinite with respect

to the other two, is treated under the assumption of plane strain.

If one dimension is infinite, strain in it is constrained; hence, one

has two dimensions left. This state is called bidimensional or, more

commonly, plane strain. It also occurs when strain is constrained in

one direction by some other means. A long dam is an example in

which deformation in the direction of the dam is constrained. Yet

another state of stress is pure shear, when there are no normal

stresses.

Example 2.5

Consider a plate under uniaxial tension that is prevented from con-

tracting in the transverse direction. Find the effective modulus along

the loading direction under this condition of plane strain.

Solution: Take

E = Young’s modulus, v = Poisson’s ratio

Let the loading and transverse directions be 1 and 2, respectively. There

is no stress normal to the free surface, i.e., σ 3 = 0. Although the applied

stress is uniaxial, the constraint on contraction in direction 2 results in

a stress in that direction also. The strain in direction 2 can be written

in terms of Hooke’s law as

ε2 = 0 = (1/E )[σ2 − vσ1].

Thus, σ 2 = vσ 1.

In direction 1, we can write, for the strain,

ε11 = (1/E )[σ1 − vσ2] = (1/E )[σ1 − v2σ1]

= (σ1/E )(1 − v2).

Hence, the plane strain modulus in direction 1 is

E ′ = (σ1/ε1) = E /(1 − v2).

If we take v = 0.33, then the plane strain modulus E ′ = 1.12E.

Example 2.6

An isotropic, linear, elastic material is compressed by a force P by means

of a punch in a rigid die. The material has a Young’s modulus E and

a Poisson’s ratio ν. The displacement of the material is �, and the

cavity has a height h and a square base of side a. (See Figure E2.6.)
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Determine the stress and strain components. Also, determine the rela-

tionship between P and the displacement � of the material.

Punch

P

a

h

D

z

y

x

Fig. E2.6

Solution: This is a three-dimensional problem. There are no shear

strains, and the only nonzero normal strain component is εz, the strain

in the z-direction. The normal strains in the x- and y-directions are zero,

because the rigid die does not allow deformation in these directions.

However, the stress components in these directions are not zero. We

use the generalized Hooke’s law to obtain the three stress components.

We can write, for the strain components,

εz = −�/h, εx = εy = εxy = εyz = εzx = 0.

Now we can write the following constitutive relationships by inverting

Equation 2.11) and using x, y, and z instead of 1, 2, and 3:

σx = E /[(1 + v ) (1 − 2v )][(1 − v )εx + v (εy + εz)]

= E /[(1 + v ) (1 − 2v )] · [0 + v (−�/h)],

or

σx = −[E v/(1 + v )(1 − 2v )][�/h].

Similarly,

σy = E /[(1 + v )(1 − 2v )][(1 − v )εy + v (εx + εz)]

= E /[(1 + v )(1 − 2v )] · [0 + v (−�/h)],

or

σy = −E v/[(1 + v )(1 − 2v )][�/h].

Finally,

σz = E /[(1 + v )(1 − 2v )][(1 − v )εz + v (εy + εx )]

= E /[(1 + v )(1 − 2v )] · [1 − v (−�/h) + 0],

or

σz = −E (1 − v )/[(1 + v )(1 − 2v )][�/h].
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The load--displacement relationship is obtained by writing

P = σza
2,

σz = P /a2 = −E (1 − v )/[(1 + v )(1 − 2v )][�/h],

or

P = −E a2(1 − v )(�/h)/[(1 + v )(1 − 2v )].

Note the linear relationship between P and �, is as it should be because

the material in the cavity is linear elastic.

2.7 Graphical Solution of a Biaxial State of Stress:
the Mohr Circle

There are two common graphical methods to obtain the stresses in a

general orientation from σ 11, σ 12, and σ 22. These methods are simi-

lar and are a graphical representation of the equations below, that

can be found in any mechanics of materials text:

σ ′
11 = σ11 + σ22

2
+ σ11 − σ22

2
cos 2θ + σ12 sin 2θ,

σ ′
12 = −σ11 − σ22

2
sin 2θ + σ12 cos 2θ

The angle θ can be eliminated from the two equations above, leading

to a quadratic equation that represents a circle. We present below

two graphical methods to obtain the values of normal and shear

stresses in any orientation, as well as the maximum normal and shear

stresses.

Figure 2.6(a) shows a biaxial (or bidimensional) state of stress. The

graphical scheme developed by O. Mohr allows the determination of

the normal and shear stresses in any orientation in the plane. The

reader should be warned, right at the onset, that a change in sign con-

vention for the shear stresses has to be introduced here. The former

sign convention -- positive shear stresses pointing toward the positive

direction of axes in faces shown in Figure 2.5(a) -- has to be temporar-

ily abandoned and the following convention adopted: Positive shear

stresses produce counterclockwise rotation of a cube (or square), and

negative shear stresses produce clockwise rotation. The sign conven-

tion for normal stresses remains the same. Figure 2.6(b) shows Mohr’s

construction. The normal stresses are plotted on the abcissa, while

the shear stresses are plotted on the ordinate axis. Point A in the

diagram corresponds to a state of stress on the face of the cube per-

pendicular to Ox1; point B represents the state of stress on the face

perpendicular to Ox2. From A and B, we construct a circle with center

in the axis of the abcissa and passing through A and B. The center

is the point where the segment AB intersects the abcissa. Note that

the center occurs at (σ 11 + σ 22)/2. The stress states for all orientations

of the cube (in the same plane) correspond to points diametrically
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opposed in Mohr’s circle. Hence, we can determine the state of stress

for any orientation.

Method I is as follows: Point A (the stress system on the right-hand

of the cube face) is called the ‘‘origin of planes.” We will always start

from it on the Mohr circle. We solve two problems.

First, we determine the stresses on a general coordinate direction

Ox ′
1, Ox ′

2. This is shown in Figure 2.6(b). Lines are drawn through A

(the origin of planes) parallel to Ox ′
1 and Ox ′

2. We seek the intersec-

tion of the axes with the circle. We draw lines perpendicular to the

normal stress axis and find the new intersection. Thus, (σ ′
11, τ ′

12) rep-

resents stresses on the face perpendicular to Ox ′
1, and (σ ′

22, τ ′
12) repre-

sents stresses on face perpendicular to Ox ′
2. These stresses are drawn in

Figure 2.6(b). Remember that the clockwise--counterclockwise conven-

tion has to be used and that shear stresses are such that the summa-

tion of moments is zero.

Now we determine the maximum normal stresses (principal

stresses) and maximum shear stresses. From point A (the origin of

planes), we draw lines to the points corresponding to the maximum

and minimum principal stresses (Figure 2.6(c)). Notice that these

planes make an angle of 90◦. Since we are on a normal stress axis,

the intersection of the perpendicular to this axis corresponds to the

initial point. We draw a square and place the stresses (σ 1, σ 2) on the

square. This represents the orientation and values of the principal

stresses. For the maximum shear stresses, we repeat the procedure

(τmax = (σ 1 − σ 2)/2). At points of intersection, (Figure 2.6(c)), we go to

the opposite intersection with respect to the normal stress axis) and

obtain the values. We draw these on the square, with the conven-

tion that clockwise is positive. This represents the maximum shear

stress value and orientation. Note that the normal stresses for this

orientation (and the one 90◦ from it) are nonzero. Note also that

τmax occurs in orientations that make 45◦ with the principal stress

orientations.

In Method II the sign convention for the shear stresses is the

same: clockwise positive, counterclockwise negative. Again, the nor-

mal stresses are plotted in the abscissa and the shear stresses in the

ordinate. Point A in the diagram corresponds to a state of stress on

the face of the cube perpendicular to Ox1: point B represents the state

of stress on the face perpendicular to Ox2. From A and B we construct

a circle with center in the axis of the abscissa and passing through

A and B. The center is the point where the segment AB intersects

the abscissa. The stress states for all orientations of the square (in the

same plane) correspond to points diametrically opposed in Mohr’s cir-

cle. Hence we can determine the state of stress for any orientation.

The rotations in the square (real rotations) and in Mohr’s circle have

the same sense: however a rotation of θ in the square corresponds

to 2θ in Mohr’s circle. For instance, a rotation of 2θ in the counter-

clockwise direction leads to a state of stress defined by C and D in

Mohr’s circle. The shear stresses are zero for this orientation and the
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Fig. 2.7 (a) Biaxial (or

bidimensional) state of stress: (b)

Mohr circle construction (Method

II).

normal stresses are called principal stresses. One subscript is sufficient

to designate the stresses in these special orientations: σ 1, σ 2, σ 3. We

use the convention σ 1 > σ 2 > σ 3. In Figure 2.7(a) a rotation of only

θ was done in the same counterclockwise sense, leading to the same

principal stresses. The orientations Ox1 and Ox2 are called principal

axes (or directions). The curious reader should consult a mechanics of

materials text, such as E. P. Popov, Engineering of Solids (Upper Saddle

River, NJ: Prentice Hall, 1999).

Example 2.7

Elisabeth S., a bright, but somewhat nerdy, graduate student, went ski-

ing in her brand-new boots. She had an unfortunate mishap on the

slopes, and her right ski twisted beyond the strength of her femur,

resulting in a fracture. The doctor took some X-rays and informed Elisa-

beth that she had a ‘‘spiral fracture.” This triggered a spirited dialogue

between Elisabeth and the doctor. Elisabeth claims that her fracture

(‘‘peeking” through the ruptured skin) is helical. With whom do you

agree? Why? Show, using your knowledge of engineering, what is the
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maximum torque? The tensile strength of bone is 80 MPa and the diam-

eter of the femur is 25 mm.

Fig. E2.7

The Mohr circle construction (see Figure E2.7) shows that the torsion

T applied to the bone leads to a state of simple shear in the cross section.

If the material were ductile, the failure plane would be the plane of

maximum shear. Since bone is brittle, however, failure will occur along

the surface where the tensile stresses are maximum. This surface is at

angle of 45◦ with the cross-sectional plane. Thus, the fracture is helical,

and not spiral. (Students should repeat this analysis by using a piece of

chalk and subjecting it to torsion.) The maximum torque that the bone

will withstand is

T = τ J

r
,

where J is the polar moment on inertia. (The student should consult a

text on the mechanics of materials). Now, since τmax = σ 1max, it follows
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that τmax = 80 MPa. Also,

J = πd4

32
.

Thus,

T = τmaxπd3

16
= 245 N·m.

The weight of a normal person is 750 N. Here is a ski tip, then: A

distance of 1 meter from the axis of the leg can easily generate a torque

of sufficient magnitude for a helical bone fracture to occur. Skiers,

beware!

Example 2.8

A state of stress is given by

σ11 = 350 MPa,

σ12 = 70 MPa,

σ22 = 210 MPa.

Determine the principal stresses, the maximum shear stress, and their

angle with the given direction by the Mohr circle.

Solution: Figure E2.8 shows the desired quantities.

Fig. E2.8
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Fig. 2.8 Pure shear.

2.8 Pure Shear: Relationship between G and E

There is a special case of bidimensional stress in which σ 22 = −σ 11.

This state of stress is represented in Figure 2.8(a). It can be seen that

σ 12 = 0, implying that σ 11 and σ 22 are principal stresses. Hence, we can

use the special subscripts for principal stresses and write σ 2 = −σ 1.

In Mohr’s circle of Figure 2.8(b), the center coincides with the origin

of the axes. We can see that a rotation of 90◦ (on the circle) leads to a

state of stress in which the normal stresses are zero. This rotation is

equivalent to a 45◦ rotation in the body (real space). The magnitude of

the shear stress at this orientation is equal to the radius of the circle.

Hence, the square shown in Figure 2.8(c) is deformed to a lozenge

under the combined effect of the shear stresses. Such a state of stress

is called pure shear.

It is possible, from this particular case, to obtain a relationship

between G and E; furthermore, the relationship has a general nature.

The strain ε11 is, for this case,

ε11 = 1

E
(σ1 − vσ2) = σ1

E
(1 + v ) . (2.12)

We have, for the shear stresses (using the normal, and not the Mohr,

sign convention),

τ = −σ1. (2.13)

But we also have,

τ = G γ. (2.14)
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Substituting Equations 2.13 and 2.14 into Equation 2.12 yields

ε11 = −G γ

E
(1 + v ) .

It is possible, by means of geometrical considerations on the triangle

ABC in Fig. 2.8(c), to show that

2ε11 = −γ.

The reader should do this, as an exercise. Hence,

G = E

2 (1 + v )
.

Consequently, G is related to E by means of Poisson’s ratio. This theor-

etical relationship between E and G is in good agreement with exper-

imental results. For a typical metal having ν = 0.3, we have G = E/2.6.

The maximum value of G is E/2.

The state of simple shear should not be confused with pure shear;

simple shear involves an additional rotation, so that two faces remain

parallel after deformation.

2.9 Anisotropic Effects

Figure 2.5 shows that a general stress system acting on a unit cube

has nine components and is a symmetrical tensor. (The off-diagonal

components are equal, i.e., σ 13 = σ 31, σ 12 = σ 21, and σ 23 = σ 32.) We can

therefore write⎛
⎝ σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎞
⎠ =

⎛
⎝ σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ .

When the unit cube in Figure 2.5 is rotated, the stress state at that

point does not change; however, the components of the stress change.

The same applies to strains. A general state of strain is described by⎛
⎝ ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎞
⎠ =

⎛
⎝ ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

⎞
⎠ .

We can also use a matrix notation for stresses and strains, replacing

the indices by the following:

11 → 1 12 → 5

22 → 2 13 → 5

33 → 3 12 → 6⎛
⎜⎜⎜⎜⎝

11 12 → 13 1 6 ← 5
↘ ↑ ↘ ↑

22 23 = 2 4
↘ ↑ ↘ ↑

33 3

⎞
⎟⎟⎟⎟⎠



2 .9 ANISOTROPIC EFFECTS 97

We now have the stress and strain, in general form, as⎛
⎝σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

⎞
⎠ and

⎛
⎝ ε1 ε6/2 ε5/2

ε6/2 ε2 ε4/2

ε5/2 ε4/2 ε3

⎞
⎠ .

It should be noted that ε1 = ε11, ε2 = ε22, and ε3 = ε33, but

ε4 = 2ε23 = γ23,

ε5 = 2ε13 = γ13,

ε6 = 2ε12 = γ12.

These differences in notation are important to preserve the equations

(see shortly) that relate stresses to strains.

The foregoing transformation is easy to remember: One proceeds

first along the diagonal (1→2→3) and then back (4→5→6). It is now

possible to correlate the stresses and strains for a general case, in

which the elastic properties of a material are dependent on its orien-

tation. We use two elastic constants: C (stiffness) and S (compliance),

or

C → Stiffness

S → Compliance.

Symbols are inverted to render treatment more confusing!

We have⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ1

σ2

σ3

σ4

σ5

σ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C 11 C 12 C 13 C 14 C 15 C 16

C 21 C 22 C 23 C 24 C 25 C 26

C 31 C 32 C 33 C 34 C 35 C 36

C 41 C 42 C 43 C 44 C 45 C 46

C 51 C 52 C 53 C 54 C 55 C 56

C 61 C 62 C 63 C 64 C 65 C 66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ε1

ε2

ε3

ε4

ε5

ε6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

In short notation, noting that repeated indices in one term imply

summation, we have:

σi = C i jε j ,

εi = Si jσ j .

The elastic stiffness and compliance matrices are symmetric, and the

36 components (6 × 6) are reduced to 21. We now apply this general

expression to crystals having different structures and, therefore, dif-

ferent symmetries to obtain successive simplifications. In the isotropic

case, the elastic constants are reduced from 21 to 2.

The different crystal systems can be characterized exclusively by

their symmetries. The proof of this is beyond the scope of the book;

however, it is sufficient to say that the cubic system can be perfectly

described by four threefold rotations. The seven crystalline systems

can be perfectly described by their axes of rotation.

Table 2.1 presents the different symmetry operations defining the

seven crystal systems. For example, a threefold rotation is a rota-

tion of 120◦ (3 × 120◦ = 360◦); after 120◦, the crystal system comes

to a position identical to the initial one. The hexagonal system
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Table 2.1 Minimum Number of Symmetry Operations in

Various Systems

System Rotation

Triclinic None (or center of symmetry)
Monoclinic 1 twofold rotation
Orthorhombic 2 perpendicular twofold rotations
Tetragonal 1 fourfold rotation around [001]
Rhombohedral 1 threefold rotation around [111]
Hexagonal 1 sixfold rotation around [0001]
Cubic 4 threefold rotations around <111>

exhibits a sixfold rotation around the c axis; after each 60◦, the struc-

ture superimposes upon itself. In terms of a matrix, we have the

following:

Orthorhombic Tetragonal⎡
⎢⎢⎢⎢⎢⎢⎢⎣

11 12 13 0 0 0

. 22 23 0 0 0

. . 33 0 0 0

. . . 44 0 0

. . . . 55 0

. . . . . 66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

11 12 13 0 0 16

. 11 13 0 0 −16

. . 33 0 0 0

. . . 44 0 0

. . . . 44 0

. . . . . 66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Hexagonal⎡
⎢⎢⎢⎢⎢⎢⎢⎣

11 12 13 0 0 0

11 13 0 0 0

33 0 0 0

44 0 0

44 0

x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where

x → 2 (S11 − S12) ,

x → 1

2
(C 11 − C 12) .

or

Laminated composites made by the consolidation of prepregged

sheets, with individual plies having different fiber orientations,

have orthotropic symmetry with nine independent elastic constants.

Orthotropic symmetry is analogous to orthorhombic symmetry: there

are three mutually perpendicular axes of symmetry, and the elastic

constants along these three axes are different. For the Cubic system,

the elastic matrix is the following configuration:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

11 12 12 0 0 0

. 11 12 0 0 0

. . 11 0 0 0

. . . 44 0 0

. . . . 44 0

. . . . . 44

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The number of independent elastic constants in a cubic system is

three.
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For isotropic materials (most polycrystalline aggregates can be

treated as such):

C 44 = C 11 − C 12

2
. (2.15)

The stiffness matrix is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C 11 C 12 C 12 0 0 0

. C 11 C 12 0 0 0

. . C 11 0 0 0

. . .
C 11 − C 12

2
0 0

. . . .
C 11 − C 12

2
0

. . . . .
C 11 − C 12

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.16)

For anisotropic systems, Equation 2.15 does not apply, and we define

an anisotropy ratio (also called the Zener anisotropy ratio, in honor

of the scientist who introduced it):

A = 2C 44

C 11 − C 12


= 1. (2.17)

Some metals have high anisotropy ratios, whereas others, such as

aluminum and tungsten, have values of A very close to 1. For the

latter, even single crystals are almost isotropic.

For the elastic compliances, we have, for the isotropic case:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 S12 0 0 0

. S11 S12 0 0 0

. . S11 0 0 0

. . . 2 (S11 − S12) 0 0

. . . . 2 (S11 − S12) 0

. . . . . 2 (S11 − S12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2.18)

Hence, for the cubic system, the 81 components of the elastic con-

stants have been reduced to three independent ones while for the

isotropic case, only two independent elastic constants are needed.

However, it is not under this form that the elastic constants are usu-

ally known.

Table 2.2 gives the various equations interrelating the foregoing

parameters.

The relationships between stresses and strains for isotropic mater-

ials become

ε1 = S11σ1 + S12σ2 + S12σ3 = 1

E
[σ1 − v (σ2 + σ3)] ,

ε2 = S12σ1 + S11σ2 + S12σ3 = 1

E
[σ2 − v (σ1 + σ3)] ,

ε3 = S12σ1 + S12σ2 + S11σ3 = 1

E
[σ3 − v (σ1 + σ2)] ,
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Table 2.2 Relations among the Elastic Constants for Isotropic Materials

In Terms of:

Elastic
Constants E, ν E, G K. ν K, G λ, μ

E = E = E = 3(1–2v)K = 9K

1 + 3K /G
=μ(3 + 2μ/λ)

1 + μ/λ

ν = ν = − 1 + E

2G
= ν =1 − 2G /3K

2 + 2G /3K
= 1

2(1 + μ/λ)

G = E

2(1 + ν)
= G =3(1 − 2ν)K

2(1 + ν)
= G = μ

K = E

3(1 − 2ν)
= E

9 − 3E /G
= K = K =λ + 2μ

3

λ = E ν

(1 + ν)(1 − 2ν)
= E (1 − 2G /E )

3 − E /G
= 3K ν

1 + ν
=K − 2G

3
= λ

μ = E

2(1 + ν)
= G =3(1 − 2ν)K

2(1 + ν)
= G = μ

ε4 = 2 (S11 − S12) σ4 = 1

G
σ4,

ε5 = 2 (S11 − S12) σ5 = 1

G
σ5,

ε6 = 2 (S11 − S12) σ6 = 1

G
σ6.

Expressing the strains as function of the stresses, we have

σ1 = C 11ε1 + C 12ε2 + C 12ε3 = (2μ + λ) ε1 + λε2 + λε3,

σ2 = C 12ε1 + C 11ε2 + C 12ε3 = λε1 + (2μ + λ) ε2 + λε3,

σ3 = C 12ε1 + C 12ε2 + C 11ε3 = λε1 + λε2 + (2μ + λ) λε3,

σ4 = 1

2
(C 11 − C 12) ε4 = με4,

σ5 = 1

2
(C 11 − C 12) ε5 = με5,

σ6 = 1

2
(C 11 − C 12) ε6 = με6.

Note that μ = G.
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The elastic compliance matrix for isotropic materials is directly

obtained from the generalized Hooke law:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1

ε2

ε3

ε4

ε5

ε6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/E −ν/E −ν/E 0 0 0

1/E −ν/E 0 0 0

1/E 0 0 0

1/G 0 0

1/G 0

1/G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1

σ2

σ3

σ4

σ5

σ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The elastic stiffness matrix is obtained in a similar manner:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1

σ2

σ3

σ4

σ5

σ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2μ + λ λ λ 0 0 0

2μ + λ λ 0 0 0

2μ + λ 0 0 0

μ 0 0

μ 0

μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1

ε2

ε3

ε4

ε5

ε6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From the product of these two matrices (= I ) we can obtain some of

the relations in Table 2.2.

By comparing the terms of the elastic compliance and stiffness

matrices for isotropic materials with the matrices in Equations 2.16

and 2.17, one can obtain the following relationships: Young’s

modulus:

E = 1

S11

. (2.19)

Rigidity or shear modulus:

G = 1

2 (S11 − S12)
.

Compressibility (B) and bulk modulus (K):

B = 1

K
= ε11 + ε22 + ε33

− 1
3

(σ11 + σ22 + σ33)
.

Poisson’s ratio:

ν = − S12

S11

.

Lamé’s constants:

μ = C 44 = 1

2
(C 11 − C 12) = 1

S44

= G ,

λ = C 12.

A great number of materials can be treated as isotropic, although

they are not microscopically so. The individual grains exhibit the
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crystalline anisotropy and symmetry, but when they form a polycrys-

talline aggregate and are randomly oriented, the material is macro-

scopically isotropic (i.e., the elastic constants are the same in all

directions). Often, a material is not completely isotropic; if the elas-

tic modulus E is different along three perpendicular directions, the

material is orthotropic; composites are a typical case.

In a cubic material, the elastic moduli can be determined along

any orientation, from the elastic constants, by application of the fol-

lowing equation:

1

E i jk

= S11 − 2

(
S11 − S12 − 1

2
S44

)

× (
�2

i1�
2
j2 + �2

j2�
2
k3 + �2

i1�
2
k3

)
, (2.20)

where Eijk is the Young’s modulus, respectively, in the [ijk] direction;

li1, lj2, and lk3 are the direction cosines of the direction [ijk].

The expression for the shear modulus is a little more complicated

than that for Young’s modulus, because it involves a direction of

shear and a plane of shear. The Young’s modulus, on the other hand,

involves only a direction (the direction of extension or compression).

The plane normal is the same as the direction. The shear modulus

on the cube face planes {100} is equal to:

G0 = 1

S44

.

This shear modulus is the same, for any direction in these planes. In

the {111} planes, on the other hand, the shear modulus varies with

direction. For shear along [110], it is equal to:

G1 = 3

S44 + 4(S11 − S12)
.

For isotropic materials,

S44 = 2(S11 − S12)

and

G = 1/S44

for all orientations. For example, for copper S11 = 1.498, S12 = −0.629,

S44 = 1.329 (×10−2 GPa−1); G0 = 75.4 GPa, G1 = 30 GPa.

Figure 2.9(a) illustrates the dependence on orientation of elastic

Young’s modulus for copper. The [100], [010], and [001] directions are

‘‘softer,” whereas the [111], [11̄1], and [111̄] directions are stiffer. For

cubic zirconia (Figure 2.9(b)), the opposite occurs: The coordinate axes

correspond to the stiff directions. These diagrams illustrate very well

the importance of anisotropy of elastic properties. For a cubic material

that has the same Young’s modulus along all directions (an isotropic

material), we have the relationship

2 (S11 − S12) = S44. (2.21)



2 .9 ANISOTROPIC EFFECTS 103

[001] [001]

[100] [010] [100] [010]

(a) (b)

[0001]

(c)

[0100][1000]

Fig. 2.9 Dependence on

orientation of Young’s modulus for

monocrystalline (a) copper; (b)

cubic zirconia. (Courtesy of R.

Ingel.) (c) Tridimension polar plot

for zirconium. (Courtesy of J. M.

Gebert.)

The tridimensional picture in Figure 2.9(c) shows anisotropy of

Young’s modulus in the hexagonal structure in a clearer fashion.

This corresponds to zirconium. The isotropy of E in the basal plane

is responsible for the ‘‘flying saucer” aspect of the polar plot.

For hexagonal crystals, the Young’s modulus is isotropic in the

basal plane, but varies if one moves toward the c axis. The Young’s

modulus is given by:

1

E
= (

1 − l2
3

)
S11 + l4

3 S33 + l2
3

(
1 − l2

3

)
(2S13 + S44),

where �3 is the cosine of the angle with the basal plane. Figure 2.10

shows the variation of E with orientation for SiC. It is constant and

equal to 400 GPa in the basal plane. (Fig. 2.10(a)). In the c direction,

it rises to 465 GPa (Figure 2.10(b)).
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Fig. 2.10 Variation of effective E

for silicon carbide as a function of

orientation; (a) basal plane; (b)

perpendicular to basal plane.

(From C. J. Shih, M. A. Meyers, V. F.

Nesterenko and S. J. Chen, Acta

Mater., 48 (2000) 2399.)

In Section 2.5 we defined the Poisson’s ratio for isotropic mater-

ials. In anisotropic materials, we define Poisson’s ratio in a similar

manner. It is the magnitude of the ratio between the lateral and lon-

gitudinal strain (the direction along which the stress is applied). In

the anisotropic case, the Poisson’s ratio will depend on orientation

and for each loading direction we have more than one Poisson’s ratio.

It is quite rare to find materials with negative Poisson’s ratios. This

did not deter Lubarda and Meyers4 from finding one. Monocrystalline

zinc, an HCP metal, has a negative Poisson’s ratio in a certain orien-

tation. In anisotropic materials, Poisson’s ratio varies (as do all elastic

constants) with orientation. We define θ as the angle with the basal

plane. Figure 2.11 shows the variation of ν�n (there is another Pois-

son’s ratio in this case: νmn) with θ . For θ less than 18◦, it is negative.

It should be noted that for most HCP metals this negative regimen

does not exist.

4 V. A. Lubarda and M. A. Meyers, Scripta Mater., 40 (1999) 975.
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Fig. 2.11 Variation in Poisson’s

ratio ν1n in direction 1 due to

stress applied along direction n,

making an angle θ with the basal

plane of the zinc (HCP) crystal.

Example 2.9

A hydrostatic compressive stress applied to a material with cubic sym-

metry results in a dilation of −10−5. The three independent elastic con-

stants of the material are C11 = 50 GPa, C12 = 40 GPa, and C44 = 32 GPa.

Write an expression for the generalized Hooke’s law for this material,

and compute the applied hydrostatic stress.

Solution: Dilation is the sum of the principal strain components:

ε = ε1 + ε2 + ε3 = −10−5.

Cubic symmetry implies that

ε1 = ε2 = ε3 = −3.33 × 10−6

and

ε4 = ε5 = ε6 = 0.

From Hooke’s law,

σi = C i jε j

and

σ1 = C 11ε1 + C 12ε2 + C 13ε3.

The applied hydrostatic stress is (see p. 98)

σp = σ1 = (50 + 40 + 40) (−3.33) 103 Pa

= −130 × 3.33 × 103 Pa

= −433 kPa.
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Example 2.10

From the elastic stiffnesses for a cubic material, Nb (C11 = 242 GPa;

C12 = 129 GPa; C44 = 286 GPa), find the elastic compliances.

The relationship between stiffnesses and compliances is given by

the product of their two matrices, which is an identity matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S11 S12 . . . . . . S16

S21 S22 . . . . . . S26

...

...

S61 S62 . . . . . . S66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C 11 C 12 . . . . . . C 16

C 21 C 22 . . . . . . C 26

...

...

C 61 C 62 . . . . . . C 66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (I ) .

For materials with cubic symmetry,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S11 S12 S12 0 0 0

S12 S11 S12 0 0 0

S12 S12 S11 0 0 0

0 0 0 S44 0 0

0 0 0 0 S44 0

0 0 0 0 0 S44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C 11 C 12 C 12 0 0 0

C 12 C 11 C 12 0 0 0

C 12 C 12 C 11 0 0 0

0 0 0 C 44 0 0

0 0 0 0 C 44 0

0 0 0 0 0 C 44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (I ) .

All the off-diagonal terms of the identity matrix are zero. The diagonal

terms are equal to 1.

Row 1 and column 1 give

S11C 11 + S12C 12 + S12C 12 = 1. (1)

From row 6 and column 6, we have

S44C 44 = 1.

Therefore,

S44 = 1

C 44

.

Row 1 and column 2 yield

S11C 12 + S12C 11 + S12C 12 = 0. (2)

From equations 1 and 2, we get, for row 1 and column 1,

S12 = −C 12

C 2
11 + C 11C 12 − 2C 2

12

= −C 12

(C 11 + 2C 12) (C 11 − C 12)
. (3)

Substituting Equation 3 into Equation 1 yields

S11 = 1

C 11

+ 2C 2
12

C 11 (C 11 + 2C 12) (C 11 − C 12)
= C 11 + C 12

(C 11 + 2C 12) (C 11 − C 12)
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Thus,

S44 = 3.5 × 10−3 GPa−1,

S12 = −0.22 × 10−2 GPa−1,

S11 = 0.66 × 10−2 GPa−1.

These values are fairly close to the values given in Table 2.4 (p. 112).

2.10 Elastic Properties of Polycrystals

The elastic constants of materials are determined by the bonding

between the individual atoms. While monocrystals have the elastic

properties dictated by the crystalline symmetry, most metals and

ceramics are polycrystalline. In polycrystals, the properties are deter-

mined from the individual grains by an averaging process.

In a polycrystalline aggregate, the deformation of one grain is not

independent of the deformation of its neighbor. The compatibility

requirements are such that we have to apply either one of two sim-

plifying assumptions:

1. The local strain is equal to the mean strain (all grains undergo the

same strain); this is called the Voigt average. The Young’s modulus

and shear moduli can then be obtained from:

E =
∑

E i Vi and G =
∑

G i Vi ,

where Ei, Gi and Vi represent the Young’s modulus, shear modulus,

and volume fraction, respectively, of grains of different orienta-

tions. One possible form attributed to Hill5 is:

E = 1

5
(3F + 2G ∗ + H )

G = 1

5
(F + 4G ∗ − 2H )

where

F = 1

2
(C 11 + C 22 + C 33) ,

G ∗ = 1

3
(C 12 + C 23 + C 13) ,

H = 1

3
(C 44 + C 55 + C 66) .

We use G* instead of G to avoid confusion with shear modulus,

G.

2. The local stress is equal to the mean stress (all grains are under the

same stress); this is called the Reuss average: 1
E

= ∑ Vi

E i
. This provides

5 R. Hill, Proc. Phys. Soc., A65 (1952) 349.
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a lower bound. The inverse of the Young’s modulus is then

1

E
= 1

5

(
3F ′ + 2G ′ + H ′)

where: F ′ = 1

3
(S11 + S22 + S33) ,

G ′ = 1

3
(S12 + S23 + S13) ,

H ′ = 1

3
(S44 + S55 + S66) .

The actual stress and strain configuration is probably between the

two assumptions. There are more advanced methods, such as the

Hashin--Shtrikman upper and lower bound method; however, this

will not be treated here. The above equation assumes a distribution

of orientation of grains within the polycrystalline aggregate.

Example 2.11

Determine the Young’s moduli along [100], [110], and [111] for copper,

tungsten, and ZrO2. We use Equation 2.20:

1

E i jk

= S11 − 2

(
S11 − S12 − 1

2
S44

)
× (

l2
i1l2

j2 + l2
j2l2

k3 + l2
il l

2
k3

)
.

The direction cosines are as follows:

li1 l j2 lk3

(
l2
i1l2

j2 + l2
j2l2

k3 + l2
i1l2

k3

)
.

[100] 1 0 0 0

[110]
√

2/2
√

2/2 0 1/4

[111] 1/
√

3 1/
√

3 1/
√

3 1/3

The compliances for Cu and W are given in later in this chapter Table

2.4; Table 2.6 provides the stiffnesses for cubic ZrO2. We have:

W Cu

S11 = 0.257 × 10−2 GPa−1 S11 = 1.498 × 10−2 GPa−1

S44 = 0.66 × 10−2 GPa−1 S44 = 1.326 × 10−2 GPa−1

S12 = −0.073 × 10−2 GPa−1 S12 = −0.629 × 10−2 GPa−1

This yields

Cu : E 100 = 66 GPa, E 110 = 130 GPa, E 111 = 191 GPa,

W : E 100 = E 110 = E 111 = 389 GPa.

For ZrO2, we have to use the equations derived in Example 2.10 to obtain

the elastic compliances:

C 11 = 410 GPa, C 12 = 110 GPa, C 44 = 60 GPa,

S44 = 1

C 44

= 1.6 × 10−2 GPa−1,

S12 = −C 12

(C 11 + 2C 12) (C 11 − C 12)
= −0.058 × 10−2 GPa−1,
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S11 = 1

C 11

+ C 2
12

C 11 (C 11 + 2C 12) (C 11 − C 12)
= 0.275 × 10−2 GPa−1.

These yield

E 100 = 363.5 GPa

E 110 = 196.7 GPa,

E 111 = 171 GPa.

Example 2.12

Determine the elastic anisotropy ratios of Ag, Al, Cu, Ni, Fe, Ta, and W.

Which one of these metals has the greatest dependence on orientation

for Young’s modulus? Which one has the smallest?

Solution: First, we have

A = 2C 44

C 11 − C 12

.

From Table 2.3 (later on), we obtain the following results:

Ag : A = 46.1 × 2

124 − 93.4
= 3.01.

Al : A = 28.5 × 2

108.2 − 61.3
= 1.22.

Cu : A = 75.4 × 2

168.4 − 121.4
= 3.21.

Ni : A = 124.7 × 2

246.5 − 147.3
= 2.51.

Fe : A = 116.5 × 2

228 − 132
= 2.43.

Ta : A = 82.5 × 2

267 − 161
= 1.56.

W : A = 151.4 × 2

501.0 − 198
= 1.00.

Copper has the highest and W the lowest anisotropy ratio. Elastic

properties should therefore be most orientation-dependent for Cu and

orientation-independent for W.

Example 2.13

Determine the Young’s modulus for polycrystalline iron, using Reuss’s

and Voigt’s averages. From Tables 2.3 and 2.4, we get the elastic stiff-

nesses and compliances:

C 11 = 228 GPa, S11 = 0.762 × 10−2 GPa−1,

C 44 = 116.5 GPa, S44 = 0.858 × 10−2 GPa−1,

C 12 = 312 GPa, S12 = −0.279 × 10−2 GPa−1.
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Voigt method:

We first calculate the parameters, taking into account cubic

symmetry:

F = 1

3
(C 11 + C 22 + C 33) = C 11,

G ∗ = 1

3
(C 12 + C 23 + C 13) = C 12,

H = 1

3
(C 44 + C 55 + C 66) = C 44.

Then:

E = 1

5
(3F + 2G ∗ = H ) = 1

5
(3C 11 + 2C 12 + C 44)

E = 186.5 GPa.

Reuss method:

F ′ = 1

3
(S11 + S22 + S33) = S11,

G ′ = 1

3
(S12 + S23 + S13) = S12,

H ′ = 1

3
(S44 + S55 + S66) = S44,

1

E
= 1

5

(
3F ′ + 2G ′ + H ′) = 1

5
(3S11 + 2S12 + S44) ,

= 0.517 × 10−2.

So

E = 193 GPa.

2.11 Elastic Properties of Materials

Figure 2.12 presents a comparison of the elastic constants of differ-

ent classes of materials. At the top, we have diamond (with covalent

bonding). For metals, there is a correlation between the melting point

(indicative of the bonding energy between atoms) and the Young’s

modulus. Thus, the metals with the highest bonding energies have

the highest melting points, interatomic forces, and Young’s modulus.

The ranking of the metals in the second column of the figure shows

this relationship; at the top are osmium and tungsten, and at the

bottom is lead. The third column of the figure shows the polymers,

which have elastic constants that are much lower than those of the

metals. The composites in the last column show a wide variation in

elastic constants. The carbon-fiber reinforced polymers (CFRPs) can

have a very high modulus.
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Fig. 2.12 Bar chart of data for

Young’s moduli. (Adapted from M.

F. Ashby and D. R. H. Jones,

Engineering Materials (Oxford:

Pergamon Press, 1980), p. 32.)

2.11.1 Elastic Properties of Metals
Tables 2.3 and 2.4 give the elastic stiffnesses and compliances, respect-

ively, of metallic monocrystals. One of the most complete compila-

tions of elastic constants for crystals is that by Simmons and Wang.

(See suggested reading.) The elastic constants for a number of poly-

crystalline metals are given in Table 2.5. We can also determine the

polycrystalline (isotropic) elastic constants from the monocrystalline

ones, using equations given earlier.

2.11.2 Elastic Properties of Ceramics
The elastic properties of ceramic monocrystals possess the sym-

metry of the crystal (see Table 2.6). As an example, consider the stiff-

nesses and compliances for MgO at room temperature. Magnesia is a

cubic crystal, and alumina has the rhombohedral structure. The cor-

responding Young and shear moduli, computed along the three crys-

tallographic axes of the monocrystal from Equation 2.20 are given

in Table 2.7. Table 2.8 presents the elastic moduli for a number of

ceramics and glasses. The largest elastic constant is that for diamond

and is equal to 1,000 GPa. This is due to the C--C bonds, as is explained

in Chapter 4.
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Table 2.3 Elastic Stiffnesses of Monocrystals at Ambient Temperature (GPa)

Element Structure C11 C44 C12 C33 C66 C13 C14

Ag FCC 124.0 46.1 93.4
Al FCC 108.2 28.5 61.3
Au FCC 186.0 42.0 157.0
Cu FCC 168.4 75.4 121.4
Ni FCC 246.5 124.7 147.3
Pb FCC 49.5 14.9 42.3
Fe BCC 228.0 116.5 132.0
Mo BCC 460.0 110.0 176.0
Ta BCC 267.0 82.5 161.0
W BCC 501.0 151.4 198.0
Co HCP 307.0 75.3 165.0 358.1 103.0
Zn HCP 161.0 38.3 34.2 61.0 50.1
Ti HCP 162.4 46.7 92.0 180.7 69.0
Be HCP 292.3 162.5 26.7 336.4 14.0
Zr HCP 143.4 32.0 72.8 164.8 65.3
Mg HCP 59.7 16.7 26.2 61.7 21.7
Sn Tetragonal 73.5 22.0 23.4 87.0 22.6 28.0
In Tetragonal 44.5 06.6 39.5 44.4 12.2 40.5
Hg Rhombohedral 36.0 12.9 28.9 50.5 30.3 05.0

Table 2.4 Elastic Compliances for Monocrystalline Metals at Ambient Temperature (10−2 GPa−1)

Element Structure S11 S44 S12 S23 S13

Ag FCC 2.29 2.17 –0.983
Al FCC 1.57 3.51 –0.568
Au FCC 2.33 2.38 –1.065
Cu FCC 1.498 1.326 –0.629
Ni FCC 0.734 0.802 –0.274
Pb FCC 9.51 6.72 –4.38
Fe BCC 0.762 0.858 –0.279
Mo BCC 0.28 0.91 –0.078
Nb BCC 0.69 3.42 –0.249
Ta BCC 0.685 1.21 –0.258
W BCC 0.257 0.66 –0.073
Be HCP 0.348 0.616 –0.030 0.298 –0.031
Mg HCP 2.20 6.1 –0.785 1.97 –0.50
Ti HCP 0.958 2.14 –0.462 0.698 –0.189
Zr HCP 1.013 3.13 –0.404 0.799 –0.241
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The elastic moduli of ceramics are strongly dependent on porosity.

Ceramics are porous owing to their fabrication, and one should be

aware of the effect of porosity. Figure 2.13 shows the variations in

the Young modulus of alumina with volume fraction of pores. For

10% porosity (a common value for commercial alumina), the Young’s

modulus is decreased by 20%.

The change in Young’s modulus with porosity has been empirically

expressed by Wachtman and MacKenzie,6

E = E 0(1 − f1 p + f2 p2) (2.22)

where p is the porosity and f1 and f2 are constants. For spherical voids,

MacKenzie found that f1 and f2 are equal to 1.9 and 0.9, respectively,

for a Poisson’s ratio of 0.3. The data of Coble and Kingery7 may be

compared with the prediction of Equation 2.22. If one assumes the law

of mixtures for the porosity, then, as a first approximation, one has

E = E A (1 − fB ) + E B fB , (2.23)

where f is the volume fraction of a phase and the subscripts A and

B denote the two phases.

However, if phase B is the pore and denoting the pore fraction by

p, one has

E = E 0 (1 − p) . (2.24)

For relatively low porosity, the quadratic term in Equation 2.22 can

be neglected, leaving

E = E 0 (1 − 1.9p) . (2.25)

If E varied linearly with p, the form would be E = E0 (1 − p). Thus, the

physical significance of MacKenzie’s equation is that porosity has an

effect of E equal to approximately double the volume of pores.

Another effect of considerable importance on Young’s modulus for

ceramics is the presence of microcracks, which decrease the stored

elastic energy and reduce the effective Young’s modulus. Figure 2.14

shows schematically how the presence of microcracks would affect

the slope of the stress--strain curve. The initial slope, E0, is decreased

by microcracking. Microcracks can also form during the cooling of

the ceramic due to thermal expansion (or contraction) anisotropy.

Different grains contract by different amounts along different orien-

tations, resulting in a buildup of elastic stress in the boundary area.

Elastic stress can generate microcracks. Similarly, the anisotropy of

elastic constants can generate elastic stress concentrations at the

grain boundaries, where the neighboring grains undergo different

strains (due to differences in crystallographic orientation). The change

in the Young’s modulus with microcracking has been computed by a

6 See J. B. Wachtman, in Mechanical and Thermal Properties of Ceramics, ed. J. B. Wachtman,

NBS Special Publication 303, NBS Washington, 1963, p. 139; and J. K. MacKenzie, Proc.

Phys. Soc., B63 (1950) 2.
7 R. L. Coble and W. D. Kingery, J. Am. Cer. Soc. 39 (1956) 377.
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Table 2.5 Elastic and Shear Moduli and Poisson Ratios for

Polycrystalline Metalsa

Metal (20◦C) E (GPa) G (GPa) ν

Aluminum 70.3 26.1 0.345
Cadmium 49.9 19.2 0.300
Chromium 279.1 115.4 0.210
Copper 129.8 48.3 0.343
Gold 78.0 27.0 0.440
Iron 211.4 81.6 0.293
Lead 16.0 5.5 0.450
Magnesium 44.7 17.3 0.291
Nickel 199.5 76.0 0.312
Niobium 104.9 37.5 0.397
Silver 82.7 30.3 0.367
Tantalum 185.7 69.2 0.342
Titanium 115.7 43.8 0.321
Tungsten 411.0 160.6 0.280
Vanadium 127.6 46.7 0.365

a Adapted with permission from R. W. Hertzberg, Deformation and Fracture

Mechanics of Engineering Material, New York: John Wiley, 1976, p. 8.

Table 2.6 Elastic Constants for Ceramics (Sij in 10−10 Pa−1; Cij in GPa)

Material C11 C12 C44 C13 C33 S11 S12 S44

MgO 289.2 88.0 154.6 4.03 −0.94 6.47
Al2O3 497.1 162.3 147.7 117 502
ZrO2 410 110 60
MgAl2O4 279 153 153 5.83 −2.08 6.54
TiC 513 106 178 0.2 2.1 −0.36 5.61
Diamond 1076 125 576
LiF 112 46 63
NaCl 49 13 13
ThO2 367 106 797 3.13 −0.70 12.5
LlO2 395 121 64.1 2.96 −0.70 15.6
SiC (hexagonal) 500 186 168 176 521
SiC (cubic) 352 140 233

number of investigators. The formulations give predictions that vary

with the orientation of the cracks with respect to the tensile axis,

among other parameters. An expression developed by Salganik8 is

E
E 0

=
[

1 + 16 (10 − 3v0)
(
1 − υ2

0

)
45 (2 − v0)

N a3

]−1

= (
1 + AN a3

)−1
, (2.26)

8 R. L. Salganik, Izv. Akad. Nauk SSR Mekh. Tverd. Tela, 8 (1973) 149.
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Table 2.7 Orientation Dependence of Young’s Modulus and Shear

Modulus for MgO and Al2O3 at 25 ◦C

Crystal
Orientation

Young’s
Modulus, Al2O3

(GPa)

Young’s
Modulus,
MgO (GPa)

Shear
Modulus,
MgO (GPa)

<100> 299 248.2 154.6
<110> 330 316.4 121.9
<111> 344 348.9 113.8

where E is the Young’s modulus of the cracked ceramic, v0 and E0 are,

respectively, Poisson’s ratio and Young’s modulus of the uncracked

material, a is the radius of a mean crack, and N is the number of

cracks per unit volume. The factor

A = 16 (10 − 3v0)
(
1 − v2

0

)
45 (2 − v0)

(2.27)

varies between 1.77 and 1.5 when v0 varies between 0 and 0.5. To a

first approximation, one can say that

E

E 0

= [1 + 1.63 N a3]−1. (2.28)

O’Connell and Budiansky arrived at a slightly different expression:9

E

E 0

= 1 − 16 (10 − 3v )
(
1 − v2

)
45 (2 − v )

fs . (2.29)

Here, fs is defined as the volume fraction of cracks. (i.e., the number of

cracks per unit volume, N, multiplied by the cube of the mean crack

radius, a3) and ν is Poisson’s ratio of the porous material, which is

related to Poisson’s ratio of the fully dense material by

v = v0

(
1 − 16 fs

9

)
. (2.30)

By applying the same approximation as in Salganik’s equation, we

arrive at

E

E 0

= 1 − 1.63 N a3. (2.31)

Note that Na3 is a measure of the fraction of the material that is under

the effect of the cracks. Figure 2.15 shows the effect of microcracks

on the Young’s modulus of alumina. This effect is substantial. For

fs = 0.1, the Young’s modulus is reduced by 20%. Both Salganik’s and

O’Connell and Budiansky’s predictions are plotted, and it can be seen

that they are in fairly close agreement for values of fs smaller than

0.1. For higher values, O’Connell and Budiansky’s equation predicts a

more rapid decrease in E.

9 R. J. O’Connell and B. Budiansky, J. Geol. Res. 79 (1974) 5412.
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Table 2.8 Modulus of Elasticity of Some Ceramic Materials

Material E (GPa)

Aluminum oxide crystals 378
Sintered alumina∗ 365
Alumina porcelain (90–95% Al2O3) 365
Sintered beryllia 310
Hot-pressed boron nitride∗ 82.7
Hot-pressed boron carbide∗ 289
Graphite∗ 9
Sintered magnesia∗ 210
Sintered molybdenum silicide∗ 406
Sintered spinel∗ 238
Dense silicon carbide (cubic or hexagonal) 280–510
Sintered titanium carbide∗ 310
Sintered stabilized zirconia∗ 152
Silica glass 72.3
Vycor glass 72.3
Pyrex glass 68.9
Superduty fire-clay brick 96.4
Magnesite brick 172.2
Bonded silicon carbide∗∗ 345
Silicon nitride 320–365
Aluminum nitride
Mullite (aluminosilicate) porcelain 69
Steatite (magnesia aluminosilicate) 69
Diamond 450–650
Tungsten carbide 400–530
Cobalt/tungsten carbide cermets 379
Titanium dioxide 290
Titanium diboride 440

∗ (c. 5% porosity).
∗∗ (c. 20% porosity).

Adapted from W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction

to Ceramics, 2nd ed., (New York: John Wiley, 1976) p. 3.

2.11.3 Elastic Properties of Polymers
Polymers have elastic constants that range from the lower end of the

metallic elastic constants to values even lower by several orders of

magnitude. As an example, melamines have elastic constants of 6--7

GPa (E (lead) = 14 GPa), while the elastic constant of polymeric foams

is between 3 and 10 MPa. Table 2.9 lists the elastic constants of a num-

ber of polymers. The bar chart of Figure 2.12 provides a comparison

of the elastic constants of the different classes of materials. The elas-

tic behavior of polymeric materials is more difficult to describe than

that of metals or ceramics, because it is strongly dependent on both

temperature and time. This behavior, called viscoelastic or anelastic, is

described separately in Section 2.12. Here we merely introduce the
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Fig. 2.13 Effect of porosity on

elastic modulus of alumina. Circles
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measurements. (After R. L. Coble
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Fig. 2.14 Effect of microcracks

on Young’s modulus for ceramics.

subject briefly. In most polymers, there are dramatic changes in E

between 20◦C and 200◦C; for most metals and ceramics, the changes

in E in this range can be neglected. The glass transition temperature

Tg plays an important role in polymers. Above Tg, E is considerably

low, and the behavior of the polymer can be described as rubbery

and viscous. Below Tg, the modulus of elasticity is considerably higher,

and the behavior is closer to linear elastic. Figure 2.16 shows schemat-

ically the elastic behavior of a linear polymer as a function of tem-

perature. The modulus of elasticity ranges from 103 to 10−1 MPa.

2.11.4 Elastic Constants of Unidirectional Fiber
Reinforced Composite

An orthotropic material has three mutually perpendicular axes

of symmetry, which reduces the number of independent elastic
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constants to nine. The Sij matrix for an orthotropic material is:

Si j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0

S22 S23 0 0 0

S33 0 0 0

S44 0 0

S55 0

S66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The compliance matrix for orthotropic materials in terms of E, G, and

ν corresponds to:

Si j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1/E 1 −v21/E 2 −v31/E 3 0 0 0

1/E 2 −v32/E 3 0 0 0

1/E 3 0 0 0

1/G 23 0 0

1/G 13 0

1/G 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Table 2.9 Elastic Constants of Some Polymersa

Material E (GPa)

Phenolformaldehyde 8
Melamines 6–7
Polymides 3–5
Polyesters 1.3–4.5
Acrylics 1.6–3.4
Nylon 2–4.5
PMMA 3.4
Polystyrene 3–3.4
Polycarbonate 2.1
Epoxies 2.1–5.5
Polypropylene 1.2–1.7
Polyethylene, high-density 0.15–0.24
Foamed polyurethane 0.01–0.06
Polyethylene, low-density 0.15–0.24
Rubbers 0.01–0.1
PVC (unplasticized) 2.4–3.0
Foamed polymers 0.001–0.01

a Adapted from M. F. Ashby and D. R. H. Jones, Engineering

Materials (Oxford: Pergamon Press, 1986), p. 31, Table 3.1.

Notice that there are three different Young’s moduli on three perpen-

dicular planes, three shear moduli, and three Poisson’s ratios. Thus,

we have nine elastic constants, as in the stiffness matrix.

Unidirectionally fiber reinforced composites represent a special

case of orthotropy. The plane transverse to the fibers is isotropic, see

Figure 2.17. Such a material is called transversely isotropic and has

five independent elastic constants. The compliance matrix for such

unidirectionally fiber reinforced composite is:

Si j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0

S11 S13 0 0 0

S33 0 0 0

S44 0 0

S44 0

2(S11 − S12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

In terms of the elastic constants E, G, and ν, the elastic compliance

matrix for a transversely isotropic material is represented as:

Si j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1/E 1 −v21/E 1 −v31/E 3 0 0 0

1/E 1 −v31/E 3 0 0 0

1/E 3 0 0 0

1/G 13 0 0

1/G 13 0
2

E 1
(1 − v21)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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x1

x3

x2

Fig. 2.17 A transversely

isotropic fiber composite. The

plane transverse to fibers (x2–x3

plane) is isotropic.

Notice that there are two Young’s moduli, one for any direction in

the transverse plane and one for the fiber direction. There are two

Poisson’s ratios and one shear modulus. Thus, we have five elastic

constants.

Another example of a transversely isotropic material is a laminate

composite. The elastic properties perpendicular to the plane of the

layers are different than in the layer plane.

There are many examples of laminate composites used in everyday

life, for example, plywood and cardboard. GLARE is a laminate com-

posed of alternate layers of aluminum and glass fibers in an epoxy

matrix. It is used in the aircraft industry, specifically in the Airbus

A380 superjumbo jet. The laminate structure gives it excellent fatigue

resistance because the cracks are arrested at the interface. Another

laminate, ARALL, consists of alternate aluminum and aramid fibers

in an epoxy matrix.

Figure 2.18 gives the elastic constants for the titanium (20%)--

titanium aluminide (80%) laminate. The Young’s moduli E11 ( = 1/S ′
11)

and E22 ( = 1/S ′
22) were transformed according to orientation β. Their

variation can be seen in Figure 2.18. Likewise, Poisson’s ratios ν21 and

ν31 vary with orientation.

2.12 Viscoelasticity

Glasses or amorphous materials show the phenomenon of time-

dependent strain, called viscoelasticity or anelasticity. The deformation

of an amorphous material does not involve atomic displacements on

specific crystallographic planes, as is the case in crystalline metals.

Rather, a continuous displacement of atoms or molecules takes place

with time at a constant load. This flow mechanism of noncrystalline
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Fig. 2.18 Elastic constants of 20% Ti–80% Al3Ti laminate composite as a function of

angle β with laminate plane. (Adapted from T. Li, F. Grignon, D. Benson, K. S. Vecchio,
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materials is associated with the diffusion of atoms or molecules

within the material; that is, it is a thermally activated process and

is thus described by an Arrhenius-type equation. Of course, at suffi-

ciently high temperatures, where diffusion becomes important, crys-

talline as well as amorphous materials show a large amount of

thermally activated plastic flow. Liquids and even fluids in general

show a characteristic resistance to flow called viscosity. The viscos-

ity of a fluid results in a frictional energy loss, which appears as

heat. The more viscous a fluid, the higher is the frictional energy

loss.

Over a range of temperatures, the viscosity η can be described by

the Arrhenius-type relationship

1/η = A exp (−Q /RT ) , (2.32)

or

η = A exp (Q /RT ) ,

where Q represents the activation energy for the atomic or molecular

process responsible for the viscosity, R is the universal gas constant,

and T is the temperature in kelvin. The S. I. units of the viscosity η

are Nm−2 s or Pa · s. Another common unit of viscosity is poise, P; 1

P = 0.1 Pa · s.

A purely viscous material shows stress proportional to strain rate.

Thus, if we apply a shear stress τ to a glassy solid above its glass
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deformation rate), nonlinear

response, and plastic response

(stress independent of
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transition temperature, then we can write, for the rate of shear

deformation,

γ̇ = dγ

dt
= τ

η
= φτ, (2.33)

where φ is the f luidity (the reciprocal of viscosity) of the material.

Equation 2.33 can be written as

τ = ηγ̇ . (2.34)

If the viscosity of a material does not change with the strain rate

(i.e., if the stress is linearly proportional to the strain rate), then we

call the viscosity a Newtonian viscosity and such a material a Newtonian

material. Figure 2.19 shows a Newtonian (or linear) response curve. If

the stress is not directly proportional to the strain rate, we have a

non-Newtonian response, which can be written as

τ = ηγ̇ n. (2.35)

This is shown by the curve marked ‘‘nonlinear” in the figure. If the

stress is independent of the strain rate, we have a plastic material.

A special case is that of a material whose viscosity decreases when

subjected to high strain rates. Such a material is called a thixotropic

material, a good example of which is a latex paint. When we apply

the paint to a vertical wall, it does not sag, because its viscosity is

very high on the wall. However, we can stir and brush the paint easily

because its viscosity decreases when subjected to shear stress in the

stirring action.

Polymers, polymer solutions and dispersions, metals at very high

temperatures, and amorphous materials (organic and inorganic)

show viscoelastic behavior -- that is, characteristics intermediate

between perfectly elastic and perfectly viscous behavior. Commercial
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silica-based glasses have a high proportion of additives: about 30% in

soda--lime glass and 20% in high-temperature glasses such as Pyrex.

The main purpose of the additives is to lower the viscosity by breaking

up the silica network, thus making the processing of glass easy.

Conventionally, glasses are formed by melting an appropriate com-

position and then casting or drawing the melt into a desired form.

It is interesting to compare the viscosity values of liquid metals with

glasses. Molten metals have about the same viscosity as that of water

(∼10−3 Pa·s) and transform to a crystalline solid state in a discon-

tinuous manner when cooled. The viscosity of glasses, however, falls

slowly and continuously with temperature. The shaping of glass is car-

ried out in the viscosity range of 103--106 Pa·s. Polymers are formed in

the range 103--105 Pa·s. Perhaps the most important characteristic of a

viscoelastic material is that its rheological properties are dependent

on time. This characteristic is manifested very markedly by amor-

phous or noncrystalline materials such as polymers.

A viscoelastic substance has a viscous and an elastic component.

Figure 2.20(a) shows the stress--strain curve of an ideal elastic mater-

ial. The load and unload curves are the same, and the energy lost as
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heat per cycle is zero in this case. In practice, there is always present

an anelastic (i.e., a time-dependent) component, with the result that

the unload curve does not in fact follow the load curve. Energy equal

to the shaded area in Figure 2.20(b) is dissipated in each cycle. This

phenomenon is exploited in damping out vibrations. Some polymers

and soft metals (e.g., lead) have a high damping capacity. In springs

and bells, a high damping capacity is undesirable. For such applica-

tions, one uses materials such as bronze, spring steel, etc., which have

a low damping capacity.

2.12.1 Storage and Loss Moduli
In order to characterize the viscoelastic behavior of a material, the

material is sinusoidally deformed, and the resulting stress is recorded.

For an ideal elastic material, the stress and strain are in phase, and the

phase shift δ = 0. For an ideal viscous material, the stress and strain

are 90◦ out of phase (i.e., δ = 90◦). As pointed out before, a viscoelastic

behavior -- a combination of an ideal elastic response and an ideal

viscous response -- is more common. Figure 2.21 shows a viscoelastic

response with a phase lag between the stress and the strain. Dynamic

(commonly sinusoidal) perturbations are used to study the viscoelastic

behavior of a material. The material is subjected to an oscillatory

strain with frequency ω. From the figure, we can write the following

expressions for strain and stress:

ε = ε0 sin ωt,

σ = σ0 sin (ωt + δ) .

In the equation for stress, δ is the phase angle or phase lag between

the stress and strain. From these expressions, we can define two mod-

uli,

E ′ =
(

σ0

ε0

)
cos δ

and

E ′′ =
(

σ0

ε0

)
sin δ,

where E ′ is the tensile storage modulus and E ′′ is the tensile loss

modulus.

Alternatively, we can use complex variables and write

ε = ε0 exp i (ωt) ,
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σ = σ0 exp i (ωt + δ) ,

E = σ

e
= σ0

ε0

exp iδ = σ0

ε0

(cos δ + i sin δ)

= E ′ + i E ′′,

where i is the imaginary number
√−1.

Figure 2.22 shows graphically the relationship among these quan-

tities. Proceeding in a manner similar to that for deriving the tensile

modulus, we can obtain the shear modulus. (Experimentally, this is

generally obtained by means of a torsion pendulum.) The complex

modulus

G = G ′ + iG ′′,

where G′ is the shear storage modulus and G ′′ is the shear loss mod-

ulus. The storage modulus is a measure of the stored energy, i.e., the

elastic part. The loss modulus is a measure of the energy lost as heat,

i.e., the viscous part. These two modulus components can be written

in terms of the phase shift as

G ′′ = G sin δ, E ′′ = E sin δ,

G ′ = G cos δ, E ′ = E cos δ.

We can now define a term called the loss tangent as follows:

Loss tangent = tan δ = energy loss

energy stored
= G ′′

G ′ = E ′′

E ′ .

E

E‘

E‘‘

d

Fig. 2.22 Relationship between

tensile storage and tensile loss

modulus.

Sometimes, a related term called the logarithmic decrement  is used,

which is defined as

Logarithmic decrement  = π tan δ = π E ′′

E ′ .

The logarithmic decrement is the natural logarithm of the amplitude

ratio between successive vibrations; that is,

 = θn

θn+1

,

where θn and θn+1 are the amplitudes of two successive vibrations.

Both the loss tangent and the logarithmic decrement are propor-

tional to the ratio of the maximum energy dissipated per cycle to the

maximum energy stored in the cycle.

Example 2.14

In a free-vibration test, a polymer showed a drop of 50% in two succes-

sive amplitudes. Compute the logarithmic decrement for this polymer.

Solution: If θn and θn+1 are the successive amplitudes, then the loga-

rithmic decrement,  = ln (θn/θn+1) = ln 2 = 0.69.
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Example 2.15

Recall that the stress--strain relationship involving real and imaginary

moduli is given by

σ = (
E ′ + i E ′′) ε = E ε.

Derive an expression for the complex modulus E in terms of E′ and tan

δ. Show that for small values of tan δ, E ≈ E′.

Solution: The magnitude of the complex modulus is given by

E = σ

ε
=

(
E ′2 + E ′′2

)1/2

= E ′ [1 + tan2 δ
]1/2

.

For tan δ < 0.2, E will be within 2% of E′.

2.13 Rubber Elasticity

A polymeric molecule is generally not rigid like a straight rod,

although there are some special liquid crystal polymers that do have

a rigid, rodlike molecule (e.g., the aramid fibers). Barring these special

cases, the polymeric molecule is a very long and flexible chain that

can change form easily because many independent vibrations and

rotations of the individual atoms that compose the molecular chain

are possible. Long, flexible polymeric chains can change their con-

figuration and lengths rather easily when a stress is applied. When

the number of configurations available is very large and the chains

are cross-linked to form a network, we get a special polymer called an

elastomer. Elastomers characteristically show very high reversible, non-

linear extensions (5--700%) in response to an applied stress. The

requirement of cross-linking (i.e., the existence of a network) is estab-

lished to avoid chains slipping past one another in a permanent man-

ner. This process is called ‘vulcanization’ of rubber and is accom-

plished by adding sulfur. High chain mobility is also required. Glassy

and crystalline polymers will not have enough chain mobility, and

therefore, the reversible strains are not very large. In crystalline

materials such as metals and ceramics, the deformation involves a

change in equilibrium interatomic distance, which requires the appli-

cation of rather large forces. This is why the elastic modulus values

of metals and ceramics are very high.

The first law of thermodynamics says that the internal energy of

a system is given by

dU = d Q + dW, (2.36)

where dQ is the heat absorbed and dW is the work done on the system

by the surroundings. Also, for a reversible process, we can write, from

the second law of thermodynamics,

d Q = T dS (2.37)
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and

dW = F dl − P dV , (2.38)

where T is the temperature, V is the volume, P is the external pressure,

S is the entropy, and F is the tensile force causing a change in the

length �.

From Equations 2.36 and 2.38, we get the following for the internal

energy:

dU = T dS + F d� − P dV .

For conditions of constant temperature and volume, we can write

F =
(

δU

δ�

)
T ,V

− T

(
δS

δ�

)
T ,V

= Fe + Fs , (2.39)

where Fe is the energy contribution and Fs is the entropy contribution

to the tensile force.

In the case of crystalline metals, the first term in Equation 2.39

is predominant, while the second term is negligible. This is because

the crystalline structure of a metal remains essentially unchanged

with deformation. Such is not the case with amorphous polymers,

especially the polymers that are rubberlike and which show rather

large elastic deformations. On deforming these kinds of polymers,

the form of the molecular chains can change considerably, and the

entropy contribution Fs = −T(δS/δ�)T,V becomes considerably large (see

Figure 2.23). In fact, the first term (i.e., the energy term) in Equation

2.39 is equal to zero for an ideal rubbery material. The rubber elas-

ticity thus has its origins in the entropy effects. For such polymers,

one can write an expression for the entropy of the form

S = k ln p

2
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Fig. 2.23 Changes in internal

energy, U, and entropy, S,

accompanying the extension of

rubber. F is the sum of the two

contributions.

where k is Boltzmann’s constant and p is the probability of finding a

particular chain configuration for which the entropy effects will be

very important.

When an elastomer is stretched, the distance between cross-linked

points increases and the number of possible chain configurations

decreases. Consider a piece of rubber in the form of a cube. Let the

side of the cube be �o, as shown in Fig. 2.24(a). Then, the volume

of rubber before deformation or undeformed volume is equal to �o
3.

Let us now deform the rubber cube in direction 1. The rubber gets

elongated in direction to �1 and the two transverse directions get

shortened to �2 and �3. The volume of the cube after deformation is

equal to �1 �2 �3. In order to describe the large deformations involved

in stretching rubbery materials, we define strain in terms of a param-

eter called draw ratio, λ = final length/original length. Thus, we can

write for the draw ratio along direction 1,

λ1 = �1/�o,
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Fig. 2.24 Deformation at

constant volume. (a) Unstrained

state. (b) Strained state.

or,

�1 = λ1�o .

We remind the reader that λ = 1 + ε.

Elastomeric materials are treated as incompressible materials, i.e.,

constancy of volume condition holds. Also, taking the strains in the

transverse directions to be equal, i.e., �2 = �3, we can write

�1�2�3 = (λ1�o )�2
2 = �3

o , (2.40)

or,

�2 = �3 = �o/
√

λ1 (2.41)

Thus, the tensile force applied to the rubber cube in direction 1 leads

to draw ratios λ1, λ2, and λ3 along directions 1, 2, and 3, respectively.

Rearranging Equation 2.41

λ2 = λ3 = 1/
√

λ1. (2.42)

Flexible polymeric chains are joined by bonds at cross-link points,

forming a network. When we stretch a rubber or elastomer, these

chains get stretched. The number of configurations available to a

stretched polymer is less than the number of configuratons available

to an unstretched polymer, i.e. the entropy is reduced on stretching. We

need to use statistics to to treat the properties of a single polymeric

chain and those of a network of chains. We assume the polymeric

chain is freely jointed and has no volume (it is called volumeless). One

end of the chain is at the origin while the other end is at a distance,

r, from the origin; r is called the end-to-end distance of the chain. The

chain is assumed to be freely jointed and volumeless. The network is

treated as a Gaussian network, i.e. a Gaussian distribution function is

used to evaluate the probability of finding the other end of the chain

in some volume element, dV ( = dx · dy · dz).

Let the end-to-end distance of a chain be r1. We consider a poly-

mer chain with an end fixed at the origin and the other end at the

extremity of the vector r1, whose magnitude is:

r1 = (
x2 + y2 + z2

)1/2
.

Assuming that the polymer chain follows ‘‘random walk” statistics, it

can be shown that the distribution of lengths, r, follows a Gaussian

distribution. This provides a bell-shaped curve for the distribution of
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r. The probability that end-to-end distance is r1 is given by:

P1(r1) = β3

π1/2
exp

(−β2r 2
1

) = β3

π1/2
exp

(−β2
(
x2 + y2 + z2

))
.

The parameter β is related to the number of monomers (units), n, in

the chain and to their length, a:

β = (1.5)1/2

n1/2a
.

This comes from Gaussian statistics, and the intelligent student will

readily consult his/her old class notes.

When a cube of rubber is deformed, it becomes a parallelepiped, as

shown in Figure 2.24. Internally, the coordinates of the end-to-end vec-

tor of a typical flexible chain change from x, y, and z to λ1x, λ2 y, λ3z,

respectively. The new probability of finding the end of a chain is equal

to:

P2 (r2) = β

π1/2
exp

[−β2
(
λ2

1x2 + λ2
2 y2 + λ2

3z2
)]

.

The ratio of probabilities corresponding to the initial and deformed

states can be expressed as:

P2 (r2)

P1 (r1)
= exp

{−β2
[(

λ2
1 − 1

)
x2 + (

λ2
2 − 1

)
y2 + (

λ2
3 − 1

)
z2

]}
.

We assume that x = y = z. This leads to a mean value r0, equal to:

r0(x2 + y2 + z2)1/2 = 31/2 x = 31/2 y = 31/2 z

Thus:

P2 (r2)

P1 (r1)
= exp −β2

(
λ2

1 + λ2
2 + λ2

3 − 3
) r 2

0

3
.

The entropy change for one molecular chain associated with the

deformation is defined by:

S = k ln
P2 (r2)

P1 (r1)
.

Inserting the expression for the ratio between the probabilities:

S = −kβ2
(
λ2

1 + λ2
2 + λ2

3 − 3
) r 2

0

3
.

The value of r0

(= n1/2a
)

and that of β can be substituted, yielding:

S = −k

2

(
λ2

1 + λ2
2 + λ2

3 − 3
)
.

The entropy change for N chains is given by

S = −1

2
N k

(
λ2

1 + λ2
2 + λ2

3 − 3
)

(2.43)



130 ELASTICITY AND VISCOELASTICITY

where N is the number of chains and k is the Boltzmann’s constant.

Substituting Equation 2.42 into Equation 2.43, we can write for the

change in entropy as

S = −1

2
N k

(
λ2

1 + 2λ−1
1 − 3

)
(2.44)

Recall that Equation 2.39 gives the expression for the tensile force

causing a change in length of a rubber or elastomer. It has two

components: an energy contribution and an entropic contribution.

As explained above, the energy contribution, (δU/δ�) is negligible for

rubber for isothermal deformation. So,

F = −T (δS/δ�)T ,V . (2.45)

Differentiating Equation 2.44 and substituting into Equation 2.45, we

obtain

F = N kT

�o

(
λ1 − λ−2

1

)
(2.46)

If we divide the tensile force by the area of cross section, we get

the tensile stress. Recall that the volume remains unchanged, i.e.,

A1�1 = Ao�o. Thus,

σ = F

A1

= N kT

�o

(
�1

Ao�o

) (
λ1 − λ−2

1

)
(2.47)

Let us denote the number of chain segments per unit volume (N/Ao�o)

by n and recall that �1/�o = λ1; then we write

σ = nkT
(
λ2

1 − λ−1
1

)
(2.48)

In Equation 2.48, the strength of the rubber is seen to increase with

n, the number of chain segments per unit volume. The more cross-

linked the polymer, the greater the number of segments and the

smaller the length of molecule from one cross-link to the next. Thus,

Equation 2.48 correctly predicts the strengthening of rubber with

increasing cross-linking.

Equation 2.48 also shows a linear dependence of stress, at a

given strain, on temperature. This follows from the dominance of

the entropic elasticity. Any deviation from this linear relationship

between stress and temperature of a rubbery or elastomeric mater-

ials can be taken as a measure of its deviation from thermodynamic

ideal behavior. For an ideal rubbery behavior, the energetic compo-

nent of force is zero. Also, the stress is not linearly dependent on

strain, i.e., the Hooke’s law is not obeyed in tension for an elastomer.

Up to ∼400% strain, the theoretical stress--strain curve is in quite

good accord with experimental values as shown in Figure 2.25. At

very large strains, i.e., at strains > 400% (λ = 5) secondary bonds form

between the partially aligned chains, i.e., strain induced crystalliza-

tion occurs. At such large strain values, the chains begin to align
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Fig. 2.25 Force–extension curve

for cross-linked rubber. (a)

Experimental. (b) Theoretical.

(After L. R. G. Treloar, The Physics

of Rubber Elasticity, 3d ed. (Oxford:

Clarendon Press, 1975), p. 87.)

themselves and stretching of the primary bonds in the chain becomes

important.

Because the tensile stress--strain curve of rubber is nonlinear,

Young’s modulus cannot be defined for rubber, as it can be for crys-

talline metals and ceramics. One can, however, define a secant modu-

lus at a given strain. Another important thing that a perceptive reader

may have noticed is that the number of network chains per unit vol-

ume and, correspondingly, the modulus of an elastomer increases as

the degree of cross-linking increases. This is as expected if we just

compare a lightly cross-linked rubber band with a highly cross-linked

bowling ball.

For metals, the ordered crystalline structure is retained during

elastic deformation. Thus, the entropy, which is a measure of disorder

(or randomness) is constant. On the other hand, the internal energy

is increased by the work of deformation, which is stored in the metal

as elastic energy.

In rubbers, the chains become more aligned with stretching. This

decreases the entropy of the stsyem. The internal energy, on the other

hand, is constant.

2.14 Mooney–Rivlin Equation

The treatment given above is based on what is called Gaussian net-

work theory. Well before that, in the 1940s, Mooney10 derived the

10 M. Mooney, J. Appl. Phys., 11 (1940) 582.
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following equation, based on a phenomenological continuum

mechanics model of rubber elasticity:

σ = 2

(
C 1 + C 2

λ

) (
λ − 1

λ2

)′

where C1 and C2 are constants (not to be confused with WLF con-

stants discussed in Chapter 13) This equation is referred to as Mooney--

Rivlin equation in the literature because of later contributions from

Rivlin and Saunders.11 They formulated the material law as a strain

energy function in terms of the first and second principal invari-

ants of the deformation. The formulation is called a strain energy

function as the energy is conserved during deformation of these

materials under constant temperature. It seems to describe well the

deformation of highly elastic bodies which are incompressible (vol-

ume is conserved during deformation) and isotropic (the material

has the same mechanical properties in all directions at a material

point).

The above expression can be rearranged to the following form:

σ

2
(
λ − 1

λ2

) =
(

C 1 + C 2

λ

)
.

A plot of:

σ

2
(
λ − 1

λ2

) against

(
C 1 + C 2

λ

)
,

called Mooney plot, would give a straight line of slope C2 and an

ordinate of (C1 + C2) at 1/λ.

The Mooney--Rivlin equation or its modification by Ogden12 are

commonly used in Finite Element Method codes for elastomeric

materials.

Example 2.16

Make a schematic plot of the internal energy and entropy as a function

of strain for a crystalline solid (e.g., a metal) and for a rubbery solid

(e.g., an elastomer). Make a drawing showing the structure before and

after deformation in the two cases.

11 R. S. Rivlin and D. W. Saunders, Philosophical Transactions of the Royal Society of London,

Series A, 243 (1951) 251--288.
12 R. W. Ogden, Rubber Chemistry and Tech., 59 (1986) 386.
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Solution: Figure E2.16 shows the requested plots.

Fig. E2.16

Example 2.17

It is frequently said that elastic deformation on loading and the recov-

ery of strain on unloading involves the stretching of atomic bonds.

Would this statement be true of the large elastic deformation that is

observed in rubbery, or elastomeric, materials?

Solution: No. The large elastic deformation observed in elastomeric

materials involves the uncoiling of randomly coiled polymeric chains.

When we deform an elastomeric material, the end-to-end distance of

the chains increases. When the material is unloaded, the chains return

to the original random configuration. This uncoiling of chains results

in the entropy effects discussed in the text. Such entropy effects are

insignificant in metals and other nonelastomeric materials.
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Fig. 2.26 Range of elastic moduli of biological cells and conventional materials. (After

G. Bao and S. Suresh, Nature Materials, 2 (2003) 715.)

2.15 Elastic Properties of Biological Materials

Biological materials have complex elastic properties. Soft tissues

exhibit nonlinear elasticity. Hard tissues, such as bone, have a lin-

ear elastic response conditioned by their density. Figure 2.26 gives

an idea of the range of elastic properties of soft biological materi-

als (in this case, living cells) compared to conventional materials. It

is interesting to note the elastic moduli of cells are low compared

to conventional structural materials by a factor of ∼104. This is an

extreme but illustrates the differences. We give in the following sec-

tions two examples of the elastic behavior of materials that occur in

our body: blood vessels and cartilage.

2.15.1 Blood Vessels
The vascular system provides the transport of nutrients, oxygen, and

other chemical signals to the various parts of the body. The vascular

system is divided into two subsystems: the pulmonary and the circula-

tory system. We will not go into any details of the pathology of these

two subsystems. We will concentrate on their mechanical properties.

Arteries (which carry blood from the heart to the various parts of the

body) and veins (that collect blood back to the heart) exhibit some

significant differences in structure. Arteries are exposed to higher

pressures and fluctuations associated with the diastolic and systolic

portions of the cardiac cycle. Figure 2.27 shows the longitudinal and
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Fig. 2.27 Cross section of an

artery and vein, composed of the

endothelium, tunica intima, tunica

media, and tunica adventitia.

normal sections of an artery. The structure is layered with three dis-

tinct regions: tunica intima (innermost), tunica media (middle), and

tunica adventitia (outermost).

Bursting (longitudinal splitting) of blood vessels or aneurysm (ten-

sile instability forming a local bulge) are highly undesirable but all

too frequent events in humans. There are two unique aspects of the

mechanical response of arteries and veins that are instrumental in

minimizing the chance of the aforementioned problems: nonlinear

elasticity and residual stresses.

Nonlinear Elasticity

The three layers comprising blood vessels have different functions and

composition. Table 2.10 summarizes the similarities and differences

between arteries and veins, including main vessels such as the aorta.

The composition of arteries is made up primarily of elastic fibers

(elastin), collagen, and smooth muscle. Compared to veins, arteries

contain much more elastic material. Thicker arteries, such as the

aorta, contain less smooth muscle than both smaller arteries and

also veins. These differences account for the ability of arteries to resist

large pressure fluctuations during the cardiac cycle.

The mechanical response of blood vessels is shown in Figure

2.28(a). This is the longitudinal stress--strain response of human vena

cava. The response is nonlinear elastic. We know that it is elastic

because on unloading the artery returns to its original dimension.

However, there is a slight hysteresis on loading and unloading, due to

viscoelastic processes. We know that it is nonlinear because the slope

of the curve increases with strain. This slope approaches infinity as

the strain approaches 0.3. This increase in slope is due to the exten-

sion of the collagen and elastin fibers. If they are stretched beyond

this point, failure takes place. Instead of the strain, ε, the stretch ratio

(λ = ε + 1 ) is often used.

It is instructive to plot the slope, dσ /dε = E, as a function of stress.

This is done in Figure 2.28(b) for the aorta of a dog (circumferential

strip). The slope first increases by a relationship that can be described
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Table 2.10 Dimensions and composition of blood vessels

Artery

Dimensions CompositionVessel

Vein

Aorta 

Vessel diameter, 25 mm 

Thickness, 2 mm

elastic fibers

elastic fibers

elastic fibers

endothelium

endothelium

endothelium

collagen

collagen

collagen

smooth muscle

smooth muscle

smooth muscle

Medium-sized artery 

Vessel diameter, 4 mm 

Thickness, 1 mm

Vessel diameter, 20 mm 

Thickness, 1 mm

by a power function. Then, it reaches a linear range, in which the

increase is more gradual. This nonlinear elastic behavior is a charac-

teristic feature of many soft tissues in the human body. It serves as an

important function: as the pressure in the blood vessels is increased,

the vessels become stiffer.

This response, typical of arteries, has been successfully represented

by the Fung equation:

σ = (σ ∗ + β)eα(ε−ε∗) − β,

where α andβ are parameters defined in Figure 2.28(b). α is the slope

of the linear portion and β is related to the intercept. σ ∗ and ε∗

correspond to the onset of the linear portion. This equation can also

be expressed in terms of λ, the stretch ratio.

Residual Stresses

Biological materials such as arteries contain residual stress. In the

case of a segment of artery that is not under internal blood pres-

sure, the walls of the artery are under strain and therefore have

residual stress. Fung13 has shown that if one makes an axial cut in

the wall of an artery, the artery will spontaneously open. This geom-

etry is known as the zero-stress state. The angle by which the artery

springs open is defined as the opening angle. As this opening angle

increases the stress distribution in the wall becomes more uniform.

This makes sense since under normal blood pressure arteries inflate,

causing higher strain on the inner wall of the artery (compared to the

13 Y. C. Fung, Biomechanics (New York: Springer, 1993).
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Fig. 2.28 (a) Stress–strain response of human vena cava: circles – loading; squares –

unloading. (Adapted from Y. C. Fung, Biomechanics (New York: Springer, 1993), p. 366.)

(b) Representation of mechanical response in terms of tangent modulus (slope of

stress–strain curve) vs. stress. (Adapted from Y. C. Fung. Biomechanics, New York:

Springer, 1993), p. 329.)

outer wall). In arteries, stress is an exponential function of strain, so

the observed increase in strain at the inner wall will be accompanied

by an increase in stress at the inner wall. This is shown in Figure 2.29.

Four different arteries, with different zero-stress angles, are shown:

α = 0, 10, 70, and 155◦. For the same arteries, the wall stresses at two

values of the applied internal pressure are shown. For zero pressure,

there is a detrimental effect on the stress distribution. However, this

is not the critical condition. For 100 mm Hg internal pressure (in

the range of pressure of blood inside our body), the artery with the

highest value of α has the lowest stress in the wall. Thus, the residual

stress reduces the maximum stress in the artery walls.

2.15.2 Articular Cartilage
Articular cartilage, which covers the ends of long bones and bones

within synovial joints, is a highly hydrated connective tissue. It con-

sists of two distinct phases: a solid phase made up of collagen, pro-

teoglycans (aggrecan), proteins, and chondrocytes and a liquid phase

composed of water and electrolytes. Aggrecan and collagen are pri-

mary components of the solid phase, or extracellular matrix, and are

responsible for the biomechanical properties (compressive and ten-

sile, respectively) of articular cartilage. Figure 2.30 shows a schematic
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a = 0°

0 mmHg

100 mmHg

a = 10° a = 70° a = 155°

Fig. 2.29 Residual stresses in

arteries; the artery is sliced

longitudinally and the angle α is

measured. (From Y. C. Fung,

Biomechanics (New York: Springer,

1993), p. 389.)

Hyaluronan

Interstitial fluid

Aggrecan

Collagen fibril

Attached aggrecan

40 nm

Fig. 2.30 Schematic of

aggrecan–collagen meshwork in

cartilage tissue. (After V. C. Mow

and A. R. Ratcliffe, Structure and

Function of Articular Cartilage and

Meniscus, In Basic Orthopedic

Biomechanics, ed. V. C. Mow and

W. C. Hayes (New York: Raven

Press, 1997), pp. 113–178.)

of the aggrecan--collagen meshwork in cartilage tissue. The character-

istic banded structure of collagen is shown (coral snake-like).

Cartilage is a low friction, weight-bearing, viscoelastic material

which distributes stresses generated by translational and rotational

motion to the underlying bone. It possesses a stratified architecture

made of distinct zones -- superficial, middle, and deep. Figure 2.31(a)

shows these regions. At the surface, the collagen is arranged parallel

to the surface. The chondrocites are elongated along the surface. In

the middle zone, which comprises between 40 and 60% of the carti-

lage, the chondrocites are dispersed in a matrix of collagen. The deep

zone is composed of spheroidal chondrocites in columnar arrays. The

collagen fibers are of large diameter and are arranged perpendicular

to the bone. The last zone and interface with the bone consists of cal-

cified cartilage. The chondrocites are round and less organized. The

cartilage can be considered, from a materials viewpoint, as a gradi-

ent material, since the properties and structure vary in a continuous

fashion. Figure 2.31(b) shows the mesostructure of human cartilage.

The four regions drawn schematically in Figure 2.31(a) are seen in

Figure 2.31(b).

The mechanical properties of articular cartilage depend very much

on the orientation of the collagen fibrils. At the surface of cartilage,

collagen fibrils are oriented parallel to the surface. Therefore, it is

not surprising to find that under tension samples from the superfi-

cial zone are very strong. This is directly due to collagen content and

orientation. Figure 2.32 shows that the cartilage is much stronger
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Superficial zone
(10–20%)

Articular surface

Subchondral bone

Middle zone
(40–60%)

Deep zone
(30%)

Zone of
calcified cartilage

Chondrocytes

(a)

Surface

Middle

(b)

Deep

Bone

20 μm

Fig. 2.31 (a) Mesostructure of cartilage (consisting of four zones) showing differences

in structure as a function of distance from surface; the bone attachment is at bottom.

(From G. L. Lucas, F. W. Cooke, and E. A. Friis, A Primer on Biomechanics (New York:

Springer, 1999), p. 273.) (b) Cross-section of human cartilage showing regions drawn

schematically in (a). (Courtesy of K. D. Jadin and R. I. Sah.)
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Fig. 2.32 Stress–strain curve for

samples from the superficial zone

of articular cartilage. Samples were

cut parallel and perpendicular to

collagen fiber orientation. (From

G. E. Kempson, Mechanical

Properties of Articular Cartilage.

In Adult Articular Cartilage, ed.

M. A. R. Freeman (London: Sir

Isaac Pitman and Sons Ltd., 1973),

pp. 171–228.)

parallel to the surface than perpendicular to it. When cartilage begins

to degenerate, due to age and/or excessive exercise (load), defects may

form. The stiffness of cartilage is approximately 1/20 of that of sub-

chondral cancellous bone and 1/60 of that of cortical bone. Unfor-

tunately, cartilage does not have capacity to repair itself. For this
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Fig. 2.33 (a) Schematic of the optical trap setup for the stretching of a

double-stranded DNA molecule. (b) Plots of stretching force against relative extension

of the single DNA molecule at increasing (from bottom to top curves) concentrations of

salt. (Courtesy of C. T. Lim, National Singapore University.)

reason, along with the large numbers of people affected by joint- and

arthritis-related ailments, tissue engineering alternatives are explored

as an option for repairing cartilage defects.

2.15.3 Mechanical Properties at the Nanometer Level
Figure 2.33 shows the degree of miniaturization that can be attained

with modern methods to establish the mechanical properties of bio-

materials. It is possible to stretch single strands of DNA. This is accom-

plished by using a contraption called optical (laser) tweezer, shown in

Fig. 2.33(a). Microsized beads are attached to the DNA strand, one end
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is fixed and the other, trapped in the optical tweezer, is pulled. The

mechanical response of the DNA is definitely nonlinear, Figure 2.33(b).

There is a plateau at a force varying from 40 to 65 pN (depending on

the concentration of NaCl). At this plateau, the strand can receive a

stretch of up to 1.8. Beyond this value, the DNA stiffness increases

considerably. These results show that salinity has a definite effect on

DNA mechanical properties.

Example 2.18

Calculate the stress on the femur (a) with and (b) without a total

hip replacement prosthesis (see Figure E2.18(a)). Assume that the cross-

sectional diameter of the femur is equal to 3 cm and that of the implant

is 1.5 cm. (c) What would you do to improve the situation?

(a)

E(I) E(B)

(b)

3 cm

1.5 cm

Cancellous bone

Vitallium implant

Fig. E2.18

Given:

Weight = 1000 N (100 kg),

EI = 210 GPa,

EB = 20 GPa,

where EI and EB are the moduli of the implant and bone, respectively.

Solution:

(a) In the presence of the implant, we can consider the situation analo-

gous to two springs in parallel, as shown in Figure E2.18(b). For

two springs in parallel (the analog for a bone joined to the implant

stem), the strains are equal:

εI = εB ,

where εI and εB are the strains in the implant and bone, respectively.

The elastic deformation of bone and implant can be expressed as:

σB

E B

= εB

and

σI

E I

= εI .
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The areas are:

AB = π ×
[(

3

2

)2

−
(

1.5

2

)2
]

× 10−4 = 5.3 × 10−4 m2

and

AI = 1.76 × 10−4 m2.

The total load is

PT = P I + P B = σI A I + σB AB .

But:

σB

E B

= σI

E I

;

Thus:

σB =
(

AI

E B

E I + AB

)
= PT

σB = PT(
AI

E B
E I + AB

) = 0.42 × 106 N/m2.

(b) In the absence of implant,

σB = 1000

π
[(

3
2

)2 − (
1.5
2

)2
]

10−4
= 1000

5.301 × 10−4
= 1.89 × 106 N/m2.

It can be seen that the stresses in the bone are significantly reduced

by the introduction of the implant: they are one-fourth of the orig-

inal stresses. This has a deleterious effect on the bone growth and

leads to weakening of the implant.

(c) One solution would be to develop a metallic foam with a Young’s

modulus of 20 GPa. This would have the added advantage of

enabling bone growth into the implant. However, the strength of

this stem would be severely reduced.

Example 2.19

From the curves (Figure E2.19) reporting the force--strain response of

human skin along the direction of loading (extension) and perpendi-

cular to it (lateral contraction) determine the in-plane Poisson’s ratio at

20, 40, and 60 N.

What can you conclude from the results?

Solution: We can see that the behavior of the skin is nonlinear elastic,

with the slope increasing with load.

Poisson’s ratio is defined as:

υ = − εlat

εlon

,
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where εlat is the lateral strain and εlon is the longitudinal strain The

following values are obtained from Figure E2.19:

(P = 20 N )ν = 0.81,

(P = 40 N )ν = 0.91,

(P = 70 N )ν = 0.95.

The values are close to 1. If we assume that the skin volume remains

constant during deformation, then we can write for the volume change

εlat + εlon + εth = 0,

Fig. E2.19 Force–extension and force–lateral contraction curves for human skin in

uniaxial tension. (Adapted from R. M. Kenedi, T. Gibson, J. H. Evans, and J. C.

Barbanel, Phys. Med. Biol., 20 (1975) 619.)

where the subscripts lat, long, and th indicate lateral, longitudinal, and

thickness directions. Dividing the equation by εlon:

ν − 1 + νth = 0.

Since υ ∼ 0.9, we have:

νth ∼ 0.1.

The results indicate that the strain in the thickness direction is small

in comparison with the in-plane strains. Thus, the thickness of human

skin remains approximately constant when it is uniaxially stretched.

2.16 Elastic Properties of Electronic Materials

Microelectronic integrated circuit materials are characteristically

composed of a silicon (monocrystalline) substrate and thin film lay-

ers (Section 1.3.10). The thickness of the substrate is of the order of
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(a)
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3
R

R

hf

hs

(b)

Fig. 2.34 Effect of stresses

acting on thin film on bending of

substrate; (a) tensile stresses in

thin film; (b) compressive stresses

in thin film.

0.5--1 mm, and the thin films are characteristically 1 μm thick. The

thin film and substrate have often different coefficients of thermal

expansion. Additionally, the substrate density might change as it

grows. There are also epitaxial strains, caused by a lattice parame-

ter mismatch between the substrate and film. As a result, the thin

film is either under compression or tension. Figure 2.34 shows both

situations. If the film is under tension, it will bend the substrate up

(Figure 2.34(a)); on the other hand, if the film is under compression, it

will bend the substrate down (Figure 2.34(b)). It is possible to estimate

the radius of curvature and the stresses. We start with the general-

ized Hooke’s law and set σ 33 equal to zero in the thin film. We do

this because we have a state of plane stress. For isotropic materials,

from Equation 2.11:

ε11 = 1

E
[σ11 − νσ22] ,

ε22 = 1

E
[σ22 − νσ11] ,

ε33 = 1

E
[−ν(σ11 + σ22)] .

Therefore:

ε11 = 1 − ν

E
σ11.

The term E /(1 − ν) can be defined as a biaxial modulus. For the sub-

strate:

Ms = E s

1 − ν s

Es and νs are the Young’s modulus and Poisson’s ratio of the substrate,

respectively. This is the so-called Stoney equation.

The radius of curvature of the system can be estimated from an

equation for plates:

R = E s h2
s

6(1 − νs )σ f h f

,

where hs and hf, defined in Figure 2.34, are the thickness of substrate

and film, respectively. σ f is the maximum stress in the film.

For a monocrystalline substrate, one has to compute the biaxial

modulus using the elastic stiffness components Cmn.
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For instance, the values for Si are:

C11 = 166 GPa,

C12 = 64 GPa,

C44 = 80 GPa.

For the anisotropic case, when the cube plane is parallel to the inter-

face, the following expression can be derived (see Section 2.9):

1

E 100

= S11.

For Poisson’s ratio, we use the expression:

ν = − S12

S11

.

Thus:

M100 = 1/S11

1 + S12

S11

.

We obtain the stiffnesses from the compliances by inverting the

matrix (Section 2.9, Example 2.10). The result is:

Ms = C 11 + C 12 − 2C 2
12

C 11

= 180.7 GPa.

For the (111), we repeat the procedure and obtain:

M111 = 6C 44 (C 11 + 2C 12)

C 11 + 2C 12 + 4C 44

.

For the (110) plane, the stiffness depends on direction. For more

details, the reader is referred to Nix14 and Freund and Suresh.15

We can also use the isotropic Young’s modulus of Si (= 163 GPa)

and a Poisson’s ratio of 0.2. This would give us close enough results.

For hf = 1 μm and hs = 500 μm, we have, assuming a maximum stress

in the film of 500 MPa:

R = Ms

h2
s

6σ f h f

= 15m.

2.17 Elastic Constants and Bonding

There are four types of bonds between atoms:

� Metallic: metals,
� Ionic: ceramics,
� Covalent: ceramics, backbone of polymers and biological materials,
� van der Waals: polymers and biological materials.

14 W. D. Nix, Met. Trans., 20A (1989) 2217.
15 L. B. Freund and S. Suresh, Thin Film Materials (Cambridge, U.K.: Cambridge University

Press, 2003), Ch. 3.
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r0

r1

r2

(a)

(b)

(c)

Fig. 2.35 Two atoms with an

imaginary spring between them; (a)

equilibrium position; (b) stretched

configuration under tensile force;

(c) compressed configuration

under compressive force.

The first three are called primary bonds. van der Waals bonds (which

include the hydrogen bond) are called secondary bonds. The primary

bonds are in general much stronger than secondary bonds. Secondary

bonds ‘‘melt” between 100 and 500 K.

Many materials have mixed bonds. Intermetallic compounds may

be bonded by as mixture of metallic and ionic bonds. Many ceramic

and semiconducting compounds have a mix of covalent and ionic

bonding. Polymers and biological materials have covalent bonds along

the primary chains (C--C, Si--Si, etc.) and van der Waals (often, hydro-

gen) bonds between segments inside a chain.

The interaction energy between two adjacent atoms is often con-

sidered as the sum of an attractive and a repulsive term. The result-

ant curve gives the potential well. There are many calculations of

interatomic potentials, the Condon--Morse and Lennard--Jones being

examples.

The linear theory of elasticity makes the assumption that the

material is a continuum. The assumption is good when we are deal-

ing with large bodies; the micromechanics of deformation, on the

other hand, describes a scale where the continuum breaks down into

a periodic array of atoms: the crystalline structure. It is theoretically

possible to calculate the elastic constants from the consideration of

the interatomic forces. These calculations can be conducted for ionic

structures, such as NaCl, considering only electrostatic forces using

measured values of the ion sizes. In metals the situation is more com-

plex. Even approximate quantitative determinations require the use

of wave mechanics. The effect of temperature on atomic vibrations

and/or the lattice parameter is discussed, as well as the attendant

changes in elastic properties.

Figure 2.35 shows two atoms, which are at their equilibrium

separation r0. Tensile forces increase the separation to r1; compres-

sive forces decrease it to r2. The variation of the interaction energy

with atomic separation is shown in Figure 2.36. At equilibrium, the

interaction energy is minimum; the equilibrium separation r0
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Fig. 2.36 (a) Interaction energies

(attractive and repulsive terms) as

a function of separation; (b) Force

between two atoms as a function

of separation; notice decrease in

slope as separation increases.

corresponds to the bottom of the well. One can represent the energy

by:

Ui = − A

r m
+ B

r n
, (2.49)

where the first term represents the attraction and the second term

the repulsion. The exponent of the repulsive term, n, is usually much

larger than m because, as the two atoms are brought together, their

electronic orbitals superimpose and strong repulsion (due to Pauli’s

exclusion principle) ensues. This is reflected in Figure 2.36(a), where

the repulsive term increases sharply as as the separation is decreased
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r

s

Fig. 2.37 Array of atoms

representing tensile stress applied

to crystal.

below r0. The repulsive force operates at a close range. The interatomic

force is obtained from:

F = ∂Ui

∂r
.

This force is equal to zero at the bottom (trough) of the interaction

energy curve, which corresponds to the equilibrium separation, r0. It

is possible to estimate the elastic modulus from ∂ F /∂r. This can be

accomplished by expressing stress and strain in terms of atomic pos-

itions. Figure 2.37 shows, in a schematic fashion, an array of atoms.

We consider only the nearest neighbors aligned with the stress

direction. In a more accurate calculation next-nearest and next to

next-nearest neighbors have to be included, since they play an impor-

tant role.

The engineering strain can be expressed as:

dε = dr

r0

,

where r0 is the equilibrium atomic separation and dr is the change

in atomic separation. The stress is equal to:

dσ = N d F ,

where N is the number of atoms per unit area of cross section and

dF is the interatomic force producing a displacement dr. If we ascribe

an area r0 × r0 per atom, we have:

dσ = d F

r 2
0

.
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The Young’s modulus is expressed as:

E =
∣∣∣∣dσ

dε

∣∣∣∣
ε=0

= r−1
0

∣∣∣∣d F

dr

∣∣∣∣
r=r0

= r−1
0

∣∣∣∣d2Ui

dr 2

∣∣∣∣
r=r0

. (2.50)

From Equation 2.49:

dUi

dr
= Am

r m+1
− B n

r n+1
.

At r = r0:

Am

r m+1
0

− B n

r m+1
0

= 0

B n = Amr n−m
0 .

Thus:

dUi

dr
= Am

r m+1
− Amr n−m

0

r m+2

d2Ui

dr 2
= d F

dr
= − Am(m + 1)

r m+2
+ Am(n + 1)r n−m

0

r n+2
.

At the equilibrium separation, r0:∣∣∣∣d F

dr

∣∣∣∣
r=r0

= − Am(m + 1)

r m+2
0

+ Am(n + 1)r n−m
0

r n+2
0∣∣∣∣d F

dr

∣∣∣∣
r=r0

= Am(n − m)

r m+2
0

(2.51)

Substituting Equation 2.51 into Equation 2.50:

E = Am(n − m)

r m+3
0

. (2.52)

The attraction forces in ionic solids are of a coulombic nature and

the exponent in Equation 2.52 is m = 1.

Thus:

E = A(n − 1)

r 4
0

.

The parameter A is related to the electrical charges of the ions. For

monovalent ions:

A = e2

4πε0

,

where e is the electric charge of an electron and ε0 is the permittivity

of vacuum. One can thus estimate the elastic modulus of ionic solids.

Thus:

E = ke2

r 4
0

,

where k comes from the grouping of constants. The r−4
0 dependence

of elastic constants is actually much more general.
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closest approach on bulk modulus

for groups I, II, III, IV, and

transition elements.

The electrostatic nature of the forces between ionic crystals ren-

ders the determination of elastic constants less arduous. The NaCl

structure is a simple cubic structure, with Na and Cl occupying alter-

nate positions in the lattice. Each Na+ ion is surrounded by six Cl−

ions. If we consider one isolated ion (either Na+ or Cl−) and compute

all attractive and repulsive forces by neighbors, next-neighbors, and

so on, it is possible to determine the resultant electrostatic force.

The force between individual ions is coulombic (i.e. it varies with

the square of the distance). Computing all the forces and transforming

the resultant force into a stress and the displacement into strain, we

showed above that one obtains an equation of the form:

E = ke2

r 4
0

, (2.53)

where r0 is the interatomic distance, k a constant, and e the charge

of an electron. This very simplified calculation shows that Young’s

modulus should vary with r−4
0 . The same dependence should exist for

the bulk modulus k. Figure 2.38 shows that this type of dependence

is actually observed. In the log--log plot, the slope of −4 corresponds

to the dependence shown in Equation 2.53. Elements from groups I,

II, III, and IV obey that relationship. Elements of the same group were

taken together because they have the same valence. Group I elements

are monovalent and have the weakest bonding. Hence their line is

the lowest in Figure 2.38.

In spite of the fact that bonding is more complex in metals than

in ionic crystals, Gilman16 has shown that an r−4
0 type of relationship

can be found for metals. This is shown in Figure 2.39. The alkali

16 J. J. Gilman, Electronic Basis of the Strength of Materials (Cambridge, U.K.: Cambridge

University Press, 2003).
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metals. (Adapted from J. J. Gilman,

Mechanical Behavior of Crystalline

Solids, NBS Monograph, 59 (1963)

79.)

metals seem to obey the r−4
0 (where r0 is the interatomic distance)

quite well; the transition metals are situated above them. The elastic

properties are strongly dependent, obviously, on bonding. Figure 2.40

shows a plot of the bulk modulus versus melting point for a number

of transition metals. The melting point is the temperature at which

thermal energy is sufficient to disrupt the metallic bonding. Hence,

the stronger the bonding, the higher the melting point. This correl-

ation is clearly evident in Figure 2.40. The lines join elements from

the same column in the periodic table. Some of the series of three

elements fall remarkably well in a straight line: Cr--Mo--W, V--Nb--Ta,

Ag--Cu--Au.

A plot that emphasizes the importance of the electronic structure

on elastic constants is shown in Figure 2.41. The periodicity in the

variation of the Young’s moduli (lines represent rows in the periodic

table) is indicative of the importance of the electronic structure. Tran-

sition metals, which are characterized by strong bonding by electrons

from the d shell, have particularly high Young’s moduli. Os, Ru, and

Fe have six d electrons each and are the elements that have the high-

est melting point for each of the three rows of transition elements

in the periodic table. In Figure 2.40, it can be seen that the transi-

tion elements have C44 higher than would have been predicted from

the r−4
0 relationship. This confirms the indication that the strong d
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bonding is responsible for additional stiffness. One element stands

out in Figure 2.41: beryllium. Having a relatively small atomic number,

it has an extremely high stiffness, comparable with that of tungsten

and molybdenum. The ratio between Young’s modulus and density

is extremely high (six to seven times as high as for titanium and

aluminium). It has unique applications in the aerospace industry. Its

first use was in spacers for the Minuteman missile, and it is used in

space vehicles. A high stiffness is required in large satellites because

the lowest natural frequency of vibration must exceed a specified

value to avoid resonant coupling with the booster control system dur-

ing powered flight. The higher the stiffness, the higher the natural
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Fig. 2.42 Effect of temperature

on dynamic Young’s modulus.

(Adapted with permission from O.

D. Sherby, in Nature and Properties

of Materials, ed. J. Park (New York:

Wiley, 1967), p. 376.)

frequency of vibration. However, the metallurgical problems posed in

beryllium production are many, because of its structure (HCP), high

chemical reactivity, and high toxicity.

The dependence of elastic properties of a metal on interatomic

separation (which can, as a first approximation, be expressed as

r−4
0 ) may be applied to rationalize two different phenomena: the

temperature dependence of elastic properties and the effect of mag-

netic fields on elastic properties. They will be discussed below. As

the temperature increases, the metals expand; this lattice expansion

is treated in detail by Mott and Jones,17 but is beyond the scope of

this book. Suffice to say that as the temperature increases, the ampli-

tude of vibration of the atoms increases. This amplitude increase will

accommodate the thermal energy term (kT) and the expanded lat-

tice will have a larger r0. This, in turn, will produce a decrease in

the elastic constants. The change in elastic constants with tempera-

ture is much less pronounced than the change of yield stress, tensile

strength, and strain to failure. The Young’s modulus at the melting

point is usually between one-half to two-thirds of the low-temperature

value. The temperature dependence of the yield point is much more

pronounced because plastic deformation is a thermally activated pro-

cess. Figure 2.42 illustrates the changes in E with temperature for

some metals.

The effect of magnetic fields can be explained by the same ration-

ale. A magnetic field, due to the magnetostrictive effect, changes

the lattice parameter slightly; this, in turn, affects the elastic prop-

erties. When the Young’s modulus of nickel in the presence and

absence of a magnetic field is measured, appreciable differences are

found. Actually, between 200 and 360 ◦C (Curie temperature, where

ferromagnetic--paramagnetic transformation takes place) the Young’s

modulus of nickel increases with temperature.18 By appropriate alloy-

ing it is possible to obtain alloys that have essentially a constant

17 N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (New York: Dover,

1958).
18 O. D. Sherby, in Nature and Properties of Materials, ed. J. Park (New York: Wiley, 1967),

pp. 373, 375, 376.
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Fig. 2.43 Young’s and shear moduli ratios as a function of δ, a parameter that is a

measure of the strength of the second neighbour interaction compared to that of the

first neighbor interaction. (a) FCC and (b) BCC crystals (data points – experimental;

lines – calculated). In each of these figures a, b, c, and d refer to E111/E100, E110/E100,

G(111)/G(100), and G(100)[110]/G(100), respectively. (From T. Milstein and T. Marchall, Acta

Mater., 40 (1992) 1229.)

Young’s modulus over a certain temperature range. Such an alloy is

Elinvar (36% Ni, 12% Cr, 1 to 2% Si, 0.8% C, balance Fe), and it has an

essentially constant E between 15 and 40 ◦C; it is ideal for springs in

watches and other precision instruments.

The crystal structure has a very marked effect on the elastic

anisotropy of crystals. The standard ordering of Young’s moduli in

FCC and BCC crystals is:

E 111 > E 110 > E 100,

where the subscripts indicate the cubic axes.

This was clearly seen earlier in Figure 2.9(a), for copper. For simple

cubic crystals, the ordering is:

E 100 > E 110 > E 111.

This corresponds to the elastic moduli of cubic zirconia, as was seen

in Figure 2.9(b). The bonding of atoms along different crystallographic

orientations has been correlated with the relative values of Young’s

moduli.

Milstein and Marschall19 defined a parameter, δ, which is a meas-

ure of the strength of the second-neighbor interaction compared with

that of the nearest-neighbor interaction. The moduli ratios for FCC

and BCC materials as a function of this parameter are shown on

Figure 2.43(a) and (b), respectively. We plot ratios E111/E100, E110/E100,

G(111)/G(100), and G(100)[110]/G(100). Note that among FCC, aluminium has

19 T. Milstein and T. Marschall, Acta Mater., 40 (1992) 1229.
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the least anisotropy; for BCC, W is at the interaction of all curves, cor-

responding to a ratio of 1, i.e., perfect isotropy. The ratios for Young’s

moduli values range from 3.2 to 1 for FCC structures and from 8 to 0

for BCC structures. The important conclusion is that second-neighbor

interactions are very important in determining these ratios.

The Poisson’s ratios (ν) for monocrystals has values that range

widely, and can be quite different from the polycrystalline values

(∼0.3). These values vary much more than the bounds calculated ear-

lier for isotropic materials (0 < v < 0.5).
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Exercises

2.1 Rubber specimens, having an initial length of 5 cm, are tested, one in

compression and one in tension. If the engineering strains are −1.5 and +1.5,

respectively, what will be the final lengths of the specimens? What are the

true strains, and why are they numerically different?

2.2 An aluminum polycrystalline specimen is elastically compressed in plane

strain. If the true strain along the compression direction is −2 × 10−4, what

are the other two longitudinal strains?

2.3 Determine K, λ, and G for polycrystalline niobium, titanium, and iron,

from E and γ .

2.4 A state of stress is given by

σ11 = 250 MPa,

σ12 = 70 MPa,

σ22 = 310 MPa.
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Determine the principal stresses and the maximum shear stress, as well as

their angle with the system of reference.

2.5 Calculate the anisotropy ratio for the cubic metals in Table 2.3.

2.6 Show that a uniaxial compressive stress can be decomposed into a hydro-

static pressure and two states of pure shear. Use sketches if necessary.

2.7 Determine the principal stresses and the maximum shear stress, as

well as their angles with the system of reference given by the following

stress state:

[
σi j

] =
(

3 2

2 0

)
MPa.

2.8 Extensometers attached to the external surface of a steel pressure vessel

indicate that εt = 0.002 and εt = 0.005 along the longitudinal and transverse

directions, respectively. Determine the corresponding stresses. What would be

the error if Poisson’s ratio were not considered?

2.9 Calculate Young’s and shear moduli for monocrystalline iron along [100],

[110], and [111].

2.10 From the values obtained in Exercise 2.9, obtain a rough estimate of

the Young’s modulus of a polycrystalline aggregate, assuming that there are

only three orientations for the grains ([100], [110], and [111]) and that they

occur proportionally to their multiplicity factors. Compare your result with

the predictions of Voigt averages (isostrain) and Reuss averages (isostress).

2.11 A silver monocrystal is extended along [100]. Obtain the values for the

Young’s and shear moduli, as well as Poisson’s ratio.

2.12 (a) For Figure 2.25, plot the curve of true stress vs. true strain. (b) Taking

the slopes of the curve at various strains, plot the elastic modulus of rubber

as a function of strain. (c) Schematically draw polymer chains at different

positions in the curve.

2.13 A steel specimen is subjected to elastic stresses represented by the

matrix

σi j =

⎛
⎜⎝ 2 −3 1

−3 4 5

1 5 −1

⎞
⎟⎠ MPa.

Given that E = 200 GPa, ν = 0.3, calculate the corresponding strains.

2.14 Ultrasonic equipment was used to determine the longitudinal and shear

sound velocities of a metallic specimen having a density of 7.8 g/cm3. The

values obtained are

Ve = 5,300 m/s,

Vs = 3,300 m/s.

Determine the Young’s and shear moduli and Poisson’s ratio for this material.

What is the material?

2.15 A tubular specimen is being subjected to a torsional moment T =
600Nm. If the shear modulus of the material (Al) is equal to 26.1 GPa, what
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is the total angular deflection if the length is 1 m? The tube has a diameter

of 5 cm and a wall thickness of 0.5 cm. Assume the process to be elastic.

2.16 Using the Mohr circle construction, calculate the principal stresses and

the maximum shear stresses, as well as their orientation, for the sheet sub-

jected to the stresses shown in Figure Ex2.16.

Fig. Ex2.16

2.17 A state of stress is given by

σ11 = −500 MPa,

σ22 = 300 MPa,

σ12 = 150 MPa.

Determine the principal stresses and the maximum shear stress, as well as

their orientation, using the Mohr circle construction.

2.18 From the elastic stiffnesses for copper (see Table 2.3), determine the elas-

tic compliances.

2.19 From the elastic compliances S11, S12, and S14 for iron and tungsten,

determine the Young’s moduli along [111], [110], and [100].

2.20 Determine the elastic Young’s moduli for tungsten and ZrO2 along [112],

[122], and [123].

2.21 Determine the polycrystalline Young’s modulus for molybdenum using

Reuss’s and Voigt’s averages. Use elastic stiffnesses and compliances from

Tables 2.3 and 2.4.

2.22 Consider a bar made of steel with a cross-sectional area of 25 cm2 and

length of 20 cm. If we apply a load of 500 N along its length, what is the

strain energy density. Take E = 210 GPa.

2.23 Derive an expression for the strain energy stored in a circular bar of

length L subjected to a torque, T, along its axis. Recall that the shear stress

resulting from the torque T is given by τ = Tr/J, where r is the distance from

the centroid of the cross section and J is the polar moment of inertia. Use G

as the shear modulus of the material.

2.24 Plot Young’s modulus as a function of porosity for alumina, and

show what the value should be for a specimen having 5% porosity

(E Al2 O 3
= 378 GPa).

2.25 A specimen of Al2O3 contains microcracks that are approximately equal

to its grain size (20 μm). One grain in each 10 grains contains cracks. If the

uncracked materials has E0 = 378 GPa, determine Young’s modulus for the
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cracked material by use of Budiansky and O’Connell’s and Salganik’s equa-

tions.

2.26 Young’s modulus (E) of a cubic single crystal as a function of orientation

is given by

1

E hkl

= 1

E 100

− 3

(
1

E 100

− 1

E 111

) (
�2

1�
2
2 + �2

2�
2
3 + �2

3�
2
1

)
,

where �1, �2, and �3 are the direction cosines between the direction hkl and

[100], [010], and [001], respectively. This is another version of the expression

given in Example 2.10. For copper, E111 = 19 GPa and E100 = 66 GPa. Calculate

Young’s modulus for a copper single crystal in the [110] direction, and check

your answer against the one in Example 2.10.

2.27 A polymer has a viscosity of 1012 Pa, at 150 ◦C. If this polymer is subjected

to a tensile stress of 100 MPa at that temperature, compute the deformation

after 10 h. Assume the polymer to behave as a Maxwell solid. Take E = 5 GPa,

and use the equation

ε1 = σ

E
+ 1

3η
σ t.

2.28 For a given polymer, the activation energy for stress relaxation was meas-

ured to be 10 kJ/mol. If the stress relaxation time for this polymer at room

temperature is 3,600 s, what would be the relaxation time at 100 ◦C?

2.29 For an elastomeric material, we have the constitutive equation

σ = G

(
λ − 1

λ2

)
= E

3

[
λ − 1

λ2

]
,

where E is the elastic modulus at zero elongation. Show that, for very small

strains, this equation reduces to σ = Eε.

2.30 A cylindrical aluminum specimen (length = 100 mm, diameter = 10 mm)

is subjected to a torque equal to 40 Nm. If one end of the specimen is fixed

what is the deflection of the other end? Take E = 70 GPa and v = 0.3.

2.31 A steel bolt has 12 threads per mm. If the nut is tightened by one turn,

what stress will be generated in the steel bolt and aluminium sleeve? The bolt

diameter is 10 mm and the sleeve thickness is 2 mm.

2.32 Calculate Young’s modulus for rubber with a density of 1000 g/mol and

having intercross-link segments with a molecular weight of 2000 g/mol.

2.33 Describe dilation that occurs in the elastic deformation of a solid. Give

a mathematical expression in terms of strain components.

2.34 Consider a solid subjected to hydrostatic pressure, p, that results in a

dilation or volumetric strain given by

V/V = εp.

The bulk modulus, K, is defined by the ratio p/εp. By use of the generalized

Hooke’s law, show that

K = E /3(1 − 2ν),

where E is the Young’s modulus and ν is the Poisson’s ratio.
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2.35

(a) Compute the Poisson’s ratio for a material that is undergoing a uniaxial

tensile test with zero dilation.

(b) A student was given three different unidentified materials to determine

their Posson’s ratio. She determined the Poisson’s ratios to be 0.5, 0.3, and

0. She needs your help in identifying the class of material for each of

these ν values.

2.36 Discuss the advantages and disadvantages of Al, Ti, and Vitalium for use

in total hip replacement prostheses.

2.37 From Table 2.5, estimate the theoretical shear and cleavage strength for

nickel and titanium.

2.38 From Table 2.5, estimate the theoretical shear and cleavage strength for

magnesium and niobium.

2.39 From Table 2.3 find the elastic compliances for nickel.

2.40 From Table 2.3 find the elastic compliances for aluminum.

2.41 Plot the stress--strain curve for alumina in tension, knowing that the

density of microcracks increases linearly with stress (N = kσ ). The grain size

is 30 μm and the failure stress is 1 GPa; k = 5.45 × 104 m3/Pa, E0 = 380 GPa.

2.42 The following are given for tantalum:

C11 = 267 GPa,

C44 = 82.5 GPa,

C12 = 161 GPa. E

Determine the Young’s moduli in the directions [100], [110], and [111] after

calculating the elastic compliances.

2.43 The following values are given for niobium:

E = 105 GPa,

ν = 0.4.

Calculate the values of G, B, K, and λ.

2.44 Plot the engineering stress--engineering strain curve for a rubber at ambi-

ent temperature and liquid nitrogen temperature, up to a strain of 10, using

the Equation 2.48. The number of chain segments per unit volume (m3) is

2 × 1025.

2.45 From the elastic stiffness for a cubic material, Nb (C11 = 242 GPa, C12 = 129

GPa, C44 = 286 GPa), find the elastic compliances.

2.46 The potential energy of a Na+ Cl− ion pair at the distance r is given by:

U = Ui − q2

4πε0r
+ B

r 9
,

where q = 1.6 × 10−19 C is the electronic charge, ε0 = 8.85 × 10−12 C2/

(Nm2) is the permittivity of vacuum, and Ui = 1.12 eV is the reference energy

of two infinitely separated ions. If the equilibrium distance between the ions

is r0 = 0.276 nm, calculate:

(a) the value of the constant B;

(b) the total force between ions, and its attractive and repulsive portions,

when r = 0.25 nm;
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(c) the total force between ions, and its attractive and repulsive portions,

when r = 0.3 nm;

(d) the potential energy between two ions when they are at a distance r = 1

nm.

2.47 The potential energy of two atoms, a distance r apart, is

U = − A

r m
+ B

r n
.

Given that the atoms form a stable molecule at a separation r = r0, with a

binding energy U = U0, derive:

(a) the expressions for the constants A and B in terms of m, n, r0, and U0;

(b) the expressions for the stiffness S of the bond at arbitrary r and at r0;

(c) the expression for the distance r* of the maximum tensile force (needed

to break the bond between atoms), and the expression for that force (F ∗);

(d) Given that m = 2, n = 10, and that the atoms form a stable molecule at a

separation r0 = 0.3 nm, with a binding energy U0 = −4 eV, evaluate A, B,

r ∗, F ∗, and the stiffness S0 of the bond at r = r0.

2.48 Plot the stress--strain curve for SiC in tension, knowing that the den-

sity of microcracks increases linearly with stress (N = kσ ). The grain size is

20 μm. The failure stress is 1 GPa; given: k = 5.45 × 104 m3/Pa, E0 = 420 GPa.

2.49 Derive the expression:

G = E

2(1 + ν)
.

The symbols have their usual significance.

2.50 Describe the microscopic changes that occur during the solidification

and cooling process of a partly crystalline thermoplastic as it encounters the

glass transition regimen.

2.51 From the data on elastic stiffness and compliances for HCP zirconium

(Tables 2.3 and 2.4), determine the elastic stiffness, C13, missing in Table 2.3.

2.52 Using the elastic stiffness of tin (exhibiting a tetragonal structure) given

in Table 2.3, find the elastic compliances.

2.53

(a) Describe the internal structure of an artery, and state the importance of

its components to the mechanical response.

(b) Explain how you would go about developing an artificial blood vessel,

taking into account materials selection and properties, the harsh envir-

onment within the body, and biocompatibility.



Chapter 3

Plasticity

3.1 Introduction

Upon being mechanically stressed, a material will, in general,

exhibit the following sequence of responses: elastic deformation,

plastic deformation, and fracture. This chapter addresses the second

response: plastic deformation. A sound knowledge of plasticity is of

great importance for the following reasons.

� Many projects are executed in which small plastic deformations of

the structure are accepted. The ‘‘theory of limit design” is used

in applications where the weight factor is critical, such as space

vehicles and rockets. The rationale for accepting a limited plastic

deformation is that the material will work-harden at that region,

and plastic deformation will cease once the flow stress (due to work-

hardening) reaches the applied stress.
� It is very important to know the stresses and strains involved in

deformation processing, such as rolling, forging, extrusion, draw-

ing, and so on. All these processes involve substantial plastic de-

formation, and the response of the material will depend on its

plastic behavior during the processes. The application of plasticity

theory to such processes is presented later in this chapter.
� The mechanism of fracture can involve plastic deformation at the

tip of a crack. The way in which the high stresses that develop at

the crack can be accommodated by the surrounding material is

of utmost importance in the propagation of the crack. A mater-

ial in which plastic deformation can take place at the crack is

‘‘tough,” while one in which there is no such deformation is

‘‘brittle.”
� The stress at which plastic deformation starts is dependent upon

the stress state. A material can have a much greater strength when

it is confined -- that is, when it is not allowed to flow laterally --

than when it is not confined. This will be discussed in detail later.

A number of criteria for plastic deformation and fracture will be

examined in this chapter.



162 PLASTICITY

(a) (b) (c) (d) (e)

(g)(f)

SPECIMEN

Fig. 3.1 Common tests used to

determine the monotonic strength

of materials. (a) Uniaxial tensile

test. (b) Upsetting test. (c)

Three-point bending test. (d)

Plane-strain tensile test. (e)

Plane-strain compression (Ford)

test. (f) Torsion test. (g) Biaxial

test.

The mechanical strength of a material under a steadily increasing

load can be determined in uniaxial tensile tests, compression (upset-

ting) tests, bend tests, shear tests, plane-strain tensile tests, plane-

strain compression (Ford) tests, torsion tests, and biaxial tests. The

uniaxial tensile test consists of extending a specimen whose longitu-

dinal dimension is substantially larger than the two lateral dimen-

sions (Figure 3.1(a)). The upsetting test consists of compressing a cylin-

der between parallel platens; the height/diameter ratio has to be lower

than a critical value in order to eliminate the possibility of instability

(buckling) (Figure 3.1(b)). After a certain amount of strain, ‘‘barreling”

takes place, destroying the state of uniaxial compression. The three-

point bend test is one of the most common bending tests. A specimen

is simply placed between two supports; a wedge advances and bends

it through its middle point (Figure 3.1(c)). Plane-strain tests simulate

the conditions encountered by a metal in, for instance, rolling. Load-

ing is imparted in such a way as to result in zero strain along one

direction. The two most common geometries are shown in Figure

3.1(d) and (e). In the tensile mode, two grooves are made parallel to

each other, on opposite sides of a plate. The width of the plate is

much greater than its thickness in the region of reduced thickness;

hence, flow is restricted in the direction of the width. In the com-

pressive mode (Ford test), a parallelepiped of metal is machined and

inserted between the groove-and-punch setup of Figure 3.1(e). As the

top punch is lowered, the specimen is plastically deformed. Strain is

restricted in one direction. In the torsion test (Figure 3.1(f)), the cylin-

drical (or tubular) specimen is subjected to a torque and undergoes

an attendant angular displacement. One of the problems in the ana-

lysis of the torsion test is that the stress varies as the distance from

the central axis of the specimen. Accordingly, the biaxial test is usu-

ally applied to thin sheets, and one of the configurations is shown
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Fig. 3.2 A servohydraulic

universal testing machine linked to

a computer. (Courtesy of MTS

Systems Corp.)

in Figure 3.1(g). Other configurations involve testing a tubular speci-

men in tension with an internal pressure and testing a tubular speci-

men in tension with torsion. The results of the tests just described

can be expressed graphically as stress-versus-strain curves. They can be

compared directly by using effective stresses and effective strains. A

machine commonly used to carry out the tests is the so-called univer-

sal testing machine. Both screw-driven (Figure 2.1) and servohydraulic

machines are very useful for mechanical testing. Figure 3.2 shows a

typical servohydraulic testing machine.

3.2 Plastic Deformation in Tension

Figure 3.3 shows a number of stress--strain curves for the same

material: AISI 1040 steel. This might look surprising at first, but

it merely reflects the complexity of the microstructural--mechanical

behavior interactions. Both engineering and true stress--strain curves

are shown. (The definitions of these are given in Chapter 2.) Engin-

eering (or nominal) stress is defined as P/A0, while true stress is P/A,

where A0 and A are the initial and current cross-sectional areas,

respectively. Engineering (or nominal) strain is defined as �L/L0, while

true strain is ln L/L0, where L and L0 are the current and initial lengths,
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Fig. 3.3 Stress–strain curves for

AISI 1040 steel subjected to

different heat treatments; curves

obtained from tensile tests.

respectively. The yield stress varies from 250 to 1,100 MPa, depending

on the heat treatment. Conversely, the total strain varies from 0.38

to 0.1. The properties of steel are highly dependent upon heat treat-

ment, and quenching produces a hard, martensitic structure, which

is gradually softened by tempering treatments at higher temperatures

(200, 400, and 600 ◦C). The annealed structure is ductile, but has a low

yield stress. The ultimate tensile stresses (the maximum engineering

stresses) are marked by arrows. After these points, plastic deform-

ation becomes localized (called necking), and the engineering stresses

drop because of the localized reduction in cross-sectional area. How-

ever, the true stress continues to rise because the cross-sectional area

decreases and the material work-hardens in the neck region. The

true-stress--true-strain curves are obtained by converting the tensile

stress and its corresponding strain into true values and extending the

curve.

We know that the volume V is constant in plastic deformation:

V = A0 L 0 = AL .

Consequently,

A = A0 L 0

L
. (3.1)

In what follows, we use the subscripts e and t for engineering (nomi-

nal) and true stresses and strains, respectively. We have

εe = L − L 0

L 0

= A0

A
− 1, (3.2)

σt

σe

= P

A
× A0

P
= A0

A
= 1 + εe , (3.3)

σt = (1 + εe )σe . (3.4)
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On the other hand, the incremental longitudinal true strain is defined

as

dεt = dL

L
. (3.5)

For extended deformations, integration is required:

εt =
∫ L

L 0

dL

L
= ln

L

L 0

, (3.6)

exp(εt ) = L

L 0

. (3.7)

Substituting Equations 3.2 and 3.3 into Equation 3.7, we get

σt = P

A0

exp(εt ). (3.8)

Engineering (or nominal) stresses and strains are commonly used in

tensile tests, with the double objective of avoiding complications in

the computation of σ and ε and obtaining values that are more sig-

nificant from an engineering point of view. Indeed, the load-bearing

ability of a beam is better described by the engineering stress, referred

to the initial area A0. It is possible to correlate engineering and true

values.

From Equations 3.4 and 3.8, the following relationship is

obtained:

εt = ln(1 + εe ) (3.9)

Fig. 3.4 Idealized shapes of

uniaxial stress–strain curve. (a)

Perfectly plastic. (b) Ideal

elastoplastic. (c) Ideal elastoplastic

with linear work-hardening. (d)

Parabolic work-hardening

(σ = σ o + Kεn).

All of the preceding curves, as well as other ones, are represented

schematically by simple equations in various ways. Figure 3.4 shows

four different idealized shapes for stress--strain curves. Note that these

are true-stress--true-strain curves. When we have a large amount of

plastic deformation, the plastic strain is large with respect to the

elastic strain, and the latter can be neglected. If the material does

not work-harden, the plastic curve is horizontal, and the idealized

behavior is called perfectly plastic. This is shown in Figure 3.4(a). If

the plastic deformation is not so large, the elastic portion of the

curve cannot be neglected, and one has an ideal elastoplastic mater-

ial (Figure 3.4(b)). A further approximation to the behavior of real

materials is the ideal elastoplastic behavior depicted in Figure 3.4(c);

this is a linear curve with two slopes E1 and E2 that represent the

material’s elastic and plastic behavior, respectively. One could repre-

sent the behavior of the steels in Figure 3.3 fairly well by this elasto-

plastic, linear work-hardening behavior. It can be seen that E2 � E1.

For example, for annealed steel, E2
∼= 70 MPa, while E1 = 210 GPa.

However, a better representation of the work-hardening behavior is

obtained by assuming a gradual decrease in the slope of the curve

as plastic deformation proceeds (shown in Figure 3.4(d)). The convex
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shape of the curve is well represented by an equation of the

type

σ = K εn, (3.10)

where n < 1. This response is usually called ‘‘parabolic” hardening,

and one can translate it upward by assuming a yield stress σ 0, so that

Equation 3.10 becomes

σ = σ0 + K εn. (3.11)

The exponent n is called the work-hardening coefficient.

These equations that describe the stress--strain curve of a poly-

crystalline metal are known as the Ludwik--Hollomon equations.1 In

them, K is a constant, and the exponent n depends on the nature of

the material, the temperature at which it is work-hardened, and the

strain. The exponent n generally varies between 0.2 and 0.5, while the

value of K varies between G/100 and G/1,000, G being the shear modu-

lus. In Equation 3.11 ε is the true plastic strain, while in Equation 3.10

ε is true total strain. Equations 3.11 and 3.10 describe parabolic behav-

ior. However, such a description is valid only in a narrow stretch of the

stress--strain curve. There are two reasons for this. First, the equations

predict a slope of infinity for ε = 0, which does not conform with the

experimental facts. Second, the equations imply that σ → ∞ when

ε → ∞. But we know that this is not correct and that, experimentally,

a saturation of stress occurs at higher strains.

Voce2 introduced a much different equation,

σs − σ

σs − σ0

= exp

(
− ε

εc

)
, (3.12)

where σ s, σ 0, and εc are empirical parameters that depend on the

material, the temperature, and the strain rate. This equation says that

the stress exponentially reaches an asymptotic value of σ s at higher

strain values. Furthermore, it gives a finite slope to the stress--strain

curve at ε = 0 or σ = σ 0.

It should be noted that the parameters in the preceding equations

(3.10 to 3.12) depend on the choice of the initial stress and/or strain.

For instance, if one prestrained a material, one would affect K in the

Ludwik--Hollomon equation.

The fact that some equations reasonably approximate the stress--

strain curves does not imply that they are capable of describing the

curves in a physically satisfactory way. There are two reasons for this:

(1) In the different positions of stress--strain curves, different micro-

scopic processes predominate. (2) Plastic deformation is a complex

1 See P. Ludwik, Elemente der Technologischen Mechanik (Berlin: Springer, 1909), p. 32; and

J. H. Hollomon, Trans. AIME, 162 (1945) 268.
2 E. Voce, J. Inst. Met., 74 (1948) 537.
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physical process that depends on the path taken; it is not a thermody-

namic state function. That is to say, the accumulated plastic deform-

ation is not uniquely related to the dislocation structure of the mate-

rial. This being so, it is not very likely that simple expressions could

be derived for the stress--strain curves in which the parameters would

have definite physical significance.

Some alloys, such as stainless steels, undergo martensitic phase

transformations induced by plastic strain. This type of transformation

alters the stress--strain curve. (See Chapter 11.) Other alloys undergo

mechanical twinning beyond a threshold stress (or strain), which

affects the shape of the curve. In these cases, it is necessary to divide

the plastic regimen into stages. It is often useful to plot the slope

of the stress--strain curve vs. stress (or strain) to reveal changes in

mechanism more clearly.

In spite of its limitations, the Ludwik--Hollomon Equation 3.11 is

the most common representation of plastic response. When n = 0, it

represents ideal plastic behavior (no work-hardening). More general

forms of this equation, incorporating both strain rate and thermal

effects, are often used to represent the response of metals; in that

case they are called constitutive equations. As will be shown in Chap-

ter 6, the flow stress of metals increases with increasing strain rate

and decreasing temperature, because thermally activated dislocation

motion is inhibited.

The Johnson-Cook equation

σ = (σ0 + K εn)

(
1 + C ln

ε̇

ε̇0

) [
1 −

(
T − Tr

Tm − Tr

)m]
(3.13)

is widely used in large-scale deformation codes. The three groups of

terms in parentheses represent work-hardening, strain rate, and ther-

mal effects, respectively. The constants K, n, C, and m are material

parameters, and Tr is the reference temperature, Tm the melting point,

and ε̇0 the reference strain rate. There are additional equations that

incorporate the microstructural elements such as grain size and dis-

location interactions and dynamics: they are therefore called ‘‘phys-

ically based.” The most common ones are the Zerilli--Armstrong3 and

the MTS (materials threshold stress, developed at Los Alamos National

Laboratory) equations. The basic idea is to develop one equation that

represents the mechanical response of a material from 0 K to 0.5 Tm

and from very low strain rates (∼10−5 s−1) to very high strain rates

(∼105 s−1). Nevertheless, three factors throw monkey wrenches into

these equations: creep (see Chapter 13), fatigue (Chapter 14), and envir-

onmental effects (Chapter 16). The effects of these factors are very

complex and cannot be simply ‘‘plugged into” the equations.

3 See F. Zerilli and R. W. Armstrong, J. Appl. Phys., 68 (1990) 1580.
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Example 3.1

For the stress--strain curve shown in Figure E3.1.1 (tantalum tested at

strain rate of 10−4 s−1), obtain the parameters of the Ludwik--Hollomon

equation. Estimate the duration of the test in seconds.
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Fig. E3.1.1

Solution: From the σ − ε curve, we have

σ0 = 160 MPa.

We use the Ludwik--Hollomon equation

σ − σ0 = K εn,

so that

log(σ − σ0) = log K + n log ε,

which is a linear equation. We then make a plot of log (σ − σ 0) vs log

ε (shown in Figure E3.1.2) from the following table of values.

σ ε log(σ – σ 0) log ε

280 0.05 2.08 –1.3
345 0.1 2.27 –1
385 0.15 2.35 –0.82
415 0.2 2.41 –0.70
435 0.25 2.44 –0.60
455 0.3 2.47 –0.52

From the new plot, we have

log K = 2.75,

K = 589,

n = slope ≈ 0.5.

Substituting K and n into the Ludwik--Hollomon equation yields

σ = 160 + 589ε0.5 (in MPa).
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The duration of the test, given that

ε̇ = 10−4s−1

= dε

dt
≈ �ε

�t
,

is

�t = �ε

ε̇
≈ 0.33

10−4

= 3.3 × 103s.

The volume of a material is assumed to be constant in plastic defor-

mation. It is known that such is not the case in elastic deform-

ation. As was shown in Section 2.5 , the constancy in volume implies

that

ε11 + ε22 + ε33 = 0

or

ε1 + ε2 + ε3 = 0 (3.14)

and that Poisson’s ratio is 0.5. Figure 3.5 shows that this assumption

is reasonable and that ν rises from 0.3 to 0.5 as deformation goes

from elastic to plastic.

However, prior to delving into the plasticity theories, we have to

know, for a complex state of stress, the stress level at which the body

starts to flow plastically. The methods developed to determine this

are called f low criteria (see Section 3.7). Figure 3.6 shows engineering-

and true-stress--strain curves for the same hot-rolled AISI 4140 steel.

In the elastic regimen the coincidence is exact, because strains are

very small (∼0.5%). From Equation 3.9, we can see that we would have

εe ≈ εt. As plastic deformation increases, εt and εe become progres-

sively different. For εt = 0.20 (a common value for metals), we have

εe = 0.221. For this deformation, the true stress is 22.1% higher than

the nominal one. It can be seen that these differences become greater

with increasing plastic deformation. Another basic difference between
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Fig. 3.7 Engineering- (or nominal-) stress–strain curves (a) without and (b) with a yield

point.

the two curves is the decrease in the engineering stress beyond a

certain value of strain (∼0.14 in Figure 3.6). This phenomenon is

described in detail in Section 3.2.2.

3.2.1 Tensile Curve Parameters
Figure 3.7 shows two types of engineering stress--strain curves. The

first does not exhibit a yield point, while the second does. Many

parameters are used to describe the various features of these curves.

First, there is the elastic limit. Since it is difficult to determine the

maximum stress for which there is no permanent deformation, the

0.2% offset yield stress (point A in the Figure 3.7(a) is used instead;

it corresponds to a permanent strain of 0.2% after unloading. Actu-

ally, there is evidence of dislocation activity in a specimen at stress

levels as low as 25% of the yield stress. The region between 25 and

100% of the yield stress is called the microyield region and has been

the object of careful investigations. In case there is a drop in yield,

an upper (B) and a lower (C) yield point are defined in Figure 3.7(b). The

lower yield point depends on the machine stiffness. A proportional

limit is also sometimes defined (D); it corresponds to the stress at

which the curve deviates from linearity. The maximum engineering

stress is called the ultimate tensile stress (UTS); it corresponds to point

D′ in Figure 3.7. Beyond the UTS, the engineering stress drops until

the rupture stress (E) is reached. The uniform strain (F) corresponds to

the plastic strain that takes place uniformly in the specimen. Beyond

that point, necking occurs. Necking is treated in detail in Section

3.2.2. G is the strain-to-failure. Additional parameters can be obtained

from the stress--strain curve: (1) The elastic energy absorbed by the

specimen (the area under the elastic portion of the curve) is called

resilience; (2) the total energy absorbed by the specimen during deform-

ation, up to fracture (the area under the whole curve), is called work

of fracture. The strain rate undergone by the specimen, ε̇e = dεe/dt, is

equal to the crosshead velocity, divided by the initial length L0 of the

specimen.
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The reduction in area is defined as

q = A0 − A f

A0

, (3.15)

where A0 and Af are the initial area and cross-sectional area in the

fracture region, respectively. The true strain at the fracture is defined

as

ε f = ln
A0

A f

. (3.16)

The true uniform strain is

εu = ln
A0

Au

, (3.17)

where Au is the cross-sectional area corresponding to the onset of

necking (when the stress is equal to the UTS).

3.2.2 Necking
Necking corresponds to the part of the tensile test in which instability

exists. The neck is a localized region in the reduced section of the

specimen in which the greatest portion of strain concentrates. The

specimen ‘‘necks” down in this region. Figure 3.8 shows the onset

of necking in a tensile specimen; arrows show the region where the

cross section starts to decrease.

Several criteria for necking have been developed. The oldest one

is due to Considère.4 According to Considère, necking starts at the

maximum stress (UTS), when the increase in strength of the material

attributed to work-hardening is less than the decrease in the load-

bearing ability owing to the decrease in cross-sectional area. In other

words, necking starts when the increase in stress due to the reduction

in cross-sectional area starts to exceed the increase in load-bearing

ability because of work-hardening. We have, at the onset of necking,

dσe

dεe

= 0 (3.18)

Substituting Equations 3.4 and 3.9 into 3.18 yields

d
(

σt

1+εe

)
d(eεt − 1)

= d
(

σt

eεt

)
d(eεt − 1)

= 0.

Fig. 3.8 Tensile specimen being

tested; arrows show onset of

necking.

Making the transformation of variables

eεt − 1 = Z , eεt = Z + 1

yields

d
(

σt

Z +1

)
d Z

= σt

d(Z + 1)−1

d Z
+ (Z + 1)−1 dσt

d Z
= 0,

− σt (Z + 1)−2 + (Z + 1)−1 dσt

d Z
= 0,

4 A. Considère, Ann. Ponts. Chaussèes, Ser. 6. (1885) 574.
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Fig. 3.9 Log dσ /dε versus log ε

for stainless steel AISI 302.

(Adapted with permission from

A. S. de S. e Silva and S. N.

Monteiro, Metalurgia-ABM, 33

(1977) 417.)

or

−σte
−2εt + e−εt = dσt

d(eεt − 1)
= 0,

dσt

d(eεt − 1)
= σte

−εt ,

dσt

σt

= e−εt d(eεt − 1) = dεt .

Using Equation 3.10, we obtain

dσt = nK εn−1dεt, or
dσ

dεt

= σt (3.19)

and it follows from Equation 3.19 that σ t = nKεn−1. Finally, applying

Equation 3.10 again results in Kεn = nKεn−1, so that

εu = n.

This is an important result. The work-hardening coefficient is numer-

ically equal to the true uniform strain and can be easily obtained in

this way.

It is sometimes useful to present results of tensile tests in plots of

dσ /dε versus σ or dσ /dε versus ε. An example of a plot of log (dσ /dε)

versus log ε for AISI 302 stainless steel is given in Figure 3.9. It can

be seen that dσ /dε decreases with ε, indicating that the necking ten-

dency steadily increases. For metals that do not exhibit any work-

hardening capability, necking should start immediately at the onset

of plastic flow. Under certain conditions (predeformation at very low

temperature or very high strain rate) some metals can exhibit this

response, called work-softening.

The formation of the neck results in an accelerated and localized

decrease in the cross-sectional area. Figure 3.6 shows how the true-

stress--true-strain curve continues to rise after the onset of necking. It

can also be seen that the true strain at fracture is much higher than

the ‘‘total strain.” The correct plotting of the true-stress--true-strain

curve beyond the UTS requires determination of the cross-sectional

area in the neck region continuously after necking. This is difficult

to do, and the simplest way is to obtain one single point on the
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plot, joining it to the point corresponding to the maximum load. For

this reason, a dashed line is used in Figure 3.6. The deformation in

the neck region is much higher than the one uniformly distributed

in the specimen. It can be said that the neck acts as a second ten-

sile specimen. Since its length is smaller than that of the specimen,

and the crosshead velocity is constant, the strain rate is necessarily

higher.

The onset of necking is accompanied by the establishment of a tri-

axial state of stress in the neck; the uniaxial stress state is destroyed by

the geometrical irregularity. After studying flow criteria (see Section

3.7), we will readily see that the flow stress of a material is strongly

dependent on the state of stress. Hence, a correction has to be intro-

duced to convert the triaxial flow stress into a uniaxial one. If we

imagine an elemental cube aligned with the tensile axis and situated

in the neck region, it can be seen that it is subjected to tensile stresses

along three directions. (The external boundaries of the neck gener-

ate the tensile components perpendicular to the axis of the speci-

men.) The magnitude of the transverse tensile stresses depends on

the geometry of the neck, the material, the shape of the specimen,

the strain-rate sensitivity of the material, the temperature, the pres-

sure, and so on. Bridgman5 introduced a correction from a stress

analysis in the neck. His analysis applies to cylindrical specimens.

The equation that expresses the corrected stress is

σ = σav

(1 + 2R/rn) ln(1 + rn/2R )
, (3.20)

where R is the radius of curvature of the neck and rn is the radius

of the cross section in the thinnest part of the neck. Thus, one has

to continuously monitor the changes in R and rn during the test to

perform the correction.

Figure 3.10 presents a plot in which the corrections have already

been computed as a function of strain beyond necking. There are three

curves, for copper, steel, and aluminum. The correction factor can be

read directly from the plot shown. εu is the true uniform strain (the

strain at onset of necking). In Figure 3.6, the true-stress--true-strain

curve that was corrected for necking by the Bridgman technique lies

slightly below the one determined strictly from the reduction in area

at fracture and the load at the breaking point. This is consistent with

Figure 3.10; σ is always lower than σ av.

Necking is a characteristic of tensile stresses; compressive stresses

are not characterized by necking. Barreling is the corresponding devi-

ation from the uniaxial state in compressive tests. Hence, metals will

exhibit necking during deformation processing only if the state of

stress is conducive to it (tensile). Figure 3.11 shows plainly how the

work-hardening capacity of a metal greatly exceeds that in an indi-

vidual tensile test. Wire was drawn to different strains: drawing the

5 P. W. Bridgman, Trans. ASM, 32 (1974) 553.
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Fig. 3.11 Stress–strain curves for Fe–0.003% C alloy wire, deformed to increasing

strains by drawing; each curve is started at the strain corresponding to the prior

wire-drawing reduction. (Courtesy of H. J. Rack.)

wire consists of pulling it through a conical die; at each pass, there is

a reduction in cross section. Tensile tests were conducted after differ-

ent degrees of straining (0 to 7.4) by wire drawing; it can be seen that

the wire work-hardens at each step. However, the individual tensile

tests are interrupted by necking and fracture. In wire-drawing, neck-

ing and fracture are inhibited by the state of stress in the deformation

zone (compressive). The individual true-stress--true-strain curves were

corrected for necking by Bridgman’s technique; in each case, the indi-

vidual curve fits fairly well into the overall work-hardening curve. It

may be concluded that the individual tensile test gives only a very
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limited picture of the overall work-hardening response of a metal; for

the wire in Figure 3.11 the total strain exceeded 7.4.

3.2.3 Strain Rate Effects
For many materials, the stress--strain curves are sensitive to the strain

rate ε̇. The lowest range of strain rates corresponds to creep and stress-

relaxation tests. The tensile tests are usually conducted in the range

10−4 s−1 < ε̇ < 10−2 s−1. At strain rates on the order of 102 s−1,

inertial and wave-propagation effects start to become important. The

highest range of strain rates corresponds to the passage of a shock

wave through the material.

More often than not, the flow stress increases with strain rate;

the work-hardening rate is also affected by it. A parameter defined to

describe these effects

m = ∂ ln σ

∂ ln ε̇

∣∣∣∣
ε,T

, (3.21)

is known as the strain rate sensitivity. Equation 3.21 can also be

expressed as

σ = K ε̇m. (3.22)

where K is a constant. Note that this K is different from the Ludwik--

Hollomon parameter.

Materials can be tested over a wide range of strain rates; however,

standardized tensile tests require well-characterized strain rates that

do not exceed a critical value. High-strain-rate tests are often used to

obtain information on the performance of materials under dynamic

impact conditions. The cam plastometer is one of the instruments

used. In certain industrial applications, metals are also deformed at

high strain rates. Rolling mills generate bar velocities of 180 km/h;

the attendant strain rates are extremely high. In wire-drawing, the

situation is similar.

Figure 3.12(a) shows the effect of different strain rates on the ten-

sile response of AISI 1040 steel. The yield stress and flow stresses at dif-

ferent values of strain increase with strain rate. The work-hardening

rate, on the other hand, is not as sensitive to strain rate. This illus-

trates the importance of correctly specifying the strain rate when

giving the yield stress of a metal. Not all metals exhibit a high strain

rate sensitivity: Aluminum and some of its alloys have either zero

or negative m. In general, m varies between 0.02 and 0.2 for homolo-

gous temperatures between 0 and 0.9 (90% of the melting point in K).

Hence, one would have, at the most, an increase of 15% in the yield

stress by doubling the strain rate. It is possible to determine m from

tensile tests by changing the strain rate suddenly and by measuring

the instantaneous change in stress. This technique is illustrated in
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Fig. 3.12 (a) Effect of strain rate

on the stress–strain curves for

AISI 1040 steel. (b) Strain-rate

changes during tensile test. Four

strain rates are shown: 10−1,

10−2, 10−3, and 10−4 s−1.

Figure 3.12(b). Applying Equation 3.22 to two strain rates and elimin-

ating K, we have

m = ln (σ2/σ1)

ln (ε̇2/ε̇1)
(3.23)

The reader can easily obtain m from the strain-rate changes in the

figure.

Some alloys show a peculiar plastic behavior and are called super-

plastic. When necking starts, the deformation concentrates itself at

the neck. Since the velocity of deformation is constant, and the effec-

tive length of the specimen is reduced during necking, the strain

rate increases (ε̇ = ν/L). If a material exhibits a positive strain-rate

sensitivity, the flow stress in the neck region will increase due to the

increased strain rate; hence, necking is inhibited. This topic is treated
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in greater detail in Section 15.8 -- Superplasticity; it is what takes place

in superplastic alloys, which can undergo uniform plastic strains of

up to 5,000%.

Example 3.2

Can the necking phenomenon be observed in any kind of mechanical

test? Point out some of the problems that this phenomenon can cause

during tensile testing.

Solution: No, necking is an artifact of the tensile test only. A reduction

in cross-sectional area at any irregularities along the length of the speci-

men occurs in the tension mode only, and therefore, the phenomenon

of necking occurs in tension only. In compression, the specimen bulges

out.

After necking starts, the plastic deformation is concentrated in a

very narrow region of the sample. Thus, one must not compare the

total deformation corresponding to failure for two specimens that have

different gage lengths. In order to avoid such complications, one should

only compare the uniform elongation or use the reduction in area, i.e.,

the true-strain definition of the final strain. Strain gages and clip-on

extensometers will not function properly or give accurate results after

necking has begun.

Example 3.3

Tensile testing of brittle materials such as ceramics is not very common,

but is being resorted to in many laboratories. Why? Comment on the

problems of doing tensile testing on ceramics.

Solution: Direct tensile testing of a sample results in a simple stress

state over the whole volume of the sample gage length. All the volume

and surface flaws in the gage length of the specimen are called into

play and lead to a true measure of the material strength. Hence, there

is increasing interest in tensile testing of ceramics. One major problem,

however, is that of alignment of the sample. Any offcenter application

of the load or loading at an angle can result in a combined state of

bending and tension in the specimen. Stresses induced in such a state

are called parasitic bending stresses and can lead to errors in the computed

tensile strength values or even fracture the sample while it is being

aligned in the machine. Some self-aligning grips have been designed to

take care of these problems. This leads to rather long specimens and

rather complex machining of the specimen. All of this makes tensile

testing of ceramics very expensive!
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Example 3.4

Determine, for the curve shown in Figure E3.4.1,
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(a) Young’s modulus

(b) the UTS

(c) the yield stress (with a 0.2% offset)

(d) the uniform strain

(e) the total strain

(f) the engineering stress--strain curve.

D0

L0

Fig. E3.4.2

The dimensions of the specimen, which is depicted in Figure E3.4.2,

are:

L 0 = 20 mm,

D 0 = 4 mm.

Solution:

(a) The elastic region is the straight line of the stress--strain curve.

Taking both ends of this line, we obtain

Point 1 : F1 = 0 kN, �l1 = 0,

Point 2 : F2 = 5.5 kN, �l2 = 0.175 mm.
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To calculate Young’s modulus (E = �σ /�ε), we have to change F, �l

in terms of σ , ε:

Point 1:

σ1 = F1

A0

= 0,

ε1 = �l1

L 0

= 0.

Point 2:

σ2 = F2

A0

= 5.5

π (2)2
kN

mm2
≈ 0.44 kN/mm2 = 440 MPa,

ε2 = �l2

L 0

≈ 0.175

20
≈ 0.009.

So

E = �σ

�ε
= σ2 − σ1

ε2 − ε1

≈ 440

0.009
≈ 49000 MPa ≈ 49 GPa

(b) The UTS is the maximum value of the stress reached just before

necking. Therefore, from the stress--strain curve, the UTS is equal to

the stress corresponding to F ≈ 7.5 kN. So

UTS = 7.5

π (2)2
≈ 0.6 kN/mm2 ≈ 600 MPa

(c) The 0.2%-offset yield stress is

ε = �l

L 0

,
ε = 0.2% = 0.002,

l0 = 20 mm.

Therefore,

�l = ε · l0 = 0.002 × 20 = 0.04 mm.

If you draw a line parallel to the elastic region calculated in part

(a), from �l = 0.04 mm, you will find that the point of intersection

with the stress--strain curve is at F ≈ 6 kN. At that point,

σy = 6

π (2)2
≈ 0.48 kN/mm2 = 480 MPa.

(d) For uniform strain, make a parallel line from the UTS point to the

stress axis. You will then find that

�lu ≈ 1.5 mm.

The percent uniform strain is

�lu

L 0

× 100% = 1.5

20
× 100% = 7.5%.

(e) To find the total strain, we repeat (d) from the failure point. We

have

�lt ≈ 3.7 mm.

The percent total strain is

�lt

L 0

× 100% = 3.7

20
× 100% = 18.5%.
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(f) The engineering stress--strain curve is as shown in Figure E3.4.3.
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Example 3.5

The load--extension curve of an aluminum alloy, shown in Figure E3.5.1

was taken directly from a testing machine. A strain-gage extensometer

was used, so machine stiffness effects can be ignored. From this curve,

obtain the true and engineering stress--strain curves. Also, calculate the

following parameters:

(a) Young’s modulus

(b) the UTS

(c) the 0.2%-offset yield stress

(d) the uniform strain

(e) the total strain

(f) the reduction in area at the fracture.
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Solution: We first change the coordinates to stress and strain. For engin-

eering stresses, this is easily done:

σe = P

A0

(A0 = 28.26 mm2),

εe = �L

L 0

(L 0 = 54 mm).

The shape of the curve remains the same. For true stresses and true

strains, we have to convert the engineering values into true values using

the equations

σt = σe (1 + εe ),

εt = ln(1 + εe ).

This is valid up to the onset of necking. Beyond necking (which starts

at the UTS), we have only one point: that corresponding to failure. We

can establish the true strain in the neck from the equation

ε f = ln
A0

A f

= ln
π × 9

π × 4
= 0.81.

The corresponding true stress is

σt = P

A
= 6.5

π × 4

kN

mm2
,

σt = 515 MPa.

The other parameters are determined as follows:

(a) Young’s modulus:

E = slope of elastic part

= �σ

�ε

= 250

0.004
MPa

≈ 63 GPa.

(b) UTS ≈ 300 MPa (σ max).

The corresponding true stress is

σt = 300(1 + 0.056) = 317 MPa.

(c) 0.2%-offset yield stress:

σys ≈ 280 MPa.

(d) The uniform strain is approximately equal to 0.056.

The corresponding true strain is

εt = ln(1 + 0.056) = 0.054.

(e) The total strain is approximately equal to 9%.

(f) Reduction in area at the fracture:

q = A0 − A f

A0

= π × 32 − π × 22

π × 32
= 0.55, or 55%.
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The true and engineering stress--strain curves are shown in Fig-

ure E3.5.2(a). The engineering curve is shown blown up in Figure

E3.5.2(b).
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3.3 Plastic Deformation in Compression Testing

In compression testing, a cylinder or a parallelepiped cube (with one

side -- the one parallel to the loading direction -- longer than the

other two) is subjected to compression between two parallel plates.

The plates should have a self-alignment system, and they often ride

on one or two hemispherical caps, as shown in Figure 3.13(a). If ceram-

ics are being tested, it is also common to use special ceramic (WC,

for instance) inserts between the specimen and the hemispherical

caps. This eliminates indentation and plastic deformation of platens.

Lubrication between the specimen and the plate is also very desirable,

to decrease barreling (nonuniform deformation) of the specimen.
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Fig. 3.13 (a) Compression

specimen between parallel platens.

(b) Length inhomogeneity in

specimen.

(Barreling will be discussed shortly.) The use of a thin TeflonTM coat-

ing, molybdenum disulfide, or graphite is recommended. It is also

very important to ensure homogeneous loading of the specimen. This

is particularly critical for ceramics, which often fail in the elastic

range. It is easy to calculate stresses that arise when one of the paral-

lel sides of a specimen is longer than the other. Figure 3.13(b) shows

a specimen with a height difference �h. The right side will experi-

ence a stress σ = E(�h/h2) before the left side is loaded. For a typical

ceramic, it is a simple matter to calculate the relationship between

�σ , the difference in stress from one side to the other, from �h. For

example, consider alumina, for which E = 400 GPa and h = 10 mm.

The compressive strength of alumina can be as high as

σc = 4 GPa.

Therefore, the failure strain is

ε f = σ

E
= 10−2.

The corresponding displacement is

�h = εh = 0.1 mm.

If the difference in height in the specimen is greater than 0.1 mm,

the right side will fail as the left side starts to experience loading.

This inhomogeneous loading is eliminated by the hemispherical caps,

which can rotate to accommodate differences in height. However,

if the surfaces of the specimen are not flat, stress inhomogeneities

will arise, which can cause significant differences in the stress--strain

response.

In reality, the platens also undergo elastic deformation, and a

more uniform stress state is reached. Nevertheless, it is not a good

practice to have the stresses on the two sides vary significantly, as this

will result in erroneous strength determinations. The use of Teflon

or thin metallic shims (stainless steel foil) also helps to alleviate the

problem. This example illustrates the care that has to be exercised in

choosing the dimensions of the specimen. In the case of ductile mater-

ials, it is not so critical, because plastic deformation will ‘‘homoge-

nize” stresses.
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70–30 brass in compression. (b)

Change of shape of specimen and

barreling.

Figure 3.14(a) shows a typical compressive stress--strain curve for

a metal (70--30 brass). The engineering-stress--engineering-strain curve

(σ e, εe) is concave, whereas it is convex in a tensile test. (See, for

instance, Figure 3.3). The true-stress--true-strain curve is obtained by

means of Equations 3.4 and 3.9. (See also Section 2.2). The transla-

tion of five points by using these equations is shown in Figure 3.14(a).

After conversion to true-stress--true-strain values, the concavity of the

curve is, for the most part, lost. In contrast, the true stress--strain

curves in tension are displaced to the left (on the strain axis) and

up (on the stress axis) from the engineering stress--strain curves. (See

Figure 3.6) The phenomenon of necking is absent in compression

testing, and much higher strains are reached. However, necking is

replaced by barreling, a nonuniform plastic deformation resulting

from friction between the specimen and the platen. Figure 3.14(b)

shows the barreling of the brass specimen after the test. This barrel-

ing is responsible for some concavity in the true stress--strain curve

(at a strain greater than −0.4) and limits the range of strain in com-

pression testing of ductile materials to approximately −0.3 to −0.4. It

will be shown, through a stress analysis, that frictional effects play an

increasing role as the length/diameter ratio is decreased. This can sig-

nificantly affect the results of a test. The compression of a cylindrical

specimen under an engineering strain of −0.5, as simulated by finite

elements under sticking conditions (i.e., there is no sliding at the
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Fig. 3.15 (a) Distortion of Finite Element Method (FEM) grid after 50% reduction in

height h of specimen under sticking-friction conditions. (Reprinted with permission

from H. Kudo and S. Matsubara, Metal Forming Plasticity (Berlin: Springer, 1979),

p. 395.) (b) Variation in pressure on surface of cylindrical specimen being

compressed.

specimen--platen interface), is shown in Figure 3.15. The distortion

of the initially perpendicular grid is visible. This is an extreme case;

strain inhomogeneities in the specimen are evident by differences in

distortion of the grid. Barreling also can be seen.

The pressure or compressive stress is not uniform over the top

and bottom surfaces of the specimen. Pressure differences can be

calculated from an equation derived by Meyers and Chawla:6

p = σ0e2μ(a−r )/h .

6 M. A. Meyers and K. K. Chawla, Mechanical Metallurgy (Englewood Cliffs, NJ: Prentice-

Hall, 1984), p. 122.
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This is the equation for the ‘‘friction hill.” The compressive stress at

the outside (r = a) is equal to σ 0, the material flow stress. In the center,

it rises to pmax. The greater the ratio a/h, the more severe the prob-

lem is. The ‘‘friction hill” is schematically plotted in Figure 3.15(b).

The pressure rises exponentially toward the center of the cylinder.

The greater the coefficient of friction, the greater is pmax. A friction

coefficient μ = 0.15 is a reasonable assumption. It is instructive to

calculate the maximum pressure for three a/h ratios:

a/h = 2, pmax = 1.82σ0;

a/h = 1, pmax = 1.34σ0;

a/h = 0.5, pmax = 1.16σ0.

A specimen with an initial length/diameter ratio of 2 would have

a maximum pressure of 1.07σ 0. However, after a 50% reduction in

length, the ratio a/h is changed to 1.23σ 0. The calculation is left as a

challenge to the student; remember that the volume is constant. This

can cause significant differences between the actual strength values

of materials and stress readings. It is therefore recommended that

these effects be considered. On the other hand, if a/h is too small, the

specimen will tend to buckle under the load.

3.4 The Bauschinger Effect

In most materials, plastic deformation in one direction will affect sub-

sequent plastic response in another direction. The translation of the

von Mises ellipse (kinematic hardening; see Section 3.7.4) is a mani-

festation of this relationship. The ellipse will move toward the direc-

tion in which the material is stressed. In one-dimensional deform-

ation, the phenomenon is known as the Bauschinger effect. A material

that is pulled in tension, for example, shows a reduction in compres-

sive strength. Figure 3.16 illustrates the effect. A stress--strain curve is

drawn, and the sequence 0--1--2 represents the loading direction. The

material is first loaded in tension and yields at 1. At 2, the loading

direction is reversed. Unloading occurs along the elastic line until the

stresses become compressive. If there were no directionality effect, the

material would start flowing plastically at a stress equal to σ 2. The

idealized reverse curve is also shown in the figure. If the material

did not exhibit a dependence on the stress direction, the compressive

curve would be symmetrically opposite to the tensile curve. This ideal-

ized curve is drawn in dashed lines. The sequence is 0--1R--2R. Thus,

compressive plastic flow, after the 0--1--2 tensile sequence, should

occur at σ 3 = σ 2R = −σ 2. If the material exhibits a Bauschinger effect,

this stress is decreased from σ 3 to σ 4. Hence, the material ‘‘softens”

upon inversion of the loading direction.

An actual example is shown in Figure 3.17. The 0.2% proof stress

(the stress at which 0.2% plastic strain occurs) in compression is

divided by the tensile flow stress that preceded it. These values are
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marked in the figure, which shows three plain carbon steels and one

alloy steel. The change in flow stress is indeed highly significant and

increases with plastic strain in tension. Thus, this factor cannot be

ignored in design considerations when a component is to be subjected

to compression stresses in service after being plastically deformed in

tension.

3.5 Plastic Deformation of Polymers

3.5.1 Stress–Strain Curves
At a microscopic level, deformation in polymers involves stretching

and rotating of molecular bonds. More commonly, one distinguishes

the deformation mechanisms in polymers as brittle, ductile (with or

without necking), and elastomeric. Figure 3.18 shows schematically

the curves that correspond to these mechanisms. Clearly, factors such

as the strain rate and temperature affect the shape of stress--strain
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curves, much more so in polymers than in ceramics or metals. This

is because the polymers are viscoelastic; that is, their stress--strain

behavior is dependent on time. Temperature and strain rate have

opposite effects. Increasing the strain rate (or decreasing the tem-

perature) will lead to higher stress levels, but lower values of strain.

Figure 3.19 shows this schematically.

Polymers (especially, linear, semicrystalline polymers), in a man-

ner superficially similar to metals, can show the phenomena of yield-

ing and necking. The necking condition for polymers can be repre-

sented, again in a manner similar to that for metals (see Section 3.2.2,

Equation 3.19), by:

dσt

dεt

= σt . (3.24)

This equation says that necking occurs when the work-hardening

rate dσ t/dεt attains a value equal to σ . At that point, the increase

in strength due to work-hardening cannot compensate for the loss

in strength caused by a decrease in cross-sectional area, and necking

ensues.

3.5.2 Glassy Polymers
In a manner similar to its occurrence in metals, plastic deformation

occurs inhomogeneously in polymers. Two forms of inhomogeneous
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deformation are observed in glassy polymers: shear bands and crazes.

Shear bands form at about 45◦ to the largest principal stress. The

polymeric molecular chains become oriented within the shear bands

without any accompanying change in volume. The process of shear

band formation can contribute to a polymer’s toughness because it

is an energy-dissipating process. Shear yielding can take two forms:

diffuse shear yielding and localized shear band formation. In local-

ized shear, the shear is concentrated in thin planar regions, and the

process involves a ‘‘cooperative” movement of molecular chains. The

bands form at about 45◦ to the stress axis. Crazes are narrow zones

of highly deformed polymer containing voids; the zones are oriented

perpendicular to the stress axis. In the crazed zone, the molecular

chains are aligned along the stress axis, but they are interspersed

with voids. The void content in a craze may be as much as 55%. Unlike

shear band formation, craze formation does not require the condition

of constancy of volume. Generally, crazing occurs in brittle polymers.

It can also occur to some extent in ductile polymers, but the domi-

nant mode of deformation in these polymers is shear yielding. The

phenomena of shear yielding and crazing are discussed further in

Chapter 8.

Like ceramics, glassy or amorphous polymers show different

stress -- strain behaviors in tension and compression. The reason for

this is that the surface flaws are much more dangerous in tension

than in compression.

3.5.3 Semicrystalline Polymers
Semicrystalline polymers containing spherulites show a highly com-

plex mode of deformation. Characteristically, these materials exhibit

a ductile stress--strain curve with necking. Figure 3.20 shows such a

stress--strain curve. Also illustrated is the process of transformation

of a spherulitic structure to a fibrillar structure under the action

of a tensile stress. Such orientation of polymeric chains parallel to

the direction of stress increases the strength in that direction. Figure

3.21(a) shows a picture of the neck propagating in a linear polyethy-

lene tensile sample while Figure 3.21(b) shows a schematic of the neck

formation and propagation.
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(a)

Fig. 3.21 (a) Neck propagation

in a sheet of linear polyethylene.

(b) Neck formation and

propagation in a specimen, shown

in schematic fashion.

Necked
region

(b)

3.5.4 Viscous Flow
At high temperatures (T ≥ Tg, the glass transition temperature), poly-

mers undergo a viscous flow. Under these conditions, the stress is

related to the strain rate, rather than the strain. Thus,

τ = η
dγ

dt
, (3.25)

where τ is the shear stress, η is the viscosity, and t is the time. (The

derivation of Equation 3.25 is given in Section 3.6.2.)

Viscous flow is a thermally activated process. It occurs by molecu-

lar motion, which increases as the temperature increases. The reader

can appreciate the fact that such a viscous flow would involve the

local breaking and re-forming of the polymeric network structure.

The thermal energy for this is available above the glass transition
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temperature Tg. Below Tg, the thermal energy is too low for breaking

and re-forming bonds, and the material does not flow so easily. At

very high temperatures, the viscosity η is given by the Arrhenius-type

relationship

η = A exp

(
Q

RT

)
, (3.26)

where A is a constant, Q is the activation energy, R is the universal

gas constant, and T is the temperature in kelvin.

3.5.5 Adiabatic Heating
There is a unique feature associated with the plastic deformation of

polymers. Most of the work done during the plastic deformation of

any material is converted into heat. In metals, this is not very import-

ant, because metals are good conductors, and except at extremely

high rates of deformation, the heat generated is dissipated to the

surroundings rather quickly, so that the temperature rise of the metal

is insignificant. Polymers are generally poor conductors of heat. Thus,

any heat generated in localized regions of a specimen due to plastic

deformation can cause local softening. In the case of fatigue, heat

may be dissipated rather easily at low strains and at low frequencies,

even in polymers. A significant amount of softening, however, can

result under conditions of high strain rates and high-frequency cyclic

loading. This phenomenon is called adiabatic heating.

Example 3.6

Polyethylene is a linear-chain thermoplastic; that is, relatively speaking,

it is easy to crystallize by stretching or plastic deformation. An extreme

case of this is the high degree of crystallization obtained in a gel-spun

polyethylene fiber. Describe a simple technique that can be used to

verify the crystallization in polyethylene.

Solution: An easy way would be to use an X-ray diffraction technique.

Unstretched polyethylene will consist mostly of amorphous regions.

Such a structure will give diffuse halos. A diffuse halo indicates an

irregular atomic arrangement -- that is, an amorphous structure. A

polyethylene sample that has been subjected to stretching or a gel-

spun polyethylene fiber will have highly crystalline regions aligned

along the draw axis. There may also be some alignment of chains in

the amorphous regions. An X-ray diffraction pattern of such a sample

would show regular spots and/or regular rings. The discrete spots indi-

cate regular spacing characteristic of an orderly arrangement in a sin-

gle crystal. Well-spaced regular rings indicate a polycrystalline region.

Regular rings result from overlapping spots due to random crystalline

orientations.
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Table 3.1 Mechanical Properties of Some Metallic Glassesa

Alloy HV (GPa) σ y (GPa) H/σ y E g (GPa) Eg/σ y

Ni36Fe32Cr14P12B6 6.1 1.9 3.16 99.36 52
(Metglas 286AA) (tension)
Ni49Fe29P14B6S2 5.5 1.7 3.26 91.1 54
(Metglas 286B) (tension)
Fe80P16C2B1 5.8 1.7 3.35
(Metglas 2615) (tension)
Pd77.5Cu6Si36.5 3.4 1.08 3.17 61.9 57

(compression)
Pd64Ni16P20 3.1 1 3.17 61.9 57

(compression)
Fe80B20 7.6 2.55 2.97 116.6 45
(Metglas 2605) (tension)

aAdapted with permission from: L. A. Davis in Rapidly Quenched Metals, N. J. Grant and B. C. Giessen (eds.)

(Cambridge, MA: MIT Press, 1976, p. 401), p. 369, Table 1.

3.6 Plastic Deformation of Glasses

The unique mechanical properties exhibited by metallic glasses are

connected to their structure. Table 3.1 lists the hardnesses, yield

stresses, and Young’s moduli for several metallic glasses. The unique

compositions correspond to regions in the phase diagram that have a

very low melting point. The low melting points aid in the retention of

the ‘‘liquid” structure. Metallic glasses are primarily formed by rapid

cooling from the molten state, so that the atoms do not have time to

form crystals. The Metglas group is commercially produced in wire

and ribbon form. Young’s modulus for glasses varies between 60 and

70% of the Young’s modulus of the equilibrium crystalline structure.

Li7 has proposed a relationship between the shear modulus of the

glassy and crystalline states, namely,

G g = 0.947

1.947 − ν
G c (3.27)

where Gg and Gc are the shear moduli of the glassy and crystalline

states, respectively, and ν is Poisson’s ratio. The crystalline Young’s

modulus of glasses is recovered when the material is annealed and

crystallinity sets in. The yield stresses of metallic glasses are high,

as can be seen in Table 3.1. For Fe--B metallic glasses, strength levels

over 3.5 GPa were achieved. This is close to the highest yield strengths

achieved in polycrystalline metals. (See Section 1.4.) The yield stresses

7 J. C. M. Li, in Frontiers in Materials Science -- Distinguished Lectures, L. E. Murr and C. Stein,

eds. (New York: Marcel Dekker, 1976), p. 527.
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Fig. 3.22 Compression

stress–strain curves for

Pd77.5Cu6Si16.5. (Adapted with

permission from C. A. Pampillo

and H. S. Chen, Mater. Sci. Eng., 13

(1974) 181.)

of the metallic glasses are usually 10 to 30 times higher than the

yield stress of the same alloy in the crystalline state.

The micromechanical deformation mechanisms responsible for

the unique mechanical properties of metallic glasses are still not

very well understood. The absence of crystallinity has a profound

effect on the mechanical properties. Grain boundaries, dislocations,

mechanical twinning, and other very important components of the

deformation of crystalline metals are not directly applicable to metal-

lic glasses. Although the dislocations are not fully described until

Chapter 4 (a brief description is given in Section 1.4), the concept

is used in this section in an attempt to rationalize the mechani-

cal response of metallic glasses. The lower Young’s modulus is prob-

ably due to the less efficient packing of atoms, with a consequent

larger average interatomic distance. The plastic part of the stress--

strain curve also differs from the crystalline one. Here we have to

distinguish between the behavior of the metallic glass above and

below Tg, the glass transition temperature. As in silicate glasses, a

temperature is defined above which the glass becomes viscous and

deformation occurs by a viscous flow that is homogeneous. Only the

deformation at temperatures below Tg will be discussed here. Curves

for small cylindrical specimens under compression are shown in Fig-

ure 3.22. There is little evidence of work-hardening, and the plas-

tic range is close to horizontal. The surface of the specimens usu-

ally exhibits steps produced by shear bands. These shear bands have

been found to be 20 nm thick, and the shear offset (step) has been

found to be around 200 nm. This shows that deformation is highly

inhomogeneous in metallic glasses and that, once shear starts on a

certain plane, it tends to continue there. The plane of shear actu-

ally becomes softer than the surrounding regions. We can compute
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(a)
1μm

1μm
(b)

Fig. 3.23 Shear steps

terminating inside material after

annealing at 250◦C/h, produced by

(a) bending and decreased by (b)

unbending. Metglas

Ni82.4Cr7Fe3Si4.5B3.1 strip.

(Courtesy of X. Cao and J. C. M.

Li.)

the amount of shear strain in a band by dividing the band offset by

the thickness. In the preceding case, it is equal to 10. This behavior

is termed work-softening. The curves of Figure 3.22 provide macro-

scopic support for the absence of work-hardening. The equivalent

of a dislocation can exist in a glass. The slip vector of the disloca-

tion would fluctuate in direction and magnitude along the disloca-

tion line, but its mean value would be dictated by some structural

parameter.

Figure 3.23 shows slip lines and steps produced after bending

and after unbending. We can see the slip lines terminating inside

the metallic glass. The slips decrease in height on unbending. These

observations tend to confirm the relevance of some kind of shear

localization in the plastic deformation of metallic glasses.

3.6.1 Microscopic Deformation Mechanisms
Of the theories explaining the microscopic aspects of plastic deform-

ation of metallic glasses, the best known are the dislocation theory

of Gilman and the strain ellipsoid theory of Argon.

Figure 3.24(a) shows dislocation lines in crystalline and vitreous

silica. Dislocations in crystalline solids will be studied in Chapter 4.
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Burgers vector Burgers vector

Dislocation line

Fig. 3.24 (a) Gilman model of

dislocations in crystalline and

glassy silica, represented by

two-dimensional arrays of

polyhedra. (Adapted from J. J.

Gilman, J. Appl. Phys. 44 (1973)

675) (b) Argon model of

displacement fields of atoms

(indicated by magnitude and

direction of lines) when

assemblage of atoms is subjected

to shear strain of 5 × 10−2, in

molecular dynamics computation.

(Adapted from D. Deng, A. S.

Argon, and S. Yip, Phil. Trans. Roy.

Soc. Lond. A329 (1989) 613.)

Regions of
intense shear

The two-dimensional picture in the figure is analogous to the Zachari-

asen model for silica in Figure 1.18. The dislocation line is shown in

the two cases, and we are looking at the dislocation ‘‘from the top

down;” that is, the extra atomic plane is perpendicular to the surface

of the paper. For the regular crystalline structure, all Burgers vectors

are parallel and have the same magnitude. For the glassy structure,

b fluctuates both in magnitude and direction. The dislocation line is

not forced to remain in a crystallographic plane (there are no such

planes in glasses), but can fluctuate. This is the Gilman mechanism

for plastic deformation of glasses.

Experiments using ‘‘bubble rafts” and computational simulations

indicate that there are localized regions of approximately ellipsoidal

shape that undergo larger distortions than the bulk of the material

and that are the main entities responsible for the plastic deformation

of glasses. The ellipsoidal regions do not move, but undergo gradual

distortion. Figure 3.24(b) shows the result of a computer simulation,

including the positions and displacements of individual atoms. The

lengths of the lines represent the displacements of the atoms. One

can see regions of the material where the displacements of the atoms

are larger. The ellipses become distorted, and the entire body deforms.

This is the so-called Argon model for deformation of glasses, named

after a renowned MIT professor (and not after a gas!).
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3.6.2 Temperature Dependence and Viscosity
The mechanical response of glasses is often represented by their vis-

cosity, which is a property of liquids. The viscosity, η is defined as

the velocity gradient that will be generated in a liquid when it is

subjected to a specific shear stress, or

τ = η
dv

dy
, (3.28)

where τ is shear stress, v is the velocity and dv/dy is the velocity

gradient. For temperature T > Tm, the viscosity is very low and the

glass is a fluid. A characteristic value is η ∼= 10−3 Pa · s. For T ∼ Tg,

(the glass transition temperature), the viscosity is between 1010 and

1015 Pa · s. A common unit of viscosity is the Poise (P). Note that 1 P =
0.1 Pa · s. For T < Tg, the viscosity is η > 1015 Pa · s. Mechanically speak-

ing, the material is solid. Figure 3.25 shows these different regimens

of mechanical response as a function of temperature, for soda--lime--

silica glass and for some metallic glasses (Au77Si14Ge19, Pd77.5Cu6Si16.5,

Pd80Si20, and Co75P25). The temperature is normalized by dividing it

by Tg. The viscosity decreases at T > Tg, as

η = η0e Q /RT , (3.29)

where Q is the activation energy for viscous flow. This is a classic

Arrhenius response. The shear strength of the material can be related

to the viscosity by

ν = ds

dt
; γ = ds

dy

τ = η
dv

dy
= η

d

dy

(
ds

dt

)
= η

d

dt

(
ds

dy

)
= η

dγ

dt
= ηγ̇ ,

where v is the velocity of one part of the material with respect to the

other. The velocity is the displacement with time, ds/dt. By changing

the order of differentiation, we obtain dγ = ds/dy. The change of strain

with time is γ̇ = dγ /dt. A general relationship between shear stress,

shear strain, and shear strain rate is

τ = τ0γ
nγ̇ m, (3.30)

where n is the work-hardening coefficient and m is the strain rate

sensitivity. Since glasses do not work harden, n = 1. When τ is pro-

portional to γ̇ , the strain rate sensitivity is equal to unity, and the

material will be resistant to necking in tension. This is why glass

can be pulled in tension to extremely high strains. Such behavior

is discussed in greater detail in Chapter 13. Another class of mater-

ials, called superplastic materials, also exhibits this response when the

grain size of the material is very small.

Viscosity is a very important characteristic of glassy materials. On

the viscosity versus temperature curve of a given glassy material, one

can identify certain important points. The strain point of glass is the

temperature at which internal stresses are reduced significantly in a

few hours. This corresponds to η = 1013.5 Pa · s. The annealing point of
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a glass is the temperature at which the internal stresses are reduced

in a few minutes such that η = 1012 Pa · s. The softening point of a

glass corresponds to η = 106.65 Pa · s. At this viscosity, the glass deforms

rapidly under its own weight. The working point of glass corresponds

to η = 103 Pa · s. At this viscosity, the glass is soft enough to be worked.

The viscosity of glasses is dependent on their composition. Soda--

lime--silica and high-lead glasses have lower softening temperatures

and are easier to work on. Pure silica, on the other hand, has a sig-

nificantly higher softening point and requires significantly higher

temperature. On the other hand, it can be used at higher tempera-

tures. Figure 3.26 shows the temperature dependence of viscosity for

these three glasses. Note that the ordinate of plot is in P, not Pa · s.
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Example 3.7

Consider a glass with a strain point of 500 ◦C and a softening point of

800 ◦C. Using the preceding viscosity values for the strain point and

softening point, estimate the activation energy for the deformation of

this glass.

Solution: We can write the viscosity as a function of temperature as

η = A exp[Q /RT ].

At the softening point,

106.65 = A exp

[
Q

8.314 × 1073

]
,

while at the strain point,

1013.5 = A exp

[
Q

8.314 × 773

]
.

From these two expressions, we obtain, by division

106.85 = exp

[(
Q

8.314

) (
1

773
− 1

1073

)]
,

or

Q = 362 kJ/mol.

3.7 Flow, Yield, and Failure Criteria

The terms f low criterion, yield criterion, and failure criterion have differ-

ent meanings. Failure criterion has its historical origin in applications

where the onset of plastic deformation indicated failure. However,

in deformation-processing operations this is obviously not the case,

and plastic flow is desired. Yield criterion applies only to materials that

are in the annealed condition. It is known that, when a material is

previously deformed by, for instance, rolling, its yield stress increases

due to work-hardening. (See Chapter 6.) The term f low stress is usually

reserved for the onset of plastic flow in a previously deformed mater-

ial. Failure criterion is applied to brittle materials, in which the limit of

elastic deformation coincides with failure. To be completely general,

a flow criterion has to be valid for any stress state. In a uniaxial stress

state, plastic flow starts when the stress--strain curve deviates from

its initial linear range. Uniaxial stress--strain curves are very easily

obtained experimentally, and the deformation response of a material

is usually known for this situation. The main function of flow criteria

is to predict the onset of plastic deformation in a complex state of

stress when one knows the flow stress (under uniaxial tension) of the

material. Note that the value of the flow stress is strongly dependent

on the state of stress, and if this effect is not considered, it can lead
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to potentially dangerous errors in design. We next present some of

these criteria.

3.7.1 Maximum-Stress Criterion (Rankine)
According to the maximum-stress criterion, plastic flow takes place

when the greatest principal stress in a complex state of stress reaches

the flow stress in uniaxial tension. Since σ 1 > σ 2 > σ 3, we have

σ0(tension) < σ1 < σ0 (compression),

where σ 0 is the flow stress of the material. Later (Section 3.7.5) we

will see the situation where the compressive strength is greater than

the tensile strength. The great weakness of this criterion is that it

predicts plastic flow of a material under a hydrostatic state of stress;

however, this is impossible, as shown by the following example. It

is well known that tiny shrimp can live at very great depths. The

hydrostatic pressure due to water is equivalent to 1 atm (105 N/m2)

for every 10 m; at 1,000 m below the surface, the shrimp would be

subjected to a hydrostatic stress of 107 N/m2. Hence

−p = σ1 = σ2 = σ3 = −107 N/m2.

A quick experiment to determine the yield stress of the shrimp could

be conducted by carefully holding it between two fingers and pressing

it. By doing the test with a live shrimp, one can define the flow stress

as the stress at which the amplitude of the tail wiggling will become

less than a critical value. This will certainly occur at a stress of about

0.1 MPa. Hence,

σ0 = 0.1 MPa.

The Rankine criterion would produce shrimp failure at

P ≡ −σ0 = −0.1 MPa.

This corresponds to a depth of only 10 m. Fortunately for all lovers

of crustaceans, this is not the case, and hydrostatic stresses do not

contribute to plastic flow.

3.7.2 Maximum-Shear-Stress Criterion8 (Tresca)
Plastic flow starts when the maximum shear stress in a complex state

of deformation reaches a value equal to the maximum shear stress at

the onset of flow in uniaxial tension (or compression). The maximum

shear stress is given by (see Section 2.6)

τmax = σ1 − σ3

2
. (3.31)

For the uniaxial stress state, we have, at the onset of plastic flow,

σ1 = σ0, σ2 = σ3 = 0;

so

τmax = σ0

2
.

8 H. Tresca, Compt. Rend. Acad. Sci. Paris, 59 (1864) 754; 64 (1867) 809.
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Therefore,

σ0 = σ1 − σ3. (3.32)

This criterion corresponds to taking the differences between σ 1 and

σ 3 and making it equal to the flow stress in uniaxial tension (or

compression). It can be seen that it does not predict failure under

hydrostatic stress, because we would have σ 1 = σ 3 = p and no resulting

shear stress.

3.7.3 Maximum-Distortion-Energy Criterion (von Mises)9

This criterion was originally proposed by Huber as ‘‘When the expres-

sion
√

2

2
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2]1/2 > σ0 (3.33)

then the material will plastically flow.” The left hand side is known as

effective stress. The criterion was stated by von Mises without a physical

interpretation. It is now accepted that it expresses the critical value

of the distortion (or shear) component of the deformation energy

of a body. Based on this interpretation, a body flows plastically in

a complex state of stress when the distortional (or shear) deform-

ation energy is equal to the distortional (or shear) deformation energy

in uniaxial stress (tension or compression). This will be shown shortly.

This criterion is also called J2, which is the second invariant of the

stress deviator. Students will learn about this in advanced ‘‘Mechanics

of Materials” courses. J2 is given by:

J 2 = 1

G

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

]
Hence: J n ≥ σ 2

0

3
.

3.7.4 Graphical Representation and Experimental
Verification of Rankine, Tresca, and
von Mises Criteria

There is a convenient way to represent the Rankine, Tresca, and von

Mises criteria for a plane state of stress. For this, one makes σ 3 = 0

and has σ 1 and σ 2. It will be necessary to momentarily forget the

convention that σ 1 > σ 2 > σ 3, because it would not be obeyed for

σ 2 < 0; we have σ 2 < σ 3 = 0. Figure 3.27(a) shows a plot of σ 1 versus

σ 2. According to the Tresca criterion, plastic flow starts when

τmax = σ0

2
.

The four quadrants have to be analyzed separately. In the first quad-

rant, there are two possible situations. For σ 1 greater than σ 2,

τmax = (σ 1 − σ 3)/2 and σ 1 = σ 0. This is a line passing through σ 1 = σ 0

and parallel to Oσ 2. For σ 2 greater than σ 1, we have the converse

situation and a line passing through σ 2 = σ 0 and parallel to σ 1.

9 R. von Mises, Göttinger Naehr. Math. Phys. Klasse, 1913, p. 582.
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In the second quadrant, σ 2 > 0 and σ 1 < 0. We have

τmax = σ1 − σ2

2
and σ1 − σ2 = σ0.

This equation represents a straight line intersecting the Oσ 1 axis at

σ 0 and the Oσ 2 axis at −σ 0. The flow criteria for quadrants III and IV

are found in a similar way.

For the von Mises10 criterion, we have, from Equation 3.33 and

σ 3 = 0,

σ0 =
√

2
2

[(σ1 − σ2)2 + σ 2
2 + σ 2

1 ]1/2,

σ 2
1 − σ1σ2 + σ 2

2 = σ 2
0 .

This is the equation of an ellipse whose major and minor axes are

rotated 45◦ from the orthogonal axes Oσ 1 and Oσ 2, respectively. It can

be easily shown by applying a rotation of axes to the equation of an

ellipse referred to its axes:(σ1

a

)2

+
(σ2

b

)2

= k2. (3.34)

From Equation 3.34, it can be seen that the Tresca criterion is more

conservative than von Mises. The criterion would predict plastic flow

for the stress state defined by point P1, whereas the von Mises would

not. However, both criteria are fairly close. It can be seen from Figure

3.27(a) that plastic flow may require a stress σ 1 greater than σ 0 for

a combined state of stress. (See point P2). However, there are regions

(when one stress is tensile and another is compressive) where plastic

flow starts when both stresses are within the interval

σ0 < σ1, σ2 < σ0.

This occurs in the second and fourth quadrants. Point P2 shows the
situation very clearly. The conclusion is that the correct application

of a yield criterion is very important for design purposes. For com-

parison purposes, the maximum-normal stress (Rankine) criterion is

also drawn in Figure 3.27(a). It is just a square with sides parallel to

the Oσ 1 and Oσ 2 axes and intersecting them at (σ 0, 0), (−σ 0, 0) (0, σ 0),

and (0, −σ 0). We see that there is a considerable difference between

the Rankine criterion, on the one hand, and the Tresca and von Mises

criteria, on the other, for quadrants II and IV. This difference is read-

ily explained by the fact that the Rankine criterion applies to brittle

solids (including cast irons and steel below the ductile--brittle transi-

tion temperature), in which failure (or fracture) is produced by tensile

stresses.

Figure 3.27(b) shows the three criteria, together with experimental

results for copper, aluminum, steel, and cast iron. While copper and

aluminum tend to follow the von Mises criterion (and, in a more con-

servative way, the Tresca criterion), cast iron clearly obeys the Rankine

criterion. This is plainly in line with the low ductility exhibited by

10 It is also called J2 criterion; in this case, flow occurs at a critical value of J 2 = 1
6

[(σ1 −
σ2)2 + σ 2

2 + σ 2
1 ].
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Fig. 3.27 (a) Comparison of the

Rankine, von Mises, and Tresca

criteria. (b) Comparison of failure

criteria with test. (Reprinted with

permission from E. P. Popov,

Mechanics of Materials, 2nd ed.

(Englewood Cliffs, NJ:

Prentice-Hall, 1976), and G.

Murphy, Advanced. Mechanics of
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cast iron. The reader is warned that the ratio σ /σ ult, and not σ /σ 0, is

used in the figure. Nevertheless, it serves to illustrate the difference

in response.

The determination of the flow locus is usually conducted in bi-

axial testing machines, which operate in a combined tension--torsion

or tension--hydrostatic-pressure mode. These two modes use tubular

specimens, and one has to use the appropriate calculations to find

the principal stresses. As the material is plastically deformed, we have

an expansion of the flow locus. For the von Mises criterion, we can
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Fig. 3.28 Displacement of the

yield locus as the flow stress of the

material due to plastic

deformation. (a) Isotropic

hardening. (b) Kinematic

hardening.
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envision concentric ellipses having increasing major and minor axes.

This is illustrated in Figure 3.28(a). When the ellipse expands in a

symmetric fashion, the hardening is the same in all directions and

is called isotropic. Often, however, hardening in one direction (the

loading direction) causes a change in flow stress in other directions

that is different. This is very important in plastic-forming operations

(stamping, deep drawing). The extreme case where the ellipse is just

translated is shown in Figure 3.28(b). This case is called kinematic hard-

ening. (See Section 3.4.)

Example 3.8

A region on the surface of a 6061-T4 aluminum alloy component has

strain gages attached, which indicate the following stresses:

σ11 = 70 MPa,

σ22 = 120 MPa,

σ12 = 60 MPa.

Determine the yielding for both the Tresca and von Mises criteria, given

that σ 0 = 150 MPa (the yield stress).
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Fig. 3.29 (a) Tensile strength and

(b) Compressive strength of

A12O3.

Solution: We first have to establish the principal stresses. This is easily

accomplished by a Mohr circle construction or by its analytical expres-

sion (the equation of a circle):

σ1,2 = σ11 + σ22

2
±

[(
σ11 − σ22

2

)2

+ σ 2
12

]1/2

,

σ1 = 160 MPa; σ2 = 30 MPa; σ3 = 0.

According to Tresca, τmax = (160 − 0)/2 = 80 MPa.

The value τmax = 80 MPa exceeds the Tresca criterion (σ 0/2 = 75 MPa)

and the alloy would be unsafe. The von Mises criterion gives

J 2 = 1

6
[(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2]

= 1

6
[1302 + 1602 + 302]

= 7233 MPa2.

The maximum value of J M
2 = (1/3)σ 2

0 = (1/3)1502 = 7500 MPa2.

So J 2 < J M
2 , and the material does not yield. Plainly, the Tresca

criterion is more conservative than von Mises.

3.7.5 Failure Criteria for Brittle Materials
As shown in Figure 3.29, the tensile strength of Al2O3 is approximately

one-tenth of its compressive strength. Such is also the case for many

brittle materials, such as concrete, rock, etc. Therefore, the Rankine,

Tresca, and von Mises criteria have to be modified to incorporate this

behavior. This will be done in the rest of the section, with the presen-

tation of the Mohr--Coulomb, Griffith, and McClintock--Walsh criteria.
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Fig. 3.30 Schematic

two-dimensional representation of

Mohr–Coulomb failure criterion.

There are also other criteria (e.g., Babel--Sines), which will not be pre-

sented here.

Mohr--Coulomb Failure Criterion

This is simply the equivalent of the Tresca criterion with different ten-

sile and compressive strengths. Figure 3.30 shows the Mohr--Coulomb

criterion in a schematic fashion. The criterion for failure is a maxi-

mum shear stress; the compressive strength σ c is much higher than

the tensile strength σ t.

Griffith Failure Criterion11

This criterion simply states that failure will occur when the ten-

sile stress tangential to an ellipsoidal cavity and at the cavity sur-

face reaches a critical level σ 0. The criterion is a classic spin-off of

Griffith’s work of 1919. Griffith recognized that brittle materials con-

tained flaws and that failure would occur at a specific level of stress

at the flaw surfaces. He considered an elliptical crack oriented in a

general direction with respect to the compression axis and calculated

the stresses generated at the surface of the crack. Tensile stresses are

generated by compressive loading; this might appear surprising at

first sight, but will become clear in Chapter 7. If σ 0 is the tensile

strength of the material, the following relationship is obtained:

(σ1 − σ2)2 + 8σ0(σ1 + σ2) = 0 if σ1 + 2σ2 > 0,

σ2 = σ0 if σ1 + 2σ2 < 0. (3.35)

The criterion proposed by Griffith is shown in Figure 3.31. The

compressive failure stress is eight times the tensile failure stress, as

is evident from Equation 3.31. This very important result is consistent

with the experimental results observed for brittle materials.

11 A. A. Griffith, Proc. 1st Int’l. Congress in Appl. Mech., 1925, p. 55.
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McClintock--Walsh Criterion

McClintock and Walsh12 extended Griffith’s criterion by considering a

frictional component acting on the flaw faces that had to be overcome

in order for the crack to grow. This term is a function of the applied

stress. The frictional stress f was considered equal to the product of

the frictional coefficient μ and the normal stress σ 0 acting on the flaw

surface. McClintock and Walsh assumed that there was a stress σ c at

infinity necessary to close the flaw so that the opposite surfaces would

touch each other. This approach led to the following expression:

σ1[(μ2 + 1)1/2 − μ] − σ2[(μ2 + 1)1/2 + μ]

= 4σ0

(
1 + σc

σ0

)1/2

− 2μσc . (3.36)

Assuming that σ c = 0, we get the following simple version of this

criterion:

σ1[(μ2 + 1)1/2 − μ] − σ2[(μ2 + 1)1/2 + μ] = 4σ0 (3.37)

McClintock and Walsh’s criterion is shown in Figure 3.31 for μ = 1.

Griffith’s criterion is more conservative, and the compressive strength

is 10 times the tensile strength for McClintock and Walsh. The fric-

tional forces retard failure in compression.

Example 3.9

Determine the fracture stress for SiC in compression in a complex load-

ing situation in which σ 1/σ 2 = 2 if σ 0 in tension is 400 MN/m2. Perform

all calculations assuming (a) no friction between crack surfaces and (b)

a friction coefficient of 0.5.

Solution: Applying Equation 3.35 (with no friction), we have(
σ1 − σ1

2

)2

+ 8 × 400
(
σ1 + σ1

2

)
= 0,

σ1

4
+ 4,800 = 0,

σ1 = −19,200 MPa,

σ1 = −19.2 GPa.

Applying Equation 3.37 (with friction), we obtain

σ1[(0.52 + 1)1/2 − 0.5] − 0.5σ1[(0.52 + 1)1/2 + 0.5] = 4 × 400,

σ1(0.618) − σ1(0.809) = 1,600,

σ1 = −1,600

0.272
,

σ1 = −5.88 GPa.

The very high compressive strengths are due to the confinement. If the

ceramic were not confined (i.e., if σ 2 = 0), the compressive strengths

would be −3.2 GPa (Griffith) and −2.5 GPa (McClintock--Walsh).

12 F. A. McClintock and J. B. Walsh, Proc. 4th U.S. Nat’l. Cong. of Appl. Mech. (1962),

p. 1015.
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Griffith

(a)

(b)

(c)

MCClintock + Walsh
(m = 1.0)

-25 -20 -15 -10

-5

-5

-10

s1 / s0

s2 / s0

-15

-20

Fig. 3.31 (a) Simple model for solid with cracks. (b) Elliptical flaw in elastic solid

subjected to compression loading. (c) Biaxial fracture criterion for brittle materials

initiated from flaws without (Griffith) and with (McClintock and Walsh) crack friction.
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3.7.6 Yield Criteria for Ductile Polymers
Brittle polymers such as epoxies fail at the end of their linear elas-

tic stage without any significant plastic deformation. Ductile poly-

mers such as thermoplastics undergo plastic deformation. Does this

mean that we can use the Tresca or von Mises criteria to describe

their yielding? The answer is no, because, unlike the yield strength of

metals, that of polymers depends on the hydrostatic component of

stress. The Tresca and von Mises criteria, on the other hand, do not

show any such dependence. This dependence on hydrostatic stress

in polymers stems from the more liquidlike structure of polymers.

Specifically, the polymers have some free volume, which makes them

highly compressible.

Let us consider the von Mises criterion for isotropic metals. Accord-

ing to this criterion, yielding occurs when the condition

(σ1 − σ2)2(σ2 − σ3)2 + (σ3 − σ1)2 ≥ 6k2 = constant

is satisfied, where σ 1, σ 2, and σ 3 are the principal stresses and k is

constant equal to the yield stress in torsion τ 0. For metals, we take

k or τ 0 to be a constant at room temperature, equal to σ0/
√

3 for

uniaxial stress, with σ 0 the uniaxial yield stress. This equation also

implicitly assumes that the tensile and compressive yield strengths

are numerically the same, equal to
√

3k or
√

3 τ0. It turns out that for

polymers, yield stress in compression is greater than that in tension

by 10 to 20%.13 This stems from the fact that, again unlike yielding

in metals, yielding in polymers shows a strong dependence on any

superimposed hydrostatic pressure. That is,

k = k(ε̇, T , σp),

where ε̇ is the strain rate, T is the temperature, and σ p is the hydro-

static pressure. As we mentioned, in molecular terms, this depend-

ence of yield stress on hydrostatic pressure can be traced to the fact

that polymers have some free volume associated with them, which is

diminished by hydrostatic compression. We can modify the yield cri-

terion to take into account this dependence on the hydrostatic com-

pressive stress σ p by using the expression

k = k0 + Aσp,

where k0 is a constant and A is another constant that represents the

dependence of yield stress on hydrostatic pressure. As σ p increases,

the free volume decreases, and molecular motion becomes more dif-

ficult. The presence of a hydrostatic component translates the von

Mises ellipse from quadrant I to quadrant III, as shown in Figure 3.32.

The yield envelopes for a polymer or metal that does not show yield

stress dependence on the hydrostatic component is shown in Figure

3.32(a), while that for a polymer showing yield stress dependence on

hydrostatic stress takes the shape shown in Figure 3.32(b). Note that

13 K. Matsushige, S. V. Radcliffe, and E. Baer, J. Polymer Sci., Polymer Phys., 14 (1976) 703.
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O

(a) (b)

O

s2 s2

s1s1

Fig. 3.32 Translation of von

Mises ellipse for a polymer due to

the presence of hydrostatic stress.

(a) No hydrostatic stress, (b) with

hydrostatic stress.

crazing occurs only in tension, not in compression. The yield envelope

in Figure 3.32(b) has been translated with respect to that in Figure

3.32(a).

Several glassy polymers, such as polystyrene, polycarbonate, and

PMMA, show the phenomenon of crazing. (See Section 8.4.2.) Crazing

involves the formation of microvoids and stretched chains or fibrils

under tension. The fibril formation depends on shear flow and free

volume. A yield criterion that takes crazing into account is

σ1 − σ2 = A + B

(σ1 + σ2)
,

Crazing Shear yielding
s2

s1

s1 = -s2
s 1 

= -s 2

Fig. 3.33 Envelopes defining

shear yielding and crazing for an

amorphous polymer under biaxial

stress. (After S. S. Sternstein and L.

Ongchin, Am. Chem. Soc., Div. of

Polymer Chem., Polymer Preprints, 10

(1969), 1117.)

where (σ 1 − σ 2) represents the shear, (σ 1 + σ 2) represents the hydro-

static component, and A and B are adjustable constants that depend

on temperature. Note that as the hydrostatic component (σ 1 + σ 2)

increases, the shear stress (σ 1 − σ 2) required for yielding decreases.

A better and more complete scenario for yielding in polymers is as

follows. Under multiaxial stress, glassy polymers can undergo yield-

ing by shear or crazing. Figure 3.33 shows schematically the yield

envelope under a biaxial stress condition. The constants A and B

can be chosen to fit the curve to experimental data. The pure-shear

line, σ 1 = − σ 2, is the boundary between hydrostatic compression and

hydrostatic tension. Below the pure-shear line, crazing (a void-forming

process) does not occur because hydrostatic pressure reduces the vol-

ume. Above this line, crazing is the main mechanism of failure. The

curves for crazing are asymptotic to the pure shear line. The yield

envelope shown in the figure also shows the pressure-dependent shear

yielding; that is, the envelope has been translated with respect to the

conventional von Mises criterion. Note that in the first quadrant the

crazing envelope is completely inside the shear yield envelope. This

means that for all combinations of biaxial tensile stresses, crazing

will precede shear yielding. In the second and fourth quadrants, the

two envelopes intersect. The heavy line indicates the overall yielding

or failure envelope.

A word of caution is in order here. Crazing in air does not occur

in pure shear or under conditions of compressive hydrostatic stress.

The modified criterion just described requires a dilative component of

the applied stress for crazing in air. In the presence of an appropriate

environmental agent, crazing can be observed under conditions of

simple tension and hydrostatic pressure.
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3.7.7 Failure Criteria for Composite Materials
Unidirectionally aligned fiber reinforced composites are generally

quite anisotropic in elastic constants as well as in strength. This, of

course, stems from the fact that fibers generally are a lot stiffer and

stronger than the matrix and the fact that the fibers are aligned in

the matrix. Quite frequently, the strength in the longitudinal direc-

tion is as much as an order of magnitude greater than that in the

transverse direction. We shall consider the case of laminated com-

posites made by stacking plies of different orientations in an appro-

priate sequence. We assume that the fiber reinforced lamina is a

homogeneous, orthotropic material. We use a continuum mechan-

ics approach, i.e., we treat the fiber reinforced composite as a homo-

geneous material, i.e., its properties do not change from point to

point. We do, however, consider the fiber reinforced composite to be

an orthotropic material, i.e., the anisotropic nature of the compos-

ite is taken into account. There are many criteria available in the

literature; for a summary, see Chawla14. Here, we describe one crite-

rion, called quadratic interaction criterion, which is quite general and

seems to work quite well for laminated composites made by stacking

laminae of fiber reinforced composites in different orientations. The

thickness of the individual lamina as well as the laminated composite

is much smaller than either the length or width, which allows us to

use plane stress condition to analyze the failure criterion. In practical

terms, it means that we need to worry about the in-plane stress com-

ponents, viz, two normal components, σ l and σ 2, and one in-plane

shear component, σ l2. In the composite literature, it is customary to

use symbol σ 6 for σ 12. Thus, the reader must keep in mind in what

follows that σ 6 represents the in-plane shear component.

Quadratic Interaction Criterion

This criterion, a combination of linear and quadratic terms, takes into

account the stress interactions. Tsai and Wu proposed this, a modifi-

cation of the Hill theory, for a fiber reinforced composite laminate by

adding some additional terms. According to this theory, the failure

surface in stress space can be described by a function of the form

f (σ ) = fiσi + fi jσiσ j = 1 i, j = 1, 2, 6 (3.38)

where fi and fij are the strength parameters. For the case of plane

stress, i, j = 1, 2, 6 and we can expand Equation (3.38) as follows:

f1 + σ1 + f2σ2 + f6σ6 + f11σ
2
l + f22σ

2
2 + f66σ

2
6 (3.39)

+ 2 f12σ1σ2 + 2 f12σ1σ2 + 2 f16σ1σ6 + 2 f26σ2σ6 = 1

For an orthotropic lamina, it is important to distinguish between

the signs of normal stresses, i.e., tensile or compressive. The linear

stress terms provide for this difference. For the shear stress compo-

nent, the sign reversal should be immaterial. Thus, terms containing

the first degree shear stress must vanish in Equation (3.39). These

14 K. K. Chawla, Composite Materials, 2nd ed. (New York: Springer-Verlag, 1998).
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terms are f66σ 6, 2f16σ lσ 6, and 2f26σ 2σ 6. The stress components in gen-

eral are not zero. Therefore, for these three terms to vanish we must

have

f16 = f26 = f6 = 0

Equation (3.39) is now simplified to

f1σ1 + f2σ2 + f11σ
2
1 + f22σ

2
2 + f66σ

2
6 + 2 f12σ1σ2 = 1 (3.40)

There are six strength parameters in Equation (3.40). We can measure

five of these by the following simple tests.

Longitudinal (Tensile and Compressive) Tests

If X1t and X1c are the longitudinal tensile and compressive strengths,

respectively, then we can write

f1 X1t + f11 X 2
1t = 1

and

− f1 X1c + f11 X 2
1c = 1.

From these two expressions, with two unknowns, we get

f1 = 1

X1t

− 1

X1c

and

f11 = 1

X1t X1c

.

Transverse (Tensile and Compressive) Tests

If X2t and X2c are the transverse tensile and compressive strengths,

respectively, then proceeding as above, we get

f2 = 1

X2t

− 1

X2c

and

f22 = 1

X2t X2c

.

Longitudinal Shear Test

If X6 is the shear strength, we have

f66 = 1

X 2
6

.

Thus, we can express all the failure strength parameters in Equation

3.40 except f12 in terms of the ultimate intrinsic strength properties of

the composite. f12 must be evaluated by means of a biaxial test, which

is not easy to do. In the absence of other data, we can take f12
∼=

−0.5( f11 f22)1/2. It turns out, however, that small changes in f12 can

significantly affect the predicted strength. Equation 3.40 describes the
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Fig. 3.34 Failure envelope for unidirectional E-glass/epoxy composite under biaxial

loading at different levels of shear stress. (After I. M. Daniel and O. Ishai, Engineering

Mechancis of Composite Materials (New York: Oxford University Press, 1994), p. 121.)

failure envelope, a three-dimensional ellipsoid, in the σ l, σ 2, and σ 6

space. For constant values of shear stress, σ 6 = kX6, we shall have the

failure envelope in the form of a two-dimensional ellipse described

by the following equation:

f1σ1 + f2σ2 + f11σ
2
1 + f22σ

2
2 + f66σ

2
6 + 2 f12σ1σ2 = 1 − k2 (3.41)

Figure 3.34 shows schematically the failure envelopes under biaxial

loading for a unidirectionally reinforced glass fiber/epoxy composite,

for different values of k, where k = σ 6/X6. Just as the name quadratic

interaction indicates, the stress interaction is clear in all quadrants.

The reader should note that the quadratic interaction criterion merely

predicts the conditions of failure, it does not tell us anything about

the mode of failure, i.e., fiber failure, interface failure in shear,

etc.

3.7.8 Yield and Failure Criteria for Other
Anisotropic Materials

Besides fiber reinforced composites, there are other anisotropic mate-

rials. The source of anisotropy in these materials can be one of the

following.

� A single crystal can have different properties in different directions

due to its inherent crystal symmetry.
� A cold-rolled sheet, tube, or wire of a metal or alloy can show a very

high degree of preferred orientation of grains. Polymers are also

frequently processed by drawing, extrusion, or injection molding

techniques. Such techniques impart a high degree of anisotropy to

the polymer. Figure 3.35 shows the change in shape of the yield

surface as a function of anisotropy, where R = σ 2/σ 1. For R = 1, we

have isotropy, and a classical von Mises curve is obtained.
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Fig. 3.35 Plane-stress yield loci

for sheets with planar isotropy or

textures that are rotationally

symmetric about the thickness

direction, x3. (Values of R indicate

the degree of anisotropy =
σ 2/σ 1.)

While the most anisotropic crystal would render the plasticity treat-

ment prohibitively complex, there is one type of anisotropy that can

be studied without excessive complications. The type of response dis-

played by wood is a good illustration of this anisotropy. Wood has

different yield stresses along the three directions defined by the wood

fibers and by the normals to the fibers. Similarly, a rolled sheet or slab

of metal will exhibit orthotropic plastic properties; the rolling direc-

tion, transverse direction, and thickness direction define the three

axes.

3.8 Hardness

The simplest way of determining the resistance of a metal to plas-

tic deformation is through a hardness test. Indentation tests consti-

tute the vast majority of hardness tests. They are essentially divided

into three classes, commonly called nanoindentation, microindenta-

tion, and macroindentation tests, but improperly referred to as micro-

hardness and macrohardness tests. The division between micro and

macro occurs for a load of approximately 200 gf (∼2 N). In nano-

indentation testing, the load is of the order of mN. The indentation

tests in metals measure the resistance to plastic deformation; both

the yield stress and the work-hardening characteristics of the metal

are important in determining the hardness. In spite of the theoret-

ical studies done on hardness, hardness cannot be considered a funda-

mental property of a metal. Rather, it represents a quantity measured

on an arbitrary scale.15 Hardness measurements should not be taken

15 M. C. Shaw, in The Science of Hardness Testing and its Research Applications, J. H. Westbrook

and H. Conrad, eds. (Metals Park, OH: ASM, 1973), p. 1.
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BRINELL
BHN=690

ROCKWELL-C
HRC=62

SUPERFICIAL
ROCKWELL

HR (N SCALE) 91

VICKERS 10 kg
 VPN 10 = 750

Fig. 3.36 Comparison of the impression sizes produced by various hardness tests on

material of 750 HV. BHN = Brinell hardness number, HRC = Rockwell hardness

number on C scale, HRN = Rockwell hardness number on N scale, VPN = Vickers

hardness number. (Adapted with permission from E. R. Petty, in Techniques of Metals

Research, Vol. 5, Pt. 2, R. F. Bunshah, ed. (New York: Wiley-Interscience, 1971), p. 174.)

to mean more than what they are: an empirical, comparative test of

the resistance of the metal to plastic deformation. Any correlation

with a more fundamental parameter, such as the yield stress, is valid

only in the range experimentally determined. Similarly, compari-

sons between different hardness scales are meaningful only through

experimental verification. For steels, Table 3.2 gives a fair conversion

of hardness and the tensile strength equivalents.

The most important macro-, micro-, and nanoindentation indent-

ation tests are described in Sections 3.8.1--3.8.3.

3.8.1 Macroindentation Tests
The impressions caused by macroindentation tests are shown in

Figure 3.36. The Brinell test produces by far the largest indentation.

The Vickers test may produce very small indentations, depending on

the load used.

Brinell Hardness Test

In this test, a steel sphere is pressed against a metal surface for a

specified period of time (10 to 15 s, according to the ASTM), and the

surface of the indentation is measured. The load (in kgf) divided by

the area (in mm2) of the curved surface gives the hardness HB, or

HB = P

π D × depth
(3.42)

= 2P

π D (D − √
D 2 − d2)

, (3.43)

where D and d are the diameters of the sphere and impression, res-

pectively. The parameters are indicated in Figure 3.37. Since d = D

sin φ, we have

HB = 2P

π D 2(1 − cos φ)
. (3.44)

Different spheres produce different impressions, and if we want to
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D

P

d

f

Fig. 3.37 Impression caused by

spherical indenter on metal plate.

maintain the same HB, independent of the size of the sphere, the

load has to be varied according to the relationship

P

D 2
= constant. (3.45)

This assures the same geometrical configuration (the same φ). The

diameter of the impressions between 0.25D and 0.5D gives good, repro-

ducible results. The target sought is d = 0.375D. If the same d/D ratio

is maintained (constant φ), the Brinell test is reliable. Spheres with

diameters of 1, 2, 5, and 10 mm have been used, and some of the

ratios P/D2 that provide good d/D ratios for different metals are: steels

and cast irons (30), Cu and Al (5), Cu and Al alloys (10), and Pb and Sn

alloys (1). The softer the material, the lower is the P/D2 ratio required

to produce d/D = 0.375.

One of the problems of the Brinell test is that HB is dependent on

the load P for the same sphere. In general, HB decreases as the load is

increased. ASTM standard E10--78 provides details and specifications

for Brinell hardness tests. It states that the standard Brinell test is

conducted under the following conditions:

Ball diameter: 10 mm

Load: 3000 kgf

Duration of loading: 10 to 15 s

In this case, 360 HB indicates a Brinell hardness of 360 under the

foregoing testing conditions. For different conditions, the parameters

have to be specified. For example, 63 HB 10/500/30 indicates a Brinell

hardness of 63, measured with a ball of 10 mm diameter and a load

of 500 kgf applied for 30 s. Brinell tables and additional instructions

are provided in ASTM E10--78. Meyer16 was aware of this problem and

proposed a modification of the Brinell formula. He found out that

the load divided by the projected area of the indentation (πd2/4) was

constant. Hence, he proposed, in place of Equation 3.42, the equation

Meyer = 4P

πd2
, (3.46)

16 E. Meyer, Z. Ver. Dtsch. Ing., 52 (1980) 645, 740, 835.
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Fig. 3.38 Procedure in using

Rockwell hardness tester.

(Reprinted with permission from

H. E. Davis, G. E. Troxel, and C. T.

Wiscocil, The Testing and Inspection

of Engineering Materials, (New

York: McGraw-Hill, 1941), p. 149.)

where P is expressed in kilograms force and d in millimeters. The

Meyer hardness never gained wide acceptance, in spite of being more

reliable than the Brinell hardness. For work-hardened metals, it seems

to be independent of P.

Rockwell Hardness Test

The most popular hardness test is also the most convenient, since

there is no need to measure the depth or width of the indenta-

tion optically. This testing procedure is illustrated in Figure 3.38. A

preload is applied prior to the application of the main load. The dial

of the machine provides a number that is related to the depth of the

indentation produced by the main load. Several Rockwell scales are

used, and the numbers refer to arbitrary scales and are not directly

related to any fundamental parameter of the material. Two differ-

ent types of indenters are used. The A, C, D, and N scales use the

Brale indenter, which is a diamond cone with a cone angle of 120◦.

The other scales use either 1/8-in. (3.175-mm) or 1/16-in. (1.587-mm)-

diameter steel spheres. The loads also vary, depending on the scale.
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Table 3.3 Details of the More Important Scales Available for the Rockwell Hardness Tester

Scale
Designation Type of Indenter

Major Load
(kgf) Typical Field of Application

A Brale 60 The only continuous scale
from annealed brass to
cemented carbide, but is
usually used for harder
materials

B 1.587 mm-diameter steel ball 100 Medium-hardness range (e.g.,
annealed steels)

C Brale 150 Hardened steel > HRB100
D Brale 100 Case-hardened steels
E 3.175 mm-diameter steel ball 100 Al and Mg alloys
F 1.587 mm-diameter steel ball 60 Annealed Cu and brass
L 6.35 mm-diameter steel ball 60 Pb or plastics
N N Brale 15, 30, or 45 Superficial Rockwell for thin

samples or small
impressions

Table 3.3 shows the various loads and typical applications. Usually,

the C scale is used for harder steels and the B scale for softer steels;

the A scale covers a wider range of hardness. Because of the nature

of the measurement, any sagging of the test piece will produce

changes in hardness. Therefore, it is of utmost importance to have

the sample well supported; specimens embedded in Bakelite cannot

be tested. The Brinell and Vickers tests, on the other hand, which are

based on optical measurements, are not affected by the support.

For very thin samples, there is a special superficial Rockwell test.

The testing procedure is described in detail in the ASTM Standard

E18--74, and conversion tables for a number of alloys are given in

ASTM Standard E140--78. The symbol used to designate this hardness

is, according to the ASTM, HR; 64HRC corresponds to Rockwell hard-

ness number 64 on the C scale.

The following precautions are recommended for reproducible

results in Rockwell testing.17

1. The indenter and anvil should be clean and well seated.

2. The surface to be tested should be clean, dry, smooth, and free from

oxide. A rough-ground surface is usually adequate for the Rockwell

test.

3. The surface should be flat and perpendicular to the indenter.

4. Tests on cylindrical surfaces will give low readings, the error

depending on the curvature, load, indenter, and hardness of the

material. Corrections are given in ASTM E140--78.

17 G. E. Dieter, Mechanical Metallurgy, 2nd ed. (New York: McGraw-Hill, 1976), p. 398.
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5. The thickness of the specimen should be such that a mark or bulge

is not produced on the reverse side of the piece. It is recommended

that the thickness be at least 10 times the depth of the indentation.

Tests should be made on only a single thickness of material.

6. The spacing between indentations should be three to five times the

diameter of the indentation.

7. The speed of application of the load should be standardized. This

is done by adjusting the dashpot on the Rockwell tester. Variations

in hardness can be appreciable in very soft materials, unless the

rate of application of the load is carefully controlled. For such

materials, the operating handle of the Rockwell tester should be

brought back as soon as the major load has been fully applied.

Vickers (or Diamond Pyramid) Hardness Test

This test uses a pyramidal indenter with a square base, made of dia-

mond. The angle between the faces is 136◦. The test was introduced

because of the problems encountered with the Brinell test. One of the

known advantages of the Vickers test is that one indenter covers all

the materials, from the softest to the hardest. The load is increased

with hardness, and there is a continuity in scale. The angle of 136◦

was chosen on the basis of results with spherical indenters. For these,

the best results were obtained when d/D = 0.375. If we take the points

at which the sphere touches the surface of the specimen and draw

perpendiculars to the radii, their intersection will form an angle of

136◦. This exercise is left to the student. The description of the proced-

ures used in testing is given in ASTM Standard E92--72. The Vickers

hardness (HV) is computed from the equation and is equal to the load

divided by the area of the depression

HV = 2P sin(α/2)

d2
= 1.8544P

d2
, (3.47)

where P is the applied load (in kgf), d is the average length of the

diagonals (in mm), and α is the angle between the opposite faces of

the indenter (136◦). Conversion to MPa is accomplished by multiply-

ing this value by 9.81. The Vickers test described by ASTM E92--72

uses loads varying from 1 to 120 kgf. For example, 440HV30 repre-

sents a Vickers hardness number of 440, measured with a load of

30 kgf. Vickers testing requires a much better preparation of the

material’s surface than does Rockwell testing; hence, it is more time-

consuming. The surface has to be ground and polished, care being

taken not to work-harden it. After the indentation, both diagonals of

impression are measured, and their average is taken. If the surface

is cylindrical or spherical, a correction factor has to be introduced.

ASTM Standard E92 (Tables 4 through 6) provide correction factors. As

with other hardness tests, the distance between the indentations has

to be greater than two-and one-half times the length of the indent-

ation diagonal, to avoid interaction between the work-hardening

regions.
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The manner in which the material flows and work-hardens (or

work-softens) beneath the indenter affects the shape of the impres-

sion. The sides of the square impression can be deformed into con-

cave or convex curves, depending on the nature of the deformation

process, and this results in reading errors.

Relationships Between Yield Stress and Hardness

For non-work-hardening materials, one has (this will be derived in

Example 3.10):

H = 3σy . (3.48)

Since there is a lot of plastic deformation under the indenter, in work-

hardening materials we cannot use σ y. Tabor18 gives the following

equation for the mean plastic strain under the indenter:

εp = d ′

5D
,

where d′ is the diameter at the top of the pileup and D is the diameter

of the indenter. For d′/D = 0.375, a reasonable value for indentation,

the plastic strain, εp = 0.075. Hence, for work-hardening metals one

should take the flow stress at a plastic strain of 0.375 before multi-

plying it by 3 for a good correlation with the hardness.

3.8.2 Microindentation Tests
Microindentation hardness tests --- or microhardness tests --- utilize

a load lighter than 200 gf, and very minute impressions are thus

formed; a load of 200 gf produces an indentation of about 50 μm

for a medium-hardness metal. These tests are ideally suited to investi-

gate changes in hardness at the microscopic scale. One can measure

the hardness of a second-phase particle and identify regions within

a grain where differences in hardness occur. Microhardness tests are

also used to perform routine tests on very small precision compo-

nents, such as parts of watches.

The results shown in Figure 3.39 illustrate well an application of

microindentation testing. When a metal is alloyed, the distribution

of the solute is not even throughout the grain, due to the stress

fields produced by the solute atom. (See Chapter 7.) The solute atoms

often tend to segregate at the grain boundaries. Figure 3.39(a) shows

how the addition of aluminum to zinc is reflected by an increase in

the hardness in the grain-boundary region, and the addition of gold

results in a lowering of the grain-boundary hardness. This effect can

be noted at extremely low concentrations of solute (a few parts per

million). Figure 3.39(b) shows how this ‘‘excess” hardening increases

with the concentration of aluminum.

In spite of the attempts made, several problems have arisen in

the standardization of microindentation testing and its extrapola-

tion to macroindentation results. There are several reasons for this.

18 D. Tabor, The Hardness of Metals, (Oxford: Oxford Univesity Press, 1951).
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profiles near a grain boundary in

zinc with 100-atom ppm of Al and
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concentration dependence of

percent excess boundary
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or Cu (3-gf load). (Adapted with

permission from K. T. Aust, R. E.

Hanemann, P. Niessen, and J. H.

Westbrook, Acta Met., 16 (1968)

291.)

First, almost invariably, the microhardness of any material is higher

than its standard macrohardness. Additionally, the microhardness

varies with load. Second, there is a tendency for the microhardness

to increase (up to a few grams); then the hardness value drops with

load. At very low loads, one is essentially measuring the hardness of

a single grain; the indenter ‘‘sees” a single crystal, and the plastic

deformation produced by the indentation is contained in this grain.

As the load is increased, plastic deformation of adjoining grains is

involved, and a truly polycrystalline deformation regimen is achieved.

As we know well (see Chapter 5), the grain size has a marked effect on

the yield strength and work-hardening characteristics of metals. Yet

another source of error is the work-hardening introduced in the sur-

face by polishing. The effect of crystallographic orientation, when the

impression is restricted to a single grain, is of utmost importance. It

is well known that both the yield stress and the work-hardening are

dependent on the crystallographic orientation of the material. The

Schmid law relates the applied stress to the shear stress ‘‘seen” by

the various slip systems. The Schmid relation is discussed in Section

6.2.2.

The two most common microindentation tests are the Knoop and

Vickers tests. The Knoop indenter is an elongated pyramid, shown in
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Figure 3.40. The hardness is obtained from the surface area of the

impression and is given by

KHN = 14.228P

L 2
, (3.49)

Operating
position

W

h

W
L

130°

172°30‘

Fig. 3.40 Some of the details of

the Knoop indenter, together with

its impression.

where P is the load of kgf and L is the length of the major diagonal,

in mm. The ratio between the dimensions of the impression is

h/W/L = 1 : 4.29 : 30.53.

This results in an especially shallow impression, making the tech-

nique very helpful for testing brittle materials. Indeed, that was the

purpose of introducing the test. The ratio between the major and

minor diagonal of the impression is approximately 7:1, resulting in

a state of strain in the material that can be considered to be plane

strain; the strain in the L direction may be neglected. This subject is

treated in Section 3.3. The very shallow Knoop impression is also help-

ful in testing thin components, such as electrodeposits or hardened

layers. The Vickers microhardness test uses the same 136◦ pyramid

with loads of a few grams. Both Knoop and Vickers indenters require

prepolishing of the surface to a microscopic grade.

Example 3.10 (Inspired by M. F. Ashby and D. R. H. Jones)

Obtain, for a simple two-dimensional case, a relationship between the

hardness H and flow stress σ 0 of a material.

Area A

Indenter

Material

Fig. E.3.10.1

F

4

2

u u

2

1
5

3

u  2 u/2 u/2
u  2

A

2

A

2

A

2

Fig. E.3.10.2
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Solution: We assume a flat indenter and deformation on one plane only,

as shown in Figure E.3.10.1. Deformation is assumed to occur by the

movement of blocks. We assume a total displacement u of the punch,

shown in Figure E.3.10.2. Block ©1 moves down by u. Blocks ©2 and

©3 move sideways by u. Blocks ©4 and ©5 are pushed upward by u/2

and we compute the forces on two of their surfaces. The shear yield

strength is τ 0. We set the work done by the punch, Fu, equal to the

energy dissipated at the various interfaces. Student should compute

the areas of triangles and assume that the resistance to motion is τ 0.

The frictional forces between blocks is τ 0 times the areas (A or A/
√

2).

We have

F u = 2 × Aτ0√
2

× u
√

2 + 2 × Aτ0 × u + 4 × Aτ0√
2

× u
√

2

2
,

|← (block 1) →||← (blocks 2, 3)→|| ← (block 4, 5) → |
central triangle two lateral triangles two end triangles

where F is the applied force, u is the displacement of the punch, and

A is the area of the indentation (Figure E.3.10.1).

F u = u6Aτ0,

F

A
= 6τ0.

But τ 0 = σ 0/2; hence,

F

A
= H = 3σ0.

This is, indeed, Equation 3.48. Thus, the derivation above is a proof for

Equation 3.48.

Example 3.11

Estimate the flow stress of the material shown in Figure E.3.11 if the

indentation was done with a load of 1,000 g and the magnification of

the photograph is 100×.

(111)

(111)

(111)

(1
11

)

Fig. E.3.11 Indentation into iron-nickel single crystal; notice {111} traces of slip

planes with specimen surface.
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Solution: This is a Vickers microindentation. We measure the sides of

the square, which are more visible (in this case) than the diagonal:

a = 26 + 28

2
= 27 mm.

The diagonal is d = a
√

2 = 38.2 mm. Dividing this value by the magni-

fication, we obtain d′ = 0.382 mm. So

H = 1.8544P

d2
= 1.8544

0.145
,

H = 12.80 kg/mm2
.

We will convert this value to a yield stress, assuming that the material

does not work-harden. We have (see Example 3.10)

H = 3σ0, so σy = 4.25 kg/mm2.

But 1 kg/mm2 = 9.8 × 106 Pa; thus,

σy = 41.8 MPa.

3.8.3 Nanoindentation
An instrumented indentation test, the apparatus for which is some-

times called a nanoindenter, was developed in the last quarter of the

twentieth century, and is readily available commercially. The instru-

ment is essentially a computer-controlled depth-sensing indentation

system that allows extremely small forces and displacements to be

measured. Very small volumes of a material can be studied and local

characterization of microstructural features such as grain boundary

regions, coatings, or reinforcement/matrix interface can be obtained.

It can be regarded as a general microstructural investigation tech-

nique.

A schematic of a nanoindenter apparatus is shown in Figure 3.41.

Commonly, a triangular pyramid or Berkovich indenter is used,

CURRENT SOURCE

OSCILLATOR

DISPLACEMENT
SENSOR

LOCK-IN AMPLIFIER

COMPUTER

Load application

Capacitive
displacement

Indenter
column

Sample

Fig. 3.41 A schematic of a

nanoindenter apparatus.



226 PLASTICITY

30

(a) μm

10

20

  10 μm

(b)

Fig. 3.42 An impression made

by means of Berkovich indenter in

a copper sample. (From X. Deng,

M. Koopman, N. Chawla, and K. K.

Chawla, Acta Mater., 52 (2004)

4291.) (a) An atomic force

micrograph, which shows very

nicely the topographic features of

the indentation on the sample

surface. The scale is the same

along the three axes. (b) Berkovich

indentation as seen in an SEM.

although other types of indenters can also be used. An impression

made by means of Berkovich indenter in a copper sample is shown

in Figure 3.42. Figure 3.42(a) is an atomic force micrograph, which

shows very nicely the topographic features of the indentation on the

sample surface, while Figure 3.42(b) shows a view of the indentation

as seen in an SEM micrograph. The penetration of the indenter into

the specimen is measured by a very sensitive capacitance gage. The

resolution of the applied load may be less than 50 nN while displace-

ment resolutions can be <0.02 nm. Remote position control is done

by means of a joystick (motorized in x-, y-, and z- directions).

Generally, a series of load/unload curves is obtained, Figure 3.43.

A nanoindenter records the total penetration of an indenter into the

sample. The indenter may be moved toward the sample or away from

the sample by means of a magnetic coil assembly. One can measure

the hardness or elastic modulus of a phase in a material. As the

indenter penetrates the specimen, the indentation load and displace-

ment are recorded continuously during a load/unload cycle. The max-

imum load and the corresponding displacement are calculated from

the plastic depth of the indentation. The hardness, H, is given by

H = Pmax/A,
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Fig. 3.43 A schematic

representation of load vs. indenter

displacement.

where Pmax is the load and A is the projected area of contact at peak

load. The contact area at the peak load is determined by the geom-

etry of the indenter and the depth of contact, hc. Assuming that the

indenter does not deform significantly, we can write A = f(hc). The

form of function f must be established experimentally. The area A can

be calculated by means of the following expression:

A = a + bh
1/2
i + chi + dh

3/2
i + 24.56h2

i (3.50)

where hi is the plastic depth of the indentation and a, b, c, and d are

adjustable coefficients. For a perfect tip, a = b = c = d = 0, and

the only coefficient is 24.56.

The stiffness, S, can be obtained from the load, P vs. penetration

depth, h by the following expression relating the reduced modulus,

Er, the contact area A, and the stiffness, S:19,20,21

S = d P /dh = (2/
√

π )E r

√
A.

The reduced modulus Er of indenter--sample combination takes into

account the fact that elastic deformation under load occurs in the

sample as well as in the indenter. The reduced modulus is given by

E r = (1 − v2
i )/E i + (1 − v2

s )/E f

where Ei and Es are the Young’s moduli, and ν i and νs are the Poisson’s

ratio of the indenter and sample, respectively. The initial unloading

slope gives us the reduced modulus provided one can measure the

contact area at the peak load.

Modulus and hardness of a material can be obtained more accur-

ately by measuring contact stiffness throughout the test. This tech-

nique is called continuous stiffness measurement (CSM). In this

technique, a small harmonic force is superimposed on the primary

load, P. This technique enables the instrument to determine the con-

tact stiffness throughout the experiment. The displacement of the

19 M. F. Doerner and W. D. Nix, J. Mater. Res., 1 (1986) 601.
20 W. C. Oliver, MRS Bull., 11 (1985) 15.
21 W. C. Oliver and G. M. Pharr, J. Mater. Res., 7 (1992) 1564.
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indenter at the excitation frequency and the phase angle between

force and displacement are measured continuously as a function of

depth. The stiffness, S, is given by the following relationship:

S =
[

1
Pos

h(ω)
cos � − (K s − mω2)

− Kf
−1

]−1

(3.51)

where Pos is the magnitude of the force oscillation, h(ω) is the magni-

tude of the resulting displacement oscillation, ω is the frequency of

the oscillation, � is the phase angle between the force and displace-

ment, Ks is the spring constant of the leaf springs that support the

indenter, Kf is the stiffness of the indenter frame, Cf is the compliance

of the load frame, and m is the mass of the indenter.

The nanoindentation technique has been successfully used to

measure the interfacial strength in a variety of fiber reinforced com-

posites.22

Example 3.12

A copper specimen was tested in a commercial nanoindentation

machine. A Berkovich indenter (pyramid with triangular base) was used.

The specimen was loaded to different load levels shown in Figure E.3.12,

then unloaded. For each maximum load, determine the hardness. Estab-

lish whether the hardness changes with depth of indentation.

Fig. E.3.12 Load vs. displacement curves obtained for copper specimen in a

TriboIndenter machine. (Courtesy of Andrea Hodge, USC.)

22 K. K. Chawla, Ceramic Matrix Composites, 2nd ed. (Boston: Kluwer Academic Publishers,

2003), p. 176.
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Solution: The relationship between depth of indentation, hi, and area

of a perfectly sharp Berkovich tip, is (Equation 3.50):

A = 24.56h2
i

We find the forces and displacements at the top of the five loading

cycles. We obtain the corresponding displacements (depths of indenta-

tion).

Load, P (μN) Displacement, h (nm) Area, A (nm2) Hardness (GPa)

760 115 324,012 2.34
1350 165 667,012 2.02
2150 205 1,029,612 1.99
2850 243 1,446,700 1.97
3900 295 2,132,112 1.83

There is a slight but consistent decrease in nanoindentation hardness

as the load is increased.

3.9 Formability: Important Parameters

Deep drawing and stretching are the two main processes involved

in most sheet-metal-forming operations. An excellent introductory

overview on sheet-metal forming is provided by Hecker and Ghosh.23

In a stamping operation, one part of the blank might be subjected to

a deformation process similar to deep drawing (thickness increasing

with time). In deep drawing the material is required to contract cir-

cumferentially, while in stretching the stresses applied on the sheet

are tensile in all directions. Sheet-metal forming has evolved from

an art into a science, and important material parameters have been

identified. These material properties are obtained in special tests and

allow a reasonable prediction of the blank in the actual sheet-forming

operation.

The work-hardening rate n is important, because it determines the

onset of necking (tensile instability), an undesirable feature. Accord-

ing to Considère’s criterion (see Section 3.2.2), n is equal to εu, the

uniform strain. Hence, the higher n, the higher εu. The strain-rate sen-

sitivity m is an important parameter, too, because it also helps to avoid

necking. If m is positive, the material becomes stronger at incipient

necks because the strain rate in the necked region is higher. (See Sec-

tion 3.2.3.) The parameter R (the through-thickness plastic anisotropy)

is also important; it is equal to the ratio between the strain in

the ‘‘stretching” direction and the strain in the thickness direction.

The greater the resistance to ‘‘thinning” in stretching, the better is

the formability of the metal. This resistance to thinning corresponds

23 S. S. Hecker and A. K. Ghosh, Sci. Am., Nov. (1976), p. 100.
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Fig. 3.44 Simple formability tests

for sheets. (a) Simple bending test.

(b) Free-bending test. (c) Olsen or

Ericksen cup test. (d) Swift cup

test. (e) Fukui conical cup test.

to a value of R larger than 1: the strength in the thickness direction is

greater than the strength in the plane of the sheet. The three param-

eters n, m, and R are readily obtained in a tensile test. (See Sections

2.2 and 3.2).

Additional important information on the workability of sheets is

provided by the yield and flow loci. Section 3.7.8 gives a description of

yield criteria and how they are graphically presented in a plane-stress

situation. The experimental determination of the yield locus and its

expansion as plastic deformation takes place is conducted in biaxial

tests. (See Section 3.7.4, Figure 3.28.)

Figure 3.44 shows the most simple formability tests applied to

metals. In the simple bending test, the specimen is attached to a die,

and one end is clamped in a vise. The other end is bent to a specific

radius. Specimens are bent to 180◦ using bending dies with smaller

and smaller bending radii. Observations are made to see whether

cracks are formed. In the free-bending test, the specimen is first bent

between two rollers until an angle between 30◦ and 45◦ is achieved.

It is then further bent between two grips, such as a vise.

The Olsen and Erichsen tests are typical stretch tests. A hardened

steel sphere (diameter of 22.2 mm for the Olsen test, 20 mm for the

Erichsen test) is pushed into the clamped metal, forming a bulge.
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The depth of the bulge at the fracture point is measured. The clamp-

down pressure is very high (>70 kN), to minimize the drawing of the

material.

The Swift and Fukui tests (Figure 3.44(d) and (e)) are drawing tests.

The clamp-down pressure in the Swift test allows the sheet to slip

inward. The overall diameter of the part is decreased in the pro-

cess. This test simulates the deep drawing of parts. The drawability is

expressed as the limiting draw ratio

LDR = maxmimum blank diameter

punch diameter
= D

d
.

There are two geometries for the Swift test, shown in Figure 3.44(d):

the round-bottomed cup test and the cup test. The latter test causes

stretching of the center of the cup in addition to drawing. The Fukui

test (Figure 3.44(e)) is the Japanese (JIS Z 2249) equivalent of the US

stretch-drawing Swift test. A sphere 12.5 to 27 mm in diameter is

pushed into a disk and advanced until either failure results or neck-

ing occurs in the cup. A hold-down ring maintains the specimen in

place. The ratio between the diameters of the base of the deformed

cup and the original disk provides the Fukui conical cup value. The

modern counterpart of these older, but reliable, tests is the forming-

limit curve, described in Section 3.9.2. The circle-grid analysis, which

consists of applying a circle grid to the blank and measuring the

strains in the critical regions of the stamped part, is also described

in that section.

3.9.1 Plastic Anisotropy
Elastic deformation under anisotropic conditions is described by

elastic constants, whose number can vary from 21 for the most

anisotropic solid to 3 for one exhibiting cubic symmetry. (For isotropic

solids, the number of independent elastic constants is 2.) In a simi-

lar way, plasticity increases in complexity as the anisotropy of the

solid increases. Sections 3.2--3.3 cover only the isotropic case, and

even that in a very superficial way. In polycrystals, anisotropy in

plasticity is more the rule than exception. Essentially, there are two

sources of anisotropy. First is texture, in which the grains are not

randomly oriented, but have one or more preferred orientations. Tex-

turing is often introduced by deformation processing. Well-known

and well-characterized textures accompany cold rolling, wire draw-

ing, and extrusion. This type of anisotropy is also called crystallo-

graphic anisotropy. Second, anisotropy is produced by the alignment of

inclusions or second-phase particles along specific directions. When

steel is produced, the inclusions existing in the ingot take the shape

and orientation of the deformation process (rolling). These inclusions,

such as MnS, produce mechanical effects called fibering. This type of

anisotropy is also known as mechanical anisotropy. Whereas crystallo-

graphic anisotropy can strongly affect the yield stress, mechanical

anisotropy usually manifests itself only in the later stages of deform-

ation, influencing fracture.
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1 mm

Fig. 3.45 “Ears” formed in

deep-drawn cups due to in-plane

anisotropy. (Courtesy of Alcoa,

Inc.)

Figure 3.45 shows the effect of texture on a deep-drawn cup. This

effect is known as ‘‘earing.” Prior to drawing, the sheet exhibited

different yield stresses along different directions. The orientation in

which the sheet is softer is drawn in faster than the harder direc-

tion, resulting in ‘‘ears.” The number of ears (four) actually shows the

type of texture. Figure 3.46 on the other hand, illustrates the effect

of inclusions on the formability of an alloy. Fracture is much more

probable if the sheet is bent along the second-phase strings than if it

is bent perpendicular to them.

Section 3.7.8 shows the yield locus for anisotropic materials; this

equation is an ellipse essentially identical to that described by the von

Mises yield criterion in plane stress. (See Section 3.7.4.) The ellipse is

distorted, however.

3.9.2 Punch–Stretch Tests and Forming-Limit Curves (or
Keeler–Goodwin Diagrams)

An ideal test is the one that predicts exactly the performance of a

material. The m, n, and R values are insufficient to predict the form-

ability, and tests more closely resembling the actual plastic-forming

operations have been used for a long time. The main parameter

that they can provide is the strain to fracture. These tests are called

punch--stretch tests, or simply, ‘‘cupping” tests.

The punch--stretch test consists of clamping a blank firmly on its

edges between two rings or dies; the next step is to force a plunger

or punch through the center area of the specimen enclosed by the

area of the ring, until the blank fractures. Several punch--stretch tests

have been developed over the years, including the Olsen, Erichsen,

Guillery, and Wazau tests. These ‘‘cupping” tests are routinely used for

inspection purposes, since they provide a quick indication of ductility;
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Cracking of outer fiber

Rolling direction

Rolling direction

Elongated inclusions

Fig. 3.46 Effect of “fibering” on formability. The bending operation is often an integral

part of sheet-metal forming, particularly in making flanges so that the part can be

attached to another part. During bending, the fibers of the sheet on the outer side of

the bend are under tension, and the inside ones are under compression. Impurities

introduced in the metal as it was made become elongated into “stringers” when the

metal is rolled into sheet form. During bending, the stringers can cause the sheet to fail

by cracking if they are oriented perpendicular to the direction of bending (top). If they

are oriented in the direction of the bend (bottom), the ductility of the metal remains

normal. (Adapted with permission from S. S. Hecker and A. K. Ghosh, Sci. Am., Nov.

(1976), p. 100.)

they also show the change in surface appearance of the sheet upon

forming. Two important defects appear in stamping:

1. The orange-peel effect (surface rugosity) is due to the large grain

size of the blank. The anisotropy of plastic deformation of the

individual grains results in an irregular surface, perfectly visible

to the naked eye, when the grain size is large.

2. Stretcher strains are produced when Lüders bands appear in the

forming process. The interface between the Lüders band and un-

deformed materials exhibits a step easily visible to the naked eye.

This is an undesirable feature that can be eliminated either by

prestraining the sheet prior to forming (beyond the Lüders band

region) or by alloying the material in such a way as to eliminate the

yield drop and plateau from the stress--strain curve. In low-carbon

steels, Lüders bands are formed by the interactions of carbon and
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EE1

Fig. 3.47 Sheet specimen

subjected to punch–stretch test

until necking; necking can be seen

by the clear line. (Courtesy of

S. S. Hecker.)

nitrogen atoms with dislocations. After a process called temper

rolling, the susceptibility is eliminated; however, it can return fol-

lowing aging. This problem is easily solved by flexing the sheet by

effective roller leveling just prior to forming.24

The poor correlation between the common ‘‘cupping” test and

the actual performance of the metal led investigators to look at

some more fundamental parameters. The first breakthrough came in

1963, when Keeler and Backofen25 found that the localized necking

required a critical combination of major and minor strains (along

two perpendicular directions in the sheet plane). This concept was

extended by Goodwin to the negative strain region, and the resulting

diagram is known as the Keeler--Goodwin,26 or forming-limit, curve

(FLC). The FLC is an important addition to the arsenal of techniques for

testing formability and is described after the description of Hecker’s

testing technique, presented next.27

Hecker developed a punch--stretch apparatus and technique well

suited for the determination of FLC. The device consists of a punch

with a hemispherical head with a 101.6-mm (4-in.) diameter. The die

plates are mounted in a servohydraulic testing machine with the

punch mounted on the actuator. The hold-down pressure on the die

plates (rings) is provided by three hydraulic jacks. (The hold-down load

is 133 kN.) The bead-and-groove arrangement in the rings eliminates

any possible drawing in. The specimens are all gridded with 2.54-mm

circles by a photoprinting technique. The load versus displacement

is measured and recorded during the test, and the maximum load

is essentially coincident with localized instability and the onset of

fracture. A gridded specimen after failure is shown in Figure 3.47. The

24 H. E. McGannon (ed.), The Making, Shaping, and Treating of Steel, 9th ed. (Pittsburgh, PA:

US Steel, 1971), pp. 1126, 1260.
25 S. P. Keeler and W. A. Backofen, Trans. ASM, 56 (1963) 25.
26 G. M. Goodwin, ‘‘Application of Strain Analysis to Sheet Metal Forming Problems in

the Press Shop,” SAE Automotive Eng. Congr., Detroit, Jan. 1968, SAE Paper No. 680093.
27 S. S. Hecker, Metals Eng. Quart., 14 (1974) 30.
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Fig. 3.48 Schematic of sheet

deformed by punch stretching. (a)

Representation of strain

distribution: ε1, meridional strains;

ε2, circumferential strains; h, cup

height. (b) Geomety of deformed

sheet.

circles become distorted into ellipses. The clear circumferential mark

is due to necking. The strains ε1 and ε2 are called meridian and cir-

cumferential strains, respectively, and are measured at various points

when the test is interrupted. Figure 3.48(a) shows how these strains

vary with distance from the axis of symmetry of the punch, at the

point where the punch has advanced a total distance of h = 27 mm.

ε1, the meridional strain, is highest at about 25 mm from the center

(ε1 ≈ 0.25); ε2, the circumferential strain, shows a definite plateau. By

using sheets with different widths and varying lubricants between

the sheet and the punch, different strain patterns are obtained.

(Figure 3.48(b) shows the geometry of the deformed sheet.) The tests

are conducted to obtain different combinations of minor--major

strains leading to failure. Figure 3.49 shows how the FLC curve

is obtained. The minor strain (circumferential) is plotted on the

abscissa, and the major strain (meridional) is plotted on the ordinate

axis. Four different specimen geometries are shown. The V-shaped

curve (FLC) marks the boundary of the safe--fail zone. The region

above the line corresponds to failure; the region below is safe.

In order to have both major and minor strains positive, we use a

full-sized specimen. By increasing lubrication, the major strain is

increased; a polyurethane spacer is used to decrease friction. The

drawings on the lower left- and right-hand corners of the figure

show the deformation undergone by a circle of the grid. When both

strains are positive, there is a net increase in area. Consequently,

the thickness of the sheet has to decrease proportionately. On



236 PLASTICITY

Major strain

120

100

80

60

40

20

Minor strain e
2
 (%) 

INCREASING

LUBRICATION

DECREASING

BLANK WIDTH

POLYURETHANE SPACER

DRY

200 mm × 200 mm

0 mm × 200 mm

140 mm × 200 mm

d
d

25 mm × 200 mm

e
1
 (%)

+e
1 +e

1

-e
2

-60 -40 -20 0 20 40 60 80

+e
2

Fig. 3.49 Construction of a

forming-limit curve (or

Keeler–Goodwin diagram).

(Courtesy of S. S. Hecker.)

the left-hand side of the plot, negative strains are made possible

by reducing the lateral dimension of the blank. This allows free

contraction in this dimension. The strains in an FLC diagram are

obtained by carefully measuring the dimensions of the ellipses

adjacent to the neck-failure region. It is interesting to notice

that diffuse necking (thinning) starts immediately after deform-

ation, whereas localized necking occurs only after substantial form-

ing. Semiempirical criteria for localized necking that agree well with

experimental results have been developed.

FLCs provide helpful guidelines for press-shop formability. Cou-

pled with circle-grid analysis, they can serve as a guide in modifying

the shape of stampings. Circle-grid analysis consists of photoprinting

a circle pattern on a blank and stamping it, determining the major

and minor strains in its critical areas. The strain pattern in the stamp-

ing is then compared with the FLC to verify the available safety mar-

gin. The strain pattern can be monitored with changes in lubrication,

hold-down pressure, and size and shape of drawbeads and the blank;

such monitoring can lead to changes in the experimental procedure.
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Draw

Stretch

O
Plain strain

Fig. 3.50 Different strain

patterns in stamped part. (Adapted

from W. Brazier, Closed Loop, 15,

No. 1 (1986) 3.)

Circle-grid analysis also serves, in conjunction with the FLC, to indi-

cate whether a certain alloy might be replaced by another one, possi-

bly cheaper or lighter. During production, the use of occasional circle-

grid stampings provides valuable help with respect to wear, faulty

lubrication, and changes in hold-down pressure. Hecker and Ghosh28

claim that the circle-grid analysis has replaced the craftsman’s ‘‘feel”

for the proper flow of the metal.

The strain pattern undergone by a stamped part is shown schemat-

ically in Figure 3.50. Different portions exhibit different strains, and

this is evident by observing the distortion of circles at different

regions.

3.10 Muscle Force

The maximum force that a muscle fiber can generate depends on the

velocity at which it is activated. Figure 3.51 shows the stress that can

be generated as a function of strain rate for ‘‘slow-twitch” and ‘‘fast-

twitch” muscles. We use slow-twitch muscles for long-range events

(e.g., distance running) and fast-twitch muscles for explosive activi-

ties, such as sprinting or throwing a punch at our professor. Both

muscles show a decreasing ability to generate stress as the strain rate

is increased. However, the fast-twitch muscles show a lower decay.

The plot shown in Figure 3.51 is only schematic and represents

the rat soleus (slow-twitch) and extensor digitorum longus (fast-twitch).

The equation that describes the response in Figure 3.51 is called the

Hill29 equation. It has the form:

(σ + a)(̇ε + b) = (σ0 + a)b,

28 S. S. Hecker and A. K. Ghosh, Sci. Am., Nov. (1976), p. 100.
29 A. V. Hill, Proc. Roy. Soc. London, 126 (1938), 136--195.
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Fig. 3.51 Stress vs. strain rate

for slow-twitch and fast-twitch

muscles.

where σ0 is the stress at zero velocity (equal to 200 kPa in Figure

3.51). The range of σ0 is usually between 100 and 300 kPa; a and b are

parameters and ε̇ is the strain rate (obtained from the velocity).

Example 3.13

A person is lifting a weight by contracting the biceps muscles. Assuming

that each muscle fiber has the capacity to lift 300 μg, and that each

muscle fiber has a diameter of 5 μm, what is the required cross section

of biceps muscle needed to lift a mass of 20 kg?

F1

F2

90°

5 cm

35 cm

Fig. E3.13 Forearm and force F2 exerted by weight and reaction F1 applied by

biceps.
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Solution: The cross section of each fiber is:

A = π

4
× 52 = 19.625 μm2.

We can see from Figure E3.13 that we need to apply a lever rule to

calculate the force that the muscle has to exert. Distances given in

Figure E3.13 are typical. Students should check by measuring their

arms. Equating the sum of the moments to zero,

�M0 = 0

F1 X1 − F2 X2 = 0.

We have, for typical values: X1 = 5 cm; X2 = 35 cm.

But:

F2 = 20 × 9.8 = 196 N.

Thus:

F1 = 196 × 35

5
= 1372 N.

The maximum force that each muscle fiber can lift is:

F f = 300 × 10−6 × 9.8 × 10−3 = 2940 × 10−9 N.

The ratio F1/F f gives the number of fibers:

N = 4.66 × 108.

The total area is equal to:

At = N × A = 91.425 × 108 μm2.

This may be converted into cm2:

At = 91.4 cm2.

This is indeed a biceps with a diameter of:

D =
(

4At

π

)1/2

= 10.7 cm.

This corresponds to Arnold on steroids!

Example 3.14

Determine the safety factor built into the Achilles’ tendon of a person

weighing 80 kg, assuming a cross-sectional area of 1.5 cm2, if the person

can jump up to a height of 1 m, then land with a deceleration time

of 0.3 s. Assume that the tensile strength of the tendon is 60 MPa.

Dimensions are given in Figure E3.14.
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(b)

(c)

F

Fig. E3.14 (a) Structure of foot with Achilles’ tendon shown; (b) force T on

tendon; (c) jump from a height h.

Solution: We first calculate the relationship between T, the tension in

the Achilles’ tendon, and F, the force exerted on the ground. We assume

that the person is standing on the ball of the foot.

Setting the sum of moments equal to zero,

�MB = 0,

B C × F − AB × T = 0,

T = B C × F

AB
.

The forces and distances are defined in Figure E3.14(b). We now calcu-

late F for the static and dynamic cases. For the static case, we simply

have:

Fs = 80 × 9.8 = 784 N.

For the dynamic case, we have to consider the kinetic energy gained by

the person, when jumping down from a height of 1 m. The potential
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energy is converted into kinetic energy

mgh = 1

2
mv2,

The velocity is:

v = (2gh)1/2 = 4.43 m/s.

In order to find the dynamic force, Fd , we set the impulse equal to the

change in momentum:

mv − m × 0 = Fd × t.

The deceleration time is given: t = 0.3 s.

Thus:

Fd = 707 N.

The total force is:

F = Fs + Fd = 1492 N.

From the figure we obtain the values of AB and BC

T = 5968 N.

Assuming a round section, the area of the tendon is:

A = π

4
(1.5 × 10−2) = 1.7 × 10−4 m2.

Thus, the stress is:

σ = T

A
= 35.1 MPa.

The safety factor is:

S F = 60

35.5
= 1.7.

This is indeed a small number, and a weakened Achilles’ tendon could

easily rupture. Indeed, this happened to one of the coauthors (MAM)

while playing soccer (his last game). The tendon was operated upon

and reconnected through stitches. The foot was immobilized in the

stretched position for 4 months enabling the tendon to repair itself.

Interestingly, the operated tendon now has a cross section twice as

large as the other one. Hence, nature somehow remembers the trauma

and overcorrects for it. The same thing happens in bones. The healed

portion becomes stronger than the original bone.

3.11 Mechanical Properties of Some
Biological Materials

Figure 3.52 shows the stress--strain response of a number of bio-

logical materials. It may be seen that the properties vary widely. As

is the case with synthetic materials, the strength increases as the
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Fig. 3.52 Stress–strain response

for a number of biological

materials.

ductility decreases. The strongest materials in our body are the cor-

tical bone, followed by tendons and ligaments. The wide range in

properties is due to differences in structure and constituents, pre-

sented in Chapter 1. Table 3.4 provides some important mechanical

properties for a number of biological materials.

Elastin, which is described in Chapter 1, is an important compo-

nent in skin and arteries. As the name implies, it provides elasticity.

Figure 3.53 gives the stress--strain response from elastin taken from

ligamentum nuchae (a long ropelike fiber running along the top of a

horse’s neck and holding it upright). The material is approximately

linearly elastic with a Young’s modulus of approximately 0.6 MPa.

Bone is the structural component of our body. It also has other

functions, but we will concentrate on the mechanical performance

here. There are two principal types of bone: cortical (or compact) and

cancellous (or porous). Figure 3.54 shows the structure of a long bone.

The surface regions consist of cortical bone; the inside is porous and

is cancellous bone. The porosity reduces the strength of the bone,

but also reduces its weight. Bones are shaped in such a manner that

strength is provided only where it is needed. The porosity of can-

cellous bone provides interesting mechanical properties, which are

quantitatively treated in Chapter 12. The pores also perform other

physiological functions and contain the marrow. Thus, bone is a

true multifunctional material. Researchers are developing synthetic
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Table 3.4 Mechanical Properties of Some Biological Materials

Material E (MPa)
Fracture Stress
(MPa)

Strain at
Fracture

Elastin 0.6
Resilin 1.8
Collagen 1,000 70 0.09
Fibroin 10,000
Cortical bone –

Longitudinal (14–24) ×103 150 ∼0.015
Transverse (8–18) ×103 50

Cancellous (porous) bone 10–200
Cellulose 80,000 1000 0.024
Tendon 1,300 75 0.09
Keratin 2,500 50 0.02

Alpha (mammalian) Beta (birds) 2,000 20
Dentine 300
Spider Silk (radial) 1,500 0.06
Silkworm Silk 500

Loading

Unloading

100

80

60

40

20

0
0 0.05 0.10 0.15 0.20

Strain

S
tr

e
s
s
, 
M

P
a

Elastin
Fig. 3.53 Stress–strain response

for elastin; it is the ligamentum

nuchae of cattle (Adapted from Y.

C. Fung and S. S. Sobin, J. Biomech.

Eng., 1103 (1981) 121. Also in Y.

C. Fung, Biomechanics: Mechanica

properties of Living Tissues (New

York: Springer, 1993) p. 244.)

multifunctional materials that have more than one function; this par-

ticular area of research is based on biological systems and is called

‘‘biomimetics” (mimicking nature).

Cortical bone is found in long bones (femur, tibia, fibula, etc.).

The longitudinal mechanical properties (strength and stiffness)

are higher than the transverse ones. Thus, cortical bone can be
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considered as transversely isotropic. Figure 3.55 provides the tensile

and compressive stress--strain curves for cortical bone in longitudinal

and transverse directions. The anisotropy is clearly visible. The bone

is stronger in the longitudinal direction.

Fig. 3.54 Longitudinal section of

a femur. (From S. Mann,

Biomineralization (New York:

Oxford University Press, 2001).)

Bone is a composite of collagen, hydroxyapatite, and water.

Hydroxyapatite is a calcium phosphate with the composition:

3Ca3(PO4)2Ca(OH)2. Water corresponds to 15--25 vol.% of the bone in

mammals. The Young’s modulus of cortical bone varies from 14 to 24

GPa (see Table 3.4). This is much lower than that of hydroxyapatite,

which has a Young’s modulus of approximately 130 GPa and a tensile

strength of 100 MPa. Although collagen is not linearly elastic, we can

define a tangent modulus; it is approximately 1.25 GPa. The strength

achieved in bone is therefore higher than both hydroxyapatite (100

MPa) and collagen (50 MPa), demonstrating the synergistic effect of

a successful composite. Hydroxyapatite is the major mineral compo-

nent of bone. The hydroxyapatite content of bone varies from animal

to animal, depending on function. For instance, an agile animal like

a gazelle has bones that have to be highly elastic. Thus, the hydroxy-

apatite level is fairly low (around 50% by weight). Collagen provides

the elasticity. On the other hand a whale has bones with a much

higher mineral content (∼80% by weight). We are somewhere in

between. A young athletic student has more compliant bones than

a sedentary professor!

The mechanical response of bone is also quite strain-rate sensitive.

As the velocity of loading increases, both the elastic modulus and the

fracture stress increase. Hence, the stiffness increases with strain rate.

This is shown in Figure 3.56.
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Fig. 3.55 Tensile and

compressive stress–strain curves

for cortical bone in longitudinal

and transverse directions.

(Adapted from G. L. Lucas, F. W.

Cooke, and E. A. Friis, A Primer on

Biomechanics (New York: Springer,

1999).)
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Fig. 3.56 Strain-rate

dependence of tensile response of

cortical bone. (Adapted from J. H.

McElhaney, J. Appl. Physiology,

21(1966) 1231.)

An equation called the the Ramberg--Osgood equation is used to

describe this strain-rate dependence of the elastic modulus:

E = σ
ε

= C (ε̇)d,

where σ is the stress, ε is the strain, ε̇ is the strain rate, and C and d

are experimental parameters. The following are typical values:

Human cranium: C = 15 GPa; d = 0.057

Bovine cortical bone (longitidinal): C = 12 GPa; d = 0.018.
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Exercises

3.1 A polycrystalline metal has a plastic stress--strain curve that obeys Hol-

lomon’s equation,

σ = K εn.

Determine n, knowing that the flow stresses of this material at 2% and 10%

plastic deformation (offset) are equal to 175 and 185 MPa, respectively.

3.2 You are traveling in an airplane. The engineer who designed it is, casually,

on your side. He tells you that the wings were designed using the von Mises

criterion. Would you feel safer if he had told you that the Tresca criterion

had been used? Why?

3.3 A material is under a state of stress such that σ 1 = 3σ 2 = 2σ 3. It starts

to flow when σ 2 = 140 MPa.

(a) What is the flow stress in uniaxial tension?

(b) If the material is used under conditions in which σ 1 = − σ 3 and σ 2 =
0, at which value of σ 3 will it flow, according to the Tresca and von Mises

criteria?

3.4 A steel with a yield stress of 300 MPa is tested under a state of stress where

σ 2 = σ 1/2 and σ 3 = 0. What is the stress at which yielding occurs if it is

assumed that:

(a) The maximum-normal-stress criterion holds?

(b) The maximum-shear-stress criterion holds?

(c) The distortion-energy criterion holds?

3.5 Determine the maximum pressure that a cylindrical gas reservoir can

withstand, using the three flow criteria. Use the following information:

Material: AISI 304 stainless steel --- hot finished and annealed, σ 0 = 205 MPa

Thickness: 25 mm

Diameter: 500 mm

Length: 1 mm

Hint: Determine the longitudinal and circumferential (hoop) stresses by the

method of sections.

3.6 Determine the value of Poisson’s ratio for an isotropic cube being plastic-

ally compressed between two parallel plates.

3.7 A low-carbon-steel cylinder, having a height of 50 mm and a diameter of

100 mm, is forged (upset) at 1,200◦C and a velocity of 1 m/s, until its height is

equal to 15 mm. Assuming an efficiency of 60%, and assuming that the flow
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stress at the specified strain rate is 80 MPa, determine the power required to

forge the specimen.

3.8 Obtain the work-hardening exponent n using Considère’s criterion for the

curve of Example 3.4.

3.9 The stress--strain curve of a 70--30 brass is described by the equation

σ = 600ε0.35
p MPa

until the onset of plastic instability.

(a) Find the 0.2% offset yield stress.

(b) Applying Considère’s criterion, find the real and engineering stress at the

onset of necking.

3.10 The onset of plastic flow in an annealed AISI 1018 steel specimen is

marked by a load drop and the formation of a Lüders band. The initial strain

rate is 10−4 s−1, the length of the specimen is 5 cm, and the Lüders plateau

extends itself for a strain equal to 0.1. Knowing that each Lüders band is

capable of producing a strain of 0.02 after its full motion, determine:

(a) The number of Lüders bands that traverse the specimen.

(b) The velocity of each Lüders band, assuming that only one band exists at

each time.

3.11 A tensile test on a steel specimen having a cross-sectional area of 2 cm2

and length of 10 cm is conducted in an Instron universal testing machine

with stiffness of 20 MN/m. If the initial strain rate is 10−3 s−1, determine the

slope of the load-extension curve in the elastic range (E = 210 GN/m2).

3.12 Determine all the parameters that can be obtained from a stress--strain

curve from the load-extension curve (for a cylindrical specimen) shown in

Figure E.3.12, knowing that the initial cross-sectional area is 4 cm2, the

crosshead velocity is 3 mm/s, the gage length is 10 cm, the final cross-sectional

area is 2 cm2, and the radius of curvature of the neck is 1 cm.
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3.13 Draw the engineering-stress--engineering-strain and true-stress--true-

strain (with and without Bridgman correction) curves from the curve in Exer-

cise 3.12.
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3.14 What is the strain-rate sensitivity of AISI 1040 steel at a strain of 0.02

and a strain of 0.05 (Obtain your data from Figure 3.12(a).)

3.15 From the load-extension curve shown in Example 3.4, draw the true-

stress--true-strain curve.

3.16 An AISI 1045 steel obeys the following relationship relationship between

stress (σ ) and strain (e) in tension:

σ (MPa) = 300 + 450e0.5.

Obtain the compressive stress--strain curve, considering the Bauschinger

effect. Use the data from Figure 3.17.

3.17 The PMMA specimens, Figure Ex.3.17, were deformed in uniaxial tension

at different temperatures. (a) Plot the total elongation, ultimate tensile stress,

and Young’s modulus as a function of temperature. (b) Discuss changes in

these properties in terms of the internal structure of the specimen.
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3.18 For the force--displacement curve of Figure Ex.3.18, obtain the engineer-

ing and true-stress--strain curves if the specimen were tested in compression.
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3.19 Calculate the softening temperature for a soda--lime silica glass at which

the viscosity is equal to 107 Pa · s if the activation energy for viscous flow is

250 kJ/mol and the viscosity at 1,000◦C is 103 Pa · s.

3.20 The viscosity of a SiO2 glass is 1014 P at 1,000 ◦C and 1011 P at 1,300 ◦C.

What is the activation energy for viscous flow in this glass? Note: 1 P = 0.1

Pa · s.

3.21 When tested at room temperature, a thermoplastic material showed a

yield strength of 51 MPa in uniaxial tension and 55 MPa in uniaxial compres-

sion. Compute the yield strength of this polymer when tested in a pressure

chamber with a superimposed hydrostatic pressure of 300 MPa.

3.22 From Equation 3.35, obtain Equation 3.34. Then prove that Equation 3.34

represents an ellipse rotated 45◦ from its principal axis.

3.23 An annealed sheet of AISI 1040 steel (0.85 mm thick and with in-plane

isotropy) was tested in uniaxial tension until the onset of necking, to deter-

mine its formability. The initial specimen’s length and width were 20 and

2 cm, respectively. At the onset of necking, the length and width were 25 and

1.7 cm, respectively.

(a) Determine the ratio between the through-thickness and the in-plane yield

stress, assuming that R does not vary with strain.

(b) Draw the flow locus of this sheet, assuming that σ y (1,2) = 180 MN/m2.

3.24 Repeat Exercise 3.23 if the final width of the specimen is 1.9 cm, and

explain the differences. Which case has a better formability?

3.25 Imagine that you want to perform a circle-grid analysis, but you do not

have the facilities for photoprinting. Hence, you decide to make a grid of

perpendicular and equidistant lines. After plastic deformation of the material,

can you still determine the major and minor strains from the distorted grid?

(Hint: Use the method for determining principal strains.)

3.26 Determine the activation energy for deformation for the three glasses

shown in Figure 3.26. (Hint: plot ln viscosity vs. 1/T.)

3.27 You are given a 2.5 mm diameter cylindrical specimen 180 mm long. If

the specimen is subjected to a torque of 50 N · m.

(a) Calculate the deflection of the specimen end, if one end is fixed.

(b) Will the specimen undergo plastic deformation?

3.28 Calculate the resulting rod diameter for 1040 carbon steel subjected to

a 4000 N compressive load, with an initial diameter of 15 cm.

3.29 You are asked to design a spherical pressure vessel for space application.

The weight has to be minimized. Given that σ = Pr/T, among materials below,

which one you would select?

Alloy
Density
(kg/m3) Y. S. (MPa)

304 SS 7.8×103 400
Ti6Al4V 4.46×103 850
2024 Al 2.7×103 400
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3.30 You have a piece of steel, and you are able to measure its hardness:

HV = 250 kg/mm2. What is its estimated yield stress, in MPa?

3.31 You received a piece of cast iron, and you want to estimate its yield

strength. You are able to make a hardness indentation using a 10 mm diameter

tungsten carbide sphere. The diameter of the indentation is 4 mm. What is

the estimated yield strength?

3.32 Describe the similarities and differences in the phenomena of Lüders

band formation in low-carbon steels and tensile drawing of a polymer.

3.33 The shear yield strength of a polymer is 30% higher in compression

than in tension. Determine the coefficient A that represents the dependence

of yield stress on hydrostatic pressure.

3.34 Looking at Figure 3.3, give reasons as to why the ultimate tensile stress

(UTS) of AISI 1040 steel decreses with increased heat treatment.

3.35

(a) Describe the changes that occur at a microstructural level when a thin

semicrystalline polymer begins to neck.

(b) Why does the strength increase in the load direction? Does the necking

region become more or less transparent if the material is made of a semi-

transparent material?

3.36 The following stresses were measured on a metal specimen:

σ 11 = 94 MPa

σ 22 = 155 MPa

σ 12 = 85 MPa.

Determine the yielding for both the Tresca and von Mises criteria, given that

σ 0 = 180 MPa (yield stress). Which criterion is more conservative?

3.37 A flat indenter strikes the surface of an iron block and sinks into the

material by 0.4 cm. Assuming that the surface of a piece of iron (τ 0 = 6.6

GPa, σ 0 = 12.6 GPa, A = 0.5 cm2) can be modeled as triangular blocks as in

Figure E2.10.2, determine the force with which the indenter hits the material.

3.38 Determine the hardness of the copper specimen from the nanoindent-

ation SEM image in Figure 3.42(b) knowing that the applied load is 2000 μN.

3.39 Calculate the projected area of an indentation made in keratin, the pene-

tration depth h is 600 nm. Assume we used the Berkovich tip (A = 24.5h2).

3.40 You are designing a kinetic energy penetrator for the M1 tank. This

penetrator is made of depleted (non-radioactive but highly lethal!) uranium-

0.75%Ti. Plot the stress--strain curve, from 0 to 1:

(a) At the following strain rates: 10−3 s−1, 103 s−1 (ambient temperature).

(b) At a strain rate of 10−3 s−1 and the following temperatures: 77 K, 100 K,

300 K.

Given:

Tm = 1473 K

σ 0 = 1079 MPa

K = 1120 MPa

n = 0.25

C = 0.007

m = 1

ε̇ = 10−4 s−1



Chapter 4

Imperfections: Point and Line

Defects

4.1 Introduction

The mechanical properties of materials are often limited by their

imperfections. The theoretical cleavage and shear strengths of mater-

ials are given by (see Section 4.2):

σth =
√

E γ

a
≈ E

π
and τth = G b

2πa
≈ G

2π
,

where E and G are the Young’s and shear moduli, respectively; a is

the interatomic spacing, and γ is the surface energy of the material.

These equations predict exceedingly high strengths (on the order of

GPas), and few materials reach such strengths. (See Chapter 1.) Indeed,

this is somehow the Holy Grail of materials science: If materials were

perfect, those values could be reached. However, all materials contain

imperfections, either by design or inadvertently produced during pro-

cessing. We review these in this and subsequent chapters. They are

classified, according to their dimensions, into four kinds, each dis-

cussed in a separate section as follows:

� Point (atomic or electronic) defects (Section 4.3)
� Line (or one-dimensional) defects (Section 4.3)
� Interfacial (or two-dimensional) defects (Chapter 5, Section 5.1)
� Volume (or three-dimensional) defects (Chapter 5, Section 5.2).

Cracks are discussed in chapters 7 and 8, on fracture.

Imperfections determine the mechanical response of materials,

and the manner in which the response is used to enhance perform-

ance in a material will be analyzed in considerable detail in chapters

5 through 9. Note that the dimensional scale of defects covers a wide

spectrum, 10--14 m, as shown schematically in Figure 4.1. Electronic

point defects do not affect mechanical properties significantly and

will therefore not be discussed in this text.



252 IMPERFECTIONS : POINT AND LINE DEFECTS

Electronic point
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Fig. 4.1 Dimensional ranges of

different classes of defects.
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4.2 Theoretical Shear Strength

Frenkel1 performed a simple calculation of the theoretical shear

strength of crystals by considering two adjacent and parallel lines

of atoms subjected to a shear stress; this configuration is shown in

Figure 4.2 where a is the separation between the adjacent planes and

b is the interatomic distance. Under the action of the stress τ , the

top line will move in relation to the bottom line; the atoms will

pass through successive equilibrium positions A, B, C, for which τ is

zero. When the applied shear stress is enough to overcome these bar-

riers, plastic deformation will occur, and the atoms will move until a

shear fracture is produced. The stress is also zero when the atoms are

exactly superimposed; in that case, the equilibrium is metastable.

Between these values the stress varies cyclically with a period b.

Frenkel assumed a sine function, as one would expect:

τ = k sin
2πx

b
, (4.1)

where x is the displacement, b is the Burgers vector, and k is the

constant to be determined (see below).

For small displacements,

τ = k
2πx

b
. (4.2)

Since, for small displacements, one can consider the material to

deform elastically, we have

τ = G
x

a
, (4.3)

where x/a is the shear strain and G is the shear modulus. Substituting

Equation 4.3 into Equation 4.2, we have

k = G b

2πa
. (4.4)

1 J. Frenkel, Z. Phys., 37 (1926) 572.
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Table 4.1 Theoretical Shear Strengtha

Element G (GPa) τmax (GPa) τmax/G

Iron 60.0 6.6 0.11
Silver 19.7 0.77 0.039
Gold 19.0 0.74 0.039
Copper 30.8 1.2 0.039
Tungsten 150.0 16.5 0.11
Diamond 505.0 121.0 0.24
NaCl 23.7 2.8 0.12

a From A. Kelly, Strong Solids (Oxford, U.K.: Clarendon Press, 1973),

p. 28.

Substituting Equation 4.4 into Equation 4.1 yields

τ = G b

2πa
sin

2πx

b
.

The maximum of τ occurs for x = b/4:

τmax = G b

2πa
. (4.5)

For FCC materials, the relationship between a0 (the lattice parameter),

a, and b can be calculated. Drawing a unit cell, the student will be

able to show that b = a0/2; the spacing between adjacent planes is

given by (see crystallography textbooks):

dhkl = a0√
h2 + k2 + �2

.

For (111) planes:

d111 = a0/
√

3.

This is equal to a in Figure 4.2.

Substituting b and a into Equation 4.5, we obtain

τmax ≈ G

5.1
. (4.6)

More complex models have been advanced in which the sine func-

tion is replaced by more precise curves expressing the interaction

energy. The method used by Kelly (Mackenzie’s method) is an exam-

ple. Kelly took into account the distortion of the planes. Table 4.1

shows the stresses calculated by Mackenzie’s method. Note that the

ratio τmax/G varies between 0.039 and 0.24. Consequently, it is fairly

close to Frenkel’s ratio (0.18), obtained by the simpler method.

The theoretical strength derived above is on the order of

gigapascals; unfortunately, the actual strength of materials is orders

of magnitude below that. We derive an expression for theoretical

cleavage strength in Chapter 7.
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Example 4.1

Estimate the theoretical shear and cleavage strength for copper and

iron. From Table 2.5 in Chapter 2, we have the following data:

Iron E = 211.4 GPa G = 81.6 GPa
Copper E = 129.8 GPa G = 43.3 GPa

For the shear strength, we assume, to a first approximation, that

b = a. Thus,

τmax = G

2π

and

Fe: τmax = 13.0 GPa

Cu: τmax = 7.7 GPa.

For the cleavage strength,

σmax =
√

E γ

a0

and γ ≈ E a0

10
;

So

σmax ≈
√

E 2

10
≈ E

3.16
.

Therefore, we have

Fe: σmax = 66.9 GPa

Cu: σmax = 41.1 GPa.

The actual tensile strength of pure Fe and Cu is on the order of 0.1 GPa.

Since these metals fail by shear, the actual shear strength is equal to

0.05 GPa.

4.3 Atomic or Electronic Point Defects

These defects exist on an atomic scale. These defects can have a dia-

meter of approximately 10−10 m. Although relatively small compared

to other imperfections, atomic defects do generate a stress field in

the crystal lattice and affect the properties of the material. Figure 4.3

shows the following three types of atomic point defects.

1. Vacancy. When an atomic position in the Bravais lattice is vacant.

2. Interstitial point defect. When an atom occupies an interstitial pos-

ition. This interstitial position can be occupied by an atom of the

material itself or by a foreign atom; the defect is called a self-

interstitial and an interstitial impurity, respectively, for the two

cases.
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Vacancy Substitutional
solute atom

Self-interstitial
atom

Interstitial solute
atom

Fig. 4.3 Atomic point defects.

Frenkel
defect

Schottky
defect

Fig. 4.4 Two most common

point defects in compounds:

Schottky and Frenkel defects.

3. Substitutional point defect. When a regular atomic position is occu-

pied by a foreign atom.

The vacancy concentration in pure elements is very low at low tem-

peratures. The probability that an atomic site is a vacancy is approxi-

mately 10−6 at low temperatures, rising to 10−3 at the melting point.

In spite of their low concentration, vacancies have a very important

effect on the properties of a material, because they control the self-

diffusion and substitutional diffusion rates. The movement of atoms

in the structure is coupled to the movement of vacancies. In Section

4.3.1, the equilibrium concentration of vacancies is calculated.

In compounds (ceramics and intermetallics), defects cannot occur

as freely as in metals, because we have additional requirements, such

as electrical neutrality. Two types of defects are prominent in com-

pounds and are shown in Figure 4.4: the Schottky defect, which is a

pair of vacancies that have opposite sign (one cation and one anion);

and the Frenkel defect, which consists of a vacancy--self-interstitial

pair.

The self-interstitial and interstitial impurities lodge themselves in

the ‘‘holes” that the structure has. There is more than one type of

hole in the FCC, BCC, and HCP structures, and their diameters and

positions will be determined in what follows.

The FCC structure, shown in Figure 4.5 has two types of voids:

the larger, called octahedral, and the smaller, called tetrahedral. The

names are derived from the nearest neighbor atoms; they form the

vertices of the polyhedra shown. If we consider the atoms as rigid

spheres, we can calculate the maximum radius of a sphere that would

fit into the void without straining the lattice. The reader is encour-

aged to engage in this exercise; with some luck, he or she will find

radii of 55 and 31 pm for octahedral and tetrahedral voids, respect-

ively, in γ -iron. Hence, carbon (r = 80 pm) and nitrogen (r = 70 pm)

produce distortions in the lattice when they occupy the voids.
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(a) (b)

Regular site atoms

Fig. 4.5 Interstices in FCC

structure. (a) Octahedral void.

(b) Tetrahedral void.

(a) (b)

Fig. 4.6 Interstices in the BCC

structure. (a) Octahedral void.

(b) Tetrahedral void.

(a) (b)

Fig. 4.7 Interstices in the HCP

structure. (a) Octahedral void.

(b) Tetrahedral void.

In BCC metals there are also octahedral and tetrahedral voids, as

shown in Figure 4.6. In this case, however, the larger void is tetra-

hedral. For rigid spheres in α-iron, the void radii are 36 and 19 pm

for tetrahedral and octahedral interstices, respectively. Hence, a solute

atom is accommodated in an easier way in FCC than in BCC iron, in

spite of the fact that the FCC structure is more closely packed.

Analogously, the HCP structure presents tetrahedral and octa-

hedral voids, shown in Figure 4.7; the reader is reminded of the

similarity between the FCC and HCP structures, which explains the

presence of the same voids.

4.3.1 Equilibrium Concentration of Point Defects
A very important characteristic of vacancies and self-interstitial

atoms, in contrast to line and surface defects, is that they can exist in

thermodynamic equilibrium at temperatures above 0 K. The thermo-

dynamic equilibrium in a system of constant mass, at a constant pres-

sure and temperature, and that does not execute any work in addition
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to the work against pressure, is reached when the Gibbs free energy

is minimum. The formation of point defects in a metal requires a cer-

tain quantity of heat δq (as there is no work being executed, except

against pressure). Hence, if dH = δq, the enthalpy H of the system

increases. The configurational entropy S also increases, because there

are a certain number of different ways of putting the defects into the

system.

The Gibbs free energy is, by definition,

G = H − T S . (4.7)

One can thus see that the free energy will reach a minimum for a

certain value of n (the number of point defects) different from zero;

at 0 K, the entropic term is zero and the equilibrium concentration

is zero.

The equilibrium concentration of point defects can be calculated

from statistical considerations and is given by

n

N
= exp (− G f /kT ) (4.8)

where n and N are the number of point defects and sites, respectively,

Gf is the free energy of formation of the defects, and k is Boltzmann’s

constant. For copper, the formation of vacancies and interstitials are

G v = 83 kJ/mol, G i = 580 kJ/mol.

We have, approximately, the following ratio:

G i

G v

≈ 7.

Therefore, for copper, the free energy of formation of a vacancy

is approximately one-seventh that of a self-interstitial defect. Using

Equation 4.8, we can obtain the ratio between the vacancy (Xv) and

interstitial (Xi) concentrations:

Xv

Xi

≈ exp

(
G i − G v

kT

)
. (4.9)

For copper at 1,000 K (we have to convert molar quantities or use

R = 8.314 J/(mol K):

Xv

Xi

≈ 1026.

It can be concluded that, at least in close-packed structures, the con-

centration of interstitials is negligible with respect to that of the

vacancies. Using Equation 4.9 for copper at 1,000 K, we obtain

Xv
∼= 4.5 × 10−5.

Hence, there is only one vacancy for each 2 × 104 copper atoms

at 1,000 K. This number is very small; in spite of this, it corres-

ponds to approximately 1014 vacancies/cm3. The low concentration

of self-interstitials in close-packed structures is a consequence of the
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small diameter of the interstitial voids. (See Figures 4.5 and 4.6.) In

more open structures these concentrations can be higher. Even so,

high interstitial concentrations are not observed in equilibrium struc-

tures.

Example 4.2

If, at 400 ◦C, the concentration of vacancies in aluminum is 2.3 ×
10−5, what is the excess concentration of vacancies if the aluminum

is quenched from 600 ◦C to room temperature? What is the number of

vacancies in one cubic μm of quenched aluminum?

We are given:

G v = 0.62 eV,

k = 86.2 × 10−6 eV/K,

rAl = 0.143 nm.

Solution: We have

nv

N
= e−G v/kT .

At 400 ◦C ( = 673 K),

2.3 × 10−5 = e−0.62/86.2×10−6×673,

Thus,

nv

n
= e−0.62/86.2×10−6×873 = 2.6 × 10−4.

Aluminum has the FCC structure, with four atoms per unit cell. The

lattice parameter a is related to the unit cell by

a = 2
√

2r = 0.404 nm.

The corresponding volume is

V = a3 = 0.0662 nm3.

In one μm3, the number of atoms is

n = 4 × 109

0.0662
= 6.04 × 1010,

nv = (2.6 × 10−4)n = 1.6 × 107.

Hence, there are about 1.6 × 107 vacancies per cubic μm of the

quenched aluminum.

Point defects can group themselves in more complex arrangements

(for instance, two vacancies form a divacancy, two interstitials form

a diinterstitial, etc.) The energy of formation of divacancies has been

determined for several metals. For example, for copper (with Gf = 5.63

× 10−19 J), it is: 0.96 × 10−19 J. The energy of formation of divacancies

in noble metals in on the order of 0.48 × 10−19 J. It is thought that di-

vacancies are stable, in spite of the fact that their enthalpies of bonding

are not very well known.
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Diinterstitials also exist, and their energies can be calculated by the

same processes as for monointerstitials. Similarly, the vacancies can

bind themselves to atoms of impurities when the binding energy is

positive.

4.3.2 Production of Point Defects
Intrinsic point defects in a metal -- either vacancies or self-interstitials

-- exist in well-established equilibrium concentrations. (See Section

4.3.1.) By appropriate processing, the concentration of these defects

can be increased. Quenching, or ultra-high-speed cooling, is one of

these methods. The concentration of vacancies in BCC, FCC, and HCP

metals is greatly superior to that of interstitials and on the order of

10−3 when the metal is at a temperature close to the melting point;

it is only 10−6 when the metal is at a temperature of about half the

melting point. Hence, if a specimen is cooled at a high enough rate,

the high-temperature concentration can be retained at low tempera-

tures. For this to occur, the rate of cooling has to be such that the

vacancies cannot diffuse to sinks -- grain boundaries, dislocations,

surface, and so on. Theoretically, gold would have to be cooled from

1,330 K to ambient temperature at a rate of 1011 K/s to retain its high-

temperature vacancy concentration. The fastest quenching technique

to cool thin wires produces cooling rates lower than 105 K/s; never-

theless, a significant portion of the high-temperature point defects is

retained.

Another method of increasing the concentration of point defects

is by plastic deformation. The movement of dislocations generates

point defects by two mechanisms: the nonconservative motion of

jogs, and the annihilation of parallel dislocations of opposite sign,

producing a line of vacancies or interstitials. Jogs are created by dis-

location intersections; since they cannot glide with dislocations, they

have to climb as the dislocation moves. In a screw dislocation, they

are small segments having the character of an edge. The slip plane

of this segment is not compatible with that of the dislocation. The

climb is possible only by continuous emission of vacancies or inter-

stitials. The second mechanism is depicted schematically in Figure 4.8.

When the two dislocations cancel each other, they create a row of

interstitials or vacancies if their slip planes do not coincide.

(a)

(b)

Row of
vacancies

Row of
interstitials

Fig. 4.8 Formation of point

defects by the annihilation of

dislocations. (a) Row of vacancies.

(b) Row of interstitials.
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Quenching produces mostly vacancies and vacancy groups. The

concentrations obtained are lower than 10−4. Deformation, on the

other hand, can introduce higher concentrations of vacancies and

equivalent ones of interstitials; the problem is that it also introduces a

number of other substructural changes that complicate the situation.

Dislocations are introduced, and they interact strongly with point

defects. One method of producing point defects does not present these

problems: Irradiation of the metal by high-energy particles allows the

introduction of a high concentration of point defects. The radiation

displaces the electrons, or ionizes, displaces atoms by elastic colli-

sions, and produces fission and thermal spikes. This subject is treated

in greater detail in Section 4.3.4. The displacement of atoms is pro-

duced by the elastic collision of the bombarding particles with the

lattice atoms, transferring the kinetic energy of the particles to the

atoms. This may cause the atoms to travel through the lattice. In

the majority of cases, an atom travels a few atomic distances and

enters an interstitial site. Consequently, a vacancy is produced,

together with a self-interstitial. The energy transferred in the colli-

sion has to be well above the energy required to form an interstitial-

-vacancy pair in a reversible thermodynamic process (3 to 6 eV, or

4.8 × 10−19 to 9.6 × 10−19 J). It is believed that the energy transferred

to the atom has to be approximately 25 eV (40 × 10−19 J). Different par-

ticles can be used in the bombardment process: neutrons, electrons,

γ rays, and α particles.

4.3.3 Effect of Point Defects on Mechanical Properties
Point defects have a marked effect on the mechanical properties of a

material. For this reason, the effect of radiation is of great importance.

Maddin and Cottrell2 used aluminum single crystals with various

purity levels, observing that the yield stress increased with quench-

ing. Quenching was accomplished by taking the specimens from

600 ◦C and throwing them into a water--ice mixture, while annealed

material was slowly cooled in the furnace. The yield stress increased

from 550 to 5,900 kPa, on average. The effect of impurity atoms

could be neglected because the increase in yield stress was consist-

ent throughout the specimens. The effect of possible residual stresses

due to quenching was also neglected. With the purpose of obtaining

evidence that was still more convincing, a single crystal was tested

immediately after quenching, while another was tested after staying

a few days at ambient temperature. The yield stress increased from

5.9 MPa to 8.4 MPa in the aged condition. The strengthening by

quenching is due to the interaction of dislocations and vacancies

or groups thereof. The effect of jogs, formed by the condensation of

vacancies on the dislocations, can also be considerable. During aging,

the excess concentration of vacancies forms groups and/or annihilates

preexisting dislocations.

2 R. Maddin and A. H. Cottrell, Phil. Mag., 46 (1955) 735.
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There are also alterations in the plastic portion of the stress-

versus-strain curve seen in Figure 4.9. The initial work-hardening

rate of the quenched aluminum is lower than that of slowly (fur-

nace) cooled aluminum. At greater strains, however, the two work-

hardening rates become fairly similar. Hence, the effect of quench-

ing disappears at higher strains. This is thought to be because the
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Fig. 4.9 Stress-versus-strain

curves for aluminum single crystals.

The crystallographic orientation is

shown in the stereographic

triangle. (Adapted with permission

from A. H. Cottrell, Phil. Mag., 46

(1955) p. 737.)

excess concentrations of point defects are eliminated during plastic

deformation; at the same time, excess vacancies are generated by

dislocation motion, so that the concentrations in the quenched and

furnace cooled materials become the same.

The increase in hardness in many quenched metals is negligible,

in spite of the obvious changes in the stress-versus-strain curve. This

is explained by the fact that the effect of quenching disappears after

a certain amount of plastic deformation. Since the indenter deforms

the metal plastically (in an extensive way), the effect of quenching is

minimal.

4.3.4 Radiation Damage
Irradiation of solids by high-energy particles may produce one or

more of the following effects:

1. Displaced electrons (i.e., ionization).

2. Displaced atoms by elastic collision.

3. Fission and thermal spikes.

Ionization has a much more important role in nonmetals than it

has in metals. The high electrical conductivity of metals leads to a

very quick neutralization of ionization, and there is no observable

change in properties due to this phenomenon. Electronic excitations

in metals are also eliminated almost instantaneously. Such would

not be the case in semiconductors and dielectrics, where electronic

excitation configurations are almost permanent. Thus, in the case of

metals, only collisions among incident particles and atomic nuclei are

of importance. The basic mechanism in all processes of radiation dam-

age is the transfer of energy and motion from the incident particle

beams to the atoms of the material. The incident particle beam may

consist of positive particles (protons, for example), negative particles

(which are invariably electrons), or neutral particles (X-rays, γ -rays,

neutrons, etc.). Irradiation by neutrons results in a large spectrum of

constant energy until the maximum energy that a particle can trans-

mit to an atom which suffered the impact. A neutron of 1 MeV (0.16 pJ)

can transfer about 105 eV (0.016 pJ) to an atom. High-energy transfers

can also be obtained by means of positive particles, but such energy

transfers are less common. In the case of electrons, only low-energy

transfers are possible. We shall consider here mainly the effects of

neutron radiation on metals. The primary collision has the function

of transferring energy to the atomic system. The subsequent events

that occur are as follows.
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1. Displacement of an atom from its normal position in the lattice

to a position between the normal lattice sites.

2. Creation of defects by displacements and their migrations and

interactions.

When an atom is displaced from its normal lattice site, two defects

are created: an interstitial atom referred to as autointerstitial or self-

interstitial, and a vacant lattice site called a vacancy. More complex

configurations can be regarded as having started from this funda-

mental step. When an atom receives an energy impulse greater than

a certain value Ee’ called the effective displacement energy, some atom

is displaced from its normal position to an interstitial position. In

the most simple case, if an atom receives the primary impact of

energy Ee, the atom itself is displaced. This, however, is not inevitable;

sometimes another atom, a neighboring one, is displaced. With an

increase in the energy imparted to the affected atom, various events

can occur. At low energies, but higher than Ee, only an interstitial

and its connected vacancy are possible. At high energies, the affected

atom becomes an important particle for creating more damage. This

leads to cascade elements.

Near the end of its trajectory, an energetic atom displaces all

the atoms that it encounters; this is called a ‘‘displacement spike.”

Through a cascade effect, damage propagates through the lattice.

Many atoms that spread about by displacement spikes will become

situated along the atomic packing lines, and thus these lines will be

a most efficient manner of transporting energy far away from the

spike. The impact transferred along a crystallographic direction is

called a Focuson (analogous to photon and phonon). If the energy is not

well above the energy required for atomic displacement, it will be

transferred into a chain of exchange collisions that makes the atom

travel far away from the spike before it comes to a stop as an inter-

stitial. The efficiency of this process is much higher in the close-

packed directions (the <110> directions in FCC crystals). The atomic

configuration in the <110> direction in which an interstitial is prop-

agated along a line is called a dynamic crowdion. The efficiency of the

focusing processes is directly proportional to the interatomic poten-

tial, being higher for heavy metals and lower for light metals (such as

Al). According to the Seeger model, at zero kelvin, for each initially

displaced atom, one would have one or more regions in which a good

fraction of atoms (about 30%) disappear. These regions are surrounded

by interstitial clouds that extend a few hundreds of atomic distances

in noble metals and perhaps a few atomic distances in a metal such

as Al. Seeger called the region of lost atoms in the center of a cascade

a ‘‘depleted zone” and estimated that its typical size would be less

than 1 nm. Figure 4.10 shows the Seeger model of damage produced

by irradiation.

Vacancies generated during exposure to radiation often condense

and form voids inside the material. An illustration of this is pro-

vided in Figure 4.11, which shows Ni irradiated by a high dosage of
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Primary
knock-on

Lattice
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Energy transport by
focusing collisions (110)
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Depleted
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Interstitial
atoms

P

Propagating
dynamically

Exchange
collisionsPair

Close
frenkel

Fig. 4.10 Seeger model of

damage produced by irradiation. P

indicates the position where the

first “knock-on” terminates.

(Reprinted with permission from

A. Seeger, in Proc. Symp. Radiat.

Damage Solids React., Vol. 1,

(Vienna, IAEA, 1962) pp. 101, 105.)

Fig. 4.11 Voids formed in nickel

irradiated using 400 keV 14N2
+

ions to a dose of 40 dpa at 500 ◦C;

notice the voids with polyhedral

shape; dpa = displacements per

atom. (Courtesy of L. J. Chen and

A. J. Ardell.)

N +
2 ions. A high concentration of voids is produced. The voids have

polyhedral shapes because the surface energy is anisotropic and this

shape, rather than a sphere, minimizes the overall surface energy.

In any event, a major portion of radiation damage in common

metals caused by neutrons in reactors consists of a large number of

interstitials and vacancies produced in a cascade process that follows

after a primary knock-on impact. These point defects act as small

obstacles to dislocation movement and result in a hardening of the

metals. Besides this direct effect on mechanical properties, some in-

direct effects are possible. These indirect effects, which arise from the

fact that irradiation by neutrons changes the rates and mechanisms

of atomic interchange, are as follows.

1. Destruction of order of lattice.

2. Fractionating of precipitates.

3. Acceleration of nucleation.

4. Acceleration of diffusion.

These processes have their origin, directly or indirectly, in the

kinetic energy exchanges between energetic neutrons and atoms.

According to Seeger’s model, atoms can be transported long dis-

tances by ‘‘cooperative” focalization along the more densely packed
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directions, and the collision processes create simple defects, such as

interstitials and vacancies, and complex defects, such as displacement

spikes. If an alloy is ordered, focalization and displacement spikes may

destroy the order. If the alloy contains precipitates, a displacement

spike may break the precipitates if they are smaller than the spike

and thus return the precipitates into solution. In an alloy that can

have precipitates, the damaged regions caused by spikes can serve

as nucleation sites. The excess vacancies produced by irradiation can

accelerate the diffusion rate. All these effects influence significantly

the mechanical properties. At ordinary temperatures (i.e., ambient or

slightly above) one or both the defects (interstitials and vacancies)

are mobile, and thus, the ones that survive the annihilation, due

to recombination or loss of identity at sinks such as dislocations or

interfaces, group together. It is well established that in a majority of

metals, irradiation at low temperatures (<0.2Tm’ where Tm is the melt-

ing point, in kelvins) results in joining of vacancies and interstitials to

form groups that are surrounded by dislocations (i.e., loops and tetra-

hedral packing defects). These groups impede dislocation motion, as

well as increase the strength and reduce the ductility of the mater-

ial. At high temperatures, the vacancies can group together to form

voids. The formation of such groups of defects can cause important

and undesirable changes in mechanical properties and result in a

dimensional instability of the material. Damage accumulated during

irradiation by neutrons (and other particles) can cause significant

changes in important properties. For example, the yield stress or the

flow stress increases, and frequently there is a loss of ductility.

The problem of mechanical and dimensional stability is a very

serious one for structural components in fast reactors. In 1967, it was

discovered that nuclear fuel cladding consisting of austenitic stainless

steel, when exposed to high doses of fast neutrons, showed internal

cavities (∼10 nm). These cavities, called voids, result in an increase

in the dimensions of the material. It is estimated that the maxi-

mum possible dilation in the structural components is of the order

of 10%. However, as neutron flux and the temperature of the sodium

coolant are not uniform in the core, the swelling of the component
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Fig. 4.12 Stress–strain curves

for irradiated and unirradiated

Zircaloy. (Adapted with permission

from J. T. A. Roberts, IEEE Trans.

Nucl. Sci., NS-22, (1975) 2219.)

will be nonuniform. This nonuniformity can influence the compo-

nent’s behavior.

Irradiation by neutrons causes marked changes in the properties

of the zirconium alloys Zircaloy-2 and Zircaloy-4 (both very much

used in light water reactors) and in 304 and 316 stainless steels (used

in liquid metal fast-breeder reactors). Figure 4.12 shows the increase

in strength (yield strength and ultimate tensile strength) of Zircaloy

after neutron radiation. The exact nature of the defects introduced

by radiation that are responsible for these changes in Zircaloy are not

well characterized. There is a considerable variation in the observed

microstructures. One of the few observations about which there exists

general agreement is the absence of radiation-induced vacancies in

Zircaloy, which is a significant difference compared with, say, the

behavior of stainless steels. Stainless steels show swelling due to
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neutron irradiation. The dilation induced by neutron irradiation in

stainless steel depends on the neutron flux and the temperature, as

shown in Figure 4.13. It is believed that the vacancies introduced by

irradiation combine to form voids, while the interstitials are preferen-

tially attracted to dislocations. According to Shewmon3 this dilation

of stainless steel does not affect the viability or security of breeder-

type reactors, but will have a significant effect on core design and

economy of reproduction. It would appear that, in spite of not being

able to eliminate the effect completely, cold work, heat treatments,

or changes in composition can reduce the swelling by a factor of two

or more. Figure 4.14 shows the change in dilation of stainless steel as

a function of Cr and Ni content.

4.3.5 Ion Implantation
An interesting technological application using charged particles is

called ion implantation. Charged ions are accelerated in an electric

field (e.g., in a linear accelerator) to very high energies (∼200 keV) and

3 P. G. Shewmon, Science, 173 (1971) 987.
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allowed to strike the target solid in a moderate vacuum (∼1 mPa). It

is worth emphasizing that the selected species of ions is implanted

into, and not deposited on, the target surface. The technique, origin-

ally developed for preparing semiconductor devices in a controlled

fashion, has been made into a sophisticated tool for altering the com-

position and structure of surfaces for any number of purposes -- for

example, modifying the surface chemistry for better corrosion and

oxidation resistance, tribological properties, and superconductivity.

The reader can well imagine the power of the technique by the fact

that it allows one to introduce elements into a surface, which may

not be possible in conventional heat treatment because of low diffu-

sivity. Depending on the dose, B+, N+, and Mo+ ions implanted into

steel can reduce the wear of a tool by an order of magnitude.

The ion implantation technique of modifying the composition and

structure of surfaces has a number of advantages over conventional

techniques:

1. The process is essentially a cold one; therefore, there is no loss of

surface finish and dimensions (i.e., the process can be applied to

finished parts).

2. One can implant a range of metallic and nonmetallic ions, indi-

vidually or combined.

3. One can implant selected critical areas.

Ion implantation is particularly suited for the selected modification of

small, critical parts. Oil burners used for injecting a mixture of fuel

oil and air into boilers of oil-fired power plants face rather severe

erosion conditions. Ti and B implantation of oil-burner tips improved

erosion properties and increased the service life of the boilers.

Another very important aspect of ion implantation has to do with

the fact that it is basically a nonequilibrium process. There are thus

no thermodynamic constraints, such as solubility limits. In other

words, we are able to produce metastable alloys with new and unusual

characteristics, amorphous alloys, and so on. Hence, the technique

offers a novel way of producing surfaces, in a controlled manner, for

scientific studies.

4.4 Line Defects

Bands in the surface of plastically deformed metallic specimens were

reported as early as the 19th century. With the discovery of the crys-

talline nature of metals, these bands were interpreted as being the

result of the shear of one part of the specimen with respect to the

other. Similar slip bands (or markings) were observed by geologists

in rocks. However, calculations of the theoretical strength of crystals

based on the simultaneous motion of all atoms along the slip band

showed systematic deviations of several orders of magnitude with

respect to the experimental values. (See Section 4.2.) This discrepancy

led to the concept of line imperfections in crystals called dislocations.
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Later, the actual existence of such imperfections was verified by a

variety of techniques.

Figures 4.15 and 4.16 present two analogies that help us to visu-

alize dislocations. The displacement of a rug can be accomplished

b

Fig. 4.15 (a) Rug with a fold.

by applying a much lower force if a wave is created in the rug and

moved from the back to the front. This displacement, b, is indicated

in Figure 4.15. In a similar manner, caterpillars move by creating a

‘‘dislocation” and displacing it from the back to the front. (See Fig-

ure 4.16.) Sidewinders use a similar principle: these snakes generate

‘‘waves” along their bodies. The movement of the wave propels the

snake sideways. Having understood this concept, the diligent student

can readily comprehend how the movement of a dislocation in a body

can produce plastic deformation.

Figure 4.17 shows two distinct types of dislocations encountered

in crystalline solids: edge and screw dislocations. The atomic arrange-

ment surrounding these dislocations is distorted from the regular

periodicity of the lattice. The edge dislocation (Figure 4.17(a)) may be

visualized as an extra half plane of atoms terminating at the disloca-

tion line (perpendicular to the plane of the paper and passing through

the symbol ‘‘⊥”.) The screw dislocation can be visualized as a ‘‘parking

garage:” a car, driving around the dislocation line will go up or down

the building. Another analogy is the screw. Figure 4.17(a) shows the

atomic arrangement. The distortion of the periodic atomic arrange-

ment is represented by the Burgers vector b. A circuit is created

around the dislocation line, as indicated by ABCDE. AB and CD corres-

pond to 4a, where a is the interatomic spacing. BC and DE correspond

b

b

Fig. 4.16 Caterpillar with a

hump.
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A b E

(a)

D

B C

Fig. 4.17 (a) Arrangement of

atoms in an edge dislocation and

the Burgers vector b that

produces closure of circuit ABCDE.

(b) Arrangement of atoms in

screw dislocation with “parking

garage” setup. (Notice car entering

garage.)
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Fig. 4.18 Geometrical

production of dislocations.

(a) Perfect crystal. (b) Edge

dislocation. (c) Screw dislocation.

to 3a. The failure of the circuit to close represents the vector b. A Burg-

ers circuit is also represented around the screw dislocation in Figure

4.17(b). The essential difference between these two types of disloca-

tion is that in the edge dislocation, b is perpendicular to dislocation

line vector, �, whereas in the screw dislocation, b is parallel to �.

Edge dislocations were proposed by Orowan, Polanyi and Tay-

lor, in 1934.4 Screw dislocations were proposed by Burgers in 1939.5

Figure 4.18 shows how the shearing of the lattice can generate edge

and screw dislocations. Imagine a cut made along ABCD in Figure

4.18(a). If the shearing direction is as marked in Figure 4.18(b), the

Burgers vector is perpendicular to line AB or �. The resultant dis-

location is of edge character. If the shearing direction, defined by b,

is parallel to AB, then b // �, and the resulting dislocation is of screw

character. (See Figure 4.18(c).) The movement of an edge dislocation

under an applied shear stress τ is shown in Figure 4.19. The perfect

lattice shown in Figure 4.19(a) is broken and the dislocation is formed

as shown in Figure 4.19(b). This edge dislocation (b ⊥ � ) moves from

left to right, and the final, deformed configuration is shown in Figure

4.19(c). The relationship between the applied shear stress, the direc-

tion of movement of dislocation, and the plastic strain generated is

quite different for the two types of dislocation. Figure 4.20 shows how

a hypothetical crystal subjected to a shear stress τ undergoes plastic

deformation by means of the propagation of (a) an edge dislocation

and (b) a screw dislocation. The direction of motion of the dislocations

is always parallel to b. The final shear is the same, but the motion

of the two dislocations is completely different. There is also a mixed

dislocation that possesses both screw and edge character. Figure 4.21

shows such a dislocation, together with the ‘‘cut.” It can be seen that

the shear direction is neither parallel (screw) nor perpendicular (edge)

to the direction of the cut.

4 E. Orowan, Z. Phys., 89 (1934) 604. M. Polanyi, Z. Phys., 89 (1934) 660. G. I. Taylor, Proc.

Roy. Soc. (London), A145 (1934) 362.
5 J. M. Burgers, Proc. Kon. Ned. Akad. Wetenschap., 42 (1939) 293, 378.
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Fig. 4.19 The plastic

deformation of a crystal by the

movement of a dislocation along a

slip plane.

Another type of dislocation is called a helical dislocation. It forms

a large helix and is sometimes observed in crystals that were heat-

Unsheared

b

d

b

Partially sheared

Completely sheared

t

Fig. 4.20 Plastic deformation

(shear) produced by the movement

of (a) edge dislocation and (b)

screw dislocation. Note d is the

direction of dislocation motion; �

is the direction of dislocation line.

treated to produce climb. ‘‘Climb” is the movement of a dislocation

perpendicular to its slip plane. ‘‘Glide” is the movement along the slip

plane. Climb is described in Chapter 13 (Creep). These dislocations are

of mixed character; the reader should not confuse them with screw

dislocations.

Dislocations will be studied in detail in this chapter, since they are

the building blocks for the understanding of the mechanical response

of metals. The treatment, however, still is far from comprehensive. For

further details, the reader is referred to the suggested readings at the

end of the chapter.

4.4.1 Experimental Observation of Dislocations
It took 20 years to prove, beyond any doubt, the existence of disloca-

tions experimentally, and this period (1935--1955) was surrounded by

skepticism and harsh polemics. Nevertheless, the existence of disloca-

tions is nowadays universally recognized, and the ‘‘lunatic” theories

and models have been proven to be remarkably correct. A number

of techniques have allowed the observation of dislocations, including

etch pitting, X-ray diffraction (Berg--Barrett topography), and, most

importantly, transmission electron microscopy (TEM). The last one is

established as the principal method for observing dislocations.

In TEM, the foil has to be thinned to a thickness between 0.1

and 0.3 μm, becoming transparent to electrons when the accelerating

voltage is in the 100--300 kV range. Dislocations produce distortions
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of the atomic planes. Hence, for certain orientations of the foil with

respect to the beam, the region around a dislocation diffracts the

beam. The dislocations can then be seen as dark, thin lines under

a bright field. TEMs with higher operating voltages (in the megavolt

B

A

b

Fig. 4.21 Mixed dislocation

obtained from cut-and-shear

operation; notice the angle

between b and �.

range) are available and allow thicker specimens to be observed. Fig-

ure 4.22 shows dislocations in titanium and silicon rendered visible

by this technique. The dislocations in titanium (Figure 4.22(a)) appear

as sets of parallel segments; the segments are parallel because the

dislocations minimize their energy by being along certain crystallo-

graphic planes. The same phenomenon is observed in silicon (see Fig-

ure 4.22(b)). A hardness indentation (lower right-hand corner) gener-

ated a profusion of dislocation loops. These loops are not circular, but

consist of segments that are crystallographically aligned because of

energy minimization considerations. The dislocation configurations

in materials are highly varied and depend on a number of param-

eters, such as total strain, strain rate, stress state, deformation tem-

peratures, crystallographic structure, etc. Note that the dislocations

in silicon (Figure 4.22(b)) appear as white lines, whereas in Figure

4.22(a) they are dark lines. This is because Figure 4.22(b) is a dark-field

image, in which the grain diffracts, and the dislocation transmits, the

electron beam. The figure is opposite to the normal bright-field trans-

mission images (Figure 4.22(a)).

Dislocations are also present in ceramics, although they are less

mobile. They can be produced by plastic deformation at high tempera-

tures, by thermal stresses during cooling, or by applying very high

stresses, made possible by, for instance, impacts at several hundred

meters per second. Figure 4.23 shows dislocations observed in alumina

(a) (b)

Fig. 4.22 Dislocations in metals. (a) Titanium. (Courtesy of B. K. Kad.) (b) Silicon.



272 IMPERFECTIONS : POINT AND LINE DEFECTS

(a) (b)

Fig. 4.23 Dislocations in (a) Al2O3 and (b) TiC. (Courtesy of J. C. LaSalvia.)

Fig. 4.24 Atomic resolution transmission electron micrograph of dislocation in

molybdenum with a Burgers circuit around it. (Courtesy of R. Gronsky.)

and titanium carbide. The dislocations in the alumina were generated

by impact at 600 m/s. The dislocations in the titanium carbide were

produced by plastic deformation above the material’s ductile-to-brittle

transition temperature (∼2,000 ◦C). At room temperature, this ceramic

would simply undergo brittle fracture.

High-resolution TEM can resolve the individual atoms and iden-

tify the lattice distortions around a dislocation. Figure 4.24 shows
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molybdenum imaged in such a fashion. The dark spots represent one

atom each. Mo has the BCC structure, and the foil plane imaged is

(100). The right-hand side of the picture shows a unit cell. A Burg-

ers circuit is drawn around an edge dislocation, which has a line �

perpendicular to the plane of the foil. The closure gap represents the

Burgers vector of the dislocation. A comparison of the figure with the

unit cell establishes the magnitude of the Burgers vector; it is equal

to the lattice parameter a. This is clearly indicated in the figure. The

presence of the dislocation can also be felt by noticing the break in

the [110] planes, making 45◦ with the cube axes.

The electron micrographs of Figures 4.22--4.24 illustrate the pres-

ence and variety of dislocation configurations observed in crystalline

materials.

4.4.2 Behavior of Dislocations

Dislocation Loops
A dislocation line can form a closed loop, instead of extending until

it reaches an interface or the surface of the crystal. This is illustrated

in Figure 4.25(a), where a square loop is sketched. Two cuts, along

perpendicular sections, were made: AAA and BBB. Figure 4.25(b) and

(c) show these sections. It can clearly be seen that the dislocation seg-

ments CF and DE (Figure 4.25(b)) are of edge character, while segments

CD and FE (Figure 4.25(c)) are of screw character. This is due to the

direction of the shear. The loop can be imagined as a cut made in

the interior of the crystal (an impossible feat, of course); the edges

of the cut form the dislocation line, after shear is applied to the crys-

tal. Dislocations CF and DE are of the same type, with opposite signs;

the same applies to CD and FE. The sign convention used for edge

dislocations is the following: If the extra semiplane (wedge) is on the

top portion, it is positive; if on the bottom, it is negative. Hence, CF

is positive and DE is negative. For screw dislocations, a similar con-

vention is used. If the helix turns in accord with a normal screw, it

is positive. If not, it is negative. According to this convention, CD is

positive and FE is negative.

A

A

A
A

A
A

B

BB

B

B

A

EF

C D

B

B

(a)

(b)

(c)

Fig. 4.25 Square dislocation

loop.

The actual dislocation loops are not necessarily square. An ellip-

tical shape would be more favorable energetically than a square.

For an elliptical or circular shape, the character of the disloca-

tion changes continuously along the line. Figure 4.26(a) shows this

situation; the regions that are edge and screw are shown by appro-

priate symbols. The symbols most commonly used are an inverted

T (⊥) for a positive edge, and an S for a positive screw disloca-

tion. The negative signs can be described by a correct T and by

an inverted S (< S>). In Figure 4.26(a), all the portions of the loop

between the short segments of pure screw and edge character are

mixed. These loop segments move as shown in the figure. The loop

expands and eventually ‘‘pops out” of the parallelepiped, creating the

shear shown in Figure 4.26(b). Figure 4.26(c) shows a shear loop in

copper.
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(a) (b)

(c)

Fig. 4.26 Elliptic dislocation loop. (a) Intermediate position. (b) Final (sheared)

position. (c) TEM of shear loop in copper (Courtesy of F. Gregori and M. S. Schneider.)

There is another type of loop, called a prismatic loop, that should

not be confused with a common loop. A prismatic loop is created

when a disk of atoms is either inserted or removed from the

crystal. Figure 4.27(a) shows this situation; cuts AAAA and BBBB

are indicated. A disk having the thickness of one atomic layer was

introduced and it can be seen that sections AAAA (Figure 4.27(b))

and BBBB (Figure 4.27(c)) are identical. They are edge dislocations

with opposite signs. This configuration is very different from that

encountered in normal loops. One can also remove a disk of atoms,

instead of adding it. These loops do not have the same ability to move

as do normal loops because the Burgers vector is perpendicular to the

loop.

A

A A

A

B B

B B

A

B

B

B

(a)

(b)

(c)

A

A

Fig. 4.27 Prismatic loop

produced by the introduction of a

disk into metal. (a) Perspective

view. (b) Section AAAA. (c) Section

BBBB.

Movement of Dislocations

The plastic deformation of metals is normally accomplished by the

movement of dislocations. The elements of dislocation motion are

reviewed in this section, together with the resulting deformations.

In actual deformation and for elevated strains, complex interactions

occur between dislocations. These interactions can be broken down
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(a)

(b)

Fig. 4.28 Slip produced by the

movement of dislocation. (a)

Positive and negative edge

dislocations. (b) Positive and

negative screw dislocations.

into simple basic mechanisms that will be described next. Two edge

dislocations are shown in Figure 4.28(a). After the passage of one of

them, one part of the lattice is displaced in relation to the other

part by a distance equal to the Burgers vector. Both a positive and a

negative dislocation can generate the same shear; however, they have

to move in opposite directions in order to accomplish this. The reader

is reminded (see Figure 4.20(a)) that the shear and motion directions

are the same for edge dislocation.

Screw dislocations can produce the same lattice shear (Figure

4.28(b)). However, in this case the shear takes place perpendicular

to the direction of motion of the dislocations; positive and negative

screw dislocations have to move in opposite directions in order to

produce the same shear strain.

The plane in which a dislocation moves is called a slip plane. The

slip plane and the loop plane coincide in Figure 4.29. A loop will

eventually be ejected from a crystal upon expanding if there is no

barrier to its motion. The expansion of a loop will produce an amount

of shear in the crystal equal to the Burgers vector of the dislocation.

It is worth noting that the shears of the different dislocations are all

compatible; there is no incompatibility of movement.

The prismatic loops, consisting totally of edge dislocations, can-

not expand like the normal loops. Thus, because the plane of the dis-

location does not coincide with the loop plane, the coupled move-

ment of the edge dislocations will force the loop to move perpendic-

ular to its plane, maintaining the same diameter. Upon being ejected

from the crystal, a step will be formed at the surface. Figure 4.30

shows a succession of vacancy loops formed by punching of prismatic

dislocations.

4.4.3 Stress Field Around Dislocations
Dislocations are defects; hence, they introduce stresses and strains

in the surrounding lattice of a material. The mathematical treat-

ment of these stresses and strains can be substantially simplified

if the medium is considered to be isotropic and continuous. Under

conditions of isotropy, a dislocation is completely described by the

line and Burgers vectors. With this in mind, and considering the

simplest possible situation, dislocations are assumed to be straight,

infinitely long lines. Figure 4.31 shows hollow cylinders sectioned

S
T

T
S

Fig. 4.29 Expansion of a

dislocation loop.
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Fig. 4.30 Nickel heated at

600 ◦C for 10 min and quenched in

liquid nitrogen. Strings of vacancy

loops can be clearly seen.

(Courtesy of L. E. Murr.)

X2 X2

X3
X3

X1

X1

r
0
R

(a) (b)

R

b

b
Fig. 4.31 Simple models for (a)

screw and (b) edge dislocations;

the deformation fields can be

obtained by cutting a slit

longitudinally along a thick-walled

cylinder and displacing the surface

by b parallel (screw) and

perpendicular (edge) to the

dislocation line.

along the longitudinal direction. Different deformations are applied

in the two cases. The one in Figure 4.31(a) portrays the deformation

around a screw dislocation, while Figure 4.31(b) is an idealization of

the strains around an edge dislocation. The cylinders, with external

radii R, were longitudinally and transversally displaced by the Bur-

gers vector b, which is parallel (perpendicular) to the cylinder axis in

the representation of a screw (an edge) dislocation. In either case, an

internal hole with radius r0 is made through the center. This is done

to simplify the mathematical treatment. In a continuous medium,

the stresses on the center would build up and become infinite in

the absence of a hole; in real dislocations the crystalline lattice is

periodic, and this does not occur. In mechanics terminology, this

is called a singularity, A ‘‘singularity” is a spike, or a single event.

For instance, the Kilimanjaro is a singularity in the African plains.

Therefore, we ‘‘drill out” the central core, which is a way of recon-

ciling the continuous-medium hypothesis with the periodic nature

of the structure. To analyze the stresses around a dislocation, we

use the formal theory of elasticity. For that, one has to use the rela-

tionships between stresses and strains (constitutive relationships), the

equilibrium equations, the compatibility equations, and the bound-

ary conditions. Hence, the problem is somewhat elaborate. We

present the derivation of these relationships here only for the screw
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dislocation; see Kuhlmann-Wilsdorf, and Weertman and Weertman

(in the suggested reading) for details.

In Figure 4.31, we have the following displacements, for a screw

dislocation, along the axes x1, x2, and x3:

u1 = 0, u2 = 0, u3 �= 0.

The displacement in the direction x3 can be assumed to be approxi-

mately equal to

u3 = f (θ ) = b

2π
θ.

This is so because the displacement is b after a rotation of 2π . The

angle θ is given by tan θ = x1/x2, thus

u3 = b

2π
arctan

x2

x1

. (4.10a)

The strain components in indicial notation are:

εi j = 1

2

(
∂ui

∂x j

+ ∂u j

∂xi

)
i, j = 1, 2, 3

ε11 = 0, ε22 = 0,

ε12 = 0, ε23 = 1

2

∂u3

∂x2

,

ε13 = 1

2

∂u3

∂x1

, ε33 = ∂u3

∂x3

= 0.

Substituting Equation 4.10a into the equations above, we obtain

ε13 = −bx2

4π (x2
1 + x2

2 )
, (4.10b)

ε23 = bx1

4π (x2
1 + x2

2 )
, (4.10c)

σ33 = 0.

Now, using the generalized Hooke’s law, we have

σ13 = 2G ε13,

σ23 = 2G ε23.

σ13 = σ31 = − G bx2

2π (x2
1 + x2

2 )
, (4.11a)

σ23 = σ32 = G bx1

2π (x2
1 + x2

2 )
. (4.11b)

The stresses around an edge dislocation are (given without

derivation):

σ11 = − G bx2(3x2
1 + x2

2 )

2π (1 − v )(x2
1 + x2

2 )2
, (4.12a)

σ12 = G bx1(x2
1 − x2

2 )

2π (1 − v )(x2
1 + x2

2 )2
, (4.12b)

σ22 = G bx2(x2
1 − x2

2 )

2π (1 − v )(x2
1 + x2

2 )2
. (4.12c)
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Fig. 4.32 Stress fields around an

edge dislocation. (The dislocation

line is Ox3): (a) σ 11; (b) σ 22; (c)

σ 33; (d) σ 12. (Adapted with

permission from J. C. M. Li, in

Electron Microscopy and Strength of

Crystals, eds. G. Thomas and J.

Washburn (New York:

Interscience Publishers, 1963).)

It then follows that

σ33 = v (σ11 + σ22) = − G bv x2

π (1 − v )(x2
1 + x2

2 )
. (4.12d)

These stresses are shown in Figure 4.32 through isostress lines.

4.4.4 Energy of Dislocations
The elastic deformation energy of a dislocation can be found by inte-

grating the elastic deformation energy over the whole volume of the
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deformed crystal. The deformation energy is given by

U = 1

2
σi jεi j . (4.13)

For an isotropic material, converting the strains to stresses, we have

U = 1

2G

[
1

2(1 + v )
(σ 2

11 + σ 2
22 + σ 2

33) + (σ 2
12 + σ 2

13 + σ 2
23)

− v

(1 + v )
(σ11σ33 + σ11σ22 + σ22σ33)

]
. (4.13a)

Using Equations 4.10a and 4.10b we have, for a screw dislocation,

Us = 1

2G

[
G 2b2x2

2

4π2(x2
1 + x2

2 )2
+ G 2b2x2

1

4π2(x2
1 + x2

2 )2

]
(4.14)

= G b2

8π2(x2
1 + x2

2 )
.

Substituting (x2
1 + x2

2 ) by r2 (see Figure 4.31), we find that

Us = G b2

8π2r 2
. (4.15)

Integrating Equation 4.15 between r0 and R, we get

Us =
∫ R

r0

G b2

8π2r 2
2πrdr = G b2

4π
ln

R

r0

. (4.16)

In a similar way, the energy of a straight edge dislocation per unit

length is equal to

U⊥ = G b2

4π (1 − v )
ln

R

r0

. (4.17)

It should be observed that the factor (1 − v) is approximately equal

to 2/3. Hence, the energy of an edge dislocation is about 3/2 of that

of a screw dislocation.

The schematic drawing of Figure 4.31 removes the core of the

dislocation so as to avoid the infinite stresses along the dislocation

line. Several methods have been used to estimate r0. In this book, r0

will be assumed to be equal to 5b. Note that the energy given by the

foregoing equations become infinite for infinite R; hence, one has to

establish an approximate value for R. Dislocations in a metal never

occur in a completely isolated manner; they form irregular arrays

with mean density ρ. This density is given as the total length of dis-

location line per unit volume. The spaghetti analogy can be used here.

Imagine a pot with water and spaghetti. The density of the spaghetti

would be obtained by measuring the total length of the spaghetti and

dividing it by the volume of the pot. The stress fields of the various

dislocations interact, as will be seen in subsequent sections; we gen-

erally assume a value of R equal to the average distance between the
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L

L

L

LL

V

(a)

(b)

Fig. 4.33 Schematic

representation of an idealized

dislocation array (a) in two

dimensions and (b) in three

dimensions; note that dislocations

on three perpendicular atomic

planes define a volume V.

dislocations. It can be shown, by means of a simplified array, that the

average distance or mean free path of dislocations is approximately

equal to ρ−1/2.

It is possible to calculate the radius of influence of each dislocation

line, R, from the dislocation density ρ. This radius of influence is

equal to L/2, in Figure 4.33. Figure 4.33(a) shows a two-dimensional

array of dislocations; all dislocation lines ‘‘poke out” of the plane of

the page. The mean spacing is L, and the hatched area is L2. This area

is bounded by four dislocations, and each dislocation is shared by

four areas. Thus,

L2 area → 1 dislocation,

unit area → ρ dislocations.

As a result,

ρ = L −2. (4.18)

The tridimensional calculation is slightly more complicated. Figure

4.33(b) shows a tridimensional array of dislocations. The hatched vol-

ume is V = L3. This volume is composed of dislocations that lie along

the edges. The total dislocation length can be taken to be 12 L. How-

ever, each dislocation is shared by four adjacent cubes. Hence,

ρ = 12L /4

L 3
= 3L −2. (4.19)

But

R = L

2
,

so that

ρ = 3(2R)−2
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and

R = 1

2

(ρ

3

)−1/2

= 0.86ρ−1/2.

The average dislocation radius is often taken to be

R ≈ ρ−1/2.

We now add the energy of the dislocation core. This energy is taken

to be Gb2/10 for metals. Hence, the total energy of a dislocation is

Ur = Unucleus + Uperiphery.

Equation 4.17 can then be generalized to:

Ur = G b2

10
+ G b2

4π (1 − v )
(1 − v cos2 α) ln

ρ−1/2

5b
, (4.20)

where α is a parameter that describes the nature of the dislocation

(edge α = π /2, screw α = 0), which can be mixed.

The energy of dislocations is often taken to be approximately

Ur = G b2

2
. (4.21)

For typical metals, Ur is equal to a few electron volts per atomic

plane. The energy of the nucleus is 10% of this total. The energy of

a dislocation per atomic plane is high in comparison with that of a

vacancy: approximately 3 eV (4.8 × 10−19 J) versus about 1 eV (1.6 ×
10−19 J).

Example 4.3

Annealed materials have a dislocation density of approximately

108 cm−2 or 1012 m−2. Calculate the total strain energy for copper.

Solution: For copper, the Burgers vector is b = 0.25 nm. Inserting these

values into Equation 4.14 and using α = 0 (for a screw dislocation), we

obtain

U = 0.1G b2 + G b2

4π
ln

10−6

5 × 0.25 × 10−9
= 0.63G b2 = G b2

1.587
∼= G b2

2
.

For this example, the energy per unit length is equal to 1.5 × 10−9 J/m

(G = 48.3 GPa). The total strain energy is 1.5 kJ/m3.

4.4.5 Force Required to Bow a Dislocation
Two additional equations will be derived next: the force required to

curve a dislocation to a radius R and the Peach--Koehler equation.

The analogy of a string helps to explain the energy of a dislocation.

In the absence of an external stress field, a dislocation will tend to be

straight, minimizing its length and overall energy. The same occurs

for a string under tension. If the string is pushed by a force, it will

exert a force back. Thus, a curved dislocation is said to possess a ‘‘line

tension,” which can be calculated. The energy of a curved dislocation
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with radius R can be calculated (see Weertman and Weertman, p. 50,

in the suggested reading) and is equal to

U = G b2

4π
ln

R

5b
. (4.22a)

It is possible to calculate the force F required to bend a dislocation

into a radius R. Figure 4.34 shows a curved dislocation with radius

R
TT

ds

dq dq/2dq/2

Fig. 4.34 Curved dislocation.

R. The line tension T is defined as the self-energy per unit length of

dislocation. In the figure, the segment of the dislocation ds is ‘‘sec-

tioned off,” and the remaining dislocation is replaced by two tensions

T acting tangentially to the line at the section points. The line tension

is always tangential to the dislocation line. The (downward) vertical

force exerted by the line tension on the segment ds is

F1 = 2T sin(dθ/2).

This is balanced by the force F2 (per unit length) exerted on the dis-

location, multiplied by its length:

F2ds = 2T sin(dθ/2).

Since dθ /2 is a small quantity,

F2ds = T dθ.

But

Rdθ = ds,

F2 R dθ = T dθ,

F2 = T /R

Assuming, to a first approximation, that the line tension of a curved

dislocation is equal to the energy of a straight dislocation (Eqn. 4.21),

we have

F = G b2/2R . (4.22b)

Peach--Koehler equation
The Peach--Koehler equation relates the force applied to a dislocation

to a stress. F is the force per unit length of dislocation, and τ is the

shear stress acting on the slip plane along the slip direction. This

relation can be demonstrated by considering a parallelepiped with

dimensions dx1, dx2, dx3. If a dislocation, with length dx1, on which

a force per unit length is F, moves through the parallelepiped, the

work done is

W = (F dx1)dx2.

The change in strain energy of the cube is equal to 1/2 > γ in elas-

ticity and = ζγ in plasticity.

For volume dx1dx2dx3:

U = (τγ )dx1dx2dx3,
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Fig. 4.35 Decomposition of

dislocation in an FCC crystal.

where dx1 dx2 dx3 is the volume of the parallelepiped. The shear strain

produced by one dislocation is

γ = b/dx3.

Since W = U,

(F dx1)dx2 = (τb/dx3)dx1dx2dx3

and

F = τb. (4.22c)

By applying the Peach--Koehler equation to Equation 4.2b, we get the

stress required to bow a dislocation to radius R:

τ = G b/2R . (4.22d)

4.4.6 Dislocations in Various Structures

Dislocations in Face-Centered Cubic Crystals
In Section 1.3.2, we saw that, among the 80 or so metals, 55 are

FCC. The FCC structure is the closest packed one, together with the

HCP structure. Thus, it is natural that dislocations be more carefully

studied for the FCC structure.

When we visualize a dislocation, we generally think of a defect

that, upon passing, recomposes the original structure of the crystal.

Hence, in a simple cubic structure, the Burgers vector would have the

direction [100] and magnitude a (lattice parameter). However, there

are cases in which the original structure is not recomposed. This

type of dislocation is called imperfect or partial.

In FCC crystals, the closest packed planes are (111). These planes are

usually termed A, B, and C, depending on their order in the stacking

sequence. Figure 4.35 shows an atomic plane A. The glide movement of

the atoms of the plane A that would recompose the same lattice would

be indicated by the Burgers vector b1. This vector has the direction

[101̄]. Its magnitude is (it can be also seen in Figure 4.35 that it is

equal to the atomic size, and half the side AB):

b1 =

∣∣∣−→B A
∣∣∣

2
= 2r (4.23)
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Vector b1 is expressed with respect to unit vectors i, j, and k of the

coordinate system Ox1x2x3 as

−→
B A = a(i + 0j − k) b1 = a

2
i + 0j − a

2
k = a

2
(i − k). (4.24)

It can be seen that the magnitude is

|b1| = a√
2
.

This vector is, logically, the same as that of Equation 4.23. The sim-

plified notation used for Burgers vectors is

b1 = a

2
[101̄] or b1 = 1

2
[101̄].

Hence, the term in brackets gives the direction of the vector, while

the term that precedes it is the same fraction as that used in the

definition of the unit vectors i, j, and k (see Equation 4.24). There is

also a graphic method to determine this fraction. First, one draws the

vector b connecting point (0, 0, 0) to point (1, 0, --1). Then one draws

b1, which will be a fraction of b (in this case, half). The fraction is the

term that precedes the bracketed term.

One possibility of decomposition for the dislocation is shown in

Figure 4.35, where b2 and b3 add up to b1. b2 is obtained from BD

and b3 from EA.

−→
B D = a

2
i + a

2
j − ak

−→
E A = ai − a

2
j − a

2
k.

It can be shown that b2 = BD/3 and that b3 = EA/3. Both b2 and b3

define partial dislocations, because they change the stacking sequence

ABC. But, acting together (or sequentially), they would have the same

effect as b1 and maintain the correct stacking sequence. b2 and b3

are:

b2 = a

6
(i + j − 2k)

b3 = a

6
(2i − j − k)

and

b1 = b2 + b3.

It is easy to establish whether b1, b2, and b3 belong to (111): the scalar

product should be zero, because [111], which is perpendicular to (111),

should also be perpendicular to b1, b2, and b3. The magnitude of b2

is given by:

|b2| =
[

a2

36
(1 + 1 + 4)

]1/2

= a√
6.

Hence, we have the following possible reaction:

a

2
[101̄] → a

6
[112̄] + a

6
[21̄1̄].
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(a) (b)

b1
b2

b3

d0Fig. 4.36 Decomposition of a

dislocation b1 into two partial

dislocations b2 and b3, separated

by a distance d0.

From Equation 4.21, the energy is Gb2/2. Therefore, we need to check

whether

G b2
1

2
�G b2

2

2
+ G b2

3

2
,

or b2
1 � b2

2 + b2
3. Taking the square of the magnitude of the Burgers

vectors yields

a2

2
>

a2

6
+ a2

6
,

and we can see that the total energy decreases with decomposition.

When a perfect dislocation decomposes itself into partials, a

region of faulty stacking is created between the partials. This decom-

position is shown in Figure 4.36. The dislocations generate a region

in which the stacking is ABC AC ABC. Hence, we have four planes in

which the stacking is CACA. This is exactly the stacking sequence of

the HCP structure. This structure has a higher Gibbs free energy than

the equilibrium FCC structure, because it is not thermodynamically

stable under the imposed conditions. This specific array of planes is

called the stacking fault, and the energy associated with it determines

the separation between the two partial dislocations: The repulsive

force between the two partials is balanced by the attraction trying to

minimize the region with the stacking fault. The following equa-

tions from [Murr6 and Kelly and Groves, (see the suggested read-

ing) respectively], allow the calculation of the equilibrium separation

between the partial dislocations d:

γSF = G
∣∣bp

∣∣2

8πd

[
2 − v

1 − v

(
1 − 2v cos 2θ

2 − v

)]
,

γSF = G b1b2

2πd

(
cos θ1 cos θ2 + sin θ1 sin θ2

2 − v

)
,

or, in simplified form:

γSF = G b2

2πd
. (4.25)

Here, γ is the stacking-fault free energy (SFE) per unit area (free

energy of HCP minus free energy of FCC), bp is the Burgers vector of

6 L. E. Murr, Interfacial Phenomena in Metals and Alloys (Reading, MA: Addison-Wesley, 1975),

p. 142.
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Table 4.2 Stacking Fault Free Energies and Separation between Shockley

Partials for Metals (θ = 30◦)a

Metal γ (mJ/m2) a0 (nm) b (nm) G (GPa) d (nm)

Aluminum 166 0.41 0.286 26.1 1
Copper 78 0.367 0.255 48.3 3.2
Gold 45 0.408 0.288 27.0
Nickel 128 0.352 0.249 76.0 2.9
Silver 22 0.409 0.289 30.3 9

a Adapted from L. E. Murr, Interfacial Phenomena in Metals and Alloys (Reading, MA:

Addison-Wesley, 1975).

(a) (b)

Fig. 4.37 (a) Short segment of

stacking fault in AISI 304 stainless

steel overlapping with coherent

twin boundary. (a) Differences in

the nature of these defects are

illustrated by fringe contrast

differences. (b) Dislocations in AISI

304 stainless steel splitting into

partials bounded by short

stacking-fault region. Partials

spacing marked as d. (Courtesy of

L. E. Murr.)

the partial dislocation, and θ is the angle of the Burgers vector with

the dislocation line. Table 4.2 presents the SFEs for some materials.

From the preceding equations, it can be seen that d is inversely pro-

portional to γ . The effect of alloying elements is generally to decrease

the SFE. The addition of aluminum to copper has a drastic effect on

the latter’s SFE, dropping it from 78 to 6 mJ/m2. Aluminum, which has

a high SFE (166 mJ/m2), does exhibit a very small separation between

partials: 1 nm. On the other hand, in certain alloy systems, the dis-

tance can go up to 10 nm or more.

The stacking-fault energy is very sensitive to composition. Usually,

alloying has the effect of decreasing the SFE. Hence, brasses have an

SFE lower than that of copper, and Al alloys have an SFE lower than

that of Al.

Figure 4.37 shows some stacking faults in AISI 304 stainless steels

viewed by transmission electron microscopy. The region correspond-

ing to the stacking fault can be clearly seen by the characteristic

fringe (////) pattern. The extremities of the fringes are bound by the

partial dislocations. In Figure 4.37(a), the stacking fault lies paral-

lel to a coherent twin boundary, which is much longer than the

stacking fault. The fault can be distinguished from the coherent twin
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boundary by the differences in fringe contrast. While all the fringes

of the stacking fault are dark, the ones in the twin are dark at the

top and become successively lighter. Figure 4.37(b) shows a number

of dislocations (probably emitted from the same source) whose seg-

ments are trapped on the foil. These segments have decomposed into

partials, and one can clearly distinguish the stacking-fault regions by

the characteristic fringe contrast.

The effect of the stacking-fault energy on the deformation sub-

structure can be seen in Figure 4.38. This figure shows (a) a copper

and (b) Cu--Al alloy after deformation by shock loading under identi-

cal conditions (40 GPa peak pressure, 3 ns pulse duration). The Cu--Al

alloy has a significantly lower stacking-fault energy (γSF = 39 mJ/m2)

than does pure copper (γSF = 78 mJ/m2), and the resultant deforma-

tion substructures seem to be strongly affected by this difference.

Low-SFE metals tend to exhibit a deformation substructure character-

ized by banded, linear arrays of dislocations, whereas high-SFE met-

als tend to exhibit dislocations arranged in tangles or cells. Cross-slip

is more difficult in low-SFE alloys because the dislocations have to

constrict in order to change slip planes. (See Chapter 6.) Therefore,

the dislocations arrange themselves into parallel bands. The SFE also

affects the work-hardening of alloys.

Another type of dislocation in FCC structures is called a sessile

or Frank dislocation, which is immobile. Sessile or Frank dislocations

appear under two specific conditions, shown in Figure 4.39. In Figure

4.39(a), a disk was removed in plane (111); in Figure 4.39(b), a disk was

added. It can be seen that in both cases the stacking sequence was

changed, to ABCBCA and ABCBABC for Figure 4.39(a) and (b), respect-

ively. The Burgers vector is given by:

b = a

3
[111].

We have a sample of an intrinsic stacking fault in Figure 4.39(a) and an

extrinsic, or double-stacking fault in Figure 4.39(b). Since the Burgers

vector is not in the slip plane, the two faults are immobile. Another

type of immobile dislocation that can occur in FCC metals is the

Lomer--Cottrell lock. Let us consider two (111) and (111̄) planes. The

three perfect dislocations on (111) are

b1 = a

2
[11̄0],

b2 = a

2
[1̄01],

b3 = a

2
[011̄],

For plane (111̄), we have

b4 = a

2
[1̄10],

b5 = a

2
[101],

b6 = a

2
[011].
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(a)

(b)

Fig. 4.38 Effect of stacking-fault

energy on dislocation

substructure. (a) High-stacking-

fault-energy material (pure

copper); (b) lower-stacking-fault-

energy material (copper–2 wt%

aluminium). Both materials were

laser-shock compressed with an

initial pressure of 40 GPa and

pulse duration of 3 ns. (Courtesy

of M. S. Schneider.)

A

A

B
C

B
C

A

(a) (b)

A

A

B
C

B
C

A

AC

B
C
B
A
B

A

C

B
C

A
B

Fig. 4.39 Frank or Sessile

dislocations. (a) Intrinsic. (b)

Extrinsic.
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a
2

[101]

a
2

[011]

[111]

a
2

[110]

[111]Fig. 4.40 Cottrell–Lomer lock.

(111) (111)

(111)(111)

(b)(a)

Fig. 4.41 Stairway dislocation.

One good rule to determine whether a direction belongs to a plane

is that the scalar product between the direction b and the normal

to the plane must be zero (in a cubic structure). This rule comes

from vector calculus. Vectors b1 and b4 have the same direction and

opposite senses; the common direction is also that of the intersection

of the two planes. Hence, both dislocations will cancel when they

encounter each other. The combination of b2 and b5 would result

in

b2 + b5 = a

2
[1̄01] + a

2
[101] = a

2
[002] = a[001].

The energy of these dislocations is

a2

2
+ a2

2
= a2

Therefore, this reaction will not occur, because it will not result in a

reduction of the energy. The only combinations that would result in

a decrease in the overall energy would be of the type

b3 + b5 = a

2
[011̄] + a

2
[101]

= a

2
[110].

This reaction, which is energetically favorable, is shown in Figure

4.40. The dislocation is not mobile in either the (111) or (111̄) plane;

hence, it acts as a barrier for any additional dislocation moving

in these planes. Since it impedes slip, it is called a Lomer--Cottrell

‘‘lock.”

The resultant configuration is shown in Figure 4.41; it resembles a

stair and is therefore called a ‘‘stair-rod” or ‘‘stairway” dislocation. The
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leading partials react and immobilize the partials coupled to them

(the trailing partials). The bands of stacking faults form a configura-

tion resembling steps on a stairway. These steps are barriers to further

Basal plane

Prism
plane

Pyramidal
plane

Fig. 4.42 Basal, pyramidal, and

prism plane in HCP structure.

slip on the atomic planes involved, as well as in the adjacent planes.

Dislocations in Hexagonal Close-Packed Crystals

In HCP crystals, the stacking sequence of the most densely packed

planes is ABAB. These planes are known as basal planes. Figure 4.42

shows the main planes in the HCP structure. Perfect dislocations mov-

ing in the basal plane can decompose into Shockley partials, just as

in the FCC structure. Stacking faults are also formed (only intrinsic

stacking faults). This analogy can be easily understood if one realizes

the similarity between the two structures. The (111) planes in the FCC

structure are the equivalent of the basal planes in the HCP structures.

A perfect dislocation in the basal plane has the Burgers vector

b = a

3
[2 1̄ 1̄ 0].

In an ideal hexagonal crystal, the c/a ratio is 1.633. However, in real

hexagonal crystals this never happens. It has been experimentally

observed that, for crystals with c/a > 1.633, slip occurs mainly on the

basal plane, while the pyramidal and prism planes are ‘‘preferred” in

crystals with c/a < 1.633. This is due to the dependence of the distance

between the atoms upon c/a; it is well known that the dislocations

tend to move in the highest packed planes. A detailed treatment of

dislocations in HCP metals is given by Teutonico.7

Dislocations in Body-Centered Cubic Crystals
In BCC crystals, the atoms are closest to each other along the <111>

direction. Any plane in the BCC crystal that contains this direction is

a suitable slip plane. Slip has been experimentally observed in (110),

(112), and (123) planes. The slip markings in BCC metals are usually

wavy and ill-defined. The following reaction has been suggested for a

perfect dislocation having its Burgers vector along <111>:

a

2
[1̄1̄1] → a

8
[1̄1̄0] + a

4
[1̄1̄2] + a

8
[1̄1̄0].

This corresponds to the equivalent of Shockley partials. Apparently,

the stacking-fault energy is very high, because the faults cannot be

observed by transmission electron microscopy. The waviness of the

slip markings is also indicative of the high stacking-fault energy. If

the partials were well separated, slip would be limited to one plane.

Cross-slip, which will be treated in Chapter 6, is much easier when

the stacking-fault energy is high. If one adds up all the slip systems

for BCC, one obtains a number of 48. This is much higher than the

number for FCC.

7 L. J. Teutonico, Mater. Sci & Eng., 6 (1970) 27.
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Example 4.4

Consider the following body-centered cubic dislocation reaction:

a

2
[1̄1̄1] → a

8
[1̄1̄0] + a

4
[1̄1̄2] + a

8
[1̄1̄0].

a. Prove that this reaction will occur.

b. What kind of dislocations are the (a/8)<110> and (a/4)<112>?

c. What kind of crystal imperfection results from this dislocation

reaction?

d. What determines the distance of separation of the (a/8) [1̄1̄0] and the

(a/4) [1̄1̄2] dislocations?

Solution: (a) U α b2:

b1 b2 b3
a

2
[1̄1̄1] → a

8
[1̄1̄0] + a

4
[1̄1̄2] + a

8
[1̄1̄0].

On the left-hand side:

b2 =
(−a

2

)2

+
(−a

2

)2

+
(a

2

)2

= 3

4
a2.

On the right-hand side:

b2
1 + b2

2 + b2
3 =

[(−a

8

)2

+
(−a

8

)2

+02

]
+

[(−a

4

)2

+
(−a

4

)2

+
(

2a

4

)2
]

+
[(−a

8

)2

+
(−a

8

)2

+ 02

]

= a2

32
+ 3a2

8
+ a2

32
= 7a2

16
.

Since

3

4
a2 >

7a2

16
,

the energy is lower after the reaction, and therefore, the reaction will

occur.

(b) Partial dislocations.

(c) Stacking fault.

(d) Stacking-fault energy,γS F .

γSF ∝ b1b2

d
,

with b1, b2 known from (a),

⇒ γSF ∝ 1

d

⇒ d ∝ 1

γSF

.

That is, if γSF increases, the distance between the dislocations decreases.
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Example 4.5

Make a table with all the 48 slip systems for the BCC structure.

Solution: For each slip system, we have to satisfy the condition

u · v = 0. For (110) [11̄1], 1 × 1 + 1 × (−1) + 0 × 1 = 0.

The table of 48 slip systems for the BCC structure is as follows.

Slip Plane Slip Plane Slip Plane
{110} {112} {123}

(110) [11̄1] (112) [1̄1̄1] (123) [111̄] (123) [1̄11]

(110) [11̄1̄] (121) [11̄1] (132) [11̄1] (132) [1̄11]

(11̄0) [111̄] (211) [1̄11] (312) [1̄11] (312) [11̄1]

(110) [111] (112̄) [111] (321) [1̄11] (321) [111̄]

(101̄) [111] (12̄1) [111] (213) [111̄] (213) [11̄1]

(101̄) [11̄1] (2̄11) [111] (231) [11̄1] (231) [111̄]

(101) [111̄] (11̄2) [11̄1̄] (123) [111] [1̄23] [11̄1]

(101) [11̄1̄] (121̄) [11̄1̄] (132) [111] [1̄32] [111̄]

(011) [111̄] (211̄) [1̄11̄] (312) [111] [31̄2] [111̄]

(011) [1̄11] (1̄12) [1̄11̄] (312) [111] [321̄] [11̄1]

(01̄1) [111] (1̄21) [111̄] (213) [111] [21̄3] [1̄11]

(01̄1) [1̄11] (21̄1) [111̄] (231) [111] [231̄] [1̄11]

4.4.7 Dislocations in Ceramics
Transmission electron microscopy has revealed dislocations in most

nonmetals. Dislocations in semiconductors, minerals, oxide ceramics,

and carbides, nitrides, and borides have been described and charac-

terized. Many nonmetals tend to exhibit brittle behavior, in which

dislocations play a minor role. However, if the temperature or lateral

confinement of the material is sufficiently high, ductile behavior can

be observed; in this case, dislocations play an important role. The role

of confinement, or externally applied traction on planes parallel to

the principal direction of external loading, is described in Chapter 7.

The principal effect is to eliminate tensile stresses at the tips of in-

ternal flaws, thereby enabling the nonmetal to deform plastically. The

temperature provides thermal activation that assists the overcoming

of short-range obstacles by dislocations.

Table 4.3 lists the minimum temperatures at which ductile behav-

ior is observed in ceramics. Most ceramics have high ductile-to-brittle

transition temperature, and this has rendered the study of disloca-

tions difficult. These high temperatures also affect the mechanisms

of dislocation motion, since diffusion plays an important role at tem-

peratures greater than or equal to 0.4Tm’ where Tm is the melting

point in K. The climb of dislocations is an effective mechanism for

overcoming obstacles.
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Table 4.3 Approximate Temperature for Macroscopic Plasticity in Some

Ceramics

Ceramic Melting point, Tm (K) Softening point, 0.4Tm (K)

B4C 2,725 1,090
TiC 3,400 1,360
HfC 4,425 1,770
WC 3,000 1,200
SiC 2,970 1,188
MgO 3,100 1,240
ZrO2 3,100 1,240
Al2O3 2,325 930
TiO2 2,100 844
SiO2 (cristobalite) 1,990 796
S3N4 2,715 1,086
MoSi2 2,300 920

Table 4.4 Crystal Structures, Slip Systems, and Burgers Vectors for Ceramics (Courtesy of T. E. Mitchell)

Oxide Slip system Burgers vector Other slip systems

MgO {110} 〈11̄0〉 1/2 〈11̄0〉 = d0 {001}〈11̄0〉, {111} 〈11̄0〉
MgAl2O4 {111} 〈11̄0〉 1/2 〈11̄0〉 = 2d, {110} 〈11̄0〉
Al2O3 (0001) 〈112̄0〉 1/3〈112̄0〉 = √

3d0〉 {1120}〈101̄0〉, {1̄102}〈∼ 112̄0〉
TiO2 {001} 〈01̄1〉 〈01̄1〉 
 2d0 {110} [001]
Mg2SiO4 (100), {110} [001] [011] = 2d0 (100) [010],{0kl}[100]

BeO (0001) 〈112̄0〉 1/3〈112̄0〉 = d0 {1100}〈112̄0〉, [0001] {101̄0}
UO2 {001} 〈11̄0〉 1/2 〈11̄0〉 = √

2d0, {110}, {111} 〈11̄0〉
SiO2 (quartz) (0001) 〈112̄0〉 1/3〈112̄0〉 {1120}, {1010}[0̄001]

The structures of a number of ceramics are given in Chapter 1. (See

Figure 1.17.) In general, ceramics tend to slip along directions that

are closest packed. Since ceramics possess ordered structures, and a

perfect dislocation must recompose the original atomic arrangement,

the Burgers vectors tend to be large.

Table 4.4 lists slip systems and Burgers vectors for a number of

ceramics. For the oxide ceramics, the oxygen atoms (anions) tend to

arrange themselves in close-packed structures (FCC or HCP), and this

determines the slip systems. For instance, Al2O3 (HCP) has basal slip,

where the slip lane is (0001) and the slip directions are <112̄0>. Pris-

matic or pyramidal slip are also possible. (See Table 4.4.) The Burgers

vector is given by

b = 1

3
<112̄0> =

√
3d0,

where d0 is the nearest distance between oxygen atoms. Recall that

the oxygen atoms form an HCP structure. The arrangement of atoms

in the basal plane is shown in Figure 4.43. The large circles are the
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Oxygen
[1100]

Aluminum

Empty

[2110]

[1010]

[1210] [0110]

C

BA

60°

D

b1 b2

b3

[1120]

Fig. 4.43 Basal plane in Al2O3.

oxygen anions, forming a closed-packed hexagonal array. The full cir-

cles are the aluminum cations, which stack in the ABC sequence

(similar to the FCC structure). The empty circles are normally empty

octahedral interstices. The vectors b1, b2, and b3 are the Burgers

vectors. They translate interstitial sites in such a manner that they

become superposed. The magnitude of the Burgers vectors is equal to√
3. This can be shown from the triangle ABC, where B C = √

3d0 and

the angle BCA is equal to 120◦.

For MgO, the anions form an FCC structure, and the Burgers vector

has the direction <11̄0> and a magnitude equal to d0, the smallest

oxygen spacing. Thus,

b = 1

2
<11̄0> = d0.

The dislocations in ceramics generally have a high energy, due to

the large shear modulus and Burgers vector (U ∼ Gb2/2). Table 4.5

gives Burgers vectors and self-energies for dislocations in a number

of intermetallics and ceramics. For purposes of comparison, the dis-

location energy of aluminum is shown. The differences can be dra-

matic. The Peierls--Nabarro stress (see Section 4.4.12) is very high, in

general, because of the directionality of bonding in ionic and cova-

lent structures. For instance, the bond angles of 109◦ for the carbon

atom need very high forces to be distorted. The movement of a dislo-

cation requires the breaking and remaking of bonds, and distortions

are produced around the dislocations. Therefore, the movement of

dislocations in ceramics is, in general, difficult. There are exceptions,

however, such as MgO, which can exhibit significant plasticity at close

to ambient temperature.

Dislocation interactions and reactions occur in a manner simi-

lar to that in metals and intermetallics. An example is given in Fig-

ure 4.44. Dislocation dipoles are often observed in the deformation
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Table 4.5 Elastic Energy for Dislocations in Ceramics and Intermetallics (Courtesy of Veyssiere)

Oxygen Sublattice b b(nm) G(GPa) Gb2/2

Al 1/2 <110> 0.286 27 1.2
Ni3Al <110> 0.356 100 6.4
MgO FCC 1/2 <110> 0.298 125 5.1
CoO FCC 1/2 <110> 0.301 70 3.2
NiO FCC 1/2 <110> 0.296 135 5.9
MgAl2O4 FCC 1/2 <110> 0.57 120 19.5

BeO HCP 1/3 < 112̄0 > 0.27 160 5.9

Al2O3 – α HCP 1/3 < 112̄0 > 0.476 200 22.6
TiO2 distorted <001> 0.296 100 4.4

HCP <101> 0.546 14.9
CuO2 BCC <001> 0.427 10 0.9

<011> 0.604 1.8
UO2 cubic 1/2 <110> 0.386 94 7.0
Y2O3 vacancy — 1/2 <111> 0.918 65 27.4

containing cubic <100> 1.06 31.5
Y3Fe5O12 highly 1/2 <111> 1.072 78 44.8

distorted <100> 1.038 42.0

of sapphire and are shown in Figure 4.44(a). These dipoles are par-

allel edge dislocations of opposite sign that are attracted together

into a position of approximately 45◦ (55◦ if there is anisotropy) in

order to minimize the elastic fields. This is shown in Figure 4.44(b).

In Figure 4.32(d), the elastic (shear stress) fields of edge distortions are

shown. The shear stresses σ 12 are minimized if they place themselves

at 45◦. These dipoles break down and form loops, as indicated in Fig-

ure 4.44(a). The stress fields of one dislocation are canceled by those of

the other dislocation, at 45◦, as shown in Figure 4.44(b). Dislocation

dissociations and reactions are also observed and can be predicted

from energetics. A hexagonal dislocation network is shown in Figure

4.45. The total Burgers vector at the nodes has to be equal to zero

under equilibrium. This is called Frank’s rule. For basal dislocations in

a hexagonal structure, we have, at the nodes,

1

3
[112̄0] + 1

3
[12̄10] + 1

3
[2̄110] = 0.

And for the FCC structure,

1

2
[11̄0] + 1

2
[011̄] + 1

2
[1̄01] = 0.

These structures are often produced during recovery.

The dissociation of a perfect dislocation into partial dislocations is

treated in a manner similar to that in metals. The criterion of energy
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Fig. 4.44 (a) Dislocations,

dipoles, and loops in sapphire. (b)

Interaction between dislocations in

sapphire. (From K. P. D. Lagerdorf,

B. J. Pletka, T. E. Mitchell, and A. H.

Heuer, Radiation Effects, 74 (1983)

87.)

0001

1100

1120

Glide plane A

Glide plane B

55°

b1 = 1/3 <1120>

= 1/3 <1120>(b)

200 nm200 nm

g
1120

200 nm

Fig. 4.45 Hexagonal array of

dislocations in titanium diboride.

(Courtesy of D. A. Hoke and G. T.

Gray.)

decrease (U ≈ Gb2/2) is applied, and dissociation is stable if b2 > b2
1 +

b2
2.

A few dislocation dissociations have been observed in ceramics. In

the spinel structure, the dissociation

1

2
[11̄0] → 1

4
[11̄0] + 1

4
[11̄0]

was observed, and the following dissociation was suggested to occur

in Al2O3:

1

3
[112̄0] → 1

3
[101̄0] + 1

3
[011̄0].

This dissociation has been observed to occur only by climb.

As an illustration of the occurrence of stacking faults in ceramics,

Figure 4.46 shows a TEM of gallium phosphide. The large concentra-

tion of these faults is evident. They are a common occurrence in thin
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500mm

Fig. 4.46 Stacking faults in GaP.

(Courtesy of P. Pirouz.)

films deposited on Si substrates by molecular beam epitaxy (MBE),

chemical vapor deposition (CVD), or metal--organic CVD (MOCVD). Sec-

tion 4.4.14 describes the stresses generated in epitaxial growth on a

substrate. These mismatch stresses, as well as thermal stresses and

growth faults, are responsible for the high concentration of stack-

ing faults, which decreases with distance from the interface. Profuse

stacking faults bounded by Shockley partial dislocations and stair-rod

dislocations have been observed to occur in SiC grown on Si wafers.

The configuration of stacking faults observed in SiC is analogous to

that for GaP shown in Figure 4.46.

4.4.8 Sources of Dislocations
It is experimentally observed that the dislocation density increases

with plastic deformation; specifically, the relationship τ ∝ ρ1/2 (see

Chapter 6 Section 6.3) has been found to be closely obeyed. While

the dislocation density of an annealed polycrystalline specimen is

typically 107 cm−2, a plastic strain of 10% raises this density to

1010 cm−2 or more, an increase of three orders of magnitude. This is

Fig. 4.47 Homogeneous

nucleation of dislocation in

conventional deformation.

an apparent paradox, because one would think that the existing dis-

locations would be ejected out of the crystalline structure by the

applied stress. If one calculates the strain that the existing disloca-

tions in an annealed metal would be able to produce by their motion

until they would leave the crystal, one would arrive at very small

numbers. Consequently, the density of dislocations has to increase

with plastic deformation, and internal sources have to be activated.

Some possible dislocation-generation mechanisms are discussed in

the next few paragraphs.

The homogeneous nucleation of a dislocation occurs by in the

rupture of the atomic bonds of a material along a certain line. Figure

4.47 shows schematically the sequence of steps leading to the for-

mation of a pair of edge dislocations (one negative, one positive). In
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Fig. 4.48 Emission of

dislocations from ledges in grain

boundary, as observed in

transmission electron microscopy

during heating by electron beam.

(Courtesy of L. E. Murr.)

Figure 4.47(a) the lattice is elastically stressed, until, in Figure 4.47(b),

an atomic plane is sheared; this generates two dislocations that move

in opposite senses. Such a mechanism allows the formation of dis-

locations from an initially perfect lattice. It can be seen intuitively

that the stress required would be extremely high. Calculations were

done by Hirth and Lothe (see the suggested reading), and for copper,

this stress is on the order of

τhom

G
= 7.4 × 10−2.

Comparing this with the theoretical strength of crystals, one can

see that the difference is not very large. Hence, such values would

be obtained only if the applied stresses were very high or there were

internal regions of high stress concentration. In conventional deform-

ation, other dislocation-generation mechanisms should become oper-

ational at much lower stresses, rendering homogeneous nucleation

highly unlikely.

Grain boundaries can serve as sources of dislocation. Irregular-

ities at the boundaries (steps or ledges) could be responsible for the

emission of dislocations into the grains. Figure 4.48 shows the emis-

sion of dislocations from a grain-boundary source; dislocations are

seen as they are generated at the ledge. The stress due to heating pro-

duced by the electron beam produces the force on the dislocations.

It is thought that dislocation emission from grain boundaries can

be an important source of dislocations in the first stages of plastic

deformation of a polycrystal.

In monocrystals, the surfaces can act as sources of dislocation.

Small steps at the surfaces act as stress concentration sites; hence,
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Fig. 4.49 Effect of oxide layer on

the tensile properties of niobium.

(Reprinted with permission from

V. K. Sethi and R. Gibala, Scripta

Met. 9 (1975) 527.)

the stress can be several times higher than the average stress. At

these regions, dislocations can be generated and ‘‘pumped” into the

monocrystals. The majority of dislocations in monocrystals deformed

in tension are generated at the surface. Pangborn et al.8 investigated

the bulk and surface dislocation mechanism in monocrystals. The dis-

location density close to the surface was up to six times greater than

that in the bulk. The dislocation surface layer (with higher dislocation

density) extended for approximately 200 μm into the material at the

surface. The surface sources cannot have a significant effect on poly-

crystal deformation, because the majority of the grains would not be

in contact with the free surface. Since dislocation activity is restricted

to the grains, the surface sources would not be able to affect the inter-

nal grains. Incoherent interfaces between the matrix and precipitates,

dispersed phases, or reinforcing fibers (in composites) are also sources

of dislocations.

The importance of interfaces in the production of dislocations is

seen in the results shown in Figure 4.49. The low-temperature tensile

response of BCC metals was dramatically affected by the presence of

an oxide layer. The figure exemplifies this response for niobium. The

flow stress of monocrystalline niobium at 77 K is highly dependent

on the state of the surface. The oxide softens the material. Two effects

are responsible for the lowering of the flow stress by the introduction

of an oxide layer:

1. The oxide puts the surface layers under tensile stresses, because

the introduction of oxygen into the lattice expands it. On the other

hand, the oxide is under compression. The resultant resolved shear

stress at the surface is much higher (in the presence of the oxide

layer) than that due exclusively to the externally applied load.

2. The predeformed and oxide-coated specimen (the lowest curve in

the figure) has an even lower flow stress because the predeform-

ation introduces surface steps, which act as stress-concentration

sites.

8 P. N. Pangborn, S. Weissman, and I. R. Kramer, Met. Trans. 12A (1981) 109.
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Fig. 4.50 Sequence of the

formation of dislocation loop by

the Frank–Read mechanism.

Hence, the joint action of the internal stresses generated by the

oxide and the surface steps activates the dislocation sources at the

surface.

The classic mechanism for dislocation multiplication is called the

Frank--Read source. In Figure 4.50(a), there is a dislocation ABCD with

Burgers vector b. Only the segment BC is mobile in the slip plane

α. Segments AB and CD do not move under the imposed stress. The

applied stress will generate a force per unit length on segment BC

equal to (Section 4.45)

F = T ds

R
.

The radius of curvature of the dislocation segment decreases until it

reaches its minimum, equal to BC/2. At this point, the force is max-

imum (and so is the stress). Hence, the dislocation reaches a condi-

tion of instability beyond that point. The critical position is shown in

Figure 4.45(c). When P approaches P ′, the dislocation segments have

opposite signs; accordingly, they attract each other, forming a com-

plete loop when they touch, and are then pinched off. The stress

required to activate a Frank--Read source is equal to that needed to

curve the segment BC into a semicircle with radius BC/2; beyond this

point, the stress decreases. Thus from Equation 4.22d:

τ = G b

B C
= G b

2R
.

However, as loops are formed, they establish a back stress, so that the

stress required to generate successive loops increases steadily. If the

loops are expelled from the material, they cease to exert a back stress.

Only a few Frank--Read sources have been observed in metals. How-

ever, in a tridimensional array of dislocations, nodes define segments.

These segments can bow and effectively act as Frank--Read sources.

Another possibility is that the source forms when a screw disloca-

tion cross-slips and returns to a plane parallel to the original slip
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Fig. 4.51 Frank–Read source

formed by cross-slip.

plane. (See Figure 4.51.) Incidentally, edge dislocations cannot cross-

slip because their Burgers vector could not be contained in the cross-

slip plane. The Burgers vector of a screw dislocation, on the other

hand, is parallel to its line and will be in the cross-slip plane if the

intersection of the two dislocations is parallel to it. After the seg-

ment in the cross-slip plane advances a certain extent, the stress sys-

tem applied might force it into a plane parallel to the original slip

plane. At this point, a Frank--Read source is formed. Although it is

thought that the original formulation of the Frank--Read source is
Vapor

(a)

(b)

Epitaxial film

Substrate

Epitaxial film

Substrate

Substrate

Vapor

Vapor

Fig. 4.52 Epitaxial growth of thin

film. (a) Substrate. (b) Start of

epitaxial growth. (c) Formation of

dislocations.

not common, its modifications just cited -- the node and the cross-slip

case -- might be the important mechanism of dislocation generation,

after the first few percent of plastic strain.

Crystals formed by growth over a substrate (a technique commonly

employed in the production of thin films) show dislocations whose

formation can be easily explained. The substrate never has exactly the

same lattice parameter as the crystal overgrowth. Figure 4.52 shows

the sequence of formation of dislocations as the crystal grows over

the substrate. If as and a0 are the lattice parameters of the substrate

and overgrowth, respectively, the separation between the dislocations

is

d = a2
s

|as − a0| .

Often, the impurity content of a crystal varies cyclically due to

solidification; this is called segregation. The periodic change in compo-

sition is associated with changes in the lattice parameter, which can

be accommodated by dislocation arrays.

Vacancies can condense and form disks as well as prismatic loops

if they are present in a ‘‘supersaturated” concentration. In FCC crys-

tals, these disks and loops occur on {111} planes. As seen in Fig-

ure 4.39, the dislocations that form the edges of these features are

called Frank dislocations. Kuhlmann--Wilsdorf (see suggested reading)

proposed, that they can act as Frank--Read sources, and this was later

confirmed experimentally.

4.4.9 Dislocation Pileups
All dislocations generated by a Frank--Read source are in the same

slip plane if they do not cross-slip. In metals with low stacking-fault

energy, the large separation between the partials renders cross-slip

more difficult. In case one of the dislocations encounters an obstacle

(a grain boundary, a precipitate, etc.), its motion will be hampered.
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against a barrier.

Fig. 4.54 Pileup of dislocations

against grain boundaries (or

dislocations being emitted from

grain-boundary sources?) in

copper observed by etch pitting.

The subsequent dislocations will ‘‘pileup” behind the leading dis-

location, after being produced by the Frank--Read source. Figure 4.53

is a schematic diagram of a pileup. The distance between the disloca-

tions increases as their distance from the obstacle increases. On the

other hand, if the metal has a very high stacking-fault energy, cross-

slip will easily occur, and the planar array will be destroyed; edge dis-

locations cannot, obviously, cross-slip because of their Burgers vector.

Figure 4.54 shows an example of a pileup, obtained by etch pitting

in copper. Observe that the dislocation configurations for a pileup and

a grain-boundary source are similar and that many grain-boundary

sources have in the past been mistaken for pileups. Figure 4.48 shows

a grain-boundary source.

Each dislocation in a pileup is in equilibrium under the effect of

the applied stress and of the stresses due to the other dislocations (in

the pileup). Assuming that the dislocations are of edge character and

parallel, the resulting force acting on the ith dislocation is obtained
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by applying the equation that gives the forces between dislocations:

τb −
n∑

j=0
i = j

G b2

2π (1 − v )(xi − x j )
= 0. (4.25)

n is the number of dislocations in the pileup.

Solving the n equations with n unknowns (xi − xj) for the dis-

locations behind the lead dislocation, we obtain the positions of the

dislocations. This derivation was introduced by Eshelby et al.9 and we

present the results without derivation.

The stress acting on the lead dislocation due to the presence of

the other dislocations and due to the applied stress is found to be

τ ∗ = nτ. (4.26)

So the effect of the n dislocations in the pileup is to create a stress

at the lead dislocation n times greater than the applied stress. For

this reason, the dislocation pileup is sometimes treated as a superdis-

location with a Burgers vector nb. The foregoing calculations can also

be applied to screw dislocations by removing the term (1 -- v). The

length of the pileup under an applied shear stress τ is given by

L = nG b

πτ
. (4.26a)

4.4.10 Intersection of Dislocations
A dislocation, when moving in its slip plane, encounters other dis-

locations, moving along other slip planes. If we imagine the first

dislocation moving in a horizontal plane, it will ‘‘see” the other

dislocations as ‘‘trees” in a ‘‘forest.” The latter name designates dis-

locations in other slip planes. When the dislocation intersects another

dislocation, since it shears the material equally (by a quantity b) on

the two sides of the slip plane, it will form one or more steps. These

steps are of two types: jogs if the ‘‘tree” dislocation was transferred to

another slip plane, and kink if the ‘‘tree” dislocation remains in the

same slip system. Various possible outcomes from dislocation inter-

sections are shown in Figure 4.55. Figure 4.55(a) shows an edge dis-

location traversing a ‘‘forest” composed of two edge and one screw

dislocation. A good rule to determine the direction of jogs and kinks

is the following: The direction of the segment is the same as the

Burgers vector of the dislocation that is traversing the ‘‘forest;” on

the other hand, the Burgers vector of the jog or kink is the Burgers

vector of the dislocation in which it is located, because the Burg-

ers vector is always the same along the length of a dislocation. Figure

4.55(b) shows a screw dislocation after traversing a ‘‘forest.” The reader

is asked to verify the directions of dislocation segments and Burgers

vector; he or she should also verify whether they are jogs or kinks.

The ability of these segments to slip with a dislocation is of great

importance in determining the work-hardening of metal. It should

9 J. D. Eshelby, F. C. Frank, and F. R. N. Nabarro, Phil. Mag., 42 (1951) 351.



4 .4 L INE DEFECTS 305

Initially straight
dislocation moving
along direction shown
     by arrows

(a)

(b)

Fig. 4.55 (a) Edge dislocation

traversing “forest” dislocations.

(b) Screw dislocation traversing

“forest” dislocations.

be noted that some authors use the name ‘‘jog” for both types of

segments. Jogs and kinks can have either a screw or an edge char-

acter. From Figure 4.56(a), it can be seen that segments on an edge

dislocation cannot impede the motion of jogs or kinks, because the

segments can slip with the dislocation. On the other hand, in screw

dislocations, there are segments that can slip with the dislocations

and segments that cannot. When the segment can move with the

dislocation, the motion is called conservative. When the segment can-

not move by slip, the motion is called nonconservative. Figure 4.56(b)

shows some interactions. At the left there is a conservative motion

by slip, and at the right a nonconservative motion. The nonconser-

vative motion of a jog is, in essence, a climb process and requires

thermal activation. Vacancies or interstitials are produced as the

segment moves. If the temperature is not high enough to provide

sufficient thermal activation, the jog does not move, and loops are

formed as the dislocation advances; this is shown in Figure 4.57. The
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(a) (b)

Fig. 4.56 (a) Kink and jog in

edge dislocation. (b) Kink and jog

in screw dislocation.

Fig. 4.57 Loop being pinched

out when jog is left behind by

dislocation motion.

b b b b

Nb
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b b b b

X3

Fig. 4.58 Shear produced by the

passage of parallel dislocations.

dislocation forms a dipole upon advancing, because the jog stays back.

At a certain point, the dipole will be pinched out, producing a loop.

4.4.11 Deformation Produced by Motion of Dislocations
(Orowan’s Equation)

Upon moving, a dislocation produces a certain deformation in a

material. This deformation is inhomogeneous. Figure 4.58 shows the

steps generated by the passage of dislocations. If we consider a large

number of dislocations acting on different systems, we can posit the

association of a large number of small steps as creating a homoge-

neous state of deformation. The deformation is related to both the

number of dislocations that move and the distance traveled by them.

This equation is known as Orowan’s or Taylor--Orowan’s equation and is

derived in this section. Figure 4.58 shows a cube dimensions dx1, dx2,

and dx3 that was sheared by the passage of N dislocations moving
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along the plane Ox1x2. The plastic shear strain can be expressed as

dγ13 = N b

dx3

. (4.27)

This is so because all dislocations are of edge character and have the

same sign, with identical Burgers vector b. The density of dislocations,

ρ, is the total length N dx2 in the volume dx1 dx2 dx3. Therefore,

ρ = N dx2

dx1 dx2 dx3

and N = ρ dx1 dx3. (4.28)

Substituting Equation 4.28 into Equation 4.27 yields

dγ13 = ρb dx1.

A cube isolated in space, in which dislocations are generated on one

face and pop out of the opposite face is an idealization. In real situa-

tions, dislocations remain within the material, and the deformation

generated by each dislocation is related to the distance traveled by it.

Assuming that dislocations travel an average distance, l̄ , we have

γ13 = ρbl̄ .

But in a general case of deformation, five independent slip systems

are activated. The deformation is not perfectly aligned with the move-

ment of dislocations, and it is necessary to introduce a correction

parameter k that takes this into account:

γp = kρbl̄ . (4.29)

This is the Orowan equation. If one assumes that the density of mobile

dislocations is not affected by the rate of deformation (strain rate),

one would have, taking the time derivative of both sides of Equation

4.29,

dγp

dt
= kρb

dl̄

dt
+ klb

dρ

dl
. (4.30)

If we assume that ρ does not vary with time,

γp = kρbv ,

where v̄ is the mean velocity of the dislocations. We can also use the

longitudinal strain ε11 if we are applying the situation to a tensile

test. It can be shown that γ = 2ε (see Section 6.2.3) for an ideal

orientation for slip.

As an illustration, if iron (b ≈ 0.25 nm) is being deformed at

10−3 s−1, and the density of mobile dislocations is around 1010 cm−2,

their approximate velocity will be 4 × 10−6 cm/s.

Attention should be called to the fact that the density of mobile

dislocations is lower than the total density of dislocations in the

material. As the dislocation density increases in a deformed mater-

ial, a greater and greater number of dislocations is locked by various

types of barriers, such as grain boundaries, cell walls, or the action
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of a great number of jogs. The actual density of mobile dislocations

is only a fraction of the total dislocation density.

Example 4.6

Titanium is deformed by basal slip with edge dislocations. If a cube

with one of its sides parallel to the c-axis is being deformed by shear

through the passage of dislocations on every fifth (0001) plane, what

shear strain γ is the cube undergoing? Take the radius of Ti atom

rT i = 0.147 nm.

Solution: We first determine

a = 2r = 0.294 nm.

We assume an ideal c/a ratio equal to 1.633. Thus, c = 0.48 nm. The

Burgers vector for basal slip is equal to a.

Every fifth atomic plane corresponds to a distance d = 5c =
2.4 nm. The shear strain is thus equal to

γ = b

d
= 0.294

2.4
= 0.1225.

Example 4.7

An FCC monocrystal of nickel is sheared by γ 12 = 0.1. Assuming that

the dislocation density is equal to 108 cm−2 and that it remains con-

stant, what is the average distance each dislocation will have to move?

If the shear strain rate is 10−4 s−1, what is the mean velocity of the

dislocation?

Solution:

rNi = 0.125 nm

For FCC, b = 2rN i = 0.250 nm. Using Orowan’s equation, taking k =
1, γ = ρbl̄, we obtain the following:

(i) l̄ = γ

ρb

= 0.1

108 cm−2 × 0.25 nm

= 0.1

108 × (104 m−2) × 0.25 (10−9 m)
= 4 × 10−4 m

(ii) γ̇ = ρbv̄ ,

so

v̄ = γ̇

ρb

= 10−4s−1

108 cm−2 × 0.25 nm
= 4 × 107 m/s.
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Fig. 4.59 (a) Movement of

dislocation away from its

equilibrium position. (b) Variation

of Peierls–Nabarro stress with

distance. (Reprinted with

permission from H. Conrad, J.

Metals, 16 (1964) 583.)

4.4.12 The Peierls–Nabarro Stress
The Peierls--Nabarro stress represents the resistance that the crys-

talline lattice offers to the movement of a dislocation. Figure 4.59

shows the stress that one has to apply to a dislocation to make it move

a distance b. When the extra plane is moved away from its equilib-

rium position (either to the right or to the left), one has to overcome

a barrier. The difference in energy between the equilibrium (saddle

point) and the most unstable position is called the Peierls--Nabarro

energy, and the stress required to overcome this energy barrier is the

Peierls--Nabarro (P--N) stress. The dislocation does not advance simul-

taneously over its entire length. (See Figure 4.60(a).) Rather, a small

hump, or kink pair is formed, as shown in Figure 4.60(b), via what is

known as a Seeger mechanism. This kink pair then moves along the

dislocation (the parts of the pair move in opposite directions), and

when it has covered the entire front, the dislocation has advanced by
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Fig. 4.60 Overcoming of Peierls

barrier by Seeger kink pair

mechanism. (a) Original straight

dislocation. (b) Dislocation with

two kinks. (c) Kinks moving apart

at velocity vk.

b, the Burgers vector. In Figure 4.60(c) the velocity of movement of a

dislocation is vD, related to the kink velocity vk by

v D = vk

b

L
. (4.31)

The stress required to overcome the obstacle is known as the Peierls--

Nabarro stress. Calculations of this stress are fairly inaccurate because

the continuum treatment breaks down for distances on the order of

the atomic spacings. The energy of the dislocation is given by U(x) as

it moves through the barrier. The applied force required to bring this

dislocation to the top of the energy barrier is

F = −dU

dx
. (4.32)

But from the Peach--Koehler equation (F = τb), we have

τ = −1

b

dU

dx
. (4.33)

A sinusoidal form for U(x) was assumed by Peierls and Nabarro, lead-

ing to the expression

τP N = α
G b

2c
e−πa/c sin

2πx

c
, (4.34)

where c is the spacing of atoms in the x direction, a is the lattice

parameter, and α is a parameter that depends on the nature of the

barrier; for α = 1, the barrier is sinusoidal.

4.4.13 The Movement of Dislocations: Temperature and
Strain Rate Effects

The resistance of crystals to plastic deformation is determined by the

resolved shear stress that is required to make the dislocations glide in

their slip planes. If no obstacles were present, the dislocations would

move under infinitesimally small stresses. However, in real metals,

the nature and distribution of obstacles determines their mechanical

response. Becker10 was the first to point out the importance of ther-

mal energy in helping the applied stress overcome existing obstacles.

10 R. Becker, Z. Phys. 26 (1925) 919.
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The stress required for deformation, τ , can be divided into two parts:

τ *, which is dependent on the strain rate and temperature of the

material, and τG, in which the temperature dependence is equal to

that of the shear modulus. Thus,

τ = τ ∗ + τG , (4.35)

or, in terms of the normal stresses,

σ = σ ∗ + σG . (4.36)

The functional dependence can be expressed as

σ = σ ∗(T , ε̇) + σG (G ). (4.37)

We know that the elastic properties (E, G, v) are only slightly depen-

dent on temperature. Figure 4.61 shows the temperature dependence

of Young’s modulus for a number of materials. As the temperature

increases, the amplitude of vibration of the atoms increases (but the

frequency remains constant at approximately 1013 s−1). This results in

thermal dilation, which separates the atoms somewhat and changes

their equilibrium positions and interatomic forces. The flow stress of

metals, on the other hand, is much more sensitive to temperature

and strain rate. Figure 4.62 shows the dependence of the yield stress

on temperature for typical BCC and FCC structures. BCC metals (Fe,

Cr, Ta, W, etc.) exhibit a greater temperature and strain rate sensitiv-

ity. It can be seen that the athermal component of stress is σ G ≈ 50

MPa, whereas the thermal component exceeds 1,000 MPa at 0 K. The

increase in flow stress with decrease in temperature is much more

gradual for FCC metals, as shown in Figure 4.62(c). The differences

in temperature and strain rate sensitivity are due to different mech-

anisms controlling the rate of dislocation motion. In BCC metals,
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Peierls--Nabarro stresses are the major obstacles at low temperatures,

and thermal energy can effectively aid the dislocations to overcome

these stresses, which constitute a short-range barrier. For FCC metals,

dislocations intersecting dislocations (‘‘forest” dislocations) are the

main barriers to the motion of dislocations. Thermal energy is less

effective in helping dislocations to overcome these barriers.

At temperatures higher than 800 K, there is an additional drop in

the flow stress, not shown in Figure 4.62. This drop occurs at T ≈ 0.5

Tm, where Tm is the melting point of the metal (or alloy). The drop is

due to creep, which often involves dislocation climb. Creep is treated

separately in Chapter 13.
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Fig. 4.63 Stresses and

dislocations generated at

film–substrate interface; (a) film

and substrate with different lattice

parameters; (b) elastic (coherent)

accommodation of strains by film;

(c) elastic + dislocation

(semi-coherent) accommodation

of strains at a film thickness

greater than hc. (Adapted from

W. D. Nix, Met. Trans., 20A (1989)

2217.)

Johnston and Gilman11 were the first to measure the velocities of

dislocations as a function of applied stress. They used LiF crystals for

their measurements and observed, as expected, that the distance a

dislocation moves increases with the magnitude and duration of the

stress pulse. The distance also increases, at a constant stress, with

increasing temperature. This relationship is known as the Johnston--

Gilman equation and has the form

v = Aτme−Q /RT , (4.38)

where v is the dislocation velocity, exponent m is a stress dependency

that is dependent on v, Q is an activation energy, and A is a pre-

exponential term that depends on the material and the nature of

the dislocation (edge or screw). Although this equation predicts an

infinite dislocation velocity when the stress is high, it is generally

accepted that the limiting dislocation velocity is the velocity of elastic

shear waves. Thus, the equation breaks down at velocities close to the

shear wave velocity (e.g., ∼3,000 m/s for iron).

4.4.14 Dislocations in Electronic Materials
Producing dislocation-free substrates and epitaxial films is an import-

ant technological consideration. The presence of dislocations cre-

ates a barrier for electric fields and alters electronic properties of

thin films. It is therefore undesirable. In order for epitaxial thin

films to be stress free, they must have the same lattice parameter as

the substrate. Figure 4.63(a) shows a film and substrate, with lattice

parameters af and as, respectively. They are shown separately. If they

11 W. G. Johnston and J. J. Gilman, J. Appl. Phys. 33 (1959) 129.
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are connected, stresses will arise. The substrate is usually much

thicker than the film. Thus, the elastic accommodation is assumed

to occur entirely in the substrate. The epitaxial strain is:

ε = �a

a
≈ as − a f

as

.

We present below the van der Merwe12--Matthews13 theory for the

prediction of thin film configurations. The strain energy, in the case

where the substrate is completely coherent with the film, is:

Uh = E

1 − ν
hε2. (4.39)

where h is the thickness of the thin film; the term E /(1 − ν) is the

biaxial modulus (see Section 2.16). It can be obtained from the gen-

eralized Hooke’s law assuming a biaxial stress state. As the thickness

of the film increases, the strain energy increases, due to the factor

h in Equation 4.39. At first, the film is coherent with the substrate.

This is shown in Fig. 4.63(b). When the strain energy reaches a crit-

ical level, misfit dislocations are created, decreasing the overall strain.

Figure 4.63(c) shows a film with dislocations having a spacing S. The

homogeneous strain is decreased from ε to (ε − b/S ) due to the inser-

tion of dislocations, spacing S, with displacement (Burgers vector) b.

However, the dislocations created have an energy Ud that has to be

factored in. For misfit edge dislocations with a spacing S:

Ud = G b2

4π (1 − ν)

2

S
ln

(
h

b

)
. (4.40)

The misfit dislocations form a two-dimensional network. The term

2/S = 1/S + 1/S represents the length of misfit dislocations per unit

area (square grid). The total strain energy Ut is obtained by adding

Equations 4.39 (after subtracting the b/S term) and 4.40:

Ut = E

1 − ν
h

(
ε − b

S

)2

+ G b2

4π (1 − ν)

2

S
ln

(
h

ro

)
. (4.41)

In Figure 4.63, the two plots on the right side represent the energy in

the case of coherent and semicoherent interface. In the coherent case,

the energy is minimum for an infinite spacing of dislocations (b/S =
0). However, as the thickness h of the film is increased, the second

term (logarithmic in h) increases in importance. The energy reaches a

minimum when critical thickness hc is reached. This corresponds to

the thickness at which dislocations are created at the interface. This

is represented by the plot in Figure 4.63(c).

We can calculate the critical film thickness, hc by taking the deriva-

tive of Equation 4.41 with respect to 1/S:

∂Ut

∂ (1/S )
= −2

E

1 − ν

(
ε − b

S

)
+ G b2

2π (1 − ν)
ln

(
h

b

)
= 0. (4.42)

12 J. H. van der Merwe and N. G. van der Berg, Surface Science, 32 (1972) 1.
13 J. W. Matthews and A. E. Blakeslee, Journal of Crystal Growth, 27 (1974) 118; 29 (1975)

273.
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Fig. 4.64 Critical film thickness

as a function of misfit strain for

GexSi1–x film grown on Si

substrate; the greater fraction Gex,

the greater the misfit stain and the

smaller hc. Predictions from van

der Merwe–Matthews theory;

measurements from J. C. Bean,

L. C. Feldman, A. T. Fiory, S.

Nakahara, and I. K. Robinson, J.

Vac. Sci. Technol. A, 2 (1984) 436.

(Adapted from W. D. Nix., Met.

Trans., 20A (1989) 2216.)
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Film h

SubstrateDislocation

Film h
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Source

Fig. 4.65 Mechanisms of misfit

dislocation generation; (a) Freund

mechanism in which a “threading”

dislocation preexisting in substrate

lays over interface creating misfit

dislocation; (b) Nix mechanism, by

which surface source creates

half-loops that move toward

interface.

By setting 1/S = 0, i.e., an infinite dislocation spacing, we obtain the

Matthews--Blakeslee equation:

hc

ln
(

hc

ν0

) = G b

4π E ε
= b

8π (1 + ν)E
(4.43)

Figure 4.64 shows the critical film thickness for GexSi1−x growth on

a Si substrate. The higher the fraction x of Ge, the larger the strain

in the film, ε. Consequently, the smaller will be hc. The predictions of

Equation 4.43 are compared with experimental results in Figure 4.64.

The agreement is only qualitatively satisfactory. For small strains, the

predicted thickness is orders of magnitude lower than the observed

value.
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One of the reasons for the difference is that dislocations cannot

appear spontaneously at the interface, once a critical thickness is

reached. They have to nucleate somewhere and move to the interface.

This requires additional energy. Two possible mechanisms are shown

in Figure 4.65. The Freund mechanism requires an existing dislocation

that ‘‘threads” through substrate and film. This threading dislocation,

moving along the interface as shown in Figure 4.65(a), creates the

interface dislocation. The Nix mechanism requires a dislocation to

be formed at the free surface and move to the interface. A source,

operating at the surface, is shown in Figure 4.65(b). It produces half-

loops, which expand and reach the interface.

Suggested Reading

Point Defects
C. S. Barrett and T. B. Massalski. Structure of Metals, 3rd ed. New York, NY:

McGraw-Hill, 1966.

J. H. Crawford Jr. and L. M. Slifkin, eds. Point Defects in Solids. New York, NY:

Plenum Press, 1972.

A. C. Damask and G. J. Dienes. Point Defects in Metals. New York, NY: Gordon

and Breach, 1963.

C. P. Flynn. Point Defects and Diffusion. Oxford: Clarendon Press, 1972.

H. Kimura and R. Maddin. Quench Hardening in Metals, in the series ‘‘Defects in

Crystalline Solids,” S. Amelincx, R. Gevers, and J. Nihoul, eds. Amsterdam:

North-Holland, 1971.

A. S. Nowick and B. S. Berry. Anelastic Relaxation in Crystalline Solids. New York,

NY: Academic Press, 1972.

H. G. Van Bueren. Imperfections in Crystals. Amsterdam: North-Holland, 1961.

Line Defects
A. H. Cottrell. Dislocations and Plastic Flow in Crystals. Oxford: Clarendon Press,

1953.

J. C. Fisher, W. G. Johnston, R. Thomson, and T. Vreeland, Jr., eds. Dislocations

and Mechanical Properties of Crystals. New York, NY: Wiley, 1957.

J. Friedel. Dislocations. Elmsford, NY: Pergamon Press, 1967.

J. P. Hirth and J. Lothe. Theory of Dislocations, 2nd ed. New York, NY:

J. Wiley, 1981.

D. Hull and D. J. Bacon. Introduction to Dislocations. New York, NY: Oxford Uni-

versity Press, 1989.

A. Kelly and G. W. Groves. Crystallography and Crystal Defects. Reading, MA:

Addison-Wesley, 1974.

I. Kovacs and L. Zsoldos. Dislocations and Plastic Deformation. Elmsford, NY: Perg-

amon Press, 1973.

D. Kuhlmann-Wilsdorf, in Physical Metallurgy, 3rd ed., R. W. Cahn and P. Haasen,

eds. Amsterdam: North Holland, 1990, 1983.

J. P. Hirth and F. R. N. Nabarro, ed. Dislocations in Solids, (15 vols.). New York,

NY: Elsevier/North-Holland, 1979--2008.

W. T. Read, Jr. Dislocations in Crystals. New York, NY: McGraw-Hill, 1953.

J. Weertman and J. R. Weertman. Elementary Dislocation Theory. New York, NY:

Oxford University Press, 1992.



EXERCISES 317

Exercises

4.1 Calculate the radii of the tetrahedral and octahedral holes in BCC and

FCC iron; assume lattice parameters of 0.286 and 0.357 nm, respectively.

4.2 Calculate the concentration of monovacancies in gold at 1,000 K, know-

ing that Hf = 1.4 × 10−19 J. If the gold is suddenly quenched to ambient

temperature, what will be the excess vacancy concentration?

4.3 How many vacancies per cubic centimeter are there in gold, at ambient

temperature, assuming a lattice parameter of 0.408 nm?

4.4 What is the effect of vacancies on electrical conductivity?

4.5 What is the effect of vacancies on the amplitude of vibration of the neigh-

boring atoms?

4.6 What stress is required to render operational a Frank--Read source in iron,

knowing that the distance between points B and C is 20 (Figure 4.50) nm and

that the Goldschmidt radius of the iron atoms is 0.14 nm?

4.7 Make all possible reactions between (perfect) dislocations in (111̄) and (11̄1̄)

in an FCC crystal. Among them, which ones are Lomer locks?

4.8 Consider all possible reactions between partial Shockley dislocations (only

the front dislocation, from the pair) in (111) and (111̄) in an FCC crystal. Among

them, which ones will form a stair-rod dislocation?

4.9

(a) Show that the reaction

a

2
[101̄] → a

6
[211̄] + a

6
[112̄]

is either vectorially correct or incorrect?

(b) Is the reaction energetically favorable?

4.10 107 and 1011 cm−2 are typical values for the dislocation density of

annealed and deformed nickel, respectively. Calculate the average space

among dislocation lines (assuming a random dislocation distribution), as well

as the line energy for edge and screw dislocations, in both cases. In nickel,

E = 210 GPa, v = 0.3, and the lowest distance between atom centers is

0.25 nm.

4.11 Calculate the dislocation density for Figure 4.22b; assume a foil thickness

of 0.3 μm.

4.12 The concentration of vacancies in aluminum at 600 ◦C is 9.4 × 10−4;

by quenching, this concentration is maintained at ambient temperature. The

vacancies tend to form disks, with Frank partials at the edges. Determine the

loop concentration and dislocation density, assuming that:

(a) Disks with a 5-nm radius are formed.

(b) Disks with a 50-nm radius are formed.

For aluminum, assume that the radius of the atoms is 0.143 nm. (Hint: The

length of the Frank dislocation corresponding to a disk is equal to the cir-

cumference of the circle.)
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4.13 The flow stress of monocrystals is on the order of 10−4 G. Using the

concept of Frank--Read sources, determine the length of segments required for

this stress level. If the length of the segments is determined by dislocations on

a second slip plane (‘‘tree” dislocations), obtain an estimate for the dislocation

density in annealed monocrystals. Assume that the dislocations are equally

distributed on the slip planes of an FCC crystal.

4.14 On what planes of a BCC structure can the a/2 [111] move?

4.15 Upon encountering an obstacle, an edge dislocation stops. A second edge

dislocation, with identical Burgers vector and moving in the same plane,

approaches the first dislocation, driven by a stress equal to 140 MPa.

(a) What will be the equilibrium separation between the two dislocations?

Assume that the metal is nickel (E = 210 GPa, v = 0.3, r = 0.249 nm).

(b) What would be the equilibrium separation if the dislocations were both

screw dislocations?

4.16 LiF is an ionic crystal with a NaCl-type structure (cubic). The Li atoms

occupy the vertices and the centers of the faces of the unit cell, while the

F atoms occupy the edges, and one F atom is in the body-centered position.

There are eight atoms per unit cell. Knowing that the slip plane for LiF is

[110], determine the Burgers vector of a perfect dislocation. Remember that

one has an ionic crystal and that there is a strong repulsion between ions of

the same sign. Explain your results.

4.17 Draw a unit cell for an HCP crystal. Show the perfect dislocations in the

base plane. Can they decompose into partials? If so, represent them by the

special notation for dislocations.

4.18 Nickel sheet is being rolled at ambient temperature in a rolling mill (roll

diameter 50 cm, velocity 200 rpm). See Figure 6.1 for sketch of rolling mill.

The initial thickness is 20 mm and the final thickness is 10 mm (one pass).

(a) Calculate the average strain rate.

(b) Calculate the energy that will be stored in the material, assuming that

the final dislocation density is 1011 cm−2.

(c) Determine the total energy expenditure per unit volume, assuming a flow

stress equal to 300 MPa.

(d) Assuming that all energy not stored as dislocations is converted into heat,

calculate the temperature rise if the process is adiabatic (Cp = 0.49 J/g ◦C).

(e) Why does the energy stored represent only a fraction of the energy

expended?

4.19 Calculate the largest atom that would fit interstitially into (a) nickel (FCC;

atomic radius = 0.125 nm) and (b) molybdenum (BCC; atomic radius = 0.136

nm).

4.20 Calculate, for tungsten (BCC; atomic radius = 0.1369 nm), the radii of

the largest atoms that can fit into (a) a tetrahedral interstitial site (at 0, 1/4,

1/2) and (b) an octahedral interstitial site (at 0, 1/2, 1/2).

4.21 If the enthalpy of formation for a vacancy is equal to 80 kJ/mol, what is

the fraction of vacant sites at 1,500 K.

4.22 The lattice parameter of a BCC crystal was measured at ambient tem-

perature and at 1,000 ◦C. The parameter showed an increase of 0.5% due to
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thermal expansion. In the same interval of temperature, the density, mea-

sured by a separate method, showed a decrease of 2%.

(a) Assuming that, at room temperature, there is one vacancy per 1,000 atoms,

what is the vacancy concentration at 1,000 ◦C?

(b) Calculate the activation energy necessary for the production of vacancies.

4.23 The Burgers vector of a dislocation is 0.25 nm in a crystal. The shear

modulus G = 40 GPa. Estimate the dislocation energy per unit length in this

crystal.

4.24 A dislocation is anchored between two points 10 μm distant. For a metal

with b = 0.35 nm and G = 30 GPa, compute the shear stress necessary to

bow the dislocation into a semicircle.

4.25 Consider an aluminum polycrystal with a grain size of 10 μm. If a dis-

location source at the center of a grain emits dislocations under an applied

shear stress of 50 MPa that pile up at the grain boundaries, what is the stress

experienced by a grain boundary? Take G = 26 GPa and b = 0.3 nm.

4.26

(a) Iron (r = 0.124 nm, G = 70 GPa) is being deformed to a shear strain of

0.3. Assuming a constant dislocation density equal to 1010 cm−2, what is

the average distance each dislocation has to move?

(b) Assuming that the strain rate is 10−2 s−1, what is the average dislocation

velocity?

4.27 Aluminum (r = 0.15 nm, G = 26 GPa) is deformed to a shear strain of

0.5. A dislocation density equal to 1010 cm−2 results.

(a) What is the average distance each dislocation had to move?

(b) If the strain rate were 10−2 s−1, what would be the average dislocation

velocity?

4.28 Consider the following dislocation reaction in a face-centered cubic

material:

a

2
[11̄0] → a

6
[21̄1] + a

6
[12̄1̄].

Is it energetically favorable?

4.29 Consider dislocations blocked in gold. If the flow stress is controlled by

the stress necessary to operate a Frank--Read source, compute the dislocation

density ρ in the crystal when it is deformed to a point where the resolved

shear stress on the slip plane is 45 MPa. Take G = 27 GPa.

4.30 Plot the stresses around a screw dislocation, in terms of isostress fields.

Do a plot equivalent to the one in Figure 4.32 (edge dislocations).

4.31 Plot the energy of a single edge dislocation in copper as a function of

dislocation density (in units of Gb2). Start at a density of 106 cm−2, charac-

teristic of well-annealed material, and finish at 1011 cm−2, characteristic of

work-hardened material.

4.32 A dislocation segment is pinned by two obstacles at a distance of 10 μm.

Calculate the stress required to bow this segment into a semicircle (this is

equal to the stress required to activate a Frank--Read source). b = 0.25 nm;

G = 40 GPa.

4.33 A tantalum polycrystal (grain size equal to 50 μm) is deformed to a total

shear strain of 0.5 at a strain rate of 10 s−1. Assume that dislocations cannot
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cross grain boundaries. Given that G = 10 GPa, b = 0.2 nm, and assuming

k = 1, calculate:

(a) The dislocation density required.

(b) The velocity at which each dislocation will move.

4.34 On eight cubes that have a common vertex, corresponding to the origin

of axes, draw the family of {111} planes. Show that they form an octahedron

and indicate all <110> directions.

4.35 How many vacancies per cubic centimeter are there in gold, at ambient

temperature, assuming a lattice parameter of 0.408 nm? Gv = 1.4 × 10−19.

4.36 Burgers vector of a crystal generally lies in a close-packed direction. Why?

4.37 What is the ideal strength of a crystalline solid? What crystal imperfec-

tion allows the material to deform at much lower strength and why?

4.38 Do you think the addition of dislocations in a crystal changes its density?

Explain your answer.

4.39 Describe in detail the effects of quenching in comparison to furnace

cooling. Which process creates higher yield stresses and why?

4.40 In copper G = 48.3 GPa and b, the Burgers vector, is taken to be 0.25

nm. Find (a) the force required to bend a dislocation into a radius R = 10

μm; (b) the energy of this curved dislocation.

4.41 What is the effect of misfit dislocations on film--substrate interfaces?

What happens as the thickness of the film increases?



Chapter 5

Imperfections: Interfacial and

Volumetric Defects

5.1 Introduction

In Chapter 4, we dealt with point and line defects. There is another

class of defects called interfacial, or planar, defects. These imperfec-

tions, as the name signifies, occupy an area or surface and so are two-

dimensional, as well as being of great importance. Examples of such

defects are free surfaces of a material, grain boundaries, twin bound-

aries, domain boundaries, and antiphase boundaries. Of all these,

grain boundaries are the most important from the point of view of

the mechanical properties of the material. In what follows, we con-

sider in detail the structure of grain and twin boundaries and their

importance in various deformation processes, and, very briefly, the

structure of other interfacial defects. Details regarding the strength-

ening of a material by grain boundaries are given in Section 5.3. Volu-

metric defects, such as voids, also play a major role in the mechanical

properties of materials, affecting the strength and elastic properties

of the material significantly. Volumetric defects are briefly described

in Section 5.7. In Section 5.8, we present the defects occurring in

polymers.

5.2 Grain Boundaries

Crystalline solids generally consist of a large number of grains sep-

arated by boundaries. Most industrial metals and ceramics are poly-

crystalline aggregates, and the mechanical properties of these poly-

crystals can be radically different from those of the monocrystals

that form the individual grains. Figure 5.1 illustrates a polycrys-

talline aggregate, in which each grain has a distinct crystallographic

orientation. The sizes of these individual grains vary from sub-

micrometer (for nanocrystalline and microcrystalline structures) to

millimeters and even centimeters (for materials especially processed

for high-temperature creep resistance). Figure 5.2 shows typical equi-

axed grain configurations for polycrystalline tantalum and titanium
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Fig. 5.1 Grains in a metal or

ceramic; the cube depicted in each

grain indicates the crystallographic

orientation of the grain in a

schematic fashion.

(a)

(b)

Fig. 5.2 Micrographs showing

polycrystalline (a) tantalum and (b)

TiC.

carbide. Grains often are elongated through plastic deformation. Each

grain (or subgrain) is a single crystal, and the grain boundaries are

thus transition regions between neighboring crystals. These regions

may consist of various kinds of dislocations. When the misorientation

between two grains is small, the grain boundary can be described
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by a relatively simple configuration of dislocations (e.g., an edge dis-

location wall) and is, fittingly, called a low-angle boundary. When the

misorientation is large (called, again appropriately, a high-angle bound-

ary), more complicated structures are involved (as in a configuration

of soap bubbles simulating the atomic planes in crystal lattices). A

general grain boundary has five degrees of freedom. Three degrees

specify the orientation of one grain with respect to the other, and

two degrees specify the orientation of the boundary with respect to

one of the grains.

Grain structure is usually specified by giving the average diameter

or using a procedure attributed to the American Society for Testing

and Materials (ASTM) according to which the grain size is specified

by the number n in the expression N = 2n --1, where N is the number

of grains per square inch when the sample is examined at 100 power.

The ASTM procedure is common in engineering applications. In

research, it is often preferred to measure the grain size by the lin-

eal intercept technique. In this technique, lines are drawn in the

photomicrograph, and the number of grain-boundary intercepts, N�,

along a line is counted. The mean lineal intercept is then

�̄ = L

N�M
, (5.1)

where L is the length of line and M is the magnification in the photo-

micrograph of the material. In Figure 5.2(b), a line is drawn for pur-

poses of illustration. The length of the line is 6.5 cm. The number of

intersections, N�, is equal to 7, and the magnification (obtained by

using the marker of 10 μm) M = 1,300. Thus,

�̄ = 65 × 10−3

7 × 1300
= 7.1 μm.

Several lines should be drawn to obtain a statistically significant

result. The mean lineal intercept �̄ does not really provide the grain

size, but is related to a fundamental size parameter, the grain-

boundary area per unit volume, Sv, by the equation

�̄ = 2

Sv

. (5.2)

The proof of this formula is beyond the scope of this book, but is given

by deHoff and Rhines.1 If we assume, to a first approximation, that

the grains are spherical, we have the following relationship between

the grain-boundary area and volume:

Sv = 1

2

4πr 2

4
3
πr 3

= 3

2r
= 3

D
. (5.3)

1 R. T. deHoff and F. N. Rhines (eds.), Quantitative Microscopy (New York: McGraw-Hill,

1968).
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Here, D is the average grain diameter, and the factor 1/2 was intro-

duced because each surface is shared between two grains. From

Equations 5.2 and 5.3, we get

D = 3

2
�,

which is the most correct way to express the grain size from lineal

intercept measurements.

Example 5.1

The American Society for Testing and Materials (ASTM) has a simple

index, called the ASTM grain size number, n, defined as

N = 2n−1

where N is the number of grains in an area of 1 in2 ( = 64.5 mm2) in

a 100-power micrograph. In one such grain size measurement of an

aluminum sample, it was found that there were 56 full grains in the

area, and 48 grains were cut by the circumference of the circle of area

1 in2. (a) Calculate ASTM grain size number n for this sample. (b) Cal-

culate the mean lineal intercept.

Solution: The grains cut by the circumference of the circle are taken

as one-half the number. Thus,

N = 56 + 48/2

= 56 + 24 = 80 = 2n−1

n = ln N/ ln 2 + 1

= ln 80/ ln 2 + 1

= 4.38/0.69 + 1 = 7.35.

(b) For the mean lineal intercept, we use the circle:

πr 2 = 1in2,

r = 0.56 in,

�̄ = 2πr

N� M
= 2π × 0.56 × 25.4

48 × 100

= 0.0186 mm = 18.6 μm.

Example 5.2

Determine the grain size for the microstructure shown in Figure E5.2,

using both the lineal intercept method and the ASTM method. The

straight marks traversing the grains are annealing twins and should be
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counted in the computation. From the mean lineal intercept, obtain

the grain diameter.

3.07 in.0

4.14 125 in25 in

12 cm

Fig. E5.2

Solution: From the ASTM method, N = 2n --1, where N is the number of

grains per unit area (in2) and n is the grain size number.

The number of grains counted is approximately 60, and the area of

the picture is 3.07 × 4.20 = 12.90 in2. So we have

N = 60

12.9
= 4.65.

We rewrite N as 2n --1, and taking logarithms, we get

ln N = ln 2n−1

= (n − 1) ln 2.

So we have

1.53 = (n − 1) ln 2,

n − 1 = 2.24,

n ≈ 3.

By the lineal intercept method, � = L /(MN ), where M = 2 cm/200 μm

= 100 is the magnification, L = 12 cm is the straight line drawn, and
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Fig. 5.3 Low-angle

grain-boundary observed by

high-resolution transmission

electron microscopy. Positions of

individual dislocations are marked

by Burgers circuits. (Courtesy of

R. Gronsky.)

N ≈ 9 is the number of intercepts (with grains). Thus, we have

� = 12

100 × 9
= 0.013cm

= 130 μm.

5.2.1 Tilt and Twist Boundaries
The simplest grain boundary consists of a configuration of edge dis-

locations between two grains. The misfit in the orientation of the

two grains (one on each side of the boundary) is accommodated by

a perturbation of the regular arrangement of atoms in the boundary

region. This is very clearly seen in the high-resolution transmission

electron micrograph of Figure 5.3. A low-angle grain-boundary with

a misorientation θ = 10◦ between equivalent (100) planes is shown,

and the dislocations are highlighted by circles marking their Burgers

vector.

Figure 5.4 shows some vertical atomic planes terminating in a

boundary, and each termination is represented by an edge dislocation.

The misorientation at the boundary is related to the spacing between

dislocations, D, by the relation (see triangle with dimensions)

D = b/2

sin(θ/2)
∼= B

θ
(for very small θ ), (5.4)

where b is the Burgers vector.

It is instructive to calculate the spacing between dislocations in

Figure 5.3 and to compare it with the measured value from the elec-

tron micrograph. We will express all values in terms of the lattice

spacing along [100] directions. Let us call this value a, so that
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Grain
II

D

D ~ b
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b/2

b
b
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I

–

Fig. 5.4 Low-angle tilt boundary.

b = 1.3a.

The calculated dislocation spacing (from the measured angle θ = 10◦

≈ (1/6 rad) is

D = 1.3a

θ
≈ 7.8a.

The measured dislocation spacing in Figure 5.3 is

D = 8a.

Thus, the agreement with Equation 5.4 and Figure 5.3 is excellent.

As the misorientation θ increases, the spacing between disloca-

tions is reduced, until, at large angles, the description of the bound-

ary in terms of simple dislocation arrangements does not make sense.

Theta becomes so large, that the dislocations are separated by one or

two atomic spacings; for such small separations, the dislocation core

energy becomes important and the linear elasticity does not hold.

In these cases, the grain boundary is a region of severe localized

disorder.

Twist
boundary

Grain
I

Grain
II

q

q

Fig. 5.5 Low-angle twist

boundary.

Boundaries consisting entirely of edge dislocations are called tilt

boundaries, because the misorientations, as can be seen in Figure 5.4,

can be described in terms of a rotation about an axis normal to the

plane of the paper and contained in the plane of dislocations. The

example shown in that figure is called a symmetrical tilt wall, as

the two grains are symmetrically located with respect to the bound-

ary. A boundary consisting entirely of screw dislocations is called a

twist boundary, because the misorientation can be described by a rela-

tive rotation of two grains about an axis. Figure 5.5 shows a twist

boundary consisting of two groups of screw dislocations.

It is possible to produce misorientations between grains by com-

bined tilt and twist boundaries. In such a case, the grain boundary

structure will consist of a network of edge and screw dislocations.
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5.2.2 Energy of a Grain Boundary
The dislocation model of a grain boundary can be used to com-

pute the energy of low-angle boundaries (θ ≤ 10◦). For such bound-

aries, the distance between dislocations in the boundary is more

than a few interatomic spaces. We have

b

D
∼= θ ≤ 10◦ ∼= 1

6
rad or D ≈ 6b,

and the energy of the boundary is equal to the total energy of all

dislocations per unit length

E = E ⊥

(
1

D

)
= E ⊥

(
θ

b

)
= θ

b

[
G b2

4π (1 − v )
ln

D

r0

+ E core

]
, (5.5)

where E⊥ is the strain energy per dislocation in the grain boundary.

Thus, the energy of a tilt boundary is given by2

E = θ
G b

4π (1 − v )
(− ln θ + A) = E = E 0θ (A − ln θ ), (5.6)

where A is a parameter that emerges in the derivation and

E 0 = G b

4π (1 − v )
. (5.7)

Example 5.3

In a low-angle tilt boundary in an aluminum sample, the misorienta-

tion is 5◦. Estimate the spacing between dislocations in this boundary,

given that bAl = 0.29 nm.

Solution: We have

b = 0.29 nm, θ = 5◦ = 5/57.3 = 0.087 rad.

The dislocation spacing is

D = b/θ = 0.29 nm/0.087 = 3.33 nm.

Example 5.4

Calculate the energy of a low-angle tilt boundary in nickel as a function

of the misorientation θ , for 0 < θ < 10. For Ni, r = 0.125 nm, G = 76

GPa, and v = 0.31.

Solution: We have

E = G b

4π (1 − v )
θ (A − ln θ ).

2 M. A. Meyers and K. K. Chawla, Mechanical Metallurgy (Englewood Cliffs, Prentice Hall,

1984), pp. 273--275.
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We first calculate b; we use a = 2r
√

2, and the magnitude of [100] Bur-

gers vectors is

d[110] = a√
h2 + k2 + l2

= a√
2
.

Thus,

b = a√
2

= 2r = 0.250 nm

and

E = 47 × 109 × 0.25 × 10−9

4π (1 − 0.31)
θ (A − ln θ ).

We can assume that the dislocation energy is equal to the core energy

when the separation between them is equal to 10b. This is twice the

core radius used by many scientists. From that value, we obtain the

value of the constant of integration, A. The sequence of equations is

U = G b2

10
for D = 10b = b

θ
,

E = G b2

10D
= G b2

100b
= G b

100
(θ = 0.1),

G b

100
= G b × 0.1

4π (1 − v )
(A − ln 0.1),

A = 4π (1 − v )

10
+ ln 0.1 = 0.866 − 2.30,

= −1.436.

So

E = 2.2θ (−1.436 − ln θ ).

Example 5.5

Calculate the dislocation spacing and energy of a low-angle tilt bound-

ary in copper crystal if θ = 0.5◦, G = 48.3 GPa, v = 0.343, and rCu =
0.157 nm.

Solution: The spacing is

D = b

θ
.

For FCC copper,

b = a√
2
, 4rcu = √

2a,

b = (4/
√

2)rcu√
2

= 2rcu = 0.314 nm,

θ = 0.5◦ = 0.5

180
π = 0.0009 rad,

D = b

θ
= 0.314

0.009
= 34.9 nm.
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We next assume that D = 10b, so

D = b

θ
= 10b

θ = 0.1.

We thus have

E = E ⊥

(
1

D

)
= G b2

10

(
1

D

)
= G b

100
, θ = 0.1.

Also,

E = G b

4π (1 − v )
θ (A − ln θ ).

Hence, setting the two equations for E equal to each other, we obtain

G b

100
= G b

4π (1 − v )
θ (A − ln θ )

and it follows that

A = 4π (1 − v )

100θ
+ ln θ

= 4π (1 − 0.343)

100 × 0.1
+ ln 0.1

= −1.477.

Substituting this value of A into the second equation for E yields

E = G b

4π (1 − v )
θ (−1.477 − ln θ ).

Now, given that G = 48.3 GPa, v = 0.343, and θ = 0.009 rad, we obtain

E = 48.3 × 109 × 0.314 × 10−9

4π (1 − 0.343)
× 0.009 × (−1.477 − ln 0.009)

= 0.053 J/m2.

5.2.3 Variation of Grain-Boundary Energy
with Misorientation

Consider Equation 5.6. Because of the (−ln θ ) term, a merger of two

low-angle boundaries, forming a high-angle boundary, always results

in a net decrease in the total energy of the interface. Thus, low-angle

boundaries have a tendency to combine and form boundaries of large

misorientation.

A plot of E versus θ gives a curve with a maximum at θmax ≈ 0.5 rad

(≈ 30◦). However, the dislocation model of grain boundaries loses

validity at much smaller orientations (θ ≤ 10◦). Some recent studies,

using field-ion microscopy, have shown that the high-angle grain

boundaries consist of rather large regions of atomic fit separated by

regions of misfit, to which are associated the grain-boundary ledges.

The boundary thickness is not more than two to three atomic dia-

meters. Low-angle grain boundaries have a dislocation density that

increases proportionally to the misorientation angle (see Equations

5.4 and 5.6), and, consequently, the energy of a low-angle boundary
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Fig. 5.6 Variation of

grain-boundary energy γ gb with

misorientation θ . (Adapted with

permission from A. G. Guy,

Introduction to Materials Science

(New York: McGraw-Hill, 1972),

p. 212.)

Boundary

Coincidence
sites

Fig. 5.7 Coincidence lattice

made by every seventh atom in the

two grains, misoriented 22◦ by a

rotation around the <111> axis.

(Adapted from M. L. Kronberg and

H. F. Wilson, Trans. AIME, 85

(1949), 501.)

increases linearly with θ near 0◦. After this, the energy increases

slowly as the stress fields of adjacent dislocations interact more

strongly. This behavior is shown in Figure 5.6. A surface tension,

γ gb, can be associated with an ordinary (high-angle) grain boundary,

which consists of a mixture of various types of dislocations. Because

the value of γ gb is relatively high, it is instructive to determine the

stable forms assumed by the grains of a given material. As it hap-

pens, there are certain special boundaries for which a particular high

angle between two adjacent crystals produces a low value of γ . These

special boundaries can be divided into two categories: coincidence

boundaries and coherent twin boundaries. A coincidence boundary

(Figure 5.7) is incoherent, as is an ordinary grain boundary; that is,

a majority of the atoms of one crystal in the boundary do not corre-

spond to the lattice sites of the other crystal. On an average, however,

this noncorrespondence in a coincidence boundary is less as the den-

sity of coincidence sites increases. For example, in the figure, one
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Table 5.1 Some Coincidence Site Boundaries in FCC Crystalsa

Rotation Axis Rotation Angle (deg) Density of Coincidence Sites

(111) 38 1 in 7
22 1 in 7
32 1 in 13
47 1 in 19

(110) 39 1 in 9
50.5 1 in 11
26.5 1 in 19

(100) 37 1 in 15

a Reprinted with permission from J. W. Christian, The Theory of

Transformation in Metals and Alloys (Elmsford, NY: Pergamon Press, 1965),

p. 326.

atom in seven in the boundary is in a lattice position for both the

crystals. We call this boundary a one-seventh coincidence boundary, and

the atomic sites (the black atoms in the figure) in question form a

coincidence lattice for the two grains. Coincidence lattices occur in

all common crystalline structures and have a density of sites varying

from 1
3

to 1
9

and less.

A twin boundary is frequently a kind of coincidence boundary, but

it is convenient to treat it separately. The energy of a twin boundary,

γ twin, is generally about 0.1 γ gb (see Figure 5.6), whereas the energy

of a coincidence boundary is only slightly less than γ gb. The two

most common twin orientations are (1) rotation twins (coincidence),

produced by a rotation about a direction [hkl] called the twinning

axis, and (2) reflection twins, in which the two lattices maintain a

mirror symmetry with respect to a plane [hkl] called the twinning

plane.

Some of the orientations that give the highest density of coinci-

dence lattice sites in crystals are shown in Table 5.1. These boundaries

have lower energies than those of random high-angle boundaries. Con-

trary to the great majority of low-energy boundaries, coincidence site

boundaries have greater mobility than that of random boundaries.

Twin boundaries, even with low energies, have lower mobility because

they are coherent.

The interfaces between different phases (interphase interfaces)

are more complex, since the accommodation of the atoms has to

be more drastic. Nevertheless, strong interfaces can be formed, even

between different ceramic phases. An illustration of this is provided in

Figure 5.8, which shows the interface between alumina (hexagonal)

and the spinel structure (NiAl2O4). In ceramics, the requirement

of electrical charges puts additional restrictions on the boundaries.

Nevertheless, the boundary shown in Figure 5.8(a) and the atomic

positions clearly marked in Figure 5.8(b) are of high coherence.

5.2.4 Coincidence Site Lattice (CSL) Boundaries
It is instructive to consider some other important aspects of coinci-

dence site lattice (CSL) boundaries. As described earlier, we get a CSL
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alumina

spinel

(a)

5 nm

Fig. 5.8 Interface between

alumina and NiAl2O4 (spinel). (a)

High-resolution TEM. (b)

Representation of individual

atomic positions. (Courtesy of

C. B. Carter.)
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boundary when a certain rotation of one grain relative to another

grain results in a three-dimensional atomic pattern in which a certain

fraction of lattice points coincide in the two grains. The volume of

the CSL primitive cell is a small multiple of the volume of the lattice

primitive cell. Such a CSL boundary is characterized by a parameter

�, the reciprocal of the fraction of lattice sites that coincide (in Table

5.1, � = 7, 9, 13, 15, 19). Equivalently, � is the ratio of the volume of

the CSL primitive cell to that of the lattice primitive cell. A coherent

twin boundary is �3. It has been observed that CSL grain bound-

aries with relatively low values of � can have a significant influence

on the mechanical behavior of a polycrystalline material. CSL bound-

aries with small values of � result in short-period ordered structures

in the grain boundary. CSL boundaries with � less than 29 show the

following advantages over random grain boundaries or boundaries

with higher � values:

� lower grain boundary energy in pure metals
� lower diffusivity
� lower electrical resistivity
� lower susceptibility to solute segregation
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Fig. 5.9 The effect of grain size

on calculated volume fractions of

intercrystal regions and triple

junctions, assuming a grain

boundary thickness of 1 nm.

(Adapted from B. Palumbo, S. J.

Thorpe, and K. T. Aust, Scripta

Met., 24 (1990) 1347.)

� greater resistance to grain boundary sliding, fracture, and cavita-

tion
� greater resistance to initiation of localized corrosion
� greater boundary mobility with specific solutes in a specific

concentration range.

It would thus appear that control of the character and density of low-

� boundaries can be a means of producing a superior polycrystalline

material.

5.2.5 Grain-Boundary Triple Junctions
Grain-boundary triple junctions are sites where four grains or three

grain boundaries meet. Such boundaries are commonly observed in

crystalline materials. The number of triple junctions can have a great

influence on the mechanical properties of the material. The number

of triple junctions in a polycrystalline material will depend on the

grain size and crystal geometry of the material. Palumbo et al.3 con-

sidered a three-dimensional distribution of tetrakaidecahedral grains

and obtained the volume fractions of intercrystalline region (grain-

boundary) and triple-boundary junctions. Figure 5.9 shows the effect

of grain size on calculated volume fractions of these entities. Note

the highly pronounced effect for grain sizes less than 20 nm, i.e., in

the nanometer range.

5.2.6 Grain-Boundary Dislocations and Ledges
Various experimental observations of the structure of grain bound-

aries have demonstrated the existence of grain-boundary dislocations

(GBDs) when the orientation relations deviate from the ideal coinci-

dence lattice site orientations. A grain-boundary dislocation belongs

to the grain boundary and is not a common lattice dislocation.

Grain-boundary dislocations can acquire the geometry of a grain-

boundary ledge by grouping together. This agglomeration, which

leads to the formation of a step, is shown in Figure 5.10. Figure 5.10(a)

3 B. Palumbo, S. J. Thorpe, and K. T. Aust, Scripta Met., 24 (1990) 1347.
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Fig. 5.10 Models of ledge

formation in a grain boundary.

(Reprinted with permission from

L. E. Murr, Interfacial Phenomena in

Metals and Alloys (Reading, MA:

Addison Wesley, 1975), p. 255.)

shows the movement of GBDs along the grain-boundary plane in the

direction indicated by the arrow. Figure 5.10(b) shows the coalescence

of GBDs to make a grain-boundary ledge. Another way of ledge for-

mation is shown in Figures 5.10(c) and (d). Under the applied tension,

lattice dislocations can move from grain A through the boundary

plane to grain B (Figure 5.10(c)). The passage through the boundary

results in heterogeneous shear of the boundary, forming a ledge.

The distinction between a ledge and an intrinsic GBD is one of

height; the smallest ledge corresponds to a GBD. Detailed analyses

showing how slip can transfer from one grain to another via the

formation of intrinsic GBDs have been carried out. Figure 5.11 shows

a TEM that reveals ledges and GBDs. The larger steps can be considered

ledges, whereas the lines could be GBDs.

In the simplified situation shown in Figure 5.10, the (111) planes

of the neighboring grains intersect along the boundaries. Ledges in

the grain boundaries constitute an important structural character-

istic of the high-angle boundaries. It has been observed that the

density of ledges increases with an increase in the boundary misori-

entation. One of the important aspects of this structure of boundaries

is that the ledges can function as effective sources of dislocations, a

fact that has important implications for the mechanical properties of

polycrystals.
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Fig. 5.11 Grain boundary ledges

observed by TEM. (Courtesy of L.

E. Murr.)

5.2.7 Grain Boundaries as a Packing of Polyhedral Units
The grain-boundary structure can also be described in terms of a

packing of polyhedral units. If equal spheres are packed to form a

shell such that all spheres touch their neighbors, then the centers

of the spheres are at the vertices of a ‘‘deltahedron,” a polyhedron

with equilateral triangles as faces. Ashby et al.4 regard a crystal as a

regular packing of polyhedral holes. The FCC structure, for example,

consists of a regular packing of tetrahedra and octahedra. The main

advantage of such a description of the structure is that it remains

valid even when the structure becomes completely disordered (i.e.,

amorphous). Any grain boundary between metallic crystals can be

described in terms of this scheme as a packing of eight basic delta-

hedra. Ashby et al.’s model is able to describe a number of proper-

ties associated with grain boundaries --- for example, the segregation

of certain elements to the boundaries, the characteristically high

diffusion rates in the boundaries, and grain-boundary faceting in

the presence of impurities. Figure 5.12(a) shows an image-enhanced

transmission electron micrograph of a symmetric tilt boundary in

gold. The angle θ between the [110] directions in the two grains

is approximately 32◦. The boundary can be represented (as shown

in Figure 5.12(b)) as an array of polyhedra. The figure represents

the atomic positions along two planes (‘‘+” and ‘‘•”) of the TEM of

Figure 5.12(a).

5.3 Twinning and Twin Boundaries

There are two types of twin boundaries: deformation twins and

annealing twins. A brief description of deformation twins follows.

4 M. F. Ashby, F. Spaepen, and S. Williams, Acta Met., 26 (1978) 1053.
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(a)

[110]1

(b)

[110]2

[001]1

[001]2

Fig. 5.12 Image and atomic

position model of an

approximately 32◦ [110] tilt

boundary in gold; note the

arrangement of polygons, which

represents the boundary. (From

W. Krakow and D. A. Smith, J.

Mater. Res. 22 (1986) 54.)

5.3.1 Crystallography and Morphology
Deformation or mechanical twinning is the second most important

mechanism of plastic deformation after slip, although it is not nearly

as common as slip. The crystallographic nature of deformation twins

is shown in Figure 5.13. When a crystal deforms plastically by twin-

ning, atomic displacements occur, as shown in the figure, which

give rise to crystal bands within the grain that are twin oriented.

Hexagonal metals, such as Zn and Mg, behave in this way when they

are deformed at ambient temperatures, while BCC metals, such as
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Table 5.2 Twinning Planes, Directions, and Shears

Structure Twin Plane and Direction Shear Strain, γ

FCC (111)[112] 0.707

BCC (112)[111] 0.707
Cd: 0.171
Zn: 0.139

HCP (101̄2) [101̄1̄] Mg: 0.129
Ti: 0.139
Be: 0.199

(110) plane

Twinning planes (111)

[112] Twinning direction

Atom displacement

Fig. 5.13 Schematic of twinning

in FCC metals.

iron, show this behavior when they are deformed at subambient tem-

peratures. This mechanism is not of great importance in the defor-

mation of FCC metals. The twin planes, twin vectors, and the shear

produced by them are given in Table 5.2 for FCC, BCC, and HCP

crystals.

Figures 5.14(a) and (b) show deformation twins in Fe--Si and tung-

sten, respectively. It is clear that twins are crystallographically ori-

ented along specific planes. Figure 5.14(b) shows several grains, as

well as the twins that extend, at most, from grain boundary to grain

boundary. A few of them are marked by arrows and number 2. They

cannot propagate through grain boundaries because of the crystallo-

graphic requirements. The sagacious reader will note that there is a

mixture of microcracks and deformation twins in the figure, but this

issue will not be discussed.

Figure 5.15 illustrates the formation of deformation twins in

ceramics. A grain of silicon nitride subjected to compressive load-

ing is imaged in Figure 5.15(a). The diffraction pattern (the spots in

Figure 5.15(c)) reveals more than one crystallographic orientation. It

is possible, by focusing on only one family of reflections, to image one

family of twins. This is shown in Figure 5.15(b). All the bright twins

in this dark-field image have the same orientation.
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200 μm

(a)

Fig. 5.14 Deformation twins in

(a) iron–silicon (courtesy of O.

Vöhringer) and (b) tungsten.

(b)

The mechanism of plastic deformation by twinning is very dif-

ferent from that of slip. First, the twinned region of a grain is a

mirror image of the original lattice, while the slipped region has the

same orientation as that of the original, unslipped grain. Second, slip

consists of a shear displacement of an entire block of crystal, while

twinning consists of uniform shear strain. Third, the slip direction

can be positive or negative (i.e., in tension or compression), while the

twinning direction is always polar. Twinning results in a change of

shape of a definite type and magnitude, as determined by the crys-

tallographic nature of the twinning elements.

The stress necessary to form twins is, generally, greater, but less

sensitive to temperature, than that necessary for slip. This stress

required to initiate twinning is much larger than the stress nec-

essary for its propagation. Deformation twinning occurs when the
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(a) (b)

(c)

0.25 μm

Fig. 5.15 Deformation twins in silicon nitride observed by TEM. (a) Bright field.

(b) Dark field. (c) Electron diffraction pattern showing spots from two twin variants, A

and B. (Courtesy of K. S. Vecchio.)

applied stress is high due to work-hardening, low temperatures, or,

in the case of HCP metals, when the resolved shear stress on the basal

plane is low. Copper and other FCC metals can be made to deform

by twinning at very low temperatures or at very high strain rates.

Deformation twins, however, play an important role in the straining

of HCP metals. The ‘‘cry” heard when a polycrystalline sample of tin

is bent plastically is caused by the sudden formation of deformation

twins. The bursting of twins during straining can lead to a serrated

form of stress--strain curve (Figure 5.16). In many HCP metals, the slip
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Fig. 5.16 Serrated stress–strain

curve due to twinning in a Cd

single crystal. (Adapted with

permission from W. Boas and E.

Schmid, Z. Phys., 54 (1929) 16.)

is restricted to basal planes. Thus, twinning can contribute to plas-

tic deformation by the shear that it produces, but this is generally

small. (See Table 5.2.) More importantly, the twinning process serves

to reorient the crystal lattice to favor further basal slip. In HCP

metals, the common twinning elements are the (101̄2) plane and

[101̄1̄] direction (see Figure 5.17). Twinning results in a compression

or elongation along the c-axis, depending on the ratio c/a. For c/a >
√

3

(the case of Zn and Cd), twinning occurs on (101̄2̄) [101̄1̄] when the

metal is compressed along the c-axis. When c/a >
√

3 , the twinning

shear is zero. For c/a <
√

3 (the case of Mg and Be), twinning occurs

under tension along the c-axis. Figure 5.17 shows this dependence on

the ratio c/a.



5 .3 TWINNING AND TWIN BOUNDARIES 341

c

a

c/a <   3 (Be, Mg)

c/a >   3 (Zn, Cd)

Twinning
plane
[1012]

Twinning
direction

[1011]

Fig. 5.17 Twinning in HCP

metals with c/a ratio more or less

than
√

3.Dislocation motion at
high velocities

Dislocation motion at
low velocities

Twinning

S
h

e
a
r 

s
tr

e
s
s
/S

h
e
a
r 

m
o

d
u

lu
s

TemperatureTt

Fig. 5.18 Effect of temperature on the stress required for twinning and slip (at low and

high strain rates). (Courtesy of G. Thomas.)

5.3.2 Mechanical Effects
One may regard slip and twinning as competing mechanisms; experi-

mentally, it has been found that either an increase in strain rate or

a decrease in temperature tends to favor twinning over slip. In this

context, the graphical scheme proposed by G. Thomas and presented

in Figure 5.18 is helpful. The low temperature dependence of the

stress required to initiate twinning is a strong indication that it is

not a thermally activated mechanism. Hence, τ /G for twinning is not

temperature dependent. On the other hand, the thermally activated

dislocation motion becomes very difficult at low temperatures; Tt is
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the temperature below which the material will yield by twinning in

conventional deformation. However, at high strain rates, dislocation

generation and dynamics are such that the whole curve is translated

upward, while the twinning curve is stationary, for reasons that will

be given later. As a consequence, the intersection of the two curves

takes place at a higher temperature.

As the stacking-fault energy of an alloy is decreased, the propen-

sity for twinning increases. The addition of zinc to copper decreases

the stacking-fault energy dramatically, from 78 mJ/m2 (for pure Cu)

to 7 mJ/m2 (for 75--25 brass). This leads to a much greater planarity

of slip, which eventually results in twinning. Twinning generates

internal barriers to slip and breaks down a material’s microstruc-

ture into progressively smaller domains. The result is an increase

in work-hardening; that is, the movement of dislocations is ham-

pered. Figure 5.19(a) illustrates this effect. The work-hardening rate of

copper decreases with plastic strain, in the expected fashion, while

brass, in which twinning is prevalent, shows an almost constant

work-hardening, over a significant plastic strain range. The onset of

twinning is clearly seen in the plateau of the work-hardening rate, in

Fig 5.19(b).

As shown in Figure 5.18, the twinning stress seems to be quite

insensitive to the temperature. Figure 5.20 shows the twinning stress

for a number of metals. The stress required for slip, on the other

hand, is quite sensitive to temperature; see Figure 5.18.

Mechanical twinning is, in FCC metals, quite sensitive to the

stacking-fault energy. The stress required for twinning increases as

the stacking-fault energy is increased. Figure 5.21 shows the twinning

stress for a number of copper alloys. The following relationship is

obeyed between the twinning stress, σT , and the staking-fault energy,

γS F :

σT = K
(γS F

G b

)1/2

,



5 .3 TWINNING AND TWIN BOUNDARIES 343

500

400

300

200

100

0
0 100 200 300 400

Ag - 4% In

Cu - 20% Zn

Fe - 2,5% Si

Fe - 3,3% Si

Fe - 25% Ni Fe - 3% Si

Temperature, K

T
w

in
n

in
g

 s
h

e
a
r 

s
tr

e
s
s
, 

M
P

a

Fe

Cu

Ag

Fe

Zr

Fig. 5.20 Effect of temperature

on twinning stress for a number of

metals. (From M. A. Meyers, O.

Voehringer, and V. A. Lubarda, Acta

Mater., 49 (2001) 4025.)

0 5 10 20 40 60

gSF, mJ/m2

g /Gb

T
w

in
n

in
g

 s
tr

e
s
s
, 
M

P
a

500

400

300

200

100

0
0 0.02

Cu
Cu Zn
Cu Ga
Cu Ge
Cu Al
Cu As
Cu Sn

SC   PC

0.060.04 0.08

Fig. 5.21 Effect of stacking-fault

energy on the twinning stress for

several copper alloys. (From M. A.

Meyers, O. Voehringer, and V. A.

Lubarda, Acta Mater., 49 (2001)

4025.)

where G is the shear modulus, b is the Burgers vector, and K is a

constant.

By setting the twinning stress equal to the slip stress, one can

obtain the domains in which twinning and slip are prevalent as a

function of grain size, stacking-fault energy, etc. For the strain rate,

temperature, and grain size dependence of the slip stress, we use

constitutive equations such as the Johnson--Cook equation (Section

3.2). One sets the slip stress, σS , equal to the twinning stress:

σT = σS .

The application of this equation for titanium with different grain

sizes provides the plot shown in Figure 5.22(a). The lines in the
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plot separate the twinning and slip domains. As the strain rate is

increased, the maximum temperature for twinning is increased. The

same plot shows the effect of grain size (different lines). As the

grain size is decreased, the twinning domain decreases. Figure 5.22(b)

shows the effect of stacking-fault energy on the domains. This is done

for a monocrystalline copper--zinc alloy. The stacking-fault energy

decreases with increasing zinc content. Whereas the Cu--20 at% Zn

alloy twins at ambient temperature and low strain rate, it is neces-

sary to apply a very high strain rate at a low temperature to trigger

twinning in a Cu--5 at% Zn alloy.
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5.4 Grain Boundaries in Plastic Deformation
(Grain-Size Strengthening)

Grain boundaries have a very important role in the plastic deform-

ation of polycrystalline materials. The following are among the more

important aspects of this role.

1. At low temperatures (T <, 0.5Tm, where Tm is the melting point

in K), the grain boundaries act as strong obstacles to dislocation

motion. Mobile dislocations can pile up against the boundaries

and thus give rise to stress concentrations that can be relaxed by

initiating locally multiple slip.

2. There exists a condition of compatibility among the neighboring

grains during the deformation of polycrystals that is, if the develop-

ment of voids or cracks is not permitted, the deformation in each

grain must be accommodated by its neighbors.5 This accommoda-

tion is realized by multiple slip in the vicinity of the boundaries,

which leads to a high strain-hardening rate. It can be shown, fol-

lowing von Mises, that for each grain to stay in contiguity with

others during deformation, at least five independent slip systems

must be operating. (See Section 6.2.5.) This condition of strain com-

patibility leads a polycrystalline sample to have multiple slip in the

vicinity of grain boundaries. The smaller the grain size, the larger

will be the total boundary surface area per unit volume. In other

words, for a given deformation in the beginning of the stress--strain

curve, the total volume occupied by the work-hardened mater-

ial increases with decreasing grain size. This implies a greater

hardening due to dislocation interactions induced by multiple

slip.

3. At high temperatures, the grain boundaries function as sites of

weakness. Grain boundary sliding may occur, leading to plastic

flow or opening up voids along the boundaries. (See Chapter 13.)

4. Grain boundaries can act as sources and sinks for vacancies at high

temperatures, leading to diffusion currents, as, for example, in the

Nabarro--Herring creep mechanism. (See Chapter 13.)

5. In polycrystalline materials, the individual grains usually have a

random orientation with respect to one another. Frequently, how-

ever, the grains of a material may be preferentially oriented. For

example, an Fe--3% Si solid--solution alloy, used for electrical trans-

former sheets because of its excellent magnetic properties, has

grains with their {110} planes nearly parallel and their <100>

direction along the rolling direction of the sheet. This material is

said to have a texture or preferred orientation. A preferred orientation

of grains is also frequently observed in drawn wires.

5 J. P. Hirth, Met. Trans. 3 (1972) 3047.
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Ever since Hall and Petch6 introduced their well-known relation-

ship between the lower yield point of low-carbon steels and grain size,

a great deal of effort has been devoted to explaining that relationship

from a fundamental point of view and applying it to the yield and

flow stress of different metals and alloy systems. The Hall--Petch (H--P)

equation has the form

σy = σ0 + kD −1/2, (5.8)

where σ y is the yield stress, σ 0 is a frictional stress required to move

dislocations, k is the H--P slope, and D is the grain size. This equation

has been applied to many systems, with varying degrees of success.

It seems to be a satisfactory description of the dependence of yield

stress on grain size when a somewhat limited range of grain sizes is

being investigated. Figure 5.23 illustrates the Hall--Petch equation for

several metals. BCC and FCC metals exhibiting smooth elastic--plastic

transitions and yield points are represented. Table 5.3 presents the

parameters for a number of metals.

Figure 5.24 shows the yield strength of iron over a much wider

range than that presented in Figure 5.23. The plot is of the Hall--Petch

line (full line) and the upper bound (theoretical strength, assumed to

be E/30), as well as the lower bound (single crystal). Substantial devia-

tions from a single Hall--Petch curve that has approximately the slope

for ferrovac E steel and 0.05C steel are observed. The very broad range

of grain sizes is the reason for the deviation. Thus, the Hall--Petch

6 E. O. Hall, Proc. Roy. Soc. (London) B64 (1951) 474; N. J. Petch, J. Iron Steel Inst. 174 (1953)

25.
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Table 5.3 Tabulation of σ 0 and k Values for BCC, FCC, and HCP

Structuresa

Material Specificationb σ 0 (MPa) k (MN/m3/2)

Body-Centered Cubic
Mild steel, y.p. 70.60 0.74
Mild steel, ε = 0.10 294.18 0.39
Swedish iron, y.p. 47.07 0.71
Swedish iron, no y.p. 36.28 0.20
Fe–3% Si, y.p., –196 ◦C 505.99 1.54
Fe–3% Si, twinning, –196 ◦C 284.37 3.32
Fe–18% Ni, ε = 0.002 650.14 0.22
Fe–18% Ni, twinning, –196 ◦C 843.32 1.30
FeCo, ordered, ε = 0.004 50.01 0.90
FeCo, disordered, ε = 0.004 319.68 0.33
Chromium, y.p. 178.47 0.90
Chromium, twinning, –196 ◦C 592.52 4.37
Molybdenum, y.p. 107.87 1.77
Molybdenum, ε = 0.10 392.24 0.53
Tungsten, y.p. 640.33 0.79
Vanadium, y.p. 318.70 0.30
Niobium, y.p. 68.64 0.04
Tantalum, with O2, y.p. 0 ◦C 186.31 0.64

Face-Centered Cubic
Copper, ε = 0.005 25.50 0.11
Cu–3.2% Sn, y.p. 111.79 0.19
Cu–30% Zn, y.p. 45.11 0.31
Aluminum, ε = 0.005 15.69 0.07
Aluminum, fracture, 4K 539.33 1.67
Al–3.5% Mg, y.p. 49.03 0.26
Silver, ε = 0.005 37.26 0.07
Silver, ε = 0.002 23.53 0.17
Silver, ε = 0.20 150.03 0.16

Hexagonal Close- Packed
Cadmium, ε = 0.001, –196 ◦C 17.65 0.35
Zinc, ε = 0.005, 0 ◦C 32.36 0.22
Zinc, ε = 0.175, 0 ◦C 71.58 0.36
Magnesium, ε = 0.002 6.86 0.28
Magnesium, ε = 0.002, –196 ◦C 14.71 0.47
Titanium, y.p. 78.45 0.40
Zirconium, ε = 0.002 29.42 0.25
Beryllium, y.p. 21.57 0.41

a Adapted with permission from R. W. Armstrong, in Advances in Mater-

ials Research, Vol. 5, R. F. Bunshah, ed. (New York: Wiley-Interscience, 1971),

p. 101.
b y.p. = yield point.
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behavior should be considered not a universal law, but an approxi-

mation over a limited range of grain sizes. Since most engineering

alloys have grain sizes in the range 10--100 μm, the Hall--Petch equa-

tion is indeed very useful.

The principal theories advanced to explain the Hall--Petch rela-

tionship are presented next. The first two theories have lost a lot of

their credibility, because dislocation pileups are not thought to be as

important as they used to be, especially in high-stacking-fault energy

materials.

5.4.1 Hall–Petch Theory
The basic idea behind the separate propositions of Hall and Petch

is that a dislocation pileup can ‘‘burst” through a grain boundary

due to stress concentration at the head of the pileup. If τ a is the

resolved shear stress applied on the slip plane, then the stress acting

at the head of a pileup containing n dislocations is nτ a (Equation

4.26). The number of dislocations in a pileup depends on the length

of the pileup, which, in turn, is proportional to the grain diameter

D. According to Eshelby et al.7 (see Equation 4.26(a)):

L = αnG b

πτa

. (5.9)

In this equation we have added a geometrical constant α which is

equal to unity for screw dislocations and equal to 1 (1 − ν) for edge

dislocations. If the source of the dislocation pileup is located at the

centre of the grain, then L = D/2.

If τ c is the critical stress required to overcome the grain-boundary

obstacles, then the dislocations of the pileup will be able to traverse

the grain boundary if

nτa ≥ τc . (5.10)

7 J. D. Eshelby, F. C. Frank, and F. R. N. Nabarro, Phil. Mag. 42 (1951) 351.
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stress concentration.

From Equation 5.9

αD τa

2G b/π
τa ≥ τc , or

απ D τ 2
a

2G b
≥ τc .

In order to take into account the friction stress τ 0 needed to move

the dislocations in the absence of any obstacle, we have to add the

term τ 0. Thus,

τa ≥ τ0 + kD −1/2. (5.11)

Equation 5.11 is essentially identical to Equation 5.8, once the shear

stresses are converted into normal stresses. Note that Eshelby’s equa-

tion is valid only for a large number of dislocations; hence, the equa-

tion is not applicable to grain sizes below a few micrometers.

5.4.2 Cottrell’s Theory
Cottrell8 used a somewhat similar approach to that of Hall and Petch;

however, he recognized that it is virtually impossible for dislocations

to ‘‘burst” through boundaries. Instead, he assumed that the stress

concentration produced by a pileup in one grain activated dislocation

sources in the adjacent grain. Figure 5.25 shows how a Frank--Read

source at a distance r from the boundary is activated by the pileup

produced by a Frank--Read source in the adjacent grain. The slip band

blocked in the boundary was treated by Cottrell as a shear crack. The

maximum shear stress at a distance r ahead of a shear crack is given

by

τ = (τa − τ0)

(
D

4r

)1/2

,

where τ 0 is the frictional stress required to move dislocations and

r < D/2. The stress required to activate the Frank--Read source in the

neighboring grain is given by

τc = (τa − τ0)

(
D

4r

)1/2

,

or

τa = τ0 + 2τc r 1/2 D −1/2.

This equation is of a Hall--Petch form.

8 A. H. Cottrell, Trans. TMS-AIME, 212 (1958) 192.
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5.4.3 Li’s Theory
Li9 used a different approach to obtain a relationship between the

yield stress and grain size. Instead of using pileups, he considered the

grain boundary to be a source of dislocations. The concept of grain-

boundary dislocation sources is discussed in Section 4.4.8, and it is

thought that the onset of yielding in polycrystals is associated with

the activation of these sources. Li suggested that the grain-boundary

ledges generated dislocations, ‘‘pumping” them into the grain. Figure

5.26 shows dislocation activity in stainless steel in the grain-boundary

regions. These patterns can be interpreted as being due to dislocation

pileups or dislocation emission from grain-boundary ledges. Such dis-

locations act as Taylor (Section 4.4.10) ‘‘forests” in regions close to the

boundary. The yield stress is, according to Li, the stress required to

move dislocations through these ‘‘forests.” For many metals, the flow

stress is related, under most conditions, to the dislocation density by

the relationship (Section 6.3)

τ = τ0 + αG b
√

ρ, (5.12)

9 J. C. M. Li, Trans. TMS-AIME, 227 (1963) 239.
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where τ 0 is the friction stress, α is a numerical constant, and ρ is the

dislocation density. At this point, use was made of the experimen-

tal observation: ρ was taken to be inversely proportional to the grain

diameter D. Li rationalized this as follows: The ledges ‘‘pump” disloca-

tions into the grains. The number of dislocations generated per unit

deformation is proportional to the number of ledges, or to the grain-

boundary surface per unit volume, assuming the same ledge density

per unit area for different grain sizes. That is,

ρ ∝ Sv . (5.13)

Equation 5.3 shows that the grain boundary surface per unit volume,

Sv, is inversely proportional to D. Thus:

ρ ∝ 1

D
. (5.14)

Substituting Equation 5.14 into Equation 5.12, we obtain

τ = τ0 + G bD −1/2.

Again, this is a Hall--Petch equation.

5.4.4 Meyers–Ashworth Theory
There have been other proposals, including one by Meyers and

Ashworth,10 who analyzed elastic and plastic incompatibility stress

between neighboring grains. Stress concentrations occur at grain

boundaries during elastic loading because the strains have to be com-

patible. For metals having anisotropy ratios different from unity (see

Chapter 2, Equation 2.17), the Young’s moduli in different directions

are different. For example, for nickel,

E [100] = 137 GPa,

E [110] = 233 GPa,

E [111] = 303 GPa.

The incompatibility stresses were calculated by Meyers and Ashworth

by finite element analysis and found to be

τI = 1.37σAP,

where σ AP is the normal stress applied to the specimen. Hence, the

interfacial shear stress due to the incompatibility is almost three

times higher than the resolved shear stress homogeneously applied

on the grain (τH = σ AP/2). This means that dislocation activity at the

grain boundary starts before dislocation activity at the center of the

grains.

When the stress reaches the critical level required for emission,

localized plastic deformation will start (Figure 5.27(b)). These dislocat-

ions do not propagate throughout the grain, for two reasons:

10 M. A. Meyers and E. Ashworth, Phil. Mag., 46 (1982) 737.
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(a) polycrystalline deformation,

starting with (b) localized plastic

flow in the grain-boundary regions

(microyielding), forming (c) a

work-hardened grain-boundary

layer that effectively reinforces the

microstructure.

1. The stress decreases rapidly with distance from the grain boundary.

2. The center of the grains is under homogeneous shear stress control,

which is maximum at 45◦ to the tensile axis. On the other hand,

the interfacial and homogeneous shear stresses have different

orientations. Figure 5.27 shows how the dislocations emitted from

the grain boundaries will undergo cross-slip. Extensive cross-slip

and the generation of dislocation locks will result in a localized

layer with high dislocation density.

The plastic flow of the grain-boundary region attenuates the stress

concentration; geometrically necessary dislocations accommodate

these stresses (Figures 5.27(b) and (c)). This marks the onset of

microyielding. The dislocations do not propagate throughout the

whole grain, because of cross-slip induced by the difference in orien-

tation between the maximum shear stress (due to the applied load)

and the stress concentration due to elastic incompatibility. The work-

hardened grain-boundary layer has a flow stress σ GB, while the bulk

has a flow stress σ B(σ GB > σ B). The material behaves, at increasing

applied loads, as a composite made out of a continuous network

of grain-boundary film with flow stress σ GB and of discontinuous

‘‘islands” of bulk material with flow stress σ B. The increasing applied

stress σ AP does not produce plastic flow in the bulk in spite of the

fact that σ AP > σ B, because the continuous grain-boundary network

provides rigidity to the structure. The total strain in the continu-

ous grain-boundary network does not exceed 0.005, since it is elastic;

hence, plastic deformation in the bulk is inhibited. This situation can

be termed ‘‘plastic incompatibility.”

When the applied load is such that the stress in the grain-

boundary region becomes equal to σ GB, plastic deformation re-

establishes itself in this region. The plastic deformation of the con-

tinuous matrix results in increases in stress in the bulk with plastic
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flow (Figure 5.27(c)). This marks the onset of macroyielding. After a

certain amount of plastic flow, dislocation densities in the bulk and

grain-boundary regions become the same; then, since both regions

have the same flow stress, plastic incompatibility disappears, and we

have σ AP = σ GB = σ B.

One arrives at a relationship

σy = σB + 8k(σG B − σB )D −1/2 − 16k2(σG B − σB )D −1. (5.15)

The last term becomes important at small grain sizes and decreases

the slope.

Example 5.6

If you could produce AISI 1020 steel with a grain size of 50 nm, what

would be the expected yield stress, assuming a Hall--Petch response?

(Use data from Figure 5.23.)

Solution: The Hall--Petch equation for this problem is σ y = σ 0 + kD−1/2.

From Figure 5.23

σ0 = 120 MPa,

k = 18 MPa/mm1/2 = 0.56 MN/m3/2
.

Therefore,

σ = (120 × 106) + (0.56 × 106) × (50 × 10−9)−1/2

= 2.65 × 109 Pa

= 2.65 GPa.

5.5 Other Internal Obstacles

There are other internal obstacles to the motion of dislocations that

may have an effect analogous to grain boundaries. Examples are cell

walls and deformation twins. These barriers were studied by several

investigators, and their effect on flow stress may be represented by

the general equation

σ f = σ0 + K 	−m, (5.16a)

where the coefficient m has been found to vary between 1
2

and 1. If we

want to include the effects of both grain size and substructure refine-

ment due to the internal barriers, we can use the following overall

equation, which describes the response of the material reasonably

well:

σ f = σ0 + K 1 D −1/2 + K 2	
−m. (5.16b)
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0.1 mm

Fig. 5.28 Deformation twins in

shock-loaded nickel (45 GPa peak

pressure; 2 μs pulse duration).

Plane of foil (100); twinning planes

(111) making 90◦. (Courtesy of

L. E. Murr.)
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Fig. 5.29 Strength of wire-drawn

and recovered Fe–0.003% C as a

function of transverse

lineal-intercept cell size. Recovery

temperatures (in ◦C) as indicated.

(Adapted with permission from H.

J. Rack and M. Cohen, in Frontiers

in Materials Science: Distinguished

Lectures, L. E. Murr, ed. (New York:

M. Dekker, 1976), p. 365.)

Figure 5.28 shows an example of substructural refinement in

nickel. The twins were induced by shock loading at 45 GPa and

2 μs. It is easy to understand why these obstacles strengthen the

metal. Dislocation movement occurring in subsequent deformation

by, say, tensile testing is severely hampered by all such planar obs-

tacles. Internal cells are also very effective barriers.

The effect of the dislocation cell size on the flow stress of highly

cold-worked low-carbon steel wire is shown in Figure 5.29. The strain-

ing to high levels was accomplished by wire drawing, and the material

was recovered and showed thin cell walls and virtually dislocation-

free cell interiors. The slope in the log--log plot is −1, and we have,

consequently,

log(σ f − σ0) − log(σ1 − σ0) = −1(log d̄ − log d̄1), (5.17)

where this equation expresses the straight line passing through (σ f −
σ0, d̄) and (σ1 − σ0, d̄1). Notice that the ordinate in Figure 5.26 is σ −
σ 0. Manipulation of Equation 5.17 will yield

log
(σ f − σ0)

(σ f − σ0)
= log

(
d̄

d̄1

)−1

.
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Hence,

σ f − σ0 = σ1 − σ0

d̄−1
1

d̄−1 = K d̄−1.

σ f = σ0 + K d̄−1.

On the other hand, when the annealings were done at 600 ◦C and

above, recrystallization took place, and the group of points on the

right side of the plot were found. The slope was decreased to − 1
2
,

leading to a regular Hall--Petch relationship.

In low-carbon steels, the yield stress is strongly dependent on grain

size; a steel with a grain size of 0.5 mm and σ y of 104 MN/m2 has

its yield stress increased to approximately 402 MN/m2 when the grain

size is reduced to 0.005 mm. As the carbon content is increased and

the steel tends more and more toward eutectoid, other effects, such

as the ferrite--pearlite ratio, the spacing of cementite layers in the

pearlite, and the size of the pearlite colonies, become important

parameters. Gladman, McIvor, and Pickering11 developed an expres-

sion for pearlite--ferrite mixtures, namely,

σy (ksi) = f 1/3
α [2.3 + 3.81(% Mn) + 1.13D −1/2]

+ (1 − f 1/3
α )[11.6 + 0.25S

−1/2
0 ] + 4.1(% Si) + 27.6(

√
%N),

where fα is the ferrite fraction, D is the ferrite grain size (in mm), S

is the interlamellar spacing in pearlite (in mm), and % Mn, Si, and

N are the weight percentages of manganese, silicon, and nitrogen,

respectively.

Hyzak and Bernstein12 proposed the following equation for fully

pearlitic steels:

σy (MPa) = 2.18 S−1/2 − 0.40 P −1/2 − 2.88 D −1/2 + 52.30.

Here, S is the pearlite interlamellar spacing, P is the pearlite colony

size, and D is the austenite grain size. (The units of S, P, and D are

not given by Hyzak and Bernstein, but should be cm.)

5.6 Nanocrystalline Materials

Since 1985, a great deal of research has been devoted to materials con-

taining grain sizes in the nanometer range. These materials possess

mechanical, magnetic, and electronic properties that are quite differ-

ent from those of conventional crystalline materials (10 μm ≤ d ≤
300 μm). It is clear that high strength levels can be achieved through

reductions in grain size. Another beneficial effect is an enhanced

deformability of ceramics, due to the large grain-boundary interface.

A strength level of 4,000 MPa was obtained in a drawn steel that had

a grain size of 10 nm (0.01 μm).

11 T. Gladman, I. D. McIvor, and R. E. Pickering, J. Iron Steel Inst., 210 (1972) 916.
12 J. M. Hyzak and I. M. Bernstein, Met. Trans., 7A (1976) 1217.
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Crystalline
lattice atoms

Disordered grain
boundary atoms

Fig. 5.30 Gleiter representation

of atomic structure of a

nanocrystalline material; white

circles indicate grain-boundary

regions. (Courtesy of H. Gleiter.)

Figure 5.30 shows the schematic atomic structure of a nanocrys-

talline material. The atoms in the centers of the crystals (black

circles) have a crystalline periodic arrangement. The configuration

was developed by Gleiter, based on a Morse potential fitted to gold. At

the boundaries, the spacings are altered. Thus, nanocrystalline mater-

ials can be considered a new class of disordered materials created by

having a sizeable fraction of the atoms at disordered sites. The bound-

ary region is characterized by a lower atomic density, and this is

indeed a characteristic of nanocrystalline materials (between 75 and

90% of the crystalline density). The densities of nanocrystalline mater-

ials vary from 83--96% for Pd and 72--97% for Cu. In conjunction with

the lower density, the Young’s modulus of nanocrystalline materials is

also lowered. For Cu and Pd (with theoretical values of Young’s modu-

lus E of 120--130 GPa), the reported E value in the nanocrystalline state

is 21--66 GPa.

Two principal methods are used to produce these nanocrystalline

materials:

1. Evaporation of metal from melt and condensation on to a ‘‘cold

finger;” this nanosized powder is subsequently densified by press-

ing.

2. Extreme mechanical deformation of powders in, for instance, a

ball-milling machine. Hard spheres impinge upon powders numer-

ous times until a saturation of defects occurs, causing recrystal-

lization.

There are also other techniques: molecular beam epitaxy, rapid solid-

ification from melt, reactive sputtering, sol-gel, electrochemical depo-

sition, and spark erosion.

The mechanical properties of nanocrystalline materials are quite

distinct from those of conventional polycrystalline materials. A sim-

ple extrapolation using the Hall--Petch equation would predict extra-

ordinarily high values of the yield stress. For example, copper with

a grain size of 25 nm should have a yield stress of 720 MPa (data

extrapolated from Table 5.3). Indeed, experimental results, shown in

Figure 5.31, show a very high yield stress (∼185 MPa). However, a
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Fig. 5.32 Hall–Petch relationship

for nanocrystalline copper. (After

G. W. Nieman, J. R. Weertman,

and R. W. Siegel, Nanostructured

Matls., 1 (1992) 185.)

simple extrapolation using the Hall--Petch equation does not predict

quantitatively correct results. The Hall--Petch slope decreases as the

grain size is decreased. Figure 5.32 shows the Hall--Petch relationship

obtained in the nanocrystalline regimen (grain sizes between 10 and

100 nm). The slope k is equal to 470 MPa
√

nm. This can be con-

verted into 0.014 MN/m3/2. There has been considerable discussion as

to the nature of the strength of nanocrystals. Some of the ideas13,14,15

that have been bandied about are briefly presented in the following

list.

1. Dislocation pileups. There is a minimum number of dislocations

below which the equation for the stress concentration is no longer

operative.

2. Dislocation network models. Models such as Li’s or Meyers and

Ashworth’s use dislocation networks within the grain-boundary

regions as the parameters determining the effects of grain size.

Chang and Koch13 and Scattergood and Koch14 addressed these

13 J. S. C. Chang and C. C. Koch, Scripta Met. Mat., 24 (1990) 1599.
14 R. O. Scattergood and C. C. Koch, Scripta Met. Mat., 27 (1992) 1195.
15 M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci., 51 (2006) 427.
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Fig. 5.33 Classical Hall–Petch

slope compared with Meyers and

Ashworth equation and

computations assuming a

grain-boundary region and grain

interior with different

work-hardening curves. As grain

size is decreased, grain-boundary

region gradually dominates the

deformation process. (From H.-H.

Fu, D. J. Benson, and M. A. Meyers,

Acta Mater., 49 (2001) 2567.)

phenomena and proposed that, below a critical grain size Dc, a

dislocation-network mechanism controlled the flow stress. Meyers

and Ashworth’s formulation predicted a decrease in the Hall--Petch

slope for smaller grain sizes, in line with experimental observa-

tions. Their theory is based on the formation of a hardened region

along the grain boundaries (Section 5.4.4).

3. Grain-boundary sliding. In the nanocrystalline domain, sliding along

grain boundaries becomes a significant component of plastic defor-

mation for D < 10 nm.

The incorporation of the D−1 term into the Hall--Petch equation that

was carried by Meyers and Ashworth, and is described in Section 5.4.4,

leads to results that are shown in Figure 5.33. The The D−1 term in

Equation 5.15 is negative and produces a gradual decrease in the slope

of the Hall--Petch curve. This is evident from the plot in Figure 5.33,

made by the application of Equation 5.15.

The same curvature was obtained by means of computational mod-

eling carried out by Fu et al.16 These calculations were made for grains

as small as 26 nm. Figure 5.33 also shows the classical Hall--Petch

slope for the micrometer-sized grains. It is a straight line. The slopes

predicted from Equation 5.15 and from the computational prediction

decrease with decreasing grain size and the yield stress approaches a

saturation value as the grain size is reduced.

When the grain size is smaller than 10 nm, other processes start

operating; grain-boundary sliding becomes important, as pointed out

above, and some researchers have even reported a negative Hall--Petch

slope.

5.7 Volumetric or Tridimensional Defects

Voids and inclusions are among the principal tridimensional defects

in materials. Inclusions are often produced in metals by the acciden-

tal incorporation of slag or pieces of refractory bricks into the melt or

16 H.-H. Fu, D. J. Benson, and M. A. Meyers, Acta Mater., 49 (2001) 2567.
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10mm

Fig. 5.34 Voids (dark spots

marked by arrows) in titanium

carbide. The intergranular phase

(light) is nickel, which was added to

increase the toughness of the TiC.

in powder metallurgy processes, from extraneous matter. Inclusions

are also often the result of impurities, such as sulfur and phospho-

rous in steel. Vacuum arc remelting and other refining processes lead

to alloys in which the inclusion content is minimized. Ceramics and

brittle metals and intermetallics are especially sensitive to inclusions

and voids. As will be seen in Chapter 8, these are easy sites for the

initiation of fracture. Spherical and elongated flaws are the princi-

pal failure initiation sites in brittle materials. Such flaws are acti-

vated both in tension and compression, and are responsible for the

great differences between compressive and tensile strength (a factor of

5--10).

Ceramics are often produced by sintering or hot pressing of pow-

ders. This often leaves a residual porosity, which is a major source

of concern. Figure 5.34 shows the microstructure of titanium carbide

produced by hot pressing of powders. Residual porosity can be seen,

and the voids are indicated by arrows. These voids have diameters of

1--4 μm. It is difficult to completely eliminate porosity in ceramics.

Small, intragranular pores that are only visible by TEM, such as the

ones in Al2O3 in Figure 5.35(a), are very difficult to remove, because

bulk diffusion is orders of magnitude slower than grain-boundary

diffusion. If the voids were at the confluence of grain boundaries,

it would be easier to eliminate them by high-temperature sintering.

The voids seen in Figure 5.27(a) are faceted because this shape min-

imizes the overall surface energy; the surface energy is anisotropic,

and the surfaces with the least number of broken bonds per unit

area have the least energy. This is evident from the hexagonal voids

shown in Figure 5.35(a), which all have parallel faces. The TEM of

Figure 5.35(b) also shows dislocations, which are produced during hot

pressing of titanium carbide. The difficulty of hot pressing or sinter-

ing pure, high-temperature ceramics without voids is often bypassed

by using sintering aids, or materials with a lower melting point. These

materials --- usually glasses --- become viscous at high temperatures

and fill the existing voids. They also act as a high-temperature lubri-

cant between the ceramic particles and help to densify the ceramic,

by capillary action. An illustration of the use of sintering aids to help
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20 nm 10 0 mm10 mm

Fig. 5.35 (a) Transmission

electron micrograph illustrating

faceted grain-interior voids within

alumina and (b) voids in titanium

carbide; dislocations are pinned by

voids.

Fig. 5.36 Glassy phase at triple point in silicon nitride; notice the individual

crystallographic planes in Si3N4. (Courtesy of K. S. Vecchio.)

the consolidation is given in Figure 5.36. Three silicon nitride grains

are imaged by the TEM; the interplanar spacing, 0.65 nm, is shown.

The three grains surround a glassy material, marked G. If no sinter-

ing aid were used, a central void would be formed. Nevertheless, the

glassy phase is a volumetric defect and results in a weaker material

than a fully dense, pure Si3N4.
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Example 5.7

(a) Calculate the volume fraction of voids in the micrograph in Figure

5.34.

(b) If Young’s modulus for fully dense TiC is 440 GPa, what is Young’s

modulus for the porous TiC?

Fig. E5.7

Solution:

(a) We overlay a grid on the micrograph and count the intersections of

lines falling within the voids. (See Figure E5.7.)

Total numbers of intersections in grid = 72 × 47 = 3,384;

Total numbers of intersections inside voids ≈ 66.

Therefore, the porosity is approximately 66/3,384 = 2%.

(b) From Chapter 2, we obtain the equation for Young’s modulus

(Equation 2.25):

E = E 0(1 − 1.9p)

= 440 × (1 − 1.9 × 0.02)

= 423 GPa.

5.8 Imperfections in Polymers

Let us consider again the basic ‘‘cooked spaghetti” structure of a poly-

mer. In an amorphous polymer, there is no apparent order among
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the molecules, and the polymeric chains are arranged randomly.

As we pointed out in Chapter 1, macromolecules can be made to

crystallize. However, unlike metals or ceramics, long-chain polymers

or macromolecules (synthetic or natural) do not form exact, peri-

odic structures having long-range order in three dimensions. This

is because such a highly ordered structure in a polymer, in gen-

eral, will not be in equilibrium. It is, however, possible to obtain a

variety of metastable chain conformations, depending on the route

taken to reach a particular state. In any of these metastable states,

order may be locally present; that is, we can have crystalline regions

interspersed with amorphous regions. Polymers can thus be amor-

phous or partially crystalline, a 100% crystalline polymer being

difficult to obtain in practice. In a partially crystalline or semicrys-

talline polymer, depending on its type, molecular weight, and crys-

tallization temperature, the amount of crystallinity can vary from

30 to 90%. The inability to attain a fully crystalline structure is

due mainly to the long chain structure of polymers: Some twisted

and entangled segments of chains that get trapped between crys-

talline regions never undergo the conformational reorganization nec-

essary to achieve a fully crystalline state. Molecular architecture also

has an important bearing on the polymer crystallization behavior:

Linear molecules with small or no side groups crystallize easily;

branched chain molecules with bulky side groups do not. For exam-

ple, linear, high-density polyethylene can be crystallized to more than

90%, whereas branched polyethylene can be crystallized only to

about 65%.

Amorphous polymers can be considered to be fairly homogeneous

on a supramolecular scale. Semicrystalline polymers, consisting of

tiny crystalline regions randomly distributed in an amorphous mater-

ial, are heterogeneous, multiphasic, or even composite in nature.

Lamellar crystals can form when a crystallizable polymer such as

a linear polymer is cooled very slowly from its melting point. Small,

platelike lamellar single crystals can also be obtained by the precipi-

tation of a polymer from a dilute solution. The long molecular chains

in the lamellae are folded in a regular manner. In a lamellar-polymer

single crystal, the thickness of a lamella is typically about 10 nm,

while the length of the chain is about 100 to 1,000 nm. The extremely

long chain is conformed into a narrow lamella by the process of chain

folding during crystallization. Figure 1.26c shows this phenomenon

of chain folding. Many such lamellar crystallites group together and

form spherulites. (See Chapter 1.)

Crystalline defects such as those described for metals and ceramics

are not at all ubiquitous in polymers. One may define defects in poly-

mers in simple chemical and physical terms. Chemical defects include

defects such as a linear polymer branching off into two branches that

grow at different rates to give branches of different lengths. One can

also have syndiotactic defects, which are stereochemical in nature.

For example, an isotactic polymer chain can have syndiotactic defects

embedded in it. Physical aspects of defects involve conformational

defects in chain coiling. It is easy to see that kinetic and energetic
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factors will be very important in these type of defects, because such

defects involve chain movement. Variables such as temperature, pres-

sure, concentration, molecular weight, chain polarity, etc., are import-

ant, and statistical mechanics needs to be used. Thus, point defects in

polymers are chain-conformational kinks, jogs, and inclusions. Point

defects also include an interstitial or substitutional molecule. For

example, if a macromolecular chain consisting of species A has a

monomer B trapped inside the polymer crystal, that would be an

interstitial point defect. If there is a break in the length of the

molecular chain we will have a chain end and a vacancy or a row

of vacancies.

As we have seen, in metals dislocations are very important because

they are mobile, while in ceramics they are immobile under most con-

ditions. Although dislocations can exist in polymeric crystals also,

they do not play such a major role in the deformation of polymers.

Direct observations of dislocations have been made in some semicrys-

talline polymers by transmission electron microscopy, which has been

instrumental in elucidating the structural imperfections in metals

and ceramics. One of the great limitations to the use of electron

microscopy in the study of polymers is the radiation damage pro-

duced in the polymers by the electron beam. Images produced by

electron diffraction contrast, as well as electron diffraction patterns,

depend on the crystallinity of the specimen. A large dose of electrons

will tend to destroy the long-range crystalline order, more so in poly-

mers than in metals or ceramics, because nonpolymeric crystalline

materials such as metals and ceramics are more resistant to electron

irradiation. Thus, only a limited number of scattered electrons can be

used to obtain crystallographic information from the sample under

study before the diffraction pattern changes from crystalline reflec-

tions to broad, amorphous haloes. Radiation damage can establish

cross-links and cause strain in the lattice at first. Continued expo-

sure to an electron beam can make the diffraction contrast weaker

and eventually disappear. It is therefore necessary to take special pre-

cautions before examining the structure of polymers in an electron

microscope. Perhaps the most widely studied polymer in this regard is

polyethylene, although it is difficult to take high-resolution images of

polyethylene at room temperature by TEM because of the sensitivity

of the polymer to radiation. By comparison, thermoplastics such as

PPS, PEEK, and PEK are fairly resistant to electron irradiation. Experi-

mentally, giant screw dislocations showing growth spirals have been

observed in these thermoplastics. Terminating moiré fringes have

been used to show the existence of dislocations in a polyethylene crys-

tal. A lattice-imaging technique has been used on poly (para phenylene

terephthalamide) PPTA and poly (paraphenylene benzobis thiazole)

PBT fibers. In these fibrous materials, one has, relative to polyethylene,

rather high radiation stability for electron microscopic observations

because of the electronic conjugation of the backbone chain.

In crystalline metals and ceramics, two-dimensional defects such

as grain boundaries are thin regions where two grains meet. In poly-

meric crystals, grain boundaries can be very complex, again because
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of the chain connectivity. Besides, the electron beam sensitivity of

polymers makes TEM observations and their interpretation quite dif-

ficult. Planar defects such as stacking faults and twins have been

observed in samples of poly (diacetylene) crystals.
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Exercises

5.1 Calculate the dislocation spacing in a symmetrical tilt boundary (θ =
0.5◦) in a copper crystal.

5.2 Starting from the equation E = E0θ (A − ln θ ) for a low-angle boundary,

show how one can obtain graphically the values of E0 and A.

5.3 Taking A = 0.3, compute the value of θmax.

5.4 Show that, for a low-angle boundary, we have

E

E max

= θ

θmax

(
1 − ln

θ

θmax

)
,

where Emax and θmax correspond to the maximum in the E-versus-θ curve.

5.5 Consider two parallel tilt boundaries with misorientations θ1 and θ2. Show

that, thermodynamically, we would expect the two boundaries to join and

form one boundary with misorientation θ1 + θ2.
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5.6 Can you suggest a quick technique to check whether lines observed in an

optical microscope on the surface of a polished sample after deformation are

slip lines or twin markings?

5.7 A twin boundary separates two crystals of different orientations; however,

we do not necessarily need dislocations to form a twin. Why?

5.8 Let m be the total length of dislocations per unit area of a grain boundary.

Assume that at yield, all the dislocations in the grain interiors (ρ) are the ones

emitted by the boundaries. Assume also that the grains are spherical (with

diameter D). Derive the Hall--Petch relation (σ = σ 0 + kD−1/2) for this case,

and give the expression for k.

5.9 Consider a piano wire that has a 100% pearlitic structure. When this wire

undergoes a reduction in diameter from D0 to Dε, the pearlite interlamellar

spacing normal to the wire axis is reduced from d0 to dε, that is,

d0

dε

= D 0

D ε

,

where the subscript o refers to the original dimensions, while the subscript

ε refers to the dimensions after a true plastic strain of ε. If the wire obeys

a Hall--Petch type of relationship between the flow stress and the pearlite

interlamellar spacing, show that the flow stress of the piano wire can be

expressed as

σ = σi + k′
√

d0

exp
( ε

4

)
.

5.10

(a) Determine the mean lineal intercept, the surface area per unit volume,

and the estimated grain diameter for the specimen shown in Figure

Ex5.10.

(b) Estimate the yield stress of the specimen (AISI 304 stainless steel).

(c) Estimate the parameters of part (a), excluding the annealing twins. By

what percentage is the yield stress going to differ?

Fig. Ex5.10

5.11 Professor M. I. Dum conducted a study on the effect of grain size on the

yield stress of a number of metals using thin foil specimens (thickness 0.1

mm and width 6.25 mm). He investigated grain sizes of 5, 25, 45, and 100 μm.

Which specimens can be considered truly polycrystalline?

5.12 Thompson17 obtained the following results for the yield stress of

nickel:

Grain Size Yield Stress
(μm) (MN/m2)

0.96 251
2 185

10 86
20 95
95 33

130 25

17 A. W. Thompson, Acta Met., 25 (1977) 83.
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(a) Find the parameters in the Hall--Petch equation. Plot the yield stress versus

D−1, D−1/2, and D−1/3. Which plot shows the best linearity?

(b) Show how you can determine the correct exponent by another plot (not

by trial and error).

5.13 If the grain size of a metal is doubled by an appropriate annealing, by

what percentage is the surface area per unit volume of the metal changed?

5.14 Nilles and Owen18 found a strong grain-size dependence of the stress

required for twinning when deforming an Fe--25 at.% Ni alloy at 4 K. From

what you learned in the text, is this behavior expected? Compare the ratio of

the Hall--Petch slopes of the twinning and yield stresses for Fe--25% Ni with

the ratio found for chromium and Fe--Si.

5.15 Most polycrystalline materials, when etched, form grooves at grain

boundaries. When annealed, ceramics form thermal grooves at grain bound-

aries. A schematic of such a groove is shown in Figure Ex5.15. If the surface

energy per unit area of the material is γ s, derive an expression for the energy

per unit area of the grain boundary between grains 1 and 2.

21

Solid

q Vapor

Fig. Ex5.15

5.16 Estimate the average grain diameter and the grain-boundary area per

unit volume for a material that has isotropic grains (the same dimension in

all directions) and ASTM grain size 6.

5.17 How many grains in an area of 5 × 5 cm would be counted, in a photo-

micrograph taken at a magnification of 500×, for a metal with ASTM grain

size 3?

5.18 A graduate student (undergraduates are much brighter!) measured the

grain size of a metallic specimen and found that it was equal to ASTM #2.

However, he had the wrong magnification in his picture (400× instead of

100×). (a) What is the correct ASTM grain size? (b) What is the approximate

grain diameter?

5.19 Nanophase materials show many different characteristics vis-à-vis con-

ventional materials. Discuss the sintering behavior of a nanophase powder in

relation to that of a conventional powder.

5.20 Calculate the volume fraction of voids in the TiC specimen shown in

Figure 5.35(b).

5.21 Examine Figure Ex5.21.

(a) Using the lineal intercept method, determine the mean lineal intercept

and the grain size if the material is TiC.

(b) Determine the grain size using the ASTM method.

5.22

(a) Using the mean lineal intercept, calculate the grain diameter for tanta-

lum, given the micrograph in Figure 5.29(a).

(b) Calculate the ASTM grain size.

(c) Estimate the yield stress for this specimen of tantalum, using values from

Table 5.3.

18 J. L. Nilles and W. S. Owen, Met. Trans., 3 (1972) 1877.
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Fig. Ex5.21

5.23 A polycrystalline sample has 16 grains per square inch in a photomicro-

graph taken at magnification 100×. What is the ASTM grain size number?

5.24 A 20-cm line gave seven intersections in a 100× micrograph. Using the

lineal intercept method, determine the mean lineal intercept and the grain

size.

5.25 How many grains in an area of 5 × 5 cm would be counted in a photo-

micrograph taken at a magnification of 500× for a metal with an ASTM grain

size 3.

5.26 The yield stress of AISI 1020 steel with a grain size of 200 μm is 200 MPa.

Estimate the yield stress for a grain size of 10 μm if the Hall--Petch constant

k = 0.8 MN/m3/2.

5.27 A small-angle tilt boundary has a misorientation of 0.1◦. What is the

spacing between the dislocations in this boundary if the Burgers vector of

the dislocation is 0.33 nm?

5.28 Calculate the dislocation spacing of a low-angle tilt boundary in alu-

minum for θ = 0.5◦. Take G = 26.1 GPa, v = 0.345, and rAl = 0.143 nm.

5.29

(a) Determine the grain size for the microstructure of zirconium shown in

Figure Ex5.29, using the lineal intercept method. Use the scale given at

the bottom.

(b) Use the Hall--Petch equation to determine the yield stress of this material,

given σ 0 = 29 MPa, k = 0.25 MPa m1/2.

5.30 From Figure 5.2 (a, b) find the grain diameter of samples using the lineal

intercept ASTM method, N = 2n --1.
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Fig. Ex5.29 Microstructure of zirconium. (Courtesy of S. Barrabes and M. E. Kassner.)

5.31 Calculate the dislocation spacing and energy of a low-angle tilt boundary

in Ni if θ = 0.5◦, G = 76 GPa, r = 0.125 nm, ν = 0.31.

5.32 If a sample of copper had a grain size of 75 mm, what would be the

expected yield stress, assuming a Hall--Petch response? (Use the data from

Figure 5.23.)

5.33 Describe the difference between deformation twins and annealing twins.

Describe the differences in twinning in HCP, BCC, and FCC crystals.



Chapter 6

Geometry of Deformation and

Work-Hardening

6.1 Introduction

The relaxation times for the molecular processes in gases and in a

majority of liquids are so short, that molecules/atoms are almost

always in a well-defined state of complete equilibrium. Consequently,

the structure of a gas or liquid does not depend on its past history. In

contrast, the relaxation times for some of the significant atomic pro-

cesses in crystals are so long, that a state of equilibrium is rarely, if

ever, achieved. It is for this reason that metals in general (and ceram-

ics and polymers, under special conditions) show the usually desirable

characteristic of work-hardening with straining, or strain-hardening.

In other words, plastic deformation distorts the atoms from their

equilibrium positions, and this manifests itself subsequently in hard-

ening.

In fact, hardening by plastic deformation (rolling, drawing, etc.)

is one of the most important methods of strengthening metals, in

general. Figure 6.1 shows a few deformation-processing techniques

in which metals are work-hardened. These industrial processes are

used in the fabrication of parts and enable the shape of metals to be

changed. The figure is self-explanatory. Rolling is used to produce flat

products such as plates, sheets, and also more complicated shapes

(with special rolling cylinders). In forging, the top hammer comes

down, and the part is pushed into a die (closed-die forging) or is

simply compressed. Extrusion uses a principle similar to that in the

use of a tube of toothpaste. The material is squeezed through a die,

and its diameter is reduced. In stamping, first the ends of a blank are

held, and then the upper die comes down, punching the blank into

the lower die.

If deformation is carried out at low and moderate temperatures,

the metal workhardens. However, if the temperature is sufficiently

high, the dislocations generated in work-hardening are annealed out,

and the final metal is in the annealed condition. Hot working des-

ignates all work done on a metal or alloy above its recrystalliza-

tion temperature, while cold working indicates work done below the
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Blank holder
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(e)

Lower die

PunchBlank holder

(b)
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Lower die

Forging

Upper die

(a)

Fig. 6.1 Common metalworking

methods. (a) Rolling. (b) Forging

(open and closed die). (c)

Extrusion (direct and indirect).

(d) Wire drawing. (e) Stamping.

recrystallization temperature of the metal or alloy. Certain metals,

in particular (e.g., copper), do not have many precipitation harden-

ing systems, but are ductile and can be appreciably hardened by

cold working. If the relaxation times were short, the structure would

Work hardening

Softening

Ideally
plastic

Strain

Elastic

s0

S
tr

e
s
s

Fig. 6.2 Stress–strain curves

(schematic) for an elastic, ideally

plastic; a work-hardening; and a

work-softening material.

return almost immediately to its state of equilibrium, and a constant

stress for plastic deformation would result, independent of the extent

of deformation. This is shown in Figure 6.2 as the elastic, ideally plas-

tic solid. However, when a real crystalline solid is deformed plastic-

ally, it turns more resistant to deformation, and a greater stress is

required for additional deformation. The phenomenon is called work-

hardening. If the stress is interrupted, and the material is unloaded

after a certain plastic strain, the unloading slope is equal to the

Young’s modulus. Upon loading, the stress returns to its original
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Fig. 6.3 Engineering-stress–

engineering-strain curves for

nickel. (a) Nickel subjected to 0,

20, 40, 60, 80, and 90% cold-rolling

reduction. (b) Nickel cold rolled to

80%, followed by annealing at

different temperatures. (From D.

Jaramillo, V. S. Kuriyama, and M. A.

Meyers, Acta Met. 34 (1986) 313.)

value. Thus, for a work-hardening material, the flow stress is increased

above σ 0, whereas for an ideally plastic material, the flow stress is con-

stant at σ 0. Under certain conditions, the material can also soften.

This is also shown in Figure 6.2 and is discussed in greater detail in

Section 6.4.

In Chapter 4, we discussed the various kinds of defects in mater-

ials. Of these defects, the primary carriers of plastic deformation in

metals and ceramics are dislocations and twins. From the simple

motion of dislocations along specific planes, we derived the Orowan

Equation 4.29, which relates the global plastic strain to the individu-

al dislocation motion and density. Basically, the hardening in a crys-

talline structure occurs because these materials deform plastically by

the movement of dislocations, which interact directly among them-

selves and with other imperfections, or indirectly with the internal

stress field (short range or long range) of various imperfections and

obstacles. All these interactions lead to a reduction in the mean mobil-

ity of dislocations, which then require a greater stress for accomplish-

ing further movement (i.e., with continuing plastic deformation, we

need to apply an ever greater stress for further plastic deformation);

hence the phenomenon of work-hardening.

Figure 6.3 illustrates how a metal (in this case, nickel) work-

hardens by cold rolling. As the nickel plate is reduced in thickness

(and increased in length), its stress--strain response changes. In the

figure, we plot engineering stress versus engineering strain, and all

the curves show a softening after hardening. This softening is due not

to an inherent structural ‘‘softening,” but to a localized reduction in

cross section, called necking. (See Chapter 3.) The yield stress increases

from less than 100 MPa (in the annealed condition) to approximately

850 MPa (after 90% reduction in thickness by cold rolling). Concomi-

tantly, the ductility decreases. The sample that received 80% reduc-

tion was subjected to one-hour annealings at various temperatures;

the resulting mechanical response is shown in Figure 6.3(b). After a

700 ◦C annealing, the curve is almost coincident with the original
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annealed curve, showing that the effects of cold rolling have been

eliminated. This occurs because the dislocations produced by plas-

tic deformation have been eliminated by the annealing. The nickel

specimens were polycrystalline, with a grain size of 40 μm.

In Chapter 4, we dealt exclusively with monocrystals; we will see,

in this chapter, how the plastic deformation in one single crystallo-

graphic direction is related to the overall deformation of a crystal

and how different crystals in a polycrystal deform in a ‘‘cooperative”

manner.

In ceramics, plastic deformation is not so common. At room tem-

peratures many ceramics are brittle, and it was seen in Chapter 4

that the Peierls--Nabarro stress opposing dislocations is much higher

and that the mobility of dislocations is much more restricted than

for metals. This is illustrated in Figure 6.4 which shows results of

compression tests on TiC specimens carried out at different tempera-

tures. Note that the elastic portion of the curves shows a slope that

is considerably lower than the prediction from the Young’s modu-

lus, because no extensometer was used to measure strain. Thus, the

abscissa records both the strain in the specimen and the deflec-

tion in the machine; for this reason, the term ‘‘apparent strain”

is used. The ambient-temperature compressive strength of TiC is

approximately 4,000 MPa. As the temperature is increased beyond

950 ◦C, plastic deformation gradually sets in. This is called the

ductile--brittle transition. As the temperature is increased, the flow stress

decreases. In this temperature regimen, the material exhibits plas-

ticity. In monocrystalline Al2O3 deformed at high temperatures, sig-

nificant plastic deformation is also observed. Figure 6.5 shows the
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crystallographic directions and
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shear-stress--shear-strain response for Al2O3 oriented for prismatic

slip. (See Section 4.4.7.)

6.2 Geometry of Deformation

6.2.1 Stereographic Projections
The mechanical properties of crystals are anisotropic, and slip occurs

only on certain planes, along certain directions. For this reason, it

is important to define the orientation of a crystal. The most common

technique for doing so is the stereographic projection, which will

be presented here in an abbreviated way; greater details are given

in Barrett and Massalski. (See suggested reading.) The stereographic

projection is a geometric representation of the directions and planes

of a crystal. From stereographic projections, one can determine the

angles between planes, planes and directions, and directions. The

stereographic projection is the projection of a sphere on a plane. We

imagine a unit cell of a certain crystalline structure at the center of

the sphere. (See Figure 6.6(a).) The directions and plane poles (normals

to the planes passing through the origins) intercept a sphere at points;

these points are projected onto a plane. Figure 6.6(b) shows a standard
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cubic projection. This projection is known as a [100] standard projec-

tion because the <001> direction corresponds to the center. There

are other standard projections: [110], [111], [112], and so on. Theoreti-

cally, the angles between directions and/or plane poles are measured

on the sphere; in practice, however, these angles are measured on the

standard projection, making use of a special chart called the Wulff

net. This chart is the projection of a plane of a sphere in which all the

meridians and parallels are marked at regular degree intervals. The

sphere has the same diameter as the standard projection. By inserting

a tack at the center and rotating the standard projection around it,

we can easily find all desired angles.

An analogy can be made with maps. Imagine that we look at the

earth from the ‘‘top;” that is, we view the northern hemisphere with

the north pole at the center. If we now draw a map on a circle, we have

a situation analogous to a stereographic projection. The meridians of

the map correspond to great circles on the stereographic projection --

that is, circles whose center is coincident with the center of the

sphere. The four great circles that are perpendicular to the plane

of the paper are projected as straight lines.

In a stereographic projection, the crystalline symmetry can be

clearly seen. For instance, the <100> directions form a cross in

Figure 6.6, with the crystalline symmetry indicated in Figure 6.6(b);

two-, three-, four-, and six-field symmetry axes are shown. (The symme-

tries have been introduced in Section 2.8, and the reader is referred

to Table 2.1.) For the <111>, <110>, and <100> directions, the sym-

metry is four-, two-, and threefold, respectively, in the cubic system.

Two-, three-, and fourfold symmetries are indicated by lens, triangle,

and square, respectively. As a consequence, the standard projection

can be divided, by means of great circles, into 24 spherical trian-

gles that are crystallographically equivalent. The vertices of these

triangles are <100>, <110>, and <111>, as can be seen in Figure

6.7. Comparing this figure with Figure 6.6(b), we can see that the

directions on the sides and within the spherical triangles are also

equivalent. Consequently, one single triangle is sufficient to specify

any crystallographic orientation in the cubic system; the [100], [110],

[111] triangle is used most commonly. The reader is warned, however,

that this simplification is not applicable to the other crystal systems.

6.2.2 Stress Required for Slip
The flow stresses of crystals are highly anisotropic. For instance, the

yield stress of zinc under uniaxial tension can vary by as much as

a factor of 6, depending on the orientation. Consequently, it is very

important to specify the orientation of the load with respect to that

of the crystal. In shear or torsion tests, the shear plane and direc-

tions are precisely known. Because dislocations can glide only under

the effect of shear stresses, these shear stresses have to be deter-

mined. In uniaxial tensile and compressive tests (the most common

tests), one has to determine mathematically the shear component of

the applied stress acting on the plane in which slip is taking place.
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Fig. 6.7 Standard [001]

stereographic projection divided

into 24 triangles.
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Fig. 6.8 Relationship between

loading axis and slip plane and

direction.

Figure 6.8 shows a crystal with a normal cross-sectional area A upon

which a tensile load P acts, generating a uniaxial stress P/A. The slip

plane and direction are indicated, respectively, by the angles φ and

λ that they make with the tensile axis. The normal n of the slip

plane, cross-sectional area A1, that makes an angle φ with the loading

direction �.

The areas A1 and A are related by the angle φ. Area A is the pro-

jection of A1 onto the horizontal plane; thus, we can write

A = A1 cos φ.
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The shear stress τ acting on the slip plane and along the slip direction

s is obtained by dividing the resolved load along the slip direction

(P cos λ) by A1:

τ = P cos λ

A1

= P

A
cos φ cos λ.

But P/A = σ is the normal stress applied to the specimen. Hence,

τ = σ cos φ cos λ.

Note that cos φ = sin χ .

This equation shows that τ will be zero when either λ or φ is equal

to 90◦. On the other hand, the shear component is maximum when

both φ and λ are equal to 45◦. We have, in this case,

τmax = σ cos 45◦ cos 45◦ = σ

2
.

The angle between any two directions a and b can be obtained from

the scalar product of these vectors:

a · b = |a||b| cos θ

or

cos θ = a · b

|a||b| .

For cubic crystals, planes and directions with the same indices are

perpendicular, and the angle is determined from the coefficients, h,

k, and l. For two vectors

a = h1i + k1j + l1k

and

b = h2i + k2j + l2k,

the angle θ is given by

cos θ = h1h2 + k1k2 + l1l2

(h2
1 + k2

1 + l2
2 )1/2 (h2

2 + k2
2 + l2

2 )1/2
. (6.1)

If two directions are perpendicular, their dot product is zero; and

the same is true for a direction that is contained in a plane. From

Equation 6.1, it is possible to obtain the cos φ and cos λ terms for

all desired crystallographic directions of a crystal. For instance, if

the loading direction is [123] for an FCC crystal, then the Schmid

factors (see below) of the various slip systems are found by obtaining

the angles of [123] with <111> (perpendicular to slip planes) and

<110> (slip directions). Note that each slip plane contains three slip

directions and that 12 values (4 × 3) have to be obtained.
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Schmid and coworkers1 used the variation in the resolved shear
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Fig. 6.9 Comparison of Schmid

law prediction with experimental

results for zinc. (Adapted with

permission from D. C. Jillson,

Trans. AIME, 188 (1950) 1120.)

monocrystals of certain metals. They proposed the following rational-

ization, known as the Schmid law: Metal flows plastically when the resolved

shear stress acting in the plane and along the direction of slip reaches the crit-

ical value

τc = σ0 sin χ cos λ = Mσ0, (6.2)

M = sin χ cos λ = cos φ cos λ, (6.3)

where the factor M is usually known as the Schmid factor.

Schmid’s law has found experimental confirmation principally in

hexagonal crystals. Figure 6.9 shows the experimental results, com-

pared with Schmid’s prediction for high-purity zinc. The full line

shows the hyperbola obtained by the use of Equation 6.3, assuming

a critical resolved shear stress of 184 kPa. It is worth noting that the

yield stress is minimum for M = 0.5.

For cubic crystals, the correspondence between Schmid’s law and

experiments is not as good. This is mainly due to the great number

of slip systems in these structures. For nickel, the critical resolved

shear stress is practically orientation independent. On the other hand,

for copper, the critical resolved shear stress is dependent on orien-

tation, being constant in the center of the stereographic triangle

and assuming higher values close to the sides. Figure 6.10 shows

the inverse of Schmid’s factor in the stereographic triangle based on 3.0
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Fig. 6.10 Effect of orientation

on the inverse of Schmid’s factor

(1/M) for FCC metals. (Adapted

with permission from G. Y. Chin,

“Inhomogeneities of Plastic

Deformation,” in The Role of

Preferred Orientation in Plastic

Deformation (Metals Park, OH:

ASM, 1973), pp. 83, 85.)

a {111} <110> slip: This is the situation for FCC crystals. The orienta-

tion for which FCC crystals are softest is M = 0.5, or M−1 = 2, which

occurs approximately at the center of the triangle. The dependence of

τ c on the orientation for cubic systems is thought to be because the

components of compressive stresses acting normal to the slip planes

are different for different orientations at the same applied stress level.

These compressive stresses should have an effect on τ c. Easy glide in

FCC crystals is greatest in the center of the stereographic projection,

in the region closer to (but not coinciding with) the <110> corner.

It is affected by a number of parameters, the most notable being the

following.

1. Specimen size. Specimens with a smaller cross-sectional area tend to

have a more extended easy-glide region.

2. Temperature. Easy glide is more pronounced at lower temperatures

and may vanish completely at high temperatures.

3. Stacking-fault energy. FCC metals with low stacking-fault energy tend

to have a more pronounced easy-glide region. Why?

4. Solute atoms. If solute atoms pin the dislocations, they will shorten

their mean free path and the extent of easy glide. If solute atoms

contribute primarily to the lowering of the stacking-fault energy

or to ordering, they will increase the easy glide range.

1 E. Schmid and W. Boas, Kristalplastizitat (Plasticity of Crystals) (Berlin and London:

Springer and Hughes, 1950).
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Example 6.1

A single crystal of copper is deformed in tension. The loading axis is

[112].

(a) Calculate the Schmid factors for the different slip systems.

(b) If the critical resolved shear stress is 50 MPa, what is the tensile

stress at which the material will start to deform plastically?

Solution:

(a) Copper is FCC, which has 12 slip systems of the type {111}<110>;

thus, we have

cos φ = n · �

|n| · |�| ,

cos λ = s · �

|s| · |�| ,

and the following table:

Slip plane Slip direction Schmid factor

(n) (s) Cos φ Cos λ (cos φ cos λ) σ (MPa)

[1̄10] 2
√

2/3 0 0 Not deformed

(111) [1̄01] 2
√

2/3
√

3/6
√

6/9 184

[01̄1] 2
√

2/3
√

3/6
√

6/9 184

[110]
√

2/3
√

3/3
√

6/9 184

(1̄11) [101]
√

2/3
√

3/2
√

6/6 122

[01̄1]
√

2/3
√

3/6
√

6/18 367

[110]
√

2/3
√

3/3
√

6/9 184

(11̄1) [1̄01]
√

2/3
√

3/6
√

6/18 367

[011]
√

2/3
√

3/2
√

6/6 122

[1̄10] 0 0 0 Not deformed

(111̄) [101] 0
√

3/2 0 Not deformed

[011] 0
√

3/2 0 Not deformed

A diagram showing the loading axis [112] is given in Figure E6.1.

n

s

l
f

Fig. E6.1
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(b) τcrss = σ cos φ cos λ,

σ = τcrss

cos φ cos λ
= 50

cos φ cos λ
.

Results are shown in the foregoing table.

Example 6.2

Calculate the total energy due to dislocations in iron in the annealed

condition, after 20% plastic deformation and 100% plastic deformation.

Use both the exact (Equation 4.20) and the approximate equation (Equa-

tion 4.21) (U = Gb2/2). Assume that the core has a radius equal to 5b and

that dislocations are evenly distributed between edge and screw types.

Given the following information:

G = 81.6 GPa,

v = 0.293,

r = 0.124 nm.

The relationship between the stress and dislocation density is (see

Section 6.3):

τ = 40 × 106 + 16.67
√

ρ (in Pa).

The stress--strain relationship is:

τ = τ0 + kγ n,

where τ 0 = 50 × 106, k = 100 × 106, and n = 1/2.

Solution: The stress levels for γ = 0, 0.4, and 2 (γ = 2ε) are

τ = 50,113, and 191.4 × 106 Pa.

The dislocation density is:

ρ = (τ − 40 × 106)2 × 1

16.672
= 3.5 × 10−3(τ − 40 × 106)2.

Hence, for

ε = 0, ρ = 3.5 × 109 m−2,

ε = 0.2, ρ = 3.71 × 1013 m−2,

ε = 1, ρ = 1.15 × 1014 m−2.

We now obtain the dislocation spacing. It is known that

� = 1

ρ1/2
.

So, for

ε = 0, l ≈ 1.69 × 10−5 m,

ε = 0.2, l ≈ 1.64 × 10−7 m,

ε = 1, l ≈ 0.93 × 10−7 m,
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and we have

UT = Gb2

10
+ Gb2

4π (1 − v )
(1 − v cos2 α)

ρ−1/2

5b
.

For 50% edge and 50% screw dislocations, we make α = 45◦. The Burgers

vector can then be calculated from the radius of the atoms. If the lattice

parameter is a, the Burgers vector is, along [111]

|b| = a
√

12 + 12 + 12 = 4r

= 0.496 nm.

Thus, for

ε = 0, UT = (0.1 + 0.847)G b2 = 0.947 Gb2,

ε = 0.2, UT = (0.1 + 0.402)G b2 = 0.502 Gb2,

ε = 1, UT = (0.1 + 0.34)G b2 = 0.44 Gb2.

The approximate expression for the dislocation self-energy (UT = Gb2/2)

becomes gradually better as the density is increased. The total energy

of dislocations per unit volume is

U = UT ρ,

and for

ε = 0, U = 696.3 J/m3
,

ε = 0.2, U = 74.2 × 104 J/m3
,

ε = 1, U = 2.3 × 105 J/m3
.

6.2.3 Shear Deformation
Just as a tensile test does not directly provide the shear stress in the

slip plane and along the slip direction, it does not directly provide the

corresponding deformation. Accordingly, one must determine shear

by taking into account the relative orientations of the tensile axis

and the slip system. If a tensile specimen is attached to the grips

of a tensile-testing machine by means of universal joints, it can be

seen that the slip plane will rotate with respect to the tensile axis as

deformation proceeds. Therefore, it is important to know the deform-

ation and, consequently, the change in orientation, along with the

attendant alteration in Schmid’s factor. In a similar way, it can be

shown that the shear strain dγ in the slip system is related to the

longitudinal strain dε by

dλ = dε

sin χ cos λ
= dε

M
. (6.4)

Therefore, when M = 0.5, we have τ = 0.5σ and γ = 2ε. (Notice that

τ = σ /2!).
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Conjugate plane (111)

Cross plane (111) Primary plane (111)

Critical plane (111)[101]

[111]
[111]
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[110]

l

c
[100]

P2 P1

Fig. 6.11 Stereographic

projection showing the rotation of

slip plane during deformation.

Direction P1, inside stereographic

triangle moves toward P2 on

boundary [100]–[111]. Then, P2

moves toward [211].

6.2.4 Slip in Systems and Work-Hardening
Equations 6.3 and 6.4 establish the stress and strain in the plane and

in the direction of shear and are therefore important from the point

of view of dislocation motion. In HCP structures, the slip is more

easily maintained in one plane. However, in BCC and FCC structures,

other slip systems are easily activated. The rotation and direction of

the slip plane will easily put other systems in a favorable position.

This situation is shown in the stereographic projection of Figure 6.11.

A certain crystal has its tensile axis within the crosshatched stereo-

graphic triangle. The first slip system to be activated will be the one

with the highest Schmid factor. (See Equations 6.2 and 6.3). There are

eight slip systems around axis P1 in the figure. There are other ones in

the total stereographic projection. By using great circles, the reader

can check whether the following systems of directions really belong

to the planes:

(111̄)[101], (111̄)[11̄0],

(111)[11̄0], (111)[101̄],

(11̄1)[101̄], (11̄1)[110],

(11̄1̄)[110], (11̄1̄)[101].

The maximum value of Schmid’s factor, M = 0.5, is obtained for

χ = λ = 45◦. The angles between P1 and the <100> directions are

determined by means of a Wulff net, passing a great circle through

the two poles. Among the preceding eight systems, the slip system

having the highest Schmid factor is (111̄) [101]; slip will initially take

place in this system. Plane (111̄) is therefore called the primary slip

plane. As deformation proceeds, χ and λ will rotate. In the stereo-

graphic projection, this is indicated by rotation of the axis P1. Actu-

ally, the specimen rotates with respect to the axis. P1 will tend to align

itself with direction [101], decreasing λ in the process; this is shown in
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Fig. 6.12 Shear-stress vs.

shear-strain curves for Nb(BCC)

monocrystals at different

crystallographic orientations;

arrows indicate calculated strain at

which conjugate slip is initiated.

(From T. E. Mitchell, Prog. App.

Matls. Res. 6 (1964) 117.)

Figure 6.11. However, when the great circle passing through [100] and

[111] is reached, the primary system and the conjugate slip system (11̄1)

[110] will have the same Schmid factor. The typical behavior in this

case is double slip in both systems: The axis P1 will tend toward the

direction [211], as shown in the figure. In reality, there are deviations

from this behavior, and there is a tendency to ‘‘overshoot” and subse-

quent correction. The two other slip systems are called the cross system

and the critical system. This nomenclature, however, is not universal:

Often, the term ‘‘cross-slip” is used to describe a different situation --

small slip segments in a secondary slip system joining slip lines in a

primary slip system.

As a conclusion to the foregoing discussion, it can be said that a

cubic crystal will initially undergo slip in one system if P1 is within

the stereographic triangle. If P1 is on the sides of the triangle, two

systems have the same Schmid factor. On the other hand, if P1 coin-

cides with one of the edges, the situation is more complicated: Eight

systems will have the same Schmid factor if P1 coincides with [100],

four if it coincides with [110], and six if it coincides with [111]. The

term ‘‘polyslip” refers to a crystal oriented in such a way that more

than one system is activated.

When a cubic monocrystal with an orientation inside the stereo-

graphic triangle is deformed, one single slip system is often acti-

vated. Such orientations in the center of the stereographic triangle

are considered ‘‘soft” orientations, and Figure 6.12 illustrates the dif-

ferent stress--strain curves obtained for niobium. Orientations 1 and

2 are close to polyslip, and the stress--strain curves have the char-

acteristic parabolic hardening shape. Several slip systems are acti-

vated at the onset of yielding. For orientations 3 through 7, inside

the sterographic triangle, one single slip system is activated first.

The onset of conjugate slip requires rotation of the crystal toward

an orientation along the sides of the triangle; this occurs only at

a certain amount of strain, which depends on the orientation. Sin-

gle slip is characterized by a very low work-hardening rate; once the

conjugate slip becomes operative, the work-hardening rate increases

significantly.
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Figure 6.13 shows generic shear-stress--shear-strain curves for FCC

single crystals. Any such curve can be divided, conveniently, into three

regions: I, II, and III; θ I, θ II, and θ III are the respective work-hardening
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Fig. 6.13 Generic

shear-stress–shear-strain curves

for FCC single crystals for two

different temperatures.

slopes (dτ /dγ ) of the regions. In what follows, we describe the salient

points of the various stages.

Stage I starts after elastic deformation at the critical stress τ 0. This

stage, called ‘‘easy glide,” is a linear region of low strain-hardening

rate. θ I is approximately G/3000. Stage I is characterized by long slip

lines (100 to 1,000 μm), straight and uniformly spaced (10 to 100 nm

apart). We adopt the nomenclature used by A. Seeger.2 Slip lines are

the ‘‘elementary structure” of slip and can be observed only via the

electron microscope. With the optical microscope, one observes slip

bands; they occur at the higher strains and are made up of clusters of

slip lines. On the other hand, slip markings are observed as steps at the

surface of the specimen. Stage I does not exist in polycrystals or in

monocrystals oriented for polyslip. The extent of this stage depends

strongly on the crystal orientation. The strain at the end of stage I

(γ 2) has a maximum value when the crystal orientation is located in

the center of the standard stereographic triangle. The end of stage I

is considered to be the start of secondary slip (when, in Figure 6.11,

point P1 has moved to P2).

Stage II, or the linear hardening stage, has the following important

characteristics.

1. A linear hardening regimen with a high θ II.

2. θ II/ G ≈ 1/300. This parameter is relatively constant for a great

majority of metals. (The maximum variation is a factor of about 2).

θ II is approximately equal to 10θ I and is relatively independent of

temperature, although temperature has a significant effect on the

extent of stage II.

Stage III is characterized by cross-slip. Stage III is difficult to occur

at a low level of stresses, and its operation is aided by high tempera-

tures. Thus, one expects that the stress necessary at the start of stage

III, τ 3, would depend on temperature, and such, indeed, is the case

in practice: τ 3 increases with a decrease in temperature.

The start of Stage III is also markedly dependent on the stacking-

fault energy of the metal. Metals with relatively low stacking-fault

energies -- for example, brasses, bronzes, and austenitic steels -- have

a rather wide stacking-fault ribbon and, consequently, need a higher

activation energy for cross-slip to occur. (See Figure 6.14.) This is so

because, for cross-slip to occur in these metals, it is necessary to form

a constriction over a wide ribbon of the stacking fault, in order to have

a certain length of perfect dislocation. Thus, in metals and alloys with

low stacking-fault energies, cross-slip will be difficult to bring about

at normal stress levels. This, in turn, makes it difficult for the screw

dislocations to change their slip plane. The dislocation density is high,

2 A. Seeger, in J. C. Fischer, W. G. Johnston, and T. Vreeland (eds.), Dislocations and Mechan-

ical Properties of Crystals (New York: John Wiley, 1957), p. 243.
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Fig. 6.14 Model of cross-slip.

and the transition from stage II to stage III is retarded. Aluminum, on

the other hand, has a higher stacking-fault energy. Thus, the stress

necessary for cross-slip to occur in aluminum, at a given temperature,

is much lower than in, say, copper or brass.

6.2.5 Independent Slip Systems in Polycrystals
For any FCC crystal whose tensile axis is near the center of the stereo-

graphic triangle, deformation should start on the primary system.

However, if the crystal is surrounded by other crystals with different

crystallographic orientations -- as is likely in a polycrystalline aggre-

gate -- all the crystals (grains) are not likely to start deforming in

the same manner. The strain taking place in the first grain must

be compatible with the neighboring grains. In other words, it is not

possible to form discontinuities along the grain boundaries; deform-

ation has to propagate from one grain to another if continuity at

the boundary is to be maintained. Five independent slip systems are

required to produce a general homogeneous strain in a crystal by

slip.

The slip along several parallel systems produces, macroscopically,

a translation of one part of the crystal with respect to the other and,

consequently, a certain shear. Since the plastic flow generally occurs

without any appreciable change in volume, we have ε11 + ε22 + ε33 =
0. This relationship reduces the components of strain from six (ε11,

ε22, ε33, ε12, ε13, ε23) to five; the operation of one slip system produces

only one independent component of the strain tensor. Therefore, one

may conclude that five independent slip systems are required for the

deformation of one grain in a polycrystalline aggregate. Consequently,

polycrystals do not exhibit stage I (easy glide) of work-hardening.

6.3 Work-Hardening in Polycrystals

In the preceding sections, work-hardening in single crystals was

attributed to the interaction of dislocations with other dislocations

and barriers that impede the motion of dislocations through the

crystal lattice. In polycrystals, too, this basic idea remains valid.
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However, due to the mutual interference of neighboring grains and

the problem of compatible deformations among adjacent grains,

multiple slip occurs rather easily, and, consequently, there is an appre-

ciable work-hardening right at the beginning of straining.

In a manner similar to that in single crystals, primary disloca-

tions interact with secondary dislocations, giving rise to dislocation

dipoles and loops which result in local dislocation tangles and, even-

tually, a three-dimensional network of subboundaries. Generally, the

size of these cells decreases with increasing strain. The structural

differences between one metal and another are mainly in the sharp-

ness of these cell boundaries. In BCC metals and in FCC metals with

high stacking-fault energy, such as Al, the dislocation tangles re-

arrange into a well-defined cell structure, while in metals or alloys

with low stacking-fault energy (e.g., brasses, bronzes, austenitic steels,

etc.), where the cross-slip is rather difficult and the dislocations are

extended, the sharp subboundaries do not form even at very large

strains.

The plastic deformation and the consequent work-hardening

results in an increase in the dislocation density. An annealed metal,

for example, will have about 106 to 108 dislocations per cm2, while

a plastically cold-worked metal may contain up to 1012 dislocations

per cm2. The relationship between the flow stress and the dislocation

density is the same as that observed for single crystals -- that is,

τ = τ0 + αG b
√

ρ, (6.5)

where α is a constant with a value between 0.3 and 0.6. This rela-

tionship has been observed to be valid for a majority of the cases.

τ0 is the stress necessary to move a dislocation in the absence of
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Fig. 6.15 Average dislocation

density ρ as a function of the

resolved shear stress τ for copper.

(Adapted with permission from H.

Wiedersich, J. Metals, 16 (1964)

p. 425, 427.)

other dislocations. Figure 6.15 shows that Equation 6.5 is obeyed

for copper monocrystals (with one, two, and six slip systems oper-

ating), as well as polycrystals. The relationship is very important and

serves as a basis for work-hardening theories. In ceramics, only limit-

ed observations of such kind have been made. Nevertheless, they show

the same trend. Measurements of dislocation densities in sapphire

(single-crystal α-alumina) subjected to plastic deformation at high

temperatures (1,400--1,720 ◦C), above the ductile-to-brittle transition,

are shown in Figure 6.16. These dislocation densities were measured

at strains γ < 0.23, and it was observed that the dislocation density

showed a stress dependence analogous to Equation 6.5, with τ0 =
0. The proportionality coefficient was dependent on temperature and

varied in the range 0.2--0.5, which is very similar to the corresponding

range for metals.

Many theories have been advanced to explain the phenomenon of

work-hardening. The most important and difficult part in the attempt

to predict work-hardening behavior is to determine how the dens-

ity and distribution of dislocations vary with the plastic strain. The

problem is that stress is a state function in the thermodynamic sense
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(i.e., it depends only on its position or value, not on how that partic-

ular value of stress was attained.) Plastic strain, on the other hand,

is a path function of its position (i.e., it depends on the actual path

traversed in reaching a certain strain value.) In other words, plastic

strain is dependent on its history. Thus, the presence or absence of

dislocations and their distributions can tell us nothing about how a

certain amount of strain was accumulated in the crystal, because we

do not know the path that dislocations traversed to accumulate that

strain. Hence, one constructs models that recreate the processes by

means of which the various dislocation configurations emerge; one

then tries to correlate the models with the configurations observed

experimentally. Both the density and the distribution of dislocations

are very sensitive functions of the crystal structure, stacking-fault

energy, temperature, and rate of deformation. In view of all this, it is

not surprising that a unique theory of work-hardening which would

explain all of its aspects does not exist.

In what follows, we briefly review three of the best-known theories

of workhardening -- those of Taylor, Seeger, and Kuhlmann--Wilsdorf.

6.3.1 Taylor’s Theory
Taylor’s theory3 is one of the oldest theories of work-hardening. At

the time the theory was postulated (1934), the stress--strain curve for

metallic crystals such as aluminum was considered to be parabolic.

(The single-crystal stress--strain curve consisting of three stages was

unknown; see Figure 6.13.) This being so, Taylor proposed a model

that would predict the parabolic curve. The principal idea, which,

incidentally, is still used in one form or another by modern theories,

was that the dislocations, on moving, elastically interact with other

dislocations in the crystal and become trapped. These trapped dis-

locations give rise to internal stresses that increase the stress neces-

sary for deformation (i.e., the flow stress).

3 G. I. Taylor, Proc. Roy. Soc. (London), A145 (1934) 362.
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crystal.

Let � be the average distance that a dislocation moves before it

is stopped. The initial and final positions A and B are marked in

Figure 6.17. Let ρ be the dislocation density after a certain strain.

Then the shear strain is given by (see Equation 4.29)

γ = kρb�, (6.6)

where k is an orientation-dependent factor and b is the Burgers

vector.

Taylor considered only edge dislocations and assumed that the

dislocation distribution was uniform; thus, the separation between

dislocations, L, will be equal to ρ−1/2. (See Figure 6.17.) The effective

internal stress τ , caused by these interactions among dislocations, is

the stress necessary to force two dislocations past each other. The

interactions among dislocations are complex, involving attraction,

repulsion, reactions, etc. Taylor considered only a very simple case:

As the dislocation moves from A to B, it will approach the other dis-

locations, with the minimum distance being L/2. Taking into account

just the repulsion from the dislocations, we can assume that, for

an edge dislocation, the shear stress fields given in Chapter 4 are

(Equation 4.12)

σ12 = Gb

2π (1 − ν)

x1(x2
1 − x2

2 )

(x2
1 + x2

2 )
.

Supposing that x2 = L/2 and x1 = 0, we arrive at

σ12 = Gb

π (1 − ν)L
= K Gb

L
,

where K is a constant. In order for the moving dislocation to overcome

this stress field, a shear stress

τ = K Gb

L

has to be applied. Or, recalling that L = ρ−1/2, we obtain

τ = K Gb
√

ρ. (6.7)

From Equations 6.6 and 6.7, we get

τ = K Gb

√
γ

kb�
= k′G

√
γ

�
. (6.8)
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We could add a frictional term τ 0 that is required to move the dislo-

cation in the absence of other dislocations, and arrive at:

τ = τ0 + k′′γ 1/2

Equation 6.8 is a parabolic relation between the stress τ and the

strain γ . It describes, approximately, the behavior of many materials

at large deformations. Among the criticisms of the Taylor theory, one

may include the following.

1. Such regular configurations of dislocations are rarely observed in

cold-worked crystals.

2. Screw dislocations are not involved, and thus, the cross-slip is

excluded; edge dislocations cannot cross-slip.

3. Two dislocations on neighboring planes may be trapped in each

other’s stress fields and may thus become incapable of moving

independently of each other. But the pair of dislocations may be

pushed by a third dislocation.

4. We know now that stress--strain curves for hexagonal crystals, as

well as those for stage II of cubic crystals, are linear. Taylor’s theory

does not explain this linear hardening.

5. Taylor’s parabolic relation derives from the supposition that there

is a uniform distribution of deformed regions inside the crystal.

In reality, the distribution is not uniform, and experimentally, we

observe slip bands, cells, and other nonuniform arrangements.

6.3.2 Seeger’s Theory
Seeger’s theory, (see the suggested reading for details) addresses the

three stages of work-hardening of a monocrystal (easy glide, linear

hardening, and parabolic hardening) and proposes specific mechan-

isms for each stage. The values of the slopes for the three stages are

obtained from dislocation considerations. In stage I, long-range inter-

actions between well-spaced dislocations are considered. The disloca-

tion loops are blocked by unspecified obstacles, all on the primary

system. Slip activity on secondary slip systems begins in stage II of

hardening. The secondary activity furnishes barriers such as Lomer--

Cottrell barriers. The dislocations pile up against such barriers in

Stage II and give rise to long-range internal stresses that control the

flow stress. Without going into complex details, we can say that the

long-range theory of Seeger et al. does predict that θ II/G ≈ 1/300 for

FCC metals.

6.3.3 Kuhlmann–Wilsdorf’s Theory
The substructures developed during metal deformation processes

resemble the idealized models only in the initial stages. As the

imposed deformation increases, dislocation cells start to form in

alloys with medium and high stacking-fault energies. With increas-

ing deformation, the cell diameters decrease, and the cells become

elongated in the general direction of the deformation. The cell walls
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tend to become progressively sharper as the misorientation between

two adjacent cells increases. A cell wall is essentially a low-angle grain

boundary, but when the misorientation between adjacent cell walls

reaches a certain critical value, we can no longer refer to the bound-

ary in these terms. The boundary between two cells becomes freer

of dislocations, and subgrains are formed in a process called polygon-

ization. This transition from cells to subgrains occurs at different effec-

tive strains for different materials: 0.80 for 99.97% pure Al and 1

to 1.20 for copper. A detailed treatment of the work-hardening and

formation of texture at large imposed plastic strains is given by Gil

Sevillano et al.4 For metals with low stacking-fault energies, the devel-

opment of a fine lamellar substructure consisting of microtwins, twin

bundles, shear bands, and stacking faults is the characteristic feature

of high-strain deformation.

Figure 6.18 shows the changes in substructure observed in nickel

rolled at room temperature. At reductions up to 40%, we clearly have

a cellular structure. We can see that at 40% (Figure 6.18(b)) we already

have a large dislocation density. At 80% reduction, we can clearly see

that many of the cell walls have disappeared and are replaced by well-

defined boundaries. The observation is made more difficult because

of the large density of dislocations. The electron diffraction patterns

(right-hand corner of photomicrographs) show the effect very well.

Up to 40% reductions, the diffraction spots are fairly clear, with lit-

tle asterism (elliptical distortion). At 80% (Figure 6.18(c)), the asterism

is very pronounced, and elongated spots break down into smaller

spots, indicating that a distorted grain has broken down into sub-

grains, which have relatively little distortion. Based on observations

of dislocation cells in plastically deformed metals with medium and

high stacking-fault energies, Kuhlmann-Wilsdorf 5 proposed the so-

called mesh-length theory, which is based on the stress necessary for

dislocation bowing. In stage I, the dislocations multiply into certain

restricted regions and penetrate into regions as yet substantially free

of mobile dislocations, until a quasiuniform distribution of disloca-

tions is obtained. The only resistance to deformation is the disloca-

tion line tension. Thus, hardening occurs because free segments of

dislocations become ever smaller. Stage II starts when there are no

more ‘‘virgin” areas left for penetration by new dislocations. The stress

required to bow segments of dislocation is responsible for a great part

of stage II hardening: Dislocation segments can bow out inside the

cells. Figure 6.19 shows, in a schematic manner, dislocation cells of

size L in which the cell walls occupy a fraction f of the total crys-

tal. Dislocation sources with mean width � are activated and form

loops, as shown in the figure. As these loops are formed, the disloca-

tion density increases and the cell size decreases. Kuhlmann-Wilsdorf

was able to explain, in quantitative manner, the three stages of work-

hardening.

4 J. Gil Sevillano, P. van Houtte, and E. Aernoudt, Prog. Mater. Sci., 25 (1981) 69.
5 D. Kuhlmann--Wilsdorf, Met. Trans. 11A (1985) 2091.
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Fig. 6.19 Schematic

representation of dislocation cells

of size L, with activation of

dislocation sources from the cell

walls and bowing out of loops into

the cell interior. (Courtesy of

D. Kuhlmann-Wilsdorf.)

Example 6.3

Consider dislocations blocked in a copper crystal. If the flow stress is

controlled by the stress necessary to operate a Frank--Read source, com-

pute the dislocation density ρ in this crystal when it is deformed to a

point where the resolved shear stress in the slip plane is 42 MPa. Take

G = 50 GPa.

Solution: The dislocation line length is related to the dislocation

density by

� = ρ−1/2.

The flow stress is the shear stress necessary to operate a Frank--Read

source. Hence (from Equation 4.22d),

τ = G b/� = G b
√

ρ.

For copper, b = 3.6 × 10−10(
√

2/2) m = 2.55 × 10−10 m, where 3.6 × 10−10

m is the Cu lattice parameter. Rearranging the preceding expression,

we obtain the dislocation density

ρ = τ 2/G 2b2 = (42 × 106)2/(50 × 109)2 × (2.55 × 10−1)2,

or

ρ = 1.09 × 1013 m−2.

Example 6.4

For the single crystal of an FCC metal, the work-hardening rate in shear

is dτ /dγ = 0.3 GPa. Compute the work-hardening rate in tension, dσ /dε,

for a polycrystal of this metal. Take the Schmid factor Mp to be 1/3.1.

Solution: The tensile stress is related to the shear stress by the Schmid

factor

σ = M −1
p τ.
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Fig. 6.20 Typical load

deformation curve for concrete

under uniaxial compression; the

specimen was unloaded and
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deformation. (From G. A.

Hegemier and H. E. Reed, Mech.

Mater., 4 (1985) 215; data
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Thus,

dσ = M −1
p dτ. (1)

Also, the tensile strain ε is related to the shear strain γ by

ε = M p y.

Thus,

dε = M −1
p dτ. (2)

Dividing Equation 1 by Equation 2, we have

dσ/dε = M −2
p (dτ/dγ ) = (dτ/dγ )(3.1)2,

or

dσ/dε = 9.61(dτ/dγ ) = 9.61 × 0.3 = 2.88 GPa.

6.4 Softening Mechanisms

Under special circumstances, materials can undergo softening dur-

ing plastic deformation. This degradation of a material’s strength

can be caused by a number of mechanisms. Damage accumulation is

the most common mechanism in ceramics and composites. Dam-

age can be of many types: microcracks forming in the material, a

breakup of the matrix/reinforcement interface, cracking of second

phase, etc. Figure 6.20 shows softening observed in concrete. The

compression was halted at several points, and the specimen was

unloaded and subsequently reloaded. The damage consists of micro-

cracks, which results in the reduction in the Young’s modulus of

concrete as the compression evolves (E1 > E2 > E3). In Chapter 2, we

saw how microcracks affect the Young’s modulus of brittle mater-

ials. A discussion of damage accumulation in composites is given in

Chapter 15.
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Softening of radiation-hardened materials occurs when the sweeping

of radiation induced defects (point defects) by dislocations leads to

the formation of ‘‘soft” channels.

In geometric softening, during plastic deformation, individual grains

rotate toward crystallographic orientations for which the Schmid fac-

tor is increased. This rotation can lead to global softening of the

material in spite of the hardening along the individual slip systems.

We describe the last of the major softening mechanisms, thermal

softening, in detail. The plastic deformation of a metal is an irreversible

process, and most of the work of deformation is converted into heat.

At most, only 10% of plastic deformation is stored as defects (primarily

dislocations) as shown in the example below.

Example 6.5

Calculate the stored energy in a copper crystal with a dislocation dens-

ity of ∼1011 cm−2, typical of a highly deformed metal.

Solution: We first find the total energy in the crystal which is equal to

U = ρ
G b2

2
.

For copper, G = 48.3 GPa and b = 0.25 nm. Thus, the total deformation

energy is (ρ = 1011 cm−2 = 1015 m−2):

U = 1

2
× 1015 × 48.3 × 109 × 0.0625 × 10−18

= 1.5 × 106 J/m3.

Assuming that this sample of copper exhibits work-hardening and that

the constitutive equation is (see Equation 3.11)

σ = σ0 + K εn,

where

σ0 = 50 MPa,

n = 0.5,

K = 500 MPa.

We can calculate the total deformation energy per unit volume at a

strain of 0.5:

U =
∫ ε

0

σdε =
∫ ε1

0

(σ0 + K εn)dε

= σ0ε1 + K
εn+1

1

n + 1
= 50 × 106 × 0.5 + 500 × 106 × 0.35

1.5

= (25 + 116) × 106

= 1.41 × 108 J/m3.
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Fig. 6.21 (a) Compressive

true-stress–true-strain curves for

titanium at different strain rates;

notice the onset of softening at the

arrows. (Adapted from M. A.

Meyers, G. Subhash, B. K. Kad, and

L. Prasad, Mech. Mater., 17 (1994)

175.) (b) Schematic linear

shear-stress–shear-strain curves

for titanium at different

temperatures, with superimposed

adiabatic curve constructed from

isothermal curves by incrementally

converting deformation work into

heat (and a consequent rise in

temperature.) (Adapted from M.

A. Meyers and H.-R. Pak, Acta Met.,

34 (1986) 2493.)

Thus, the dislocation energy represents 1.4% of the total work of defor-

mation. The work of deformation leads to a rise in the temperature of

the specimen.

If there is insufficient time for the heat to escape from the specimen

during deformation, the material cannot be considered isothermal

any longer, and the loss of strength caused by the increase in tem-

perature will, at a certain point, exceed the increase in strength due

to work-hardening. At this point, the stress--strain curve starts to go

down, and thermal softening sets in. This is shown in Figure 6.21(a).

At lower strain rates (2 × 10−4 s−1, 10−3 s−1, and 10−2 s−1), the curves

show the normal work-hardening behavior up to high strains. How-

ever, for the strain rates of 1.44 s−1 and 3.9 s−1, the stress--strain

curves show maxima beyond which softening sets in. It is easy to

understand and to predict this softening. Figure 6.21(b) shows shear-

stress--shear-strain curves for titanium at different temperatures. For

simplicity, linear work-hardening was assumed. These curves are all

isothermal. We now compute the temperature elevation produced by

plastic deformation, by applying the following equation:

dT = β

σC p

σdε,
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where β is the conversion factor for mechanical energy into heat, Cp

is the heat capacity and ρ the density of the material. By taking small

increments of strain, we obtain

�T = β

ρC p

σ�ε.

In Figure 6.21(b), an adiabatic curve was built in such a fashion. The

work-to-heat conversion factor β is usually taken to be in the range

0.9--1.0. (Most of the work is converted to heat.) The adiabatic curve

shows a maximum at γ approximately equal to 1; this marks the

shear strain at which softening starts.

The softening of the material will lead to the phenomenon of

adiabatic shear localization. Adiabatic shear bands are narrow regions

where softening occurs and where concentrated plastic deformation

takes place. Steels, titanium alloys, and aluminum alloys are quite

prone to shear-band formation, which occurs in machining and which

is responsible for the breakup of the machining chips. Shear-band

formation also occurs in high-strain-rate operations, such as forging

and shearing, as well as in ballistic impact.

Shear bands formed during forging operations are highly undesir-

able, because they can lead to subsequent fracture of the specimen.

The microstructure within shear bands is quite different from that of

the surrounding material. The shear bands often undergo dynamic

recrystallization, due to the high local temperature.

In the ballistic impact of projectiles against armor, shear bands

play a major role both in the defeat of the armor and in the breakup

of the projectiles. Since recrystallization occurs very rapidly, the

resultant grain size is very small, typically 0.1 μm. Figure 6.22(a)

shows a shear band in titanium with a width of approximately

10 μm. The fine microcrystalline structure inside of the shear band is

seen in the photomicrograph of Figure 6.22(b); the initial grain size

of the material was 50 μm.

6.5 Texture Strengthening

A single crystal rotates when it deforms plastically in a particular slip

system. (See Section 6.2.4.) When a polycrystal is deformed in rolling,

forging, drawing, and so on, the randomly oriented grains will slip

on their appropriate glide systems and rotate from their initial condi-

tions, but this time under a constraint from the neighboring grains.

Consequently, a strong preferred orientation or texture develops after

large strains; that is, certain slip planes tend to align parallel to the

rolling plane, while certain slip directions tend to align in the direc-

tion of rolling or wire drawing. In metals, annealing can also result

in a texture generally different from that obtained by mechanical

working, but still dependent on the history of the mechanical work-

ing. As an illustration, Figure 6.23 shows the microstructures along

three perpendicular planes for nickel cold-rolled to a reduction in
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(a)

(b)

Fig. 6.22 Shear bands in

titanium. (a) Optical micrograph,

showing band. (b) Transmission

electron micrograph, showing

microcrystalline structure, with

grain size approximately equal to

0.2 μm. The original grain size of

the specimen was 50 μm.

Fig. 6.23 Perspective view of

microstructure of Nickel-200

cold-rolled to a reduction in

thickness of 60%.

thickness of 60%. The highly elongated grains along the rolling direc-

tion are readily seen.

A strongly textured material can exhibit highly anisotropic prop-

erties. This is not intrinsically bad; in fact, controlled anisotropy in

sheet metals can be exploited to obtain an improved final product. The
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rolled copper sheet.

Young’s modulus E of steel can, theoretically, have a value between

the extreme values of the iron monocrystal (i.e., between Fe[111] and

Fe[100]), as shown in Figure 6.24. The Young’s modulus cannot be

changed much by alloying, but texture can -- again, theoretically --

have some influence. We caution the reader that the effect on E,

for all practical purposes, is rather small. This is not the case, how-

ever, for many other properties. For example, Figure 6.25 shows the

rather marked orientation dependence of the yield strength σ y and

the strain to fracture, εf, of a rolled copper sheet. Clearly, cups

made out of this material by deep drawing would show ‘‘earing” at

90◦ intervals due to this texture (see Figure 3.45 for illustration of
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Table 6.1 Some Common Wire and Sheet Textures

Wire (Fiber Texture) Sheet (Rolling Texture)

FCC [111] + [100] (110) [11̄2] + (112) [111̄]
BCC 110 (100) [011]

HCP [101̄0] (0001) [112̄0]

Rolling
direction

Transverse

direction

Fig. 6.26 [111] pole figure of a

rolled-brass sheet.

‘‘earing”). Use is made of such texture development in Fe--3% Si. Sheets

of this material are used to make transformer cores, wherein thermo-

mechanical treatments are given to develop a desirable magnetic

anisotropy that improves electrical performance.

Crystallographic texture is commonly represented in the form of

normal-pole or inverse-pole figures. A normal-pole figure is a stereo-

graphic projection showing the intensity of normals to a specific

plane in all directions, while an inverse-pole figure is a sterographic

projection showing the intensities of all planes in a specific direction.

The experimental procedure involves measuring relative intensities

of X-ray reflections from the polycrystalline material at different ang-

ular settings. Details of the experimental determination of pole fig-

ures can be found in standard texts on the subject.

Figure 6.26 shows the [111] pole figure of a heavily deformed

α-brass (70% Cu−30% Zn) sheet. This texture, called brass-type tex-

ture, is a (110) [11̄2] texture, i.e., with (110) planes parallel to the

rolling plane and [11̄2] directions parallel to the rolling direction.

The double texture indicated for FCC structures in Table 6.1 is not

obtained in α-brass, but single (110) [11̄2] texture develops, owing to

the material’s low stacking-fault energy or (probably) to mechanical

twinning.
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Exercises

6.1 Discuss the merits and demerits of the use of transmission electron

microscopy techniques to study the dislocation behavior in crystalline

materials.

6.2 Explain why a metal like lead does not work-harden when deformed at

room temperature, whereas a metal such as iron does.

6.3 What is the effect of cold work and annealing on the Young’s modulus of

a metal?

6.4 If we strain an FCC and an HCP single crystal, which of the two will have

a larger amount of easy glide, and why?

6.5 In a cold-worked metal, a dislocation density of 1 × 1016 m−2 was meas-

ured after a shear strain of 10%. Assuming that the dislocations are uniformly

distributed, estimate the flow stress of this metal. Take G = 25 GPa.

6.6 Consider dislocations blocked with an average spacing of � in a copper

crystal. If the flow stress is controlled by the stress necessary to operate a

Frank--Read source, compute the dislocation density ρ in this crystal when it

is deformed to a point where the resolved shear stress in the slip plane is 42

MPa. Take G = 50 GPa.



400 GEOMETRY OF DEFORMATION AND WORK-HARDENING

6.7 Make a schematic plot showing the variation in the following parameters

with percent cold work:

(a) ultimate tensile strength,

(b) yield strength in tension,

(c) strain to failure,

(d) reduction in area.

6.8 The stress axis in an FCC crystal makes angles of 31◦ and 62◦ with the

normal to the slip plane and with the slip direction, respectively. The applied

stress is 10 MN/m2.

(a) Determine the resolved stress in the shear plane.

(b) Is the resolved stress larger when the angles are 45◦ and 32◦, respectively?

(c) Using a stereographic projection, determine the resolved stresses on the

other slip systems.

6.9 Magnesium oxide is cubic (having the same structure as NaCl). The slip

planes and directions are [110] and <110>, respectively. Along which direc-

tions, if any, can a tensile (or compressive) stress be applied without producing

slip?

6.10 A Cu monocrystal (FCC) of 10 cm length is pulled in tension. The stress

axis is [1̄23].

(a) Which is the stress system with the highest resolved shear stress?

(b) If the extension of the crystal continues until a second slip system

becomes operational, what will this system be?

(c) What rotation will be required to activate the second system?

(d) How much longitudinal strain is required to activate the second system?

6.11 Flow stress varies with strain rate; one equation that has been used to

express this dependence is

σ = c ε̇m′
f (ε, T ),

where m′ is the strain-rate sensitivity, which is generally less than 0.1. Some

metals, called superplastic, can undergo elongations of up to 1,000% in uni-

axial tension. Assuming that these tests are performed at a uniform velocity

of the crosshead, will the metals have a very high or a very low value of m′?
Explain, in terms of the formation and inhibition of the neck.

6.12 Johnston and Gilman6 experimentally determined the relationship

between dislocation velocity and applied stress

v = Aσ m,

where A is the constant of proportionality. Assuming that the mobile dis-

location density does not depend on the velocity of the dislocations, obtain

a relationship between m and m′ (from Exercise 6.11).

6.13 The following results were obtained in an ambient-temperature tensile

test, for an aluminum monocrystal having a cross-sectional area of 9 mm2

and a stress axis making angles of 27◦ with [100], 24.5◦ with [110], and 29.5◦

with [111]:

6 W. G. Johnston and J. J. Gilman, J. Appl. Phys., 30 (1959) 129.
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Load (N) Length (cm)

0 10.000
12.40 10.005
14.30 10.040
16.34 10.100
18.15 10.150
21.10 10.180
23.60 10.200
26.65 10.220

(a) Plot the results in terms of true stress versus true strain.

(b) Determine the resolved shear stress on the system that will slip first.

(c) Determine the longitudinal strain at the end of the easy-glide stage (when

a second slip system becomes operative).

6.14 Take a stereographic triangle for a cubic metal. If the FCC slip systems

are operative, indicate the number of slip systems having the same Schmid

factor if the stress axis is:

(a) [111],

(b) [110],

(c) [100],

(d) [123].

Use the stereographic projections to show your results.

6.15 A copper bicrystal is composed of two monocrystals separated by a

coherent twin boundary (111). The bicrystal is being compressed in a homo-

geneous upset test in such a way that the twin boundary is perpendicular

to machine plates. The compression direction is the same for both crystals,

namely, [134].

(a) Is this crystal isoaxial?

(b) Is deformation in the two crystals compatible or incompatible?

6.16 The flow stress σ is related to the dislocation density ρ by the relation-

ship

σ1 = σi + αG b
√

ρ,

where the symbols have their usual significance. If the dislocation density is

inversely related to the grain size d, show that a Hall--Petch type of dependence

of flow stress on grain size is obtained.

6.17 For an FCC polycrystalline metal, TEM analysis showed that the disloca-

tion density after cold working was 5 × 1010 m−2. If the friction stress is 100

MPa, G = 40 GPa, and b = 0.3 nm, compute the flow stress of this metal.

6.18 The stress--strain curve of a polycrystalline aluminum sample can be rep-

resented by

σ = 25 + 2000.5
ε .

Calculate the energy of deformation per unit volume corresponding to uni-

form strain (i.e., just prior to the onset of necking) in this material.
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6.19 An FCC crystal is pulled in tension along the [100] direction.

(a) Determine the Schmid factor for all slip systems.

(b) Identify the slip system(s) that will be activated first.

(c) What is the tensile stress at which this crystal will flow plastically? (τ =
50 MPa.)

6.20 Calculate the total energy due to dislocations for copper that under-

went 20% plastic deformation, resulting in a dislocation density of 1014 m−2.

Assume that b = 0.3 nm.

6.21 Using data from Figure Ex6.21 for (Ni--22%Cr--12%Co--9%Mo), obtain

appropriate parameters for the Johnson--Cook equation (see Chapter 3).

Assume ε̇0 = 3 × 10−4 s−1 and Tm = 1,600 K.

(a) Using the Johnson--Cook equation, plot stress--strain curves for tempera-

tures of 77, 173, 473, and 1,473 K.

(b) If C = 0.02, plot the stress strain curves for a strain rate of 3 × 104 s−1.
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Fig. Ex6.21 (After D Viereck,

G. Merckling, K. H. Lang, D. Eifler,

and D. Löhe, in Festigkeit und

Verformung bei Höher Temperatur,

K. Schneider, ed. (Oberursel:

Informationsgesellshaft, pp.

102–208.)

6.22 A monocrystal (diameter 4 mm, length 100 mm) is being pulled in ten-

sion.

(a) What is the elongation undergone by the specimen if 1,000 dislocations

on slip planes making 45◦ with the tension axis cross the specimen

completely? Take b = 0.25 nm.

(b) What would the elongation be if all dislocations existing in the crystal

(106 cm−2) were ejected by the applied stress? Assume a homogeneous

distribution of dislocations. Assume that the crystal is FCC and all the

dislocations are in the same slip system.

6.23 A long crystal with a square cross section (1 × 1 cm) is bent to form a

semicircle with radius R = 25 cm.

(a) Determine the total number of dislocations generated if all bending is

accommodated by edge dislocations.

(b) Determine the dislocation density (b = 0.3 nm).

6.24 The response of copper to plastic deformation can be described by Hol-

lomon’s equation σ = K ε0.7.

It is known that for ε = 0.25, σ = 120 MPa. The dislocation density varies

with flow stress according to the well-known relationship

σ = K ′ρ1/2.

(a) If the dislocation density at a plastic strain of 0.4 is equal to 1011 cm−2,

plot the dislocation density versus strain.

(b) Calculate the work performed to deform the specimen.

(c) Calculate the total energy stored in the metal as dislocations after a plastic

deformation of 0.4, and compare this value with the one obtained in part

(d) Explain the difference.

6.25 A single crystal of silver is pulled in tension along the [100] direction.

Determine the Schmid factor for all slip systems. What is the tensile stress at

which this crystal will flow plastically? (τ = 100 MPa.)

6.26 Determine the area of the slip plane in Ni deformed parallel to [100] and

under a load P = 150 × 103 N. The shear stress is 600 MPa.
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6.27 Compute the dislocation density in tungsten if the flow stress is con-

trolled by the stress necessary to operate a Frank--Read source. The shear

stress in the slip plane is 50 MPa. Take G = 166 GPa.

6.28 List all the slip systems in single crystal copper. Calculate the Schmid

factors for them with loading axis as [221]. Which system will be activated

first when we apply the load?

6.29 Obtain the parameters for the relationship between the flow stress and

the dislocation density for copper with one, two, and six slip systems from

the data in Figure 6.15. Use the equation:

τ = τ0 + αGb
√

ρ.

6.30 What is the dislocation density in iron with a shear strain of 0.4?

Given:

(a) τ = τ0 + K γ n, τ 0 = 50 × 106 MPa, K = 108 MPa, n = 0.5,

(b) τ = τ0 + αG b
√

ρ, G = 81.6 GPa, b = 0.25 nm, α = 0.5.

6.31 The flow stress for an alloy is 100 MPa when its dislocation density is

106 cm−2, and 150 MPa when its dislocation density is 108 cm−2. When the

flow stress is 190 MPa, what is the dislocation density?

6.32 A copper sample exhibits work-hardening described by:

σ = σ0 + K εn,

where σ0 = 50 MPa, n = 0.5, K = 500 MPa.

Calculate the temperature rise when the sample is deformed up to a strain

of 0.2. Assume that the conversion factor is 1.0, and given: density = 8.9 g/cm3;

heat capacity = 360 J/kg K.



Chapter 7

Fracture: Macroscopic Aspects

7.1 Introduction

The separation or fragmentation of a solid body into two or more

parts, under the action of stresses, is called fracture. The subject of frac-

ture is vast and involves disciplines as diverse as solid-state physics,

materials science, and continuum mechanics. Fracture of a material

by cracking can occur in many ways, principally the following:

1. Slow application of external loads.

2. Rapid application of external loads (impact).

3. Cyclic or repeated loading (fatigue).

4. Time-dependent deformation (creep).

5. Internal stresses, such as thermal stresses caused by anistropy of

the thermal expansion coefficient or temperature differences in a

body.

6. Environmental effects (stress corrosion cracking, hydrogen embrit-

tlement, liquid metal embrittlement, etc.)

The process of fracture can, in most cases, be subdivided into the

following categories:

1. Damage accumulation.

2. Nucleation of one or more cracks or voids.

3. Growth of cracks or voids. (This may involve a coalescence of the

cracks or voids.)

Damage accumulation is associated with the properties of a material,

such as its atomic structure, crystal lattice, grain boundaries, and

prior loading history. When the local strength or ductility is exceeded,

a crack (two free surfaces) is formed. On continued loading, the

crack propagates through the section until complete rupture occurs.

Linear elastic fracture mechanics (LEFM) applies the theory of lin-

ear elasticity to the phenomenon of fracture -- mainly, the propa-

gation of cracks. If we define the fracture toughness of a material

as its resistance to crack propagation, then we can use LEFM to
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(a) (b) (c) (d)

Fig. 7.1 “Goofy duck” analog for

three modes of crack loading. (a)

Crack/beak closed. (b) Opening

mode. (c) Sliding mode. (d) Tearing

mode. (Courtesy of M. H. Meyers.)

provide us with a quantitative measure of fracture toughness. Vari-

ous standardization bodies, such as the American Society for Testing

and Materials (ASTM), British Standards Institution (BSI), and Japan

Institute of Standards (JIS), have standards for fracture toughness

tests.

In this chapter, we will develop a quantitative understanding of

cracks. It is very important to calculate the stresses at the tip (or in

the vicinity of the tip) of a crack, because these calculations help

us answer a very important practical question: At what value of the

external load will a crack start to grow?

Figure 7.1 shows a simple analog that will assist the student in the

visualization of different types of crack. In Figure 7.1(a), ‘‘goofy duck”

has its beak initially closed. Let us consider the spacing between the

upper and lower beaks as a crack. Depending on how the goofy duck

moves its beak, different modes of crack loading are generated:

� The opening mode, shown in Figure 7.1(b) is caused by loading that

is perpendicular to the crack plane.
� The sliding mode, shown in Figure 7.1(c) is produced by forces par-

allel to the crack plane and perpendicular to the crack ‘‘line” (crack

extremity).
� The tearing mode (Figure 7.1d) is produced by forces parallel to the

crack surface and to the crack ‘‘line.”

Among the parameters and tests that have been developed, mostly

during the last quarter of the twentieth century, to describe the resist-

ance to fracture of a material in a quantitative and reproducible

manner, is the plane strain fracture toughness, defined as the crit-

ical stress intensity factor under plane strain conditions and mode

I loading. This is the stress intensity factor at which a crack of a

given size starts to grow in an unstable manner. The fracture tough-

ness is related to the applied stress by an equation of the following

form:

K I c = Y σ
√

πa,

where KIc is the fracture toughness in mode I loading, a is the

characteristic dimension (semilength) of the crack and Y is a
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Fig. 7.2 Stress required to

separate two atomic layers.

factor that depends on the geometry of the specimen, the location

of the crack, and the loading configuration. One can see that the

stress which can be safely applied decreases with the square root of

the size of the crack. Also, note that KIc is a parameter of the mater-

ial in the same manner as are hardness and yield strength. We will

explain this in detail in Section 7.5. First we derive an expression for

the theoretical tensile strength of a crystal.

7.2 Theorectical Tensile Strength

A material is said to cleave when it breaks under normal stress and

the fracture path is perpendicular to the applied stress. The process

involves the separation of the atoms along the direction of the applied

stress. Orowan developed a simple method for obtaining the theoret-

ical tensile strength of a crystal.1 With his method, no stress concen-

trations at the tip of the crack are assumed; instead, it is assumed

that all atoms separate simultaneously once their separation reaches

a critical value. Figure 7.2 shows how the stress required to separate

two planes will vary as a function of the distance between planes.

The distance is initially equal to a0. Naturally, σ for a = a0; σ will

also be zero when the separation is infinite. The exact form of the

curve of σ versus a depends on the nature of the interatomic forces.

In Orowan’s model, the curve is simply assumed to be a sine func-

tion -- hence the generality of the model. The area under the curve

is the work required to cleave the crystal. This work of deformation

-- and here there is a certain similarity with Griffith’s crack propa-

gation theory to be presented in Section 7.4 -- cannot be lower than

the energy of the two new surfaces created by the cleavage. If the

surface energy per unit area is γ and the cross-sectional area of the

specimen is A, the total energy is 2γ A (two surfaces formed). The

stress dependence on plane separation is then given by the follow-

ing equations, admitting a sine function and assuming a periodicity

of 2d:

σ = K sin
2π

2d
(a − a0) . (7.1)

1 E. Orowan, ‘‘Fracture and Strength of Solids,” Rep. Prog. Phys., 12 (1949) 185.
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K is a constant that can be determined by the following artifice:

When a is close to a0, the material responds linearly to the applied

loads (Hookean behavior). Assuming that the elastic defomation is

restricted to the two planes shown in Figure 7.2 and that the mater-

ial is isotropic, the fractional change in the distance between the

planes, da/a0, is defined as the incremental strain dε.

da

a0

= dε

dσ

dε
= dσ

da/a0

= E , (7.2)

where E is Young’s modulus, which is defined as dσ /dε in the elastic

region. Thus,

a0

dσ

da
= E .

Taking the derivative of Equation 7.1 and substituting into Equation

7.2 for a = a0,

a0

dσ

da
= K

π

d
a0 cos

π

d
(a − a0) = E ,

K = E

π

d

a0

. (7.3)

However, d is not known; to determine d, the area under the curve

has to be equated to the energy of the two surfaces created:∫ a0+d

a0

σda =2γ. (7.4)

Substituting Equation 7.1 into 7.4, we get∫ a0+d

a0

K sin
2π

2d
(a − a0) da =2γ. (7.5)

From a standard mathematics text, the preceding integral can be

evaluated:∫
sin axdx = 1

a
cos ax. (7.6)

A substitution of variables is required to solve Equation 7.5; applying

the standard Equation 7.6, we have a − a0 = y; therefore, da = dy,

and

K

∫ d

0

sin
π

d
ydy = 2γ,

K
d

π
= γ,

and

d = πγ

K
. (7.7)

The maximum value of σ is equal to the theoretical cleavage stress.

From Equation 7.1, and making the sine equal to 1, we have,
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Table 7.1 Theorectical Cleavage Stresses According to Orowan’s Theory∗

Element Direction
Young’s Modulus
(GPa)

Surface
Energy (mJ/m2)

σmax

(GPa) σmax/E

α-Iron <100>

<111>

132
260

2
2

30
46

0.23
0.18

Silver <111> 121 1.13 24 0.20
Gold <111> 110 1.35 27 0.25
Copper <111>

<100>

192
67

1.65
1.65

39
25

0.20
0.38

Tungsten <100> 390 3.00 86 0.22
Diamond <111> 1,210 5.4 205 0.17

∗ Adapted with permission from A. Kelly, Strong Solids, 2nd ed. (Oxford, U.K.: Clarendon Press, 1973), p. 73.

from Equation 7.3,

σmax = K = E

π

d

a0

. (7.8)

Substituting Equation 7.7 into Equation 7.8 yields

K = σmax = E γ

a0 K
,

and

K 2 = (σmax)2 = E γ

a0

,

or

σmax =
√

E γ

a0

. (7.9)

According to Orowan’s model, the surface energy is given by

γ = Kd

π
= E

a0

(
d

π

)2

(7.10)

γ = Ea0

10
and σmax

∼= E

π
(7.11)

We can conclude from Equation 7.9 that, in order to have a high theo-

retical cleavage strength, a material must have a high Young’s modu-

lus and surface energy and a small distance a0 between atomic planes.

Table 7.1 presents the theoretical cleavage strengths for a number of

metals. The greatest source of error is γ : it is not easy to determine γ

with great precision in solids, and the values used in the table come

from different sources and were not necessarily determined at the

same temperature.
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7.3 Stress Concentration and Griffith
Criterion of Fracture

The most fundamental requisite for the propagation of a crack is that

the stress at the tip of the crack must exceed the theoretical cohesive

strength of the material. This is indeed the fundamental criterion,

but it is not very useful, because it is almost impossible to measure

the stress at the tip of the crack. An equivalent criterion, called the

Griffith criterion, is more useful and predicts the force that must be

applied to a body containing a crack for the propagation of the crack.

The Griffith criterion is based on an energy balance and is described

in Section 7.4. Let us first grasp the basic idea of stress concentration

in a solid.

7.3.1 Stress Concentrations
The failure of a material is associated with the presence of high local

stresses and strains in the vicinity of defects. Thus, it is important

to know the magnitude and distribution of these stresses and strains

around cracklike defects.

Consider a plate having a through-the-thickness notch and sub-

jected to a uniform tensile stress away from the notch (Figure 7.3).

We can imagine the applied external force being transmitted from

one end of the plate to the other by means of lines of force (similar

to the well-known magnetic lines of force). At the ends of the plate,

which is being uniformly stretched, the spacing between the lines

is uniform. The lines of force in the central region of the plate are

severely distorted by the presence of the notch (i.e., the stress field is

perturbed). The lines of force, acting as elastic strings, tend to min-

imize their lengths and thus group together near the ends of the

elliptic hole. This grouping together of lines causes a decrease in the

line spacing locally and, consequently, an increase in the local stress (a

stress concentration), there being more lines of force in the same area.

7.3.2 Stress Concentration Factor
The theoretical fracture stress of a solid is on the order E/10 (see

Section 7.2), but the strength of solids (crystalline or otherwise) in

practice is orders of magnitude less than this value. The first attempt

s s

Fig. 7.3 “Lines of force” in a bar with a side notch. The direction and density of the

lines indicate the direction and magnitude of stress in the bar under a uniform stress σ

away from the notch. There is a concentration of the lines of force at the tip of the notch.
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at giving a rational explanation of this discrepancy was attributed to

Griffith. His analytical model was based on the elastic solution of a

cavity elongated in the form of an ellipse.

Figure 7.4 shows an elliptical cavity in a plate under a uniform

stress σ away from the cavity. The maximum stress occurs at the

ends of the major axis of the cavity and is given by Inglis’s formula,2

σmax = σ
(

1 + 2
a

b

)
. (7.12)

where 2a and 2b are the major and minor axes of the ellipse, respect-

ively.3 The value of the stress at the leading edge of the cavity becomes

extremely large as the ellipse is flattened. In the case of an extremely

flat ellipse or a very narrow crack of length 2a and having a radius

of curvature ρ = b2/a, Equation 7.12 can be written as

σmax = σ

(
1 + 2

√
a

ρ

)
∼= 2σ

√
a

ρ
for ρ � a. (7.13)

We note that as ρ becomes very small, σ max becomes very large, and

in the limit, as ρ → 0, σ max → ∞. We define the term 2
√

a/ρ as the

stress concentration factor Kt (i.e., Kt = σ max/σ ). Kt simply describes

the geometric effect of the crack on the local stress (i.e., at the tip of

the crack). Note that Kt depends more on the form of the cavity than

on its size. A number of texts and handbooks give a compilation of

stress concentration factors Kt for components containing cracks or

notches of various configurations.

As an example of the importance of stress concentration, we point

out the use of square windows in the COMET commercial jet aircraft.

Fatigue cracks, initiated at the corners of the windows, caused cata-

strophic failures of several of these aircraft.

2b

2a

s

s

Fig. 7.4 Griffith model of a

crack.

In addition to producing a stress concentration, a notch produces

a local situation of biaxial or triaxial stress. For example, in the case

of a plate containing a circular hole and subject to an axial force,

there exist radial as well as tangential stresses. The stresses in a large

plate containing a circular hole (with diameter 2a) and axially loaded

(Figure 7.5(a)) can be expressed as4

σrr = σ

2

(
1 − a2

r 2

)
+ σ

2

(
1 + 3

a4

r 4
− 4

a2

r 2

)
cos 2θ,

σθθ = σ

2

(
1 + a2

r 2

)
− σ

2

(
1 + 3

a4

r 4

)
cos 2θ,

σrθ = −σ

2

(
1 − 3a4

r 4
+ 2a2

r 2

)
sin 2θ. (7.14)

2 C. E. Inglis, Proc. Inst. Naval Arch., 55 (1913) 163, 219.
3 The derivation of this equation, which can be found in more advanced tests [e.g., J. F.

Knott, Fundamentals of Fracture Mechanics, (London: Butterworths, 1973), p. 51], involves

the solution of the biharmonic equation, the choice of an appropriate Airy stress

function, and complex variables.
4 See, for example, S. Timoshenko and J. N. Goodier, Theory of Elasticity, 2nd ed. (New

York: McGraw-Hill, 1951), p. 78.
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Fig. 7.5 (a) Stress distribution in

a large plate containing a circular

hole. (b) Stress concentration

factor Kt as a function of the radius

of a circular hole in a large plate in

tension.
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The maximum stress occurs at point A in Figure 7.5(a), where θ =
π /2 and r = a. In this case,

σθθ = 3σ = σmax,

where σ is the uniform stress applied at the ends of the plate. The

stress concentration Kt = σ max/σ = 3. Figure 7.5(b) shows the stress

concentration for a circular hole in a plate of finite lateral dimensions.

When D, the lateral dimension, decreases, or the radius of the hole

increases, the stress concentration Kt drops from 3 to 2.2.

Goodier5 calculated the stresses around spherical voids in per-

fectly elastic materials. Although his solution was obtained when the

applied stress was tensile, it can be extended to compressive stress

by changing the signs. The stresses given by Timoshenko and Good-

ier can be determined from the methods of elasticity theory. At the

equatorial plane (θ = π /2), the tangential stress σ θθ is equal to

σθθ =
[

1 + 4 − 5ν

2(7 − 5ν)

a3

r 3
+ 9

2(7 − 5ν)

a5

r 5

]
σ, (7.15)

where a is the radius of the hole, r is the radial coordinate, and ν is

the Poisson’s ratio. For r = a, ν = 0.3, and we have

(σθθ )max = 45

22
σ ≈ 2σ.

5 J. N. Goodier, App. Mech. 1 (1933) 39; see also Timoshenko and Goodier, op. cit.
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Thus, as expected, the stress concentration for a spherical void is

approximately 2. The stress σ θθ decays quite rapidly with r, as can

be seen from Equation 7.15; the decay is given by r−3. For r = 2a, we

have σ θθ = 1.054. This decay is faster than for the circular hole, where

it goes with r−2 (Equation 7.14). For θ = 0 (north and south poles),

Timoshenko and Goodier have the equation

(σrr )θ = (σθθ )θ=0 = − 3 + 15ν

2(7 − 5ν)
σ.

Hence, a compressive stress generates a tensile stress at θ = 0. This

result is very important and shows that compressive stress can gener-

ate cracks at spherical flaws such as voids. Taking ν = 0.2--0.3 (typical

of ceramics), one arrives at the following values:

1

2
≤ (σθθ )θ=0 ≤ 7.5

11
.

Thus, the tensile stress is 50--80% of the applied compressive stress. If

failure is determined by cracking at spherical voids, cracking should

start at a compressive stress level equal to −4σ t (depending on ν; in

this case, for ν = 0.2), where σ t is the tensile strength of the mater-

ial. This value represents, to a first approximation, the marked dif-

ferences between the tensile and compressive strengths of cast irons,

intermetallic compounds, and ceramics. The result is fairly close to

the stress generated around a circular hole, given in Equation 7.14. In

that case, for r = a, we find that

σθθ = −σ.

In tensile loading, the stress σ θθ = 3σ , which would predict a three-

fold difference in tensile and compressive strengths. More general

(elliptical) flaws can be assumed, and their response under com-

pressive loading provides a better understanding of the compressive

strength of brittle materials. The generation and growth of cracks

from these flaws also needs to be analyzed, for more realistic predic-

tions. This will be carried out in Section 8.3.4.

Stress concentration caused by an elliptical hole is shown in

Figure 7.6. In this figure, σ L is the longitudinal stress applied along

x2. It is also referred to as the far-field stress. Locally at the crack

tip we have a biaxial or triaxial stress situation. In particular, for an

elliptical hole, with a = 3b, Figure 7.6 shows that σ 22 falls from its

maximum value at the crack tip and attains σ L asymptotically. The

stress component, σ 11, however is zero at the crack tip, increases to

a peak value and then falls to zero with the same tendency as σ 22.

The general result is that a major perturbation in the applied stress

state occurs over a distance approximately equal to a from the bound-

aries of the cavity, with the major stress gradients being confined to a

region of dimensions roughly equal to ρ surrounding the maximum

concentration position.

Although the exact formulas vary according to the form of the

crack, in all cases Kt increases with an increase in the crack length a

and a decrease in the root radius at the crack tip, ρ.
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Fig. 7.6 Stress concentration at

an elliptical hole for a = 3b.

Despite the fact that the analysis of Inglis represented a

great advance, the fundamental nature of the fracture mechanism

remained obscure. If the Inglis analysis was applicable to a body con-

taining a crack, how does one explain that, in practice, larger cracks

propagate more easily than smaller cracks? What is the physical sig-

nificance of the root radius at the tip of the crack?

Example 7.1

Although the elastic modulus of silica-based glass is rather low (E =
70 GPa), the theoretical strength of a defect-free glass can be as high

as 3 GPa. Generally, such high strength values are not measured in

practice. Why?

Solution: Extremely minute crack-like defects form rather easily on the

glass surface. Such imperfections can lead to a drastic reduction in the

strength of glass. This is the reason that, in the making of a glass fiber,

a protective coating called a size is applied to the fiber immediately as

it comes out of the spinneret. Just to get an estimate of the reduction

in strength caused by a tiny imperfection -- say, a 1-μm-long, atomically

sharp scratch -- we can use the Inglis expression (Equation 7.13),

σth = 2σ (a/ρ)0.5, or σ = 0.5 σth(ρ/a)0.5,

where σ th is the theoretical strength (3 GPa), a is the crack length

(1 μm), and ρ is the root radius at the crack tip, which, since the tip

is atomically sharp, can be taken to be 0.25 nm. Plugging these values

into the preceding expression, we find that the real strength of such a

glass is only 24 MPa! Note that in this problem we made an estimate of

the notch root radius. In practice, this is very difficult to measure. That

is why the concept of stress intensity factor, involving the far-field stress

and the square root of the crack length, is much more convenient to

deal with in fracture toughness problems, as we shall see later in this

chapter (Section 7.6).
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Example 7.2

Determine the stresses at distances equal to 0, a/2, a, 3a/2, and 2a from

the surface of a spherical hole and for θ = 0 and π /2.

Solution: We use Equation 7.14. By setting θ = 0, we have

σrr = σ

2

(
2 − 5a2

r 2
+ 3a4

r 4

)
,

σθθ = σ

2

(
a2

r 2
− 3a2

r 4

)
,

τrθ = 0.

For θ = π /2,

σrr = σ

2

(
3a2

r 2
− 3a4

r 4

)
,

σθθ = σ

2

(
2 + a2

r 2
+ 3a4

r 4

)
,

τrθ = 0.

We calculate the stresses for r = 0, a, 3a/2, and 2a and plot them as

shown in Figure E7.2 in terms of a dimensionless parameter r/a.
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Example 7.3

Two flat plates are being pulled in tension. (See Figure E7.3.) The flow

stress of the materials is 150 MPa.

(a) Calculate the maximum stresses in the plate.

(b) Will the material flow plastically?

(c) For which configuration is the stress higher?

Solution:

(a) Normal stress:

σ = P

A
= 100 kN

10 cm × 1 cm

= 100 MPa,

σmax = σ
(

1 + 2
a

b

)
.

Circular hole:

a = b = 3/2 cm = 1.5 cm,

σmax = 100 ×
(

1 + 2 × 1.5

1.5

)
= 300 MPa.

Elliptical hole:

a = 3/2 cm = 1.5 cm, b = 1/2 cm = 0.5 cm,

σmax = 100 ×
(

1 + 2 × 1.5

0.5

)
= 700 MPa.

(b) Yes, because in both cases, the stress is greater than the flow stress

(150 MPa).

(c) The elliptical hole has higher stress than the circular one.

P = 100kN P = 100kN

3 cm 3 cm

1 cm1 cm

1 cm

10 cm10 cm

Fig. E7.3
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7.4 Griffith Criterion

Griffith proposed a criterion based on a thermodynamic energy bal-

ance. He pointed out that two things happen when a crack propagates:

Elastic strain energy is released in a volume of material, and two new

crack surfaces are created, which represent a surface-energy term.

Thus, according to Griffith, an existing crack will propagate if the

elastic strain energy released by doing so is greater than the surface

energy created by the two new crack surfaces. Figure 7.7(a) shows

an infinite plate of thickness t that contains a crack of length 2a

under plane stress. As the stress is applied, the crack opens up. The

shaded region denotes the approximate volume of material in which

the stored elastic strain energy is released (Figure 7.7(b)). When the

crack extends a distance da on the extremities, the volume over which

elastic energy is released increases, as shown in Figure 7.7(c). The elas-

tic energy per unit volume in a solid under stress is given by σ 2/2E.

(See Chapter 2.) To get the total strain energy released, we need to

multiply this quantity by the volume of the material in which this

energy is released. In the present case, this volume is the area of the

ellipse times the plate thickness. The area of the shaded ellipse is

π (2a)a = 2 πa2; therefore, the volume in which the strain energy is

relaxed is 2 πa2t. The total strain energy released is thus(
σ 2

2E

)
(2πa2t) = πσ 2a2t

E
,

or, in terms of the per-unit thickness of the plate under plane stress,

the energy released is

Ue = πσ 2a2/E .

The decrease in strain energy, Ue, when a crack propagates is bal-

anced by an increase in the surface energy, Us, produced by the cre-

ation of the two new crack surfaces. The increase in surface energy

equals:

Us = (2at)(2ys ),

(a)

(b)

Relaxed
volume

(c)

4a

t

da

2a

Fig. 7.7 A plate of thickness t

containing a crack of length 2a. (a)

Unloaded condition. (b) and (c)

Loaded condition.

here γ s is the specific surface energy, i.e., the energy per unit area. In

terms of the per-unit thickness of the plate, the increase in surface

energy is 4aγ s. Now, when an elliptical crack is introduced into the

plate, we can write, for the change in potential energy of the plate,

�U = Us−Ue ,

�U = 4aγs − πσ 2a2

E
,

where �U is the change in the potential energy per unit thickness of

the plate in the presence of the crack, σ is the applied stress, a is half

the crack length, E is the modulus of elasticity of the plate, and γs

is the specific surface energy (i.e., the surface energy per unit area)

of the plate.
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As the crack grows, strain energy is released, but additional sur-

faces are created. The crack becomes stable when these energy com-

ponents balance each other. If they are not in balance, we have an

unstable crack (i.e., the crack will grow). We can obtain the equilib-

rium condition by equating to zero the first derivative of the potential

energy �U with respect to the crack length. Thus,

�U

∂a
= 4γs − 2πσ 2a

E
= 0, (7.16a)

or

2γs = πσ 2a

E
. (7.16b)

The reader can check the nature of this equilibrium further by tak-

ing the second derivative of U with respect to a. A negative second

derivative would imply that Equation 7.16a represents an unstable

equilibrium condition and that the crack will advance.

Rearranging Equation 7.16b, we may write, for the critical stress

required for the crack to propagate in the plane-stress situation,

σc =
√

2E γs

πa
(plane stress). (7.17a)

We can rearrange Equation 7.17a to get the following expression:

σ
√

πa =
√

2E γs .

The reader should note that the left-hand side of this expression

involves critical stress for crack propagation and square root of crack

length. This product is called fracture toughness. Note that the right-

hand side of the expression consists only of material parameters: E

and γ s, i.e., the above expression represents a material property, viz.,

fracture toughness.

For the plane-strain situation, we will have the factor (1 − ν2) in

the denominator because of the confinement in the direction of thick-

ness. The expression for the critical stress for crack propagation then

becomes

σc =
√

2E γs

πa(1 − v2)
(plane strain). (7.17b)

The distinction between plane stress and plane strain is shown in Fig-

ure 7.8. Normal and shear stresses at free surfaces are zero; hence, for

a thin plate, σ33 = σ23 = σ13 = 0. This is the plane-stress state (Figure

7.8(a)). In very thick plates (t2 > t1), the flow of material in the x3

direction is restricted. Therefore, ε33 = 0, and so are, ε23 = ε13 = 0.

This is the plane-strain condition (Figure 7.8(b)). Note that the factor

(1 − ν2) is less than unity and is in the denominator. Therefore, the

critical stress corresponding to fracture in the plane-strain situation

will be higher than that in the plane-stress state. This is as expected,
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(a) (b)

ε33 = 0

ε23 = 0

ε13 = 0

Fig. 7.8 Crack in (a) thin (t1) and

(b) thick (t2) plates. Note the

plane-stress state in (a) and the

plane-strain state in (b).

because of the confinement in the direction of thickness in the case

of plane strain. For many metals, ν ≈ 0.3, and (1 − ν2) ≈ 0.91. Thus,

the difference is not very large for most metals.

The importance of the length of the crack is implicit in Griffith’s

analysis. In modern fracture mechanics, as we shall see later, the crack

length enters as a square-root term in the product σ
√

a. According

to Griffith’s thermodynamic analysis, a necessary condition for crack

propagation is

−∂Ue

∂a
≥ ∂Us

∂a
,

where Ue is the elastic energy of the system (i.e., the machine plus the

test piece) and Us is the surface energy of the two crack faces. This is

a necessary condition for fracture by rapid crack propagation. But it

may not always be sufficient: if the local stress at the crack tip is not

sufficiently large to break the atomic bonds, the energy criterion of

Griffith will be inadequate.

Let us consider Equation 7.17a or 7.17b again. Note that the frac-

ture stress, or critical stress required for crack propagation, σ c, is

inversely proportional to
√

a. More importantly, the quantity σ c

√
a

depends only on material constants. It is instructive, then, to exam-

ine the Inglis result, Equation 7.13, and the Griffith result, Equation

7.17a or 7.17b in the form

σc

√
a = 1

2
(σmax)c

√
ρ = constant.

Here, σ c is the critical far-field or uniform stress (i.e., the stress at

fracture), a is the crack length corresponding to σ c, (σ max)c is the
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stress at the crack tip at fracture, and ρ is the root radius at the tip

of the crack.

Both analyses, Inglis’s and Griffith’s lead to the same result, viz.,

that a crack will propagate when an appropriate quantity with dimen-

sions of stress times the square root of length reaches a critical value,

a material constant. It is easy to see that the parameters in the Inglis

analysis, (σ max)c and ρ, are local parameters and very difficult to meas-

ure, while the Griffith analysis allows us to use the far-field applied

stress and crack length, which are easy to measure. It is this quantity,

σ c

√
a, that is called the fracture toughness and is denoted by KIc. We

treat fracture toughness in detail in Section 7.6.

Example 7.4

Consider a brittle material with γ s = 1 J/m2 and E = 100 GPa. (a) What

is the breaking strength of this material if it contains crack-like defects

as long as 1 mm? (b) Should it be possible to increase γ s to 3,000 J/m2,

what would be the breaking strength for a 1-mm-long crack?

Solution

(a) We have

γs = 1 J/m2 and E = 100 GPa,

and

2a = 1 mm and a = 0.5 mm.

Thus,

σc =
√

2E γs

πa
=

√
2 × 100 × 109 × 1

π × (0.5 × 10−3)

= 11.3 MPa.

(b) If γ s increases to 3,000 J/m2,

2a = 1 mm and a = 0.5 mm,

so that

σc =
√

2E γs

πa
=

√
2 × 100 × 109 × 3,000

π × (0.5 × 10−3)

= 618 MPa.

7.5 Crack Propagation with Plasticity

If the material in which a crack is propagating can deform plastically,

the form of the crack tip changes because of plastic strain. A sharp

crack tip will be blunted. Another important factor is time: because
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Fig. 7.9 Dislocations emitted from a crack tip in copper. (Courtesy of S. M. Ohr.)

plastic deformation requires time, the amount of plastic deformation

that can occur at the crack tip will depend on how fast the crack is

moving. Figure 7.9, a TEM micrograph, shows dislocations that were

generated at a crack tip and that propagated along crystallographic

planes. The crack is at the left-hand side, and the plane of the cop-

per foil is (123). In a great majority of materials, localized plastic

deformation at and around the crack tip is produced because of the

stress concentrations there. In such a case, a certain amount of plas-

tic work is done during crack propagation, in addition to the elastic

work done in the creation of two fracture surfaces. The mechanics of

fracture will, then, depend on the magnitude of γ p, the plastic work

done, which in its turn depends on the crack speed, temperature,

and the nature of the material. For an inherently brittle material, at

low temperatures and at high crack velocities γ p is relatively small

(γ p <0.1γ s). In such a case, the crack propagation would be continu-

ous and elastic. These cases are usefully treated by means of linear

elastic fracture mechanics, which is dealt with in Section 7.6. In any

event, in the case of plastic deformation, the work done in the prop-

agation of a crack per unit area of the fracture surface is increased

from γ s to (γ s + γ p). Consequently, the Griffith criterion (Equation

7.17a or 7.17b) is modified to

σc =
√

2E

πa
(γs + γp) (plane stress) (7.18a)

and

σc =
√

2E

πa(1 − ν2)
(γs + γp) (plane strain). (7.18b)

Rearranging Equation 7.18a, we get

σc =
√

2E γs

πa

(
1 + γp

γs

)
.

For γ p/γ s � 1,

σc
∼=

√
2E γp

πa
.

Thus, the plastic deformation around the crack tip makes it blunt

and serves to relax the stress concentration by increasing the radius

of curvature of the crack at its tip. Localized plastic deformation at the

crack tip therefore improves the fracture toughness of the material.
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This is the conventional treatment of the plastic work contribu-

tion to the fracture process, wherein γ p is considered to be a constant.

However, the reader should be warned that this is not strictly true.

As a matter of fact, the value of γ p increases with the stress inten-

sity factor K (=Y σ
√

a). Consider Equation 7.18a. As was pointed out,

in the conventional approach γ p will be very much larger than γ s

for a ductile material such as polycrystalline copper. Thus, according

to this conventional treatment, the fracture stress σ c should be rela-

tively insensitive to changes in γ s. However, in the embrittlement of

copper with beryllium, all we change is the γ s part of Equation 7.18a

(along the grain boundaries where the fracture proceeds). The γ p part

in that equation (i.e., the plastic behavior of copper) does not change

appreciably by the addition of beryllium to copper.

As pointed out earlier, equations of the type 7.17a or 7.18 are dif-

ficult to use in practice. It is not a trivial matter to measure quan-

tities such as surface energy and the energy of plastic deformation.

In a manner similar to that of Griffith, Irwin made a fundamental

contribution to the mechanics of fracture when he proposed that

fracture occurs at a stress that corresponds to a critical value of the

crack extension force

G = 1

2

∂Ue

∂a
= rate of change of energy with crack length.

G is sometimes called the strain energy release rate.

Now, Ue = πa2σ 2/E, the energy released by the advancing crack

per unit of plate thickness. This is for plane stress. For plane strain,

a factor of (1 -- ν2) is introduced in the denominator. Thus,

G = πaσ 2

E
.

At fracture, G = Gc, and

σc =
√

EG c

πa
(plane stress) (7.19a)

or

σc =
√

EG c

πa(1 − ν2)
(plane strain). (7.19b)

From Equations 7.18 and 7.19, we see that

G c = 2(γs + γp).

We shall come back to this idea of crack extension force later in the

chapter.

7.6 Linear Elastic Fracture Mechanics

A nonductile material has a very low capacity to deform plastically;

that is, it is not capable of relaxing peak stresses at crack-like defects.
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Fracture
mechanics

KR

KR

a
a s

sFig. 7.10 Inherent material

resistance to crack growth and its

relationship to the applied stress σ

and crack size a.

In such a material, a crack will propagate very rapidly with little

plastic deformation around the crack tip, resulting in what is called

a brittle fracture. Typically, such a fracture is also characterized by

a crack propagation that is sudden, rapid, and unstable. In prac-

tical terms, this definition of brittleness, which refers to the onset

of instability under an applied stress smaller than the stress corres-

ponding to plastic yielding of the material, is very useful. Numerous

brittle fractures have occurred in service, and there are abundant

examples of them in a great variety of structural and mechanical

engineering fields involving ships, bridges, pressure vessels, oil ducts,

turbines, and so on. In view of the great importance of brittle frac-

ture in real life, a discipline called linear elastic fracture mechanics

(LEFM) has emerged, enabling us to obtain a quantitative measure

of the resistance of a brittle material to unstable or catastrophic

crack propagation. Extension of these efforts into nonlinear elastic

and plastic regimens has led to the development of elasto-plastic frac-

ture mechanics (EPFM), also called post-yield fracture mechanics (see

Section 7.9).

7.6.1 Fracture Toughness
Fracture mechanics gives us a quantitative handle on the process

of fracture in materials. Its approach is based on the concept that

the relevant material property, fracture toughness, is the force nec-

essary to extend a crack through a structural member. Under certain

circumstances, this crack extension force (or an equivalent param-

eter) becomes independent of the dimensions of the specimen. The

parameter can then be used as a quantitative measure of the fracture

toughness of the material.

Fracture mechanics adopts an entirely new approach to design-

ing against fracture. Admittedly defects will always be present in a

structural component. But consider a structure or a component with

a crack-like defect. We can simulate this with single edge notch of

length a in a plate. (See Figure 7.10.) Alternatively, we can say that we

are increasing the applied stress intensity factor K at the crack tip. The

material at the tip, however, presents resistance to crack growth. We

denote this inherent material resistance by KR (sometimes the symbol

R alone is used in place of KR.) The discipline of fracture mechanics
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can then be represented by a triangle as shown in Figure 7.10; that

is, we have an interplay among the following three quantities:

1. The far-field stress, σ .

2. The characteristic crack length, a.

3. The inherent material resistance to cracking, KR.

Various parameters are used to represent KR. We discuss their equiv-

alence in Section 7.7.5. Here we wish to clarify one common point

of confusion. The symbol K is used to designate the stress intensity

factor at the crack tip corresponding to a given applied stress and

crack length. The symbol KR (or one of its equivalents) represents

fracture toughness. In this regard, the following analogy is helpful.

The stress intensity factor, K, is to stress as fracture toughness, KR, is

to strength. Stress and stress intensity factor vary with the external

loading conditions; strength and toughness are material parameters,

independent of loading and specimen size considerations.

We now seek an answer to the question: Given a certain applied

stress, what is the largest size defect (crack) that can be tolerated

without the failure of the member? Once we know the answer to this

question, it remains only to use appropriate inspection techniques to

select/repair/replace a material so that defects larger than the critical

size for the given design stress are not present.

7.6.2 Hypotheses of LEFM
The basic hypotheses of LEFM are as follows:

1. Cracks are inherently present in a material, because there is a limit

to the sensibility or resolution of any crack-detecting equipment.

2. A crack is a free, internal, plane surface in a linear elastic stress

field. With this hypothesis, linear elasticity furnishes us stresses

near the crack tip as

σrθ = K√
2πr

f (θ ), (7.20)

where r and θ are polar coordinates and K is a constant called the

stress intensity factor (SIF).

3. The growth of the crack leading to the failure of the structural

member is then predicted in terms of the tensile stress acting at

the crack tip. In other words, the stress situation at the crack tip

is characterized by the value of K. It can be shown by elasticity

theory that K = Y σ
√

πa, where σ is the applied stress, a is half

the crack length, and Y is a constant that depends on the crack

opening mode and the geometry of the specimen.

Fig. 7.11 The three modes of

fracture. (a) Mode I: opening

mode. (b) Mode II: sliding mode.

(c) Mode III: tearing mode (see

also Figure 7.1).

7.6.3 Crack-Tip Separation Modes
The three modes of fracture are shown in Figure 7.11. Mode I

(Figure 7.11(a)), called the opening mode, has tensile stress normal

to the crack faces. Mode II (Figure 7.10(b)) is called the sliding mode

or the forward shear mode. In this mode, the shear stress is normal
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to the advancing crack front. Mode III (Figure 7.11(c)) is called the

tearing mode or transverse shear mode, with the shear stress parallel

to the advancing crack front. The ‘‘goofy duck” analog of Figure 7.1

shows this in a more illustrative fashion.

7.6.4 Stress Field in an Isotropic Material in the Vicinity of
a Crack Tip

The stress components for the three fracture modes in an isotropic

material are given next. In the case of anisotropic materials, these

relations must be modified to permit the asymmetry of stress at the

crack tip. KI, KII, and KIII represent stress intensity factors in modes I,

II, and III, respectively. We have (the derivation of these expressions

is attributed to Westergaard6):

Mode I:

⎡
⎣ σ11

σ22

σ12

⎤
⎦ = K I√

2πr
cos

θ

2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − sin
θ

2
sin

3θ

2

1 + sin
θ

2
sin

3θ

2

sin
θ

2
cos

3θ

2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

σ13 = σ23 = 0,

σ33 = 0, (plane stress),

σ33 = v (σ11 + σ22), (plane strain). (7.21)

Mode II:

⎡
⎣ σ11

σ22

σ12

⎤
⎦ = K II√

2πr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− sin
θ

2

(
2 cos

θ

2
cos

3θ

2

)

sin
θ

2
cos

θ

2
cos

3θ

2

cos
θ

2

(
1 − sin

θ

2
sin

3θ

2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

σ13 = σ23 = 0,

σ33 = 0, (plane stress),

σ33 = v (σ11 + σ22) (plane strain). (7.22)

Mode III:

[
σ13

σ23

]
= K III

2πr

⎡
⎢⎣− sin

θ

2

cos
θ

2

⎤
⎥⎦

σ11 = σ22 = σ33 = σ12 = 0. (7.23)

The derivation of this expression for Mode III is given in the Appendix

at the end of this chapter

6 H. M. Westergaard, J. Appl. Mechan., 5A (1939) 49.
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x2

r

x1

2a

σ

q

σ

σ22
σ12

σ11

Fig. 7.12 Infinite, homogeneous,

elastic plate containing a

through-the-thickness central

crack of length 2a, subjected to a

tensile stress σ .

7.6.5 Details of the Crack-Tip Stress Field in Mode I
Consider an infinite, homogeneous, elastic plate containing a crack of

length 2a (Figure 7.12). The plate is subjected to a tensile stress σ far

away from and normal to the crack. The stresses at a point (r, θ ) near

the tip of the crack are given by Equation 7.21. Ignoring the subscript

of K, we may write the stress components in expanded form as:

σ11 = K√
2πr

cos
θ

2

(
1 − sin

θ

2
sin

3θ

2

)
,

σ22 = K√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
,

σ12 = K√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
, (7.24)

σ13 = σ13 = 0,

σ33 = 0 (plane stress),

σ33 = v (σ11 + σ22) (plane strain),

where

K = σ
√

πa (7.25)

is the stress intensity factor for the plate and has the units (N/m2)√
m, or Pa

√
m, or Nm−3/2. Note that Equation 7.25 is applicable in the

region r � a (i.e., in the vicinity of the crack tip). For larger r, higher

order terms must be included.

For a thin plate, one has plane-stress conditions, and σ 33 = σ 13 =
σ 23 = 0. For a thick plate (infinite in the direction of thickness), there

exist plane-strain conditions (i.e., σ 33=ν(σ 11 +σ 22) and σ 13 = σ 23 = 0).

Consider again Equation 7.24. The right-hand side has three

quantities: K, r, and f(θ ), f(θ ) here designating the group of terms

containing the angle θ in Equation 7.24. The terms r and f(θ ) describe
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√
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Fig. 7.13 Some common load and crack configurations and the corresponding

expressions for the stress intensity factor, K.

the stress distribution around the crack tip. These two characteristics

(i.e., dependence on
√

r and f(θ )) are identical for all cracks in two- or

three-dimensional elastic solids. The stress intensity factor K includes

the influence of the applied stress σ and the appropriate crack dimen-

sions, in this case half the crack length a. Thus, K will characterize

the external conditions (i.e., the nominal applied stress σ and half the

crack length a) that correspond to fracture when stresses and strains

at the crack tip reach a critical value. This critical value of K is desig-

nated as Kc. It turns out, as we shall see later, that Kc depends on the

dimensions of the specimen. In the case of a thin sample (plane-stress

conditions), Kc depends on the thickness of the sample, whereas in

the case of a sufficiently thick sample (plane-strain conditions), K is

independent of the thickness of the specimen and is designated as KIc.
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Fig. 7.13 (cont.)

The stress intensity factor K measures the amplitude of the stress

field around the crack tip and should not be confused with the stress

concentration factor Kt discussed in Section 7.3.2. It is also important

to distinguish between K and Kc or KIc. The stress intensity factor K is

a quantity, determined analytically or not, that varies as a function

of configuration (i.e., the geometry of the crack and the manner of

application of the external load). Thus, the analytical expression for

K varies from one system to another. However, once K attains its crit-

ical value, KIc, in plane strain for a given system and material, it is

essentially a constant for all the systems made of this material. The

difference between Kc and KIc is that Kc depends on the thickness of

the specimen, whereas KIc is independent of the thickness. The forms

of K for various load and crack configurations have been calculated

and are available in various handbooks. Some of the more common

configurations and the corresponding expressions for K are presented

in Figure 7.13.
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For samples of finite dimensions, the general practice is to con-

sider the solution for an infinite plate and modify it by an algebraic

or trigonometric function that would make the surface tractions van-

ish. Thus, for a central through-the-thickness crack of length 2a, in a

plate of width W, we have

K = σ
(

W tan
πa

W

)1/2

. (7.26)

For the same crack in an infinite plate, we have

K = σ
√

πa.

If we expand tan πa/W in a series (Equation 7.26), we get

K = σ W1/2

(
πa

W
+ π3a3

3W3
+ · · ·

)1/2

= σ
√

πa

(
1 + π3a3

3W3
+ · · ·

)1/2

.

Thus, for an infinite solid, a/W = 0, and we have K = σ
√

πa, as

expected. For an edge crack in a semi-infinite plate, we have K =
1.12 σ

√
πa. The factor 1.12 here takes care of the fact that stresses

normal to the free surface must be zero.

At this point, it is appropriate to make some comments on the limi-

tations of LEFM. It was pointed out earlier that the expressions for

stress components (Equations 7.21--7.23) are valid only in the neigh-

borhood of the crack tip. The reader will have noticed that these

stress components tend to infinity as we approach the tip (i.e., as r

goes to zero). Now, there does not exist a material in real life that can

resist an infinite stress. The material in the neighborhood of the crack

tip, in fact, would inevitably deform plastically. Thus, these expres-

sions for stress components based on linear elasticity theory are not

valid in the plastic zone at the crack tip. The deformation process in

a plastic zone, as is well known, will be a sensitive function of the

microstructure, among other things. However, in spite of ignorance

of the exact nature of the plastic zone, the LEFM treatment is valid

for low-enough stresses such that the size of the plastic zone at the

crack tip is small with respect to the crack length and the dimensions

of the sample. We shall see in the next section how to incorporate a

correction term for the presence of a plastic zone at the crack tip.

7.6.6 Plastic-Zone Size Correction
Equations 7.21--7.23 show a

√
r singularity; that is, σ 11, σ 22, and σ 12

go to infinity when
√

r goes to zero. For a great majority of materials,

local yielding will occur at the crack tip, which would relax the peak

stresses. As we shall see shortly, the utility of the elastic stress field

equations is not affected by the presence of this plastic zone as long

as the nominal stress in the material is below the general yielding

stress of the material.

When yielding occurs at the crack tip, it becomes blunted; that

is, the crack surfaces separate without any crack extension. (See
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Apparent elastic stress

Real stress
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Fig. 7.14 Plastic-zone

correction. The effective crack

length is (a + ry).

Figure 7.14.) The plastic zone (radius ry) will then be embedded in

an elastic stress field. Outside and far away from the plastic zone, the

elastic stress field ‘‘sees” the crack and the perturbation due to the

plastic zone, as if there were present a crack in an elastic material

with the leading edge of the crack situated inside the plastic zone. A

crack of length 2(a + ry) in an ideal elastic material produces stresses

almost identical to elastic stresses in a locally yielded member out-

side the plastic zone. If the stress applied is too large, the plastic zone

increases in size in relation to the crack length, and the elastic stress

field equations lose precision. When the whole of the reduced section

yields, the plastic zone spreads to the edges of the sample, and K does

not have any validity as a parameter defining the stress field.

When the plastic zone is small in relation to the crack length, it

can be visualized as a cylinder (Figure 7.14) of radius ry at the crack

tip. From Equation 7.24, for θ = 0, r = ry, and σ 22 = σ y, the yield

stress, we can write

σy = K√
2πry

,

and, to a first approximation, the plastic-zone radius will be

ry = 1

2π

(
K

σy

)2

. (7.27)

In fact, the plastic-zone radius is a little bigger than (1/2π )(K/σ y)2, due

to redistribution of load in the vicinity of the crack tip. Irwin,7 taking

into account the plastic constraint factor in the case of plane strain,

gave the following expressions for the size of the plastic zone:

ry ≈ 1

2π

(
K

σy

)2

(plane stress),

ry ≈ 1

6π

(
K

σy

)2

(plane strain).

7 G. R. Irwin, in Encyclopaedia of Physics, Vol. VI (Heidelberg: Springer-Verlag, 1958); see

also J. Basic Eng., Trans. ASME, 82 (1960) 417.
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Fig. 7.15 Dugdale–Bilby–

Cottrell–Swinden (BCS) model of

a crack.

Thus, the center of perturbation, the apparent crack tip, is located

a distance ry from the real crack tip. The effective crack length is,

then,

(2a)eff = 2(a + ry ).

Substituting (a + ry) for a in the elastic stress field equations gives an

adequate adjustment for the crack-tip plasticity under conditions of

small-scale yielding. With this adjustment, the stress intensity factor

K is useful for characterization of the fracture conditions.

There is another model for the plastic zone at the crack tip for

the plane-stress case, called the Dugdale--BCS model.8 In this model,

the plasticity spreads out at the two ends of a crack in the form of

narrow strips of length R (Figure 7.15). These narrow plastic strips in

front of the actual crack tips are under the yield stress σ y that tends

to close the crack. Mathematically, the internal crack of length 2c is

allowed to extend elastically a distance 2a, and then internal stress

is applied to reclose the crack in this region. Combining the internal

stress field surrounding the plastic enclaves with the external stress

field associated with the applied stress σ acting on the crack, Dugdale

showed that

c

a
= cos

πσ

2σy

.

8 B. A. Bilby, A. H. Cottrell, and K. H. Swinden, Proc. Roy. Soc., A272 (1963) 304; D. S.

Dugdale, J. Mech. Phys. Solids, 8 (1960) 100.
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Fig. 7.16 Formal representation

of the plastic zone at the crack tip

for a through-the-thickness crack

in a plate.

From this relation, one notes that as σ → σ y, c/a → 0, a → ∞ (i.e.,

general yielding occurs). On the other hand, as σ /σ y decreases, we can

write (using the series expansion for cosine),

c

a
= 1 − π2σ 2

8σ 2
y

+ · · · .

Noting that a = c + R and using the binomial expansion, we have

c

a
= c

c + R
=

(
1 + R

c

)−1

= 1 − R

c
+ · · · .

Thus, for σ � σ y,

R

c
≈ π2

8

(
σ

σy

)2

,

or

R ≈ π

8

(
K

σy

)2

. (7.28)

Comparing Equation 7.28 with Equation 7.27, we see that there is

good agreement between the two (π /8 ≈ 1/π ). In fact, the size of

the plastic zone varies with θ also. A formal representation of the

plastic zone at the crack front through the plate thickness is shown in

Figure 7.16.

7.6.7 Variation in Fracture Toughness with Thickness
The elastic stress state is markedly influenced by the plate thickness,

as indicated by Equation 7.24. The material in the plastic zone deforms

in such a way that its volume is kept constant. Thus, the large deform-

ations in the x1 and x2 directions tend to induce a contraction in

the x3 direction (parallel to the direction of the crack front or the

plate thickness), which is resisted by the surrounding elastic material.

We next perform a dimensional analysis. Since the elastic material
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Fig. 7.17 (a) Variation in

fracture toughness (Kc) with plate

thickness (B) for Al 7075-T6 and

H-11 Steel. (Reprinted with

permission from J. E. Srawley and

W. F. Brown, ASTM STP 381

(Philadelphia: ASTM, 1965), p 133,

and G. R. Irwin, in Encyclopaedia of

Physics, Vol. VI (Heidelberg:

Springer Verlag, 1958); see also J.

Basic Eng., Trans. ASME, 82 (1960)

417.) (b) Schematic variation of

fracture toughness Kc and

percentage of flat fracture P with

the plate thickness B.

surrounding the plastic zone is the primary source of constraint, the

size of the plastic zone, 2ry, should be compared with the plate thick-

ness B. The ratio of the plate thickness B to the size of the plastic

zone, 2ry, is given by

B

2ry

= π
B

(K c/σy )2
,

and this would be a convenient parameter to characterize the vari-

ation of fracture toughness, Kc, with thickness. Data for Al 7075-T6

and H-11 steel are plotted in Figure 7.17(a) in the form9 of Kc/σ y versus

B/(Kc/σ y)2. Observe that when B/(Kc/σ y)2 is greater than 1/π (i.e., B �
2ry), the fracture toughness value Kc does not change with B. Appar-

ently, beyond a thickness B � 2ry, the constraint in the thickness

direction (x3) is completely effective, and additional plate thickness

9 J. E. Srawley and W. F. Brown, American Society for Testing and Materials, Special

Technical Publication (ASTM STP) 381 (Philadelphia: ASTM, 1965), p. 133; W. F. Brown

and J. E. Srawley, ASTM STP 410 (Philadelphia: ASTM, 1966), p. 1.
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does not change Kc. This particular value of Kc that is independent

of the thickness of the specimen is labeled the fracture toughness of

the material, and the symbol KIc is used to denote it.

On the other extreme, when the ratio B/(Kc/σ y)2 is much smaller

than 1/π (i.e., B � 2ry), we expect the fracture toughness to increase

linearly with the plate thickness. In the region of B/(Kc/σ y)2 = 1/π

corresponding to B = 2ry, the data for both materials show a rapid

fall to a constant level of KIc. This decrease in the peak value of Kc

(Figure 7.17(b)) to the KIc level represents a change in the fracture mode

from a plane-stress type to a plane-strain condition. The fracture in a

relatively thin plate (plane stress) usually consists of a certain fraction

of slant fracture (high energy) and another fraction of flat fracture

(low energy). In general, with increasing thickness of the specimen,

the percentage of slant fracture decreases, and the energy necessary

for crack propagation also decreases -- hence the fall in the Kc value. At

a certain critical thickness, the crack propagates under plane-strain

conditions, and the stress intensity factor reaches the minimum value

designated as KIc. Figure 7.17(b) shows schematically the variation of

Kc and the percentage of flat fracture P with the plate thickness B.

KIc is especially relevant in the evaluation of the material, as it is

a constant that is essentially independent of the dimensions of the

specimen.

Example 7.5

Establish the maximum load that the component shown in Figure E7.5,

made of Ti-6Al--4V alloy, can withstand (σ y = 900 MPa, KIc =
100 MPa m1/2).

Fig. E7.5

Solution:

a = 1 cm,

W = 1 cm.

K I c = Y σ
√

πa, (1)

Y = 1.12 − 0.231
( a

W

)
+ 10.55

( a

W

)2

= 1.12 − 0.231

(
1

10

)
+ 10.55

(
1

10

)2

= 1.20.
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Fig. 7.18 (a) Elastic body

containing a crack of length 2a

under load P. (b) Diagram of load P

versus displacement e.

We rewrite Equation 1 as

σ = K I c

Y
√

πa

to get

σ = 100

1.20
√

π × 10−2
= 470 MPa < σy .

Therefore,

P

A
= σ and P = σ A = (470 × 106) × (10 × 10−2 × 3 × 10−2)

= 1,410 kN.

Hence, the existing flaw, and not the yield stress, limits the maximum

load.

7.7 Fracture Toughness Parameters

In this section, we describe the variety of fracture toughness param-

eters that have come into being.

7.7.1 Crack Extension Force G
The concept of the crack extension force G, attributed to Irwin, can be

interpreted as a generalized force. One can say that fracture mechan-

ics is the study of the response of a crack (measured in terms of its

velocity) to the application of various magnitudes of the crack exten-

sion force. Let us consider an elastic body of uniform thickness B,

containing a through-the-thickness crack of length 2a. Let the body

be loaded as shown in Figure 7.18(a). With increasing load P, the dis-

placement e of the loading point increases. The load--displacement

diagram is shown in Figure 7.18(b). At point 1, we have the load as

P0 and displacement as e0. Now let us consider a ‘‘gedanken” experi-

ment in which the crack extends by a small increment, δa. Due to this
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small increment in crack extension, the loading point is displaced by

δe, while the load falls by δP. Now, before the crack extension, the

potential energy stored in body was

U1 = 1

2
Pe,

represented by the area of the triangle through point 1 in the figure.

After the crack extension, the potential energy stored in the body is

U2 = 1

2
(P − δP )(e + δe ),

represented by the area of the triangle passing through point 2 in

the figure. In this process of crack extension, the change in potential

energy, U2 − U1 is given by the difference in the areas of the two

crosshatched regions in the figure. Considering the small increment

δa in crack length, we can write an equation for G, the crack extension

force per unit length, as

GB δa = U2 − U1 = δU .

The change in elastic strain energy with respect to the crack area, in

the limit of the area going to zero, equals the crack extension force;

that is,

G = lim
δA−0

δU

δA
,

where δA = B δa.

It is convenient to evaluate G in terms of the compliance c of the

sample, defined as

e = cP . (7.29)

Now,

δU = U2 − U1 = 1

2
(p − δP )(e + δe ) − 1

2
Pe,

or

δU = 1

2
P δe − 1

2
e δP − 1

2
δP δe. (7.30)

Differentiating Equation 7.29, we have

δe = c δP + P δc . (7.31)

Substituting Equation 7.31 in Equation 7.30, we obtain

δU = 1

2
P c δP + 1

2
P 2δc − 1

2
e δP − 1

2
e (δP )2 − 1

2
P δP δc . (7.32)

Remembering that e = cP and ignoring the higher order product

terms, we can write

δU = 1

2
P c δP + 1

2
P 2 δc − 1

2
P c δP ,
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Fig. 7.19 (a) Load P versus

displacement e. Compliance c is

the inverse of the slope of this

curve. (b) Compliance c versus

crack length a. a0 is the initial

crack length.

or

δU = 1

2
P 2 δc . (7.33)

Then

G = lim
δA−0

δU

δA
= lim

δA−0

1
2

P 2δc

δA
,

or

G = 1

2

P 2

B

δc

δa
. (7.34)

From Equation 7.34, we see that G is independent of the rigidity of

the surrounding structure and the test machine. In fact, G depends

only on the change in compliance of the cracked member due to

crack extension. Thus, to obtain G for a specimen, all we need to do

is to determine the compliance of the specimen as a function of crack

length and measure the gradient of the resultant curve, δc/δa, at the

appropriate initial crack length (Figure 7.19).

This method is more useful for relatively small test samples, on

which exact measurements can be made in the laboratory. One of the

important uses of Equation 7.34 is that it provides a value of G (or

K) for complex structures that have not been (or cannot be) treated

analytically. An experimental determination of Gc, the critical crack

extension force, using this equation requires the value of fracture load

(measured experimentally) and the value of δc/δa. The compliance can

be measured by calibrating a series of samples with different crack

lengths. We obtain a diagram of c versus a, and δc/δa is evaluated as

the slope at the appropriate initial crack length.

Example 7.6

A titanium alloy (Ti--6% Al--4% V) is used for aircraft applications. The

NDE methods used cannot detect flaws whose size is smaller than

1 mm. You are asked, as the design engineer, to specify the maximum

tensile stress that the part can bear in plane-stress and plane-strain
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situations. The yield stress of the alloy is 1,450 MPa.

E = 115 GPa,

v = 0.312,

G c = 23.6 kN/m.

Solution: We have

2a = 1 mm,

so that

a = 0.5 × 10−3 m.

The critical stress in plane stress is

σc =
√

E G c

πa

=
(

115 × 109 × 23.6 × 103

π × 0.5 × 10−3

)1/2

= 1.31 × 109 Pa.

The critical stress in plane strain is

σc =
√

E G c

πa(1 − ν2)

= 1.385 × 109 Pa.

Thus, the maximum stresses are 1.31 GPa (plane stress) and 1.385 GPa

(plane strain).

From consideration of fracture toughness, the maximum stress is

lower than the yield stress; hence, the former is the limiting stress.

7.7.2 Crack Opening Displacement
The development of a plastic zone at the tip of the crack results in

a displacement of the faces without crack extension. This relative

displacement of opposite crack edges is called the crack opening dis-

placement (COD) (Figure 7.20). Wells10 suggested that when this dis-

placement at the crack tip reaches a critical value δc, fracture would

ensue.

LEFM is applicable only when the plastic zone is small in relation

to the crack length (i.e., well below the yield stress and in plane

strain). Consider a small crack in a brittle material. We have

σc = K I c (
√

πa)−1, as a → 0, σc → ∞.

But this, as we very well know, does not occur. Instead, a plastic zone

develops and may extend through the section such that

σnet = σ
W

W − a
≥ σy,

10 A. A. Wells, Brit. Weld. J., 13 (1965) 2.
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d

Fig. 7.20 Crack opening

displacement.

where W is the width of sample and σ y is the yield stress. In practice,

σ c ≤ 0.66σ y for the KIc validity.

In more ductile materials, the critical stress predicted by LEFM will

be higher than σ y. One can use the concept of COD in such cases. In

the elastic case (Figure 7.20),

COD = � = 4σ

E

√
(a2 − x2). (7.35)

At the center of the crack (x = 0), the maximum opening is

�max = 4σa

E
.

Applying the plastic zone correction, we have, from Equation 7.35,

� = 4σ

E

√
(a + ry )2 − x2,

where (a + ry) is the effective crack length.

The crack-tip opening displacement (CTOD), δ, is given for x = a

and ry � a as

δ = 4σ

E

√
2ary . (7.36)

A displacement of the origin to the crack tip gives a general expres-

sion for the crack opening:

� = 4σ

E

√
2aeffry .

Substituting ry = σ 2a/2σ 2
y (see Equation 7.27) in Equation 7.36 gives

δ = 4

π

K 2
I

Eσy

. (7.37)

Equation 7.37 is valid in the LEFM regime, and fracture occurs when

KI = KIc, which corresponds to δ = δIc, a material constant.

The use of the COD criterion demands the measurement of δc.

Direct measurement of δc is not easy. An indirect way is the following.

We have

� = 4σ

E

√
(a + ry )2 − x2

= 4σ

E

√
a + 2ary + r 2

y − x2.
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Ignoring the r 2
y term and using the relationship of Equation 7.36, we

can write

� = 4σ

E

(
a2 − x2 + E 2

16σ 2
δ2

)1/2

. (7.38)

According to this equation, δ can be measured indirectly from a COD

measurement (e.g., at x = 0, at the center of the crack) without

making any simplifications about the plastic-zone size correction. �

can be measured by means of a clip gage.

Another way of obtaining δ is to use the equations of Dugdale--

BCS model of the crack. (See Section 7.6.6.) According to Dugdale--BCS

model (Bilby, Cotrell, Swinden, op. cit.; Dugdale, op. cit.)

δ = 8σya

π E
log sec

πσ

2σy

.

Expanding the log sec function in series, we get

δ = 8σya

π E

[
1

2

(
πσ 2

2σy

)2

+ 1

12

(
πσ

2σy

)4

+ · · ·
]

.

For σ � σ y, we can write (neglecting fourth- and higher-order terms)

δ = πσ 2

E σy

= G I

σy

. (7.39)

Comparing Equation 7.39 with Equation 7.37, we note that the differ-

ence is in the factor 4/π , which comes from the plastic-zone correc-

tion. In general,

δ = G I

λσy

= K 2
I (1 − ν2)

E λσy

(for plane strain). (7.40)

The factor (1 − ν2) should be ignored in the case of plane stress.

In the literature, we encounter various values of λ. These depend

on the exact location where CTOD is determined (i.e., the exact

location of the crack tip). Wells11 suggested that, experimentally,

λ ≈ 2.1 for compatibility with LEFM (i.e., limited plasticity). For

cases involving extensive plasticity, the engineering design applica-

tion approach is to take λ ≈ 1.

Thus, at unstable fracture, GIc = λσ y δc. The important point about

COD is that, theoretically, δc can be computed for both elastic and

plastic materials, whereas GIc is restricted only to the elastic regimen.

The COD thus allows one treat fracture under plastic conditions. A

word of caution is in order, however. Figure 7.21 presents a compari-

son between COD and CTOD. We should realize that the strain fields

and crack opening displacements associated with a crack tip will

be different for different specimen configurations. Thus, we cannot

define a single critical COD value for a given material in a manner

11 A. A. Wells, Eng. Fract. Mech., 1 (1970) 399.
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Fig. 7.21 Relationship between

crack opening displacement (COD,

�), crack-tip opening displacement

(CTOD, δ), crack length (2a), and

size of plastic zone (ry).

equivalent to that of KIc, as the COD value will be affected by the

geometry of the test specimen.

Example 7.7

If the toughness of a thermoplastic polymer Gc = 103 J m−2, what would

be the critical crack length under an applied stress of 200 MPa? Take

Young’s modulus of the polymer to be 10 GPa.

Solution: We have

G c = 103 J m−2, E = 10 GPa, σ = 200 MPa.

Thus, the critical crack length ac = EGc/πσ 2 = 10 × 109 × 103/π (200 ×
106)2 = 0.08 mm.

7.7.3 J Integral
J integral is another variant for fracture toughness analysis. It provides

a value of energy required to propagate a crack in an elastic--plastic

material. The mathematical foundation for the J integral was laid

by Eshelby,12 who applied it to dislocations. Cherepanov13 and Rice14

applied it, independently, to cracks. Figure 7.22 shows a closed con-

tour � in a two-dimensional body. When such a body is subjected to

external forces, internal stresses arise in it. On the basis of the theory

of conservation of energy, Eshelby showed that the integral J is equal

to zero for a closed contour; that is,

J =
∫

�

(
Wdx2 − T

∂u

∂x1

ds

)
= 0, (7.41)

12 J. D. Eshelby, Phil. Trans. Roy. Soc London, A244 (1951) 87.
13 G. P. Cherepanov, Appl. Math. Mech. (Prinkl. Mat. Mekh.), 31, no. 3 (1967) 503.
14 J. R. Rice, J. Appl. Mech., 35 (1968) 379.
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Fig. 7.22 A body subjected to

external forces F1, F2, . . ., Fn and

with a closed contour �.

where

W =
∫ ∑

i j

0

σi j dεi j

is the strain energy per unit volume (see Chapter 2), T is the tension

vector (traction) perpendicular to � and pointing to the outside of the

contour, ds is an element of length along the contour, and u is the

displacement in the x1 direction. The J integral is an energy related

quantity; similar to the crack extension force G, J has the units of

energy per unit area ( J/m2) or force per unit length (N/m).

Figure 7.23 shows a crack, around which a contour ABCDEFA is

made. The total J must be zero, i.e.,

J = J �1+�2
= 0.

Along AF and CD (crack surfaces), the tractions T are equal to zero.

The same is true for the normal and shear stresses. Thus, JAF = JCD =
0. It can therefore be concluded that

J �1+�2
= J �1

+ J �2
+ J AF + J C D = 0, J �1

= − J �2
.

Hence, the J integral along two different paths around a crack has

the same value. That is, in general, the J integral around a crack is

path independent.

From a physical point of view, the J integral represents the differ-

ence in the potential energies of identical bodies containing cracks

of length a and a + da; in other words, the J integral around a crack

is equal to the change in potential energy for a crack extension da.

For a body of thickness B, this can be written as

J = 1

B

δU

δa
, (7.42)
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Fig. 7.23 Eshelby contours
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Fig. 7.24 Physical interpretation

of the J integral. The J integral

represents the difference in

potential energy (shaded area) of

identical bodies containing cracks

of length a and a + da.

where U is the potential energy, a the crack length, and B the plate

thickness. U is equal to the area under the curve of load versus

displacement. Figure 7.24 shows this interpretation, where the shaded

area is δU = JB δa. Like GIc, JIc measures the critical energy associated

with the initiation of crack growth, but in this case accompanied by

substantial plastic deformation. In fact, Begley and Landes15 showed

the formal equivalence of JIc and GIc by measuring the JIc from small

fully plastic specimens and the GIc from large elastic specimens satis-

fying the plane-strain conditions for the LEFM test.

The path independence of the J integral, together with this inter-

pretation in terms of energy, makes it a powerful analytical tool. The

J integral is path independent in the case of either linear or nonlin-

ear materials behaving elastically. When extensive plastic deform-

ation occurs, the practice is to assume that the plastic yielding can

be described by the deformation theory of plasticity. According to

this theory, stresses and strains are functions only of the point of

measurement and not of the path taken to get to that point. As in

the case of slow, stable crack growth, there will be a relaxation of

stresses at the crack tip, so there will be a violation of this postulate.

15 J. A. Begley and J. D. Landes, ASTM STP 514, (Philadelphia: ASTM, 1972), p. 1.
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Fig. 7.25 R curves for (a) brittle
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Thus, the use of the J integral should be limited to the initiation

of crack propagation, by stable or unstable processes. Studies using

incremental plasticity or flow theories with finite elements indicate

the path independence of the J integral.

7.7.4 R Curve
The R curve characterizes the resistance of a material to fracture dur-

ing slow and stable propagation of a crack. An R curve graphically

represents this resistance to crack propagation of the material as a

function of crack growth. With increasing load in a cracked struc-

ture, the crack extension force G at the crack tip also increases. (See

Equation 7.34.) However, the material at the tip presents a resistance

R (sometimes, the symbol KR is used) to crack growth. According to

Irwin, failure will occur when the rate of change of the crack exten-

sion force (∂G/∂a) equals the rate of change of this resistance to crack

growth in the material (∂R/∂a). The resistance of the material to crack

growth, R, increases with an increase in the size of the plastic zone.

Since the plastic zone size increases nonlinearly with a, R will also

be expected to increase nonlinearly with a. G increases linearly with

a. Figure 7.25 shows the instability criterion: the point of tangency

between the curves of G versus a and R versus a. Figure 7.25(a) shows

the R curve for a brittle material, and Figure 7.25(b) shows the R curve

for a ductile material. Crack extension occurs for G > R. Consider the

G line for a stress σ ′, shown in Figure 7.25(b). At the stress σ ′, the

crack in the material will grow only from a0 to a′, since G > R for a <

a′, G < R for a > a′, and the crack does not extend beyond a′. As the

load is increased, the position of the G line changes, as indicated in

the figure. When G becomes tangent to R, unstable fracture ensues.

The R curve for a brittle material (Figure 7.25(a)) is a ‘‘square” curve,

and the crack does not extend at all until the contact is reached, at

which point G = Gc and the unstable fracture follows.

The R-curve method is another version of the Griffith energy bal-

ance. One can conveniently make this kind of analysis if an analytical

expression for the R curve is available. Experimental determination

of R curves, however, is complicated and time consuming.
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7.7.5 Relationships among Different Fracture
Toughness Parameters

So far, we have seen that, in our effort to develop a quantitative

description of fracture toughness, various parameters, such as K, G,

J, δ, R, etc., have been developed. Since all these parameters define

the same physical quantity, it is not unexpected that they are inter-

related. And we have mentioned in different sections the relationships

among the parameters. Figure 7.26 summarizes these relationships.

It would, however, be helpful to the reader to recapitulate these rela-

tionships, even at the risk of repeating. That is what we will do in this

section.

If we take into account the stress distribution around the tip of

a crack, we get the stress-intensity-factor (K) approach. The magni-

tude or the intensity of the local stresses is determined by K, because

the form of the local crack-tip stress field is the same for all situ-

ations involving a remote stress σ . Thus, K, and not σ , is the local

characterizing parameter. The fracture then occurs when the applied

K attains the critical value Kc. In particular, when the specimen’s

dimensions satisfy the plane-strain condition, we call this value the

plane-strain fracture toughness and denote it by KIc. The stress and

the crack length corresponding to KIc are the fracture stress σ c and

the fracture crack length ac. Note that the elastic constants of the

material are not involved. The energy-release-rate approach gives us

the crack extension force G, which is related to the parameters K by

the equation

K 2 = E ′G ,
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where E′ = E, Young’s modulus, in the case of plane stress and E′ =
E/(1 − ν2) in the case of plane strain. Note that, in characterizing

the fracture behavior in terms of G, we need to know the elastic

constants of the material. Because in the case of polymers E is time

dependent and very precise modulus data are not available, there is

some advantage to using the K approach.

The critical crack opening displacement δc is another useful

parameter. It is related to K by the equation

δc = K 2
I c/λE σy,

where λ is a dimensionless constant that depends on the geometry

of the specimen, its state of stress, and the work-hardening capacity

of the material. λ has a value between 1 and 2. In particular, for the

strip-yielding model of Dugdale--BCS, λ = 1.

The J integral provides yet another measure of fracture toughness.

And, for small-scale yielding, we have

J = λδσy .

In short, for small-scale yielding, we can sum up the relationships

among the different fracture toughness parameters as

J = G = K 2/E ′ = λσyδ,

where the symbols have the usual meaning.

7.8 Importance of KIc in Practice

KIc is the critical stress intensity factor under conditions of plane

strain (ε33 = 0), which is characterized by small-scale plasticity at the

crack tip. The material is fully constrained in the direction of thick-

ness. When determined under these rigorous conditions, KIc will be

a material constant. Thus, when one needs to characterize materials

by their toughness (in the same way that one characterizes materials

by their ultimate tensile strength or tensile yield strength), only valid

KIc data should be considered. This will be explained in Chapter 8.

Kc is the critical stress intensity factor under conditions of plane

stress (σ 33 = 0), which is characterized by large plasticity at the crack

tip. In this case, the through-thickness constraint is negligible. Kc

values can be up to two times greater than the KIc values of the same

material. KIc depends on the temperature T, on the strain rate ε̇, and

on microstructural variables.

In general, Kc or KIc decreases as the (yield or ultimate) strength

of a material increases. This inverse relationship between fracture

toughness and strength is shown schematically in Figure 7.27. With

concurrent improvement in the material’s strength and toughness,

this curve shifts in the direction of the arrow. The dependence of KIc

on tensile strength and on sulfur level in a steel is shown in Figure

7.28. As expected, KIc decreases monotonically with increases in tensile
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ASM, 59 (1966) 981.)

strength or sulfur content. (Sulfur is well known to embrittle steels.)

Figure 7.29 shows that the same holds for KIc as a function of the

yield strength. Kc also depends on these variables.

Table 7.2 shows representative fracture toughnesses for selected

materials. Metals have the highest toughness. For most ceramics, KIc

does not exceed 5 MPa
√

m. The addition of partially stabilized zir-

conia to alumina increases KIc to 10 MPa
√

m and even higher. The

reason for this is a martensitic transformation that is described in

greater detail in Chapter 11. Plastics have low KIc; however, we should

remember that their density is only a small fraction of that of metals.
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Table 7.2 Plane-Strain Fracture Toughnesses for Representative

Materials

Material KIc (MPa m1/2)

(a) Metals
300M steel 300 ◦C temper 65
300M steel 650 ◦C temper 152
18-Ni maraging steel, vacuum melted 176
18-Ni maraging steel, air melted 123
AISI 4130 steel 110
2024-T651 aluminum 24
2024-T351 aluminum 34
6061-T651 aluminum 34
7075-T651 aluminum 29
Ti-6Al-4V, mill annealed 106–123
Ti-6Al-4V, recrystallized, annealed 77–116

(b) Ceramics
Cement/concrete 0.2
Soda–lime glass 0.7–0.9
MgO 3
Al2O3 3–5
Al2O3 + 15% ZrO2 10
SiC 3–4
Si3N4 4–5

(c) Polymers
Epoxy 0.3–0.6
Polyethylene, high-density 2
Polyethylene, low-density 1
Polypropylene 3
ABS 3–4
Polycarbonate 1–2.6
PVC 2.4
PVC (rubber modified) 3.4
PMMA 1.8
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toughness KIc with yield strength

σ y for a series of alloys. (Adapted

from D. Broek, Elementary

Engineering Fracture Mechanics, 3rd

ed. (Amsterdam: Martinus Nijhoff,

1978), p. 270.)
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7.9 Post-Yield Fracture Mechanics

The concepts of crack opening displacement and the J integral are

complementary. The crack tip opening displacement (CTOD), δ, is the

parameter that controls crack extension. But the notion of CTOD is

not problem free. For example, there exists a considerable amount of

diversity in its very definition. Figure 7.30 shows some ways of meas-

uring δ. The experimental determination of δ and the calculation of

the relevant value for a cracked structure also involve uncertainties.

We can split the CTOD value into an elastic and a plastic component,

to wit:

δt = δel + δpl.

The elastic portion is, of course, related to K or G, as indicated earlier.

In particular, KIc and GIc correspond to δIc, the CTOD value at the initia-

tion of unstable fracture. The plastic portion is not strictly a material

property, in as much as it depends on the specimen’s dimensions,

constraints, etc.

The J integral is, mathematically, a path-independent integral.

From a practical engineering point of view, the J integral represents,

similarly to G, a strain energy release rate and is related to the area

under the curve load, P, and the load line displacement.

Just as we did for the concept of COD, we can write, for J,

J total = J el + J pl,
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where Jel is the elastic portion, equal to K 2
I /E ′. Here again, E′ equals

E for plane stress and E/(1 -- ν2) for plane strain. Jpl is a function of

the geometry of the component and the crack load corresponding to

extensive plastic deformation, and the material characteristics such

as the yield strength, ultimate tensile strength, etc.

This division of the crack driving force into elastic and plastic

parts is conceptually very convenient. Tests for the J integral, as well

as for COD, are based on the fact that a ductile structure containing

a crack is characterized by three successive stages:

1. Crack blunting and the initiation of propagation.

2. Slow and stable crack growth under increasing load.

3. Unstable crack growth, i.e., the instability.

A curve showing these stages is called a resistance curve (δ--R or J--

R). It describes the material resistance as a function of stable crack

growth a.

7.10 Statistical Analysis of Failure Strength

As we have repeatedly pointed out, materials in real life are never per-

fect. No matter how carefully processed a material is, it will always

contain a distributions of flaws. The presence of flaws in ductile

metals is not very serious, because these metals have the ability to

deform plastically and thus attenuate, at least to some extent, the

insidious effect of flaws on strength. The same cannot be said of

brittle materials. Such preexisting flaws are responsible for the phe-

nomenon of catastrophic fracture in these materials. In general, flaws

vary in size, shape, and orientation; consequently, the strength of a

material will vary from specimen to specimen. When we test a brittle

material, one or several of the larger flaws propagate. In the case of

a ductile material such as aluminum, most of the flaws get blunted

because of plastic deformation, and only after considerable plastic

deformation do microvoids form and coalesce, leading to an eventual

fracture. (See Chapter 8.) If we were to test a large number of identical

samples and plot the strength distribution of a brittle and a ductile

solid, we would get the curves shown in Figure 7.31. The strength

distribution curve for the ductile solid is very narrow and close to

a Gaussian or normal distribution, while that for the brittle solid

is very broad with a large tail on the high-strength side -- that is, a

non-Gaussian distribution. It turns out that the strength distribution

of a brittle solid can be explained by a statistical distribution called

the Weibull distribution, named after the Swedish engineer who first

proposed it.16 We next describe this distribution and its application

to the analysis of the strength of brittle solids.

The basic assumption in Weibull distribution is that a body of

material with volume V has a statistical distribution of noninteracting

16 W. Weibull, J. App. Mech., 18 (1951), 293.
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flaws. Thus, the body of volume V can be considered to be made up

of n volume elements, each of unit volume V0 and having the same

flaw distribution. (See Figure 7.32.) Now, if we subject such a solid to

an applied stress σ , the probability that the solid will survive can be

written as

P (V ) = P (V0)P (V0) . . . . . . P (V0) = P (V0)n, (7.43)

where V0 is the volume of an element and n is the number of volume

elements. Taking logarithms, we have

ln P (V ) = n ln P (V0),

or

P (V ) = exp[n ln P (V0)]. (7.44)

Weibull defined a risk-of-rupture parameter

R = −[ln P (V0)], (7.45)

or, alternatively,

P (V0) = exp(−R ). (7.46)

He then postulated that this parameter is given by

R = [(σ − σu)/σ0]m, (7.47)

where σ is the applied stress and m, σ 0, and σ u are material con-

stants for a constant-flaw population, i.e., the flaw population does
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Table 7.3 Typical Values of the Weibull Modulus

m for Some Materials

Material m

Traditional Ceramics:
Brick, Pottery, Chalk <3

Engineered Ceramics:
SiC, Al2O3, Si3N4 5–10

Metals:
Aluminum, Steel 90–100

not change from element to element. σ u is the stress below which

the probability of failure is zero. If we assume that any tensile stress

will cause failure in a brittle solid, then we can take σ u to be zero.

For such a material, σ 0 is a characteristic strength -- often taken to

be approximately the mean strength -- of the material, and m, called

the Weibull modulus, is a measure of the variability of the strength

of the material; the higher the value of m, the less is the material’s

variability in strength. m can have any value between 0 and ∞, i.e., 0

< m < ∞. As m → 0, R → 1, and the material will fail at any stress.

Also, when m → ∞, the material will not fracture at any stress below

σ 0. Table 7.3 gives some typical values of m for some materials.

From Equations (7.46) and (7.47), we can write, for the survival

probability of a brittle material

P (V0) = exp

[
−

(
σ − σu

σ0

)m]
. (7.48)

We can write the failure probability as

F (V0) = 1 − P (V0) = 1 − exp

[
−

(
σ − σu

σ0

)m]
. (7.49)

As explained in the preceding paragraph, we can take σ u = 0 for a

brittle material. This will make Equation 7.48 become

P (V0) = exp

[
−

(
σ

σ0

)m]
. (7.50)

Equation 7.50 says that when the applied stress σ = 0, the survival

probability P(V0) = 1, and all samples of the material tested survive.

As the applied stress increases, more samples fail, and the survival

probability decreases. Eventually, as σ → ∞, P(V0) → 0; that is, all

samples fail at very high stresses. We can arrive at a value of σ 0 by

noting that, when σ = σ 0,

P (V0) = 1

e
= 0.37.
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Thus, σ 0 is the stress corresponding to a survival probability of 37%.

Taking logarithms of Equation 7.50, we get

ln

[
1

P (V0)

]
=

(
σ

σ0

)m

. (7.51)

Thus, a double-logarithmic plot of Equation 7.51 will give a straight

line with slope m. This yields a convenient way of obtaining a Weibull

analysis of the strength of a given material. If N samples are tested,

we rank their strengths in ascending order and obtain the probability

of survival for the ith strength value as

Pi (V0) = (N + 1 − i )/(N + 1).

Note that there will be N + 1 strength intervals for N tests. Alterna-

tively, we can use the failure probability:

Fi (V0) = 1 − Pi (V0) = i/(N + 1).

We can incorporate a volume dependence into Equation 7.50. Let V0

be a reference volume of a material with a survival probability of

P(V0), i.e., fraction of samples, each of volume V0, that survive when

loaded to a stress, σ . Now consider a volume V of this material such

that V = nV0. Then, from Equation 7.43, we can write

P (V ) = P (V0)n = [P (V0)]V/V0 .

Taking logarithms, we get

ln P (V ) = V

V0

ln P (V0),

or

P (V ) = exp

[
V

V0

ln P (V0)

]
. (7.52)

From Equations 7.50 and 7.52, we have

P (V ) = exp

[
− V

V0

(
σ

σ0

)m]
, (7.53)

or

ln P (V ) = − V

V0

(
σ

σ0

)m

. (7.54)

We can convert Equation 7.54 to the following form by taking loga-

rithms again.

ln ln

[
1

P (V )

]
= ln

V

V0

+ m ln
σ

σ0

.

Equation 7.54 tells us that, for a given probability of survival and for

two volumes V1 and V2 of a material,

ln P (V ) = − V1

V0

[
σ1

σ0

]m

= − V2

V0

[
σ2

σ0

]m

,

where σ 1 and σ 2 are the strengths of the material in volumes V1 and

V2, respectively.



7 .10 STATIST IC AL ANALYS IS OF FAILURE STRENGTH 453

0.99

0.90

0.80

0.60

0.40

0.20

0.10

150 200 300 400 500 600 800

CPS
alumina

578.1 MPa
m = 9.7

0.2% carbon
hot-rolled
steel

Conventional
alumina

Strength, MPa

F
a

il
u

re
 p

ro
b

a
b

il
it

y
Average

286.0 MPa
slope, m = 4.7

1000

Fig. 7.33 A Weibull plot for a

steel, a conventional alumina, and a

controlled-particle-size (CPS)

alumina. Note that the slope

(Weibull modulus m) → ∞ for

steel. For CPS alumina, m is double

that of conventional alumina.

(After E. J. Kubel, Adv. Mater. Proc.,

Aug (1988) 25.)

1

0
175 350 525 700 875 1050 1225

Strength, MPa

AIN
SiC

Si3N4

P
ro

b
a

b
il

it
y

 o
f 

fa
il

u
re

0.8

0.6

0.4

0.2

Fig. 7.34 Cummulative

probability of flexural strengths

(four-point bend test with inner

and outer spans 20 and 40 mm,

respectively, and cross section of

3 × 4 mm) for three ceramics.

(Courtesy of C. J. Shih.)

Hence,

V1σ
m
1 = V2σ

m
2 ,

or

σ1

σ2

=
(

V2

V1

)1/m

. (7.55)

Thus we see that, for an equal probability of survival, the larger

the volume (V2 > V1), the smaller must be the fracture strength

(σ 1 < σ 2).

An interesting application of the Weibull distribution is illustrated

in Figure 7.33, which shows a double-logarithmic plot as per Equation

7.51. Note that the failure probability F(V) = 1 − P(V), rather than the

survival probability P(V ) is plotted. The figure shows the following

items:

1. The Weibull modulus m of steel → ∞. (Note the vertical line.)

2. The Weibull modulus m of conventionally processed alumina is 4.7.

3. If we process alumina carefully -- say, by using a controlled particle

size (CPS in Figure 7.33) -- the value of m is doubled, to 9.7. By a

controlled particle size, we mean a monosize powder that enhances

packing, less use of a binder material (which produces flaws after

sintering), more uniform shrinkage, etc.

Figure 7.34 shows the cummulative probability of failure as a func-

tion of stress for three important engineering ceramics: AlN, SiC, and
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Si3N4. As the Weibull modulus increases, the slope of the curve

becomes steeper. When we plot the curves on logarithmic abscissa

and ordinate axes, a straight line is obtained that can be used to

obtain m as shown in Figure 7.33.

Some words of caution regarding the use of Weibull probabil-

ity plots are in order. The tail of the distribution (see Figure 7.31)

must be included in the analysis. In practical terms, this means

that the statistical sample size should be sufficiently large. Typ-

ically, for an allowable failure rate P = 0.01, the sample size would

be greater than 100. Also, the preceding analysis assumes a ‘‘well-

behaved flaw population.” Bimodal flaw populations can result in two

linear parts on the Weibull plot, indicating two values of the Weibull

modulus.

Example 7.8

The data obtained in four-point bend (or flexure) tests on SiC specimens

processed in three different ways are reported in Table E7.8.1. Calculate

the Weibull modulus m and the characteristic strength σ 0, and make

the Weibull plot, for each specimen. Each specimen had outer and

inner spans of 40 and 20 mm, respectively. The height and width of the

specimens are 3 mm and 4 mm, respectively.

Table E7.8.1 Fracture Load (N) of Three Hot-Pressed SiC Specimens

Test No. SiC-A SiC-B SiC-N

1 497 421 466
2 291 690 618
3 493 556 529
4 605 573 627
5 511 618 564
6 524 609 564
7 327 690 573
8 484 654 394
9 394 618 618

10 448 645 493
11 511 591 511
12 497 739 475
13 426 739 618
14 345 703 493
15 358 569 591
16 287 685 627
17 412 708 618
18 466 573 600
19 493 717 645
20 591 676 614
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Solution: We first obtain the stresses from the loads in Table E7.8.1. The

moment is

M = P

2
× L

4
.

(See Figure E7.8.1.) The maximum tensile stress is

σ = M c

I
,

where h is the height, b is the breadth, I is the moment of inertia of

the beam, and

c = h

2
,

I = bh3

12
.

L/2

L/4 L/4

P/2 P/2

Mmax

Fig. E7.8.1

The calculated stresses are shown in Figure E7.8.2. Hence,

σ = pL h × 12

8 × bh3
= 3

4

PL

bh2
.

1

0

0 100 200 300

P
ro

b
a
b

il
it

y
 o

f 
fa

il
u

re

400 500 600 700

SiC-A

SiC-B

SiC-N

s, MPa

0.8

0.6

0.4

0.2

Fig. E7.8.2



456 FRACTURE : MACROSCOPIC ASPECTS

To obtain the Weibull parameters, we use Equation 7.50:

P (V ) = exp

[
−

(
σ

σ0

)m]
,

or

1 − F (V ) = exp

[
−

(
σ

σ0

)m]
.

Taking logarithms yields

ln[1 − F (V )] = −
(

σ

σ0

)m

.

Taking logarithms again results in

ln ln[1 − F (V )] = −m(ln σ − ln σ0),

or

ln ln

[
1

1 − F (V )

]
= m(ln σ − ln σ0).

To obtain F(V) for each point, we use the following equation:

1 − Pi (V ) = Fi (V ) = i

N + 1
,

where N is the total number of specimens tested.

In the present case, N = 20. Hence, F1(V) = 1/21, F2(V) = 2/21, F3(V)

= 3/21. . . . These results are plotted in Figure E7.8.3. We use a double

logarithm for 1/[1-- F(V )] and the logarithm for σ . The slope of this plot

provides m. The horizontal line passing through zero gives the values of

the characteristic strengths. We summarize our results in Table E7.8.2.

Figure E7.8.4 shows the Weibull curves with the preceding parameters

superimposed on the data points of Figure E7.8.3.
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Table E7.8.2

Specimen m σ 0 (MPa)
Average Stress
± S.D. (MPa)

SiC-A 5.61 411.3 380.7 ± 63.1
SiC-B 9.10 572.1 542.0 ± 52.6
SiC-N 9.22 502.9 476.8 ± 48.7

S.D. = Standard deviation.
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Appendix: Stress Singularity at Crack Tip

It is relatively simple to obtain the stress singularity close to a crack

in Mode III. (See Figure A1.) For Modes I and II, other more complex

solutions exist.

The displacements are, for the three directions (X1, X2, and X3):

u = 0,

v = 0,

w = 0.

The strains are:

γ31 = γ13 = ∂w

∂x1

,

γ32 = γ23 = ∂w

∂x2

.

All the other components are zero.

The stresses are given by

σ13 = G γ13,

σ23 = G γ23.

The equilibrium equation is

∂σi j

∂x j

= ρüi .

In our case, since the acceleration is zero

∂σi j

∂x j

= 0.

In the extended notation we can write:

∂σ13

∂x1

+ ∂σ23

∂x2

= 0,

G
∂2w

∂x2
1

+ G
∂2w

∂x2
2

= 0,

∇2w = 0.
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We now change to radial coordinates. (See Figure A2.)

θ

x2

x1

x3

r

Fig. A2

The form of Laplacian operator in radial coordinates is:

∇2 = ∂2

∂x2
1

+ ∂2

∂x2
2

= ∂2

∂r 2
+ 1

r

∂

∂r
+ 1

r

∂2

∂θ2
.

The solution to this equation is given in differential equation

books.17

w = rλ f (θ ) ,

∇2w = λ (λ − 1) rλ−2 f (θ ) + 1

r
λrλ−1 f (θ ) + 1

r 2
rλ f ′′ (θ ) ,

rλ−2
(
λ (λ − 1) f (θ ) + λ f (θ ) + f ′′ (θ )

) = 0.

Apply for all r,

λ2 f (θ ) + f ′′ (θ ) = 0,

f (θ ) = A sin λθ + B cos λθ,

w = rλ (A sin λθ + B cos λθ ) .

The boundary conditions are:

w (r, θ ) = −w (r, −θ ) ,

w (r, θ ) = rλ (A sin λθ + B cos λθ ) ,

w (r, −θ ) = rλ (−A sin λθ + B cos λθ ) ,

B = 0,

w (r, θ ) = rλ A sin λθ.

For θ = ±π, σrθ = 0 .

σzθ = G
1

r

∂w

∂θ
= 0,

∂w

∂θ
= rλ Aλ cos λθ at θ = π,

λ = ±1

2
, ±3

2
, ±5

2
, λ = 2n − 1

2
.

In a general way, one can write:

w (r, θ ) =
N∑

n=1

(
r

2n−1
2 A sin

2n − 1

2
θ

)
.

We will only use A > 0, then the first terms becomes:

w (r, θ ) = A1r
1
2 sin

1

2
θ,

σzθ = G
1

r

∂w

∂θ
= A1

r
G r

1
2

1

2
cos

θ

2
,

σzθ = A1G

2r
1
2

cos
θ

2
.

where G is the shear modulus.

17 See, for example, R. Haberman, Elementary Applied Partial Differential Equations (Upper

Saddle River, NJ: Prentice Hall, 1998).



460 FRACTURE : MACROSCOPIC ASPECTS

We use the term K III to group the constants:

σzθ = K III√
2πr

cos
θ

2
,

σrθ = G
∂w

∂r
= A1G

2r
1
2

sin
θ

2
,

or,

σrθ = K III√
2πr

sin
θ

2
.

These expressions are equivalent to Equation 7.23 and demonstrate

the square root singularity of the stresses at the tip of the crack.
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Exercises

7.1 In a polyvinyl chloride (PVC) plate, there is an elliptical, through-the-

thickness cavity. The dimensions of the cavity are:

major axis = 1 mm,

minor axis = 0.1 mm.

Compute the stress concentration factor Kt at the extremities of the cavity.

7.2 Calculate the maximum tensile stress at the surfaces of a circular hole

(in the case of a thin sheet) and of a spherical hole (in the case of a thick

specimen) subjected to a tensile stress of 200 MPa. The material is Al2O3 with

ν = 0.2.

7.3 Calculate the maximum tensile stress if the applied stress is compressive

for a circular hole for which σ c = 200 MPa and ν = 0.2.

7.4 The strength of alumina is approximately E/15, where E is the Young’s

modulus of alumina, equal to 380 GPa. Use the Griffith equation in the plane-

strain form to estimate the critical size of defect corresponding to fracture of

alumina.
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7.5 Compute the ratio of stress required to propagate a crack in a brittle

material under plane-stress and plane-strain conditions. Take Poisson’s ratio

ν of the material to be 0.3.

7.6 An Al2O3 specimen is being pulled in tension. The specimen contains flaws

having a size of 100 μm. If the surface energy of Al2O3 is 0.8 J/m2, what is the

fracture stress? Use Griffith’s criterion. E = 380 GPa.

7.7 A thin plate is rigidly fixed at its edges (see Figure Ex7.7). The plate has a

height L and thickness t (normal to the plane of the figure). A crack moves

from left to right through the plate. Every time the crack moves a distance


x, two things happen:

1. Two new surfaces (with specific surface energy) are created.

2. The stress falls to zero behind the advancing crack front in a certain volume

of the material.

Obtain an expression for the critical stress necessary for crack propagation

in this case. Explain the physical significance of this expression. Assume the

stress, σ , ahead of the crack is uniform.

7.8 A central through-the-thickness crack, 50 mm long, propagates in a

thermoset polymer in an unstable manner at an applied stress of 5 MPa.

Find Kc.

7.9 Machining of SiC produced surface flaws of a semielliptical geometry. The

flaws that were generated have dimensions a = 1 mm, width w = 100 mm,

and c = 5 mm, and the thickness of the specimen is B = 20 mm. Calcu-

late the maximum stress that the specimen can withstand in tension. KIc =
4 MPa m1/2.

7.10 (a) An AISI 4340 steel plate has a width W of 30 cm and has a central

crack 2a of 3 mm. The plate is under a uniform stress σ . This steel has a KIc

value of 50 MPa m1/2. Find the maximum stress for this crack length. (b) If

the operating stress is 1,500 MPa, compute the maximum crack size that the

steel may have without failure.

7.11 A microalloyed steel, quenched and tempered at 250 ◦C, has a yield

strength (σ y) of 1,750 MPa and a plane-strain fracture toughness KIc of 43.50

MPa m1/2. What is the largest disk-type inclusion, oriented most unfavorably,

that can be tolerated in this steel at an applied stress of 0.5σ y?
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7.12 A 25-mm2 bar of cast iron contains a crack 5 mm long and normal to

one face. What is the load required to break this bar if it is subjected to three-

point bending with the crack toward the tensile side and the supports 250

mm apart?

7.13 Consider a maraging steel plate of thickness (B) 3 mm. Two specimens

of width (W) equal to 50 mm and 5 mm were taken out of this plate.

What is the largest through-the-thickness crack that can be tolerated in

the two cases at an applied stress of σ = 0.6σ y, where σ y (yield stress) =
2.5 GPa? The plane-strain fracture toughness KIc of the steel is 70 MPa

m1/2. What are the critical dimensions in the case of a single-edge notch

specimen?

7.14 An infinitely large plate containing a central crack of length 2a = 50/π

mm is subjected to a nominal stress of 300 MPa. The material yields at

500 MPa. Compute:

(a) The stress intensity factor at the crack tip.

(b) The size of the plastic zone at the crack tip.

Comment on the validity of Irwin’s correction for the size of the plastic zone

in this case.

7.15 A steel plate containing a through-the-thickness central crack of length

15 mm is subjected to a stress of 350 MPa normal to the crack plane. The

yield stress of the steel is 1,500 MPa. Compute the size of the plastic zone and

the effective stress intensity factor.

7.16 The size of the plastic zone at the crack tip in the general plane-stress

case is given by

ry = K 2
l

2πσ 2
y

cos2 θ

2

(
4 − 3 cos2 θ

2

)
.

(a) Determine the radius of the plastic zone in the direction of the crack.

(b) Determine the angle θ at which the plastic zone is the largest.

7.17 For the plane-strain case, the expression for the size of the plastic zone is

ry = K 2
l

2πσ 2
y

cos2 θ

2

{
4[1 − ν(1 − ν)] − 3 cos2 θ

2

}
.

(a) Show that this expression reduces to the one for plane stress.

(b) Make plots of the size of the plastic zone as a function of θ for ν = 0,

ν = 1
3

, and ν = 1
2

. Comment on the size and form of the zone in the three

cases.

7.18 A sheet of polystyrene has a thin central crack with 2a = 50 mm. The

crack propagates catastrophically at an applied stress of 10 MPa. The Young’s

modulus polystyrene is 3.8 GPa, and the Poisson’s ratio is 0.4. Find GIc.

7.19 Compute the approximate size of the plastic zone, rν , for an alloy that has

a Young’s modulus E = 70 GPa, yield strength σ ν = 500 MPa, and toughness

Gc = 20 kJ/m2.

7.20 300-M steel, commonly used for airplane landing gears, has a Gc value of

10 kN/m. A nondestructive examination technique capable of detecting cracks

that are 1 mm long is available. Compute the stress level that the landing gear

can support without failure.



EXERCISES 463

7.21 A thermoplastic material has a yield stress of 75 MPa and a GIc value

of 300 J/m2. What would be the corresponding critical crack opening

displacement? Take λ = 1. Also, compute JIc.

7.22 A pipe line with overall diameter of 1 m and 25-mm thickness is con-

structed from a microalloyed steel (KIc = 60 MPa m1/2; σ y = 600 MPa). Cal-

culate the maximum pressure for which the leak-before-break criterion will

be obeyed. The leak-before-break criterion states that a through-the-thickness

crack (a = t) will not propagate catastrophically.

7.23 Al2O3 has a fracture toughness of approximately 3 MPa m1/2. Suppose you

carried out a characterization of the surface of the specimen and detected

surface flaws with a radius a = 50 μm. Estimate the tensile and compressive

strengths of this specimen; show by sketches, how flaws will be activated in

compression and tension.

7.24 Using the Weibull equation, establish the tensile strength, with a 50%

survival probability, of specimens with a length of 60 mm and a diame-

ter of 5 mm. Uniaxial tensile tests carried out on specimens with a length

of 20 mm and the same diameter yielded the following results in MPa

(10 tests were carried out): 321, 389, 411, 423, 438, 454, 475, 489, 497,

501.

7.25 An engineering ceramic has a flexure strength that obeys Weibull statis-

tics with m = 10. If the flexure strength is equal to 200 MPa at 50% survival

probability, what is the flexure strength level at which the survival probability

is 90%?

7.26 What would be the flexure strength, at 90% survival probability, if the

ceramic in the preceding problem is subjected to a hot isostatic processing

(HIP) treatment that greatly reduces the population of flaws and increases

m to 60. Assume that the flexure strength at 50% survival probability is

unchanged.

7.27 Ten rectangular bars of Al2O3 (10 mm wide and 5 mm in height) were

tested in three-point bending, the span being 50 mm. The failure loads were

1,040, 1,092, 1,120, 1,210, 1,320, 1,381, 1,410, 1,470, 1,490, and 1,540 N. Deter-

mine the characteristic flexure strength and Weibull’s modulus for the speci-

mens. (See Section 9.6.1 for the flexure formula.)

7.28 Verify the values of m in Figure 7.34, and obtain the characteristic

strengths σ 0 for the three materials. If the fracture toughness of SiC, Si3N4,

and AlN are equal to 5.2, 5.7, and 2.4 MNm3/2, respectively, what are the largest

flaws that can be tolerated in these specimens?

7.29 Aluminum has a surface energy of 0.5 Jm−2 and a Young’s modulus of

70 GPa. Compute the stress at the crack tip for two different crack lengths:

1 mm and 1 cm.

7.30 Determine the stress required for crack propagation under plane strain

for a crack of length equal to 2 mm in aluminum. Take the surface energy

equal to 0.048 J/m2, Poisson’s ratio to 0.345, and the modulus of E = 70.3

GPa.

7.31 Calculate the maximum load that a 2024-T851 aluminum alloy (10 cm ×
2 cm) with a central through-the-thickness crack (length 0.1 mm) can with-

stand without yielding. Given: σ y = 500 MPa and KIc = 30 MPa m1/2.
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7.32 An infinitely large sheet is subjected to a far-field stress of 300 MPa. The

material has a yield strength of 600 MPa, and there is a central crack 7/π cm

long.

(a) Calculate the stress intensity factor at the tip of the crack.

(b) Estimate the size of the plastic zone size at the tip of the crack.

7.33 What is the maximum allowable crack size for a material that has

KIc = 55 MPa m1/2 and σ y = 1,380 MPa? Assume a plane-strain condition

and a central crack.

7.34 Two specimens of concrete were tested in compression. One was wrapped

with a very strong composite tape. They exhibited substantial differences in

strength, shown in Figure Ex7.34. Explain, in terms of microstructural behav-

ior, the reason for the difference in response. Use sketches.

7.35 An Al2O3 specimen is being pulled in tension. The specimen contains

flaws having a size of 100 μm.

(a) If the surface energy of Al2O3 is 0.8 J/m2, what is the fracture stress? Use

the Griffith criterion. E = 380 GPa.

(b) Using your vast fracture mechanics knowledge and advanced equations,

estimate the fracture stress if the fracture toughness is 4 MPa m1/2. Assume

two positions for flaw: in the center of an infinite body and at the edge.

7.36 A structural steel component has a surface crack of 2 mm. This steel has

a fracture toughness of 75 MPa m1/2. By how much can this crack grow before

catastrophic failure?

7.37 A titanium alloy (Ti-6Al-4V) has a yield strength of 1280 MPa and a frac-

ture toughness of 77 MPa m1/2. If we apply a stress of 0.3σ y, what will be the

size of the surface crack that will lead to catastrophic failure?

7.38 An AISI steel plate has a crack with the size of 2 mm in the center. If the

plate is under a uniform stress, and the width of the plate is 24 cm:
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(a) Find the maximum value of the stress if KIc = 45 MPa m1/2.

(b) Find the maximum crack size that the plate can have, if it has to operate

at a stress of 1,250 MPa.

7.39 In an Al alloy 7178-T651 (thick plate), find the critical crack length if it

is under a stress of 500 MPa. Given: KIc = 28 MPa m1/2.

7.40 What is the largest flaw size of a ceramic material that can support a

strength of 280 MPa and KIc = 2.2 MPa m1/2, assuming Y = 1?

7.41 Determine the tensile strength of an alumina specimen having a grain

size of 1 μm, if the tensile strength of the same material with a grain size of

50 μm is 1 GPa. Assume that the flaw size is equal to one half the grain size.

7.42 A brittle material (Sialon) is used as a support plate. Sialon has a fracture

toughness of 9 MPa m1/2. The plate has to withstand a tensile load of 200kN.

We have three non-destructive inspection techniques at our disposal: X-ray

radiography (can detect flaws greater than 0.5 mm); gamma-ray radiography

(flaws greater than 0.20 mm) and ultrasonic inspection (flaws greater than

0.125 mm). Calculate the cross-sectional area of the plate for the different

NDE testing methods.

7.43

(a) An AISI steel plate has width W = 30 cm and a central crack with size of

3 mm. The plate is under a uniform stress. Find the maximum value of

the stress is KIc = 50 MPa m1/2.

(b) If the part has to operate at a stress of 1,500 MPa, compute the maximum

crack size that the plate can have.

7.44 A polymer contains internal flaws (penny shaped) with a diameter of

2 mm and fails, in tension, at an applied stress of 30 MPa. What is the fracture

toughness of this polymer?

7.45 Rank the estimated strength of three ceramic parts, made of Al2O3, with

three different volumes: V = 10 cm3; V = 100 cm3; V = 1 m3.

7.46 Establish the maximum tensile load that a block with a cross-section of

10 × 10 cm can take, if its fracture toughness is equal to 90 MPa m1/2 and its

yield stress is 1,000 MPa. This part contains an embedded crack with a radius

of 10 mm.

7.47 Engineers are designing a ceramic component for a jet engine. The

ceramic has a fracture toughness of 8 MPa m1/2. The ceramic is subjected to a

maximum tensile stress of 500 MPa. Calculate the maximum size of surface

flaws that the part can have.

7.48 A cylindrical pressure vessel (length of 10 m; diameter of 1 m) is made

from a high strength steel with KIc = 100 MPA m1/2 and a yield strength of

1,600 MPa. The thickness of the vessel is 25 mm. NDE has revealed a longitu-

dinal crack penetrating 7 mm into the cylinder wall.

(a) What maximum pressure can the cylinder be loaded to?

(b) What is the percentage reduction in maximum pressure due to the pres-

ence of flaw?



Chapter 8

Fracture: Microscopic Aspects

8.1 Introduction

In Chapter 7, we described the macroscopic aspects of the fracture

behavior of materials. As with other characteristics, the microstruc-

ture of a material has a great influence on its fracture behavior. In

what follows, we present a brief description of the microstructural

aspects of crack nucleation and propagation, as well as the effect

of the environment on the fracture behavior of different materials.

Figure 8.1 shows, schematically, some important fracture modes in a

variety of materials. These different modes will be analyzed in some

detail in this chapter. Metals fail by two broad classes of mechanisms:

ductile and brittle failure.

Ductile failure occurs by (a) the nucleation, growth, and coalescence

of voids, (b) continuous reduction in the metal’s cross-sectional area

until it is equal to zero, or (c) shearing along a plane of maximum

shear. Ductile failure by void nucleation and growth usually starts at

second-phase particles. If these particles are spread throughout the

interiors of the grains, the fracture will be transgranular (or transcrys-

talline). If these voids are located preferentially at grain boundaries,

fracture will occur in an intergranular (or intercrystalline) mode.

The appearance of a ductile fracture, at high magnification (500× or

higher) is of a surface with indentations, as if marked by an ice-

cream scooper. This surface morphology is appropriately called dim-

pled. Rupture by total necking is very rare, because most metals con-

tain second-phase particles that act as initiation sites for voids. How-

ever, high-purity metals, such as copper, nickel, gold, and other very

ductile materials, fail with very high reductions in their areas.

Brittle fracture is characterized by the propagation of one or

more cracks through the structure. While totally elastic fracture

describes the behavior of most ceramics fairly well, metals and some

polymers undergo irreversible deformation at the tip of the crack,

which affects its propagation. Figure 8.1 shows the variety of mor-

phologies and processes occurring during fracturing of materials. For

metals and ceramics, two modes of crack propagation: transgranular



8 .1 INTRODUCTION 467

Fig. 8.1 Schematic classification

of fracture morphologies and

processes. (After M. F. Ashby.)

fracture (or cleavage) and intergranular fracture are observed. For

energy-related reasons, a crack will tend to take the path of least resist-

ance. If this path lies along the grain boundaries, the fracture will be

intergranular.

Often, a crack also tends to run along specific crystallographic

planes, as is the case for brittle fracture in steel. Upon observation at

high magnification, transgranular brittle fracture is characterized by
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clear, smooth facets that have the size of the grains. In steel, brittle

fracture has the typical shiny appearance, while ductile fracture has a

dull, grayish aspect. In addition to brittle fracture, polymers undergo

a mode of fracture involving crazing, in which the polymer chains

ahead of a crack align themselves along the tensile axis, so that the

stress concentration is released.

Another mode of deformation that is a precursor to fracture is

the phenomenon of shear banding in a polymer. If one stretches the

polymer material, one observes the formation of a band of material

with a much higher flow stress than exists in the unstretched state.

Shear banding (or localization) is also prevalent in metals.

Composites -- especially fibrous ones -- can exhibit a range of fail-

ure modes that is dependent on the components of the material

(matrix and reinforcement) and on bonding. If the bond strength is

higher than the strength of the matrix and reinforcement, the frac-

ture will propagate through the latter (Figure 8.1). If the bonding is

weak, one has debonding and fiber pullout. In compression, compos-

ites can fail by a kinking mechanism, also shown in the figure; the

fibers break, and the entire structure rotates along a band, resulting

in a shortening of the composite. This mechanism is known as plastic

microbuckling.

8.2 Fracture in Metals

Metals are characterized by a highly mobile dislocation density, and

they generally show a ductile fracture. In this section, we discuss

the various aspects of void and crack nucleation and propagation in

metals.

8.2.1 Crack Nucleation
Nucleation of a crack in a perfect crystal essentially involves the rup-

ture of interatomic bonds. The stress necessary to do this is the theo-

retical cohesive stress, which was dealt with in Chapter 7, starting

from an expression for interatomic forces. From this expression, we

see that ordinary materials break at much lower stresses than do

perfect crystals -- on the order of E/104, where E is Young’s modulus

of the material. The explanation of this behavior lies in the exist-

ence of surface and internal defects that act as preexisting cracks

and in the plastic deformation that precedes fracture. When both

plastic deformation and fracture are eliminated -- for example, in

‘‘whiskers” -- stresses on the order of the theoretical cohesive stresses

are obtained.

Crack nucleation mechanisms vary according to the type of

material: brittle, semibrittle, or ductile. The brittleness of a mater-

ial has to do with the behavior of dislocations in the region of crack

nucleation. In highly brittle materials the dislocations are practi-

cally immobile, in semibrittle materials dislocations are mobile, but
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Table 8.1 Materials of Various Degrees of Brittlenessa

Type Principal Factors Materials

Brittle Bond rupture Structures of type diamond, ZnS, silicates, alumina,
mica, boron, carbides, and nitrides

Semibrittle Bond rupture, dislocation mobility Structures of type NaCl, ionic crystals, hexagonal
close-packed metals, majority of body-centered
cubic metals, glassy polymers

Ductile Dislocation mobility Face-centered cubic metals, some body-centered
cubic metals, semicrystalline polymers

a Adapted with permission from B. R. Lawn and T. R. Wilshaw, Fracture of Brittle Solids (Cambridge, U.K.: Cambridge

University Press, 1975), p. 17).

only on a restricted number of slip planes, and in ductile materials

there are no restrictions on the movement of dislocations other than

those inherent in the crystalline structure of the material. Table 8.1

presents various materials classified according to this criterion regard-

ing the mobility of dislocations.

The exposed surface of a brittle material can suffer damage by

mechanical contact with even microscopic dust particles. If a glass

fiber without surface treatment were rolled over a tabletop, it would

be seriously damaged mechanically.

Any heterogeneity in a material that produces a stress concentra-

tion can nucleate cracks. For example, steps, striations, depressions,

holes, and so on act as stress raisers on apparently perfect surfaces.

In the interior of the material, there can exist voids, air bubbles,

second-phase particles, etc. Crack nucleation will occur at the weak-

est of these defects, where the conditions would be most favorable. We

generally assume that the sizes as well as the locations of defects are

distributed in the material according to some function of standard

distribution whose parameters are adjusted to conform to experimen-

tal data. In this assumption, there is no explicit consideration of the

nature or origin of the defects.

In semibrittle materials, there is a tendency for slip initially, fol-

lowed by fracture on well-defined crystallographic planes. That is,

there exists a certain inflexibility in the deformation process, and

the material, not being able to accommodate localized plastic strains,

initiates a crack to relax stresses.

Various models are based on the idea of crack nucleation at an

obstruction site. For example, the intersection of a slip band with a

grain boundary, another slip band, and so on, would be an obstruc-

tion site.

8.2.2 Ductile Fracture
In ductile materials, the role of plastic deformation is very important.

The important feature is the flexibility of slip. Dislocations can move
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Fig. 8.2 (a) Failure by shear (glide) in a pure metal. (Reprinted with permission from

D. Broek, Elementary Engineering Fracture Mechanics, 3rd ed. (The Hague, Netherlands:

Martinus Nijhoff, 1982), p. 33.) (b) A point fracture in a soft single-crystal sample of

copper. (Courtesy of J. D. Embury.)

on a large number of slip systems and even cross from one plane to

another (in cross-slip). Consider the deformation of a single crystal

of copper, a ductile metal, under uniaxial tension. The single crys-

tal undergoes slip throughout its section. There is no nucleation of

cracks, and the crystal deforms plastically until the start of plastic

instability, called necking. From this point onward, the deformation

is concentrated in the region of plastic instability until the crystal

separates along a line or a point. (See Figure 8.2(a).) In the case of

a cylindrical sample, a soft single crystal of a metal such as copper

will reduce to a point fracture. Figure 8.2(b) shows an example of

such a fracture in a single crystal of copper. However, if, in a ductile

material, there are microstructural elements such as particles of a

second phase, internal interfaces, and so on, then microcavities may

be nucleated in regions of high stress concentration in a manner

similar to that of semibrittle materials, except that, due to the duc-

tile material’s large plasticity, cracks generally do not propagate from

these cavities. The regions between the cavities, though, behave as

small test samples that elongate and break by plastic instability, as

described for the single crystal.

In crystalline solids, cracks can be nucleated by the grouping

of dislocations piled up against a barrier. Such cracks are called

Zener--Stroh cracks.1 High stresses at the head of a pileup are relaxed

by crack nucleation, as shown in Figure 8.3, but this would occur only

in the case where there is no relaxation of stresses by the movement

of dislocations on the other side of the barrier. Depending on the

1 C. Zener, The Fracturing of Metals (Metals Park, OH: ASM, 1948).
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Barrier

Micro
crack

Slip
plane

Fig. 8.3 Grouping of dislocations

piled up at a barrier and leading to

the formation of a microcrack

(Zener–Stroh crack).

Fig. 8.4 Bicrystal with a slip

band in grain I. (a) The stress

concentration at the boundary of

the barrier due to slip band is fully

relaxed by multiple slip. (b) The

stress concentration is only

partially relaxed, resulting in a

crack at the boundary.

slip geometry in the two parts and the kinetics of the motion and

multiplication of dislocations, such a combination of events could

occur. (See Table 8.1.) Figure 8.4(a) shows a bicrystal that has a slip

band in grain I. The stress concentration at the barrier due to the

slip band is completely relaxed by slip on two systems in grain II.

Figure 8.4(b) shows the case of only a partial relaxation and the result-

ing appearance of a crack at the barrier. Lattice rotation associated

with the bend planes and deformation twins can also nucleate cracks.

Figure 8.5 shows crack nucleation in zinc as per the model shown in

Figure 8.5(a). Cracks can also begin at the intersections of various

boundaries in a metal, which represent sites at which there is a con-

centration of stress. Figure 8.6 presents examples of crack nucleation

at the intersection of twin boundaries and at the intersection of twin

steps and boundaries.

Fracture at high temperature can occur by a variety of other

modes as well. For example, grain-boundary sliding occurs rather

easily at high temperatures. Grain-boundary sliding can lead to the
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Fig. 8.5 Crack nucleation by (a)

lattice rotation due to bend planes

and (b) deformation twins. (c)

Crack nucleation in zinc due to

lattice rotation associated with

bend planes. (Reprinted with

permission from J. J. Gilman,

Physical Nature of Plastic Flow and

Fracture, General Electric Report

No. 60-RL-2410M, April, 1960,

p. 83.)

(c)

Fig. 8.6 Initiation of failure by

microcrack formation in tungsten

deformed at approximately

104 s−1 at room temperature.

(a) Twin steps. (b) Twin steps and

twin–twin intersection. (From T.

Dümmer, J. C. LaSalvia, M. A.

Meyers, and G. Ravichandran, Acta

Mater., 46 (1998) 959.)

development of stress concentrations at grain-boundary triple points

(where three grain boundaries meet). Cracks nucleate at such triple

points as shown schematically in Figure 8.7. Figure 8.8 shows a

Applied
stress

Sliding

Cavity

Fig. 8.7 w-type cavitation at a

grain-boundary triple point.
micrograph of copper in which such a crack nucleation has occurred.

This type of crack is called w-type cavitation or w-type cracking. Yet
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Fig. 8.8 w-type cavities

nucleated at grain boundaries in

copper; SEM.

another type of cracking occurs, characteristically, under conditions

of low stresses and high temperature. Small cavities form at grain

boundaries that are predominantly at approximately 90◦ to the stress

axis, as shown in Figure 8.9. This is called r-type cavitation or r-type

cracking. Figure 8.10 shows such intergranular voids in copper.

The most familiar example of ductile fracture is that in uni-

axial tension, giving the classic ‘‘cup and cone” fracture. When the

Applied
stress

Cavities

Fig. 8.9 r-type cavitation at a

grain boundary normal to the

stress axis.

maximum load is reached, the plastic deformation in a cylindrical

tensile test piece becomes macroscopically heterogeneous and is con-

centrated in a small region. This phenomenon is called necking (see

Section 3.2). The final fracture occurs in this necked region and has

the characteristic appearance of a conical region on the periphery

resulting from shear and a central flat region resulting from the voids

created there. In extremely pure metal single crystals (e.g., those free

of inclusions, etc.), plastic deformation continues until the sample

section is reduced to a point, a geometric consequence of slip, as

shown in Figure 8.2.

In practice, materials generally contain a large quantity of dis-

persed phases. These can be very small particles (1 to 20 nm) such

as carbides of alloy elements, particles of intermediate size (50 to

500 nm) such as alloy element compounds (carbides, nitrides,

Fig. 8.10 r-type cavities

nucleated at grain boundaries in

copper, seen through an optical

microscope.
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(a)

(b)

Obstacles

Slip
bands

Fig. 8.11 Nucleation of a cavity

at a second-phase particle in a

ductile material. (Adapted with

permission from B. R. Lawn and T.

R. Wilshaw, Fracture of Brittle Solids

(Cambridge: Cambridge University

Press, 1975), p. 40.)

carbonitrides) in steels, or dispersions such as Al2O3 in aluminum

and ThO2 in nickel. Precipitate particles obtained by appropriate heat

treatment also form part of this class (e.g., an Al--Cu--Mg system), as

do inclusions of large size (on the order of millimeters) -- for example,

oxides and sulfides.

If the second-phase particles are brittle and the matrix is ductile,

the former will not be able to accommodate the large plastic strains

of the matrix, and consequently, these brittle particles will break in

the very beginning of plastic deformation. In case the particle/matrix

interface is very weak, interfacial separation will occur. In both cases,

microcavities are nucleated at these sites (Figure 8.11). Generally, the

voids nucleate after a few percent of plastic deformation, while the

final separation may occur around 25%. The microcavities grow with

slip, and the material between the cavities can be visualized as a

small tensile test piece. The material between the voids undergoes

necking on a microscopic scale, and the voids join together. However,

these microscopic necks do not contribute significantly to the total

elongation of the material. This mechanism of initiation, growth, and

coalescence of microcavities gives the fracture surface a characteristic

appearance. When viewed in the scanning electron microscope, such

a fracture appears to consist of small dimples, which represent the

microcavities after coalescence. In many of these dimples, one can

see the inclusions that were responsible for the void nucleation. (See

Figure 8.12.) At times, due to unequal triaxial stresses, these voids are

elongated in one or the other direction. We describe the process of

fracture by void nucleation, growth, and coalescence in some detail

because of its great importance in metals.

Fracture by Void Nucleation, Growth, and Coalescence

Figure 8.13 shows the classic cup-and-cone fracture observed in many

tensile specimens with a cylindrical cross section. The configura-

tion is typical of ductile fracture, and upon observation at a higher

magnification (1,000× or higher, best done in a scanning electron

microscope), one sees the typical ‘‘dimple” features. The dimples are

equiaxal in the central portion of the fracture and tend to be inclined

in the sidewalls of the ‘‘cup.” The top two pictures show scanning elec-

tron micrographs of these two areas. In the central region fracture is
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Fig. 8.12 Scanning electron

micrograph of dimple fracture

resulting from the nucleation,

growth, and coalescence of

microcavities. The micrograph

shows an inclusion, which served

as the microcavity nucleation site.

essentially tensile, with the surface perpendicular to the tensile axis.

On the sides, the fracture has a strong shear character, and the dim-

ples show the typical ‘‘inclined” morphology, i.e., they appear to be

elliptical with one side missing. Figure 8.14 shows, in a very schematic

fashion, what is thought to occur in the specimen that leads to fail-

ure. Voids nucleate and grow in the interior of the specimen when the

overall plastic strain reaches a critical level. The voids grow until they

coalesce. Initially equiaxial, their shape changes in accordance with

the overall stress field. As the voids coalesce, they expand into adjoin-

ing areas, due to the stress concentration effect. When the center of

the specimen is essentially separated, this failure will grow toward

the outside. Since the elastic--plastic constraints change, the plane

of maximum shear (approximately 45◦ to the tensile axis) is favored,

and further growth will take place along these planes, which form

the sides of the cup. Although it is easy to describe this process in a

qualitative way, an analytical derivation is very complex and involves

plasticity theory, which is beyond the scope of the text. Figure 8.15

shows the sequence of ductile fracture propagation, with the forma-

tion of dimples. The dimples are produced by voids nucleating ahead

of the principal crack (Figures 8.15(a) and (b)), which has a blunted

tip because of the plasticity of the material. The void ahead of the

crack grows (Figure 8.15(c)) and eventually coalesces with the main

crack (Figure 8.15(d)). New voids nucleate ahead of the growing crack,

and the process repeats itself. Figure 8.16 shows the propagation of

ductile fracture in a specimen of AISI 304 stainless steel undergoing

extension, as seen in a high-voltage transmission electron microscope.

A referential fixed to the material was added to help visualize the

progression of the crack. Figure 8.16(a) shows the growth of a void

ahead of the tip of the crack, while Figure 8.16(b) shows new voids
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Fig. 8.13 Scanning electron

micrographs at low magnification

(center) and high magnification

(right and left) of AISI 1008 steel

specimen ruptured in tension.

Notice the equiaxal dimples in the

central region and elongated

dimples on the shear walls, the

sides of the cup.

being nucleated. In Figure 8.16(c), the crack has advanced by joining

with these growing voids. New voids have nucleated.

The nucleation and growth of voids is of great importance in

determining the fracture characteristics of ductile materials. Many

researchers have identified second-phase particles and inclusions as

the main sources of voids.2 Indeed, Figure 8.12 shows dimples, at

the bottoms of which second-phase particles can be seen. The size,

separation, and interfacial bonding of these particles determine the

overall propagation characteristics of ductile cracks and, therefore,

the ductility of the material. The role of second-phase particles is

illustrated in Figure 8.17. Copper-based alloys with different amounts

of second-phase particles (fractions from 0 to 0.24) were tested in

tension, and

2 See, for example, H. C. Rogers, in Ductility (Metals Park, OH: ASM, 1967), p. 31; and

L. M. Brown and J. D. Embury, in Microstructure in Design of Alloys, Vol. 1 (London:

Institute of Metals/Iron and Steel Institute, 1973), p. 164.
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Fig. 8.14 Schematic sequence of

events leading to the formation of

a cup-and-cone fracture.

Fig. 8.15 Sequence of events in

the propagation of ductile fracture

by nucleation, growth, and

coalescence of voids.

Fig. 8.16 Observation of

progression of ductile fracture

while specimen is stressed in

high-voltage transmission electron

microscope. Referential is fixed to

material. (Courtesy of L. E. Murr.)
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Fig. 8.17 Combined plot of

ductility vs. volume fraction of

second phase, f, for copper

specimens containing various

second phases and for notched

copper specimens. The dashed line

represents the prediction from the

law of mixtures, assuming zero

ductility for the second-phase

particles. (From B. I. Edelson and

W. J. Baldwin, Jr., Trans. ASM, 55

(1962) 230.)

the ductility of the material was measured. The ductility is given

by the reduction in area of the specimens at the fracture point (ln

A0/Af, where A0 and Af are the initial and final cross-sectional areas,

respectively). By a simple rule of mixtures, assuming that the second-

place particles have zero ductility, one obtains the straight line shown

in the figure. However, the effect of second-phase particles is much

more drastic, and ductility is reduced to zero at f = 0.24. This is a

clear indication that second-phase particles play a key role in the

propagation of ductile fracture.

Various models have been proposed for void growth. When the

growth rate is very low, or the temperature is high (such as in creep)

vacancies flow into the void and make it grow. However, at low tem-

peratures and higher strain rates the migration of vacancies cannot

account for void growth. A mechanism involving dislocations needs to

be considered. In Chapter 4 (Figure 4.26) we studied prismatic loops.

These loops consist of a disk of atoms. We assume, for simplicity, a

two-dimensional situation shown in Figure 8.18(a). If a prismatic loop

moves by glide of the dislocations, the extra disk of matter is carried

away and the void diameter increases by b, equal to the Burgers vec-

tor. Figure 8.18(a) shows four prismatic loops originating at the void

surface and moving out.

It can be shown that the shear stresses at 45◦ to the surface of

a void are maximum. Assuming elastic stresses and if the remote

stresses are hydrostatic, the tangential stress at the void surface is:

σθ = 3σ.

The radial stress is equal to zero, since normal stresses at a free surface

are equal to the external tractions:

σr = 0.

The maximum shear stress bisects these two stresses and is therefore

at 45◦. Its magnitude is:

τmax = σθ − σr

2
= 1.5σ.
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(a)

(b) (c)

Fig. 8.18 (a) Schematic showing

how the emission of four loops

starting at 45◦ to void surface

increases void diameter by Burgers

vector b. Network of (b) prismatic

loops and (c) shear loops

(dislocation loops) were

sequentially emitted from the

surface of the growing void and

move into the material. (From

V. A. Lubarda, M. S. Schneider, D.

H. Kalantar, B. R. Remington, and

M. A. Meyers, Acta Mater. 52

(2004) 1397.)

When this shear stress reaches a critical level, a dislocation can

be emitted from the void. Two mechanisms accounting for the

generation of the geometrically-necessary dislocations required for

void growth are shown in Figure 8.18(b) and (c). Figure 8.18(b) shows

successive prismatic loops emitted from a growing void. As the void

grows, so does the diameter of the loops. This is a two-dimensional

representation, and a full three-dimensional picture would be more

complex. Figure 8.18(c) shows shear loops, that can also accomplish

the same goal of removing matter from the void surface and extend-

ing it. The actual growth of voids is more complex, since the loops

interact with each other and their outward motion is therefore

impeded. Nevertheless, the net result is that a large density of dis-

locations is generated around a growing void. Indeed, transmission

electron microscopy reveals that voids are surrounded by a highly

work-hardened layer.

Before we close this section, it is worth pointing out here that

the term ‘‘ductility” signifies a material’s capacity to undergo plastic

deformation. Ductility is not a fundamental property of the material,

because the plastic strain before fracture is a function of the state of

stress, strain rate, temperature, environment, and prior history of

the material. The state of stress is defined by the three-dimensional
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Fig. 8.19 Variation of maximum

plastic strain (ductility) with the

degree of triaxiality, according to

(1) theory of maximum tensile

stress failure, (2) plane-strain

conditions, (3) von Mises criterion,

and (4) power law of plastic strain.

(Adapted with permission from

M. J. Manjoine, in Fracture: An

Advanced Treatise, Vol. 3, H.

Liebowitz, ed. (New York:

Academic Press, 1971), p. 265.)

distribution of normal and shear stresses at a point or by the three

principal stresses at a point. (See Chapter 2.) The multiaxial stresses

may be obtained by external multiaxial loading, by geometry of the

structure or microstructure under load, by thermal stresses, or by

volumetric microstructural changes. One can define a simple ‘‘tri-

axiality” factor by the ratio σ 3/σ 1, where σ 1 > σ 2 > σ 3 are the prin-

cipal stresses. If ε0 is the plastic strain at fracture in uniaxial tension

and ε1 is the maximum principal plastic strain, one can define a duc-

tility ratio as ε1/ε0. This ductility ratio shows, theoretically, a decrease

with increasing triaxiality; that is, ε1/ε0 goes to zero as σ 3/σ 1 goes to

unity (Figure 8.19). Thus, an increase in the degree of stress triaxiality

results in a decrease in the ductility of the material.

The temperature and the strain rate have contrary effects. A high

temperature (or a low strain rate) leads to high ductility, whereas a

low temperature (or a high strain rate) leads to low ductility.

8.2.3 Brittle, or Cleavage, Fracture
The most brittle form of fracture is cleavage fracture. The tendency

for a cleavage fracture increases with an increase in the strain rate or

a decrease in the test temperature of a material. This is shown, typ-

ically, by a ductile--brittle transition in steel in a Charpy impact test

(Figure 8.20). The ductile--brittle transition temperature (DBTT)

increases with an increase in the strain rate. Above the DBTT the

steel shows a ductile fracture, while below the DBTT it shows a brit-

tle fracture. The ductile fracture needs a lot more energy than the

brittle fracture. We deal with these aspects of DBTT in more detail in

Chapter 9.

Cleavage occurs by direct separation along specific crystallo-

graphic planes by means of a simple rupturing of atomic bonds

(Figure 8.21(a)). Iron, for example, undergoes cleavage along its cubic

planes (100). This gives the characteristic flat surface appearance



8 .2 FRACTURE IN METALS 481

Temperature

Brittle

Loading
rate

Ductile

E
n

e
rg

y
 (

C
h

a
rp

y
)

Fig. 8.20 Ductile–brittle

transition in steel and the effect of

loading rate (schematic).

Cleavage

(a)

Fig. 8.21 (a) Propagation of

transgranular cleavage. (b) Effect of

grain size on fracture and yield

stress of a carbon steel at 77 K.

(Adapted from J. R. Low, in Madrid

Colloquium on Deformation and Flow

of Solids (Berlin: Springer-Verlag,

1956), p. 60.)
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within a grain on the fracture surface. There is evidence that some

kind of plastic yielding and dislocation interaction is responsible for

cleavage fracture. Low studied the fracture behavior of a low-carbon

steel at 77 K, comparing the yield stress in compression (in which case

fracture does not occur) with the stress for cleavage in tension. He did

this for a number of samples with different grain sizes and obtained

the plot shown in Figure 8.21(b). The variation in grain size in both

cases followed a Hall--Petch type of relationship, which showed that

the controlling mechanism in yielding was also the controlling mech-

anism for initiating fractures. At 77 K, yielding is closely associated

with mechanical twinning. (See Section 5.3.)
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Fig. 8.22 (a) Cleavage facets in

300-M steel (scanning electron

micrograph). (b) River markings on

a cleavage facet in 300-M steel

(scanning electron micrograph).

Earlier, we mentioned that cleavage occurs along specific crystal-

lographic planes. As in a polycrystalline material, the adjacent grains

have different orientations; the cleavage crack changes direction at

the grain boundary in order to continue along the given crystallo-

graphic planes. The cleavage facets seen through the grains have a

high reflectivity, which gives the fracture surface a shiny appearance

(Figure 8.22(a)). Sometimes the cleavage fracture surface shows some

small irregularities -- for example, the river markings in Figure 8.22(b).

What happens is that, within a grain, cracks may grow simultan-

eously on two parallel crystallographic planes (Figure 8.23(a)). The

two parallel cracks can then join together, by secondary cleavage or

by shear, to form a step. Cleavage steps can be initiated by the pas-

sage of a screw dislocation, as shown in Figure 8.23(b). In general, the
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Fig. 8.23 Formation of cleavage

steps. (a) Parallel cracks (A, A) join

together by cleavage (B) or shear

(C). (b) Cleavage step initiation by

the passage of a screw dislocation.

(c) Formation of river markings

after the passage of a grain

boundary. (Adapted from D.

Broek, Elementary Engineering

Fracture Mechanics, 3rd ed. (The

Hague, Netherlands: Martinus

Nijhoff, 1982), p. 33.)

cleavage step will be parallel to the crack’s direction of propagation

and perpendicular to the plane containing the crack, as this config-

uration would minimize the energy for the step formation by cre-

ating a minimum of additional surface. A large number of cleavage

steps can join and form a multiple step. On the other hand, steps of

opposite signs can join and disappear. The junction of cleavage steps

results in a figure of a river and its tributaries. River markings can

appear by the passage of a grain boundary, as shown in Figure 8.23(c).

We know that cleavage crack tends to propagate along a specific crys-

tallographic plane. This being so, when a crack passes through a grain

boundary, it has to propagate in a grain with a different orientation.

Figure 8.23(c) shows the encounter of a cleavage crack with a grain

boundary. After they meet, the crack should propagate on a cleavage

plane that is oriented in a different manner. The crack can do this at

various points and spread into the new grain. Such a process gives rise

to the formation of a number of steps that can group together, gen-

erating a river marking (Figure 8.23(c). The convergence of tributaries

is always in the direction of flow of the river (i.e., ‘‘downstream”).

This fact furnishes the possibility of determining the local direction

of propagation of crack in a micrograph.

Under normal circumstances, face-centered cubic (FCC) metals

do not show cleavage. In these metals, a large amount of plastic
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Intergranular

crack

(a)

Fig. 8.24 (a) An intergranular

fracture (schematic). (b)

Intergranular fracture in steel

(scanning electron micrograph).

(b)

deformation will occur before the stress necessary for cleavage is

reached. Cleavage is common in body-centered cubic (BCC) and hex-

agonal close-packed (HCP) structures, particularly in iron and low-

carbon steels (BCC). Tungsten, molybdenum, and chromium (all BCC)

and zinc, beryllium, and magnesium (all HCP) are other examples of

metals that commonly show cleavage.

Quasi cleavage is a type of fracture that is formed when cleavage

occurs on a very fine scale and on cleavage planes that are not very

well defined. Typically, one sees this type of fracture in quenched

and tempered steels. These steels contain tempered martensite and a

network of carbide particles whose size and distribution can lead to

a poor definition of cleavage planes in the austenite grain. Thus, the

real cleavage planes are exchanged for small and ill-defined cleavage

facets that initiate at the carbide particles. Such small facets can give

the appearance of a much more ductile fracture than that of normal

cleavage, and generally, river markings are not observed.

Intergranular fracture is a low-energy fracture mode. The crack fol-

lows the grain boundaries, as shown schematically in Figure 8.24(a),

giving the fracture a bright and reflective appearance on a macro-

scopic scale. On a microscopic scale, the crack may deviate around a

particle and make some microcavities locally. Figure 8.24(b) shows an

example of this deviation in a micrograph of an intergranular frac-

ture in steel. Intergranular fractures tend to occur when the grain

boundaries are more brittle than the crystal lattice. This occurs, for

example, in stainless steel when it is accidentally sensitized. This
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accident in the heat treatment produces a film of brittle carbides

along the grain boundaries. The film is then the preferred trajectory

of the crack tip. The segregation of phosphorus or sulfur to grain

boundaries can also lead to intergranular fracture. In many cases,

fracture at high temperatures and in creep tends to be intergranular.

The ductile--brittle transition temperature of steels and other BCC

metals and alloys is significantly affected by grain size. Failure by

cleavage (or quasi-brittle crack propagation) and by ductile means are

competing mechanisms. When cleavage cracks form and propagate

at a greater rate than plastic deformation, the material fails in a

brittle manner. It is well known that a reduction in grain size causes

a reduction in the ductile-to-brittle transition temperature in steels.

Indeed, a reduction in grain size is a very effective means of producing

steels that are ductile at low temperature. The explanation of this

effect is known as the Armstrong criterion3 and is discussed briefly

next.

The yield stress is well represented by the Hall--Petch Equation (see

Section 5.4), namely,

σy = σ0 + ky D −1/2.

The temperature effect can be expressed by

σ0 = B exp(−βT ),

where B and β are thermal softening parameters. As T increases, σ 0

decreases. The cleavage stress, on the other hand, is also represented

by a Hall--Petch relationship:

σc = σ0c + kc D −1/2.

Note that σ c is not dependent on temperature. Note also that kc >

ky.4 By setting σ c equal to σ y, we can obtain the ductile-to-brittle

transition temperature:

σy = σc ,

Tc = 1

β
[ln B − ln{(kc − ky ) + σ0c D 1/2} − ln D −1/2].

Figure 8.25 shows, in a schematic fashion, how the yield stress of

a steel with two grain sizes (D1 < D2) varies with temperature. The

ductile--brittle transition temperatures (DBTT) for the two grain sizes

are also marked in the figure. The Armstrong criterion applied to the

two grain sizes leads to the prediction:

(DBTT)D
2 > (DBTT)D

1 .

Thus, the steel with the smaller grain size (D1) has the lower DBTT.

One can see that grain-size reduction is important in increasing both

3 R. W. Armstrong, Phil. Mag., 9 (1964) 1063.
4 In Figure 8.21 yielding (by twinning) and fracture (by cleavage) have the same k. This

is becuase the Hall--Petch slope for twinning is much higher than the one for slip.
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Fig. 8.25 Armstrong criterion

showing effect of grain size on

ductile-to-brittle transition

temperature.

the strength and the range of temperatures over which it is ductile

and tough.

Brittle failure of materials is a serious problem. The record of

catastrophic brittle failure studies keeps increasing and has encom-

passed classic examples such as the Titanic and the World War II Lib-

erty Ships. In the Titanic, rivets containing high levels of sulfur and

phosphorus had a high ductile-to-brittle transition temperature and

fractured in a brittle fashion, so that entire plates broke loose upon

impact of the ship with the iceberg. The Liberty Ships built hurriedly

during World War II were made by welding plates. The poor quality

of the welds led to brittle failure in cold oceans. This led to the loss

of approximately 25% of the 5,000 ships built. The problem of brittle

failure is as current today as it was in past centuries, when British

soldiers discovered that their cartridges were cracked during mon-

soon season (a classical example of environmental-assisted cracking).

In 2001, the space shuttle fleet was grounded twice; first by the discov-

ery of cracking in the liquid hydrogen flow liners and second by bear-

ing cracks in the crawlers that transport the shuttles to the launch

site.5

Brittle failure takes many forms, e.g. hydrogen embrittlement,

temper embrittlement, stress-corrosion cracking, fatigue failure,

irradiation-induced embrittlement, and liquid-metal embrittlement.

Some of these will be discussed separately in Chapter 14 (Fatigue) and

Chapter 16 (Environmental Effects).

The grain boundary and segregation of undesirable elements to

the boundary play a role in many brittle fractures. Minute amounts

of additions can completely change the fracture mechanism and

morphology. The impurities often segregate to the grain boundaries,

changing their strength. A few parts per million (ppm) of impur-

ities are sufficient to decrease the grain boundary cohesion. This is

5 D. B. Williams, M. Watanabe, C. Li, and V. J. Keast, in Nano and Microstructural Design

of Advanced Materials, eds. M. A. Meyers, R. O. Richie, and M. Sarikaya (Oxford, U.K.:

Elsevier, 2003).
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(a) (b)

Fig. 8.26 SEM images of the

fracture surface of (a) pure Cu and

(b) Cu doped with 20 ppm Bi.

(From D. B. Williams, M.

Watanabe, C. Li, and V. J. Keast, in

Nano and Microstructural Design of

Advanced Materials, (Elsevier,

Oxford, 2003).)

illustrated in Figure 8.26. Figure 8.26(a) shows a ductile fracture in

copper, characterized by dimples and void nucleation and growth.

Figure 8.26(b) shows a fracture surface in copper to which 20 ppm

Bi was added. The two morphologies are completely different. The

fracture mode in Figure 8.26(b) is intergranular and the material has

been dramatically embrittled.

8.3 Fracture in Ceramics

8.3.1 Microstructural Aspects
Ceramics are characterized by high strength and very low ductility.

Among the approaches developed to enhance the ductility (and, con-

sequently, the fracture toughness) of ceramics are:

1. The addition of fibers to the ceramic to form a composite, making

crack propagation more difficult because of crack bridging, crack

deflection, fiber pullout, etc.

2. The addition of a second phase that transforms at the crack tip

with a shear and dilational component, thus reducing the stress

concentration at the tip of the crack.

3. The production of microcracks ahead of the crack, causing crack

branching and distributing the strain energy over a larger area.

4. Careful processing in such a manner that all flaws of a size greater

than the grain size are eliminated.

Figure 8.27 shows three toughening mechanisms for ceramics. The

addition of fibers renders the propagation of a crack more difficult

by one or more of the mechanisms to be explained in Chapter 15,

on composites. The addition of a phase that undergoes a transform-

ation is an ingenious strengthening method with great potential. It is

described in detail in Chapter 11. Partially stabilized zirconia (zirconia

with small additions of yttria) is the phase most commonly added.

This phase has a tetragonal structure. At the crack tip, the stress

field is such that the transformation from a tetragonal to a mono-

clinic structure takes place. This transformation produces a volume
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(a)

(b)

(c)

Microcrack

Tetragonal
zirconia grain

Monoclinic
zirconia grain

Fiber

Crack

a

Fig. 8.27 Some toughening

mechanisms in ceramics.

expansion and a shear. The dilation (volumetric strain) is approxi-

mately 4%, and the shear strain is approximately 0.16. The regions

ahead of the crack tip (Figure 8.27(b)) that have the right stress state

will undergo the transformation, which has the effect of adding a

compressive stress at the crack tip that will tend to close it. Thus, fur-

ther progression of crack is more difficult. The fracture toughness of

alumina with partially stabilized zirconia can be much higher than

that of alumina alone. Also, if microcracks are generated around the

second-phase particles, they will decrease the stress concentration

ahead of the crack tip.

A third mechanism for toughening ceramics is to form micro-

cracks ahead of the main crack. This is shown in Figure 8.27(c). The

microcracks have the effect of decreasing the stress intensity factor

at the root of the principal crack. An additional effect is that they

can lead to crack branching. One single crack branches into several

cracks, and the stress required to drive a number of cracks is higher

than that required to drive a single crack.

A fourth mechanism for strengthening ceramics is careful pro-

cessing so as to eliminate, as much as possible, flaws in the material.

0.1 mm

1 m
m

Fig. 8.28 Ceramic with two

flaw-size distributions.

Figure 8.28 shows identical materials with two flaw-size distributions.

Application of the simple equation from fracture mechanics, KIc =
σ
√

πa, tells us that, for a common ceramic having a fracture tough-

ness of 4 MPa m1/2 a reduction in flaw size from 1 to 0.1 mm has the
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Table 8.2 Compressive, Tensile, and Flexural Strengths of Ceramicsa

Compressive
Strength, MPa

Tensile Strength,
MPa

Flexural
Strength, MPa

Alumina (different purities) 85 1,620 120 290
90 2,415 140 320
95 2,411 190 340
99 2,583 210 340

Aluminosilicate 275 17 62
ZrO2–Al2O3 2,411
3% Y2O3 PSZ b 2,962 1,170
Transformation Toughened Zirconia 1,757 350 630
9% MgO Partially Stabilized Zirconiab 1,860 690
Reaction-bonded SiC 689 140 255
Pressureless sintered SiC 3,858 170 550
Sintered SiC with free silicon 1,030 165 320
Sintered SiC with graphite 410 35 55
Reaction-bonded Si3N4 770 210
Hot-pressed Si3N4 3,445 860

a Adapted with permission from Guide to Engineered Materials (Metals Park, OH: ASM International, 1985), p. 16.
b Data are from a variety of commercial sources.

effect of increasing the maximum tensile stress that the ceramic will

withstand from 16 to 56 MPa.

In spite of the processes just described to increase the ductility

of ceramics, as a rule, ceramics are not very ductile. Their low duc-

tility and relatively low resistance to crack propagation are responsi-

ble for the great differential between the compressive and tensile

strength of ceramics. In metals, the difference is relatively small,

because failure is often initiated only after considerable plastic defor-

mation. The compressive strength of ceramics is close to ten times

their tensile stress. This same proportion is also observed in rocks.

Table 8.2 shows the compressive and tensile strengths of a number of

ceramics.

It is the inability of ceramics to undergo plastic deformation

that is responsible for the drastic difference in mechanical perform-

ance between metals and ceramics. This inability renders ceramics

much stronger, but their ability to resist the propagation of cracks is

decreased drastically.

The surface morphology of fractures in ceramics tends to present

some markedly different features from those appearing in metals.

Usually, failure begins at a flaw and propagates slowly. As it accel-

erates, its energy release rate increases, and there is a tendency for

branching; Figure 8.29(a) shows a crack schematically. The origin of

the crack is shown by the leftmost arrow. At O and O′ in a brittle mater-

ial, branching starts, and the crack becomes a multitude of cracks.

This is seen most clearly in glass, but is also observed in crystalline
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Fig. 8.29 (a) Schematic

illustrating a typical crack

morphology in the vicinity of the

origin, and (b) crack bifurcation in

glass from an edge initiated failure,

caused by sharp instrument blow

on left-hand side; blow velocity

V1 < V2 < V3 < V4. (Adapted from

H. Schardin, in Fracture, eds. B. L.

Averbach, D. K. Felbeck, G. T.

Hahn, and D. A. Thomas

(Cambridge, MA: MIT Press,

1959), p. 297.)
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V3
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ceramics. Figure 8.29(b) shows a sequence of photographs of crack

branching (or bifurcation) in glass. A sharp hammer impacted the

left-hand size of the glass at different velocities in Figure 8.29(b). As

the velocity (and force) of the blow increase, the extent of bifurcation

of the cracks increases. Hence, we can understand how shattering of

brittle materials occurs. The student is well aware that a glass or a

coffee mug (a ceramic!) will break into more parts if the fall is from

a greater height. In Figure 8.29(b), the blow velocities are V4 > V3 >

V2 > V1. If one looks at the fracture surface, one can often identify

the origin of the failure by a smooth area, called the mirror region.

At the center of this smooth area, the vestiges of the initial flaw can

be seen. This mirror area becomes more irregular as the crack propa-

gates from the initial flaw. This is called the mist region. As branching

becomes prevalent, the flat, smooth surface becomes markedly irreg-

ular, and this region is called the hackle region. (These are similar to

the ones observed in polymers and shown later on in Figure 8.42.)

When crack branching (bifurcation) starts, the fracture surface

becomes increasingly irregular, because, on separation, different

fracture planes become interconnected. In ceramics, the flaws are

extremely important, and their concentration and size determine

the strength of the ceramic. These flaws can be classified into three

groups: flaws produced during processing, flaws induced by improper
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Table 8.3 Sources of Flaws in Ceramics

Processing Thermal stresses
Machining
Large pores
Isolated large grains
Cracked grains
Inclusions
Laminations during pressing

Design Stress concentrations due to sharp corners, holes,
improper design, etc.

Service Impact
Environmental degradation

Fig. 8.30 Intergranular crack

produced by thermal shock (rapid

cooling) of alumina. (See arrows.)

design, and flaws introduced during service. Table 8.3 gives examples

of the various flaws. Since the strength of ceramics is determined by

the basic equation of fracture mechanics, that is,

K I c = σ
√

πa,

it is essential to take care to eliminate flaws (or reduce their number

as much as possible).

Flaws induced during processing can be of various kinds. Ther-

mal stresses are an important source of cracks. Thermal stresses are

caused by the anisotropy of thermal expansion coefficients in non-

cubic ceramics. If the ceramic is rapidly cooled, intense internal

stresses are set up, leading to microcracks and even total fragmen-

tation of the object. Figure 8.30 shows an intergranular crack pro-

duced by thermal shock in alumina. This piece of alumina was cooled

fairly rapidly by quenching it in water, from 1,000 ◦C. The intergran-

ular crack can be clearly seen. Figure 8.31(a) shows voids in AD85

alumina (85% Al2O3, plus a glassy phase). These voids account for

approximately 12% of the volume of the material and are a com-

monly encountered feature of crystalline ceramics. The voids are

larger than the individual grains of the material; the micrograph

in Figure 8.31(b) reveals the inside of a void, which clearly shows
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(a)

(b)

Fig. 8.31 Voids in AD85

alumina. (a) Scanning electron

micrograph of sectioned surface at

low magnification. (b) Enlarged

view of one void. These voids are

larger than the grains.

the individual grains. Defects introduced by machining are also elu-

sive, but dangerous, flaws. These flaws are close to the surface. Iso-

lated large grains, cracked grains, and inclusions are other sources

of flaws. Inclusions are often the result of contamination during pro-

cessing. During pressing or subsequent drying, laminations are often

formed. During drying, the laminations can become separated from

each other.



8 .3 FRACTURE IN CERAMICS 493

Table 8.4 Toughness Values for Ceramicsa (Adapted with permission

from Guide to Engineered Materials (Metals Park, OH: ASM International),

p. 16)

Material Comments Toughness, Kc (MPa m1/2)1

NaCl Monocrystal 0.4
Soda–lime glassb Amorphous 0.74 DCB
Aluminosilicate glass Amorphous 0.91 DCB
WC/Co Composite 13.0
ZnS Vapor deposited 1.0
Si3N4 Hot pressed 5.0
Al2O3 MgO doped 4.0
Al2O3 (sapphire) Monocrystal 2.1
SiC Hot pressed 4.0
SiC–ZrO2

c Hot pressed 5.0
MgF Hot pressed 0.9
MgO2 Hot pressed 1.2
B4C Hot pressed 6.0
Si Monocrystal 0.6
ZrO2 Ca stabilized 7.6 DCB

a Obtained by double torsion measurement technique, except where

double cantilever beam test (DCB) is indicated.
b Commercial sheet glass.
c 20% ZrO2 14% mullite by weight. ZrO2 present in monoclinic form; no

transformation toughening.

The second category of sources of flaws listed in Table 8.3 consists

of flaws introduced during the design of the material. Ceramic com-

ponents have to be designed in such a manner as to avoid sharp

corners that are stress raisers. Rather large stress concentrations

can be generated by notches, holes, etc. (See Chapter 7.) Regions of

components under tension should be minimized because of the great

differences between the compressive and tensile strength of ceram-

ics. Design should maximize compression for this reason. It is also

known that a component under compression and having a hole will

be subjected to some tension (see Section 7.3.2).

The last category of sources of flaws given in Table 8.3 involves

those flaws introduced during service of the material, as a product.

The classic example of the flaw introduced by a rock hitting the glass

windshield of an automobile is the most common. The small flaw

thus created will eventually generate a crack, which, in most cases,

will make the windshield unusable after a certain time. Ceramics

are subjected to similar effects, by impact or other sources. Another

source of flaws in ceramics is the environment, coupled with stresses.

Environmentally assisted cracking in ceramics has many similarities

with that in metals.

The fracture of ceramics under tensile loading is essentially dic-

tated by linear elastic fracture mechanics. Thus, the concepts KIc, JIc,

and R curve are all applicable to ceramics. Table 8.4 presents fracture
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toughness values for a number of ceramics; they are much lower than

those of metals, shown in Table 7.1. The second-highest toughness

listed in the table is that for zirconia, approximately 8 MPa m1/2. The

highest listed is that of WC/Co, which has a small amount of cobalt

as a matrix, i.e. a metal matrix composite; this is the reason for the

high value of 13 MPa m1/2. Zirconia undergoes a tetragonal mono-

clinic transformation at the tip of the crack, decreasing the stress

concentration there. Ceramics with tetragonal zirconia particles can

benefit from this transformation. (See Chapter 11.)

Example 8.1

Consider polycrystalline alumina samples with two grain sizes: 0.5 and

50 μm. During cooling, the thermal expansion mismatch produces

cracks that have approximate dimensions equal to the grain-boundary

facets. If KIc = 4 MN m1/2, determine the tensile strength of each sample.

Solution: We assume that the flaw size, i.e., 2a, is equal to the grain

size. Then

a1 = 0.5

2
× 10−6 m,

a2 = 25 × 10−6 m,

K I c = Y σ
√

πa.

We take the geometric factor Y to be 1.12:

σ1 = K I c

Y
√

πa
= 4 × 106

9.9 × 10−4
≈ 4 GPa,

σ2 = 4 × 106

9.9 × 10−3
= 400 MPa.

8.3.2 Effect of Grain Size on Strength of Ceramics
Mechanical properties of ceramics are affected by grain size in sev-

eral ways. The most important effect is the reduction in the sizes of

inherent flaws, as the grain size is reduced. One often finds flaws in

a ceramic, caused by processing, that have a characteristic size of the

same order of the grain size. The fracture toughness KIc of a ceramic

being an intrinsic property, the tensile stress at which a flaw will be

activated is dictated by the equation

σ = K I c/
√

πa. (8.1)

Since the flaw size is often established by the grain size (2a = D), one

has

σ =
√

K I c√
π D /2

. (8.2)

This factor is important in the tensile strength of ceramics.
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Fig. 8.32 (a) Effect of grain size

on microhardness of hot-pressed

and sintered Si3N4 and sialon.

(From A. K. Mukhopadhyay, S. K.

Datta, and D. Chakraborty, J.

European Cer. Soc., 6 (1990) 303.)

(b) Strength as function of grain

size for alumina; af is the flaw size.

The solid curve refers to flaws

having size af = 0.5D (facet flaws)

and the dashed lines to flaws of

fixed size. (Adapted from P.

Chantikul, S. J. Bennison, and B. R.

Lawn, J. Am Cer. Soc. 73 (1990)

2419.)

The microindentation hardness of ceramics has also been found

to be somewhat sensitive to grain size. Figure 8.32(a) shows micro-

hardnesses for hot pressed and sintered silicon nitride, as well as for

sialon (a silicon--aluminum--oxygen--nitrogen compound). The hard-

ness increases with a decrease in grain size (D), and the results are

plotted in a Hall--Petch fashion i.e., hardness vs. D−1/2. However, this

effect is not as important as in metals.

Figure 8.32(b) shows the effect of grain size of the strength of

alumina. The solid line represents the application of Equation 8.2.

For smaller grain sizes, there are deviations (dashed lines), and other

factors enter into consideration as well. Nanocrystalline ceramics

possess a property of considerable technological significance: super-

plasticity. This property enables ceramics to undergo plastic deform-

ation in tension and compression. Tensile elongations as high as

800% have been obtained at moderate temperatures (half the melt-

ing point of the material). Nanocrystalline TiO2 deforms superplasti-

city at temperatures as low as 600 ◦C, around 300 ◦C lower than the

submicrometer-size oxide. Nanocrystalline zirconia has been shown

to exhibit superplastic strain rates 34 times faster than 0.3-μm zirco-

nia. These results can be rationalized in terms of the decreasing dis-

tance between the grain boundaries, helping plastic deformation by

both Coble (grain-boundary sliding) or Nabarro--Herring creep, each of
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which is described in detail in Chapter 5. Nabarro--Herring creep pre-

dicts a strain rate that is a function of D−3, whereas grain-boundary

creep predicts a strain rate that varies with D−2. Clearly, the strain

rate in creep is a strong function of the grain size D.

8.3.3 Fracture of Ceramics in Tension
Most often, tensile stresses produce mode I fracture in ceramics. Such

tensile stresses can be generated by actual tensile testing or by flexural

testing. Flexural testing produces a tensile stress in the outer layers of

the specimen. The crack propagation path is the one that requires the

least energy, and intergranular fracture is often observed in ceramics.

Figure 8.33(a) shows an intergranular fracture in alumina produced

by bending. The fracture follows, for the most part, the grain bound-

aries, although transgranular fracture is also observed in some places.

Figure 8.33(b) shows a primarily intergranular fracture in TiB2.

In single-crystal alumina (sapphire), there are no grain boundaries;

therefore, the fracture cannot be intergranular, but will instead

propagate through the crystal. In such a monocrystal, different

crystallographic planes have different surface energies, and fracture

will occur on those planes with the least energy. For polycrystalline

alumina, the tensile strength is approximately 0.20 GPa, while the

tensile strength of single-crystal alumina is 7--15 GPa. This is fairly

close to the theoretical strength. The fracture of sapphire usually

does not occur along the basal plane, because the surface energy of

the (0001) plane is very high. Separation along this plane is diffi-

cult, as it is not electrostatically neutral. The basal plane can be visu-

alized as consisting of oxygen atoms. (See Figure 4.43.) Thus, basal

plane (0001) fracture would necessitate the separation of oppositely

charged ions between planes and would require great energy. Table

8.5 shows the surface energies for sapphire along different planes.

From these values, one can see that the {1010} and {1012} planes

would be the preferred fracture planes. These high values of surface

energy also explain why fracture in polycrystals tends to be inter-

granular. Another reason is that, in anisotropic materials (materials

that are anisotropic in their elastic constants or thermal expansion

coefficients), the grain boundaries are regions of stress concentration

in which the initiation of a fracture is more likely to occur than in

other regions. Figure 8.34 shows a scanning electron micrograph of

a fracture surface in a single crystal of sapphire. The flat surfaces are

the planes where the surface energy is the lowest.

According to fracture mechanics, internal flaws intensify the exter-

nally applied forces; furthermore, this intensification factor depends

on the size of the flaw. Thus, specimens with different flaw size dis-

tributions will have different strengths. It is well known that the ten-

sile strength of ceramics shows a much greater variability than that

of metals. While the yield stress of most metals shows a standard

deviation of 5% or less, the tensile strength of ceramics often shows a

standard deviation of 25%. The great variation in results from test

to test necessitates the use of statistics. In this regard, Weibull’s
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Table 8.5 Fracture Surface Energy of Sapphire at

Room Temperaturea

Fracture Plane Fracture Surface Energy (J/m2)

{0001} >40
{1010} 7.3
{1012} 6
{1126} 24.4

a From S. M. Wiederhorn, J. Am. Cer. Soc. 50 (1967) 407,

Table I, p. 486.

(a)

(b)

Fig. 8.33 (a) Scanning electron

micrograph of fracture surface in

99.4% pure alumina. Fracture is

primarily intergranular. (b)

Scanning electron micrograph of

tensile fracture surface in TiB2.

Fracture is primarily transgranular.



498 FRACTURE : MICROSCOPIC ASPECTS

Fig. 8.34 Scanning electron

micrograph of fracture surface in

sapphire (monocrystalline

alumina).

contribution is universally recognized.6 The Weibull analysis is

described in Chapter 7; it is sufficient here to give the basic equa-

tion for the probability that a specimen of volume V will not fail at

an applied tensile stress σ . This equation is (see Equations 7.49 and

7.53)

P (V ) = exp

[
− V

V0

(
σ − σu

σ0

)m]

where σ 0 and V0 are normalizing parameters, σ u is the stress below

which fracture is assumed to have zero probability, and m is called

the Weibull modulus, a measure of the variability of the strength of the

material: The greater m, the less variation there is in the strength.

The Weibull modulus for ceramics is usually between 5 and 20. The

equation also shows that the strength of a ceramic decreases as its

volume increases. This is due to a greater probability of finding large

flaws in a large specimen than in a small one. The important con-

clusion that can be drawn is that it is the largest flaw that determines

failure.

The fracture toughness of monolithic ceramics varies between 1

and 5 MPa m1/2. This toughness is dictated by the strength of the

material’s interatomic bonds, since little plastic deformation is

involved in propagating a crack. Many methods can be used to

enhance fracture toughness. However, ceramics retain sharp cracks

and low ductility. Note that, although one idealizes the propagation

6 W. Weibull, J. Appl. Mech., 18 (1951) 293.
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of a crack as an isolated event in a perfectly elastic material, it has

been found that the stresses set up at the tip of the crack tend to gen-

erate microcracks. These microcracks change the stress field ahead of

the major crack, altering its response to the applied load.

8.3.4 Fracture in Ceramics Under Compression
Fracture under tension is easy to understand, since it involves the

formation of cracks (mainly at imperfections in the material) and

their propagation. When a brittle metal, an intermetallic compound,

or a ceramic is subjected to compression, it will eventually fail,

although at stresses much higher than the tensile strength. How

does it fail, since we know that cracks propagate (in mode I) under

tension only? Several mechanisms have been proposed, and they all

involve the formation of localized regions of tension in the mater-

ial, caused by the interaction of the externally applied compressive

stresses with microstructural defects. Figure 8.35(a) shows a specimen

of grout (cement and sand) that failed in compression. The cracks are

aligned primarily with the compression axis. The student can repro-

duce this type of failure by taking a piece of chalk and compressing

it in a clamp or vise. The same pattern of cracks will form. This

failure mode is called axial splitting and is very prominent for uncon-

fined brittle materials. The sequence of events leading from the acti-

vation of existing flaws to the growth of cracks, their coalescence,

and the formation of slender columns under compression is shown

in Figure 8.35(b). The columns become unstable and buckle under the

applied compressive loads, ejecting fragments, increasing the load on

the remaining specimen, and leading to complete failure.

Griffith was the first to propose a mechanism for the compressive

fracture of brittle materials.7 The mechanism is shown in Figure 8.36.

It is based on a pre-existing crack of length 2a oriented at an angle

ψ to the highest compressive stress (σ c). This compressive stress will

cause a shear stress acting on the opposite faces of the pre-existing

flaw. Thus, sliding of the two surfaces will take place. At the ends

of the flaw, this sliding is prevented. This will lead to a localized

tensile stress ahead of flaw (marked by a plus sign in Figure 8.36(a))

that will, eventually, nucleate two cracks (Figure 8.36(b)). Initially,

the cracks will grow at an angle of 70◦ to the face of the flaw and

will then align themselves with the direction of the maximum com-

pressive stress (Figure 8.36(b)). The equations developed by Griffith,

called the Griffith criterion, are given in Section 3.7.5. They predict a

compressive strength for brittle material eight times larger than the

tensile strength. The mathematical analysis of the stresses created at

the end of the flaw is based on the scheme shown in Figure 8.36(c).

Normal and shear stresses σ ′
22 and σ ′

12 are determined in the plane of

the flaw. A frictional resistance μ can be assumed at the flaw surfaces.

The wing cracks have length 	 in Figure 8.36(c). A simpler situation

7 A. A. Griffith, Proc. First Int. Cong. App. Mech., 1 (1924) 55.
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(a)

sc sc sc

scsc

(b)

Fig. 8.35 (a) Compressive failure of brittle material by axial splitting. (b) Schematic

representation of growth of critical cracks, producing axial splitting and spalling of

fragments; separate columns under compression will collapse.

is when the flaw is spherical. In this case, (tangential) tensile stresses

generated at the north and south pole of the flaw can generate cracks.

(See Figure 8.36(d).) The introduction of lateral stresses σ	 (also called

lateral confinement) alters the propagation of wing cracks and their

interaction and has a profound effect on final failure.
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Fig. 8.36 (a) Schematic

representation of elliptical flaw

subjected to compressive stress

σ c; σ l is lateral stress. (b)

Formation of “wing” cracks from

ends of flaw. (c) Stresses generated

by flaw of orientation ψ with

compressive axis. (Adapted from

M. F. Ashby and S. D. Hallam, Acta.

Met., 34 (1986) 497.) (d) Circular

flaw generating crack. (Adapted

from C. G. Sammis and M. F.

Ashby, Acta Met., 34 (1986) 511.)

Failure of brittle materials under compression is activated by exist-

ing flaws. Brittle metals (cast iron, intermetallics), ceramics, ceramic

composites, concrete, and rock are subjected to these mechanisms.

Spherical voids and sharp (crack-like) flaws are often produced dur-

ing the processing of brittle materials. For example, spherical voids

are generated during sintering and hot pressing of ceramic powders

and are the remnants of the material’s initial porosity. Microcracks

are created by thermal expansion mismatch (especially in noncubic

materials). Frequently, the scale of the microcracks is that of the grain

size; they tend to extend from boundary to boundary. The compres-

sive failure of brittle materials is strongly affected by lateral con-

finement (stresses transverse to the loading direction). Figure 8.37

shows how cracks aligned with the principal direction of loading are

generated at spherical and sharp flaws and how they lead to fail-

ure. The stress--strain curves and the interactions between the cracks
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Fig. 8.37 Failure modes in

compression for brittle materials

containing spherical and flat flaws,

as a function of increasing

confinement (σ	/σ c). (a) Simple

compression, giving failure by

“axial splitting,” or “slabbing.” (b)

Small confining stress, resulting in

shear failure. (c) Large confining

stresses σ	, providing

homogeneous microcracking and a

“pseudoplastic” response. (d) σ c

becomes equal to zero; the

situation is identical to (a), but

rotated by 90◦. (Adapted from

C. G. Sammis and M. F. Ashby, Acta

Met., 34 (1986) 511; and M. F.

Ashby and S. D. Hallam, Acta Met.,

34 (1986) 497.)

are dependent on the lateral confinement of the material, which is

increased from left to right. In the absence of confinement (σ 	 =
0), the cracks generated at flaws can grow indefinitely under increas-

ing compressive stress σ c. They split the specimen vertically, and the

segments become unstable and crumble -- for instance, from Euler

instability. As confinement is increased, the growth of cracks is hin-

dered, and failure occurs along a band of shear localization, where a

larger number of cracks is formed. At a still larger confinement (Fig-

ure 8.37(c)) the brittle material exhibits a ‘‘pseudoplastic” response,

with numerous flaws activating cracks. Finally, in Figure 8.37(d),

axial splitting (also called ‘‘slabbing”) occurs at 90◦ to the first case

(Figure 8.37(a)).

Calculations analogous to those of Griffith were carried out for

elliptical flaws by Ashby and Hallam8 and Horii and Nemat--Nasser.9

The Ashby--Hallam equations are given here.

When the friction coefficient μ is zero, the angle ψ for which KI

is maximum is, as expected, 45◦. By making σ 	/σ c, = λ, the following

equation is obtained:

K I = −σc

√
πa√
3

[(1 − λ)(1 + μ2)1/2 − (1 + λ)μ].

8 M. E. Ashby and S. D. Hallam, Acta Met., 34 (1986), 497.
9 H. Horii and S. Nemat--Nasser, J. Geophys. Res., 90 (1985) 3105; and Phil. Trans. Roy Soc.

(London), 319 (1986) 337.
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The critical value of the stress intensity factor, KIc, is reached at the

stress level at which wing crack growth starts. For a crack making an

angle ψ = (1/2)tan−1 (1/μ) with the principal loading axis, we have

σc

√
πa

K I c

= −√
3

[(1 − λ)(1 + μ2)1/2 − (1 + λ)μ]
.

Ashby and Hallam also obtained an expression for the increase in

length of the winged cracks, 	/a = L, as a function of normalized

stress:

σc

√
πa

K I c

= −(1 + L )3/2

[1 − λ − μ(1 + λ) − 4.3λL ]
[
0.23L + 1√

3(1+L )1/2

] .

For spherical and circular flaws, the equations given in Section 7.3

can be applied. This results in the following expression:

σc

√
πa

K I c

= − 1

L 1/2
[

1.1(1−2.1λ)
(1+L )3.3 − λ

] .

Under simple compression (λ = 0, σ 	 = 0), the crack grows in a stable

fashion from an initial value of normalized stress equal to 4. In an

initial stage, from L = 0 to L = 0.2, the stress actually drops with

increasing length. This corresponds to the initial ‘‘pop-in” stage of

crack formation. Since KIc is a material constant, the compressive

stress at which a crack grows decreases with increasing void size.

Hence, larger voids are more effective crack starters. For lateral tension

(λ < 0), the crack grows in a stable fashion to a certain size and then

grows unstably (in the region where σ c decreases with increasing L).

The equations also show the total suppression of crack growth when

λ ≥ 1
3
.

Additional mechanisms involving dislocations, anisotropy of the

elastic properties of adjacent grains, and dislocation--grain-boundary

interactions were proposed by Lankford,10 who studied the behav-

ior of alumina under compression and found localized plasticity

(caused by either twinning or dislocations) at stresses below the com-

pressive failure stress. The interaction of deformation bands with

grain boundaries caused microcracks to begin forming. Figure 8.38

shows a schematic indicating how microstructural anisotropy can

lead to stress concentrations at the grain boundaries. If two adjacent

grains have different elastic moduli along the axis of compression

(because of differences in crystallographic orientation), they will tend

to deform differently. This will impose additional stresses on the grain

boundaries because of compatibility requirements (Figure 8.38(a)). In

a similar way, deformation bands (whether they be dislocations or

twins) will create stress concentrations at the grain boundaries (Fig-

ure 8.38(b)). Figure 8.38(c) shows examples of a crack produced by dif-

ferent interactions with a grain boundary. Thus, failure of a ceramic

under compression is a gradual process, although the actual fracture

10 J. Lankford, J. Mater. Sci., 12 (1977) 791.
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Compatibility stresses

Anistropy

Dislocations

Twins

Residual stresses

Cracks

(a) (b) (c)

Fig. 8.38 Schematic showing

how (a) anisotropy of elastic

properties and (b) localized plastic

deformation can lead to stress

concentrations and (c) cracking at

grain boundaries during unloading.

(After M. A. Meyers, Dynamic

Behavior of Materials (New York: J.

Wiley, 1994), p. 559.)

often occurs in an ‘‘explosive” manner, as the ceramic fragments into

many pieces due to the coalescence of microcracks.

Figure 8.39 shows several mechanisms that were identified as lead-

ing to cracking in SiC. Some of these mechanisms have been presented

in Figure 8.38. Others, such as grain-boundary debonding, are specific

to ceramics where the grain boundaries have a lower strength than

the grain interiors. Such is often the case when ceramics are sintered

and sintering agents (glasses) are used. They form a thin film at the

grain boundaries. Voids are also significant initiators of cracking. Dis-

location pileups create stress concentrations which eventually cause

debonding (Figure 8.3) and formation of Zener--Stroh-type cracks.

8.3.5 Thermally Induced Fracture in Ceramics
Thermal stresses induced during cooling can have a profound effect

on the mechanical strength of the ceramics. This can be explained

in a qualitative manner by Figure 8.40. The polycrystalline aggregate

is schematically represented by an array of hexagons. When the tem-

perature is reduced from T2 to T1, the hexagonal grains contract.

The noncubic structure of alumina and many other ceramics results

in different contractions along different crystallographic orienta-

tions. The same effect manifests itself in noncubic metals. In some

metals, substantial plastic deformation is observed after thermal

cycling (numerous heating and cooling cycles). The problem is espe-

cially crucial in composites, where the different components often

have quite different thermal expansion coefficients. The thermal

expansion coefficient along the c-axis of Al2O3 is about 10% higher

than perpendicular to it. The stresses set up by these differences in

thermal expansion are sufficient to introduce microcracks into the

material after cooling. In Figure 8.40, we would have �L1 �= �L2 if the

grains were free. However, each grain is constrained by its neighbors,

and stresses therefore arise. These stresses are given by

σ = 2

3(1 − v )

∫ T2

T1

E (αc − αa )dT ,
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Stiff
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Fig. 8.39 Schematic overview of

principal damage initiation

mechanisms in SiC: (a) grain

boundary debonding; (b) foreign

particles, such as inclusions and

voids at the grain boundaries; (c)

dislocation pileups, leading to

Zener–Stroh cracks; (d) twins and

stacking faults; (e) dilatant crack

produced by elastic anisotropy.

(From C. J. Shih, M. A. Meyers, V. F.

Nesterenko and S. J. Chen, Acta

Mater., 40 (2000) 2399.)

where T1 and T2 are the extreme temperatures of the thermal cycle,

and αa and αc are the thermal expansion coefficients perpendicular

T1

Crack

Crack

T2

T1

ΔL2

ΔL1

Fig. 8.40 Thermally induced

cracks created when grains

contract in an anisotropic fashion

during cooling from T1 to T2.

and parallel to the c-axis, respectively. For constant expansion co-

efficients, and assuming a constant E, we get

σ = 2E

3(1 − v )
�α�T .

Cooling a polycrystalline alumina sample from 1,020 ◦C to 20 ◦C

would generate stresses on the order of

σ = 2 × 400

3(1 − 0.31)
(0.7 × 10−6) × 1,000 = 0.27 GPa = 270 MPa
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Fig. 8.41 Thermally induced

microcracks in ceramic specimens

with two grain sizes.

between two grains of orientations a and c. This is approximately 11/2
times the tensile strength of alumina, as can be seen from Table 8.2.

Thus, microcracks can be generated by anisotropy of an expansion

coefficient. Even in the case where no microcracks are generated,

internal stresses remain within the grains. When a ceramic is sub-

jected to external loading, the internal stresses due to thermal differ-

ences interact with the externally applied loads and can considerably

reduce the stresses required for fracture.

The anisotropic effect of expansion on microcracking affects the

strength of ceramics in a manner that is dependent on grain size.

This effect, is illustrated in Figure 8.41. Here we assume that micro-

cracks are generated by thermal anisotropy in the two specimens.

The microcracks will extend over one grain face. The sizes of the two

microcracks are 	1 and 	2 for the small and large grain-sized speci-

mens, respectively. If the grain sizes are D1 and D2, we can say that

	1

D 1

= 	2

D 2

.

The fracture mechanics equation

K I c = σ
√

πa

can then be applied to determine the tensile strength of the ceramics.

Thus, the tensile strength can be written as

σ = K I c√
πa

= K I c√
π	
2

.

By substituting D for 	 and combining all constants into one, we

obtain

σ = K I c kD −1/2.

k is a parameter. This simple equation expresses the experimentally

observed fact that thermal anisotropy is much more effective in weak-

ening specimens with a large grain size than specimens with a small

grain size.

Another serious problem of a thermal nature affecting ceramics

is cracking, because of temperature differentials within one compo-

nent. We all know that china will fracture if rapidly cooled. Ceramics
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are subject to very intense stress concentrations if temperature dif-

ferentials are set up within them. This is so because plastic deform-

ation, which serves to accommodate stresses due to severe tempera-

ture gradients in metals, is mostly absent in ceramics. Thus, there

are limits to the rates at which components can be cooled or heated.

If these rates are exceeded, the components fail. A simple example

is a furnace tube that is heated to a high temperature. If the resist-

ance wire that heats the furnace touches the ceramic, a significant

temperature gradient is established over a small distance. This tem-

perature gradient creates stresses that lead to fracture if the tensile

strength of the ceramic is exceeded. It is very common for ceramic

bricks (refractory bricks) to break during cooling. In ceramics thermal

shock or rapid cooling can have catastrophic effects, and the superb

high-temperature properties of ceramics are of no advantage if the

ceramic fails during cooling. When ceramics are used in conjunc-

tion with metals in machines, the difference between the thermal

expansion coefficient of the metal and that of the ceramic can lead

to failure. These aspects must be considered in the design of ceramic

components, and heat transfer equations should be used to estimate

the temperature differentials and the associated stresses within the

ceramic.

8.4 Fracture in Polymers

The fracture process in polymers involves the breaking of inter- and

intramolecular bonds. Recall that amorphous or glassy polymers have

a glass transition temperature Tg, but no melting point Tm. These

glassy polymers are rigid below Tg and less viscous above that tem-

perature. Semicrystalline polymers have both a melting point and a

glass transition temperature, the former referring to the crystalline

phase, the latter to the amorphous phase surrounding the crystalline

phase. More information about the structure of polymers is given in

Chapter 1.

8.4.1 Brittle Fracture
Many polymers fracture in a brittle manner below their glass transi-

tion temperature. This is particularly true of polymers having large,

bulky side groups or a high density of cross-links. Under either

of these circumstances, the molecular chain structure of the poly-

mer becomes so rigid, that chain disentanglement and/or slipping

becomes very difficult. Examples of such polymers are thermosets,

such as epoxy, polyester, and polystyrene. The stress--strain curve of

these polymers is quite linear to fracture, and the strain to failure

is typically less than 1%. Figure 8.42(a), a scanning electron micro-

graph, shows an example of a brittle fracture surface in a cross-linked

polyester; Figure 8.42(b) shows schematically the different regions

that compose such a surface. There are three regions:
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(a)

Fig. 8.42 (a) Brittle fracture in a

highly cross-linked thermoset

(polyester). (b) The three different

regions that compose the brittle

fracture surface in (a).

Hackle

Smooth
   mirror

Origin

Mist

(b)

1. A mirrorlike, or specular, region adjoining the crack nucleation

site, indicating slow crack growth.

2. A coarse and flat region indicative of fast crack growth; sometimes

this region is called the region of hackle, and one can see that the

crack has propagated on different levels over small areas. When

hackle is elongated in the direction of crack propagation, the pat-

tern is called ‘‘river markings.”

3. A transitional region between the preceding two that has a misty

appearance and no resolvable features.

Similar brittle fracture surface features are observed in ceramics. (See

Figure 8.29.) In highly cross-linked thermosets, such as epoxies and

polyesters, the plastic deformation before fracture is negligible. Con-

sequently, manifestations of plastic deformation, such as crazing and

shear yielding, are generally not observed.

8.4.2 Crazing and Shear Yielding
Frequently, the phenomena of crazing and shear yielding precede

actual fracture in a polymer. Both these phenomena involve a localiza-

tion of the plastic deformation in the material. The major difference

between the two is that crazing occurs with an increase in volume,

whereas shear yielding occurs at constant volume.

In glassy polymers, one can regard crazing and shear yielding as

competing processes. In brittle glassy polymers, such as polymethyl

methacrylate (PMMA) or polystyrene (PS), crazing precedes the final

brittle fracture. In comparatively more ductile polymers (for example,

polycarbonate or oriented polyethylene), which have flexible main-

chain linkages, shear yielding is the dominant mode of deformation,
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and the final fracture is ductile. In particular, if an oriented high-

density polyethylene sheet is deformed in a direction oblique to the

initial draw direction, it will show a shear deformation band in which

highly localized plastic deformation occurs.

It is thought that molecular entanglements control the geometry

of crazes and shear yield zones. A craze is a region of a polymer in

which the normal ‘‘cooked-spaghetti-like” chain arrangement char-

acteristic of the amorphous state has been transformed into drawn-

out molecular chains interspersed by voids. The crazed region is a

very small percentage of the total region of the polymer (a few nano-

meters to a few micrometers). Because of the presence of voids in a

craze, the plastic deformation of the small volume of material in the

craze occurs without an accompanying lateral contraction; that is,

the constancy-of-volume condition which holds in the regular bulk

polymer does not hold in the crazed material.

A craze is neither a void nor a crack. Detailed optical- and electron-

microscopic observations of crazed regions show that crazes are not

voids and that they are capable of transmitting load. The refractive

index of a craze in a polymer such as polycarbonate, in the dry state

and after immersion in ethanol, would be different. From such meas-

urements, it was concluded that crazes contain about 50--55% by vol-

ume of free space; that is, the density of the material in the crazed

region is lower than that of bulk polymer. The lower density of the

crazed region reduces the refractive index of the region and causes its

characteristic reflectivity. Figure 8.43 shows a series of crazes repro-

duced in a tensile specimen of polycarbonate. Note that several crazes

have run through the entire cross section without failure of the speci-

men, indicating the load-bearing nature of the crazes. The volume

fraction of the polymer in the craze is inversely proportional to λ,

the draw ratio (final length ÷ original length) of the craze.

Although crazes are not cracks, cracks leading to final fracture

may indeed start at a craze. The polymeric chains in the crazed

region get highly oriented in the direction of the applied stress. The

void content, as previously mentioned, can be as high as 50 to 60%.

Molecular chain entanglements play an important role in controlling

craze geometry. Figure 8.44 shows, schematically, craze formation

at a crack tip. Crazes are usually nucleated either at surface flaws

(scratches, gouge marks, and cracks) or at internal flaws (dust par-

ticles and pores). In polymers, microvoids, which are an integral part

of crazes, can form at various inhomogeneities in the microstructure,

such as random density fluctuations in amorphous polymers, ordered

regions in semicrystalline polymers, and particulate matter or inclu-

sions such as fillers, flame retardants, or stabilizers in either kind

of polymer. Craze formation is a process of dilation and is aided by

hydrostatic tension and retarded by hydrostatic compression.

Atomic force microscopy (AFM) is a powerful addition to the ar-

senal of characterization and mechanical testing methods. The atomic

force microscope enables observation of the surface at the nanometer

scale. It can also be used to determine forces at the surface and the
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1 cm

Fig. 8.43 A series of crazes

produced in a tensile specimen of

polycarbonate. (Used with

permission from R. P. Kambour,

Polymer, 4 (1963) 143.)
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Locally oriented chains

Randomly oriented chains

s Fig. 8.44 Schematic of craze

formation at a crack tip.

Fig. 8.45 An incipient craze in

polymer; note extended polymer

chains in craze; Atomic force

microscope (AFM) picture.

(Courtesy of J. E. Kramer.)

mechanical properties of macromolecules, such as proteins. The tip

of the AFM can be used as an indenter. The force is given through

the stiffness of the cantilever beam. Figure 8.45 shows an AFM of a

polymer containing a craze. The individual polymer molecules are

imaged. They are random; thus, the polymer is glassy. An incipient

craze runs diagonally through the micrograph. The polymer chains

inside the craze are aligned.

The competition between shear yielding and crazing and the

importance of the microstructure are shown in Figure 8.46.

Polystyrene and polyphenylene oxide (PPO) are completely mis-

cible at all concentrations. Atactic polystyrene (APS) shows the phe-

nomenon of crazing preceding brittle fracture. By mixing the APS

and PPO, we can suppress this embrittling tendency. In fact, near

50--50 concentration, crazing in APS is completely suppressed. Instead,

extensive shear yielding occurs. The figure shows this phenomenon

of transition between shear yielding and crazing in 300-nm films

made of blends of APS and PPO and deformed 10% at room tem-

perature. The lower left-hand corners show the weight percentages

of APS in the mixture. The letters C, D, and S indicate crazing,
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Fig. 8.46 A transition between

shear yielding and crazing in film

blends of polypropylene oxide

(PPO) and atactic polystyrene

(APS) deformed 10% at room

temperature (Used with

permission from E. Baer, A.

Hiltner, and H. D. Keith, Science,

235 (1987) 1015.). The APS weight

percentages are shown in the

lower left-hand corners. C, D, and

S indicate crazing, diffuse shear,

and sharp shear banding,

respectively. The arrows indicate

the direction of deformation.

diffuse shear banding, and sharp shear banding, respectively. The

upper left-hand corners indicate the direction of deformation. Note

that, as the amount of PPO increases, more and more crazes are

blunted by shear bands. At 70% APS (or 30% PPO), only diffuse shear

bands appear.

8.4.3 Fracture in Semicrystalline and Crystalline Polymers
The crystalline regions in a semicrystalline polymer have a folded

chain structure; that is, the molecular chains fold back upon them-

selves to form thin platelets called lamellae. (See Chapter 1.) Amor-

phous material, containing chain ends, tie molecules, and other

material that is difficult to crystallize, separates the different lamel-

lae. The properties of such semicrystalline polymers can be highly

anisotropic -- very strong and stiff in the main chain direction and

weak in the transverse direction. Parameters such as the degree

of crystallinity, molecular weight, orientation of the crystals, etc.,

affect the mechanical behavior in general and the fracture behav-

ior in particular. Because the polymers show a significant amount

of viscoelastic behavior at their service temperature, the strain rate

has a profound effect on their fracture behavior. Figure 8.47 shows

schematically the effect of strain rate on the fracture path through a

spherulitic polypropylene. At low strain rates the fracture follows an

interspherulitic path, while at high strain rates the fracture becomes

transspherulitic.

As described in Chapter 1, polymers are generally amorphous or

semicrystalline; it is almost impossible to get a 100% crystalline poly-

mer. Invariably, there is some amorphous material in between crys-

talline regions, because defects such as chain ends, loops, chain folds,

and entanglement are almost impossible to eliminate completely. Sin-

gle crystals of monomeric polymers are prepared from dilute solutions
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Fig. 8.47 Effect of strain rate on

the fracture path through

polypropylene. At low strain rates

the fracture is interspherulitic,

while at high strain rates it is

transspherulitic. (After

J. M. Schultz, Polym. Sci. & Eng., 24

(1984) 770.)

or vapor phase deposition. These are transformed into polymers by

means of a solid-state reaction. The technique has been successful

with only certain substituted diacetylines, and that, too, in an essen-

tially one-dimensional form, i.e., short fibers. Nevertheless, these can

be used to study the behavior of single-crystal polymers. Specifically,

in terms of their fracture behavior, it has been observed that single-

crystal polymers cleave parallel to the chain direction because of

rather weak van der Waals bonding normal to the chain and strong

covalent bonding in the direction of the chain. In polydiacetylene

single-crystal fibers, the fracture strength σ f shows the following

dependence on fiber diameter11, d: σ ∝ d−1/2. This is similar to the size

effect seen in other fibers; that is, preexisting defects lead to fracture,

and the size of these defects is inversely proportional to the square

root fiber diameter.

8.4.4 Toughness of Polymers
Thermosetting polymers such as polyesters, epoxies, and polyimides

are highly cross-linked and provide adequate modulus, strength,

and creep resistance. But the same cross-linking of molecular

chains causes extreme brittleness, i.e., very low fracture toughness.

Table 8.6 gives the plane-strain fracture toughness values of some

common polymers at room temperature and in air. Figure 8.48 com-

pares some common materials in terms of their fracture toughness,

as measured by the fracture energy (GIc) in J/m2. Note that thermoset-

ting resins have values only slightly higher than those of inorganic

glasses. Thermoplastic resins, such as polymethyl methacrylate, have

fracture energies of about 1 kJ/m2, while polysulfone thermoplastics

have fracture energies of several kJ/m2, almost approaching those of

the 7075-T6 aluminum alloy.

11 R. J. Young, in Developments in Oriented Polymers, Vol. 2, ed. I. M. Ward (Essex, U.K.:

Elsevier Applied Science, 1987), p. 1.
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Table 8.6 Plane-Strain Fracture Toughness (KIc) of Some

Polymers in Air at 20 ◦C

Polymer KIc (MPa m1/2)

Epoxy, unsaturated polyester 0.6
Polycarbonate 2.2
Polystyrene 1.0
Polymethylmethacrylate (PMMA) 1.7
Polyethylene

High-density 2.1
Medium-density 5.0

Nylon 2.8
Polyvinyl chloride (PVC) 2.5

Metals

7075-T6 Aluminum

Polysulfone thermoplastics

Elastomer, modified epoxies

Polymethyl methacrylate

Unmodified epoxies, polyester
and polyimide resins

Inorganic glasses
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Fig. 8.48 Fracture energy (GIc)

of some common materials. (After

R. Y. Ting, in The Role of Polymeric

Matrix in the Processing and

Structural Properties of Composites

(New York: Plenum Press, 1983),

p. 171.)

Many approaches have been used to improve the toughness of

polymers. Alloying or blending a given polymer with a polymer of

higher toughness improves the toughness of the polymer. Among

the well-known modified thermoplastics are acrylonitrile--butadiene--

styrene (ABS) copolymer, high-impact polystyrene (HIPS), and nylon

containing a polyolefin. Copolymerization can also lead to improved

toughness levels. Generally, thermoplastics are tougher than thermo-

sets, but there are ways to raise the toughness level of thermo-

sets to that of thermoplastics or even higher. One such approach

involves the addition of rubbery, soft particles to a brittle thermoset.

For example, a class of thermosetting resins that comes close to

polysulfones, insofar as toughness is concerned, is the elastomer-

modified epoxies. Elastomer- or rubber-modified thermosetting epox-

ies make multiphase systems, i.e., a kind of composite. Small (a

few micrometers or less), soft, rubbery inclusions distributed in a

hard, brittle epoxy enhance its toughness by several orders of mag-

nitude. The methods of incorporation of elastomeric particles can be
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simple mechanical blending of the soft, rubbery particles and the

resin or copolymerization of a mixture of the two. Mechanical blend-

ing allows only a small amount (less than 10%) of rubber to be

added, whereas larger amounts can be added during polymeriz-

ation. Figure 8.49 shows toughness as a function of temperature for an

unmodified epoxy and a rubber-modified epoxy. Note the higher

toughness and enhanced temperature dependence of the rubber-

modified epoxy. Epoxy and polyester resins can also be modified

by introducing carboxyl-terminated butadiene--acrylonitrile copoly-

mers (CTBNs). Figure 8.50 shows the increase in fracture surface

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0
0 2

CTBN, wt %

G
lc

, 
k
J

/m
2

4 6 8 10

Fig. 8.50 Increase in fracture
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weight of carboxyl-terminated

butadiene–acrylonitrile. (After

A. K. St. Clair and T. L. St. Clair, Int.

J. Adhesion and Adhesives, 1 (1981)

249.)

energy of an epoxy as a function of the percent weight of CTBN

elastomer. Toughening of glassy polymers by elastomeric additions

involves different mechanisms in different polymers. Among the pro-

posed mechanisms for this enhanced toughness are triaxial dilation

of the rubber particles at the crack tip, particle elongation, craze

initiation, and shear yielding of the polymer.

Like the fracture toughness of a metal or a ceramic, the fracture

toughness of a polymer is a sensitive function of its microstructure

and test temperature. Most polymers, however, are viscoelastic, and

this time-dependent property can influence their fracture toughness

as well. The data in Table 8.6 were obtained at ambient tempera-

ture, and we see that the toughness range for polymers is 1--5 MPa

m1/2 compared to 10--100 MPa m1/2 for metals and 1--10 MPa m1/2 for

ceramics. In an elastic or time-independent material, fracture tough-

ness is independent of the crack velocity; in a viscoelastic or time-

dependent material, steady-state crack growth can occur at an applied

stress intensity that is less than the critical value. Figure 8.51(a) shows

this schematically, while Figure 8.51(b) shows an actual curve of stress

intensity versus crack velocity for PMMA. Note that the data are plot-

ted on a log--log scale. A semilog plot of the same curve for PMMA to

much higher crack velocities is shown in Figure 8.52. The same trend

is observed in metals, where the yield stress increases with strain

rate.12

12 M. A. Meyers, Dynamic Behavior of Materials (New York: J. Wiley, 1994).
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and viscoelastic material. (b) Stress

intensity (K) vs. crack velocity (ln
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Example 8.2

Describe how the phenomenon of crazing can be exploited to improve

the toughness of a polymer.

Answer: Craze formation requires energy. Thus, if we increase the

number of crazes nucleated, but do not allow them to grow to frac-

ture, we can improve the toughness of a polymer. Such a mechanism

is made use of in acrylonitrile butadiene styrene (ABS), which has a

much higher toughness than polystyrene (PS). The acrylonitrile and

styrene form a single-phase copolymer. Butadiene is dispersed in this

copolymer matrix as elastomeric particles. These particles have a layer

of styrene--acrylonitric grafted onto them. Thus, ABS has a two-phase

structure. When ABS is stressed, crazes nucleate at rather low strains

at the elastomer--styrene interface. However, the high extensibility of
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elastomeric particles inhibits the growth of these crazes. A small and

uniform particle size aids in producing a high density and an even dis-

tribution of crazes in ABS. The reader can easily verify this phenomenon

by bending a thin strip of ABS. It will become white, called stress whiten-

ing, due to the formation of a large number of crazes.

8.5 Fracture and Toughness of Biological Materials

Figure 8.53 provides the fracture toughness (Jc) for a number of biolog-

ical materials as a function of elastic modulus. The square of fracture

toughness (Kc) can be obtained by multiplying Jc by the Young modu-

lus. (See Section 7.7.5.) Figure 8.53 provides a valuable insight into the

toughness of biological materials. For instance, shells have a tough-

ness much superior to calcite, although the composition is similar.

This is because shells are a composite of calcium carbonate and a thin

organic glue layer.
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(a) Greenstick (b) Fissured (c) Comminuted

(d) Transverse (e) Oblique (f) Helical (or spiral)

Fig. 8.54 Six modes of fracture

in bone. (Adapted from S. J. Hall,

Basic Biomechanics., 4th ed.

(Boston: McGraw Hill, 2003),

p. 102.)

Of extreme importance is the fracture and fracture prevention in

bone. We know that bone strength decreases as porosity increases.

This is one of the changes undergone by bone with aging. There

are many fracture morphologies in bone, depending on the loading

stresses, rate of loading, and condition of bone. Figure 8.54 presents

some of these modalities.

(a) Greenstick fracture: This occurs in young bone, that has a large

volume fraction of collagen, and can break as a green twig. This

zig-zag fracture indicates a high toughness.

(b) Fissured fracture: This corresponds to a longitudinal crack in

bone.

(c) Comminuted fracture: In this many fragments are formed. This

is typical of a fracture caused by impact at high velocities. Two

factors play a key role. As the velocity of projectile is increased, its

kinetic energy increases. This energy is transferred to the bone.

The second factor is that at high rates, many cracks are produced

simultaneously; they can grow independently until their surfaces

intersect. This is the reason why a glass, when thrown on the

ground violently, shatters into many small fragments. An add-

itional reason is that the bone becomes stiffer and more brittle as

the strain rate is increased.



8 .5 FRACTURE AND TOUGHNESS OF BIOLOGIC AL MATERIALS 519

8

7

6

5

4

3

2

1

0
9.0 10.0 11.0 12.0

Crack length, mm

Crack growth initiation point

Constant crack length region

a = 9.76 mm; s = 0.016 mm
a0 = a+3s = 9.80 mm

K0

a0

K
R

, 
M

P
a
 m

1
/2

Kpeak, daKpeak

Fig. 8.55 Crack resistance curve

as a function of length for horse

bone. (From C. L. Malik, J. C.

Gibeling, R. B. Martin, and S. M.

Stover, “R-Curve Fracture

Mechanics of Equine Cortical

Bone,” J. Biomech., 36 (2003) 191.)

(d) Transverse fracture: This is a complete fracture approximately

normal to the axis of the bone.

(e) Oblique fracture: This is a complete fracture oblique to the bone

axis.

(f) Helical fracture: This fracture, which is also called spiral, is caused

by torsional stresses.

The curious student should take a piece of chalk and twist it with her

hands. A beautiful helical fracture will result. This type of fracture is

known, in the medical community, as spiral. However, this name is

not correct, and a helix describes the crack trajectory better than a

spiral. Chapter 2 (Example 2.6) provides more information.

Biological materials such as bones and teeth also can be char-

acterized by means of fracture mechanics parameters. For instance,

Malik and coworkers13 studied the fracture toughness of the leg

bones (third metacarpal bone) in horses and found that fracture

toughness increased with crack length. This behavior is similar to

ceramic matrix composites. This increase in fracture toughness with

crack growth in ceramic matrix composites is indicative of mech-

anisms of toughening in the material that are due to the existence of

the reinforcing and matrix component. Microcracks in the ceramic

phase can produce a decrease in overall stress concentration.

When the fracture toughness is dependent on crack size, linear

elastic fracture mechanics cannot be applied and one has to apply

other testing methods, such as R curve. In the case of horse leg

bone, it was found that there was debonding along macroscopic

lamellar structures ahead of the crack, leading to crack deflection,

crack energy absorption, and toughening as the crack grew. Fig-

ure 8.55 shows the increase in KR with crack length. For an initial

crack length of 9.76 mm, the initial value of the toughness is 5 MPa

m1/2. The toughness increases to >6 MPa m1/2 with increasing crack

length.

13 C. L. Malik, J. C. Gibeling, R. B. Martin, and S. M. Stover, J. Biomech., 36 (2003) 191.
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Fig. 8.56 (a) Microcracks in

wake of crack and deflection of

crack plane by microcracks;

(b) bridging behind crack by

collagen ligaments; (c) schematic

showing four mechanisms

contributing to toughening in

dentin. (From R. K. Nalla, J. H.

Kinney, and R. O. Ritchie,

Biomaterials, 24 (2003) 3955.)

Several mechanisms of toughening can be identified in dentin,

the major component of teeth. Dentin is a composite consisting of

nanosized apatite crystals and collagen. The structure is characterized

by tubules, which are hollow tubes with a diameter of approximately

1 μm (in elephant tusk). In human teeth, the tubules are similar but

have a circular, not elliptical, cross section.

The crack propagation is affected by microcracks produced during

loading. Figure 8.56(a) shows microcracks forming a regular pattern

and contributing to an irregular crack path. The areas where the crack

front was affected by existing microcracks is marked by arrows. These

microcracks form ahead of the crack tip and would, at first sight, be

considered a weakening mechanism. However, they toughen brittle
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materials by delocalizing the stresses. Another toughening mecha-

nism that was identified was the bridging of the crack by collagen

fibers. This is shown in Figure 8.56(b). Figure 8.56(c) shows a schematic

of the four toughening mechanisms thought to operate in dentin.

8.6 Fracture Mechanism Maps

Data presented in the form of mechanism maps can be very useful,

in as much as such maps organize information that is widely scat-

tered in a variety of sources. The idea of mechanism maps is just

an extension of the concept of phase diagrams in alloy chemistry,

in which different phases coexisting in multicomponent systems are

represented as a function of composition and temperature.

Fracture mechanism maps provide information about mechanical

properties in a compact form. With these maps, one can plot normal-

ized tensile strength σ /E against the homologous temperature T/Tm.

Regions of different types of fracture are classified on the basis of

fractography, or fracture--time or fracture--strain studies. Figure 8.57

shows examples of fracture mechanism maps. Such maps can be devel-

oped for metals (see Figure 8.57(a) for nickel), ceramics (see Figure

8.57(b) for alumina), and polymers. One can also plot stress inten-

sity factor against temperature and obtain information about crack

growth during the fracture process.

Suggested Reading

M. F. Ashby, Materials Selection in Mechanical Design, 2nd ed. Oxford: Elsevier,

1999.

Exercises

8.1 In Figure 8.6, mechanical twinning has generated microcracks that,

in subsequent tensile tests, weakened the specimen. The ultimate tensile

strength of tungsten is 1.2 GPa, and its fracture toughness is approximately

70 MPa m1/2. By how much is the fracture stress decreased due to the presence

of the microcracks?

8.2 Explain why FCC metals show a ductile fracture even at low temperatures,

while BCC metals do not.

8.3 Show, by a sequence of sketches, how the neck in pure copper and in

copper with 15% volume fraction of a second phase will develop. Using values

from Figure 8.17, show the approximate configuration of the final neck.

8.4 Alumina specimens contain flaws introduced during processing; these

flaws are, approximately, equal to the grain size. Plot the fracture stress vs.

grain size (for grains below 200 μm), knowing that the fracture toughness for

alumina is equal to 4 MPa m1/2. Assume Y = 1.
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8.5 Calculate the theoretical cleavage stress for sapphire (monocrystalline

Al2O3) along its four crystallographic orientations. (See Table 8.5.)

8.6

(a) Calculate the compressive strength for a ceramic containing crack of size

100 μm. Let μ be the coefficient of friction between the flaw walls and 	
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be the length of the cracks generated at the ends of an existing flaw. (See

Figure 8.36.) Assume that the onset of failure corresponds to a value of

	= 2a and that μ = 1, and that KIc = 4 MN m1/2.

(b) Compare the tensile strength with the compressive strength that you

obtained in part (a).

8.7 A ceramic with KIc = 4 MPa m1/2 contains pores with radius a = 5 μm due

to incomplete sintering. These pores lead to a decrease in the failure stress

of the material in both tension and compression. One in every ten grain-

boundary junctions contains a void; the grain size of the ceramic is 50 μm.

The ceramic fails in compression when the length 	 of each crack generated

at the voids equals one-half of the spacing between the voids.

(a) Determine the compression strength of the ceramic, using the equation

from Sammis and Ashby.

(b) Determine the tensile strength of the ceramic, assuming flaws with

size a.

8.8 Using the micrographs of Figure 8.31, establish, for Al2O3 (KIc =
2.5 MPa m1/2), (a) the strength in compression, using the Sammis--Ashby equa-

tion from the previous problem, and (b) the tensile strength.

8.9 Tempering is the treatment given to flat glass (e.g., the glass window

in the oven in your kitchen) by quenching the glass in a suitable liquid.

Draw schematically the stress distribution in such a glass as a function of the

thickness of a glass sheet. Discuss the significance of the stress distribution

obtained in tempered glass.

8.10 Estimate the internal thermal stress generated in a polycrystalline sam-

ple of titanium dioxide for �T = 1,000 ◦C. Young’s modulus for TiO2 = 290

GPa, and the expansion coefficients along the direction a and c are:

αa = 6.8 × 10−6 K−1,

αc = 8.3 × 10−6 K−1.

Assume K c = σ
√

πa.

8.11 Si3N4 has a surface energy equal to 30 J/m2 and an atomic spacing a0 ≈
0.2 nm. Calculate the theoretical strength of this material (see Chapter 7), and

compare the value you get with the one experimentally observed in tension

testing (σ = 550 MPa). Calculate the flaw size that would cause this failure

stress.

8.12 The theoretical density of a polymer is 1.21 g cm−3. By an optical tech-

nique, it was determined that the crazed region in this polymer had 40%

porosity. What is the density of the crazed region? Can you estimate the

elastic modulus of the crazed region as a percentage of the modulus of the

normal polymer?

8.13 A polycarbonate sample showed a craze growth length and time relation-

ship of

	 = k log(t/t0),

where 	 is the craze length at time t, t0 is the time crazing is initiated after

the application of the load, and k is a constant. For a given temperature and
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stress, find the rate of craze growth. Comment on the implications of the

relationship that you obtain.

8.14 Craze formation is a plastic deformation mechanism that occurs without

lateral contraction. What can you say about the Poisson ratio of the crazed

material?

8.15 The Titanic sank on April 14--15, 1912 after hitting an iceberg. Ironically,

this ship had been dubbed the ‘‘Unsinkable.” This was a tremendous shock.

In 1985, the wreck was discovered and explored. Why did the 46,000-ton ship

sink in less than three hours?

Hint: Entire hull steel plates littered the bottom of the sea. Metallurgical

examinations carried out at NIST revealed that the wrought iron in the rivets

that joined the plates contained three times today’s allowable amount of slag

(the glassy residue left behind after the smelting of ore).

8.16 The famous accident of the NASA Challenger space shuttle that occurred

on a cold night was caused by a faulty O-ring. Explain the accident.

8.17 Describe the microscopic processes that take place during ductile and

brittle fracture. What are the differences in appearance of these fractures?

8.18 Figure 8.10 shows r-type cavities nucleated at grain boundaries in copper.

Assuming that the applied stress is in the vertical direction, make a sketch

of the consecutive events that would occur along the grain boundaries.

8.19 At a homologous temperature (T/Tm) of 0.6, describe the fracture mech-

anism changes that alumina would undergo as the normalized stress is

increased from 10−5 to 10−3. Use the fracture mechanism map for alumina

(Figure 8.57(b)) to answer this question.



Chapter 9

Fracture Testing

9.1 Introduction

Fracture of any material (be it a recently acquired child’s toy or

a nuclear pressure vessel) is generally an undesirable happening,

resulting in economic loss, an interruption in the availability of

a desired service, and, possibly, damage to human beings. Besides,

one has good, technical reasons to do fracture testing: to compare

and select the toughest (and most economical material) for given

service conditions; to compare a particular material’s fracture char-

acteristics against a specified standard; to predict the effects of

service conditions (e.g., corrosion, fatigue, stress corrosion) on the

material toughness; and to study the effects of microstructural

changes on material toughness. One or more of these reasons for

fracture testing may apply during the design, selection, construc-

tion, and/or operation of material structures. There are two broad

categories of fracture tests; qualitative and quantitative. The Charpy

impact test exemplifies the former, and the plane-strain fracture

toughness (KIc) test illustrates the latter. We describe briefly import-

ant tests in both of these categories.

9.2 Impact Testing

We saw in Chapter 7 that stress concentrations, like cracks and

notches, are sites where failure of a material starts. It has been long

appreciated that the failure of a given material in the presence of a

notch is controlled by the material’s fracture toughness. Many tests

have been developed and standardized to measure this ‘‘notch tough-

ness” of a material. Almost all are qualitative and comparative in

nature. As pointed out in Chapter 7, a triaxial stress state, high strain

rate, and low temperature all contribute to a brittle failure of the

material. Thus, in order to simulate most severe service conditions,

almost all of these tests involve a notched sample, to be broken by

impact over a range of temperatures.
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9.2.1 Charpy Impact Test
The Charpy V-notch impact test is an ASTM standard. The notch is

located in the center of the test specimen, which is supported hori-

zontally at two points. The specimen receives an impact from a pen-

dulum of a specific weight on the side opposite that of the notch

(Figure 9.1). The specimen fails in flexure under impact.

The energy absorbed by the specimen when it receives the impact

from the hammer is equal to the difference between the potential

energies of the hammer before and after impact. If the hammer has

mass m, then

Ef = mg (h0 − h1) ,

where Ef is the sum of the energy of plastic deformation, the energy of

the new surfaces generated, and the vibrational energy of the entire

system; h0 is the initial height of the hammer; h1 is the hammer’s

final height; and g is the acceleration due to gravity. Of these, the
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first is the most significant term, and it may be assumed that the

Charpy energy is

CV ≈ mg (h0 − h1) . (9.1)

At impact with the specimen, the hammer has a velocity (the student

should consult his or her physics textbook)

v = (2gh0)1/2
.

For a difference in height of 1 m,

v = 4.5 m/s.

If we assume that the average length over which plastic deformation

takes place is 5 mm, we have

ε̇ = v

L
≈ 103s−1.

We see, then, that the strain rate in a Charpy test is very high.

In the region around the notch in the test piece, there exists

a triaxial stress state due to a plastic yielding constraint there. This

triaxial stress state and the high strain rates enhance the tendency

toward brittle failure. Generally, we present the results of a Charpy

test as the energy absorbed in fracturing the test piece. An indication

of the tenacity of the material can be obtained by an examination of

the fracture surface. Ductile materials show a fibrous aspect, whereas

brittle materials show a flat fracture.

A Charpy test at only one temperature is not sufficient, however,

because the energy absorbed in fracture drops with decreasing test

temperature. Figure 9.2 shows this variation in the energy absorbed

as a function of temperature for a steel in the annealed and in the

quenched and tempered states. The temperature at which a change

occurs from a high-energy fracture to a low-energy one is called the

ductile--brittle transition temperature (DBTT). However, since, in practice,

there occurs not a sharp change in energy, but instead, a transi-

tion zone, it becomes difficult to obtain this DBTT with precision.

Figure 9.3 shows how the morphology of the fracture surface changes
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Fig. 9.3 Effect of temperature

on the morphology of fracture

surface of Charpy steel specimen.

Test temperatures Ta < Tb < Tc <

Td. (a) Fully brittle fracture. (b, c)

Mixed-mode fractures. (d) Fully

ductile (fibrous) fracture. Each side

of the specimen is 10 mm.

in the transition region. The greater the fraction of fibrous fracture,

the greater is the energy absorbed by the specimen. A brittle frac-

ture has a typical cleavage appearance and does not require as much

energy as a fibrous fracture. BCC and HCP metals or alloys show a

ductile--brittle transition, whereas FCC structures do not. Thus, gen-

erally a series of tests at different temperatures is conducted that

permits us to determine a transition temperature. This temperature,

however arbitrary, is an important parameter in the selection of

materials, from the point of view of tenacity, or the tendency of

occurrence of brittle fracture. Because the transition temperature is,

generally, not very well defined, there exist a number of empirical

ways of determining it, based on a certain absorbed energy (e.g., 15 J),

change in aspect of the fracture (e.g., the temperature corresponding

to 50% fibrous fracture), lateral contraction (e.g., 1%) that occurs at

the notch root, or lateral expansion of the specimen. The transition

temperature depends on the chemical composition, heat treatment,

processing, and microstructure of the material. Among these vari-

ables, grain refinement is the only method that results in both an

increase in strength of the material in accordance with the Hall--

Petch relation and, at the same time, a reduction in the transition

temperature (see Section 8.2.2). Heslop and Petch1 showed that the

transition temperature Tc depended on the grain size D according to

the formula

dTc

d ln D 1/2
= − 1

β
,

where β is a constant. This is explained by the Armstrong criterion

(Section 8.2.3). Thus, a graph of Tc against ln D1/2 will be a straight

line with slope −1/β.

In Figure 9.4, the fraction of the fracture area that is cleavage

and the lateral expansion of the Charpy specimen are plotted, in

1 J. Heslop and N. J. Petch, Phil. Mag., 3 (1958) 1128.
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Fig. 9.4 Results of Charpy tests

for AISI 1018 steel (cold-drawn).

addition to the energy absorbed by the hammer. The excellent cor-

relation among the three curves is plain, and this test simulates the

dynamic response of a metal.

Figure 9.1(c) shows a second specimen geometry also commonly

used (especially for plastics) in the same experimental configuration

as the Charpy test. It is called the ‘‘Izod” specimen. The cross section

(10 × 10 mm) and V-notch geometry of the specimen are identical,

but one of the sides is longer. The specimen is held up vertically, and

the notch is, in this case, on the same side as the impact.

There is a good ‘‘engineering” correlation between Charpy V-notch

energy (CVN) and the fracture toughness of some steels in the upper

shelf (above the ductile--brittle transition temperature):(
K I c

σys

)2

= 5

σys

(
CVN − σys

20

)
.

Like many ‘‘engineering” correlations, it is unit dependent. In the

equation above, the following units should be used: K I c → ksi.in1/2

and σys→ ksi, where σ ys is the yield strength. This equation enables

us to estimate the fracture toughness (a complicated test) from the

Charpy V-notch energy (a simple test).

9.2.2 Drop-Weight Test
The drop-weight test is used to determine a reproducible and well-

defined ductile--brittle transition in steels. The specimen consists of

a steel plate containing a brittle weld on one surface. A cut is made

in the weld with a saw to localize the fracture (Figure 9.5). The speci-

men is treated as a ‘‘simple edge-supported beam” with a stop placed

below the center to limit the deformation to a small amount (3%)

and prevent general yielding in different steels. The load is applied

by means of a freely falling weight striking the side of the specimen

opposite to the crack starter. Tests are conducted at 5-K intervals,
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(After W. J. Langford, Can. Met.

Quart., 19 (1980) 13.)

and a break/no-break temperature, called the nil ductility transition

(NDT ) temperature, is determined. The NDT temperature is thus the

temperature below which a fast, unstable fracture (i.e., brittle frac-

ture) is highly probable. Above that temperature, the toughness of

the steel increases rapidly with temperature. This transition temper-

ature is more precise than the Charpy-based transition temperature.

The drop-weight test uses a sharp crack that moves rapidly from a

notch in a brittle weld material, and thus, the NDT temperature cor-

relates well with the information from a KIc test, described in Section

9.3. The drop-weight test provides a useful link between the quali-

tative ‘‘transition temperature” approach and the quantitative ‘‘KIc”

approach to fracture.

The test affords a simple means of quality control through the NDT

temperature, which can be used to group and classify various steels.

For some steels, identification of the NDT temperature indicates safe

minimum operating temperatures for a given stress. That the drop-

weight NDT test is more reliable than a Charpy V-notch value of the

transition temperature is illustrated in Figure 9.6 for a pressure-vessel

steel. The vessel fractured in an almost brittle manner near its NDT

temperature, although, according to the Charpy curve, it was still very

tough.

The drop-weight test is applicable primarily to steels in the thick-

ness range 18 to 50 mm. The NDT temperature is unaffected by section

sizes above about 12 mm; because of the small notch and the limited
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deformation due to brittle weld bead material, sufficient notch-tip

restraint is ensured.

9.2.3 Instrumented Charpy Impact Test
The Charpy impact test described in Section 9.2.1 is one of the most

common tests for characterizing the mechanical behavior of mater-

ials. The principal advantages of the test are the ease of preparation

of the specimen, the execution of the test proper, speed, and low cost.

However, one must recognize that the common Charpy test basically

furnishes information of only a comparative character. The transition

temperature, for example, depends on the thickness of the specimen

(hence, the need to use standard samples); that is, this transition

temperature can be used to compare, say, two steels, but it is not an

absolute material property. Besides, the common Charpy test meas-

ures the total energy absorbed (ET), which is the sum of the energies

spent in initiation (Ei) and in propagation (Ep) of the crack (i.e., ET =
Ei + Ep). In view of this problem, a test called the instrumented

Charpy impact test has been developed. This test furnishes, besides

the absorbed energy, the variation in the applied load with time.

The instrumentation involves the recording of the signal from a load

cell on the pendulum by means of an oscilloscope in the form of a

load--time curve of the test sample. Figure 9.7(a) shows a typical oscil-

loscope record, and Figure 9.7(b) shows a schematic representation

of that record. This type of curve can provide information about the

load at general yield, maximum load, load at fracture, and so on.

The energy spent in impact can also be obtained by integration of

the load--time curve. From this curve, one can obtain the energy of

fracture if the velocity of the pendulum is known. Assuming this

velocity to be constant during the test, we can write the energy of

fracture as

E ′ = V0

∫ t

0

Pdt, (9.2)
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where E′ is the total fracture energy, based on the constant velocity

of the pendulum, V0 is the initial velocity of the pendulum, P is the

instantaneous load, and t is the time.

In fact, the assumption that the velocity of the pendulum is con-

stant is not valid. According to Augland,2

E t = E ′ (1 − α) , (9.3)

where Et is the total fracture energy, E ′ = V0

∫ t

0
Pdt, α = E′/4E0, and

E0 is the initial energy of the pendulum. The values of total energy

absorbed in fracture computed this way from the load--time curves

show a one-to-one correspondence with the values determined in a

conventional Charpy test. Based on this correspondence, we can use

Equation 9.3 for computing the initiation and propagation energies

at a given temperature. This information, together with the load at

yielding, maximum load, and load at fracture, can allow us to identify

the various stages of the fracture process.

It is well known (see Section 9.3) that the plane-strain fracture

toughness (KIc) test gives a much better and precise idea of a mater-

ial’s tenacity than the instrumented Charpy test does. Also, KIc is a

material property. However, as will be seen shortly, the KIc test pos-

sesses certain disadvantages: The preparation of equipment and the

specimen is rather expensive, the test is relatively slow and not sim-

ple to execute, and so on. Consequently, there have been attempts at

developing empirical correlations between the energy absorbed in a

conventional Charpy test (CV) and the plane-strain fracture toughness

(KIc). The reader is warned that such correlations are completely empir-

ical and are valid only for the specific metals tested. The instrumented

Charpy test, with samples precracked and containing side grooves in

order to assure a plane-strain condition, can be used to determine

the dynamic fracture toughness KID. For ultra high-strength metals

(σ y very large), KID ≈ KIc. Thus, we may use the instrumented Charpy

test to determine KIc or KID for very high-strength steels. But we must

check the results obtained with those obtained from a standard ASTM

KIc test, as described in the next section.

9.3 Plane-Strain Fracture Toughness Test

The fracture toughness KIc of a material may be determined by means

of a number of standards, e.g., ASTM 399 or BS 544 for metals. For plas-

tic materials, ASTM D5045--91 gives standard test methods for plane-

strain fracture toughness and strain energy release rate. There are dif-

ferent standards for ceramic materials (see Section 9.7). The essential

steps in fracture toughness tests involve the measurement of crack

extension and load at the sudden failure of the sample. Because it

is difficult to measure crack extension directly, one measures the

2 B. Augland, Brit. Weld., 9 (1962) 434.



9 .3 PLANE-STRAIN FRACTURE TOUGHNESS TEST 533

relative displacement of two points on opposite sides of the crack

plane. This displacement can be calibrated and related to the real

crack front extension.

The typical test samples used in fracture toughness tests carried

out in accordance with the ASTM standard are shown in Figure 9.8.
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Fig. 9.8 Typical ASTM standard

plane-strain fracture toughness

test specimens. (a) Compact

tension. (b) Bending. (c)

Photograph of specimens of

various sizes. Charpy and tensile

specimens are also shown, for

comparison purposes. (Courtesy

of MPA, Stuttgart.)

Figure 9.8(c) shows the size of the specimens. (Tensile and Charpy

specimens are also shown for comparison.) The relation between

the applied load and the crack opening displacement depends

on the size of the crack and the thickness of the sample in relation

to the extent of the plastic zones. When the crack length and the

sample thickness are very large in relation to the quantity (KIc/σ y)2,

the load--displacement curve is of the type shown in Figure 9.9(a).

The load at the brittle fracture that corresponds to KIc is then well

defined. When the specimen is of reduced thickness, a step called

‘‘pop-in” occurs in the curve, indicating an increase in the crack open-

ing displacement without an increase in the load (Figure 9.9(b)). This

phenomenon is attributed to the fact that the crack front advances

only in the center of the plate thickness, where the material is con-

strained under plane-strain condition. However, near the free surface,

plastic deformation is much more pronounced than at the center,

and it approaches the conditions of plane stress. Consequently, the

plane-strain crack advances much more in the central portion of

the plate thickness, and in regions of material near the surfaces of

the specimen, the failure eventually is by shear.

When the test piece becomes even thinner, the plane-stress con-

dition prevails, and the load--displacement curve becomes as shown

in Figure 9.9(c). To make valid fracture toughness measurements in

plane strain, the influence of the free surface, which relaxes the con-

straint, must be maintained small. This enables the plastic zone to

be constrained completely by elastic material. The crack length must

also be maintained greater than a certain lower limit.

Figure 9.10 shows the plastic zone at the crack front in a plate

of finite thickness. At the edges of the plate (x3 → ± B/2), the stress

state approaches that of plane stress. At the center of a sufficiently

thick plate, the stress state approaches that of plane strain. This is so

because the ε33 component of strain is equal to zero at the center, as

the material there in that direction is constrained, whereas near the

edges the material can yield in the x3 direction, so ε33 is different

from zero.

Up to this point, the sample size and the crack length have been

discussed in a qualitative way. The lower limits on width, thickness,

and crack length all depend on the extent of plastic deformation

through the (KIc/σ y)2 factor. In view of the lack of knowledge about

the exact size of the plastic zone for the crack in mode I (the crack

opening mode), it is very difficult to determine the lower limits of

dimension of the test piece theoretically. These lower limits above

which KIc remains constant are determined by means of trial tests.

Samples of dimensions smaller than those limits tend to overestimate

the KIc limit.
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Preferably, in fracture toughness tests, the crack is introduced

by fatigue from a starter notch in the sample. The fatigue crack

length should be long enough to avoid interference in the crack-tip

stress field by the shape of the notch. Under an applied load, the

crack opening displacement can be measured between two points

on the notch surfaces by various types of transducers. Figure 9.11

shows an assembly for measuring displacement in a notched speci-

men. Electrical resistance measurements have also been used to detect

crack propagation. Calibration curves are utilized for converting dis-

placement measurements and resistance measurements into crack

extension.

The load--displacement curves generally show a gradual deviation

from linearity, and the ‘‘pop-in” step is very small (Figure 9.12). The
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procedure used in the analysis of load--displacement records of this

type can be explained by means of the figure. Let us designate the

linear-slope part as OA. A secant line, OP5, is drawn at a slope 5% less

than that of line OA. The point of intersection of the secant with

the load--displacement record is called P5. We define the load PQ, for

computing a conditional value of KIc, called KQ, as follows: If the load

on every point of curve before P5 is less than P5, then P5 = PQ (case I

in the figure). If there is a load more than P5 and before P5, this load

is considered to be PQ (cases II and III in the figure). In these cases,

if Pmax/PQ > 1.1, the test is not valid; KQ does not represent the KIc

value, and a new test needs to be done. After determining the point

PQ, we calculate the value of KQ according to the known equation for

the geometry of the test piece used. A checklist of points is given

in Table 9.1 and Figure 9.13 shows schematically the variation of

Kc, with the flaw size, specimen thickness, and specimen width. The

stress intensity factor is calculated by using the equation

K 1 = f
( a

W

) P

B
√

W
. (9.4)
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Table 9.1 Checklist for the KIc Test

1. Dimensions of test piece
a. Thickness, B ≥ 2.5 (KIc/σ y)

2

b. Crack length, a ≥ 2.5 (KIc/σ y)
2

2. Fatigue precracking
a. Kmax/KIc ≤ 0.6
b. Crack front curvature ≤ 5% of crack length
c. Inclination ≤ 10◦

d. Length between 0.45 W and 0.55 W, where W is the width of
the test sample

3. Characteristics of load–displacement curve. This is effectively to
limit the plasticity during the test and determines whether the
gradual curvature in the load–displacement curve is due to plastic
deformation or crack growth.
a. Pmax/PQ ≤ 1.1

Inflated
values

Plane stress

K
c

KIC Plane strain

Stable values

Flaw size
specimen thickness
specimen width

Flaw 
big enough

Flaw 
too small

Specimen
thick enough

Specimen
too thin

Specimen
too narrow

Specimen
wide enough

Fig. 9.13 Variation in Kc with

flaw size, specimen thickness, and

specimen width.

The function f(a/W) has a different form for each specimen geometry.

For the compact specimen (Figure 9.8(a)),

f
( a

W

)
= 2 + a

W(
1 − a

W

)3/2

[
0.886 + 4.64

( a

W

)
− 13.32

( a

W

)2

+ 14.72
( a

W

)3

− 5.60
( a

W

)4
]

. (9.5)

For the single-edge notched-bend specimen loaded in three-point

bending (Figure 9.8(b)),

f
( a

W

)
= 3 S

W

√
a
W

2
(
1 + 2 a

W

) (
1 − a

W

)3/2

[
1.99 − a

W

(
1 − a

W

)

×
{

2.15 − 3.93
( a

W

)
+ 2.7

( a

W

)2
}]

. (9.6)

The preceding expressions are polynomial fits to functions.
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Fig. 9.14 Schematics of load P

versus crack opening displacement

�.

Example 9.1

Estimate the minimum specimen thickness for a valid plane-strain frac-

ture toughness test for material having the following properties:

Yield stress σy = 400 MPa,

Fracture toughness K I c = 100 MPa m1/2.

Solution: The minimum thickness of the specimen is 2.5 (KIc/σ y)
2 = 2.5

(1/4)2 = 0.156 m = 156 mm.

9.4 Crack Opening Displacement Testing

For crack opening displacement (COD) testing, the test sample for

determining δc is a slow-bend test specimen similar to the one used

for KIc testing. A clip gage is used to obtain the crack opening dis-

placement. During the test, one obtains a continuous record of the

load P versus the opening displacement � (Figure 9.14). In the case

of a smooth P--� curve, the critical value, �c, is the total value (elas-

tic + plastic) corresponding to the maximum load (Figure 9.14(a)). In

case the P--� curve shows a region of increase in displacement at a

constant or decreasing load, followed by an increase in load before

fracture, one needs to make auxiliary measurements to determine

that this behavior is associated with crack propagation. Should this

be so, �c will correspond to the first instability in the curve. If the

P--� curve shows a maximum, and � increases with a reduction in

P, then either a stable crack propagation is occurring or a ‘‘plastic

hinge” is being formed. The ‘‘�c” in this case (Figure 9.14(b)) is the

value corresponding to the point at which a certain specified crack

growth has started. If it is not possible to determine this point, one

cannot measure the COD at the start of crack propagation. However,

we can measure, for comparative purposes, an opening displacement

δm, computed from the clip gage output �m, corresponding to the first

load maximum. The results in this case will depend on the geometry

of the specimen.

Experimentally, we obtain �c, the critical displacement of the clip

gage. We need to obtain δc, the critical CTOD. Various methods are
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mechanism of deformation.

available, all based on the hypothesis that the deformation occurs

by a ‘‘hinge” mechanism around a center of rotation at a depth of

r (w − a) below the crack tip, (Figure 9.15), where w is the width, and a

is the length. Experimental calibrations of the crack using specimens

of up to 50 mm in thickness, have shown that, for COD in the range

0.0625 to 0.625 mm, δc can be obtained to a very good approximation

from the relation

δc = (w − a) �c

w + 2a + 3z
.

This relation is derived on the basis of the assumption that the

deformation occurs by a hinge mechanism about a center of rota-

tion at a depth of (w − a)/3 below the crack tip (i.e., r = 1
3
). However, r

can be smaller for smaller values of �c. Note that r ≈ 0 in the elastic

case (very limited plastic deformation at the crack tip), and r ≈ 1
3

for

a totally plastic ligament.

9.5 J-Integral Testing

JIc defines the onset of crack propagation in a material in which large-

scale plastic yielding makes direct measurement almost impossible.

Thus, one can use J-integral testing to find the value of KIc for a very

ductile material from a specimen of dimensions too small to satisfy

the requirements of a proper KIc test.

ASTM standard E819--89 provides a procedure for determining Jc,

the critical value of J. As pointed out in Chapter 7, the physical

interpretation of the J-integral is related to the area under the
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curve of the load versus the load-point displacement for a cracked

sample. Both compact tension and bend specimens can be used.

The ASTM standard requires at least four specimens to be tested.

Each specimen is loaded to different amounts of crack extensions

(Figure 9.16). One calculates the value of J for each specimen from

the expression

J = 2A

Bb
,

where A is the area under load versus the load-point displacement

curve, B is the specimen thickness, and b is the uncracked ligament.

The value of J so derived is plotted against �a, the crack extension of

each specimen. One way of obtaining �a is to heat-tint the specimen

after testing and then break it open. When the specimen is heated,

the crack surfaces oxidize. Next, a ‘‘best line” through the J points

and a ‘‘blunting line” from the origin are drawn. This blunting line

(indicating the onset of crack blunting due to plastic deformation) is

obtained from the equation

J = 2σflow�a, (9.7)

where σ flow = (σ y + σ UTS)/2, in which σ y is the yield stress and σ UTS is

the ultimate tensile stress.

The intercept of the J line and the blunting line gives JIc. JIc is

related to K by

J I c = K 2
J c

E
. (9.8)
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9.6 Flexure Test

The flexure or bend test is one of the easiest tests to do and is very

commonly resorted to, especially with brittle materials that behave in

a linear elastic manner. A very small amount of material is required,

and preparation of the sample is relatively easy. The following assump-

tions are made in analyzing the flexure behavior of materials. We

assume that the Euler--Bernoulli theory is applicable to a freely sup-

ported beam. (The beam is not clamped at any point.) That the Euler--

Bernoulli theory is applicable means that plane sections remain

plane, deformations are small, stress varies linearly with thickness,

and there is no Poisson’s contraction or expansion. The condition of

small deformation comes from the Euler--Bernoulli assumption that

the specimen beam is bent into a circular arc. The condition of a

small deformation can be easily violated if the material is deformed

in a nonlinear, viscoelastic, or plastic manner. Then stress gradients

across the vertical section of the beam will not be linear.3

The two basic governing equations for a simple beam elastically

stressed in bending are

M

I
= E

R
(9.9)

and

M

I
= σ

y
, (9.10)

where M is the applied bending moment, I is the second moment

of area of the beam section about the neutral plane, E is Young’s

modulus of elasticity of the material, R is the radius of curvature of

the bent beam, and σ is the tensile or compressive stress on a plane

distant y from the neutral plane.

For a uniform circular section of beam,

I = πd4

64
, (9.11)

where d is the diameter of the section.

For a uniform, rectangular section of beam,

I = bh3

12
(9.12)

where b is the width of the beam and h is the height of the beam.

Bending takes place in the direction of the depth; that is, h and y

are measured in the same direction. Also, for a beam with a symmet-

rical section with respect to the neutral plane, replacing h/2 (or d/2)

for y in Equation (9.10) gives the stress at the beam surface.

3 The student should recall discussions on beam deflections in courses on mechanics

of materials.
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Fig. 9.17 Normal stresses along

a section of beam for linearly

elastic material.

In the elastic regimen, stress and strain are related by Hooke’s law,

σ = E ε. (9.13)

From Equations (9.9), (9.10), and (9.13), we obtain the following simple

relation, valid in the elastic regimen:

ε = y

R
. (9.14)

Figure 9.17 shows the elastic normal stress distribution through the

thickness when a beam is bent. The stress and strain vary linearly

with the thickness y across the section, with the neutral plane

(y = 0) representing the zero level. The material on the outside or

above the neutral plane of the bent beam is stressed in tension, while

that on the inside or below the neutral plane is stressed in compres-

sion. Thus, the elastic strain ε in a beam bent to a radius of curvature

R varies linearly with distance y from the neutral plane across the

beam thickness.

Two main types of flexure tests are three-point and four-point

bend tests. Another variant of flexure tests is the so-called interlam-

inar shear stress (ILSS) that is used in fiber reinforced composites. We

describe these briefly.

9.6.1 Three-Point Bend Test
In the three-point bend test, the load is applied at the center point

of the beam, and the bending moment M increases from the two

P

S

S

Maximum
bending
moment

Maximum
bending
moment

P/2

P/2
P/2

P/2
P/2

P/2

Fig. 9.18 Application of loads

and bending moment diagrams for

(a) three-point bending and (b)

four-point bending tests.

extremities to a maximum at the center point. (See Figure 9.18(a).) In

this case,

M = (P/2)(S/2) = PS/4,

while the moment of inertia, for a beam of a rectangular section, is

I = bh3/12.

Using Equation 9.10, we can obtain the maximum stress in the

outermost layer (y = h/2) as

σmax = 3PS/2bh2. (9.15)
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9.6.2 Four-Point Bending
Four-point bending is also called pure bending, since there are no

transverse shear stresses on the cross-sections of the beam in the inner

span. For an elastic beam bent at four points, the bending moment

is constant in the inner span (see Figure 9.18(b)) and is given by

M = σmax I

h/2
= P

2
.
S

4
(9.16)

where I is the moment of inertia, h/2 is the distance from the neutral

axis to the outer surface, and σ max is the normal stress on a transverse

section of the same outer fiber. The maximum stress in a rectangular

beam undergoing a four-point bending is

σmax = 3PS/4bh2, (9.17)

where S is the outer span and b is the breadth of the beam.

The three- and four-point bending tests are extremely helpful in

determining the strength of brittle materials, and especially of ceram-

ics. If brittle materials are tested in tension the alignment of the

grips is very critical. Slight misalignments cause major stress inhomo-

geneities which significantly affect the strength. Flexure tests, on

the other hand, are simple and reliable. The four-point bending test

presents the following advantage over the three-point bending test:

the entire span length is subjected to a constant stress. In a three-

point bend, the maximum stress occurs only at the mid-section (see

Example 9.2). The resultant strength is called bend strength, flexural

strength or, commonly but erroneously, MOR (modulus of rupture).

Examples:

Al2O3 (99.5% dense) 400 MPa

SiC (hot-pressed) 600 MPa

Soda--lime glass 65 MPa

A systematic comparison of 1,500 sintered alumina specimens

(AD-999) with varying dimensions (3 × 4 × 50 mm and other sizes)

revealed that the Weibull modulus was equal to 10 and the charac-

teristic strength of the bend bar was equal to 466 MPa in three-point

bending. The four-point bending results were m = 9.8 (Weibull modu-

lus) and σ 0 = 374 MPa. The value of σ 0 corresponds to the 63.2%

probability of failure, (1 − 1/e). The four-point bend test results show

a lower σ 0 because of a larger surface (and thus a greater probability

of flaws ≥ ac, the critical length) is subjected to the maximum stress.

A miniaturized bend test was developed for use in small specimens

with 3 mm diameter.4 In this setup, a disk instead of a bar is used.

The deflection of specimen is measured with an LVDT (linear variable

differential transducer) as it is deformed by a punch. The setup is

shown in Figure 9.19.

The maximum stress in the specimen is given by:

σ = 3P

2π t2

[
1 + (1 + ν) ln

R

r ′

]
,

4 H. Li, F. C. Chen, and A. J. Ardell, Met. Trans A, 22 (1991) 2061.
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Fig. 9.19 Chematic drawing of

the miniaturized disk-bend test.

(Adapted from H. Li, F. C. Chen,

and A. J. Ardell, Met. Trans A, 22

(1991) 2061.)

where P is the load, t is the specimen thickness, R is the radius of the

lower supporting die (smaller than 3 mm), r is the radius of the con-

tact area between the ball at the tip of the punch and the specimen,

and r ′ has one of the values:

r ′ = (1.6r 2 + t2) − 0.675t if r ≤ t/2

and

r ′ = r if r > t/2.

This miniaturized bend test can be used on ductile or brittle materials

and is well suited when material is available in small sizes.

9.6.3 Interlaminar Shear Strength Test
The interlaminar shear strength test is also known as the short-beam

shear test. It is commonly used with fiber reinforced composites, with

the fiber length parallel to the length of a three-point bend bar. In

such a test, the maximum shear stress occurs at the midplane and is

given by

τmax = 3P

4bh
. (9.18)

The maximum tensile stress occurs at the outermost surface and is

given by Equation 9.15. Dividing Equation 9.18 by Equation 9.15, we

get

τmax

σmax

= h

2S
. (9.19)

Equation 9.19 says that if we make the load span S very small, we can

maximize the shear stress τ so that the specimen fails under shear

with a crack running along the midplane. Thus, if we deliberately

make the span very small (hence the name, ‘‘short beam”), then it

is likely that failure will occur under shear. A word of caution is in

order about the interpretation of this test: The test becomes invalid
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if the fibers fail in tension before shear induced failure occurs. The

test will also be invalid if shear and tensile failure occur simultan-

eously. It is advisable to examine the fracture surface after the test, to

make sure that the crack is along the interface and not through the

matrix.

Example 9.2

In a three-point bend test (see Figure E9.2), the specimen has a span of

50 mm and a load P of 50 N. The width and height are 5 mm each. Draw

the moment and shear force diagrams. Find the maximum moment and

maximum stress.

P/2

P/2

P = 50 N

S = 50 mm

Bending moment

Shear diagram

PS/4

+

P/2

= 25 N P/2
= 25 N

Fig. E9.2

Solution: We have

Load, P = 50 N, Span, S = 50 mm = 50 × 10−3 m.

In three-point bending, the maximum bending moment occurs at the

midpoint of the beam and is given by

P

2
× S

2
= PS

4
= 50 N × 50 × 10−3 m

4
= 625 × 10−3 N · m.

Note that the maximum stress also occurs along the centerline of the

specimen; that is, the whole of the specimen is not subjected to a

uniform stress, as would be the case in a tensile test. We have

Maxinum stress (Equation 9.15) = 3 · PS

bh2
= 3 · 50 × (

50 × 10−3
)

5 × 10−3 (5 × 10−3)2

= 60 MPa.
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Example 9.3

It is generally known that a given material will show a higher strength

in a three-point bend test than in an axial tension test. Consider a rod

of a square cross section and side a. If the span in the bend test is S,

show that the ratio of the bend strength to the tensile strength is

σbend/σten = 3S/2a.

Solution: For uniaxial tension:

Force = P ,

Cross-sectional area = a2,

Tensile strength σten = P /a2.

For three-point bending:

The maximum stress in three-point bending is σ bend = σ max =
Mmaxymax/I, where

I = bh3/12 = a4/12,

M = PS/4,

ymax = a/2.

Hence,

σbend

σten

= P S

4
× a

2
× 12

a4
,

a2

P
= 3S

2a
.

Thus, the maximum stress in bending is 3S/2a times the tensile stress.

Generally, S 	 a, so the difference can be very large indeed!

9.7 Fracture Toughness Testing of
Brittle Materials

In brittle materials -- especially ceramics -- the strength is largely deter-

mined by the size and sharpness of flaws and by the resistance of

cracks to propagation. Since plasticity is very limited in such mater-

ials, the size of the specimen can be reduced much more than in

metals. Recall that the thickness B of the test specimen should exceed

2.5(KIc/σ y)2. This ensures a plastic zone size that is small with respect

to B, and therefore, the state of plane strain can be assumed. We will

estimate the minimum acceptable specimen thickness for a typical

ceramic, alumina, for which

K I c ≈ 4 MPa m1/2,

σ ≈ 400 MPa.

For this specimen,

B ≥ 2.5 × 10−4 m.
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Fig. 9.20 Fracture-testing

methods for brittle materials. (a)

Double-cantilever beam (DCB). (b)

Double torsion. (c) Notch flexure.

Therefore, the minimum thickness is very small, and microstruc-

tural inhomogeneities limit the size of the specimen. We next

discuss the most common methods of testing brittle materials

(Figure 9.20).

A double-cantilever specimen (DCB) with a precrack of size a is

illustrated in Figure 9.20(a). Three possible loading configurations

are shown: wedge loading, applied load P, and applied moment M.

A groove is machined into the specimen to guide the propagation

of the crack. The three loading methods provide essentially three

relationships, between KI, the stress intensity factor and the crack

length.

A double-torsion specimen is very convenient for determining the

fracture toughness of ceramics at high temperatures. It requires only

the application of a compressive load P (Figure 9.20(b)). The stress

intensity KI does not depend on the length of the crack for 0.25 L <

a < 0.75 L. The fracture toughness is given by

K I = P Wm

[
3

Wt3t1 (1 − v ) ξ

]1/2

, (9.20)

where ξ is a geometrical factor that depends on the thickness of the

specimen, t1.

The notch bend test (Figure 9.20(c)) is analogous to the same test

applied to metals. A notch is cut into the brittle material. A crack
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‘‘pops in” during loading and then grows with P. This technique

requires only small specimens.

9.7.1 Chevron Notch Test
The main advantage of the chevron notch test is that the critical

stress intensity factor can be determined from the maximum load

without resorting to precracking and crack length measurement. The

test requires that the specimen undergo stable crack growth before

reaching the maximum load, as indicated by the load--displacement

curve deviating slightly from the initial linear part before final

fracture.

The notches in the samples can be conveniently made with a low-

speed diamond saw. The dimensions of the specimen should obey the

following guidelines, as recommended in various references:5

S/W = 4, W/B = 1.5, α0 = a0/W ≥ 0.3, and θ = 60◦.

Here, S is the span, W is the height of the specimen, B is the width

of the specimen, and θ is the included angle. Figure 9.21(a) shows

a schematic of the test arrangement and the details of the notch

plane. The test can be performed in a universal testing machine at a

constant crosshead speed. The chevron tip length, a0, can be measured

from optical micrographs of broken specimens, as shown in Figure

9.21(b). The critical stress intensity factor can be obtained from the

relationship

K I c = Pmax

B
√

W
Yc (α0) ,

where Pmax is the maximum load, B is the width of the specimen, W

is the height of the specimen, and Yc is a dimensionless coefficient6

given by

Yc (α0) = 5.639 + 27.44α0 + 18.93α3
0

− 43.42α3
0 + 338.9α4

0

for the geometry of the specimen in this study (i.e., θ = 60◦ and

W/B = 1.5).

In another variant of the chevron test, the chevron-notched short-

rod specimen shown in Figure 9.21(c) which has been standardized

by ASTM (E1304--89), has a wedge inserted into a slit that is cut in it,

leaving a thin layer of ceramic with a V-shape. A crack is initiated at

the tip of the wedge; the width of the crack increases as the crack

moves forward. The wedge also guides the crack as it grows. The load

5 S.-X. Wu, Eng. Fracture Mech., 19 (1984) 221.
6 S.-X. Wu, Chevron-Notched Specimens: Testing and Stress Analysis, eds. J. H. Underwood,

S. W. Freiman, and F. I. Baratta (Philadelphia: ASTM, 1984), p. 176.
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Fig. 9.21 Chevron notch test.

(a) Schematic of the test

arrangement and the details of the
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length, a0, can be measured from

optical micrographs of broken

specimens. (c) Chevron short-rod
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that opens the crack can be supplied by applying tension to the two

sides or by an ingenious bladder mechanism. In this mechanism,

a bag containing a fluid is inserted into the slit. The fluid is then

pressurized, creating a crack opening force P. The fracture toughness

of the specimen is determined from

K I c ≈ 22Pc B −3/2,

where Pc is the maximum load for crack propagation and B is the

diameter of the short rod. This technique has also been extended

to metals (with a different equation). This geometry of the specimen

does not require any fatigue precracking; this is a considerable advan-

tage, because fatigue precracking can be complicated and ‘‘tricky,”

especially in ceramics.
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Fig. 9.22 Fractures produced by

hardness indentations in (a) AsS3

glass (courtesy of B. R. Lawn and

B. J. Hockey) and (b) Al2O3.

9.7.2 Indentation Methods for Determining Toughness
Hardness indentations can generate cracks in brittle materials; two

such examples are shown in Figure 9.22. Tensile stresses are generated

under conical and pyramidal indentations. These tensile stresses can

generate cracks, and the length of the cracks can be used to calculate

a fracture toughness. A second use of such cracks is as initiation

sites for fracture in the conventional bending test. The very attractive

feature of these microhardness-induced cracks is that they are very

small and on the same scale as cracks naturally occurring in ceramics

(<1 mm).

Palmqvist was the first to recognize that indentation cracks could

be used to obtain quantitative estimates of the fracture toughness

of brittle materials.7 Later, detailed studies by Lawn, Wilshaw, Evans,

and coworkers laid the foundation for indentation fracture toughness

tests.8 A simple dimensional analysis shows that the hardness of a

material (i.e., the material’s resistance to plastic deformation) is given

by

H = P

αc2
,

7 S. Palmqvist, Jernkontorets Ann., 141 (1957) 300; Arch. Eisenhuttenwies., 33 (1962) 629.
8 B. R. Lawn and T. R. Wilshaw, J. Mater. Sci., 10 (1975) 1049; A. G. Evans and T. R. Wilshaw,

Acta Met., 24 (1976) 939; A. G. Evans and E. A. Charles, J. Am. Cer. Soc., 59 (1976) 371.
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where c is the diagonal of the impression and P is the load. The area

of the impression is 0.5c2, setting the value of the parameter α to

(1/1.854) for Vickers indentation. (See Section 3.8.1.) In a similar way,

the toughness of the material is related to the load and crack size

by

K c = P

βa3/2
.

This gives the correct units for Kc: Nm−3/2 or Pa m1/2. The factor β

incorporates a complex elasto--plastic interaction that will not be dis-

cussed here. It is important to emphasize that the crack is not always

produced during the indentation period, but can be generated during

unloading. There are elastic stresses caused by the indentation, pro-

ducing compressive tangential components of stress; there is also plas-

tic deformation, creating residual stresses on unloading. It is these

residual stresses, with a tensile tangential component, that drive the

crack. The problem can be analyzed as an internal cavity pressurized

in an infinite body. This generates compressive radial stresses σ rr and

tensile tangential stresses σ θθ . The tangential stresses decay with 1/r2.

On the other hand, a crack with length 2a forms, under ideal circum-

stances, a semicircle under the indentation, as shown in Figure 9.23.

Crack

Indentation

2a
2b

2c

Cracked
region

Plastic
 deformation

r

σrr
σθθ

Fig. 9.23 Schematic

representation of indentation

generating a plastic deformation

region and a semicircular crack.

The residual stress intensity factor, in its turn, is given by

K r = Y σθθ

√
πa.

Since

σθθ = kP

a2
,

it follows that

K r = kY π1/2 P

a3/2
= k′ P

a3/2
,

where k′ is a parameter. It has been shown that the size of the inden-

tation depends on the hardness of the material and on the Young’s

modulus E. The following functional relationship has been found:

k′ = δ

(
E

H

)1/2

,

where δ is a geometrical factor that depends on the indentation.

Thus,

K r = δ

(
E

H

)1/2
P

a3/2

Anstis et al.9 take δ = 0.016 ± 0.004 (for a Vickers indentation). The

fracture toughness of the material is the residual stress intensity fac-

tor at which the crack stops growing. Hence,

K I c = δ

(
E

H

)1/2
P

a3/2
.

9 G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Cer. Soc., 64 (1981) 533.
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Sometimes, equilibrium conditions are not established until after

the load is removed. Slow growth of the cracks can then take place,

and the measurement of a depends on the time interval involved.

Sometimes, no well-defined radial cracks are formed. In that case,

the load P should be adjusted so that well-developed cracks are
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Fig. 9.24 Comparison between

conventional and indentation

fracture toughness determinations

for glasses and ceramics. (From

G. R. Anstis, P. Chankitul, B. R.

Lawn, and D. B. Marshall, J. Am. Cer.

Soc., 64 (1981) 533.)

generated -- that is, cracks for which a > 2c. Figure 9.24 compares

conventional and indentation fracture toughnesses for a number of

ceramics. The error bars show the variability of the measurements. It

can be seen that the results agree within 30%. The great advantage

of indentation fracture toughness tests over conventional tests is that

comparative tests with various materials can be carried out readily,

providing relative values.

A second manner in which indentation is used is to generate a

‘‘starter” crack for the three-point bending test. A Knoop indenter is

preferred, and a sharp crack is generated at the center of the specimen

and in the side opposite the one where P (the center load) is applied.

Example 9.4

Estimate the fracture toughness of the alumina specimen shown in

Figure 9.22(b). The indentation was caused by a load of 10 kgf using a

Vickers diamond indenter attached to a uniaxial testing machine. The

alumina specification is AD 95.

Solution: We measure

2c = 14 mm,

2a = 36.5 mm.

From the magnification marker, we establish the magnification: 160×.

Thus,

2c = 0.087 mm,

2a = 0.228 mm,

P = 10 kgf = 102 N,

and we have

K r = 0.016

(
E

H

)1/2
P

a3/2
.

From Table 2.8,

E = 365 GPa.

H is the hardness in N/m2. We have

H = 10 × 1.85

7.6 × 10−3
= 2,434 kg/mm2

= 23.85 GPa.

Also,

K r = 0.016

(
365

23.85

)1/2
102

(0.114 × 10−3)3/2

= 5.13 MPa m1/2.
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9.8 Adhesion of Thin Films to Substrates

The reliability of many electronic components is dependent on the

adherence of the thin film to the substrate. There are methods to

determine the toughness of this adherence. The most common is the

scratch test, in which an indenter is drawn over the thin films to

different depths and the load is recorded. There is a depth at which

the film detaches itself from the substrate. This is recognized by the

load record, which shows a drop.

The indentation test is another alternative, providing quantitative

estimates of the energy required to ‘‘peel off” the thin film from the

substrate. There are two situations: (a) ductile film on brittle substrate;

(b) brittle film on ductile substrate. The techniques used are slightly

different. We describe the two methods below.

(a) Ductile film on brittle substrate. An indentation is made, typi-

cally with a micro or nanoindenter, in such a manner that it

only penetrates the ductile thin film, pushing it aside as shown

in Figure 9.25(a). The residual stresses caused by the deformed

thin film cause delamination, once the indenter is removed, and

if the deformation is sufficiently large. The diameter of the delam-

Brittle substrate

Delamination

Brittle substrate

Delamination

Plastic zone

Elastic zone

Indenter

8

G
/G

o

a
x
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0
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b
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Fig. 9.25 Indentation tests for

the determination of toughness of

bond between substrate and thin

film; (a) method used for ductile

coating on brittle substrate (typical

of electronic components); (b)

method used for brittle coatings

on ductile substrate; (c) calculated

normalized energy release rate as

a function of normalized crack

diameter. (Adapted from J. J.

Vlassak, M. D. Drory, and W. D.

Nix, J. Mater. Res., 12 (1997) 100.)
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inated region can be related directly to the energy release rate for

delamination.

(b) Brittle film on ductile substrate. This is the opposite situation.

In this case, the analysis is quite different. We follow here the

approach of Vlassak, Drory, and Nix.10 Figure 9.25(b) shows the

configuration used by them. The indenter is made to penetrate

through the thin film, into the substrate, deforming it plastically.

A crack of size x is formed along the interface. It is possible to

determine the critical energy release rate by using the Vlassak--

Drory--Nix analysis. Figure 9.25(c) shows the relationship between

G/G0 and the normalized crack diameter, x/a, for different values

of Efilm/σ res. Efilm is the Young’s modulus of film and σ res is the

residual stress. G0 is the energy release rate due to just the residual

stress. It is given by:

G 0 = (1 − ν2
film)

2E film

σ 2
rest,

where t is the film thickness, and νfilm is Poisson’s ratio of the

film. σres has to be separately calculated or measured. This simple

technique enables the determination of the toughness of the bond

between substrate and film. An example is the toughness of the

titanium--diamond interface. Vlassak, Drory, and Nix obtained a

value of 51 J/m2. Diamond coatings are used in many applications

where a hard, wear-resistant surface is required.
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Exercises

9.1 A Charpy machine with a hammer weighing 200 N has a 1-m-long arm.

The initial height h0 is equal to 1.2 m. The Charpy specimen, (see Figure 9.2),

absorbs 80 J of energy in the fracturing process. Determine:

(a) The velocity of the hammer upon impact with the specimen.

(b) The velocity of the hammer after breaking the specimen.

(c) The average strain rate in the specimen.

(d) The final height attained by the hammer.

9.2 Estimate the fraction of cleavage area in the four specimens shown in

Figure 9.3.

10 J. J. Vlassak, M. D. Drory, and W. D. Nix, J. Mater. Res., 12 (1997) 1900.
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9.3 Schematically show how the Charpy energy vs. temperature curve would

be translated if the tests were carried at a low strain rate (approximately

10 −2 s−1).

9.4 If, instead of Charpy specimens with standard thickness equal to 10 mm,

you were to test specimens with reduced thickness (e.g., 5 mm) and increased

thickness (e.g., 30 mm) what changes would you expect in the Charpy energy

value, normalized to the thickness of the specimen.

9.5 The load--displacement curve, obtained from a fracture toughness test on

metal sample is shown in Figure Ex9.5. The dimensions etc. are as follows:

Crack length a = 10 mm,

Specimen thickness B = 15 mm,

Specimen width W = 25 mm,

Span S = 50 mm,

Yield stress, σ y = 300 MPa.

Use the recommended procedure to determine the KIc from this curve. Check

whether this is a valid KIc test.
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Fig. Ex9.5

9.6 A thermoplastic polymer has a plane-strain fracture toughness KIc =
15 MPa m1/2 and a yield stress σ y = 80 MPa. Estimate the requirements for

dimensions of a fracture toughness specimen for this material.

9.7 Two samples of 0.45% C steel, one quenched and the other normalized,

were tested for fracture toughness in a three-point bend test. The dimensions

of the sample and the load--deflection curves for the two are shown in Figure

Ex9.7 Determine KIc for the two samples, and establish whether the tests

are valid. Verify whether the plane-strain conditions are met. Which steel

would you expect to show a higher toughness? Does the result match your

expectation?

Given:

QUENCHED NORMALIZED
σ y = 1,050 MN/m2 σ y = 620 MN/m2

a1 = 13.7 mm a1 = 9.3 mm
Precrack a2 = 11.6 mm a2 = 8.9 mm
lengths: a3 = 9.6 mm a3 = 9.4 mm

Load

B = 16 mm

L = 128 mm

W = 32 mma

B

0.45% C Steel

Normalized

Quenched

40

30
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0
0 1 2
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Fig. Ex9.7

9.8 A notched polymer specimen was tested for fracture toughness in a three-

point bend test. The relevant dimensions of the specimen are:

Thickness B = 5 mm,

Width W = 15 mm,

Crack length a = 1 mm,

S = 3.5W

The load--deflection curve was linear until fracture occurred at 150 N. Com-

pute KIc for this material.

9.9 A compact tension specimen of a polymer with the following dimensions

was used in a fracture toughness test:

Thickness B = 5 mm,

Width W = 50 mm,

Crack length a = 20 mm.
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Assuming a linear displacement curve to failure at a load of 200 N, compute

KIc for this polymer.

9.10 A rectangular bar of ceramic 3 mm thick, 4 mm wide, and 60 mm long

fractures in a four-point bend test at a load of 310 N. If the span of fixture is

50 mm, what is the flexure strength of the bar?

9.11 Norton NC-132 hot pressed Si3N4 has the following strengths for the given

tests:

Three-point bending: 930 MPa,

Four-point bending: 720 MPa,

Uniaxial tension: 550 MPa.

Comment on the flaw sizes necessary to produce these failure stresses.

9.12 Calculate the tensile stresses generated by a load of 200 N acting on a

specimen of SiC (a rectangular section of 5 mm height and 10 mm width)

subjected to (a) three-point and (b) four-point bending. The span width is

50 mm and, for the four-point bending setup, the inner span is 25 mm. If the

specimens are prenotched, with a notch depth of 1 mm, what are the stress

intensity factors?

9.13 A cylindrical structural component with diameter 100 mm is subjected

to a force of 100 kN at a distance of 500 mm from the clamp. The material

used for the cylinder has a yield stress of 600 MPa. Will it yield plastically

under the loading configuration shown in Figure Ex9.13? Use I = πr4/4 for

the moment of inertia of a cylindrical shaft.

Fig. Ex9.13

9.14 In a sample of MoSi2, an indentation made by a Vickers indenter gave

the impression shown in Figure Ex9.14 under a load of 1 kN. Compute the

hardness H of MoSi2. Taking E for MoSi2 to be 300 GPa, compute the fracture

toughness of the sample.

Fig. Ex9.14

9.15 Estimate the fracture toughness for AsS3 glass shown in Figure 9.22a,

knowing that the indentation was made with load P = 10 N. Young’s modu-

lus for this glass is E = 75 GPa. Assume same magnification for the two

micrographs.

9.16 A chevron short-rod specimen with a diameter of 5 cm (Al2O3) was tested,

and the critical load Pc was equal to 2,000 N. Determine the fracture toughness

of the specimen.

9.17 Polymer specimens (PMMA (polymethyl methacrylate), PC (polycarbon-

ate), and PP (polypropylene)) with the geometry shown in Figure Ex9.17 were

tested.
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The dimensions of specimens, crack, and load fracture for a number of tests

are:

Test Material

Crack
Length,
a (mm)

Width,
W (mm)

Specimen
thickness,
B (mm) Load, P (N)

1 PMMA 24.60 76.34 3.7 220.08
2 PMMA 24.80 75.88 5.92 421.00
3 PMMA 24.90 76.14 9.32 995.01
4 PMMA 23.88 76.24 11.54 1002.68
5 PMMA 13.52 76.18 11.38 1422.20
6 PMMA 19.72 76.14 11.63 1136.16
7 PMMA 37.86 76.24 11.58 621.80
8 PMMA 26.10 76.10 5.30 1184.15
9 PMMA 27.24 76.18 5.18 692.64

10 PMMA 27.72 76.20 5.32 1838.86
11 PMMA 28.68 76.16 5.84 1380.00
12 PC 25.04 76.10 5.82 2980.00
13 PP 24.28 76.14 6.36 1417.86

Calculate the fracture toughness for the specimens. Use the following

equations:

K = P

B W1/2
f (a/W)

f (a/W) = [2 + (a/W)]

[1 − (a/W)]3/2

[
0.886 + 4.64(a/W) − 13.32(a/W)2

+ 14.72(a/W)3 − 5.6(A/W)4
]
.

9.18 A compact tension specimen is used for the determination of fracture

toughness. When it is loaded, the crack (a = 45 mm) starts to propagate at an

applied force of 105 N. The specimen thickness is B = 60 mm. The dimension

W is equal to 90 mm. Is this test valid? In other words, do we have a state of

plane strain? The yield stress of the material is 500 MPa.

9.19 After Charpy testing, what is the correlation between the energy

absorbed and the appearance of the fracture surface? How does this relate

to ductile and brittle materials?

9.20 List the advantages and disadvantages of the Charpy test, drop-weight

test, instrumented Charpy impact test, and plane-strain fracture toughness

test.

9.21 Estimate the minimum specimen thickness for a valid plane-strain frac-

ture toughness test for a material having the following properties: yield stress,

σ y = 600 MPa; fracture toughness, KIc = 150 MPa m1/2.

9.22 A structural aluminum plate (7075-T561, KIc = 29 MPa m1/2), part of an

engineering design, has to support 200 MPa under tension. Determine the

largest crack size that this plate can sustain.

9.23 A test sample undergoes a crack opening displacement (COD) test. The

thickness of the specimen is 7 mm, and the clip gage thickness is 0.6 mm.



EXERCISES 557

The critical displacement, �c, of the clip gage is experimentally determined to

be 1.5 mm, and the crack length is 1.4 mm. Compute the opening displace-

ment, δc.

9.24 In a four-point bend test, the specimen has a span of 70 mm and a load,

P, of 80 N. The width and height are 6 mm each. Draw the moment and shear

diagrams. Find the maximum moment and maximum stress.

9.25 A number of Charpy impact tests were conducted on steels containing

different levels of Ni. The energy levels (in J/m2) are given in the table below:

Test Temperature
(◦C) 0% Ni 2% Ni 5% Ni 8% Ni

–200 2 2 5 28
–150 3 5 30 35
–100 6 15 55 37
–50 15 55 70 47

0 60 80 75 60
50 75 85 80 65

100 75 85 85 67

(a) Plot the curves for the different alloys.

(b) Find the DBTT for each alloy.

(c) What can you conclude from your analysis?



Chapter 10

Solid Solution, Precipitation,

and Dispersion Strengthening

10.1 Introduction

A solution can be defined as a homogeneous mixture of two or more

substances. Generally, one thinks of a solution as liquid, but gaseous

or solid forms are possible as well. Indeed, we can have solutions of

gases in a gas, gases in a liquid, liquids in a liquid, solids in a liquid,

and solids in a solid. A solution can have one or more solutes dissolved

in a solvent. The solute is the substance that is dissolved; the solvent is

the substance in which the solute is dissolved. In a solution, there is

always less solute than solvent. There are two kinds of solid solutions:

substitutional and interstitial. Figure 10.1 shows examples of each in a

schematic manner. Figure 10.1(a) is of brass, which is a substitutional

solid solution of zinc (the solute) in copper (the solvent). We call such

an alloy substitutional because the solute atoms merely substitute

for the solvent atoms in their normal positions. In a substitutional

solution, the atomic sizes of the solute and solvent atoms are fairly

close. The maximum size difference is approximately 15%. When the

atomic sizes of the solute and solvent are very different, as in the case

of carbon or nitrogen in iron, we get an interstitial solid solution.

Figure 10.1(b) shows such a solid solution of carbon in iron. We call

these solutions interstitial solid solutions because the solute atoms

occupy interstitial positions in the solvent lattice.

In this chapter, we first focus our attention on the phenomenon of

solid solution and the strengthening that can be obtained by this process.

Simply put, the phenomenon can be regarded as one form of restrict-

ing dislocation motion in crystalline materials, especially metals. We

then extend this idea to precipitation and dispersion strengthening.

Precipitates can be formed in certain alloys in the solid state. One

starts with a solid solution at a high temperature, quenches it to a

low temperature, and then ages it at an intermediate temperature

to obtain a finely distributed precipitate. During aging, precipitates

appear in a variety of sequences, depending on the alloy system under

consideration. Precipitation strengthening has to do with the inter-

action of dislocations with precipitates, rather than with single atoms
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of solutes. A logical extension of this idea is to artificially disperse

hard ceramic phases in a soft metallic matrix, instead of obtaining

Solute atoms

(zinc)

Solute atoms

(carbon)

Solvent atoms

(copper)

Solvent atoms

(iron)

(a) (b)

Fig. 10.1 The two basic forms of

solid solutions. (a) Substitutional

solid solution of zinc in copper to

form brass. (b) Interstitial solid

solution of carbon in iron to form

steel. The interstitial solid-solution

carbon atoms are shown in the

face-centered cubic form of iron.

them via a precipitation process. The mobility of dislocations is then

restricted by these hard particles, and the alloy is strengthened. This

process is called dispersion strengthening.

10.2 Solid-Solution Strengthening

Dislocations are quite mobile in pure metals, and plastic deform-

ation occurs by means of dislocation motion (i.e., by shear). A very

versatile method of obtaining high strength levels in metals would

be to restrict this rather easy motion of dislocations. We saw earlier

that grain boundaries (Chapter 5) and stress fields of other disloca-

tions (Chapter 6) can play this restrictive role at low temperatures and

increase the strength of the material. When the dislocation mobility

in a solid is restricted by the introduction of solute atoms, the result-

ant strengthening is called solid-solution-hardening, and the alloy is

called a solid solution. An example of the strengthening that can be

achieved by solid solution is shown in Figure 10.2(a), in which we plot

the increase in yield stress of steel as a function of the content of the

solute. Note that solutes such as carbon and nitrogen, which go into

interstitial positions of the iron lattice, have much larger strength-

ening effects than substitutional atoms such as manganese. We shall

explain this shortly. In order to analyze the phenomenon of harden-

ing due to the presence of solute atoms, we must consider the increase

in the stress necessary to move a dislocation in its slip plane in the

presence of discrete barriers to the motion of dislocations. Conceptu-

ally, it is useful and easier to think in terms of an energy of inter-

action between the dislocation and the barrier (e.g., a solute atom or

a precipitate). In the case of substitutional solutions, for a stationary

dislocation, the interaction energy is the change in energy of the sys-

tem consisting of a crystal and a dislocation when a solvent atom is

removed and substituted with a solute atom. Knowing the interaction

energy U, we can calculate the force dU/dx necessary to move a dis-

location a distance dx normal to its length. In ceramics, solutes

can also exercise a strengthening effect, as demonstrated by Figure

10.2(b) for monocrystalline alumina with additions of chromium. This

increase manifests itself at high temperatures, where the ceramics

become relatively ductile.

A dislocation has a stress field associated with it. (See Chapter 4.)

Solute atoms, especially when their sizes are too large or too small

in relation to the size of the host atom, are also centers of elastic

strain. A solute atom is said to be a point source of dilation. A vacancy

(i.e., a vacant lattice site) can also be considered a point source of

(negative) dilation. Consequently, the stress fields from these sources

(dislocations and point defects) can interact and mutually exert forces.

Such an interaction due to size difference is called the elastic misfit

interaction or dilational misfit interaction. Other types of interactions,
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Fig. 10.2 (a) Increase in

strength, �σ , of steel as a function

of content of solute. The solid

lines represent substitutional

solute additions, while the dashed

line represents interstitial solute

additions. (After F. B. Pickering and

T. Gladman, ISI Special Report 81,

Iron and Steel Inst., (London:

1963), p. 10). (b) Increase in

strength of sapphire

(monocrystalline alumina) with

small additions of chromium at

1400 ◦C (Adapted from K. P. D.

Lagerlof, B. J. Pletka, T. E. Mitchell,

and A. H. Heuer, Radiation Effects,

74 (1983) 87.)

such as electrical and chemical elastic modulus mismatch, are also

possible. Each of these interactions represents an energy barrier to

dislocation motion.

10.2.1 Elastic Interaction
In the case of a positive edge dislocation, there is an extra half plane

above the slip plane. Hence, there will be a compressive stress above

the slip plane and a tensile stress under it (Chapter 4). Because a solute

atom placed randomly in a crystal has a stress field around it, this

stress field would be minimized if the solute atom were to move to the

dislocation. For the case of an interstitial atom of carbon in iron, the

minimum-energy position at an edge dislocation is the dilated region

near the core. A substitutional atom that is smaller than the solvent

atom will tend to move to the compressive side. On the other hand,

if a solute atom is larger than the solvent atom, it will be expected

to move to the tensile side. Substitutional atoms such as Zn in Cu

give rise to a completely symmetrical spherical distortion in the lat-

tice, which corresponds to the elastic misfit problem associated with

inserting a ball in a bigger or smaller hole; that is, the substitutional

solute atom acts as a point source of dilation of spherical symmetry.

It is important to note that such spherically symmetric stress fields

caused by substitutional impurity atoms can interact only with

defects that have a hydrostatic component in their stress fields, as hap-

pens to be the case with an edge dislocation (see Equations 4.12a--c).

Screw dislocations, by contrast, have a stress field of a pure shear

character; that is, the hydrostatic component of a screw dislocation

is zero (see Equations 4.11a and b). Therefore, to a first approximation,

there is no interaction between screw dislocations and substitutional

atoms, such as Zn in Cu or Mn in Fe. Interstitial atoms such as car-

bon or nitrogen in α-iron, however, not only produce a dilational mis-

fit (in volume), but also induce a tetragonal distortion. Both carbon

and nitrogen occupy interstitial positions at the face centers and/or

the midpoints of the edges of the body-centered cubic structure

(Figure 10.3). Carbon atoms occupy the midpoints of <001> edges.

In Figure 10.3(a), we indicate the positions of the carbon atoms
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–Fe
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to carbon
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x

Fig. 10.3 (a) Positions of

interstitial atoms in the cube. (b)

Carbon atom shown as a producer

of a tetragonal distortion.

by crosses. Figure 10.3(b) depicts the tetragonal distortion produced

when a carbon atom moves to one of the cube edges of iron. The cubic

shape changes to tetragonal, producing a tetragonal distortion along

that particular <001> axis. Note that the figure shows the tetragonal

distortion produced by a carbon atom in the iron cube; the carbon

atom does not have an elongated form! The strain field attributed

to this tetragonal distortion will interact with hydrostatic as well as

shear stress fields. The important effect of the tetragonal distortion

is that the interstitial atoms such as C and N in iron will interact

and form atmospheres at both edge and screw dislocations and will

lead to a more effective impediment to the movement of dislocations

than in the case of substitutional atoms. (See Figure 10.2.)

We now derive an expression for the energy of interaction between

an edge dislocation and a point source of expansion, such as an over-

sized (or undersized) solute atom. This was first done by Cottrell1

and Bilby.2 Let σρ be the hydrostatic component of the stress field of

a dislocation, and let �V be the change in volume induced by the

introduction of a solute atom of radius r0 (1 + ε) in a cavity of radius

r0, where ε is positive. Then, for ε very small, we can write the change

in volume as

�V =
(

4

3

)
πr 3

0 (1 + ε)3 − 4

3
πr 3

0 = 4

3
πr 3

0 [(1 + ε)3 − 1],

so that

�V ≈ 4

3
πr 3

0 3ε,

or

�V ≈ 4πr 3
0 ε. (10.1)

The stress field of an edge dislocation is given in rectangular coord-

inates in Chapter 4 (Equations 12a--c). In cylindrical coordinates, we

1 A. H. Cottrell, in Proceedings of Conference on Strength of Solids, Physical Society,

London, 1968, p. 30.
2 B. A. Bilby, Proc. Phys. Soc., A63 (1950) 191.
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have (the student can do this as an exercise):

σrr = σθθ = − Gb

2π (1 − v )

sin θ

r
,

σzz = − vGb

π (1 − v )

sin θ

r
,

σrθ = − Gb

2π (1 − v )

cos θ

r
,

σθz = σzr = 0.

The hydrostatic pressure σ p is, by definition, equal to −1/3(σ rr + σ θθ +
σ zz). Thus, the hydrostatic stress associated with an edge dislocation,

obtained from the preceding stress field, is

σp = 1 + v

1 − v

Gb

3π

sin θ

r
. (10.2)

If we wish to convert this expression into rectangular coordinates,

we need only use the relationship r = (x2 + y2)1/2 and sin θ = y/(x2 +
y2)1/2.

The interaction energy (Uint) was defined by Eshelby3 for a general

ellipsoid of volume V in which both deviatoric and hydrostatic com-

ponents of strain are generated and a general external stress field σ ij

as

U int = V σi j (εi j )T ,

where (εij)T is the strain tensor due to the transformation. For the

simplified case of the solute atom, the stress is σ p and the strain is

�V per unit volume. We can calculate Uint in the following manner.

Solute

O

Fig. 10.4 (r, θ )-coordinates of a

solute atom in the strain field of an

edge dislocation.

Figure 10.4 shows the coordinates of a solute atom in the strain field

of a dislocation. The elastic interaction energy due to misfit, Umisfit,

for a solute atom at (r, θ ) and at the dislocation origin (0, 0) can be

obtained from Equations 10.1 and 10.2 as

Umisfit = σp�V = 1 + v

1 − v

Gb

3π

sin θ

r
4πεr 3

0 = A
sin θ

r
, (10.3a)

where

A = 4

3

1 + v

1 − v
Gbεr 3

0 .

The force exerted by the solute on the dislocation is

F = −∂Umisfit/∂r = A sin θ/r 2. (10.3b)

Hence, solute atoms are attracted to dislocations and form what is

called a ‘‘Cottrell atmosphere” around them, pinning them. This is

especially true for interstitials, which tend to have a high mobility.

Calculations similar to the foregoing can be carried out for intersti-

tials that cause nonspherical distortions. Equation 10.3a is derived

on the basis of linear elasticity theory; thus, it will not be valid at

3 J. D. Eshelby, Proc. Roy. Soc., A241 (1957) 376; A252 (1959) 561.
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the dislocation core region, where linear elasticity does not apply.

This is a great omission, as the binding energy will be a maximum

precisely at the dislocation core. Therefore, the reader is forewarned

that the interaction energy just determined is only an estimate. Con-

sider again Equation 10.3a and Figure 10.4. The interaction energy

U is positive in the region above the slip plane (0 < θ < π ) and is

negative below the slip plane (π < θ < 2π ) for large solute atoms.

This means that a solute atom larger in size than the matrix atom

(i.e., �V positive) will be repelled by the compressive side of the edge

dislocation and will be attracted by the tensile side, as the inter-

action energy will be negative there. For a solute atom of smaller size

than the matrix atom (i.e., �V negative), the interaction energy will

be negative in the upper part (0 < θ < π ) of the dislocation, and the

solute will be attracted there. In both cases, solute atoms will migrate

to the dislocation, which will result in a reduction in the free energy

of the system.

It is possible to estimate the increase in stress required to move

a dislocation from the number of solute atoms surrounding it.

Let the maximum force Fmax between a dislocation and a solute

atom be given by Equation 10.3b. When r reaches a sufficiently

low value, we have (from Peach--Koehler’s equation, Equation 4.22c,

Chapter 4)

�τ = Fmax/bL = A sin θ/r 2bL,

where L is the spacing of solute atoms that ‘‘pin” a dislocation. A

number of assumptions can be made to establish Fmax and L. We shall

make the very simple assumption that all solute atoms move to cer-

tain distance b from the dislocation. If C is the concentration of solute

atoms per unit volume and ρ is the dislocation density (equal to the

dislocation length per unit volume), then the spacing between solute

atoms along a dislocation is

L = ρ/C.

Thus,

�τ = A sin θ C/r 2bρ.

If r ≈ b and sin θ ≈ 1, we get

�τ = A C/b3ρ.

Figure 10.2 shows such dependence of change in yield stress on solute

content. On the other hand, if the solute atoms form a rigid network

in the lattice, the average spacing between solute atoms is

L ′ ≈ C −1/3.

The spacing L of solute atoms along the plane of a moving dislocation

is determined by several factors, including the angle of bowing out

of the dislocation between obstacles. The misfit interaction energy in

such a case may be calculated by use of statistics.
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The misfit energy for screw dislocations is given by

Umisfit = εi j σ screw
i j �,

where σ screw
i j represents the stress field associated with a screw dis-

location and � is the specific volume given by �V = 3�ε, in which

ε is the misfit parameter. The resultant force exerted by the intersti-

tial atom on the dislocation has an equation similar to that in the

case of a substitutional solute atom, but with the misfit parameter

replaced by (ε11 − ε22)/3. A substitutional solute atom produces an

isotropic strain field, i.e., ε11 = ε22 = ε33, and it does not interact

with a screw dislocation. However, for C in α-Fe, one has the exten-

sional strain in the [100] direction, ε11 = 0.38, while the contractional

strain along each of the two orthogonal directions, [010] and [001], is

−0.026. Therefore, C in α-Fe hinders both edge and screw dislocations.

It turns out that interstitial atoms with (ε11 − ε22) as much as unity

can show solubility in BCC metals. The reason for this is that metals

can accommodate a greater uniaxial distortion than isotropic distor-

tion by solute atoms, since the electron energy depends mainly on

the specific volume.

10.2.2 Other Interactions
Besides the dilation and elastic misfit interactions there are other

sources of dislocation--solute interactions: interactions due to a dif-

ference in modulus between the solute and the solvent, electrical

interaction, chemical interaction, and local-order interaction due to

the fact that a random atomic arrangement may not be the minimum-

energy state in a solid solution. All these interactions will further hin-

der dislocation motion in a solid solution. Generally, however, their

contributions are less important than the size effect described earlier.

10.3 Mechanical Effects Associated
with Solid Solutions

Many important mechanical effects are associated with the phe-

nomenon of solid solution. In the case of steels, solute-dislocation

interaction leads to a migration of interstitial solute atoms to a dis-

location, where they form an atmosphere around it. This solute

atmosphere, called the Cottrell atmosphere, has the effect of locking-in

the dislocation, making it necessary to apply more force to free the

dislocation from the atmosphere. This results in the well-known phe-

nomenon of a pronounced yield drop in annealed low-carbon steels.

A word of caution is in order here. Temperature is an important vari-

able in the migration of solute atoms to a dislocation. If the tem-

perature is too low, the solute may not be able to diffuse to allow a

redistribution of solute atoms to dislocations. Such a redistribution

may be thermodynamically expected, but if the temperature is too

low, it will not occur in a reasonable length of time. At very high
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temperatures (>0.5Tm, where Tm is the melting point in kelvin), the

mobility of foreign atoms will be much higher than that of disloca-

tions, with the result that they will not restrict dislocation motion.

In the range of temperatures where solute atoms and dislocations

are about equally mobile, strong interactions with dislocations occur.

The serrated stress--strain curve (or the Portevin--Le Chatelier effect) is

another manifestation of this. We next describe some technologically

important effects of solid-solution hardening.

Example 10.1

Why are substitutional solid solutions more common than interstitial

solid solutions?

Solution: Substitutional solid solutions are more common than intersti-

tial ones mainly because of the atomic size limitations. Substitutional

solid solubility can be quite appreciable -- up to a difference of 14%

in the atomic diameters of two metals can be accomodated. Copper

(atomic radius = 0.128 nm), for example, can dissolve up to about 35%

of zinc (atomic radius = 0.1331 nm) atoms in a substitutional manner.

Cu and Ni (atomic radius = 0.1246 nm) have complete miscibility, from

0 to 100%. In the case of interstitial solid solutions, a small atom (C, N,

or H, for instance) has to lodge itself in the interstices of the solvent

metal atoms. C in γ -Fe (FCC) has available larger sized interstices than it

does in α-Fe (BCC), although there are more interstices available in the

latter. This is the reason that C has a comparatively greater solubility

in γ -Fe than in α-Fe. In general, however, the range of interstitial hole

sizes available is not very large -- hence, the less common occurrence

of interstitial solid solutions.

10.3.1 Well-Defined Yield Point in the
Stress–Strain Curves

A schematic stress--strain curve exhibiting a well-defined yield point

is shown in Figure 10.5(a). Characteristically, annealed low-carbon

steels show such stress--strain behavior. According to the theory of

Cottrell and Bilby, the dislocations in annealed steels (ρ ∼ 107 cm−2)

are locked--in by the interstitial solute atoms (carbon). When stress

is applied to such a steel in a tensile test, it must exceed a cer-

tain critical value to unlock the dislocations. The stress necessary

to move the dislocations is less than the stress required to unlock

them -- hence the phenomenon of a sharp yield drop and the appear-

ance of an upper and lower yield point in the tensile stress--strain

curve. Figure 10.5(b) shows how a steel containing 0.008% C reacts

to one-hour aging treatments. The progressive formation of a yield

point with a subsequent plateau is clearly seen After the disloca-

tions have freed themselves from the Cottrell atmosphere, all the

tensile curves in Figure 10.5(b) become identical. The solute atoms
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stress–strain curve of an annealed

low-carbon steel showing the

yield-point phenomenon. (b)

Low-carbon steel in a

temper-rolled condition and

annealed for one hour between

100 ◦C and 343◦C). (Courtesy of

R. Foley.)

segregate to the dislocations because this results in a decrease in

the free energy. Given proper conditions for atomic diffusion, one

would expect complete segregation of solute atoms to dislocations.

Figure 10.6 shows schematically a Cottrell atmosphere of C atoms

Y

Z

x
r

Carbon atoms

Slip
plane y0

x

Fig. 10.6 Cottrell atmosphere in

iron consisting of an edge

dislocation and a row of carbon

atoms.

at a dislocation core in iron. In iron, atoms of carbon and nitrogen

diffuse easily at ambient temperatures, but in many substitutional

alloys one has to resort to treatments at higher temperatures.

10.3.2 Plateau in the Stress–Strain Curve and Lüders Band
After the load drop corresponding to the upper yield point, there

follows a plateau region in which the stress fluctuates around a cer-

tain value. The elongation that occurs in this plateau is called the

yield-point elongation. (See Figure 10.5.) It corresponds to a region of

nonhomogeneous deformation. In a portion of the tensile sample

where there is a stress concentration, a deformation band appears

such as that indicated in Figure 10.7(a). As the material is deformed,

A2

v2

v1

A1

(a) (b)

Fig. 10.7 Propagation of Lüders

band in a tensile sample. v1 and v2

are the velocities of deformation

of the specimen and the Lüders

band, respectively.

this band propagates through the test sample. An intermediate

position is indicated in Figure 10.7(b). The deformation is restricted

to the interface. This deformation band is known as the Lüders band.

In the plateau region of the stress--strain curve, there could be two or

more such bands. Sometimes Lüders bands are visible to the naked

eye. After the formation of the last band, the stress--strain curve

resumes its normal trajectory of strain-hardening. Knowing the cross-

sectional areas A1 and A2 in Figure 10.7(b), one can determine the

number of Lüders bands from the yield-point elongation. One can

also determine, from the strain rate of the sample, the speed of propa-

gation of these bands. An aspect of great technological importance

is the formation of Lüders bands during the stamping of low-carbon

steels, with the consequent irregularities in the final thickness of the

sheet (see Section 3.9.2). This problem is tackled, in practice, in two

ways:



10 .3 MECHANIC AL EFFECTS IN SOLID SOLUTIONS 567

e = 0.27

e = 0.18

e = 0.08

Nominal strain

0.20

500

450

400

350

E
n

g
in

e
e
ri

n
g

 s
tr

e
s
s
, 
M

N
/m

2

Fig. 10.8 Reloading curves after

stopping a test for three hours at

nominal strains of 0.08, 0.18, and

0.27. The dashed lines indicate the

stresses at which the test was

stopped. Note the formation of a

well-defined yield point in the

three cases (Reprinted with
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1. By changing the composition of the alloy to eliminate the yield

point. The addition of aluminum, vanadium, titanium, niobium,

or boron to steel leads to the formation of carbides and nitrides as

precipitates, which serve to remove the interstitial atoms from the

solid solution.

2. By prestraining the sheet to a strain greater than the yield point

strain such that the strains during the stamping operations occur

in the strain-hardening region.

The explanation for the formation of Lüders bands is intimately

related to the cause of the appearance of the well-defined yield point.

The unlocking of dislocations that occurs at the upper yield point is,

initially, a localized phenomenon. The unlocked dislocations move at

a very high speed, because the stress required to unlock them is much

higher than the stress required to move them, until they are stopped

at grain boundaries. The stress concentration due to the dislocations

that accumulate at grain boundaries unlocks the dislocations in the

neighboring grains.

10.3.3 Strain Aging
As pointed out in the preceding sections, prestraining the steel to a

strain greater than the yield strain will result in the removal of the

yield point. However, if we let the sample rest before retesting, the

yield point will return. This phenomenon is known as strain aging.

Figure 10.8 shows the result of experiments done with an annealed

austenitic alloy of composition Fe − 31% Ni − 0.1% C. The tensile test

was stopped three times, each time for 3 hours, after three differ-

ent strains: ε = 0.08, 0.18, and 0.27. The test was stopped simply by

turning off the machine. Initially, the sample did not show a well-

defined yield point. However, on reloading after the three-hour rest,

the stress--strain curve showed clearly the appearance of a yield point

followed by a plateau -- i.e., a horizontal load-drop region -- and, finally,

a return to the original trajectory. The dashed lines indicate the
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values of stress at which the test was stopped. Note that, on reload-

ing, the yield stress of the alloy increased for the three strains. The

term ‘‘aging” is normally used when a precipitate forms. (See Sec-

tion 10.4.) However, this is not the case in the example at hand. As

the test was alternately carried out and interrupted at ambient tem-

perature, interstitial atoms would migrate to dislocations during the

interruptions, locking the dislocations. On reloading, the dislocations

were unlocked, and a well-defined yield point appeared. The experi-

ments were carried out under identical conditions, but keeping the

test sample unloaded for three hours. The well-defined yield point

reappeared, but it was less marked. The above experiment indicates

that the applied stress has an accelerating effect on the strain-aging

process. Generally, low-carbon steels show strain aging.

Another commonly observed effect due to strain aging is an

enhancement of the work-hardening rate, leading to an increase in

the ultimate tensile strength of the material. This effect is sometimes

referred to as dynamic strain aging, because it occurs concurrently with

plastic deformation. In some cases, the plot of flow stress vs. tem-

perature shows a hump. The hump in the curve of ultimate tensile

strength (UTS) vs. temperature for a nickel-based superalloy, Inconel

600, is shown in Figure 10.9. This hump is caused by solute atoms

that have a mobility higher than the dislocations and that, therefore,

can continue to ‘‘drag” them, leading to increased work-hardening.

This enhanced work-hardening leads to a higher UTS. Note that the

yield stress does not show such a hump.

10.3.4 Serrated Stress–Strain Curve
Under certain conditions, some metallic alloys show irregularities in

their stress--strain curves that can be caused by the interaction of

solute atoms with dislocations, by mechanical twinning, or by stress-

assisted (‘‘burst”-type) martensitic transformations. The first type (i.e.,

due to solute--dislocation interaction) has been called the Portevin--Le

Chatelier effect. It generally occurs within a specific range of
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temperatures and strain rates. The solute atoms, being able to diffuse

through the test sample at a speed greater than the displacement

speed of the dislocations (imposed by the applied strain rate), ‘‘chase”

the dislocations, eventually locking them. With increasing load, the

unlocking of dislocations causes a load drop with the formation of

small irregularities in the stress--strain curve.

Irregularities in the stress--strain curves of a nickel--iron-based

superalloy, Inconel 718, tested in tension at 650 ◦C after different pro-

cessing schedules, are shown in Figure 10.10. Interactions between the

solute atoms are more intense in the metal’s undeformed condition.

The stabilization treatment of 554 ◦C for one hour produced more

pronounced load drops. The Portevin--Le Chatelier effect is dependent

on the density of dislocations, strain rate, concentration and mobility

of solute atoms, and other factors. The effect occurs in a region where

there is inverse strain-rate sensitivity (i.e., if the strain is increased, the

flow stress decreases). This relationship is attributed to the interplay

between solute atoms and dislocations. Under normal conditions --

that is, in the absence of solute -- the flow stress increases with strain

rate. In the Portevin--Le Chatelier regimen, an increase in strain rate

frees the dislocations from the solute atoms.

10.3.5 Snoek Effect
Interstitial solute atoms such as carbon and nitrogen can, under the

action of an applied stress, migrate in the α-Fe lattice. Such short-

range migrations of C or N can result in an anelastic or internal

friction effect, called the Snoek effect after the person who discov-

ered it. As mentioned earlier, carbon or nitrogen atoms occupy the

octahedral interstices located at the midpoints of the cube edges and

at the centers of the cube faces. If we apply a stress along the z, or

[001], direction, the octahedral interstices along the x- and y-axes will

contract, while the ones in the z-direction will expand. Given the

right time and temperature, the interstitial atoms will move to sites
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along the z-axis. Such a change of site leads to a reduction in strain

energy. On the other hand, a stress applied in the [111] direction will

not result in a change of site, because all three of the cube’s direc-

tions will be equally stressed and, on average, equally occupied by

the carbon atoms. Such a movement of interstitials, when stress is

applied along a cube direction and at levels less than the yield stress,

can cause strain to lag behind stress; that is, the material will show

the phenomenon of internal friction. The effect of this internal friction

is commonly measured by a torsional pendulum. The angle of lag is

called δ, and tan δ is taken as a measure of the internal friction.

Mathematically,

tan δ = log decrement

π
= Q −1,

where the logarithmic decrement is the ratio of successive amplitudes

of the swing of the pendulum. If the amplitude decays to 1/n of its

original value in time t, then

tan δ = Q −1 = ln(1/n)

πvt
,

where ν is the vibrational frequency of the pendulum.

Only the interstitials that occupy the normal sites in an undis-

torted lattice will contribute to internal friction. Interstitials in the

strain fields of a dislocation or a substitutional solute atom, or those

at a grain boundary, will have their behavior altered. Thus, the Snoek

effect can be used to measure C or N concentration in high-purity fer-

rite, i.e., BCC α-Fe. Would you expect to observe the Snoek effect in

γ -Fe?

10.3.6 Blue Brittleness
Carbon steels heated in the temperature range of 230 and 370 ◦C show

a notable reduction in elongation. This phenomenon is due to the

interaction of dislocations in motion with the solute atoms (carbon

or nitrogen) and is intimately connected with the Portevin--Le Chate-

lier effect. We classify it separately because of its distinct importance.

When the temperature and the strain rate are such that the speed

of the interstitial atoms is more than that of the dislocations, the

dislocations are continually captured by the interstitials. This results

in a very high strain-hardening rate and strength with a reduction in

elongation. With increasing strain rates, the effect occurs at higher

temperatures, as diffusivity increases with temperature. Called blue

brittleness, this effect refers to the coloration that the steel acquires

due to the oxide layer formed in the given temperature range. In the

range of temperature and strain rate in which the material is sub-

jected to dynamic aging, the strain-rate sensitivity is also affected,

tending to increase linearly with temperature. However, in the pres-

ence of dynamic aging, the strain-rate sensitivity becomes very small,

and the yield stress becomes practically independent of the strain

rate.
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10.4 Precipitation- and Dispersion-Hardening

Precipitation-hardening, or age-hardening, is a very versatile method

of strengthening certain metallic alloys. Two important alloy sys-

tems that exploit this strengthening technique are aluminum alloys

and nickel-based superalloys. Figure 10.11 shows examples of precipi-

tates in some systems. Figure 10.11 (a) shows a typical example of an

Al--Cu alloy, with θ (CuAl2) precipitates at the grain boundaries and

θ ′ (Cu2Al) precipitates in the grain interiors, Figure 10.11(b) shows

Al3Li precipitates in an Al--Li alloy, and Figure 10.11(c) shows γ ′ (Ni3Al)

(a)
Grain
boundary

θ

θ‘

(b)

(c)

1 mm

200 nm

Fig. 10.11 (a) θ precipitates

(at grain boundaries) and θ ′

precipitates (in grain interior) in

Al–Cu alloy. (Courtesy of K. S.

Vecchio.) (b) Al3Li precipitates in

Al–Li alloy (TEM, dark field).

(Courtesy of K. S. Vecchio.) (c) γ ′

precipitates and aged carbides in a

superalloy. (Courtesy of R. N.

Orava.)
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precipitates and aged carbides in a nickel-based superalloy. The aging

treatment involves the precipitation of a series of metastable and

stable precipitates out of a homogeneous, supersaturated solid solu-

tion. Various metastable structures offer different levels of resistance

to dislocation motion. Figure 10.12 shows the variation in hardness

with aging time in the aluminum--copper system. Also shown are the

different types of precipitate that occur during the aging treatment.

Peak hardness or strength corresponds to a critical distribution of

coherent or semicoherent precipitates.

In dispersion-hardening, we incorporate hard, insoluble second

phases in a soft metallic matrix. Here, it is important to dist-

inguish dispersion-strengthened metals from particle-reinforced

metallic composites. The volume fraction of dispersoids in dispersion-

strengthened metals is generally low, 3--4% maximum. The idea is to

use these small, but hard, particles as obstacles to dislocation motion

in the metal and thus strengthen the metal or alloy without affect-

ing its stiffness is any significant way. In the case of metallic partic-

ulate composites, the objective is to make use of the high stiffness

of particles such as alumina to produce a composite that is stiffer

than the metal alone. Improvements in strength, especially at high

temperatures, also result, but at the expense of ductility and tough-

ness. Examples of dispersion-strengthened systems include Al2O3 in

Al or Cu, ThO2 in Ni, and more. TD Nickel is the name of an oxide-

dispersion-strengthened nickel. Very small spherical particles (20--

30 nm in diameter) of thorium dioxide (ThO2) are dispersed in nickel

matrix by powder metallurgical processing. Dispersion-strengthened

copper is made by an internal oxidation technique. An alloy of cop-

per and a small amount of aluminum is melted and atomized into

a fine powder. Heating the powder under oxidizing conditions leads

to an in situ conversion of aluminum into alumina. Any excess oxy-

gen in the copper is removed by heating the powder in a reducing

atmosphere. The powder is then consolidated, followed by conven-

tional metalworking. We give some examples of dispersion-hardened

systems later in this chapter. Suffice it here merely to point out
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that dispersion-hardened systems have one great advantage over those

hardened by precipitation, viz., the stability of the dispersoids. Thus,

dispersion-hardened systems maintain high strength at high tempera-

tures, at which precipitates tend to dissolve in the matrix. Figure 10.13

illustrates the differences between strengthening by precipitation and

by dispersion-hardening. Nickel-based superalloys IN792 and MAR M-

200 are precipitation-hardened by γ ′′ or γ ′ precipitates having compos-

itions of Ni3Nb and Ni3Al, respectively. The TD nickel, on the other

hand, contains a fine dispersion of ThO2, a high-melting-point oxide

that is insoluble in the matrix. At lower temperatures (up to 1,000 ◦C),

precipitation hardening is more effective; however, at approximately

1,100 ◦C, the precipitates dissolve in the matrix and the strength is

drastically reduced. The dispersoids continue to be effective strength-

eners at still higher temperatures.

The strengthening in these systems, hardened by either pre-

cipitates or dispersoids, has its origin in the interaction of dis-

locations with the particles. In general, the interaction depends on

the dimensions, strength, spacing, and amount of the precipitate.

The detailed behavior, of course, differs from system to system. Let

us first describe the phenomenon of precipitation-, or age-, harden-

ing. The supersaturated solid solution is obtained by sudden cooling

from a sufficiently high temperature at which the alloy has a single

phase. The heat treatment that causes precipitation of the solute is

called aging. The process may be applied to a number of alloy systems.

Although the specific behavior varies with the alloy, the alloy must,

at least:
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1. Form a monophase solid solution at high temperatures.

2. Reject a finely dispersed precipitate during aging, i.e., the phase

diagram must show a declining solvus line.4

Figure 10.14(a) shows a part of the phase diagram of the Al--Cu sys-

tem in which precipitation-hardening can occur, while Figure 10.14(b)

shows the phase diagram of the Al--Li system. Lithium is interesting

in that its addition to aluminum results in a lowering of the dens-

ity, as well as a substantial increase in the modulus of the alloy.

Both of the systems shown in Figure 10.14 fulfill the prerequisites for

precipitation-hardening to occur. The precipitation treatment consists

of the following steps:

1. Solubilization. This involves heating the alloy to the monophase

region and maintaining it there for a sufficiently long time to

dissolve any soluble precipitates.

2. Quenching. This involves cooling the single-phase alloy very rapidly

to room temperature or lower so that the formation of stable

precipitates is avoided. Thus, one obtains a supersaturated solid

solution.

3. Aging. This treatment consists of leaving the supersaturated solid

solution at room temperature or at a slightly higher temperature.

It results in the appearance of fine-scale precipitates.

Table 10.1 presents some precipitation-hardening systems, with the

precipitation sequence and the equilibrium precipitates. Although

the behavior of different systems varies in detail, one may write the

4 The solvus line is the locus of points representing the limit of solid solubility as a

function of temperature.
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Table 10.1 Some Precipitation-Hardening Systems

Base Metal Alloy Sequence of Precipitates

Al–Ag Zones (spheres) −−−− γ ′ (plates) −−−− γ (Ag,Al)
Al–Cu Zones (disks) −−−− θ ′′ (disks) −−−− θ ′ −−−− θ (CuAl2)
Al–Zn–Mg Zones (spheres) −−−− M′ (plates) −−−− (MgZn2)

Al Al–Mg–Si Zones (rods) −−−− β ′ −−−− (Mg2Si)
Al–Mg–Cu Zones (rods or spheres) −−−− S′ −−−− S(Al2CuMg)
Al–Li–Cu Zones −−−− θ ′′ −−−−> θ ′ −−−−> θ (CuAl2)

Ti(CuAl2Li)
δ′ −−−−>δ (AlLi)

Cu Cu–Be Zones (disks) −−−− γ ′ −−−− γ (CuBe)
Cu–Co Zones (spheres) −−−− β

Fe Fe–C ε-Carbide (disks) −−−− Fe3C(“laths”)

Fe–N α′′ (disks) −−−− Fe4N

Ni Ni–Cr–Ti–Al γ ′ (cubes) −−−− γ (Ni2Ti)

general aging sequence as follows:

supersaturated solid solution → transition structures

→ aged phase.

In the initial stages of the aging treatment, zones that are coher-

ent with the matrix appear. These zones are nothing but clusters of

solute atoms on certain crystallographic planes of the matrix. In the

case of aluminum--copper, the zones are a clustering of copper atoms

on [100] planes of aluminum. The zones are transition structuring

and are referred to as Guinier--Preston zones, or GP zones, in honor of

the two researchers who first discovered them. We call them zones

rather than precipitates in order to emphasize the fact the zones

represent a small clustering of solute atoms that has not yet taken

the form of precipitate particles. The GP zones are very small and

have a very small lattice mismatch with the aluminum matrix. Thus,

they are coherent with the matrix; that is, the lattice planes cross

the interface in a continuous manner. Such coherent interfaces have

very low energies, but there are small elastic coherency strains in the

matrix. As these coherency strains grow, the elastic energy associated

with them is reduced by the formation of semicoherent zones where

dislocations form at the interface to take up the misfit strain. Further

growth of the semicoherent zones, or precipitates, results in a com-

plete loss of coherency: An incoherent interface forms between the

precipitate and the matrix.

The nature of precipitate/matrix interface produced during the

aging treatment can be coherent, semicoherent, or incoherent

(Figure 10.15). Coherency signifies that there exists a one-to-one cor-

respondence between the precipitate lattice and that of the matrix.
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Fig. 10.15 Different

crystallographic relationships

between matrix and second phase.

(a) Complete coherency.

(b) Coherency with strained, but

continuous, lattice planes across

the boundary. (c) Semicoherent,

partial continuity of lattice planes

across the interface.

(d) Incoherent equilibrium

precipitate, θ ; no continuity of
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0.5µm

Fig. 10.16 Interfacial

dislocations formed in a

semicoherent precipitate. (From

G. C. Weatherly and R. B.

Nicholson, Phil. Mag., 17 (1968),

801.)

(See Figure 10.15(a) and (b)). A semicoherent precipitate signifies that

there is only a partial correspondence between the two sets of lattice

planes. The lattice mismatch is accommodated by the introduction

of dislocations at the noncorrespondence sites, as shown in Figure

10.15(c). Figure 10.16 shows such interfacial dislocations at semi-

coherent interfaces. An incoherent interface, shown in Figure 10.15(d),

implies that there is no correspondence between the two lattices.

Such an interface is also present in dispersion-hardened systems.
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2 µm 

  0.2 µm 

(a)

(b)

Fig. 10.17 (a) Al–Zn–Mg alloy

showing precipitate-free zone

along grain boundaries. (b)

Spinodally decomposed Cu–Ni–Fe

alloy resulting from aging within

the ternary miscibility gap. The

light phase is Cu rich, the dark

phase, Ni–Fe rich. (Courtesy of G.

Thomas.)

The shape of the aging curve (see Figure 10.12) can be explained as

follows. Immediately after quenching, only solid-solution-hardening

is present. As GP zones form, hardness or strength increases because

extra stress is needed to make dislocations shear the coherent zones.

The hardness increases as the size of the GP zones increases, mak-

ing it ever more difficult for the dislocations to shear the zones. As

time goes on, incoherent equilibrium precipitates start appearing,

and the mechanism of Orowan bowing (see Section 10.5) of disloca-

tions around the particles becomes operative. The peak hardness or

strength is associated with a critical dispersion of coherent or semi-

coherent precipitates. Further aging results in an increase in the inter-

particle distance, and a lower strength results as dislocation bowing

becomes easier.

Under certain conditions, precipitation may occur in a non-

uniform manner, and often grain boundaries are favored sites. This

may result in a region close to the grain boundary in which pre-

cipitation is virtually absent because the solute was used up in the

formation of precipitates along the boundary. The aluminium--zinc--

magnesium alloy shown in Figure 10.17(a) was used in the Comet air-

craft. This TEM micrograph clearly shows the ‘‘precipitate-free zones”

along both sides of the boundary, forming a rosary. The younger stu-

dents might not remember this, but the British De Havilland company

built the first commercial jet aircraft in 1952. Alas, after four acci-

dents confidence in the new plane was destroyed and so was British

supremacy in commercial aircraft. This costly mistake was attributed

to two reasons:
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(a) The plane used square windows, at whose corners fatigue cracks

started to propagate. Square corners produce a high stress con-

centration. Interestingly, the U.S. Civil Aeronautics Administra-

tion (predecessor to the Federal Aviation Adminsitration, FAA)

had doubts about the wisdom of using square windows and had

refused to grant the Comet an air-worthiness certificate.

(b) The alloy and heat treatment used in the aircraft exhibited the

microstructure shown in Figure 10.17(a).

Thomas and Nutting5 showed quite clearly, using TEM, the occur-

rence of precipitate-free zone (PFZ) adjacent to grain boundaries, and

a courser precipitate distribution adjacent to the PFZ, when compared

to the surrounding matrix. This leads to intergranular corrosion and

accelerates fatigue failure. One needs TEM to characterize such PFZs.

There is another mechanism of forming a second phase that does

not involve nucleation and growth. It is called spinodal decompos-

ition. It starts with fluctuations in composition that become gradu-

ally (with time) more pronounced. This eventually leads to phase sep-

aration. Spinodal decomposition is not as common as precipitation.

Figure 10.17(b) shows the microstructure produced in a Cu--Ni--Fe alloy

by spinodal decomposition.

Example 10.2

Dispersion-hardened materials have a stable microstructure at high

temperatures, compared to precipitation-hardened materials. Is there

any advantage, then, to strengthening by precipitation over that by

dispersion of strong, inert particles?

Solution: In general a dispersion-hardened material, because it is very

hard, can be very difficult to machine or work. A precipitation-hardened

material, on the other hand, can be machined or worked before it is

given the aging treatment, i.e., when it is soft. After machining, one can

give the material the appropriate aging treatment to get the maximum

strength and hardness.

Example 10.3

Figure E10.3 shows the Al--Mg phase diagram. For an alloy with 5% Mg by

weight, calculate the Al2Mg (β) equilibrium volume fraction of precipi-

tate if the densities of Al and Al2Mg are 2.7 and 2.3 g/cm3, respectively.

Solution: Basically, we have to calculate the volume fraction of Al2Mg

at room temperature (25 ◦C). However, in this phase diagram, the data

5 G. Thomas and J. Nutting, J. Inst. Metals, 88 (1959--60) 81; R. B. Nicholson, G. Thomas,

and J. Nutting, Acta Met., 8 (1960) 172.
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are given to 100 ◦C. We assume that there is not much change between

100 ◦C and 25 ◦C. Applying the lever rule,6 we find that the fraction of

β (Al2Mg) by weight is

5 − 1

35 − 1
= 0.12.

Changing this into the volume fraction (divide the respective mass frac-

tion by the density of each component) we have

f = 0.12/2.3

0.88/2.7 + 0.12/2.3

(
= VAl2Mg

VAl + VAl2Mg

)
= 0.14 or 14%.
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10.5 Dislocation–Precipitate Interaction

Finely distributed precipitates present an effective barrier to the

motion of dislocations. Two of the important models that explain

the strengthening due to precipitates respectively involving (1) dis-

locations cutting through the particles in the slip plane and (2) dis-

locations circumnavigating around the particles in the slip plane.

Depending on both the nature of the precipitate and the crystallo-

graphic relationship between the precipitate and the matrix, we can

have two limiting cases:

1. The precipitate particles are impenetrable to the dislocations. Orowan

pointed out that if a ductile matrix has second-phase particles

interpenetrating the slip plane of dislocations, an additional stress

6 The lever rule allows us to compute the relative phase amounts in a two-phase alloy.

The student should consult any introductory book on materials engineering.
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t t t t

Fig. 10.18 (a) The Orowan

model. (After E. Orowan, in

Internal Stresses in Metals and Alloys

(London: Institute of Metals,

1948), p. 451.) (b) Obstruction of

dislocation motion by uniformly

distributed nonshearing particles

in an aluminum alloy (transmission

electron microscope) (Courtesy of

M. V. Heimendahl.)

will be necessary to make a dislocation expand between the parti-

cles. The applied stress should be sufficiently high to bend the dis-

locations in a roughly semicircular form between the particles. If so,

the dislocations will extrude between the particles, leaving disloca-

tion loops around them, as per the mechanism shown schematically

in Figure 10.18(a). Under an applied shear stress τ , the dislocation

bows in between the precipitate particles until segments of dislo-

cation with opposite Burgers vector cancel each other out, leaving

behind dislocation loops around the particle. An example of Orowan

bowing is shown in a TEM in Figure 10.18(b). The material is an Al--

0.2% Au alloy, solution annealed, followed by 60 hours at 200 ◦C and

5% plastic deformation. At points marked A in this figure, one can

see dislocations pinned by the precipitates and Orowan bowing of

dislocation segments. At point B, the dislocations have left the slip

plane and formed prismatic dislocation loops. The dislocations in the

micrograph are characteristically very short and have been severely

impeded in their movement.

Now, the stress necessary to bend a dislocation to a radius r is

given roughly by (see Section 4.4.5, Equation 4.22d)

τ ≈ Gb/2r (10.4)

Let x be the average separation between two particles in the slip lane.

Then a dislocation, under a shear stress τ , must be bent to a radius

on the order of x/2 for it to be extruded between the particles instead
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of cutting them. The shear stress to do this is given by making r =
x/2 in Equation 10.4; that is,

τ ≈ Gb

2r
= Gb/x. (10.5)

Should the stress necessary to cause the particle shear be greater

than Gb/x (rigorously speaking, 2T/bx, where T is the dislocation line

tension), the dislocation will bow between the particles rather than

shear them. This, in essence, is the Orowan model of strengthening

due to dispersion or incoherent precipitates. The increase in the yield

stress because of the presence of particles is given by Equation 10.5, so

that, as long as there is no particle shear, the total yield stress for an

alloy strengthened by a dispersed phase or an incoherent precipitate

is given by

τy = τm + Gb/x, (10.6)

where τm is the critical shear stress for matrix yielding in the absence

of a precipitate. Note that more precise formulations of the Orowan

stress have been made, involving more accurate expressions for the

dislocation line tension T and taking into account the effect of the

finite particle size on the average interparticle spacing.

Ashby7 improved on the original Orowan equation and proposed

the following form, incorporating the radius of the precipitate, r0:

τy = τm +
[

Gb

2.38π (1 − ν)1/2
ln

(r0

b

)] /
x.

The above equation predicts results that are about one-half of the

Orowan equation, for x = 10 nm, b = 0.3 nm, and ν = 0.3.

The comparison of the predicted Orowan--Ashby equation and

experimental values for a Cu--0.74% Ni--0.14% P alloy is shown in

Figure 10.19. The experimental precipitation strengthening is quali-

tatively similar to the Orowan equation. The strengthening decreases

with precipitate size, because this corresponds to an increase in the

spacing (at a constant volume fraction of 0.009). However, the actual

increase in strength is only about half of the predicted value. This was

attributed to microstructural effects. It is very seldom that theoreti-

cal predictions are quantitatively obeyed in materials and therefore

the calculations are considered satisfactory.

2. The precipitate particles are penetrable to dislocations; that is, the

particles are sheared by dislocations in their slip planes. If the extra

stress (in addition to τm) necessary for particle shear is less than that

for bending the dislocation between the particles (= Gb/x), the par-

ticles will be sheared by dislocations during yielding, and we can

write

τy < τm + Gb/x.

7 M. F. Ashby, in Oxide Dispersion Strengthening, G. S. Ansell, ed. (New York: Gordon and

Breach, 1968) p. 431.
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Fig. 10.19 Comparison of

Orowan–Ashby calculated increase

in strength in aluminium alloy with

experimental results, for different

partical diameters (and spacings) at

a constant volume fraction f.

(Adapted from J. Miyake and M. E.

Fine, Acta Met., 40 (1992) 733.)

Thus, we see that the strength of the particle and the crystallographic

nature of the particle/matrix interface will determine whether dis-

locations will cut the particles. In internally oxidized alloys (e.g., Cu

+ SiO2), where the obstacles to dislocation motion are small, very hard

ceramic particles with a very high shear modulus and an incoherent

interface, the initial flow stress is controlled by the stress necessary

to extrude the dislocations between the hard and impenetrable par-

ticles, as per the Orowan mechanism. Since the shear strength of

the obstacles is generally very much higher than that of the matrix,

very large stresses will be required for particle shear to occur. The

initial yield stress is then controlled by the interparticle spacing.

Such behavior is also shown by precipitation-hardened alloys when

the equilibrium precipitate is an intermetallic compound (e.g., CuAl2

in the system Al--Cu). However, in the initial stages of aging, the small

precipitates or zones are coherent with the matrix and thus can be

sheared by dislocations. A vivid example of particle (Ni3Al) shear by

dislocation is illustrated in Figure 10.20: a Ni--19% Cr--69% Al alloy

aged at 750 ◦C for 540 hours and strained 2%.

Consider the encounter of a dislocation such as that at A in

Figure 10.21(a) with spherical particles (radius r0 in the slip plane) that

are interpenetrating the slip planes. Let x be the separation between

particles in the slip plane. If the interface is coherent and the particles

are not strong enough to support the Orowan stress, the dislocation

will cut the particles (of radius r0) in moving from position A to pos-

ition B, as shown in Figure 10.21(a). The passage of a matrix disloca-

tion, which generally will not be a slip dislocation for the precipitate,
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Fig. 10.20 γ ′-precipitate

particles sheared by dislocations in

a Ni–19% Cr–69% Al alloy aged at

750 ◦C for 540 hours and strained

2%. The arrows indicate the two

slip-plane traces (transmission

electron microscopy) (Courtesy of

H. Gleiter.)

will result in a faulted plane or an interface, say, of specific energy γ .

Figure 10.21(b) shows schematically the formation of such an inter-

face. The increase in the energy of the particle is πr 2
0 γ. Then, in the

2 r0

BAx

(a)

Matrix

r0

Precipitate

Matrix

Precipitate

Matrix

Precipitate
b

b

(b)

b

Fig. 10.21 (a) Dislocation at two

successive positions A and B. (b)

Dislocation shearing precipitate.

absence of any thermally activated process, the stress τ shear necessary

to move a dislocation of length x from A to B by particle shear can

be obtained as follows. A dislocation under an applied stress τ shear

has a force per unit length of τ shear b on it; therefore, the dislocation

of length x will have a force of τ shear bx on it. When the dislocation

moves through a distance equal to the particle diameter (2r0), the

work done by this force is τ shear bx 2r0. This work must equal the

surface energy of the interface created by cutting of the particle, viz.,

πr 2
0 γ. Thus, we can write

τshearbx 2r0 = πr 2
0 γ,

or

τshear = πr0γ /2bx. (10.7a)

We can make an estimate of interparticle spacing as follows. The

particle spacing x is shown in Figure 10.22: a simplified array of pre-

cipitates in a cubic arrangement. It is possible to express the volume

fraction of precipitate as

f =
(

4

3
πr 3

0

)
/x3. (10.7b)

It is assumed that each corner precipitate contributes one-eighth to

the total volume; the eight corner precipitates together count as one.

Expressing Equation 10.7b in terms of r0/x, we have

r0/x = [(3/4π ) f ]1/3. (10.7c)

Inserting equation 10.7c into 10.7a yields

τshear = constant f 1/3.

Hence, the stress required to shear precipitates is a function only

of the volume fraction of the particle that has been transformed.

However, in the early stages of precipitation, the volume fraction
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transformed increases with time until it reaches the equilibrium

value, which is determined from the phase diagram.

We discuss next the transition between the particle shear and

Orowan bowing mechanisms. In the initial stages, as precipitation or

aging continues, the precipitate particles increase in size and volume.

x

2r0

Fig. 10.22 An array of

precipitates (diameter = 2r0) in a

cubic arrangement with the cube

side = x.

As the size and amount of particles increase, more work needs to be

done by the dislocation in shearing the particles. It turns out8 that

the shear strength τ of the alloy depends on the particle radius r and

the particle volume fraction f according to the proportionality

τ ∝
√

r f.

With aging of the precipitates, both r and f increase. Soon, however,

a stage is reached in which the precipitate volume fraction does not

increase any more. Actually, the maximum precipitate volume frac-

tion is dictated by the alloy phase diagram. The precipitate size, how-

ever, continues to increase on further aging, because larger particles

tend to grow at the expense of smaller particles. This growth is called

precipitate coarsening. In nickel-based superalloys, the term Ostwald

ripening is also used for this phenomenon. The thermodynamic driv-

ing force for precipitate coarsening is the decrease in surface area,

and thus, surface energy of the precipitate with increasing size. In the

initial stages of aging, both r and f increase, and the strength of the

alloy increases. This, however, does not go on indefinitely, because, as

precipitate coarsening occurs, the interparticle distance x increases.

In fact, x becomes so large, that an alternative deformation process

begins, viz., dislocation bowing or looping around the particles via the

Orowan mechanism. This happens because the shear stress required

to bow the dislocation between the particles is less than that required

to shear them.

The stress necessary to bend a dislocation in between the par-

ticles, τOrowan, is given by Equation 10.5. If τ shear > τOrowan, the dis-

location will expand between the precipitate particles, and if τ shear <

τOrowan, the particles will be cut. Whether or not the particles will be

sheared depends on r0, the particle size, and on γ , the specific inter-

face energy. For coherent precipitates -- for example, the GP zones in

Al alloys -- the values of γ are expected to be on the order of the

magnitude of antiphase domain boundaries, with a maximum value

of about 100 mJ/m2. Thus, from such values of γ , we can estimate

that only very small particles (2r0 < 50 nm) will be cut. With aging,

the second-phase particles grow in size, so that the average spacing

between them also increases (for a given precipitate volume fraction),

and τOrowan, representing the stress necessary to bend a dislocation

between particles, decreases monotonically (Figure 10.23) By contrast,

the stress necessary to cut the particles increases with the particle

size or aging time, because the fraction transformed increases until it

reaches saturation. The figure shows the curves for dislocation bowing

8 V. Gerold and H. Haberkorn, Phys. Stat. Solidi, 16 (1966) 67.
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Fig. 10.23 Competition

between particle shear and

dislocation bowing mechanisms. f1

and f2 represent two volume

fractions of precipitates (f2 > f1);

the different volume fractions can

be obtained by using different alloy

compositions.

in between the particles and particle shear for two different equilib-

rium volume fractions, f2 > f1. These different volume fractions are

obtained by changing the composition of the alloy. For instance, by

increasing the Cu content of an Al--Cu alloy, we increase f. The cor-

responding transitions between the cutting and bowing mechanisms

occur at rc1 and rc2, respectively. The yield stress of the alloy as a func-

tion of aging time will then follow the dashed curve, a resultant of

the two mechanisms. The transition between the shearing of the par-

ticle and bowing between the particles will occur at a critical radius,

rc, given by Equation 10.1, with rc substituting for ro.

10.6 Precipitation in Microalloyed Steels

Steels form one of the most important groups of engineering mater-

ials. Over the years, the physical and process metallurgy of steels

has continually evolved to meet newer demands and challenges. The

development of microalloyed steels in the second half of the twentieth

century may be regarded as one of the greatest metallurgical achieve-

ments ever. This success can be attributed, in a large measure, to a

clearer understanding of structure--property relations in low-carbon

steels. Of course, the final product resulted from a fruitful combin-

ation of physical, mechanical, and process metallurgy. Microalloyed

steels9 have largely substituted the mild steel10 as the basic structural

material. A microalloyed steel is a low-carbon steel (0.05 to 0.2% C,

0.6 to 1.6% Mn) that contains about 0.1% of elements such as Nb,

9 There is some confusion about the terminology in the literature. Earlier, the com-

monly accepted term was ‘‘high-strength low-alloy (HSLA) steels;” later the term

‘‘microalloyed steels” gained wider acceptance.
10 Mild steel is the term used to denote a carbon steel with a carbon content between

0.1 and 0.3%.
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Table 10.2 Important Precipitates in

High-Strength Low-Alloy (HSLA) Steels

Principal Element(s) Main Precipitates

Niobium Nb(C,N), Nb4C3

Vanadium V (C,N), V4C3

Niobium + molybdenum (Nb,Mo)C
Vanadium VN
Copper + niobium Cu,Nb(C,N)
Titanium Ti(C,N), TiC
Aluminum AIN

V, or Ti. Some other elements (e.g., Cu, Ni, Cr, and Mo) may also be

present in small proportions (up to about 0.1%). Elements such as

Al, B, O, and N have significant effects as well. Table 10.2 lists some

important second phases generally encountered in high-strength low-

alloy (HSLA) steels. Microalloyed steels are usually subjected to what

is called a controlled-rolling treatment. Controlled rolling is nothing

but a sequence of deformations by hot rolling at certain specific tem-

peratures, followed by controlled cooling. The main objective of this

treatment is to obtain a fine ferritic grain size. The ferritic grain

size obtained after austenitization and cooling depends on the ini-

tial austenitic grain size, because ferrite nucleates preferentially at

the austenite grain boundaries. The ferrite grain size also depends on

the transformation temperature of the reaction austenite (γ ) → fer-

rite (α). Lower transformation temperatures favor the nucleation rate

that results in a large number of ferritic grains and, consequently, in

a very small ferritic grain size (5 to 10 μm). Thus, to obtain a maxi-

mum of grain refinement, the controlled-rolling procedure modifies

the hot-rolling process with a view toward exploiting the capacity

of the microalloying elements so as to retard the recrystallization of

the deformed austenite grains. The microalloyed additions result in

the precipitation of second-phase particles during the austenitization

treatment, and these particles impede the growth of the austenite

grains. Hence, precipitates of, say, carbides or carbonitrides of Nb,

V, or Ti can inhibit or retard the growth of these grains, resulting

in a posterior ferrite grain refinement. The Hall--Petch relationship

between the yield stress and the ferrite grain size (see Section 5.3)

indicates the strengthening that is possible through grain size refine-

ment. Besides grain size strengthening, some strengthening occurs

due to carbide precipitation. In summary, then, during hot rolling,

the fine carbide particles form in austenite and control its recrystal-

lization. The result is a fine ferritic grain size. Secondly, carbides of

Nb, V, or Ti precipitate during and soon after the γ → α transforma-

tion and lead to a precipitation strengthening of the ferrite. Together,

these two strengthening methods lead to steels with yield strengths

in the range 400 to 600 MPa and with good toughness.
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We saw earlier in this chapter that, in general, when the pre-

cipitates are dispersed through the matrix with very small inter-

particle spacing (≤10 nm), the stress required to extrude the disloca-

tions in between the particles will be very high, and dislocations will

shear the particles. However, there is little evidence of such shear of

precipitates in steels. The carbides, nitrides, and carbonitrides are very

hard (Diamond Pyramid Hardness 2,500 to 3,000), and the presence of

such hard particles in a matrix means that dislocations will be able

to cut them only when they are extremely small. The critical particle

Orowan

Shear

Increasing
particle

hardness

r

rc1

t

rc2 rc3

Fig. 10.24 Change in shear

stress τ with increasing particle

radius and hardness.

size, which corresponds to a transition between the Orowan mech-

anism and the particle shear mechanism, decreases with an increase

in the particle hardness, as shown schematically in Figure 10.24.

Example 10.4

Make a schematic of the precipitate volume fraction f as a function

of time. Explain your diagram in terms of nucleation and growth of

precipitate from a supersaturated solid solution.

Solution: The precipitates nucleate in the matrix after an initial in-

cubation period, t0, the time required to form stable nuclei. Following

nucleation, the precipitate particles grow in size over time. Such nucle-

ation and growth processes generally show very fast kinetics at first

and then finish slowly because of the depletion of solute in the matrix.

Figure E10.4 shows the desired schematic. Note the logarithmic time

scale.

1

0
to

Log t

f

Fig. E10.4

Example 10.5

Consider a precipitation-strengthened aluminum alloy. After an appro-

priate heat treatment, the microstructure of the alloy consists of precip-

itates with a mean spacing of 0.2 μm. Compute the shear stress required

for Orowan bowing of dislocations in this material.
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For aluminum, we have the following data:

Lattice parameter a0 = 0.4 nm,

Shear modulus = 30 GPa.

Solution: The shear stress for Orowan bowing is given by

τ ≈ Gb

l
= Gb

2r
.

The Burgers vector for aluminum (FCC) is

b =
√

2

2
a =

√
2

2
0.4 nm = 0.29 nm.

We can assume that a dislocation bowing around the precipitates

becomes unstable when it becomes a semicircle -- that is, when its

radius is equal to half the interparticle spacing. Thus,

r = l

2
= 0.1 μm,

τ = 30 109 × 0.28 109

2 × 0.1 × 10−6
= 42.42 MPa.

Example 10.6

Consider a dispersion-strengthened alloy with average interparticle

spacing of λ. If Nv is the number of particles per unit volume, d is

the mean particle diameter, and f is the volume fraction of particles,

then show that

λ ≈ d[(1/2 f )1/3 − 1].

Solution: Let r be the mean radius of the particle, i.e., 2r = d. Then the

number of particles per unit volume, Nv = f/(4πr3/3), or 1/Nv = 4πr3/3f.

Taking the cube root of both sides, we obtain

1/(Nv )1/3 = (4πr 3/3 f )1/3 = r (4π/3 f )1/3 = 2r (π/6 f )1/3 = d/(π/6 f )3.

Now, the interparticle spacing λ is the average center-to-center spacing

between two particles, less a particle diameter, i.e.,

λ = 1/(Nv )1/3 − d.

Hence,

λ = d(π/6 f )1/3 − d ≈ d[(1/2 f )1/3 − 1].

Example 10.7

For an alloy containing Al2Mg precipitates, calculate the critical spacing

of precipitates at which the mechanism of hardening changes from
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particle shear to particle bypass. Take

γAl2Mg = 1,400 mJ m−2,

Atomic radius (A1) = 0.143 nm,

G Al = 26.1 GPa.

Solution: Assume that the precipitates are arrayed as SC (simple cubic).

Therefore, the spacing x of precipitates is equal to the edge length, and

for Al2Mg in a cubic arrangement,

VAl2Mg = 4/3 πr 3
Al2Mg.

From Equation 10.7b, we calculate the volume fraction for precipitates:

f = 4/3
(
πr 3

Al2Mg

)
/x3.

Thus,

rAl2Mg = (3 f/4π )1/3x = 0.323x.

For particle shear,

τshear = (πrAl2MgγAl2Mg)/2bx.

For bypass,

τOrowan = G b/x.

The critical condition is obtained by setting τ shear = τOrowan. Hence,

(πrAl2MgγAl2Mg)/2bx = G b/x.

Now, rAl2Mg = 0.323x and b = 2rAl because Al is FCC. Substituting these

values into the preceding equation, we get

(0.323πγAl2Mgx)/4rAlx = 2G rAl/x,

or

x =
(

8G r 2
Al

)
/0.323 πγAl2Mg

= (8 × 26.1 × 109 × 0.143 × 10−9)/(0.323π 1, 400 × 10−7/10−4)

= 3.0 × 10−9 m

= 3.0 nm.

Example 10.8

Steel is one of the most important engineering materials. Consider

the different strengthening mechanisms discussed in this and earlier

chapters, and make a list of different contributions to the strength of

low-carbon steel.

Solution: Here is a list of the various possible contributions to the

strength of steel:
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1. Lattice friction stress, or the Peierls--Nabarro stress, σ i.

2. Solid-solution strengthening, k
√

C , where k is a constant and C is the

solute concentration.

3. Dislocation or strain hardening, αG b
√

ρ, where α is a constant

approximately equal to 0.5, G is the shear modulus, b is the Burgers

vector, and ρ is the dislocation density. (This contribution is dis-

cussed in Chapter 6.)

4. Grain-size strengthening, kyD
−0.5, where ky is the Hall--Petch constant

and D is the grain size. (This contribution is discussed in Chapter 5.)

5. A precipitation-hardening contribution if there are any precipitates

present, such as carbides of iron, niobium, titanium, or vanadium.

10.7 Dual-Phase Steels

Dual-phase steels have a microstructure consisting of 5 to 20 vol.%

of hard martensitic islands in a ductile ferritic matrix. The term

dual-phase is a misnomer but that is the prevalent usage. Ferritic--

martensitic steels would be a better name. As one would expect of

such a particulate composite, the yield and ultimate tensile strength

of dual-phase steels is a function of the volume fraction of marten-

site, the carbon content of martensite, cooling rate, etc. Frequently,

depending on the cooling conditions used, there may be some

retained austenite, bainite, pearlite, and new ferrite in these steels.

These steels are produced by an intercritical treatment; this

involves quenching from a suitable temperature in the intercritical

range between A1 and A3 in the Fe--C phase diagram (not shown

here). In this intercritical treatment the austenite phase transforms

to martensite giving us a ferrite--martensite structure instead of the

conventional ferrite--pearlite microstructure. These steels are charac-

terized by low yield strength, an absence of discontinuous yielding,

and a very high strain hardening rate. These characteristics lead to

a high strength component in the as-formed state. They also have

excellent stretch-formability, which is exploited in automotive appli-

cations. Dual-phase steels, for a similar strength to conventional HSLA

steels, offer better formability and enhanced crashworthiness. Typi-

cal composition for cold-rolled dual-phase steels (wt.%) is 0.08--0.18%

C, 1.6--2.2% Mn, 0.4% (Cr + Mo). A hot-rolled dual-phase steel would

be 0.05% C, 1% Si, 1.5% Mn, 0.6% Cr, and 0.4% Mo.
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Exercises

10.1 Compute the hydrostatic stress, in terms of an (r, θ ) coordinate, associ-

ated with an edge and a screw dislocation in an aluminum lattice. Take G =
26 GPa and b = 0.3 nm. For a given r, what is the maximum value of this

stress?

10.2 Consider the copper--zinc system that is used to make a series of brasses.

The radius of solute zinc atom is 0.133 nm, while that of solvent copper atom

is 0.128 nm. Calculate the dilational misfit �V for this alloy. Compute the

hydrostatic stress σ p for an edge and a screw dislocation in the system. Use

the two quantities σ p and �V to obtain the dilational misfit energy for the

alloy. Also, compute the force exerted by a solute atom of zinc on a dislocation

in copper.

10.3 The interaction energy between an edge dislocation (at the origin) and

a solute atom (at r, θ ) is given by

U = A

r
sin θ,

where A is a constant. Transforming into Cartesian coordinates, plot lines of

constant energy of interaction for different values (positive and negative) of

A/2U. On the same graph, plot the curves for the interaction force. Indicate

by arrows the direction in which the solute atoms, with �V positive, will

migrate.

10.4 Consider a metal with shear modulus G = 40 GPa and atomic radius

r0 = 0.15 nm. Suppose the metal has a solute that results in a misfit of ε =
(R − r0)/r0 = 0.14. Compute the elastic misfit energy per mole of solute.

10.5 Estimate the amount of solute (atomic percent) necessary to put one

solute atom at each site along all the dislocations in iron. Assume that 1 mm3

of iron contains about 106 mm of dislocation lines.

10.6 Compute the condensation temperature Tc for the following cases:

(a) Carbon in iron with C0 (average concentration) = 0.01% and Ui (interaction

energy) = 0.08 aJ (0.5 eV); note prefix ‘‘a” stands for ‘‘atto” = 10−18.

(b) Zinc in copper with C0 = 0.01% and Ui = 0.019 aJ (0.12 eV).

10.7 One of the Hume-Rothery rules for solid solutions11 is that the solubility

of solute B in solvent A becomes negligible when the atomic radii of A and

B differ by more than 15%. Plot the maximum solubility (atomic percent) of

11 W. Hume-Rothery and G. V. Raynor, The Structure of Metals and Alloys (London: Institute

of Metals, 1956), p. 97.
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Ni, Pt, Au, Al, Ag, and Pb as a function of the ratio of solute and solvent (Cu)

radii, and verify that the solid solubility in Cu drops precipitously at a size

ratio of about 1.15. Use the following data:

rNi = 0.1246 nm rAl = 0.143 nm

rAg = 0.1444 nm

rPt = 0.139 nm rPb = 0.1750 nm

rCu = 0.1278 nm rAu = 0.1441 nm

10.8 A steel specimen is being tested at a strain rate of 3 × 10−3 s−1. The

cross-sectional length is 0.1 m. A Lüders band forms at the section, with an

instantaneous strain of 0.2. What is the velocity of propagation of the two

Lüders fronts?

10.9 An overaged, precipitation-hardenable alloy has a yield strength of

500 MPa. Estimate the interparticle spacing in the alloy, given that G =
30 GPa and b = 0.25 nm.

10.10 Consider a unit cube of a matrix containing uniform spherical particles

(with radius r) of a dispersed second phase. Compute the average distance

between the particles for a volume fraction f of particles equal to 0.001 and

r = 10−6 cm.

10.11 For a precipitation-hardenable alloy, estimate the maximum precipitate

size that can undergo shear by dislocations under plastic strain. Take matrix

shear modulus = 35 GPa, Burgers vector = 0.3 nm, and specific energy of

precipitate--interface created by shear = 100 mJ/m2.

10.12 An aluminum alloy contains 2% volume fraction of a precipitate that

results in ε = 5 × 10−3. Determine the average spacing l between precipitates

above which there will be a significant contribution to strength due to the

difference in atomic volume of the matrix and the precipitate. Below this

critical value of l, what will be the mechanism controlling yielding?

10.13 Calculate the critical radius of precipitates for which an Al--Mg alloy

containing 10% Mg will be strengthened by Orowan looping instead of particle

shear. Use the following data:

γAl2Mg = 1.4 J/m2,

G Al = 26.1 GPa,

rAl = 0.143 nm.

10.14 An Al--Cu alloy with 4% weight Cu is aged to form θ precipitates

(CuAl2).

(a) Using Figure 10.14(a), determine the volume fraction of CuAl2. Take ρAl =
2.7 × 103 kg/m3 and ρCu = 8.9 × 103 kg/m3.

(b) Establish the stresses required for precipitate shearing and bypass by dis-

locations as a function of precipitate radius, given that γCuAl2
= 2.7 J/m2,

GAl = 26.1 GPa, and rAl = 0.143 nm.

10.15 Figure E10.3 shows the Al--Mg phase diagram. For an alloy with 10% Mg

by weight, calculate the Al2Mg equilibrium volume fraction of precipitates if

the densities of Al and Al2Mg are 2.7 and 2.3 g/cm3, respectively.
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10.16 An aluminum alloy is strengthened by dispersed alumina particles.

These particles are spherical and have a diameter of 15 μm. The weight per-

centage of alumina in aluminium is 3%. Estimate the dispersion strengthen-

ing.

Given:

GAl = 28 GPa,

Density (Al) = 2.70 g/cm3,

Density (Al2O3) = 3.96 g/cm3.



Chapter 11

Martensitic Transformation

11.1 Introduction

In this chapter, we discuss one important means of altering the

mechanical response of metals and ceramics: martensitic transform-

ation. Martensitic transformation is a highly effective means of

increasing the strength of steel. An annealed medium-carbon steel

(such as AISI 1040) has a strength of approximately 100 MPa. By

quenching (and producing martensite), the strength may be made to

reach about 1 GPa, a tenfold increase. The ductility of the steel is, alas,

decreased.

A quite different effect is observed in ceramics. Martensitic trans-

formation can be exploited to enhance the toughness of some ceram-

ics. If a ceramic undergoes a martensitic transformation during the

application of a mechanical load, the propagation of cracks is in-

hibited. For example, partially stabilized zirconia has a fracture tough-

ness of approximately 7 MPa m1/2. An equivalent ceramic not under-

going martensitic transformation would have a toughness less than

or equal to 3 MPa m1/2.

An additional, and very important, effect associated with martens-

itic transformations is the ‘‘shape-memory effect.” Alloys undergoing

this effect ‘‘remember” their shape prior to deformation. The three

effects just described have important technological applications.

11.2 Structures and Morphologies of Martensite

Quenching has been known for over 3,000 years and is, up to this

day, the single most effective mechanism known for strengthening

steel. However, it is only fairly recently that the underlying mech-

anism has been studied in a scientific manner and understood. Ini-

tially attributed to a beta phase supposedly existing in the Fe--C sys-

tem, the strengthening effect is now known to be due to a metastable

phase: martensite. The term martensite was used in honor of a German

scientist Martens. The investigations leading to the understanding of
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Table 11.1 Systems in which Martensitic or

Quasi-Martensitic Transformation Occursa

Alloy Structure Change

Co, Fe–Mn, Fe–Cr–Ni FCC→HCP

Fe–Ni FCC→BCC

Fe–C, Fe–Ni–C, FCC→BCT
Fe–Cr–C, Fe–Mn–C

In–Tl, Mn–Cu FCC→FCT

Li, Zr, Ti, Ti–Mo, BCC→HCP
Ti–Mn

Cu–Zn, Cu–Sn BCC→FCT

Cu–Al BCC→distorted HCP

Au–Cd BCC→orthorhomic

ZrO2 tetragonal→monoclinic

a Adapted with permission from V. F. Zackay, M. W. Justusson,

and D. J. Schmatz, Strengthening Mechanisms in Solids, (Metals

Park, OH: ASM, 1962), p. 179.

the mechanisms governing, and factors affecting, martensitic trans-

formations have posed a great challenge to researchers over the sec-

ond half of the twentieth century. Out of a confusing maze of appar-

ently contradictory phenomena, order has appeared. Martensitic-like

transformations have been identified in a great number of systems,

including pure metals, solid solutions, intermetallic compounds, and

ceramics. In order to assess the mechanical behavior of martensite

and take advantage of its unique responses in technological applica-

tions, one has to understand the fundamental aspects of the transfor-

mation. Table 11.1 presents a number of systems in which martensitic-

like transformations have been observed.

The original use of the martensitic transformation was exclu-

sively to harden steel. Other developments have led to its use in dif-

ferent contexts. In transformation-induced plasticity (TRIP) steels, the

martensitic transformation occurs during deformation and strength-

ens the regions ahead of a crack or near the neck in a tensile speci-

men, the ductility of the material is enhanced, while the strength

level remains high. This results in great toughness. Ceramics (zirco-

nia) are toughened through the same principle; the fracture tough-

ness of partially stabilized zirconia can be as high as three times that

of conventional ceramics.

Another manifestation of the martensitic transformation is the

shape-memory effect. Upon being plastically deformed, the material

undergoes internal changes in the configuration of the martensite

plates. Heating the material recomposes the initial shape. This effect
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Fig. 11.1 Free energy versus

temperature for austenitic and

martensitic phases. Ms, Mf, As, and

Af marked on abscissa.

is discussed in detail in Section 11.5. More complex processing proced-

ures involving the martensitic transformation, such as ausforming

and maraging, have been developed for steels.

A martensitic transformation is a lattice-distortional, virtually dif-

fusionless structural change having a dominant deviatoric component

and an associated change in shape so that strain energy dominates

the kinetics and morphology of the transformation. The requirement

that there be no diffusion stems from thermodynamics: The driving

energy required for martensitic transformation is much higher (in the

case of irreversible martensites, especially) than that needed for dif-

fusional decomposition (such as precipitation or spinodal decompos-

ition). Hence, as the alloy is cooled, the diffusional transformations

would take place at a higher temperature, where the free-energy dif-

ference between the two phases is not very large. Figure 11.1 shows

the free energies of the parent and martensitic phase as a function of

temperature. At T0, the equilibrium temperature, the two phases have

the same free energy. Ms is the highest temperature at which martens-

ite starts to form spontaneously. The critical free energy required for

the martensitic transformation is �Fcr and is around 1,200 kJ/mol

for Fe--Ni and Fe--C alloys. Hence, if a diffusion-induced transform-

ation competes with the martensitic transformation, the cooling in

the region where T0→Ms has to be fast enough to avoid the dif-

fusional transformation. On the other hand, if T0 is low enough, there

is essentially no diffusion, and slow cooling will produce martensite.

Upon heating above austenite start temperature As, the martensite

reverts to austenite. For irreversible martensites, the gap between Ms

and As is a few hundred kelvins; for reversible martensite, the gap is

of a few tens of kelvin.

The martensite phase can exhibit a variety of morphologies,

depending on the composition of the alloy, the conditions in which

it is formed, and its crystalline structure. The three most common

morphologies are the lenticular (lens-shaped), the lath (a large num-

ber of blocks juxtaposed in a shinglelike arrangement), and the

acicular (needle-shaped). These are shown in Figures 11.2 through

11.5. Lenticular martensite occurs in Fe--Ni and Fe--Ni--C alloys with
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(a) (b)

Fig. 11.2 (a) Lenticular

martensite in an Fe–30% Ni alloy.

(Courtesy of J. R. C. Guimarães.)

(b) Lenticular (thermoelastic)

martensite in Cu–Al–Ni alloy.

(Courtesy of R. J. Salzbrenner.)

approximately 30% Ni and in Fe--C alloys with over 0.6% C. The cen-

tral region is called the midrib and etches preferentially. The sub-

structure is characterized by twins, dislocations, or both. In the par-

ticular case of Figure 11.2(a), the region adjacent to the midrib is

twinned, and the external parts are dislocated. Figure 11.2(b) shows

lenticular martensite in a Cu--Al--Ni alloy. This material exhibits the

shape-memory effect. Lath martensite, on the other hand, is quite

different, consisting of small, juxtaposed blocks that are arranged in

packets separated by low-angle grain boundaries. Each packet is com-

posed of blocks with a thickness varying between a few micrometers

and a few tens of micrometers; the blocks make specific angles with

their neighbors. There is a repetitive pattern in each packet, leading

to a 360◦ rotation and a resultant periodicity. Low-carbon steels and

Fe--Ni alloys with less than about 30% nickel exhibit this morphology,

shown in Figure 11.3.

In steels, there is a significant difference in the mechanical prop-

erties of twinned and dislocated martensites. Figure 11.4 shows a

medium-carbon steel (0.3% C) that can exhibit both lath (dislocated)

and lenticular (twinned) martensites. It can be seen that twinned

martensite gives poor toughness, which is consistent with what we

learned about twinning in Chapter 5. Mechanical twinning can give

rise to microcracks, which are initiation sites for failure of the mater-

ial (see Figure 8.6). The example of Figure 11.4 is a wonderful illus-

tration of how the microstructure (in this case, inside the martensite

lenses and laths) can have a dramatic effect on mechanical properties.

This fact is often overlooked by engineers.

Acicular martensite is shown in Figure 11.5. This form occurs in

austenitic stainless steel (Fe--Cr--Ni alloys) after deformation. Needles

form at the intersection of the slip bands (either dislocations, stack-

ing faults, twins, ε-martensite, or a combination thereof). Since the

intersection of these bands is a thin ‘‘tube,” the martensite forming

in it has this specific shape (marked by arrows in the figure). Aci-

cular martensite has the BCC or BCT structure and has a marked
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Fig. 11.3 Lath martensite.

(Reprinted with permission from

C. A. Apple, R. N. Caron, and

G. Krauss, Met. Trans., 5 (1974)

593.)
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Fig. 11.4 Comparison of

mechanical properties between

twinned and dislocated martensite

in medium-carbon (0.3% C) steel.

(Courtesy of G. Thomas.)

Fig. 11.5 Acicular martensite in

stainless steel forming at

intersection of slip bands

(Courtesy of G. A. Stone.)
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Fig. 11.6 (a) Transmission

electron micrograph showing a

group of twins inside martensite

transformed at –140 ◦C and

2 GPa. (b) Dark-field image of

twins on (112)b plane; (c)

Stereographic analysis for habit (in

FCC) and twin (in BCC) planes.

(From S. N. Chang and M. A.

Meyers, Acta Met., 36 (1988) 1085.)

Fig. 11.7 Martensite lenses (M)

being transversed by twins, which

produce self-accommodation.

(Courtesy of A. R. Romig.)

effect on the strength and work-hardening ability of the alloy. Other

martensite morphologies have been observed also. ε-martensite is HCP

and forms in plates. It can be produced in steel by subjecting the

metal to a high pressure (>13 GPa) or in austenitic stainless steels

by deformation. After substantial plastic deformation, sheaves of fine

parallel laths were observed to form along the austenite slip bands

in austenitic Fe--Ni--C alloys. Yet another morphology is the butterfly

martensite, so called because two lenses form in a coupled manner;

the resultant microstructure resembles a number of butterflies. The

plastic deformation accompanying the martensite, constrained by the

surrounding matrix, can occur by either slip or twinning. Exam-

ples of twinned martensite are shown in Figure 11.6 (for an Fe alloy

with 22.5 wt.% Ni and 4 wt.% Mn) and Figure 11.7 (for a U--Re alloy).

The transmission electron micrograph (Figure 11.6(a)) and dark-field
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picture (Figure 11.6(b)) show the group of twins inside a martensite

lens. Crystallographic analysis of the electron diffraction pattern of

Figure 11.6(c) reveals the habit and twinning planes. In the case of the

U--Re system (Figure 11.7), the twins propagate from the lenses into

the matrix; the two martensite lenses are indicated by M.

In spite of these differences in morphology, some unique features

are common to all martensites. The most important is the existence

of an undistorted and unrotated plane. The crystallographic orientation

relationship between parent and martensite phases is such that there

always is a plane that has the same indices in the two structures. This

undistorted and unrotated plane is called the habit plane; it is usually a

plane with irrational indices. For a steel with 1.4% carbon, Kurdjumov

and Sachs found the following relationships for habit plane (225):1

(111)A||(011)M

[101̄]A||[011̄]M .

Steels with less than 1.4% carbon exhibit the same relationship. This

specific martensite is known as (225). Nishiyama investigated the

Fe--Ni--C alloys and steels with carbon content greater than 1.4% and

obtained the following relationship for habit plane (259):2

(111)A||(011)M

[112̄]A||[011̄]M .

11.3 Strength of Martensite

The martensitic transformation has the ability to confer a great

degree of strength on steels; other alloys do not seem to have such

strong martensites. The strength of martensite in steel is dependent

on a number of factors, the most important being the carbon content

of the steel. While the Rockwell C hardness of iron increases from 5

to 10 when it is transformed to martensite, it increases from 15 to 65

when the carbon content is 0.80% (eutectoid steel). The origin of the

high hardness of martensite has been the object of great controversy

in the past. It is now fairly well established that there is no single,

unique mechanism responsible for it. Rather, a number of strengthen-

ing mechanisms operate, most of which we have described in chapters

5, 6, and 10. Nevertheless, the relative importance of these strengthen-

ing mechanisms and their interactions are still the object of contro-

versy. It seems that interstitial solution-hardening and substructure

strengthening (work-hardening) are the most important ones.

Most metals exhibit a dependence of yield stress on grain size;

the martensite lenses divide and subdivide the grain when they

1 G. Kurdjumov and G. Sachs, Z. Phys., 64 (1930) 325.
2 Z. Nishiyama, Sci Rep. Tohoku Univ., 2B (1934) 627.
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form. Hence, a small-grained alloy produces small martensitic plates,

whereas a large-grained alloy produces a distribution of sizes whose
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Fig. 11.8 Effect of prior

austenite grain size on the yield

stress of three commercial

martensitic steels. (Adapted with

permission from R. A. Grange,

Trans. ASM, 59 (1966) 26.)

mean is much larger. This is shown in Figure 11.8. Three commer-

cial steels (AISI 4310, 4340, and 8650) exhibit a dependence of yield

stress on prior austenitic grain size. The slope of the Hall--Petch

plot seems to be the same for the three. However, for the range

of grain sizes usually encountered, the contribution of grain size is

not very important: The grain sizes are equal to 0.1 mm or more.

Only in steels that have undergone thermomechanical processing to

reduce the austenitic grain size is this strengthening mechanism of

significance.

The contribution of substitutional solid-solution elements to the

strength of ferrous martensites is relatively unimportant; addition-

ally, it is difficult to separate it from other indirect effects, such as

the change in Ms, and stacking-fault energy due to the addition of

these elements.

On the other hand, interstitial solutes (carbon and nitrogen, for

instance) can play an important effect. If we regard martensite as

a supersaturated solution of carbon in ferrite, a great portion of its

strength could be ascribed to solution-hardening. Foreman and Makin

developed an equation of the following form to express the effect of

the solute concentration C on the shear yield stress of the alloy if

only the interaction between dislocations and single-atom obstacles

is considered:3

τ0 =
(

1 − φ′

5π

)
G

(
Fmax

2T

)3/2

(3C )1/2. (11.1)

Here, Fmax is the maximum force exerted by the obstacle on the dis-

location, T is the line tension of the dislocation line, G is the shear

modulus, and φ′ is the angle turned through by the dislocation imme-

diately before it frees itself from the obstacle. The interesting aspect of

this equation is that the yield stress should increase with the square

root of the solute concentration. And indeed, results obtained by

Roberts and Owen confirm Equation 11.1, as can be seen in Figure 11.9.

These researchers used alloys with very low Ms (below 77 K), to avoid

any secondary effect of the carbon atoms, such as precipitation-

hardening or the formation of a Cottrell atmosphere. The fact that

the room-temperature tests exhibit the same slope as the ones con-

ducted at 77 K shows that even at room temperature, solid-solution-

hardening is operating and effectively strengthening martensite.

Snoek ordering consists of the reorientation of a system of point

defects of tetragonal or lower symmetry that are randomly distributed

in the stress field of a dislocation (see Section 10.3.5). Single jumps of

carbon atoms can organize the atoms in such a way as to minimize

their energy. Snoek ordering can take place in a much shorter time

interval than does the formation of a Cottrell atmosphere, because

no long-range diffusion is required.

3 A. J. E. Foreman and M. J. Makin, Phil Mag., 14 (1966) 191.
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Fig. 11.9 Plot of 0.6% proof

stress (one-half of tensile stress)

versus C1/2 for Fe–Ni–C lath

martensite at various

temperatures. The slopes are

shown as fractions of the shear

modulus, which is denoted by G.

(Adapted with permission from

M. J. Roberts and W. J. Owen, J.
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The formation of a Cottrell atmosphere, on the other hand,

requires that the atoms diffuse toward regions in the dislocation in

which their strain energy will be minimized. Carbon atoms produce

tetragonal distortions and shear stresses; hence, they seek regions

around both edge and screw dislocations in which the shear strains

cancel each other. Cottrell atmospheres produce both static and

dynamic aging. A manifestation of the latter is the serrated flow (the

Portevin--Le Chatelier effect: see also Section 10.3.4).

Carbon atoms have also been shown to exhibit a clustering behav-

ior. Carbon-rich regions have been identified by transmission electron

microscopy in steels that had been exposed to temperatures no higher

than ambient temperature. These clusters do not change the crys-

talline structure of the martensite, but produce periodic strain fields,

resulting in a ‘‘modulated” structure. In this sense, the clustering is

closer to a spinodal decomposition than to a precipitation reaction. If

the martensite is aged at higher temperatures, cementite and other

metal carbides are precipitated. The latter process is called tempering.

Frequently, precipitation is observed in martensite. Quenched car-

bon steels with Ms above room temperature may contain precipitates

that form during cooling. In certain low-carbon steels these precipi-

tates have been identified as cementite. It seems that carbon is a more

efficient strengthener as a precipitate than in solid solution. The con-

tribution of precipitates in ferrous martensites exceeds that of a solid

solution. A very important contribution is that of strain hardening. In

twinned martensite, a very fine array of twins 5 to 9 nm thick presents

a very effective barrier for additional deformation. These fine twins

are the most important factor in the strength of martensite. When
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martensite is dislocated, the density of dislocations is typically 1010

to 1011 cm−2; the substructure resembles that of BCC steel that has

been heavily deformed by conventional means.

The contributions to the strength of the martensite in a 0.4% car-

bon steel can be distributed as follows:4

Boundary strengthening 620 MPa

Dislocation density 270 MPa

Solid solution of carbon 400 MPa

Rearrangement of carbon in quench (Cottrell atmosphere

Snoek effect, clustering, precipitation) 750 MPa

Other effects 200 MPa

Total 2,240 MPa

Williams and Thompson4 point out that these effects are not neces-

sarily additive; however, this simplified scheme shows the various

contributions.

Yet another source of strengthening is the intrinsic resistance of

the lattice to dislocation motion (Peierls--Nabarro stress). This type of

resistance accounts for the temperature dependence of yield stress in

martensite. Iron exhibits a strong temperature dependence of yield

stress at low temperatures, as do other BCC metals. This same behavior

is observed in martensite, independent of the existence of precipitates

and solutes.

11.4 Mechanical Effects

A martensite lens introduces macroscopic strains in the lattice sur-

rounding it. This is best seen by making fiducial5 marks on the surface

and transforming the material. The fiducial marks will be distorted

by the strains. The strains introduced by a martensite lens can be

decomposed into a dilational and a shear strain. The dilational strain

is perpendicular to the midrib plane, and the shear strain is parallel

q

Midrib

Fiducial mark

x3
x2

x1

Fig. 11.10 Distortion produced

by martensite lens on fiducial mark

on surface of specimen.

to the midrib plane. In ferrous alloys, the dilation is approximately

0.05 and the shear strain γ is about 0.02. Figure 11.10 shows a fiducial

mark made on the surface of a hypothetical alloy. The shear direction

is such that the plane is not distorted. Hence, tan θ = γ , and θ is equal

to 11◦. The strain matrix can be expressed as⎛
⎝ ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

⎞
⎠ =

⎛
⎝ 0 0 0

0 0 0.10

0 0.10 0.05

⎞
⎠ . (11.2)

Recall that ε23 = γ 23/2. These strains are well beyond the elastic

limit of the matrix, and there is plastic deformation in the region

4 J. C. Williams and A. W. Thompson, in Metallurgical Treatises, J. K. Tien and J. F. Elliott,

eds. (Warrendale, PA: TMS-AIME, 1981), p. 487.
5 A fiducial linear marking is a straight line, imaginary or real, drawn before the trans-

formation.
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surrounding the martensitic lens. This is reflected in Figure 11.10 by

the distortion of the fiducial line.

The dilational and shear stresses and strains imposed by the

martensitic transformation interact with externally applied stresses,

and very special responses ensue. The effects of externally applied ten-

sile, compressive, and hydrostatic stresses are shown in Figure 11.11.

The uniaxial tension and compression increase Ms, whereas hydro-

static compression lowers it. The explanation is that, under the effect

of the applied stress, the mechanical work done by the transform-

ation, which can be decomposed into the dilational and shear com-

ponents, σε and τγ , is either increased or decreased:

W = σε + τγ. (11.3)

The hydrostatic stress counters the lattice expansion produced by

martensite, but does not affect the shear stress. Hence, a greater

amount of free energy is required to trigger the transformation. Refer-

ring to Figure 11.1 we can see that a greater �F will require a lowering

of Ms. For the tensile test, the applied stress can be decomposed into

a normal (positive) stress and a shear stress, both of which aid the

transformation. The shear stress aids the martensite variants aligned

with the direction of maximum shear (45◦ to the tensile axis). These

variants will form preferentially; hence, the free-energy requirement

is decreased and Ms is increased. In the compressive test, the normal

portion of the stress is negative and counters the dilational stress

of the transformation, whereas the shear stress favors it. (There are

always favorably oriented variants.) Since the shear stress term domin-

ates the expression (because of the greater shear strain γ ), the tensile

stress should be more effective in increasing Ms than the compressive

stress is. This is exactly what is shown in Figure 11.11.

Another experimental procedure consists of conducting tensile

tests at temperatures above Ms. When the stress level reaches the

value at which martensite forms at the test temperature, a significant
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load drop is observed. Figure 11.12 shows this effect. The load drop

is attributed the shear strain of the martensite, which produces an

instantaneous increase in strain of the martensite, which produces an

instantaneous increase in length of the specimen. As the difference

between the test temperature and Ms increases, the stress at which

martensite starts forming increases; this can be directly inferred from

Figure 11.12. In Figure 11.13 the yield strength is plotted as a function

of temperature; when martensite forms in the elastic line, the stress

at which it forms is equal to the yield strength (as in Figure 11.12,

for instance). The temperature dependence of the stress for martens-

ite transformation is clearly shown by the three straight lines in
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Figure 11.13. At Ms, as expected, martensite forms spontaneously, with-

out any stress. The plots of yield strength versus temperature for three

different conditions have inverted-V shapes. At the point marked M σ
s ,

the slope of the curve changes, and above this temperature, the yield

stress is produced by conventional dislocation motion; hence, it shows

the regular increase with decreasing temperature. Between Ms andM σ
s ,

on the other hand, we have stress-assisted martensite establishing yield,

and the temperature dependence is inverted, leading to a yield stress

of zero at Ms. It is worth noting that the three alloys in Figure 11.13

have the same composition, but different processing histories. Ms tem-

perature is affected by grain size. Ms increases with increasing grain

size and predeformation; in the case shown in the figure, predeform-

ation was accomplished by shock loading.

The formation of strain-induced martensite occurs in the tempera-

ture range above M σ
s in Figure 11.13. Substantial plastic deformation,

in which the substructure has to be sensitized, is required before the

first martensite forms. This kind of martensite is called strain induced,

to differentiate it from stress-assisted martensite. Figure 11.14 illustrates

the effect of strain-induced martensite on the stress--strain curve of an

austenitic stainless steel at −50 ◦C. The austenite has a low yield stress

and work-hardening rate; the transformation to martensite is also

shown (right-hand axis). The experimentally obtained curve reflects

the fact that an increase in martensite volume fraction is accom-

panied by plastic strain; the simple rule-of-mixtures curve is higher

than the experimental curve because there are complex synergistic

processes between the two phases (α and γ ).

Strain-induced martensite is responsible for a very beneficial

effect: the transformation-induced plasticity (TRIP). Remarkable com-

binations of high strength and toughness have been obtained in TRIP

steels. The high strength is due to work-hardening, carbide precipi-

tation, and dislocation pinning by solutes during thermomechanical



11 .4 MECHANIC AL EFFECTS 607

Fig. 11.15 Microcracks

generated by martensite.

(a) Fe–8% Cr–1% C (225

martensite sectioned parallel to

habit plane). (Courtesy of J. S.

Bowles, University of South

Wales.)

(b) Carburized steel. (Reprinted

with permission from C. A. Apple

and G. Krauss, Met. Trans., 4

(1973) 1195.)

treatment. The high toughness comes from a combination of high

strength and high ductility. The ductility is a direct consequence of

the strain-induced martensite transformation. If a certain region in

the metal is severely deformed plastically, strain-induced transform-

ation takes place, increasing the local work-hardening rate and

inhibiting an incipient neck from further growth. On the other hand,

if a crack has already formed, martensitic transformation at the crack

tip will render its propagation more and more difficult. In Section

11.6, the toughening of a ceramic (ZrO2) by stress-assisted martensite

will be described.

Another mechanical aspect of importance is the fracture of

martensite. Fracture is usually initiated in a martensitic alloy

along the martensite--austenite or martensite--martensite boundaries.

Indeed, upon investigating the fracture surfaces of Fe--31% Ni--0.1% C

alloy, Chawla et al.6 found that the density of dimples increased as a

function of the amount of martensite in the cross section; the same

result was obtained by decreasing the grain size. Hence, the dimple

size was tied to the density of interfaces. In carbon-free or low-carbon

steels, martensite is fairly soft, and the fracture is, consequently, duc-

tile. In high-carbon steels, on the other hand, martensite is hard and

brittle, and the fracture surface takes a cleavage appearance, with

the fracture path traversing the plates (or laths). Of great importance

in the initiation of fracture is the existence of microcracks in the

structure. Marder et al.7 found a great number of microcracks in

Fe--C martensites; when the grain size was decreased, the incidence of

microcracks decreased. The microcracks were formed when one lens

impinged on another. Figure 11.15 shows how these cracks occur. The

microcracks act as stress-concentration sites when the specimen is

loaded; they are initiation sites for macrocracks.

6 K. K. Chawla, J. R. C. Guimar̃aes, and M. A. Meyers, Metallography, 10 (1977) 201.
7 A. R. Marder, A. D. Benscoter, and G. Krauss, Met. Trans., 1 (1970) 1545.
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Tempering of martensite8 in steels is performed to improve tough-

ness. However, the tempering process might induce embrittlement.

Temper martensite embrittlement (TME) results from the segregation of

impurities to the previous austenitic grain boundaries, providing a

brittle path for propagation of the fracture. The fracture takes on the

intergranular morphology. Temper embrittlement (TE) is caused by

the impurities such as antimony, phosphorus, tin, and arsenic (less

than 100 ppm required) or larger amounts of silicon and manganese.

TME and TE occur in different ranges of temperatures; TME is a much

more rapid process.

11.5 Shape-Memory Effect

The shape-memory effect (SME) is the unique property that some alloys

possess according to which, after being deformed at one temperature,

they recover their original shape upon being heated to a second tem-

perature. The built-in memory is produced by the martensitic trans-

formation. The effect was first discussed by the Russian metallurgist

Kurdjumov. In 1951, Chang and Read9 reported its occurrence in an

In--Ti alloy. However, wide exposure of this property came only after

the development of the nickel--titanium alloy by the Naval Ordnance

Laboratory (NiTiNOL) in 1968.10 Since then, research activity in this

field has been intense, and a number of β -phase SME alloys have been

investigated, including AgCd, AgZn, AuCd, CuAl, CuZn, FeBe, FePt,

NbTi, NiAl, and ternary alloys. The Nitinol family of alloys has found

wide technological applications, and adjustments in composition can

be made to produce Ms temperatures between −273 and 100 ◦C. This is

an extremely helpful feature, and alloys are tailored for specific appli-

cations. In the majority of SME alloys the high-temperature phase is a

disordered β -phase (body-centered cubic), while the martensitic phase

is an ordered BCC structure with a superlattice or orthorhombic struc-

ture. Two separate mechanical effects characterize the response of

SME alloys: pseudoelasticity and strain-memory effect. We describe these

next, in connection with tensile and compressive tests.

Pseudoelasticity, or superelasticity, is the result of stress-induced

martensitic transformation in a tensile test in which martensite

reverts to the parent phase upon unloading. The individual martens-

ite plates do not grow explosively, as in the ferrous martensites,

and little irreversible damage is done to the lattice. The shear strain

of one plate is accommodated by neighboring plates. The complex

motion of the interfaces between the martensite plates along the

various variants and within the same martensite plate takes place

by the displacement of the interfaces between the different twins.

8 Tempering consists of heating the martensitic structure to an intermediate tempera-

ture.
9 L. C. Chang and T. A. Read, Trans. Met. Soc. AIME, 191 (1951) 49.

10 W. J. Buehler and F. E. Wang, Ocean Eng., 1 (1968) 150.
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Figure 11.16(a) shows the pseudoelastic effect for a Cu--Al--Ni alloy

with Ms = −48 ◦C. The test was conducted at 24 ◦C (72 ◦C above Ms).

At A, stress-induced martensite starts to form. At B, the martensitic

transformation has been completed, and any straining beyond that

point will produce irreversible plastic deformation or fracture. Upon

unloading, the martensite reverts to the parent phase between C and

D. Further unloading results in the return to the original length of

the specimen. The pseudoelastic strain exceeds 6%. The magnitude

of the pseudoelastic strain can be calculated from a knowledge of

the habit plane of the martensite (and its orientation with respect to

the tensile axis) and the magnitude of the shear strain for the trans-

formation. Since the habit plane of martensite is irrational, it has a

multiplicity of 24, and there is always a habit plane oriented very

close to the plane of maximum shear.

The pseudoelastic (or superelastic) effect is illustrated in a very

simplified fashion in Figure 11.17. A specimen with initial length L0

is compressed. Stress-induced martensitic transformation takes place,

and the austenite--martensite interfaces are glissile; that is, they can

move under the applied stress. In Figure 11.17(c), two martensite

lenses are shown. They continue to grow in Figure 11.17(d). When

the stress is decreased, they shrink in the same order as the initial

growth. When the stress is reduced to zero, all martensite has disap-

peared, and the specimen has returned to the original length L0. Fig-

ure 11.17(g) shows the corresponding stages on a stress--strain curve,

similar to the stress--strain curve in Figure 11.16(a). The stress--strain

curve returns to the origin after the load is removed.

It is not sufficient for the temperature at which testing is con-

ducted to be above Ms to obtain the pseudoelastic effect, as shown in

Figure 11.16(b). These tests were conducted on a Cu--Al--Ni alloy. The



610 MARTENSIT IC TRANSFORMATION

L1

L0

L0

A

A

A

A

A
A

A

(a)

g

s

g

e

(b) (c)

(d) (e) (f)

a, f

b

e

c
d

(g)

Fig. 11.17 Schematic

representation of pseudoelastic

(or superelastic) effect. (a) Initial

specimen with length L0. (b, c, d)

Formation of martensite and
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temperatures As and Af (austenite start and finish, respectively) are

also important. If the testing temperature is below As, the martensite

will not revert to austenite upon unloading; the tests conducted at

−141 ◦C and −113 ◦C show this irreversibility. For the test conducted

at −50.5 ◦C and −98 ◦C, total reversibility is obtained, since this tem-

perature is above Af (−90 ◦C). Another observation that can be made in

Figure 11.16(b) is that the stress at which martensite forms increases

with increasing temperature.

When the deformation is irreversible (at −113 ◦C and −141 ◦C in

Figure 11.16), the effect receives the name strain-memory effect. Add-

itional heating is required to return the martensite to its original

shape, since the deformation temperature is below As. Upon heating,

the original dimensions will be regained, as the martensite interfaces

move back to retransform the lattice. The sequences in which the

plates form and in which they disappear are inverted: the first plate

to form is the last to disappear.
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The strain-memory effect is also obtained when deformation is

imparted at temperatures below Ms. This is actually the procedure

used in most technological applications. In this case, the structure

consists of thermally induced martensite; it is present in such a

way that all variants occur. When the external stress is applied,

the variants that have shear strains aligned with the applied shear

strain tend to grow, and the unfavorably oriented variants shrink.

Figure 11.18 shows schematically how this takes place. Only two vari-

ants are shown, for simplicity. The variant that favors the applied

tensile strain grows at the expense of the unfavorably oriented one.

Hence, all unfavorable variants disappear, and the favorable variant

takes over the structure. On heating, the structure reverts to the orig-

inal one, composed of equal distribution of the two variants, giving

the strain recovery.

Figure 11.19 shows the strain-memory effect for compressive, ten-

sile, and flexure loading. Only two martensite variants are shown: A

and B. In this drawing, variant B favors tensile strains, whereas vari-

ant A produces compression in the direction of loading. Under com-

pressive stresses, variant A grows at the expense of B. Under tensile

loading, the opposite is true. And under bending, variant B grows

on the outside, while variant A grows on the inside. The situation

in a real material is much more complex, and polycrystalline effects

come into play. Nevertheless, the simple scheme of Figure 11.19 shows

the essential features of the strain-memory effect. Upon heating, the

three specimens return to the original shape by the reverse motion of

the martensite interfaces. Further heating would make the martensite

revert to austenite.

When the strain-memory effect is obtained above Ms, a fully

austenitic structure gradually becomes martensitic under stress. This

is shown in the schematic representation of Figure 11.20. Only one

variant of martensite is depicted. The loading stage is similar to that

for the superelastic effect. However, upon unloading, the martens-

ite remains in the material, and heating is required to return the
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representation of strain-memory

effect in compression, tension, and

bending. Variant A favors a

decrease in dimension in the

direction of its length, whereas

variant B favors an increase in

dimension.

martensite to its original dimensions. The reverse transformation

occurs in the same order as the martensite transformation, and the

specimen ‘‘remembers” its original slope.

Other potential benefits of the shape-memory effect involve the

increased damping capacity of the material, which can become very

large because of the work required to form the martensite. Cir-

cuit breakers, pseudoelastic wires for support in brassieres, overheat

protection systems, sensors in heating and ventilation, components in

the Hubble telescope, pseudoelastic dental arch wires, a pseudoelas-

tic scoliosis correction system (a biomedical application), and porous

pseudoelastic tissue are additional examples of applications of the

pseudoelastic and strain-memory effects.

Structures containing their own sensors, actuators, and compu-

tational or control capabilities are called ‘‘smart,” ‘‘adaptive,” or
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‘‘intelligent” structures. Alloys with good strain-memory effects play

an important role in the design of these structures, and novel uses

are being continually introduced. Indeed, the shape-memory effect

has found some unique uses. One is as a tight coupling for pneu-

matic and hydraulic lines. The F-14 jet fighter tube couplings are

made of Nitinol that is fabricated at room temperature with a diam-

eter 4% less than that of the tubes which will be joined. Then, the

couplings are cooled below Ms (−120 ◦C) and expanded mechanically

until their diameter is 4% larger than those of the tubes. They are

held at this temperature until they are placed over the tube ends.

Allowed to warm, they shrink to their initial diameter; impeded by

the tube, they provide a tight fit. Electrical connectors that are opened

and closed by changes in temperature are another application. Ortho-

pedic and orthodontic aids have also been made of SME alloys, and

Nitinol seems to react well in the body fluid environment. The pen-

drive mechanism in recorders is a very successful application of the

SME; many such drives are in service.
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11.5.1 Shape-Memory Effect in Polymers
Some polymers can show a shape-memory effect, wherein they change

their shape after we increase their temperature. In metallic alloys,

the shape-memory effect has origin in a martensitic phase transform-

ation. The story is a bit different in polymers. In polymers, we need

two components at the molecular level to induce a shape-memory

effect: cross-links that control the permanent shape and switching

segments that allow us to fix the temporary shape. Above a critical

temperature, Tc, we can deform the polymer. When we cool it below

Tc and release the external stress, we get the temporary shape. When

we heat the polymer to a temperature T > Tc, it regains its perman-

ent shape. Lendlein et al.11,12 showed this phenomenon in phase-

segregated, multiblock copolymers wherein molecular parameters

can be used to tailor macroscopic properties. One component, oligo(ε-

caprolactone) dimethacrylate, furnishes the crystallizable ‘‘switching”

segment that determines both the temporary and permanent shape of

the polymer. By varying the amount of the comonomer, n-butyl acryl-

ate, in the polymer network, the cross-link density can be adjusted. In

this way, the characteristics of a polymer network can be exploited to

tailor the mechanical strength and transition temperature over a wide

range. It should be mentioned that homopolymers of both monomers

are known to be biocompatible, which is of great importance for

biomedical applications. The external stimulus, e.g. an increase in

temperature, can be obtained by means of electrical current or light.

This ability of polymers to take predetermined temporary shapes and

then recover their original shape at ambient temperature by expos-

ure to light could be useful in biomedical applications. Among the

potential medical uses of these shape-memory polymers are: stents,

used to keep blood vessels open, and catheters and sutures with more

‘‘give” than those currently available.

11.6 Martensitic Transformation in Ceramics

By far the most important, but not the only, martensitic transform-

ation in a ceramic is the tetragonal-to-monoclinic transformation

exhibited by zirconia (ZrO2). This transformation leads to a significant

enhancement in the toughness of ceramics if ZrO2 is used either alone

or as a distributed phase in other ceramics, such as alumina. Garvie

et al. reported a very significant increase in tensile strength (from

250 to 650 MPa) and work of fracture (a measure of toughness) for

tetragonal zirconia, in comparison with monoclinic zirconia.13 They

attributed this increase in strength to a martensitic transformation

occurring during deformation, in a manner analogous to the TRIP

11 A. Lendlein, H. Jiang, O Jünger, and R. Langer, Nature, 434 (2005) 879.
12 A. Lendlein and R. Langer, Science, 296 (2002) 1673.
13 R. C. Garvie, R. H. Hannink, and R. T. Pascal, Nature, 258 (1975) 703.
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Fig. 11.21 (a) Lenticular

tetragonal zirconia precipitates in

cubic zirconia (PSZ). (b) Equiaxial

ZrO2 particles (bright) dispersed

in alumina (ZTA). (Courtesy of

A. H. Heuer.)

effect. The three most common ways in which this transformation is

used are as follows:

1. Tetragonal zirconia polycrystals (TZPs), which are nearly single-

phase polycrystalline ceramics. TZPs are fabricated from fine-

grained zirconia powders by sintering.

2. Partially stabilized zirconia (PSZ), in which tetragonal-ZrO2 is a pre-

cipitate phase and the matrix is cubic zirconia. The highest tough-

nesses reported in PSZ are around 18 MPa m1/2.

3. Zirconia-toughened alumina (ZTA), in which zirconia is a dispersed

phase in the alumina matrix. ZTA materials are fabricated by co-

sintering Al2O3 and ZrO2 powders. ZTA materials are relatively

tough (KIc up to approximately 14 MPa m1/2) and have high strength

(1--2 GPa). This represents a significant enhancement in compari-

son with pure Al2O3 (KIc about 3 MPa m1/2).

Figure 11.21(a) shows lenticular PSZ precipitates in cubic zirconia. The

lens plane corresponds to the {100} planes of the cubic phase; thus,
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Fig. 11.22 Atomic-resolution

transmission electron micrograph

showing extremity of tetragonal

lens in cubic zirconia; notice the

coherency of boundary. (Courtesy

of A. H. Heuer).
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Fig. 11.23 ZrO2-rich portion of

ZrO2–MgO phase diagram. Notice

the three crystal structures of

Zro2: cubic, monoclinic, and

tetragonal.

there are three possible variants for the precipitates. The tetragonal

lens is coherent with the cubic matrix, and the atomic-resolution

TEM of Figure 11.22 shows the correspondence between the planes;

the (100) of the tetragonal and cubic phases are parallel. The lenses

are shaped approximately as oblate spheroids with an aspect ratio

of 5. Figure 11.21(b) shows ZrO2 particles (bright) in an alumina

ceramic.

Zirconia has three allotropic forms: cubic, tetragonal, and mono-

clinic. Figure 11.23 shows the ZrO2--MgO phase diagram. In pure zir-

conia, only very small particles (approximately 60 nm across) can be

retained at room temperature in the tetragonal structure. By using

a stabilizing compound such as magnesia (MgO), calcia (CaO), yttria
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Fig. 11.24 TEM of martensitic

monoclinic lenses in ZrO2

stabilized with 4 wt% Y2 O3 and

rapidly solidified; the zigzag pattern

of lenses is due to autocatalysis.

(Courtesy of B. A. Bender and

R. P. Ingel.)

(Y2O3), or ceria (CeO2), it is possible to retain the tetragonal phase,

generally stable only between 1,240 and 1,400 ◦C, at room tempera-

ture. The range of MgO additions for which this occurs is shown in

the phase diagram by hatching. The tetragonal-to-monoclinic trans-

formation, which takes place martensitically under applied stress,

has a dilational (about 4--6%) and a shear (approximately 14%) com-

ponent. The martensitic nature of the transformation is evident in

the transmission electron micrograph of Figure 11.24. The martens-

ite lenses form a zigzag pattern between two larger lenses; this is a

typical autocatalytic nucleation sequence, in which one lens, imping-

ing on a boundary, generates the defects that nucleate the subse-

quent lens. The process continues, leading to the characteristic pat-

tern. The martensite shown in the figure was generated through rapid

solidification.

The increase in toughness due to the martensitic tetragonal-to-

monoclinic transformation can be qualitatively explained as follows.

In the regions surrounding a propagating crack, the stresses induce

the transformation, which has dilational and shear strain compon-

ents. These strains work against the stress field generated by the crack,

decreasing the overall stress intensity factor and, thereby, increasing

the toughness. Figure 11.25(a) illustrates this behavior in ZTA; Fig-

ure 11.25(b) shows the effect in PSZ. The gray grains indicate tetrag-

onal ZrO2, whereas the black grains are transformed to the mon-

oclinic phase. The crack, advancing from left to right, triggers the

transformation; more black dots surround the crack, leading to its

arrest. In Figure 11.25(b), the lenticular tetragonal ZrO2 precipitates

in the cubic matrix are transformed to monoclinic in the region sur-

rounding the crack. They appear as brighter lenses in the TEM because

of favorable transmission conditions.
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(a)

Fig. 11.25

(a) Zirconia-toughened alumina

(ZTA) traversed by a crack. The

black regions represent monoclinic

(transformed) zirconia, the gray

regions tetragonal

(untransformed) zirconia.

(Courtesy of A. H. Heuer.)

(b) Partially stabilized zirconia

(PSZ) lenticular precipitates

transformed from tetragonal to

monoclinic in the vicinity of a

crack. Notice the brighter

transformed precipitates.

(Courtesy of A. H. Heuer.)

(b)
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Exercises

11.1 Martensitic transformation involves the Bain transformation, shown

schematically in Figure Ex11.1. The FCC structure is transformed into the BCC

structure. Assuming that there is a 5% expansion in volume during the FCC-

to-BCC transformation, (a) calculate the lattice parameter of the BCC struc-

ture in terms of a0, and (b) determine the strains in the three orthogonal

directions.

11.2 Plot hydrostatic strain versus carbon content for the martensitic trans-

formation in steel from the plot shown in Ex11.2.
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correspondence for the formation

of martensite in steels.
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parameter a. Open circles are iron

atoms; filled circles are one

possible carbon site.

0.368

0.362

0.358

0.354

0.308

0.304

0.296

0.292

0.288

0.284

L
a
tt

ic
e
 p

a
ra

m
e
te

r,
 n

m

0
Fe

0.4 0.8 1.2 1.6 2.0

Wt. % carbon

a0 (Austenite)

(Martensite)

a

c

Fig. Ex11.2



620 MARTENSIT IC TRANSFORMATION

11.3 From the data of Figure 11.12, estimate the Ms temperature of the alloy

at zero stress.

11.4 The steel shown in Figure 11.15(b) has a plane strain fracture toughness

of 110 MPa m1/2 and a yield stress of 320 MPa. Will the cracks shown in the

figure have a catastrophic effect if a specimen is stressed to 180 MPa?

11.5 Write down all the possible martensite variants for the Kurdjumov--Sachs

orientation.

11.6 In addition to the commercial applications of shape-memory alloys

described in the text, new developments are continuously taking place. Briefly

describe three additional applications. (You may use L. M. Shetky, in Intermetal-

lic Compounds, Vol. 2, J. L. Westbrook and R. L. Fleischer, eds. (New York: J. Wiley,

1994).)

11.7 Using Cu--Zn--Al, design a pen-drive system for an X--Y recorder. Based

on the plot presented by L. M. Shetky (Sci. Am., 241 (Nov., 1979) 74), what

composition would you choose for the alloy?

11.8 Calculate the total strain energy associated with a martensite lens hav-

ing a volume of 10 μm3, assuming that all the energy is elastically stored.

Specify the assumptions made; include both shear and longitudinal strain

components from Equation 11.2.

11.9 Plot the stress required to form martensite as a function of temperature

in Figure 11.16b.

11.10 (a) To what radius can a wire with diameter of 1 mm be curved using

the superelastic effect if the maximum strain is approximately 0.05? (b) If the

wire were made of a high-strength piano wire steel (σ y ∼ 2GPa), what would

be the minimum radius to which it could be curved? Take E = 210 GPa.

(c) Discuss the differences obtained in (a) and (b).

11.11 What is the volume change associated with the tetragonal-to-monoclinic

transformation in zirconia?

Given:

Monoclinic zirconia Tetragonal zirconia

a = 0.5156 nm a = 0.5094 nm

b = 0.5191 nm b = 0.5304 nm

c = 0.5304 nm

β = 98.9◦

11.12 Give three technological applications (at least one of which is a bio-

engineering application) for shape-memory alloys.



Chapter 12

Special Materials:

Intermetallics and Foams

12.1 Introduction

An intermetallic is a compound phase of two or more normal metals

(ordered or disordered). Interest in intermetallics waned in the 1960s

and 1970s. However, the demand for materials that are strong, stiff,

and ductile at high temperatures has led to a resurgence of interest

in intermetallics, especially silicides and ordered intermetallics such

as aluminides. A testimony to this resurgence was the appearance in

1994 on the subject of a two-volume set by J. H. Westbrook and R. L.

Fleischer, Intermetallic Compounds: Principles and Practice (New York: John

Wiley). Intermetallic aluminides and silicides can be very oxidation

and corrosion resistant, because they form strongly adherent surface

oxide films. Also, intermetallics span a wide range of unusual prop-

erties. An important example outside the field of high-temperature

materials involves the exploitation of martensitic transformations,

exotic colors, and the phenomenon of shape memory in gold-based

intermetallics in jewelry making. In what follows, we first describe

the silicides, then the ordered intermetallics, and finally the basic

structure and properties of foams.

12.2 Silicides

About 300 intermetallic compounds melt at temperatures above

1,500 ◦C. A survey of some silicide intermetallics for high-temperature

applications showed that, based on criteria such as availability, phase

changes in the temperature range of interest, and oxidation resist-

ance, Ti5S3 and MoSi2 seem to be the most promising materials:

Ti5Si3 has the lowest density of all intermetallics, and MoSi2 has

a superior oxidation resistance. For service at temperature up to

1,600 ◦C, one needs characteristics such as high strength, creep resist-

ance, fracture toughness, oxidation resistance, and microstructural

stability. Figure 12.1 shows a plot of melting point vs. density for
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Fig. 12.1 A plot of melting point

vs. density for intermetallics having

0.8Tm = 1,600 ◦C. (After P. J.

Meschter and D. S. Schwartz,

J. Minerals, Metals Materials Soc., 41

(Nov. 1989), 52.)

intermetallics having 0.8Tm = 1,600 ◦C. Here we are assuming that

intermetallics retain their strength up to temperatures of 80% Tm,

the melting point of the material in K. This puts a lower limit on

Tm equal to 2,067 ◦C for a service temperature of 1,600 ◦C. Also

selected in the plot is an upper limit on density, viz., the density of

nickel.

Molybdenum disilicide is a very promising intermetallic because

of several of its characteristics. MoSi2 has a tetragonal crystal

structures, a high melting point, a relatively moderate density

(6.31 g cm−3), an excellent oxidation resistance, and a brittle-to-ductile

transition at around 1,000 ◦C, which can result in high toughness

at the service temperature. Among the problems associated with

MoSi2 are its rather low low-temperature toughness and low high-

temperature strength. MoSi2 shows a catastrophic oxidation behavior

around 500 ◦C. In the literature, this problem has been termed pest-

ing and is described as the retention of MoO3 as an oxidation product

at the grain boundaries. The expansion in volume accompanying the

formation of MoO3 results in severe microcracking. Among the efforts

to ameliorate these problems, perhaps the most promising one is to

use the approach of making a composite with MoSi2 as a matrix.

Table 12.1 summarizes the advantages and limitations of MoSi2.

12.3 Ordered Intermetallics

In the simple description of crystal structure of metals given in

Chapter 1, we tacitly assumed a random atomic arrangement of A and
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Table 12.1 Advantages and Limitations of Monolithic MoSi2

Advantages
Moderate density: 6.24 g/cm3

High melting point: 2,020 ◦C
Outstanding oxidation resistance at <1,700 ◦C
Potential upper temperature limit: 1,600 ◦C
Deforms plastically above 1,000–1,200 ◦C
Amenable to electrodischarge machining (EDM)

Limitations
Low room-temperature fracture toughness (3.0 MPa m1/2)
Low strength and creep resistance at elevated temperatures (e.g.,

140 MPa at 1,200◦C)

Table 12.2 Physical and Mechanical Properties of Important Intermetallic Compounds

Density
(g/cm3)

Crystal Structure
(Ordered)

Young’s
Modulus
(GPa)

Coefficient of
thermal expansion
(10−6/◦C)

Tensile yield
stress (MPa)

Melting
point (◦C)

Al3Ti 3.4–4.0 DO22(tetr.) 215 12–15 120–425 1350
TiAl 3.8–4.0 L10(tetr) 160–175 11.7 400–775 1480
Ti3Al 4.1–4.7 DO19(HCP) 120 12 700–900 1680
MoSi2 6.1 Tetragonal 380–440 8.1–8.5 200–400 2020
Ni3Al 7.4–7.7 L12(FCC) 180–200 14–16 200–900 1397
NiAl 5.9 B2(FCC) 177–190 14–16 175–300 1638
Ni5Si3 7.2 340 N/A 550 N/A
Fe3Al 6.7 DO3 140–170 19 600–1350 1540
FeAl 5.6–5.8 B2 160–250 21.5 500–700 N/A

B atoms in a unit cell of a metallic alloy consisting of atoms of species

A and B. When A and B are arranged in a random manner, we have a

disordered alloy. In such an alloy, equivalent crystallographic planes are

statistically identical. Truly random -- that is, completely disordered --

alloys are not common, but there are many alloy systems that come

close to having a random or disordered distribution of species A and

B. It turns out that in a vast number of alloy systems, it is energetic-

ally favorable for atoms A and B to segregate to preferred lattice sites.

Generally, such an ordered arrangement of atoms is obtained below a

critical temperature Tc and in certain well-defined atomic proportions,

i.e., stoichiometric compounds such as AB3, AB, etc. Among examples

of these systems, one may cite CuAu, Cu3Au, Mg3Cd, FeCo, FeAl, and

aluminides of Ni and Ti. When the bonding is not totally metallic,

but is partly ionic in nature, such an alloy is called an intermetallic

compound. Table 12.2 gives a summary of important characteristics of
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some intermetallics. In what follows, we examine (1) the differences

in the dislocation behavior in ordered alloys vis-à-vis disordered, or

ordinary, alloys, (2) the effect of ordering on mechanical behavior,

and (3) efforts to enhance the low-temperature ductility of ordered

alloys, with a special emphasis on nickel aluminide (Ni3Al), which

has some very unusual properties.

Example 12.1

Molybdenum disilicide shows a phenomenon called pesting. Describe

this phenomenon and indicate some means of overcoming it.

Solution: It has been observed that at about 500 ◦C, MoSi2 shows an

accelerated oxidation. A product of this oxidation is MoO3, which is

accompanied by a rather large change in volume. This catastrophic oxi-

dation can result in severe microcracking. Among some of the proposed

remedies to overcome pesting are the following:

� Preoxidize the MoSi2, to form a continuous SiO2 surface film.
� Minimize porosity, to minimize the formation of MoO3 at the pore

surfaces.
� Use alloying to alter the oxidation characteristics of MoSi2.
� Use metal coatings.

Example 12.2

There is some interest in the use of gold-based intermetallic alloys in

the jewelry industry. Can you describe some other possibilities in this

area?

Solution: Platinum-based intermetallic alloys represent a possibility.

Platinum is a soft metal like gold, but has a silver-like color. Thus, plat-

inum alloys based on a PtAl2 intermetallic may be of interest because

they show a higher hardness than Pt and they can range in color from

orange through pink to the yellow of pure gold.1

12.3.1 Dislocation Structures in Ordered Intermetallics
There are some very important differences between the dislocation

structures observed in common metals and those in ordered inter-

metallics. In FCC metals, dislocations split into partials, and the par-

tials are separated by a stacking-fault ribbon. (See Chapter 4.) The

partials, however, are confined to a single slip plane and do not have

1 J. Hurly and P. T. Wedepohl, J. Mater. Sci., 28 (1993) 5648.
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Fig. 12.2 The characteristic

dislocation structure in an ordered

alloy consists of two superpartial
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(APB). (b) Superpartial dislocations
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in Ni3Al deformed at 800 ◦C; b =
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1
2 [110]. (Courtesy of R. P.

Veyssiere.)

parallel Burgers vectors. As illustrated in Figure 12.2, the characteristic

dislocation structure in an ordered alloy consists of two partial dislo-

cations separated by a faulted region or what is also called an antiphase

boundary (APB). Figure 12.2(b) shows an example of partial dislocations

separated by a faulted region of 5 nm width in Ni3Al deformed at

800 ◦C.

An ordered structure results in some interesting characteristics.

The ordered state in A3B-type alloys is a low-energy state, so the move-

ment of dislocations and vacancies results in a destruction of the

local order; that is, a higher energy state is produced. Thus, activi-

ties such as dislocation motion and vacancy migration are subject to

some restrictions. For example, in ordered structures, the dislocations
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Fig. 12.3 (a) The L12 crystal structure of Ni3Al. The aluminum atoms are located at

the corners of a cube, while the Ni atoms are at the centers of the faces. (b) A (111) slip

plane and the slip direction <010>, consisting of two 1/2<110> vectors, in Ni3Al. Note

that the APB in between the two superpartials lies partly on the (111) and partly on the

(010) face.

must travel in pairs -- a leading dislocation and a trailing dislocation.

The passage of a leading dislocation destroys the order, while the

passage of a trailing dislocation restores it. Also, thermally activated

phenomena, such as diffusion via vacancies, suffer retardation.

Let us consider the ordered Ni3Al intermetallic. The L12 crystal

structure of Ni3Al is shown in Figure 12.3(a). The aluminum atoms

are located at corners of cubes, while the Ni atoms are at the centers

of the faces of the cube. Figure 12.3(b) shows a (111) slip plane and the

slip direction <010>, consisting of two 1
2
<010> vectors, in Ni3Al. Note

that the APB in between the two partials lies partly on the (111) and

partly on the (110) face. Interestingly, the partials in this case have the

same Burgers vectors (along the screw direction). These partials can

extend to any slip plane that contains the dislocation line or Burgers

vector. The APB can be transferred from one plane to the other by

cross-slip of the partial screws. This situation allows the partials to

reduce the energy of the intermetallic by extending to the plane with

a minimum APB energy, because the configurational energy decreases

with decreasing APB energy. When a pair of screw partials is fully

transferred from the (111) plane to the cross-slip plane (010), we get

what is called Kear--Wilsdorf lock.2 We can estimate the energy change

associated with this lock in the following way. The APB, a kind of

stacking fault, results in an energy increase that is proportional to

the quantity (EAA + EBB − 2EAB), where EAA, EBB, and EAB are the bonding

energies of AA, BB, and AB pairs, respectively. The superpartials of a

pair repel each other elastically, but are held together by the APB. If

r is the separation between two superpartials, the interaction energy

is given by −K ln r, where K is a constant involving elastic constants

of materials and the character of the dislocation. If γ is the surface

energy of the APB, then the energy of an APB of width r is γ r. Thus,

the energy of a pair of superpartials with an APB of width r can be

2 B. H. Kear and H. G. F. Wilsdorf, Trans. AIME, 224 (1962) 382.
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written as

E (r ) = γ r − K ln r. (12.1)

At the equilibrium separation r0, the two components of the energy

balance, and we can write

dE /dr = 0 = γ − K/r0, (12.2)

or

γ = K/r0.

From Equations 12.1 and 12.2, we get, at r = r0, the equilibrium

energy

E (r0) = (K/r0)r0 − K ln(K/γ ).

or

E (r0) = K [1 + ln(γ/K )]. (12.3)

Applying Equation 12.3 to the primary and cross-slip planes, we can

write:

For primary slip

E p(r0) = K [1 + ln(γp/K )].

For cross-slip

E c (r0) = K [1 + ln(γc/K )].

Hence

�E (r0) = E c (r0) − E p(r0) = K [ln(γc/K ) − ln(γp/K )].

Thus, the energy associated with the Kear--Wilsdorf lock may be writ-

ten as

�E = K ln λ,

where λ = γ c/γ p, in which the subscripts c and p represent the cross-

slip and primary planes, respectively. Kear--Wilsdorf locks harden the

intermetallic because they inhibit slip; as λ decreases, the tendency

to form these locks increases.

There are some other differences between intermetallics and com-

mon alloys. Generally, common disordered alloys show an isotropic

behavior, whereas most intermetallic compounds have anistropic elas-

tic properties. This can result in excessive elastic strain on certain

planes; in particular, it can introduce shear stresses perpendicular to

screw dislocation lines. These dislocations not only will repel each
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other along the radial directions, but also will exert a torque on each

other.3

12.3.2 Effect of Ordering on Mechanical Properties
Mechanical properties of an alloy are altered when it has an ordered

structure. We define the degree of long-range order (LRO) by means

of a parameter

S = r − fA

1 − fA

, (12.4)

where r is the fraction of A sites occupied by A atoms and fA is the

fraction of A atoms in the alloy. Thus, S goes from 0 (completely dis-

ordered) to 1 (perfectly ordered). Different dislocation morphologies

observed in ordered alloy.

A superdislocation (i.e., closely spaced pairs of unit dislocations

bound together by an antiphase boundary) in a perfectly ordered

crystal and a single dislocation in a completely disordered crystal will

both experience less friction stress than either of them will experi-

ence at an intermediate degree of order S. Thus, qualitatively, one

would expect a yield stress maximum at an intermediate degree of

order (i.e., the change in yield stress is not directly related to the

degree of ordering). For example, Cu3Au crystals show a lower yield

stress when fully ordered than when only partially ordered. Experi-

ments showed that this results from the fact that the maximum in

strength is associated with a critical domain size. Short-range order

(SRO) results in a distribution of neighboring atoms that is not ran-

dom. Thus, the passage of a dislocation will destroy the SRO between

the atoms across the slip plane. The stress required to do this is large.

A crystal of Cu3Au in the quenched state (SRO) has nearly double the

yield stress of that in the annealed (LRO). The maximum in strength

is exhibited by a partially ordered alloy with a critical domain size

of about 6 nm. The transition from deformation by unit dislocations

in the disordered state to deformation by superdislocations in the

ordered state gives rise to a peak in the curve of flow stress versus

degree of order.

The presence of atomic order leads to a marked change in the flow

curve of the alloy. Figure 12.4 shows the flow curves of a fully ordered

FeCo alloy at low temperatures, where the order is not affected. Stage I

is associated with a well-defined yield point. This is followed by a high

linear work-hardening stage, II. Finally, there occurs stage III, with

nearly zero work-hardening. The stress--strain curves of the same alloy

in the disordered state are shown in Figure 12.5. The curves in Figure

12.4 (ordered) are markedly different from the ones in Figure 12.5

(disordered). The sharp yield point and stage II are absent in the dis-

ordered alloy, which goes straight into stage III after gradual yielding.

Fully ordered alloys deform by means of the movement of superlattice

dislocations at rather low stresses. However, the superdislocations

3 M. H. Yoo, Acta Met., 35 (1987) 1559.
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must move as a group in order to maintain the ordered arrangement

of atoms. This makes cross-slip difficult. Long-range order thus leads

to high strain-hardening rates and frequently, to brittle fracture.

Figure 12.6 shows this effect of ordering on uniform elongation of

FeCo--2% V at room temperature. The ductility of the alloy decreases

with increasing LRO. Mg3Cd is the only known exception to this
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tendency toward brittleness, because of a restricted number of slip

systems or less easy cross-slip.

Ordered alloys such as FeCo and Ni3M obey the Hall--Petch rela-

tionship between flow stress and grain size; viz., (see Chapter 5)

σ = σ0 + kD −1/2,

where σ is the flow stress at a given strain, σ 0 and k are constants for

that strain, and D is the grain diameter. In these alloys, long-range

order increases k, as shown in Figure 12.7 for Ni3Mn. This increase

in k with long-range order can be explained by the change in the

number of slip systems with order, since the ease of spreading of slip

across boundaries is controlled by the degree of order.
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The effect of atomic ordering on fatigue behavior is shown in

Figure 12.8 in the form of stress (S) vs. cycles to failure (N) (see

Chapter 14 for S--N curves) for ordered and disordered Ni3Mn. The

improved fatigue performance in the ordered state is explained by dif-

ficulty of cross-slip and a decrease in slip-band formation in that state.

Slip bands lead to the formation of extrusions and intrusions on the

sample surface, which in turn lead to fatigue crack nucleation. (See

Chapter 14.)

Gamma-prime-strengthened superalloys are an example of the

effect of ordering on strength. The Ni3Al precipitate produces very

low coherency stresses and is coherent with the austenitic matrix.

The strengthening effect is clearly evident in Figure 12.9(a), which

shows the strength of the austenitic matrix and Ni3Al separately, and

the strength of MAR M-200, composed of 65 to 85% gamma prime

(the ordered Ni3Al). In ordered structures, it is energetically favor-

able for dislocations to move in groups, forming antiphase bound-

aries between them as seen in Section 12.3. The equilibrium distance

between the pairs, as well as their form, was found to depend on the

particle size, particle distribution, energy of the antiphase boundary,

elastic constants, and external shear stress. The preceding param-

eters are part of the equations derived by Gleiter and Hornbogen4

for the increase in the critical resolved shear stress, �τ or �CRSS.

The results of calculations are compared with observed results for a

Ni--Cr--Al alloy in Fig. 12.9(b), where δ is the atomic percent aluminum.

The experimental results are marked by dots and triangles; they refer

to 0.5 and 1.8% aluminum, respectively. The correlation is good, and

maximum strengthening is obtained for particles having a diameter

of 10 nm.

4 H. Gleiter and E. Hornbogen, Phys. Status Solids, 12 (1965), 235, 251.
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Another outstanding property of Ni3Al and some other inter-

metallics is the increase in yield stress with temperature. As is

seen from Figure 12.9(a), the yield stress increases by a factor of 5

when the temperature is raised from ambient temperature to 800 ◦C.

This temperature dependence is unique and contrary to what would

be expected on the basis of thermally activated motion of disloca-

tions. (We discuss this and other aspects of ordered intermetallics in

Section 12.3.3.) Thus, in spite of the normal temperature dependence
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Fig. 12.10 Effect of deformation

temperature on the dislocation

arrangement in the {111} primary

slip plane of ordered Ni3Ge.

(a) T = −196 ◦C, εp = 2.4%.

(b) T = 27 ◦C, εp = 1.8%.

(Courtesy of H.-R. Pak.)

of the austenite (also shown in Figure 12.9(a)), the alloy Mar M-200

exhibits a constant yield stress up to 800 ◦C; the decrease in the

flow stress of γ is compensated for by the increase of γ ′ (Ni3Al). It

is interesting to note that other ordered alloys, such as Cu3Au and

Ir3Cr, do not exhibit this unique behavior, while Ni3Ge, Ni3Si, Co3Ti,

and Ni3Ga do. High voltage TEM work on Ni3Ge has shown dramatic

changes in dislocation configuration. For Ni3Ge, it was found that

the substructure at −196 ◦C consisted roughly of an equal number

of edge and screw dislocations, while at 27 ◦C it consisted mostly of

screw dislocations aligned along [101]. (See Figure 12.10.) Thus, the

decreased mobility of screw dislocations with increasing temperature

was responsible for the strengthening effect. At temperatures above

the one providing maximum strength, the change in slip plane from

{111} to {100} would be responsible for the decrease in strength. This

explanation is different from the one previously provided.

It is this very unusual behavior -- the increase in flow stress with

temperature -- that makes nickel aluminides very attractive for high-

temperature applications. Ni3Al remains ordered up to its melting

point (1,400 ◦C) and also shows an increasing yield strength with

temperature. A decrease in yield strength occurs at very high temper-

atures due to the start of thermally activated slip on {100} planes,

and not because of disorder.

Long-range ordered alloys of the Ni3Al type show some important

and unique features alluded to earlier, such as an increasing yield

stress with increasing temperature. The problem with these alloys,
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however, is their lack of ambient temperature ductility. Figure 12.11

shows yield strength as a function of temperature for Ni3Al-based

alloys, Hastelloy-X, and type 316 stainless steel. It is not surprising

that L12-type intermetallics are major candidates for use at elevated

temperatures, about 900--1000 ◦C.

The anomalous yield behavior of Ni3Al has been the subject of a

number of investigations. At temperatures T < Tp, slip occurs mainly

on the octahedral {111} planes, while at temperatures T > Tp, slip

becomes dominant on cubic {100} planes. Tp is the temperature cor-

responding to the maximum in strength ≈800 ◦C. Sun and Hazzle-

dine used weak-beam TEM to identify dislocation structures with low

mobilities in Ni3Al-type ordered intermetallics.5 They observed that

in the region of yield stress anomaly, a kink mechanism unlocks the

Kear--Wilsdorf locks described earlier. This mechanism leads to the

formation of special kink configurations with switched superpartials,

as well as the formation of what are called APB tubes. In summary,

the increase in yield strength below Tp is related to the formation of
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K--W locks (lowering of λ) while the decrease in yield strength above Tp

is attributed to the change of slip from {111} <110> to {100} <110>.

(See Figure 12.3.)

12.3.3 Ductility of Intermetallics
As we have seen, many alloy systems of the general composition A3B

have an ordered structure formed by regular stacking of close-packed

layers. The stacking sequence, however, can range from the more com-

mon cubic or hexagonal to less common and more complex transition

structures with unit cells extending over 15 layers. Such intermetallics

are generally quite brittle at low temperatures, which makes their pro-

cessing very difficult. There are two common causes of brittleness in

intermetallics:

1. The crystal structure is of low symmetry; that is, not enough slip

systems are available for general plastic deformation to occur. As

is well known, one needs at least five independent systems for an

arbitrary change in shape to occur.

2. Enough slip systems are available, but there are crack propagation

paths along the grain boundaries that are easy to take and that

will cause embrittlement.

Generally, ordered hexagonal alloys have very limited ductility and

ability to process while ordered cubic alloys have good ductil-

ity. Various researchers have tried to make ordered intermetallics

more ductile by different approaches. Baker and Munroe6 classify

these attempts into four categories: microalloying, macroalloying,

processing-induced microstructure control, and fiber reinforcement.

We summarize these efforts next.

5 Y. Q. Sun and P. M. Hazzledine, in High Temperature Ordered Intermetallic Alloys (Dordrecht,

The Netherlands, Kluwer, 1992), p. 177.
6 I. Baker and P. R. Munroe, Journal of Metals, 40 (Feb. 1988) 28.
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Microalloying

An examination of the Ni--Al phase diagram shows four intermetallics:

NiAl3, Ni2Al3, NiAl, and Ni3Al. Ni3Al is nothing but γ ′, the strengthen-

ing phase in many Ni-based superalloys meant for high-temperature

use as described earlier. Ni3Al has an L12 crystal structure with Al

atoms at the cube corners and Ni atoms at the face-centered pos-

itions. (See Figure 12.3a.) Single-crystal Ni3Al is very ductile at and

below room temperature. Its ductility decreases with temperature

until the peak in yield strength occurs. In polycrystalline form, nickel

aluminide has practically no ductility at room temperature. Ni3Al

does possess five independent slip systems of the type <111> {110},
which is the condition for generalized plastic flow, as per von Mises

criterion. Instead of high ductility, polycrystalline Ni3Al shows intrin-

sic grain-boundary weakness, as evidenced by its tendency toward

brittle, intergranular fracture at room temperature. It turns out that

boron is a very effective dopant for restoration of ductility in Ni3Al.

Boron-free polycrystals fracture without any plastic yielding, and very

small additions of boron can lead to dramatic results. As little as 0.05%

wt.% B can improve the strain to failure from nearly 0 to 50% and can

alter the fracture mode from intergranular to transgranular. Figure

12.12 shows this restoration of room-temperature ductility in Ni3Al

as a function of boron content. Note the very small amount of boron

required to do the job. As the figure reveals, boron-doped Ni3Al shows

a broad maximum in strength. The poor ductility of intermetallics

and the effect of boron are generally explained in terms of environ-

mental effects, especially moisture. (See the end of this section.)

Intergranular failure at room temperature also has been attributed

to the segregation of impurities such as sulfur to grain boundaries.

In one experiment, a decrease in ductility was measured as the sul-

fur content of the Ni3Al increased from 32 to 176 ppm by weight.

Auger electron spectroscopy showed that sulfur did indeed segregate

to grain boundaries. Attempts at purifying Ni3Al to restore its ductil-

ity have not worked in practice.
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Macroalloying

Macroalloying additions (less than 1 at.%) have been used to introduce

modifications in intermetallics that lead to enhanced ductility. Such

modifications include changing the crystal structure to one of higher

symmetry, promoting the operation of additional or different slip

systems, and other changes.

Alloys of the (Ni, Co, Fe)3V system can have ordered structure

(cubic, hexagonal, or more complex transitional). The ordered hex-

agonal structure is too brittle for processing. Macroalloying can be

used to create a window in the composition space in the (Ni, Co,

Fe)3V system that has an intrinsically ductile, ordered cubic structure.

An important parameter in the characterization of intermetallics is

the electron concentration (e/a), which is the number of valence elec-

trons per atom. Ordered structures of the type A3B are built by stack-

ing close-packed layers. The stacking sequence is influenced by the

atomic radius ratio (Ra/R0) and the electron concentration. In the (Ni,

Co, Fe)3V system, nickel, cobalt, and iron have about the same atomic

size. Thus, these elements influence the crystal structure through

their electronic effects. If a portion of Co in (Fe, Co)3V is replaced

by an equal number of Ni and Fe atoms, then we shall have altered

the composition of the compound, but not the e/a ratio. In Co3V, a

six-layer stacking sequence occurs, with one-third of the layers having

a hexagonal character (ABABAB . . .) and two-thirds of the layers hav-

ing a cubic character (ABCABC . . .). Replacing Co by Ni gives a higher

e/a ratio and a predominantly hexagonal stacking first, followed by

fully hexagonal stacking. A reduction in the e/a ratio to 7.89 or less

gives an cubic ordered structure (L12). Thus, one can choose a suitable

combination of Ni, Co, and Fe to obtain the desirable cubic ordered

structure (the same as that of Cu3Au).

Titanium-based alloys are lighter than Co-based and Ni-based

superalloys. However, the service temperature of Ti-based alloys is less

than 500 ◦C. TiAl and Ti3Al, the aluminides of titanium, have lower

densities, higher stiffness, and higher use temperatures than nickel

aluminides. Titanium aluminides show good oxidation resistance up

to 900 ◦C, but have poor ductility and strength at low temperatures.

Additions of β -stabilizing elements such as Nb, Mo, and W can result

in some improvement in ductility in Ti3Al. However, such macroalloy-

ing additions of heavier elements are accompanied by a penalty on

density.

Processing--induced microstructural control

Polycrystalline nickel aluminides are brittle at room temperature.

Single-crystal nickel aluminides, however, are ductile. One very

straightforward approach would be to use single crystals of these

materials. Another approach is to combine grain refinement with

another ductility-enhancing feature, such as a martensitic transform-

ation. A fine grain size would result in slip homogenization, elim-

inate grain boundary segregation, and allow enough deformation for
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Fig. 12.13 Al3Ti–Ti laminate

composite. (Courtesy of K. S.

Vecchio.)

the martensitic transformation to be induced. In principle, such a

technique should work for any intermetallic. In practice, though, the

grain size required for ductility may be too small (perhaps less than

1 μm) and thus difficult to achieve. An example of the beneficial effect

of fine grain size is the use of rapid solidification technology to pro-

duce very fine grains in Ti3Al. The reader should be cautioned, how-

ever, that although a grain refinement can lead to improvement in

low-temperature properties, it can result in rather poor creep proper-

ties at high temperature because of the grain-boundary-related creep

processes. (See Chapter 13.)

Ordered iron aluminides based on Fe3Al also offer oxidation resist-

ance and low material cost, but have limited ductility at ambi-

ent temperatures. In addition, the strength drops drastically above

600 ◦C. Sikka used thermomechanical processing to improve room-

temperature ductility in iron aluminides.7 A suitable combination

of melting practice, processing, heat treatments, and test condi-

tions resulted in 15--20% room-temperature elongation values. The

recipe involves an alloy lean in alloying elements, vacuum melting,

an unrecrystallized or only slightly recrystallized microstructure, oil

quenching after heat treatment, higher-than-normal strain rates, and

a moisture-free environment.

Composite route

This approach involves the use of fibers or layers to toughen the inter-

metallics. The idea is the same as that in ceramic matrix composites --

viz., provide a weak interface ahead of a propagating crack, and thus

bring into play a variety of energy-dissipating processes such as crack

deflection, fiber pullout, etc. (See Chapter 15.)

Figure 12.13 shows a laminate composite in which the intermetal-

lic compound Al3Ti is the hard phase and titanium is the ductile

7 V. K. Sikka, Sampe Quarterly, 22 (July 1991) 2.
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component. The insertion of the metallic component increases the

toughness of Al3Ti dramatically. The propagation of cracks is hindered

by the ductile component, which arrests them. An important problem

to be considered with care when designing intermetallic-based com-

posites is the mismatch in thermal expansion coefficient. When the

composite is cooled down from the processing temperature to ambi-

ent temperature, the mismatch in thermal expansion coefficient can

generate large internal stresses. One should design the composite in

such a manner that the intermetallic matrix is not in tension. Putting

the intermetallic in tension is not a desirable situation because inter-

metallics tend to be stronger in compression than in tension. This

can generate tensile cracks within the intermetallic.

Environmental effects in intermetallics

There is evidence that the poor ambient ductility encountered in

ordered intermetallics is due mainly to environmental effects.8 Both

moisture and hydrogen, at levels found in ambient air, are thought to

be responsible for inducing embrittlement in ordered intermetallics.

In the case of water vapor, the phenomenon involves the reaction of

reactive elements in the intermetallics with the ambient water vapor,

to form an oxide (or hydroxide) and generate atomic hydrogen, which

leads to a loss of ductility accompanied by a change in fracture mode

from transgranular to intergranular. In the case of H2, atomic hydro-

gen is produced by dissociation of physisorbed hydrogen molecules

on intermetallic surfaces. It would thus appear that the main reason

for the efficacy of boron in rendering Ni3Al more ductile is that boron

suppresses the environmental embrittlement, possibly by slowing dif-

fusion of hydrogen.

Iron aluminides based on Fe3Al are also sensitive to environmental

effects. A major problem again is the ever-present moisture in the air.

The water vapor reacts with aluminum to produce hydrogen at the

surface of the metal. This hydrogen is adsorbed in the aluminide

during plastic deformation, leading to low ambient ductility.

Example 12.3

What is the source of the excellent high-temperature oxidation resist-

ance shown by aluminides of nickel, cobalt, and iron?

Solution: Although the aluminides are quite brittle, they readily form

a layer of alumina at high temperatures. The alumina layer provides

the excellent oxidation resistance up to 1,000 ◦C. Such aluminides are

used as coatings on gas turbine components. Kanthal alloys used for

heating elements are also based on iron aluminides.

8 E. P. George, C. T. Liu, H. Lin, and D. P. Pope, Mater. Sci. & Eng., A192 (1995) 277; E. P.

George, C. T. Liu, and D. P. Pope, Acta Met., 44 (1996) 1757.
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12.4 Cellular Materials

12.4.1 Structure
Many naturally occurring materials are not fully dense, i.e, they pos-

sess internal voids. This type of design is intentional, since it reduces

the density. Examples are cork, bones, wood, sponge, and plant stalks

and they are shown in Figure 12.14. Figure 1.32 shows also synthetic

aluminum sponge as well as the cellular core in a toucan’s beak. This

form has been adopted in modern synthetic materials, and we have

metallic, ceramic, and polymeric foams. Some are of common and

every day usage, such as Styrofoam. Others are quite esoteric, such as

the space shuttle tiles, which have a density of 0.141 g/cm3 and can

withstand a maximum temperature of 1260 ◦C. These tiles, made from

silica fiber, prevent the shuttle from burning up during the reentry

phase of space travel. The intense heat generated from friction with

the atmosphere, at high velocities, would otherwise be fatal. This

was demonstrated by the Columbia tragedy, in which a few tiles were

knocked out during takeoff. Each space shuttle has 70% of its external

surface protected by tiles (24,000 tiles per orbiter). Aluminum foam is

commercially fabricated in relative densities (defined as the density

of the cellular material/density of solid) varying between 0.033 and

0.1; the pore sizes can be varied independently. The aluminum foam

shown in Figure 1.33 has a relative density of 0.07.

An example of a biological cellular material is bone. Bone is

designed to have a variable density. Regions subjected to higher stress

are denser. The outside surface is made of high density material and is

called compact bone. The inside of bone tends to have a lower density

and is termed cancellous bone. Figure 12.15 shows the cross section

of a tibia and a glassy foam.

The mechanical properties of cancellous bone (and, for that mat-

ter of all cellular materials) are very sensitive to the relative dens-

ity. Some marked effects shown by their stress--strain curves, are (see

Figure 12.16):

a. Young’s modulus increases with increasing relative density.

b. Plastic collapse plateau increases with relative density.

c. Densification stage.

There are numerous other examples of synthetic cellular materials.

These cellular materials are used either by themselves or as a core in

sandwich arrangements. Sandwich structures range from common

cardboard used in packaging to important uses in the aircraft indus-

try. The basic idea is to have a dense skin and a light-weight interior.

They are briefly described in Section 1.3.8.

12.4.2 Modeling of the Mechanical Response
The compressive stress--strain curves of cellular materials have three

characteristic regions: (a) an elastic region, (b) a collapse plateau, and
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Fig. 12.14 Examples of cellular

materials: (a) cork; (b) balsa; (c)

sponge; (d) cancellous bone; (e)

coral; (f) cuttlefish bone; (g) iris

leaf; (h) stalk of plant. (From L.

Gibson and M. F. Ashby, Cellular

Materials (Cambridge, U.K.:

Cambridge University Press,

1988).)

(c) a densification region. These are shown in Figure 12.17. The higher

the initial density, expressed in Figure 12.17 by ρ∗/ρs , the smaller the

collapse plateau region. It also occurs at a higher stress.

Following Gibson and Ashby we develop expressions that predict

this behavior. They are developed for an open cell geometry that rep-

resents well cellular materials with a low relative density. Figure 12.18

represents this open-cell structure. It consists of straight beams with

a square cross-section. The model is very simple but captures the
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essential physics. There are two characteristic dimensions; the cell

(a)

(b)

Fig. 12.15 (a) Cross section of

tibia. (From L. Gibson and M. F.

Ashby, Cellular Materials

(Cambridge, UK: Cambridge

University Press, 1988).); (b)

Glassy SiO2 foam for space shuttle

tiles.

size, �, and the beam thickness, t.

In order to characterize the elastic region of an isotropic foam, we

can define three elastic constants:

Elastic Region

Three elastic constants are defined for an isotropic foam: E*, G*, and

ν*. The density of the cellular material is ρ*, and that of the solid

material is ρ. From Figure 12.18 we can obtain an expression for the

density in terms of � and t:

ρ∗

ρs

= C 1

(
t

�

)2

, (12.5)

where C1 is a proportionality constant. When the cell is subjected

to compressive loading, it will deflect as shown in Figure 12.19. The

vertical columns push on the horizontal beams and cause them to

bend. A force F on each column produces a deflection δ in the beam.

The moment of inertia of a beam with a rectangular section (sides of

b and h) is:

I = bh3

12
. (12.6)

The student should consult a mechanics of materials text for the

derivation of the above expression.

For a beam with a square cross section with side t:

I = t4

12
. (12.7)

Beam theory states that the deflection, δ, is given by:

δ = C 2

F�3

E s I
, (12.8)
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Fig. 12.16 Stress–strain curves

for cancellous bone at three

different relative densities, ρ*/ρs:

0.3, 0.4, and 0.5. (From L. Gibson

and M. F. Ashby, Cellular Materials

(Cambridge, UK: Cambridge

University Press, 1988).)
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t

t

Open cell face

Cell edge

Fig. 12.18 Open-cell structure

for cellular materials with low

relative density. This is the

structure upon which the

Gibson–Ashby equations are

based.

where C2 is a constant, Es is the Young’s modulus of the solid. The

stress acting on the cell is related to the force, F, by (each force F is

shared by two neighboring cells):

σ = F

�2
.

The strain, ε, is related to the deflection by:

ε = 2δ

�
.
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Cell edge bending

F

F

F
F

Plastic hinges
at corners

Rigid edges

Fig. 12.19 Open-cell

configuration under compressive

loading. Note the deflection, δ.

Thus, the Young’s modulus, E*, is given by:

E ∗ = E s I

2C 2�4
= E s t4

24C 2�4
.

This can be expressed as a function of density (Equation 12.5):

E ∗

E s

= C 1

24C 2

(
ρ∗

ρs

)2

. (12.9)

Experimental measurements indicate that C1/24C2 should be approxi-

mately equal to one. Thus:

E ∗

E s

∼
(

ρ∗

ρs

)2

. (12.10)

Similarly, an expression for the shear modulus can be obtained:

G

E s

= 3

8

(
ρ∗

ρs

)2

. (12.11)

Plastic Plateau

At a certain level of deformation, elastic behavior gives way to plastic

deformation. The Gibson--Ashby equations are based on the formation

of plastic hinges at the regions where the beams terminate. One of

these plastic hinges is circled in Figure 12.19.

The student should recall the classic equation from mechanics of

materials:

σ = M c

I
, (12.12)



644 SPECIAL MATERIALS : INTERMETALL ICS AND FOAMS

where M is the bending moment of a beam, I its moment of inertia,

c the distance from neutral axis to external fiber, and σ is the maxi-

mum stress. For our case, we have, in the case of plastic deformation

(σ = σ y), the stresses acting on the cross section are uniform and tens-

ile above the neutral axis and uniform and compressive below the

neutral axis. Figure 12.19 shows the configuration.

The plastic moment, Mp, about the neutral axis is:

M p = F
t

2
. (12.13)

The yield stress is related to F by:

σy = F

t t
2

. (12.14)

Thus, substituting Equation 12.13 into 12.14:

M p = 1

4
σy . (12.15)

But, taking the beam with length �/2 and considering the force F/2

applied to each of the two hinges:

M p = F

2

�

2
= 1

4
F �. (12.16)

The global stress acting on the foam is the force F divided by the area

upon which it acts, �2.

σ ∗
p = F

�2
(12.17)

From Equations 12.15, 12.16, and 12.17 we get:

σ ∗
p

σy

=
(

t

�

)3

. (12.18)

Substituting Equation 12.5 into Equation 12.18:

σ ∗
p

σy

= C
−3/2
1

(
ρ∗
ρs

)3/2

. (12.19)

Densification

Densification starts when the plastic plateau comes to an end. This

region is characterized by a complex deformation pattern. The stress

required for the densification rises rapidly as the open spaces between

the collapsed cell structure close up. The analytical treatment for

the collapse of pores and voids will not be presented here. There

are theories that address this problem. One of the best known, the

Carroll--Holt theory, assumes a spherical hole inside a solid sphere.

By applying an external pressure it is possible to collapse the internal

hole. The smaller the hole, the higher the stress. The Gurson model

addresses the same problem. This is discussed in Section 12.4.5.
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Fig. 12.20 Yield strength of

foams as a function of relative

density. Experimental results are

for a number of materials:

polyurethane, aluminum,

polystyrene, polymethyl

methacrylate, polyvinyl chloride.

(Adapted from from L. Gibson and

M. F. Ashby, Cellular Materials,

Cambridge University Press, 1988.)

12.4.3 Comparison of Predictions and
Experimental Results

Figure 12.20 shows experimental results for a number of foams under-

going plastic collapse after a stage of elastic deformation. These foams

are made from aluminum, aluminum--7% magnesium, polyurethane,

polyvinyl chloride, polystyrene, and polymethyl methacrylate. The 3/2

dependence on relative density is clearly seen in the figure. The best

fit of Equation 12.19 with experimental results is obtained using

a value of 0.3 for C
−3/2
1 . The match between Equation 12.19 and

the experimental results for a number of materials is considered

excellent.

12.4.4 Syntactic Foam
The micrographs in Figure 12.21 show another type of cellular mater-

ial called syntactic foam. The word syntactic comes from Greek mean-

ing to arrange parts together in a unit. Syntactic foams are made

by mixing hollow spheres or microballoons (glass, aluminum, or

carbon) in a very small amount of resin. Microspheres, also called

microballoons, can range in size from hundreds of nanometers to a

few millimeters. Typically, the resin matrix phase in syntactic foam

has a large amount of open voids. Strictly speaking, the matrix can

be a polymer, metal, or ceramic. The polymer matrix can be epoxy,
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(a)

(b)

Fig. 12.21 (a) A low

magnification optical picture of

syntactic foam made of carbon

microballoons dispersed in small

amount of resin. (b) A higher

magnification scanning electron

micrograph of the foam in (a)

showing the carbon microballoons.

(From K. Carlisle, K. K. Chawla, G.

Gouadec, M. Koopman, and G. M.

Gladysz, in Proceedings of the 14th

International Conference on

Composite Materials, ICCM-14, San

Diego, CA, 2003.)

phenolic, ester cyanate, etc. Figure 12.21(a) shows a carbon microbal-

loon foam at low magnification while Figure 12.21(b) shows a higher

magnification picture where the individual carbon microballoons can

be seen. Such foams generally have over 90% voids; they show very

high specific compressive strength and excellent insulating proper-

ties. They find extensive use in deep-sea applications where buoyancy

effects become very important.

12.4.5 Plastic Behavior of Porous Materials
Porous materials are gaining in technological importance. Metals

and ceramics frequently involve powders that most often have to be

pressed. Metallic foams, cellular materials (such as wood) are exam-

ples of low-density materials used in structural applications.

We will discuss here briefly the plastic response of powders

subjected to compressive loads. Figure 12.22 shows experimentally

obtained pressure vs. green density for iron, copper, and nickel pow-

ders. The behavior is mostly linear, when the pressure is plotted

against ln 1(1 − D), where D is the relative density of powder, D =
ρ/ρs. At full consolidation, the cellular density is equal to the solid

density and D = 1. This behavior can be represented by:

P = 1

k

[
ln

1

1 − D
+ B

]
,
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Fig. 12.22 Relationship between

pressure and relative green density

for several powders. (Adapted

from R. M. German, Powder

Metallurgy Science (Princeton, NJ:

Powder Industries Federation),

1984.)

where k and B are experimental parameters. This is an empirical rela-

tionship, in which the strength of the powder is not incorporated.

Except at low pressures, this equation is obeyed. The constant B is

the intercept and k is the slope of the curve. Figure 12.23(a) shows

a powder (spherical particles) prior to and during plastic deform-

ation. The particles undergo deformation at the contact points as

the external pressure is increased.

The model developed by Fischmeister and Arzt9 and applied by

Helle10 et al. to sintering is presented here. It represents very well

the densification of powders from the initial density (approximately,

in many cases, from 0.5 to 0.65 of the theoretical density) to 0.9

of the theoretical density. This is the range in which the individ-

ual particles are recognizable. Beyond 0.9 the model proposed by

Torre11 and generalized by Carroll and Holt12 is more realistic, since

it describes the collapse of individual pores (voids) under hydrostatic

pressure. Schematic representations of both models are shown in

Figure 12.23.

We develop equations for both models. Fischmeister and Arzt

assumed that each particle (assumed to be initially spherical) had Z

neighbors, and that the number of neighbors increased with density.

Again, the relative density D = ρ/ρs. For the solid, this coordination

number is taken as 12. This is equal to the coordination number for

atoms in the FCC and HCP structures. Thus:

Z = 12D .

9 H. Fischmeister and E. Arzt, Powder Met., 26 (1982) 82.
10 A. S. Helle, K. E. Easterling, and M. F. Ashby, Acta Met., 33 (1985) 2163.
11 C. Torre, Huttenmonats. Hochschule Leoben, 93 (1948) 62.
12 M. Carroll and A. C. Holt, J. Appl. Phys., 43 (1972) 759.
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b

Fig. 12.23 (a) Particle flattening

(Fischmeister–Arzt) densification

mechanism; (b) Hollow sphere

model (Torre and Carroll–Holt).

At D0 (initial value of D) = 0.64, Z = 7.7; for D = 1, Z = 12. The average

area of contact between neighbors, A, is shown in Figure 12.23(a). A

increases from A0 = 0 to one-twelfth (1/12) of the particle surface

area, 4πr2, since, as the contact points are flattened, their surface

area increases. The maximum area is equal to the total sphere surface

divided by the number of neighbors. A simple expression for A is:

A = π (D − D 0)

3(1 − D 0)
R2.

When D = D0, A = 0; when D = 1, A = 4 πR2/12 = (π /3)R2. R is the

radius of particles (Figure 2.23(a)).

The force applied to each contact region, F, is related to the exter-

nal pressure by:

F = 4π R2

ZD
P .

This force, divided by the contact area A, gives the average pressure

on the particle at contact region, Pp:

P p = F

A
= 4π R2

AZD
P . (12.20)

It is shown in Chapter 3 (hardness testing) that the stress required to

make an indentation on a surface is equal to ≈ 3σ y, where σ y is the

yield stress of the material. Thus:

3σy = 4π R2

AZD
P ; (12.21)

and, substituting Equation 12.21 Into Equation 12.20:

P = Z σ0

D (D − D 0)

4(1 − D 0)
. (12.22)
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Equation 14.22 gives a relationship between pressure and the relative

density. It is plotted in Figure 12.24 from an initial relative density

of 0.6.

The Torre--Carroll--Holt equation is obtained by the application of

an analytical treatment to the configuration shown in Figure 12.23(b).

The hollow sphere can be used to define a relative density:

D = b3 − a3

b3
,

where b is the outer radius and a is the inner radius. In spherical

coordinates, the equilibrium equation of stresses acting on an ele-

ment (shown in Figure 12.23(b)) is:

dσr

dr
+ 2

r
(σr − σθ ) = 0, (12.23)

where σ r and σ θ are the radial and circumferential stress components,

respectively, and r is the radius. The boundary conditions are:

σr = −P at r = b;

σr = 0 at r = a.

We assume that Tresca’s yield criterion holds, i.e., plastic flow occurs

when:

σr − σθ = σ0,

where σ 0 is the flow stress. By integrating Equation 12.23 From a to

b, we have:∫ b

a

dσr = −2σ0

∫ b

a

dr

r
,

−P = −2σ0 ln
b

a
= −2

3
σ0 ln

b3

a3
.



650 SPECIAL MATERIALS : INTERMETALL ICS AND FOAMS

But

b3

a3
= 1

1 − D
.

Hence

P = 2

3
σ0 ln

1

1 − D
.

This equation is plotted in Figure 12.24 and compared with the par-

ticle flattening model. The pore collapse model predicts much higher

pressures to achieve full densification (P/σ y > 5). In this context, it

is more realistic for high relative densities (D > 0.9). It should be

noted that when powders are pressed in cylinders, additional fric-

tional effects at the walls have to be considered. Another complica-

tion is that the state of stress deviates from hydrostatic. Thus, a flow

criterion has to be incorporated into analysis. In summary, everything

becomes increasingly complicated if all effects are incorporated.
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Exercises

12.1 High-temperature applications of intermetallics in air would require oxi-

dation resistance. Comment on some possible sources of such oxidation resist-

ance in intermetallics.

12.2 The formation of a silica film at grain boundaries in MoSi2 can lead to

embrittlement. Suggest some means of avoiding this phenomenon.

12.3 Order and disorder transitions are commonly associated with metals,

not with polymers. Why?

12.4 An intermetallic compound of Al and Mg has a stable range of 52Mg--48Al

to 56Mg--44Al (on a weight basis). What atomic ratios do these compositions

correspond to? The atomic weight of Al is 27, and that of Mg is 24.31.

12.5 A metallic laminate consists of FeAl as matrix and Ti as reinforcement.

If the the temperature rises from 300 K to 325 K, estimate the expansion of
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Fig. Ex12.10 Load vs.

displacement from

nanoindentation on keratin by use

of Berkovich tip.

laminated composite. What kinds of problems do you think will be caused by

this? Expalin.

12.6 Find the relationship between pressure and relative density of powder

from the data shown in Figure 12.22 for Fe, Ni, Cu, and W.

12.7 Plot the strength of the cancellous bone as a function of porosity, assum-

ing that the strength of the fully dense bone is equal to 300 MPa (assume

C1 = 3).

12.8 Calculate C1 in the equation:

ρ∗

ρs

= C 1

(
t

�

)2

.

Hint: Assume fully dense material.

12.9 Determine the pressure required to densify a copper powder (σ 0 =
100 MPa) to 90% of the theoretical density using:

(a) The Fischmeister and Arzt equation:

(b) The Carroll--Holt--Torre equation.

12.10 From load vs. displacement for keratin shown in Figure Ex12.10, calcu-

late hardness of keratin. Hardness is given by:

H = p

A
,

where P = load, A = projected area. Assume Berkovich tip was used.
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12.11 Figure Ex12.12 shows the compressive stress--strain curve from the foam

of a toucan beak. Calculate the densification strain, Young’s modulus, shear

modulus, and plastic collapse stress of this foam. Assume this foam is open

celled.

Densification strain is given by:

εd = 1 − 1.4

(
ρ∗
ρs

)
.

Density of the foam ρ* = 0.04 g/cm3;

Density of the cell wall ρs = 0.5 g/cm3;

Young’s modulus of the cell wall Es = 12.7 GPa;

Yield stress of the cell wall σ y = 90 MPa.



Chapter 13

Creep and Superplasticity

13.1 Introduction

The technological developments wrought since the early twenti-

eth century have required materials that resist higher and higher

temperatures. Applications of these developments lie mainly in the

following areas:

1. Gas turbines (stationary and on aircraft), whose blades operate at

temperatures of 800--950 K. The burner and afterburner sections

operate at even higher temperatures, viz. 1,300--1,400 K.

2. Nuclear reactors, where pressure vessels and piping operate at

650--750 K. Reactor skirts operate at 850--950 K.

3. Chemical and petrochemical industries.

All of these temperatures are in the range (0.4--0.65) Tm, where Tm is

the melting point of the material in kelvin.

The degradation undergone by materials in these extreme condi-

tions can be classified into two groups:

1. Mechanical degradation. In spite of initially resisting the applied

loads, the material undergoes anelastic deformation; its dimen-

sions change with time.

2. Chemical degradation. This is due to the reaction of the material

with the chemical environment and to the diffusion of external

elements into the materials. Chlorination (which affects the prop-

erties of superalloys used in jet turbines) and internal oxidation

are examples of chemical degradation.

This chapter deals exclusively with mechanical degradation. The time-

dependent deformation of a material is known as creep. A great num-

ber of high-temperature failures can be attributed either to creep or to

a combination of creep and fatigue. Creep is characterized by a slow

flow of the material, which behaves as if it were viscous. If a mechan-

ical component of a structure is subjected to a constant tensile load,

the decrease in cross-sectional area (due to the increase in length

resulting from creep) generates an increase in stress; when the stress
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reaches the value at which failure occurs statically (ultimate tensile

stress), failure occurs. The temperature regime, in kelvins, for which

creep is important in metals and ceramics is 0.5Tm < T < Tm, the

melting of the material. This is the temperature range in which dif-

fusion is a significant factor. A thermally activated process, diffusion

shows an exponential dependence on temperature. Below 0.5Tm, the

diffusion coefficient is so low, that any deformation mode exclusively

dependent on it can effectively be neglected.

In glasses and polymers, creep becomes important at temperatures

above Tg, the glass transition temperature. At T > Tg, these materials

turn rubbery or leathery, and viscoelastic and viscoplastic effects

become important. Section 13.3 presents the various mechanisms

responsible for creep. The critical temperature for creep varies from

material to material; lead creeps at ambient temperature, whereas

in iron creep becomes important above 600 ◦C. In general, the phe-

nomenon of creep is important at high temperatures. Some nickel-

based superalloys can withstand temperatures as high as 1,500 K, and

ceramics have temperature capabilities that are considerably higher

(up to 2,000 K). Ice, on the other hand, also undergoes creep, which

is responsible for the slow flow of glaciers.1 Even the earth’s mantle

is subjected to creep, giving it an effective viscosity.

Creep in rocks has been at the center of controversy concerning

the nature of geological processes on the planet Venus. The maxi-

mum height of mountains on Venus has been calculated on the basis

of rock creep, assuming a certain temperature and period of time.

(The mountains are subjected to compressive stresses due to their

own weight.) This maximum calculated height has been compared

with actual topographic observations from the space probe Galileo. It

happens that dry rock has a creep rate orders of magnitude lower

than that of hydrated rock. Weertman has performed calculations

for both dry and wet rock, each resulting in a value of 109 years for

the period of active creep in the mountains. Based on this figure, the

maximum height of mountains made of quartzite would be 0.12 km

(wet) and 7.6 km (dry). The calculations were done for T = 750 K, the

surface temperature on Venus. They help to elucidate the mechanisms

involved in the formation of the planetary surface.

In spite of the fact that creep has been known since 1834, when

Vicat conducted the first experiments assessing the phenomenon, it is

only in the twentieth century that systematic investigations have been

conducted. The creep test is rather simple and consists of subjecting

a specimen to a constant load (or stress) and measuring its length as

a function of time, at a constant temperature. Figure 13.1 shows the

characteristic curve; the ordinate shows the strain and the abscissa

shows time. Three tests are represented in the figure; three constant

loads corresponding to three engineering stresses, σ a, σ b, and σ c,

were used. The creep curves are usually divided into three stages: I,

primary or transient; II, secondary, constant rate, or quasi viscous;

1 J. Weertman, Ann. Rev. Earth Plan. Sci., 11 (1983) 215.
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and III, tertiary. This division into stages was made by Andrade, one

of the pioneers in the study of creep. Stage II, in which the creep rate

ε̇ is constant, is the most important. It can be seen that ε̇a > ε̇b > ε̇c

as a consequence of the relationship σa > σb > σc . This creep rate is

also known as the minimum creep rate, because it corresponds to the

inflection point of the curve. (See Figure 13.1.) In stage III there is

an acceleration in the creep rate, leading to eventual rupture of the

specimen.

In Figure 13.1, the rupture times ta
r, tb

r , and tc
r increase with decreas-

ing stress. The strains ε0 are called instantaneous strains and corres-

pond to the strains at the instant of loading. In Figure 13.2, the

engineering stress was kept constant and the temperature was var-

ied. Since the tests are conducted in tension, the stress rises as the

length of the specimen increases, because of the reduction in area.

The dashed lines in Figures 13.1 and 13.2 represent the constant stress

curves. Initially they are identical, because εe, the elastic strain, = 0.

As the specimen increases in length, the stress increases and so does

the creep rate, at a constant load. The failure times under constant

stress and constant load can be drastically different. The curves shown

in Figure 13.2 have been expressed mathematically as

εt = ε0 + ε[1 − exp(−mt)] + ε̇s t (13.1)
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Fig. 13.3 Creep machine with

variable lever arms to ensure

constant stress on specimen; note

that l2 decreases as the length of

the specimen increases. (a) Initial

position. (b) Length of specimen

has increased from L0 to L1.

where ε0 is the instantaneous strain (the strain at the instant of appli-

cation of load), ε̇s t is a linear function of time, depicting stage II, and

the term ε[1 − exp(−mt)] represents stage I in which m is the expo-

nential time parameter and ε is the limiting transient creep strain

(strain at end of that stage minus ε0).

From a fundamental point of view, there are significant dif-

ferences between the constant-load and constant-stress creep tests.

Andrade realized this important difference and built a constant true-

stress creep machine that used a weight which dropped gradually

into a fluid as the specimen extended.2 Thus, by Archimedes’ prin-

ciple, the force exerted by the weight decreased with displacement.

The shape of the weight was such that a constant stress on the speci-

men was ensured. For this type of machine, the load should decrease

with an increase in length in such a way that the true stress remains

constant.

Another important difference between the two tests is that the

onset of stage III is greatly retarded at constant stress. The dashed

lines in Figure 13.2 show the trajectory that a constant true-stress

test would follow.

From an engineering point of view, the creep test at constant load

is more important than the one at constant stress because it is the

load, not the stress, that is maintained constant in engineering appli-

cations. On the other hand, fundamental studies should be conducted

at constant stress, with the objective of elucidating the underlying

mechanisms. The reason for this is that the study of the evolution of

the substructure of an alloy under increasing stress would be exces-

sively complex.

The essential components and principles of operation of a

constant-stress creep-testing machine are shown in Figure 13.3. This

system contains a variable lever arm, which is a curved line that acts

as a cam in such a manner that the force acting on the specimen

is a function of its length. Two positions are shown in the figure. If

2 E. N. da L. Andrade, Proc. Roy Soc. (London), A84 (1911) 1.
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the initial and current cross-sections of the specimen are A0 and A1,

respectively, then

σ0 A0�1 = P �2 (13.2)

and

σ1 A1�1 = P �′
2

where P is the load and �1, �2, and �′
2 are lever arms defined in the

figure. At constant stress, σ 0 = σ 1; since the volume of the specimen

is constant (for stages I and II of creep),

A0 L 0 = A1 L 1,

where L0 and L1 are the initial and current lengths of the specimen,

respectively. Thus,

L 1

L 0

= �2

�′
2

. (13.3)

The exact shape of the lever arm can be established in such a manner

that Equation 13.3 is obeyed. The astute student will certainly be able

to obtain the mathematical description for this curved surface.

It is important to recognize that, even at a constant stress, the

creep curve will deviate from linearity at a certain point. This can

be due to several causes, the most important being the formation of

internal flaws such as cavities (known as creep cavitation) and necking

of the specimen. The minimum creep rate, or slope of stage II of creep,

is a very important parameter. This stage, also known as steady-state

creep, is usually represented by the equation

ε̇s = AGb

kT
D 0 exp(−Q c/RT )

(
b

d

)p ( σ

G

)n

, (13.4)

where A is a dimensionless constant, D0 is a frequency factor, G is the

shear modulus, b is the Burgers vector, k is Boltzmann’s constant, T is

the absolute temperature, σ is the applied stress, d is the grain size, p

is the inverse grain-size exponent, n is the stress exponent, Q c is the

appropriate activation energy, and R is the gas constant. This equation

is known as the Mukherjee--Bird--Dorn equation.3 It will be shown in

Section 13.3 that the activation energy for diffusion is often equal to

the activation energy for creep (Q c = Q D). The diffusion coefficient is

D = D 0 exp

(
− Q D

RT

)

and

ε̇s = AGbD

kT

(
b

d

)p ( σ

G

)n

. (13.5)

Essentially, Equations 13.4 and 13.5 express the steady-state creep rate

as a function of the applied stress, temperature, and grain size. In

3 A. K. Mukherjee, J. E. Bird, and J. E. Dorn, Trans. ASM, 62 (1964) 155.
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Fig. 13.4 Normalized creep rate
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Mukherjee–Bird–Dorn equation)

for (a) aluminum, Al–Zn, and Al–Li

solid solutions. (Adapted from

K.-T. Park, E. J. Lavernia, and F. A.

Mohamed, Acta Met. Mat., 38

(1990) 1837.) (b) Various ceramics.

(From A. H. Chokshi and T. G.

Langdon, Mater. Sci. Techn., 7

(1991) 577.)

this chapter we will use d to designate the grain size, to differentiate

it from D, the diffusion coefficient. Equation 13.4 is also a funda-

mental equation in superplasticity. Figure 13.4 illustrates the appli-

cation of the Mukherjee--Bird--Dorn equation to metals (aluminum

and aluminum alloys) and ceramics. This is usually done by plotting

a normalized strain rate (ε̇kT /D Gb) vs. a normalized stress (σ /G). The

agreement with the equation is excellent, and the slope of these plots

enables the exponent n to be determined. For both cases, it is approxi-

mately equal to 5. The exponent, in its turn, can provide information

on the fundamental mechanism of creep. This will be discussed at

length in Sections 13.3--13.7. In ceramics, n is observed to be in two

ranges: 1--3 or 5--7. The significance of these results will be discussed

later.

Equation 13.4 is important because it enables strain to be pre-

dicted in a specimen under creep conditions, once the various param-

eters that describe its creep response are established. The creep rate

is dependent on stress, temperature, grain size, and other material

parameters.

Another test, commonly used in place of the creep test, is the stress-

rupture (or creep-rupture) test. This consists of an accelerated creep test

that leads to rupture. It is usually carried out at a constant load, for

the sake of simplicity. The important parameter obtained from the
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test is the time to rupture, whereas in the regular creep test, the

minimum creep rate is the experimental parameter sought.

The sections that follow deal with several important aspects of

creep. Section 13.2 describes the extrapolation methods used to obtain

the response to creep at very large times after conducting more accel-

erated tests. Theories of creep are described in Sections 13.3--13.7.

The very helpful deformation-mechanism maps called Weertman--

Ashby maps are presented in Section 13.8. And some important heat-

resisting alloys are described in Section 13.9. Section 13.10 treats poly-

mers and Section 13.11 discusses superplasticity.

13.2 Correlation and Extrapolation Methods

The central theme of materials science and engineering is the

structure--property--performance triangle. In creep, the correlation

between properties and performance is very critical, because in

certain applications we want to know the performance during an

extended period (20 or more years), while the properties (secondary

creep rate or stress-rupture life) are known for a shorter period. In

general, industrial equipment operating at a high temperature is

designed to have a certain lifetime. For jet turbines, 10,000 hours

(about 1 year) is a reasonable value. For stationary turbines, the weight

of the components is not so critical, and a life of 100,000 hours (about

11 years) is the goal. For nuclear reactions, for obvious reasons, we use

the criterion of 350,000 hours (40 years). A great number of advanced

alloys are used in these projects, and the engineer does not have

on hand the results of lengthy tests. Hence, several extrapolation

methods have been developed that seek to predict the performance

of alloys based on tests conducted over a shorter period. The num-

ber of parametric methods developed exceeds 30; the three most

common are the Larson--Miller, Manson--Haferd, and Sherby--Dorn

methods.

In 1952, Larson and Miller proposed a method that correlates the

temperature T (in kelvins) with the time to failure tr, at a constant

engineering stress σ .4 The Larson--Miller equation has the form

T (log tr + C ) = m, (13.6)

where C is a constant that depends on the alloy, m is a parameter

that depends on stress, and rupture time. Hence, if C is known for

a particular alloy, one can find m in a single test. From this result,

one can then find the rupture times at any temperature, as long as

the same engineering stress is applied. Thus, the following procedure is

adopted. If we want to know the rupture time at a certain stress level

σ a and temperature Ta, we conduct the test at Tb > Ta and stress level

σ a. Substituting these values into Equation 13.6, we find m. The latter

4 F. R. Larson and J. Miller, Trans. ASME, 74 (1952) 765.
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test has a short duration, because the time to rupture decreases with

temperature at a constant stress. Figure 13.5 shows schematically the

family of lines for different levels of stress. This figure is the graphic

representation of Equation 13.6. It can be seen that C does not depend

on the stress; it is the intersection of the various lines. On the other

hand, each line has a different slope m, which is dependent on the

stress.

The value of C is unaltered by the units, as long as the unit of

time is hours. However, m is dependent on units. In the older litera-

ture, use is made of English units (Rankine), and a conversion has to

be made. At a certain stress level, we need only two data points to

establish C and m. Since the value of C is constant for an alloy, we

can build a ‘‘master plot” that represents the creep rupture response

of an alloy over a range of temperatures and stresses. As an example,

Figure 13.6 shows the master plot for the ferrous alloy S-590. The data

were obtained between 811 and 1,089 K and fall on one single line,

due to the correct choice of C: 17 log (hours). From this plot, we can

obtain the time to rupture at any temperature and stress.
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Soon after Larson and Miller proposed their parameter, Manson

and Haferd presented the results of their experiments, which dis-

agreed with Equation 13.6 on the following points:5

1. The family of lines intersects not on the ordinate axis (1/T = 0), but

at a specific point (ta, Ta).

2. A better linearization is obtained if the results are plotted as log

tr versus T instead of log tr versus 1/T.

This led Manson and Haferd to propose the following equation:

log tr − log ta

T − Ta

= m. (13.7)

Equation 13.7 is represented graphically in Figure 13.7. We use the

same extrapolation procedure as that of Larson and Miller to obtain

rupture times at different times and temperatures. Ta, tr, and m are

parameters to be established for a given material. Ta and tr are con-

stant, and m depends on the stress. In Figure 13.7, three stresses are

shown, leading to three lines with different slopes mc > mb > ma.

The times tr and ta are usually expressed in hours. As with the

Larson--Miller parameter, the early literature (up to 1980) usually

reports value for the Manson--Haferd parameter in the English system,

whereas the more recent literature uses SI units.
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Another method that has found considerable success is the

Orr--Sherby--Dorn method,6 based on fundamental studies conducted

by Sherby, Dorn, and coworkers with the objective of understanding

creep better. The method is based on the fundamental result found

by them these researchers, viz.,

ln tr − Q

kT
= m, (13.8)

where Q is the activation energy of diffusion (or creep), m is the

Sherby--Dorn parameter, and tr is the time to rupture. Figure 13.8

shows the graphical representation of this parameter. It differs from

the Larson--Miller parameter in that the isostress lines are parallel.

Equation 13.8 has a certain fundamental justification. Monkman and

Grant7 and others observed that, for a great number of alloys, the

minimum creep rate ε̇s was inversely proportional to the rupture

time tr, or

ε̇s tr = k′. (13.9)

Applying Equation 13.4, which states that creep is a thermally acti-

vated mechanism and that the minimum creep rate increases expo-

nentially with temperature at the same value of stress, and combining

5 S. S. Manson and A. M. Haferd, NACA TN, 2890, March 1958.
6 R. L. Orr, O. D. Sherby, and J. E. Dorn, Trans. ASM, 46 (1954) 113.
7 F. C. Monkman and N. J. Grant, Proc. ASTM, 56 (1956) 593.
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Table 13.1 Some Values of Constants for Time--Temperature Parametersa

Manson–Haferd

Material Sherby–Dorn Q, kJ/mol Larson–Miller C Ta ′ , K log ta

Various steels and stainless steels ≈400 ≈20 – –
Pure aluminum and dilute alloys ≈150 – – –
S-590 alloy (Fe based) 350 17 172 20
A-286 stainless steel 380 20 367 16
Nimonic 81A (Ni- based) 380 18 311 16
1% Cr–1% Mo–0.25%V steel 460 22 311 18

a Adapted from N. E. Dowling, Mechanical Behavior of Materials (Englewood Cliffs, NJ: Prentice Hall, 1993), p. 699,

Table 15.1.

the preexponential terms, we have

ε̇s = A′ exp(−Q c/kT ). (13.10)

Substituting Equation 13.9 into Equation 13.10 yields

tr = k′

A′ exp(Q c/kT ).

or, taking the logarithm of both sides,

ln tr − ln
k′

A′ = Q c

kT
.

Converting to logarithms to the base 10 and setting log k′/A′ = m, we

get

2.3

(
log tr − log

k′

A′

)
= Q c

kT

log tr − m = 0.43
Q c

kT
.

The slope of the lines in Figure 13.8 is 0.43Q c/k, which is equal to

0.43QD/k. If we know the activation energy for diffusion and one point

on the line, we have all the other points. The activation energy for

self-diffusion can be obtained from the diffusion coefficients at two

different temperatures. A thermally activated process, the diffusion

obeys the equation

D = D 0 exp(−Q D /kT ), (13.11)

where D is the diffusion coefficient at T.

In this and the previous section, Q, the activation energy, is

expressed as energy (joules per atom). If Q is expressed per mole,

or atom gram, then R (the gas constant) should be used instead of

k (Boltzmann’s constant). The value of R is 8.314 J/(mol K). In Figure

13.8, the slope would be (0.43Q)/8.314, or Q/19.3 (when Q is expressed

in J/mol).

Table 13.1 presents estimated values for the parameters of the

three equations for a number of engineering alloys.
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Example 13.1

The alloy INCONEL 718 was diligently tested by graduate student M. A.

Meyers at 820 MPa and a temperature of 650 ◦C. Three conditions of

the alloy were tested: undeformed, cold-rolled, and shock-hardened (by

explosives). After days of patient data collecting (this was in the 1970s

prior to automated data recording), he obtained the curves shown in

Figure E13.1. Using the Larsen--Miller parameter, determine the times

to rupture if this alloy will be used at (a) 550 ◦C and the same stress

and (b) 650 ◦C and 600 MPa. Take C = 18.
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Solution:

(a) We use the equation

T (log tr + C ) = m

with tr ≈110 hours for the undeformed condition, tr ≈130 hours for

the rolled condition, and tr ≈200 hours for the shocked condition.

We have

T = 650 +273 = 923 K

923 (log 110 + 18) = 17,575,

923 (log 130 + 18) = 17,642,

923 (log 200 + 18) = 17,814.

At 550 ◦C, T = 823 K, and tr = 22.6 × 104 hours for the undeformed

condition, tr = 27.3 × 103 hours for the rolled condition, and tr =
44.2 × 103 hours for the shocked condition.

(b) No result can be obtained in this case because the stress has to be

constant, for the application of the Larsen--Miller equation to two

conditions.
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Example 13.2

Calculate the predicted time to rupture for the undeformed INCONEL

718 superalloy, using the Sherby--Dorn correlation method.

Solution: From Table 13.1, (for the Ni-based alloy Nimonic, fairly similar

to INCONEL 718):

Q ≈ 380 kJ/mol.

We obtain the Sherby--Dorn parameter m:

log tr − m = 0.43
Q c

kT
,

m = log tr − 0.43
Q c

kT
.

Since the activation energy is expressed in J per mol, we have to use R

(=8.314 J/mol K) instead of k (Boltzmann’s constant). Thus,

m = log 110 − 0.43 × 380 × 103

8.314 × 923
= 2.04 − 21.29 = −19.25.

Applying Sherby--Dorn’s equation to 550◦C (823 K) yields

log tr = m + 0.43
Q c

kT
= −19.25 + 0.43 × 380 × 103

8.314 × 823
,

or

tr = 42.7 × 103 hours.

Example 13.3

Calculate the time to rupture at 650 ◦C and 100 MPa stress for a 1%

Cr--1% Mo--0.25% V steel, according to the Larson--Miller, Sherby--Dorn,

and Manson--Haferd methods, if this alloy underwent rupture in

20 hours when tested in tension at the same stress level at a tempera-

ture of 750 ◦C.

Solution: The Larson--Miller equation is T (log tr + C) = m. From Table

13.1, C = 22. Thus, at 750 ◦C, T = 750 + 273 = 1,023 K and tr = 20

hours. Therefore,

m = 1023 × (log 20 + 22) ≈ 2.4 × 104

At 650 ◦C, T = 650 + 273 = 923 K, and we have

923(log tr + 22) = 2.4 × 104,

so that

log tr = 2.4 × 104

923
− 22
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and

tr = 6.7 × 103 hours.

The Sherby--Dorn equation is log tr − Q/(kT) = m. From Table 13.1,

Q = 460 kJ/mol. Because Q here involves moles, we must use R instead

of k. At 750 ◦C, T = 1,023 K and tr = 20 hours. Thus,

m = log 20 − 460 × 103

8.314 × 1023
.

At 650 ◦C, T = 923 K, and we obtain

log tr = m + 0.43
Q

kT
,

so that

tr = 6 × 103 hours.

The Manson--Haferd equation is (log tr − log ta)/(T − Ta) = m. From Table

13.1, Ta = 311 K, so that log ta = 18. At 750 ◦C, T = 1,023 K, and it follows

that tr = 20 hours. Therefore,

m = log 20 − 18

1,023 − 311
= −0.023.

At 650 ◦C, T = 923 K, and we have

log tr − log ta

T − Ta

= m,

log tr − 18

923 − 311
= −0.023,

log tr = 3.924,

tr = 8.4 × 103 hours.

This answer is very sensitive to m. For m = −0.02345, we get tr = 4.4 ×
103 hours.

13.3 Fundamental Mechanisms Responsible
for Creep

The history of progress in our understanding of creep can be divided

into two periods: before and after 1954. In that year, Orr et al. intro-

duced the concept that the activation energy for creep and diffusion

are the same for an appreciable number of metals (more than 25).8

Figure 13.9 shows this graphically. The activation energy for diffusion

is connected to the diffusion coefficient by Equation 13.11. Note that

several mechanisms can be responsible for creep; the rate-controlling

mechanism depends both on the stress level and on the tempera-

ture, as will be seen in Sections 13.4--13.7. For temperatures below

0.5Tm, half the melting point of the material, in kelvins, the activation

8 R. L. Orr, O. D. Sherby, and J. E. Dorn, op. cit., 113.
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energy for creep tends to be lower than that for self-diffusion, because

diffusion takes place preferentially along dislocations (pipe diffusion),

instead of in bulk. Figure 13.10 shows the variation in QC/QD for some

metals and ceramics. The activation energy for diffusion through dis-

locations is considerably lower than that for bulk diffusion.

For the temperature range T > 0.5 Tm, the mechanisms responsible

for creep can be conveniently described as a function of the applied

stress. The creep mechanisms can be divided into two major groups:

boundary mechanisms, in which grain boundaries and, therefore,

grain size, play a major role; and lattice mechanisms, which occur

independently of grain boundaries. In Equation 13.4, the exponent

p = 0 for lattice mechanisms, and p ≥ 1 for boundary mechanisms.

13.4 Diffusion Creep (σ /G < 10−4)

Diffusion creep tends to occur for σ /G ≤ 10−4. (This value depends,

to a certain extent, on the metal.) Two mechanisms are considered
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important in the region of diffusion creep. Nabarro and Herring

proposed the mechanism shown schematically in Figure 13.11(a).9 It

involves the flux of vacancies inside the grain. The vacancies move

in such a way as to produce an increase in length of the grain along

the direction of applied (tensile) stress. Hence, the vacancies move

from the top and bottom region in the figure to the lateral regions of

the grain. The boundaries perpendicular (or close to perpendicular)

to the loading direction are distended and are sources of vacancies.

The boundaries close to parallel to the loading direction act as sinks.

Nabarro and Herring developed a mathematical expression con-

necting the vacancy flux to the strain rate. They started by supposing

that the ‘‘source” boundaries had a concentration of vacancies equal

to C0 + �C and the sink boundaries a concentration C0. They assumed

that

�C = C 0σ

kT
,

where σ was the applied stress and C0 the equilibrium vacancy con-

centration. The flux of vacancies is therefore given by

J = k′ D �

(
�C

x

)
= k′′ D �

(
�C

d

)
,

where x is the diffusion distance, which is a direct function of the

grain size (approximately equal to d/2), D�, is the lattice diffusion

coefficient, d is the grain diameter, and k′ and k′′ are proportionality

constants (k′′ = 2k′). The strain rate is related to the increase in grain

9 F. R. Nabarro, Report of a Conference on Strength of Solids, Physical Society, London, 1948,

p. 75; and C. Herring, J. Appl. Phys., 21 (1950), 437.
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size d in the direction of the applied stress:

ε̇ = 1

d

dd

dt
.

The change in grain length, dd/dt, can be obtained from the flux of

vacancies, each having a volume �:

dd

dt
= J�.

Thus, the following equation can be obtained for the creep rate:

ε̇NH = k′′ �D �C 0σ

d2kT
.

(‘‘NH,” of course, denotes Nabarro--Herring.) Expressing this equation

in the format of Equation 13.5 (making � = 0.7b3), we have:

ε̇NH = ANH
D �G b

kT

(
b

d

)2 ( σ

G

)
. (13.12)

ANH is typically equal to 10--15.

Coble proposed the second mechanism explaining diffusion

creep.10 It is based on diffusion in the grain boundaries instead of

in the bulk. This diffusion results in sliding of the grain boundaries.

Hence, if a fiducial scratch is made on the surface of the specimen

prior to creep testing, the scratch will show a series of discontinuities

(at the grain boundaries) after testing if Coble creep is operative.

Figure 13.11(b) shows, in a schematic manner, how the flow of

vacancies along a boundary generates shear. Notice that there is also

additional accommodational diffusion necessary. Coble creep leads to

the relationship

ε̇C = AC D gb

G b

kT

(
δ

b

) (
b

d

)3 ( σ

G

)
, (13.13)

where Ac is typically equal to 30--50, δ is the effective width of the

grain boundary for diffusion, and Dgb is the grain-boundary diffusion

coefficient.

Note that in Equations 13.12 and 13.13, the strain rate is propor-

tional to the stress -- that is, n = 1. Also, the strain rate goes as d−2

for Nabarro--Herring creep and as d−3 for Coble creep. This enables

researchers to differentiate between the two mechanisms: they estab-

lish the creep rates for specimens with different grain sizes and find

the exponent on the grain size. A practical way of having an alloy

with high resistance to Nabarro--Herring or Coble creep is to increase

the size of the grains. This method is used in superalloys; a fabri-

cating technique called directional solidification has been developed to

eliminate virtually all grain boundaries perpendicular and inclined

to the tensile axis.

10 R. L. Coble, J. Appl. Phys., 34 (1963) 1679.
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Fig. 13.12 Dislocation climb (a)

upward, under compressive σ 22

stresses, and (b) downward, under

tensile σ 22 stresses.

Harper and Dorn observed another type of diffusional creep in

aluminum.11 This occurred at high temperatures and low stresses,

and the creep rates were over 1,000 times greater than those predicted

by Nabarro--Herring. (Also, little Coble creep was observed.) The two

researchers concluded that creep occurred exclusively by dislocation

climb.

Dislocation climb is shown schematically in Figure 13.12. Under

compressive loads, vacancies are attracted to the dislocation line

(Figure 13.12(a)). Once a row of vacancies has joined the dislocation

line, the line is effectively translated upward. Thus, the dislocation

moves perpendicular to the Burgers vector during climb. In tension

(Figure 13.12(b)), the opposite occurs: Vacancies move away from the

dislocation line, and the dislocation effectively moves down.

Harper--Dorn creep is governed by an equation of the form

ε̇HD = AHD

D �G b

kT

( σ

G

)
. (13.14)

The parameter AHD is typically equal to 10−11. Since no grain bound-

aries are involved in this creep, the grain size does not appear in the

equation. For Harper--Dorn creep to make a significant contribution,

the grain size of the material has to be large (>400 μm); otherwise,

Nabarro--Herring and Coble creep dominate.

In metals, Harper--Dorn creep has been observed in a number of

systems. In ceramics, there is little evidence for this type of diffusion

creep mechanism. Ceramics in general have small grain sizes, which

favor other creep mechanisms. The stable, small grain size and the

limited number of slip systems, as well as high Peierls--Nabarro stress,

lead to the prominence of Nabarro--Herring and Coble creep. Dif-

fusion in ceramics is more complex than in metals, because either

one or two ionic species might participate, and in the case of multi-

component ceramics, more than one cation or ion might be involved.

Figure 13.13 shows the different domains of creep in alumina as a

11 J. Harper and J. E. Dorn, Acta Met., 5 (1957) 654.
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function of grain size and temperature; the main ion is shown for

each domain.

13.5 Dislocation (or Power Law) Creep
(10−4 < σ /G < 10−2)

In the stress range 10−4 < σ /G < 10−2, creep tends to occur by dis-

location glide aided by vacancy diffusion (when an obstacle is to be

overcome); this is called dislocation creep. This mechanism should

not be confused with Harper--Dorn creep, which relies exclusively on

dislocation climb. Orowan proposed that creep is a balance between

work-hardening (due to plastic strain) and recovery (caused by expo-

sure to high temperatures). Hence, at a constant temperature, the

increase in stress is

dσ =
(

∂σ

∂ε

)
dε +

(
∂σ

∂t

)
dt, (13.15)

where (∂σ/∂ε) is the rate of hardening, and (∂σ/∂t) is the rate of

recovery, of the material. The strain rate ε̇ can be expressed as a ratio

between the rate of recovery and the rate of hardening.

In the mid-1950s, Weertman developed a pair of theories of

the minimum creep rate based on dislocation climb as the rate-

controlling step.12 In his first theory, Weertman presented Cottrell--

Lomer locks as barriers to plastic deformation; his second theory

applies to HCP metals, in which these barriers do not exist. Hence, he

assumed different barriers, depending on the material. Figure 13.14

shows schematically how the mechanism based on Cottrell--Lomer

locks operates. Dislocations are pinned by obstacles, but overcome

12 J. Weertman, J. Appl. Phys., 26 (1955) 1213; 28 (1957) 362.
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according to Weertman theory.
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them by climb, aided by either interstitial or vacancy generation or

destruction. The obstacles are assumed to be Cottrell--Lomer locks,

which are formed by dislocations that intersect and react. (See Section

4.4.6.) Figure 13.14(a) shows dislocations pinned between the locks

and climbing over them. Note that dislocations are continuously gen-

erated by the Frank--Read source in the horizontal plane, and the ones

overcoming the obstacle are replaced by others. To calculate the creep

rate, we have to find the rate of escape of the dislocations from the

locks. The height h a dislocation has to climb in order to pass through

a lock is the position at which the applied stress on the dislocation,

owing to the other dislocations in the pileup, is equal to the repul-

sive force due to the stress field of the lock. Other obstacles (shown

in Figure 13.14(b)) can have the same effect.

The stress exerted by a dislocation due to the pileup effect is given

in Section 4.4.9 and is (Equation 4.26a):13

σ ∗ = ñσ, (13.16)

where ñ is the number of dislocations in the pileup (we use ñ here to

avoid confusion with n, the exponent in power-law creep) and σ is the

stress applied on one dislocation. Now, taking the stress field around

a dislocation as a function of distance (Section 4.4.3) and equating it

to Equation 13.16, Weertman arrives at (this is slightly different from

Equation 4.12)

h = Gb

ñσ6π (1 − v )
. (13.17)

The rate of climb is determined by the rate at which the vacancies

arrive at or leave the dislocation. (Weertman did the derivation for

vacancies and not interstitials.) For the concentration gradient of

vacancies, Weertman obtained a rate of climb

r = N0 D �ñσb5

kT
, (13.18)

13 Shear stresses were converted into normal stresses.
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when (̃nσb3)/kT < 1. N0 is the equilibrium concentration of vacancies

and D � is the diffusion coefficient at the test temperature T. With a

known climb height and rate of climb, it is possible to calculate the

rate of creep. If M is the number of active Frank--Read sources per

unit volume, L is the distance the edge portion of a dislocation loop

moves after breaking away from a barrier, and L′ is the portion the

screw moves, then the creep rate is given by

ε̇ = r

h
LL ′M = 6π (1 − v )̃n2b4 N0 L L ′M D �σ

2

kG T
. (13.19)

If we assume, to a first approximation, that ñ, the number of disloca-

tions in a pileup, and M, the number of Frank--Read sources per unit

volume, are proportional to σ , we can recast Equation 13.19 in the

Mukherjee--Bird--Dorn format as

ε̇ = A

(
D �G b

kT

) ( σ

G

)5

.

The stress exponent 5 is characteristic of this regimen. The term A

incorporates the various parameters and proportionality coefficients.

Power law creep with n ≈5 has been observed at high stress levels

in a number of ceramics, including KBr, KCL, LiF, NaCl, NiO, SiC,

ThO2, UC, and UO2. (See Figure 13.4(b).) As in the case of metals, the

substructure is characterized by subgrains with misorientations of

approximately 2◦.

Creep behavior with a stress exponent n ≈3 is observed in a num-

ber of ceramics, such as Al2O3, BeO, Fe2O3, MgO, and ZrO2 (+ 10%

Y2O3). In this case, few or no solutes are present, and those that are

do not play a role.

Dispersion-strengthened alloys are characterized by an exponent

higher than 7 and by a high activation energy for creep. Dispersoids

(see Chapter 10) are stable up to very high temperatures. Small par-

ticles, such as Y2O3 and ErO2, are added to the alloy as dispersoids;

this increases the high-temperature capability of these materials sub-

stantially, and the dispersoids act as effective barriers to dislocation

motion.

Particle-reinforced composites (such as SiC and aluminum re-

inforced with aluminum oxide) exhibit the same effects: The stress

exponent n and activation energy for creep are very high. This is

illustrated in Figure 13.15, for an Al--30% SiC composite. The slope in

Figure 13.15 is given by

n = ∂ ln γ̇

∂ ln τ
= ∂ ln 2ε̇

∂ ln σ/2
= ∂ ln ε̇

∂ ln σ
.

Taking logarithms and derivatives of both sides, we have (at constant

T)

ε̇ = A′
( σ

G

)n

= A′′σ n,

ln ε̇s = ln A′′ + n ln σ,

∂ ln ε̇s = n∂ ln σ,

n = ∂ ln ε̇s

∂ ln σ
.
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Thus, the slope is equal to the stress exponent. In Figure 13.15, the

slope n varies from 14.7 to 7.4 as the stress is increased. The activation

energy for creep for this aluminum composite has a value of 270--

500 kJ/mol; this is significantly higher than the activation energy for

aluminum self-diffusion.

13.6 Dislocation Glide (σ /G > 10−2)

Dislocation glide occurs for σ /G >10−2. At a certain stress level, the

power law breaks down. Figure 13.16 presents the region in which the

law (n = 4) breaks down, and n increases to 10; this occurs for ε̇s/D >

109. An analysis of the deformation substructure by transmission

electron microscopy and showed that, at high stresses, dislocation
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climb was replaced by dislocation glide, which does not depend on

diffusion.14 Hence, when ε̇s/D > 109, thermally activated dislocation

glide is the rate-controlling step; this is the same deformation mode as

the one in conventional deformation at ambient temperature. Kesten-

bach et al. observed that the substructure changed from equiaxial sub-

grains to dislocation tangles and elongated subgrains when the stress

reached a critical level. A similar effect is observed when the tempera-

ture is decreased and the stress is maintained constant. Figure 13.17

shows the substructures at various values of stress and temperatures

for secondary creep.

14 H.-J. Kestenbach, W. Krause, and T. L. da Silveira, Acta Met. 26 (1978) 661.
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13.7 Grain-Boundary Sliding

Grain-boundary sliding usually does not play an important role dur-

ing primary or secondary creep. However, in tertiary creep it does

contribute to the initiation and propagation of intercrystalline cracks.

Another deformation process to which it contributes significantly is

superplasticity; it is thought that most of the deformation in super-

plastic forming takes place by grain-boundary sliding.

The grain-boundary sliding rate is controlled by the accommodat-

ing processes where the sliding surface deviates from a perfect plane.

One can readily see that we cannot have a perfect plane defined by

the boundaries between different grains; we cannot look separately

at the sliding between two grains having a common interface. The

requirements of strain compatibility are such that we have to model

the interface as sinusoidal, as is depicted in Figure 13.18. The applied

stress τ a can produce sliding only if it is coupled with diffusional flow

that transports material (or vacancies) over a maximum distance of λ,

the wavelength of the irregularities. Figure 13.18(b) shows the same

effect in a polycrystalline aggregate. The individual grain boundaries
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are translated by a combination of sliding and diffusional flow under

the influence of the applied stress.

The manner in which the individual grains move and change their

relative positions by sliding and diffusional accommodation is shown

in Figure 13.19. The sliding of grains under the influence of σ , coupled

with minor changes in shape, makes possible the sequence (a)--(b)--(c),

which results in a strain of 0.55; the unique feature of this mech-

anism is that the sequence is accomplished with relatively little strain

within the grains.

13.8 Deformation-Mechanism
(Weertman–Ashby) Maps

Deformation-mechanism maps, so named after two people who first

introduced them, are a graphical description of creep, represent-

ing the ranges in which the various deformation modes are rate-

controlling steps in the stress-versus-temperature space. Weertman--

Ashby plots assume, for simplicity, that there are some independent

and distinguishable ways by which a polycrystal can be deformed, but

still retain its crystallinity:

1. Above the theoretical shear strength, plastic flow of the material

can take place without dislocations, by simple glide of one atomic

plane over another.

2. Movement of dislocations by glide.

3. Dislocation creep, including glide and climb, both being controlled

by diffusion.

4. Nabarro--Herring creep.

5. Coble creep.

The theories developed for these different modes of deformation with-

out loss of crystallinity propose constitutive equations that are used in

the establishment of the ranges involved. Figure 13.20 shows a typical

map for silver. The theoretical shear stress is approximately equal to

G/20 and is practically independent of temperature. A small depend-

ence on temperature is exhibited by G and is built into the ordinate of
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the figure. For values of σ /G between 10−1 and 10−2, slip by dislocation

movement is the controlling mode at all temperatures. It can be seen

that the grain size affects the extent of the fields. Three grain sizes

are represented: 10, 32, and 100 μm. The fields also depend on the

strain rate. The map shown in Figure 13.21 was made for a strain rate

of 10−8 s−1. The Coble and Nabarro--Herring mechanisms, especially,

are affected by the grain size, because of their nature.

Deformation-mechanism maps have technological applications.

Consider, for example, a turbine blade operated in a temperature

and stress range that is known. The specific stress--temperature pro-

file can be plotted on a deformation-mechanism map in the form

of a line. Different parts of the blade undergo different deform-

ation modes. These modes, the rate of creep of each portion, and the

respective constitutive equation can be read from the map. Multiaxial

stress states can be resolved by calculating the maximum shear stress
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or the effective stress. A strengthening mechanism is helpful only if it

retards the creep rate in the correct portion of the map. For instance,

dispersion-hardening is effective in controlling dislocation glide and

climb, but cannot effectively stop Nabarro--Herring or Coble creep.

From the deformation-mechanism map, we can, in addition to

determining the dominant mechanism for a certain combination of

stress and temperature, find the strain rate (creep rate) that will result.

For this, we have to apply the appropriate constitutive equations and

plot the constant strain-rate contours. This is shown in Figure 13.21

for tungsten. The lines allow ready identification of the creep rate. The

region in Figure 13.20 consisting of the elastic regimen is occupied by

Coble creep in Figure 13.21. The reason for this is that Figure 13.20

applies to one constant strain rate (10−8 s−1), whereas Figure 13.21

is built for a whole range of strain rates. Hence, at a strain rate of

10−8 s−1, the metal might respond elastically, whereas at a strain rate

orders of magnitude lower, Coble creep becomes significant.

Similar maps can be built for ceramics, and a representative map

is shown in Figure 13.22. The different domains, as well as the curves

for constant strain rates (from 10−10/s to 1/s), are illustrated in the

plot. Note that the different diffusing ions (Al3+ and O2−) have to be

considered.

13.9 Creep-Induced Fracture

Figure 13.23 shows fracture by nucleation and growth of voids at

the grain boundaries. Whereas at low and moderate temperatures

metals usually fail by transgranular void or crack formation, at high



13 .9 CREEP- INDUCED FRACTURE 679

Slip band

Cavities

Grain
boundary

s

s

Fig. 13.23 Mechanisms of

intergranular nucleation. (From

W. D. Nix and J. C. Gibeling, in

Flow and Fracture at Elevated

Temperatures, ed, R. Raj (Metals

Park, OH: ASM, 1985).)

temperatures, and especially after creep and superplastic forming,

intergranular cavities start forming; they subsequently grow and co-

alesce, leading to a fracture morphology which is readily distinguish-

able: observation by scanning electron microscope reveals entire

grains on the fracture surface. There are several reasons why cavities

(voids and cracks) form at the grain boundaries.

� Impurity segregation at grain boundaries leads to a weakening of

these regions. Since the boundary has a different composition from

the matrix, under these conditions, we may have:

(Tm)gb < (Tm)� ,

where Tm is the melting point and gb and � refer to the grain bound-

ary and lattice, respectively. This leads to a selective weakening of

the boundaries, at high temperatures.
� Interaction of grain-boundary sliding with geometrical (compati-

bility) constraints. We saw in Section 13.7 that grain-boundary

sliding needs to be coupled with plastic deformation of cavities

at grain boundaries due to interaction with grain-boundary inclu-

sion. This is due to a step in the grain boundary, and to waviness of

the boundary.
� Slip band--boundary interaction. At higher stresses dislocation glide

is important in creep, and the intersection of slip bands with bound-

aries leads to stress concentrations, which may result in opening

up of wedges.
� Enhanced grain-boundary diffusion. The combined effect of stress

concentrations and higher grain-boundary diffusion coefficients

(can be several orders of magnitude higher than lattice diffusion)

leads to void growth at the grain boundaries, which is much faster

than in the grain interiors.
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As a result of the nucleation and growth of cavities, the creep rate

is accelerated even under constant stress testing, and the creep curve

starts deviating from stage II. (See Figure 13.1; this marks the onset

of stage III, or tertiary creep.)

Creep failure is governed by maximum creep strain in many cases.

This is the basis for the Monkman--Grant equation (Equation 13.9,

Section 13.2):

ε̇s tr = k,

where ε̇s is the creep rate in the steady state, tr is the time-to-rupture,

and k is a constant. The above expression is obtained from:∫ tr

0

ε̇s dt = ε̇s tr = εr .

We assume that εr, the ruptuse strain, is a constant for a material.

For nickel, the rupture strain, is equal to 4 × 10−2.

Raj and Ashby15 developed a model to predict the time-to-rupture

time, tr, as a function of a number of material parameters. Their

expression has the form:

tr = 3π1/2

32

kT

�δD gb

λ3

σ

fv (α)

fb(α)

∫ Amax

Amin

d A

f (A)
,

where the symbols have the following meanings: A = areal fraction of

grain boundaries occupied by cavities; δ = grain-boundary thickness;

� = atomic volume; D gb = grain-boundary diffusion coefficient;

λ = spacing between cavities; T = temperature in K; k = Boltzmann’s

constant.

The function f (A) in the integral is equal to:

f (A) =
[
1 − (

Ai

A

)1/2
]

(1 − A)

A1/2
[

1
2

ln
(

1
A

) − 3
4

+ A
(
1 − A

4

)] .

Rupture occurs when A reaches a maximum value Amax. The functions

fv (α), fB (α) represent the dihedral angle (voids at grain boundaries are

lens-shaped and not spherical) and the geometry of voids, respectively.

When A reaches a value equal to Amax, the specimen fails.

It may be seen that the Raj--Ashby equation is consistent with

the Monkman--Grant equation when the stress exponent in creep is

equal to one. This occurs for Nabarro--Herring, Coble, and Harper--

Dorn creep (Equations 13.12, 13.13, and 13.14). For instance, substitut-

ing the Coble creep equation into the Raj--Ashby equation, we obtain:

ε̇s tr = 3π1/2

32

Ac

�

b3λ3

d3

fv (α)

fb(α)

∫ Amax

Amin

d A

f (A)
.

The right-hand side of this equation consists of a number of material

parameters. Thus, the product ε̇tr should be a constant, which should,

in theory, be equal to the rupture strain, εr .

15 R. Raj and M. F. Ashby, Acta Mater., 23 (1975) 653.
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Example 13.4

From Figure E13.4 for Zircaloy under two conditions determine the

Monkman--Grant rupture strain at three different strain rates. The fail-

ure strain is 0.1. Is the Monkman--Grant equation obeyed?

Solution: We take the three strain rates:

ε̇1 = 5x10 −5 ,

ε̇2 = 5x10 −4 ,

ε̇3 = 5x10 −3 .

The following rupture times are obtained from the plot:

tr1 = 2, 000s,

tr2 = 200s,

tr3 = 20s.

The products are:

ε̇1tr1 = ε̇2tr2 = ε̇3tr3 = 10−1

This is equal to the rupture strain. The Monkman-Grant equation is

obeyed.
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Fig. E13.4 Monkman–Grant plot for Zircaloy. (Courtesy of M. E. Kassner and

T. Haynes.)

13.10 Heat-Resistant Materials

High-temperature materials can be classified into two groups: metals

and ceramics. High-temperature alloys are, in their turn, classified

into superalloys and refractory alloys. The latter are alloys of ele-

ments with high melting points, such as tantalum, molybdenum, and

tungsten. The superalloys are usually alloys developed for elevated
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(a) (b)

Fig. 13.24 Transmission

electron micrograph of Mar M-200;

notice the cuboidal γ ′ precipitates.

(Courtesy of L. E. Murr.)

temperature service, usually based on group VIIIa elements, where

relatively severe mechanical stressing is encountered and where high

surface stability is frequently required.

The development of superalloys was initiated in the 1930s, and

their first use was in turbo superchargers of reciprocating aircraft

engines. The introduction of the turbine in the 1940s was a strong

motivator for subsequent developments. Superalloys encompass the

nickel, iron, cobalt, and iron--nickel systems. The majority of authors

do not include chromium-based alloys in this group. The maximum

service temperature (temperature capability) has increased continu-

ously in the past; it can be around 1,200 ◦C. The life of turbines has

increased from 5,000 to over 20,000 hours. The combined effects of

high stresses, high temperatures, and long lifttimes have required

improvements in the following properties:

� Short-term mechanical properties: yield stress, ductility.
� Long-term mechanical properties: low- and high-cycle fatigue, creep,

creep--fatigue.
� Hot corrosion resistance: the principal deterioration processes are oxi-

dation, chlorination, sulfidation, and carburization.

Nickel-based superalloys are the most important group; most com-

mercial nickel-based alloys have more than ten constituent elements

and over ten trace elements. These can be divided into the following

categories, depending on the function and position of the element in

the periodic chart:

� Elements that form substitutional solid solutions in the austen-

itic matrix: cobalt, iron, chromium, vanadium, molybdenum,

tungsten.
� Elements that form precipitates: aluminum, titanium, niobium,

tantalum. Figure 13.24 shows the cuboidally shaped γ ′ precipitates

Ni3Al, Ni3Ti, and Ni3(Al, Ti) that are aligned along specific planes

of the austenitic matrix.
� Carbide-forming elements: chromium, molybdenum, tungsten,

vanadium, niobium, tantalum, titanium.
� Elements that segregate along the grain boundaries: magnesium,

boron, carbon, zirconium.
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permission from C. T. Sims and

W. C. Hagel, eds., The Superalloys

(New York: Wiley, 1972), p. 33.)

� Elements forming protective and adherent oxides: chromium,

aluminum.
� Rare-earth elements.

The microstructure of superalloys reflects the concern of using all

possible strengthening mechanisms to retard creep. Figure 13.25 is a

composite of these features. One has to retard the movement of dis-

locations. This is achieved by substitutional solid solution atoms and

by a great volume percentage of the Ni3(Ti,Al) phase γ ′. The grain

boundaries are strengthened by precipitation of M23C6 carbides on

them. Secondary γ ′, very fine, is precipitated in the space between

neighboring primary γ ′, which is larger. One also wants to carefully

avoid the topologically close-packed (TCP) phases R and σ , that occur

accidentally and after long exposure to high temperatures, embrit-

tling the alloy.

An interesting phenomenon occurs when γ ′ strengthened super-

alloys are stressed at high temperatures. This phenomenon is called

‘‘rafting” and consists of the preferential growth of the gamma prime

precipitates in a certain orientation. Figure 13.26(a) shows the initial

configuration of the precipitates, aligned with the {100} axes of the

cubic matrix. In gamma prime strengthened superalloys, the precipi-

tates are actually the major phase (∼70%), with the matrix the minor

phase. After the MarM-200 alloy shown in Figure 13.26(a) was creep

deformed at 1253 K for 28 hours along the [010] direction (stress =
350 MPa), the precipitates coarsened along that loading direction;

this is shown in Figure 13.26(b). They are seen to connect with each

other and form continuous sheets.

Figure 13.27 shows the stress-rupture properties of a number of

nickel-based superalloys. The stress required for rupture in 1,000

hours is plotted against the temperature. The load-bearing ability in
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Loading
direction  

(a)

(b)

Fig. 13.26 Rafting in MAR

M-200 monocrystalline superalloy;

(a) original configuration of gamma

prime precipitates aligned with

three orthogonal cube axes; (b)

creep deformed at 1253 K for 28

hours along the [010] direction,

leading to coarsening of

precipitates along loading

direction. (From U. Glatzel,

“Microstructure and Internal

Strains of Undeformed and Creep

Deformed Samples of a

Nickel-Based Superalloy,”

Habilitation Dissertation,

Technische Universität, Berlin,

1994.)

the upper range of the use of these superalloys is only a fraction of

the one at lower temperatures. The range 800 to 1,000 ◦C is a very

critical one.

Figure 13.28 shows a cross-section of a gas turbine. The tempera-

ture of combustion gases is on the order of 1500 ◦C. The rotational

speed of the turbine can be as high as 30,000 rpm, creating centrifu-

gal stresses of the order of 200 MPa. Polycrystalline superalloys have

been succeeded by directionally solified superalloys having most grain

boundaries aligned with the blade direction. This minimizes creep by

grain-boundary sliding. A further development is the single crystal

blade, which has no grain boundary. Figure 13.29 shows such a blade.

Notice (arrow) that it has holes. Indeed, internal cooling channels are

introduced into modern blades to allow air to circulate inside and

create, upon exiting the blade, a protective layer at a lower tempera-

ture than the exhaust gases. Turbines with ceramic coatings called

thermal barrier coatings (TBC) are used; they shield the metallic tur-

bine from the excessively high temperatures. This poses an enormous

challenge, because the metallic and ceramic components have dif-

ferent coefficients of thermal expansion, creating stresses that crack

the coating. This problem is alleviated by the introduction of an inter-

mediate layer. Figure 13.29(b) shows the significant increase (>100 ◦C)

that can be accomplished using TBCs.
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The Superalloys (New York: Wiley,
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Combustion
chamber

Exhaust

Air intake

Fig. 13.28 Cross-section of a

gas turbine showing different parts.

The temperature of gases in

combustion chamber reaches

1500 ◦C.

The use of single-crystal turbine blades represents a significant

technological development: Grain-boundary sliding is eliminated by

this technique, and an increase in temperature capability of approxi-

mately 50 ◦C over that of polycrystalline superalloys is achieved. The

method of producing single-crystal turbine blades involves invest-

ment casting in a controlled thermal environment. An added advan-

tage is that the composition of the alloy is simpler than in polycrys-

talline superalloys.

High-performance ceramics are prime candidates for structural

components in advanced automotive gas turbine engines. Operating

conditions for such components involve high mechanical and ther-

mal stresses at elevated temperatures; hence, the creep resistance

of these materials is of great importance. Excessive creep deform-

ation can affect the dimensional stability of the component,

ultimately leading to a loss of function. Generally, there is a high

resistance to slip and diffusional mechanisms in high-performance

ceramics such as SiC and Si3N4. Damage mechanisms such as cavi-

tation, solution of silicon nitride into the glassy phase at the grain
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Fig. 13.29 (a) Single crystal

turbine blade developed for

stationary turbine. (Courtesy of

U. Glatzel.) (b) Evolution of

maximum temperature in gas

turbines; notice the significant

improvement made possible by the

introduction of thermal barrier

coatings (TBCs). (Courtesy of

V. Thien, Siemens.)
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boundary, and grain-boundary sliding are associated with creep in

these ceramics. As mentioned earlier in this chapter, different creep

mechanisms give different creep activation energies. Cavitation can

result in a reduction in the strength of the material and lead to

time-dependent failure (i.e., creep rupture). Viscous flow in any glassy

grain-boundary phase can lead to excessive creep deformation. Silicon

nitride is a good example of a high-performance ceramic material to

use for illustrating some of the unusual problems that must be faced
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before their full potential can be realized. Silicon nitride has excel-

lent short-term strength and fracture toughness. Generally, hot, iso-

statically pressed silicon nitride shows superior properties to silicon

nitride processed by pressureless sintering or uniaxial hot pressing.

The amount and nature of any densification aids can significantly

affect creep behavior. Yttria is a common densification aid used in sil-

icon nitride. Another important variable is the testing method (com-

pression, bending, or tensile testing) used for creep. Although tensile

testing of ceramics is not very common, it has been used to study the

high-performance ceramics.

Studies aimed at evaluating the long-term mechanical perfor-

mance of silicon nitride (trade designation NT 154) have shown that

cavitation along two-grain junctions controls both creep deformation

and creep rupture strength.16 Silicon nitride is available with differ-

ent purity levels. Ferber et al. observed that the creep and creep rup-

ture behavior of silicon nitride (NT 164) were significantly improved,

compared to that of the commercial material (NT 154), if one could

ensure the absence of cavitation along two-grain junctions.17 These

authors attributed the growth of cavities to the following processes,

which occur in a sequence: (1) solution of silicon nitride into the

intergranular phase at the cavity boundary; (2) transport of the dis-

solved species along the grain boundary; and (3) precipitation of the

species at low-stress sites remote from the cavity. Yet another factor

in the high-temperature behavior of nonoxide ceramics such as SiC

and Si3N4 is their oxidation resistance in air. Oxidation of silicon

nitride, rather than creep, was observed to initiate a stress-oxidation

damage zone in the material. Finally, we reiterate the importance of

the testing method. Wiederhorn et al. found asymmetric behavior of

Si3N4 in creep:18 A linear response was obtained in compression, but

a power-law response held in tension, with the creep exponent n in

the range 2 < n < 5. These researchers observed minimal cavitation in

compression; in tension, however, cavities formed at multigrain junc-

tions, and the creep strain was proportional to the volume fraction of

cavities. Thus, cavitation is responsible for creep strain in tension, but

not in compression. This discussion should bring home to the reader

some important differences between creep mechanisms in metals and

in nitrogen ceramics. In metals, a lot of creep strain can occur, but

not much of it is due to cavitation. Also, the tertiary creep of metals

is absent in silicon nitride.

Ceramics and ceramic composites possess a higher temperature

capability than metals. Whereas ceramics tend to be brittle, the

addition of reinforcing fibers adds toughness to them. Temperatures

16 D. C. Cranmer, B. J. Hockey, S. M. Wiederhorn, and R. Yeckley, Ceram. Eng. Sci. Proc., 12

(1991) 1862.
17 M. K. Ferber and M. G. Jenkins, J. Am. Ceram. Soc., 75 (1992) 2453; and M. K. Ferber,

M. G. Jenkins, and T. A. Nolan, J. Am. Ceram. Soc., 77 (1994) 657.
18 S. M. Wiederhorn, B. J. Hockey, W. E. Luecke, R. Krause, and J. French, unpublished

results.
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approaching 2,000 ◦C can be reached with acceptable creep rates.

As mentioned earlier, chemical degradation becomes very important

at these temperatures, especially for nonoxide ceramics. (Oxides are,

obviously, immune to oxidation.) A high-temperature material of

some promise is MoSi2, especially as a matrix for high-temperature

structural composites (see Chapter 12).

13.11 Creep in Polymers

As mentioned in the preceding sections, creep is a thermally activated

process and thus becomes important at high temperatures. The term

high temperature is a relative one; it is more convenient to use the

term homologous temperature, TH = T/Tm, where T is the temperature

of interest and Tm is the melting of the material (both in kelvins).

Typically, creep becomes a significant deformation mode for met-

als at a homologous temperature greater than 0.4 and for ceram-

ics at a homologous temperature greater than 0.5. (In the case of

amorphous polymers, one uses the glass transition temperature Tg

rather than the melting point Tm.) At low temperatures, most metals

and ceramics show time-independent deformation. In general, poly-

mers show a much larger dependence on time and temperature than

metals and ceramics do; that is, polymers show creep effects at much

lower stresses and temperatures. This stems from their weak van

der Waals interchain forces. In polymers, time-dependent deform-

ation becomes important even at room temperature. Two terms are

used to describe the time-dependent behavior of polymers: creep and

stress relaxation. In creep, one applies a constant stress, and the strain

response is measured as a function of time. In stress relaxation, one

applies a constant strain, and the response is measured in terms of

a decrease in stress as a function of time. We have discussed some

aspects of these two phenomena in Chapter 2 in connection with

viscoelasticity.

F

F

Spring

Spring

Dashpot

Dashpot

Fig. 13.30 Spring–dashpot

analogs (a) in series and (b) in

parallel.

For a glassy, viscoelastic polymer subjected to a constant stress σ 0,

there is an initial elastic strain recovery, followed by a slow, time-

dependent recovery. This viscoelastic response may be modeled as a

spring and a dashpot in series (also called the Maxwell model), as

shown in Figure 13.30. An application of stress to this system results

in a strain ε in the system. This strain is the sum of two contributions,

and we can write

ε = ε1 + ε2, (13.20)

where ε1 is the strain in the spring and ε2 is the strain in the dashpot.

The stresses in the spring and the dashpot are identical, because the

two are in series, i.e.,

σ = σ1 = σ2. (13.21)
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Then, we can write the following relationships for the elastic (Young’s

modulus, E) and the viscous case (viscosity, η),

dσ

dt
= E

dε1

dt
, σ = η

dε2

dt
. (13.22)

From Equations 13.20 and 13.21, we get

dε

dt
= dε1

dt
+ dε2

dt
= 1

E

dσ

dt
+ σ

η
. (13.23)

Note that the series, or Maxwell, model does not correctly predict

the behavior of a viscoelastic material under constant stress or creep

conditions (i.e., σ = σ 0), because, in this case,

dε

dt
= σ0

η
. (13.24)

That is, the Maxwell model for creep or constant-stress conditions pre-

dicts that the strain increases linearly with time. (See Figure 13.31(a).)

Most polymers, however, show de/dt increasing with time. The Maxwell

model is more realistic in the case of a stress relaxation test, during

which we impose a constant strain ε = ε0 and dε/dt = 0. Under these

conditions, Equation 13.23 can be written as

0 = 1

E

dσ

dt
+ σ

η
,

or

dσ

σ
= −

(
E

η

)
dt.

We can integrate this expression to get

σ = σ0 exp

(
− E t

η

)
. (13.25)

The quantity η/E is referred to as the relaxation time τ , and we can

rewrite Equation 13.25 as

σ = σ0 exp(−t/τ ). (13.26)

Equation 13.26 says that the stress decays exponentially with time, as

shown in Figure 13.31(b) (Maxwell). This is quite reasonable for many

polymers; however, the process of stress relaxation does not go on

indefinitely in real materials.
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Fig. 13.31 (a) Strain–time and

(b) stress–time predictions for

Maxwell and Voigt models.

In another model, called the Voigt model, the spring and the dash-

pot are arranged in parallel (Figure 13.30(b)). This means that the

strains in the two components are identical, i.e.,

ε = ε1 + ε2, (13.27)

and the stresses in the two components add, to give the stress on the

system, i.e.,

σ = σ1 + σ2. (13.28)
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It may be shown from Equations 13.27 and 13.28 that

dε

dt
= σ0

η
− E

ε

η
. (13.29)

Let us now examine the predictions of the Voigt model for creep, or

constant stress loading, and for stress relaxation. For the constant-

stress situation, σ = σ 0, Equation 13.29 becomes

dε

dt
+ E

ε

η
= σ0

η
.

This differential equation has the solution

ε =
(σ0

E

) [
1 − exp

(−E t

η

)]
. (13.30)

Remembering that the quantity η/E is the relaxation time τ , we find

that the variation in strain with time at a constant stress (creep) is

given by

ε =
(σ0

E

) [
1 − exp

(−t

τ

)]
. (13.31)

This relationship is shown in Figure 13.31(a); the prediction of the

Voigt model is quite realistic, because ε → σ 0/E as t → ∞.

For the stress relaxation case, we have an imposed constant strain

ε = ε0, and therefore, dε/dt = 0. The Voigt model predicts that

σ

η
= Eε0

η
,

or

σ = Eε0.

This linear elastic response, however, shown in Figure 13.31(b), does

not conform to reality.
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Fig. 13.32 Strain response as a

function of time for a glassy,

viscoelastic polymer subjected to a

constant stress σ 0. Increasing the

molecular weight or degree of

cross-linking tends to promote

secondary bonding between chains

and thus make the polymer more

creep resistant.

The molecular weight of a polymer can affect its creep behavior.

The strain response of a polymer as a function of time, ε(t), is shown

in Figure 13.32. Also shown is the effect of molecular weight. The

effect of increasing the degree of cross-linking is in the same direc-

tion as that of increasing the molecular weight. Both tend to pro-

mote secondary bonding between chains and thus make the polymer

more creep resistant. Compared to glassy polymers, semicrystalline

polymers tend to be more creep resistant. Polymers containing aro-

matic rings in the chain are even more creep resistant. Both increased

crystallinity and the incorporation of rigid rings add to the thermal

stability, and thus to the creep resistance, of a polymer.

In a constant-stress test of the kind just described, a parameter of

interest is the creep compliance J. This is the ratio of strain to stress.

Since the strain will be a function of time, the compliance will also

be a function of time. Thus,

J (t) = ε(t)/σ0. (13.32)

From Equation 13.32 and 13.31, we can write the creep compliance

as

J (t) = ε(t)/σ0 = (1/E )[1 − exp(−t/τ )]. (13.33)
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If one plots a series of creep compliances as a function of time, both

on logarithmic scales, over a range of temperature, one gets the curve

shown in Figure 13.33(a). It turns out that such individual plots can

be superposed by horizontal shifting (along the log-time axis) by an

amount log at, to obtain a master curve shown in Figure 13.33(b).

In Figure 13.33(a), we use arrows to indicate the horizontal shift of

data to obtain a master curve corresponding to a reference tempera-

ture of the polymer. This figure shows that, when creep compliance

is a measured at a series of temperatures, with the glass transition

temperature Tg as the reference temperature, then curves above Tg

are shifted to the right, while curves below Tg are shifted to the

left.

As discussed earlier, a thermally activated process shows a depend-

ence of its on temperature that can be described by an Arrhenius-type

expression. When viscous flow occurs in a polymer, the network struc-

ture breaks and re-forms locally. The thermal energy for such viscous

flow is available above the glass transition temperature Tg. Below Tg,

the thermal energy is not high enough for the breaking and remaking

of the bonds, and the material does not flow easily. In the viscoelastic

range, time and temperature have similar effects on polymers. There

are two easy ways of studying such behavior. In the first of these, we

can impose a constant deformation on the polymer and follow the

resultant stress. This will give us a stress relaxation modulus as a

function of time. The other technique involves the application of a

constant stress and measuring the deformation as a function of time.

This will give us a curve of compliance vs. time. A very useful princi-

ple called time--temperature superposition allows us to take the data

at one temperature and superimpose them on data taken at another

temperature by a shift along the log-time axis. This principle is of

great practical use, in as much as obtaining data over a full range of

creep compliance or stress relaxation behavior can involve years. The

principle allows one to shift data taken over shorter time spans, but

at different temperatures, to obtain a master curve that covers longer

time spans. Williams, Landel, and Ferry found that the logarithm of

aT (the time-shift factor) follows a simple expression, viz.,

log aT = −C 1(T − Ts )/(C 2 + T − Ts ),

where C1 and C2 are constants and Ts is a reference temperature for a

given polymer.19 If we take the reference temperature to be the glass

transition temperature Tg, then C1 = 17.5 and C2 = 52 K. If the refer-

ence temperature Ts is taken to be about 50 ◦C above Tg, then C1 =
20.4 and C2 = 101.6 K.

The amount of shift can be calculated by the Williams--Landel--

Ferry expression. The master curve for creep, obtained by superposing

horizontally shifted curves, is shown in Figure 13.33(b). Another

way of treating this problem is shown in Figure 13.33(c), where we plot

19 M. L. Williams, R. F. Landel, and J. D. Ferry, J. Amer. Chem. Soc., 77 (1955) 3701.
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Fig. 13.33 (a) A series of creep

compliances vs. time, both on
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the stress relaxation modulus as a function of time, both on logarith-

mic scales. The ‘‘experimentally” determined time-shift factor, as a

function of temperature, is shown in Figure 13.33(d).

S
tr

e
s
s

Time

Fig. 13.34 A constant imposed

strain ε0 results in a drop in stress

σ (t) as a function of time.

Now recall the model in which spring and dash-pot are arranged

in parallel, i.e., the Voigt model. The model is used to explain the

stress relaxation behavior of a polymer. We impose a constant strain

ε0 and follow the drop in stress σ (t) as a function of time. (See

Figure 13.34.) Instead of a compliance term, we now have a stress

relaxation modulus, given by

E (t) = σ (t)/ε0.

In the case of stress relaxation also, one can obtain a master curve,

as shown schematically in Figure 13.35. Also shown in the figure is

the effect of cross-linking and molecular weight. Stress relaxation in

polymers is of great practical significance when the polymers are used

in applications involving gaskets and seals. At times, this effect can

be exploited beneficially: for example, in a situation where residual

stresses are not desirable, we can incorporate a polymer to undergo

easy stress relaxation in response to residual stresses.

Example 13.5

Data on stress relaxation modulus vs. time for polyisobutylene (also

known as chewing gum) are shown in Figure E13.5(a). The data span a

range of 10−2 to 102 hours in time. Obtain the curve of the time-shift

factor for a reference temperature of 298 K. Obtain a master curve for

polyisobutylene based on time--temperature superposition of data.

Solution: By using the Williams--Landel--Ferry expression

log aT = −17.5(T − Tref)/[52 + (T − Tref)]

for a temperature range of −80 ◦C to 80 ◦C, we obtain the curve of

the time-shift factor vs. temperature shown in Figure E13.5(b). Using

this time-shift curve, we superimpose the individual stress relaxation

modulus curves given in the statement of the problem (Figure E13.5(a)),

to obtain the master curve shown in Figure E13.5(c). Note that the time

scale ranges from 10−14 to 102 hours.

Cross-linking

Log-time

L
o

g
 E

 (
t)

Molecular
weight

Fig. 13.35 A master curve

obtained in the case of stress

relaxation, showing the variation in

the reduced modulus as a function

of time. Also shown is the effect of

cross-linking and molecular weight.
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Fig. E13.5 (a) Stress relaxation modulus; (b) time–shift factor; (c) master curve.

(From E. Catsiff and A. V. Tobolsky, J. Polymer Sci., 19 (1956) 111.)

Example 13.6

The creep strain rate of a polymer is given by the expression

ε̇ = 4.5 × 1011 exp(−100 kJ/RT ),

where T is the temperature in kelvins and R is the universal gas con-

stant. How much time will it take for a rod of this polymer to extend

from 10 mm to 15 mm at 100 ◦C?

Solution:

ε̇ = �ε/�t = 4.5 × 1011 exp[−100, 000/(8.3 × 373)]

= 4.2 × 10−3 s−1

Hence,

�t = 0.5/(4.2 × 10−3) = 119 s.

Example 13.7

The activation energy for stress relaxation in a polymer is 50 kJ/mol.

The relaxation time at 25 ◦C is 90 days. What is the relaxation time at

125 ◦C?
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Solution:

1/τ = E

η
= A exp(−Q /RT ),

(1/τ25)/(1/τ125) = exp(−Q /R298)/ exp(−Q /R398),

τ125 = τ25 exp[(Q /R )(1/398 − 1/298)],

τ125 = 90 exp[((50 × 103)/8.314)(1/398 − 1/298)],

= 90 × 6.4 × 10−3,

= 0.57 day.

Example 13.8

A nylon cord, used to tie a sack, has an initial stress of 5 MPa. If the

relaxation time for this cord is 180 days, in how many days will the

stress reduce to 1 MPa?

Solution:

σ = σ0 exp(−t/τ ),

1 MPa = 5(−t/180),

t = −180 ln 1/5,

t = 290 days.

13.12 Diffusion-Related Phenomena in
Electronic Materials

Interconnect lines in integrated circuits are subject to diffusional pro-

cesses that can lead to void growth. These voids, inconjunction with

stresses, may lead to failure. There are two mechanisms responsible

for void growth:

� Thermal stresses. Figure 13.36(a) shows an interconnect. The core,

which has a rectangular cross section, is the component carrying

the electrical current. Electrical currents as high as 1010 A/m2 are

carried by the metallic conductor (typically, aluminum). The con-

ductor is covered by a passivation film (e.g. silicon nitride). The

difference in thermal expansion coefficient between the two leads

them to tensile stresses in the conductor. Assuming a rigid passiva-

tion layer, the stress in the conductor can be estimated from:

σt = 3�α�T K , (13.34)

where �T is the temperature change follwing passivation, �α

is the difference in thermal expansion coefficient between con-

ductor and passivation layer, and K is the bulk modulus of the
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Fig. 13.36 Metal interconnect

line covered by passivation layer

subjected to electromigration;

(a) overall scheme; (b) voids and

cracks produced by thermal

mismatch and electromigration;

(c) basic scheme used in Nix–Arzt

equation, which assumes

grain-boundary diffusion of

vacancies counterbalancing

electron wind. (Adapted from

W. D. Nix and E. Arzt, Met. Trans.,

23A (1992) 2007.)

conductor. Glaxner et al.20 estimate that these hydrostatic (tensile)

stresses can be as high as 500 MPa. Diffusion of vacancies, under

these stresses, at a temperature of 200 ◦C (typical of the conductor)

can lead to the formation of voids within the metal or cracks in

the passivation layer.
� Electromigration. The high current densities in the metal inter-

connect lines produce an ‘‘electron wind.” This electron wind

causes the migration of matter through, primarily, the diffusion

of vacancies. The electron wind will produce at atomic flow in

the same direction, with a vacancy flow in the opposite direc-

tion. The vacancy flow, which occurs principally along grain bound-

aries, is interrupted at transverse grain boundaries. The vacan-

cies condense and form voids. This is shown in Figure 13.36(b).

20 R. J. Glaxner, B. M. Clemens, and W. D. Nix, J. Mater. Res., 12 (1997) 2081.
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Figure 13.36(c) shows the flow of electrons and vacancies in a grain

with length λ. Diffusion occurs primarily along grain boundaries

because the grain-boundary diffusion coefficient, Dgb, is orders of

magnitude higher than the lattice diffusion coefficients at tempera-

tures below 0.5Tm, where Tm is the melting point in kelvin. The

thickness of the grain boundary is δ. Nix and Arzt21 developed the

following equation for the stress due to electromigration:

σN A = 1

2

λ

�
e Z ∗ρ j, (13.35)

where � is the atomic volume, λ is the grain-boundary length, δ

is the grain-boundary thickness, eZ * is the effective charge of the

metal ions, ρ is the resistance, and j is the current density.

Example 13.9

Calculate the Nix--Arzt stress in an aluminum line if the current density

is 1010 A/m2 and the grain size is 20 μm.

Given:

eZ * = 3.2 × 10−18 coulombs,

ρ = 28 × 10−9 �m,

δ = 3 × 10−10 m,

� = 16.6 A3,

j = 1010 A/m2.

Solution: Inserting these values into Equation 13.33:

σN A = 520 MPa.

This is indeed a high value.

13.13 Superplasticity

Some metallic alloys and ceramics show a peculiar behavior called

superplasticity. This is the ability to flow, in tension, to very large elon-

gations. Figure 13.37 shows a dramatic illustration of superplastic

behavior. The specimen was extended at a temperature of 413 K, and

a total strain of 48.5 was reached without failure. The phenomenon

of superplasticity was observed for the first time in 1934. A great deal

of activity has taken place in the area since then, and superplastic

forming has become a successful industrial process.

Superplasticity has been obtained in a number of alloy systems,

including titanium alloys (Ti--6% Al--4% V), iron-based alloys, and

21 W. D. Nix and E. Arzt, Met. Trans., 32A (1992) 2007.
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Fig. 13.37 Superplastic tensile

deformation in Pb–62% Sn eutectic

alloy tested at 415 K and a strain

rate of 1.33 × 10−4 s−1; total

strain of 48.5. (From M. M. I.

Ahmed and T. G. Langdon, Met.

Trans. A, 8 (1977) 1832.)
aluminum alloys. High-strength nickel-based superalloys have been

found to exhibit superplastic behavior, and the process of ‘‘gatoriz-

ing” (supposedly named after an alligator living in the lake in front

of the research institute) has been developed by Pratt and Whitney.

The potential of superplastic forming is especially bright for titan-

ium alloys, which are known to be very difficult to form, because

of their HCP structure. Superplasticity has also been discovered in

ceramics.

The basic reason that some materials can deform superplastically

when others cannot is related to how they respond to changes in

strain rate. The example of hot glass (above the transition tempera-

ture) comes to mind. We are all familiar with Coke bottles stretched

to very high strains; these interesting items are sold in curio shops.

Glass shows a Newtonian viscous behavior above a certain temper-

ature. Fiberglass is formed in such a manner and can be pulled to

extremely fine fibers. In a lamellar flow, Newtonian viscosity is defined

by (see Equation 3.29)

τ = η
dv

dy
,

where dv/dy is the variation in velocity of the fluid with distance y, τ

is the shear stress necessary to create the velocity gradient dv/dy, and

η is the viscosity. The derivative dv/dy is equivalent to the shear strain

rate γ̇ . (See Section 3.6.2.) Thus, we can write

τ = ηγ̇ . (13.34)

The stress-versus-strain-rate relationship from many materials is not

linear, but of the form (see Equation 3.23)

σ = K ε̇m, (13.35)

where K and m are constants and m is called the strain-rate sensitivity.

In general, m varies between 0.02 and 0.2, for homologous tempera-

tures between 0 and 0.9 (90% of the melting point in K). Hence, one

would have, at the most, an increase of 15% in the yield stress by

doubling the strain rate. Comparing Equations 13.34 and 13.35, we

see that a value of m = 1 will give a Newtonian viscous solid. Such a

material would not undergo tensile instability and could be stretched

indefinitely. Figure 13.38(a) shows schematically how a high value of

m will inhibit tensile instability (necking) and, consequently, enhance

plasticity in tension. The specimen is being deformed, in tension, at

a velocity v. The length increases from L0 to L1 and then to L2. At L2,

necking starts. If the material has a high value of m, this instability
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Fig. 13.38 (a) Schematic

representation of plastic

deformation in tension with

formation and inhibition of

necking. (b) Engineering-stress–

engineering-strain

curves.

will be inhibited because of the localized strengthening effect. When

the length is L2, the strain rate over the specimen is

ε̇2 = v

L 2

.

In the incipient neck region, which acts as a ‘‘minispecimen” embed-

ded in the large specimen, one has

ε̇′
2 = v

�
.

Since � < L 2, one has ε̇′
2 > ε̇2.

The strain rate sensitivity can be obtained from Equation 13.35 by

applying that equation to two strain rates and eliminating K. When

we do this, we obtain

m = ln(σ ′
2/σ2)

ln(ε̇′
2/ε̇

′
2)

.

For a high value of m, the strength σ ′
2 in the neck region is much

higher than σ 2, and further progression of plastic deformation at

that region is halted. Mathematically,

σ ′
2 >

P2

a
.

When m is low, σ ′
2 is not sufficiently high, and we have

σ ′
2 <

P2

a
.
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Fig. 13.39 Strain-rate

dependence of (a) stress and (b)

strain-rate sensitivity for Mg–Al

eutectic alloy tested at 350 ◦C

(grain size 10 μm). (After D. Lee,

Acta. Met., 17 (1969) 1057.)

a is the cross-sectional area in the neck region. The deformation con-

tinues to concentrate itself at the neck, with the attendant reduc-

tion in area caused by the constancy of volume. This leads to failure.

Figure 13.38(b) shows the two alternative paths beyond the maxi-

mum in the engineering-stress--engineering-strain curve. Thus, one

concludes that superplasticity is the result of the inhibition of neck-

ing as a result of a high value of m.

Under certain conditions of temperature and strain rate, some

metals and ceramics exhibit an enhancement of m. Curve (a) in Figure

13.39 shows the stress as a function of strain rate for an Mg--Al eutectic

alloy tested at 350 ◦C. One can see that in region II, the stress rises

more rapidly with strain rate. Curve (b) in the same figure shows the

strain rate sensitivity m as a function of strain rate. The maximum,

m = 0.6, occurs for a strain rate of 10−2 s−1. m = ∂ ln σ/∂ ln ε̇ is the

slope of curve (a) in the figure. Figure 13.40 shows the variation in

∂ L /L 0 (the tensile fracture strain) with ε̇ for a Zr--22% Al alloy. The

maxima (at the three temperatures) in �L/L0 correspond roughly to

the center of region II. Further proof of the effect of m on the extent

of superplastic flow is provided by Figure 13.41, which contains data

from several studies. Data for alloys of Fe, Mg, Pu, Pb,--Sr, Ti, Zn, Zr

are plotted, and the correlation is excellent. As m approaches unity,

�L/L0 reaches extraordinarily high values.

The microstructural requirement for a high value of m is a small

grain size. The testing temperatures are usually above 0.4Tm, where

Tm is the absolute melting point, and the strain rates in which super-

plasticity is observed are usually intermediate (10−4 s−1 < ε̇ < 10 s−1).

Superplasticity is usually enhanced by thermal cycling, i.e., strain-

ing the material sequentially at two different temperatures. All alloys

that show structural superplastic behavior have a very fine grain size

(<10 μm). For these small grain sizes, and at the deformation tem-

peratures, most of the plastic deformation takes place by grain-

boundary sliding, and not by the conventional dislocation mech-

anisms in the interior of the grains. Specimens deformed to very large

strains routinely exhibit an equiaxial grain structure, in contrast with
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conventional deformation, in which the strain undergone by the indi-

vidual grains is equal to the overall strain, and the grains assume

an elongated shape. Grain-boundary sliding accounts for 50--70% of

the overall strain. Superplastic materials may be likened to sand: the

granules retain their shape with plastic deformation. In contrast to

sand, however, superplastic materials do not have interstices between

the grains. Thus, some plastic accommodation must occur as the

grains slide past each other. The contribution of grain-boundary slid-

ing to plastic deformation is more substantial the greater the grain-

boundary surface per unit volume. Since the grain-boundary surface

is inversely proportional to the grain size, this explains why the
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Table 13.2 Materials Exhibiting Very High Tensile Strainsa

Material
Maximum strain
(%)

Al–33% Cu eutectic 1,500
Al–6% Cu–0.5% Zr 1,200
Al–10.7% Zn–0.9% Mg–0.4% Zr 1,500
Bi–44% Sn eutectic 1,950
Cu–9.5% Al–4% Fe 800
Mg–33% Al eutectic 2,100
Mg–6% Zn–0.6% Zr 1,700
Pb–18% Cd eutectic 1,500
Pb–62% Sn eutectic 4,850
Ti–6% Al–4% V 1,000
Zn–22% Al eutectoid 2,900
Al(6061)–20% SiC (whiskers) 1,400
Partially stabilized zirconia 120
Lithium aluminosilicate 400
Cu–10% Al 5,500
Zirconia 350
Zirconia + SiO2 1,000

aAdapted from D. M. R. Taplin, G. L. Dunlap, and T. G. Langdon, Ann. Rev.

Mater. Sci., 9 (1979) 15.

contribution of grain-boundary sliding is less important in mater-

ials with large grain sizes.

Table 13.2 shows the tensile elongation of a number of superplas-

tic materials. It is interesting to note that superplasticity has been

found in composites and ceramics. Sherby and co-workers obtained

tensile elongations of 1,300% in an aluminum alloy/SiC whisker re-

inforced composite. The Sherby team used temperature cycling. These

researchers also detected superplasticity in ultrahigh-carbon steel and

were able to attribute the splendid properties of the Damascus sword

to superplastic forming. Thus, the use of superplasticity is centuries

old. For ceramics, superplasticity (in tension) is a technology with

great potential. Wakai et al. obtained tensile elongations of 120% in

an yttria-stabilized polycrystal containing 90% tetragonal zirconia and

10% cubic zirconia.22 A grain size of 0.3 μm produced a strain rate

sensitivity of m = 0.5 at 1450 ◦C. This elongation was exceeded in

work done by Nieh et al., who obtained a value of 350% at 1,550◦C.23

Nanocrystalline ceramics (Section 5.5) are especially attractive in this

regard. Superplasticity was also obtained in an aluminosilicate and

other ceramic systems.

One of the major problems in superplastic forming is the for-

mation of voids at grain boundaries. Cavitation during superplastic

22 F. Wakai, S. Sakaguchi, and Y. Matsuno, Advanced Ceramic Materials, 1(3) (1986) 259.
23 T. G. Nieh, C. M. McNally, and J. Wadsworth, Scripta Met., 22 (1988) 1297.
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(a)

(b)

Fig. 13.42 Cavitation in

superplastically formed 7475-T6

aluminum alloy (ε = 3.5) at 475 ◦C

and 5 × 10−4 s−1. (a)

Atmospheric pressure. (b)

Hydrostatic pressure P = 4 MPa.

(Courtesy of A. K. Mukherjee.)

forming results in a deterioration of the mechanical properties of

parts formed by superplasticity. Cavities form because of incom-

patible deformation of adjacent grains and weaken the material.

These voids can be reduced or eliminated by superimposing a hydro-

static stress upon the applied tensile stress. This is illustrated in

Figure 13.42. The aluminum alloy shown exhibited considerable cavi-

tation at a plastic strain of 350%, or 3.5. The application of a

superimposed hydrostatic pressure of 4 MPa, through a gaseous

medium, decreases the cavitation substantially. Otherwise, the cavita-

tion would lead to premature failure. Figure 13.43(a) shows the effect

of grain size on the elongation of an 7475 Al alloy. Figure 13.43(b)

shows a number of specimens superplastically deformed up to fail-

ure. The initial specimen is at the bottom, and the effect of increas-

ing the superimposed pressure is shown from bottom to top. The

pressures (and elongations to failure) are, respectively, 330% (atmos-

phere), 720% (1.4 MPa); 830% (2.8 MPa), and 1330% (and no failure

at 5.6 MPa).
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(A) As machined

(B) As received
    120% elongation

(C) Fine-grained
    525% elongation

(a)

(b)

Fig. 13.43 (a) Effect of grain size on elongation: (A) Initial configuration. (B) Large

grains. (C) Fine grains (10 μm) (Reprinted with permission from N. E. Paton, C. H.

Hamilton, J. Wert, and M. Mahoney, J. Metal, 34 (1981) No. 8, 21.) (b) Failure strains

increase with superimposed hydrostatic pressure (from 0 to 5.6 MPa). (Courtesy of

A. K. Mukherjee.)
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Exercises

13.1 A cylindrical specimen creeps at a constant rate during 10,000 hours

when it is subjected to a constant load of 1,000 N. The initial diameter and

length of the specimen are 10 and 200 mm, respectively, and the creep rate

is 10−8 h−1. Find:

(a) The length of the specimen after 104, 106, and 108 hours.

(b) The true and engineering strains after these periods.

(c) The true and engineering stresses after these periods.

13.2 Give three reasons why the extrapolation of creep data obtained over a

short period can be dangerous over long periods.

13.3 By means of plots, show how isochronal stress-versus-strain curves can be

constructed from creep curves for various stresses at a certain temperature.

13.4 Howson et al.24 obtained the following stress-rupture results for the

superalloy INCONEL MA 754 (a dispersion-strengthened alloy):

24 T. E. Howson, D. A. Mervyn, and J. K. Tien, Met. Trans., 11A (1980) 1609.
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Temperature (◦C) Applied Stress (MPa) Rupture Life (hours)

760 189.7 –
760 206.9 83.9
760 206.9 111.2
760 224.2 38.6
760 224.2 29.0
760 241.4 6.9
760 258.7 1.8
746 206.9 320.8
774 206.9 65.0
788 206.9 33.2
982 110.4 195.1
982 113.8 136.6
982 113.8 106.9
982 116.5 27.6
982 117.3 106.3
982 120.7 13.0
982 120.7 39.0
996 110.4 52.6
996 110.4 41.3

1010 110.4 20.3
1010 110.4 41.7
1024 110.4 9.4

(a) Verify whether this alloy obeys a Larson--Miller relationship, and find C.

Then prepare a master plot, assuming that it does.

(b) Determine the predicted stress-rupture life if the alloy is stressed at

1,000 ◦C and 50 MPa.
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Fig. Ex13.5 Master plot for

Larson–Miller parameter for AISI

316 stainless steel. (Courtesy of

T. Silveira and S. N. Monteiro.)
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13.5 What is the predicted stress-rupture life of AISI 316 steel (18% Cr, 8% Ni,

2--3% Mo) at 800 ◦C and 160 MPa? (See Figure Ex13.5.)

13.6 Verify whether the data of Exercise 13.5 obey the Manson--Haferd

correlation.

13.7 Assuming that pure silver creeps according to the Dorn equation, esti-

mate the rupture time at 400 ◦C when the silver is subjected to a stress of 50

MPa, knowing that at 300 ◦C and at the same stress level the rupture time is

2,000 hours.

13.8 Howson et al.25 studied the creep and stress-rupture response of oxide-

dispersion-strengthened (ODS) superalloys produced by mechanical alloying.

They determined that the activation energy for creep Qc was 619 kJ/mol by

conducting tests at a constant applied stress of 558.7 MPa at the three tem-

peratures of 746, 760, and 774 ◦C.

(a) The results shown in Figure Ex13.8 were found for experimental alloy MA

6000 E at 760 ◦C. Estimate the value of n, and discuss this value in terms

of the microstructure exhibited by the alloy (made by means of dispersion-

strengthening by inert yttrium oxide dispersoids plus precipitation-

strengthening by gamma prime).

(b) By applying Equation 13.4, show how the activation energy can be found.

Make the appropriate plot, and find the minimum creep rate at the afore-

mentioned three temperatures. Note that the activation energy is given

per mole.

13.9 In Exercise Ex13.9, verify how closely the Monkmon--Grant relationship

is obeyed.

13.10 A lead-based alloy (melting point, 327.5 ◦C) was tested at ambient tem-

perature (23 ◦C) and three different engineering stress levels: 8.5, 9, and 10

MPa. The curve that was obtained was shown in Figure Ex13.10.

(a) From the temperature aspect, establish whether the room temperature is

in the creep domain for Pb.

(b) Obtain the minimum creep rates for the three stress levels.

25 T. E. Howson, D. A. Mervyn, and J. K. Tien, Met. Trans., 11A (1980) 1609.
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Fig. Ex13.12 Steady-state creep

behavior of UO2 can be divided

into two regimens with different

stress exponents. The transition

stress between the regimens

decreases with increasing

temperature. (From L. E. Poteat

and C. S. Yust, in Ceramic

Microstructures, R. M. Fulrath and

J. A. Pask, eds. (New York: John

Wiley & Sons, 1968) 646.)

(c) Obtain parameters for the curve at 8.5 MPa, as expressed by Equation 13.1.

(d) Obtain the stress exponent in the Mukherjee--Bird--Dorn equation. Based

on this value, what mechanism of creep do you expect?

13.11 Using the results from the previous problem, predict the minimum

creep rate for the same material if the test would be carried out at 10 ◦C and

stress levels of (a) 10 MPa and (b) 20 MPa. The self-diffusion coefficients for Pb

are:

D = 5.24 × 10−8 cm2 · h−1 at 250◦C,

D = 2.92 × 10−7 cm2 · h−1 at 285◦C.

13.12 Determine the slopes for the creep behavior of UO2, shown in Figure

Ex13.12. Discuss the deformation mechanisms in the two regions.

13.13 Tungsten is being used at half its melting point (Tm ≈ 3,400 ◦C) and a

stress level of 160 MPa. An engineer suggests increasing the grain size by a

factor of 4 as an effective means of reducing the creep rate.

(a) Do you agree with the engineer? Why? What if the stress level were equal

to 1.6 MPa?

(b) What is the predicted increase in length of the specimen after 10,000

hours if the initial length is 10 cm?

(Hint: Use a Weertman--Ashby map.)
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13.14 Stress relaxation in a polymer results from molecular displacements.

Thus, one would expect that the effect of temperature on stress relax-

ation would be similar to that of any other thermally activated process. As

described in the text, an Arrhenius-type expression describes the temperature

dependence of such phenomena. Thus, the relaxation time is the inverse rate,

or

1

τ
∝ exp(−Q /kT ),

where the symbols have their usual significance. Describe how you would

determine, from this expression, the activation energy Q of the molecular

process causing the relaxation.

13.15 Curves of creep modulus (the inverse of creep compliance) vs. time for

four different temperatures are shown in Figure Ex13.15. Obtain a master

curve for the polymer at a reference temperature of 101.6 ◦C.

13.16 An amorphous polymer has a glass transition temperature of 100 ◦C.

A creep modulus of 1 GPa was measured after 1 hour at 75 ◦C. Using the

Williams--Landel--Ferry expression, determine the time required to reach this

modulus at 50 ◦C.

13.17 The viscosity of an amorphous polymer is 105 Pa · s at 190 ◦C and 2 ×
102 Pa · s at 270 ◦C. At what temperature will the viscosity be 109 Pa · s?

13.18 What is the strain undergone by a polymer in tension at 67 ◦C for one

minute if the polymer’s strain-rate response is given by ε̇ = 4.5 × 1028 exp

(−200 kJ/RT)?

13.19 A nylon cord has an initial stress of 2 MPa and is used to tie a sack. If

the relaxation time for this cord is 250 days, how many days will it take for

the stress to drop to 0.1 MPa?

13.20 How much time will it take for a rod of polymer to extend from 20 mm

to 30 mm at 120 ◦C if it is deformed at a strain rate ε̇ = 4.5 × 1011 exp(--100

kJ/RT)?
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13.21 Find the initial stress for a nylon cord if the relaxation time for the

cord is 100 days and in 50 days the stress is reduced to 1 MPa.

13.22 (a) Determine the strain-rate sensitivity in the superplastic range for

the alloys shown in Figures 13.39(a) and 13.40, and explain the values

encountered. (b) Why does the maximum in ductility vary with temperature

in Figure 13.40?

13.23 Explain why the presence of voids decreases the maximum strain in

superplastic deformation.

13.24 A polymer has a viscosity of 1012 Pa · s at 150 ◦C. If this polymer is

subjected to a tensile stress of 100 MPa at that temperature, compute the

deformation after 10 h. Assume the polymer to behave as a Maxwell solid.

Take E = 5 GPa, and use the equation E = σ
E

+ 1
3η

σ t.

13.25 For a given polymer, the activation energy for stress relaxation was

measured to be 10 kJ/mol. If the stress relaxation time for this polymer at

room temperature is 3,600 s, what would be the relaxation time at 100 ◦C?

13.26 In a laboratory experiment for potential creep deformation, it was

found that the creep rate (ε̇) of an alloy is 0.5% per hour at 780 ◦C and 2.8 ×
10−2% per hour at 650 ◦C.

(a) What is the activatuion energy for creep in the given temperature range?

(b) At a temperature of 550 ◦C, what is the estimated creep rate?

13.27 A component used in a chemical plant is being used at 600 ◦C and

stress of 25 MPa. The corresponding creep rate is: 3 × 10−12 s −1. If the stress

is increased to 35 MPa and the temperature to 650 ◦C, what will be the cor-

responding creep rate?

Given:

Q = 150 kJ/mol,

n = 4.5 (stress exponent).

13.28 Honey has a viscosity of 1.5 Pa · s at room temperature. If the activation

energy of honey is 20 kJ/mol, what will be its viscosity at 0 ◦C?

13.29 From the plot in Figure Ex13.29 on p. 711, determine the amount of

strain that a titanium component will undergo if subjected to a stress of

30 MPa at a temperature of 700 ◦C for 1 hour.

Given:

D0 = 1 cm2 s−1,

G (shear modulus) = 43.8 GPa,

Q = 15 kJ/mol,

b = 0.3 nm.

13.30 Give an example of the creep phenomenon in nature (without interfer-

ence of human paws).

13.31 Using the parameters in Figure 13.6, calculate the rupture time by the

Larson--Miller equation: (a) at a temperature of 1089 K and stress of 100 MPa;

(b) at a temperature of 1005 K and stress of 200 MPa; (c) at a temperature of

922 K and stress of 300 MPa.
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13.32 At room temperature, the relaxation time for a polymer is 100 days.

What will be its relaxation time if the activation energy is one-fourth of its

current value?

13.33 Calculate the creep compliance for stainless steel with a relaxation time

of 72 hours.
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13.34 Give an example of a superplastic material and find (and describe) an

application for it. A web-engine search is recommended.

13.35 (a) From the different creep tests carried out on Zircaloy, Figure

Ex13.35, determine the stress exponent.

Given:

G(T) = 36.27 (GPa) --0.02T (◦C),

D0 = 5 × 10−4 m2/s,

Q = 270 kJ/mol,

b = 3.23 ×10−10 m.

(b) Knowing the rupture time at 600 ◦C and 25 MPa is 10 hours, calculate

the rupture time for the other conditions in Figure Ex13.35 using the

Monkman--Grant equation.



Chapter 14

Fatigue

14.1 Introduction

There is some confusion in the literature about the terminology per-

taining to fatigue. We define fatigue as a degradation of mechanical

properties leading to failure of a material or a component under cyclic

loading. This definition excludes the so-called phenomenon of static

fatigue, which is sometimes used to describe stress corrosion crack-

ing in glasses and ceramics in the presence of moisture. Brittle solids

(glasses and crystalline ceramics) undergo subcritical crack growth in

an aggressive environment under static loads. Silica-based glasses are

especially susceptible to this kind of crack growth in the presence of

moisture. If a glassy phase exists at grain boundaries and interfaces,

it will be susceptible to such an attack. Thus, static fatigue is more

appropriately a stress corrosion phenomenon, rather than a cyclic

stress-related phenomenon.

In general, fatigue is a problem that affects any structural compo-

nent or part that moves. Automobiles on roads, aircraft (principally

the wings) in the air, ships on the high sea constantly battered by

waves, nuclear reactors and turbines under cyclic temperature con-

ditions (i.e., cyclic thermal stresses), and many other components

in motion are examples in which the fatigue behavior of a mater-

ial assumes a singular importance. It is estimated that 90% of ser-

vice failures of metallic components that undergo movement of one

form or another can be attributed to fatigue. Often, a fatigue frac-

ture surface will show some easily identifiable macroscopic features,

such as beach markings. Figure 14.1 shows a schematic of the frac-

ture surface of, say, a steel shaft that failed in fatigue. The main

features of this kind of failure are a fatigue crack initiation site,

generally at the surface; a fatigue crack propagation region showing

beach markings; and a fast-fracture region where the crack length

exceeds a critical length. Typically, the failure under cyclic loading

occurs at much lower stress levels than the strength under monotonic

loading.
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Initiation

Fatigue crack
propagation

Fracture

Fig. 14.1 Schematic

representation of a fatigue fracture

surface in a steel shaft, showing

the initiation region (usually at the

surface), the propagation of fatigue

crack (evidenced by beach

markings), and catastrophic

rupture when the crack length

exceeds a critical value at the

applied stress.

One can divide the study of cyclic behavior of materials into the

following three classes:

� Stress-life approach
� Strain-life approach
� Fracture mechanics approach.

The stress-life approach is the oldest way of treating the cyclic fatigue

data. It is useful when stresses and strains are mostly elastic. The

main drawback of this approach is that we are unable to distinguish

between the initiation and propagation phases of fatigue life. The

strain-life approach is useful when there is a significant amount of

plastic strain. The fatigue life is typically quite short under these

conditions. In the fracture mechanics approach, we apply the basic

ideas of fracture mechanics to cyclic fatigue, i.e., we use the cyclic

stress intensity factor as the crack driver. It allows us to estimate the

life spent in propagating a crack from an initial size to larger size or

to the critical size corresponding to failure.

In this chapter, we present a basic description of the various

aspects of fatigue in different materials, followed by a brief examin-

ation of the various fatigue-testing techniques.

14.2 Fatigue Parameters and S–N
(Wöhler) Curves

We first define some important parameters that will be useful in

the subsequent discussion of fatigue. These parameters, shown in

Figure 14.2, are as follows:

cyclic stress range �σ = σmax − σmin′ ,

cyclic stress amplitude σa = (σmax − σmin)/2,

mean stress σm = (σmax + σmin)/2,

stress ratio R = σminσmax,

where σ max and σ min are the maximum and minimum stress levels,

respectively.
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polymeric materials. Polymers that

form crazes, such as

polymethylmethacrylate (PMMA)

and polystyrene (PS), may show a

flattened portion in the very

beginning, indicated as stage I. (c)

An example of an actual S–N curve

showing the three stages in the

case of polystyrene.

Traditionally, the behavior of a material under fatigue is described

by the S--N (or σ−N) curves (Figure 14.3), where S (or σ ) is the stress and

N is the number of cycles to failure. Such an S--N curve is frequently

called a Wöhler curve, after the German engineer who first observed

that kind of fatigue behavior in railroad car wheels in the 1860s.

For steels, in general, one observes a fatigue limit or endurance limit

(curve A in Figure 14.3(a)), which represents a stress level below which

the material does not fail and can be cycled indefinitely. Such an

endurance limit does not exist for nonferrous metals (curve B in the

figure). Polymeric materials show essentially similar S--N curves. Figure

14.3(b) shows a schematic of an S--N curve for a variety of polymers.

Polymers that form crazes, such as polymethylmethacrylate (PMMA)

and polystyrene (PS), may show a flattened portion in the very begin-

ning, indicated as stage I in the figure. In region II, the stress is not
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high enough for crazes to form. Crazed regions are, of course, the

sites of microcrack nucleation. They will form in the initial quarter

of a tensile cycle in such materials. Recall that the crazes do not form

in compression. Such a flat region does not exist for polymers that

do not show craze formation, and the S--N curve for such polymers

will be very similar to that of metals; that is, stage I is simply an

extension of stage II. An example of an actual S--N curve showing the

three stages in the case of polystyrene is presented in Figure 14.3(c).

Polystyrene shows extensive crazing at room temperature. Polycarbon-

ate, on the other hand, does not show crazing at room temperature,

and its S--N curve does not show stage I. No such S--N curves are avail-

able for ceramics, although, as we shall see later in the chapter, stable

subcritical crack propagation under cyclic fatigue can occur in ceram-

ics. Note that the relationship between S and N is not a single-valued

function, but serves to indicate a statistical tendency. Also, the fatigue

life determined in terms of S--N curves cannot be separated into the

initiation and propagation parts of fatigue. Figure 14.4 shows repre-

sentative S--N curves for (a) metals and (b) polymers. It is apparent

that the endurance life varies widely. There is a dramatic difference

between, for instance, 1.2% C steel and gray cast iron.

14.3 Fatigue Strength or Fatigue Life

Traditionally, fatigue life has been presented in the form of an S--N

curve (Figure 14.3). With regard to this measure, fatigue strength refers

to the capacity of a material to resist conditions of cyclic loading.

However, in the presence of a measurable plastic deformation, mater-

ials respond differently to strain cycling than to stress cycling. Thus,

one would expect that the fracture response of a material under cyclic

conditions would show a similar difference. In this section, we treat

fatigue life in terms of strength or strain versus number of cycles to

failure Nf or number of reversals to failure, 2Nf. It is convenient to

consider separately the elastic and plastic components of strain. The

elastic component can be readily described by means of a relation

between the stress amplitude and the number of reversals (i.e., twice

the number of cycles). This is called the Basquin1 relationship. It may

be expressed as:

σa = σ ′
f (2N f )b .

Since the deformation is elastic, we can write:

σa = �σ

2
= �εe E

2
.

Thus:

�εe/2 = σa/E = (σ ′
f /E )(2N f )b,

1 O. H. Basquin, Proc. Am. Soc. For Testing and Matls., 10 (1910) 625.



14 .3 FATIGUE STRENGTH OR FATIGUE L IFE 717

1.20% C steel

oil quenched and drawn

Chrome-nickel steel
oil quenched and drawn

0.53% C steel

oil quenched and drawn

Structural steel
rod, as-rolled

Aluminium-copper alloy

Copper, drawn and annealed

Gray cast iron

600

500

400

300

200

100

0
104 105 106 107 108

Cycles to failure, Nf

S
tr

e
s
s
 a

m
p

li
tu

d
e
, 
M

P
a

S
tr

e
s
s
 a

m
p

li
tu

d
e
, 
M

P
a

Cycles to failure, Nf

104103102
0

5

10

15

20

25

105 106 107 108

PS

PMMA PPO

PET

EP

PP

PTFE

PE
Nylon
(dry)

(a)

(b)

Fig. 14.4 S–N curves for typical

(a) metals and (b) polymers.

where �εe/2 is the elastic strain amplitude, σ a is the true stress ampli-

tude, σ ′
f is the fatigue strength coefficient (equal to the stress inter-

cept at 2Nf = 1), Nf is the number of cycles to failure, and b is the

fatigue strength exponent. This relationship is an empirical represen-

tation of the S--N curve above the fatigue limit in Figure 14.3. On a

log--log plot, it gives a straight line of slope b. One can see that the
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p. 3.)

two expressions are equivalent. In elastic deformation, σ a/E is equal

to the elastic strain amplitude, �εe/2.

The plastic strain component is better described by the Manson--

Coffin relationship,2

�εp/2 = σa/E = ε′
f (2N f )c ,

where �εp/2 is the amplitude of the plastic strain, ε′
f is the ductility

coefficient in fatigue (equal to the strain intercept at 2Nf = 1), 2Nf is

the number of reversals to failure, and c is the ductility exponent in

fatigue. On a log--log plot, the Manson--Coffin relation gives a straight

line of slope c. It has been observed that a smaller value of c results in a

longer fatigue life. In the regimen of high-strain, low-cycle fatigue, the

Manson--Coffin relation assumes great importance. Experimentally, it

is frequently more convenient to control the total strain. In many

structural components, the material in a critical place (say, at a notch

root) may be subjected, essentially, to strain control conditions due

to the elastic constraint of the surrounding material. For a material

subjected to a total strain range of �εt (elastic and plastic strain), we

can determine the fatigue strength by a superposition of the elastic

and plastic strain components, i.e.,

�εt/2 = �εe/2 + �εp/2 = (σ ′
f /E )(2N f )b + ε′

f (2N f )c .

Thus, we expect that the curve of the fatigue life, in terms of total

strain, will tend to the plastic curve at large total-strain amplitudes,

whereas it will tend to the elastic curve at low total-strain amplitudes,

as shown schematically in Figure 14.5. An example of such a behavior

from a real material (an 18%-Ni maraging steel) is shown in Figure

14.6. The Manson--Coffin regimen is known as low-cycle fatigue, in which

there is a discrete amount of plastic deformation in each cycle. The

Basquin regimen is called high-cycle fatigue. The stresses are primarily

2 L. F. Coffin, Trans. ASME, 76 (1954) 931; S. M. Manson and M. H. Hirschberg, in Fatigue:

An Interdisciplinary Approach (Syracuse, NY: Syracuse University Press, 1964), p. 133.
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elastic in this domain. The typical range of values for the exponents

b (high-cycle fatigue) and c (low-cycle fatigue) are:

b :
1

8
→ 1

5
(Basquin exponent),

c : 0.5 → 0.6 (Manson-Coffin exponent).

14.4 Effect of Mean Stress on Fatigue Life

The mean stress σ m can have an important effect on the fatigue

strength of a material. A simple and crude way to demonstrate

the effect of σ m would be to present S--N curves of a given mater-

ial for different values of σ m on the same graph. Figure 14.7
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Fig. 14.7 Effect of mean stress

on S–N curves. The fatigue life

decreases as the mean stress

increases.

shows such curves schematically. Note that, for a given stress ampli-

tude σ a, as the mean stress increases, the fatigue life decreases.

We can describe the effect of σ m in a very simple manner. Sup-

pose that the limiting value of any combination of stresses is σ f, the

monotonic true fracture stress. We can think of other arbitrary limits,

such as the ultimate tensile stress σ UTS or the yield stress σ y, but σ f is

the maximum allowable true stress. Figure 14.8(a) shows a schematic

plot of alternating stress σ a (or S) versus σ m. Note that, for σ m = 0,

the alternating stress σ a is a maximum and equal to σ f. For σ a = σ f,

the fatigue life is simply one-fourth of a cycle. For an ideal material,

one would expect the relationship σ a + σ m ≤ σ f, the limiting value

of any combination of stresses, to be valid. Thus, one can expect a

straight line to join points A and B in Figure 14.8(a). Cyclic loading is

not possible to the right of line AB. Then, in the presence of a mean

stress of, say, σ f/3, we will have a maximum allowable stress equal to
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Fig. 14.8 (a) Effect of mean

stress on fatigue life. (b) Gerber,

Goodman, and Soderberg

diagrams, showing mean stress

effect on fatigue life.

2σ f/3. Note that this description is an oversimplification of the real

behavior of the material, in as much as it assumes that the damage

produced in each cycle by cyclic plastic strain is independent and

noncumulative.

Various empirical expressions have been proposed which take into

account the effect of mean stress on fatigue life. Some of these are

the following: Goodman’s relationship, which assumes a linear effect

of mean stress between σ m = 0 and σ UTS:

σa = σ0[1 − σm/σUTS].

Gerber’s relationship, which assumes a parabolic effect of mean stress

between σ m = 0 and σ UTS:

σa = σ0[1 − (σm/σUTS)2].

Soderberg’s relationship, which assumes a linear effect of mean stress

between σ m = 0 and σ y:

σa = σ0(1 − σm/σy).

In all these relationships, σ m is the mean stress, σ a is the fatigue

strength in terms of stress amplitude when σ m �= 0, σ 0 is the fatigue

strength in terms of stress amplitude when σ m = 0, σ UTS is the mono-

tonic ultimate tensile strength, and σ y is the monotonic yield stress.

Figure 14.8(b) shows the three relations schematically. Experimentally,

it has been observed that the great majority of data falls between the

Gerber and Goodman lines. Thus, the Goodman diagram represents

a conservative estimate of the mean stress effect. Note that the three

expressions involve uniaxial stresses. In most real-life situations, one

encounters biaxial or triaxial situations. Hence, one needs to define

stresses corresponding to σ y or σ UTS under multiaxial stress situ-

ations. A practical way around this is to use the concept of equivalent
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distortion energy -- that is, to compute the distortion energy for uni-

axial and multiaxial states and (a) assume that the cycling behavior

of a material is equivalent when the material is cycled between two

energy distortion values and (b) compute the maximum value of the

mean stress by use of von Mises yield criterion. (See Chapter 3.) Then

we can find the failure conditions for a given multiaxial stress state.

14.5 Effect of Frequency

Frequency of cycling can have an effect on the fatigue behavior of a

material. Figure 14.9 shows the S--N curves for a steel used for nuclear

reactor pressure vessels at 20 Hz and 1,000 Hz. Note that increasing

the test frequency from 20 Hz to 1,000 Hz resulted in lower fatigue

life at a given stress level. The decrease of the fatigue life at higher fre-

quencies is attributed to the temperature increase that results in the

higher-frequency tests. We should mention that such high-frequency

fatigue tests are done in very sophisticated machines. Special servo-

valves, activated by voice coils, allow frequencies of up to 1,000 Hz to

be obtained. Typically, such a machine is housed in a separate, sound-

proof room with a heat pump that allows cooling, thus preventing

overheating of the servovalves.

14.6 Cumulative Damage and Life Exhaustion

The discussion in the preceding sections was restricted to fatigue

under simple conditions of constant amplitude, constant frequency,

and so on. In real life, the service conditions are rarely so simple.

Many components and structures are subject to a range of fluctuating

loads, mean stress levels, and variable frequencies. Thus, it is of great

importance to be able to predict the life of a component subjected to

variable-amplitude conditions, starting from data obtained in simple
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constant-amplitude tests. The cumulative-damage theories attempt to

do just that.

Basically, these theories consider fatigue to be a process of accu-

mulating damage in a material until a certain maximum tolerable

damage is reached. In other words, the phenomenon of fatigue is con-

sidered to be an exhaustion process of a material’s inherent life (or

ductility). A schematic fatigue life diagram, shown in Figure 14.10(a),

elucidates the concept. At a constant stress of, say σ 1, the life of the

material is 150 cycles, while at σ 2 it is 300 cycles. According to the

cumulative-damage theory, in going from A to B or C to D, we gradu-

ally exhaust the material’s fatigue life. That is, at points A and C, 100%

of life at that level is available, while at points B and D, the respective

lives are completely exhausted. If fatigue damage does, indeed, accu-

mulate in a linear manner, each cycle contributes the same amount

of damage at a given stress level. For example, on cycling the mater-

ial from A to E, we exhaust one-third of the fatigue life available at

σ 1. If we now change the stress level to σ 2, then the percentage of

life already exhausted at σ 1 is equivalent to the percentage of life

exhausted at σ 2. That is, one-third of fatigue life at σ 2 is equivalent

to one-third of fatigue life at σ 1. Thus, in descending from E to F, we

get from 50 to 100 cycles, and, as only one-third of fatigue life was

exhausted at σ 1, two-thirds of fatigue life -- that is, 200 cycles -- is still

available at σ 2. The same kind of change can be described for a low-to

high-stress traversal.

Figure 14.10(b) shows the sequence of cyclic loading periods, each

one with a specific mean stress and stress amplitude. The number of

cycles in the four blocks are n1, n2, n3, n4, etc. The total life for each

of these blocks is, respectively, N1, N2, N3, N4, etc. We just add up the

fractions. The parallel can be drawn with our health. If a person were

to smoke during their entire life, their life expectancy would be, say

50 years. A totally healthy person would live 100 years. If somebody

alternates between ten years of smoking and ten years of no smoking,

the life expectancy would be shortened to 75.
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This linear damage model does not concern itself with the physical

picture of the fatigue damage. It does, however, give an empirical way

of predicting the fatigue life after a complex loading sequence. The

method is generally known as the Palmgren--Miner rule or, simply, linear

cumulative-damage theory.3 The Palmgren--Miner rule says that the sum

of all life fractions is unity; that is,

k∑
i=1

ni/Ni = 1, or

n1/N1 + n2/N2 + n3/N3 + n4 N4 + . . . nk/Nk = 1, (14.1)

where k is the number of stress levels in the block spectrum loading;

N1, N2, . . ., Ni are the fatigue lives corresponding to stress levels σ 1,

σ 2, . . . σ i, respectively; and, n1, n2, . . ., ni are the number of cycles

carried out at the respective stress levels. This rule is obeyed by a

series of materials if the underlying assumptions are satisfied. The

principal assumption is that the damage accumulation rate at any

level does not depend on the prior loading history of the material;

in other words, the damage per cycle is the same at the beginning

or at the end of fatigue life, at a given stress level. This implies that

the magnitude and direction of the change in amplitude (from low

to high or high to low) do not have an effect on fatigue life. We also

assume that in each block the loading is totally reversible (i.e., σ m = 0).

The validity of these assumptions is problematic. For example, it is

quite likely that, for blocks identical in size and amplitude, a change

in load from high to low would be much more dangerous than one

from low to high: A crack initiated at high loads can continue to grow

at low loads, whereas in the reverse case, at low loads, perhaps the

crack would never have formed.

Example 14.1

The S--N curve of a material is described by the relationship

log N = 10(1 − S/σmax),

where N is the number of cycles to failure, S is the amplitude of the

applied cyclic stress, and σ max is the monotonic fracture strength --

i.e., S = σ max at N = 1. A rotating component made of this material is

subjected to 104 cycles at S = 0.5 σ max. If the cyclic load is now increased

to S = 0.75 σ max, how many more cycles will the material withstand?

Solution:
For S = 0.5 σ max,

log N1 = 10(1 − 0.5) = 5.

3 A. Palmgren, Z. Ver. Dtsch. Ing., 53 (1924) 339; M. A. Miner, J. Appl. Mech., 12 (1945) 159.
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Thus,

N1 = 105 cycles.

For S = 0.75 σ max,

log N2 = 2.5.

So

N2 = 316 cycles.

Using Palmgren--Miner’s rule, we have

n1/N1 + n2/N2 = 104/105 + n2/316 = 1

or

n2 = 284 cycles.

Example 14.2

A microalloyed steel was subjected to two fatigue tests at ± 400 MPa

and ± 250 MPa. Failure occurred after 2 × 104 and 1.2 × 106 cycles,

respectively, at these two stress levels. Making appropriate assumptions,

estimate the fatigue life at ± 300 MPa of a part made from this steel

that has already undergone 2.5 × 104 cycles at ± 350 MPa.

Solution: We assume an equation of the form (other forms can also be

assumed):

�σ (N f )a = c,

800(2 × 104)a = 500(1.2 × 106)a,

800

500
= 1.6 =

(
1.2 × 106

2 × 104

)a

= (60)a,

a = 0.115,

c = 800(2 × 104)0.115 MPa

= 2,498 MPa.

At ± 350 MPa,

N f 1 =
( c

�σ

)1/a

=
(

2, 498

700

)1/0.115

= (3.57)8.7 = 6.4 × 104 cycles.

For 2.5 × 104 cycles,

N1

N f 1

= 2.5 × 104

6.4 × 104
= 0.39.

At ± 300 MPa,

N f 2 =
( c

�σ

)1/a

=
(

2, 498

600

)1/0.115

= (4.16)8.7 = 2.45 × 105 cycles.
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From Palmgren--Miner’s rule,

N1

N f 1

+ N2

N f 2

= 1,

N2

N f 2

= 1 − N1

N f 1

= 1 − 0.39 = 0.61.

Therefore,

N2 = 0.61 × N f 2

= 0.61 × 2.45 × 105

= 1.49 × 105 cycles.

14.7 Mechanisms of Fatigue

In this section, we describe the physical mechanisms responsible for

fatigue mechanisms -- mainly, fatigue crack nucleation and propaga-

tion. We assume that our starting material does not have any pre-

existing crack or cracklike defects. The fracture mechanics approach,

focusing only on the propagation of preexisting cracks, will be exam-

ined in Section 14.8.

14.7.1 Fatigue Crack Nucleation
Fatigue cracks nucleate at singularities or discontinuities in most

materials. Discontinuities may be on the surface or in the interior of

the material. The singularities can be structural (such as inclusions or

second-phase particles) or geometrical (such as scratches or steps). The

explanation of preferential nucleation of fatigue cracks at surfaces

perhaps resides in the fact that plastic deformation is easier there

and that slip steps form on the surface. Slip steps alone can be respon-

sible for initiating cracks, or they can interact with existing structural

or geometric defects to produce cracks. Surface singularities may be

present from the beginning or may develop during cyclic deform-

ation, as, for example, the formation of intrusions and extrusions

at what are called the persistent slip bands (PSBs) in metals. These

bands were first observed in copper and nickel by Thompson et al.4

They appeared after cyclic deformation and persisted even after electro-

polishing. On retesting, slip bands appeared again in the same places.

Later, the dislocation structure in the PSBs was investigated exten-

sively. Figure 14.11(a) shows a TEM micrograph of a polycrystalline

copper sample that was cycled to a total strain amplitude of 6.4 × 10−4

for 3 × 105 cycles. Fatigue cycling was carried out in reverse bending

at room temperature and at a frequency of 17 Hz. The thin foil was

taken 73 μm below the surface. Two parallel PSBs (diagonally across

the micrograph) embedded in a veined structure in polycrystalline

4 N. Thompson, N. J. Wadsworth, and N. Louat, Phil. Mag., 1 (1956) 113.
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(a)

Fig. 14.11 (a) Persistent slip

bands in vein structure.

Polycrystalline copper fatigued at a

total strain amplitude of 6.4 ×
10−4 for 3 × 105 cycles. Fatiguing

carried out in reverse bending at

room temperature and at a

frequency of 17 Hz. The thin foil

was taken 73 μm below the

surface. (Courtesy of J. R.

Weertman and H. Shirai.)

(b) Cyclic shear stress, τ , vs.

plastic cyclic shear strain, γ pl,

curve for a single crystal of copper

oriented for single slip. (After

H. Mughrabi, Mater. Sci. Eng., 33

(1978) 207.) The terms γ pl, M and

γ pl, PSB refer to cyclic plastic shear

strain in the matrix and persistent

slip bands, respectively.

(c) Intrusions/extrusions in a

tin-based solder due to thermal

fatigue. (Courtesy of N. Chawla

and R. Sidhur)
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copper can be seen. The PSBs are clearly distinguished and consist

of a series of parallel ‘‘hedges” (a ladder). These ladders are channels

through which the dislocations move and produce intrusions and

extrusions at the surface Figure 14.11(c). Stacking-fault energy and the

concomitant ease or difficulty of cross-slip play an important role in
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the development of the dislocation structure in the PSBs. Kuhlmann-

Wilsdorf and Laird have discussed models for the formation of PSBs in

metals.5 They compared the deformation substructures produced by

unidirectional and cyclic (fatigue) deformation and interpreted them

in terms of the differences between the two modes of deformation.

The principal differences are as follows:

1. Due to the much larger time spans of deformation in fatigue,

the dislocation structures formed are much closer to the configur-

ations having minimum energy than the ones generated by mono-

tonic straining. That is, more stable dislocation arrays are observed

after fatigue.

2. The oft-repeated to-and-fro motion in fatigue minimizes the

buildup of surpluses of local Burgers vectors, which are fairly preva-

lent after unidirectional (monotonic) strain.

3. Much higher local dislocation densities are found in fatigued speci-

mens.

The characteristic dislocation arrangements observed in FCC metals

form in the following manner. In monocrystals, we first have uni-

form fine slip, followed by the formation of veins consisting of dense

bundles of dislocation dipoles and other debris. After this, PSBs are

formed. They occur with the onset of saturation and are often asso-

ciated with slight work-softening. There also seems to be a thresh-

old strain for PSB formation, equal to 8 × 10−5 in the case of copper

monocrystals. When subjected to strain-controlled cycling, an initially

annealed metal hardens at first and then attains a saturation stress.

If we plot this saturation stress against the applied plastic strain, we

get another type of cyclic stress-strain curve, an example of which is

shown for a single crystal of copper oriented for single slip in Fig-

ure 14.11(b). The curve has three stages, one of which is a plateau

region, and each stage is characterized by a distinct dislocation struc-

ture. At low strains in the plateau region, the structure consisted of a

hard matrix containing a loop--patch dislocation structure and a soft

PSB with dislocations in a ladderlike arrangement. At large strains in

the plateau region (plastic shear strain greater than 2 × 10−3), most of

the matrix phase and a part of the PSB had a well-developed mazelike

structure. In the case of a polycrystal, the grains in the softest orient-

ation and with not much constraint from their neighbors deform

and harden by the accumulation of dislocations. An example of such

a structure in a Cu--Ni polycrystal is shown in Figure 14.12. Dislocation

walls form on {100} planes.

The interface between the PSB and the matrix represents a dis-

continuity in the density and distribution of dislocations. Hence, one

would expect PSBs to be the preferential sites for fatigue crack nucle-

ation. The surface of a metal subjected to cyclic stressing will have

PSB extrusions and intrusions. Recall that monotonic loading of a

5 D. Kuhlmann-Wilsdorf and C. Laird, Mater. Sci. Eng., 27 (1977) 137; Mater. Sci. Eng., 37

(1979) 111.
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Fig. 14.12 Well-developed maze

structure, showing dislocation

walls on {100} in Cu–Ni alloy

fatigued to saturation. (From

P. Charsley, Mater. Sci. Eng., 47

(1981) 181.)

Extrusion

Intrusion

(a)

Fig. 14.13 (a) Fatigue crack

nucleation at slip bands. (b) SEM of

extrusions and intrusions in a

copper sheet. (Courtesy of

M. Judelwicz and B. Ilschner.)

(b)
1 1 μm1 μm

metal results in the formation of slip steps at the surface. On being

subjected to cyclic loading, however, the surface of the metal will

have intrusions and extrusions where PSBs emerge. A model for this

form of nucleation is shown in Figure 14.13(a). During the loading

part of the cycle, slip occurs on a favorably oriented plane, and dur-

ing the unloading part of the cycle, reverse slip occurs on a parallel

plane, because the slip on the original plane is inhibited owing to
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Fig. 14.14 Some mechanisms of

fatigue crack nucleation. (After

J. C. Grosskreutz, Tech. Rep.

AFML-TR-70–55 (Wright–

Patterson AFB, OH: Air Force

Materials Laboratory), 1970.)

hardening or, perhaps, the oxidation of the newly formed free sur-

face. The first cyclic slip may create an extrusion or an intrusion at

the surface. An intrusion may grow and form a crack by continued

plastic deformation during subsequent cycles. An actual example of

the formation of intrusions and extrusions in a sample of a copper

sheet subjected to 15,000 cycles under a 60-MPa amplitude is shown in

an SEM micrograph in Figure 14.13(b). Even during cyclic stressing in

the tension--tension mode, this mechanism can function, as the plas-

tic strain occurring at the peak load may lead to residual compressive

stresses during the decreasing-load part of the cycle.

Such intrusions/extrusions owing to PSBs can form in ductile

metals under the action of thermal fatigue as well. Thermal fatigue

involves cyclic loading under thermal stresses. Such thermal stresses

occur when a temperature change occurs, which leads to differential

expansion in two components that are joined together. Figure 14.11(c)

shows an interesting example of this in a tin-based solder in contact

with copper; the two being subjected to temperature-induced thermal

stress.

Twin boundaries can be important crack nucleation sites in hex-

agonal close-packed materials such as magnesium, titanium, etc., and

their alloys. Inclusions and second-phase particles are commonly the

dominant nucleation sites in materials of commercial purity -- for

example, aluminum, high-strength steels, and many polymers. Grain

boundaries can become important nucleation sites at large strain

amplitudes and at temperatures greater than about 0.5Tm, where Tm is

the melting point in kelvin, or in the presence of impurities that pro-

duce grain-boundary embrittlement (e.g., O2 in iron). Some of these

mechanisms are illustrated schematically in Figure 14.14.

Since most fatigue failures form at the surface of a material, the

condition of the surface is very important. Indeed, polishing the sur-

face can significantly increase the fatigue life of the material. A very

important technological process to enhance fatigue life is shot peening,

in which small metallic spheres are accelerated and hit the surface of

the part. This bombardment by small particles puts the surface layer

of a component in residual compression. This technique is used rou-

tinely in industry. Examples include compression coil springs in the

automotive industry, wing skins for aircraft and other applications.
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Compressive stresses in surface layers have been introduced by laser.

The technique called laser peening, involves a laser system based on

neodymium-doped glass. Figure 14.15(a) shows, in a schematic fash-

ion, a surface layer under residual compressive stress due to the cold-

working from shot peening. The interior is under a small tensile stress

as a result. The effect of shot peening on the endurance limits of

steels with different ultimate tensile strengths is shown in Figure

14.15(b). For the as-forged components, the endurance limit is approxi-

mately 15% of the ultimate tensile strengths. Shot peening doubles

the endurance limit, although it becomes less effective once the part

is polished or ground, because the endurance limit is considerably

increased by that process.

14.7.2 Fatigue Crack Propagation
At large stress amplitudes, a very large fraction (around 90%) of

fatigue life is spent in the growth or propagation of a crack. For a

component that contains a notch, this fraction becomes even larger.

In as much as in most real structures cracklike imperfections are

present, the crack propagation part can be a very important aspect

of fatigue.
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Fig. 14.16 Stages I, II, and III of

fatigue crack propagation.

A brief description of crack propagation, in terms of microstruc-

tural processes, follows. A few cracks nucleate at the surface and start

propagating in a crystallographic shear mode (stage I) on planes ori-

ented at approximately 45◦ to the stress axis. (See Figure 14.16.) During

this stage, cracking occurs along the crystallographic slip planes, and

the crack growth is on the order of a few micrometers or less per cycle.

Little is known about crack propagation in this stage. Many consider

the stage to be an extension of the nucleation process. Once a crack

is initiated, say, at a slip band on the surface, it continues along the

slip band until it encounters a grain boundary. These crystallographic

cracks penetrate a few tenths of a millimeter in this mode. From there

on, a dominant crack starts propagating in a direction perpendicu-

lar to the stress axis in the tensile mode. This is called stage II, and

typically, the fracture surface shows striation markings. The ratio of

the extent of stage I to stage II decreases with an increase in stress

amplitude. The stress concentration at the tip of the crack causes

local plastic deformation in a zone in front of the crack. With crack

growth, the plastic zone increases in size until it becomes comparable

to the thickness of the specimen. When this occurs, the plane-strain

condition at the crack front in stage II does not exist any more, the

crack plane undergoes a rotation, and the final part of rupture occurs

in plane-stress or shear mode. This corresponds to Stage III, character-

ized by rapid crack propagation. Microscopic observations of fatigue

fracture surfaces frequently show striations in stage II. Propagation

occurs in a direction perpendicular to the tensile stress, and in a

large number of metals and alloys (principally of Al and Cu), at high

amplitudes, the fracture surface shows the characteristic striations.

Such striations have been observed in polymers as well. Frequently,

each striation is thought to represent one load cycle, and indeed,

it has been observed by means of programmed amplitude fatigue

tests that in many materials these striations do represent the crack

front position in each cycle. An example of the variation in fatigue

striations in a 2014-T6 aluminum alloy is presented in Figure 14.17.

Figure 14.17(a) shows the striations in the early stage of fatigue life,

while Figure 14.17(b) shows the striations in the late stage of cycling.

Note the smaller striation spacing in the early stage, indicating a

lower crack propagation rate than in the late stage. These micrographs
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(a)

(b)

Fig. 14.17 Fatigue striations in

2014-T6 aluminum alloy; two-stage

carbon replica viewed in TEM. (a)

Early stage. (b) Late stage.

(Courtesy of J. Lankford.)

were taken in a TEM from a two-stage carbon replica of the surface of

the aluminum alloy. The reason for this is that only TEM could pro-

vide the high-enough magnification for viewing the closely spaced

striations in the early stage of fatigue. However, the reader is warned

that such a correlation is not always available. If it were, one should

be able to relate striation spacing to �K (see Section 14.8) and obtain a

one-to-one correspondence between the macroscopic growth rate and

�K. One cannot always do this, however, indicating that the crack

front may have advanced by a combination of the formation of stri-

ations and other fracture mechanisms.

Care should be exercised in the interpretation of fatigue striations.

It has been observed in an Fe--Si alloy that, whereas the fatigue stri-

ations were 2 μm apart, the actual advance of the crack front per

cycle was only 10−9 m, or 2,000 times smaller!6 These results show

that, under certain conditions, the crack front remains ‘‘dormant” for

many cycles, while damage accumulates in the material. At a certain

point, the crack advances discontinuously. This phenomenon is very

common in polymers at low values of �K. A craze forms gradually

6 W. Yu, K. Esablul, and W. W. Gerberich, Met. Trans., 15A (1984) 889.
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(a)
(d)

(e)(b)

(f)
(c)

Fig. 14.18 Fatigue crack growth

by a plastic blunting mechanism. (a)

Zero load. (b) Small tensile load.

(c) Maximum tensile load. (d) Small

compressive load. (e) Maximum

compressive load. (f) Small tensile

load. The loading axis is vertical

(After C. Laird, in Fatigue Crack

Propagation, ASTM STP 415

(Philadelphia: ASTM, 1967),

p. 131.)

at the tip of the crack during fatigue. When the craze reaches a crit-

ical length, the crack advances through it. The process repeats itself

periodically.

At higher values of �K, striations become less important in the

overall crack propagation rate. One model of fatigue crack growth by

a striation mechanism is shown in Figure 14.18. This model involves

repetitive blunting and sharpening of the crack front. Figure 14.18(a)

shows the situation at zero load. During the tensile part of the load

cycle, plastic strains at the crack tip cause localized slip on planes of

maximum shear. (See Figure 14.18(b).) The situation at maximum tens-

ile load is shown in Figure 14.18(c). The start of the compressive cycle is

shown in Figure 14.18(d). The reversal of the loading direction, during

compression, causes the crack faces to join (Figure 14.18(e)). However,

the new surface created during the tensile part of the cycle is not

completely ‘‘rehealed,” due to slip in the reverse direction. Depend-

ing on the material and the environment, a large part of slip during

compression occurs on new slip planes, and the crack tip assumes

a bent form with ‘‘ears,” as shown in Figure 14.18(e). At the end of

the compression half of the cycle, the crack tip is resharpened, and

the propagation sequence of the next cycle is restarted. (See Figure

14.18(f).) This model of plastic blunting and resharpening seems to be

valid for any ductile material, including polymers. There is evidence

that the crack propagates in a similar manner in stage I, but with

only a group of slip planes at 45◦ operating. However, one must bear

in mind that, although the presence of striations confirms a fatigue

failure mechanism, an absence of striations does not necessarily pre-

clude fatigue. In fact, a variety of other fracture modes are possible

in fatigue. In single-phase materials, transgranular or intergranular

fracture modes are possible, while any second phases that are present

may lead to dual fracture modes. Figure 14.19 shows the various pos-

sible microscopic fracture modes in fatigue.

Fracture surfaces in polymers produced under fatigue conditions

also show some characteristic features. Generally, two distinct regions

are present: a region of smooth, slow crack growth surrounding the

fracture initiation site and a rough region corresponding to rapid
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Transgranular Fracture

(b)

(a)

(c)

(d)

(f)

(e)

p

2f

(g)

(h)

(i) I°

I°

Intergranular FractureFig. 14.19 Microscopic fracture

modes in fatigue. (a) Ductile

striations triggering cleavage. (b)

Cyclic cleavage. (c) α − β interface

fracture. (d) Cleavage in an α − β

phase field. (e) Forked

intergranular cracks in a hard

matrix. (f) Forked intergranular

cracks in a soft matrix. (g) Ductile

intergranular striations. (h)

Particle-nucleated ductile

intergranular voids. (i)

Discontinuous intergranular facets.

(Adapted from W. W. Gerberich

and N. R. Moody, in Fatigue

Mechanisms, ASTM STP 675

(Philadelphia: ASTM, 1979) p. 292.)

crack growth. Sometimes, semicircular concentric bands are seen in

the smooth region near the starting flaw. These bands are indicative

of discontinuous crack growth, and the band width represents the

extent of plastic zone or craze that developed ahead of the crack tip.

Fracture surfaces produced by cyclic loading in polymers frequently

show striations. There is some confusion on the use of the term stri-

ation in the literature on fatigue in polymers and metals. In metals,

the term is used to denote markings on the fracture surface, with-

out regard to any correlation between the striation spacing and the

crack growth per cycle. In polymers, the term striation is used only

when there is a one-to-one correlation between the striation spac-

ing and the crack growth in each cycle. This stems from the fact

that there are other types of discontinuous growth which result in

fracture surface markings, but without any advance in the fatigue

crack. In particular, in polymers there occur discontinuous growth

bands (DGBs), which correspond to a burst of fatigue crack growth

after some hundreds of fatigue cycles; that is, the crack tip remains

stationary for some cycles and then undergoes an advance. DGBs

resemble striations, but their spacing is much larger than the crack

growth in a cycle. The formation of a DGB is thought to be due to

the accumulation of damage ahead of the fatigue crack over many

Crack path

Fibril midrib

Crack–matrix interface

Fig. 14.20 Discontinuous crack

growth through a craze at the

tip of a fatigue crack. (After

L. Konczol, M. G. Schincker and

W. Döll, J. Mater. Sci., 19 (1984)

1604.)

cycles, followed by a sudden jump by the crack. One model explains

that a craze forms at the fatigue crack and that the crack initially

grows along the craze--matrix interface, as shown in Figure 14.20,

and then along the craze filled midrib until the crack is arrested. A

repetition of this process results in the appearance of dark bands on

the fracture surface. Thus, the DGBs represent the successive posi-

tions of crack tips that have been blunted, advanced, and arrested

repeatedly.
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14.8 Linear Elastic Fracture Mechanics
Applied to Fatigue

The use of large monolithic structures has resulted in widespread

application of fracture mechanics. In particular, the phenomenon of

fatigue crack propagation can be analyzed in terms of linear elastic

fracture mechanics. The basic assumption here is that cracks already

exist in a structural component and that they will grow as the com-

ponent gets used in service. In terms of fatigue crack growth studies,

it is also implied that the fatigue life of a component is determined

mostly by the crack growth under cyclic loading.

We can determine KIc or Kc for a given material in the laboratory

and can use the data obtained to determine a failure locus in terms

of a critical applied stress and a corresponding critical crack length,

or vice versa. (See Figure 14.21.) For example, in Figure 14.21(a), we

can observe that, for a given crack length a1, there is a critical fail-

ure stress σ 1 of the material. Conversely, for a given design stress

σ 2, there is a critical crack length a2. In principle, then, the region

under the failure locus represents the safe region with respect to a

catastrophic failure. Consider, for instance, a component containing

a crack length of a1, at a stress of σ 2, where σ 2 < σ 1. Under these

(a) (b)

Cycles N
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interval

o

Failure locus

D
e
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Fatigue life
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a1

a0
a2

ac

Nf

dN

da

Fig. 14.21 (a) Failure locus. (b) Schematic of crack length a as a function of number of

cycles, N.
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conditions, the component will be safe because a1 is smaller than

the critical defect size a2, which corresponds to the applied stress σ 2.

This security is based, of course, on the assumption that loading is

static and that the crack does not grow in service. But we know very

well that cracks in structures do grow during service. An increase in

crack length at σ 2, in service, from a1 to a2 will eventually lead to

structural failure. Thus, although the fracture toughness of a mater-

ial establishes the failure condition and the residual strength of a

structural component, the component’s service life or durability is

mainly a function of its resistance to subcritical crack growth (i.e., its

resistance to crack growth by fatigue, creep, stress corrosion, etc.).

As we pointed out in Chapter 7, linear elastic fracture mechanics

accepts the preexistence of cracks in a structural member. The model

for the crack tip is the same as that described for nonfatigue regi-

mens. The material containing a crack, under tension, has a small

plastic zone at the crack tip, and this plastic zone is surrounded by

a rather large elastic region. This being so, we focus our attention on

the propagation of cracks under conditions of fatigue. Once again --

and it is worth repeating -- we do not concern ourselves here with

the crack nucleation problem under fatigue. Under cyclic loading, a

dominant crack grows, as a function of the number of cycles, from an

initial size a0 to a critical size ac, corresponding to failure, as shown

in Figure 14.21(b). The basic problem is thus reduced to one of char-

acterizing the growth kinetics of the dominant crack in terms of an

appropriate driving force. From there, one can estimate the service

life and/or schedule inspection intervals under designed loading con-

ditions and service environments. Since crack growth starts from the

most highly stressed region at the crack tip, we characterize the driv-

ing force in terms of the stress intensity factors at the tip -- that is,

the range of the stress intensity factor �K = Kmax − Kmin, where Kmax

and Kmin are the maximum and minimum stress intensity factors cor-

responding to the maximum and minimum loads, respectively. The

crack growth rate per cycle, da/dN, can then be expressed as a function

of the cyclic stress intensity factor at the crack tip, �K. Hence, if a

mathematical equation describing the crack growth process and the

appropriate boundary conditions is available, we can, in principle,

compute the fatigue life (i.e., number of cycles to failure). Paris et al.

proposed the following empirical relationship (known as the Paris--

Erdogan relationship) for crack growth under cyclic conditions:7

da/d N = c (�K )m (14.2)

Here, a is the crack length, N is the number of cycles, �K is the cyclic

stress intensity factor as defined earlier, and C and m are empirical

constants that depend on the material, environment, and test condi-

tions, such as the load ratio R, the test temperature, the waveform,

7 P. C. Paris, M. P. Gomez, and W. P. Anderson, The Trend in Engineering, 13 (1961) 9; P. C.

Paris and F. Erdogan, J. Basic Eng., Trans. ASME, 85 (1963) 528.
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etc. Another empirical relation connecting the parameters C and m

is

C = A/(�K 0)m

where A and K0 are some other material constants.

Since many variables affect the crack growth rate in fatigue, we

can write, in a very general way,

da/d N = F (�K , K max, R , frequency, temperature, . . .). (14.3)

Clearly, one cannot obtain such an ideal and detailed characteriza-

tion. In practice, one collects data under restricted conditions, but

consistent with the applications in service. In principle, the rate equa-

tion 14.3 can be integrated to determine the service life Nf, or an

appropriate inspection interval �N, for a structural component. We

have

N f =
∫ a f

a0

da

F (�K , . . .)
,

or

�N = N2 − N1 =
∫ a2

a1

da

F (�K , · · ·) . (14.4)

Rewriting, we get

N f =
∫ K fmax

K fmax

dK

(dK /da) F (�K , · · ·) , (14.5)

or

�N = N2 − N1 =
∫ K 2

K 1

dK

(dK /da) F (�K , · · ·) . (14.6)

If we plot the logarithm of the crack growth rate da/dN against the

logarithm of the alternating stress intensity factor �K = Kmax − Kmin

at the crack tip, we get the kind of curve shown in Figure 14.22.

The curve has a sigmoidal form with three regions. Region II is the

one that shows the Paris--Erdogan type of power-law relation between

da/dN and �K. The power-law region connects the upper and lower

limiting regions. The lower limit on the cyclic stress intensity factor

in region I denotes a threshold value below which the crack does

not propagate. This limit is called the threshold cyclic stress intensity

factor �Kth. The upper limit in region III indicates the conditions

of accelerated crack growth rate associated with the start of final

rupture.

Many researchers (see, for example, Suresh (1991) in the suggested

reading) have discussed the primary operating mechanisms and the

important variables in the three stages of fatigue crack propagation:

Stage I: In this stage, the average crack growth per cycle is less than

a lattice spacing. Crack propagation mechanisms are charac-

teristic of a discontinuous medium. The microstructure of
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Fig. 14.22 Schematic of crack

propagation rate da/dN versus

alternating stress intensity factor

�K.

the material, the stress ratio R, and the environment have

a large influence on the crack growth.

Stage II: This is the power-law regimen, where the Paris--Erdogan rela-

tionship applies. Crack propagation mechanisms in stage II

are characteristic of a continuous medium. The influence

of the microstructure, R, the environment, the thickness of

the material, etc. on crack growth is small.

Stage III: Crack propagation mechanisms in this stage are similar to

those in the static mode (cleavage, intergranular, microvoid

coalescence, etc.) In stage III, the microstructure, R, and the

thickness of the material have a large influence on crack

growth, but the influence of the environment is small.

The Paris--Erdogan power relationship (Equation 14.2) describes the

crack propagation rate in stage II for a variety of materials--polymers,

metals, and ceramics. It is very useful because of its extreme simpli-

city. For example, it has been observed experimentally that data

points in the form of log (da/dN) versus log �K for a given mate-

rial (with a constant microstructure) from three different samples --

an edge crack in a compact-tension sample, a through-the-thickness

central crack in a plate, and a plate containing a partial through-the-

thickness crack -- all fall on the same line. Also, there is experimental

evidence that the stress level by itself does not influence the fatigue

crack growth rate for levels below the general yielding stress. Thus,

we can assume that the parameter �K describes uniquely the crack

growth rates for many engineering applications. However, rather gross
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Fig. 14.23 Fatigue crack

propagation in an AISI 4140 steel.

(a) Longitudinal direction (parallel

to rolling direction). (b) Transverse

direction (perpendicular to rolling

direction). (Reprinted with

permission from E. G. T. De

Simone, K. K. Chawla, and J. C.

Miguez Suárez, Proc. 4th CBECIMAT

(Florianópolis, Brazil, 1980),

p. 345)

microstructural features of a material, such as the directionality

imparted by aligned inclusions, can influence fatigue crack growth

rates drastically, changing the value of m significantly. Figure 14.23

illustrates the directionality in the fatigue crack propagation rate in

an AISI 4140 steel. The exponent m has a higher value in the trans-

verse direction than in the longitudinal (rolling) direction, due to the

presence of elongated inclusions.

Example 14.3

Consider long crack propagation under fatigue. Develop an expression

for the number of cycles, �N, required for a crack to grow from an

initial length ai to a final length af, Given that �K = Y �σ
√

πa and

da/dN = C�Km, where the symbols have their usual significance. Discuss

the implications of the expression.

Solution:

da/d N = C �K m,

�N =
∫ a f

ai

da

C �K m

=
∫ a f

ai

da

C (Y �σ
√

π )mam/2

= a
(1−m/2)
f − a

(1−m/2)
i

C (Y �σ
√

π )m(1 − m/2)

= 1 − (ai/a f )m/2−1

C (Y �σ
√

π )m(m/2 − 1)

(
1

a
m/2
f − 1

)
.

The implications of the expression are that it is not valid for m = 2 and

that �N is more sensitive to the initial crack length ai than the final

crack length af.
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Example 14.4

The fatigue crack markings shown in Figure E14.4 were found in a

fractured part. Determine the time to rupture of this part if the loading

frequency is 10 Hz, the maximum stress applied to the part is 300 MPa,

and the minimum stress is zero. The initiation stage of the flaw is 50%

of the life of the part.

2

1 2

4 6 8 10 12 14 16 18 20 22
mm

21

0.1 mm 0.1 mm

Fracture
origin

Fig. E14.4

Solution: We have(
da

d N

)
1

= 0.016 mm,

(
da

d N

)
2

= 0.1 mm,

a1 = 2 mm,a2 = 10 mm.

Fracture occurs when af = 14 mm. Assuming that we have plane strain,

K I c = 1.12σ
√

πa

= 1.12 × 300
√

π × 0.014

= 70 MPa m1/2.

We now find the parameters for the Paris equation:

da

d N
= C (�K )m,

�K 1 = 1.12σ
√

πa1 = 1.12 × 300
√

π × 2 × 10−3

= 26.6 MPa m1/2,

�K 2 = 1.12σ
√

πa2 = 1.12 × 300
√

π × 10 × 10−3

= 59.55 MPa m1/2,

0.016 × 10−3 = C (26.6)m,

0.1 × 10−3 = C (59.55)m,

m = 2.27,

C = 0.94 × 10−8,
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da

d N
= 0.94 × 10−8(�K )m = 0.94 × 10−8

×(1.12 × 300
√

πa)2.27,

da

a1.135
= 0.019 d N .

Integrating between the limits, af = 14 mm and ai = 0.02 mm, we get:∫ a f

ai

da

a1.135
=

∫ 14

0.02

da

a1.135
= 0.019

∫
d N = 0.019N ,

a0 = 0.02 mm

a f = 14 mm

0.019N = −1

0.135 × (14 × 10−3)0.135

+ 1

0.135 × (0.02 × 10−3)0.135

Each cycle corresponds to 0.1 s, so

t = 0.1N

The total time is equal to the initiation time plus the propagation time:

t = 2t = 98.6 × 2 s

= 197.2 s.

Example 14.5

An aluminum alloy has a plane-strain fracture toughness KIc of

50 MPa m1/2. A service engineer has detected a 1-mm-long crack in

an automotive component made of this alloy. The component will be

subjected to cyclic fatigue with �σ = 100 MPa with R = 0. How many

more cycles can this component endure? Take K = 1.05 σ
√

πa and da/dN

(mm/cycle) = 1.5 × 10−24 �K4 (MPa m1/2)4.

Solution: The final crack length af can be obtained from KIc with 100

MPa of applied stress:

K I c = 50 = 1.05 × 100 × √
πa f ,

a f =
[

50

1.05 × 100
√

π

]2

m

= 0.072 m

= 72 mn.

We thus have (being very careful with units!)

N f = 1

(1.5 × 10−24)(1.054)π2(100)4

[
1

ai

− 1

a f

]

= 1016

(1.5)(1.22)(9.87)

[
1 − 1

72

]
103

= 1016[0.055][0.986]

= 5.5 × 1017cycles.
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clearpage
Example 14.6

When subjected to fatigue under a �σ = 140 MPa, an alloy showed the

following Paris-type fatigue crack propagation relationship:

da

d N
(m/cycle) = 0.66 × 10−8(�K )2.25

where �K is in MPa m1/2. Estimate the number of cycles required for

the crack to grow from 2 mm to 8.8 mm.

Solution:
da

d N
= 0.66 × 10−8(1.12�σ

√
πa)2.25,

a−1.125da = 0.66 × 10−8(1.12)2.25 × (140)2.25(π )1.125d N .

Integrating, we get∫ ac

a0

a−1.125da = 2.0815 × 10−3

∫ N f

0

d N ,

N f × 2.0815 × 10−3 = −
[

a−0.125

0.125

]0.0088

0.002

,

N f = 2.941

2.0815 × 10−3
= 1.4129 × 103 cycles,

or

N f = 1,413 cycles.

A Paris--Erdogan type of relationship can be used to describe the

fatigue crack propagation rate da/dN in polymers also. Figure 14.24

shows the fatigue crack rates as a function of �K for a number of
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Fig. 14.24 Fatigue crack

propagation rates for a number of

polymers. (After R. W. Hertzberg,

J. A. Manson, and M. Skibo, Polymer

Eng. Sci., 15 (1975) 252.)

thermoplastic polymers. Note that semicrystalline nylon 66 is super-

ior in resistance to fatigue crack growth than amorphous, but duc-

tile, polymers such as polyvinyl chloride (PVC) and polycarbonate (PC),

which in turn are superior to brittle, amorphous polymers such as

PS and PMMA. The latter both show deformation by crazing. Metals

such as aluminum alloy and steel (not shown in the figure) would

have curves to the right of that of nylon. That is, polymers show a

lower resistance to fatigue crack propagation than metals do: Unlike

metals, the range of the exponent m for polymeric materials can be

quite large, from 4 to 20.

The molecular weight of a polymer is a very important variable for

a number of properties, including fatigue crack propagation. In gen-

eral, as the molecular weight increases, the fatigue strength increases

and the fatigue crack propagation rate decreases. Figure 14.25 shows
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Fig. 14.25 Variation in fatigue

crack propagation rates, at fixed

values of �K (= 0.6 MPa m1/2) and

test frequency v (= 10 Hz), as a

function of reciprocal of molecular

weight for PMMA and PVC. (After

S. L. Kim, M. Skibo, J. A. Manson,

and R. W. Hertzberg, Polymer Eng.

Sci., 17 (1977) 194.)

the variation in the fatigue crack propagation rate in PMMA and PVC,

at a constant value of �K (0.6 MPa m1/2) and at 10 Hz, as a function

of 1/M, where M is the molecular weight.

Earlier, it was thought that cyclic fatigue in ceramics did not

occur, at least not in an inert atmosphere. This was based on the fact
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that, in a ceramic, no dislocation-based plastic deformation occurred

at the crack tip. Although dislocation plasticity is generally absent

in ceramics, many ceramics show subcritical crack growth, under

cyclic loading, at room temperature and at elevated temperatures.

The deformation mechanisms under cyclic loading are generally dif-

ferent from those under static loading. While dislocation-based cyclic

slip is responsible for fatigue in metals, phenomena such as micro-

cracking, phase transformations, interfacial sliding, and creep can

promote an inelastic constitutive response in brittle solids, leading to

cycle fatigue. Work done by Suresh and coworkers, as well as others,

on fatigue crack growth in a variety of brittle solids in compres-

sion, tension, and tension--compression fatigue shows that mechan-

ical fatigue effects -- that is, stable crack propagation -- under cyclic

fatigue conditions -- can occur in ceramics at room temperature and

in brittle solids as well.8 Ewart and Suresh were the first ones to show

such a cyclic fatigue effect in ceramics by subjecting them to cyclic

compression. Researchers have used a variety of loading techniques

to obtain fatigue crack growth data in ceramics under cyclic loading,

such as four-point flexure, compact tension, and wedge-opening load
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Fig. 14.26 Fatigue crack growth

rate da/dN in alumina as a function

of the maximum stress intensity

factor Kmax under fully reversed

cyclic loads (v = 5 Hz). Also

indicated are the rates of crack

growth per cycle derived from

static-load fracture data. (After

M. J. Reece, F. Guiu, and M. F. R.

Sammur, J. Amer. Ceram. Soc., 72

(1989) 348.)

specimens. Figure 14.26 shows the fatigue crack growth in an alumina

sample (grain size ≈10 μm) subjected to tension--compression fatigue

(R = −1) at a frequency of 5 Hz, in terms of da/dN vs. Kmax, the maxi-

mum stress intensity factor. If we take �K = Kmax, it is easy to see that

the data correspond to a Paris--Erdogan type of power law, da/dN =
C�Km. The figure also shows the data obtained from static loading

in terms of crack growth per cycle. We use the relationship da/dN =
(da/dt)/v, where v is the frequency, and plot this against the maximum

stress intensity factor Kmax at which the static test was performed.

The idea of putting the two curves together is to show that the crack

growth rate in alumina under cyclic loading is much faster than that

under static loading. S--N curves obtained in tension--tension cycling

of fine-diameter alumina fiber also showed a distinct cyclic loading

effect.9 Work on fatigue growth rate in zirconia partially stabilized

with magnesia also confirmed the cyclic fatigue effect.10 One should

note, however, that the values of m for ceramics in the Paris--Erdogan

type of power law relationship range from 8 to 42, much higher than

the 2--4 range for metals.

In many materials, such as intermetallics, composites, and ceram-

ics, there are a number of additional mechanisms operating dur-

ing cyclic fatigue. These mechanisms are responsible for R curve

behavior. These mechanisms are classified as extrinsic and intrin-

sic. Figure 14.27 shows, in a schematic fashion, a few intrinsic and

8 L. Ewart and S. Suresh, J. Mater. Sci. 22 (1987) 1173; S. Suresh and J. R. Brockenbrough,

Acta Met., 36 (1988) 1455; M. J. Reece, F. Guiu, and M. F. R. Sammur, J. Amer. Ceram. Soc.,

72 (1989) 348; R. H. Dauskardt, D. B. Marshall, and R. O. Ritchie, J. Amer. Ceram. Soc. 73

(1990) 893.
9 N. Chawla, M. Kerr, and K. K. Chawla, J. Amer. Ceram. Soc., 88 (2005) 101.

10 R. H. Dauskardt, D. B. Marshall, and R. O. Ritchie, J. Amer. Ceram. Soc., 73 (1990) 893.
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100 (1999) 55.)

extrinsic mechanisms. Intrinsic mechanisms operate ahead of the

crack tip. Examples are void formation and coalescence, microcracks,

plastic deformation, and phase transformations. Extrinsic mecha-

nisms operate behind the crack tip. Extrinsic toughening mech-

anisms include fiber bridging (in the case of composites), grain

bridging, phase transformations, microcrack toughening, and oxide

wedging. Oxides formed on the cracked surface can dislodge them-

selves and act as microwedges along the crack, impeding it from clos-

ing complertely, on unloading. Thus, the stress amplitiude is effec-

tively decreased.

14.8.1 Fatigue of Biomaterials
A common type of fatigue damage in the body is called ‘‘stress

fracture.” These are actually microcracks that form in bones from

repeated stressing at excessive loads. Such is the case of long-distance

runners whom experience stress fractures in the shins and feet. The

body has a marvelous capacity of self-healing and rest usually allevi-

ates the problem and allows the small cracks to close.

In the domain of biomaterials, most implants in the body undergo

cyclic loading, which often results in failure. Hip and knee replace-

ment joints, titanium posts in teeth implants, and mechanical heart

valve prostheses are prone to fatigue. This problem is aggravated by

the physiological environment, and environmental degradation can

accelerate fatigue crack growth. For instance, the yield stress of the

cobalt (62%)--chrome (28%) alloy used in biological applications is

approximately 650 MPa. However, the endurance limit (for 107--108

cycles) is in the 150--250 MPa range.
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Example 14.7

Estimate the number of cycles that a total hip replacement joint will

experience in ten years.

Solution: A sedentary person walks approximately one hour per day.

This corresponds to 5 km/day. Assuming that each step is equal to

780 mm (the student can verify this!) we have approximately 8,000

cycles/day, or 2.9 × 103 cycles/year. Over a period of ten years, we would

have approximately 3 × 104 cycles.

Heart valve prostheses have been manufactured from titanium,

cobalt--chromium alloys, and pyrolitic carbon. The problems encoun-

tered with metallic heart valves has led to the almost universal adop-

tion of pyrolitic carbon or a pyrolitic carbon/graphite laminate. By

1996, over 600,000 of these valves had been installed. There are two

types of commercial pyrolytic heart valves: a tilting-disc and a bileaflet

design. Pyrolitic graphite exhibits a high biocompatibility and resist-

ance to blood clotting. This aspect is of great importance, since blood

clotting triggered by the immune response can lead to thromboem-

bolism.

The human heart beats 4 × 107 times per year. Both stress/life (S--N

curves) and damage-tolerant approaches (Paris--Erdogan-type relation-

ship) have been used to estimate the fatigue life of these valves. In the

S--N analysis, pyrolitic graphite valves are designed for 109 cycles (with

a failure rate less than one in 100,000). This represents 25 years. How-

ever, it is known that there is considerable scatter in the data. The

damage-tolerant approach was implemented by Ritchie.11 Different

experiments carried out at �K = 0.9 Kmax yielded the results shown

in Figure 14.28. These plots show two striking characteristics:

� The slope of the da/dN versus �K plots, m, is extremely high: approx-

imately 100. This behavior is also found in ceramics and signifies

the following: once a preexisting cracks starts to grow, it rapidly

increases in velocity and leads to failure. This is highly undesirable

for applications, since the material is not forgiving.
� The growth behavior shows a large degree of scatter. The thresh-

old stress intensity factor for which growth rates da/dN are on the

order of 10−11m/cycle vary from specimen to specimen, and one

has:

0.7 MPa m−1/2 ≤ �K th ≤ 2 MPa m−1/2.

These results illustrate the importance of a comprehensive fatigue

evaluation of biomaterials. Although only 50 pyrolitic graphite heart

valve prostheses had failed by 1996, the high value of m shows that a

11 R. O. Ritchie, J. Heart Valve Dis., 5 (1996) S9.
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doubling of �K (or the applied stress) leads to an increase in da/dN

and reduction in life of 20 orders of magnitude. Thus, an accidental

‘‘nicking” of the pyrolitic graphite by a sharp scalpel during surgery

can dramatically influence the life of the patient. The effect can be

calculated through the Paris--Erdogan equation and is left to the curi-

ous student.

14.9 Hysteretic Heating in Fatigue

An important aspect of fatigue behavior has to do with hysteretic

heating. During each loading cycle, we get a hysteresis loop. The area

of the loop represents the energy spent in the cycle. Most of the hys-

teretic energy is dissipated as heat, and if the material is not a good

thermal conductor, as is the case with most polymers, then a tem-

perature rise can occur. Such hysteretic heating and the resultant

thermal softening can be important at high strain rates in most insu-

lators. In extreme cases, the temperature rise can be large enough

that the material fails by viscous flow or melting. Even room tem-

perature can be quite high for polymers. It is convenient to examine

the temperature effects in terms of the homologous temperature TH.

Thermally activated phenomena become operative in most materials

at TH > 0.4−0.5. Consider a thermoplastic polymer with a melting

point of 300 ◦C. Taking room temperature to be 300 K, we find that
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TH for this polymer is 300/573 = 0.52. Thus, even a small increase in

temperature above the ambient temperature will put such a polymer

in the regimen where significant thermal softening can occur. Ther-

moplastics commonly have low thermal diffusivity and show non-

linear viscosity. The degree of thermal softening during fatigue will

depend on the magnitude and frequency of the applied stress and on

the viscoelastic characteristics of the polymer. It is easy to see that an

appreciable rise in temperature can result at high stress amplitudes

or frequencies. This can lead to a reduced fatigue life at frequencies

greater than 10 Hz at room temperature. In fact, the ASTM standard

specification D-671--71 calls for the measurement of the temperature

at fatigue failure. If the temperature goes above the glass transition

temperature of the polymer, thermal softening, fracture, and resolid-

ification of the fractured material can occur.

The hysteretic temperature rise is a function of the dimensions

of the specimen also. In a thinner specimen, a greater proportion of

the heat generated will be lost to the environment. A thicker spec-

imen, on the other hand, will retain a larger fraction of heat and

thus show a lower fatigue endurance limit than a thinner specimen

of the same material. Figure 14.29 shows the effect of applied stress

on the temperature rise in polytetrafluoroethylene (PTFE) subjected

to cycling at 30 Hz, at room temperature under stress control. The

endurance limit �σ L for this material under these conditions is

6.5 MPa. For �σ > �σ L, indicated by the curves marked A, B, C, D,

and E in the figure, a rapid increase in temperature occurred with an

increasing number of cycles. For �σ < �σ L, represented by curve F in

the figure, the temperature rise was not high enough to cause thermal

softening.

Hysteretic heating effects during high-frequency fatigue have also

been observed in continuous fiber-reinforced ceramic matrix com-

posites.12 Unlike the heating effect observed in polymers or polymer

matrix composites, the origin of heating in ceramic matrix compos-

ites is the frictional sliding between two mating surfaces, such as a

fiber--matrix interface or an interlaminar shear.

12 See, for example, J. W. Holmes and C. Cho, J. Amer. Ceram. Soc., 75 (1992) 929; N. Chawla,

Y. K. Tur, J. W. Holmes, J. R. Barber, and A. Szweda, J. Amer. Ceram. Soc., 81 (1998) 1221.
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14.10 Environmental Effects in Fatigue

Fatigue behavior of materials can be adversely afected by the environ-

ment (solid, liquid, or gaseous). We treat the topic of environmental

effects on static mechanical properties of materials in Chapter 16.

Here we wish to point out that an aggressive environment, under con-

ditions involving cyclic fatigue, can hasten the nucleation of a surface

crack and then propagate it to fracture. Such a phenomenon is also
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Log ΔK

Fig. 14.30 A schematic of

fatigue crack propagagtion rate as

a function of cyclic stress intensity

factor in air and seawater. At any

given �K, the crack propagation

rate is higher in seawater than in

air.

referred to as corrosion fatigue. Figure 14.30 shows schematically the

fatigue crack propagation in a material subjected to cyclic fatigue in

air and in seawater.

14.11 Fatigue Crack Closure

Under certain circumstances, surfaces of a fatigue crack can contact

each other, and the crack will close even when the far-field stress

field is still tensile. The crack does not reopen until a sufficiently high

tensile stress is reached in the next loading cycle. This phenomenon,

called crack closure, was said by a number of researchers to occur as

result of crack-tip plasticity. As the applied stress on a material is

increased, a plastic zone develops at the crack tip. (See Chapter 7.)

As the crack grows, a plastically deformed zone is produced in its

wake, while the material surrounding this zone is still elastic. The

explanation of this phenomenon was that the plastically deformed

zone caused the crack surfaces to close before zero stress was reached.

However, for fatigue crack growth to occur, the crack must be fully

open. Thus, premature contact between the crack surfaces -- i.e., crack

closure -- results in a lowering of the crack driving force. It follows that

one should use an effective stress intensity factor range, �Keff, rather

than �K in fatigue crack growth analysis. If the stress at which the

crack is just open is σ op, and the corresponding stress intensity factor

is Kop, then we can define the effective cyclic stress intensity factor

as

�K eff = K max − K op.

Recall that the applied cyclic stress intensity factor is given by �K =
Kmax − Kmin, and that Kop > Kmin. Therefore, we will have

�K > K eff.

Elber proposed that �Keff explains the R effect on the fatigue crack

growth rate.13 At high values of R, the crack closure effect is small

because Kop approaches Kmin, and �Keff becomes closer to �K. Later,

other explanations besides crack-tip plasticity were proposed for the

crack closure effect. Among the various phenomena held to be respon-

sible for crack closure are crack surface roughness, asperities in the

13 W. Elber, Eng. Fract. Mech., 2 (1970) 37.
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crack wake from oxides or corrosion products, viscous fluid, and phase

transformation ahead of the crack tip. The oxide-induced crack clos-

ure is possible in a material that forms an oxide film on the surface

easily. When such a material is subjected to cyclic stress near the

threshold regimen at low load ratios (R) and in a moist environment,

corrosion products (i.e., oxides) of thickness comparable to the crack-

tip opening displacements can build up at and near the tip. The oxide

film continually breaks and forms behind the tip due to the crack

surfaces coming together as a result of plasticity-induced closure and

mode-I displacements characteristic of near-threshold crack growth.

The crack closes at stress intensities above Kmin. This mechanism is

less likely to operate in a dry, oxygen-free environment and high load

ratios. (Plasticity-induced closure is small.) The formation of an oxide

film is time dependent and not likely to occur at high frequencies.

Roughness-induced crack closure is thought to occur when the frac-

ture surface roughness is comparable in size to the crack-tip opening

displacement (CTOD) and significant mode-II deformation occurs. In

such a case, cracks can become wedge--closed at contact points above

the crack faces. Crack closure causes an increase in stiffness and a

decrease in compliance. High values of R result in less crack closure;

that is, �Keff is closer to �K for higher R.

14.12 The Two-Parameter Approach

In a series of papers, Vasudevan et al. proposed a new, two-parametric

approach to fatigue crack propagation.14 Among the features of their

approach are the following:

� It is not necessary to invoke crack closure to explain fatigue crack

propagation.
� Plasticity at the crack tip cannot contribute to crack closure.
� Crack closure induced by oxide, corrosion, or roughness is very local

and small.

There are five local parameters: the cyclic stress intensity factor �K;

the maximum stress intensities Kmax; the minimum stress intensity
ΔKth

ΔK*
th

K*
max Kmax

Fatigue crack
 growth region

Fig. 14.31 A fatigue threshold

curve. (After A. K. Vasudevan,

K. Sadananda, and N. Louat, Mater.

Sci. Eng., A188 (1994) 1.)

Kmin; the mean cyclic stress intensity factor Kmean; and the R ratio.

Out of these five, Vasudevan et al. used the applied driving force �K

and the peak stress intensity Kmax as the two parameters that are suf-

ficient and necessary to analyze fatigue crack propagation data. There

are thus two threshold quantities, one in each of the two parameters:

the alternating stress intensity factor �K ∗ and K ∗
max. These two must

be satisfied simultaneously for crack propagation to occur. Based on

data available in the literature on a wide range of alloys, Vasudevan

and colleagues constructed a fundamental fatigue threshold curve or

a fatigue map, as shown in Figure 14.31. The fundamental curve is

14 See, for example, A. K. Vasudevan, K. Sadananda, and N. Louat, Mater. Sci. Eng., A188

(1994) 1.
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independent of testing and geometric parameters; it depends only on

the material and environmental parameters. The shape and magni-

tude of such fundamental curves can vary, depending on the curve

of �Kth vs. the load ratio R. On the basis of these new concepts,

Vasudevan et al. classified the fatigue crack growth data into five dif-

ferent classes, using the experimental data on �Kth vs. R. Such a

classification could provide a new basis for understanding the syn-

ergistic effects of various driving forces (mechanical, chemical, and

microstructural) upon fatigue crack growth.

14.13 The Short-Crack Problem in Fatigue

For long cracks, under conditions of applicability of linear elastic

fracture mechanics (LEFM), there exists a threshold stress intensity

range �Kth, below which no fatigue crack growth occurs. The value

of the cyclic threshold stress intensity depends on a variety of factors:

the microstructure of the material; the test environment; the load

ratio R (=σ min/σ max = Kmin/Kmax); various crack-tip factors such as

the amount of overload, cold work, etc.; experimental techniques;

and the geometry of the specimen. It has been observed that short

fatigue cracks, in metals and polymers, can propagate at rates differ-

ent from those of the corresponding long fatigue cracks under the

influence of the same driving force. Generally, for a given �K, the
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(LEFM)
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d
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Fig. 14.32 Fatigue crack growth

rates for long and short cracks.

growth rates of small cracks are higher than those of long cracks.15

A short crack is a crack that is smaller than the microstructural

unit of the materials; for instance, a crack of length equal to grain

or precipitate size is a short crack. In practice, one finds that long

cracks can be between 1 and 20 mm, while short cracks are smaller

than 0.1 mm. The anomalous growth of short cracks is explained in

Figure 14.32, a plot of log da/dN vs. log �K. Long cracks do not grow

below a constant threshold �Kth. For long cracks, we have

K I = Y σ
√

πa,

and the threshold �Kth is a constant, as indicated in Fig. 14.32. This

is in accord with LEFM, as KI alone determines the stress state at the

crack tip. However, in the short-crack regimen, cracks grow below

this threshold value, as indicated by the deviation from the solid line

in the figure. Short cracks propagate below the long-crack threshold

(�Kth). The fatigue crack growth rate of short cracks decreases pro-

gressively, until a minimum in crack velocity occurs at a crack length

on the order of the grain size; that is, a ≈ d, where d is the grain

size. This so-called short-crack anomaly arises when the crack size

approaches the dimension of the microstructural feature (e.g., grain

size, inclusions, etc.). Under such circumstances, homogeneity is lost,

which is implicit in the LEFM treatment of the long crack.

15 See, for example, R. A. Smith and K. J. Miller, Int. J. Mech. Eng., 20 (1978) 201; S. Suresh

and R. O. Ritchie, Intl. Met. Rev., 29 (1984) 445.
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Sadananda and Vasudevan have extended their two-parametric

framework (see Section 14.12) to explain short-crack behavior.16

According to these authors, a crack grows when both thresholds, �K∗

and Kmax
∗, are met simultaneously. A short crack is no exception, and

for it to propagate, it must meet these requirements, too. The short

crack is different from the long crack in terms of the internal stresses

that it encounters: All short cracks grow in internal stress fields that

accentuate the applied stress to the level at which the crack propa-

gates. An important conclusion of Sadananda and Vasudevan’s work

is that a similitude between the long and short crack is maintained!

14.14 Fatigue Testing

Among the reasons for carrying out fatigue testing on a material, we

may include the need to develop a better understanding (fundamental

or empirical) of the fatigue behavior of the material and the need to

obtain more practical information on the fatigue response of a com-

ponent or structure of the material. The fatigue test samples may thus

range from tiny samples tested within, say, the specimen chamber of

a scanning electron microscope to complete aircraft wings weighing

many tons. It would be futile to try to include everything known

about fatigue testing here; instead, we present some of the common

techniques and point out some of their salient aspects.

14.14.1 Conventional Fatigue Tests
Conventionally, fatigue testing has been done by cycling a given

material through ranges of stress amplitude and recording the num-

ber of cycles of failure. The results are reported in the form of S--N

curves. There are two main types of loading: rotating bending tests

and direct stress tests (Figure 14.33). In direct stress machines, the

stress distribution over any cross section of the specimen is uniform,

and we can easily apply a static mean tensile or compressive load (i.e.,

the R ratio may be varied). However, the more common and popular

type of loading has been the rotating bending beam test, described

next. Direct loading machines are discussed in Section 14.14.4.

14.14.2 Rotating Bending Machine
Rotating bending tests are perhaps one of the most simple and old-

est types of fatigue test. They provide a simple method of determin-

ing fatigue properties at zero mean load by applying known bending

moments to rotating round specimens. Commercially, many versions

are available, the main difference being in the application of the

load: at a single point, as in a cantilever loading machine, or by some

kind of two- or four-point loading (Figure 14.33). In the latter case, the

16 K. Sadananda and A. K. Vasudevan, in Fatigue 96, Berlin, May 6--10, 1996, (Oxford: Perga-

mon Press, 1996), p. 375; K. Sadananda and A. K. Vasudevan, in Twenty-seventh National

Symposium on Fracture Mechanics, ASTM STP-1296, (West Conshohocken, PA: ASTM, 1996).
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bending moment is constant over the entire test section of the speci-

men, and thus, we use a specimen of constant diameter. In the can-

tilever type of loading machine, the specimen either has a narrow

waist, so that the maximum bending stress occurs at the smallest

diameter, or has a tapered cross section, such that the maximum

bending stresses are constant at all cross-sections. The stress at a point

on the surface of a rotating bending specimen varies sinusoidally

between numerically equal maximum tensile and compressive values

in every cycle. Assuming the specimen to be elastic, we have

± S = 32M

πd3
, (14.7)

where S is the maximum surface stress, M is the bending moment at

the cross section under consideration, and d is the diameter of the

specimen. In such a test we obtain the number of cycles to failure

at a given stress level. The stress level S is continually reduced, and

the number of cycles to failure, Nf, increases. A logarithmic scale is

used for N, and we obtain an S--N curve. In the case of ferrous mater-

ials, we generally attain a fatigue limit or endurance limit SL (Figure

14.3). Cycling below SL can be done indefinitely, without resulting in



14 .14 FATIGUE TESTING 753

failure of the material. Such an endurance limit is not encountered

in nonferrous metals or polymers. In these cases, one sets an arbitrary

number of cycles, say 107, and takes the corresponding stress to be

the fatigue life of the material.

14.14.3 Statistical Analysis of S–N Curves
It has been observed that, if a sufficiently large number of identical

specimens is fatigue tested at the same stress amplitude, a Gaussian

or normal distribution describes the logarithm of the fatigue life

S
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Fig. 14.34 S–N curve showing

log-normal distribution of lives at

various stress levels.

distribution. Figure 14.34 shows a schematic S--N diagram with a log-

normal distribution of lives at various stress levels. There is more of

a spread in the lives of a group of specimens tested at a stress level

greater than their fatigue limit than in the stress levels necessary

to cause failure at a given life. The data from cyclic loading tests

(whether rotating bending beam, pulsating tension, or axial tension--

compression) must be analyzed statistically. The mean value x̄ and

the standard deviation σ for a given set of data are given by

x =
∑

x

n
(14.8)

and

σ =
[∑

(x − x)2

n − 1

]1/2

, (14.9)

where x is the cyclic life of the material at a given stress (the test value)

and n is the number of test values (i.e., the number of samples tested

to failure at a given stress). With these statistical parameters, one can

obtain confidence limits for the probability of survival of the material.

The anticipated fatigue life, with a desired level of confidence (C) that

at least P of the samples will not fail, may be written as

anticipated life (C , P ) = x̄ − qσ. (14.10)

where q is a function of C, P, and the number of test samples

used to determine x̄ and σ . The selection of a particular confidence

limit depends on the importance of the component to the structural

integrity of the material. The more important the component, the

higher should be the confidence limit and the lower the stress. The

q values for a given distribution are available in tabulated form in

the literature. Table 14.1 presents the q-values, assuming a normal

distribution. With anticipated life (Equation 14.10) and the q tables,

we can develop a family of curves showing the probability of survival

or failure of a component (Figure 14.35).

14.14.4 Nonconventional Fatigue Testing
In the category of nonconventional fatigue testing, we include prac-

tically all modern fatigue testing other than that involving the

determination of S--N curves. The machines used are direct load-

ing machines. The drive system of the load train receives a time-

dependent signal from the controls, converts it into a force, or
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Table 14.1 q-values for S--N Data, Assuming a Normal Distribution∗

P(%) 75 90 95 99 99.9 75 90 95 99 99.9

n C = 0.50 C = 0.75

4 0.739 1.419 1.830 2.601 3.464 1.256 2.134 2.680 3.726 4.910
6 0.712 1.360 1.750 2.483 3.304 1.087 1.860 2.336 3.243 4.273
8 0.701 1.337 1.719 2.436 3.239 1.010 1.740 2.190 3.042 4.008

10 0.694 1.324 1.702 2.411 3.205 0.964 1.671 2.103 2.927 3.858
12 0.691 1.316 1.691 2.395 3.183 0.933 1.624 2.048 2.851 3.760
15 0.688 1.308 1.680 2.379 3.163 0.899 1.577 1.991 2.776 3.661
18 0.685 1.303 1.674 2.370 3.150 0.846 1.544 1.951 2.723 3.595
20 0.684 1.301 1.671 2.366 3.143 0.865 1.528 1.933 2.697 3.561
25 0.682 1.297 1.666 2.357 3.132 0.842 1.496 1.895 2.647 3.497

n C = 0.90 C = 0.95

4 1.972 3.187 3.957 5.437 7.128 2.619 4.163 5.145 7.042 9.215
6 1.540 2.494 3.091 4.242 5.556 1.895 3.006 3.707 5.062 6.612
8 1.360 2.219 2.755 3.783 4.955 1.617 2.582 3.188 4.353 5.686

10 1.257 2.065 2.568 3.532 4.629 1.465 2.355 2.911 3.981 5.203
12 1.188 1.966 2.448 3.371 4.420 1.366 2.210 2.736 3.747 4.900
15 1.119 1.866 2.329 3.212 4.215 1.268 2.068 2.566 3.520 4.607
18 1.071 1.800 2.249 3.106 4.078 1.200 1.974 2.453 3.370 4.415
20 1.046 1.765 2.208 3.052 4.009 1.167 1.926 2.396 3.295 4.319
25 0.999 1.702 2.132 2.952 3.882 1.103 1.838 2.292 3.158 4.143

∗Reprinted with permission from ASTM STP No. 91 (Philadelphia: ASTM, 1963), p. 67.
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Fig. 14.35 Family of curves

showing the probability of survival

or failure of a component.

displacement--time excitation, and transfers this excitation to the

fatigue specimen. The three common control parameters are force:

deflection or displacement, and strain. For most constant-amplitude

fatigue tests, a simple harmonic motion is programmed into the

drive system. Electronic function generators are commonly used; they
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Fig. 14.36 Line diagram of a

hydraulically operated closed-loop

system.

generate an electrical signal that varies with time in the way the

fatigue control parameter is desired to vary with time. A variety of sig-

nals can be programmed -- for example, constant amplitude, constant

frequency, and zero mean stress; constant amplitude, constant fre-

quency, with a non-zero-mean stress level; random loading; and so on.

14.14.5 Servohydraulic Machines
Servohydraulically operated fatigue machines have become increas-

ingly popular over the years. Figure 14.36 shows a line diagram of

a servohydraulically operated closed-loop system. The load, applied

through a hydraulic actuator, is measured by a load cell in series with

the specimen. The amplified signal from the load cell is compared in

a differential amplifier with the desired signal obtained from, say, a

function generator. Thus, this system forms a closed-loop load con-

trol system. We can also have a displacement or strain control from a

transducer or a strain gage on the specimen instead of the load cell.

The actual value measured by a load cell, displacement transducer, or

strain gage is continuously compared with the desired value and con-

tinuously corrected by the high-response electromagnetic servovalve.

The energy is provided by a hydraulic power supply. The main advan-

tage of such machines is a higher degree of flexibility. Larger speci-

men deflections are possible than are possible in electromechanical

machines. Thus, we can test components involving large deflections,

as well as conventional, stiff specimens. Another major advantage

has to do with the versatility of the system in regard to the input
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low-cycle fatigue-testing system.

signal that can be used. Virtually any analog signal from a function

generator, magnetic tape, or a random noise generator is acceptable.

This enables us to use not only constant-amplitude waveforms or

block-program spectrum loading, but also random waveforms, such as

those obtained from actual service conditions. The upshot is that the

materials or components can be subjected to more realistic fatigue

testing. The main disadvantage of servohydraulic machines is, of

course, that they require much higher power consumption than con-

ventional devices.

14.14.6 Low-Cycle Fatigue Tests
Under conditions of high nominal stresses (i.e., short lifetimes, less

than 104 cycles), the constant-stress amplitude test gives only limited

information. This is because rather large plastic strain components

are involved in such cases. Under such conditions, the cyclic stress--

strain curves obtained under strain control become more useful. Ser-

vohydraulic machines are generally used in a closed-loop mode. Figure

14.37 shows schematically a cyclic straining facility. Axial tension--

compression is generally employed. We measure stress as a function

of the number of strain reversals. Usually, stress and strain signals

are fed to an X--Y recorder, and a complete hysteresis loop is obtained.

The area of the loop is the plastic strain energy per cycle.
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Cyclic Stress--Strain Curves

We can obtain cyclic stress--strain curves by linking the tips of a

series of hysteresis loops obtained from equivalent specimens tested

at different plastic strain amplitudes (�εp). There are also methods

of obtaining cyclic stress--strain curves from a single specimen. The

hysteresis loop adjusts rather quickly following a sudden change in

�εp. Thus, we can obtain a cyclic stress--strain curve from one speci-

men tested at several strain amplitudes. This is called a multiple-step

test. Another method is the incremental step test with one specimen.

This method consists of gradually increasing the cyclic strain range

until a cyclic strain of about ± 1% is attained. The strain range is then

slowly reduced, and the procedure is repeated until the material is

stabilized.

14.14.7 Fatigue Crack Propagation Testing
As pointed out earlier, the process of fatigue failure consists of the

following two stages:

1. A certain number of cycles Ni in which a small crack is initiated.

Some people include in this stage early growth of the microcrack

to a somewhat larger crack.

2. Propagation of a major crack. Generally, this occurs in such a

way that we are able to describe the propagation behavior by

some kind of standard relationship, say, the Paris--Erdogan rela-

tion. There is a substage of this propagation stage wherein the

final rupture occurs, namely, when the crack has reached a cer-

tain critical length for the material, the applied stress, and the

test piece or structural component.

Much attention has been paid to the crack propagation behavior of

materials in fatigue. Fatigue crack growth rates under service condi-

tions can be of great importance, especially in determining inspection

intervals. For example, wheels on large aircraft may have an ample

safe lifetime after the appearance of detectable cracks. What we want

to be sure of is that these cracks will not grow to a size that is crit-

ical for the part during the time available before the next periodic

inspection.

Flat-sheet specimens are commonly chosen for crack propagation

studies. The starter notch can be a side edge notch, a central through-

the-thickness hole, or some other shape appropriate to the form of

defects observed in service. These notches can be cut by a mechan-

ical saw, electrical discharge machining, and so on. Usually, crack

growth measurements are made after a small initial propagation in

which there is an atomically sharp fatigue crack. The crack length

is measured as a function of the number of cycles, and subsequent

analysis is carried out in terms of fracture mechanics concepts. Syn-

chronized strobe lighting can be used to illuminate the surface of

the sample in order to provide a stable, vibration-free crack-length

reading capability, or, in more sophisticated cases, a movie record

can be obtained of the increase in the length of the crack. Traveling
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or stereo zoom microscopes are used in manual monitoring crack

length. Such devices typically can read up to 0.01 mm. We may have

scale markings photographically prepared on the sample or have a

scale inserted in the ocular piece of the microscope. We can also

use crack propagation gages, consisting of a series of 20 or 25 paral-

lel, equally spaced resistance wires in the form of a grid. Crack length

is measured by monitoring the overall change in resistance. In the

electric potential drop method, a constant direct current is passed

through the specimen containing a crack. The resistance of the speci-

men changes as the crack grows and is detected by measuring the

potential drop across the mouth of the starter notch. Figure 14.38

shows the setup for a bend and a compact-tension specimen. As a

crack is observed propagating, the number of cycles required for each

increment is recorded, and a crack growth rate da/dN is computed

from the curve of the crack length a versus the number of cycles N.

The cyclic stress intensity factor at the crack tip (�K) may be computed

from the crack length and the load. By plotting da/dN versus �K, we

can obtain the fatigue crack growth characteristics of the material.
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Exercises

14.1 Many operations, such as machining, grinding, electroplating, and case-

hardening, may induce residual stresses in a material. Discuss, in general

terms, the effect of such residual stresses on the fatigue life of the material.

14.2 A steel has the following properties:

Young’s modulus E = 210 GPa,

Monotonic fracture stress σ f = 2.0 GPa,

Monotonic strain at fracture εf = 0.6,

Exponent b (cyclic) = 0.09; c (cyclic) = 0.06.

Compute the total strain that a bar of this steel will be subject to under cyclic

straining before failing at 1,500 cycles.

14.3 The low-cycle fatigue behavior of a material can be represented by

σL = σUTS N −0.1
f ,

where σ L is the endurance limit, σ UTS is the ultimate tensile strength, and Nf

is the number of cycles to failure. If σ UTS for this material is 500 MPa, find

its endurance limit. A sample of the material is subjected to block loading

consisting of 40, 30, 20, and 10% of fatigue life at σ L, 1.10σ L, 1.2σ L, and 1.3σ L,

respectively. Use the Palmgren--Miner relationship to estimate the fatigue life

of the sample under this block loading.

14.4 A microalloyed steel was subjected to two fatigue tests at ± 500 MPa and

± 300 MPa. Failure occurred after 103 and 105 cycles, respectively, at these

two stress levels. Making appropriate assumptions, estimate the fatigue life at

± 400 MPa of a part made from this steel that has already suffered 104 cycles

at ± 350 MPa.

14.5 The curve of crack growth rate da/dN vs. cyclic stress intensity �K for

a material in the Paris regimen is shown in Figure Ex14.5. Determine the

parameters C and m for this material. (Hint: Take any two points on the straight

portion of the curve, and determine the slope m of the line.)
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Fig. Ex14.5

14.6 A steel has the following properties:

Yield stress σ v = 700 MPa,

Fracture toughness KIc = 165 MPa m1/2.

A plate of this steel containing a single edge crack was tested in fatigue under

�σ = 140 MPa, R = 0.5, and a0 = 2 mm. It was observed experimentally that

fatigue crack propagation in the steel could be described by the Paris-type

relationship

da

d N
(m/cycle) = 0.66 × 10−8(�K )2.25,

where �K is measured in MPa m1/2.
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(a) What is the critical crack size ac at σ max?

(b) Compute the fatigue life of the steel.

14.7 Obtain the parameters for the Paris-type relationship for the data shown

in Figure Ex14.7 for the aluminum alloy 7075-T6.
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Fig. Ex14.7 Adapted from ASM

Metals Handbook, 9th ed. (Metals

Park, OH. ASM, 1986), p. 103.

14.8 For the 7075-T6 alloy in Exercise 14.7, determine the length of a crack

after 105 cycles if the initial crack size was equal to 0.2 mm and the cyclic

loading was such that, at the onset of fatigue, �K = 10 MPa m1/2.

14.9 Suppose that the fatigue life of a precracked specimen is totally occupied

by crack propagation. If, in a certain case, the initial crack growth rate is given

by

da

d N
= C �K 2

and �K = 2α �σ
√

πa, show that

C = 1

4N�σ 2α2π
ln

a f

a0

,

where α is a constant N is the fatigue life, a0 is the initial crack length, and

af is the final crack length, of the specimen.

14.10 Fatigue crack propagation in a polymer can be described by the rela-

tionship

da

d N
= 0.5 × 106�K 3.5,

where da/dN is in m/cycle and �K is in MPa m1/2. A sample with the following

dimensions and a central through-the-thickness crack was subjected to fatigue

under a maximum load of 200 N and a minimum load of zero:

thickness B = 10 mm,

width W = 50 mm,

crack length 2a = 10 mm.

Using an appropriate expression for �K (see Chapter 7), calculate da/dN for

this sample.

14.11 (Design Problem) Estimate the life of a hip implant made of 304L stain-

less steel if it contains initial flaws with length 2c = 200 μm and a height

2a = 100 μm. Assume that the force applied on the artificial hip is

walking: 3W,

running: 7W,

where W is the weight of the person. The fatigue response of 304L can be

represented by

da

d N
= 5.5 × 10−9�K 3,

where da/dN is in mm/cycle and K is in MPa m1/2. The person is assumed to

(a) walk 3 hours per day

(b) walk 3 hours and jog 20 minutes per day.

Make all necessary assumptions.
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14.12 Assuming that fatigue failures are initiated at the ‘‘weakest link,” we

may use the Weibull frequency distribution function to represent the fatigue

lives of a group of specimens tested under identical conditions. We have

f (N ) = b

Na − N0

(
N − N0

Na − N0

)b−1

exp

[
−

(
N − N0

Na − N0

)b
]

where N is the specimen’s fatigue life, N0 is the minimum life 0, Na is the

characteristic life at 36.8% survival of the population (36.8% = 1/e, where

e = 2.718), and b is the shape parameter of the Weibull distribution curve.

Letting x = (N − N0)/(Na − N0), plot frequency curves f(N) versus x for b = 1,

2, and 3.

14.13 Fatigue data are, generally, analyzed cumulatively to determine the sur-

vival percentage. The Weibull cumulative function for the fraction of popula-

tion failing at N is an integration of the expression for f(N) in the preceding

exercise. Show that this function is

F (N ) = 1 − exp

[
−

(
N − N0

Na − N0

)b
]

.

Transform F into a straight-line relationship by taking the logarithm of the

logarithm of the equation. Show how this relationship can be used on log--

log paper for graphically fitting the Weibull cumulative distribution and for

graphically estimating the parameters b, N0, and Na.17

17 See, for example, C. S. Yen, in Metal Fatigue: Theory and Design, A. F. Madayag, ed. (New

York: Wiley, 1969), p. 140.
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14.14 (Design Problem) One of the worst single aircraft accidents in history

resulted in the loss of 520 lives. It was produced by the growth of a fatigue

crack in the back of the bulkhead of a Boeing 747 plane. (See Figure Ex14.14.)

The fatigue fracture was caused by a repair that replaced a double row of

rivets by a single row in certain places. The accident occurred after the plane

reached an altitude of 7,200 m. The atmospheric pressure decreases by 12 Pa

for every meter increase in altitude.

(a) Calculate the stress cycle to which the pressurized cabin and bulkhead

were subjected in each takeoff--landing sequence of the plane.

(b) Establish the critical crack length for which catastrophic growth would

occur.

(c) Assuming that fatigue failure started at one of the rivet holes (which had

a diameter of 12 mm) and that it propagated through subsequent holes,

calculate the number of cycles necessary to bring down the ‘‘big bird,”

given the following data:

Paris relationship constants, C = 5 × 10−8 and m = 3.6,

σy = 310 MPa,

σUTS = 345 MPa.

14.15 An alloy steel plate is subjected to constant-amplitude uniaxial tension--

compression fatigue. The stress amplitude is 100 MPa. The plate has a yield
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strength of 1,500 MPa, a fracture toughness of 50 MPa m1/2 and an edge crack

of 0.5 mm. Estimate the number of fatigue cycles to cause fracture if da/dN

(m/cycle) = 1.5 × 10−24 �K4, where the units of K are MPa m1/2. Use Y = 1 in

the fracture toughness equation.

14.16 A part is subjected to cyclic loading at 50 Hz. The stress intensity at the

tip of a flaw is just above �Kth, and da/dN is equal to 10−8 mm/s. What is the

length of crack after one week? Take m = 3.

14.17 The low cycle fatigue of a metallic alloy can be described by the Coffin--

Manson expression relating the number of cycles to failure, Nf, to plastic

strain, �εpl, as follows:

N 0.5
f �εpl = 0.4.

Compute the number of cycles to failure if the alloy fails at a plastic strain

of 5 × 10−3.

14.18 An alloy of titanium, Ti-6Al-4V, has a fracture toughness of 50 MP

m1/2. A plate of this material has a penny-shaped crack of diameter 10 mm.

Take the yield stress of this alloy to be 980 MPa. What is the stress that

can be applied in service to this plate without causing failure? Given: K =
2σ (a/π )1/2 .

14.19 A 2024-T6 aluminum alloy used for the frame of an aircraft was tested

in a Wöhler-type machine rotating at 400 rpm (sinusoidal stress variation,

mean stress equal to zero). The following results were obtained:

stress range = 310 MPa; N = 104 cycles;

stress range = 230 MPa; N = 107 cycles.

Predict the life of the aircraft if it is in the air 16 hours per day and if it is

subjected to the stress range of 180 MPa at the same frequency. The material

obeys Basquin’s law.

14.20 Explain the effect on fatigue life of the following design and environ-

mental factors:

(a) A high polish surface finish.

(b) A rivet hole.

(c) Increasing the mean stress, but keeping the range constant.

(d) A corrosive atmosphere.

14.21 (Design Problem) On April 28, 1988, an Aloha Airlines Boeing 737, was

flying from Hilo to Honolulu. As the airplane leveled at 8,000 m, both pilots

heard a loud ‘‘clap” or ‘‘whooshing” sound followed by a wind noise behind

them. The cockpit entry door was missing and that there was blue sky where

the first-class ceiling had been. The plane was able to land. After the accident,

a passenger stated that as she was boarding the airplane through the jet

bridge at Hilo, she observed a longitudinal fuselage crack. The crack was in

the upper row of rivets, about halfway between the cabin door and the edge

of the jet bridge hood.

What is your interpretation on the cause of the accident? If the plane is

pressurized, what is the critical crack length at an altitude of 8,000 m? Make

all necessary assumptions and use sketches in your answer.

14.22 A polymer has cycles to failure Nf as 50 when the stress amplitude

is 43 MPa, and cycles to failure Nf as 5,000 when the stress amplitude
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is 15 MPa. Estimate the cycles to failure when the stress amplitude is

20 MPa.

14.23 An alloy has a Paris-type fatigue crack propagation relationship:

da

d N
(m/c ycle ) = 0.8 × 10−6(�K )2.

If it is subjected to fatigue under a stress amplitude �σ = 100 MPa, how long

will the crack be after 1,000 cycles. Take the crack to be 0.5 mm.

14.24 Calculate the mean stress for a titanium alloy with UTS = 1,140 MPa,

yield stress 1,075 MPa, by the Goodman, Gerber, and Soderberg relationship.

The stress amplitude is 120 MPa and σ 0 = 140 MPa.



Chapter 15

Composite Materials

15.1 Introduction

We can define a composite material as a material consisting of two or

more physically and/or chemically distinct phases, suitably arranged

or distributed. A composite material usually has characteristics that

are not depicted by any of its components in isolation. Generally, the

continuous phase is referred to as the matrix, while the distributed

phase is called the reinforcement. Three items determine the character-

istics of a composite: the reinforcement, the matrix, and the interface

between them. In this chapter, we provide a brief survey of different

types of composite materials, highlight some of their important fea-

tures, and indicate their various applications.

15.2 Types of Composites

We may classify composites on the basis of the type of matrix

employed in them -- for example, polymer matrix composites (PMCs),

metal matrix composites (MMCs), and ceramic matrix composites

(CMCs). We may also classify composites on the basis of the type of

reinforcement they employ (see Figure 15.1):

1. Particle reinforced composites.

2. Short fiber, or whisker reinforced, composites.

3. Continuous fiber, or sheet reinforced, MMCs.

4. Laminate composite.

Figure 15.2 shows typical microstructures of some composites: boron

fiber/Al (Figure 15.2(a)), short alumina fiber/Al (Figure 15.2(b)), and

NbC/Ni--Cr, an in situ (eutectic) composite (Figure 15.2(c)). Examples

of microstructure of a silicon carbide particle (three different volume

fractions) reinforced aluminium matrix are given in Figure 15.3. These

were made by hot pressing of powders followed by hot extrusion. Note

the preferential alignment of SiC particles in the extrusion direction.
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(a) (b) (c) (d)

Fig. 15.1 Different types of

reinforcement for composites:

(a) particle reinforcement;

(b) short fiber reinforcement;

(c) continuous fiber reinforcement;

(d) laminate reinforcement

(a)

Fig. 15.2 (a) Transverse section

of a boron fiber reinforced

aluminum composite. Vf = 10%.

(b) Section of a short alumina

fiber/aluminum matrix composite.

(c) Deeply etched transverse

section of a eutectic composite

showing NbC fibers in an Ni–Cr

matrix. (Courtesy of S. P. Cooper

and J. P. Billingham, GEC Turbine

Gnerators Ltd, U.K.)

(b)
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(c)

Fig. 15.2 (cont.)

Longitudinal Transverse

Short transverse

Extrusion axis

2080/SiC/10p 2080/SiC/20p 2080/SiC/30p

100 μm 100 μm 

Fig. 15.3 Microstructure of a

silicon carbide particle (10, 20, and

30%, three different volume

fractions) reinforced aluminium

alloy (2080) matrix composites

made by hot pressing of powders

followed by hot extrusion. Note

the preferential alignment of SiC

particles in the extrusion direction.

The number and subscript p

indicate the volume fraction of SiC

particles in the composites.

(Courtesy of N. Chawla.)

15.3 Important Reinforcements and Matrix
Materials

Many reinforcement materials are available in a variety of forms:

continuous fibers, short fibers, whiskers, particles, etc. Some of the

important ones are listed in Table 15.1, along with a summary of their

salient characteristics. Reinforcements include organic fibers such

as polyethylene and aramid, metallic fibers, and ceramic fibers and

particles.
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Table 15.1 Properties of Some Important Reinforcement Fibers

Tensile Tensile
Modulus Strength Density

Materials (Fibers) (GPa) (GPa) (g/cm3)

Alumina 350–380 1.7 3.9
Boron 415 3.5 2.5–2.6
SiC 300–400 2.8 2.8
E-Glass 71 1.8–3.0 2.5
Carbon P100 (pitch-based) 725 2.2 2.15
Carbon M60J (PAN-based) 585 3.8 1.94
Aramid 125 3.5 1.45
Polyethylene 110 3 0.97

A variety of materials -- polymers (thermoset and thermoplastic),

metals and their alloys, intermetallics, glasses, glass--ceramics, and

crystalline ceramics -- can be used as matrices. Most polymer matrix

composites consist of cross-linked thermoset polymers such as epoxy,

phenolic, and polyester resins. Cross-linked thermoset polymers have

an amorphous structure. (See Chapter 1.) Phenolics have the advan-

tage of being cheaper than epoxy and polyester resins. Their main

disadvantage is that toxic by-products are liberated during the curing

process. Cross-linking of polymer chains during curing in polyester

and epoxy occurs by an addition mechanism, without any by-product

produced. Glass fiber reinforced phenolic, polyester, or epoxy have

been in use in a variety of automotive components. Epoxy resins

have the added attractive feature that they can be partially cured

to make fiber/epoxy prepregs, which are subsequently consolidated

into a component, usually in an autoclave. A prepreg is a thin lamina

of unidirectional (or sometimes woven) fiber/polymer composite pro-

tected on both sides with easily removable separators. A typical uni-

directional prepreg comes in the form of a roll that is 300--1,500 mm

wide, 0.125 mm thick, and 50--250 m long. Typically, the polymer con-

tent is approximately 35% by volume. It is not uncommon to use 50

or even more such plies in a component.

To a lesser extent than thermosets, thermoplastic resins such

as poly(ether ether ketone) or PEEK and poly(phenylene sulfide), or

polyamide, are used as matrix materials. PEEK is a high-performance

semicrystalline thermoplastic that has been used as a matrix for car-

bon fibers. It is attractive as a polymeric matrix material because of

its superior toughness and impact properties, compared to those of

epoxies. Such properties are a function of the crystalline content and

morphology of the thermoplastic.

There are many other important matrix materials. Among metallic

matrix composite, we have aluminum and its alloys, mainly because

of their low density and excellent strength, toughness, and resistance
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to corrosion, as well as titanium alloys, magnesium alloys, copper, etc.

Among intermetallic and ceramic matrix composites are a variety

of intermetallic compounds such as molybdenum disilicide and alu-

minides of nickel and titanium, silica-based glasses, glass--ceramics,

and crystalline ceramics such as alumina and silicon carbide.

Example 15.1

Carbon black is frequently used as a particulate filler in polymers, both

thermoplastic and thermoset. Describe some of the important effects

of the addition of carbon black to polymers.

Solution: Carbon black is stronger than the polymer matrix; thus, we

get a stronger and harder composite. Carbon black is also thermally

more stable than the polymer matrix; therefore, its addition results in a

thermally stable composite -- that is, improved creep resistance. In add-

ition, carbon black leads to an enhanced dimensional stability. (It has

a higher modulus and lower expansion coefficient than the polymer.)

15.3.1 Microstructural Aspects and Importance
of the Matrix

The differential thermal expansion between the reinforcement and

the metal matrix can introduce a high dislocation density in a metal-

lic matrix, especially in the near-interface region of the matrix.

This high matrix dislocation density, as well as the reinforcement--

matrix interfaces, can provide high diffusivity paths in a composite.

A semicrystalline thermoplastic matrix can have its crystallization

kinetics altered by the presence of a reinforcement such as a carbon

fiber. In the case of a ceramic matrix composite, the brittle matrix

can undergo cracking in response to such thermal stresses. Thus, the

characteristics of a matrix material are changed by the very process

of making a composite. Such is not commonly the case with the rein-

forcement, however; only in rare instances of very high temperature

processing, as, for example, in the case of a CMC, can the reinforce-

ment also undergo a change in its microstructure. Hence, the matrix

is much more than a mere medium or glue to hold the reinforce-

ment, be that fibers, whiskers, or particles. Accordingly, it should be

chosen after due consideration of its chemical compatibility and ther-

mal mismatch with the reinforcement. Processing-induced chemical

reactions and thermal stresses can cause changes in the microstruc-

ture of the matrix. These microstructural changes in the matrix, in

turn, can affect the mechanical and physical behavior of the compos-

ite. The matrix strength in the composite (the in situ strength) will

not be the same as that determined from a test of an unreinforced

matrix sample in isolation, because the matrix is likely to suffer
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several microstructural alterations during processing and, conse-

quently, changes in its mechanical properties.

The final matrix microstructure is a function of the type, diameter,

and distribution of the fiber, as well as conventional solidification

parameters. For example, Mortensen et al. observed normal dendritic

structure in the unreinforced region of the matrix of a silicon carbide

fiber/Al--4.5% Cu matrix, while in the reinforced region, the dendritic

morphology was controlled by the fiber distribution.1 Second phase

appeared preferentially at the fiber--matrix interface or in the nar-

row interfiber spaces. In short, the microstructure of the matrix in

the fiber composite is likely to differ significantly from that of the

unreinforced matrix material processed in an identical manner.

Porosity is a critical defect that is likely to be present in the matrix.

Porosity can be highly deleterious to the overall performance of a com-

posite. The main sources of porosity are any gas evolution, shrinkage

occurring upon solidification, and, in the case of CMCs, incomplete

elimination of any binder material. In a composite made by liquid

infiltration of a preform, a high volume fraction of reinforcement

may impede the flow of the liquid and inhibit any ‘‘bulk movement”

of the semisolid matrix material. The desirability of having a low

porosity in a PMC may be appreciated by the fact that the final stage

in any PMC fabrication is called debulking, which serves to reduce the

number of voids. A low quantity of voids is necessary for improved

interlaminar shear strength. In the case of a CMC, made by sinter-

ing of glass or glass--ceramic powder and fibrous reinforcements, the

reinforcements can form a network that impedes the transfer of mass

required for sintering. Depending on the thermal expansion coeffi-

cients of the components, there is also the possibility of developing

hydrostatic tensile stresses in the matrix that will counter the driving

force for sintering. The following are some of the common structural

defects in composites:

� Matrix-rich (fiber-poor) regions.
� Voids.
� Microcracks (which may form due to thermal mismatch between

the components, curing stresses, or the absorption of moisture dur-

ing processing).
� Debonded regions.
� Delaminated regions.
� Variations in fiber alignment.

15.4 Interfaces in Composites

The interface region in a particular composite has a great deal of

importance in determining the ultimate properties of the composite,

1 A. Mortensen, M. N. Gungor, J. A. Cornic, and M. C. Flemings, J. Met., 38 (Mar. 1986) 30.
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essentially for two reasons: The interface occupies a very large area

per unit volume in a composite, and, in general, the reinforcement

and the matrix form a system that is not in thermodynamic equilib-

rium. We can define an interface as a boundary surface between two

phases in which a discontinuity in one or more material parameters

occurs. According to this definition, an interface is a bidimensional

region across which a discontinuity occurs in one or more material

parameters. In practice, there is always some volume associated with

the interface region, and a gradual transition in material param-

eters occurs over the thickness of this interfacial zone. Some of the

important parameters that can show a discontinuity at the interface

are the elastic moduli, strength, chemical potential, coefficient of

thermal expansion of the composite, and others. A discontinuity in

chemical potential is likely to cause a chemical interaction, leading

to an interdiffusion zone or the formation of a chemical compound

at the interface. A discontinuity in the thermal expansion coefficient

means that the interface will be in equilibrium only at the tempera-

ture at which the reinforcement and the matrix were brought into

contact. At any other temperature, biaxial or triaxial stress fields will

be present, because of the thermal mismatch between the compo-

nents of a composite. Thermal stresses due to a thermal mismatch

will generally have an expression of the form

σ = f (E , a, b, r ) �α �T , (15.1)

where f (E, a, b, r) is a function of the elastic constants E and the geo-

metric parameters a, b, and r; �α is the difference in the expansion

coefficients of the components, and �T is the change in temperature

of the material. The term (�α�T) is, of course, the thermal strain.

(Detailed expressions for thermal stresses in composites can be found

in textbooks on composites.2)

The reader can easily show that, for a given diameter and vol-

ume fraction of reinforcement, a fibrous composite will have a larger

interfacial area than a particulate composite. The important point,

however, is that the interfacial area in a composite increases with

a decreasing reinforcement diameter. It is easy to visualize the inter-

facial area becoming very large for reinforcements less than 10--20 μm

in diameter. Since chemical and/or mechanical interactions between

the reinforcement and the matrix occur at interfaces, an extremely

large area of interface has an enormous importance in determining

the final properties and performance of a composite.

15.4.1 Crystallographic Nature of the
Fiber–Matrix Interface

In crystallographic terms, ceramic--metal interfaces in composites are,

generally, incoherent and high-energy interfaces. Accordingly, they

can act as very efficient vacancy sinks and provide rapid diffusion

2 See, for example, K. K. Chawla, Composite Materials: Science and Engineering, 2nd ed. (New

York: Springer, 1998).
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paths, segregation sites, and sites of heterogeneous precipitation, as

well as sites for precipitate-free zones. Among the possible exceptions

are some eutectic composites and the XDTM type of particulate com-

posites. The in situ or eutectic composites do show semicoherent inter-

faces, that is, the lattice mismatch between the matrix phase and the

reinforcement phase is accommodated by creating a network of dis-

locations. In general, interfaces in most composites are incoherent.

15.4.2 Interfacial Bonding in Composites
Some bonding must exist between the reinforcement and the matrix

for load transfer from matrix to fiber to occur. Neglecting any direct

loading of the reinforcement, the applied load is transferred from the

matrix to the reinforcement via a well-bonded interface. However, the

degree of bonding desired in different types of composites is not

the same. In general, one would like to have a strong interfacial

bonding in the case of PMCs and MMCs, with which one aims at

exploiting the high stiffness and load-bearing capacity of a fibrous

reinforcement. In CMCs, on the other hand, one would like to have

a weak interfacial bonding, so that an advancing crack gets deflected

there rather than passing through unimpeded. This is because the

main objective in CMCs is to enhance their toughness instead of their

strength. Crack deflection, crack bridging by fiber, and fiber pullout

lead to an increased toughness and a noncatastrophic failure.

An important parameter in regard to the interface is the wettabil-

ity of reinforcement by the matrix. Wettability refers to the ability of

a liquid to spread on a solid substrate. Frequently, the contact angle

between a liquid drop and a solid substrate is taken as a measure of

wettability, a contact angle of 0◦ indicating perfect wettability and

a contact angle of 180◦ indicating no wettability. Wettability is only a

measure of the possibility of attaining an intimate contact between a liquid

and a solid. Good wetting is a necessary, but not sufficient, condi-

tion for strong bonding. One needs a good wetting even for purely

mechanical bonding or weak van der Waals bonding; otherwise voids

may form at the interface. Besides wettability, other important fac-

tors, such as chemical, mechanical, thermal, and structural factors,

affect the nature of the bonding between reinforcement and matrix.

As it happens, these factors frequently overlap, and it may not always

be possible to isolate their effects.

In PMCs, the surfaces of fibers are generally treated to promote

chemical or mechanical adhesion with the matrix. For example, glass

fiber, a common reinforcement for a variety of polymeric resins,

invariably has a treated surface. The treatment is called sizing. The

size is applied to protect glass fiber from the environment, for ease of

handling, and to avoid introducing surface defects into the material.

Common sizes are starch gum, hydrogenated vegetable oil, gelatin,

and polyvinyl alcohol. These sizes are removed before putting in resin

matrix by heat cleaning at approximately 340 ◦C and washing. After

cleaning, organometallic or organosilane coupling agents are applied.

Organosilane compounds have the chemical formula, R--SiX3, where X
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typically is Cl and R is a resin-compatible group capable of interacting

with hydroxylated silanes on the glass surface.

A mechanical keying effect between two surfaces can also con-

tribute to bonding. Chawla and Metzger observed such mechanical

bonding effects in alumina/aluminum, a metal-matrix composite sys-

tem.3 Bonding due to mechanical interlocking at a rough interface

can be equally important in PMCs and CMCs. Carbon fibers are given

an oxidation treatment to provide, among other things, a rough sur-

face that aids in bonding with the polymer matrix.

15.4.3 Interfacial Interactions
As mentioned earlier, most composite systems are nonequilibrium

systems in the thermodynamic sense; that is, there exists a chemical

potential gradient across the fiber--matrix interface. This means that,

given favorable kinetic conditions (which, in practice, means a high

enough temperature or long enough time), diffusion and/or chemical

reactions will occur between the components. The interface layer(s)

formed because of such a reaction will generally have characteris-

tics different from those of either one of the components. At times,

however, some controlled amount of reaction at the interface may

be desirable for obtaining strong bonding between the fiber and the

matrix, but too thick an interaction zone will adversely affect the

properties of the composite. Metal and ceramic matrix composites

are generally fabricated at high temperatures, because diffusion and

chemical reaction kinetics are faster at elevated temperatures than at

low temperatures.

A very important factor in regard to reinforcement--matrix com-

patibility has to do with the mismatch between the coefficient of

thermal expansion of the reinforcement and that of the matrix.

This thermal mismatch can lead to thermal stresses large enough

to cause plastic deformation in a soft metallic matrix and cracking

in a brittle ceramic or polymeric matrix. Plastic deformation in the

metallic matrix leads to the introduction of defects such as disloca-

tions, vacancies, etc., in the matrix, especially in the region near the

interface. The introduction of such defects can and does affect the

phenomena responsible for chemical reactions at the interface, as

well as characteristics of the matrix such as the precipitation kinet-

ics. Chawla and Metzger showed, in a definitive matter, the impor-

tance of thermal stresses in composites.4 They used a large-diameter

tungsten fiber, (225 μm)/copper single-crystal matrix and low-fiber vol-

ume fractions. An etch-pitting technique was employed to observe dis-

locations in the matrix. The researchers observed that the dislocation

density near the fiber was much higher than the dislocation density

far away from the fiber. The enhanced dislocation density in the cop-

per matrix near the fiber arose because of the plastic deformation

3 K. K. Chawla and M. Metzger, in Advances in Research on Strength and Fracture of Materials

3 (New York: Pergamon Press, 1978), p. 1039.
4 K. K. Chawla and M. Metzger, J. Mater. Sci., 7 (1972) 34.
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Fig. 15.4 TEM micrograph

showing dislocations in aluminum

in the region near a silicon carbide

particle (SiCp).

of the matrix, in response to the thermal stresses generated by the

thermal mismatch between the fiber and the matrix. The existence

of a plastically deformed zone containing a high dislocation density

in the metallic matrix in the vicinity of the reinforcement was con-

firmed by transmission electron microscopy by a number of other

researchers, both in fibrous and particulate metal matrix composites.

Figure 15.4, a TEM micrograph, shows dislocations in an aluminum

matrix near a particle of silicon carbide. Such high densities of defects

in the metal matrix will, of course, lead to a different set of prop-

erties of the matrix. In nonprecipitation-hardening metals, this will

simply cause a strengthening due to a higher dislocation density.

In precipitation-hardenable matrix alloys, such as aluminum--copper,

one would expect faster aging kinetics. Preferential precipitation at

the reinforcement--matrix interface in an age-hardenable matrix has

been observed by many researchers.

Example 15.2

Ultrahigh-molecular-weight polyethylene (UHMWPE) fibers such as the

Spectra fiber are very hard to bond with most matrix materials. Why?

Solution: High-modulus polyethylene fibers have a very highly oriented

and extended chain structure. This high degree of crystallinity and a

lack of polar surface do not allow good bonding of the fibers to most

matrix materials. Indeed, the surface of such fibers must be treated

with plasma to provide roughness or else a copolymer should be used

to provide a polar surface, both of which approaches allow for bonding

with the matrix. A similar problem exists, to varying degrees, with

aramid and carbon fibers as well.

15.5 Properties of Composites

We next describe some of the important properties of composites.

In particular, we present expressions that allow us to predict the
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properties of composites in terms of the properties of their compo-

nents, their amounts, and their geometric distribution in the com-

posite. We also discuss the limitations of such expressions.

15.5.1 Density and Heat Capacity
Density and heat capacity are two properties that may be predicted

rather accurately by a rule-of-mixtures type of relationship, irrespect-

ive of the arrangement of one phase in another. The simple relation-

ships predicting these properties of a composite are as follows.

Density

The density of a composite is given by the rule-of-mixture equation

ρc = ρmVm + ρr Vr ,

where ρ designates the density and V represents volume fraction,

with the subscripts c, m, and r denoting the composite, matrix, and

reinforcement, respectively.

Heat capacity

The heat capacity of a composite is given by the expression

C c = (C mρmVm + C r ρr Vr )/ρc ,

where C denotes heat capacity and the other symbols have the signifi-

cance given in the equation for density.

15.5.2 Elastic Moduli
The simplest model for predicting the elastic properties of a

fiber/reinforced composite is shown in Figure 15.5. In the longitu-

dinal direction, the composite is represented by a system of ‘‘action

in parallel” (Figure 15.5(a)). For a load applied in the direction of the

fibers, assuming equal deformation in the components, the two (or

(a) (b)

Pc = Σ Vi Pi

=

=

t=1

n  = Σ 
t=1

n Vi

Pi

1

Pc 

Fig. 15.5 Simple composite

models. (a) Longitudinal response

(action in parallel). (b) Transverse

response (action in series).
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more) phases are viewed as being deformed in parallel. This is the

classic case of Voigt’s average, in which one has

Pc =
n∑

i=1

Pi Vi , (15.2)

where P is a property, V denotes volume fraction, and the subscripts c

and i indicate, respectively, the composite and the ith component of

the total of n components. For the case under study, n = 2, and the

property P is Young’s modulus. We can write, in extended form,

E c = E f V f + E mVm, (15.3)

where the subscripts f and m indicate the fiber and matrix, respect-

ively.

The elastic properties of such unidirectional composites in the

transverse direction can be represented by a system of ‘‘action in

series” (Figure 15.5(b)). Upon loading in a direction transverse to the

fibers, then, we have equal stress in the components. This model is

equivalent to Reuss’s classic treatment. We may write

1

Pc

=
n∑

i=1

Vi

Pi

. (15.4)

Once again, for the case of n = 2, and taking the property P to be

Young’s modulus, we obtain, for the composite,

1

E c

= V f

E f

+ Vm

E m

. (15.5)

The simple relations expressed Equations 15.4 and 15.5 are commonly

referred to as the ‘‘rule of mixtures.” The reader is warned that this

rule is nothing more than a first approximation; more elaborate

models have been proposed. The following is a summary of various

methods of obtaining composite properties.

� The mechanics-of-materials method. This deals with the specific geo-

metric configuration of fibers in a matrix -- for example, hexagonal,

square, and rectangular -- and we introduce large approximations

in the resulting fields.
� The self-consistent field method. This method introduces approxi-

mations in the geometry of the phases. We represent the phase geo-

metry by a single fiber embedded in a material whose properties

are equivalent to those of a matrix or an average of a composite.

The resulting stress field is thus simplified.
� The variational calculus method. This method focuses on the upper and

lower limits of the properties of the composite and does not pre-

dict those properties directly. Only when the upper and the lower

bounds coincide is a particular property determined. Frequently,

however, the upper and lower bounds are well separated.
� The numerical techniques method. Here we use series expansion, numer-

ical analysis, and finite-element techniques.
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The variational calculus method does not give exact results, but pro-

vides upper and lower bounds. These results can be used only as

indicators of the behavior of the material unless the upper and lower

bounds are close enough. Fortunately, this is the case for longitudi-

nal properties. Hill put rigorous limits on the value of E in terms of

the bulk modulus in plane strain, kp, Poisson’s ratio ν, and the shear

modulus G of the two phases.5 One notes that kp is the modulus for

lateral dilation with zero longitudinal strain (kp is not equal to K) and

is given by

kp = E

2(1 − 2v )(1 + v )
.

According to Hill, the bounds on Ec are

4V f Vm(vm − v f )2

V f /kpm + Vm/kpf + 1/G m

≤ E c − (E f V f + E mVm)

≤ 4V f Vm(vm − v f )2

V f /kpm + Vm/kpf + 1/Gf

. (15.6)

It is worth noting that this treatment of Hill does not have restric-

tions on the form of the fiber, the packing geometry, and so on.

We can see, by putting in values in Equation 15.6, that the devi-

ations from the rule of mixtures (Equation 15.3) are rather small,

for all practical purposes. For example, take Ef/Em = 100, vf = 0.25,

vm = 0.4. Then the deviation of the Young’s modulus of the compo-

site from that predicted by the rule of mixtures is, at most, 2%. For

a metallic fiber (e.g., tungsten in a copper matrix), the deviation is

less than 1%. Of course, the rule of mixture becomes exact when

vf = vm.

The transverse properties and the shear moduli are not amenable

to such simple reductions. Indeed, they do not obey the rule of mix-

tures, even to the first approximation. The bounds on them are well

spaced. Numerical analysis results show that the behavior of the com-

posite depends on the form and packing of the fiber and on the spac-

ing between fibers.

Unidirectionally reinforced, continuous fiber composites show a

linear increase in their longitudinal Young’s modulus as a function
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Fig. 15.6 An example of a linear

increase in the longitudinal

modulus of the composite, Ecl, as a

function of the volume fraction of

fiber for a glass fiber-reinforced

epoxy. (After R. D. Adams and D.

G. C. Bacon, J. Comp. Mater., 7

(1973) 53.)

of the volume fraction of fiber. For materials with a low modulus,

such as polymers and metals, reinforcement by high-modulus and

high-strength ceramic fibers can result in a significant increase in

the composite’s elastic modulus and strength. Figure 15.6 shows an

example of a linear increase in the longitudinal flexural modulus as

a function of the volume fraction of fiber for a glass fiber-reinforced

epoxy. In the case of CMCs, an increase in the elastic modulus or

strength is rarely the objective, because most monolithic ceramics

5 R. Hill, J. Mech. Phys. Solids, 12 (1964) 199.
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already have very high modulus and strength. However, an increase

in the elastic modulus and strength can be a welcome attribute for

low-modulus matrix materials -- for example, glasses, glass--ceramics,

and some crystalline ceramics, such as MgO. Still, the main objective

of continuous fiber reinforcement of ceramic matrix materials is to

toughen them. In a manner similar to that in PMCs and MMCs, vari-

ous glass matrix compositions reinforced with carbon fibers have been

shown to increase in strength and modulus with the volume fraction

of fiber, in accordance with the rule of mixtures. Young’s modulus

increases linearly with Vf, but at a higher Vf it may deviate from lin-

earity, owing to porosity in the matrix and possible misalignment of

the fibers.

Particle reinforcement also results in an increase in the modulus

of the composite -- much less, however, than that predicted by the rule

of mixtures. This is understandable, in as much as the rule of mix-

tures is valid only for continuous fiber reinforcement. A schematic of

the increase in modulus in a composite with volume fraction for the

same reinforcement, but a different form of reinforcement -- con-

tinuous fiber, whisker, or particle -- is shown in Figure 15.7. This
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Fig. 15.7 Schematic of increase

in modulus in a composite with

reinforcement volume fraction for

a different form of reinforcement –

continuous fiber, whisker, or

particle. Note the loss of

reinforcement efficiency as one

goes from continuous fiber to

particle.

schematic shows the loss of reinforcement efficiency as one goes from

continuous fiber to particle.

In sum, we can say that the increase in the longitudinal elastic

modulus of a fibrous composite as a function of the reinforcement vol-

ume fraction is fairly straightforward. The modulus of a composite is

reasonably independent of the reinforcement packing arrangement,

as long as all the fibers are parallel. For discontinuous reinforcement,

the modulus is also quite independent of the particle clustering, etc.

The modulus of a composite does show a dependence on temperature,

which enters the picture essentially through the dependence of the

matrix modulus on temperature.

Example 15.3

Consider a glass fiber-reinforced nylon composite. Let the volume frac-

tion of the glass fiber be 65%. The density of glass is 2.1 g cm−3, while

that of nylon is 1.15 g cm−3. Compute the density of the composite.

Does it matter whether the glass fiber is continuous?

Solution: The density of the composite is given by

ρc = ρ f V f + ρmVm = 0.65 × 2.1 + 0.35 × 1.15 = 1.76 g cm−3.

It does not matter what the exact form of the glass fiber is in the

composite. In fact, it could be in the form of equiaxial particles. A

rule-of-mixture type of expression is valid for density of all composites,

irrespective of the precise geometrical distribution of phases.
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Example 15.4

A carbon fiber reinforced epoxy composite consists of unidirectionally

aligned fibers and has Vf = 65%. Calculate the longitudinal and trans-

verse Young’s modulus of this composite. Ef = 200 GPa, Em = 5 GPa.

Solution: In the longitudinal direction, we have

E cl = V f E f + (1 − V f )E m

= 0.65 × 200 + 0.35 × GPa

= 131.75 GPa.

In the transverse direction, we have the expression

1

E ct

= V f

E f

+ 1 − V f

E m

.

Rearranging yields

E ct = E f E m

E f (1 − V f ) + E mV f

= 200 × 5

200 × 0.35 + 5 × 0.65

= 13.65 GPa.

Note the high degree of anisotropy. In reality, E ct will be less than

the value calculated above because the transverse modulus of carbon

fiber is about one-half of the longitudinal modulus value used in the

example.

Example 15.5

Alumina particle (15 volume %) reinforced aluminum composite is used

for making some special mountain bicycles. The density of alumina

is 3.97 g cm−3, while that of aluminum is 2.7 g cm−3. Why is this

composite used to make the mountain bicycle?

Solution: The alumina--aluminum composite will, of course, be slightly

heavier than the unreinforced aluminum. The driving force for using

the composite in this case is the enhanced stiffness: EAl2O3 = 380 GPa.

while EAl = 70 GPa. We can estimate the stiffness of the composite as

E composite = E Al2O3 VAl2O3 + E AlVAl

= 380 × 0.15 + 70 × 0.85

= 57 + 59.50 = 116.50 GPa.

This estimate is somewhat higher than that realized in practice, because

the expression is valid for an unidirectional fiber-reinforced composite,

whereas the composite under consideration is a particulate composite.

Even so, there is an almost 50% gain in stiffness by adding 15 volume

% of alumina particles to aluminum.
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15.5.3 Strength
Unlike elastic moduli, it is difficult to predict the strength of a

composite by a simple rule-of-mixture type of relationship, because

strength is a very structure-sensitive property. Specifically, for a

composite containing continuous fibers and that is unidirectionally

aligned and loaded in the fiber direction, the stress in the composite

is written as

σc = σ f V f + σmVm, (15.7)

where σ is the axial stress, V is the volume fraction, and the subscripts

c, f, and m refer to the composite, fiber, and matrix, respectively.

The reason that the rule of mixture does not work for properties

such as strength, compared to its reasonable application in predicting

properties such as Young’s modulus in the longitudinal direction, is

the following: The elastic modulus is a relatively structure-insensitive

property, so, the response to an applied stress in the composite state is

nothing but the volume-weighted average of the individual responses

of the isolated components. Strength, on the contrary, is an extremely

structure-sensitive property. Thus, synergism can occur in the com-

posite state. Let us now consider the factors that may influence, in one

way or the other, composite properties. First, the matrix or fiber struc-

ture may be altered during fabrication; and second, composite mater-

ials generally consist of two components whose thermomechanical

properties are quite different. Hence, these materials suffer residual

stresses and/or alterations in structure due to the internal stresses.

The differential contraction that occurs when the material is cooled

from the fabrication temperature to ambient temperature can lead

to rather large thermal stresses, which, in turn, lead a soft metal

matrix to undergo extensive plastic deformation. The deformation

mode may also be influenced by rheological interaction between the

components. The plastic constraint on the matrix due to the large

difference in the Poisson’s ratio of the matrix compared with that of

the fiber, especially in the stage wherein the fiber deforms elastically

while the matrix deforms plastically, can alter the stress state in the

composite. Thus, the alteration in the microstructure of one or both

of the components or the interaction between the components dur-

ing straining can give rise to synergism in the strength properties of

the composite. In view of this, the rule of mixture would be, in the

best of the circumstances, a lower bound on the maximum stress of

a composite.

Having made these observations about the applicability of the rule

of mixture to the strength properties, we will still find it instructive

to consider this lower bound on the mechanical behavior of the com-

posite. We ignore any negative deviations from the rule of mixtures

due to any misalignment of the fibers or due to the formation of a

reaction product between fiber and matrix. Also, we assume that the

components do not interact during straining and that these proper-

ties in the composite state are the same as those in the isolated state.
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Then, for a series of composites with different fiber volume fractions,

σ c would be linearly dependent on Vf. Since Vf + Vm = 1, we can

rewrite Equation 15.7 as

σc = σ f V f + σm(1 − V f ). (15.8)

We can put certain restrictions on Vf in order to have real reinforce-

ment. For this, a composite must have a certain minimum-fiber (con-

tinuous) volume fraction, Vmin. Assuming that the fibers are identi-

cal and uniform (that is, all of them have the same ultimate tensile

strength), the ultimate strength of the composite will be attained,

ideally, at a strain equal to the strain corresponding to the ultimate

stress of the fiber. Then, we have

σcu = σ f uV f + σ ′
m(1 − V f ), V f ≥ Vmin, (15.9)

where σ fu is the ultimate tensile of stress of the fiber in the composite

and σ ′
m i s the matrix stress at the strain corresponding to the fiber’s

ultimate tensile stress. Note that σ ′
m is to be determined from the

stress--strain curve of the matrix alone; that is, it is the matrix flow

stress at a strain in the matrix equal to the breaking strain of the

fiber. As already indicated, we are assuming that matrix stress--strain

behavior in the composite is the same as in isolation. At low volume

fractions, if a work-hardened matrix can counterbalance the loss of

load-carrying capacity as a result of fiber breakage, the matrix will

control the strength of the composite. Assuming that all the fibers

break at the same time, in order to have a real reinforcement effect,

one must satisfy the relation

σcu = σ f uV f + σ ′
m(1 − V f ) ≥ σmu(1 − V f ), (15.10)

where σ mu is the ultimate tensile stress of the matrix. The equality in

this expression serves to define the minimum fiber volume fraction,

Vmin, that must be surpassed in order to have real reinforcement. In

that case,

Vmin = σmu − σ ′
m

σ f u + σmu − σ ′
m

. (15.11a)

The value of Vmin increases with decreasing fiber strength or increas-

ing matrix strength.

In case we require that the composite strength should surpass the

matrix ultimate stress, we can define a critical fiber volume fraction,

Vcrit, that must be exceeded. Vcrit is given by the equation

σcu = σ f uV f + σ ′
m(1 − V f ) ≥ σmu.

In this case,

Vcrit = σmu − σ ′
m

σ f u − σ ′
m

. (15.11b)

Vcrit increases with increasing degree of matrix work-hardening (σmu −
σ ′

m). Figure 15.8 shows graphically the determination of Vmin and Vcrit.

One notes that Vcrit will always be greater than Vmin.
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Fig. 15.8 Determination of Vmin

and Vcrit.
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Fig. 15.9 Increase in strength in

silicon carbide whisker–alumina

composites as a function of the

whisker volume fraction and test

temperature. (After G. C. Wei and

P. F. Becher, Am. Ceram. Soc. Bull.,

64 (1985) 333.)

In general, by incorporating fibers, we can increase the strength

of the composite in the longitudinal direction. The strengthening

effect in the transverse direction is not significant. Particle reinforce-

ment can result in a more isotropic strengthening, provided that we

have a uniform distribution of particles. Carbon, aramid, and glass

fibers are used in epoxies to obtain high-strength composites. Such

PMCs, however, have a maximum use temperature of about 150 ◦C.

Metal matrix composites, such as silicon carbide fiber in titanium, can

take us to moderately high application temperatures. For applications

requiring very high temperatures, we must resort to ceramic matrix

composites. Silicon carbide whisker reinforced alumina composites

show a good combination of mechanical and thermal properties:

substantially improved strength, fracture toughness, thermal shock

resistance, and high-temperature creep resistance over that of mono-

lithic alumina. Figure 15.9 gives an example of the improvement in
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strength in the silicon carbide whisker--alumina composites as a func-

tion of the whisker volume fraction and test temperature. Similar

results have been obtained with silicon carbide whisker--reinforced

silicon nitride composites.

Finally, we should mention the strength of in situ composites. In

Figure 15.2(c), we showed the microstructure of an in situ composite.

Such a composite is generally made by the unidirectional withdrawal

of heat during the solidification of a eutectic alloy. This controlled

solidification allows for one phase to appear in an aligned fibrous

form in a matrix of the other phase. The strength σ of such an in situ

metal matrix composites made by directional solidification of eutectic

alloys is given by a relationship similar to the Hall--Petch relationship

used for grain-boundary strengthening:6

σ = σ0 + kλ−1/2.

Here σ 0 is a friction stress term, k is a material constant, and λ is the

interfiber spacing between rods, or lamellae. It turns out that one can

vary λ rather easily by controlling the solidification rate R, because

λ2R equals a constant. Thus, one can easily control the strength of

these in situ composites.

Example 15.6

Consider a uniaxial fiber-reinforced composite of aramid fibers in an

epoxy matrix. The volume fraction of fibers is 60%. The composite is

subjected to an axial strain of 0.1%. Compute the modulus and strength

along the axial direction of the composite corresponding to this starin.

Solution: Both fiber and matrix deform elastically to a strain of 0.1%.

Thus, we have

longitudinal Young’s modulus, E cl = E f V f + E m(1 − V f )

= 140 × 0.6 + 5 × 0.4

= 84 + 2 = 86 GPa,

longitudinal strength, σcl = σ f V f + σ ′
m(1 − V f )

= e E f V f + e E m(1 − V f )

= e (E cl ) = 0.001 × 86 GPa,

= 86 MPa.

15.5.4 Anisotropic Nature of Fiber Reinforced Composites
Fiber reinforced composites are highly anisotropic; in particular their

mechanical properties are strongly dependent on direction. We derive

an expression for the variation in the Young’s modulus with the ori-

entation of the fiber for a unidirectionally aligned composite.

6 H. E. Cline, E. F. Walter, E. F. Koch, and L. M. Osika, Acta Met., 19 (1971) 405.
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The generalized Hooke’s law may be written as (see Section 2.9)

εi = Si jσ j ,

where εi is the strain, σ j is the stress, Sij is the compliance matrix,

and i and j take values from 1 to 6, with summation indicated by a

repeated suffix.

The compliances S11, S22, and S33 are reciprocals of the generalized

stiffness moduli, and it can be shown (see Chapter 2) that they trans-

form with rotation about a principal axis, say, the x3-axis, according

to relations of the type

S ′
11 = m4S11 + n4S22 + m2n2(2S12 + S66) + 2mn(m2S16 + n2S26), (15.13a)

where m = cos θ , and n = sin θ , in which θ is the angle of rotation.

For the discriminating reader, we should point out that this equa-

tion follows from the transformation relationship for the fourth rank

elasticity tensor:

S ′
ijkl = 
im 
jn 
ko 
lp S ′

mnop

where 
im, 
jn, 
ko, and 
lp, are the transformation coefficients. For

S ′
1111, we have

S ′
1111 = 
lm 
ln 
lo 
lp S ′

mnop.

Care should be exercised when changing from the tensorial to matrix

notation (see Section 2.9). For more details on such mathematical

operations, the students should consult a text (for example, J. F. Nye.

Physical Properties of Crystals. London: Oxford University Press, 1975).

After converting to matrix notation we arrive at

S1111 = S11; S2222 = S22; 4S1212 = S66; 2S2212 = S26.

For an orthotropic sheet material, such as a prepreg, for which the

x3-axis is normal to the plane of the sheet, we have S16 = S26 = 0;

then, assuming that the properties in the directions 1 and 2 are the

same, Equation 15.13a becomes

S ′
11 = (m4 + n4) S11 + m2n2(2S12 + S66)

= 1

2
S11 +

(
1

2
S12 + 1

4
S66

)
+

[
1

2
S11 −

(
1

2
S12 + 1

4
S66

)]
cos2 2θ.

Now let E0 and E45 be Young’s modulus for θ = 0◦ and θ = 45◦,

respectively. Then S11 = 1/E0 and 1
2

S11 + 1
2

S12 + 1
4

S66 = 1/E 45. Using

these relationships, we get

S ′ = 1

E θ

= 1

E 45

−
(

1

E 45

− 1

E 0

)
cos2 2θ, (15.13b)

where Eθ is the modulus of the composite when the loading direction

makes an angle θ with the fiber direction.

We can also write the compliances S12 and S66 in terms of the

shear modulus G and Poisson’s ratio ν for stresses applied in the



15 .5 PROPERTIES OF COMPOSITES 785

plane of the sheet in the directions 1 and 2. From this, we obtain the

relationship

1

2G
= 1

E 45

− 1

E 0

(1 − v ).

15.5.5 Aging Response of Matrix in MMCs
We have pointed out that the microstructure of a metallic matrix

is modified by the presence of a ceramic reinforcement (particle,

whisker, or fiber). In particular, a higher dislocation density in the

matrix metal or alloy than that in the unreinforced metal or alloy

has been observed. The higher dislocation density in the matrix has

its origin in the thermal mismatch (�α) between the reinforcement

and the metal matrix. For example, the thermal mismatch in the case

of SiC--Al has a high value of 21 × 10−6 K−1, which will lead to thermal

stress high enough to deform the matrix plastically and thus leave

the matrix work-hardened. One expects that the quenching from the

solutionizing temperature to room temperature, a change of about

450 ◦C, will result in a large zone of matrix plastically deformed

around each ceramic particle in which the dislocation density will

be very high. This high dislocation density will tend to accelerate the

aging kinetics of the matrix. Age-hardening treatment can contribute

a considerable increment in strength to a precipitation-hardenable

aluminum alloy composite. It should be borne in mind that the par-

ticle and whisker types of reinforcement, such as SiC, B4C, Al2O3,

etc., are unaffected by the aging process. These particles, however,

can affect the precipitation behavior of the matrix quite significantly.

The dislocations generated by thermal mismatch form heterogeneous

nucleation sites for the precipitates in the matrix during subsequent

aging treatments. This in turn alters the precipitation kinetics in the

matrix of the composite, compared to the precipitation kinetics in

the unreinforced material. Most metal matrix composite work has

involved off-the-shelf metallic alloys, especially in the case of particle

reinforced metal matrix composites. It is important to bear in mind

that in such cases using the standard heat treatment practices given

in the manuals and handbooks for unreinforced alloys can lead to

drastically different results.

15.5.6 Toughness
The toughness of a given composite depends on the following factors:

� Composition and microstructure of the matrix.
� Type, size, and orientation of the reinforcement.
� Any processing done on the composite, in so far as it affects

microstructural variables (e.g., the distribution of the reinforce-

ment, porosity, segregation, etc.).

Continuous fiber reinforced composites show anisotropy in toughness

just as in other properties. The 0◦ and 90◦ arrangements of fibers

result in two extremes of toughness, while the 0◦/90◦ arrangement
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(i.e., alternating laminae of 0◦ and 90◦) gives a sort of pseudo random

arrangement with a reduced degree of anisotropy. Using fibers in the

form of a braid can make the crack propagation toughness increase

greatly due to extensive matrix deformation, crack branching, fiber

bundle debonding, and pullout. The composition of the matrix can

also have a significant effect on the toughness of a composite: The

tougher the matrix, the tougher will be the composite. Thus, a ther-

moplastic matrix would be expected to provide a higher toughness

than a thermoset matrix. In view of the importance of toughness

enhancement in CMCs, we offer a summary of the rather extensive

effort that has been expended in making tougher ceramics. Some of

the approaches to enhancing the toughness of ceramics include the

following:

� Microcracking. If microcracks form ahead of the main crack, they

can cause crack branching, which in turn will distribute the strain

energy over a large area. Such microcracking can thus decrease the

stress intensity factor at the principal crack tip. Crack branching

can also lead to enhanced toughness, because the stress required

to drive a number of cracks is more than that required to drive a

single crack.
� Particle toughening. The interaction between particles that do not

undergo a phase transformation and a crack front can result in

toughening due to crack bowing between particles, crack deflection

at the particle, and crack bridging by ductile particles. Incremental

increases in toughness can also result from an appropriate thermal

mismatch between particles and the matrix. Taya et al. examined

the effect of thermal residual stress in a TiB2 particle reinforced

silicon carbide matrix composite.7 They attributed the increased

crack growth resistance in the composite vis-a-vis the unreinforced

SiC to the existence of compressive residual stress in the SiC matrix

in the presence of TiB2 particles.
� Transformation toughening. This involves a phase transformation of

the second-phase particles at the crack tip with a shear and a dila-

tional component, thus reducing the tensile stress concentration

at the tip. In particulate composites, such as alumina containing

partially stabilized zirconia, the change in volume associated with

the phase transformation in zirconia particles is exploited to obtain

enhanced toughness. In a partially stabilized zirconia (e.g., ZrO2 +
Y2O3), the stress field at the crack tip can cause a stress-induced

martensitic transformation in ZrO2 from a tetragonal phase (t) to a

monoclinic one (m); that is,

ZrO2(t) → ZrO2(m).

This transformation causes an expansion in volume (by approxi-

mately 4%) and a shear (0.16). The transformation in a particle at

the crack tip results in stresses that tend to close the crack, and

7 M. Taya, S. Hayashi, A. S. Kobayashi, and H. S. Yoon, J. Am. Ceram. Soc., 73 (1990) 1382.
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Fig. 15.10 Stress vs.

displacement curves for mullite

fiber (Nextel 550)–mullite matrix

in three-point bending. The

uncoated one refers to the

mullite–mullite composite with no

interfacial coating, which shows a

catastrophic failure. The

composite with a double interfacial

coating of SiC and BN shows a

noncatastrophic failure. (Adapted

from K. K. Chawla, Z. R. Xu, and

J.-S. Ha, J. Eur. Ceram. Soc., 16

(1996) 293.)

thus a portion of the energy that would go to fracture is spent in

the stress-induced transformation. Also, the dilation in the trans-

formed zone around a crack is opposed by the surrounding untrans-

formed material, leading to compressive stresses that tend to close

the crack. This results in increased toughness. The phenomenon of

transformation toughening was discussed in Chapter 11. Transfor-

mation in the wake of a crack can result in a closure force that

tends to resist the crack opening displacement. Crack deflection at

zirconia particles can also contribute to toughness.
� Fiber or whisker reinforcement. Toughening by long fibers or whiskers

can bring into play a series of energy-absorbing mechanisms in the

fracture process of CMCs and thus allow these materials to tolerate

damage.

It appears that the effectiveness of various toughening mechanisms

for structural ceramics decreases in the following order: continuous

fiber reinforcement; transformation toughening; whiskers, platelets,

and particles; microcracking. Many researchers have shown that if we

add continuous C or SiC fibers to a glass or ceramic matrix, we can

obtain a stress--strain curve of the type shown in Figure 15.10. This

curve has the following salient features:

� Damage-tolerant behavior in a composite consisting of two brittle

components.
� Initial elastic behavior.
� At a stress σ 0, the brittle matrix cracks.
� The crack bypasses the fibers and leaves them bridging the crack.
� Under continued loading, we have regularly spaced cracks in the

matrix, bridged by the fibers.
� Noncatastrophic failure occurs. Fiber pullout occurs after the peak

load, followed by failure of the composite when the fibers fail.

The final failure of the composite does not occur catastrophically

with the passage of a single crack; that is, self-similar crack propagation
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does not occur. Thus, it is difficult to define an unambiguous fracture

toughness value, such as a value for KIc.

Figure 15.10 shows the stress vs. displacement curves for mul-

lite fiber (Nextel 550)--mullite matrix. The uncoated one refers to the

mullite--mullite composite with no interfacial coating. This compo-

site shows a catastrophic failure. The composite containing a dou-

ble interfacial coating of SiC and BN shows a noncatastrophic behav-

ior because of the energy expending mechanisms such as interfacial

debonding, fiber pullout, etc. come into play during the fracture pro-

cess. The interfacial coatings provide for easy crack deflection, inter-

facial debonding, and fiber pullout.

It has been amply demonstrated that incorporation of continuous

fibers such as carbon, alumina, silicon carbide, and mullite fibers in

brittle matrix materials (e.g., cement, glass, and glass--ceramic matrix)

can result in toughening.8 Not all of these failure mechanisms need

operate simultaneously in a given fiber--matrix system, and often, in

many composite systems, only one or two of the mechanisms will

dominate the total fracture toughness. We discuss this topic further

in Section 15.8.

15.6 Load Transfer from Matrix to Fiber

The matrix has the important function of transmitting the applied

Before deformation

After deformation

Fig. 15.11 Perturbation of the

matrix stress state due to the

presence of fiber.

load to the fiber. Recall that we emphasized the idea that in fiber rein-

forced composites, the fibers are the principal load-carrying members.

No direct loading of fibers from the ends is admitted. One imagines

each fiber to be embedded inside a matrix continuum; the state of

stress (and, consequently, that of strain) of the matrix is perturbed

by the presence of the fiber (Figure 15.11). When the composite is

loaded axially, the axial displacements in the fiber and in the matrix

are locally different due to the different elastic moduli of the compo-

nents. Macroscopically, the composite is deformed homogeneously.

Example 15.7

The presence of voids in a composite is a serious, but commonly encoun-

tered, flaw. Suggest a simple method of determining the void content

in a composite.

Solution: A simple method involves determining the density of the

composite and getting an accurate estimate of values of the density of

the reinforcement and matrix, most likely from the literature. We can

write, for the volume of the voids in a composite,

Vv = Vc − (Vr + Vm)

8 See, for example, K. K. Chawla, Ceramic Matrix Composites, 2nd ed. (Boston: Kluwer Aca-

demic, 2003). .
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where V is the volume and the subscripts, v, c, r, and m denote the void,

composite, reinforcement, and matrix, respectively. Then, knowing the

mass and density values, we can write

Vv = (Mc/ρc ) − (Vm/ρr + Mm/ρm),

where M is the mass and ρ is the density, and the subscripts have the

significance as before. The density of the composite can then be deter-

mined experimentally by Archimedes’ method. The amount of rein-

forcement can be obtained by simply dissolving the matrix in a suitable

chemical or by using a thermal method and weighing the residue.

Another simple method of determining the void content is by quan-

titative microstructural analysis.

The difference in the axial displacements in the fiber and the matrix

implies that shear deformations are produced on planes parallel to

the fiber axis and in the direction of this axis. These shear deforma-

tions are the means by which the applied load is distributed between

the two components.

Let us consider the distribution of the longitudinal stress along

the fiber--matrix interface. There are two distinct cases: (1) The matrix

is elastic and the fiber is elastic, and (2) the matrix is plastic and the

fiber is elastic.

15.6.1 Fiber and Matrix Elastic
We follow the treatment attributed to Cox.9 Consider a fiber of length

l embedded in a matrix subjected to a strain. Consider a point a

distance x from one end of the fiber. It is assumed that (1) there

exists a perfect contact between fiber and matrix (i.e., there is no

sliding between them) and (2) Poisson’s ratios of fiber and matrix

are equal. Then the displacement of the point a distance x from one

extremity of the fiber can be defined in the following manner; u is

the displacement of point x in the presence of the fiber, and v is the

displacement of the same point in the absence of the fiber.

The transfer of load from the matrix to the fiber may be written

as

d P

dx
= H (u − v ), (15.14a)

where P is the load on the fiber and H is a constant to be defined

later. (H depends on the geometric arrangement of fibers, the matrix,

and their moduli.)

Differentiating Equation 15.14, we obtain

d2 P

dx2
= H

(
du

dx
− dv

dx

)
. (15.14b)

9 H. L. Cox, Brit. J. App. Phys., 3(1952) 72.



790 COMPOSITE MATERIALS

Now, it follows from the definition that

dv

dx
= strain in matrix = e,

du

dx
= strain in fiber = P

A f E f

, (15.15)

where Af is the transverse-sectional area of the fiber. From Equations

15.14 and 15.15, we obtain

d2 P

dx2
= H

(
P

A f E f

− e

)
. (15.16)

A solution of this differential equation is

P = E f A f e + S sinh βx + T cosh βx (15.17)

where

β =
(

H

A f E f

)1/2

. (15.18)

The boundary conditions we need to evaluate the constants S and T

are

P = 0 at x = 0 and x = 
.

Putting in these values and using the ‘‘half-angle” trigonometric for-

mulas, we get the equation

P = E f A f e

{
1 − cosh β[(
/2) − x]

cosh β(
/2)

}
for 0 < x <




2
. (15.19)

or

σ f = P

A f

= E f e

{
1 − cosh β[(
/2) − x]

cosh β(
/2)

}
for < x <




2
. (15.20)

The maximum possible value of strain in the fiber is the imposed

strain e, and thus, the maximum stress is eEf. Hence, as long as we

have a sufficiently long fiber, the stress in the fiber will increase from

the two ends to a maximum value, σ max
f = Ef e . It can readily be shown

that the average stress in the fiber will be

σ̄ f = E f e

[
1 − tanh (β
/2)

β
/2

]
. (15.21)

The variation in the shear stress τ along the fiber--matrix interface

is obtained by considering the equilibrium of forces acting over an

element of fiber (with radius rf). Thus,

dP

dx
dx = 2πr f dx τ. (15.22)

P is the tensile load on the fiber and is equal to πr 2
f σ f , so

τ = 1

2πr f

d P

dx
= r f

2

dσ f

dx
, (15.23)
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Variation in tensile stress σ in fiber

and shear stress τ along the

interface with the fiber length 
.

or

τ = E f r f eβ

2

sinh β[(
/2) − x]

cosh β(
/2)
. (15.24)

The variation in τ and σ f with x is shown in Figure 15.12.

The shear stress τ in Equation 15.24 will be the smaller of the

following two shear stresses:

1. Strength of fiber--matrix interface in shear.

2. Shear yield stress of matrix.

Of these two shear stresses, the one that has a smaller value will con-

trol the load transfer phenomenon and should be used in Equation

15.24.

The constant H remains to be determined. An approximate value

of H is derived next for a particular geometry. Let the fiber length 
 be

much greater than the fiber radius rf, and let 2R be the average fiber

spacing (center to center). Let τ (r) be the shear stress in the direction

of the fiber axis at a distance r from the axis. Then, at the fiber surface

(r = rf),

d P

dx
= −2πr f τ (r f ) = H (u − v ).

Thus,

H = −2πr f τ (r f )

u − v
. (15.25)

Let w be the real displacement in the matrix. Then at the fiber--matrix

interface, without sliding, w = u. At a distance R from the center of a

fiber, w = v. Considering equilibrium of forces on the matrix between

rf and R, we get

2πrτ (r ) = constant = 2πr f τ (r f ),

or

τ (r ) = τ (r f )r f

r
. (15.26)
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The shear strain γ in the matrix is given by τ (r) = Gmr, where Gm is

the matrix shear modulus. Then

γ = dw

dr
= τ (r )

G m

= τ (r f )r f

G mr
. (15.27)

Integrating from rf to R, we get

�w = τ (r f )r f

G m

ln

(
R

r f

)
. (15.28)

But, by definition,

�w = v − u = −(u − v ). (15.29)

Then

τ (r f ) r f

u − v
= − G m

ln(R/r f )
. (15.30)

From Equations 15.25 and 15.30, we get

H = 2πG m

ln(R/r f )
, (15.31)

and from Equation 15.18, we obtain an expression for the load transfer

parameter:

β =
(

H

E f A f

)1/2

=
[

2πG m

E f A f ln(R/r f )

]1/2

. (15.32)

Note that the greater the value of Gm/Ef, the more rapid is the increase

in fiber stress from the two ends.

The foregoing analysis is an approximate one -- particularly with

regard to the evaluation of the load transfer parameter β. More exact

analysis give similar results and differ only in the value of β. In all the

analyses, however, β is proportional to
√

G m/E f , and the differences

occur only in the term involving the fiber volume fraction, ln(R/rf).

15.6.2 Fiber Elastic and Matrix Plastic
It should be clear from the preceding discussion that, in order to

load high-strength fibers to their maximum strength in the matrix,

the shear strength must correspondingly be large. A metallic matrix

will flow plastically in response to the high shear stress developed.

Should the fiber--matrix interface be weaker, it will fail first. Plastic

deformation of a matrix implies that the shear stress at the fiber

surface, τ (rf), will never go above τ y, the matrix shear yield strength

(ignoring any work-hardening effects). In such a case, we get, from an

equilibrium of forces, the equation

σ f π
d2

4
= τyπd




2
,

or




d
= σ f

2τy

.
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Fig. 15.13 Variation in the fiber

load transfer length as a function

of the aspect ratio 
/d .

We consider 
/2, and not 
, because the fiber is being loaded from

both ends. If the fiber is sufficiently long, it should be possible to load

it to its breaking stress, σ fb, by means of load transfer through the

matrix flowing plastically around it. Let (
/d)c be the minimum fiber

length-to-diameter ratio necessary to accomplish this. We call this

ratio 
/d the aspect ratio of the fiber and (
/d)c the critical aspect

ratio necessary to attain the breaking stress of the fiber, σ fb. Then we

can write(



d

)
c

= σ f b

2τy

. (15.33)

Or we can think of a critical fiber length 
c for a given fiber diameter

d:


c

d
= σ f b

2τy

. (15.34)

Thus, the fiber length 
 must be equal or greater than 
c for the fiber

to be loaded to its maximum stress. If 
 < 
c , the matrix will flow

plastically around the fiber and will load it to a stress in its central

portion given by

σ f = 2τy




d
< σ f b. (15.35)

This is shown in Figure 15.13. An examination of the figure shows

that, even for 
/d > (
/d)c , the average stress in the fiber will be less

than the maximum stress to which it is loaded in its central region.

In fact, we can write, for the average fiber stress,

σ̄ f = 1




∫ 


0

σ f dx

= 1



[σ f (
 − 
c ) + φσ f 
c ]

= 1



[σ f 
 − 
c (σ f − φσ f ],
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or

σ̄ f = σ f

(
1 − 1 − φ


/
c

)
, (15.36)

where φσ f is the average stress in the fiber over a portion 
c/2 of

its length at both the ends. We can thus regard φ as a load transfer

function where value will be precisely 0.5 for an ideally plastic matrix

(i.e., the increase in stress in the fiber over the portion 
c/2 will be

linear).

Example 15.8

(a) Consider an alumina fiber reinforced polymer matrix composite. If

the strength of the fiber is 1 GPa and the fiber--matrix interface has

a shear strength of 10 MPa, compute the critical fiber length 
c . Take

the diameter of the alumina fiber to be 10 μm.

(b) The composite in Part a is made of short (1-cm-long), but aligned,

alumina fibers. Assuming that each fiber is loaded from both ends

in a linear manner, compute the average stress in the fiber in this

composite.

Solution: (a) Critical length:


c/d = σ f b/2τi = 1, 000/(2 × 10) = 50,


c = 50 × 10 μm = 0.5mm.

(b) Average fiber stress:

From the solution to Part a, we have


/
c = 10/0.5 = 20,

σ̄ f = σ f [1 − (1 − φ)/(
/
c )]

= 1,000[1 − (1 − 0.5)/20] = 1,000(1 − 0.025) = 975 MPa.

15.7 Fracture in Composites

Fracture is a complex subject, even in monolithic materials. (See Chap-

ters 7--9.) Undoubtedly, it is even more complex in composite mater-

ials. A great variety of deformation modes can lead to failure in

a composite. The operative failure mode will depend, among other

things, on loading conditions and the particular composite system.

The microstructure has a very important role in the mechanics of

rupture of a composite. For example, the fiber diameter, its volume

fraction and alignment, damage due to thermal stresses that may

develop during fabrication or service -- all these factors can contribute

to, and directly influence, crack initiation and propagation. A multi-

plicity of failure modes can exist in a composite under different load-

ing conditions.
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Fig. 15.14 Optical micrograph

showing multiple fracture of

tungsten fibers in an Fe–Cu matrix.

15.7.1 Single and Multiple Fracture
In general, the two components of a composite will have differ-

ent values of strain to fracture. When the component that has the

smaller breaking strain fractures, the load carried by this component

is thrown on to the other one. If the latter component, which has a

higher strain to fracture, can bear the additional load, the composite

will show multiple fracture of the brittle component (the one with

smaller fracture strain); eventually, a particular transverse section of

composite becomes so weak, that the composite is unable to carry the

load any further, and it fails.

Let us consider the case of a fiber reinforced composite in which

the fiber fracture strain is less than that of the matrix. Then the

composite will show a single fracture when

σ f uV f > σmuVm − σ ′
mVm, (15.37)

where σ ′
m is the matrix stress corresponding to the fiber fracture strain

and σ fu and σ mu are the ultimate tensile stresses of the fiber and

matrix, respectively. This equation says that when the fibers break,

the matrix will not be in a condition to support the additional load,

a condition that is commonly encountered in composites of high Vf,

brittle fibers, and a ductile matrix. All the fibers break in more or

less one plane, and the composite fails in that plane.

If, on the other hand, we have a system that satisfies the condition

σ f uV f < σmuVm − σ ′
mVm, (15.38)

the fibers will be broken into small segments until the matrix fracture

strain is reached. An example of this type of breakage is shown in

Figure 15.14, an optical micrograph of an Fe--Cu matrix containing a

small volume fraction of W fibers.

In case the fibers have a fracture strain greater than that of the

matrix (an epoxy resin reinforced with metallic wires), we would have

a multiplicity of fractures in the matrix, and the condition for this

may be written as

σ f uV f > σmuVm − σ ′
mV f , (15.39)

where σ ′
f is now the fiber stress corresponding to the matrix fracture

strain.
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Fig. 15.15 Scanning electron

micrographs of fracture in

composites, showing the fiber

pullout phenomenon. (a) Carbon

fiber/polyester. (b) Boron

fiber/aluminum 6061.

15.7.2 Failure Modes in Composites
Two failure modes are commonly encountered in composites:

1. The fibers break in one plane, and, the soft matrix being unable to

carry the load, the composite failure will occur in the plane of fiber

fracture. This mode is more likely to be observed in composites that

contain relatively high fiber volume fractions and fibers that are

strong and brittle. The latter condition implies that the fibers do

not show a distribution of strength with a large variance, but show

a strength behavior that can be characterized by the Dirac delta

function.

2. When the adhesion between fibers and matrix is not sufficiently

strong, the fibers may be pulled out of the matrix before failure of

the composite. This fiber pullout results in the fiber failure surface

being nonplanar.

More commonly, a mixture of these two modes is found: fiber fracture

together with fiber pullout. Fibers invariably have defects distributed

along their lengths and thus can break in regions above or below the

crack tip. This leads to separation between the fiber and the matrix

and, consequently, to fiber pullout with the crack opening up. Exam-

ples are shown in Figure 15.15.

One of the attractive characteristics of composites is the possibil-

ity of obtaining an improved fracture toughness behavior together

with high strength. Fracture toughness can be defined loosely as

resistance to crack propagation. In a fibrous composite containing

a crack transverse to the fibers, the crack propagation resistance can

be increased by doing additional work by means of any or all of the

following:

� Plastic deformation of the matrix.
� The presence of weak interfaces, fiber--matrix separation, and deflec-

tion of the crack.
� Fiber pullout.

It would appear that debonding of the fiber--matrix interface is a

prerequisite for phenomena such as crack deflection, crack bridg-

ing by fibers, and fiber pullout. It is of interest to develop some cri-

teria for interfacial debonding and crack deflection. Crack deflection

at an interface between materials of identical elastic constants (i.e.,

the same material joined at an interface) has been analyzed on the

basis of the strength of the interface. The deflection of the crack along
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Fig. 15.16 Fracture of weak

interface in front of crack tip due

to transverse tensile stress; m and

f indicate the matrix and fiber,

respectively. (After J. Cook and J.

E. Gordon, Proc. Roy. Soc. (London),

A 228 (1964) 508.)

Crack front
debonding

Matrix

τ Sliding
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debonding

Fig. 15.17 Crack front and

crack wake debonding in a fiber

reinforced composite.

an interface or the separation of the fiber--matrix interface is an inter-

esting mechanism of augmenting the resistance to crack propagation

in composites. Cook and Gordon analyzed the stress distribution in

front of a crack tip and concluded that the maximum transverse tens-

ile stress σ 11 is about one-fifth of the maximum longitudinal tens-

ile stress σ 22. They suggested, therefore, that when the ratio σ 22/σ 11

is greater than 5, the fiber--matrix interface in front of the crack

tip will fail under the influence of the transverse tensile stress, and

the crack would be deflected 90◦ from its original direction. That

way, the fiber--matrix interface would act as a crack arrester. This is

shown schematically in Figure 15.16. The improvement in fracture

toughness due to the presence of weak interfaces has been confirmed

qualitatively.

Another treatment of this subject is based on a consideration of

the fracture energy of the constituents.10 Two materials that meet at

an interface are more than likely to have different elastic constants.

This mismatch in moduli causes shearing of the crack surfaces, which

leads to a mixed-mode stress state in the vicinity of an interface

crack tip involving both the tensile and shear components. This, in

turn, results in a mixed-mode fracture, which can occur at the crack

tip or in the wake of the crack. Figure 15.17 shows crack front and

10 See M. Y. He and J. W. Hutchinson, J. App. Mech., 56 (1989) 270; A. G. Evans and D. B.

Marshall, Acta Met., 37 (1989) 2567.
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Fig. 15.18 The ratio of the

interface fracture toughness to

that of fiber, Gi/Gf, vs. the elastic

mismatch α. Interfacial debonding

occurs under the curve, while for

conditions above the curve, the

crack propagates through the

interface.

crack wake debonding in a fiber reinforced composite. Because of the

mixed-mode fracture, a single-parameter description by the critical

stress intensity factor KIc will not do; instead, one needs a more com-

plex formalism of fracture mechanics to describe the situation. In

this case, the parameter K becomes scale sensitive, but the critical

strain energy release rate GIc is not a scale-sensitive parameter. G is a

function of the phase angle ψ , which, in turn, is a function of the

normal and shear loading. For the opening mode, or mode I, ψ = 0◦,

while for mode II, ψ = 90◦. One needs to specify both G and ψ to ana-

lyze the debonding at the interface. Without going into the details,

we present here the final results of such an analysis, in the form of

a plot of Gi/Gf vs. α, where Gi is the mixed-mode interfacial fracture

energy of the interface, Gf is the mode-I fracture energy of the fiber,

and α is a measure of the elastic mismatch between the matrix and

the reinforcement, defined as

α =
(

Ē 1 − Ē 2

Ē 1 + Ē 2

)
, (15.40)

where

Ē = E

1 − v2
. (15.41)

The plot in Figure 15.18 shows the conditions under which the crack

will deflect along the interface or propagate through the interface

into the fiber. For all values of Gi/Gf below the shaded boundary,

interface debonding is predicted. For the special case of zero elas-

tic mismatch (i.e., for α = 0), the fiber--matrix interface will debond

for Gi/Gf less than about 0.25. Conversely, for Gi/Gf greater than 0.25,

the crack will propagate across the fiber. In general, for elastic mis-

match, with α greater than zero, the minimum interfacial toughness

required for interface debonding increases (i.e., high-modulus fibers

tend to favor debonding). One shortcoming of this analysis is that it

treats the fiber and matrix as isotropic materials; this is not always

true, especially for carbon fiber.
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Gupta et al.11 derived strength and energy criteria for crack deflec-

tion at a fiber--matrix interface for several composite systems, taking

due account of the anisotropic nature of the fiber. They used an

experimental technique -- spallation by means of a laser Doppler

displacement interferometer -- to measure the tensile strength of a

planar interface. Through this technique, these researchers have tabu-

lated the required values of the interface strength and fracture tough-

ness for delamination in a number of ceramic, metal, intermetallic,

and polymer matrix composites.

15.8 Some Fundamental Characteristics of
Composites

Composite materials are not like any other common type of material.

They are inherently different from monolithic materials, and conse-

quently, these basic differences must be taken into account when one

designs or fabricates any article from composite materials. In what

follows, we give a brief description of some of the fundamental char-

acteristics of composites.

15.8.1 Heterogeneity
Composite materials are inherently heterogeneous, consisting as they

do of two components of different elastic moduli, different mechan-

ical behavior, different expansion coefficients, and so on. For this rea-

son, the analysis of, and the design procedures for, composite mater-

ials are quite intricate and complex, compared to those for ordinary

materials. The structural properties of composites are functions of:

1. The properties of their components.

2. The geometric arrangement of their components.

3. The interface between the components.

Given two components, we can obtain a great variety of properties by

manipulating items 2 and 3.

15.8.2 Anisotropy
In general, monolithic materials are reasonably isotropic; that is,

their properties do not show any marked preference for any partic-

ular direction. The unidirectional composites are anisotropic due to

their very nature. Once again, the analysis and design of composites

should take into account this strong directionality of properties --

properties that cannot be specified without any reference to some

direction. Figure 15.19 shows, schematically, the elastic moduli of a

monolithic material and a composite as a function of fiber orientation

θ . (See Section 15.5.4.) A monolithic material (e.g., Al) is an isotropic

11 V. Gupta, J. Yuan, and D. Martinez, J. Am. Ceram. Soc., 76 (1993) 305.
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Fig. 15.19 Schematic of

variation in elastic moduli of a fiber

composite and a monolithic

material with the angle of

reinforcement. (a) Ea is the axial

Young’s modulus (b) νat is the

principal Poisson’s ratio, and (c) Ga

is the axial shear modulus.
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Fig. 15.20 Schematic of a

performance chart of a composite.

material; therefore, its moduli do not vary with the angle of testing,

and the graphs are horizontal.

For an ordinary material (say, aluminum), the designer only needs

to open a manual and find one unique value of strength or one unique

value of the modulus of the material. But for fiber reinforced compo-

site materials, the designer has to consult performance charts rep-

resenting the strength and the modulus of the various composite

systems. (See Figure 15.20.)



15 .8 SOME FUNDAMENTAL CHARACTERIST ICS OF COMPOSITES 801
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Fig. 15.21 Shear coupling in a

fiber composite

Ordinary materials, such as aluminum or steel, can be represented

by a fixed point, indicated by m in Figure 15.20. For a composite mater-

ial, however, there does not exist a unique combination of these prop-

erties. Instead, the composite contains a system of properties and

must be represented by an area instead of a point. We call these

graphs ‘‘carpet plots.” These plots give modulus or strength in terms

of proportion of plies at different angles. The highest point on the

graph represents the longitudinal properties of the composite, while

the lowest point represents transverse properties. The important point

to make is that, depending on the stacking of plies in a composite

and the appropriate quantity of fiber, the characteristics of the com-

posite can be varied. In other words, composites can be tailormade,

in accord with the final objective.

15.8.3 Shear Coupling
The properties of a composite are very sensitive functions of the

fiber orientation. They display what is called shear coupling: shear

strains produced by axial stress and axial strains produced by shear

stress. (See Figure 15.21.) In response to a uniaxially applied load, an

isotropic material produces only axial and transverse strains. In fiber

reinforced composites, however, a shear strain γ is also produced in

response to an axial load, because the fibers tend to align themselves

in the direction of the applied load. This shear distortion can be

eliminated if one makes a cross-ply composite -- a composite contain-

ing an equal number of parallel fibers, alternately aligned at a given

angle and at a complementary angle with respect to the loading axis

(Figure 15.22). That is, we have the various layers in a composite

arranged at ± θ degrees to the loading axis, and thus, the shear

distortion due to one layer is compensated for by an equal and oppos-

ite shear distortion due to the other. However, this balance occurs

only in two dimensions, whereas the real-life composites are three-

dimensional materials. This leads to an ‘‘edge effect” in which the

individual layers deform differently under tension and in the neigh-

borhood of the free edges, giving rise to out-of-plane shear and bend-

ing. The stacking sequence of the various layers in the composite is

important. For example, in a laminate composite consisting of fibers
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cross-plied composites.
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(a)Fig. 15.23 Probability of failure

versus strength (Weibull) plot of

tensile strength of a carbon

fiber–epoxy composite. (Courtesy

of B. Atadero and V. Karbhari.)

at +90◦, +45◦, −45◦, −45◦, +45◦, and +90◦, subjected to an in-plane

tensile stress, there occur compressive stresses in the direction of

thickness, in the vicinity of the edges. Should the same composite

have the sequence +45◦, −45◦, +90◦, +90◦, −45◦, +45◦, however,

these stresses in the direction of thickness are of a tensile nature

and thus tend to delaminate the composite, clearly an undesirable

effect.

15.8.4 Statistical Variation in Strength
The strength of a composite can show significant variation from speci-

men to specimen. Thus, care has to be exercised when tests are con-

ducted and strength is quoted. As an example, Figure 15.23 shows the

results of 50 tensile tests carried out on a carbon fiber--epoxy matrix

composite. The strength varied from 800 to 1400 MPa, a considerable

spread. The Weibull modulus is 9.9, and σm is 1,160 MPa. The Weibull

modulus is on the same order as the one for ceramics. The experi-

mental results follow a Weibull distribution, which is represented by

the continuous line in Figure 15.23.
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15.9 Functionally Graded Materials

There is a good deal of interest in making materials that are graded

in some respect. The gradient may be of the chemical composition,

density, or coefficient of thermal expansion of the material, or it may

involve microstructural features -- for example, a particular arrange-

ment of second-phase particles or fibers in a matrix. Such materials

are called functionally graded materials, and the acronym FGM is com-

monly applied to them in the literature. Strictly speaking, though, the

Ceramic Metal

Micropore Additive

Fig. 15.24 Schematic of a

functionally graded material

between a ceramic on the

left-hand side and a metal on the

right-hand side. Also shown are

micropores and additives.

term ‘‘graded material” ought to be enough to convey the meaning;

that is, the word ‘‘functionally” is redundant. The idea, however, is a

very general one, viz., instead of having a step function, say, in compo-

sition at an interface, we should have a gradually varying composition

from component A to component B. Figure 15.24 shows schematically

the microstructure of a functionally graded material. Such a graded

interface can be very useful in ameliorating high mechanical and

thermal stresses. The concept of a functionally graded material is

applicable to any material, polymer, metal, or ceramic.12

15.10 Applications

It is convenient to divide the applications of all composites into

aerospace and nonaerospace categories. In the category of aerospace

applications, low density coupled with other desirable features, such

as a tailored thermal expansion and conductivity, and high stiffness

and strength, are the main drivers. Performance, rather than cost, is

an important item as well. We next give a brief description of various

applications of composites.

15.10.1 Aerospace Applications
Reduction in the weight of a component is as major driving force for

any application in the aerospace field. The Boeing 757 and 767 jets

were the first large commercial aircraft to make widespread use of

structural components made of PMCs. About 95% of the visible inter-

ior parts in Boeing 757 and 767 cabins are made from nonconven-

tional materials. Most of the fuselage of a Boeing 787 is made of

carbon/epoxy while a considerable part of Airbus 380 uses GLARE

composites (see Sec. 15.11). One of the main reasons for the decision

to use such materials was the steadily dropping price of carbon fibers.

Similarly, there has been an increasing use of composites in aircraft,

including helicopters, used by defense services. Weight and cost sav-

ings are the driving forces for these applications. Consider, for exam-

ple, the Sikorsky H-69 helicopter. For this helicopter, manufacturing

the conventional fuselage, of metal construction, is very labor inten-

sive. In comparison, the composite fuselage, of carbon, aramid, and

12 See B. Ilschner, J. Mech. Phys. Solids, 44 (1996) 647; S. Suresh and A. Mortensen, Intl.

Mater. Rev., 42 (1997) 85.
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glass fiber--epoxy, has much fewer parts, assemblies, and fasteners.

PMCs are also lighter and cheaper to use than metals in the manu-

facture of fuselages. The use of lighter composites in aircraft results

in energy savings: For a given aerodynamic configuration of an air-

craft, there is a direct correlation between the weight of the airplane

and fuel consumption. Weight savings resulting from the use of new,

lighter materials lead to great increases in fuel economy.

In examining the applications of composites in space, it should

be recognized that environment of space is not benign. Among the

hazardous items that may be encountered in space are orbital debris,

meteorites, and atomic oxygen. It appears that metal matrix compo-

sites can withstand the space environment better than polymer

matrix composites. In the Hubble telescope, pitch-based continuous

carbon fiber reinforced aluminum was used for waveguide booms

because this composite is very light and has a high elastic modulus

and a low coefficient of thermal expansion.

Other aerospace applications of MMCs involve the replacement

of light, but toxic, beryllium by various composites. For example, in

the U.S. Trident missile, beryllium has been replaced by an SiCp/Al

composite, which is also used in aircraft electronic equipment racks.

CMCs can lead to potential improvements in aircraft, helicopters,

missiles, reentry modules of spacecraft, and other aerospace vehi-

cles. Projected skin temperatures in future hypersonic aircraft are

over 1600 ◦C. Other parts, such as radomes, nose tips, leading edges,

and control surfaces, will have only slightly lower temperatures. Cur-

rently, one uses sacrificial, non-load-bearing thermal protection CMC

materials on load-bearing components made of conventional mater-

ials. With the use of CMCs, one can have load-bearing components

that are reusable at operating temperatures.

15.10.2 Nonaerospace Applications
Polymer composites based on aramid, carbon, and glass fibers are rou-

tinely used in civil construction and in marine and sporting goods.

Applications in the sporting goods industry have burgeoned, all the

way from tennis rackets to fishing poles to a whole variety of equip-

ment used in downhill as well as cross-country skis, boots, poles,

gloves, etc. The main advantages that the use of composites brings

to the sporting goods industry are safety, less weight, and higher

strength than conventional materials. Ski poles made of polymer

composites are lighter and stiffer than aluminum poles. Frequently,

hybrid composites are used, such as carbon fibers laid over a small

sleeve of aramid.

Composites are also used in rifle stocks for biathlons because both

weight and strength are important in the rifles, which may have to

be carried over distances of up to 20 km.

The automobile industry is a major user of PMCs, mainly because

of the cost advantage over other types of composites. One of the

important applications of MMCs in the automotive area is in the

diesel piston crown. This application involves the incorporation of
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short fibers of alumina or alumina plus silica into the crown. The

conventional diesel engine piston has an Al--Si casting alloy with a

crown made of nickel cast iron. The replacement of the nickel cast

iron by an aluminum matrix composite resulted in a lighter, more

abrasion-resistant, and cheaper product. Yet another application of

MMCs is in the automobile engine of the Honda Prelude. In the con-

ventional automobile, the major part of the engine, and also the

heaviest part, is the cast iron engine block. In the general quest for

high performance combined with a light vehicle, the cast iron engine

block has been replaced by light aluminum alloy in some automo-

biles, resulting in a weight reduction of 15--35 kg. But even in these

aluminum engines, the liners are generally made of cast iron. This is

because cast iron has superior sliding characteristics (pistons sliding

in the cylindrical bores) than aluminum alloys do. The Honda Motor

Company has developed an aluminum engine (used in the Prelude),

with cylinder liners made of alumina- and carbon-fiber reinforced

aluminum. The most important characteristic for this application is

resistance against sliding. Seizure occurs when the coefficient of fric-

tion increases very rapidly. According to the researchers at Honda, a

hybrid composite consisting of alumina and carbon fibers gave the

best results. This was attributed to the self-lubricating properties of

carbon fiber and the sliding resistance of alumina fiber. In compo-

sites containing only alumina fibers, when a scratch appeared, it

easily worsened. In the case of hybrid alumina and carbon fibers in

Al, the scratch did not grow. Particulate metal matrix composites --

especially light ones such as aluminum and magnesium -- also find

applications in automotive and sporting goods. In this regard, it is

important to remember that the price per kilogram becomes the

driving force for the application.

An interesting application, led by 3M Co., involving continuous

Fig. 15.25 Cross section of an

aluminium composite conductor

reinforced (ACCR) cable. The

central wires consist of continuous

alumina fibers in an aluminium

matrix composite while the outer

wires are made of Al–Zr alloy.

(Courtesy of 3M Co.)

alumina fibers in aluminium matrix is in the form of a composite

conductor, which is used in power-line cables. These new cables are

capable of transmitting two or three times more electricity than the

conventional power-line cables of the same diameter without add-

itional weight or the need for more towers. The objective is to increase

the amperage capacity of the existing power-line structures with no

additional easements. Congestion is a key issue facing the power

transmission grid in the USA. These new cables have a core that

consists of composite (continuous alumina fiber in an aluminium

matrix). The core is wrapped by aluminium--zirconium alloy conduc-

tor wires. Figure 15.25 shows the cross section of one such cable. This

3M conductor cable, also known as aluminum composite conductor

reinforced (ACCR) cable, is light weight; consequently it sags less than

the conventional power lines. It can be used to span difficult terrains

such as wide rivers, lakes, or canyons. Because of their light weight,

such cables are also able to withstand winter snow storms that cause

accumulation of ice on the power lines, resulting in their snapping.

Copper-based composites having Nb, Ta, or Cr as the second

phase in a discontinuous form are of interest for certain applications
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requiring high thermal conductivity and high strength. Sometimes

we refer to these composites as Cu--X composites, where X, which is

insoluble in copper at room temperature, forms the second phase.

One specific example is a high heat-flux application in the thrust

chambers of rocket engines. Cu--X systems are very useful for pro-

cessing such composites. At room temperature, the second phase

appears in a dendritic form, which can be converted into a filamen-

tary or ribbon form by mechanical working. Note that the ribbon

morphology is thermodynamically unstable at high temperatures,

because the ribbons tend to form spheroids with time, as a function of

temperature.

Conventional commercial superconductors are referred to as

niobium-based superconductors because Nb--Ti and Nb3Sn are supercon-

ducting materials. These conventional superconductors are nothing

but copper matrix composites.

An area in which CMCs have found application is that of cutting

tools. Silicon carbide whisker reinforced alumina (SiCw/Al2O3) is used

as a cutting-tool insert for high-speed cutting of superalloys. For exam-

ple, in the cutting of Inconel 718, SiCw/Al2O3 composite tools perform

three times better than conventional ceramic tools and eight times

better than cemented carbides.

Carbon--carbon composites are used as implants, as well as for

internal fixation of bone fractures, because of their excellent bio-

compatibility. They are also used for making molds for hot press-

ing. Carbon--carbon molds can withstand higher pressures and offer

a longer service life than does polycrystalline graphite. However, their

high cost limits them to aerospace and other specialty applications.

The low oxidation resistance of carbon--carbon composites is a serious

limitation, but is not a problem for short-term applications such as

shields, rocket nozzles, and reentry vehicles.

15.11 Laminated Composites

The abalone shell is a natural laminar or laminated composite based

on CaCO3. It possesses unique strength and toughness properties.

In Chapter 1 we showed a picture of the structure (Figure 1.30).

The flexural strength of the abalone shell is approximately 80 MPa;

in comparison, the flexural strength of monolithic CaCO3 is close

to 10 MPa. The fracture toughness of abalone is in the 4--10 MPa

m1/2 range, whereas that of CaCO3 is approximately 1 MPa m1/2. Fig-

ure 15.26 shows the dramatic improvement in mechanical strength

made possible by the organization of calcium carbonate into layers

with thickness of approximately 0.5 μm. The same figure shows the

improvement in properties obtained when Al2O3 is arranged in layers

with Al (Al2O3/Al) and when B4C is used to form a laminate with Al

(B4C/Al).

Figure 15.27(a) shows the construction of tiles forming the nacre-

ous portion of abalone. This structure resembles a ‘‘brick and
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Fig. 15.26 Flexural strength for

selected monolithic and laminated

materials. (Adapted from M.

Sarikaya, Micr. Res. Tech., 27 (1994)

371.)

mortar” structure where aragonite (an orthorhombic form of CaCO3)

is represented by ‘‘bricks” bound together by organic material (‘‘mor-

tar”). Again, the thick bands are made of aragonite and the thin

layers in between the aragonite plates are an organic ‘‘glue.” This

laminated structure of aragonite and organic material is the primary

reason for the toughness of abalone. When abalone fractures under

application of load, the resulting crack will follow a tortuous path

that requires considerable energy to grow. Figure 15.27(b) shows the

fracture surface. We see that the tiles are actually pulled out. These

tiles slide past each other and the glue between them provides the

resistance. This pullout action is shown in the sequence depicted in

Figure 15.27(c).

Several laminated composites are commercially available. A lam-

inated composite made of two glass sheets bonded with poly(vinyl

butryal), PVB, is used as a transparent safety glass material in a variety

of applications, the most important being the automotive windshield.

Bilayer or bimetallic compostes are commonly used as switches. Some

of the newer laminated composites are made by stacking alternate lay-

ers of a fiber reinforced polymer composite and monolithic metallic

sheet. Examples include ARALL (aramid aluminum laminate) which

consists of alternate layers of aramid fiber--epoxy and aluminum sheet

and GLARE, which consists of alternate layers of glass fiber--epoxy and

aluminum sheet. Figure 15.28 shows schematically such composites.

They are also known as fiber metal laminates. Such composites have

very high specific stiffness and strength. They are also more resistant

to cyclic fatigue. Figure 15.29 shows the microstructure (SEM and TEM)

of a laminated composite of aluminum and silicon carbide made by

physical vapor deposition on a silicon substrate. It has mechanical

properties vastly superior to those of individual components. These

laminated composites are examples of bioinspired materials, where

the same toughening principle is used as does nature in the abalone

shell.
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C

(a)

Fig. 15.27 (a) Schematic

showing an arrangement of tiles;

(b) SEM of a fractured surface of

abalone showing pullout of tiles;

(c) schematic showing how pullout

of tiles occurs through shear of

organic layer that acts as glue.

(Courtesy of A. Lin.)

(b)

(c)

Organic glue

Aragonite

Aluminum

Aluminum

Aluminum

PMC

PMC

Fig. 15.28 Schematic of a

metal–polymer matrix composite

(PMC) such as Arall or Glare.
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(a)

Fig. 15.29 Cross section of a

laminate consisting of aluminum

and silicon carbide: (a) SEM; (b)

TEM. (From X. Deng, K. K.

Chawla, M. Koopman, and J. P.

Chu, Adv. Eng. Mater., 7 (2005) 1.)

(b)

Suggested Reading

K. K. Chawla. Composite Materials: Science and Engineering, 2nd ed. New York, NY:

Springer, 1998.

K. K. Chawla. Ceramic Matrix Composites, 2nd ed. Boston, MA: Kluwer Academic,

1993.

K. K. Chawla. Fibrous Materials. Cambridge, U.K.: Cambridge University Press,

1998.



810 COMPOSITE MATERIALS

N. Chawla and K. K. Chawla, Metal Matrix Composites. New York, NY: Springer,

2006.

T. W. Clyne and P. Withers. Metal Matrix Composites. Cambridge, U.K.: Cambridge

University Press, 1994.

L. N. Phillips, ed. Design with Advanced Composite Materials. London: The Design

Council, 1989.

S. Suresh, A. Needleman, and A. M. Mortensen, eds. Fundamentals of Metal Matrix

Composites. Stoneham, MA: Butterworth--Heinemann, 1993.

Exercises

15.1 Describe some composite materials that occur in nature. Describe their

structure and properties.

15.2 To promote wettability and avoid interfacial reactions, protective coat-

ings are sometimes applied to fibers. Any improvement in the behavior of

a composite will depend on the stability of the layer of coating. The maxi-

mum time t for the dissolution of this layer can be estimated by the diffusion

distance

x ≈
√

Dt,

where D is the diffusivity of the matrix in the protective layer. Making an

approximation that the matrix diffusion in the protective layer can be repre-

sented by self-diffusion, compute the time required for a 0.1-μm-thick protec-

tive layer on the fiber to be dissolved at Tm and 0.75Tm, where Tm is the matrix

melting point in kelvin. Assume a reasonable value of D for self-diffusion in

metals, taking into account the variation in D with temperature.

15.3 A fibrous form represents a higher energy form vis-a-vis a spherical form.

Hence, a fibrous phase produced by unidirectional solidification of an euectic

will tend to form spheroids because such a change of shape results in a

decrease in the surface energy of the material. Compute the energy released

when a 10-cm-long, 20-μm-diameter fiber becomes spheroidal. The specific

surface energy of the fibrous phase is 500 m Jm−2.

15.4 One can obtain two-dimensional isotropy in a fiber composite plate by

having randomly oriented fibers in the plane of the plate. Show that the

average in-plane modulus is

Ē θ =
∫ π/2

0
E θ dθ∫ π/2

0
dθ

.

Plot E θ /E11 versus Vf for fiber reinforced composites with Ef/Em = 1, 10, and

100.

15.5 Consider a carbon fiber reinforced epoxy composite. The fibers are con-

tinuous, unidirectionally aligned and 60% by volume. The tensile strength

of carbon fibers is 3 GPa, and the Young’s modulus is 250 GPa. The tensile

strength of the epoxy matrix is 50 MPa, and its Young’s modulus is 3 GPa.

Compute the Young’s modulus and the tensile strength of the composite in

the longitudinal direction.

15.6 A steel wire of diameter 1.25 mm has an aluminum coating such that

the composite wire has a diameter of 2.50 mm. Some other pertinent data
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are as follows:

Property Steel Aluminum

Elastic modulus E 210 GPa 70 GPa
Yield stress σ y 200 MPa 70 MPa
Poisson ratio ν 0.3 0.3
Coefficient of thermal expansion
(linear)

11 × 10−6 K−1 23 × 10−6 K−1

(a) If the composite wire is loaded in tension, which of the two components

will yield first? Why?

(b) What tensile load can the composite wire support without undergoing

plastic strain?

(c) What is the elastic modulus of the composite wire?

(d) What is the coefficient of thermal expansion of the composite wire?

15.7 A boron--aluminum composite has the following characteristics:

Unidirectional reinforcement,

Fiber volume fraction Vf = 50%,

Fiber length 
 = 0.1 m,

Fiber diameter d = 100 μm,

Fiber ultimate stress σ fu = 3 GPa,

Fiber strain corresponding to σ fu, efu = 0.75% (uniform elongation),

Fiber Young’s modulus Ef = 415 GPa,

Matrix shear yield stress τ ym = 75 MPa,

Matrix stress at e = efu, σ ′
m = 93 MPa,

Matrix ultimate stress σ mu = 200 MPa.

Compute:

(a) The critical fiber length 
c for the load transfer.

(b) The ultimate tensile stress of the composite.

(c) Vmin and Vcrit for this composite system.

15.8 Determine Young’s modulus for a steel fiber--aluminum matrix composite

material, parallel and perpendicular to the fiber direction. The reinforcement

steel has E = 210 GPa and Vf = 0.3, and the aluminum matrix has E = 70 GPa

and Vm = 0.7.

15.9 An injection molded composite has short, aligned fibers. The fiber vol-

ume fraction is 40%. The length and diameter of the fibers are 500 and 10 μm,

respectively. Assume a square distribution of fibers in the cross section of the

composite. The Young’s modulus of the fiber and matrix are 230 and 3 GPa,

respectively. The shear modulus of the matrix is 1 GPa. Compute the mean

strength of this composite in the fiber direction.

15.10 A glass fiber reinforced polymer matrix composite has the following

characteristics:

Fiber maximum strength = 2 GPa

Interfacial shear strength = 50 MPa

Fiber radius = 10 μm.

Compute the critical fiber length for this system.
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Matrix

2r

Fiber

P

Fig. Ex15.12

15.11 A unidirectionally reinforced fiber reinforced composite has the follow-

ing characteristics:

Ef = 380 GPa,

σ fu = 3 GPa,

Vf = 0.4,

τ i = 50 MPa,

fiber length 
 = 10 cm,

fiber diameter d = 15 μm.

The matrix strength at fiber failure is = 200 MPa. Assuming that the fibers

are aligned, compute the critical length for load transfer in this composite.

If the load transfer coefficient β = 0.5, what is the strength of the composite

along the fiber direction?

15.12 Consider a fiber of radius r embedded up to a length 
 in a matrix. (See

Figure Ex15.12.) When the fiber is pulled, the adhesion between the fiber and

the matrix produces a shear stress τ at the interface. In a composite system

containing a fiber of fracture stress σ f equal to eight times the maximum

shear stress τmax that the interface can bear, what fiber aspect ratio is required

to break the fiber rather than pull it out?

15.13 List some nonstructural applications of composite materials.13

15.14 Bone is an excellent example of a natural composite. Describe the vari-

ous components that make this composite.

15.15 Describe mechanical characteristics of bone and its ability to repair.

15.16 A glass fiber reinforced polypropylene composite has 65% by volume of

fibers unidirectionally aligned.

(a) Compute the weight fraction of glass fibers in this composite.

(b) What is the density of this composite?

(c) Compute the Young’s modulus of the composite in a direction along the

fiber and perpendicular to it.

15.17 A composite is made of unidirectional carbon fibers embedded in an

epoxy matrix.

(a) Plot the Young’s modulus as a function of the volume fraction of fibers

parallel and perpendicular to the fiber direction.

(b) If the continuous fibers are replaced by chopped fibers with random orien-

tation, where do you expect that the elastic properties would lie? Indicate

in the plot, given Ef = 390 GPa; Em = 3 GPa.

(c) Name three applications for this composite.

13 See M. B. Bever, P. E. Duwez, and W. A. Tiller, Mater. Sci. Eng., 6 (1970) 149.



EXERCISES 813

15.18 A carbon fiber--epoxy composite has 70% fibers. Determine the elastic

modulus of composite along the perpendicular to fiber direction. Compute

the density of this composite.

Given:

Density of carbon fibers = 1.3 g/cm3,

Density of epoxy = 1.1 g/cm3,

Ec = 270 GPa,

Ee = 4 GPa.

15.19 A composite is made with discontinouous alumina fibers in an alu-

minum matrix. The fibers have a diameter of 10 μm. If the volume fraction of

fibers is 60%, what is the required length if we want the strength of composite

to be equal to 50% of the same composite reinforced with continuous fibers.

Given:

Fiber E = 380 GPa,

Fiber strength = 1.7 GPa,

Matrix strength = 200 MPa.

15.20 A unidirectional reinforced composite has an aluminum matrix and

steel fibers (40 vol.%). Determine its strength.

Given:

Aluminum: σ = 100 + ε0.3 (in MPa),

Steel: σ= 2.5 GPa.

15.21 Describe five applications of composites in sports equipment. Specify

components of the composite.

15.22 Metals can be joined by welding, riveting, and bolting. Is it possible to

apply these processes to polymer matrix composites? Explain why, and present

alternative means of joining composites.

15.23 Give specific examples for the four different types of composites, and

explain briefly the components involved (e.g. particle reinforced; short fiber

reinforced, etc.).

15.24 Give an example of a composite. Compare its mechanical properties

with those of the reinforcements and matrix materials, respectively, and

explain its advantages.

15.25 Consider a steel and rayon-cord reinforced elastomer (rubber) with elas-

tic moduli as shown in the table below.

Material E (MPa)

Rubber 13
Rayon 6,000
Steel 210,000

Calculate the elastic modulus for the two different composites, if the volume

fraction of fiber (rayon or steel) is 0.3.



814 COMPOSITE MATERIALS

15.26 Consider an elastomer matrix composite reinforced with steel cord (1

mm length and 0.5 mm diameter). What is the minimum fracture stress for

the steel cord, if the interfacial shear strength is 20 MPa?

15.27 Consider an aluminum--titanium laminated composite. Calculate the

longitudinal and transverse Young’s modulus of this composite if the vol-

ume fractions of the two metals are equal. Given E(Ti) = 116 GPa, E(Al) =
70 GPa.



Chapter 16

Environmental Effects

16.1 Introduction

Environment by its omnipresence, except perhaps in space, affects

the behavior of all materials. Such effects can range from swelling

in polymers to surface oxidation of metals and nonoxide ceramics

to catastrophic failure of some materials under a combined action

of stress and environment. Environmental degradation of materials

is often referred to as corrosion. Such damage is generally time-

dependent, i.e., one is able to predict it. Over time, however, envir-

onmental damage can become critical. There is, however, a more

insidious corrosion problem which is time-independent. Examples of

time-independent corrosion include stress corrosion cracking (SCC),

environment induced embrittlement, etc. Such damage can occur at

anytime, without much warning. There are many examples of such

failures resulting in human and economic loss. Corrosion of struc-

tural components in aging aircraft is a serious problem. Just to cite

one such example, a Boeing 737 belonging to Aloha Airlines, which

flew inter island in Hawaii, lost a large portion of its upper fuselage at

7,500 m (24,000 feet) in the air. It turned out that the fuselage panels

joined by rivets had corroded, which resulted in the mid-flight failure

due to corrosion fatigue.

All materials (metals, ceramics, and polymers) show phenomena

of premature failure or mechanical property degradation under cer-

tain combinations of stress and environment. We describe below the

salient points in regard to environmental effects in different mater-

ials. We emphasize the role that the microstructure of a given mater-

ial plays in this phenomenon, especially in environmentally assisted

fracture.

16.2 Electrochemical Nature of Corrosion
in Metals

Corrosion in metals, i.e., attack by an aggressive environment, is

essentially electrochemical in nature. Fundamentally, there are two
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Table 16.1 Galvanic Series of Some Metals

and Alloys (in Seawater).

Pt ↑Cathodic
Au
Graphite
Ti
Stainless steel (passivated)
Cu–Ni alloys
Bronze (Cu–Sn alloys)
Cu
Sn
Pb
Pb–Sn solders
Stainless steel (activated)
Cast Iron
Steel
Al alloys
Al
Zn
Mg ↓Anodic

electrochemical reactions involved in the corrosion of a metal: oxi-

dation and reduction. The reaction at the less noble metal is called

oxidation or an anodic reaction (electrons are released in this reac-

tion). In this case, the metal is the anode and it gets oxidized to an

ion. We can write the reaction as:

M → Mn+ + ne−.

At the more noble metal, one or more reduction or cathodic reactions,

depending on the environment, can occur. Electrons are consumed

in a cathodic reaction as per the following reaction:

Mn+ + ne− → M.----

Both these reactions occur simultaneously and at the same rate. If

that were not so, there would occur a charge buildup in the metal.

One can classify the corrosion of metals in the following cat-

egories.

16.2.1 Galvanic Corrosion
Consider two different metals, say iron and copper, in electrical con-

tact and exposed to an environment (i.e., an electrolyte such as water).

The two dissimilar metals are said to form a galvanic cell. Metals and

alloys can be conveniently ranked in terms of their relative reactiv-

ities to each other in an environment. Such a ranking is called the

galvanic series. Table 16.1 lists some metals and alloys in the seawater

environment. The metal that is less noble will corrode at the junction

while the more noble one will be protected. In the example, iron will
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corrode when it forms a galvanic cell with copper. The reader should

note that the less noble metal is sacrificed.

Examples of such galvanic corrosion include steel screws suffering

corrosion when in contact with brass in a marine environment. For

example, if we have copper and steel in a water-heater, they will form

a galvanic couple, and the steel will corrode. It should be pointed

out that the rate of the corrosion is proportional to the ratio of the

surface areas of the noble and less noble metals. Because the currents

of the noble and less noble metal must be equal, therefore, if the less

noble metal has a smaller surface area it will corrode very rapidly.

As a practical matter, we list some general recommendations to

reduce galvanic corrosion.

� If dissimilar metals must be coupled, choose metals with similar

activity.
� Avoid a small anode area.
� Electrically insulate the two metals.
� Use cathodic protection. This involves the use of a third metal that

may be deliberately sacrificed. The less noble metal can be used as

a sacrificial node to protect pipelines, ships, tanks, etc.

Stainless steels (Fe + Ni + 12% or more Cr) owe their corrosion resist-

ance to a protective layer of chromium oxide. Such a coating protects

the underlying metal from further corrosion.

16.2.2 Uniform Corrosion
This type of corrosion occurs uniformly over the entire surface. Uni-

form corrosion is the least objectionable corrosion form because it is

easy to predict. Examples of uniform corrosion include rusting of steel

and tarnishing of silver. When iron is exposed to moist air, it corrodes.

This is generally referred to as ‘‘rusting.” The following chemical reac-

tions are involved in rusting:

Fe + 1/2 O2 + H2O → Fe(OH)2,

2 Fe(OH)2 + 1/2 O2 + H2O → 2 Fe(OH)3.

The rust consists of Fe(OH)3, a hydrated oxide, which is cathodic in

nature and insoluble in water.

16.2.3 Crevice corrosion
Initially metal corrodes uniformly. However, if there are holes on the

surface for any reason, then solution in holes is stagnant so the oxy-

gen concentration in the crevice solution is reduced by the following

reactions:

O2 + 4H+ + 4e− → 2H2O

for an acidic solution containing dissolved oxygen;

O2 + 2H2O + 4e− → 4(OH)−

for neutral or basic solutions with dissolved oxygen.
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This generates a potential difference between crevice and non-

crevice regions, also called oxygen-concentration cells. The metal in

contact with the most concentrated solution is the cathode and the

metal in contact with the dilute solution (in the crevice) is the anode.

The crevice (crack, depression, or a dent), where the oxygen concen-

tration is relatively low, will corrode preferentially.

To reduce crevice corrosion, one should

� Avoid crevices in design, for example use welds rather than rivets.
� Flush crevices regularly.

16.2.4 Pitting Corrosion
This is another form of localized corrosion that involves the formation

of small pits on the surface of a metal. Pits are likely to start at

structural and/or compositional heterogeneities.

16.2.5 Intergranular Corrosion
This type of corrosion, as suggested by the name, occurs along

the grain boundaries. Generally, grain boundaries are energetically

more active (i.e., anodic) than the grain interior. Recall that grain

boundaries are regions of atomic disorder. Hence when exposed to

an electrolyte the anodic grain boundaries dissolve preferentially

and form a groove. A well known example of this is the phe-

nomenon of sensitization in austenitic stainless steels. If austenitic

stainless steels are heated to 500--800 oC for a long enough period,

chromium carbide, Cr23C6, precipitates along grain boundaries. (See

Figure 16.1.) This leaves the areas adjacent to the grain boundaries

depleted in chromium. One needs at least 12% chromium for the

stainless steel to be corrosion resistant. If the chromium content in

regions adjacent to boundary falls below 12%, it will corrode preferen-

tially. Some high strength aluminum alloys also show intergranular

corrosion.

Cr-depleted region

Grain boundary Chromium carbide precipitates

Fig. 16.1 Sensitization of

austenitic stainless steel. When

austenitic stainless steels are

heated to 500–800 oC for a long

enough period, chromium carbide,

Cr23C6, precipitates along grain

boundaries, leaving the areas

adjacent to the grain boundaries

depleted in chromium and prone

to corrosion.
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16.2.6 Selective leaching
In this case, one element in an alloy dissolves preferentially. For exam-

ple, zinc can leach out preferentially in a Cu--Zn brass.

16.2.7 Erosion-Corrosion
This type of corrosion involves a combination of chemical attack and

mechanical abrasion, which is worse than either alone.

16.2.8 Radiation Damage
Damage can occur in metals when they are bombarded with energetic

particles such as neutrons. Such damage includes formation of point

defects, voids, compositional and/or microstructural changes. We have

discussed this topic in Section 4.3.4. Suffice to reiterate here that

among the property changes to which radiation damage can lead are:

swelling, because of void formation; embrittlement, because of the

generation of defects; and accelerated creep because of the formation

of voids and bubbles.

16.2.9 Stress Corrosion
This type of degradation of a metal involves the combined action

of stress and a specific corrosive medium. Failure occurs at stresses

and corrosion levels where typically it would not occur alone.

Residual stresses can also cause stress corrosion cracking. We describe

the phenomenon of stress corrosion cracking below (Section 16.3) in

some detail because of its importance.

16.3 Oxidation of Metals

The transformation of a metal into an oxide is accompanied by a

reduction in energy, i.e., generally there is present a thermodynamic

driving force for a metal to convert to what might be called its natural

state. The natural state of metals (i.e., as they are found in nature) is

one of compounds such as oxides, hydroxides, carbonates, silicates,

sulfides, sulfates, etc. There are, of course, exceptions such as gold

and platinum, which are called noble metals! Oxidation is sometimes

referred to as dry corrosion. We can represent oxidation as a chemical

reaction in the following manner:

n M (s) + pO2 (g) → MnO2p (s or g)

where M represents a metal such as aluminum or a metalloid such

as silicon.

Steel, which in its simplest form is an alloy of iron and carbon,

can be decarburized in an oxygen environment as per the following

reaction:

2C (in steel) + O2 (g) → 2CO (g).
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Some normally active metals become passive, i.e., lose their chemical

reactivity and become inert by the formation of a highly adherent,

thin oxide film on the surface that protects the metal from further

corrosion. This phenomenon is called passivity. Examples of metals

that passivate include Cr, Ni, Ti, Al. It is the chromium oxide film

on the surface of stainless steel that makes the steel stainless, i.e.,

corrosion resistant. Similarly, aluminum oxide on aluminum provides

a protective film. The important factor is whether the protective oxide

scale that forms on the surface is protective or not? This feature can

determined by a parameter called Pilling--Bedworth ratio:

Pilling-Bedworth ratio = Aoρo/Amρm,

where Ao is the atomic weight of the oxide, ρo is the density of the

oxide, Am is the atomic weight of the metal, and ρm is the density of

the metal.

� For a protective oxide, the Pilling--Bedworth ratio is approximately

1.
� For a porous oxide, the Pilling--Bedworth ratio is less than 1.
� For a flaking oxide, the Pilling--Bedworth ratio is around 2 to 3.

Thermal mismatch between a metal and its oxide as represented by

the difference in their coefficients of thermal expansion (αoxide −
αmetal) is another important parameter.

If αoxide > αmetal, the oxide will contract more than the underlying

metal on cooling, putting the oxide layer in tension, which may crack.

If αmetal > αoxide, the metal substrate will contract more than the

oxide on cooling, putting the oxide in compression, which may cause

cracking or buckling of oxide and possible delamination.

If a continuous and adherent oxide film forms on the surface of

a material in sufficient quantity to cover the surface, it may be used

to protect the underlying material against further oxidation.

16.4 Environmentally Assisted Fracture in Metals

Environmentally assisted fracture in metals can be classified under

the following subheadings:

� stress corrosion cracking
� hydrogen damage
� liquid and solid metal embrittlement.

16.4.1 Stress Corrosion Cracking (SCC)
Generally, SCC is initiated by a rupture of the protective oxide film

on the metal. This film rupture may occur because of a mechanical

action or a chemical action of some species. Possible initiation sites of

SCC include microscopic inhomogeneities such as local differences in
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Table 16.2 Some Important Alloy--Environment Combinations for SCC

Alloys Environments

Copper alloys Ammonia, sulfur dioxide, oxygen
Austenitic stainless steels, Al alloys, Ti

alloys, high strength steels
Chlorides and moisture

Low carbon steels Hydrogen sulfide
Carbon steels CO or CO2 and moisture
Copper alloys Oxides of nitrogen

chemical composition, amount of the corrosive species, and/or thick-

ness of the protective film; and any stress concentration sites such as

a preexisting gouge mark on the surface. Corrosion pits form at the

rupture sites and cracking starts at the root of the pit. Electrochem-

ical action maintains the sharpness of the crack tip, with corrosion

continuing at the tip of a propagating crack. Bare metal under the

protective film or passivated layer is exposed by the slip (i.e., plas-

tic deformation) occurring at the crack tip. The new metal surface

that is exposed becomes anodic with respect to adjacent areas that

act cathodically. The corroding metal gets passivated again and the

process of crack growth is repeated. The crack thus propagates in a

stepwise manner in a transgranular or intergranular mode depending

on the metal and environmental conditions. Characteristically, SCC

shows branching, with the main crack growing in a direction perpen-

dicular to the major tensile stress component and a low ductility.

As mentioned above, SCC occurs under the combined action of

a tensile stress (applied or residual) and an aggressive environment.

However, a specific metal--environment combination is required for

SCC to occur. Examples include aluminum alloys--seawater, brass--

ammonia, austenitic stainless steel--seawater, titanium--liquid nitro-

gen tetroxide (N2O4), etc. Table 16.2 summarizes some of the impor-

tant metal--environment combinations.

The treatment of SCC in terms of linear elastic fracture mechan-

ics (LEFM) analysis involves the use of crack-tip stress intensity factor

as the dominant parameter controlling the crack growth under SCC

conditions. Under a specific combination of a material and an aggres-

sive environment, cracks can grow under a constant stress intensity

factor K less than KI c , the fracture toughness. We then define KI scc

as the threshold stress intensity value below which the crack propa-

gation rate is negligible. One should add here the same warning in

regard to the applicability of the linear fracture mechanics concepts

as was done in the case of ordinary fracture in the absence of an

aggressive environment; that is the size of the plastic zone at the

crack tip must be small compared to the specimen dimensions for

the application of LEFM to be valid. Crack growth velocity varies with

the stress intensity factor, K. A schematic plot of log da/dt vs. applied
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Fig. 16.2 Crack growth rate as

function of the stress intensity

factor under conditions of SCC.

stress intensity is shown in Figure 16.2. There are three regions in this

curve:

Region I: In this region the crack velocity depends on the stress intensity

factor. The threshold stress intensity, KI scc , below which the crack

growth does not occur, is shown by a dashed line. Quite frequently,

a true KI scc does not exist. In such a case, we can define an opera-

tional KI scc as that corresponding to a crack growth rate of 10−9 or

10−10 ms−1. Such an arbitrary value can be used to rate different

alloys.

Region II: The crack velocity in this region is independent of the stress inten-

sity factor. The value at which this plateau region occurs is very

specific to metal/environment combination and test conditions

such as temperature.

Region III: In this region the crack velocity becomes very fast as the crack-

tip stress intensity factor approaches KI c . In this region, the crack

velocity is mainly controlled by the stress intensity.

Figure 16.3 shows actual plots of log crack velocity vs. stress intens-

ity factor for aluminum 7079 alloy in a potassium iodide solution for

different temperatures.1 Only data from regions I and II are shown

in this figure. As the temperature increases, the curves shift upward,

i.e., for a given stress intensity, the crack velocity increases with tem-

perature. It should be clear to the reader that a knowledge of the full

crack velocity versus stress intensity factor curve for a specific alloy

in a specific environment will provide a better evaluation of the SCC

resistance of the alloy in that particular environment. Similar three-

region curves may be obtained under conditions of hydrogen damage

and liquid metal embrittlement.

1 M. O. Speidel, Met. Trans., 6A (1975) 631.
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shown. (After M.O. Speidel, Met.

Trans., 6A (1975) 631.)

Effect of Material Variables on SCC

In general, high purity metals are less prone to SCC than alloys or

impure metals. In particular, trace amounts of interstitial elements

can have a very large effect. For example, nitrogen in excess of 500

ppm in austenitic stainless steel in chloride environments can be

disastrous. The cracking in austenitic stainless steels is mainly trans-

granular, indicating that the effect of nitrogen must either be on

the process of slip or the stability of the protective film. The grain

size of the metal can also have a profound effect on its resistance to

SCC. A smaller grain size is more resistant to SCC than a coarse one.

Elongated grain structure commonly obtained in wrought aluminum

alloys can cause a markedly anisotropic SCC behavior. For example, a

sheet or plate of Al 7075-T6 shows high resistance against SCC when

stressed in the rolling or long transverse direction but rather poor

resistance against SCC in the plate thickness direction. The 7075-T7

temper, which has a lower strength than the T6 temper, can improve

resistance against SCC in the through thickness direction. Generally,

the aging treatment in aluminum alloys results in increasing their

resistance against SCC. The 7XXX series of aluminum alloys (Al--Zn--

Mg) show the best resistance against SCC when they are aged beyond

the peak hardness, i.e., in the overaged condition.
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Fig. 16.4 Decrease in KI scc with

increasing (Li/Cu) ratio in an

Al–Li–Cu–Zr alloy (T651 temper).

The apparent toughness (KQ) also

decreases with increasing (Li/Cu)

ratio. (After A. K. Vasudevan, P. R.

Ziman, S. Jha, and T. H. Sanders, in

Al-Li Alloys III (London, The

Institute of Metals, 1986), p. 303.)

Aluminum--lithium alloys are now used in the aerospace industry

because of their enhanced modulus and low density (see Chapter 10).

Generally, ternary or quaternary alloys are used. In particular, Al--Li--

Cu--Zr alloys show quite an attractive combination of properties. It has

been observed that the (Li/Cu) ratio can have significant effect on the

precipitation sequence and consequently the resultant mechanical

properties. The (Li/Cu) ratio also affects the stress corrosion resistance

of the alloy. Figure 16.4 shows KI scc in the T651 temper decreasing with

increasing (Li/Cu) ratio.2 The KI scc values of 2024-T851 (peak aged) and

2024-T351 (underaged) are also included for comparative purposes.

Also plotted is the apparent toughness (KQ) as function of (Li/Cu) ratio.

It would appear that the loss of KI scc is partly due to the loss of

toughness of these alloys with increasing (Li/Cu). Low-Li alloys showed

the transgranular cracking and crack branching while the high-Li

alloys showed intergranular cracking.

16.4.2 Hydrogen Damage in Metals
The presence of hydrogen in a material can cause serious damage to

its performance. In addition to its great technological importance,

the phenomenon of hydrogen damage has been a challenging basic

research problem. One main reason for the damage caused by hydro-

gen in metals and alloys is the extremely small size of the hydrogen

atom, which makes it move very fast in the metallic lattice. It is there-

fore not surprising that over the years a considerable research effort

has gone into obtaining an understanding of the phenomenon, espe-

cially in metals and alloys. We provide below a short account of the

hydrogen effects in various metals and alloys.

2 A. K. Vasudevan, P. R. Ziman, S. Jha, and T. H. Sanders, in Al-Li Alloys III (London: The

Institute of Metals, 1986), p. 303.
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Some of the common sources of hydrogen in metals as well as

some simple and straightforward remedies for the problem are as fol-

lows. Metals may absorb hydrogen during processing or service. For

example, during melting and casting of metals, the hot metal can

react with the raw materials or the humidity in air to form an oxide

and hydrogen. The latter can be absorbed by the hot metal. This prob-

lem of hydrogen absorption by the liquid metal can be reduced by

vacuum degassing processing. Atmospheric humidity can be a source

of hydrogen in the arc welding of steels, while the electrode itself

may absorb hydrogen during casting. Frequently, during some steps

in the processing of a metal into a useful article, a chemical or elec-

trochemical treatment is given. Nascent-hydrogen is released due to

reaction of metal with acid during such a treatment. Most of it com-

bines to form molecular hydrogen while the remainder will diffuse

into the metal. Certain metals such as titanium, zirconium, etc. dis-

solve rather large quantities of hydrogen exothermally and form very

brittle hydrides.

Quite frequently, in order to improve the corrosion resistance

and/or for decorative purposes, electropolishing or plating of mater-

ials is carried out. Such finishing processes represent another import-

ant source of hydrogen entry into the base metal. In these finish-

ing processes, hydrogen, together with the electroplated species, is

deposited at the cathode. In such cases, it is thought by some that

baking out at moderate temperatures after plating may help remove

hydrogen. Others hold the view that the protective coating serves as

a barrier to hydrogen removal during bakeout.

Aqueous corrosion is another common source of hydrogen for

metals in service. Metal reacts with water to form an oxide (or a

hydroxide) and atomic hydrogen, which is easily absorbed in the

metal. In pressurized water nuclear reactors (PWR), water used for

heat transfer can be an important source of hydrogen. Hydrogen

embrittlement of zirconium alloy fuel cladding or of the pressure

vessel itself can be a serious problem.

In the chemical and petrochemical industry, containers of chem-

icals (used for storage or as reaction chambers) can absorb hydrogen

over a period of use. Natural gas containing H2S, called sour gas,

can cause hydrogen-induced cracking (HIC) in the pipeline steel. The

sulfide ion is especially a problem species because it acts as a ‘‘sur-

face poison” retarding the recombination of atomic hydrogen to form

molecular hydrogen at the surface, leading to absorption of atomic

hydrogen.

Theories of Hydrogen Damage

No single model or theory is capable of explaining all the effects

associated with the presence of hydrogen in different materials. How-

ever, almost all theories recognize that one of the most important

attributes of hydrogen is that it diffuses very rapidly in most any

material. For example, in steels hydrogen diffuses about 10 μm per

second at room temperature. This fast diffusion characteristic of
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Fig. 16.5 Schematic of the

hydrogen transport processes at a

crack tip in Fe and the

embrittlement reaction. (After

R. P. Gangloff and R. P. Wei, Met.

Trans. A, 8A (1977) 1043.)

hydrogen stems partly from its extremely small size; hydrogen has

the smallest atomic diameter among all the elements. In general,

hydrogen tends to collect at defect sites in any material where it can

produce high internal pressure, which can lead to cracking. There

are certain special aspects of the hydrogen behavior in steels. Hydro-

gen has a very high mobility in the BCC lattice of Fe at ambient

temperature. The comparative values of the diffusivity of hydrogen

and nitrogen in the iron lattice at room temperature given below

give a good idea of the extraordinarily high mobility of the hydrogen

atom.3,4

D H in Fe ∼ 10−2 m2 s−1 at 300 K

D N in Fe ∼ 10−12 m2 s−1 at 300 K.

One can write for the local concentration of hydrogen in the BCC iron

lattice as:5

ln
C H

C 0

= �σp

RT
,

where CH is the local hydrogen concentration, C0 is the equilibrium

hydrogen concentration in the unstressed lattice, � is the molar vol-

ume of hydrogen in iron, σ p is the hydrostatic stress (= σ1+ σ2+ σ3

3
).

Thus, in any nonuniformly stressed solid, there is a driving force for

solute migration, which is a function of the solute atomic volume

and the gradient in the hydrostatic stress component of the applied

stress. Hydrogen segregates to regions of large hydrostatic tension.

Figure 16.5 shows schematically the transport processes at a crack

tip that eventually lead to the embrittlement reaction between the

3 C. A. Wert, Phys. Rev., 79 (1959) 601.
4 R. A. Oriani, in Fundamental Aspects of Stress Corrosion Cracking (Houston, TX: NACE, 1969),

p. 32.
5 J. C. M. Li, R. A. Oriani, and L. W. Darken, Z. Phys. Chem. 49 (1966) 271.



16 .4 ENVIRONMENTALLY ASS ISTED FRACTURE IN METALS 827

(a) (b)

Fig. 16.6 Stepwise cracking in a

microalloyed steel after 24 h

cathodic charging. (From K. K.

Chawla, J. M. Rigsbee, and J. D.

Woodhouse, J. Mater. Sci., 21

(1986) 3777.)

hydrogen and the metal, in this case iron.6 This hydrogen transport

process can be divided into the following steps:

� diffusion of hydrogen to the surface
� adsorption on the surface
� dissociation in the surface adsorption layer
� penetration through the surface
� diffusion into the bulk of the metal.

Having given this very general picture of the effects of hydrogen in

metals, we review briefly some of the specific theories that have been

advanced to explain the phenomenon of hydrogen damage.

Lattice Decohesion

A hydrogen-induced lattice decohesion can occur as originally pro-

posed by Toriano.7 Hydrogen diffuses into the triaxial tensile stress

region at a crack tip, causing a localized reduction of the lattice cohe-

sive strength. The concept is quite valid in very general terms. The

exact mechanisms involved are, however, not clear.

Pressure theory

Hydrogen atoms combine and precipitate as molecular hydrogen and

cause internal pressure. When this internal pressure exceeds a critical

value, HIC occurs. Because of the extremely high mobility of hydrogen

in most lattices, segregation of absorbed hydrogen to regions of high

expansion in the lattice, for example, internal voids and cracks, occurs

easily. Large internal pressure would enhance void growth and crack

propagation. A good example of this phenomenon is the blister forma-

tion in steels on cathodic charging. One would expect such cracking

to vary with inclusion distribution. Figure 16.6 shows such hydro-

gen induced cracking in a microalloyed steel sample.8 This exten-

sive stepwise cracking resulted after cathodic charging for 24 hours.

Such cracking or voiding is frequently associated with the presence of

inclusions. Figure 16.7 shows an aluminum-based inclusion (possibly

alumina) in the interior of a void produced by hydrogen charging.8

The micrograph on the right in Figure 16.7 shows the mapping of

aluminum, indicating an aluminum-based inclusion.

6 R. P. Gangloff and R. P. Wei, Met. Trans., 8A (1977) 1043.
7 A. R. Toriano, Trans. ASM, 52 (1960) 54.
8 K. K. Chawla, J. M. Rigsbee, and J. D. Woodhouse, J. Mater. Sci., 21 (1986) 3777.
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(a) ( b)

Fig. 16.7 An aluminum-based

inclusion in the interior of a void

produced by hydrogen charging.

(From K. K. Chawla, J. M. Rigsbee,

and J. D. Woodhouse, J. Mater. Sci.,

21 (1986) 3777.)

The solubility of hydrogen is greatly influenced by the presence of

lattice defects and impurities. For example, the solubility of hydrogen

in a commercial steel at room temperature can be as much as 100%

greater than that in a clean and well-annealed steel. Thus, although

the solubility of hydrogen in iron is small, a large amount of it can

be trapped rather easily at various defect sites.

Gas or oil containing H2S can lead to sulfide stress corrosion crack-

ing or hydrogen induced blistering in steel.9,10 This form of HIC, also

called blistering, is presumed to occur when hydrogen atoms gener-

ated in a wet, sour gas environment enter into the steel and precip-

itate at or around inclusions or other unfavorable microstructural

sites. In this regard, manganese sulfide inclusions, elongated in the

rolling direction, are perhaps the worst culprits. Hydrogen atoms, gen-

erated at the surface, penetrate and diffuse into the steel. These atoms

are trapped at matrix--inclusion interfaces and at ferrite--(pearlite +
bainite + martensite--austenite) interfaces.8 Here it is appropriate to

point out an important microstructural feature of in rolled low car-

bon steels. It is tacitly assumed that the solute atoms in a solid solu-

tion are uniformly distributed in the matrix. More often than not, it

is not the case. Indendritic segregation of solutes starts during the

freezing of alloys. Specifically, in Mn--C steels interdendritic segrega-

tion of Mn, followed by rolling, can result in pronounced banding.

Pearlite layers in the microstructure coincide with the Mn segrega-

tion. Such a microstructure consisting of alternate layers of ferrite

and pearlite is very anisotropic and susceptible to hydrogen induced

cracking. In quenched and tempered steels, even high Mn steels do

not show such segregation; these steels have superior resistance to

HIC.

Surface Energy

According to this theory, hydrogen is adsorbed on the free surfaces of

a crack and reduces the surface energy. This results in a decrease in

9 D. D. J. Thomas and K. R. Doble, in Steels for Linepipe & Pipeline Fittings (London: The

Metals Society 1983), p. 22.
10 T. Taira and Kobayashi, in Steels for Linepipe & Pipeline Fittings, (London: The Metals

Society, 1983), p. 170.
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the work of fracture as per the Griffith criterion. This theory, however,

would not explain the reversible degradation attributed to hydrogen.

Enhanced Plastic Flow

Stress

(a) (b)

Stress

Fig. 16.8 Schematic of crack

growth in a high strength steel. (a)

Without hydrogen, crack growth

occurs by microvoid coalescence

within a large plastic zone at the

crack tip. (b) With hydrogen,

plastic deformation becomes easy

and crack growth occurs by

severely localized deformation at

the crack tip. (After C. D.

Beachem, Met. Trans., 3A (1972)

437.)

Beachem11 proposed a hydrogen assisted cracking model in which

hydrogen enhances dislocation motion. The hydrogen diffuses in

front of the crack tip, increases the mobility of dislocations there

and causes, locally, an enhanced plasticity. Figure 16.8 shows schemat-

ically this model. In the absence of hydrogen, a ductile metal fractures

by microvoid coalescence within a large plastic zone at the crack tip,

see Chapter 8. In the presence of hydrogen, however, locally plas-

tic deformation becomes easier and crack growth occurs by severely

localized deformation at the crack tip. This model has been sup-

ported experimentally by the work of Tabata and Birnbaum.12,13 They

used an in situ deformation stage in an environmental cell of a high

voltage transmission electron microscope to investigate the effects of

hydrogen on the behavior of dislocations in iron. It was observed that

the introduction of hydrogen into the environmental cell increased

the velocity of screw dislocations. This resulted in softening of the

specimen in the early stages of deformation as the density of the

mobile dislocations increased. In the later stages of deformation, this

higher dislocation density may also contribute to work-hardening.

These authors also studied the in situ fracture behavior of iron of

different purities in the presence of hydrogen gas and observed that

the presence of hydrogen enhanced fracture. The main conclusions

of this work of are:

� Basic fracture mechanisms in iron in vacuum and in hydrogen

atmosphere are the same, but the morphology of fracture is very

different.
� Hydrogen enhanced fracture is caused by the localization of plastic-

ity and by the enhancement of dislocation motion and generation

in the presence of hydrogen, as first suggested by Beachem.11

JH
s

s
JH

JH

JH

JH
s

s

s

ss

s

JH

JH

JH

(a) (b)

(c) (d)

Fig. 16.9 Hydrogen degradation

due to a hydride formation. (a)

Under stress, σ , hydrogen diffuses

indicated by flux JH , to the crack

tip. (b) A hydride phase forms at

the crack tip. (c) The brittle

hydride phase cracks easily on

continued loading. (d) New

hydride phase forms and the cycle

is repeated. (After H. K. Birnbaum,

in Atomistics of Fracture (New York,

Plenum, 1983), p. 733.)

Hydride Formation

Certain metals such as Ti, Zr, V, Nb, Ta, Mg, Al, etc. could suffer

hydrogen degradation by diffusion of hydrogen and reaction with

the metal to form a hydride at the crack tip. The hydride phase,

being brittle, cracks easily on continued loading. Crack arrest occurs

when the crack tip reaches the matrix phase. New hydride phase

forms and the cycle is repeated as shown schematically in Figure

16.9.14 In pure iron, carbon and low alloy steels, a hydride phase is

not formed or is unstable. This is attributed to the extremely low

solubility of hydrogen in iron and steels. Other nonhydride forming

systems include Mo, W, Cr, and their alloys.

11 C. D. Beachem, Met. Trans., 3A (1972) 437.
12 T. Tabata and H. K. Birnbaum, Scripta. Met., 17 (1983) 947.
13 T. Tabata and H. K. Birnbaum, Scripta Met., 18 (1984) 231.
14 H. K. Birnbaum, in Atomistics of Fracture, (New York: Plenum, 1983), p. 733.
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Alleviating the Hydrogen Damage

While it is very difficult to provide simple recipes for alleviating the

hydrogen damage in all the materials, we may list the following gen-

eral guidelines as possible solutions:

� Avoid entry of hydrogen. This involves a control of the external envi-

ronment, i.e., use of inhibitors or suitable alloying elements to

protect the base metal surfaces against hydrogen ion discharge

reaction.
� Improve the material resistance to hydrogen damage. An effective way

of doing this is to modify the morphology and/or decrease the

number of inclusions. Lowering the sulfur content (maximum S

about 0.010%) is a very important item in inclusion content con-

trol. Because the elongated inclusions such as MnS stringers in

steel are highly susceptible to hydrogen damage, inclusion shape

control through use of rare earth metals is of great help. Modifying

the alloy composition is yet another way. For example, chromium

as an alloying element is very beneficial in steels. The reasons for

this effect may be varied. The addition of chromium decreases

the solubility of hydrogen in steels, perhaps, because chromium

alters the electrochemical conditions on the surface of steel,

enhances the oxidation of sulfur, or depresses adsorption of atomic

hydrogen.

16.4.3 Liquid and Solid Metal Embrittlement
Metals that fail in a ductile manner under normal conditions can

fail in a very brittle fashion in the presence of certain active liquid

or solid environments. This phenomenon has been variously referred

to as metal induced embrittlement (MIE), solid metal embrittlement (SME),

and liquid metal embrittlement (LME). LME of brasses and bronzes by

mercury is a well known example. Gallium, which is a liquid at room

temperature, causes a catastrophic failure in aluminum without any

apparent diffusion. Carbon and low alloy steels are embrittled by

cadmium. Amorphous metals are generally known to show excellent

corrosion resistance, primarily because of the absence of grain bound-

aries and other defect sites. It has been observed, however, that several

iron-based amorphous alloys show LME in the presence of Hg, Hg--In,

or Sn6Pb4.15

LME is different from SCC in that positively and negatively charged

ions in aqueous solution interact with solid metal in the SCC while,

apparently, no electrochemical dissolution is involved in LME. There

are certain prerequisites for LME to occur. The metals involved do not

form any stable intermetallic compounds. The liquid metal must wet

the solid metal and the metals do not have mutual solubilty.

Among the models proposed to explain the phenomenon of

LME are: reduction in surface energy of the solid metal by the

15 S. Ashok, N. S. Stoloff, M. E. Glicksman, and T. Slayin, Scripta Met., 15 (1981) 331.
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adsorbing liquid metal species16 and localized reduction of the

strength of the atomic bonds at the crack tip by the embrittling

species.16,17 It would appear, however, that similar to the hydrogen

effects in metals and alloys, different mechanisms seem to be respon-

sible for LME under different conditions. For example, LME of many

crystalline metals can be explained satisfactorily by enhanced shear or

decohesion while solid metal induced embrittlement is accomplished

by grain boundary penetration by the embrittling species. LME of

amorphous metals, on the other hand, involves enhanced shear.

Finally, it should be pointed out to the reader that although the

phenomenon of LME is generally considered as something undesir-

able, it is possible to use liquid metals, such as Pb--Sn eutectics, to

facilitate drilling steels, titanium alloys, heat resistant Ni--Cr alloys.

Increased drilling tool life and a better quality of the machined sur-

face are improvements. Such beneficial effects have been known in

nonmetallic fields for quite some time. For example, in the drilling of

quartz rock, addition of AlCl3 to the water lubricant allows one to dou-

ble the drilling speed without increasing the wear of the drilling bit.

16.5 Environmental Effects in Polymers

Polymers can undergo a variety of changes due to environment, some

of which can lead to severe embrittlement. Although polymers gener-

ally show good chemical resistance to various acids and alkalis, cer-

tain organic liquids and gases can affect their performance markedly.

In particular, the fracture process can suffer rather drastic changes

in the presence of certain environments. An example of such envir-

onmentally assisted fracture in polymers is that of polycarbonate,

which fails at a low stress in a solution of sodium hydroxide in

ethanol. Essentially, a specific combination of environment and stress

results in a premature breakdown of the long-chain polymeric struc-

ture. Although our main concern in this section is the environmental

effects on the mechanical behavior of polymers, it is worth pointing

out that there is great interest in producing biodegradable polymers.

This concern, of course, stems from the unsightly discarded plastic

trash, which can be injurious to plant and human life. Yet another

related topic, but which we shall not discuss in the book, is that of

biocompatibility and stability of polymers in the body’s environment,

tissue--fluid interaction, etc.

Exposure to oxygen, moisture (ambient or otherwise) or other solv-

ents, and ultraviolet radiation can lead to static fatigue or reduction

in strain-to-failure. Swelling and/or dissolution are some of the most

common phenomena. A liquid or solute molecule can diffuse in a

polymer and cause swelling, leading to dimensional changes. Also the

16 N. S. Stoloff and T. L. Johnston, Acta Met., 11 (1963) 251.
17 M. H. Kamdar, in Adv. in Strength & Fracture, Vol. l (Oxford, U.K.: Pergamon Press, 1977),

p. 387.



832 ENVIRONMENTAL EFFECTS

liquid molecules push apart the chains so that secondary bonding is

reduced and the polymer softens. The structural features responsible

for such attack on polymers are the following.

� Random Chain Scission: The polymer breaks down at random points

along the chain, with the attendant decrease in molecular weight

and mechanical properties. The decrease in the molecular weight

and/or changes the molecular weight distribution, can lead to a

deterioration of the mechanical properties.
� Successive Loss of Monomer Units: This can occur at one extremity of

the polymer chain and result in chain depolymerization. This is

generally manifested in a gradual change in the molecular weight.

Examples of such a phenomenon are exposure to different kinds

of radiation, oxygen, ozone, etc. Rubber in the presence of ozone

is particularly susceptible to this form of environmentally assisted

failure. The ozone reacts at the surface of rubber and cracks nucle-

ate and grow at low stress levels.

We provide below a brief description of different environmental

effects in polymers.

16.5.1 Chemical or Solvent Attack
Thermoplastics can be dissolved by various organic solvents (e.g.,

xylene). Generally, the higher the molecular weight, Mw , the lower

the solubility. For example, in a polymer having a distribution of vari-

ous Mw fractions, the low Mw fractions can be dissolved and extracted

by a solvent. Cross-linking of molecules, as in a thermoset, reduces

solubility. Thus, a cross-linked epoxy is more resistant to chemicals

than linear chain polymers such as polyethylene.

16.5.2 Swelling
Absorption of solvent molecules can be regarded as a form of solvent

attack. Different polymers can absorb ambient moisture to different

degrees. This phenomenon results in swelling of polymers and thus

leads to dimensional changes. Such dimensional changes can be very

important in polymers used as gaskets and seals. They also become

important in polymer matrix composites, for example carbon fiber

reinforced polymer. Because the polymer matrix will absorb moisture

while the carbon fiber will not, there will result internal stresses due

to a differential in swelling. One can get an idea of the seriousness of

this problem by the following observation of carbon fiber reinforced

polyimide composite. Polyimide is a high temperature polymer with a

service temperature of 370 oC. However, retained moisture can result

in a reduction of service temperature to 250 oC.

Generally, in monolithic polymers (i.e., not composites) swelling

induced changes are reversible, i.e., the polymer will revert to its orig-

inal dimensions when the absorbed molecule is removed. Moisture

acts as a plasticizer, i.e., moisture absorption results in an increase

impact toughness of a polymer while its strength decreases.
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Swelling of a polymer can occur if a gas or a liquid permeates it.

Typically, these swelling agents have small molecules and can easily

penetrate the main polymeric network, where they reduce the cohe-

sive force between the primary chains. Nylon, for example, can absorb

moisture up to 1% of its weight, which can change its dimensions by

about 1%. Moisture typically acts as a plasticizer, i.e., it lowers the

glass transition temperature, Tg , of the polymer, with the result that

deformation, crazing, and cracking occur at lower stress and strain

values. If a polymer is uniformly swollen because of the permeation

of a liquid, it will behave as a homogeneous polymer with a lower

Tg . It should be pointed out that Tg of a polymer generally varies in a

nonlinear manner with the plasticizer volume fraction. Figure 16.10

shows the glass transition temperature of polymethyl methacrylate

(PMMA) as a function of the volume fraction of the plasticizer diethyl

phthalate.18 The solid line in the graph is given by:

[Tg − T ∗
g ]/[Tg − T ] = 1 + r [1 − φ]/φ

where r = Vf/V = 0.5, T*g = −65 ◦C, Vf is the free volume, V is the

total volume of the polymer, and the asterisks indicate the values for

the plasticizer. At φ = 1, Tg = T, as expected. The absorption of the

plasticizer facilitates the molecular motion. Generally, the plasticizer

has a smaller molecule size but similar chemical structure to the

polymer in which it penetrates. The plasticizer molecules separate

the main chains and thus reduce the intermolecular forces, i.e., their

presence makes it easier for the chains to slide past one another.

However, more often than not, the swelling of the polymer is not

uniform, because diffusion of liquid or gas in a polymer depends

on many variables, such as the size of the diffusing molecule, the

microstructure of the polymer, etc. Frequently, stresses are set up

at the boundary between the part penetrated by the liquid and the

unpenetrated part. One can easily imagine this phenomenon to be

of great concern in polymer matrix composites. In general, polymers

having high bond energies, high degree of crystallinity and cross-

linking, etc. will show a reduced amount of swelling.
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Fig. 16.10 Decrease in glass

transition temperature of

polymethyl methacrylate as a

function of increasing volume

fraction of the plasticizer diethyl

phthalate. (After F. N. Kelly and F.

Bueche, J. Polymer Sci., 50 (1961)

549.)

Figure 16.11 shows the decrease in tensile strength of injection-

molded polyurethane when aged in distilled water at 80 ◦C for thirty

days.19 Initially the decrease in strength with time is slow. After ten

days of exposure to water, the rate accelerates. The increase in rate of

loss of strength is because of the autocatalytic nature of the hydrolysis

reaction.

16.5.3 Oxidation
Oxidation of polymers occurs throughout their life because it is

impossible to avoid interaction with the oxygen in the atmosphere.

18 F. N. Kelly and F. Bueche, J. Polymer Sci., 50 (1961) 549.
19 D. L. Faulkner, M. G. Wyzgoski, and M. E. Myers, in The Effects of Hostile Environments

on Coatings and Plastics, D. P. Garner and G. A. Stahl (eds), American Chemical Society,

Washington, DC, 1983.
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Fig. 16.11 Tensile strength loss

of polyurethane aged in water at

80 ◦C. (After D. L. Faulkner, M. G.

Wyzgoski, and M. E. Myers, in The

Effects of Hostile Environments on

Coatings and Plastics, D. P. Garner

and G. A. Stahl, eds. (Washington,

DC: American Chemical Society,

1983.)

More dangerous is ozone, sometimes present in the atmosphere but

always in the outer space because ozone is much more reactive than

oxygen. Oxygen can permeate a polymer and increase cross-linking,

thereby decreasing its toughness and flexibility. Ozone attacks any

elastomer with unsaturated bonds. This is especially important in

rubbers and elastomers where cracking on the surface results after

prolonged exposure to air. Most of us have experienced this type dam-

age to the sidewalls of automobile tires.

16.5.4 Radiation Damage
Radiation (ultraviolet, X-rays or other energetic particles such as neu-

trons) can lead to ionization, which can result in breaks in polymeric

chains, called chain scission. (See Figure 16.12 for a schematic of this

phenomenon.) Carbon--carbon (C--C) bonds form the backbone of poly-

mers. Such bonds, however, can be ruptured by ultraviolet (UV) radi-

ation. Rupture of molecular bonds in polymers (not in metals and

ceramics) by UV radiation is commonly manifested as discoloration

and loss of mechanical properties. Bond rupture can cause changes in

molecular weight, degree of cross-linking, reaction with oxygen. Phys-

ical changes such as discoloration, surface embrittlement, cracking,

and loss of strength are other manifestations of radiation damage in

polymers. Effect of exposure to UV radiation on tensile strength of

high density polyethylene is shown in Figure 16.13.20 Tensile strength

decreases with UV exposure time. UV exposure results in smaller

molecules as well as a change in the molecular weight distribu-

tion, Mw . Consequently, mechanical properties such as strength are

reduced. UV aids oxidation attack of a polymer. The term photo-

degradation is used to describe the damage caused by photooxida-

tion and weathering, biodegradation, and hydrolysis. In an elastomer,

there are many unsaturated double bonds along the carbon backbone.

20 G. R. Rugger, in Environmental Effects on Polymeric Materials, vol. I, D. V. Rosato and R. T.

Schwartz, eds. (New York: Interscience, 1968), p. 339.
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UV radiation on tensile strength of

high density polyethylene. Tensile

strength decreases with UV
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Fig. 16.13 Decrease in tensile

strength with exposure to UV

radiation in high density

polyethylene. (After G. R. Rugger,

in Environmental Effects on Polymeric

Materials, vol. I, D. V. Rosato and

R. T. Schwartz, eds. (New York:

Interscience, 1968, p. 339.)

Oxygen (or sulfur) may go to the unsaturated bond sites and provide

crosslinking. Such an increase in cross-link density makes the tire

strong. UV absorbing pigments (e.g., carbon black, TiO2) are commonly

used to alleviate this problem.

16.5.5 Environmental Crazing
In general, environmentally induced crazes have a faster growth rate

and grow to sizes much larger than those grown in inert environ-

ments. Certain organic liquids act as crazing and cracking agents. For

example, the crazes shown in Figure 8.42 in a sample of polycarbo-

nate, were produced under dead load in a specimen of polycarbonate

immersed in alcohol, which is a good crazing agent. The problem,

however, is much more complex than might appear at the first sight,

particularly in glassy polymers. Organic liquids which act as cracking

or crazing agents can also raise the toughness of the polymer, i.e., the

crack propagation rate is slowed down. For example, cracks propagate

in a stable manner in PMMA in air. In the presence of methanol, a

crazing agent, cracks grow in a stick--slip manner reminiscent of the
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behavior of thermosetting polymers in inert environments. The stick--

slip mode of crack growth occurs in thermosets because of crack

blunting due to shear yielding. In PMMA, however, the crazing agent

causes multiple crazing at the crack tip and blunts the crack.21 Thus,

multiple craze formation can lead to an enhanced toughness.

Although the organic liquids can cause a reduction of the surface

energy, it would appear that the plasticizing effects connected with

the absorption of the crazing agents into the polymer on a molecu-

lar scale are more important. Most organic liquids generally diffuse

rather slowly in a bulk polymer. The same organic liquids might pene-

trate rapidly in a craze and plasticize it. This is because the crazed

volume in a polymer is highly porous and has a high surface area

to volume ratio. Even a very short diffusion time can plasticize the

drawn out polymer chains in the craze, i.e., a drop in the Tg will occur

and it will become easier plastically to draw more polymer into fibrils

at the craze surface.

16.5.6 Alleviating the Environmental Damage in Polymers
Additives or coatings may be introduced to thermoplastic materials to

promote resistance to certain adverse environmental affects. Additives

are usually introduced during the mixing and processing of thermo-

plastics while coatings are applied after the thermoplastic has been

consolidated or processed.

Antioxidants and stabilizers are added to polymers. A well known

household example is butlyated hydroxytoluol (BHT), which is added

to food products to prevent oxidation. Antioxidants help a polymer

retain its properties and thus provide a proper service life. Carbon

black is a commonly used additive to stabilize polyolefins and other

polymers against UV degradation. The UV resistance is very depend-

ent on the amount, type, and particle size of the carbon black used.

Carbon black particles of small size provide the greatest UV resistance

but they tend to agglomerate into aggregates clusters.22

Antiozonants are additives that protect an elastomer against

attack by ozone. Physical and chemical antiozonants (for example,

derivatives of p-phenylenediamine (p-PDA) are used to protect rubber.

16.6 Environmental Effects in Ceramics

Ceramics, especially the crystalline and fully dense variety, are quite

inert compared to metals and polymers. This conventional wisdom

about the refractoriness of ceramics notwithstanding, it turns out

that moisture can be quite a damaging species, especially to silica-

based glass. For example, identical glass fibers are three times stronger

when tested in vacuum than in moist air. In vacuum, freshly drawn

21 A. J. Kinloch and R. J. Young, Fracture Behavior of Polymers, (London: Elsevier, 1985),

p. 79.
22 W. L. Hawkins, M. A. Worthington, and F. H. Winslow, Rubber Age, 88 (1960) 279.
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glass fibers can show strength as high as 14 GPa, among the strongest

of all materials. Exposure to ambient air for periods of two to three

weeks will reduce this strength to about 5 GPa. This effect has been

known for a long time. American Indians would soak their flint stones

in water before fracturing them for making arrowheads. Artisans

would wet scratches made into glass with saliva prior to fracturing.
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Fig. 16.14 Crack velocity as a

function of crack extension force

for different vapor pressure values

in a soda–lime glass. As the water

vapor pressure decreases, the

crack velocity vs. crack extension

force curves shift to the right.

Liquid water is the most active

promoter of crack growth in glass,

line A. (After M. V. Swain and B. R.

Lawn, Int. J. Fract. Mech., 9 (1973)

481.)

Figure 16.14 shows the effect of increasing vapor pressure of water

on crack propagation in a Hertzian contact fracture test on soda--lime

glass.23 This figure shows the plot of crack velocity as a function of

crack extension force for different vapor pressure values. Liquid water

is the most active promoter of crack growth in glass, as indicated by

line A in Figure 16.14. As the water vapor pressure decreases, the crack

velocity vs. crack extension force curves shift to the right from B to

E. Not unexpectedly, different chemicals have different effects.

Commonly, the fall in strength as a function of time in an aggres-

sive environment in the ceramic literature is referred to as static

fatigue. Figure 16.15 illustrates the phenomenon of static fatigue for

glass, i.e, failure occurs under a constant applied stress lower than the

tensile stress to cause failure. The drop in strength is greater under

moist conditions than under dry conditions. Mechalske and Bunker24

studied the effect of moisture on glass in detail. The phenomenon

is referred to in the literature as stress corrosion cracking of glass. The

water molecule can penetrate to the crack tip, where it attaches itself

to the silica molecules (Figure 16.16(a)). The silica molecule hydrolyzes

in the presence of moisture as per

SiO2 + 2H2O → Si(OH)4.

As described in Chapter 1, the silica tetrahedra are the basic building

blocks of the structure of glass. The water molecule, shown floating at

the crack tip, attaches itself to two silica tetrahedra (Figure 16.16(b)).

This decreases the bond strength of silica by about 20-fold and allows

a much smaller applied stress to break the ring of silica tetrahedra.

The process repeats itself; with water molecules penetrating the crack

tip region and weakening the bonds as shown in Figure 16.16(c). A

remarkable experimental evidence of this interaction of water with

silica at the crack tip is shown in Figure 16.17. The low magnification

optical micrograph shows a vivid proof of condensation caused by

moisture at a crack tip in glass. The viscous nature of the crack-tip

condensate indicates a chemical reaction between water and the glass.

The effect of other molecules is not so drastic and depends on their

size and reactivity.

Wiederhorn25 modeled the effect of humidity on crack propa-

gation velocity in a soda--lime glass. He treated the corrosion reac-

tion at the crack tip to be an interfacially controlled process with

23 M. V. Swain and B. R. Lawn, Int. J. Fract. Mech., 9 (1973) 481.
24 T. A. Mechalske and B. Bunker, Sci. American, 257 (No. 6) (1987) 122.
25 S. M. Wiederhorn, J. Amer. Ceram. Soc., 50 (1967) 407.
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Fig. 16.16 Interaction of the
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crack tip. (a) The water molecule
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molecules. (b) The water

molecule, shown floating at the

crack tip, attaches itself to two

silica tetrahedra. (c) The process

repeats itself, with water

molecules penetrating the

crack-tip region and weakening the
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B. Bunker, Sci. American, 257 (No.

6) (1987) 122.)

stress-dependent activation energy. The final expression for the crack

velocity is

v = C xn exp bK

where C is the mole fraction of water vapor at the crack tip, n is the

number of water molecules of water reacting with a bond B:

nH2O + B → B∗

and forming an activated complex B∗. K is the stress intensity factor

and b is a constant. Thus, crack velocity, v increases as exp bK and

linearly with C. The factor C is a function of the water vapor pressure.

Alumina is also affected by the presence of moisture. Figure 16.18

shows the crack velocity as a function of applied force.26 The test was

done on a cantilever beam specimen at different relative humidities.

The sapphire (single-crystal alumina) specimen was precracked along

26 S. M. Wiederhorn, Int. J. Fract. Mech., 4 (1968) 171.
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Fig. 16.17 Condensation caused

by moisture at a crack tip in glass.

Note the viscous nature of the

crack-tip condensate, indicating a

chemical reaction between water

and the glass. (Courtesy of

S. Wiederhorn.)
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Fig. 16.18 Crack velocity as a

function of applied force in

sapphire (single-crystal alumina)

for different relative humidities.

(After S. M. Wiederhorn, Int. J.

Fract. Mech., 4 (1968) 171.)

the (1011) rhombohedral plane. This is the plane that has the lowest

surface energy in sapphire. The crack velocity values reach a plateau,

the values of these plateaux increase with increasing humidity. The

data points for 0.02% humidity are on a line that is nearly vertical.

16.6.1 Oxidation of Ceramics
Oxide ceramics such as alumina, mullite, silica, etc. are inherently

stable in oxidizing atmospheres. That is the reason oxides such as

silicates, aluminates, etc. are abundant in the earth’s crust. Nonoxide
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ceramics such silicon carbide, silicon nitride, molybdenum disilicide,

etc. invariably have a surface layer. They tend to get oxidized at high

temperatures in air.

One can represent the oxidation of structural ceramics such as SiC

and Si3N4 at low oxygen partial pressures (≤ 140 Pa) by the following

reactions:

2SiC (s) + 3O2 (g) → 2SiO (g) + 2CO2 (g),

2Si3N4 (s) + 3O2 (g) → 6SiO (g) + 4N2 (g).

In a vacuum, or an inert atmosphere, silica can degrade by

2SiO2(g) → 2SiO (g) + O2 (g).

Catastrophic oxidation can occur for some ceramics in the 300--

700 ◦C range. In the literature this has been referred to as the pest-

ing phenomenon. MoSi2 has excellent oxidation resistance outside the

pesting range because a protective layer of SiO2 forms. This silica layer

can protect MoSi2 to 1000 ◦C.
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Exercises

16.1 Steel products are commonly protected by chromium or zinc coatings.

Based on the galvanic series, what difference would you expect in their ability

to protect steel?

16.2 Explain why a small anode/cathode area ratio will result in a higher

corrosion rate.

16.3 Alclad aluminum consists of a thin layer (5--10% of total thickness) of

one Al alloy metallurgically bonded to the core alloy. Generally, the cladding

layer is anodic to the core. Why?
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16.4 Tinplate (commonly used in the canning industry) is not plate or sheet

of tin. It is actually a steel strip with a thin coating of tin. Discuss the pros

and cons of using tin to protect steel.

16.5 Describe how galvanizing (coating steel with zinc) works as a cathodic

protection for steel.

16.6 Describe some methods of protecting the inside of a metallic pipe against

chemical attack.

16.7 A form of corrosion called pitting corrosion can occur in aluminum in

fresh water. As the name suggests, pits form on the surface of aluminum in

this type of corrosion. The pit depth, d follows a cube root relationship time,

t:

d = A t1/3.

Normally, a 5 μm thick Al2O3 film forms on the surface of aluminum. If we

double the thickness of the film, by what factor will the time to perforation

increase?

16.8 Structural ceramic materials such as SiC, Si3N4, MoSi2, etc. oxidize in

the presence of oxygen at high temperatures. Give the oxidation reactions

and indicate how the reaction products serve to protect these materials from

further oxidation. Does it have deleterious effect on the high temperature

capability of these materials?

16.9 A Ni-based superalloy has 0.2 μm thick oxide layer. When placed in a

burner rig to test for oxidation, it was observed to grow to 0.3 μm in 1 h. If

the superalloy follows a parabolic oxidation law (x2 = a + bt, where x is the

thickness, t is the time, and a and b are constants) what is the thickness after

one week?

16.10 The velocity of a crack in a material submerged in an aggressive medium

such as humid air can be represented by:

V = da

dt
= 0.5K 20

I .

Using the relationship KI = σ
√

πa, compute the time to failure for this mater-

ial. KI c for the material is 5 MPa m1/2.

16.11 For a silica-based glass, the following data are available for a V = A kn
1

type of relationship:

Relative humidity
Preexponential
constant A

Crack velocity
exponent n

10% 2.8 25
100% 4.0 22

Take KI c = 1 MPa m1/2. For a crack length a = 1 nm, compute the fracture

strength σ c in an inert atmosphere. Then compute the lifetime of the material

under 0.3σ c in 10% and 100% relative humidity.

16.12 The stable, slow crack growth in a polymer in an aggressive environ-

ment can be represented by:

da

dt
= 0.03K 2

I ,
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where a is the crack length in meters, t is the time in seconds, and KI is

the stress intensity factor in MPa m1/2. KI c for this polymer is 5 MPa m1/2.

Calculate the time to failure under a constant applied stress of 50 MPa. Use

K I = σ
√

πa.

16.13 It has been observed experimentally that, in cold-worked brass under

stress-corrosion conditions, crack propagation is adequately described by:

da

dt
= AK 2,

where A is a constant and the other symbols have their normal significance.

Derive an expression for the time to failure of the material, t f , in terms of A,

the applied stress σ , the initial crack length a0, and the critical stress intensity

corresponding to a f (i.e., KI c ).
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UNIT CONVERSION FACTORS

Length

1 m = 1010 Å = 0.1nm 1 Å = 10−10 m
1 mm = 0.0394 in. 1 in = 25.4 mm
1 cm = 0.394 in. 1 in = 2.54 cm
1 m = 3.28 ft 1 ft = 0.3048 m

Mass

1 Mg = 103 kg 1 kg = 10−3 Mg
1 kg = 103 g 1 g = 10−3 kg
1 kg = 2.205 lbm 1 lbm = 0.4536 kg
1 g = 2.205 × 10−3 lbm 1 lbm = 453.6 g

Density

1 kg/m3 = 10−3 g/cm3 1 g/cm3 = 103 kg/m3

1 kg/m3 = 0.0624 lbm/ft3 1 lbm/ft3 = 16.02 kg/m3

1 g/cm3 = 62.4 lbm/ft3 1 lbm/ft3 = 1.602 × 10−2 g/cm3

1 g/cm3 = 0.0361 lbm/in.3 1 lbm/in3 = 27.7 g/cm3

Force

1 N = 105 dynes 1 dyne = 10−5 N
1 N = 0.2248 lbf 1 lbf = 4.448 N

Stress

1 MPa = 145 psi 1 psi = 6.90 × 10−3 MPa
1 MPa = 0.102 kg/mm2 1 kg/mm2 = 9.806 MPa

1 Pa = 10 dynes/cm2 1 dyne/cm2 = 0.10 Pa
1 kg/mm2 = 1422 psi 1 psi = 7.03 × 10−4 kg/mm2

Fracture Toughness

1 psi in1/2 = 1.099 × 10−3 MPa m1/2 1 MPa m1/2 = 910 psi in1/2

Energy

1 J = 107 ergs 1 erg = 10−7 J
1 J = 6.24 × 1018 eV 1 eV = 1.602 × 10−19 J
1 J = 0.239 cal 1 cal = 4.184 J
1 J = 9.48 × 10−4 Btu 1 Btu = 1054 J
1 J = 0.738 ft-lbf 1 ft-lbf = 1.356 J

1 eV = 3.83 × 10−20 cal 1 cal = 2.61 × 1019eV
1 cal = 3.97 × 10−3 Btu 1 Btu = 252.0 cal

Power

1 W = 0.239 cal/s 1 cal/s = 4.184 W
1 W = 3.414 Btu/h 1 Btu/h = 0.293 W

1 cal/s = 14.29 Btu/h 1 Btu/h = 0.070 cal/s
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UNIT CONVERSION FACTORS (cont.)

Viscosity

1 Pa s = 10 P 1 P = 0.1 Pa s

Temperature, T

T(K) = 273 + T(◦C) T(◦C) = T(K) − 273

T(K) = 5
9
[T(◦F) − 32] + 273 T(◦F) = 9

5
[T(K) − 273] + 32

T(◦C) = 5
9
[T(◦F) − 32] T(◦F) = 9

5
[T(◦C) + 32]

Specific Heat

1 J/kg-K = 2.39 × 10−4 cal/g-K 1 cal/g-◦C = 4184 J/kg-K
1 J/kg-K = 2.39 × 10−4 Btu/lbm-◦F 1 Btu/lbm-◦F = 4184 J/kg-K

1 cal/g-◦C = 1.0 Btu/lbm-◦F 1 Btu/lbm-◦F = 1.0 cal/g-K

STANDARD PREFIXES, SYMBOLS, AND MULTIPLICATION FACTORS

Prefix Symbol
Factor by Which Unit
Has to Be Multiplied

Tera T 1012

Giga G 109

Mega M 106

Kilo k 103

Hecto h 102

Deca da 101

Deci d 10−1

Centi c 10−2

Milli m 10−3

Micro μ 10−6

Nano n 10−9

Pico p 10−12

Femto f 10−15

Atto a 10−18
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IMPORTANT CHARACTERISTICS OF SOME ELEMENTS

Symbol

Atomic

Number

Atomic

Weight

(amu)

Density of

Solid, 20 ◦C
(g/cm3)

Crystal

Structure,

20 ◦C

Atomic

Radius

(nm)

Ionic

Radius

(nm)

Most

Common

Valence Melting Point (◦C)

Al 13 26.98 2.70 FCC 0.143 0.053 3+ 660.4

Ar 18 39.95 – – – – Inert −189.2

Ba 56 137.33 3.5 BCC 0.217 0.136 2+ 725

Be 4 9.012 1.85 HCP 0.114 0.035 2+ 1278

B 5 10.81 2.34 Rhomb. – 0.023 3+ 2300

Br 35 79.90 – – – 0.196 1− −7.2

Cd 48 112.41 8.65 HCP 0.149 0.095 2+ 321

Ca 20 40.08 1.55 FCC 0.197 0.100 2+ 839

C 6 12.011 2.25 Hex. 0.071 ∼0.016 4+ (sublimes at 3367)

Cs 55 132.91 1.87 BCC 0.265 0.170 1+ 28.4

Cl 17 35.45 – – – 0.181 1− −101

Cr 24 52.00 7.19 BCC 0.125 0.063 3+ 1875

Co 27 58.93 8.9 HCP 0.125 0.072 2+ 1495

Cu 29 63.55 8.96 FCC 0.128 0.096 1+ 1084

F 9 19.00 – – – 0.133 1− −220

Ga 31 69.72 5.90 Ortho. 0.122 0.062 3+ 29.8

Ge 32 72.59 5.32 Dia. cubic 0.122 0.053 4+ 937

Au 79 196.97 19.3 FCC 0.144 0.137 1+ 1064

He 2 4.003 – – – – Inert −272 (at 26 atm)

H 1 1.008 – – – 0.154 1+ −259

I 53 126.91 4.93 Ortho. 0.136 0.220 1− 114

Fe 26 55.85 7.87 BCC 0.124 0.077 2+ 1538

Pb 82 207.2 11.35 FCC 0.175 0.120 2+ 327

Li 3 6.94 0.534 BCC 0.152 0.068 1+ 181

Mg 12 24.31 1.74 HCP 0.160 0.072 2+ 649

Mn 25 54.94 7.44 Cubic 0.112 0.067 2+ 1244

Hg 80 200.59 – – – 0.110 2+ −38.8

Mo 42 95.94 10.22 BCC 0.136 0.070 4+ 2617

Ne 10 20.18 – – – – Inert −248.7

Ni 28 58.69 8.90 FCC 0.125 0.069 2+ 1453

Nb 41 92.91 8.57 BCC 0.143 0.069 5+ 2468

N 7 14.007 – – – 0.01−0.02 5+ −209.9

O 8 16.00 – – – 0.140 2− −218.4

P 15 30.97 1.82 Ortho. 0.109 0.035 5+ 44.1

Pt 78 195.08 21.45 FCC 0.139 0.080 2+ 1772

K 19 39.10 0.862 BCC 0.231 0.138 1+ 63

Si 14 28.09 2.33 Dia. cubic 0.118 0.040 4+ 1410

Ag 47 107.87 10.5 FCC 0.144 0.126 1+ 962

Na 11 22.99 0.971 BCC 0.186 0.102 1+ 98

S 16 32.06 2.07 Ortho. 0.106 0.184 2− 113

Sn 50 118.69 7.3 Tetra. 0.151 0.071 4+ 232

Ti 22 47.88 4.51 HCP 0.145 0.068 4+ 1668

W 74 183.85 19.3 BCC 0.137 0.070 4+ 3410

V 23 50.94 6.1 BCC 0.132 0.059 5+ 1890

Zn 30 65.39 7.13 HCP 0.133 0.074 2+ 420

Zr 40 91.22 6.51 HCP 0.159 0.079 4+ 1852

Adapted from W. D. Callister, Materials Science and Engineering. New York, NY John Wiley & Sons, 1997.
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848 APPENDIXES

MECHANICAL PROPERTIES OF SOME IMPORTANT METALS AND ALLOYS

Alloy

Density

(kg/m3) M.P. (◦C)

Young’s

modulus

(GPa)

Poisson’s

ratio UTS (MPa)

Yield

strength

(MPa)

Strain-to-

failure

(%)

Fracture

toughness

MPa m1/2

Al 2024-T 851 2770 502 72.4 0.33 455 400 5 26.4

Al 7075-T 651 2810 477 72 0.33 570 505 11 24.2

Al 7178-T651 2830 477–629 73 0.33 605 540 10 23.1

Ti-6Al-4V

(grade 5)

4430 1604–1660 113.8 0.342 1860 1480 14 55

Ti-3Al-2.5V

(alpha

annealed)

4480 1700 100 0.3 620 500 15 100

702 Zirconium 6500 1852 99.3 0.35 379 207 16 –

60–40 Soft

solder

8600 183–190 30 0.4 53 – – –

Stainless steel

4340

7850 – 205 – 745 470 22 60.4

Stainless steel

304

8000 1400 193 0.29 505 215 70 –

Steel 5160 7850 – 205 – 724 275 17.2 –

Tool steel H 11

hot worked

7800 – 210 – 1990 1650 9 –

Maraging steel

(18 Ni)

(before aging)

8000 – 183 – 965 660 17 –

Maraging steel

(18 Ni)

(annealed &

aged at

480 ◦C)

8080 200 – 1864 1737 17.4 –

Superalloy

CoCrWNi

10000 – – – 860 310 10 –

Superalloy Fe

based

N08330 Ni

8000 – – – 586 276 40 –

Superalloy H-X

Nickel

8220 – – – 690 276 40 –

Note: the values given are indicative only
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Index

abalone 41, 806--8

alpha-helix 49, 50

aorta 242

abductin 53

activation energy 657, 661, 662, 665,

666, 673

actin 4, 52

active materials 57

adhesion

thin films to substrates 552,

553

adiabatic curve 394, 395

adiabatic heating 192

adiabatic shear bands 395, 396

amino acids 48--50

anelasticity 74, 120

anisotropy 96, 213, 396, 799

annealing point 197, 198

antiphase boundary 624, 625, 628,

631

ARALL see composites

articular cartilage 137

atactic polymer see polymer

atomic point defects 25; see also

point defects

barreling 185, 186

Bauschinger effect 187, 188

Berg-Barrett topography 270

beta sheet 49, 50

biaxial test 162, 203, 208, 210, 212,

213, 230

bicycle frame

materials 11--15

biocompatibility 7

Bioglass r© 7

bioimplants 42

biological materials 40--57, 241--5

biomaterials 40--56

biomimetics 42

blood vessels 134

blue brittleness 570

bone 242--5

cancellous 242--5

cortical 242--5

Brale indenter see hardness

branched polymers see polymers

Bravais lattices 16, 17

Bridgman’s correction 174, 175, 185

Brinell indenter see hardness

brittle materials 1, 2, 4, 7, 8, 41, 61,

205, 293, 412, 419 420, 422,

437, 443, 449--51, 474, 480--90,

494, 500--2, 507, 513

bubble raft 196

Budiansky and O’Connell equation

115, 118, 158

bulk modulus 101, 150--2

Burgers circuit see dislocation

Burgers vector see dislocation

cartilage 242

articular 137

cascade 262, 263

cavitation 472, 473, 657, 686, 687,

702, 70; see also void

cellular materials 44--6, 639--45

cellulose 53

Charpy impact test 526--9

Charpy impact instrumented test

531, 532

Chevron notch test 547

chitin 46, 54

cleavage 406--8, 467, 480--5, 533

Coble creep see creep

coincidence site lattice see grain

boundaries

cold working 369, 370, 385

collagen 51--5, 243

compliance 97, 99, 101, 111, 112,

118, 119, 145

composite(s) 7--9, 76, 117, 211

applications 803

aging response of matrix 785

anisotropic nature 783

applications 803

fracture 795

single and multiple 795

fundamental characteristics 799

heat capacity 775

importance of matrix 769

laminated 42, 121, 637, 806--9

abalone, 41, 806--8

aluminum/silicon carbide 809

aramid aluminum (ARALL) 807,

808

glass aluminum (GLARE) 807,

808

load transfer

fiber and matrix elastic 789

fiber elastic and matrix plastic

792

matrix materials 7, 67, 765--8

reinforcements 765--8, 770

compressibility 101

compression testing 183--6

Considère’s criterion 172, 229

controlled rolling treatment 586

corrosion 815--19

crevice 817

electrochemical nature 815

erosion 819

galvanic 816, 817

intergranular 818

pitting 818

stress 819

uniform 817

Cottrell atmosphere 562, 564, 601--4

Cottrell theory 349

crack

closure 748

extension force 434

nucleation 404, 468, 679

opening displacement 437

opening displacement testing

537

propagation 404, 730

propagation testing 75

propagation with plasticity 419

tip stress field 409, 423--7, 429,

444

crack extension force see crack

crack-tip opening modes 405, 423

crazing 210, 508, 511, 734

creep 653

Coble 660--70

compliance 690--3

correlation and extrapolation

methods 659

Larson-Miller 659--63

Manson-Haferd 661--3

Sherby-Dorn 659, 661--3

dislocation 670--3

diffusion coefficient 657, 661, 662,

666, 673, 686

electronic materials, in 695

fracture 678--80

mechanisms 665--70

Monkman-Grant equation661, 680,

681
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creep (cont.)

Mukherjee-Bird-Dorn equation

657--9

Nabarro-Herring 666--70

polymers, in 688--93

Maxwell model 689, 690

Voigt model 689, 690

power law 670--3

rafting 683, 684

relaxation time 689, 690

rocks, in 654

stress relaxation 690--3

cross slip 288, 302, 384

crowdion(s) 262

crystal structures 16--30

DNA molecule 48, 140

optical trap 140

damage 262, 404

deep drawing 204, 229, 231

deformation energy density 77--9

deformation mechanism maps 676--8

density 3, 4, 8, 9, 27, 28, 30, 33, 36,

44, 45, 63, 768, 769, 775, 785,

803

diamond pyramid hardness see

hardness

diffusion coefficient 657, 661, 662,

666, 673, 686

dislocation (s)

Argon mechanism 195, 196

behavior 273

Burgers circuit 267--9, 272, 273

Burgers vector 196, 252, 267--9,

272, 273, 275, 276, 283--288,

291, 294--6, 301--4, 307, 308,

310

cells 288, 385, 388--91

climb 259, 270, 293, 297, 305, 312

deformation produced by 306

density 281, 298, 300, 307, 308,

379, 384--7, 390, 769, 774

energy 278, 296

ceramics, in 296

intermetallics, in 296

edge 259, 267--71, 273, 278, 280,

282, 296, 302--8, 313, 314

experimental observation of 270--3

emission 420

forest 304, 305, 312

Frank partial 288, 302

Frank’s rule 296

Frank-Read source 301, 302, 672

force required to bow 282

Gilman model 196

glassy silica, in 196

glide 673

helical 270

intersection, of 304

Johnston-Gilman equation 313

jogs 259, 304--8

Kear-Wilsdorf lock

kinks 304--7

line tension 283

Lomer-Cottrell lock 289, 671

loops 283, 274

misfit 313--5

Orowan’s equation 306--8

Peach-Koehler equation 282--4, 310

Peierls--Nabarro stress 309, 310, 312

pileup 302--4

screw 34, 259, 267, 270, 273,

275--7, 280, 282, 301--6, 313

sessile 288

sources 298--302

stair rod 290, 291, 298

stair way 290, 291

stress field 275, 278, 280, 282, 296

structures 624

ceramics 293

electronic materials 313

various structures 284

tangles 288, 385

velocity 313

dislocation-precipitate interaction

579

dispersion hardening 558, 559,

571--3, 576, 578, 588

dispersion strengthening see

dispersion hardening

draw ratio 127, 128

drop weight test 529--31

DS cast alloys 686

dual-phase steels 590

ductile material(s) 293, 421, 438,

443, 449, 450, 466, 469, 474,

480, 481, 484

ductile-brittle transition 481

temperature 272, 481, 485, 486

ductility 480, 634

earing 232

edge dislocation see dislocation

elastic constants

biological materials 134

ceramics 111

electronic materials 143

materials 110

metals 111

polymers 116, 119

polycrystals 107

unidirectional fiber reinforced

composites 102, 119, 120

elastic constants and bonding 145--55

elastic interaction 560

elastic modulus 77, 102, 117, 126,

134, 144, 145, 148, 149, 775

biaxial 144, 145

elastic properties

polycrystals 107--10

materials 110--120

elastic wave velocity 75, 77

elasticity 71

anisotropic 96--107

electronic materials 143--5

isotropic 99--101

nonlinear 126--33, 135, 136

rubber 126--33

elastin 53, 243

elastomer 121--8, 130--1

electronic materials 58, 59, 143--5,

695

electromigration 696, 697

interaction 147

environmental effects 404, 748,

815

ceramics 836--40

crazing 835, 836

intermetallics 638

metals 815--30

polymers 831--6

alleviating damage 836

Erichsen test 230, 232

extrusion(s) 161, 213, 231, 725--9

facture mechanism maps 521, 676--8;

see also Weertman-Ashby maps

failure criteria 199--214

failure modes in composites 796

fatigue

biomaterials 744--6

crack closure 748, 749

cumulative damage 721

crack nucleation 725

crack propagation 730--4

damage

cumulative 721--3

extrinsic mechanisms 744

intrinsic mechanisms 744

discontinuous crack growth 734

environmental effects 748

extrusions 725--9
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frequency, effect of 721

hysteretic heating 746, 747

intrusions 725--9

linear elastic fracture mechanics

733--44

life 716, 721

life exhaustion 721--23

mechanisms 725--34

mean stress, effect of 719--21

Palmgren-Miner rule 723

Paris-Erdogan equation 736--46

parameters 714

persistent slip bands 725--9

residual stress, effect of 729, 730

S-N (Wöhler) curves 714, 721

statistical analysis 753, 754

short crack problem 750, 751

shot peening 729, 730

strength 716

striations 731--4

two-parameter approach 749, 750

fatigue testing 751

conventional tests 751

rotating bending tests, 751, 752

servohydraulic machines 755,

756

flexure 454, 526, 540--4, 546

flexure test 540--4

flow criteria 169, 199

flow stress 161, 167, 174, 176, 177,

187, 188, 199--201, 204, 222--4

temperature, function of 312

fluidity 122

foams 621

syntactic 645

Focuson 262

forging 161, 369, 70, 395

formability 229--37

forming-limit curves 232

tests 230--7

Keeler-Goodwin diagrams 232--7

four-point bending 453, 542

fracture 794

biological materials 517

brittle 272, 466--9, 480, 484, 486,

507, 508

cleavage 480--6

ductile 421, 438, 443, 449, 466--8,

473--8, 481, 484, 487

environmentally assisted 820

Griffith criterion 406, 409, 410,

416--21, 443

intergranular 484, 522

mechanism maps 676--8

mechanisms and morphologies

467

ceramics, in 487--94

glass, in 490

metals, in 468--74

modes 405, 423, 424, 458

polymers, in 468--70, 507--16

fracture toughness 405, 422, 447

ceramics 446--7

metals 447

parameters 434--45

polymers 447

fracture toughness tests 532

chevron notch test 547

crack opening displacement test

537, 538

double cantilever beam test 546,

547

double torsion test 546, 547

indentation test 549--51

J-integral test 538, 539

plane strain fracture toughness

tests 532--7

free volume 209, 210

Frenkel defects 255

friction hill 187

Fukui test 230, 231

functionally graded materials 803

geometry of deformation 369--84

GLARE see composites

glass transition temperature 4, 30,

191, 194, 197

glasses 30, 193--6

metallic 193--6

Argon mechanism 196, 197

Gilman mechanism 196

plastic deformation 196

glassy polymers 189

graft copolymer 32, 33

grain boundary

coincidence site lattice 331--3

energy 328--33

variation with misorientation

330--2

ledges 330, 334--6, 350, 351

packing of polyhedral units 336

plastic deformation 322, 340,

345--9, 351, 352

sliding 675, 676

tilt 326

twist 326

triple junctions 334

grain boundary dislocations 334

grain boundary sliding 358, 675

grain size

ASTM 323--5

strengthening 260, 345--8, 355, 357,

358, 494, 627

Griffith

criterion for crack propagation

409--21

failure criterion 206--8

habit plane see martensitic

transformation

Hall-Petch relationship 346--8, 355,

357, 358, 630

hardness 214--23

Brale indenter 215, 219

Brinell 216--18, 219

diamond pyramid 219, 220, 221

Knoop 222, 223

microindentation 221--3

nanoindentation 225--8

Rockwell 218--20

Vickers 219, 220--3

Harper-Dorn equation see creep

heat resisting materials 681--8

high strength low alloy steels 586

Hooke’s law 75, 144, 407

generalized 85--7

hot working 369, 370

hydride formation 829

hydrogen damage

metals 824--30

theories 825--30

hydroxyapatite 46, 48

hypotheses of LEFM 423

hysteretic heating 746, 747

impact testing 525

imperfections in polymers 361

imperfections, point and line defects

251

implants 5--7

indentation tests for toughness

549--51

independent slip systems in

polycrystals 384

Inglis equation 410, 413, 418, 419

instrumented Charpy impact test 531

interfaces in composites 770

interfacial defects 321

interfacial bonding 772

interlaminar shear strength test 543

intermetallics 621

gold-based 621, 624
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intermetallics (cont.)

ordered 622--7, 633

dislocation structure 624--7, 633

ductility 634

environmental effects 638

fatigue 631

Hall-Petch relationship 630

mechanical properties 627--34

macroalloying 636

microalloying 635

internal obstacles 353

interstitial defects 254--65, 295, 305,

558--62, 564, 565, 567--9

interstitial strengthening 564, 565,

567--9

intrusions 725--9

ion implantation 265

irradiation 263

voids due to 263

isotactic polymer 33

isotropic hardening 204

Izod test 526, 529

J-integral 439

testing 538

jogs see dislocations

Johnson-Cook equation 167

Johnston-Gilman equation 313

Kear-Wilsdorf lock see dislocation

Keeler-Goodwin diagrams see

formability

keratin 46, 52, 243

kinematic hardening 187, 204

kinks see dislocation

knock-on 263

Knoop indenter 222, 223

Kuhlmann-Wilsdorf theory of work

hardening 386, 388, 390, 391

ladder polymer 32

laminated composites 806; see also

composites

Larson-Miller parameter see creep

ledges see grain boundary

Li theory for grain size

strengthening 350

limiting draw ratio 231

line defects see dislocation

line tension see dislocation

lineal intercept 323--5

linear elastic fracture mechanics

(LEFM) 404, 421--48, 735--46,

750, 821--4

linear polymers 32, 33

liquid metal embrittlement 830,

831

liquid crystal(s) 39--41

logarithmic decrement 125

Lomer-Cottrell lock see dislocation

loops see dislocation

loss modulus 124

loss tangent 125

low-cycle fatigue tests 756

Lüders band 566, 567

Ludwick-Hollomon equation 166

macroindentation tests 216

Manson-Haferd parameter see creep

martensite

acicular 597, 598

lath 597, 598

lenticular 597

mechanical effects 603--8

morphologies 594--8

strength, of 600--3

structure 594--8

twinned 598, 599

see also martensitic transformation

martensitic transformation 594--613

ceramics, in 614--18

habit plane 600

systems 595

undistorted and unrotated plane

600

materials

biological 134

artery 134, 135, 137

blood vessels 134

vein 134, 135

cartilage 137--40

mechanical properties, of

140--3, 241--5

composite 3--11

monolithic 3--11

structure 15--56

matrix materials 767--9, 774, 778

maximum distortion energy

criterion 201--4

maximum shear stress criterion

(Tresca) 200--4

maximum stress criterion (Rankine)

200, 480

Maxwell model 689, 690

McClintock-Walsh criterion 207,

208

Meyers-Ashworth theory 351

microalloyed steels 585, 586

microalloying 586

microhardness see microindentation

hardness

microindentation hardness tests

221

Miller indices 15--18

misorientation of grain boundary

322, 323, 326--30; see also grain

boundary

modulus see elastic modulus

Mohr circle 89--92

Mohr Coulomb failure criterion 206

molecular weight 36--8

Mooney-Rivlin equation 131, 132

Mukherjee-Bird-Dorn equation see

creep

muscle force 237--41

myosin 52, 54, 56

Nabarro-Herring creep see creep

nano- and microstructure

biological materials, of 45

nanocrystalline materials 355--8

nanoindentation 225

nanotechnology 60, 61

nanotubes 60--1

necking 164, 171--6, 189, 191, 371

Newtonian viscosity see viscosity

NiTiNOL 608

octahedral sites 255, 256, 295,

570

Olsen test 230, 232

ordered alloys see intermetallics

Orowan’s equation 306--8

orthotropic 98, 102, 117, 118, 784

oxidation

ceramics 839, 840

metals 819, 820

polymers 833, 834

Palmgren-Miner rule see fatigue

Paris-Erdogan equation see fatigue

Peach-Koehler equation see

dislocation

Peierls-Nabarro stress see dislocation

persistent slip bands 725--9

pileup see dislocation

plane strain fracture toughness 405,

447

ceramics 447

metals 447

polymers 447

plastic anisotropy 231
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plastic deformation

compression, in 183

glasses, of 193

polymers, of 188

tension, in 163

plastic zone 534

plastic zone size correction 428--31

plasticity 161

point defects 254, 259

equilibrium concentration of

256

Poisson’s ratio 83--5, 87, 101, 121,

169, 170

pole figure 396

polygonization 390

polymers

atactic 33

block copolymers 32, 33

branched 32, 33, 35

crosslinked 32

defects 361--4

graft copolymers 32, 33

homopolymers 32, 33

isotactic 33

ladder 32

linear 32, 33, 35, 41

random copolymers 32, 33

syndiotactic 33

thermoplastic 33

thermoset 33, 514

Porous materials 44, 639--50

plastic behavior 646--50

post-yield fracture mechanics 448

precipitation

microalloyed steels, in 585

precipitation hardening 558, 559,

571--5, 577, 578, 581--6, 590

production of point defects 259

prostheses

hip replacement 5--7

knee replacement 5--7

proteins 47, 48

pseudoelasticity 608--11

punch-stretch tests 232

quasicrystals 38, 39

R curve 443

radiation damage 261, 819, 834

radiation effects 264, 265

rafting 683, 684

Rankine criterion 200, 480

reduction in area 170, 172, 174

reinforcements 767

relationships among fracture

toughness parameters 444

resilience 171

resilin 53, 243

Reuss average 107, 109, 110

Rockwell see hardness

rolling 161, 162, 176, 199, 204, 214,

231, 233

temper 234

rotating bending machine 751

rubber elasticity 126--32

Salganik equation 115, 118, 158

Schmid factor 377, 381--4, 398

Schmid law 377

Schotky defects 255

Seeger model 262, 263

Seeger work hardening theory 388

semicrystalline polymers 190

sensitization 818

serrated stress-strain curve 340, 568

servohydraulic testing machine 163,

755

sessile dislocation see dislocation

shape memory effect 595, 608--13

polymers, in 614

shear 80

banding 468, 511, 512

coupling 801

deformation 380

modulus 81, 102, 115, 154

pure 95, 96

yielding 210, 508

Sherby-Dorn parameter see creep

silicides 621--3

silk 54, 243

single crystal 34, 35, 383--6, 391,

395, 684--6

skin 242

slip 341--4

bands 383

conjugate 381, 382

critical 381, 382

cross 302, 381--5, 388

direction(s) 375, 376, 378, 380, 395

lines 383

markings 383

planes 384, 395

primary 381, 382, 384, 385, 388

systems 377, 378, 381, 382, 384,

385. 393

smart materials 57

S-N curves see fatigue

Snoek effect 569

softening mechanisms 392

softening point 197, 198

solid metal embrittlement 830, 831

solid solution strengthening 558--70

mechanical effects 564--70

spherulite(s) 35

sponge spicule 56

stacking fault 286--9, 291, 292, 297,

298, 303, 342, 343, 624, 626,

628, 634, 636

stair rod dislocation see dislocation

stamping 204, 229, 233, 236, 237,

369, 370

statistical analysis

failure strength, of 448

S-N curves, of 753

statistical variation in strength 802

stereographic projections 373, 375,

381--4, 398

stiffness 97, 99, 101, 111, 112, 118

storage modulus 124

strain

engineering 164--6, 171, 185

plane 87, 162, 418, 480, 532

point 197, 198

rate 197

shear 197

true 164--6, 170, 185

strain aging 567

strain energy density 77--9

strain memory effect 608, 610--13

strain rate effects 176, 189, 197, 310

strain rate sensitivity 197

strength 780

strength of martensite 600

strength of real materials 61

stress 72--83

compressive 174

barreling 174

plastic deformation 174

concentration 409

concentration factor 409

engineering 164--6, 171, 185

hydrostatic 209--11

effect on yielding 209--11

plane 86, 418

residual 136, 137

tensile 174

true 164--6, 170, 185

uniaxial 86

stress corrosion cracking (SCC)

820--4

ceramics, in 837--9

glass, in 837--9
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stress relaxation 688--94

modulus 693

stress required for slip 374

stress singularity at crack tip 458

stress-strain curves

idealized 165

tensile 171

parameters 171--6

polymers 188--91

strain rate effects 176--83

uniaxial 170, 171

stretching 229, 231, 235

striations see fatigue

structure

crystal 16--40

ceramics 25--30

hierarchical 3, 9--11, 45

liquid crystal 39, 40

metals 19--25

polymers 31--8

quasi-crystals 38, 39

subboundaries 389

subgrains 322, 389, 390

substitutional strengthening 564--6,

570

substitutional defects 558--61, 564--6,

570

superelasticity 608--13; see also shape

memory effect

superalloys 653, 654, 668, 681--4, 669

superplasticity 653--704

surface energy 360

swelling 832

Swift test 230, 231

SX cast alloys 636

syntactic foam 645, 646

Taylor work hardening theory 386

Taylor-Orowan equation 306

tendon 9--10, 44, 51, 52

tensile curve parameters 171--6

tensile test 525

tetragonal distortion 560, 561

tetrahedral sites 255, 256, 264

texture 390, 395--8

texture strengthening 395--8

theoretical cleavage strength

406--8

theoretical tensile strength 406--8

theoretical shear strength 252--4

thermal stress(es) 695, 696

thermoset see polymer

three-point bending 162

test 541

tilt boundaries 326

tissue

soft 9--11

torsion 81, 162

toucan beak 44--6

toughness 785

fiber reinforcement 787

microcracking 786

particle toughening 786

transformation toughening 786

importance in practice 445

polymers 513

transformation-induced plasticity

595

transformation toughening 595, 617,

618

Tresca criterion 201--4

tridimensional defects 358

TRIP steels 595, 606, 615

turbine 685

twin boundary(ies) 336

energy 332

twinning 341--4

direction(s) 332, 333, 339--41

plane(s) 332, 333, 349--51

plastic deformation 337, 339

serrated stress-strain curve 340

work-hardening 342

twist boundaries 326

two-parameter approach 749; see also

fatigue

ultimate tensile strength 171

uniform elongation 171

upper yield point see yield point

vacancy 254--63, 305

vacancy loops 275, 276, 282

Vickers 219, 220--3

viscoelasticity 71, 75, 120--5

viscosity 121--5, 192, 197, 198

glasses 197, 198

Newtonian 122

temperature, function of 197--9

viscous flow 191--8

glasses, in 193--8

Voce equation 166

void(s) 26, 255, 258, 262--5

radiation 262--5

Voigt average 107, 109

Voigt model 689, 690

volumetric defects 321, 358--60

von Mises criterion 201--4, 480, 721

Wachtman-Mackenzie equation 113

Weibull statistical analysis 449--57

Weibull modulus 451

Weertman-Ashby maps 676--8

whiskers 61--3

Williams, Landel, and Ferry equation

691--3

wire drawing 174--6, 231, 345, 354

Wöhler curves 714

work hardening 342, 369, 371, 381,

389

coefficient 197

polycrystals, in 384, 389

Kuhlmann-Wilsdorf theory 386,

388, 390, 391

Seeger theory 388

Taylor theory 386--8

work softening 173

working of metals

cold 370, 371, 385

hot 370, 371

yield criteria 199--214

polymers 209, 210

composites 211--13

yield point 171, 565--8

lower 565

upper 565--7

yield strength

orientation, function of 397

Young’s modulus 75, 79, 81, 101--4,

107, 110, 111, 113, 115--21, 131,

145, 149, 150--4

orientation, function of 396, 397

porosity, effect of 113, 117

temperature, function of 153, 312

Zachariasen model 196, 197

Zener anisotropy ratio 99

Zerilli-Armstrong equation 167

zirconia toughened alumina 617,

618
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