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Preface

This textbook was developed to fill the need for an accessible but comprehensive
presentation of the analytical approaches for modeling and analyzing models of
manufacturing and production systems. It is an out growth of the efforts within
the Industrial and Systems Engineering Department at Texas A&M to develop and
teach an analytically based undergraduate course on probabilistic modeling of man-
ufacturing type systems. The level of this textbook is directed at undergraduate and
masters students in engineering and mathematical sciences. The only prerequisite
for students using this textbook is a previous course covering calculus-based prob-
ability and statistics. The underlying methodology is queueing theory, and we shall
develop the basic concepts in queueing theory in sufficient detail that the reader
need not have previously covered it. Queueing theory is a well-established disci-
pline dating back to the early 1900’s work of A. K. Erlang, a Danish mathematician,
on telephone traffic congestion. Although there are many textbooks on queueing
theory, these texts are generally oriented to the methodological development of the
field and exact results and not to the practical application of using approximations
in realistic modeling situations. The application of queueing theory to manufactur-
ing type systems started with the approximation based work of Ward Whitt in the
1980’s. His paper on QNA (a queueing network analyzer) in 1983 is the base from
which most applied modeling efforts have evolved.

There are several textbooks with titles similar to this book. Principle among
these are: Modeling and Analysis of Manufacturing Systems by Askin and Stan-
dridge, Manufacturing Systems Engineering by Stanley Gershwin, Queueing The-
ory in Manufacturing Systems Analysis and Design by Papadopoulos, Heavey
and Browne, Performance Analysis of Manufacturing Systems by Tayfur Altiok,
Stochastic Modeling and Analysis of Manufacturing Systems, edited by David Yao,
and Stochastic Models of Manufacturing Systems by Buzacott and Shanthikumar.
Each of these texts, along with several others contributes greatly to the field. The
book that most closely aligns with the motivation, level, and intent of this book
is Factory Physics by Hopp and Spearman. Their approach and analysis is highly
recommended reading, however, their book’s scope is on the larger field of produc-

vii



viii Preface

tion and operations management. Thus, it does not provide the depth and breath of
analytical modeling procedures that are presented in this text.

This text is about the development of analytical approximation models and their
use in evaluating factory performance. The tools needed for the analytical approach
are fully developed. One useful non-analytical tool that is not fully developed in
this textbook is simulation modeling. In practice as well as in the development of
the models in this text, simulation is extensively used as a verification tool. Even
though the development of simulation models is only modestly addressed, we would
encourage instructors who use this book in their curriculum after a simulation course
to ask students to simulate some of the homework problems so that a comparison
can be made of the analysis using the models presented here with simulation mod-
els. By developing simulation models students will have a better understanding of
the modeling assumptions and the accuracy of the analytical approximations. In ad-
dition several chapters include an appendix that contains instructions in the use of
Microsoft Excel as an aid in modeling or in building simple simulation models.

For this second edition, suggestions from various instructors who have used the
textbook have been incorporated. Because of the importance of simulation model-
ing, this second edition also includes an introduction to event-driven simulations.

Two special sections are included to help the reader organize the many concepts
contained in the text. Immediately after the Table of Contents, we have included a
symbol table that contains most of the notation used throughout the text. Second,
immediately after the final chapter a glossary of terms is included that summarizes
the various definitions used. It is expected that these will prove valuable resources
as the reader progresses through the text.

Many individuals have contributed to this book through our interactions in re-
search efforts and discussions. Special thanks go to Professor Martin A. Wortman,
Texas A&M University, who designed and taught the first presentation of the course
for which this book was originally developed and Professor Bryan L. Deuermeyer,
Texas A&M University, for his significant contributions to our joint research ac-
tivities in this area and his continued interest and criticism. In addition several in-
dividuals have helped in improving the text by using a draft copy while teaching
the material to undergraduates including Eylem Tekin at Texas A&M, Natarajan
Gautam also at Texas A&M, and Kevin Gue at Auburn University. We also wish to
acknowledge the contributions of Professors John A. Fowler, Arizona State Univer-
sity, and Mark L. Spearman, Factory Physics, Inc., for their continued interactions
and discussions on modeling manufacturing systems. And we thank Ciriaco Valdez-
Flores, a co-author of the first chapter covering basic probability for permission to
include it as part of our book. Finally, we acknowledge our thanks through the words
of the psalmist, “Give thanks to the Lord, for He is good; His love endures forever.”
(Psalms 107:1, NIV)

College Station, Texas Guy L. Curry
March 2008 Richard M. Feldman



Contents

ix

1 Basic Probability Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Random Variables and Distribution Functions . . . . . . . . . . . . . . . . . . . 4
1.3 Mean and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Important Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Multivariate Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 Combinations of Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.6.1 Fixed Sum of Random Variables . . . . . . . . . . . . . . . . . . . . . . . 32
1.6.2 Random Sum of Random Variables . . . . . . . . . . . . . . . . . . . . . 33
1.6.3 Mixtures of Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 35

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2 Introduction to Factory Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.1 The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1.1 Notation, Definitions and Diagrams . . . . . . . . . . . . . . . . . . . . . 46
2.1.2 Measured Data and System Parameters . . . . . . . . . . . . . . . . . . 49

2.2 Introduction to Factory Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2.1 The Modeling Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.2 Model Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2.3 Model Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 Deterministic vs Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Single Workstation Factory Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1 First Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Diagram Method for Developing the Balance Equations . . . . . . . . . . 73
3.3 Model Shorthand Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



x Contents

3.4 An Infinite Capacity Model (M/M/1) . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5 Multiple Server Systems with Non-identical Service Rates . . . . . . . . 81
3.6 Using Exponentials to Approximate General Times . . . . . . . . . . . . . . 85

3.6.1 Erlang Processing Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6.2 Erlang Inter-Arrival Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.6.3 Phased Inter-arrival and Processing Times . . . . . . . . . . . . . . . 89

3.7 Single Server Model Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.7.1 General Service Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.7.2 Approximations for G/G/1 Systems . . . . . . . . . . . . . . . . . . . . 93
3.7.3 Approximations for G/G/c Systems . . . . . . . . . . . . . . . . . . . . 95

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4 Processing Time Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.1 Natural Processing Time Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Random Breakdowns and Repairs During Processing . . . . . . . . . . . . 113
4.3 Operator-Machine Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Multiple-Stage Single-Product Factory Models . . . . . . . . . . . . . . . . . . . . 125
5.1 Approximating the Departure Process from a Workstation . . . . . . . . . 125
5.2 Serial Systems Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3 Nonserial Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.1 Merging Inflow Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.2 Random Splitting of the Departure Stream . . . . . . . . . . . . . . . 135

5.4 The General Network Approximation Model . . . . . . . . . . . . . . . . . . . . 138
5.4.1 Computing Workstation Mean Arrival Rates . . . . . . . . . . . . . . 139
5.4.2 Computing Squared Coefficients of Variation for Arrivals . . 141

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6 Multiple Product Factory Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.1 Product Flow Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.2 Workstation Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.3 Service Time Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.4 Workstation Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.5 Processing Step Modeling Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.5.1 Service Time Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.5.2 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.5.3 Alternate Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

1 Section 4.3 can be omitted without affecting the continuity of the remainder of the text.
2 Section 6.5.3 can be omitted without affecting the continuity of the remainder of the text.



Contents xi

6.6 Group Technology and Cellular Manufacturing . . . . . . . . . . . . . . . . . . 177
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7 Models of Various Forms of Batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.1 Batch Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.1.1 Batch Forming Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.1.2 Batch Queue Cycle Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.1.3 Batch Move Processing Time Delays . . . . . . . . . . . . . . . . . . . . 202
7.1.4 Inter-departure Time SCV with Batch Move Arrivals . . . . . . 204

7.2 Batching for Setup Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.2.1 Inter-departure Time SCV with Batch Setups . . . . . . . . . . . . . 209

7.3 Batch Service Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.3.1 Cycle Time for Batch Service . . . . . . . . . . . . . . . . . . . . . . . . . . 210
7.3.2 Departure Process for Batch Service . . . . . . . . . . . . . . . . . . . . 211

7.4 Modeling the Workstation Following a Batch Server . . . . . . . . . . . . . 213
7.4.1 A Serial System Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.4.2 Branching Following a Batch Server . . . . . . . . . . . . . . . . . . . . 214

7.5 Batch Network Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.5.1 Batch Network Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.5.2 Batch Network Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

8 WIP Limiting Control Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.1 Closed Queueing Networks for Single Products . . . . . . . . . . . . . . . . . 242

8.1.1 Analysis with Exponential Processing Times . . . . . . . . . . . . . 245
8.1.2 Analysis with General Processing Times . . . . . . . . . . . . . . . . . 252

8.2 Closed Queueing Networks with Multiple Products . . . . . . . . . . . . . . 255
8.2.1 Mean Value Analysis for Multiple Products . . . . . . . . . . . . . . 256
8.2.2 Mean Value Analysis Approximation for Multiple Products . 260
8.2.3 General Service Time Approximation for Multiple

Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
8.3 Production and Sequencing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 267

8.3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
8.3.2 Push Strategy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8.3.3 CONWIP Strategy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

9 Serial Limited Buffer Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
9.1 The Decomposition Approach Used for Kanban Systems . . . . . . . . . 282
9.2 Modeling the Two-Node Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

9.2.1 Modeling the Service Distribution . . . . . . . . . . . . . . . . . . . . . . 285



xii Contents

9.2.2 Structure of the State-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
9.2.3 Generator Matrix Relating System Probabilities . . . . . . . . . . . 290
9.2.4 Connecting the Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

9.3 Example of a Kanban Serial System . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
9.3.1 The First Forward Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
9.3.2 The Backward Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
9.3.3 The Remaining Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
9.3.4 Convergence and Factory Performance Measures . . . . . . . . . 308
9.3.5 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

9.4 Setting Kanban Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
9.4.1 Allocating a Fixed Number of Buffer Units . . . . . . . . . . . . . . 311
9.4.2 Cycle Time Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
9.4.3 Serial Factory Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

A Simulation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
A.1 Random Variates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
A.2 Event-Driven Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335



Symbols

ααα Used in Chap. 9 as the row vector of initial probabilities associated
with a phase type distribution.

αk In Chap. 9, it is used as a parameter for the GE2 distribution that ap-
proximates the distribution of inter-arrival times into Subsystem k.

βk In Chap. 9, it is used as a parameter for the GE2 distribution that ap-
proximates the distribution of inter-arrival times into Subsystem k.

γγγ Vector of mean arrival rates to the various workstations from an exter-
nal source.

γγγ i Vector of mean arrival rates of Type i jobs entering the various work-
stations from an external source.

γi,k Mean rate of Type i jobs into Workstation k from an external source.
˜γ i
� Mean rate of Type i jobs to the �th step of the production plan from an

external source (Property 6.5).
γk Mean rate of jobs arriving from an external source to Workstation k.

In Chap. 9, it is used as a parameter for the GE2 distribution that ap-
proximates the distribution of service times for Subsystem k.

λ Mean arrival rate.
λλλ Vector of mean arrival rates into the various workstations.
λ (B) Mean arrival rate of batches of jobs.
λe The effective mean arrival rate (Def. 3.1).
λλλ i Vector of arrival rates of Type i jobs entering the various workstations.
λ (I) Mean arrival rate of individual jobs.
λi,k Mean arrival rate of Type i jobs entering Workstation k.
˜λi,� Mean arrival rate of Type i jobs to the �th step of the production plan

(Property 6.5).
λk Mean arrival rate into Workstation k.
μ Mean service rate (the reciprocal of the mean service time).
μk Often used as the mean service rate for Workstation k. In Chap. 9, it

is used as a parameter for the GE2 distribution that approximates the
distribution of service times for Subsystem k.
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xiv Symbols

νi Number of steps within the production plan for a Type i job (Def. 6.3).
(Not to be confused with the letter v used in Chap. 9.)

a Availability (Def. 4.2).
ck The number of (identical) machines at Workstation k.
C2 Squared coefficient of variation which is the variance divided by the

mean squared.
C2

a Squared coefficient of variation of inter-arrival times.
c2

a A vector of the squared coefficients of variation of the inter-arrival
times to the various workstations.

C2
a(B) Squared coefficient of variation of the inter-arrival times of batches of

jobs.
C2

a(I) Squared coefficient of variation of the inter-arrival times of individual
jobs.

C2
a(k) Squared coefficient of variation of the stream of inter-arrival times

entering Workstation k.
C2

a(k, j) Squared coefficient of variation of the inter-arrival times into Work-
station j that come from Workstation k. If k = 0, it refers to externally
arriving jobs into Workstation j.

C2
d(k) The squared coefficient of variation of the inter-departure times from

Workstation k.
C2

s Squared coefficient of variation of service times.
C2

s (B) Squared coefficient of variation of the service times of batches of jobs.
C2

s (I) Squared coefficient of variation of the service times of individual jobs.
C2

s (k) Squared coefficient of variation of service times for an arbitrary job at
Workstation k.

C2
s (i,k) Squared coefficient of variation of service times for Type i jobs at

Workstation k.
CT Mean cycle time (Def. 2.1).
CTq(k) Mean cycle time within the queue of Workstation k.
CTs Mean cycle time for the system which includes all time spent within

the factory.
CT i

s Mean cycle time of a Type i job for the system which includes all time
spent within the factory.

CT (i,k) Mean cycle time within Workstation k for a Type i job including the
time spent in the queue plus the time spent processing.

CT (k) Mean cycle time within Workstation k including the time spent in the
queue plus the time spent processing.

CTk(·) Mean cycle time at Workstation k as a function of the CONWIP level.
E Expectation operator or the mean.
F Random variable denoting the time to failure.
G Used in Chap. 9 for a generator matrix usually associated with a GE2

or an MGE distribution.
i A general index. Starting with Chap. 6, it is most often used to indicate

a job type.
I(·, ·) An indicator function or identity matrix (Def. 6.4).
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k A general index. Starting with Chap. 6, it is most often used to indicate
a workstation, and in Chap. 7 it is also used for batch size.

� A general index. Most often used to denote the �th step of a production
plan. In Chap. 8, it is sometimes used to indicate job type.

m Most often used for the total number of job types.
n Most often used for the total number of workstations.
N In Chap. 7, it is a random variable denoting batch size.
P = (p j,k) Routing matrix (Def. 5.2).
Pi = (pi

j,k) Routing matrix of Type i jobs.
˜Pi = (p̃i

�, j) Step-wise routing matrix for Type i jobs (Def. 6.3).

pF
a,n In Chap. 9, the probability that an arrival to the nth (or final) subsys-

tem, finds the subsystem full.

p(i,F)
a,k In Chap. 9, the probability that an arrival to Subsystem k, for k < n,

finds the subsystem full and the service-machine in Phase i.
p0

d,1 In Chap. 9, the probability that a departure from Subsystem 1 leaves
the subsystem empty.

p(i,0)
d,k In Chap. 9, the probability that a departure from Subsystem k, for

k > 1, leaves the subsystem empty and the arrival-machine in Phase i.
pk Often used for the steady-state probability of k jobs being within a

system. In Chap. 9, it is used as a parameter for the GE2 distribution
that approximates the distribution of inter-arrival times into Subsys-
tem k.

pk( j,w) The steady-state probability that there are j jobs at Workstation k
when the CONWIP level for the factory is set to w.

Q Used in Chap. 9 for a generator matrix usually associated with finding
the steady-state probabilities of two-node subsystems.

qk In Chap. 9, it is used as a parameter for the GE2 distribution that ap-
proximates the distribution of service times for Subsystem k.

R Random variable denoting repair time, except in Chap. 7 where it is
the random variable denoting the setup time for a batch.

rk The relative arrival rate into Workstation k.
Te Random variable denoting the effective service time (Def. 4.1).
Ta(B) Random variable denoting inter-arrival times of batches of jobs.
Ta(I) Random variable denoting inter-arrival times of individual jobs.
Ts(B) Random variable denoting service times of batches of jobs.
Ts(I) Random variable denoting service times of individual jobs.
Ts(i,k) Random variable denoting service times for a Type i job in Worksta-

tion k.
Ts(k) Random variable denoting service times for an arbitrary job in Work-

station k.
th Mean throughput rate (Def. 2.3).
th(k) Mean throughput rate for Workstation k.
u Machine utilization.
uk Utilization factor for Workstation k (Eq. (6.2).
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uk(·) Utilization factor at Workstation k as a function of the CONWIP level.
V The variance which also equals the second moment minus the mean

squared.
v In Chap. 9, a vector of steady-state probabilities derived for a gen-

erator matrix. (Not to be confused with the Greek letter ν used in
Chap. 6.)

vi In Chap. 9, the steady-state probability of being in State i. (Not to be
confused with the Greek letter ν used in Chap. 6.)

w Used in Chaps. 8 and 9 as a variable for functions whose independent
variable represents work-in-process.

w A vector of dimension m, where m is the number of job types, giving
the CONWIP limits for each job type.

wmax In Chaps. 8 and 9 constant indicated a maximum limit placed on work-
in-process.

w̃i(·) The workstation mapping function (Def. 6.2).
WIP Mean (time-averaged) work-in-process (Def. 2.2).
WIPq(k) Mean (time-averaged) work-in-process for the queue of Worksta-

tion k.
WIPs Mean (time-averaged) work-in-process within the system which in-

cludes all jobs within the factory.
WIP(k) Mean (time-averaged) work-in-process within Workstation k includ-

ing jobs in the queue and job(s) within the processor.
WIPk(·) Mean (time-averaged) work-in-process at Workstation k as a function

of the CONWIP level.
WLk Workload at Workstation k (Def. 6.1 and Eq. (6.1)).





Chapter 1
Basic Probability Review

The background material for this textbook is a general understanding of probability
and the properties of various distributions; thus, before discussing the modeling of
the various manufacturing and production systems, it is important to review the
fundamental concepts of basic probability. This material is not intended to teach
probability theory, but it is used for review and to establish a common ground for
the notation and definitions used throughout the book. Much of the material in this
chapter is from [3], and for those already familiar with probability, this chapter can
easily be skipped.

1.1 Basic Definitions

To understand probability , it is best to envision an experiment for which the out-
come (result) is unknown. All possible outcomes must be defined and the collection
of these outcomes is called the sample space. Probabilities are assigned to subsets of
the sample space, called events. We shall give the rigorous definition for probability.
However, the reader should not be discouraged if an intuitive understanding is not
immediately acquired. This takes time and the best way to understand probability is
by working problems.

Definition 1.1. An element of a sample space is an outcome. A set of outcomes, or
equivalently a subset of the sample space, is called an event.

Definition 1.2. A probability space is a three-tuple (Ω ,F ,Pr) where Ω is a sample
space, F is a collection of events from the sample space, and Pr is a probability
measure that assigns a number to each event contained in F . Furthermore, Pr must
satisfy the following conditions, for each event A,B within F :

• Pr(Ω) = 1,
• Pr(A)≥ 0,
• Pr(A∪B) = Pr(A)+Pr(B) if A∩B = φ , where φ denotes the empty set,

G.L. Curry, R.M. Feldman, Manufacturing Systems Modeling and Analysis, 2nd ed., 1
DOI 10.1007/978-3-642-16618-1 1, c© Springer-Verlag Berlin Heidelberg 2011
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• Pr(Ac) = 1−Pr(A), where Ac is the complement of A.

It should be noted that the collection of events, F , in the definition of a probabil-
ity space must satisfy some technical mathematical conditions that are not discussed
in this text. If the sample space contains a finite number of elements, then F usu-
ally consists of all the possible subsets of the sample space. The four conditions on
the probability measure Pr should appeal to one’s intuitive concept of probability.
The first condition indicates that something from the sample space must happen, the
second condition indicates that negative probabilities are illegal, the third condition
indicates that the probability of the union of two disjoint (or mutually exclusive)
events is the sum of their individual probabilities and the fourth condition indicates
that the probability of an event is equal to one minus the probability of its comple-
ment (all other events). The fourth condition is actually redundant but it is listed in
the definitions because of its usefulness.

A probability space is the full description of an experiment; however, it is not
always necessary to work with the entire space. One possible reason for working
within a restricted space is because certain facts about the experiment are already
known. For example, suppose a dispatcher at a refinery has just sent a barge con-
taining jet fuel to a terminal 800 miles down river. Personnel at the terminal would
like a prediction on when the fuel will arrive. The experiment consists of all possi-
ble weather, river, and barge conditions that would affect the travel time down river.
However, when the dispatcher looks outside it is raining. Thus, the original prob-
ability space can be restricted to include only rainy conditions. Probabilities thus
restricted are called conditional probabilities according to the following definition.

Definition 1.3. Let (Ω ,F ,Pr) be a probability space where A and B are events in
F with Pr(B) �= 0. The conditional probability of A given B, denoted Pr(A|B), is

Pr(A|B) =
Pr(A∩B)

Pr(B)
.

Venn diagrams are sometimes used to illustrate relationships among sets. In the
diagram of Fig. 1.1, assume that the probability of a set is proportional to its area.
Then the value of Pr(A|B) is the proportion of the area of set B that is occupied by
the set A∩B.

Example 1.1. A telephone manufacturing company makes radio phones and plain
phones and ships them in boxes of two (same type in a box). Periodically, a quality
control technician randomly selects a shipping box, records the type of phone in the
box (radio or plain), and then tests the phones and records the number that were
defective. The sample space is

Ω = {(r,0),(r,1),(r,2),(p,0),(p,1),(p,2)} ,

where each outcome is an ordered pair; the first component indicates whether the
phones in the box are the radio type or plain type and the second component gives
the number of defective phones. The set F is the set of all subsets, namely,



1.1 Basic Definitions 3

Fig. 1.1 Venn diagram illus-
trating events A, B, and A∩B

F = {φ ,{(r,0)},{(r,1)},{(r,0),(r,1)}, · · · ,Ω} .

There are many legitimate probability laws that could be associated with this space.
One possibility is

Pr{(r,0)}= 0.45 , Pr{(p,0)}= 0.37 ,

Pr{(r,1)}= 0.07 , Pr{(p,1)}= 0.08 ,

Pr{(r,2)}= 0.01 , Pr{(p,2)}= 0.02 .

By using the last property in Definition 1.2, the probability measure can be extended
to all events; for example, the probability that a box is selected that contains radio
phones and at most one phone is defective is given by

Pr{(r,0),(r,1)}= 0.52 .

Now let us assume that a box has been selected and opened. We observe that the two
phones within the box are radio phones, but no test has yet been made on whether
or not the phones are defective. To determine the probability that at most one phone
is defective in the box containing radio phones, define the event A to be the set
{(r,0),(r,1),(p,0),(p,1)} and the event B to be {(r,0),(r,1),(r,2)}. In other words,
A is the event of having at most one defective phone, and B is the event of having a
box of radio phones. The probability statement can now be written as

Pr{A|B}=
Pr(A∩B)

Pr(B)
=

Pr{(r,0),(r,1)}
Pr{(r,0),(r,1),(r,2)} =

0.52
0.53

= 0.991 .

��
• Suggestion: Do Problems 1.1–1.2 and 1.20.
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Fig. 1.2 A random variable
is a mapping from the sample
space to the real numbers

Ω

ℜ

1.2 Random Variables and Distribution Functions

It is often cumbersome to work with the outcomes directly in mathematical terms.
Random variables are defined to facilitate the use of mathematical expressions and
to focus only on the outcomes of interest.

Definition 1.4. A random variable is a function that assigns a real number to each
outcome in the sample space.

Figure 1.2 presents a schematic illustrating a random variable. The name “ran-
dom variable” is actually a misnomer, since it is not random and is not a variable.
As illustrated in the figure, the random variable simply maps each point (outcome)
in the sample space to a number on the real line1.

Revisiting Example 1.1, let us assume that management is primarily interested
in whether or not at least one defective phone is in a shipping box. In such a case
a random variable D might be defined such that it is equal to zero if all the phones
within a box are good and equal to 1 otherwise; that is,

D(r,0) = 0 , D(p,0) = 0 ,

D(r,1) = 1 , D(p,1) = 1 ,

D(r,2) = 1 , D(p,2) = 1 .

The set {D = 0} refers to the set of all outcomes for which D = 0 and a legitimate
probability statement would be

Pr{D = 0}= Pr{(r,0),(p,0)}= 0.82 .

To aid in the recognition of random variables, the notational convention of using
only capital Roman letters (or possibly Greek letters) for random variables is fol-
lowed. Thus, if you see a lower case Roman letter, you know immediately that it can
not be a random variable.

1 Technically, the space into which the random variable maps the sample space may be more
general than the real number line, but for our purposes, the real numbers will be sufficient.
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Random variables are either discrete or continuous depending on their possible
values. If the possible values can be counted, the random variable is called discrete;
otherwise, it is called continuous. The random variable D defined in the previous
example is discrete. To give an example of a continuous random variable, define T
to be a random variable that represents the length of time that it takes to test the
phones within a shipping box. The range of possible values for T is the set of all
positive real numbers, and thus T is a continuous random variable.

A cumulative distribution function (CDF) is often used to describe the probabil-
ity measure underlying the random variable. The cumulative distribution function
(usually denoted by a capital Roman letter or a Greek letter) gives the probability
accumulated up to and including the point at which it is evaluated.

Definition 1.5. The function F is the cumulative distribution function for the ran-
dom variable X if

F(a) = Pr{X ≤ a}
for all real numbers a.

The CDF for the random variable D defined above is

F(a) =

⎧

⎨

⎩

0 for a < 0
0.82 for 0≤ a < 1
1.0 for a≥ 1 .

(1.1)

Figure 1.3 gives the graphical representation for F . The random variable T defined
to represent the testing time for phones within a randomly chosen box is continuous
and there are many possibilities for its probability measure since we have not yet
defined its probability space. As an example, the function G (see Fig. 1.10) is the
cumulative distribution function describing the randomness that might be associated
with T :

G(a) =
{

0 for a < 0
1− e−2a for a≥ 0 .

(1.2)

Property 1.1. A cumulative distribution function F has the following proper-
ties:

• lima→−∞ F(a) = 0,
• lima→+∞ F(a) = 1,
• F(a)≤ F(b) if a < b,
• lima→b+ F(a) = F(b).

The first and second properties indicate that the graph of the cumulative distribu-
tion function always begins on the left at zero and limits to one on the right. The third
property indicates that the function is nondecreasing. The fourth property indicates
that the cumulative distribution function is right-continuous. Since the distribution
function is monotone increasing, at each discontinuity the function value is defined
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Fig. 1.3 Cumulative distribu-
tion function for Eq. (1.1) for
the discrete random variable
D

�

�

)

)0.82
1.0

0 1-1

by the larger of two limits: the limit value approaching the point from the left and
the limit value approaching the point from the right.

It is possible to describe the random nature of a discrete random variable by
indicating the size of jumps in its cumulative distribution function. Such a function
is called a probability mass function (denoted by a lower case letter) and gives the
probability of a particular value occurring.

Definition 1.6. The function f is the probability mass function (pmf) of the discrete
random variable X if

f (k) = Pr{X = k}
for every k in the range of X .

If the pmf is known, then the cumulative distribution function is easily found by

Pr{X ≤ a}= F(a) = ∑
k≤a

f (k) . (1.3)

The situation for a continuous random variable is not quite as easy because the
probability that any single given point occurs must be zero. Thus, we talk about
the probability of an interval occurring. With this in mind, it is clear that a mass
function is inappropriate for continuous random variables; instead, a probability
density function (denoted by a lower case letter) is used.

Definition 1.7. The function g is called the probability density function (pdf) of the
continuous random variable Y if

∫ b

a
g(u)du = Pr{a≤ Y ≤ b}

for all a,b in the range of Y .

From Definition 1.7 it should be seen that the pdf is the derivative of the cumu-
lative distribution function and

G(a) =
∫ a

−∞
g(u)du . (1.4)

The cumulative distribution functions for the example random variables D and T
are defined in Eqs. (1.1 and 1.2). We complete that example by giving the pmf for
D and the pdf for T as follows:
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1
4

0 1 2 3 4 5 6 7 8 9 10 11 · · ·
Fig. 1.4 The Poisson probability mass function of Example 1.2

f (k) =
{

0.82 for k = 0
0.18 for k = 1 .

(1.5)

and

g(a) =
{

2e−2a for a≥ 0
0 otherwise .

(1.6)

Example 1.2. Discrete random variables need not have finite ranges. A classical ex-
ample of a discrete random variable with an infinite range is due to Rutherford,
Chadwick, and Ellis from 1920 [7, pp. 209–210]. An experiment was performed to
determine the number of α-particles emitted by a radioactive substance in 7.5 sec-
onds. The radioactive substance was chosen to have a long half-life so that the emis-
sion rate would be constant. After 2608 experiments, it was found that the number of
emissions in 7.5 seconds was a random variable, N, whose pmf could be described
by

Pr{N = k}=
(3.87)ke−3.87

k!
for k = 0,1, · · · .

It is seen that the discrete random variable N has a countably infinite range and
the infinite sum of its pmf equals one. In fact, this distribution is fairly important
and will be discussed later under the heading of the Poisson distribution. Figure 1.4
shows its pmf graphically. ��

The notion of independence is very important when dealing with more than one
random variable. Although we shall postpone the discussion on multivariate distri-
bution functions until Sect. 1.5, we introduce the concept of independence at this
point.

Definition 1.8. The random variables X1, · · · ,Xn are independent if

Pr{X1 ≤ x1, · · · ,Xn ≤ xn}= Pr{X1 ≤ x1}× · · ·×Pr{Xn ≤ xn}

for all possible values of x1, · · · ,xn.

Conceptually, random variables are independent if knowledge of one (or more)
random variable does not “help” in making probability statements about the other
random variables. Thus, an alternative definition of independence could be made
using conditional probabilities (see Definition 1.3) where the random variables X1
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and X2 are called independent if Pr{X1 ≤ x1|X2 ≤ x2}= Pr{X1 ≤ x1} for all values
of x1 and x2.

For example, suppose that T is a random variable denoting the length of time
it takes for a barge to travel from a refinery to a terminal 800 miles down river,
and R is a random variable equal to 1 if the river condition is smooth when the barge
leaves and 0 if the river condition is not smooth. After collecting data to estimate the
probability laws governing T and R, we would not expect the two random variables
to be independent since knowledge of the river conditions would help in determining
the length of travel time.

One advantage of independence is that it is easier to obtain the distribution for
sums of random variables when they are independent than when they are not inde-
pendent. When the random variables are continuous, the pdf of the sum involves an
integral called a convolution.

Property 1.2. Let X1 and X2 be independent continuous random variables
with pdf’s given by f1(·) and f2(·). Let Y = X1 + X2, and let h(·) be the pdf
for Y . The pdf for Y can be written, for all y, as

h(y) =
∫ ∞

−∞
f1(y− x) f2(x)dx .

Furthermore, if X1 and X2 are both nonnegative random variables, then

h(y) =
∫ y

0
f1(y− x) f2(x)dx .

Example 1.3. Our electronic equipment is highly sensitive to voltage fluctuations in
the power supply so we have collected data to estimate when these fluctuations oc-
cur. After much study, it has been determined that the time between voltage spikes is
a random variable with pdf given by (1.6), where the unit of time is hours. Further-
more, it has been determined that the random variables describing the time between
two successive voltage spikes are independent. We have just turned the equipment
on and would like to know the probability that within the next 30 minutes at least
two spikes will occur.

Let X1 denote the time interval from when the equipment is turned on until the
first voltage spike occurs, and let X2 denote the time interval from when the first
spike occurs until the second occurs. The question of interest is to find Pr{Y ≤ 0.5},
where Y = X1 +X2. Let the pdf for Y be denoted by h(·). Property 1.2 yields

h(y) =
∫ y

0
4e−2(y−x)e−2xdx

= 4e−2y
∫ y

0
dx = 4ye−2y ,

for y≥ 0. The pdf of Y is now used to answer our question, namely,
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0 X1 ≈ x y

� �y− x

Fig. 1.5 Time line illustrating the convolution

Pr{Y ≤ 0.5}=
∫ 0.5

0
h(y)dy =

∫ 0.5

0
4ye−2ydy = 0.264 .

��
It is also interesting to note that the convolution can be used to give the cumu-

lative distribution function if the first pdf in the above property is replaced by the
CDF; in other words, for nonnegative random variables we have

H(y) =
∫ y

0
F1(y− x) f2(x)dx . (1.7)

Applying (1.7) to our voltage fluctuation question yields

Pr{Y ≤ 0.5} ≡H(0.5) =
∫ 0.5

0
(1− e−2(0.5−x))2e−2xdx = 0.264 .

We rewrite the convolution of Eq. (1.7) slightly to help in obtaining an intuitive
understanding of why the convolution is used for sums. Again, assume that X1 and
X2 are independent, nonnegative random variables with pdf’s f1 and f2, then

Pr{X1 +X2 ≤ y}=
∫ y

0
F2(y− x) f1(x)dx .

The interpretation of f1(x)dx is that it represents the probability that the random
variable X1 falls in the interval (x,x +dx) or, equivalently, that X1 is approximately
x. Now consider the time line in Fig. 1.5. For the sum to be less than y, two events
must occur: first, X1 must be some value (call it x) that is less than y; second, X2

must be less than the remaining time that is y− x. The probability of the first event
is approximately f1(x)dx, and the probability of the second event is F2(y−x). Since
the two events are independent, they are multiplied together; and since the value of
x can be any number between 0 and y, the integral is from 0 to y.

• Suggestion: Do Problems 1.3–1.6.
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1.3 Mean and Variance

Many random variables have complicated distribution functions and it is therefore
difficult to obtain an intuitive understanding of the behavior of the random variable
by simply knowing the distribution function. Two measures, the mean and variance,
are defined to aid in describing the randomness of a random variable. The mean
equals the arithmetic average of infinitely many observations of the random vari-
able and the variance is an indication of the variability of the random variable. To
illustrate this concept we use the square root of the variance which is called the
standard deviation. In the 19th century, the Russian mathematician P. L. Chebyshev
showed that for any given distribution, at least 75% of the time the observed value
of a random variable will be within two standard deviations of its mean and at least
93.75% of the time the observed value will be within four standard deviations of
the mean. These are general statements, and specific distributions will give much
tighter bounds. (For example, a commonly used distribution is the normal “bell
shaped” distribution. With the normal distribution, there is a 95.44% probability of
being within two standard deviations of the mean.) Both the mean and variance are
defined in terms of the expected value operator, that we now define.

Definition 1.9. Let h be a function defined on the real numbers and let X be a ran-
dom variable. The expected value of h(X) is given, for X discrete, by

E[h(X)] = ∑
k

h(k) f (k)

where f is its pmf, and for X continuous, by

E[h(X)] =
∫ ∞

−∞
h(s) f (s)ds

where f is its pdf.

Example 1.4. A supplier sells eggs by the carton containing 144 eggs. There is a
small probability that some eggs will be broken and he refunds money based on
broken eggs. We let B be a random variable indicating the number of broken eggs
per carton with a pmf given by

k f (k)
0 0.779
1 0.195
2 0.024
3 0.002

.

A carton sells for $4.00, but a refund of 5 cents is made for each broken egg. To
determine the expected income per carton, we define the function h as follows
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k h(k)
0 4.00
1 3.95
2 3.90
3 3.85

.

Thus, h(k) is the net revenue obtained when a carton is sold containing k broken
eggs. Since it is not known ahead of time how many eggs are broken, we are inter-
ested in determining the expected net revenue for a carton of eggs. Definition 1.9
yields

E[h(B)] = 4.00×0.779+3.95×0.195

+3.90×0.024+3.85×0.002 = 3.98755 .

��
The expected value operator is a linear operator, and it is not difficult to show the

following property.

Property 1.3. Let X and Y be two random variables with c being a constant,
then

• E[c] = c,
• E[cX ] = cE[X ],
• E[X +Y ] = E[X ]+E[Y ].

In the egg example since the cost per broken egg is a constant (c = 0.05), the
expected revenue per carton could be computed as

E[4.0−0.05B] = 4.0−0.05E[B]
= 4.0−0.05 ( 0×0.779+1×0.195+2×0.024 +3×0.002 )
= 3.98755 .

The expected value operator provides us with the procedure to determine the
mean and variance.

Definition 1.10. The mean, μ or E[X ], and variance,σ2 or V [X ], of a random vari-
able X are defined as

μ = E[X ], σ 2 = E[(X−μ)2] ,

respectively. The standard deviation is the square root of the variance.
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Property 1.4. The following are often helpful as computational aids:

• V [X ] = σ 2 = E[X2]−μ2

• V [cX ] = c2V [X ]
• If X ≥ 0, E[X ] =

∫ ∞
0 [1−F(s)]ds where F(x) = Pr{X ≤ x}

• If X ≥ 0, then E[X2] = 2
∫ ∞

0 s[1−F(s)]ds where F(x) = Pr{X ≤ x}.

Example 1.5. The mean and variance calculations for a discrete random variable can
be easily illustrated by defining the random variable N to be the number of defective
phones within a randomly chosen box from Example 1.1. In other words, N has the
pmf given by

Pr{N = k}=

⎧

⎨

⎩

0.82 for k = 0
0.15 for k = 1
0.03 for k = 2 .

The mean and variance is, therefore, given by

E[N] = 0×0.82+1×0.15+2×0.03

= 0.21,

V [N] = (0−0.21)2×0.82+(1−0.21)2×0.15+(2−0.21)2×0.03

= 0.2259 .

Or, an easier calculation for the variance (Property 1.4) is

E[N2] = 02×0.82+12×0.15+22×0.03

= 0.27

V [N] = 0.27−0.212

= 0.2259 .

��
Example 1.6. The mean and variance calculations for a continuous random variable
can be illustrated with the random variable T whose pdf was given by Eq. 1.6. The
mean and variance is therefore given by

E[T ] =
∫ ∞

0
2se−2sds = 0.5 ,

V [T ] =
∫ ∞

0
2(s−0.5)2e−2sds = 0.25 .

Or, an easier calculation for the variance (Property 1.4) is
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Fig. 1.6 A discrete uniform
probability mass function 1

6
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E[T 2] =
∫ ∞

0
2s2e−2sds = 0.5 ,

V [T ] = 0.5−0.52 = 0.25 .

��
The final definition in this section is used often as a descriptive statistic to give

an intuitive feel for the variability of processes.

Definition 1.11. The squared coefficient of variation, C2, of a nonnegative random
variable T is the ratio of the the variance to the mean squared; that is,

C2[T ] =
V [T ]
E[T ]2

.

• Suggestion: Do Problems 1.7–1.14.

1.4 Important Distributions

There are many distribution functions that are used so frequently that they have be-
come known by special names. In this section, some of the major distribution func-
tions are given. The student will find it helpful in years to come if these distributions
are committed to memory. There are several textbooks (my favorite is [6, chap. 6])
that give more complete descriptions of distributions, and we recommend gaining
a familiarity with a variety of distribution functions before any serious modeling is
attempted.

Uniform-Discrete: The random variable N has a discrete uniform distribution if
there are two integers a and b such that the pmf of N can be written as

f (k) =
1

b−a+1
for k = a,a+1, · · · ,b . (1.8)

Then,

E[N] =
a+b

2
; V [N] =

(b−a+1)2−1
12

.



14 1 Basic Probability Review

1
2

0 1 2 3 4

p = 1
3

1
2

0 1 2 3 4

p = 1
2

Fig. 1.7 Two binomial probability mass functions

Example 1.7. Consider rolling a fair die. Figure 1.6 shows the uniform pmf for the
“number of dots” random variable. Notice in the figure that, as the name “uniform”
implies, all the probabilities are the same. ��

Bernoulli: The random variable N has a Bernoulli distribution if there is a num-
ber 0 < p < 1 such that the pmf of N can be written as

f (k) =
{

1− p for k = 0
p for k = 1 .

(1.9)

Then,

E[N] = p; V [N] = p(1− p); C2[N] =
1− p

p
.

Binomial: (By James Bernoulli, 1654-1705; published posthumously in 1713.)
The random variable N has a binomial distribution if there is a number 0 < p < 1
and a positive integer n such that the pmf of N can be written as

f (k) =
n!

k!(n− k)!
pk(1− p)n−k for k = 0,1, · · · ,n . (1.10)

Then,

E[N] = np; V [N] = np(1− p); C2[N] =
1− p

np
.

The number p is often though of as the probability of a success. The binomial pmf
evaluated at k thus gives the probability of k successes occurring out of n trials. The
binomial random variable with parameters p and n is the sum of n (independent)
Bernoulli random variables each with parameter p.

Example 1.8. We are monitoring calls at a switchboard in a large manufacturing firm
and have determined that one third of the calls are long distance and two thirds of
the calls are local. We have decided to pick four calls at random and would like to
know how many calls in the group of four are long distance. In other words, let N be
a random variable indicating the number of long distance calls in the group of four.
Thus, N is binomial with n = 4 and p = 1/3. It also happens that in this company,
half of the individuals placing calls are women and half are men. We would also
like to know how many of the group of four were calls placed by men. Let M denote
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Fig. 1.8 A geometric proba-
bility mass function
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the number of men placing calls; thus, M is binomial with n = 4 and p = 1/2. The
pmf’s for these two random variables are shown in Fig. 1.7. Notice that for p = 0.5,
the pmf is symmetric, and as p varies from 0.5, the graph becomes skewed. ��

Geometric: The random variable N has a geometric distribution if there is a
number 0 < p < 1 such that the pmf of N can be written as

f (k) = p(1− p)k−1 for k = 1,2, · · · . (1.11)

Then,

E[N] =
1
p

; V [N] =
1− p

p2 ; C2[N] = 1− p.

The idea behind the geometric random variable is that it represents the number of
trials until the first success occurs. In other words, p is thought of as the probability
of success for a single trial, and we continually perform the trials until a success
occurs. The random variable N is then set equal to the number of trial that we had
to perform. Note that although the geometric random variable is discrete, its range
is infinite.

Example 1.9. A car saleswoman has made a statistical analysis of her previous sales
history and determined that each day there is a 50% chance that she will sell a luxury
car. After careful further analysis, it is also clear that a luxury car sale on one day
is independent of the sale (or lack of it) on another day. On New Year’s Day (a
holiday in which the dealership was closed) the saleswoman is contemplating when
she will sell her first luxury car of the year. If N is the random variable indicating
the day of the first luxury car sale (N = 1 implies the sale was on January 2), then
N is distributed according to the geometric distribution with p = 0.5, and its pmf
is shown in Fig. 1.8. Notice that theoretically the random variable has an infinite
range, but for all practical purposes the probability of the random variable being
larger than seven is negligible. ��

Poisson: (By Simeon Denis Poisson, 1781-1840; published in 1837.) The ran-
dom variable N has a Poisson distribution if there is a number λ > 0 such that the
pmf of N can be written as

f (k) =
λ ke−λ

k!
for k = 0,1, · · · . (1.12)

Then,
E[N] = λ ; V [N] = λ ; C2[N] = 1/λ .
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The Poisson distribution is the most important discrete distribution in stochastic
modeling. It arises in many different circumstances. One use is as an approximation
to the binomial distribution. For n large and p small, the binomial is approximated
by the Poisson by setting λ = np. For example, suppose we have a box of 144
eggs and there is a 1% probability that any one egg will break. Assuming that the
breakage of eggs is independent of other eggs breaking, the probability that exactly 3
eggs will be broken out of the 144 can be determined using the binomial distribution
with n = 144, p = 0.01, and k = 3; thus

144!
141!3!

(0.01)3(0.99)141 = 0.1181 ,

or by the Poisson approximation with λ = 1.44 that yields

(1.44)3e−1.44

3!
= 0.1179 .

In 1898, L. V. Bortkiewicz [7, p. 206] reported that the number of deaths due
to horse-kicks in the Prussian army was a Poisson random variable. Although this
seems like a silly example, it is very instructive. The reason that the Poisson distri-
bution holds in this case is due to the binomial approximation feature of the Poisson.
Consider the situation: there would be a small chance of death by horse-kick for any
one person (i.e., p small) but a large number of individuals in the army (i.e., n large).
There are many analogous situations in modeling that deal with large populations
and a small chance of occurrence for any one individual within the population. In
particular, arrival processes (like arrivals to a bus station in a large city) can often be
viewed in this fashion and thus described by a Poisson distribution. Another com-
mon use of the Poisson distribution is in population studies. The population size of
a randomly growing organism often can be described by a Poisson random variable.
W. S. Gosset, using the pseudonym of Student, showed in 1907 that the number
of yeast cells in 400 squares of haemocytometer followed a Poisson distribution.
Radioactive emissions are also Poisson as indicated in Example 1.2. (Fig. 1.4 also
shows the Poisson pmf.)

Many arrival processes are well approximated using the Poisson probabilities.
For example, the number of arriving telephone calls to a switchboard during a spec-
ified period of time, or the number of arrivals to a teller at a bank during a fixed
period of time are often modeled as a Poisson random variable. Specifically, we say
that an arrival process is a Poisson process with mean rate λ if arrivals occur one-
at-a-time and the number of arrivals during an interval of length t is given by the
random variable Nt where

Pr{Nt = k}=
(λ t)ke−λ t

k!
for k = 0,1, · · · . (1.13)

Uniform-Continuous: The random variable X has a continuous uniform distri-
bution if there are two numbers a and b with a < b such that the pdf of X can be
written as
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Fig. 1.9 The probability density function and cumulative distribution function for a continuous
uniform distribution between 1 and 3

f (s) =
{ 1

b−a for a≤ s≤ b
0 otherwise .

(1.14)

Then its cumulative probability distribution is given by

F(s) =

⎧

⎨

⎩

0 for s < a
s−a
b−a for a≤ s < b
1 for s≥ b ,

and

E[X ] =
a+b

2
; V [X ] =

(b−a)2

12
; C2[X ] =

(b−a)2

3(a+b)2 .

The graphs for the pdf and CDF of the continuous uniform random variables are
the simplest of the continuous distributions. As shown in Fig. 1.9, the pdf is a rect-
angle and the CDF is a “ramp” function.

Exponential: The random variable X has an exponential distribution if there is a
number λ > 0 such that the pdf of X can be written as

f (s) =
{

λe−λ s for s≥ 0
0 otherwise .

(1.15)

Then its cumulative probability distribution is given by

F(s) =
{

0 for s < 0,

1− e−λ s for s≥ 0;

and

E[X ] =
1
λ

; V [X ] =
1

λ 2 ; C2[X ] = 1 .

The exponential distribution is an extremely common distribution in probabilis-
tic modeling. One very important feature is that the exponential distribution is the
only continuous distribution that contains no memory. Specifically, an exponential
random variable X is said to be memoryless if

Pr{X > t + s|X > t}= Pr{X > s} . (1.16)
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Fig. 1.10 Exponential CDF
(solid line) and pdf (dashed
line) with a mean of 1
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That is if, for example, a machine’s failure time is due to purely random events
(like voltage surges through a power line), then the exponential random variable
would properly describe the failure time. However, if failure is due to the wear
out of machine parts, then the exponential distribution would not be suitable (see
Problem 1.24).

As a result of this lack of memory, a very important characteristic is that if the
number of events within an interval of time are according to a Poisson random vari-
able, then the time between events is exponential (and vice versa). Specifically, if an
arrival process is a Poisson process (Eq. 1.13) with mean rate λ , the times between
arrivals are governed by an exponential distribution with mean 1/λ . Furthermore,
if an arrival process is such that the times between arrivals are exponentially dis-
tributed with mean 1/λ , the number of arrivals in an interval of length t is a Poisson
random variable with mean λ t.

Example 1.10. A software company has received complaints regarding their respon-
siveness for customer service. They have decided to analyze the arrival pattern of
phone calls to customer service and have determined that the arrivals form a Poisson
process with a mean of 120 calls per hour. Since a characteristic of a Poisson process
is exponentially distributed inter-arrival times, we know that the distribution of the
time between calls is exponentially distributed with a mean of 0.5 minutes. Thus,
the graphs of the pdf and CDF describing the randomness of inter-arrival times are
shown in Fig. 1.10. ��

Erlang: (Named after the Danish mathematician A. K. Erlang for his extensive
use of it and his pioneering work in queueing theory in the early 1900’s.) The non-
negative random variable X has an Erlang distribution if there is a positive integer
k and a positive number β such that the pdf of X can be written as

f (s) =
k(ks)k−1e−(k/β)s

β k (k−1)!
for s≥ 0 . (1.17)

Then,

E[X ] = β ; V [X ] =
β 2

k
; C2[X ] =

1
k

.
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Fig. 1.11 Two Erlang proba-
bility density functions with
mean 1 and shape parameters
k = 2 (solid line) and k = 10
(dashed line)
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Note that the constant β is often called the scale factor because changing its value is
equivalent to either stretching or compressing the x-axis, and the constant k is often
called the shape parameter because changing its value changes the shape of the pdf.

The usefulness of the Erlang is due to the fact that an Erlang random variable
with parameters k and β is the sum of k (independent) exponential random vari-
ables each with mean β/k. In modeling process times, the exponential distribution
is often inappropriate because the standard deviation is as large as the mean. Engi-
neers usually try to design systems that yield a standard deviation of process times
significantly smaller than their mean. Notice that for the Erlang distribution, the
standard deviation decreases as the square root of the parameter k increases so that
processing times with a small standard deviation can often be approximated by an
Erlang random variable.

Figure 1.11 illustrates the effect of the parameter k by graphing the pdf for a
type-2 Erlang and a type-10 Erlang. (The parameter k establishes the “type” for the
Erlang distribution.) Notice that a type-1 Erlang is an exponential random variable
so its pdf would have the form shown in Fig. 1.10.

Gamma: The Erlang distribution is part of a larger class of nonnegative ran-
dom variables called gamma random variables. It is a common distribution used to
describe process times and has two parameters: a shape parameter, α , and a scale
parameter, β . A shape parameter is so named because varying its value results in
different shapes for the pdf. Varying the scale parameter does not change the shape
of the distribution, but it tends to ”stretch” or ”compress” the x-axis. Before giving
the density function for the gamma, we must define the gamma function because it
is used in the definition of the gamma distribution. The gamma function is defined,
for x > 0, as

Γ (x) =
∫ ∞

0
sx−1e−sds . (1.18)

One useful property of the gamma function is the relationship Γ (x + 1) = xΓ (x),
for x≥ 1. Thus, if x is a positive integer, Γ (x) = (x−1)!. (For some computational
issues, see the appendix to this chapter.) The density function for a gamma random
variable is given by
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Fig. 1.12 Two Weibull prob-
ability density functions with
mean 1 and shape parameters
α = 0.5 (solid line) and α = 2
(dashed line)
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f (s) =
sα−1e−s/β

β α Γ (α)
for s≥ 0 . (1.19)

Then,

E[X ] = βα; V [X ] = β 2α; C2[X ] =
1
α

.

Notice that if it is desired to determine the shape and scale parameters for a gamma
distribution with a known mean and variance, the inverse relationships are

α =
E[X ]2

V [X ]
and β =

E[X ]
α

.

Weibull: In 1939, W. Weibull [2, p. 73] developed a distribution for describing
the breaking strength of various materials. Since that time, many statisticians have
shown that the Weibull distribution can often be used to describe failure times for
many different types of systems. The Weibull distribution has two parameters: a
scale parameter, β , and a shape parameter, α . Its cumulative distribution function is
given by

F(s) =
{

0 for s < 0
1− e−(s/β )α

for s≥ 0 .

Both scale and shape parameters can be any positive number. As with the gamma
distribution, the shape parameter determines the general shape of the pdf (see
Fig. 1.12) and the scale parameter either expands or contracts the pdf. The mo-
ments of the Weibull are a little difficult to express because they involve the gamma
function (1.18). Specifically, the moments for the Weibull distribution are

E[X ] = βΓ (1+
1
α

); E[X2] = β 2Γ (1+
2
α

); E[X3] = β 3Γ (1+
3
α

) . (1.20)

It is more difficult to determine the shape and scale parameters for a Weibull dis-
tribution with a known mean and variance, than it is for the gamma distribution
because the gamma function must be evaluated to determine the moments of a
Weibull. Some computational issues for obtaining the shape and scale parameters
of a Weibull are discussed in the appendix to this chapter.
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Fig. 1.13 Standard normal
pdf (solid line) and CDF
(dashed line)
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When the shape parameter is greater than 1, the shape of the Weibull pdf is uni-
modal similar to the Erlang with its type parameter greater than 1. When the shape
parameter equals 1, the Weibull pdf is an exponential pdf. When the shape parameter
is less than 1, the pdf is similar to the exponential except that the graph is asymp-
totic to the y-axis instead of hitting the y-axis. Figure 1.12 provides an illustration
of the effect that the shape parameter has on the Weibull distribution. Because the
mean values were held constant for the two pdf’s shown in the figure, the value for
β varied. The pdf plotted with a solid line in the figure has β = 0.5 that, together
with α = 0.5, yields a mean of 1 and a standard deviation of 2.236; the dashed line
is pdf that has β = 1.128 that, together with α = 2, yields a mean of 1 and a standard
deviation 0.523.

Normal: (Discovered by A. de Moivre, 1667-1754, but usually attributed to Karl
Gauss, 1777-1855.) The random variable X has a normal distribution if there are
two numbers μ and σ with σ > 0 such that the pdf of X can be written as

f (s) =
1

σ
√

2π
e−(s−μ)2/(2σ 2) for −∞ < s < ∞ . (1.21)

Then,

E[X ] = μ ; V [X ] = σ 2; C2[X ] =
σ 2

μ2 .

The normal distribution is the most common distribution recognized by most
people by its “bell shaped” curve. Its pdf and CDF are shown in Fig. 1.13 for a
normally distributed random variable with mean zero and standard deviation one.

Although the normal distribution is not widely used in stochastic modeling, it
is, without question, the most important distribution in statistics. The normal dis-
tribution can be used to approximate both the binomial and Poisson distributions.
A common rule-of-thumb is to approximate the binomial whenever n (the number
of trials) is larger than 30. If np < 5, then use the Poisson for the approximation
with λ = np. If np≥ 5, then use the normal for the approximation with μ = np and
σ2 = np(1− p). Furthermore, the normal can be used to approximate the Poisson
whenever λ > 30. When using a continuous distribution (like the normal) to approx-
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imate a discrete distribution (like the Poisson or binomial), the interval between the
discrete values is usually split halfway. For example, if we desire to approximate
the probability that a Poisson random variable will take on the values 29, 30, or
31 with a continuous distribution, then we would determine the probability that the
continuous random variable is between 28.5 and 31.5.

Example 1.11. The software company mentioned in the previous example has de-
termined that the arrival process is Poisson with a mean arrival rate of 120 per hour.
The company would like to know the probability that in any one hour 140 or more
calls arrive. To determine that probability, let N be a Poisson random variable with
λ = 120, let X be a random variable with μ = σ 2 = 120 and let Z be a standard
normal random variable (i.e., Z is normal with mean 0 and variance 1). The above
question is answered as follows:

Pr{N ≥ 140} ≈ Pr{X > 139.5}
= Pr{Z > (139.5−120)/10.95}
= Pr{Z > 1.78}= 1−0.9625 = 0.0375 .

��
The importance of the normal distribution is due to its property that sample

means from almost any practical distribution will limit to the normal; this prop-
erty is called the Central Limit Theorem. We state this property now even though it
needs the concept of statistical independence that is not yet defined. However, be-
cause the idea should be somewhat intuitive, we state the property at this point since
it is so central to the use of the normal distribution.

Property 1.5. Central Limit Theorem. Let {X1,X2, · · · ,Xn } be a sequence
of n independent random variables each having the same distribution with
mean μ and (finite) variance σ 2, and define

X =
X1 +X2 + · · ·+Xn

n
.

Then, the distribution of the random variable Z defined by

Z =
X−μ
σ/
√

n

approaches a normal distribution with zero mean and standard deviation of
one as n gets large.

Log Normal: The final distribution that we briefly mention is based on the nor-
mal distribution. Specifically, if X is a normal random variable with mean μN and
variance σ2

N , the random variable Y = eX is called a log-normal random variable
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with mean μL and variance σ 2
L . (Notice that the name arrises because the random

variable defined by the natural log of Y ; namely ln(Y ), is normally distributed.) This
distribution is always non-negative and can have a relatively large right-hand tail.
It is often used for modeling repair times and also for modeling many biological
characteristics. It is not difficult to obtain the mean and variance of the log-normal
distribution from the characteristics of the normal:

μL = eμN+ 1
2 σ2

N , and σ 2
L = μ2

L× (eσ2
N −1) . (1.22)

Because the distribution is skewed to the right (long right-hand tail), the mean is
to the right of the mode which is given by eμN−σ2

N . If the mean and variance of the
log-normal distribution is known, it is straight forward to obtain the characteristics
of the normal random variable that generates the log-normal, specifically

σ2
N = ln(c2

L +1) , and μN = ln(μL )− 1
2

σ 2
N , (1.23)

where the squared coefficient of variation is given by c2
L = σ 2

L/μ2
L .

Skewness: Before moving to the discussion of more than one random variable,
we mention an additional descriptor of distributions. The first moment gives the
central tendency for random variables, and the second moment is used to measure
variability. The third moment, that was not discussed previously, is useful as a mea-
sure of skewness (i.e., non-symmetry). Specifically, the coefficient of skewness, ν ,
for a random variable T with mean μ and standard deviation σ is defined by

ν =
E[(T −μ)3]

σ 3 , (1.24)

and the relation to the other moments is

E[(T −μ)3] = E[T 3]−3μE[T 2]+2μ3 .

A symmetric distribution has ν = 0; if the mean is to the left of the mode, ν < 0
and the left-hand side of the distribution will have the longer tail; if the mean is to
the right of the mode, ν > 0 and the right-hand side of the distribution will have
the longer tail. For example, ν = 0 for the normal distribution, ν = 2 for the ex-
ponential distribution, ν = 2/

√
k for a type-k Erlang distribution, and for a gamma

distribution, we have ν = 2/
√

α . The Weibull pdf’s shown in Fig. 1.12 have skew-
ness coefficients of 3.9 and 0.63, respectively, for the solid line figure and dashed
line graphs. Thus, the value of ν can help complete the intuitive understanding of a
particular distribution.

• Suggestion: Do Problems 1.15–1.19.
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Fig. 1.14 Probability mass
function for the two discrete
random variables from Exam-
ple 1.12
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1.5 Multivariate Distributions

The analysis of physical phenomena usually involves many distinct random vari-
ables. In this section we discuss the concepts involved when two random variables
are defined. The extension to more than two is left to the imagination of the reader
and the numerous textbooks that have been written on the subject.

Definition 1.12. The function F is called the joint cumulative distribution function
for X1 and X2 if

F(a,b) = Pr{X1 ≤ a,X2 ≤ b}
for a and b any two real numbers.

In a probability statement as in the right-hand-side of the above equation, the
comma means intersection of events and is read as “The probability that X1 is less
than or equal to a and X2 is less than or equal to b”. The initial understanding of
joint probabilities is easiest with discrete random variables.

Definition 1.13. The function f is a joint pmf for the discrete random variables X1

and X2 if
f (a,b) = Pr{X1 = a,X2 = b}

for each (a,b) in the range of (X1,X2).

For the single-variable pmf, the height of the pmf at a specific value gives the
probability that the random variable will equal that value. It is the same for the
joint pmf except that the graph is in three-dimensions. Thus, the height of the pmf
evaluated at a specified ordered pair gives the probability that the random variables
will equal those specified values (Fig. 1.14).

It is sometimes necessary to obtain from the joint pmf the probability of one
random variable without regard to the value of the second random variable.
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Definition 1.14. The marginal pmf for X1 and X2, denoted by f1 and f2, respec-
tively, are

f1(a) = Pr{X1 = a}= ∑
k

f (a,k)

for a in the range of X1, and

f2(b) = Pr{X2 = b}= ∑
k

f (k,b)

for b in the range of X2.

Example 1.12. We return again to Example 1.1 to illustrate these concepts. The ran-
dom variable R will indicate whether a randomly chosen box contains radio phones
or plain phones; namely, if the box contains radio phones then we set R = 1 and
if plain phones then R = 0. Also the random variable N will denote the number of
defective phones in the box. Thus, according to the probabilities defined in Exam-
ple 1.1, the joint pmf,

f (a,b) = Pr{R = a,N = b} ,

has the probabilities as listed in Table 1.1. By summing in the “margins”, we obtain

Table 1.1 Joint probability mass function of Example 1.12

N = 0 N = 1 N = 2
R = 0 0.37 0.08 0.02
R = 1 0.45 0.07 0.01

the marginal pmf for R and N separately as shown in Table 1.2. Thus we see, for

Table 1.2 Marginal probability mass functions of Example 1.12

N = 0 N = 1 N = 2 f1(·)
R = 0 0.37 0.08 0.02 0.47
R = 1 0.45 0.07 0.01 0.53
f2(·) 0.82 0.15 0.03

example, that the probability of choosing a box with radio phones (i.e., Pr{R = 1}) is
53%, the probability of choosing a box of radio phones that has one defective phone
(i.e., Pr{R = 1,N = 1}) is 7%, and the probability that both phones in a randomly
chosen box (i.e., Pr{N = 2}) are defective is 3%. ��

Continuous random variables are treated in an analogous manner to the discrete
case. The major difference in moving from one continuous random variable to two
is that probabilities are given in terms of a volume under a surface instead of an area
under a curve (see Fig. 1.15 for representation of a joint pdf).

Definition 1.15. The functions g, g1, and g2 are the joint pdf for X1 and X2, the
marginal pdf for X1, and the marginal pdf for X2, respectively, as the following
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Fig. 1.15 Probability density
function for the two contin-
uous random variables from
Example 1.13
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hold:

Pr{a1 ≤ X1 ≤ b1,a2 ≤ X2 ≤ b2} =
∫ b2

a2

∫ b1

a1

g(s1,s2)ds1ds2

g1(a) =
∫ ∞

−∞
g(a,s)ds

g2(b) =
∫ ∞

−∞
g(s,b)ds ,

where

Pr{a≤ X1 ≤ b} =
∫ b

a
g1(s)ds

Pr{a≤ X2 ≤ b} =
∫ b

a
g2(s)ds .

We return now to the concept of conditional probabilities (Definition 1.3). The
situation often arises in which the experimentalist has knowledge regarding one
random variable and would like to use that knowledge in predicting the value of the
other (unknown) random variable. Such predictions are possible through conditional
probability functions

Definition 1.16. Let f be a joint pmf for the discrete random variables X1 and X2

with f2 the marginal pmf for X2. Then the conditional pmf for X1 given that X2 = b
is defined, if Pr{X2 = b} �= 0, to be

f1|b(a) =
f (a,b)
f2(b)

,

where
Pr{X1 = a|X2 = b}= f1|b(a) .
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Definition 1.17. Let g be a joint pdf for continuous random variables X1 and X2

with g2 the marginal pdf for X2. Then the conditional pdf for X1 given that X2 = b
is defined to be

g1|b(a) =
g(a,b)
g2(b)

,

where

Pr{a1 ≤ X1 ≤ a2|X2 = b}=
∫ a2

a1

g1|b(s)ds .

The conditional statements for X2 given a value for X1 are made similarly to
Definitions 1.16 and 1.17 with the subscripts reversed. These conditional statements
can be illustrated by using Example 1.12. It has already been determined that the
probability of having a box full of defective phones is 3%; however, let us assume
that it is already known that we have picked a box of radio phones. Now, given a
box of radio phones, the probability of both phones being defective is

f2|a=1(2) =
f (1,2)
f1(1)

=
0.01
0.53

= 0.0189 ;

thus, knowledge that the box consisted of radio phones enabled a more accurate
prediction of the probabilities that both phones were defective. Or to consider a
different situation, assume that we know the box has both phones defective. The
probability that the box contains plain phones is

f1|b=2(0) =
f (0,2)
f2(2)

=
0.02
0.03

= 0.6667 .

Example 1.13. Let X and Y be two continuous random variables with joint pdf given
by

f (x,y) =
4
3
(x3 + y) for 0≤ x≤ 1,0≤ y≤ 1 .

Utilizing Definition 1.15, we obtain

f1(x) =
4
3
(x3 +0.5) for 0≤ x≤ 1

f2(y) =
4
3
(y+0.25) for 0≤ y≤ 1 .

To find the probability that Y is less than or equal to 0.5, we perform the following
steps:

Pr{Y ≤ 0.5} =
∫ 0.5

0
f2(y)dy

=
4
3

∫ 0.5

0
(y+0.25)dy =

1
3

.
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To find the probability that Y is less than or equal to 0.5 given we know that X = 0.1,
we perform

Pr{Y ≤ 0.5|X = 0.1} =
∫ 0.5

0
f2|0.1(y)dy

=
∫ 0.5

0

0.13 + y
0.13 +0.5

dy

=
0.1255
0.501

≈ 1
4

.

��
Example 1.14. Let U and V be two continuous random variables with joint pdf given
by

g(u,v) = 8u3v for 0≤ u≤ 1,0≤ v≤ 1 .

The marginal pdf’s are

g1(u) = 4u3 for 0≤ u≤ 1
g2(v) = 2v for 0≤ v≤ 1 .

The following two statements are easily verified.

Pr{0.1≤V ≤ 0.5}=
∫ 0.5

0.1
2vdv = 0.24

Pr{0.1≤V ≤ 0.5|U = 0.1}= 0.24 .

��
The above example illustrates independence. Notice in the example that knowl-

edge of the value of U did not change the probabilities regarding the probability
statement of V .

Definition 1.18. Let f be the joint probability distribution (pmf if discrete and pdf
if continuous) of two random variables X1 and X2. Furthermore, let f1 and f2 be the
marginals for X1 and X2, respectively. If

f (a,b) = f1(a) f2(b)

for all a and b, then X1 and X2 are called independent.

Independent random variables are much easier to work with because of their
separability. However, in the use of the above definition, it is important to test the
property for all values of a and b. It would be easy to make a mistake by stopping
after the equality was shown to hold for only one particular pair of a,b values. Once
independence has been shown, the following property is very useful.



1.5 Multivariate Distributions 29

Property 1.6. Let X1 and X2 be independent random variables. Then

E[X1X2] = E[X1]E[X2]

and
V [X1 +X2] = V [X1]+V [X2] .

Example 1.15. Consider again the random variables R and N defined in Example
1.12. We see from the marginal pmf’s given in that example that E[R] = 0.53 and
E[N] = 0.21. We also have

E[R ·N] = 0×0×0.37+0×1×0.08+0×2×0.02

+1×0×0.45+1×1×0.07+1×2×0.01 = 0.09 .

Thus, it is possible to say that the random variables R and N are not independent
since 0.53× 0.21 �= 0.09. If, however, the expected value of the product of two
random variables equals the product of the two individual expected values, the claim
of independence is not proven. ��

We close this section by giving two final measures that are used to express the
relationship between two dependent random variables. The first measure is called
the covariance and the second measure is called the correlation coefficient.

Definition 1.19. The covariance of two random variables, X1 and X2, is defined by

cov(X1,X2) = E[ (X1−E[X1])(X2−E[X2]) ] .

Property 1.7. The following is often helpful as a computational aid:

cov(X1,X2) = E[X1X2]−μ1μ2 ,

where μ1 and μ2 are the means for X1 and X2, respectively.

Comparing Property 1.6 to Property 1.7, it should be clear that random variables
that are independent have zero covariance. However, it is possible to obtain random
variables with zero covariance that are not independent. (See Example 1.17 below.)
A principle use of the covariance is in the definition of the correlation coefficient,
that is a measure of the linear relationship between two random variables.

Definition 1.20. Let X1 be a random variable with mean μ1 and variance σ 2
1 . Let X2

be a random variable with mean μ2 and variance σ 2
2 . The correlation coefficient ,

denoted by ρ , of X1 and X2 is defined by
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ρ =
cov(X1,X2)
√

V (X1)V (X1)
=

E[X1X2]−μ1μ2

σ1σ2
.

The correlation coefficient is always between negative one and positive one. A
negative correlation coefficient indicates that if one random variable happens to be
large, the other random variable is likely to be small. A positive correlation coef-
ficient indicates that if one random variable happens to be large, the other random
variable is also likely to be large. The following examples illustrate this concept.

Example 1.16. Let X1 and X2 denote two discrete random variables, where X1 ranges
from 1 to 3 and X2 ranges from 10 to 30. Their joint and marginal pmf’s are given
in Table 1.3.

Table 1.3 Marginal probability mass functions of Example 1.16

X2 = 10 X2 = 20 X2 = 30 f1(·)
X1 = 1 0.28 0.08 0.04 0.4
X1 = 2 0.04 0.12 0.04 0.2
X1 = 3 0.04 0.08 0.28 0.4

f2(·) 0.36 0.28 0.36

The following facts should not be difficult to verify: μ1 = 2.0, σ 2
1 = 0.8, μ2 =

20.0, σ2
2 = 72.0, and E[X1X2] = 44.8. Therefore the correlation coefficient of X1 and

X2 is given by

ρ =
44.8−2×20√

0.8×72
= 0.632 .

The conditional probabilities will help verify the intuitive concept of a positive cor-
relation coefficient. Figure 1.16 contains a graph illustrating the conditional prob-
abilities of X2 given various values of X1; the area of each circle in the figure is
proportional to the conditional probability. Thus, the figure gives a visual represen-
tation that as X1 increases, it is likely (but not necessary) that X2 will increase. For
example, the top right-hand circle represents Pr{X2 = 30|X1 = 3} = 0.7, and the
middle right-hand circle represents Pr{X2 = 20|X1 = 3}= 0.2.

As a final example, we switch the top and middle right-hand circles in Fig. 1.16
so that the appearance is not so clearly linear. (That is, let Pr{X1 = 3,X2 = 20} =
0.28, Pr{X1 = 3,X2 = 30} = 0.08, and all other probabilities the same.) With this
change, μ1 and σ 2

1 remain unchanged, μ2 = 18, σ2
2 = 48.0, cov(X1,X2) = 2.8 and

the correlation coefficient is ρ = 0.452. Thus, as the linear relationship between X1

and X2 weakens, the value of ρ becomes smaller. ��
If the random variables X and Y have a linear relationship (however “fuzzy”),

their correlation coefficient will be non-zero. Intuitively, the square of the corre-
lation coefficient, ρ2, indicates that amount of variability that is due to that linear
relationship. For example, suppose that the correlation between X and Y is 0.8 so
that ρ2 = 0.64. Then 64% of the variability in Y is due the variability of X through
their linear relationship.
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Fig. 1.16 Graphical rep-
resentation for conditional
probabilities of X2 given X1
from Example 1.16, where
the correlation coefficient is
0.632 10
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Fig. 1.17 Graphical rep-
resentation for conditional
probabilities of X2 given X1
from Example 1.17, where the
correlation coefficient is zero
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Example 1.17. Let X1 and X2 denote two discrete random variables, where X1 ranges
from 1 to 3 and X2 ranges from 10 to 30. Their joint and marginal pmf’s are given
in Table 1.4.

Table 1.4 Marginal probability mass functions of Example 1.17

X2 = 10 X2 = 20 X2 = 30 f1(·)
X1 = 1 0.28 0.08 0.04 0.4
X1 = 2 0.00 0.02 0.18 0.2
X1 = 3 0.28 0.08 0.04 0.4

f2(·) 0.56 0.18 0.26

Again, we give the various measures and allow the reader to verify their accuracy:
μ1 = 2, μ2 = 17, and E[X1X2] = 34. Therefore the correlation coefficient of X1 and
X2 is zero so there is no linear relation between X1 and X2; however, the two random
variables are clearly dependent. If X1 is either one or three, then the most likely value
of X2 is 10; whereas, if X1 is 2, then it is impossible for X2 to have the value of 10;
thus, the random variables must be dependent. If you observe the representation of
the conditional probabilities in Fig. 1.17, then the lack of a linear relationship is
obvious. ��
• Suggestion: Do Problems 1.21–1.26.
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1.6 Combinations of Random Variables

This probability review is concluded with a discussion of a problem type that will be
frequently encountered in the next several chapters; namely, combinations of ran-
dom variables. The properties of the sum of a fixed number of random variables is
a straightforward generalization of previous material; however when the sum has a
random number of terms, an additional variability factor must be taken into account.
The final combination discussed in this section is called a mixture of random vari-
ables. An example of a mixture is the situation where the random processing time
at a machine will be from different probability distributions based on the (random)
product type being processed. Each of these three combinations of random variables
are considered in turn.

1.6.1 Fixed Sum of Random Variables

Consider a collection of n random variables, X1,X2, · · · ,Xn and let their sum be
denoted by S; namely,

S =
n

∑
i=1

Xi . (1.25)

By a generalization of Property 1.3, we have

E[S] = E[X1 +X2 + · · ·+Xn]
= E[X1]+E[X2]+ · · ·+E[Xn] . (1.26)

Note that (1.26) is valid even if the random variables are not independent.
The variance of the random variable S is obtained in a similar manner to the

expected value

V [S] = E[(S−E[S])2]
= E[S2]−E[S]2

= E[(X1 +X2 + · · ·+Xn)2]− (E[X1]+E[X2]+ · · ·+E[Xn])2

=
n

∑
i=1

E[X2
i ]+2

n

∑
i=1

n

∑
j>i

E[XiXj]− (E[X1]+E[X2]+ · · ·+E[Xn])2

=
n

∑
i=1

(

E[X2
i ]−E[Xi]2

)

+2
n

∑
i=1

n

∑
j>i

(E[XiXj]−E[Xi]E[Xj])

=
n

∑
i=1

V [Xi]+2
n

∑
i=1

n

∑
j>i

cov[Xi,Xj] . (1.27)
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Notice that when the random variables are pair-wise independent, i.e., Xi and Xj are
independent for all i and j, then E[XiXj] = E[Xi]E[Xj] and Property 1.6 is general-
ized indicating that the variance of the sum of n independent random variables is the
sum of the individual variances. In addition, when X1, · · · ,Xn are independent and
identically distributed (called i.i.d.), we have that

E[S] = nE[X1] (1.28)

V [S] = nV [X1] .

1.6.2 Random Sum of Random Variables

Before discussing the random sum of random variables, we need a property of con-
ditional expectations. For this discussion we follow the development in [4] in which
these properties are developed assuming discrete random variables because the dis-
crete case is more intuitive than the continuous case. (Although the development
below only considers the discrete case, our main result — given as Property 1.8 —
is true for both discrete and continuous random variables.)

Let Y and X be two random variables. The conditional probability that the ran-
dom variable Y takes on a value b given that the random variable X takes the value
a is written as

Pr{Y = b|X = a}=
Pr{Y = b,X = a}

Pr{X = a} , if Pr{X = a} �= 0

(see Definition 1.16). Thus, the conditional expectation of Y given that X = a
changes as the value a changes so it is a function, call it g, of a; namely,

E[Y |X = a] = ∑
b

bPr{Y = b|X = a}= g(a) .

Hence, the conditional expectation of Y given X is a random variable since it de-
pends on the value of X , expressed as

E[Y |X ] = g(X) . (1.29)

Taking the expectation on both sides of (1.29), yields the (unconditional) expecta-
tion of Y and gives the following important property.

Property 1.8. Let Y and X be any two random variables with finite expec-
tation. The conditional expectation of Y given X is a random variable with
expectation given by

E [E[Y |X ] ] = E[Y ] .
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Property 1.8 can now be used to obtain the properties of a random sum of random
variables. Let S be defined by

S =
N

∑
i=1

Xi ,

where X1,X2, · · · is a sequence of i.i.d. random variables, and N is a nonnegative
discrete random variable independent of each Xi. (When N = 0, the random sum is
interpreted to be zero.) For a fixed n, Eq. (1.28) yields

E

[

N

∑
i=1

Xi|N = n

]

= nE[X1] , thus

E

[

N

∑
i=1

Xi|N
]

= NE[X1] .

The expected value of the random sum can be derived from the above result using
Property 1.8 regarding conditional expectations as follows:

E[S] = E

[

E

[

N

∑
i=1

Xi|N
]]

= E[NE[X1] ]
= E[N]E[X1] .

Note that the final equality in the above arises using Property 1.6 regarding inde-
pendence and the fact that each random variable in an i.i.d. sequence has the same
mean.

We obtain the variance of the random variable S in a similar fashion, using V [S] =
E[S2]−E[S]2 but we shall leave its derivation for homework with some hints (see
Problem 1.29). Thus, we have the following property:

Property 1.9. Let X1,X2, · · · be a sequence of i.i.d. random variables where
for each i, E[Xi] = μ and V [Xi] = σ 2. Let N be a nonnegative discrete random
variable independent of the i.i.d. sequence, and let S = ∑N

i=1 Xi. Then

E[S] = μE[N]
V [S] = σ 2E[N]+ μ2V [N] .

Notice that the squared coefficient of variation of the random sum can also be easily
written as

C2[S] = C2[N]+
C2[X ]
E[N]

, where C2[X ] =
σ 2

μ2 .
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1.6.3 Mixtures of Random Variables

The final type of random variable combination that we consider is a mixture of ran-
dom variables. For example, consider two products processed on the same machine,
where the two product types have different processing characteristics. Specifically,
let X1 and X2 denote the random processing times for types 1 and 2, respectively, and
then let T denote the processing time for an arbitrarily chosen part. The processing
sequence will be assumed to be random with p1 and p2 being the probability that
type 1 and type 2, respectively, are to be processed. In other words, T will equal X1

with probability p1 and T will equal X2 with probability p2. Intuitively, we have the
following relationship.

T =
{

X1 with probability p1,
X2 with probability 1− p1 .

Thus, T is said to be a mixture of X1 and X2. In generalizing this concept, we have
the following definition.

Definition 1.21. Let X1, · · · ,Xn be a sequence of independent random variables and
let I be a positive discrete random variable with range 1, · · · ,n independent of the
X1, · · · ,Xn sequence. The random variable T is called a mixture of random variables
with index I if it can be written as

T = XI .

Making use of Property 1.8, it should not be too difficult to show the following
property.

Property 1.10. Let T be a mixture of X1, · · · ,Xn where the mean of Xi is μi

and variance of Xi is σ2
i . Then

E[T ] =
n

∑
i=1

piμi

E[T 2] =
n

∑
i=1

pi
(

σ 2
i + μ2

i

)

,

where Pr{I = i}= pi are the probabilities associated with the index.

Notice that the above property gives the first and second moment, not the variance
directly. If the variance is desired, the equation V [T ] = E[T 2]−E[T ]2 must be used.

• Suggestion: Do Problems 1.27–1.31.
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Appendix

In this appendix, two numerical problems are discussed: the computation of the
gamma function (Eq. 1.18) and the determination of the shape and scale parameters
for the Weibull distribution. We give suggestions for those using Microsoft Excel
and those who are interested in doing the computations within a programming en-
vironment.

The gamma function: For Microsoft Excel users, the gamma function is eval-
uated by first obtaining the natural log of the function since Excel provides an
automatic function for the log of the gamma instead of the gamma function it-
self. For example, to obtain the gamma function evaluated at 1.7, use the formula
"=EXP(GAMMALN(1.7))". This yields a value of 0.908639.

For programmers who need the gamma function, there are some good approxi-
mations are available. A polynomial approximation taken from [5, p. 155] is

Γ (1+ x)≈ 1+a1x +a2x2 + · · ·+a5x5 for 0≤ x≤ 1, (1.30)

where the constants are a1 =−0.5748646, a2 = 0.9512363, a3 =−0.6998588, a4 =
0.4245549, and a5 =−0.1010678. (Or if you need additional accuracy, an eight term
approximation is also available in [5] or [1, p. 257].) If it is necessary to evaluate
Γ (x) for x < 1 then use the relationship

Γ (x) =
1
x

Γ (1+ x) . (1.31)

If it is necessary to evaluate Γ (n+x) for n > 1 and 0≤ x≤ 1, then use the relation-
ship:

Γ (n+ x) = (n−1+ x)(n−2+ x) · · ·(1+ x)Γ (1+ x) . (1.32)

Example 1.18. Suppose we wish to compute Γ (0.7). The approximation given
by (1.30), yields a result of Γ (1.7) = 0.9086. Applying (1.31) yields Γ (0.7) =
0.9086/0.7 = 1.298. Now suppose that we wish to obtain the gamma function eval-
uated at 5.7. From (1.32), we have Γ (5.7) = 4.7×3.7×2.7×1.7×0.9086 = 72.52.

��
Weibull parameters: The context for this section is that we know the first two

moments of a Weibull distribution (1.20) and would like to determine the shape and
scale parameters. Notice that the SCV can be written as C2[X ] = E[X2]/(E[X ])2−1;
thus, the shape parameter is the value of α that satisfies

C2[X ]+1 =
Γ (1+2/α)

(Γ (1+1/α))2 , (1.33)

and the scale parameter is then determined by

β =
E[X ]

Γ (1+1/α)
(1.34)
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Example 1.19. Suppose we would like to find the parameters of the Weibull random
variable with mean 100 and standard deviation 25. We first note that C2[X ] + 1 =
1.0625. We then fill in a spreadsheet with the following values and formulas.

A B
1 mean 100
2 st.dev. 25
3 alpha-guess 1
4 first moment term =EXP(GAMMALN(1+1/B3))
5 second moment term =EXP(GAMMALN(1+2/B3))
6 ratio, Eq. (1.31) = B5/(B4*B4)
7 difference =1+B2*B2/(B1*B1)-B6
8 beta-value =B1/B4

The GoalSeek tool (found under the “Tools” menu in Excel 2003 and under the
“What-If” button on the Data Tab for Excel 2007) is ideal for solving (1.33). When
GoalSeek is clicked, a dialog box appears with three parameters. For the above
spreadsheet, the “Set cell” parameter is set to B7, the “To value” parameter is set to
0, and the “By changing cell” parameter is set to B3. The results should be that the
B3 cell is changed to 4.5 and the B8 cell is changed to 109.6. ��

Problems

1.1. A manufacturing company ships (by truckload) its product to three different
distribution centers on a weekly basis. Demands vary from week to week ranging
over 0, 1, and 2 truckloads needed at each distribution center. Conceptualize an
experiment where a week is selected and then the number of truckloads demanded
at each of the three centers are recorded.
(a) Describe the sample space, i.e., list all outcomes.
(b) How many possible different events are there?
(c) Write the event that represents a total of three truckloads are needed for the week.
(d) If each event containing a single outcome has the same probability, what is the
probability that a total demand for three truckloads will occur?

1.2. A library has classified its books into fiction and nonfiction. Furthermore, all
books can also be described as hardback and paperback. As an experiment, we shall
pick a book at random and record whether it is fiction or nonfiction and whether it
is paperback or hardback.
(a) Describe the sample space, i.e., list all outcomes.
(b) Describe the event space, i.e., list all events.
(c) Define a probability measure such that the probability of picking a nonfiction
paperback is 0.15, the probability of picking a nonfiction book is 0.30, and the prob-
ability of picking a fiction hardback is 0.65.
(d) Using the probabilities from part (c), find the probability of picking a fiction
book given that the book chosen is known to be a paperback.
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1.3. Let N be a random variable describing the number of defective items in a box
from Example 1.1. Draw the graph for the cumulative distribution function of N and
give its pmf.

1.4. Let X be a random variable with cumulative distribution function given by

G(a) =

⎧

⎨

⎩

0 for a < 0,
a2 for 0≤ a < 1,
1 for a≥ 1.

.

(a) Give the pdf for X .
(b) Find Pr{X ≥ 0.5}.
(c) Find Pr{0.5 < X ≤ 0.75}.
(d) Let X1 and X2 be independent random variables with their CDF given by G(·).
Find Pr{X1 +X2 ≤ 1}.
1.5. Let T be a random variable with pdf given by

f (t) =
{

0 for t < 0.5,

ke−2(t−0.5) for t ≥ 0.5.
.

(a) Find k.
(b) Find Pr{0.25≤ T ≤ 1}.
(c) Find Pr{T ≤ 1.5}.
(d) Give the cumulative distribution function for T .
(e) Let the independent random variables T1 and T2 have their pdf given by f (·).
Find Pr{1≤ T1 +T2 ≤ 2}.
(f) Let Y = X + T , where X is independent of T and is defined by the previous
problem. Give the pdf for Y .

1.6. Let U be a random variable with pdf given by

h(u) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for u < 0,
u for 0≤ u < 1,

2−u for 1≤ u < 2,
0 for u≥ 2.

.

(a) Find Pr{0.5 < U < 1.5}.
(b) Find Pr{0.5≤U ≤ 1.5}.
(c) Find Pr{0 ≤U ≤ 1.5, 0.5 ≤U ≤ 2}. (A comma acts as an intersection and is
read as an “and”.)
(d) Give the cumulative distribution function for U and calculate Pr{U ≤ 1.5}−
Pr{U ≤ 0.5}.
1.7. An independent roofing contractor has determined that the number of jobs ob-
tained for the month of September varies. From previous experience, the probabil-
ities of obtaining 0, 1, 2, or 3 jobs have been determined to be 0.1, 0.35, 0.30, and
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0.25, respectively. The profit obtained from each job is $300. What is the expected
profit and the standard deviation of profit for September?

1.8. There are three investment plans for your consideration. Each plan calls for
an investment of $25,000 and the return will be one year later. Plan A will return
$27,500. Plan B will return $27,000 or $28,000 with probabilities 0.4 and 0.6, re-
spectively. Plan C will return $24,000, $27,000, or $33,000 with probabilities 0.2,
0.5, and 0.3, respectively. If your objective is to maximize the expected return, which
plan should you choose? Are there considerations that might be relevant other than
simply the expected values?

1.9. Let the random variables A,B,C denote the returns from investment plans A,
B, and C, respectively, from the previous problem. What are the mean and standard
deviations of the three random variables?

1.10. Let N be a random variable with cumulative distribution function given by

F(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 for x < 1,
0.2 for 1≤ x < 2,
0.5 for 2≤ x < 3,
0.8 for 3≤ x < 4,
1 for x≥ 4.

Find the mean and standard deviation of N.

1.11. Prove that the E[(X − μ)2] = E[X2]− μ2 for any random variable X whose
mean is μ .

1.12. Find the mean and standard deviation for X as defined in Problem 1.4.

1.13. Show using integration by parts that

E[X ] =
∫ b

0
[1−F(x)]dx, for 0≤ a≤ x≤ b ,

where F is the CDF of a random variable with support on the interval [a,b] with
a ≥ 0. Note that the lower integration limit is 0 not a. (A random variable is zero
outside its interval of support.)

1.14. Find the mean and standard deviation for U as defined in Problem 1.6. Also,
find the mean and standard deviation using the last two properties mentioned in
Property 1.4.

Use the appropriate distribution from Sect. 1.4 to answer the questions in Prob-
lems 1.15–1.19.

1.15. A manufacturing company produces parts, 97% of which are within specifi-
cations and 3% are defective (outside specifications). There is apparently no pattern
to the production of defective parts; thus, we assume that whether or not a part is
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defective is independent of other parts.
(a) What is the probability that there will be no defective parts in a box of 5?
(b) What is the probability that there will be exactly 2 defective parts in a box of 5?
(c) What is the probability that there will be 2 or more defective parts in a box of 5?
(d) Use the Poisson distribution to approximate the probability that there will be 4
or more defective parts in a box of 40.
(e) Use the normal distribution to approximate the probability that there will be 20
or more defective parts in a box of 400.

1.16. A store sells two types of tables: plain and deluxe. When an order for a table
arrives, there is an 80% chance that the plain table will be desired.
(a) Out of 5 orders, what is the probability that no deluxe tables will be desired?
(b) Assume that each day 5 orders arrive and that today (Monday) an order came
for a deluxe table. What is the probability that the first day in which one or more
deluxe tables are again ordered will be in three more days (Thursday)? What is the
expected number of days until a deluxe table is desired?
(c) Actually, the number of orders each day is a Poisson random variable with a
mean of 5. What is the probability that exactly 5 orders will arrive on a given day?

1.17. A vision system is designed to measure the angle at which the arm of a robot
deviates from the vertical; however, the vision system is not totally accurate. The
results from observations is a continuous random variable with a uniform distribu-
tion. If the measurement indicates that the range of the angle is between 9.7 and
10.5 degrees, what is the probability that the actual angle is between 9.9 and 10.1
degrees?

1.18. The dispatcher at a central fire station has observed that the time between calls
is an exponential random variable with a mean of 32 minutes.
(a) A call has just arrived. What is the probability that the next call will arrive within
the next half hour.
(b) What is the probability that there will be exactly two calls during the next hour?

1.19. In an automated soldering operation, the location at which the solder is placed
is very important. The deviation from the center of the board is a normally dis-
tributed random variable with a mean of 0 inches and a standard deviation of 0.01
inches. (A positive deviation indicates a deviation to the right of the center and a
negative deviation indicates a deviation to the left of the center.)
(a) What is the probability that on a given board the actual location of the solder
deviated by less than 0.005 inches (in absolute value) from the center?
(b) What is the probability that on a given board the actual location of the solder
deviated by more than 0.02 inches (in absolute value) from the center?

1.20. The purpose of this problem is to illustrate the dangers of statistics, espe-
cially with respect to categorical data and the use of conditional probabilities. In
this example, the data may be used to support contradicting claims, depending on
the inclinations of the person doing the reporting! The population in which we are
interested is made up of males and females, those who are sick and not sick, and
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those who received treatment prior to becoming sick and who did not receive prior
treatment. (In the questions below, assume that the treatment has no adverse side
effects.) The population numbers are as follows.

Males
sick not sick

treated 200 300
not treated 50 50

.

Females
sick not sick

treated 50 100
not treated 200 370

.

(a) What is the conditional probability of being sick given that the treatment was
received and the patient is a male?
(b) Considering only the population of males, should the treatment be recom-
mended?
(c) Considering only the population of females, should the treatment be recom-
mended?
(d) Considering the entire population, should the treatment be recommended?

1.21. Let X and Y be two discrete random variables where their joint pm f

f (a,b) = Pr{X = a,Y = b}

is defined by
0 1 2

10 0.01 0.06 0.03
11 0.02 0.12 0.06
12 0.02 0.18 0.10
13 0.07 0.24 0.09

with the possible values for X being 10 through 13 and the possible values for Y
being 0 through 2.
(a) Find the marginal pmf’s for X and Y and then find the Pr{X = 11} and E[X ].
(b) Find the conditional pmf for X given that Y = 1 and then find the Pr{X = 11|Y =
1} and find the E[X |Y = 1].
(c) Are X and Y independent? Why or why not?
(d) Find Pr{X = 13,Y = 2}, Pr{X = 13}, and Pr{Y = 2}. (Now make sure your
answer to part (c) was correct.)

1.22. Let S and T be two continuous random variables with joint pdf given by

f (s,t) = kst2 for 0≤ s≤ 1, 0≤ t ≤ 1 ,

and zero elsewhere.
(a) Find the value of k.
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(b) Find the marginal pdf’s for S and T and then find the Pr{S≤ 0.5} and E[S].
(c) Find the conditional pdf for S given that T = 0.1 and then find the Pr{S≤ 0.5|T =
0.1} and find the E[S|T = 0.1].
(d) Are S and T independent? Why or why not?

1.23. Let U and V be two continuous random variables with joint pdf given by

g(u,v) = e−u−v for u≥ 0, v≥ 0 ,

and zero elsewhere.
(a) Find the marginal pdf’s for U and V and then find the Pr{U ≤ 0.5} and E[U ].
(b) Find the conditional pdf for U given that V = 0.1 and then find the Pr{U ≤
0.5|V = 0.1} and find the E[U |V = 0.1].
(c) Are U and V independent? Why or why not?

1.24. This problem is to consider the importance of keeping track of history when
discussing the reliability of a machine and to emphasize the meaning of Eq. (1.16).
Let T be a random variable that indicates the time until failure for the machine.
Assume that T has a uniform distribution from zero to two years and answer the
question, “What is the probability that the machine will continue to work for at least
three more months?”
(a) Assume the machine is new.
(b) Assume the machine is one year old and has not yet failed.
(c) Now assume that T has an exponential distribution with mean one year, and
answer parts (a) and (b) again.
(d) Is it important to know how old the machine is in order to answer the question,
“What is the probability that the machine will continue to work for at least three
more months?”

1.25. Determine the correlation coefficient for the random variables X and Y from
Example 1.13.

1.26. A shipment containing 1,000 steel rods has just arrived. Two measurements
are of interest: the cross-sectional area and the force that each rod can support. We
conceptualize two random variables: A and B. The random variable A is the cross-
sectional area, in square centimeters, of the chosen rod, and B is the force, in kilo-
Newtons, that causes the rod to break. Both random variables can be approximated
by a normal distribution. (A generalization of the normal distribution to two random
variables is called a bivariate normal distribution.) The random variable A has a
mean of 6.05 cm2 and a standard deviation of 0.1 cm2. The random variable B has a
mean of 132 kN and a standard deviation of 10 kN. The correlation coefficient for A
and B is 0.8.

To answer the questions below use the fact that if X1 and X2 are bivariate normal
random variables with means μ1 and μ2, respectively, variances σ1 and σ2, respec-
tively, and a correlation coefficient ρ , the following hold:

• The marginal distribution of X1 is normal.
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• The conditional distribution of X2 given X1 is normal.
• The conditional expectation is given by

E[X2|X1 = x] = μ2 +ρ
σ2

σ1
(x−μ1) .

• the conditional variance is given by

V [X2|X1 = x] = σ 2
2 (1−ρ2) .

(a) Specifications call for the rods to have a cross-sectional area of between 5.9 cm2

and 6.1 cm2. What is the expected number of rods that will have to be discarded
because of size problems?
(b) The rods must support a force of 31 kN, and the engineer in charge has decided to
use a safety factor of 4; therefore, design specifications call for each rod to support
a force of at least 124 kN. What is the expected number of rods that will have to be
discarded because of strength problems?
(c) A rod has been selected, and its cross-sectional area measures 5.94 cm2. What is
the probability that it will not support the force required in the specifications?
(d) A rod has been selected, and its cross-sectional area measures 6.08 cm2. What is
the probability that it will not support the force required in the specifications?

1.27. Using Property 1.8, show the following relationship holds for two dependent
random variables, X and Y :

V [Y ] = E[V [Y |X ] ] + V [E[Y |X ] ] .

1.28. Let X1 and X2 be two independent Bernoulli random variables with E[X1] =
0.8 and E[X2] = 0.6. Let S = X1 +X2.
(a) Give the joint pmf for S and X1.
(b) Give the marginal pmf for S.
(c) Give the correlation coefficient for S and X1.
(d) Give the conditional pmf for S given X1 = 0 and X1 = 1.
(e) Demonstrate that Property 1.8 is true where Y = S and X = X1.
(f) Demonstrate that the property given in Problem 1.27 is true where Y = S and
X = X1.

1.29. Derive the expression for the variance in Property 1.9. For this proof, you will
need to use the following two equations:

E[S2] = E

⎡

⎣E

⎡

⎣

(

N

∑
i=1

Xi

)2

|N
⎤

⎦

⎤

⎦ ,
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E

⎡

⎣

(

n

∑
i=1

Xi

)2
⎤

⎦= E

[

n

∑
i=1

X2
i +

n

∑
i=1

∑
j �=i

XiXj

]

.
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1.30. Consider again the roofing contractor of Problem 1.7. After further analysis, it
has been determined that the profit from each job is not exactly $300, but is random
following a normal distribution with a mean of $300 and a standard deviation of
$50. What is the expected profit and the standard deviation of profit for September?

1.31. Consider again the three investment plans of Problem 1.8. An investor who
cannot decide which investment option to use has decided to toss two (fair) coins
and pick the investment plan based on the random outcome of the coin toss. If two
heads occur, Plan A will be used; if a head and a tail occurs, Plan B will be used;
if two tails occur, Plan C will be used. What is the mean and standard deviation of
return from the investment plan?
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Chapter 2
Introduction to Factory Models

An analytical approach to the modeling and analysis of manufacturing and produc-
tion systems is the cornerstone of the ability to quickly evaluate alternatives (called
rapid scenario analysis) and is the emphasis of the material in this textbook. Perti-
nent factors must be identified while secondary factors will generally be ignored.
Starting with extremely simple models (essentially single machine/resource mod-
els), the necessary mechanics and concepts needed to model these situations are
developed. Then more complex models are developed by connecting simple models
into networks of workstations with the appropriate interconnections. The overall ap-
proach is to decompose a system into small components, model these components,
and then reintegrate the general system by the appropriate combination of the com-
ponents’ submodels. This decomposition approach is an approximation procedure
that has given acceptable results in a wide variety of manufacturing applications. In
reality any analytical model, whether exact or approximate, is an approximation of
the real world environment. The question that must be answered is whether or not
the model yields accurate enough results to be used as an analysis tool in support of
design and operational decision making.

2.1 The Basics

The modeling perspective or scope throughout this textbook will start when jobs
arrive to the system and end when they are completed. The model scope, depicted
in Figure 2.1, will not take into account where or why jobs arrive or how they are
transported to customers. Thus, modeling the order creation or completed job deliv-
ery systems is not within the scope of our analysis. It is important to observe that
we use the term “job” loosely. An arriving job may be a physical entity that must be
processed through the various processing steps or an arriving job may be an order
to begin the processing of (on-hand) raw material into a newly manufactured entity.

G.L. Curry, R.M. Feldman, Manufacturing Systems Modeling and Analysis, 2nd ed., 45
DOI 10.1007/978-3-642-16618-1 2, c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 2.1 Scope of the system
for modeling purposes

Orders
Completed Jobs

Factory

Modeled System

To provide the framework necessary for analytical model development, we begin
with the basic definitions and notation that will be used throughout the book. In
addition, some fundamental relationships involving key factory parameters will be
developed. Thus, this section presents terminology and material that will be used
for all future factory models.

2.1.1 Notation, Definitions and Diagrams

From our point of view, a factory consists of several machines grouped together
by type (called workstations) and a series of jobs that are to be produced on these
machines. The processing steps for a job generally consists of several processing
operations to be performed by different machines in a specified sequence. Thus,
one can think of a job as moving through the factory, waiting in line at a machine
(workstation) until its turn for processing, being processed on the machine, then
proceeding to the next machine location to repeat this sequence until all required
operations have been completed. Jobs arrive at the factory either individually or
in batches based on some distribution of the time between arrivals, these jobs are
processed, and upon completion are shipped to a customer or warehouse.

Possibly the two most important performance measures of a factory are cycle
time and work-in-process. These two terms are defined as follows:

Definition 2.1. Cycle time is the time that a job spends within a system. The average
cycle time is denoted by CT .

Definition 2.2. Work-in-process is the number of jobs within a system that are either
undergoing processing or waiting in a queue for processing. The average work-in-
process is denoted by WIP.

We will need to refer to the cycle time within a workstation as well as the cy-
cle time for the factory as a whole. Thus, a notational distinction must be made
between the average factory cycle time denoted as CTs and the average cycle time
at workstation i (the ith grouping of identical machines) denoted as CT (i). Thus,
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CTs is the average time that a job spends within the factory, either being processed
at a workstation or waiting in a workstation queue; whereas, CT (i) is the average
time jobs spend being processed by workstation i plus the average time spend in the
workstation i queue (or buffer). At times, general properties related to the average
cycle time will be developed, in which case CT is used without subscript. At other
it will be important to specifically refer to the average cycle time at a workstation or
within the entire factory, in which case either CT (i) or CTs will be used.

To add to the notational confusion, the cycle time at a machine consists of two
components, the processing time and the waiting time or queue time at the machine
until its processing begins. The processing time at a machine is often known or
can be determined without much effort; however, the queue time at a machine is not
easily estimated for a given job since it depends on the number and processing times
of the various types of jobs that are waiting in the queue ahead of the designated job.
Thus, the average cycle time at workstation i is given as the sum of two components;
namely,

CT (i) = CTq(i)+E[Ts(i)] , (2.1)

where CTq(i) denotes the average time a job spends in the queue in front of the
workstation and Ts(i) denotes the service time (or processing time) at workstation i.
(We have just introduced a potential source of confusion in notation, but it should
help in future chapters. The “s” subscript usually refers to a “system” characteristic;
however, for the random variable T , the subscript refers to “service”. The reason for
this is that it will become necessary to distinguish among arrival times, departure
times, and service times in later chapters.)

Another key system performance measure is the throughput rate.

Definition 2.3. The throughput rate for a system is the number of completed jobs
leaving the system per unit of time. The throughput rate averaged over many jobs is
denoted by th.

For most of the systems that we will consider, the long-run throughput rate of the
system must be equal to the input rate of jobs. Given that the throughput rate is
known, the main issue will then be the estimation of the total length of time for the
manufacturing process (CTs). Given that there is enough capacity to satisfy the long
term average demand, the average cycle time in the factory or system is a function
of the factory’s capacity relative to the minimum capacity needed. The higher the
factory capacity relative to the needs, the faster jobs are completed. Thus, cycle time
increases as the factory becomes busier.

As mentioned above, a workstation can be either be a single machine or multiple
machines.

Definition 2.4. A workstation (or machine group) is a collection of one or more
identical machines or resources.

Non-identical machines will not generally be grouped together into a single work-
station for purposes of analysis in this text. Also only one type of resource is consid-
ered at each workstation. For example, a system that has an operator handling more
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Fig. 2.2 Representation of a
factory structure containing
workstations and job flow 1 2 3

orders completed
jobs

than one machine at a time is a realistic situation; however, the impact of operator
availability on the total system cycle time and throughput should be second-order
effects given a reasonable level of operator capacity. For those readers interested in
this extension we suggest [1] for further reading. In a general manufacturing context,
workstations are sometimes made up of several different machine types called cells
where these machines are gathered together for the purpose of performing several
distinct processing steps at one physical location. Again, a more restricted defini-
tion of this concept is used herein, where the workstation term specifically implies
a location consisting of one or more identical machines. In order to model a cell
type workstation, one would need to combine several single-machine workstations
together.

A processing step for a job consists of a specific machine or workstation and the
processing time (possibly processing time distribution) for the step. After processing
steps have been defined they are organized into routes.

Definition 2.5. The sequence of processing steps for a job is called its routing. Jobs
with identical routings are said to be of the same job type; thus, different job types
are jobs with different routings.

The characteristics of all the job routings determine the organization of a manu-
facturing facility that is used to produce these jobs. If there is a unique routing, then
an assembly line could be used within the factory given a high enough throughput
rate. When there are only a few routings (a low diversity of job types) with each
routing visiting a workstation at most one time, then the factory is referred to as a
flow shop. When there are a large number of different job routings (a high diversity
of jobs types) so that jobs visit workstations with no apparent structure, seemingly
random, then the factory is referred to as a job shop. In a job shop, a given job
type can visit the same workstation several times for different processing opera-
tions. In practice, many factories fall somewhere between these two extremes so
that there may be characteristics of both flow shops and job shops within one facil-
ity. The methodologies that are developed will allow the analysis of all these various
configurations. It will seem, due to the sequential manner in which the methodolo-
gies are developed, that there is a one-to-one correspondence between workstations
and processing steps. However, as the models get more complex, routing steps and
workstations will not have a one-to-one correspondence because a given worksta-
tion could be visited in several processing steps within the same job routing. This
type of routing is called re-entrant flow, and requires more careful analysis in that
machine loads are developed over job types and multiple processing steps within
each routing.

Diagrams used to illustrate the nature of a modeled system will omit the system
level structure and emphasize the internal structure of the model itself. The level of
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WS 1 WS 2 WS 3

Fig. 2.3 Detailed diagram depicting the two machines in Workstation 1, a batch processing oper-
ation at Workstation 2, and individual processing on a single machine at Workstation 3

detail generally needed in diagrams will include workstations and job flow within
the factory. So a diagram such as Fig. 2.2 will be used to illustrate the structure of
the factory characteristics being analyzed (in this example a single job type arrives
and is serially processed through workstations 1, 2 and 3).

The structure within a workstation will frequently be depicted by detailing the
machines when a workstation includes more than one machine. Also there can be
batch processing where multiple jobs are processed simultaneously by a single ma-
chine. Another variation is batch moves where jobs are grouped together for trans-
portation purposes within the factory and then served individually by the machines
but kept together for movement purposes. The details of the notation is best de-
scribed in context where it is needed and developed. However, the general graphical
depiction of the system such as the one presented in Fig. 2.3 will be used. Jobs
are generally represented by circles and machines by rectangles. For the system
depicted in Fig. 2.3, two machines are available for processing in the first worksta-
tion, the second workstation requires that four jobs are grouped together for an oven
batch processing operation and then jobs are sent on to the third machine individu-
ally but with batch processing timing. This causes jobs to arrive at the third station
in batches, even though they are not physically grouped together as they were for
the oven processing step.

2.1.2 Measured Data and System Parameters

In the modeling and analysis of manufacturing/production systems, some common
measures are almost always used. Among these are the number of arrivals and de-
partures to and from the system. Using data collected about these events, system
performance measures CT and WIP can be developed. Realistically, one should
recognize that the system’s characteristics vary with time. The information gener-
ally desired about cycle time is the average cycle time for the system calculated for
all jobs within the system at a specified time t. This measure is denoted by CTs(t).
Time dependent measures such as CTs(t) and WIPs(t) are very difficult to develop.
Thus, most often our focus will be restricted to the so called “steady-state” measures
that are the limiting value of the time dependent measures. By a property called the
ergodic property, steady-state values can also be considered to be time-averaged val-
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Fig. 2.4 A possible realization for the arrival A(·) and departure D(·) functions

ues as time becomes very large. These steady-state measures are independent of the
initial conditions of the system. In the queueing theory that underlines the develop-
ment of our factory modeling approach, most tractable results are for steady-state
system measures. To quote from Gross and Harris [2]: “Fortunately, frequently, in
practice, the steady-state characteristics are the main interest anyway.”

It is difficult to obtain transient behavior for a system particularly when system
behavior has random components. If instead of the transient system behavior, in-
terest is in the long-run average behavior of the system (which in fact is about all
the information that can be assimilated anyway) then this information is more easily
developed. From a practical point of view, the long-run average system behavior can
be obtained from a single realization (or a single simulation run) for most systems.
Technically, the system must satisfy certain statistical conditions, called the ergodic
conditions, for a steady state to exist. However, intuitively, steady-state conditions
are those where the time dependent characteristics of average values vanish. In the
following chapters, conditions will be established for which steady states exist based
on physical properties and parameter values of the systems under consideration.

The system’s performance measures CT and WIP can be estimated from the
arrival and departure streams of the system. Define T a

i as the arrival time of the ith

job, and the function A(t) for t ≥ 0 as the total number of arrivals during the time
interval [0, t]. Also, define T d

i as the departure time of the ith job, and the function
D(t) for t ≥ 0 as the total number of departures during the interval [0,t]. A realization
of these two functions, A(·) and D(·) are displayed in Fig. 2.4 for a system in which
arrivals and departures occur one at a time. The left most curve in Fig. 2.4 is the
arrival function and the right most curve is the associated departure function.
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Consider a time interval (a,b) such that the system starts empty and returns to
empty. Let Nab be the number of jobs that arrive to the system during the interval
(a,b). We number these jobs from 1 to N, with index i representing specific jobs.
Then the average waiting time, CT (a,b), for jobs during this interval is given by

CT (a,b) =
1

Nab

Nab

∑
i=1

(T d
i −T a

i ) .

Note that the area, AB, between the curves A(t) and D(t) for a < t < b is merely
the summation given in the above equation. This is because of the unit nature of
the jumps in these functions. This area can also be obtained by standard integration
methods as

AB =
∫ b

a
(A(t)−D(t))dt .

Viewed in this manner, the area represents the integral of the number of jobs in
the system at time t, since N(t) = A(t)−D(t) is the number of jobs in the system
at t. So the time-averaged number of jobs waiting in the system during the time
interval (a,b) is given by

WIP(a,b) =
1

b−a

∫ b

a
(A(t)−D(t))dt .

Note then that there is a relationship between the average number in the system
during the interval (a,b) and the average waiting time or cycle time in the system
during this interval. Since the area between A(·) and D(·) (namely AB) is constant
regardless of the method used to measure it, we have

WIP(a,b) =
1

b−a
AB and CT (a,b) =

1
Nab

AB .

Thus, the following relationship is obtained

WIP(a,b) =
N

b−a
CT (a,b) .

One final observation is that the mean number of jobs arriving to the system per
unit time, normally denoted as λ , is Nab/(b− a). The notation that is used then in
this text is

WIP(a,b) = λ CT (a,b) .

This result is valid for any interval that starts with an empty system and ends with
an empty system. In fact this relationship is the limiting behavior result, or long run
average result, for stationary queueing systems, and is known as Little’s Law, after
the individual who proved the first general version of this relationship [4]. The result
holds for individual workstations as well as the system as a whole. This relationship
is fundamental and used throughout our analyses.
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Property 2.1. Little’s Law. For a system that satisfies steady-state condi-
tions, the following equation holds

WIP = λ ×CT ,

where WIP is the long-run average number of jobs in the system, CT is the
long-run average cycle time and λ is the long-run input rate of jobs to the
server.

Since the average input rate is usually equal to the average throughput rate, Lit-
tle’s Law can also be written as WIP = th×CT . It should be stressed that the lim-
iting behavior generally estimates mean values and the actual underlying random
variables for the systems can be quite variable. For example in most single worksta-
tion system models, the average number in the system, WIP, can be easily obtained.
However, the behavior of the random variable representing the number in the system
at any one point in time can be highly variable as is illustrated in Fig. 2.5 where the
number in the system is plotted over time from a simulation. (Note that by our defi-
nition, WIP is the steady-state value of the mean of the random variable representing
the number in the system.)

Also of importance is the fact that the term steady-state implies that the mean
reaches a limiting value and thus ceases to change with respect to time. However,
steady-state does not imply that the system itself ceases to change; the variability
as shown in Fig. 2.5 continues forever (i.e., the fluctuations within the system never
cease). Steady-state does imply that the entire distribution reaches a limiting value
so that not only the mean but also the standard deviation, skewness, and other such
measures will have limiting values.

It is often desired that analytical models of these systems describe the steady-
state probability distribution. The various measures such as the mean and variance
are then computed using the derived distribution. System WIPs is a good example
of one such measure. For a single server system with exponential inter-arrival times
(of mean rate λ ) and exponential service times (of mean rate μ), the steady-state
probability of n jobs in the system is given by

Pr{N = n}=
(

1− λ
μ

)(

λ
μ

)n

for n = 0,1, · · · ,∞ ,

where N is the long-run number of jobs within the system. This result is developed
in the next chapter.

The mean number of jobs in the system (WIPs) is the expected value of this
discrete probability distribution,

WIPs = E[N] =
∞

∑
n=0

npn, (2.2)

which yields



2.1 The Basics 53

Fig. 2.5 A representation of the number of jobs in a simulated factory

WIPs =
λ/μ

(1−λ/μ)
, given that λ < μ .

Note that the condition, λ < μ , establishes the existence of a steady-state for this
system. Using Little’s Law (Definition 2.1), the expected time in the system or cycle
time, CTs, becomes

CTs =
1

μ−λ
.

The goal of our modeling efforts in future chapters will be to develop equations
such as the above. Often, the long-run distribution will be derived and then the mean
measures will be obtained from the distributions. The next chapter addresses single
workstation models and the associated queueing theory mechanics for their devel-
opment and approximation.

• Suggestion: Do Problems 2.1–2.2.
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Fig. 2.6 A four machine
serial flow production factory
with constant service times
and a constant WIPs level
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2.2 Introduction to Factory Performance

In this section a factory consisting of four machines in series with deterministic pro-
cessing times is analyzed. The purpose of the model is to illustrate several issues and
properties of manufacturing systems that will be studied in this text. This analysis
is patterned after the “penny fab” model in [3]. Through this modeling and analysis
exercise, several terms will become more meaningful. In particular, long-term or
steady-state performance measures, the validity and robustness of Little’s Law for
these performance measures, and the impact of a bottleneck or throughput limiting
machine will be illustrated.

Consider a factory that makes only one type of product. The processing require-
ments for this product consists of four processing steps that must be performed in
sequence. Each processing operation is performed on a separate machine. These
machines can process only one unit of the product at a time (called a job). The pro-
cessing times for the four operations are constant. These processing times are 1, 2,
1 and 1 hour(s) on each of the four machines, respectively. This idealized factory
has no machine downtimes, no product unit losses due to faulty production, and
operates continuously. The factory is operated using a constant number of jobs in
process (i.e., WIPs(t) is constant for all t). When a job has completed its four pro-
cessing steps, it is immediately removed from the factory and a new job is started
at Machine 1 to keep the total factory WIPs at the specified level. This process is
depicted in Fig. 2.6.

Since the processing times at each machine are not identical, the factory inven-
tory will not necessarily be the same at each machine. The factory has ample storage
space and the factory management policy is to move a job to the next machine area
as soon as it completes processing on each machine. Thus, no machine will set idle
if there is a part that is ready to be processed on that machine.

This factory is running smoothly at the current time. Management has set a con-
stant WIPs level at 10 jobs. This accomplishes a throughput rate of th = 0.5/hr jobs
(leaving the factory). That is, the factory produces one finished job every two hours
on the average. This is the maximum throughput rate for this factory because its
slowest processing step (at Machine 2) takes two hours per job. Thus, jobs can be
completed no faster than this single machine completes its own processing because
of the single unit machines and the serial nature of the production process.

Management is quite pleased with the throughput of the factory since it is at its
maximum capacity. However, management is somewhat concerned with the total
time that it takes a job from release to finish in the factory (the cycle time). This
cycle time is currently running at 20 hours per job. Management feels like this is
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high since it only takes 5 hours of processing to complete each job. The ratio of the
cycle time to the processing time is a standard industry measure that will be called
the x-factor.

Definition 2.6. The x-factor for a factory is the ratio of CTs to the average total
processing time per job.

The average for this industry is currently running at 2.6 as reported in a recent
publication by the industry’s professional journal. With this factory’s x-factor being
4, management is worried about their ability to keep customers when the industry
on average produces the same product with a considerably shorter lead-time from
order placement to receipt.

To address the cycle time problem, management has been considering a large
capital outlay to purchase a 25% faster machine (1.5 hours) for processing step two.
This purchase would be made expressly for the purpose of reducing the x-factor
for the factory to be more in line with the industry average. The company selling
the machine says that this investment will bring the x-factor down to 3.33 and the
additional throughput of 0.166 units per hour would pay for the cost of the new
machine in three years.

Management has decided that this investment is not worthwhile just based on
increased throughput because the funds needed for the large capital outlay to buy
the machine are sorely needed in other aspects of the company. The life blood of
the company has been its ability to keep pace with the competition in new product
development. This level of expenditure would decimate the company’s investment
in research and development of new products.

In an effort to seek a lower cost solution to the x-factor performance measure
for the factory, a consulting team from the manufacturing engineering department
of a local university was hired to perform a short term factory flow analysis study.
The first activity of the consulting team was to devise a method of predicting the
long-term factory performance measures of cycle time and throughput.

2.2.1 The Modeling Method

The consulting team accomplished the performance estimation task rather quickly
devising a hand simulation procedure of the factory flow. They started with the
specified number of 10 jobs in the factory, all placed at Machine 1, and made hourly
updates to each job’s status. Each job that was on a machine was allocated one hour
of processing time and if this completed their requirements on that machine, the job
was moved to the next machine. Empty machines were loaded with the first job in
the machine queue, for those with a queue, and the next hourly update was started.
The jobs soon distributed themselves throughout the factory and after a short period
of time a two-hour cyclic pattern emerged. Every cycle of this pattern produced one
completed job and the factory returned to the identical state for each machine and
associated queue. This set of conditions is referred to as the factory status.
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Once the team had the model in the cyclic behavior pattern, they would mark
the time that each job entered the factory and again when it exited the factory. The
difference in these times is the job cycle time. All of these cycle times had identical
values after the system reached the cyclic behavior pattern. Thus, the job cycle time
was determined and agreed with the company’s actual cycle time of 20 hours.

The consulting team also computed the number of jobs that were completed dur-
ing the marked job’s residence in the model factory. When the marked job emerged
this completion total was always 10 (including the marked job). In retrospect this is
not surprising since a constant number of jobs is kept in the factory and, thus, when
the marked job entered the factory there were 9 other jobs ahead of it in the factory.
When the marked job emerged, all 9 of these jobs plus the marked job had been
completed. Thus, the total throughput was 10 jobs over the cycle time of 20 hours
or 0.5 jobs per hour. This modeling process exactly predicts the long-term factory
performance.

The simulation study is detailed in Table 2.1, where the factory status at the start
of each hour is displayed. The first entry is the initial factory setup at time 0. Notice
that after hour 15 the factory status repeats every two hours; thus, the factory status
at the start of hours 15, 17, 19, 21, etc. are identical. Note also that the even hours
from time 16 on are also identical. In other words, this factory has reached a cyclic
behavior pattern at the start of time 15. Hours 0 through 14 represent the transient
phase of the simulation, and after hour 15, the limiting behavior is established.

Consider the system status at beginning with hour 15. There is a new job that has
just entered (no processing has occurred) into Machine 1. There are 8 jobs at Ma-
chine 2 with no processing completed on the job in the machine. There is one job that
just entered Machine 3 and Machine 4 is empty. This factory status is represented
by four pairs of numbers, one for each machine. The first number in a machine pair
is the number of jobs at the machine, including the job being processed, and the
second number is the hours of processing at this machine already completed on the
job. The last entry is the cumulative number of completed jobs through this point in
time. The hour 15 the factory status entry in the table is

15 : (1,0),(8,0),(1,0),(0,0) : 6

After an additional hour of processing the factory status is

16 : (0,0),(9,1),(0,0),(1,0) : 6

which shows that the job in Machine 1 was completed and moved to Machine 2.
The job processing in Machine 2 needs an additional hour before being completed
since it requires a total of two hours for processing, and the job in Machine 3 was
completed and moved to Machine 4 to begin processing.

After one more hour of processing, the job in Machine 4 is completed and re-
moved from the factory and a new job is, therefore, entered into Machine 1. The job
processing on Machine 2 is completed and moved to Machine 3. Thus, the system
status at the end of time 17 is identical to that of time 15, except that one additional
job is completed.
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Table 2.1 Factory simulation with WIP = 10, four single-machine workstations, and processing
times of (1,2,1,1) for one 24-hour day using a time step of one hour; data pairs under each work-
station are the number of jobs at the workstation and the elapsed processing time for the job being
processed

Time WS #1 WS #2 WS #3 WS #4 Cum. Thru.
0 (10,0) (0,0) (0,0) (0,0) 0
1 (9,0) (1,0) (0,0) (0,0) 0
2 (8,0) (2,1) (0,0) (0,0) 0
3 (7,0) (2,0) (1,0) (0,0) 0
4 (6,0) (3,1) (0,0) (1,0) 0
5 (6,0) (3,0) (1,0) (0,0) 1
6 (5,0) (4,1) (0,0) (1,0) 1
7 (5,0) (4,0) (1,0) (0,0) 2
8 (4,0) (5,1) (0,0) (1,0) 2
9 (4,0) (5,0) (1,0) (0,0) 3
10 (3,0) (6,1) (0,0) (1,0) 3
11 (3,0) (6,0) (1,0) (0,0) 4
12 (2,0) (7,1) (0,0) (1,0) 4
13 (2,0) (7,0) (1,0) (0,0) 5
14 (1,0) (8,1) (0,0) (1,0) 5
15 (1,0) (8,0) (1,0) (0,0) 6
16 (0,0) (9,1) (0,0) (1,0) 6
17 (1,0) (8,0) (1,0) (0,0) 7
18 (0,0) (9,1) (0,0) (1,0) 7
19 (1,0) (8,0) (1,0) (0,0) 8
20 (0,0) (9,1) (0,0) (1,0) 8
21 (1,0) (8,0) (1,0) (0,0) 9
22 (0,0) (9,1) (0,0) (1,0) 9
23 (1,0) (8,0) (1,0) (0,0) 10
24 (0,0) (9,1) (0,0) (1,0) 10

Computing the cycle time for a job consists of starting with a new job release
into the factory and following through 10 subsequent job completions. This release
occurs at the end of the given period that coincides with the start of the next time
period. It is convenient to place the new job into its location in the Machine 1 list
before recording the factory status so that the system maintains the required 10
jobs. Consider the job that just enters the factory at the end of time period 15 (the
beginning of time period 16), this job leaves the factory at the end of time period 35
(that is, actually equal to time 36). The time in the system for this job is 36-16 = 20
hours.

The consulting team also modeled the factory under the assumption of a new
Machine 2 with a constant processing time of 1.5 hours. To model this situation,
the consulting team used 1/2 hour time increments for the model time step and,
thus, the associated processing time requirements at the machines were (2,3,2,2)
in terms of the number of time steps needed to complete a job. Again the results
obtained for this situation agreed with those proposed by the company trying to sell
the new machine. These results were a cycle time of 30 time increments (15 hours)
and a throughput rate of 2/3 jobs per hour (10 jobs every 15 hours).
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2.2.2 Model Usage

The consulting team, recognizing that their modeling approach was general and be-
ing familiar with Little’s Law (WIP equals throughput multiplied by CT ), decided
to estimate the x-factor, the ratio of cycle time to total processing time, for vari-
ous numbers of jobs in the system (WIP). Letting CT represent cycle time and th
represent throughput, then Little’s Law (Property 2.1) yields

CT = WIP/th.

Using a throughput rate of 1/2 jobs per hour, then cycle time is given by

CT = 2×WIP .

Since the total processing time is 5 time units, then the ratio of the cycle time to the
processing time called the x-factor for the factory would be

x =
CT
5

=
WIP
2.5

.

Notice that as long as the processing speeds of the machines do not change, the
maximum throughput rate for this factor is 1/2 per hour due to the speed of the
second workstation. Thus, the above formula gives shows the relationship between
the x-factor and WIP provided that WIP does not get too small so as to “starve”
Machine 2. Therefore, using the above formula, notice that if WIP = 6.5, the x-
factor will equal the desired level of 2.6.

Since 6.5 is a non-integer, the constant WIP level should be set to 6 or 7. A fixed
WIP level of 6 should yield an x-factor lower than 2.6 and a fixed WIP level of 7
should yield an x-factor slightly higher than 2.6 as long as the throughput rate of 1/2
per hour can be maintained.

The consulting team recognized that Little’s Law is a relationship between three
factory performance measures and that two of these measures must be known be-
fore the third can be obtained. The issue of concern is whether or not the throughput
would stay at 1/2 when the total factory WIP was reduced below 10 jobs. For in-
stance if only one job is allowed in the factory, the throughput rate is one job every
5 hours or 1/5. It certainly is obvious that at some job level, the factory throughput
would drop below 1/2. So the consulting team decided to perform a study of the fac-
tory performance for all fixed job levels from 1 to 10 using their performance anal-
ysis modeling approach. These results are displayed in Table 2.2. They found that
the WIP level in the factory can be reduced all the way down to 3 jobs while main-
taining the factory throughput rate of 1/2. The cycle time reduces to 2×WIP = 6
hours with an x-factor of 1.2. Thus at no expense, the factory can maintain its cur-
rent throughput rate and reduce its cycle time from 20 to 6 hours. The cycle time and
throughput performance measures for this factory as a function of the fixed factory
WIP level are displayed in Figs. 2.7 and 2.8, respectively.
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Fig. 2.7 Average cycle time
for the simple factory model
as a function of the constant
WIP level
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Fig. 2.8 Average throughput
rate for the simple factory
model as a function of the
constant WIP level
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2.2.3 Model Conclusions

Detailed consideration has been given to the factory performance measures of
throughput, cycle time and work-in-process for a simple factory model. Little’s
Law for long-term system behavior is valid for both deterministic and stochastic
factory models. Little’s Law applies to individual workstations and to the system as

Table 2.2 Factory performance measures as a function of the WIP level

WIP Throughput Cycle Time x-factor
1 0.2 5 1.0
2 0.4 5 1.0
3 0.5 6 1.2
4 0.5 8 1.6
5 0.5 10 2.0
6 0.5 12 2.4
7 0.5 14 2.8
8 0.5 16 3.2
9 0.5 18 3.6
10 0.5 20 4.0
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a whole. For serial systems, the factory performance is controlled by the bottleneck
workstation (herein, the slowest machine). When there is enough WIP in the system
the maximum throughput rate is reached and is equal to the bottleneck workstation
(machine). As WIP increases beyond the minimum needed to reach the maximal
throughput rate, factory cycle time performance degrades proportionally.

• Suggestion: Do Problems 2.3–2.14.

2.3 Deterministic vs Stochastic Models

The simple throughput analysis of a serial factory with deterministic processing
times of the last section was used to illustrate several system performance mea-
sures and their inter-relationships (i.e., Little’s Law). The modeling approach was
developed specifically for deterministic processing times. This approach does not
necessarily yield accurate results when processing times are random. If the mean
processing time for a stochastic system is used in the above deterministic model-
ing approach, the results can be misleading and the wrong decisions can be drawn.
This problem is illustrated below with a system similar to the above example. The
key point to be made here is that for the evaluation of stochastic systems, stochas-
tic methodologies should be employed. How one models stochastic production and
manufacturing systems is the purpose of this book.

Consider the four-step production system represented by Fig. 2.6. Now instead
of the constant processing time of two hours at workstation 2, let us assume that
this time actually varies between two values: 1 hour and 3 hours. If these times
occur with equal probability, then the system has a mean processing time of 2 hours
and using this time one would draw the conclusions of the previous section. Recall
that the principle problem was to determine the constant WIP level that yields a
maximal throughput rate while maintaining a cycle time that is as small as possible.
The decision arrived at using the deterministic analysis was that a WIP level of 3
jobs in the system at all times yields the maximum throughput rate of 0.5 jobs per
hour with the minimal cycle time of 6 hours.

This stochastic system is now analyzed more thoroughly. One (incorrect) ap-
proach would be to develop the system performance measures using the determinis-
tic model but recognizing that the processing times at Machine 2 are not 2 hours but
1 hour and 3 hours, with equal frequency. Thus, one approach would be to model the
system using constant processing times of 1 hour and 3 hours and then average these
results since these times occur with equal frequencies. This leads to the results in
Table 2.3. These average results indicate that the decision to limit the constant WIP
level to 3 jobs is incorrect and that 4 jobs would yield the maximum throughput of
2/3 jobs per hour. Thus, this slightly more involved (but still not proper) methodol-
ogy, would indicate that the throughput level is up by 33% over the previous estimate
of 0.5 jobs per hour.
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Table 2.3 Weighed average throughput rate results for the factory of Fig. 2.6 with Workstation 2
processing times of 1 and 3 hours, and constant WIP levels of 3, 4 and 5

Processing Times
WIP 1 hour 3 hours Average

3 3/4 1/3 13/24
4 1 1/3 2/3
5 1 1/3 2/3

The reason for the averaged deterministic results not yielding the correct stochas-
tic result is that the factory throughput is not an instantaneous function of the pro-
cessing rate of Machine 2. This processing rate has an impact on the number of
jobs allowed into downstream machines and, hence, there is a longer term impact
on system performance. The length of this impact is also such that the system might
re-enter this rate status more than once while a job is in the system. Hence, com-
plex and longer term impacts cannot be properly estimated by merely performing
a weighted average of the constant processing time results. To illustrate this idea,
the throughput gain for the average results is obtained from the system when the
processing time is only one hour. This situation corresponds to a throughput rate of
1 job per hour (for a WIP level of at least 4 jobs). This high level of throughput is
balanced by the lower throughput rate (1/3 jobs per hour) when the system has a
3 hours processing time at Machine 2. These situations occur at the machine with
equal probability for a given job. However, the proportion of the time that the sys-
tem is operating in the slow state is 75%. Thus, one would expect a more accurate
throughput rate estimate to be

3
4

(

1
3

)

+
1
4

(1) =
1
2
.

This is the expected throughput rate for the stochastic system if the WIP level is at
least the minimum of 4 jobs. If there are only 3 jobs allowed in the system simul-
taneously, then the throughput rate reduces to around the 0.47 jobs per hour level.
Notice the detrimental effect of the variability in the processing time; namely, a
necessary increase in WIP and CT to maintain the same throughput rate. In general,
variability in workplace parameters always is detrimental in that it increases average
work-in-process and cycle times!

The calculation of throughput rates in our stochastic system can be obtained by
simulation or by the analytical decomposition method of Chap. 8. The bottom line
is that stochastic systems are much more difficult to evaluate than deterministic
systems and the purpose of this textbook is to expose the reader to some of the
analytical approaches available for stochastic modeling of manufacturing systems.
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Appendix

In this appendix, Microsoft Excel will be used to present a discrete simulation model
of the factory given in Fig. 2.6 with a generalization that the processing time at
Workstation 2 is random as discussed in Sect. 2.3. In the next chapter, we will
present a more general simulation methodology (an event driven simulation) that
can better handle continuous time. For now, we shall limit ourselves to discrete
time. (For practice in developing similar models, see Problem 2.15.) We also sug-
gest that the understanding of this material is best accomplished by reading the
appendix while Excel is available so that the reader can build the spreadsheet as it
is presented below.

Simulation is a very important tool, especially for testing the validity of the mod-
els and approximations developed in these chapters. Simulation modeling is gener-
ally robust with respect to modeling distributional assumptions and allows for more
realistic modeling of system interactions. The price that one pays with simulation
is the time requirement for obtaining accurate estimates of system performance pa-
rameters. With analytical models, the system response can often be characterized by
studying the mathematical structure; while this must be accomplished in the simu-
lation environment by experimentation that again adds another dimension to the
already time consuming computational burden.

Before building the spreadsheet simulation model, it is important to understand
five Excel functions. The Excel function

RAND()

generates random numbers that are uniformly distributed between 0.0 and 1.0. Note
that the RAND function has no parameter, although the parentheses are used. The
Excel function

IF(boolean expression, true value, false value)

evaluates the boolean expression and returns the value contained in the second pa-
rameter if the boolean expression is true and returns the value contained in the
third parameter if the boolean expression is false. The Excel IF() function can
act similar to an If — ElseIf structure by replacing either the true value or
false value with another IF() function. The above two functions can be used
together to create the random law mentioned previously; namely, the function
IF(RAND()<0.5,1,3) will yield a value of one 50% of the time and a value
of three 50% of the time. The

OFFSET(cell ref, number rows offset, number cols offset)

function allows for the referencing of a cell relative to another cell. For example,
OFFSET(A1,3,0) references the A4 cell. The function

MATCH(value, array reference, 0)
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will return an integer equal to the first location within the array that contains value.
For example, if the array B4:B8 contains the elements 1,1,2,2,3, then the func-
tion MATCH(2,B4:B8,0) will return a value of 3. (There are actually three dif-
ferent options in the use of the MATCH function, and the option we need is to match
by equality which is designated by the final parameter being set to zero.) The final
function that will be needed is

INDIRECT(string)

which converts string to an address. For example, suppose that the cell B5 con-
tains the number 7, then INDIRECT("A"&(B5+1)) refers to cell A8. In order
to understand this evaluation, first observe that the ampersand (&) concatenates (or
adds) two strings, before the concatenation occurs, the numerical value of B5+1 is
converted to a string; thus, the two strings "A" and "8" are combined to form the
address A8.

An Excel simulation usually involves building a table similar to Table 2.1; thus,
we start our spreadsheet with the following two rows.

A B C D E
Time-1 Time-2

1 Hour # at WS 1 Remaining # at WS 2 Remaining
2 0 5 1 0 0

F G H I J
Time-3 Time-4 Cumulative

1 # at WS 3 Remaining # at WS 4 Remaining Completed
2 0 0 0 0 0

K L M N
Finish Start Cycle

1 Entity # Time Time Time
2 0 0 0 0

The key difference between the Excel table and Table 2.1 is the meaning of
Columns C, E, G, and I. The spreadsheet will maintain the time remaining for pro-
cessing instead of the time that has already been used. In order to build the future
rows, we use the following formulas in row 3.

Column A =A2+1
Column B =B2-(C2=1)+(I2=1)
Column C =IF(B3=0,0, IF(C2<=1,1,C2-1))
Column D =D2-(E2=1)+(C2=1)
Column E =IF(D3=0,0, IF(E2<=1, IF(RAND()<0.5,1,3),E2-1))
Column F =F2-(G2=1)+(E2=1)
Column G =IF(F3=0,0, IF(G2<=1,1,G2-1))
Column H =H2-(I2=1)+(G2=1)
Column I =IF(H3=0,0, IF(I2<=1,1,I2-1))
Column J =J2+(I2=1)
Column K =K2+1
Column L =OFFSET($A$1,MATCH(K3,$J$2:$J$1000,0),0)
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Column M =OFFSET($A$1,MATCH(K3-$B$2,$J$2:$J$1000,0),0)
Column N =L3-M3

Once the formulas are entered, the range of cells A3:N1000 should be high-
lighted and then the “copy down” feature (or <ctrl>-D) used to extend the table
down. Do not be concerned that several entries in the L, M, and N columns con-
tain number errors (i.e., #N/A); these are expected and should be ignored. One of
the keys to understanding the above formulas is to recognize that a job undergoing
processing will leave the work station whenever the time remaining at that worksta-
tion equals 1. We also use the fact that when a boolean expression is used within a
mathematical expression, it will return the value 1 when true and return 0 when
it evaluates to false. Because the RAND function is a “volatile” function, it is
recomputed whenever the F9 key is pressed, so if you would like to see different
realizations of the simulation, press F9.

The final step in the simulation is to report the average throughput rate (th) and
the average cycle time CT . To do this, place the word Throughput in cell P1, and
put =J1000/A1000 in the P2 cell. Remember, the row 3 formulas were copied
down to row 1000; thus, the value in cell A1000 represents the total time for the
simulation and the value in cell J1000 is the total number of jobs processed through
the simulation. In other words, the P2 cell equals the total output divided by the total
time, which is the average throughput rate. In cell P3, place the word CycleTime
and in the P4 cell place

=AVERAGE(INDIRECT("N" & (B2+2) & ":N" & (J1000+2)))

which yields the average of the individual cycle times. To understand this formula,
remember that the value of cell B2 is equal to 5 and is the initial work-in-process.
The value in cell J1000 varies depending on the random outcome of the simulation.
To illustrate the formula, suppose that 425 entities were processed (i.e., the value
of J1000 is 425), then the INDIRECT function will reference "N7:N427" which
contain cycle times. (Other cells within column Nwill likely contain number errors.)
The reason for using the INDIRECT function is so that when the WIP level is
changed, the CT formula will be changed to include or exclude the appropriate
cells.

A final suggestion can be made with respect to the throughput rate. The rate is
biased towards the low side because the initial few hours are not representative of
steady-state conditions. Therefore, the formula =(J1000-J48)/(A1000-A48)
would give a better estimate of the long-run average value. The choice of consider-
ing the first two days as comprising the transient period of operation is somewhat
arbitrary and can be studied further by developing graphs of the average values if so
desired.

• Suggestion: Do Problem 2.15.
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Problems

2.1. A workstation with a single machine for processing has a long-run average in-
ventory level (WIP) of 25 jobs. The average rate at which jobs enter the workstation
is 4 per hour, and the average processing time is 14.5 minutes per job. What is the
average time that a job spends in the queue?

2.2. Consider a factory operating 24 hours per day consisting of two workstations.
Arrivals to the first station occur at a rate of 10 per day. The long-run average time
that a job spends at the first workstation is 4.2 hours. After processing at the first
workstation, a job is sent directly to the second workstation where it spends an
average of 5.3 hours. After processing at the second workstation, the job leaves the
system. What is the average work-in-process within the factory?

2.3. Why can the example factory of Section 2.2 maintain its maximum throughput
level of 1/2 job per hour even when there are less jobs in the system than there are
machines?

2.4. Develop a table of the factory status at the beginning of each one-hour time
interval for the following serial system under the condition that the system maintains
a total work-in-process of 5 jobs. Develop this table for the system status for 15
hours of operation. The workstation processing times (in hours) are listed in the
squares representing the workstations. The initial (time 0) starting work-in-process
distribution is (5,0,0). That is, 5 jobs in the first workstation and none elsewhere
and assume that the first job begins processing at time 0. Compute the cycle times
(time in the system) for the first 4 completed jobs assuming that all 5 initial jobs
entered the system at time 0.

13
out

new

2

2.5. Reconsider Problem 2.4 starting with the initial conditions: work-in-process is
(2,3,0). Assume further that the first job in line at workstations one and two have
already completed one hour of processing. Compute the cycle times for all jobs
that are completed during the 15 hours of operation, assuming that all 5 initial jobs
entered the system at time 0. Explain why the cycle times for the first 4 completed
jobs are not valid as the long-run average.

2.6. For the factory and initial conditions of Problem 2.4, compute the long-run
average factory throughput, cycle time and x-factors for various constant work-in-
process levels of 1 through 5.

2.7. Compute the long-term average throughput, cycle time and x-factors for this
factory for fixed work-in-process levels of 5 and 10 for the four machine serial
flow factory model below where the constant processing times are listed on the
machines. Argue that the results of the WIP level of 10 are the measures reported
for the example factory with the new Machine 2 with a processing time of 1.5 hours.
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new

out
2 3 2 2

2.8. Develop a table of the factory status at the beginning of each one-hour time
interval for the following serial system under the condition that the system maintains
a total work-in-process of 4 jobs. Develop this table for the system status for 15
hours of operation. The workstation processing times (in hours) are listed in the
squares representing the workstations. The initial (time 0) starting work-in-process
distribution is (4,0,0). That is, 4 jobs in the first workstation and none elsewhere
and assume the first job has yet to begin processing. Compute the cycle times (time
in the system) for the first 4 completed jobs assuming that all 4 initial jobs entered
the system at time 0.

23
out

new

1

2.9. For the factory and initial conditions of Problem 2.8, compute the long-term
average factory throughput, cycle time and x-factors for various constant WIP levels
1 through 5.

2.10. Compute the long-term average throughput, cycle time and x-factors for this
factory for fixed WIP levels of 1 through 5 for the four machine serial flow factory
model below where the constant processing times are listed on the machines. As-
sume that the factory starts with the configuration (N,0,0,0) for fixed WIP level N
and no processing has occurred on any of the active jobs.

new

out
2 2 3 2

2.11. Develop a spreadsheet model to solve Problem 5.

2.12. Develop a spreadsheet model to solve Problem 6.

2.13. Develop a spreadsheet model to solve Problem 7.

2.14. Develop a spreadsheet model to solve Problem 8.
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2.15. Develop a spreadsheet model of the factory in Sect. 2.2 (Fig. 2.6) except that
Workstation 1, 2, and 4 have random processing times that are distributed accord-
ing to a discrete uniform distribution between 1 and 3, and Workstation 3 has a
random processing time distributed according to a discrete uniform distribution
between 1 and 4. To generate random integers uniformly between a and b, use
"=a+FLOOR((b+1-a)*RAND(),1)". Version 2007 or Analysis Tool Pack with
an earlier version of Excel provides a function to generate the discrete uniform vari-
ates directly ; namely, RANDBETWEEN(a,b). (This problem is based on material
contained in the Appendix.)
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Chapter 3
Single Workstation Factory Models

Throughout the analyses given in this textbook, emphasis is on the development of
steady-state system measures such as the expected number of jobs in the system
(WIP) and their mean cycle times (CT ). For these analyses, it is often useful to
obtain the probability mass function (pmf) of the steady-state number of jobs in
the system. From these pmf’s, the measures of system effectiveness can often be
developed. For notational purposes, define the random variable N as the number of
jobs in the system and define pn as the probability that the number of jobs in the
system is n; namely, pn = Pr{N = n}. In the first section, a method is developed for
deriving equations that determine the steady-state probabilities pn for n = 0,1, · · · .
The initial models will include probabilistic behavior for the arrival process and
processing times, and the early models will restrict these two probability laws to the
exponential distribution.

Important assumptions on the operating characteristics of the system are also
made. It is assumed that job inter-arrival times are independent of the status of the
system. Another operating assumption is that the server will never be idle when
there is a job in the system that can be served. That is, if it is allowed for the pro-
cessor to serve a job, then no delay occurs between the time that one job leaves
the server and the next job begins processing on the server. Here the assumption is
made that the server is always busy processing jobs when there are jobs available
for service. Thus, the server will only be idle when there are no jobs available. In
later models, nonproductive times will be incorporated into the model. For example,
in order to have realistic models for many systems, machine breakdowns will need
to be incorporated.

3.1 First Model

Consider a single server with a limited waiting area for nmax−1 jobs and one in the
server position for a maximum of nmax jobs in the system. Jobs arrive to the system
one at a time with exponentially distributed inter-arrival times. Denoting the mean

G.L. Curry, R.M. Feldman, Manufacturing Systems Modeling and Analysis, 2nd ed., 69
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arrival rate as λ , the mean inter-arrival time is then 1/λ . If the system is full, the
arriving job is rejected (and lost to another factory). If there is room in the waiting
area, the arriving job is accepted and processed in a first-come-first-serve order (this
sequence is denoted by FIFO which stands for first-in first-out). The processing time
is also assumed to be exponentially distributed, with mean rate μ (the mean service
time is 1/μ).

Since this system can have at most nmax jobs, there are nmax +1 possible states,
{0,1, · · · ,nmax}, representing the number of jobs in the system. Interest is in devel-
oping the steady-state distribution of the number of jobs in the system. Assuming
that a steady-state exists, then the flow into and out of each state must balance. This
balance is the key property used to establish the steady-state probability of being in
each possible system state.

Let pn denote the steady-state probability of n jobs in the system for n =
0, · · · ,nmax. The flow into an intermediate state n (0 < n < nmax) is made up of
two components: (1) the arrival of a new job to the system when the system has
exactly n−1 jobs, and (2) the completion of a job’s service when the system has ex-
actly n+1 jobs. The steady-state flow out of an intermediate state n (0 < n < nmax)
is also made up of two components: (1) the completion of a job’s service when the
system has exactly n jobs, and (2) the arrival of a new job to the system when there
are exactly n jobs in the system prior to the arrival event.

The resulting flow balance equation for state n is made up of the above four
components. The mean arrival rate of jobs into the system is λ and the mean service
rate of jobs when there is at least one job in the system is μ . The flow into state n
occurs at the rate λ times the probability that the system is in state n− 1 plus the
rate μ times the probability that the system is in state n+1. Similarly, the flow out
of state n occurs with rate (λ + μ) times the probability that the system is in state n.
Thus, the steady-state flow-balance equation for an intermediate state n is

λ pn−1 + μ pn+1 = (λ + μ)pn for n = 1, · · · ,nmax , (3.1)

where the left-hand-side is the inflow and the right-hand-side is the outflow.
States 0 and nmax have different equations since some of the terms of the inter-

mediate states equation are not valid for these boundary states. For example, the
service rate is zero if there are no jobs in the system (state 0) nor can the system
reside in state -1 so that an arrival event will put it into state 0. Also if the system
is full (state nmax), then no service from state nmax + 1 can occur and no new jobs
are allowed to enter the system. The two special flow-balance equations (for states
0 and nmax) are

μ p1 = λ p0 (3.2)

and
λ pnmax−1 = μ pnmax . (3.3)

These three equations (namely, 3.1, 3.2, and 3.3) specify nmax + 1 equations con-
necting the state probabilities pn. In addition, it is also known that the sum of these
probabilities must add to one. Thus, there exists the additional equation, called the
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norming equation, written as
nmax

∑
n=0

pn = 1 . (3.4)

It turns out that the system is over-specified; that is, Eqs. (3.1–3.4) contain more
equations than unknowns. To solve the system, any one of the equations can be
omitted except for the norming equation. (The reader is asked to consider this point
further in Problem 3.6.) After (arbitrarily) eliminating one equation from the system
comprised of (3.1–3.3), there will be a total of nmax +1 linear equations in nmax +1
unknowns from the system defined by (3.1–3.4).

Given the mean arrival rate λ , the mean service rate μ and a system limit of
nmax, the resulting nmax + 1 linear equations can be solved by standard numerical
methods. If nmax is not large, the equations can be written explicitly and solved
for the specified values of λ and μ . However, because the system (3.1–3.4) has a
fairly simple structure, it can be also be solved in general by a recursive substitution
scheme and a closed form solution obtained. Not all systems that we develop in
this text will have a structure leading to a general solution, but when this can be
accomplished, it is the preferred method since the values of the parameters λ , μ and
nmax need not be specified and a parametric solution for all values (or acceptable
ranges of these parameter values) is obtained when solving the general system. For
illustrative purposes, the system (3.1–3.4) is solved by both methods.

Example 3.1. Specific Solution. Consider a facility with a single machine that is
used to service only one type of job. The company policy is to limit the number of
orders accepted at any one time to 3. The mean arrival rate of orders, λ , is 5 jobs
per day, and the mean processing time for a job is 1/4 day (thus, the processing
rate is μ = 4/day). Both the processing and inter-arrival times are assumed to be
exponentially distributed. These assumptions lead to the system of equations

4p1−5p0 = 0

5p0 +4p2− (5+4)p1 = 0

5p1 +4p3− (5+4)p2 = 0

5p2−4p3 = 0

p0 + p1 + p2 + p3 = 1 .

We ignore the fourth equation and only use the first three equations plus the fifth
(norming) equation to obtain

(p0, p1, p2, p3) = (0.173,0.217,0.271,0.339) .

(See the appendix for using Excel to solve linear systems of equations.) The number
of lost jobs per hour (i.e., those arriving to a full system) is given by λ p3 = 5×
0.339 = 1.695. The server is idle when the system is empty, so the percentage of
server idle time is 17.3%. Because the system is at steady-state, the throughput is
equal to the number of jobs that enter the system per unit time (those jobs that
actually get into the system, called the effective arrival rate). Thus, throughput rate
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equals the arrival rate minus the loss rate; namely, 5 - 1.695 = 3.305 jobs/day. Note
that

WIP = E[N] = ∑npn = 1×0.217 +2×0.271+3×0.339 = 1.776 jobs ,

CT = WIP/th = WIP/(λ (1− p3)) = 1.776/3.305 = 0.537 days .

��
Example 3.2. General Solution. To illustrate the more general solution approach,
this system of equations is solved using the parameters rather than their actual val-
ues. The system to be solved is

μ p1−λ p0 = 0

λ p0 + μ p2− (λ + μ)p1 = 0

λ p1 + μ p3− (λ + μ)p2 = 0

λ p2−μ p3 = 0

p0 + p1 + p2 + p3 = 1 .

As before, the first three equations and the fifth equation will be used. The so-
lution procedure is a two-step process. First, all variables are expressed in terms of
p0 by use of the first three equations. This is accomplished through a series of suc-
cessive substitutions. Second, the value of p0 is obtained by the use of the norming
equation. Specifically, the first equation yields p1 in terms of p0 by

μ p1 = λ p0

p1 =
λ
μ

p0 .

The variable p2 is obtained as a function of p0 by substituting the expression for p1

into the second equation as

λ p0 + μ p2 = (λ + μ)p1

μ p2 = (λ + μ)p1−λ p0

p2 = (λ + μ)
λ
μ2 p0− λ

μ
p0

p2 =
(

λ
μ

)2

p0 .

Similarly, the third equation is used to obtain p3 as a function of p0 by substituting
the expressions for the previously obtained p1 and p2; namely,

λ p1 + μ p3 = (λ + μ)p2

p3 = (λ + μ)
λ 2

μ3 p0−
(

λ
μ

)2

p0
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p3 =
(

λ
μ

)3

p0 .

The conclusion from the first step is that all probabilities are now in terms of p0;
namely,

p1 =
(

λ
μ

)

p0, p2 =
(

λ
μ

)2

p0, p3 =
(

λ
μ

)3

p0 . (3.5)

The final step is to substitute these expressions into the norming equation as follows:

1 = p0 + p1 + p2 + p3

=

[

1+
λ
μ

+
(

λ
μ

)2

+
(

λ
μ

)3
]

p0 = 1

thus

p0 =

[

1+
λ
μ

+
(

λ
μ

)2

+
(

λ
μ

)3
]−1

. (3.6)

From here we can develop the measures of WIP = p1 + 2p2 + 3p3, th = λ (p0 +
p1 + p2), and CT = WIP/th. ��

Before moving to the remainder of the chapter, it is beneficial to formally define
the effective arrival rate and comment on Little’s Law. Whenever the system is finite,
there is the possibility that the system will be full and arriving jobs will be lost;
hence, the actual rate of jobs that enter the system, λe may not be the same as the
arrival rate, λ .

Definition 3.1. The effective arrival rate for a system is the rate at which jobs enter
the system. For a workstation with constant arrival rate, λ , and with a maximum
number of jobs at the workstation limited to nmax, the effective arrival rate is given
by

λe = λ (1− pnmax)

where pnmax is the probability that the workstation is full.

A system at steady-state will have its system throughput rate equal to the effective
arrival rate; that is, th = λe, and the use of Little’s Law (Property 2.1) must always
use λe and not λ for the throughput.

• Suggestion: Do Problem 3.1.

3.2 Diagram Method for Developing the Balance Equations

There is a relatively straightforward method for developing the balance equations
for essentially any system in steady-state whose inter-arrival and service times are
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exponentially distributed. The approach is to start by listing all of the states as nodes
in a network. For the single-server problem, a sequential listing is the best. As one
develops an understanding of this approach, a suitable layout will be apparent. The
node listing is

Now directional arcs are added to the network to represent possible flows be-
tween nodes (states). For instance, node 0 is connected to node 1 to represent the
flow from state 0 to 1 when an arrival occurs and the system is in state 0. Similarly,
node 1 is connected to node 0 to represent the flow when a service occurs with the
system in state 1 (a service results in an empty system or state 0). States 1 and 2
are connected, with a directed arc from 1 to 2, by an arrival event while in state 1.
Conversely, states 1 and 2 are connected by a service event while in state 2; thus, the
directed arc is from 2 to 1. The same logic connects states 2 and 3. So the following
directed network is obtained. Note that an arrival into the system cannot occur when
the system is in state 3 (i.e., when the system is full).

Now that the appropriately directed arc network of the system being modeled has
been developed, the actual flow rates can be displayed on theses arcs. These rates
are relatively straightforward to determine. Since the system has an arrival process
that does not depend on the state of the system (excluding when it is full and so no
arrivals can occur), the upward movements among the states all occur at a rate λ
times the probability of being in that state, pn. That is, the conditional arrival rate
given that the system is in state n is λ and the net upward rate from state n is λ pn.
The downward movements all occur when a service has been completed and these
have rates that are μ times the probability of being in the particular state, pn. Thus,
the conditional service rate given that there is a job in the system to be serviced is
μ . The resulting downward rates from state n is μ pn. The similarity of the service
rates is again due to the assumption about the system. There is a single server and
the service rate is independent of the state of the system. That is, the server works
at the same rate without regard to the number of jobs in the queue. The standard
method of graphically depicting the flow between states is to label the flow (arrows)
with the conditional rates for that state.

μ

λ λ λ

μ μ
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This completed directed network can now be used to derive the steady-state bal-
ance equations previously analyzed. The logic goes as follows. Partition the nodes
into two subsets of nodes, then establish values for the appropriate steady-state prob-
abilities to balance the flow between the two subsets. Partitions are redrawn at n−1
different locations to obtain n−1 equations. These balance equations are then com-
bined with the norming equations to yield a system of equations similar to the sys-
tem of (3.1–3.4).

Consider the two subsets of nodes formed when a cut is made between nodes 0
and 1 as is illustrated below.

μ μ

λ λ λ

cut

μ

The balance equation associated with this initial cut is

λ p0 = μ p1 .

The second cut is between states 1 and 2.

μ μ μ

λ λ λ

cut

The resulting balance equation associated with this cut is

λ p1 = μ p2 .

The final cut is between states 2 and 3 as depicted below.

μ μ μ

λ λ λ

cut

Thus the third balance equation is
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λ p2 = μ p3 .

These three-balance equations and the norming equation yield another representa-
tion for our modeled system as

λ p0 = μ p1

λ p1 = μ p2

λ p2 = μ p3 (3.7)
3

∑
n=0

pn = 1.

The system (3.7) obviously has the same relationships between the probabilities as
(3.1–3.4); however, there is usually less work in obtaining this system using the flow
balance approach. Successive substitution can then be used with (3.7) to obtain (3.5)
and the norming equation yields the value for p0 as was accomplished with (3.6).

Another subset partition that leads to the same system of equations is obtained
by separating each node into its own singleton subset. The other subset contains
all the other nodes of the network. The associated balance equations for each node
arise when considering the input arcs to the node and balancing those rates with
the outflow arcs. The development of this set of balance equations parallels the
discussion in Sect. 3.1 and is left as an exercise for the reader (Problem 3.2).

The labeled directed arc network and partitioning method is a powerful method-
ology for deriving balance equations for queueing systems with exponentially dis-
tributed inter-arrival and service times. It is a useful method that helps one visualize
the relationships in the system and keep track of the associated derived balance
equations as they are being developed. Extensive use is made in this textbook of the
labeled-directed arc-diagram approach for studying factory models.

3.3 Model Shorthand Notation

The models studied to this point all assumed exponentially distributed inter-arrival
and service mechanisms. There is a notational shorthand due to Kendall [6] for
characterizing queueing models that is quite useful. With essentially one word, the
model assumptions and system behavior can be summarized. This notation, or vari-
ants of it, frequently appear in the queueing theory literature, particularly in paper
titles. This system does not encompass all model variations imaginable, but it does
present a great deal of information about the system in concise notation. The Kendall
notation for queues is a list of characters each separated by a “/”. The first element
in the list specifies the inter-arrival time distribution assumption. The symbol M (for
Markovian) depicts exponentially distributed times. The second element in the list
denotes the service time distribution assumption. The third element in the list spec-
ifies the number of servers and the fourth element is the maximum number of jobs
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allowed in the system at one time. An optional fifth element specifies the assumption
for the queueing discipline. The general form for Kendall’s notation is

(

arrival
process

/

service
process

/

number
of servers

/maximum
possible

in system

/

queue
discipline

)

with Table 3.1 providing a summary of the commonly used abbreviations. Thus, the
example queueing system just studied is denoted as an M/M/1/3 system. The two
server model of Problem 3.3 is denoted by M/M/2/3. If the system has no effective
limit on the number of jobs allowed, then the fourth parameter would be infinity.
Most often the fourth parameter is omitted when it is not finite, so that such a model
would often be written as M/M/1 instead of M/M/1/∞.

Table 3.1 Queueing symbols used with Kendall’s notation

Symbols Explanation
M Exponential (Markov) inter-arrival or service time
D Deterministic inter-arrival or service time
Ek Erlang type k inter-arrival or service time
G General inter-arrival or service time

1,2, · · · ,∞ Number of parallel servers or capacity
FIFO First in, first out queue discipline
LIFO Last in, first out queue discipline
SIRO Service in random order
PRI Priority queue discipline
GD General queue discipline

As the need arises, other parameter designations will be defined such as D for a
deterministic time and G for a general distribution. To illustrate this notation, some
of the most fundamental results needed for studying factory performance are the
G/G/1 model approximations that are taken up at the end of this chapter.

• Suggestion: Do Problems 3.2–3.6.

3.4 An Infinite Capacity Model (M/M/1)

The finite capacity limitation on the M/M/1/3 model just studied is easily dropped,
and the removal of this limitation has some interesting consequences. First note that
the system of equations derived above (i.e., with a finite capacity) has a solution
regardless of the relationship between the arrival rate and the system service rate.
If the arrival rate of jobs to the system is larger than the system service capacity,
the system is full a relatively high proportion of the time. This in turn leads to more
jobs being turned away because of the full system. In fact, the effective arrival rate
(those jobs getting into the system) will necessarily be less than the system’s service
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capacity. Let’s consider a few cases for the above example that illustrate this point.
Suppose that the mean arrival rate is equal to the mean service rate, λ = μ for the
M/M/1/3 system. With λ = μ , each probability is equal so that p0 = · · · = p3 =
1/4. The effective arrival rate is, thus, given by λe = λ (1− p3) = (3/4)λ < μ . If the
mean arrival rate is twice the mean service rate, λ = 2μ , then the effective arrival
rate becomes λe = (7/15)λ < μ . For a mean arrival rate that is three times the
mean service rate, λ = 3μ , the effective arrival rate becomes λe = (13/40)λ < μ .
Note that as the ratio of λ/μ becomes larger, the effective arrival rate approaches
the inverse of this ratio but never reaches it. The reader is asked to compute these
effective rates in Problem 3.5.

One of the lessons to be learned from the finite capacity model is that these sys-
tems have a built-in mechanism to adjust the arrival rate (called the effective arrival
rate) to a level that can be handled by the system service capacity. If a system that has
no realistic limit on the number of jobs allowed is considered, then mathematically,
these systems can be put in a situation where the mean arrival rate exceeds the mean
service rate and no steady-state exists. It is unreasonable to assume that jobs con-
tinue to arrive when there is essentially an infinite queue and the expected cycle time
is also infinite. Of course, one would like to operate well below the blowup point
with respect to the arrival and service capacity ratio. The analyses of the unlimited
queueing models result in conditions that establish the existence of the steady-state
behavior for these models.

The formulation of the unlimited-jobs system is very analogous to the finite ca-
pacity model formulation. The solution procedure is considerably different in that
an infinite number of states exist and, correspondingly, an infinite number of de-
scriptive equations result. Thus, standard numerical solutions for linear equations
cannot be used. One is forced to solve these systems in a fashion analogous to the
parametric solution approach illustrated for the finite capacity systems. This method
is essentially substitution and formulation of a recursive relationship for the general
solution structure.

The set of equations for the M/M/1 system is the same as the equations for the
finite system capacity case except that the system does not have a final equation.
Thus, an infinite system of equations exists. The diagram for this system is depicted
below.

21 30 ...

Using the cut partitioning method for obtaining the system of equations needed
in defining the steady-state probabilities, the following is obtained:
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λ p0 = μ p1

λ p1 = μ p2

λ p2 = μ p3

...

λ pn = μ pn+1

...
∞

∑
n=0

pn = 1 .

The above system can be rewritten to obtain the following equivalent system.

p1 = λ
μ p0

p2 = λ
μ p1

p3 = λ
μ p2

...

pn = λ
μ pn−1

...

Using a successive substitution procedure, each pn term can be written as a function
of p0 to obtain

pn =
(

λ
μ

)n

p0 for n = 0,1, · · · . (3.8)

The final step is to substitute (3.8) into the norming equation yielding

p0 +
(

λ
μ

)

p0 +
(

λ
μ

)2

p0 + · · ·+
(

λ
μ

)n

p0 + · · ·= 1 ,

which can be solved to obtain an expression for p0 as

p0 =
1

(

1+ λ
μ +
(

λ
μ

)2
+ · · ·+

(

λ
μ

)n
+ · · ·

) .

The denominator is a geometric series1 that has a finite value if λ/μ < 1. Under the
condition that λ < μ , this series sums to

p0 = 1− λ
μ

, (3.9)

1 The geometric series is ∑∞
n=0 rn = 1/(1− r) for |r|< 1 . Taking the derivative of both sides of the

geometric series yields another useful result, ∑∞
n=1 nrn−1 = 1/(1− r)2 for |r|< 1 .
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and the general solution to the steady-state probabilities is (given that λ/μ < 1)

pn =
(

1− λ
μ

)(

λ
μ

)n

for n = 0,1, · · · . (3.10)

The throughput rate per unit time for this system is λ . (The reader is asked to de-
velop this result in Problem 3.10.) The utilization factor u for the server is obtained
from

u = 0p0 +1

(

∞

∑
n=1

pn

)

= 1− p0 = 1−
(

1− λ
μ

)

=
λ
μ

.

The expected number of jobs in the system in steady-state is obtained by using the
derivative of the geometric series as follows:

WIPs = E[N] =
∞

∑
n=0

npn =
∞

∑
n=0

n

(

1− λ
μ

)(

λ
μ

)n

=
(

1− λ
μ

)(

λ
μ

) ∞

∑
n=1

n

(

λ
μ

)n−1

=
(

1− λ
μ

)(

λ
μ

)

(

1

1− λ
μ

)2

=

(
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)

(
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λ
μ

(

1− λ
μ

) =
u

1−u
(3.11)

where N is a random variable denoting the number of jobs in the system. Using
Little’s Law (Property 2.1), the expected time in system (the cycle time) CTs is
given by

CTs =
WIPs

λ
=

1
λ

λ
μ

(1− λ
μ )

=
1

μ−λ
. (3.12)

Example 3.3. Consider a single server system with exponentially-distributed inter-
arrival times and exponentially-distributed service times (thus, this is an M/M/1
system). If 4 jobs per hour arrive for service (λ = 4) and the mean service time is
1/5 hour (μ = 5), then the utilization factor u (u = λ/μ) equals 0.8. The expected
number of jobs in the system, WIPs from (3.11) is

WIPs =
0.8

(1−0.8)
= 4 .

The cycle time in the system, CTs, is given by (3.12) and is

CTs =
1

5−4
= 1 hr .
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The cycle time in the system is the sum of the cycle time in the queue plus the
service time. Hence, CTq = 1−0.2 = 0.8 hr. The probability that the server is idle,
of course, equals the probability that the system is empty, p0. This probability is

p0 = 1− λ
μ

= 0.2 .

The steady-state probability that there are n jobs in the system is given by

pn = 0.2×0.8n for n = 0,1, · · · .

��
A workstation may consist of multiple machines; however, in most models,

server or machine distinctions are not usually made. That is, if there are two ma-
chines available, then for ease of modeling it is usually assumed that these are iden-
tical machines and that jobs are not split, but processed completely on one machine.
Under the assumption of identical machines, if one machine operates at a rate of
μ , then n machines operate at a rate of nμ , and the state diagram must be adjusted
accordingly. For example, suppose a workstation has three machines, then the ser-
vice rate when two machines are busy is 2μ and whenever all machines are busy the
service rate is 3μ; thus, the rate diagram is as below.

21 30 ...

μ 2μ 3μ 3μ

• Suggestion: Do Problems 3.7–3.14.

3.5 Multiple Server Systems with Non-identical Service Rates

The assumptions of identical machines may not be accurate, and if there is a sig-
nificant difference in the operating characteristics of the machines associated with a
single workstation, more complex models will result. To provide some exposure to
the complexity involved in modeling non-identical machines within a single work-
station, a simple non-identical servers model is considered and the associated defin-
ing equations for the steady-state probabilities are developed. The structure of this
system is that it has two non-identical servers and a limit of four jobs in the sys-
tem at one time. Inter-arrival and service times are all assumed to be exponentially
distributed with a mean arrival rate of λ and mean service rates of μ and γ for the
two distinct machines. Let γ < μ , so that the μ machine is faster and, therefore,
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s

f

Fig. 3.1 State diagram for an M/M/2/4 system with non-identical servers, where μ denotes the
rate of the faster machine and γ is the rate of the slower machine

preferred. The system operating policy is such that when the system is empty, an
arriving job is always assigned to the faster machine. If a job arrives to the system
and finds that only one machine is busy, the job is assigned to the idle machine
immediately regardless of the speed of the machine or how long the other machine
has been busy. This same logic is applied when a machine completes service and
there is a queue of waiting jobs. The next job in line is immediately allocated to
the idle machine; thus, machines can never be idle when there is a queue of waiting
jobs. A final assumption is that once a job is assigned to a machine for processing,
it remains on that machine until its processing is complete. Hence, jobs cannot be
split and processed on both machines nor can a job be moved from the slower to the
faster machine.

As before, nmax is the maximum number of jobs allowed in the system (here
nmax = 4) so that there will be a total of nmax + 2 possible states for this model.
In the identical server model, there were nmax + 1 possible states. The extra state
arises because we must know which machine is busy when there is only one job at
the workstation in order to know the service rate associated with the job in process.
When there are two or more jobs in the system, both machines are busy and no
distinction about the state needs to be made. Denoting the state (i.e., the number of
jobs at the workstation) by n, one possible state space is the set {0,1f,1s,2,3,4},
where n = 1f indicates that one job is in the system and that job is being processed
on the fast machine and n = 1s indicates that one job is in the system and is being
processed on the slow machine. Given these operational rules and notation, the state
diagram of this system is displayed in Fig. 3.1.

The transition rates shown in the diagram of Fig. 3.1 are explained as follows.
In any state (other than the maximum), the arrival of a job takes the system to the
next higher state number. Both states 1f and 1s move to state 2 with a job arrival.
An arrival to an empty system moves the state from 0 to state 1f because of the
assumption that the faster machine is preferred. From state 2, the next state depends
on which machine finishes first. If the faster machine finishes before the slower
machine, the system has one job remaining and this job continues being processed
on the slower machine; thus, the system ends up in state 1s. This occurs with rate
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μ p2. With similar reasoning, it should be clear that if the slower machine completes
its processing first, the system transitions to state 1f. The transition from 2 to 1f
occurs at a rate of γ p2. Notice that the downward movement from state 2 occurs
with rate (μ + γ)p2. Downward movement from state 3 to state 2 occurs with rate
(μ + γ)p3 and, similarly, from state 4 to state 3 with rate (μ + γ)p4.

The defining equations for the steady-state probabilities are determined by taking
cuts between states. A slight problem exists with defining a cut between states due
to the multiplicity of state 1 (i.e., 1f and 1s). The general idea of a cut is to isolate
a set of states from the remaining states. In a serial system this cut process is easily
defined and leads to the number of equations necessary for uniquely defining the
probabilities when combined with the norming equation. The diagram (Fig. 3.1)
for this non-identical server system is non-serial and thus there are several more
possibilities for the cuts. The actual cuts that are used in the final analysis must be
chosen wisely so that all probabilities are defined. For our set, we shall establish five
cuts such that a cut is placed immediately to the right of each node subset contained
within the following set:

{ {0},{0,1f},{0,1f,1s},{0,1f,1s,2},{0,1f,1s,2,3} }

thus producing the following five equations:

λ p0 = μ p1f + γ p1s
λ p1f = γ p2 + γ p1s

λ p1f +λ p1s = (γ + μ)p2 (3.13)

λ p2 = (γ + μ)p3

λ p3 = (γ + μ)p4 .

These equations, plus the norming equation,

p0 + p1f + p1s + p2 + p3 + p4 = 1

are six equations that can be solved to obtain the steady-state probabilities for this
system.

Example 3.4. An overhaul facility for helicopters is open 24 hours a day, seven days
a week and helicopters arrive to the facility at an average rate of 3 per day according
to a Poisson process (i.e., exponential inter-arrival times). One of the areas within
the facility is for degreasing one of the major components. There is only room in the
facility for 4 jobs at any one time and there are two machines that do the degreasing.
The newer of the two degreasing machines takes an average of 8 hours to complete
the degreasing and the older machine takes 12 hours for the degreasing operation.
Because of the large variability in helicopter conditions, all times are exponentially
distributed. Thus, we have λ = 3 per day, μ = 3 per day, and γ = 2 per day. The
system of equations given by (3.13) become
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3p0−3p1f−2p1s = 0

3p1f−2p2−2p1s = 0

3p1f +3p1s−5p2 = 0

3p2−5p3 = 0

3p3−5p4 = 0

p0 + p1f + p1s + p2 + p3 + p4 = 1 .

The solution to this system of equations is

p0 = 0.288, p1f = 0.209, p1s = 0.118, p2 = 0.196, p3 = 0.118, p4 = 0.071 .

The average number in the system is obtained by using the definition of an ex-
pected value; namely,

WIPs = p1f + p1s +2p2 +3p3 +4p4 = 1.356

and the average number in the queue is obtained similarly,

WIPq = p3 +2p4 = 0.259 .

Note that for the average number in the queue, p3 is multiplied by 1 because when
there are 3 in the system, there is only 1 in the queue. Also, p4 is multiplied by
2 because when there are 4 in the system, there are 2 in the queue. Average cycle
times are obtained through Little’s Law as

CTs =
WIPs

λe
=

1.356
3× (1−0.071)

= 0.486 day

CTq =
WIPq

λe
=

0.259
3× (1−0.071)

= 0.093 day .

A couple of other measures that are sometimes desired by management are the
number of busy processors (i.e., degreasers) and their utilization. The expected num-
ber of busy servers, E[BS], is 1.097, and is obtained as

E[BS] = 1p1f +1p1s +2p2 +2P3 +2p4 = 1.097 .

The system utilization factor u is the expected number of busy servers divided by
the number of machines available

u =
E[BS]

2
= 0.5485 = 54.85% .

Our final calculation is to obtain the average time needed for degreasing. Be-
cause of the preference given to using the faster machine, we would expect the
average time to be closer to 8 hours than to 12 hours. To get an exact value, we take
advantage of the fact that the time in the system equals the time in the queue plus
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service time (Eq. 2.1); thus

E[T ] = CTs−CTq = 0.486−0.093 = 0.393 days = 9.4 hr .

��
• Suggestion: Do Problems 3.15–3.20.

3.6 Using Exponentials to Approximate General Times

The exponential distribution is an extremely powerful modeling tool because of its
lack of memory (Eq. 1.16 and Problem 1.24). That is, the rate of completion of the
process does not change with elapsed time. So for systems with exponential times,
it is not necessary to keep track of the elapsed inter-arrival time nor the elapsed
service time. This allows the steady-state modeling approach to be used. To model
more general systems, one fruitful approach is to approximate the general times by
combinations of exponentials. Then the exponential rate modeling approach can still
be applied by developing more complex state representations of the system.

The Erlang-k distribution (see p. 18 for a review of the Erlang) provides an ex-
cellent distribution to use for the expanded state modeling approach. The Erlang-k
distribution is the sum of k independent and identical exponential distributions, so
that it can be modeled as a serial k-node system, with each node referring to iden-
tical exponentials. Since the Erlang-k has a squared coefficient of variation given
by C2 = 1/k, it also allows modeling of processes that have less variation than the
exponential distribution.

3.6.1 Erlang Processing Times

To illustrate the expanded state modeling approach, consider a single server sys-
tem with exponential inter-arrival times having a mean rate λ and a processing time
that is described by an Erlang-2 distribution with mean rate μ and thus mean time
1/μ . This Erlang-2 distribution will be modeled using two exponential nodes (or
phases), where each node has a mean rate of 2μ . Since rates and times are recipro-
cals, the mean time spent in each node is 1/(2μ). This gives the total time spent in
the two nodes as 1/μ (i.e., the sum of the two means) which is equal to the average
time of the Erlang-2 processing time distribution. To further simplify this example,
the number of jobs allowed into the system will be limited to three. Thus, we are
interested in analyzing an M/E2/1/3 system.

The idea of the expanded state space approach is to represent the non-exponential
process by more than one node, where each individual node is exponential. There-
fore, the service process will have two nodes representing the two phases of the
Erlang-2 distribution. When a job begins its processing, it enters the node represent-
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Fig. 3.2 Diagram for an
M/E2/1/3 model where the
state (n, i) indicates that there
are n jobs in the system with
the ith service phase busy

11
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31

0

21

22 32

ing phase 1 and stays in phase 1 for an exponential length of time. When the job has
been completed its phase 1 service, the job moves to the node representing phase 2.
As long as the job is in either phase, it is considered to be continuing its processing
and a new job is not allowed into service. When the job is finished with phase 2, it
is considered to be finished with its processing and it leaves the system, and at this
point in time, a new job can enter phase 1 to begin its service. A convenient repre-
sentation for the state space is to use ordered pairs. In other words, (n, i) denotes a
state of the system, where n is the number of jobs in the system and i is the service
phase being occupied by the job being processed. The M/E2/1/3 state diagram is
displayed in Fig. 3.2.

There are 2nmax +1 states, where nmax is the maximum number of jobs allowed
into the system (here nmax = 3). To obtain the steady-state probabilities for this
system, six cuts are placed so that the following node sets are isolated on one side
of the cut

{ {0},{0,(1,2)},{0,(1,1)},{0,(1,1),(1,2)},{(3,1),(3,2)},{(3,2)} }

which together with the norming equation yields the following system of equations,

λ p0−2μ p12 = 0

λ p0 +λ p12−2μ p11 = 0

(λ +2μ)p11−2μ p12−2μ p22 = 0

λ p11 +λ p12−2μ p22 = 0

λ p21 +λ p22−2μ p32 = 0

λ p22 +2μ p31−2μ p32 = 0

p0 + p11 + p12 + p21 + p22 + p31 + p32 = 1 .

The performance measures of work-in-process, cycle time and throughput are com-
puted from

WIPs =
4

∑
n=1

n(pn1 + pn2)

th = λe = λ (1− p31− p32)
CTs = WIPs/λe .
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3.6.2 Erlang Inter-Arrival Times

If the inter-arrival process is an Erlang distribution then the state-space scheme is
slightly different from that used for Erlang service. The same concept of breaking
the service process into phases is used for the arrival process; however, the state
space will be slightly different. We illustrate the expanded state space process ap-
plied to arrivals by assuming an Erlang-2 inter-arrival time process. The arrivals will
be processed one-at-a-time at a single workstation with exponentially distributed
service times with a limit of three jobs in the system, in other words, we consider an
E2/M/1/3 system.

Conceptually, an arriving job is always in one of two phases, and each phase has
a mean rate of 2λ or a mean sojourn time of 1/(2λ ). As long as a job is in one of
the arrival phases, it is not yet considered part of the system. The arriving job begins
in phase 1. After an exponentially distributed length of time, the job transitions to
phase 2. After another exponential length of time, two events occur simultaneously:
the job leaves phase 2 and enters the system and another jobs enters phase 1. (Note
that for a model of phased arrivals, one of the arrival phases is always occupied and
the other phases are empty.)

The slight difference in the state space for the Erlang inter-arrival time model
versus the Erlang service time model occurs due to the situation that the arrival
process has two phases regardless of the number of jobs in the system. So when the
system is empty, there are still two phases that the arriving job must complete before
it becomes an active job attempting to enter the system. The state-space notation
used is (i,n) where as before i is the phase and n is the number of jobs in the
system. Note that the order has been reversed from the Erlang service model to help
keep in mind that the phases are for the arrival process. The states needed to model
the E2/M/1/3 system are: {(1,0), (2,0), (1,1), (2,1), (1,2), (2,2), (1,3), (2,3)}. The
diagram of this model is given in Fig. 3.3. Note also that there is a different situation
for blocked jobs for this model. A job is not blocked until it arrives to a full system
which occurs from state (2,3) with rate 2λ . Then the arrival process starts over in
state (1,3) rather than staying at state (2,3). That is, the arriving job is rejected and
the arrival process starts over at state (1,3) for the next job creation. Thus, there is
an arc between (2,3) and (1,3) with rate 2λ in Fig. 3.3 to represent this transition.

Instead of using cuts to derive the equations of state, we use the single-node iso-
lation method for generating the equations that define the steady-state probabilities.
The following system of equations (all eight equations are given but only seven are
used since the norming equation is also required) are generated for the states in the
order that they appear in the above state list.

2λ p10 = μ p11

2λ p20 = 2λ p10 + μ p21

(2λ + μ)p11 = 2λ p20 + μ p12

(2λ + μ)p21 = 2λ p11 + μ p22
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1,0
μ μ μ

μμ μ

1,1 1,2 1,3

2,0 2,1 2,2 2,3

2λ 2λ 2λ 2λ 2λ 2λ 2λ 2λ

Fig. 3.3 Diagram for an E2/M/1/3 model where the state (i,n) indicates that the arrival process
is in phase i and there are n total jobs in the system

(2λ + μ)p12 = 2λ p21 + μ p13

(2λ + μ)p22 = 2λ p12 + μ p23

(2λ + μ)p13 = 2λ p22 +2λ p23

(2λ + μ)p23 = 2λ p13

and
p10 + p20 + p11 + p21 + p12 + p22 + p13 + p23 = 1 .

Example 3.5. Since this system consists of only 8 unknowns, it is easily solved using
the matrix formulas in Excel (see the appendix to this chapter). Let λ = 5 jobs/hr
and μ = 5 jobs/hr, and the solution to the E2/M/1/3 system of equations is

p10 = 0.0687 , p20 = 0.1358 ,
p11 = 0.1374 , p21 = 0.1342 ,
p12 = 0.1406 , p22 = 0.1278 ,
p13 = 0.1534 , p23 = 0.1022 .

Some of the system performance measures are

WIPs = 0(p10 + p20)+1(p11 + p21)+2(p12 + p22)+3(p13 + p23) = 1.5751

u = p11 + p21 + p12 + p22 + p13 + p23 = 1− (p10 + p20) = 79.55%

th = λe = λ −2λ p23 = μ×u = 3.978 jobs/hr

CTs = WIPs/th = 0.3960 hr .

Notice that the throughput can be calculated in a couple of different but equiva-
lent ways. The expression λ −2λ p23 arrises by observing that arrivals are blocked
from entering the system whenever the system is in the (2,3) state and then the rate
at which jobs leave state (2,3) and try to enter the system is 2λ . Alternately, the
throughput can be determined by multiplying the service rate μ times the probabil-
ity that the server is busy, i.e., the utilization. ��
• Suggestion: Do Problems 3.21–3.24, and 3.33–3.36.
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Fig. 3.4 A generalized Erlang
with two phases, where the
first phase always occurs and
has a mean rate λ1 and the
second phase occurs with
probability α and has a mean
rate λ2

(1−α) λ2

αλ1

λ1

1 2

3.6.3 Phased Inter-arrival and Processing Times

The improved modeling generality gained from the phased-service time model is
frequently worth the notational inconvenience. For a phased-service time model,
the state space is expanded essentially by a multiple of the number of phases. The
state space for an M/M/1/3 system has four states (nmax + 1), while its extension
to the M/E2/1/3 system has seven states (2nmax +1). The inter-arrival time process
can also be broken into phases at the same time that the service times have phases
to allow for even greater modeling flexibility, and the phases can be structured so as
to be more general than the standard Erlang model. To illustrate the approach, the
previous M/E2/1/3 model is extended in this section to have a generalized Erlang-2
arrival process. There are two generalizations in the Erlang process that allow for a
broader range of squared coefficients of variation, C2, values while maintaining the
essential exponential nature of individual nodes. The first generalization is to allow
for non-identical phases and second is to give a probability that the process is com-
plete at the end of each phase. Such a phased process is called a Generalized Erlang,
GE, or a Coxian distribution. A GE with two phases is diagramed in Fig. 3.4.

A two-phase GE will be denoted by GE2. Thus, the system of interest is an
GE2/E2/1/3 model. The purpose of illustrating this generalization is to develop
modeling skills that have more flexibility in the range of inter-arrival and service
time distributions that can be studied. The distribution resulting from the GE2 pro-
cess illustrated in Fig. 3.4 can result in a squared coefficient of variation C2 in the
range [0.5,∞). Thus, the parameters of an GE2 distribution can be selected to fit any
finite mean and C2 values needed, given that C2 ≥ 1/2. Notice that we have three
parameters for the GE2 distribution; namely, λ1, λ2, and α . It is possible to fix those
three parameters to match a given mean, variance, and skewness for a distribution
provided the skewness coefficient is not too large [2, p. 53]. However, it is more
common to have only the mean and variance for a distribution. Parametric values
for the GE2 distribution have been suggested by Altiok [2, p. 54–56] when fitting
the parameters to two moments. These are

λ1 =
2

E[X ]
, λ2 =

1
E[X ]C2[X ]

, α =
1

2C2[X ]
for C2[X ] > 1 ; (3.14)
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Fig. 3.5 State diagram for an GE2/E2/1/3 model, where a (n, i, j) indicates that there are n jobs
in the system with one job in arrival phase i and one job is service phase j

λ1 =
1

E[X ]C2[X ]
, λ2 =

2
E[X ]

, α = 2(1−C2[X ]) for
1
2
≤C2[X ]≤ 1 . (3.15)

Note that matching two parameters of a distribution does not always characterize the
distribution. Some distributions require three or more parameters for proper charac-
terization, while the exponential distribution only requires one parameter (the mean
rate λ or mean time 1/λ ).

Modeling with the GE2 distribution causes these systems to quickly become quite
complex. The GE2/E2/1/3 model, illustrated in Fig. 3.5, has 14 states, two states
for each of the proceeding M/E2/1/3 system states including the 0 state. The sys-
tem empty state, state 0, now must be expanded so that the phase of the arriving
job is represented. As one can readily see from the state diagram (Fig. 3.5) for this
system, exponential-based generalizations for system times can be accomplished;
however, these generalizations yield complex, and often intractable, models. The
next section develops another approach for approximating general system time dis-
tributions (inter-arrival and service times).

• Suggestion: Do Problems 3.25–3.29.

3.7 Single Server Model Approximations

There are a variety of single facility generalizations that are standard in the queue-
ing literature. Our concern is mainly with the assumptions regarding the inter-arrival
and service time distributions. To use these models in a factory setting, more gen-
eral assumptions on these distributions are needed. Rather than giving the general
G/G/1 approximation model directly, a more circumspect route is taken that, hope-
fully, illuminates why and where the approximation arose. The model considered
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next is the exact result for the M/G/1 queue, that in a proper form, suggests the
structure of the general approximation result.

3.7.1 General Service Distributions

Consider a single-server system with exponential inter-arrival times, with mean rate
λ , and a general service time distribution having mean time 1/μ and variance σ2

s .
The state-diagram approach can no longer be used to develop equations that de-
fine the steady-state probabilities since these diagrams are tied to the exponential
distribution or Markovian property. Variations such as Erlang service times can be
developed using the state-diagram approach because the Erlang continues with the
exponential assumption for the individual phases. The point of view taken for a
general service process is to observe the system only at service completion times.
This allows us to model, using the Markovian properties of the arrival process, the
steady-state system size probabilities at departure points. It turn out that for this
M/G/1 system, the steady-state probabilities at departure points are the same as the
steady-state probabilities at an arbitrary point in time [4, p. 221]. The derivation of
these probabilities is beyond the scope of this text and involves developing the gen-
erating function transform for the departure point probabilities. The development of
the mean values for the number of jobs in the system was initially obtained inde-
pendently in 1932 by Pollaczek and Khintchine and is now considered a standard
property for general service time queueing systems.

Property 3.1. The Pollaczek and Khintchine, or “P-K”, formula for WIP in
an M/G/1 queueing system is given by

WIPs = E[N] =
λ
μ

+

(

λ
μ

)2
+λ 2σ2

s

2
(

1− λ
μ

)

where N is the number of jobs in the system, λ is the mean arrival rate, and the
service distribution has mean and variance given by 1/μ and σ 2

s , respectively.

The notation used in the above property is common throughout this text. The sub-
script s used with WIP is to emphasize that the mean work-in-process is over the
entire system; the subscript s used with the variance is to emphasize that the param-
eter refers to the service time distribution and is frequently used to differentiate the
service distribution parameters from the inter-arrival parameters.

One implication of Little’s Law is that for workstations that have one-at-a-time
processing, the relationship between the average number in the system and the aver-
age number in the queue is given by WIPs−WIPq = λe/μ . Since λe = λ for M/G/1
systems, the expected number of jobs waiting for the processing, E[Nq], is
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WIPq = E[Nq] =

(

λ
μ

)2
+λ 2σ 2

s

2
(

1− λ
μ

) .

Using Little’s Law one more time, the following important property is obtained, and
this property will be used to develop approximations for more complicated systems.

Property 3.2. The P-K formula for the queue cycle time in an M/G/1 system
is given by

CTq = E[Tq] =
WIPq

λ
=

(

λ
μ

)2
+λ 2σ 2

s

2λ
(

1− λ
μ

)

where Tq is a random variable denoting the time a job spends in the queue, λ
is the mean arrival rate, and the service distribution has mean and variance
given by 1/μ and σ 2

s , respectively.

The goal is now to rearrange this formula into a form that will be utilized a great
deal in the development of more realistic factory models. First recall from (1.11)
that the squared coefficient of variation is defined by

C2[T ] =
V [T ]
E[T ]2

so that in terms of service time distribution parameters, we can write

C2
s = μ2σ 2

s .

Recall from (3.11) and (3.12) that the results for the M/M/1 model are

WIPs(M/M/1) =
u

1−u
, and

CTs(M/M/1) =
1

μ−λ

where u is the server utilization factor and is equal to λ/μ . Here we have introduced
a notational convention of writing the model assumptions (i.e., M/M/1) explicitly
in the formula. This convention will be used whenever the context does not make
the model clear. It should not be difficult to show (hint: use (2.1)) the following:

WIPq(M/M/1) =
u2

1−u
, and

CTq(M/M/1) =
u

1−u
E[Ts] (3.16)

where Ts is a random variable denoting the time a job spends in the server.
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The P-K formula for cycle time in the queue (Property 3.2) can be rewritten as

CTq =

(

λ
μ

)2
+λ 2σ2

s

2λ
(

1− λ
μ

)

=

(

λ
μ

)2
+λ 2 C2

s
μ2

2λ
(

1− λ
μ

)

=
(

1+C2
s

2

) (

u
1−u

)

E[Ts] .

Thus, we have an extremely important (exact) relationship between the M/G/1 and
the M/M/1 models; namely,

CTq(M/G/1) =
(

1+C2
s

2

)

CTq(M/M/1) . (3.17)

3.7.2 Approximations for G/G/1 Systems

The P-K mean queue cycle time result (3.17) is based on the assumption of ex-
ponential inter-arrival times. Since the coefficient of variation for the exponential
distribution is one, the P-K result could just as accurately have been written as

CTq(M/G/1) =
(

C2
a +C2

s

2

)

CTq(M/M/1) ,

where C2
a refers to the squared coefficient of variation for the inter-arrival times.

This form suggests that the relationship might be a reasonable approximation for
the general G/G/1 system. In fact, Kingman [7] looked at various approximations
in heavy-traffic conditions (i.e., for utilization factors close to 1) and obtained a
similar result. Therefore, our first approximation is named after Kingman.

Property 3.3. The Kingman diffusion approximation for the G/G/1 queueing
system is

CTq(G/G/1)≈
(

C2
a +C2

s

2

)

CTq(M/M/1) ,

where C2
a and C2

s are the squared coefficients of variation for the inter-arrival
distribution and the service time distribution, respectively.

There have been extensive studies using the Kingman diffusion approximation
and it has been shown to be an upper bound on the actual mean queue cycle time.
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An improved approximation was developed by Kraemer and Langenbach-Belz [8]
and studies by Whitt [10] have shown that it is good when the inter-arrival time
variability is less than the exponential distribution. Whitt’s conclusion is to extend
the approximation by adding another multiplicative term resulting in the following:

CTq(G/G/1)≈ g(u,C2
a ,C

2
s )×

(

C2
a +C2

s

2

)

CTq(M/M/1) , (3.18)

where g is a function of server utilization and the two squared coefficients of varia-
tion defined as

g(u,C2
a ,C

2
s ) =

⎧

⎨

⎩

exp{− 2(1−u)
3u

(1−C2
a)2

C2
a+C2

s
} for C2

a < 1 ,

1 for C2
a ≥ 1 .

For the remainder of this textbook, the simple form of Kingman’s diffusion ap-
proximation (Property 3.3) is used with the understanding that improvements are
possible using Whitt’s extension (3.18). Since the time in the system equals the time
in the queue plus the processing time, we also have a good approximation for the
system mean cycle time as

CTs(G/G/1)≈
(

C2
a +C2

s

2

)(

u
1−u

)

E[Ts]+E[Ts] . (3.19)

Example 3.6. Consider again Example 3.3 illustrating an M/M/1 system. For this
model, λ = 4/hr and μ = 5/hr yielding a utilization factor u = 0.8. Since this was
an exponential system, we had C2

a = C2
s = 1 and E[Ts] = 0.2 hr. Thus, the G/G/1

approximation is

CTq(G/G/1) =
(

C2
a +C2

s

2

)(

u
1−u

)

E[Ts] =
(

1+1
2

)(

0.8
0.2

)

0.2 = 0.8 hr .

Whenever the Kingman approximation (Property 3.3) is applied to an M/M/1 or
M/G/1 system, it is exact and not an approximation. We observe that the above
result of 0.8 hr for the waiting time agrees exactly with CTq as calculated in Example
3.3. (It is always nice to have consistency in mathematics!) ��
Example 3.7. Consider a G/G/1 system with inter-arrival times distributed accord-
ing to a gamma distribution with mean 15 minutes and standard deviation 30 min-
utes, and with service times distributed according to an Erlang-4 distribution with
mean 12 minutes. Since the distribution of service times is Erlang, the initial temp-
tation may be to use the methodology of Sect. 3.6.1; however, because the arrival
times are not exponential, we are left with the G/G/1 results. The given data yields
the following parameters: λ = 4/hr, μ = 5/hr, C2

a = 4, and C2
s = 0.25. Thus, this

example has the same mean characteristics of Example 3.6 yielding a utilization of
u = 0.8, but the arrival process has more variability and the processing times are
less variable. Using the Kingman diffusion approximation (Property 3.3), we have
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CTq(G/G/1)≈
(

C2
a +C2

s

2

)(

u
1−u

)

E[Ts] =
(

4+0.25
2

)(

0.8
0.2

)

0.2 = 1.7 hr .

This cycle time is over twice a large as the exponentially distributed system result;
thus, the variability associated with non-exponential distributions can have a signif-
icant impact on the expected cycle time.

The queue waiting times for single-server queueing systems can be easily sim-
ulated with a spreadsheet model (see the Appendix); thus to check the accuracy of
the approximation, we simulated the G/G/1 system using Excel as discussed in the
appendix. (Also refer to the appendix for the importance of reporting confidence in-
tervals along with simulation results.) The simulation yielded a mean waiting time
of 1.89 hours with a half-width of ±2 minutes for the 95% confidence interval. It is
interesting that when a Weibull distribution with the same mean and variance was
used instead of the Gamma distribution, the simulated mean waiting time was 1.71
hours with a half width of ±1.5 minutes for the 95% confidence interval. ��

3.7.3 Approximations for G/G/c Systems

There are many generalizations of the G/G/1 approximations to account for multi-
ple server systems in the literature. Allen and Cunneen [1] have one of the first com-
monly used approximation based on the Kingman diffusion approximation. Their
approximation was later adjusted by Hall [3] to be a simple extension of Property
3.3 and is given as

CTq(G/G/c)≈
(

C2
a +C2

s

2

)

CTq(M/M/c) . (3.20)

This form of the multiple server approximation is particularly appealing and will be
used herein since it reduces to the form of the single-server approximation when c =
1. In addition, it is not too difficult to obtain WIP and CT for an M/M/2 system (see
Problem 3.9) and the M/M/3 system; thus, we have the following two properties.

Property 3.4. The Kingman diffusion approximation extended for a two-
server system is

CTq(G/G/2)≈
(

C2
a +C2

s

2

)(

u
1−u

)(

u
1+u

)

E[Ts] ,

where u = λE[Ts]/2 is server utilization. This approximation is exact for the
M/M/2 system.
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Property 3.5. The Kingman diffusion approximation extended for a three-
server system is

CTq(G/G/3)≈
(

C2
a +C2

s

2

)(

u
1−u

)(

3u2

2+4u+3u2

)

E[Ts] ,

where u = λE[Ts]/3 is server utilization. This approximation is exact for the
M/M/3 system.

An approximation proposed in Hopp and Spearman [5] uses the following ap-
proximation for a Markovian multiple server system from [9]

CTq(M/M/c) =

(

u
√

2c+2−2

c

)

CTq(M/M/1) .

The resulting approximation of Hopp and Spearman yields a general extension as:

Property 3.6. The Kingman diffusion approximation extended for a multi-
server system is

CTq(G/G/c)≈
(

C2
a +C2

s

2

)

(

u
√

2c+2−1

c(1−u)

)

E[Ts] ,

where u = λE[Ts]/c is server utilization.

Finally, we repeat the obvious rule for system cycle time (3.19) extended to a
multiple-server system that holds whenever service is one-at-a-time:

CTs(G/G/c) = CTq(G/G/c)+E[Ts] . (3.21)

Example 3.8. Consider again the system of Example 3.7 except for a two-server
system and with a mean service time of 24 minutes. Thus, server utilization stays
the same (namely, u = 0.8) and the squared coefficients of variation are still given as
C2

a = 4 and C2
s = 0.25. Then the expected system cycle time using the approximation

of Property 3.6 is

CTq(G/G/2) ≈
(

4+0.25
2

)

(

(0.8)
√

6−1

2(1−0.8)

)

0.4

= 1.54 hr .

If we use Property 3.4, the approximation becomes
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CTq(G/G/2) ≈
(

4+0.25
2

)(

0.8
1−0.8

)(

0.8
1+0.8

)

0.4

= 1.51 hr .

A simulation of this system yielded a mean cycle time in the queue of 1.63 hr with
a half-width of ±0.01 hr for the 95% confidence interval. ��

A comparison of the analytical result and the simulation result in the above ex-
ample illustrates that these approximations are adequate but certainly not exact.
Throughout the next four chapters, we will utilize these approximations extensively
as we build approximations for more general factory models.

• Suggestion: Do Problems 3.30–3.32.

Appendix

In this appendix, we discuss using Excel to solve linear systems of equations and
the use of confidence intervals within a simulation. We also present a very sim-
ple method for simulating a single-server queueing system with a FIFO queueing
discipline.

Solutions to Linear Systems of Equations. Linear systems can always be writ-
ten in matrix form as

Ax = b ,

where A is an m× n matrix of the coefficients, x is a vector of n unknowns, and b
is an m dimensioned vector of the right-hand-side constants. If the system has the
same number of equations as unknowns (namely, m = n) and if the matrix A has an
inverse, the solution to this system is

x = A−1b ,

where A−1 denotes the inverse of the matrix. Excel has functions for both the
matrix inverse and for matrix multiplication. The key to using an Excel function
that has an array for the answer, is to highlight the area of the answer and use
<ctrl-shift-enter> when executing the function. For example, suppose we
wish to solve the following system:

3x1 +4x2 +5x3 = 4

2x1 +2x2 +5x3 = 3

1x1 +6x2−2x3 = 1 .

Using Excel, type the coefficient matrix, A, in the square block of cells A2:C4 and
the right-hand-side vector in a single column block of cells E2:E4 as shown below.
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A B C D E
1 Coefficient Matrix RHS
2 3 4 5 4
3 2 2 5 3
4 1 6 -2 1

The solution to the system, namely A−1b is a 3× 1 array; therefore, a column
of three cells for storing the answer must be selected (highlighted). Choosing the
cells G2:G4 for the answer, select those three cells by placing the mouse in cell G2
and dragging the mouse down three cells. While the three cells are highlighted, type
the following (the typing will be appear in cell G2 since that is where the selection
started)

=MMULT(MINVERSE(A2:C4),E2:E4)

but do not hit the <enter> key. Note that the MMULT() function multiplies two
arrays, and the MINVERSE() function produces the inverse of an array. In Excel,
matrix functions always begin with the letter M. When finished typing, hold down
the <ctrl> and <shift> keys and while holding these two key down, hit the
<enter> key. The answer (0.75, 0.125, 0.25) should appear in the highlighted
cells G2:G4.

Simulation of Waiting Times in a Single-Server Workstation. Consider a
G/G/1 queueing system in which each job is numbered sequentially as it arrives.
Let the service time of the nth job be denoted by the random variable Sn, the delay
time (time spent in the queue) by the random variable Dn, and the inter-arrival time
between the n-1st and nth job by the random variable An. The delay time of the nth

job must equal the delay time of the previous job, plus the previous job’s service
time, minus the inter-arrival time; however, if inter-arrival time is larger than the
previous job’s delay time plus service time, then the queueing delay will be zero. In
other words, the following must hold

Dn = max{0, Dn−1 +Sn−1−An } . (3.22)

If we can generate observations of the random variables An and Sn for n =
1, · · · ,nmax we will have simulated the arrival and service times for nmax jobs and
thus be able to simulate their delays using (3.22). In the Appendix of Chap. 2, the
Excel function RAND() was used to generate random numbers which are defined as
a sequence of numbers appearing to have a continuous uniform distribution between
0 and 1. General random variates can be obtained by the following property that is
used to relate random numbers to any other random variable.

Property 3.7. Let R be a random variable with a continuous uniform distri-
bution between zero and one, and let F be an arbitrary CDF. If the inverse of
the function F exists, denote it by F−1; otherwise, let F−1(a) = min{t|F(t)≥
a}. Then the random variable X defined by

X = F−1(R),
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has a distribution function given by F; that is,

P{X ≤ a}= F(a) for −∞ < a < ∞.

To illustrate the use of this property, consider the Excel function

GAMMAINV(probability, shape parameter, scale parameter)

that yields the inverse of the gamma CDF evaluated at the specified probability with
the given shape, α , and scale, β , parameters (review p. 19); thus,

=GAMMAINV(RAND(),4,3)

will generate gamma random variates with mean 12 and standard deviation 6 (be-
cause the mean is the shape times scale and the variance is shape times scale
squared).

To begin a simulation of Example 3.7, type the following in the first three rows
of an Excel spreadsheet.

A B C
1 InterArrive Service Delay
2 0 =GAMMAINV(RAND(),4,3) 0
3 =GAMMAINV(RAND(),0.25,60) =GAMMAINV(RAND(),4,3) =MAX(0,C2+B2-A3)

Notice that the references in the C3 cell are relative references and that two of the
references are to the previous row, but the third reference (A3) is to the same row.
Also, remember that the Erlang distribution is a gamma distribution whose shape
parameter is an integer. Now copy the third row down for several thousands of rows
and obtain an average of the values in the C column. This average is an estimate
for the mean cycle time. However, because of the large variablity in the inter-arrival
times, the simulation needs to be repeated several times to obtain a good estimate.
Reporting the simulation results together with an estimate of its variability is briefly
discussed in the next few paragraphs.

Confidence Intervals. Simulations are statistical experiments; therefore, results
should never be reported without giving some idea of the accuracy or variability
of the statistical information. Assume there is a data set {x1, · · · ,xn} containing n
data points from independent and identically distributed observations. Our goal is to
estimate the underlying true (but unknown) mean of the distribution that produced
the data. For any data set, the sample mean is given by

x =
1
n

n

∑
i=1

xi (3.23)

and the sample variance is given by

s2 =
1

n−1

n

∑
i=1

(xi− x)2 =
1

n−1

(

n

∑
i=1

x2
i −nx2

)

. (3.24)



100 3 Single Workstation Factory Models

Since an estimate for the true mean is desired, the temptation may be to report
the sample mean only; however, a single value will provide an estimate but it gives
no information on the variability of the estimate. To include information about vari-
ability, a confidence interval is often used. For example, a 95% confidence interval
for the mean implies that if the same experiment were repeated 100 times, approx-
imately 95 of those confidence intervals would contain the true mean; that is, we
expect to be correct approximately 19 out of 20 times.

Under the assumption of normally distributed data and unknown variance, the
1−α confidence interval for the mean is given by

(xn− tn−1, α
2

sn√
n

, xn + tn−1, α
2

sn√
n
) (3.25)

where tn−1,α/2 is a critical value based on the Student-t distribution. Statistical tests
are usually better as the degrees-of-freedom increases. (As a rule of thumb, a statis-
tical test loses a degree-of-freedom whenever a parameter must be estimated by the
data set; thus, the t-test has only n−1 degrees-of-freedom instead of n because we
use the data to estimate the variance.)

If using Excel, the function =TINV(0.05, 24) would yield the critical value
for a 95% t-statistic for a sample of 25 data points. Notice that Excel automatically
splits the error into a right-hand error and a left-hand error; thus, if it were desired
to obtain the critical value for a 90% confidence interval of a sample of 100 points,
the function =TINV(0.10, 99) would be used. (As an historical note: when
statistical tables were primarily used to obtain the critical value for the statistics, the
rule of thumb was to use the z-statistic for large sample sizes; however, with Excel,
there is no reason to switch to the z-statistic since Excel does not have a problem
with large sample sizes.)

When applying confidence intervals to simulations, care must be taken not to
violate the independence assumption. Because sequential output from a simulation
are usually correlated, it is best to form a random sample by performing several
replicates of the same simulation, where each replicate starts with a different random
number seed. The random sample for the confidence interval then comes from the
summary statistics of each replicate.

Problems

3.1. Consider a facility open 24 hours per day with a single machine that is used
to service only one type of job. The company policy is to limit the number of jobs
within the facility at any one time to 4. The mean arrival rate of jobs is 120 jobs per
day, and the mean processing time for a job is 15 minutes. Both the processing and
inter-arrival times are assumed to be exponentially distributed. Answer the follow-
ing questions regarding the long-run behavior of the facility.
(a) What is the average number of jobs that arrive to the facility (but not necessarily
get in) per hour?
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(b) What is the probability that there are no jobs at the facility?
(c) What is the average number of jobs within the facility?
(d) What is the average number of jobs lost per day due to the limited capacity of
the facility?
(e) What is the average throughput rate per hour?
(f) What is the average amount of time, in minutes, that a job spends within the
facility?

3.2. Consider a single server system with a limit of 3 jobs (an M/M/1/3 system).
Let λ be the mean arrival rate and μ be the mean service rate.
(a) Use the singleton subset partition method to derive a system of balance equations
(note the last equation is the probability norming equation):

λ p0−μ p1 = 0

λ p0 + μ p2− (λ + μ)p1 = 0

λ p1 + μ p3− (λ + μ)p2 = 0

λ p2−μ p3 = 0

p0 + p1 + p2 + p3 = 1.

(b) Use the subset partition between successive nodes to derive a system of balance
equations.
(c) Solve for each pi in terms of p0 for each set of balance equations (a and b) to
establish that they yield the same solution.

3.3. Consider a two-server system with exponentially distributed inter-arrival and
service times. Let λ be the mean arrival rate and μ be the mean service rate of
each server. The system has a limit of 3 jobs at any time. The servers work on jobs
independently (only one server is working when there is only one job in the system).
(a) Develop the labeled directed arc network for this system.
(b) Write a system of equations, balance and norming equations, for this system.
(c) Solve this system for the general form of the steady-state probabilities.
(d) Write the equation for server utilization in terms of the steady-state probabilities.
(e) What is the mean number of jobs lost per unit time due to the limited system
capacity?
(f) What is the system throughput rate? Note that throughput means completed jobs.

3.4. Consider a single-server system with two types of jobs. The system has a lim-
ited capacity of three total jobs in the system at any time. The job classes have
different mean arrival and service rates, but all are assumed to be exponentially dis-
tributed. Let λ1 be the mean arrival rate and μ1 be the mean service rate of job type
1, and let λ2 be the mean arrival rate and μ2 be the mean service rate of job type
2. Job class 1 are high priority items and, as such, they have preemptive priority
over jobs of type 2 on the server. Space within the system limit of three jobs is on a
first-come first-service basis; thus, once a low-priority job is in the system, it cannot
be replaced by a high-priority job. Although all low-priority jobs must wait until all
high-priority jobs have been processed, even if they arrive when a low-priority job
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is being serviced. Develop the labeled directed arc network for this system. Hint:
there are ten different states and the number of each job type must be accounted for
separately.

3.5. Consider the M/M/1/3 system of Problem 3.2 with an effective arrival rate
given by the equation

λe = λ (1− p3).

Compute the effective arrival rate as a function of μ for the following situations:

λ λ = μ λ = 2μ λ = 3μ λ = 4μ
λe ? ? ? ?

3.6. Consider solving the set of steady-state equations for a system with a limit on
the number of jobs allowed (example M/M/1/3). Suppose there are nmax steady-
state equations derived from the flow-in equals flow-out approach. Show that if only
these equations (omitting the norming equation) are used and if they are linearly
independent, then the solution for pn cannot satisfy the conditions for a pmf. This
result leads to the conclusion that this set of equations must be dependent and, there-
fore, the norming equation must be used in place of one of the other equations.

3.7. Jobs arrive at a single machine for processing. Jobs arrive in groups of two (al-
ways) with an exponentially distributed time between groups with mean rate λ . The
single server works on individual jobs. The service time is exponentially distributed
with a mean rate μ . Let pn be the probability that there are n jobs in the system
in steady-state. Note that there is no limit to the number of jobs allowed into this
system. Draw the state diagram with labeled arcs and write the steady-state equa-
tions for states 0, 1, 2, 3, 4, and 5. What is the relationship between λ and μ that
guarantees that a steady-state exists?

3.8. Redo Problem 3.7 under the assumption that the group size is one with proba-
bility 1/2 and two with probability 1/2.

3.9. Consider a factory with a two-identical servers where jobs can be run on either
of the two servers. All jobs have the mean-arrival rate of λ and the same mean-
service rate μ , and both distributions are assumed to be exponential. Assume that
there is no limit on the number of jobs allowed in the system. Thus, the system is an
M/M/2/∞ queue.
(a) Develop the steady-state diagram connecting the states of the system.
(b) Develop the system of equations that the steady-state probabilities must satisfy.
(c) Develop the general probability relationship for pn in terms of p0.
(d) Develop a formula for p0. Hint: the appropriate service rate when both servers
are busy is 2μ .

3.10. For the M/M/1/∞ model, show that the expected output rate of jobs is equal
to the mean input rate λ .

3.11. For the M/M/1/∞ model derive, from the pn’s, an expression for the queue
work-in-process WIPq.
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3.12. Using Little’s Law, obtain the cycle time in the queue, CTq, from the result of
Problem 3.11.

3.13. The cycle time in the system is logically the cycle time in the queue plus the
expected service time

CTs = CTq +E[Ts].

For the M/M/1/∞ model derive an expression for CTq using the CTs result of
Eq. (3.12).

3.14. Consider an M/M/1/∞ system with a mean arrival rate of λ = 5 jobs per hour.
Compute the system performance measures (WIPs, CTs, ths, u) for several different
service rates μ ∈ {5.5,6,7,8,9,10}. Graph the WIPs and CTs as a function of the
system utilization factor u.

3.15. Determine the impact of an arrival rate of 5 per day in Example 3.4 (λ =
5,μ = 3,γ = 2 in Eq. 3.13) as it reflects on the system parameters.
(a) Write the system of equations for the steady-state probabilities.
(b) Obtain the system performance measures: CTs, CTq, WIPs, WIPq, utilization u,
mean service time E[Ts], and throughput λe.

3.16. For a system with non-identical service rates (see Sect. 3.5) and a limit of N
jobs in the system (Eq. 3.13), obtain an expression for the mean service time per job,
E[Ts], as a function of the mean throughput rate λe, the steady-state probabilities pn

and the mean-service rates μ and γ .

3.17. Solve Problem 3.16 for the probabilities given the parameters: nmax = 4, λ = 3,
μ = 3, and γ = 2.

3.18. Consider a two-server system with non-identical machines, exponentially dis-
tributed inter-arrival and service times, and a limit of four jobs. The mean inter-
arrival rate is λ . The mean service rates are γ < μ . Jobs cannot be split across ma-
chines. When there is not a queue of waiting jobs and the faster machine completes
processing first, the job on the slower machine is immediately moved to the faster
machine to complete processing.
(a) Develop the steady-state diagram of the number of jobs in the system and the
flow rates between states.
(b) Develop the system of equations describing the steady-state probabilities of be-
ing in each state.
(c) Solve this system of equations.

3.19. For Problem 3.18, obtain the system parameters: CTs, CTq, WIPs, WIPq, u,
mean service time E[Ts], the expected number of busy servers (EBS), and throughput
ths.

3.20. A workstation has two different machines for performing two distinct pro-
cessing tasks. The workstation has one operator that performs all work done in the
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workstation on all jobs. That is, the operator stays with a job and moves it from ma-
chine to machine to accomplish the necessary processing. Jobs arrive to the worksta-
tion at a mean rate λ (exponentially distributed inter-arrival times). Each job is first
processed by the operator on Machine 1 which takes an exponentially distributed
length of time with mean rate μ . Then the job and operator go to Machine 2 for fur-
ther processing. The processing time on the second machine is also exponentially
distributed but with a mean rate γ . The operator works on one job at a time and
completes it before starting on a new job. The company limits the jobs in this work-
station to 3.
(a) Define an appropriate state space representation for this model.
(b) Using your state space, develop a state diagram to model this situation.
(c) Write the utilization equation for machine one, using the state probabilities.
(d) Write the operator utilization equation, using the state probabilities.
(e) Write the workstation work-in-process equation, using the state probabilities.
(f) Write the throughput equation, using the state probabilities.

3.21. A company has a special purpose processing area that makes parts used
throughout the company. A variety of different parts are made on a single machine
and transported to various locations within the company for storage until they are
needed in that area. The company has a very experienced employee who does the
analysis of the parts currently available throughout the company and then decides
what part type is to be made next at this machine. The part-needs analysis and re-
lease for processing is performed by this employee in two steps. The needs-analysis
step takes 1/2 hour on average, but with the variety of parts to be analyzed, this time
is exponentially distributed. Historical data indicates that 7 of every 9 parts analyses
results in a standard part-type release and, since the part processing information is
already on file, the part order is then released to the machine immediately.

Two of every nine analyses, however, results in the need for a special-purpose
part for which the processing data are not available. Thus, this employee then devel-
ops a complete processing plan for the part. This processing plan development time
averages an additional 2.5 hours. Due to the variety of the special purpose parts, it
has been observed that this extra preparation time also is exponentially distributed.
The order development employee is additionally charged with keeping the flow of
jobs within the machine area reasonably smooth and timely. Towards this objective,
the employee has developed the following release strategy. If there are 3 part orders
already in the machining area, the employee holds the current completed order at her
desk until a part has been completed and shipped. Then the “ready” order is given
to the machine area personnel. If there is a completed (but blocked) order on the
analyses employee’s desk, no new order analysis is started until the blocked order
has been cleared and been released to the machining area.

The machining area has only one machine and the average time for processing
an order is 70 minutes. Due to the variety of part types, this processing time is
exponentially distributed.

Develop a model of the special parts processing workstation (order analyses
through processing). This encompasses the analyses employee and the machine
(there is an operator for the machine and it is not necessary to keep track of this
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operator). First draw a diagram of every possible configuration that this workstation
can encounter. From this set of configurations, develop a state-space representa-
tion for these configurations. Then draw a rate-connected state diagram relating all
of these configurations. Develop the steady-state equations for the rate-state dia-
gram. Solve these equations for the steady-state probabilities. And finally, develop
the workstation performance measures for this problem (machine utilization, order-
development employee utilization, and throughput).

3.22. Consider an E2/M/1/3 model with the arrival rate of 3 jobs per hour and
a service rate of 4 jobs per hour. Compute the steady state probabilities and the
system performance measures of utilization, CTs, WIPs, and throughput. Note that
this system has a capacity of 3 jobs.

3.23. Consider an E2/M/1/4 model with the arrival rate of 3 jobs per hour and
a service rate of 4 jobs per hour. Compute the steady state probabilities and the
system performance measures of utilization, CTs, WIPs, and throughput. Note that
this system has a capacity of 4 jobs.

3.24. Solve Problem 3.21 using a spreadsheet such as Excel.

3.25. Find the parameters of a GE2 approximation for a random variable X with
specified mean and squared coefficient of variation:

Case E[X ] C2[X ] λ1 α λ2

i 1 5/4
ii 4/3 3/2
iii 5 2
iv 5/8 5/2

3.26. Develop a model of an M/GE2/1/3 system and compute the system perfor-
mance measures given the mean arrival rate is 0.2/hr and the service distribution has
parameters E[S] = 5 hr and C2[S] = 2.

3.27. Develop a model of an M/GE2/1/3 system and compute the system perfor-
mance measures given the mean arrival rate is 3/hr and the service distribution has
parameters μ = 3/hr, α = 0.5, and γ = 4/hr.

3.28. Solve Problems 3.25 and 3.26 using a spreadsheet such as Excel.

3.29. Develop the node-arc diagram for an M/GE2/2/3 system (identical ma-
chines).

3.30. Using the approximation of Eq. 3.19, compute the cycle time in an M/G/1
system for three systems with the same arrival rates of λ = 4 and service times
E[Ts] = 0.2, but different squared coefficients of variation (C2[Ts] = 1/2,1,2).

3.31. Using the data from Problem 3.30, except for λ , develop a graph of the system
WIPs over the utilization from 0.1 to 0.95 in steps of 0.05. Insert three curves into
the graph, based on the squared coefficients of variation (C2[Ts] = 0.5,1,2).
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3.32. Using the approximation of Property 3.6 and Eq. (3.21), compute the cycle
time in the system for three systems with the same mean arrival rates of λ = 4 and
mean service times of E[Ts] = 0.4, but different squared coefficients of variation
(C2[Ts] = 1/2,1,2). Note here that one machine is not adequate since u > 1, so
assume that there are two-identical machines available, i.e., use an M/G/2 system.

3.33. Consider a single-server system with two types of jobs. The system has a lim-
ited capacity of three total jobs in the system at any time. The job classes have
different mean arrival and service rates, but all are assumed to be exponentially dis-
tributed. Let λ1 be the mean arrival rate and μ1 be the mean service rate of Job
Type 1, and let λ2 be the mean arrival rate and μ2 be the mean service rate of Job
Type 2. Jobs are served on a first-come first-serve basis (denoted as FCFS or FIFO).
(a) Develop the labeled directed arc network for this system. Hint: there are fifteen
different states and the sequence of job types in the queue must be maintained.
(b) Write the equations linking the steady-state probabilities.
(c) Write a formula for computing (in terms of the pi’s) the total WIPs, WIPs by
product type, throughput, throughput by product type, the system CTs, CTs by prod-
uct type.

3.34. Consider a single-server system with two types of jobs. The system has a
limited capacity of three total jobs in the system at any time. The job classes have
different mean arrival and service rates, but all are assumed to be exponentially
distributed. Let λ1 be the mean arrival rate and μ1 be the mean service rate of Job
Type 1, and let λ2 be the mean arrival rate and μ2 be the mean service rate of Job
Type 2. Jobs are served on a non-preemptive priority basis with job type 1 given
preference; that is, once a job starts it can not be displaced from the machine.
(a) Develop the labeled directed arc network for this system. Hint: there are thirteen
different states and the sequence of job types in the queue will always be Type 1’s
in front of Type 2’s.
(b) Write the equations linking the steady-state probabilities.
(c) Write a formula for computing (in terms of the pi’s) the total WIPs, WIPs by
product type, throughput, throughput by product type, the system CTs, and CTs by
product type.

3.35. Team Computer Project. Consider a situation (factory) where there is a limit
of 4 jobs allowed at any time; arrivals to a full system are lost. Assume that all inter-
arrival and processing times are exponentially distributed with mean rates specified.
Job processing has two steps (Step 1 uses Machine 1 and Step 2 uses Machine 2).
That is, there are two independent processing steps that must be done in the se-
quence: Machine 1 then Machine 2. The system is automated with-respect-to job
movement between the queue and machines and between machines and then from
the last machine to shipping (not part of this problem). There currently is no space
for a job to wait for processing at Machine 2 after it has completed processing at Ma-
chine 1. Therefore, the completed job is left on Machine 1 until Machine 2 becomes
available.

Management would like to improve the factory throughput and they are want
to know what throughput improvement could be gained if they would invest in a
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Current System

Proposed System

Example

= blocked after service completion

Fig. 3.6 Two configurations for Problem 3.35

conveyor between the machines. Develop a model and obtain the throughput for
this system under the following two parameter sets: λ = 6, μ1 = 8, μ2 = 7 and
λ = 9, μ1 = 6, μ2 = 6. Contrast the system throughput with and without a single
buffer (job holding station) between the two machines for both configurations (see
Fig. 3.6).

Develop a computer code to solve these two problems and evaluate the system
throughput. Make it general in that the rate parameters are input or specified values
within the spreadsheet that can be changed (such as merely changing parameter
values between the data sets).

3.36. Model an E2/M/1/3 system with a dependent arrival process in that once the
system is full, the arrival process is shutoff until space is available in the system.
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Chapter 4
Processing Time Variability

In the previous chapter, an approximation for the cycle time in a system queue was
developed (or waiting time in the queue for a machine). The relationship consists
of four parameters. These are the squared coefficient of variation of the inter-arrival
time process (C2

a), the squared coefficient of variation of the service time process
(C2

s ), the machine utilization (u), and the mean service time (E[Ts]). This relationship
is

CTq(G/G/1) =
(C2

a +C2
s )

2

(

u
1−u

)

E[Ts] . (4.1)

From this relationship, it is clear that reducing one of the variability components,
C2

a or C2
s , will reduce the cycle time in the queue. What might be overlooked is that

reducing variability is equivalent to reducing the machine utilization by some factor
with respect to the mean cycle time measure. In more direct terms, reducing process
variability is equivalent to finding extra capacity in the system since a reduction of
utilization with a constant arrival rate implies an increase in the mean processing
rate.

To illustrate the equivalence between reducing variability and utilization, con-
sider a single machine system with the following parameter values:

C2
a = 1

C2
s = 1

u = 0.8

E[Ts] = 2 hr .

Thus the cycle time in the queue CTq is thus

CTq =
(1+1)

2

(

0.8
1−0.8

)

2 hr = 8 hr .

Now if C2
s is reduced by 10% to 0.9, the resulting cycle time is 7.6 hours, a reduc-

tion of 5%. It would take a reduction in machine utilization from 80% to 79.17%
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to accomplish this same cycle time decrease if C2
s was not changed. Thus, reducing

service time variability (or inter-arrival time variability) has the same effect as ob-
taining additional machine capacity. The equivalent utilization factor u is found by
solving the equation

(1+1)
2

(

u
1−u

)

2 = 7.6,

4.6u = 3.6,

u = 0.7917.

Now a 50% reduction in the service time variability for this example data would
reduce the cycle time measure to 6 hours. The equivalent machine utilization factor
for 6 hours given the original system parameters is 0.75. This is a reduction in uti-
lization, or the mean service time, of 6.25%. Either of these changes would result in
a cycle time in the queue of 6 hours which is a 25% reduction from the original 8
hours.

The conclusion that can be drawn from this analysis is that reducing compo-
nent variability is equivalent to increasing system capacity when measured by cycle
time response. So it is very important to concentrate on reducing variability for the
inter-arrival and service time processes since these reductions are like finding “free”
machine capacity.

There are many factors that contribute to the variability of the length of time that
a job spends in processing. The term “in processing” indicates that the job has con-
trol of the machine and other jobs cannot be processed until this job is completed.
Job residence time includes the actual time that the machine is processing the job
(herein called the natural processing time to distinguish it from the total time on the
machine), any setup needed to place the job on the machine and prepare the machine
for the particular job type, any delay due to the unavailability of an operator once the
machine is available for allocation to that specific job, and delays due to machine
breakdowns and repairs. Scheduled maintenance is normally accounted for in the
available machine time rather than accounting for this lost time as part of a specific
job’s residence time. The principle contributors to job residence time variability are:

• Natural processing time variability — the variability evident in the time it takes
to actually process a specific job type.

• Random breakdowns and repairs during processing — the variability of the time
between breakdowns and the variability of the time to repair a broken machine.

• Operator unavailability can induce random delays in the time a job spends “in
control of” a machine. This time delay occurs when a machine and job are avail-
able with the operator being needed to setup the machine and start processing,
but the operator is busy serving another machine/job combination.

• Job class setup and take-down times — the time caused by a job-type change on
a machine. This change-over time generally occurs at the end of processing of
one job type and the starting of a different job class.
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The variability associated with job class setup times is generally for a group of
jobs and, in Chap. 7, this delay and associated variability component is modeled
as an aspect of batch-type processing. Operator availability and their impacts on
system performance is also a complex interaction between the number of operators
servicing a set of machines. For the most part, this level of detail will be omitted
when complex factory models are developed. However, in the last section of this
chapter, a model of this type of multiple resource interaction is illustrated. Con-
cise approximations for quantifying this factor are not available at this time. Thus,
the main objective of this chapter is the analysis of the impacts of “natural” pro-
cessing time variability and breakdown/repair induced variability on workstation
performance measures such as cycle time and work-in-process.

4.1 Natural Processing Time Variability

Consider a job with processing time random variable, T , with known mean and vari-
ance parameters E[T ] and V [T ], respectively. If the processing time is made up of
several separate tasks, then there is a good opportunity to reduce the total process-
ing time variability by reducing the variability of the individual tasks. Of course,
one can directly attempt to reduce the total processing time variability. This is more
consistently accomplished when there are sub-tasks that can be studied separately
or possibly assigned to different workers for manual task operations. To illustrate
this point, consider that the natural processing time random variable T is made up
of three separate (independent) sub-tasks. Hence,

E[T ] = E[T1]+E[T2]+E[T3]
V [T ] = V [T1]+V [T2]+V [T3]

C2[T ] =
V [T ]
E[T ]2

.

Additionally consider that these three sub-processes times are independent and iden-
tically distributed random variables so that

E[T ] = 3E[T1]
V [T ] = 3V [T1] .

Hence, the individual processing time random variables Ti, for i = 1,2,3, have dis-
tributional parameters

E[Ti] =
E[T ]

3

V [Ti] =
V [T ]

3
.



112 4 Processing Time Variability

Furthermore, the squared coefficient of variation of the individual tasks are

C2[Ti] =
V [Ti]
E[Ti]2

=
V [T ]/3

E[T ]2/32 = 3C2[T ], for i = 1,2,3 .

So if the total processing time is made up of three identical sub-tasks, then the
squared coefficient of variation of the individual tasks is actually three times that
of the total time squared coefficient of variation. Now suppose in the analyses of
the individual tasks it is found that their variability, as measured by C2[Ti], can be
reduced to that of the total processing time variability. Then the overall processing
time squared coefficient of variation C2[T ] would be reduced by 1/3.

Example 4.1. Consider a natural processing time that is exponentially distributed
with a mean time of 3 hours. Thus, the squared coefficient of variation C2[T ] is equal
to one. Now further assume that this job consists of three distinct but identically
distributed sub-tasks. Then these sub-tasks have processing times random variables
Ti that have distributional parameters E[Ti] = 1 and V [Ti] = 3, for each i, by the
above analysis.

After further study of the three sub-tasks, it is found that the variability of each
task can be substantially reduced and the resulting times are i.i.d. exponentially
distributed times each with a mean of one hour. (It is assumed that these variabilities
can be reduced while the mean processing times remain unchanged.) Thus, C2[Ti] =
1, for each sub-task i. The impact on the variability of the total processing time
random variable T is significant. The parameters are now

E[Ti] = 1

C2[Ti] = 1

V [Ti] = 1 .

Thus, the total processing time random variable now has parameters

E[T ] =
3

∑
i=1

E[Ti] = 3

V [T ] =
3

∑
i=1

V [Ti] = 3

C2[T ] =
3
32 = 1/3 .

For this example, the total processing time variability was reduced to 1
3 of its

original value. This reduction in processing time variability will in turn reduce the
associated workstation cycle time in the queue by 1

6 (why?). So in essence extra
processing capability has been found (that is, this new system is equivalent in cycle
time response to a system with a faster processing time). ��
• Suggestion: Do Problems 4.1–4.3.
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4.2 Random Breakdowns and Repairs During Processing

A major source of processing time variability is due to the breakdown of an operat-
ing machine and the subsequent delay while the machine is being repaired. Several
courses of action might result from the breakdown of a machine. The job undergoing
processing at the time of the breakdown might not be recoverable (i.e., lost), the job
might require additional processing before resumption of “normal” processing, or
the job might not be effected by the breakdown and normal processing can resume
immediately after the repair is complete (as if the breakdown never occurred). Only
the latter case is considered herein, although for the second case, the additional pro-
cessing time needed to resume service can be included in the machine repair time
so that the second and third situations become equivalent.

The assumption being made is that once a machine has been repaired after a
breakdown, the job that was processing at the time of the breakdown is continued
as if the breakdown never occurred. Thus, a breakdown merely extends the job pro-
cessing time (actually job residence time with the ”normal” processing time being
unaffected). When breakdowns occur, they obviously impact the job residence time
on the machine and the resulting job residence time distribution needs to be devel-
oped. This is called the effective processing time to distinguish it from the normal
processing time.

Definition 4.1. The effective processing time, Te, refers to the time that a job first
has control of the processor until the time at which the job releases the processor so
that it is available to begin work on another job.

Only the mean and variance parameters of the effective processing time random
variable are needed and not the distribution itself. For this development, a given
job has several possibilities. The job can complete processing without a breakdown
interruption, the machine could breakdown once during service, the machine could
breakdown twice during service, etc. So the effective processing time is also a ran-
dom variable given by

Te = T +
N

∑
i=1

Ri , (4.2)

where T is the normal (uninterrupted) processing time random variable, the Ri’s
are the (i.i.d.) repair time random variables, and N is the random number of fail-
ures during the service time T . The number of failures N is a function of the time
between failures random variables, Fi, for the machine in question and is assumed
independent of the actual time that it takes to do the repairs, Ri.

A key parameter needed for expressing the effect of failures and repairs on ser-
vice times is the availability of the processor.

Definition 4.2. The availability, a, of a processor that is subject to failures is the
long-run average fraction of time that the processor is available for processing jobs.
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Using the notation above, it is not difficult to express availability in terms of the
mean time to failure and the mean repair time.

Property 4.1. Processor availability is determined by

a =
E[F1]

E[F1]+E[R1]

where F1,F2, · · · and R1,R2, · · · are i.i.d. random variables representing suc-
cessive failure times and successive repair times, respectively, for the proces-
sor.

Hopp and Spearman [2] developed an expression for the mean and variance of the
effective service time for processors that are less than 100% reliable under the as-
sumption that failures are exponentially distributed:

E[Te] =
E[Ts]

a
, and (4.3)

C2
e = C2[Te] = C2

s +
(1+C2[R1])a(1−a)E[R1]

E[Ts]
. (4.4)

They show that when Te and C2
e are used in place of Ts and C2

s in (4.1) the formula
gives an exact expression for the mean waiting time in the queue for a workstation
described by an M/G/1 system subject to exponential failures. (Notice that when
Te replaces Ts, the utilization factor must be adjusted as well.) For other G/G/c
systems, it serves as an approximation.

Example 4.2. Consider a single workstation with jobs arriving according to a Pois-
son process (i.e., exponential inter-arrival times) with an average time between ar-
rivals of 75 minutes. Initially we ignore the fact that the machine at the workstation
is not 100% reliable and observe that the normal processing time is described by an
Erlang type-3 distribution with mean of 58 minutes; thus, Ca = 1, E[Ts] = 58 min,
Cs = 1/3, and u = 58/75 = 0.7733. These parameters used in (4.1) yield CTq = 132
min.

After presenting these results, we are told that the processing machine is not com-
pletely reliable. The time between machine breakdowns is exponentially distributed
with a mean time of 3 hours measured according to machine processing time and
does not include idle time. The repair time is distributed according to a lognormal
distribution with a mean time of 30 min and a standard deviation of 15 min yielding
a squared coefficient of variation of 0.25 for the repair time. The availability is thus
given by

a =
E[F1]

E[F1]+E[R1]

=
3

3+1/2
= 0.85714 .
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The mean of the effective processing time (4.3) is

E[Te] =
E[T ]

a
= 67.67 min ,

and the squared coefficient of variation for the effective processing time (4.4) is

C2[Te] =
1
3

+
(1+0.25)(0.85714)(1−0.85714)(30)

58
= 0.4125 .

The effective mean service time yields an effective utilization of u = 67.67/75 =
0.9023 so that the application of (4.1) results in a revised value for the expected
waiting time in the queue

CTq =
(1+0.4125)

2

(

0.9023
1−0.9023

)

67.67 min = 441 min .

Notice that the inclusion of machine failure in the model results in over a three-
fold increase in the mean waiting time; thus, to ignore failures can create significant
errors in performance measures. This increase is due to two factors: (1) machine
failures cause an increase the effective utilization factor and (2) machine failures
cause an increase in the service variability. As the utilization factor approaches one,
small changes in the factor will have major changes in waiting times, and in this
case, the majority of the increase in waiting times is due to the utilization factor
increase; only about 5%–6% of the increase is due to the increase in service vari-
ability. ��
• Suggestion: Do Problems 4.4–4.9 and 4.13–4.14.

4.3 Operator-Machine Interactions

Operators are frequently required to setup a machine for each job. Machine prepa-
ration time usually takes significantly more time than the job unloading operation.
If the machining operation requires a dedicated operator, then most likely the model
of that situation would require only one resource (either the machine or the oper-
ator). When an operator is used only part time during processing and the operator
is then free to perform other tasks, operators and machines can no longer be mod-
eled as one. In this situation, an operator is frequently assigned control of more than
one machine and, thus, is responsible for setting up jobs on several machines. If an
operator is assigned to cover too many machines then system performance can be
significantly degraded because of delays resulting from waiting for the operator to
become available to perform the necessary job setups. Even when the operator is
assigned to cover only two machines, some delays will be encountered due to the

1 Section 4.3 can be omitted without affecting the continuity of the remainder of the text.
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timing of job completions. If a system has reasonable capacity, then the operator ma-
chine interaction problem does not significantly impact system performance. Thus,
this level of detail is frequently omitted in system models. This interaction can, how-
ever, degrade system performance significantly if overlooked. The operator-machine
interaction problem also offers an opportunity to illustrate how multiple resource in-
teractions can be quantified and evaluated.

In the modeling assumptions, only one job class is treated with two identical
machines and one operator. In addition, to simplify the analysis as much as possible,
exponentially distributed times are assumed for job inter-arrival times, job setup
times, and job processing times. Since we need to keep track of two resources,
namely the operator and the machines, a state space that only keeps a record of the
number of jobs in the system does not carry enough information to appropriately
establish the true system state. Specifically, in addition to the number of jobs in the
system, the status of each machine-job combination must be known; that is, the state
of the system must include whether the job is “in setup” or “in processing”. If two
jobs are in the “in setup” status, then only one of them can be actually proceeding
with setup because there there is only one operator.

There is often more than one way to define a state space, so that the particular
definition chosen is up to the modeler. It is good practice to choose a state space
definition that is descriptive so that the individual defining equations for the steady-
state probabilities will be easy to read. One descriptive state definition is to use a
three-tuple for the states. Each state is represented as (n, i, j), where n denotes the
number of jobs in the system and i and j indicate the status of the two machines.
There are three possible values for i and j: 0 indicates a machine has no job as-
sociated with it, s indicates that a machine has a job “in setup”, and p indicates a
machine has a job “in process”. For example, the state (1,s,0) indicates that there
is one job in the system and the operator is setting it up on a machine, state (5,s,s)
indicates that there are 5 jobs in the system with one job being set-up on a machine,
another job waiting at a machine for the operator, and 3 jobs waiting in the queue for
a machine, and state (7, p, p) indicates 7 jobs in the system with both machines busy
processing, 5 jobs queued, and the operator idle. Because the machines are identi-
cal, it is not necessary to know which machine is processing and which machine is
begin setup.

The state space representation for n ≥ 2 is made up of three individual states:
(n,s,s), (n,s, p), and (n, p, p). For n = 0, there is no need for all three indices, but
for consistency this state is denoted as (0,0,0). For n = 1, the possible states are
(1,s,0) and (1, p,0). The states of the system, grouped by number of jobs in the
system, are

{(0,0,0),(1,s,0),(1, p,0),(2,s,s),(2,s, p),(2, p, p),(3,s,s),(3,s, p),(3, p, p), · · ·} .

The inter-arrival time, setup time, and service time distributions are all assumed
to be exponentially distributed. The mean rates for these three processes are denoted
by λ , γ , and μ , respectively. Note that if both machines are processing (indepen-
dently), the mean output rate for the system is 2μ . If both machines are being setup,
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the mean setup rate is γ , not 2γ , because there is only one operator. The equations
relating the steady-state probabilities for this system are:

λ p(0,0,0) = μ p(1,p,0)

(λ + γ)p(1,s,0) = λ p(0,0,0) + μ p(2,s,p)

(λ + μ)p(1,p,0) = γ p(1,s,0) +2μ p(2,p,p)

(λ +2μ)p(2,p,p) = γ p(2,s,p)

(λ + γ)p(2,s,s) = λ p(1,s,0) + μ p(3,s,p)

(λ + γ + μ)p(2,s,p) = λ p(1,p,0) + γ p(2,s,s) +2μ p(3,p,p)

(λ +2μ)p(3,p,p) = λ p(2,p,p) + γ p(3,s,p)

(λ + γ)p(3,s,s) = λ p(2,s,s) + μ p(4,s,p) (4.5)

(λ + γ + μ)p(3,s,p) = λ p(2,s,p) + γ p(3,s,s) +2μ p(4,p,p) (4.6)

(λ +2μ)p(4,p,p) = λ p(3,p,p) + γ p(4,s,p) (4.7)

...

(λ + γ)p(n,s,s) = λ p(n−1,s,s) + μ p(n+1,s,p)

(λ + γ + μ)p(n,s,p) = λ p(n−1,s,p) + γ p(n,s,s) +2μ p(n+1,p,p)

(λ +2μ)p(n+1,p,p) = λ p(n,p,p) + γ p(n+1,s,p)

...

plus the norming equation, which is the sum of all probabilities equal to one. The
set of three numbered equations (4.5–4.7) are repeated with increasing indices. The
last three listed equations represent these equations for the index n (where n ≥ 3).
So the system has an infinite number of defining equations with the first seven being
special and all others being one of three possible general forms.

The numerical solution scheme employed is rather straightforward, but unfortu-
nately, the solution cannot be represented nicely in closed form. For specified values
of the parameter set (λ ,γ,μ), the system is solved in the following fashion. The un-
known p(0,0,0) is set 1.0, then all other probabilities can be solved recursively for
numerical values according to the procedure described in the next paragraph. Since
we have an infinite system, it will be truncated to a finite set of probabilities at the
point that the probabilities become very small. Thus, we continue to find proba-
bilities until the individual probability terms become very small. At that point, we
stop and determine the sum of all probabilities that have been calculated. The final
answer then becomes the individual terms divided by this sum.

The process for evaluating the individual probabilities is actually rather straight-
forward. First given p(0,0,0) the first equation is used to obtain p(1,p,0). Then, us-
ing three equations at a time, the probabilities groups solved in turn are: the
group (p(1,s,0), p(2,s,p), p(2,p,p)), then the group (p(2,s,s), p(3,s,p), p(3,p,p)) and finally
(p(3,s,s), p(4,s,p), p(4,p,p)). Each of these sets is found from the solution of three linear
equations. This last set of three equations is repeated solved for (p(n−1,s,s), p(n,s,p),
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p(n,p,p)) for increasing values of n until the sum of the three values are less that
some limit. The solution of each of these three distinct sets of equations needs only
values for previously obtained probabilities. Thus, starting with one assumed value,
p(0,0,0), as many probabilities as necessary can be obtained; after the relative values
for these probabilities have been determined, they are normed to sum to one. One
further observation is that only one 3× 3 matrix inverse is needed since the same
matrix reoccurs as the coefficients of the unknowns for all three forms of the three
equations groups.

To be more specific, we first observe that p(1,p,0) = (λ/μ)p(0,0,0). Then the sec-
ond through fourth equations can be rewritten in matrix form as

⎡

⎣

−(λ + γ) μ 0
γ 0 2μ
0 γ −(λ +2μ)

⎤

⎦

⎡

⎣

p(1,s,0)
p(2,s,p)
p(2,p,p)

⎤

⎦=

⎡

⎣

−λ p(0,0,0)
(λ + μ)p(1,p,0)

0

⎤

⎦ ,

with its solution given by

⎡

⎣

p(1,s,0)
p(2,s,p)
p(2,p,p)

⎤

⎦=

⎡

⎣

−(λ + γ) μ 0
γ 0 2μ
0 γ −(λ +2μ)

⎤

⎦

−1⎡

⎣

−λ p(0,0,0)
(λ + μ)p(1,p,0)

0

⎤

⎦ . (4.8)

Once the values of the probabilities (p(1,s,0), p(2,s,p), p(2,p,p)) have been obtained, the
vector (p(2,s,s), p(3,s,p), p(3,p,p)) is solved similarly using the fifth through seventh
equations in the system. This solution is written as

⎡

⎣

p(2,s,s)
p(3,s,p)
p(3,p,p)

⎤

⎦=

⎡

⎣

−(λ + γ) μ 0
γ 0 2μ
0 γ −(λ +2μ)

⎤

⎦

−1⎡

⎣

−λ p(1,s,0)
−λ p(1,p,0) + (λ + μ + γ)p(2,s,p)

−λ p(2,p,p)

⎤

⎦ . (4.9)

Equations (4.5–4.7) can now be used to yield the general form of the solution for
n≥ 3; namely,
⎡

⎣

p(n,s,s)
p(n+1,s,p)
p(n+1,p,p)

⎤

⎦=

⎡

⎣

−(λ + γ) μ 0
γ 0 2μ
0 γ −(λ +2μ)

⎤

⎦

−1⎡

⎣

−λ p(n−1,s,s)
−λ p(n−1,s,p) + (λ + μ + γ)p(n,s,p)

−λ p(n,p,p)

⎤

⎦ . (4.10)

Notice that the solution to each system always involves the same inverse which
greatly simplifies the computational burden of the process.

Not all values for the three parameters will yield a system that can be solved. If
the operator sets up too slowly or if the arrival rates are too fast for the processing
times, the queues will build up continually and no steady-state is possible. Although
developing the steady-state conditions is outside the scope of this text, they are
given in [1] and, for completeness, we state them below. Steady-state probabilities
will exist if and only if the three parameter values are such that

2(μ + γ)μγ
2μ2 +2μγ + γ2 < λ .
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Example 4.3. To illustrate the methodology and computations, consider a two-
machine system with one server. Let the mean arrival rate of jobs be 1 per hour,
the mean time to perform a setup by 15 minutes, and let the mean processing time
be 90 minutes. Recall that all the times are exponentially distributed. Thus, λ = 1,
γ = 4, and μ = 2/3. The matrix that needs to inverted, and its inverse, are

⎡

⎣

−(λ + γ) μ 0
γ 0 2μ
0 γ −(λ +2μ)

⎤

⎦

−1

=

⎡

⎣

−0.1622 0.0473 0.0270
0.2838 0.3547 0.2027
0.4865 0.6081 −0.0811

⎤

⎦ .

Now setting p(0,0,0) to 1.0 yields p(1,p,0) = 1.5. Using (4.8), the first set of three
probabilities are

(p(1,s,0), p(2,s,p), p(2,p,p)) = (0.2804,0.6030,1.0338) .

From these values, (4.9) is used to evaluate the next three probabilities

(p(2,s,s), p(3,s,p),p(3,p,p)) = (0.1082,0.3910,1.1133) .

The probabilities (p(3,s,s), p(4,s,p), p(4,p,p)) are obtained based on these previous val-
ues using (4.10) to yield

(p(3,s,s), p(4,s,p),p(4,p,p)) = (0.0637,0.3156,1.0182) .

Repeating the use of (4.10), we obtain

(p(4,s,s), p(5,s,p),p(5,p,p)) = (0.0489,0.2713,0.9014) ,

(p(5,s,s), p(6,s,p),p(6,p,p)) = (0.0413,0.2367,0.7921) ,

...

(p(14,s,s), p(15,s,p), p(15,p,p)) = (0.0110,0.0635,0.2129) .

Stopping at this point, these probabilities sum to 15.288. Dividing all of these
probabilities by 15.288 yields an approximate solution to this system. It is obvious
that since the probability p(15,p,p) is not very close to zero, that this truncated so-
lution will not be very close to the unlimited system solution. In fact using these
probability values, the estimate for the mean number of jobs, Ns, in the system is

WIP = E[Ns] = 5.606 .

As the number of probabilities obtained is increased, the expected system WIP,
converges. These iteration results are displayed below where n denotes the number
of probabilities obtained. Note that it is not much work to increase the number of
probabilities obtained since they are found iteratively three at a time using (4.10)
repeatedly:
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n = 20, WIP = 6.399,

n = 30, WIP = 7.263,

n = 40, WIP = 7.603,

n = 50, WIP = 7.725,

n = 60, WIP = 7.658,

n = 70, WIP = 7.779,

n = 80, WIP = 7.783,

n = 90, WIP = 7.785,

n = 100, WIP = 7.785.

The truncated system solution changes very little as more probabilities are added
beyond the first 80 probabilities. Thus, a reasonable solution to the unlimited system
has been obtained. The expected cycle time in the system from Little’s Law is

CT = WIP/λ = 7.785 hr .

The expected number of jobs in the operator system is

1×
(

p(1,s,0) +
∞

∑
n=2

p(n,s,p)

)

+2×
∞

∑
n=2

p(n,s,s) = 0.2819 ,

with the probability that the operator is idle being

p(0,0,0) + p(1,p,0) +
∞

∑
n=2

p(n,p,p) = 0.75 ,

and the machine utilization factor being

1
2
×
(

p(1,p,0) +
∞

∑
n=2

p(n,s,p)

)

+1×
∞

∑
n=2

p(n,p,p) = 0.8909 .

The approach of using a truncated system to approximate the unlimited capacity
system leads to the problem of finding the norming constant by iteratively increas-
ing the number allowed in the system until the total non-normed probability sum
stabilizes. Using the rate-generator form of the problem for Markov processes, one
can develop a closed form representation of this sum and find the non-normed prob-
abilities total sum with the truncation mechanism (see [1]). This approach, however,
requires mechanics that will not be developed in this text. ��
• Suggestion: Do Problems 4.10–4.12.
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Problems

4.1. Consider a processing time, T , with measured parameters E[T ] = 6 and C2[T ] =
2, that has four i.i.d. sub-tasks, Ti for i = 1,2,3,4.
(a) Determine E[Ti] and C2[Ti] for the sub-tasks.
(b) Assume that the variability of each sub-task can be reduced (identically) so that
C2[Ti] = 2. Determine the squared coefficient of variation of the total processing
time and the percentage improvement over the “old” processing time variability.

4.2. Consider a processing time, T , with measured parameters E[T ] = 8 and C2[T ] =
3, that has five i.i.d. sub-tasks, Ti for i = 1,2,3,4,5.
(a) Determine E[Ti] and C2[Ti] for the sub-tasks.
(b) Assume that the variability of each sub-task can be reduced (identically) so that
C2[Ti] = 2. Determine the squared coefficient of variation of the total processing
time and the percentage improvement over the “old” processing time variability.

4.3. Consider a processing time that has three independent sub-tasks. These are:
the job setup time S, normal processing time P, and job removal time R from the
machine. The distributional parameters for these sub-tasks are:

E[S] = 10 min, C2[S] = 3 ,

E[P] = 1 hr, C2[P] =
1
2

,

E[R] = 5 min, C2[R] = 1 .

(a) Determine the mean and squared coefficient of variation for the job residence
time (total processing time).
(b) After careful study the engineering department has come up with a jig for per-
forming a sizeable proportion of the job setup time off line (while the machine is
busy processing another job). The result is that the “on-line” machine setup time is
reduced, with resulting parameters E[S] = 1 min and C2[S] = 1. In addition, due to
an operator suggestion, the job removal time variability was reduced to C2[R] = 1/3.
Note that no improvement was made in the actual machine processing time. Deter-
mine the mean of the new total processing time (job residence time) and its squared
coefficient of variation. What are the percentage improvements over the “old” job
residence time parameters?

4.4. Consider a job with processing time distribution parameters E[T ] = 3 hours and
C2[T ] = 2. The machine breakdown and repair time characteristic parameters are:

E[F] = 7 hr and C2[F] = 1 ,(C2[F] is required to be 1)
E[R] = 1 hr and C2[R] = 1 .

Find the parameters of the effective processing time: E[Te], V [Te], and C2[Te].
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4.5. Consider a job with processing time distribution parameters E[T ] = 3.5 hours
and C2[T ] = 1.25. The machine breakdown and repair time characteristic parameters
are:

E[F] = 9 hr and C2[F] = 1 ,(C2[F] is required to be 1)
E[R] = 2 hr and C2[R] = 1.5 .

Find the parameters of the effective processing time: E[Te] and C2[Te].

4.6. Compute the percentage increase in the cycle time for a system without ma-
chine breakdowns and the same system with breakdowns and repairs. Job arrivals
are according to a Poisson process with a mean rate of 4 per hour. The service time
distribution parameters are E[S] = 0.2 hours and C2

s = 1. The mean time between
breakdowns is 2 hours and the repair time distribution parameters are E[R] = 1/3
hour and C2

R = 2.

4.7. Consider an M/M/1/3 system with a server that has exponential time between
breakdowns and exponential repair times. Develop the rate-node diagram that con-
nects the states of this system. Given an arrival rate of 5 jobs per hour, a service rate
of 4 jobs per hour, a breakdown rate of once per hour, and a mean repair time of
10 minutes, determine the steady-state probabilities for the system states and com-
pute the system performance measures of WIPs, CTs, and ths. In addition, compute
the proportion of the time that the machine is idle, down (i.e., under repair), and
processing.

4.8. Consider M/M/1/∞ system with a server that has exponential time between
breakdowns and exponential repair times. Develop the rate-node diagram that con-
nects the states of this system. Given an arrival rate of 5 jobs per hour, a service
rate of 7 jobs per hour, a breakdown rate of once per hour and a mean repair time
of 10 minutes, determine the steady-state probabilities for the system states and
compute the system performance measures of WIPs, CTs, and ths. Compare these
performance results with those obtained by applying the breakdown adjustments of
Eqs. (4.3) and (4.4).

4.9. Consider M/M/1/∞ system with a server that has exponential time between
breakdowns and Erlang-2 repair times. Develop the rate-node diagram that connects
the states of this system. Given an arrival rate of 5 jobs per hour, a service rate
of 7 jobs per hour, a breakdown rate of once per hour, and a mean repair time
of 10 minutes, determine the steady-state probabilities for the system states and
compute the system performance measures of WIPs, CTs, and ths. Compare these
performance results with those obtained by applying the breakdown adjustments of
Eqs. (4.3) and (4.4).

4.10. Consider a two-machine one-operator system. Let all times be exponentially
distributed with mean rates:

(λ = 1,γ = 3,μ =
2
3
) .
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Set p(0,0,0) = 0.0842, and determine the next ten probabilities; that is, p(1,p,0) and
then one set of three probabilities for each of the three equation-set forms similar to
Eqs. (4.8)–(4.10).

4.11. Develop the system equations for the steady-state probabilities for a single
operator servicing three machines. What type of difficulties will have to be over-
come to solve this system of equations for n→ ∞, where n denotes the number of
machines for which the operator is responsible.

4.12. Consider an infinite capacity 3-machine 2-operator service system where an
operator is required to setup a job on a machine before processing can begin. De-
velop the node-arc diagram for 5 or less jobs in the system. That is, develop the
diagram explicitly for 0 to 5 jobs in the system with the understanding that the com-
plete diagram would contain an infinite number of nodes. All processes, (arrivals,
setups and processing) are assumed to be exponentially distributed with mean rates
λ , γ , and μ , respectively.

4.13. Consider an M/M/2/2 system with exponential breakdowns (rate β ) and re-
pairs (rate γ). The machines are identical and when one machine breaks down with
the other machine empty, the job being processed is left on the broken machine
while it is being repaired. Develop the state diagram for this system.

4.14. Consider an M/M/2/2 system with exponential breakdowns (rate β ) and re-
pairs (rate γ). The machines are identical and when one machine breaks down with
the other machine empty, the job being processed is moved from the broken ma-
chine to the operating machine instantaneously. Develop the state diagram for this
system.
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Chapter 5
Multiple-Stage Single-Product Factory Models

The mechanics for developing both exact and approximate single workstation mod-
els were developed in Chap. 3. Linking several workstations together is a necessary
step towards more realistic factory models. In this chapter, the single workstation
models are linked together to form more realistic factory models. The approach
taken is to use general G/G/1 and G/G/c system approximations of Properties
3.3 and 3.5 as the building blocks for multiple workstation systems. To properly
connect a series of workstations, the departure process of jobs from each worksta-
tion must be characterized. Specifically, the mean of inter-departure times and their
squared coefficient of variation must be computed for a workstation. These param-
eters then describe the arrival process for the downstream workstation. For general
system configurations, there are two basic mechanisms that must be explored: (1)
the merging of several input streams into a workstation, and (2) the separation or par-
titioning of a workstation output stream into several different streams for different
target workstations. This chapter starts with workstations in series and progresses
to more complex general network configurations. Single product models are studied
in detail in this chapter and in Chap. 6 the methodology is generalized for multiple
product systems.

5.1 Approximating the Departure Process from a Workstation

In the study of single workstation models in Chap. 3, the workstation’s impact on the
output flow of jobs from the workstation was not considered. This information was
not needed to study the performance of a single workstation, but when the output
from one workstation becomes the input to the next workstation, this information is
critical to system analysis. One of the main concerns of this chapter is the impact
that the workstation service and queueing processes have on traffic flow characteris-
tics. That is, we will study how the workstation transforms the inter-arrival process
characteristics into output-stream characteristics. Consider first the mean flow rate
for a system in steady state. In the long run, the same number of units must depart
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the workstation as enter the workstation. Otherwise, there would be a buildup (or
depletion) of jobs in the workstation and the queue would grow infinitely (or units
would need to be created out of nothing) as time extends to infinity. It may be that
units are destroyed, but we would account for those units as departing “scrapped”
units. Or, it may be that an assembly operation occurs so that the number of units
appears to change; however, we would consider the assembled unit as two units so
that the net flow of material in is always equal to the net flow out. Applying this
conservation of flow concept, the mean output rate from a workstation must equal
the mean input rate to that workstation.1 The inter-arrival and inter-departure times
random variables are denoted as Ta and Td , where the subscripts a and d represent
arrivals and departures, respectively, for the workstation. Thus, the conservation of
flow concept leads to the following property.

Property 5.1. The mean arrival rate of jobs to a workstation operating under
steady-state conditions equals the mean departure rate of jobs; that is

E[Ta] = E[Td] .

For exponential systems, namely M/M/c systems with c≥ 1, the output process
is probabilistically identical to the input process; namely, the inter-departure times
are exponentially distributed so that C2

d = C2
a = C2

s = 1. For non-exponential sys-
tems, obtaining the value of C2

d is a little more involved. Assume for the moment
that the workstation is extremely busy, then the distribution of the time between
departures would essentially be the service time distribution and so C2

d would be
expected to be very close in value to C2

s . At the other extreme, when the system
is very lightly loaded, the inter-departure times should be an arrival time minus the
service time for the last job plus the service time for the arriving job. Thus, the inter-
departure time distribution should be similar to the inter-arrival time distribution so
that C2

d should be very similar to C2
a . In fact, for an M/G/1 system (remember that

C2
a = 1 for M/G/1 systems), Buzacott and Shanthikumar [3] show this is exact;

namely,
C2

d(M/G/1) = 1−u2 +u2C2
s , (5.1)

where u is utilization. They also develop for the G/G/1 system a lower bound on
C2

d as
C2

d(G/G/1)≥ (1−u)
(

1+uC2
a

)

C2
a +u2C2

s .

A general relationship for a G/G/1 system for the squared coefficient of variation
was developed by Marshall [4] as

C2
d = C2

a +2u2C2
s −2u(1−u)CTq/E[Ts] , (5.2)

1 The conservation of flow concept applied to networks is the same as the rate balance concept
used to derive the steady-state probabilities as discussed in Sections 3.1 and 3.2.
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which has the workstation queue time as an influencing variable. Using the previ-
ously developed approximation CTq = ((C2

a +C2
s )/2)uE[Ts]/(1− u) (Property 3.3)

and substituting it into Marshall’s formula, the result is the first equation in the fol-
lowing property taken from Whitt [6].

Property 5.2. The squared coefficient of variation of the inter-departure times
for a single server workstation can be approximated by

C2
d(G/G/1)≈ (1−u2)C2

a +u2C2
s ,

and for multiple server workstations by

C2
d(G/G/c)≈ (1−u2)C2

a +u2 C2
s +
√

c −1√
c

,

where u = E[Ts]/(cE[Ta]).

The single-server approximation is a weighed sum of the two limiting conditions C2
a

and C2
s . Note also that it is what one might conjecture as a generalization of (5.1)

since for the M/G/1 case C2
a = 1.

The two approximations given in Property 5.2 will suffice for use in our gen-
eral queueing network approximation system development. There will be situations,
such as a batch server (Chap. 7), where a properly detailed model of the process
will produce better results than relying directly on these formulas. The reason for
improvements in the batching cases is due more to the lack of the independence as-
sumption between processing times for jobs served in batches than it has to do with
the inappropriateness of the C2

d approximations themselves.

Example 5.1. For a single server workstation, the inter-arrival distribution param-
eters are E[Ta] = 20 min and C2

a = 1/2. The service time distribution parameters
are E[Ts] = 15 min and C2

s = 1/3. Then λ = 3/hr and μ = 4/hr. Thus, the system
utilization factor u = λ/μ = 3/4. Using Property 5.2, the approximate value for the
squared coefficient of variation of the inter-departure times is given by

C2
d =

(

1−
(

3
4

)2
)

1
2

+
(

3
4

)2 1
3

=
13
32

= 0.40625 .

Note that this approximation result does not depend on the distributions of the inter-
arrivals or the inter-departures, only there first two moments. ��
• Suggestion: Do Problems 5.1 and 5.2.
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Fig. 5.1 A serial factory
structure with three worksta-
tions

5.2 Serial Systems Decomposition

The system under consideration in this section is a pure serial system with external
inflow into the first workstation only and no branching. The departures from each
workstation are the inflows into the next workstation as illustrated in Fig. 5.1. This
system is treated as a series of G/G/c/∞ queues with specified service parameters
(E[Ts(i)], C2

s (i), ci) for each workstation i, numbered from 1 to n. Because of the se-
rial nature of the system, the arrival stream for workstation i is the departure stream
from workstation i−1; thus, C2

a(i) =C2
d(i−1) for i = 2, · · · ,n. In addition, the initial

workstation inter-arrival time distribution parameters E[Ta(1)] and C2
a(1) (arriving

job characteristics) are assumed known. (In general, the characteristics of arriving
jobs from external sources are always assumed to be known.)

If we were limited to exponential processes, the system as a whole could be (the-
oretically) modeled using the state-diagram approach of Chap. 2; however, the dia-
gram approach becomes intractable even for small networks because of dimension-
ality problems of the state space. Another relatively easy approach is possible for
infinite capacity exponential systems due to the fact that output for any M/M/c/∞
system is a Poisson process (see Burke [2]) with the same parameters as the input
process but statistically independent of the input process. Therefore, the approach
to modeling the network composed of M/M/c systems is to model each individual
node as if it were independent of all other nodes using as input to each node the
same arrival process as to the first node.

Example 5.2. Patients arrive to the emergency room according to Poisson process
(i.e., with exponential inter-arrival times) with a mean rate of 4 per hour. When they
arrive, there is a single clerk who takes their information. This process takes an
exponentially distributed length of time with an average of 4 minutes per patient.
There is a triage nurse who next sees the patient. The nurse takes an exponentially
distributed length of time averaging 10 minutes per patient. Finally one of two doc-
tors sees the patient and each doctor takes an exponentially distributed amount of
time with each patient averaging 24 minutes with the doctor. We would like to know
the average number of patients within the facility at any one time and the average
time that a patient spends in the emergency room.

The emergency room system is composed of an M/M/1 system feeding a •/M/1
system feeding a •/M/2 system. Because of the above mentioned property that
M/M/c systems have exponential inter-departure times, the second and third nodes
are an M/M/1 and M/M/2 system, respectively, with an arrival rate of 4 per hour
(Property 5.1). Furthermore, since each of the three nodes is an infinite capacity
exponential system, the system can be analyzed as three independent single node
systems. The first node has a utilization factor of u1 = 4/15 (note that 4 minutes
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per patient is 15 patients per hour) and thus the average number of patients in
the first node is WIP(1) = 4/11 (use Eq. 3.11). The second node has a utiliza-
tion factor of u2 = 2/3 yielding WIP(2) = 2 (again use Eq. 3.11). For the third
node, we first find the time spent waiting for the doctor. This is given by Prop-
erty 3.4 and yields CTq(3) = 42.67 min since u3 = 0.8. Adding the doctor’s time
to the wait time (Eq. 3.21) yields the time spent in third node as CT (3) = 1.11
hr. Applying Little’s Law (Property 2.1) gives the average number of patients at
the node as WIP(3) = 4.44. Thus, the total number in the emergency room is
WIPs = 4/11+2+4.44 = 6.8. Applying Little’s Law one more time, yields the av-
erage value for the total time a patient spends in the emergency room as CTs = 1.7
hr. ��

Although the analysis approach used in Example 5.2 is exact only under the as-
sumptions of infinite capacity nodes and exponential distributions for inter-arrivals
and processing times, it provides the motivation for approximation schemes when
these assumptions do not hold. The analysis approach for general systems is based
on the concept that a system’s performance can be adequately approximated by sep-
arating the system into individual workstations. The performance characteristics of
the individual workstations are computed separately and then these results recom-
bined for the total system behavior. This decomposition approach is fundamental to
the approximation of general network configurations. The reasons that this decom-
position approach is only an approximation are two-fold: first, Property 5.2 is an
approximation and second, the successive inter-departure times are not independent
except for the M/M/c/∞ case.

The decomposition approach is predicated on being able to establish the indi-
vidual workstation parameters needed for using Property 3.3 or 3.6. The required
data are the parameter set (E[Ts(i)], C2

s (i), ci, E[Ta(i)], C2
a(i)) for each workstation

i. The first three parameters are specified data for the workstation. The last two pa-
rameters in the set are for the job arrival stream into the workstation. These two
inter-arrival distribution parameters need to be estimated from the departure flows
from the upstream workstations and, of course, the network structure. For serial
systems, the outflow from one workstation is the direct inflow into the next, so this
particular serial network topology allows for a sequential computation of these un-
known parameters. Starting with the known inflow data into the first workstation,
all the necessary data are available and the first workstation’s performance charac-
teristics (from Properties 3.3 or 3.6) and the departure stream characteristics (from
Properties 5.2) can be computed. The second workstation arrival stream character-
istics are made equal to the first workstation’s departure stream. Thus for the second
workstation, the performance information and the departure stream parameters are
obtained. This becomes the needed information for the third workstation, and so
on. (It is now, hopefully, apparent how the topology of the network impacts the
analysis. For a general system structure, the topology is more complex and these
data must be computed simultaneously leading to the development of a system of
equations as seen in Section 5.4 that must be solved to obtain the inter-arrival distri-
bution parameters.) As always, the arrival stream and service characteristics define
the workstation utilization as ui = E[Ts(i)]/(ciE[Ta(i)]).
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The departure stream characteristics for each workstation consists of the mean
inter-arrival time and the squared coefficient of variation of these times. For a se-
rial system in steady state, the workstation mean inflow rates must be identical for
all workstations. (The assumptions of no losses, no reworks, and one external in-
flow point are critical to this simplified method for computing these inflow rates.)
Thus, E[Ta(i)] = E[Ta(1)] for all workstations i = 2, · · · ,n. There remains only the
task of computing the C2

d(i) term for each workstation i and the serial structure of
the network allows for these computations to be carried out sequentially. A recur-
sive algorithm can be easily developed for the factory based on the following two
properties.

Property 5.3. The mean cycle time and departure process for an infinite ca-
pacity single-server workstation within a factory that has a pure serial system
topology are given by

CT (i) ≈
(

C2
d(i−1)+C2

s (i)
2

)(

ui

1−u i

)

E[Ts(i)]+E[Ts(i)] and

C2
d(i) ≈ (1−u2

i

)

C2
d(i−1)+u2

i C2
s (i) ,

where i is the sequence number of the workstation and C2
d(0) is the squared

coefficient of variation of the arrival stream to the first workstation. (The only
arrivals are to the first workstation.)

Property 5.4. The mean cycle time and departure process for an infinite ca-
pacity workstation with c servers within a factory that has a pure serial system
topology are given by

CT (i) ≈
(

C2
d(i−1)+C2

s (i)
2

)

(

u
√

2ci+2−1
i

ci(1−ui)

)

E[Ts(i)]+E[Ts(i)] and

C2
d(i) ≈ 1+

(

1−u2
i

)(

C2
d(i−1)−1

)

+u2
i

(

C2
s (i)−1

)

√
ci

,

where i is the sequence number of the workstation and C2
d(0) is the squared

coefficient of variation of the arrival stream to the first workstation. (The only
arrivals are to the first workstation.)

Once the cycle times for the individual workstations have been obtained, the
overall system performance measures can be determined. The cycle time in the to-
tal system can be computed for serial systems by merely summing the individual
workstation times since every job visits each workstation exactly once during its
processing. This is not a general computation scheme and is, therefore, forgone in
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favor of a method that is valid for all network topologies. The more general approach
is to use Little’s Law to compute the mean number of jobs, WIPs(i), in each work-
station, sum the workstation means together to obtain the total factory mean number
of jobs, WIPs, and then obtain the system mean cycle time through the application
of Little’s Law again; thus

WIPs =
n

∑
i=1

WIPs(i) =
n

∑
i=1

CT (i)
E[Ta(i)]

and (5.3)

CTs = E[Ta(1)]×WIPs . (5.4)

Equation (5.3) is independent of the job flow sequence and, hence, valid for any
network topology. Notice that for the mean throughput rate, the reciprocal of the
mean inter-arrival times is used since all arrivals will eventually pass through the
workstation. Equation (5.4) is not very general because it assumes that all arrivals
to the factory enter through the first workstation. In later sections, this may not be
true.

Example 5.3. Consider a three-workstation factory with serial flow as depicted in
Fig. 5.1. Each workstation has a single machine with the service time distribution
parameters as listed in Table 5.1. The inter-arrival time distribution for jobs to the

Table 5.1 Service time characteristics for Example 5.3

Workstation i E[Ts(i)] C2
s (i)

1 12 min 2.0
2 9 min 0.7
3 13.2 min 1.0

factory has a mean of 15 minutes or a mean rate of 4 jobs per hour, and a squared
coefficient of variation of 0.75. The system mean work-in-process, cycle time, and
throughput are desired.

Since arrivals to the system occur at the first workstation, E[Ta(1)] = 15 min
yielding a utilization factor of u1 = E[Ts(1)]/E[Ta(1)] = 0.8. Using the network
decomposition principle together with Property 5.3 yields the following for the first
workstation:

CT (1) =
(

C2
a(1)+C2

s (1)
2

)(

u1

1−u 1

)

E[Ts(1)]+E[Ts(1)]

=
(

0.75+2.0
2

)

0.8
0.2

(12 min)+12 min

= 78 min = 1.3 hr

C2
d(1) =

(

1−u2
1

)

C2
a(1)+u2

1C2
s (1)

=
(

1−0.82)0.75+0.82(2.0) = 1.55 , and
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WIP(1) = CT (1)× 1
E[Ta(1)]

=
1.3 hr

0.25 hr
= 5.2 .

The last equation comes from the application of Little’s Law, and since no jobs are
lost, the throughput rate is th = 1/E[Ta(1)]. Notice that care must always be taken
to make sure that the time units are consistent when applying Little’s Law. Because
this is a pure serial network, the arrival rate and throughput rate will be the same for
each workstation; thus, the utilization factors for the other two workstations are u2 =
E[Ts(2)]/E[Ta(1)] = 0.6 and u3 = E[Ts(3)]/E[Ta(1)] = 0.88. Applying Property 5.3
and Little’s Law to the second and third workstations yield

CT (2) =
(

1.55+0.7
2

)

0.6
0.4

(0.15 hr)+0.15 hr = 0.403 hr

C2
d(2) =

(

1−0.62)1.55+0.62(0.7) = 1.244

WIP(2) = CT (2)/E[Ta(1)] = 1.613 and

CT (3) =
(

1.244+1.0
2

)

0.88
0.12

(0.22 hr)+0.22 hr = 2.030 hr

C2
d(3) =

(

1−0.882)1.244+0.882(1.0) = 1.055

WIPs(3) = CT (3)/E[Ta(1)] = 8.121 .

Finally, the total factory performance characteristics for this serial system are

WIPs = 5.200+1.613+8.121 = 14.933 jobs

ths =
1

E[Ta(1)]
= 4/hr

CTs =
WIPs

ths
= 3.733 hr .

As a comparison, a simulation model was developed for this serial factory struc-
ture using Excel. (The appendix of this chapter presents the use of Excel for sim-
ulating networks for single-server workstations.) The gamma distribution was used
for the random inter-arrival times and service times with the appropriate means and
squared coefficients of variations. Five replicates of the model were obtained with
each replication being a simulation of 32,000 customers through the system. Table
5.2 displays the analytical approximation results with those obtained from the simu-
lation. The analytical approximations are given first followed across the row by the
simulation estimates with the half-width of the 95% confidence interval also shown
for the simulation. (The estimate for the squared coefficients of variation were ob-
tained by estimating the variance and dividing by the square of the mean estimate;
thus, it is a biased statistic. The confidence interval is based on Eq. (3.25) so it is
technically not correct for ratios; however, it does give some idea of the variability
of the estimator.)
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Table 5.2 Comparison of analytical approximation results and simulation results for Example 5.3,
including half-widths of the 95% confidence intervals for the simulated estimators

Approximation Approximation Simulation Simulation
CT C2

d CT C2
d

Workstation 1 1.300 hr 1.550 hr 1.33 hr ±0.10 1.58 hr ±0.03
Workstation 2 0.403 hr 1.244 hr 0.44 hr ±0.01 1.16 hr ±0.02
Workstation 3 2.030 hr 1.055 hr 1.90 hr ±0.23 1.05 hr ±0.02

System 3.733 hr 3.67 hr ±0.21

These comparisons are given not to verify that the mathematical models are ex-
tremely accurate, but to illustrate that the results are accurate enough for the use
of decisions to be made based on these models. The analytical results are static as
the distributions vary as long as means and variances remain constant; however, the
simulation results vary according to the distributions chosen and between different
simulation realizations of the process. ��
• Suggestion: Do Problems 5.3–5.10.

5.3 Nonserial Network Models

Many production systems have more than one inflow point into the production sys-
tem. Products that may have been found defective or that have broken may be sent
back to the manufacturing facility to be reworked. These units will not necessarily
enter the production line at the same point as a new job. If a defect is found during
inspection after partially completing production, it may be sent to a rework station
and then re-enter the production sequence at the appropriate point. To study factory
structures that are more realistic than pure serial systems, two additional structures
must be studied in order to compute the squared coefficients of the various streams
of jobs within the factory: (1) the merging of streams entering a workstation and (2)
the splitting of output streams that come from a single workstation but are routed
to more than one workstation. These two processes, merging and splitting, are ad-
dressed separately. Then these processes are combined for a general network model.

5.3.1 Merging Inflow Streams

When multiple inflow streams as depicted in Fig. 5.2 arrive at a workstation with
differing inter-arrival time distributions, the composite inter-arrival time distribu-
tion parameters, mean time or rate and the squared coefficient of variation, need
be computed. The process of merging inflow streams is technically called a super-
position of the individual inter-arrival processes. It is assumed that the individual
input streams are independent of one another and that each has independent and
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Fig. 5.2 Superposition of
merging inflow streams ap-
proximated by a two parame-
ter renewal process

( 2, C2)    λ 2

( 1, C1)    λ 2

( 3, C3)    λ 2

( , Ca)    λ 2

identically distributed inter-arrival times (each of these input streams is said to be a
renewal process).

Definition 5.1. A renewal process is the process formed by the sum of nonnega-
tive random variables that are independent and identically distributed. If the ran-
dom variables forming the sum are exponentially distributed, the renewal process is
called a Poisson process.

Unfortunately, the superposition of renewal processes is not a renewal process un-
less each process is a Poisson process. The exact inter-arrival time process of the
composite inflow stream is very complicated in general; therefore, we will approx-
imate the resulting stream by (incorrectly) assuming that it is a renewal process as
suggested in [1]. The issue is then how to compute the process parameters (namely,
the mean and squared coefficient of variation) for the composite stream.

The mean rate of the composite stream is easy to compute since it is the sum of
the mean rates of the individual streams; however, the squared coefficient of vari-
ation is more difficult to determine. One difficulty is that there is more than one
method that can be used for the estimation. The method we shall use is an asymp-
totic approximation for the squared coefficient of variation and is based on limiting
characteristics of the distribution. This method was was proposed by Whitt [5] and
we use it in the following property for the composite arrival stream.

Property 5.5. Consider an arrival stream that is formed by merging n in-
dividual arrival processes. The individual streams have mean arrival rates
given by λi = 1/E[Ti] and squared coefficients of variation denoted by C2

i for
i = 1, · · · ,n. The mean arrival rate, λa, and the squared coefficient of varia-
tion, C2

a , for a renewal process used to approximate the merged arrival process
are given by
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λa =
n

∑
i=1

λi =
n

∑
i=1

1
E[Ti]

C2
a =

n

∑
i=1

λi

λa
C2

i .

Example 5.4. An automated lubricating facility is located in the center of a man-
ufacturing plant. Arrivals of parts needing lubrication come from three sources:
manufactured parts needing assembly, defective parts that have been disassembled
and will be returned for reassembly, and parts coming from a sister manufactur-
ing facility in another part of the town. The three arrival streams have been ana-
lyzed separately. The mean arrival rates for the three streams are given by the vec-
tor (λ1,λ2,λ3) = (13.2/hr,3.6/hr,6.0/hr). The squared coefficients of variation for
the three inflow streams are (C2

1 ,C
2
2 ,C2

3) = (5.0,3.0,2.2). The total inflow into the
workstation is the sum of the individual inflows so that λa = 22.8/hr. The relative
weights, 13.2/22.8, 3.6/22.8, and 6.0/22.8, are thus used to determine the composite
inflow stream’s squared coefficient of variation as

C2
a =

13.2
22.8

5.0+
3.6

22.8
3.0+

6.0
22.8

2.2 = 3.947 .

To compute the mean and standard deviation of the inter-arrival times, remember
that mean rates and mean times are reciprocals; therefore,

E[Ta] =
1

22.8
hr = 2.63 min , and

V [Ta] = 3.947(2.632) = 27.30 min2 .

��
• Suggestion: Do Problems 5.11 and 5.12.

5.3.2 Random Splitting of the Departure Stream

Jobs that exit from a workstation can be transferred to different workstations based
on several possibilities. Multiple products can be made by specializing a partially
processed product. Thus, the processing sequences can be identical through some
step at which point the items are branched to their unique completion workstations
or sequence of workstations. Another instance occurs due to quality control testing
with good items continuing on their normal route and bad items being reworked
or corrected at a different workstation before continuing normal processing. If the
branching decision is based on an independent random draw for each job, called a
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Bernoulli decomposition or a Markovian routing, then the squared coefficients of
variation for the individual resultant streams is exact and relatively easy to compute
as long as the initial stream was a renewal process. Specifically, when a renewal
process undergoes a Bernoulli decomposition, each individual stream is again a re-
newal process. Whitt [6] reminds us that this process ultimately is an approximation
because in a network of workstations the output process from a workstation “is typ-
ically not a renewal process and the splitting is often not according to Markovian
routing.”

To illustrate the computations necessary for obtaining the mean rate and coef-
ficient of variation for a stream that is split from another stream, assume that p is
the probability that output from one workstation is directed as an arrival process
to a second workstation. The arrival stream to the second workstation is made up
of the sum of one or more inter-departure times from the first workstation. That is,
if there are N departures from the first workstation between arrivals to the second
workstation, then the second workstation sees an inter-arrival time that is the sum
of those N inter-departure times from the first workstation. The number of depar-
tures, N, between routings to the target workstation is obviously a random variable,
and is distributed according to a geometric distribution. Thus, the probability mass
function of N is given by

Pr{N = n}= f (n) = p(1− p)n−1 ,n = 1,2, · · · ,

where p is the probability that a given job is routed to the second workstation, inde-
pendent of previous or future routings. The characteristics for this geometric random
variable N (review p. 15) are therefore given by

E[N] =
1
p

V [N] =
1− p

p2 .

To compute the time between visits to the second workstation for jobs departing
from the first workstation, we define the random variable T as the random sum of N
of the independent and identically distributed inter-departure times, Ti; namely,

T = T1 + · · ·+TN =
N

∑
i=1

Ti .

Since this is a random sum of i.i.d. random variables, we can use Property 1.9 to
obtain the mean and variance of T as

E[T ] =
E[T1]

p

V [T ] =
V [T1]

p
+

(1− p)E[T1]2

p2 .
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Noting that C2[t] = V [T ]/(E[T ])2, it is not too hard to derive the following property
for split streams.

Property 5.6. Consider a departure stream from a specified workstation with
a mean inter-departure time and coefficient of variation given by E[Td] and
C2

d , respectively. When a job departs from the specified workstation, there is a
probability, p, that the job will be routed to a target workstation. If there are no
other arriving streams to the target workstation, then the mean inter-arrival
time and squared coefficient of variation for arrivals to target workstation are
given by

E[Ta] =
E[Td ]

p

C2
a = pC2

d +1− p .

If λd is the mean departure rate of jobs from the specified workstation, the
mean arrival rate to the target workstation is λa = pλd.

Example 5.5. The fifth workstation within a manufacturing facility performs a qual-
ity control check on partially manufactured items. Parts receive an unqualified pass
from the inspector with probability 0.8 and they are then sent to Workstation 6 to
continue the manufacturing process. Approximately 18% of the time, a part has
a partial pass of the quality check and is sent to Workstation 10 for rework. And
approximately 2% of the time, a part completely fails the test and is sent to the
hazardous waste station for disposal which is designated as Workstation 99. The
throughput rate for Workstation 5 is 7 jobs per hour and the coefficient of variation
for the inter-departure times is 3. As a notational convention, we let λa(i, j) de-
note the mean arrival rate of jobs coming from Workstation i going to Workstation
j. Likewise, C2

a(i, j) denotes the squared coefficient of variation for the stream of
jobs from Workstation i feeding into Workstation j. Thus, Property 5.6 yields the
following:

λa(5,6) = 0.8×7 = 5.6/hr

C2
a(5,6) = 0.8×3+0.2 = 2.6

λa(5,10) = 0.18×7 = 1.26/hr

C2
a(5,10) = 0.18×3+0.82 = 1.36

λa(5,99) = 0.02×7 = 0.14/hr

C2
a(5,99) = 0.02×3+0.98 = 1.04 .
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Notice that as a check, the arrival rates can be summed and they must equal the
departure rate from the original stream before it was split. (As a reminder, such a
property does not hold for the squared coefficients of variation.) ��
• Suggestion: Do Problem 5.11.

5.4 The General Network Approximation Model

Our goal is to develop a methodology for approximating the system performance
measures for general factory models. In the serial models studied in the previous
chapter, the flow structure was straight forward with no losses between workstations
and no job feedback, no branching or other nonserial complications. To address a
general factory network connection topology, the possibilities of external flows into
any one of the workstations must be considered along with job feedback branch-
ing for rework purposes, splitting of the output from a workstation to different next
workstations, etc. So workstation inflows can come from a variety of sources, exter-
nal as well as other workstations within the factory, and this complication is handled
by our flow merging mechanism. Probabilistic branching of workstation outflow re-
quires departure stream splitting mechanics. Thus, at this point the fundamental
mechanisms needed to address these more complicated system structures have been
developed. The major complication that arrises is the order that the workstations
are sequenced for application of the general decomposition approach. That is, since
there is no longer sequential flows, parameter dependencies are also not sequen-
tial so that equations relating the parameters will have to be solved simultaneously
instead of sequentially.

The concept of the decomposition approach to factory analysis is the establish-
ment of the individual workstation parameters and then the development of each
workstation’s behavioral characteristics as a stand-alone analysis. These individ-
ual analyses are then merged together to estimate the total system behavior. This
approach was readily implemented for a pure serial system since the parameters,
such as the inflow stream characteristics, could be sequentially computed. Starting
with a known inflow into the first workstation and based on its service character-
istics (mean, squared coefficient of variation, and number of servers), the outflow
or departure stream characteristics were computed. Then due to the serial factory
flow structure, these become the characteristics of the inflow stream for the next
workstation in series. This sequential process of evaluation is repeated until the last
workstation in the series had been evaluated. Then, of course, the results for the
individual workstations are combined for the system performance estimation. De-
termining the mean rates and then squared coefficients of variation for inter-arrival
times involve distinct analyses so these are discussed separately in the following
two subsections.
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Fig. 5.3 Example of a non-
serial factory model

5.4.1 Computing Workstation Mean Arrival Rates

With a non-serial network, determining the arrival stream characteristics is more
complicated than for the serial systems. Consider for example, the simple two work-
station example of Fig. 5.3. Arrivals from an external source enter the first worksta-
tion with a mean rate of γ . However, due to the feedback from Workstation 2 with
probability β , the total inflow into Workstation 1 is not explicity given. The same
situation arrises for Workstation 2 since the inflow comes from Workstation 1 plus
direct feedback from its own departure stream. Since the flow rate into Workstation 1
is not known as yet, the inflow into Workstation 2 cannot be computed directly. This
dilemma is a natural consequence of non-serial network flows and its resolution re-
quires that all of the flow rates be computed simultaneously. For this example, note
that λi for i = 1,2, is used to describe the net, or total, arrival rate into each Work-
station i. Since steady-state conditions are assumed, λi is also the total outflow from
Workstation i. These mean rates are defined by the system of linear equations

λ1 = γ +βλ2,

λ2 = λ1 +αλ2,

where the parameters α,β ,γ are all known data. This linear system rearranged in
terms of the unknowns on the left side of the equality is

λ1−βλ2 = γ,

−λ1 +(1−α)λ2 = 0.

The solution to this system is easily obtained when the parameters α,β ,γ are known
and can be written in matrix form as

(

λ1

λ2

)

=
(

1 −β
−1 1−α

)−1 ( γ
0

)

.

Therefore, a system of linear equations must be established and solved to obtain
the mean inflow rates for each workstation. This linear system of equations is, of
course, based on the workstation connections for the factory under consideration. To
formalize for a general network application, the switching rule needs to be defined.

Definition 5.2. Consider a network consisting of workstations numbered from 1 to
n. The switching rule for the network is defined by an n×n matrix P = (pi j), where
pi, j is the probability that an arbitrary job leaving Workstation i will be routed di-
rectly to Workstation j. The matrix P is called the routing matrix for the network.
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Notice that row i of the routing matrix consists of the probabilities relating to
the splitting of the outflow from Workstation i into the various resultant successor
Workstations j. The jth column of the matrix represents the probabilities that jobs
leaving the various workstations go to Workstation j. (Those familiar with Markov
chains will recognize the routing matrix as a sub-Markov matrix since it is made
up of nonnegative probabilities and the sum of each row is equal to or less than
one.) Also define γi as the external inflow rate and λi as the total inflow rate into
Workstation i. Therefore, the total rate into Workstation i must satisfy the following
equation:

λi = γi +
n

∑
k=1

pkiλk, for i = 1, · · · ,n ,

or in standard matrix form,
λλλ = PTλλλ +γγγ ,

where λλλ and γγγ are n-dimensional column vectors of the λi and γi terms and PT

denotes the transpose of P. The above equation can be easily solved to yield the
following property.

Property 5.7. Consider a general network of n workstations with switching
rule defined by the routing matrix P and assume that the sum of at least one
row of P is strictly less than one (i.e., jobs exit the network from at least
one workstation). Let γγγ = (γ1, · · · ,γn) denote a vector consisting of the mean
arrival rate of jobs from an external source to the workstations. Both P and
γγγ are known. Let λλλ = (λ1, · · · ,λn) be the (unknown) vector denoting mean
arrival rates of all jobs to the workstations. The vector λλλ is given by

λλλ =
(

I−PT )−1 γγγ ,

where I is an n×n identity matrix.

Example 5.6. Consider the factory network of workstations depicted in Fig. 5.4 with
the noted branching probabilities and an external flow rate into the first workstation
of 5 jobs per hour.

The system of equations defining the workstation total arrival rates are

λ1 = 5+0.10λ2 +0.05λ3

λ2 = 0+0.75λ1

λ3 = 0+0.25λ1 +0.90λ2 .

This system rearranged is
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Fig. 5.4 Second example of a
non-serial factory network

1λ1−0.10λ2−0.05λ3 = 5

−0.75λ1 +1λ2 +0λ3 = 0

−0.25λ1−0.90λ2 +1λ3 = 0 ,

which has the unique solution

λ1 = 5.690, λ2 = 4.267, λ3 = 5.263 .

Thus, the first workstation receives 5.690 jobs per hour; 5 of these from the exter-
nal source and the remaining 0.690 jobs from Workstations 2 and 3. The second
workstation receives 4.267 jobs per hour, all of these from Workstation 1. The third
workstation receives a total of 5.263 jobs per unit time as the combined inflow from
Workstations 1 and 2. ��
• Suggestion: Do Problems 5.12–5.16.

5.4.2 Computing Squared Coefficients of Variation for Arrivals

To obtain the squared coefficients of variation for the composite arrival stream into
each workstation, a system of linear equations relating all of these coefficients must
be solved; thus, the solution procedure is similar to obtaining the net inflow rates,
although the individual equations are much more complex. The inflow into a given
workstation, say Workstation j, is made up of the proportions of the departure
stream from those workstations that feed into j along with any external stream that
comes directly to j. The flow of jobs from Workstation k that are routed directly to
Workstation j will be called the k→ j stream and the squared coefficient of vari-
ation of inter-arrival times to j from k will be denoted by C2

a(k, j). The squared
coefficient of variations for the inter-arrival times of jobs arriving from an external
source is denoted similarly by C2

a(0, j) with the mean arrival rate of those jobs being
γ j. Therefore, Property 5.5 indicates that the squared coefficient of variation for the
inter-arrival times satisfies the following:
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C2
a( j) =

γ j

λ j
C2

a(0, j)+
n

∑
k=1

λk pk, j

λ j
C2

a(k, j) , (5.5)

where P is the routing matrix and the mean rates, λi, come from Property 5.7. (Fre-
quently, γ j = 0 and this component has no contribution.) Property 5.6 gives the
relationship between departures and arrivals so that (5.5) is rewritten as

C2
a( j) =

γ j

λ j
C2

a(0, j)+
n

∑
k=1

λk pk, j

λ j

(

pk, jC
2
d(k)+1− pk, j

)

. (5.6)

The above system of equations involves both arrival stream and departure stream
characterizations; thus, the final step is to express the departure streams in terms of
the arrival streams using Property 5.2 and substitute this back into (5.6). You should
be able to show that the resulting system of equations is as follows:

Property 5.8. Consider a general network of n workstations with switching
rule defined by the routing matrix P and assume that the sum of at least
one row of P is strictly less than one. The characteristics of the flow of ex-
ternal jobs to Workstation j are given by γ j and C2

a(0, j). The total mean
rate of jobs coming into Workstation j is given by λ j (from Property 5.7)
and the workstation consists of c j servers processing one job at-a-time. Each
server within Workstation j has a mean service time of E[Tj] and squared co-
efficient of variation for service of C2

s ( j) with workstation utilization factor
u j = E[Tj]λ j/c j < 1. The values of C2

a( j) for j = 1, · · · ,n that satisfy

C2
a( j) =

γ j

λ j
C2

a(0, j)+
n

∑
k=1

λk pk, j

λ j

[

pk, j(1−u2
k)C

2
a(k)

+ pk, j u2
k

(

C2
s (k)+

√
ck −1√

ck

)

+1− pk, j

]

for j = 1, · · · ,n

are the squared coefficients of variation for the inter-arrival times of jobs
entering the various workstations.

Because the formula for determining the squared coefficient of variation of merging
arrival streams is an approximation and in some cases the formula for the squared
coefficient of variation for inter-departure times is an approximation, the terms ob-
tained from Property 5.8 are approximations. The system of equations given by the
property can be solved fairly rapidly by an iterative procedure known as successive
substitution. The idea is to initialize the C2

a(i) terms at some arbitrary value, say 1.0,
and then use these values in the right-hand side of the system in Property 5.8 which
will yield new values for the C2

a(i) terms. After the new values are obtained, these
new values are used for the next iteration for the right-hand side of the equations
again to obtain new values. This is repeated several times until the new values ob-
tained on the left-hand side are equal (within some specified degree of accuracy) to
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the values placed on the right-hand side of the equation. This method is illustrated
in Examples 5.7 and 5.8 that follow the next property.

Since the system of equations in Property 5.8 is a linear system, a matrix solution
is also available as given by the next property.

Property 5.9. Consider the workstation network described in Property 5.8.
Let c2

a denote the vector of squared coefficients of variation for the arrival
streams; that is, c2

a = (C2
a(1), · · · ,C2

a(n)) and

c2
a ≈
(

I−QT )−1
b ,

where I is an n×n identity matrix, the elements of Q are given by

qk, j =
λk p2

k, j(1−u2
k)

λ j

and the elements of the b are given by

b j =
γ j

λ j
C2

a(0, j)+
n

∑
k=1

λk pk, j

λ j

(

pk, j u2
k

C2
s (k)+

√
ck −1√

ck
+1− pk, j

)

.

To analyze a general network, the mean arrival rate into each workstation is first
determined, then workstation utilization factors are calculated since these depend on
the just computed arrival rates, and finally the squared coefficients of variation for
the arrival streams are computed either by a successive substitution iteration or by
finding the inverse matrix. At this point, the network can be decomposed and each
workstation treated individually. Finally, these results are combined to estimate the
performance characteristics of the system as a whole. The following is a summary
of the solution procedure used to fully develop a general factory model, obtain the
values of the unknown parameter sets, and derive the relevant performance mea-
sures.

1. Workstation mean flow rates of jobs (and thus also their reciprocals, the mean
flow times) are obtained through the system of equations given in Property 5.7.

2. Workstation offered workloads and utilization factors are calculated next, where
the offered workload is the mean flow rate multiplied by the mean processing
time and the utilization factor is the offered workload divided by the number of
available servers in the workstation. (Utilization factors must be strictly less than
one for steady-state conditions to hold.)

3. Workstation squared coefficients of variation of the inter-arrival times are ob-
tained either through successive substitution using the system of equations in
Property 5.8 or the matrix solution of Property 5.9.
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Fig. 5.5 Factory topology
used in Example 5.7

4. The decomposition principle is used to obtain the mean time spent in the queue
at each workstation using either Property 3.3 or 3.6. The mean service time is
added to the time in queue to obtain the mean workstation cycle time and then
Little’s Law (Property 2.1) is used to obtain workstation WIP.

5. Factory WIP is obtained by summing the individual workstation WIPs, then the
total mean cycle time for a job within the factory is derived from the application
of Little’s Law again. Factory throughput is merely the sum of the external in-
flows into the system, under the assumption of the existence of steady-state and
no turning away of jobs.

This analysis process is illustrated with two examples starting with a system
of single server workstations, each processing a single job at a time. The second
example has a mixture of single and multiple server workstations.

Example 5.7. Consider a factory that consists entirely of single-server workstations
with service time data for each workstation given by Table 5.3. Arrivals from an

Table 5.3 Workstation characteristics for Example 5.7

Workstation i E[Ts(i)] C2
s (i)

1 7.80 min 1.0355
2 7.80 min 1.7751
3 9.60 min 0.3906
4 3.84 min 2.4414

external source enter into the factory at the first workstation, and the arrivals are ex-
ponentially distributed with a mean rate of 5 jobs per hour. After initial processing,
2/3 of the jobs are sent to Workstation 2 and 1/3 are sent to Workstation 3. After the
second step of processing, jobs are tested at Workstation 4, and only 40% of the jobs
are found to be acceptable. Ten percent of the completed jobs fail the testing com-
pletely and are scrapped, at which time a new job is started to replace the scrapped
jobs. Fifty percent of the jobs partially fail the testing and can be reworked. Sixty
percent of the partial failures are sent to Workstation 3 and the others are sent to
Workstation 2. After reworking, the jobs are sent again for testing at Workstation
4 with the same percentage of passing, partially failing, and completely failing the
testing. (Figure 5.5 illustrates these job flows and switching probabilities.)

Management is interested in the mean cycle time for jobs, factory inventory lev-
els, and workloads at each workstation. To answer these questions, each of the five
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steps detailed on page 143 are discussed in detail.

Step 1: Workstation Arrival Rates. The goal is to obtain the composite inflow rate
into each workstation. These rates are functions of the external inflows into the sys-
tems and the routing characteristics of the job as illustrated in Fig. 5.5. The equations
that define these rates for the example problem under consideration are:

λ1 = 5+
1

10
λ4

λ2 = 0+
2
3

λ1 +
2

10
λ4

λ3 = 0+
1
3

λ1 +
3

10
λ4

λ4 = 0+λ2 +λ3 .

The solution to this system of equations is

(λ1,λ2,λ3,λ4) = (6.25,6.667,5.833,12.5) .

Thus, even though there are only 5 jobs per hour that enter into the factory, the job
arrival rate into Workstation 4 is 12.5 per hour. The reason for this increase is due
to the high proportion of feedback of jobs that exit Workstation 4. If all jobs that
exit Workstation 4 were acceptable in quality, then there would be no feedback or
reworking of jobs and the inflow rate into Workstation 4 would merely be 5 jobs
per hour. The 12.5/hr rate is a consequence of these feedback probabilities and the
fact that a job that has been reworked can again be rejected and reworked over and
over again. Since there is a 6/10 probability of a job being reworked, there is a
(6/10)2 chance of it being reworked twice, and a (6/10)3 chance of being reworked
three times, etc. Since the mean number of jobs that eventually enter Workstation 4
follows a geometric series, we could obtain the mean arrival rate for the workstation
by

5

(

1+
6
10

+
(

6
10

)2

+
(

6
10

)3

+ · · ·
)

= 5

(

1
1−0.6

)

= 12.5 .

This type of series analysis is not necessary since the system of linear equations
accounts for the total feedback effect.

Step 2: Workstation Utilizations. The offered workload to each workstation is the
mean job arrival rate multiplied by the mean processing time per job which then
equals the utilization factor since each workstation has only one processor. This
analysis is displayed in Table 5.4 including two factors (squared utilization terms)
that will be needed.

The resulting utilization factors are all in the 80% to 90% range. If the offered
workload were greater than one, the number of machines would need to be increased
to insure that the utilization factor is less than one. Otherwise, the system cannot
handle the necessary workload and in the long run the queues for these workstation
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Table 5.4 Workstation data: arrival rates, mean service times (in hours), and utilization terms

Workstation i λi E[Ts(i)] ui u2
i 1−u2

i
1 6.250/hr 0.130 hr 0.8125 0.6602 0.3398
2 6.667/hr 0.130 hr 0.8667 0.7512 0.2488
3 5.833/hr 0.160 hr 0.9333 0.8710 0.1290
4 12.50/hr 0.064 hr 0.8000 0.6400 0.3600

will grow indefinitely. This violates the steady-state assumption underlying all our
models and further analysis could not be performed.

Step 3: Squared Coefficients of Variation. The equations defining the squared co-
efficients of variations of the job inter-arrival times for each workstation are much
more complicated that the equations needed to determine the mean flow rates. How-
ever, because the equations are still linear, their solution is straight-forward. We first
demonstrate the successive substitution scheme for solving the system of equations
from Property 5.8. First observe that γ2 = γ3 = γ4 = 0 and that since the exter-
nal arrival stream to the first workstation is exponential, we have γ1 = 5/hr and
C2

a(0,1) = 1. Letting all numbers be in terms of hours, Property 5.8 yields

C2
a(1) =

5
6.25

+
12.5(0.1)

6.25

[

1
10

(

0.36C2
a(4)+0.64×2.4414

)

+
9

10

]

C2
a(2) =

6.25(0.6667)
6.6667

[

2
3

(

0.3398C2
a(1)+0.6602×1.0355

)

+
1
3

]

+
12.5(0.2)

6.6667

[

2
10

(

0.36C2
a(4)+0.64×2.4414

)

+
8

10

]

C2
a(3) =

6.25(0.3333)
5.8333

[

1
3

(

0.3398C2
a(1)+0.6602×1.0355

)

+
2
3

]

+
12.5(0.3)

5.8333

[

3
10

(

0.36C2
a(4)+0.64×2.4414

)

+
7

10

]

C2
a(4) =

6.6667(1)
12.5

[

1
(

0.2488C2
a(2)+0.7512×1.7751

)

+0
]

+
5.8333(1)

12.5

[

1
(

0.1290C2
a(3)+0.8710×0.3906

)

+0
]

.

Simplifying terms and rewriting the equations produces the following system.

C2
a(1) = 0.0072C2

a(4)+1.0112 (5.7)

C2
a(2) = 0.1416C2

a(1)+0.0270C2
a(4)+0.9104
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C2
a(3) = 0.0405C2

a(1)+0.0694C2
a(4)+1.0708

C2
a(4) = 0.1327C2

a(2)+0.0602C2
a(3)+0.8699 .

To use the successive substitution algorithm on the (5.7), first set

c2
a−step 1 = (C2

a(1),C2
a(2),C2

a(3),C2
a(4))step 1 = (1,1,1,1) .

After one step of the algorithm, we have

c2
a−step 2 = (1.0184,1.0790,1.1807,1.0628) .

The next step gives

c2
a−step 3 = (1.0189,1.0833,1.1858,1.0628) .

By the fifth iteration, the values for the squared coefficients of variation converge to

c2
a−step 5 = (1.0190,1.0840,1.1874,1.0852) .

If Excel, or other software containing matrix inversion procedures, is available
so that matrix inverses are easy, we could use Property 5.9 that gives

c2
a =

⎛

⎜

⎜

⎝

1 0 0 −0.0072
−0.1416 1 0 −0.0270
−0.04045 0 1 −0.0694

0 −0.1327 −0.0602 1

⎞

⎟

⎟

⎠

−1 ⎛

⎜

⎜

⎝

1.0112
0.9104
1.0708
0.8699

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1.0190
1.0840
1.1874
1.0852

⎞

⎟

⎟

⎠

.

Step 4: Decomposition. With the determination of arrival rates and the squared co-
efficients of variation, each workstation is analyzed as if it were an isolated work-
station. Equation (3.19) is used to obtain the workstation mean cycle time and then
Little’s Law is used to obtain the workstation’s WIP. These computations are:

CT (1) =
(

1.0191+1.0355
2

)(

0.8125
1−0.8125

)

(0.130)+0.130 = 0.709 hr

WIPs(1) = 0.709×6.25 = 4.429

CT (2) =
(

1.0840+1.7751
2

)(

0.8667
1−0.8667

)

(0.130)+0.130 = 1.338 hr

WIPs(2) = 1.338×6.6667 = 8.920

CT (3) =
(

1.1874+0.3906
2

)(

0.9333
1−0.9333

)

(0.160)+0.160 = 1.927 hr

WIPs(3) = 1.927×5.8333 = 11.243
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CT (4) =
(

1.0852+2.4414
2

)(

0.8
1−0.8

)

(0.064)+0.064 = 0.515 hr

WIPs(4) = 0.5154×12.5 = 6.443 .

Step 5: Factory Performance Measures. The factory throughput rate must equal to
the inflow rate; therefore, ths = 5/hr. The work-in-process for the whole factory is
the sum of the individual workstation work-in-process numbers; therefore, WIPs =
31.03, and Little’s Law yields the mean cycle time; namely, CTs = 31.03/5 = 6.206
hr. Notice that CTs is greater than the sum of the individual workstation cycle times
because most jobs visit some of the workstations more than once. ��
Example 5.8. Reconsider the factory of the previous example as represented in
Fig. 5.5 except that Workstation 3 has been changed. Workstation 3 now has two
machines, each with a mean service time of 16.8 minutes with a squared coefficient
of variation of 0.7653. Although the machines are slightly slower, the processing
rate of the workstation is faster since there are two machines but the variability of
the individual machines is increased. These data are shown in Table 5.5.

Table 5.5 Workstation characteristics for Example 5.8

Workstation i E[Ts(i)] C2
s (i) ci

1 0.130 hr 1.0355 1
2 0.130 hr 1.7751 1
3 0.280 hr 0.7653 2
4 0.064 hr 2.4414 1

The external arrival rate and the switching probabilities have not changed; there-
fore, the workstation mean arrival rates remain as

(λ1,λ2,λ3,λ4) = (6.25,6.6667,5.8333,12.5) .

Since the mean arrival rates are the same in the previous example, the three un-
changed workstations having the same utilization factors. Workstation 3, however,
now has two servers, c3 = 2, with a different mean service times so the utilization
factor is recalculated as

u3 = λ3E[Ts(3)]/c3 =
5.8333(0.28)

2
= 0.8167 .

Since the service mechanism is changed for Workstation 3, its departure process
will be changed which directly effects the arrival process for Workstation 4; there-
fore, the defining equation for C2

a(4) will be changed. The departure stream from
Workstation 3 does not directly flow into any other workstation so all other defin-
ing equations for the squared coefficients of variation remain the same. This new
equation for C2

a(4) is
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C2
a(4) =

6.6667(1)
12.5

[

1
(

0.2488C2
a(2)+0.7512×1.7751

)]

+
5.8333(1)

12.5

[

1

(

0.3330C2
a(3)+0.6670

0.7653+
√

2−1√
2

)]

.

which reduces to

C2
a(4) = 0.1327C2

a(2)+0.1554C2
a(3)+0.9708 . (5.8)

Replacing the fourth equation in the system defined by Eqs. (5.7) with Eq. (5.8)
yields the new coefficients of variation given by

c2
a = (1.0206,1.0901,1.2025,1.3023) .

These values are only slightly changed for Workstations 1, 2, and 3, but sig-
nificantly increased for Workstation 4. This difference is due to the multiple server
characteristic of Workstation 3 and the change in the squared coefficient of variation
for the service time at the Workstation 3 machines.

The performance measures at the workstation level for this example are displayed
below. Note that the cycle time estimate for the third workstation is now based on
the multiple-server approximation from Property 3.6.

CT (1) =
(

1.0206+1.0355
2

)(

0.8125
1−0.8125

)

(0.130)+0.130 = 0.709 hr

WIPs(1) = 0.709×6.25 = 4.432

CT (2) =
(

1.0900+1.7751
2

)(

0.8667
1−0.8667

)

(0.130)+0.130 = 1.341 hr

WIPs(2) = 1.341×6.6667 = 8.937

CT (3) =
(

1.2025+0.7653
2

)

(

0.8167
√

6−1

2(1−0.8167)

)

(0.280)+0.280 = 0.840 hr

WIPs(3) = 0.840×5.8333 = 4.901

CT (4) =
(

1.3023+2.4414
2

)(

0.8
1−0.8

)

(0.064)+0.064 = 0.543 hr

WIPs(4) = 0.543×12.5 = 6.790 .

The factory level measures become ths = 5/hr, WIPs = 25.06, CTs = 25.06/5 =
5.012 hr. ��
• Suggestion: Do Problems 5.17–5.22.
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Appendix

The appendix of Chap. 3 presented a relatively easy method for simulating a single
workstation containing one processor. In addition the appendix also discussed the
use of Excel in solving linear systems of equations. In this chapter, we extend these
concepts to networks of workstations.

Simulation for a Network of Single-Server Workstations. The use of Excel
for simulating a network of single-server workstations will be demonstrated using
Example 5.3. The concept of the network simulation is to use the equation for the
queueing time delay (Eq. 3.22) and include specific times for arrivals and departures.
Thus, our spreadsheet model is very similar to the spreadsheet example on Page 99
with some extra columns. In the formulas used below, note that all times are in terms
of minutes and the data are the same as used for Example 5.3, namely, a factory with
a serial topology of three workstations is to be simulated.

A B C
1 Inter Arrival-1 Arrive Time-1 Service Time-1
2 0 0 =GAMMAINV(RAND(),0.5,24)
3 =GAMMAINV(RAND(),1.3333,11.25) =B2+A3 =GAMMAINV(RAND(),0.5,24)

D E F G
1 Que Delay-1 Depart Time-1 Inter Arrive-2 Service Time-2
2 0 =B2+C2+D2 =E2 =GAMMAINV(RAND(),1.4286,6.3)
3 =MAX(0,D2+C2-A3) =B3+C3+D3 =E3-E2 =GAMMAINV(RAND(),1.4286,6.3)

H I J K
1 Que Delay-2 Depart Time-2 Inter Arrive-3 Service Time-3
2 0 =E2+G2+H2 =I2 =-13.2*LN(RAND())
3 =MAX(0,H2+G2-F3) =E3+G3+H3 =I3-I2 =-13.2*LN(RAND())

L M N
1 Que Delay-3 Depart Time-3 System Cycle Time
2 0 =I2+K2+L2 M2-B2
3 =MAX(0,L2+K2-J3) =I3+K3+L3 =M3-B3

Notice that exponential random variates are used for the service times in the third
workstation (Column K) since a gamma distribution with a coefficient of variation
of 1.0 is an exponential distribution. Also, the spreadsheet can be made slightly
more compact by using “Wrap Text” in the first row, and increasing the height of
the first row. As before, the cells A3:N3 should be copied down several thousands
of rows to simulate the system. Finally the average of the values in Column N will
yield the associated estimate for the system mean cycle time.

Equation Generation using Excel. The use of Properties 5.7 and 5.9 is straight
forward, but it can be tedious to implement because the matrix Q and vector b of
Property 5.9 involve several terms. If Excel is going to be used for determining the
inverse, then it can also be used to help generate the coefficients. The Excel example
that follows is the solution to Example 5.7. In order to clearly identify the various
matrices and vectors in the spreadsheet, we label each matrix by placing its identifier
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just to the left of the first row, and we label each vector by placing its identifier to
the top of column. Also, remember that to use an Excel function that produces an
array as output, the “Shift-Control” keys must be pressed when the “Enter” key is
used.

In the following, we shall make use of Excel’s naming ability because it will
make it easier to use some of the matrix functions. To name a range of cells, high-
light the range and while the cells are highlighted, type the name in the “Name Box”
which is towards the upper left of the screen, namely, the area immediately above
Columns A and B of the spreadsheet. Using this Name Box define the range B1:E4
to be named Identity; define the range B6:E9 to be named pMatrix; define the
range B12:E15 to be named qMatrix; define F6:F9 to be named gamVector; and
define the range G17:G20 to be named bVector It also helps visually to place a
border around these three ranges to easily identify the matrices. In the cell A1 type
I; in the cell A6 type P; and in the cell A12 type Q. In the range B1:E4 type the
identity matrix; namely, type 1 in B1, C2, D3, and E4, and type 0 in the other cells
within the range. Type the switching probabilities in the B6:E9 range; namely, it
should look as follows.

B C D E
6 0 0.6667 0.3333 0
7 0 0 0 1
8 0 0 0 1
9 0.1 0.2 0.3 0

The remainder of the basic data should follow to the right of the switching proba-
bility matrix as follows.

F G H I
5 Gamma C(0,k)ˆ2 E[Ts] Csˆ2
6 5 1 0.13 1.0355
7 0 1 0.13 1.7751
8 0 1 0.16 0.3906
9 0 1 0.064 2.4414

Step 1 of our calculations is to obtain the total arrival rates using Property 5.7.
This will involve matrix arithmetic with an array output, so we must first highlight
the cells that will contain the answer. Therefore, highlight the range J6:J9 and type

=MMULT(MINVERSE(Identity-TRANSPOSE(pMatrix)),gamVector)

and while holding down shift-control, hit the “Enter” key. In order to easily identify
the resulting vectors, in cell J5 type Lambda, in cell K5 Util, and in cell L5 type
Utilˆ2. Step 2 of the calculations is to obtain the utilization factors. It is also
convenient to have the squared terms available so in cell K6 type =J6*H6 and in
cell L6 type =K6*K6, and then copy these formulas down through cells K9 and L9.

Before generating the coefficients required for obtaining the coefficients of varia-
tion of the arrival streams, it is convenient to copy the arrival rates to the cells below
the routing matrix as follows.
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A B C D E
10 Lambda =J6 =J7 =J8 =J9

The Q matrix of Property 5.9 is obtained by typing the following formula in cell
B12

=$J6*B6*B6*(1-$L6)/B$10

and then copy the formula to the right through cell E12 and down through cells
B15:E15. It is important to include the $ in exactly the same location as is shown
above since some terms refer to rows and some terms refer to columns.

Before obtaining the vector b of Property 5.9, it is best to calculate a B matrix
and then sum the columns to obtain b. To accomplish this type the following in cell
B17.

=$J6*B6*(B6*$L6*$I6+1-B6)/B$10

and then copy the formula to the right through cell E17 and down through cells
B20:E20. The vector b can now be obtained from the column sums by typing the
following:

G
17 =F6*G6/J6+SUM(B17:B20)
18 =F7*G7/J7+SUM(C17:C20)
19 =F8*G8/J8+SUM(D17:D20)
20 =F9*G9/J9+SUM(E17:E20)

Notice that a copy-down command will not work from cell G17 because each sum
is a column sum and not a row sum. The squared coefficients of variation for each
workstation’s inter-arrival times is now obtained by the following matrix operation
that is typed into cell J17 after highlighting J17:J20

=MMULT(MINVERSE(Identity-TRANSPOSE(qMartix)),bVector)

and then using the control-shift keys while hitting the “Enter” key. The remainder of
the performance measures should now be straight-forward. For example, the mean
time spent waiting for service in the first workstation would be given by the formula
=0.5*(J17+I6)*K6*H6/(1-K6).

Problems

5.1. A workstation has a workload that uses 85% of its single machine capacity.
Arrivals to the workstation are exponentially distributed and the service time SCV
is 1.5. What is the estimated SCV of the departure stream?

5.2. A two-machine workstation has a utilization factor of 80%. The arrival stream
SCV is 2.0 and the service time is Erlang-2. What is the estimated SCV of the
departure stream?
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5.3. Find the system performance measures of CTs, WIPs, and throughput for a pure
serial system consisting of three single capacity workstations. The arrival rate to the
system is 3 jobs per hour, with the inter-arrival time being exponentially distributed.
The processing time data:

Workstation i E[Ti] C2[Ti]
1 0.25 hr 4
2 0.29 hr 3
3 0.30 hr 2

5.4. Resolve Problem 3 under the assumption that the machine in each workstation
is subject to breakdowns. The necessary data the processor at each workstation are
given in the following table (reference Section 4.2).

Workstation # Availability E[R] C2[R]
1 0.85 1 hr 1.50
2 0.90 1 hr 1.75
3 0.95 1 hr 2.00

5.5. Find the system performance measures of CTs, WIPs, and throughput for a
three-workstation pure serial system. The mean arrival rate to the system is one
job every two hours with an SCV of 2.0. The processing time data for the three
single-capacity workstations are given below. Assume that the machines are avail-
able 100% of the time.

Workstation i E[Ti] C2[Ti]
1 1.6 hr 0.75
2 1.5 hr 1.50
3 1.7 hr 2.00

5.6. Find the system performance measures of CTs, WIPs, and throughput for a three
workstation pure serial system. The arrival rate to the system is one job every two
hours with an SCV of 2.0. The machine data for the three single-capacity worksta-
tions are given below.

Workstation i E[Ti] C2[Ti] Availability E[R] C2[R]
1 1.6 hr 0.75 0.85 2.0 hr 1.30
2 1.5 hr 1.50 0.90 2.5 hr 1.50
3 1.7 hr 2.00 0.90 3.0 hr 1.75

5.7. Develop a spreadsheet model to solve Problem 5.5.

5.8. Develop a spreadsheet model to solve Problem 5.6.

5.9. Consider again the serial flow factory of Problem 5.5. Management expects
there to be a slow increase in demand (i.e., arrival rates) over the next few years.
(a) In order to help management plan for the future, find the system performance
measures (CTsys and WIPsys) for arrival rates of 0.51/hr, 0.53/hr, and 0.55/hr.
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Fig. 5.6 Diagram for Prob-
lem 5.11

u = 0.8
Cs = 32

Ca = 1.52

Cd
2 Cd

2(1)
λ1

λ2

Cd
2(2)

α

1-α

λ = 4

(b) The engineering department is considering some machine changes that will re-
duce the processing time variance for the bottleneck machine (i.e., the machine with
the largest cycle time). Assuming the arrival rate increases to 0.51/hr, what percent-
age reduction in the C2

s for the bottleneck machine is necessary so that the average
system cycle time remains the same as for the original system with an arrival rate of
0.5/hr?
(c) It turns out that reducing the processing time variance is not possible; however, it
is possible to reduce the mean service time while the coefficient of variation remains
according to the original system. Assuming that the arrival rate increases to 0.55/hr,
what mean service rate is necessary for the bottleneck machine so that the average
system cycle time remains the same as for the original system with an arrival rate of
0.5/hr?
(d) If the mean service time of the bottleneck machine is reduced enough, the bot-
tleneck will “move” to a different machine. With an arrival rate of 0.55/hr, what is
the mean service time of the current bottleneck machine that is required so that two
workstations become “tied” for the bottleneck location?

5.10. Consider a three-workstation serial system, with one machine in workstations
one and three and two machines available in workstation two. The external flow
enters workstation one, with parameters of λ1 = 4 jobs per hour and C2

a(1) = 0.75,
and proceeds sequentially through workstation two and then workstation three (i.e.,
a serial system). The processing time data for the three workstations are given below.
Find the system performance measures of CTs, WIPs, and throughput for this system.
To accomplish this, you need to compute, for each workstation i, C2

d(i), CT (i), and
WIPs(i).

Workstation i E[Ti] C2[Ti]
1 12 min 2.0
2 18 min 0.7
3 13.2 min 1.0

5.11. Solve the spitting branch problem for the unknowns (C2
d ,λ1,λ2,C2

d(1),C2
d(2))

for three different values of branching probabilities α = (1/3,1/2,3/4) as shown
in Fig. 5.6.

5.12. Solve the merging branch problem illustrated in Fig. 5.7 for the unknowns.

5.13. Obtain the mean flow rates for the system illustrated in Fig. 5.8.

5.14. Obtain the mean flow rates for the system illustrated in Fig. 5.9.
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Fig. 5.7 Diagram for Prob-
lem 5.12
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Fig. 5.8 Diagram for Prob-
lem 5.13

Fig. 5.9 Diagram for Prob-
lem 5.14
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Fig. 5.10 Diagram for Prob-
lem 5.15
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5.15. Obtain the mean flow rates for the system illustrated in Fig. 5.10.

5.16. For the network illustrated in Fig. 5.11, find the total inflows (arrival) rates
for each workstation and terminator (B and G). Terminator G represents good jobs
and Terminator B represents bad product. What is the probability that a job ends up
good?

5.17. Using a spreadsheet program such as Excel, solve Problem 5.15.

5.18. Reconsider Problem 5.13 using the following service time data for each single-
server workstation and assuming that the squared coefficient of variation of the inter-
arrival times for the jobs arriving from an external source is 1.5.
(a) Compute the system performance measures of throughput, cycle time and work-
in-process for this network.
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Fig. 5.11 Diagram for Prob-
lem 5.16
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Workstation i E[Ts(i)] C2
s (i)

1 0.086 1.3521
2 0.110 0.8264
3 0.080 1.5625

(b) Compute the system performance measures of throughput, cycle time and work-
in-process for this network given that the machines have breakdowns. The availabil-
ity data and parameters for the repair time, random variable R, by workstation are
given in the following table.

Workstation # Availability E[R] C2[R]
1 0.95 0.2 1
2 0.93 0.3 1
3 0.87 0.4 1

5.19. Reconsider Problem 5.15 using the following service time data for each work-
station and assuming that the squared coefficient of variation of the inter-arrival
times for the jobs arriving from an external source is 1.5.
(a) Compute the system performance measures of throughput, cycle time and work-
in-process for this network.

Workstation i E[Ts(i)] C2
s (i) ci

1 0.086 1.3521 2
2 0.110 0.8264 2
3 0.080 1.5625 2

(b) Compute the system performance measures of throughput, cycle time and work-
in-process for this network given that the machines have breakdowns. The availabil-
ity data and parameters for the repair time, random variable R, by workstation are
given in the following table.

Workstation # Availability E[R] C2[R]
1 0.95 0.2 1
2 0.93 0.3 1
3 0.87 0.4 1
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Fig. 5.12 Diagram for Prob-
lem 5.20

5.20. Consider the factory model illustrated in Fig. 5.12 with C2
a(0,1) = 2 and the

workstation service time data displayed below. Compute the system performance
measures of throughput, cycle time and system work-in-progress assuming that
there is only one machine at each workstation.

Workstation i E[Ts(i)] V [Ts(i)]
1 0.13 0.02
2 0.13 0.03
3 0.20 0.04
4 0.08 0.01

5.21. Using a spreadsheet program such as Excel, solve Problem 5.18(b).

5.22. Using a spreadsheet program such as Excel, solve Problem 5.19(b).

5.23. Using a spreadsheet program such as Excel, solve Problem 5.20.

References

1. Albin, S.L. (1984). Approximating a Point Process by a Renewal Process, II: Superposition
Arrival Processes to Queues. Operations Research, 30:1133–1162.

2. Burke, P.J. (1968). The Output Process of a Stationary M/M/s Queueing System. Annuals
Math. Stat., 39:1144–1152.

3. Buzacott, J.A., and Shanthikumar, J.G. (1963). Stochastic Models of Manufacturing Systems.
Prentice Hall, Englewood Cliffs, NJ.

4. Marshall, K.T. (1968). Some Inequalities in Queueing, Operations Research, 16:651–665.
5. Whitt, W. (1982). Approximating a Point Process by a Renewal Process, I: Two Basic Methods.

Operations Research, 30:125–147.
6. Whitt, W. (1983). The Queueing Network Analyzer, The Bell System Technical Journal,

62:2779–2814.





Chapter 6
Multiple Product Factory Models

Most manufacturing facilities are setup to produce more than a single product. Even
in the case of single product facilities, if the product visits a workstation more
than once with different processing times at each visit, then the workstation sees
the equivalent of multiple products. Such revisiting production schemes, called re-
entrant flow systems, are prevalent in the semiconductor industry where it is not
unusual for a product to be routed to the same machine group for distinct process-
ing 20 or more times.

Modeling multiple product facilities is not significantly more difficult than single
product models. There are two basic principles to keep in mind. First, the workload
on a workstation is, as before, the sum of all the visits multiplied by the processing
time per visit. This concept was introduced in the previous chapter (see p. 143) and
since we use it in a more general setting here, we give a formal definition.

Definition 6.1. The offered workload (or simply the workload) of a workstation is
the total amount of work that is required of a workstation per unit of time. The
workload is determined by the sum of the total arrival rate (per hour) for each prod-
uct type multiplied by its associated mean processing time (in hours). For purposes
of determining workload, when a specific product type revisits a workstation, it is
considered as a separate product type.

The second basic principle is that job flow needs to be maintained by product
type. That is, the number of visits to each workstation by product class is needed.
Different products can have different probabilistic flows through the production fa-
cility as well as different processing time characteristics. Hence, the number of visits
to each workstation by product needs to be developed. This analysis requires the so-
lution of a network flow system of equations by product. Here again as was done in
the preceding chapter, the processing time is assumed to follow the same distribution
for each product on each visit to a given workstation (of course due to randomness,
the actual processing times will vary even though the distribution is the same). The
re-entrant flow situation with different processing distributions per visit requires a
different modeling paradigm that is taken up in Sect. 6.5.

G.L. Curry, R.M. Feldman, Manufacturing Systems Modeling and Analysis, 2nd ed., 159
DOI 10.1007/978-3-642-16618-1 6, c© Springer-Verlag Berlin Heidelberg 2011
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6.1 Product Flow Rates

To compute the workload on the workstation, the number of visits to the workstation
by each product is computed first. This requires an analysis for each product similar
to that performed in Sect. 5.4.1 for a single product. A method of distinguishing
between products visiting the same workstation is required. Previously a subscript
was used to denote the workstation visited by a product so that λk denoted the ar-
rival rate of jobs to Workstation k. Two subscripts will now be used to distinguish
among the various product types; thus, λi,k is the arrival rate of Product Type i to
Workstation k. Since a single subscript refers to a workstation, we will use a super-
script when a single index refers to a product type; thus, λλλ i is a vector giving the
total arrival rates of Product Type i into each workstation so that the kth component
of the vector λλλ i is λi,k.

Arrivals from an external source are denoted as before by γ so that γi,k is the exter-
nal arrival rate of Product i into Workstation k. Additionally a workstation branching
probability matrix for each product type will be needed. Since it is standard to al-
ready use two subscripts for this matrix of probabilities, the product type will be
denoted by a superscript such as pi

jk meaning the probability that an individual item
of Product i leaving Workstation j goes to Workstation k. The matrix of these prob-
abilities for Product i is denoted as Pi.

With the above notation, we can rewrite Property 5.7 so that it applies to more
than one product type.

Property 6.1. Consider a factory of n workstations where Product Type i fol-
lows the switching rule defined by the routing matrix Pi and assume that the
sum of at least one row of Pi is strictly less than one (i.e., jobs exit the net-
work from at least one workstation). Let γγγ i = (γi,1, · · · ,γi,n) denote a vector
consisting of the mean arrival rate of Type i jobs from an external source to
the workstations. Both Pi and γγγ i are known. Let λλλ i = (λi,1, · · · ,λi,n) be the
(unknown) vector denoting mean arrival rate of all Type i jobs to the worksta-
tions. The vector λλλ i is given by

λλλ i =
(

I− (Pi)T )−1 γγγ i ,

where I is an n×n identity matrix and (Pi)T is the transpose of Pi.

Once the arrival rates for the various product types have been determined, the total
arrival rate of jobs to Workstation k is given by the sum of the different product
types; that is

λk =
m

∑
i=1

λi,k ,

where m is the total number of product types within the factory.
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After the product flow rates have been computed, it is straight-forward to obtain
the expected number of visits to each workstation per product type. For example, if
a given product type arrives from an external source at a rate of 5 per hour, but the
calculated total arrival rate to a workstation is 10 per hour, it follows that each job
visit the workstation an average of two times. This reasoning leads to the following
property.

Property 6.2. Consider a factory of n workstations with m different job types,
and let the arrival rate of Job Type i from an external source be given by
∑n

k=1 γi,k. Then the expected number of visits to Workstation k by Job Type i is
λi,k/∑n

j=1 γi, j , where λi,k is the arrival rate as determined by Property 6.1.

Example 6.1. To demonstrate Property 6.1, we take advantage of two examples from
the previous chapter. Consider a four workstation facility that processes two prod-
ucts with each product arriving to the first workstation according to individual Pois-
son arrival streams, each at a rate of 5 per hour. Product 1 uses only the first three
workstations with the routing structure displayed in Fig. 5.4 (p. 141). Product 2 uses
all four workstations with the routing structure displayed in Fig. 5.5 (p. 144). To de-
termine the mean arrival rate to each workstation of Type 1 jobs is simply to repeat
the steps of Example 5.6 yielding

λλλ 1 = (5.690,4.267,5.263,0) .

The calculations necessary to give the mean arrival rates for Type 2 jobs are con-
tained in Step 1 of Example 5.7 and are

λλλ 2 = (6.25,6.667,5.833,12.5) .

The total rate into each workstation is merely the sum of the individual product
inflows; namely λλλ = ∑m

i=1 λλλ i, and is given as

λλλ = (11.940,10.934,11.096,12.5) .

The average number of visits of Job Type 1 to Workstation 1 is 1.138, but the average
number of visits of Job Type 1 to the second workstation is slightly less than 1
(actually it equals 0.8534) implying that some jobs bypass Workstation 2 completely
and some jobs visit the workstation more than once. The most visited workstation
by a single product type is the fourth workstation that has each Job Type 2 visiting
it an average of 2.5 times. ��
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6.2 Workstation Workloads

Once the workstation arrival rates by product type have been determined, the work-
load for each workstation can be computed. Again, the previously used notation for
the service time is extended for product types by including a second index to denote
the type; namely, the mean and squared coefficient of variation of the processing
time of Product i at Workstation k are denoted as E[Ts(i,k)] and C2

s (i,k), respec-
tively. By Definition 6.1, the workload at Workstation k, WLk, is computed as the
sum of the product visits multiplied by their respectively mean processing times;
that is,

WLk =
m

∑
i=1

λikE[Ts(i,k)] , (6.1)

where m is the total number of product types within the factory.
The utilization factor, uk, for Workstation k is then the workload divided by the

available capacity; thus,

uk =
WLk

ck
=

∑m
i=1 λi,kE[Ts(i,k)]

ck
, (6.2)

where ck is the number of identical processors available at Workstation k to handle
the workload.

Example 6.2. We return to Example 6.1 and assume that there is one machine at each
workstation and that the processing time data for the two products are as given in
Table 6.1. Since there is one machine per workstation, the workload and utilization

Table 6.1 Processing time characteristics for Example 6.2

Workstation k E[Ts(1,k)] C2
s (1,k) E[Ts(2,k)] C2

s (2,k)
1 1/14 hr 0.8 1/15 hr 1.33
2 1/10 hr 1.2 1/18 hr 2.00
3 1/15 hr 1.5 1/12 hr 1.50
4 — — 0.06 hr 0.75

factors are the same at each workstation so that

u = (0.8231,0.7971,0.8369,0.75) .

With utilization factors all less than 1.0, the factory can achieve steady-state and
further analysis is possible. ��
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6.3 Service Time Characteristics

Although the determination of arrival rates under multiple product types is a simple
extension of results from the previous chapter, the calculations required for the mean
and squared coefficient of variation of the service time are slightly more involved
and are based on the material contained within Sect. 1.6.3. Specifically, for Work-
station k, the service time will be the random variable Ts(i,k) whenever Product i is
being processed. The service time for an arbitrary job, independent of the job type,
is the random variable denoted by Ts(k). In the long-run, the probability that a given
machine at Workstation k will be processing a Type i job is λi,k/λk; thus, Ts(k) is a
mixture of random variables since

Ts(k) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ts(1,k) with probability
λ1,k
λk

...

Ts(m,k) with probability
λm,k
λk

,

where m is the number of products within the factory.
The mean and coefficient of variation for the service time at Workstation k can

be computed using Property 1.10. That is, the mean is

E[Ts(k)] =
m

∑
i=1

λi,k

λk
E[Ts(i,k)] =

WLk

λk
, (6.3)

and the second moment is

E[(Ts(k))2] =
m

∑
i=1

λik

λk
E[Ts(i,k)2] .

It is not too hard to show the identity E[X2] = E[X ]2(1 +C2[X ]) which will then
yield an equivalent expression for the second moment as

E[(Ts(k))2] =
m

∑
i=1

λik

λk
E[Ts(i,k)]2(1+C2

s (i,k)) .

Combining the above two equations yields an expression for the squared coefficient
of variation for the service times at Workstation k when there are m product types
within the factory as

C2
s (k) =

∑m
i=1(λi,k/λk)E[Ts(i,k)]2(1+C2

s (i,k))
(

∑m
i=1(λi,k/λk)E[Ts(i,k)]

)2 − 1 . (6.4)

Example 6.3. We are now ready to derive the mean and squared coefficients of varia-
tion for the four workstation service times using the arrival rate data of Example 6.1
and the service time data of Example 6.2. We show the calculations necessary for the
first workstation and leave it to the reader to verify the remaining three workstations.
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The total arrival rate for the first workstation is 11.94/hr and thus,

E[Ts(1)] =
(

5.690
11.94

)

1
14

+
(

6.250
11.94

)

1
15

= 0.0689 hr .

The computations for the squared coefficient of variation are

C2
s (1) =

(

5.690
11.94

)(

1
14

)2 (1+0.8)+
(

6.250
11.94

)(

1
15

)2 (1+1.33)
(0.0689)2 − 1 = 1.0616 .

Note that some of the numbers used in the above equation were taken from Table 6.1.
The final results for the service time characteristics for the four workstations are
contained in Table 6.2.

Table 6.2 Service time characteristics for Example 6.3

Workstation k E[Ts(k)] C2
s (k)

1 0.069 1.062
2 0.073 1.678
3 0.075 1.530
4 0.060 0.750

��

6.4 Workstation Performance Measures

The multiple product facility problem is now reduced to a problem similar to the
single product analysis since the workstation composite service time data are now
known. The workstation level variables, namely λk, E[Ts(k)] and C2

s (k), are used
in place of the individual product data. The final terms needed are the switching
probabilities.

Property 6.3. Consider a factory of n workstations with m different job types.
Assume that the total arrival rate of Job Type i to Workstation k is given by λi,k,
and the probability that a job of Type i leaving Workstation j will be routed to
Workstation k is given by pi

j,k. The composite routing matrix, P = (pjk) gives
the switching probabilities of an arbitrary job and is determined by

p jk =
∑m

i=1 λi j pi
jk

λ j
for j,k = 1, · · · ,n .
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Once the composite routing matrix is obtained, Property 5.8 can be used to de-
termine the squared coefficients of variation for the workstation arrival streams, and
then the composite waiting times for an arbitrary job, CTq(k) for Workstation k, can
be derived using either Property 3.3 or 3.6. As long as there is no priority being
given to specific job types, all jobs experience the same queue; therefore, the mean
cycle time within Workstation k by Job Type i is given as

CTs(i,k) = CTq(k)+E[Ts(i,k)] . (6.5)

Combining Property 6.2 with Eq. (6.5) allows for the computation of the mean time
that each product type spends within the factory.

Property 6.4. Consider a factory of n workstations with m different job types.
Assume that the external arrival rate of jobs of Type i to Workstation k is
given by γi,k, and the total arrival rate of Job Type i to Workstation k is given
by λi,k. Furthermore assume that the mean time spent waiting for processing
in Workstation k by an arbitrary job (namely, CTq(k)) has been determined.
Then the mean time spent within the factory by a Type i job is given by

CT i
s =

∑n
k=1 λik(CTq(k)+E[Ts(i,k)])

∑n
j=1 γi j

for i = 1, · · · ,m.

Conditional cycle time information for individual products given their destination
(such as good or bad parts) is considerably more complex and requires a Markov
process modeling approach [4] beyond the scope of this book.

Example 6.4. We now complete the analysis of the factory contained in Exam-
ples 6.1–6.3. The matrix of probabilities are obtained from Property 6.3. For ex-
ample, the probability of going from Workstation 2 to Workstation 1 is determined
as

p21 =
λ12 p1

21 +λ22 p2
21

λ2
=

4.267(0.1)+6.667(0)
10.934

= 0.039 .

Continuing with the other workstations should yield

P =

⎡

⎢

⎢

⎣

0 0.706 0.294 0
0.039 0 0.351 0.610
0.024 0 0 0.526
0.100 0.200 0.300 0

⎤

⎥

⎥

⎦

.

The analysis required to obtain the mean waiting times in the workstations is the
same procedure as for individual product systems once the composite product data
and transition probability matrix P have been developed. The squared coefficient of
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variation for the arrival streams into each workstation is again obtained by solving
the C2

a system of equations (Property 5.8).

C2
a(1) = 0.00051C2

a(2)+0.00016C2
a(3)+0.00458C2

a(4)+0.9943

C2
a(2) = 0.17554C2

a(1)+0.02001C2
a(4)+0.8205

C2
a(3) = 0.03C2

a(1)+0.04427C2
a(2)+0.04436C2

a(4)+0.9235

C2
a(4) = 0.11868C2

a(2)+0.07358C2
a(3)+1.0396 .

The solution to this system is

c2
a = (1.0007,1.0209,1.0537,1.2383) .

The cycle time by workstation is given as the composite time for all products
visiting that workstation. The computations for this example are displayed in the
following table.

Table 6.3 Cycle times and WIP for each workstation of Example 6.4

Workstation k CTq(k) CT (k) WIP(k)
1 0.331 hr 0.400 hr 4.772
2 0.387 hr 0.460 hr 5.029
3 0.502 hr 0.577 hr 6.402
4 0.183 hr 0.243 hr 3.036

The total facility performance measures are for the total work in the facility and
are not distinguishable by product type. The total system work-in-process is the sum
of the workstation WIP’s and equals 19.238. The total inflow and, hence, throughput
for the system is 10/hr. Thus, the average cycle time in the system for all items by
Little’s Law is 19.238/10 = 1.9238 hours.

Property 6.4 is combined with the data of Tables 6.1 and 6.3 to produce the
system mean cycle times by individual product type. For this example these compu-
tations are:

CT 1 = [5.690(0.3307+0.0714)+4.2674(0.3870+0.1)
+5.2632(0.5015+0.0667) ]/5 = 1.4714 hr

CT 2 = [6.25(0.3307+0.0667)+6.6667(0.3870+0.0556)
+5.8333(0.5015+0.0833)+12.5(0.1828+0.06) ]/5 = 2.3763 hr .

These two products are produced in equal quantities, so the average cycle time for
the factory is the average of these two individual product cycle times or 1.9238
hours.

To demonstrate that this modeling approach is adequate for most decision mak-
ing situations, these analytical results are compared with simulation results in the
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following table. All of the critical parameters are close enough for the analytical
model to be a usable tool for decision purposes. Due to the quantity of the data, the
information is given by rows for each workstation in Table 6.4. One row labeled S
i for simulation results for Workstation i, and the associated analytical results in the
following row labeled A i.

Table 6.4 Comparison of simulation and analytical results for Example 6.4

Workstation CT WIP E[Ta] C2[Ta] E[Td ] C2[Td ]
S 1 0.398 4.744 0.084 1.001 0.084 1.050
A 1 0.400 4.772 0.084 1.000 0.084 1.042
S 2 0.427 4.677 0.091 1.028 0.091 1.443
A 2 0.460 5.029 0.091 1.021 0.091 1.440
S 3 0.569 6.309 0.090 1.035 0.090 1.397
A 3 0.577 6.402 0.090 1.053 0.090 1.389
S 4 0.248 3.107 0.080 1.330 0.080 1.044
A 4 0.243 3.036 0.080 1.238 0.080 0.983

S sys 1.888 18.84 — — — —
A sys 1.924 19.24 — — — —

��
• Suggestion: Do Problems 6.1–6.2 and 6.5–6.11.

6.5 Processing Step Modeling Paradigm

To this point, all analyses have considered that every visit to a workstation was prob-
abilistically identical to all other visits to the same workstation. In other words, the
mean and standard deviation of processing time was the same whenever the same
type of job visited the same workstation. Furthermore, the switching probabilities
only depended on job type and not on whether or not the job was visiting the work-
station for the first or the second time. There are many facilities where jobs make
more than one scheduled visit to various workstations and the processing character-
istics are different for the various visits. These re-entrant flow systems are prevalent
in the semiconductor industry as well as many job shop production type facilities.
When a job requires a different processing time distribution from visit to visit or
when a job is scheduled to visit a workstation more than once, it is necessary to
keep track of not only the job location but also the visit number to that location. To
accomplish this extra requirement for job location control, a data description method
is used that is based on the process step that the job is undergoing.

The processing step modeling paradigm is a rather straight forward method of
accomplishing the informational requirements of re-entrant flow systems. The idea
is to list the processing steps that a job must go through during the production pro-
cess. Associated with each processing step is the information needed for processing
that includes the workstation being visited and the processing time characteristics.
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Hence, a product can require several processing steps yet these steps might be per-
formed by only a few workstations. There is only a slight change in the informa-
tional requirements, but the modeling flexibility that this allows is much greater than
before. The processing step paradigm is the standard industrial method of specifying
product production information, except for assembly line like processes.

To use the processing step modeling paradigm, a processing step to workstation
mapping is needed for each job. This is typically accomplished by using a list where
the location or list index denotes the processing step and the number in that loca-
tion in the list denotes the workstation. Previously a workstation list was used for
specifying the processing time information. With the processing step approach, a
step indexed list contains the necessary information about the processing require-
ments and the job’s location within its processing step sequence is maintained. This
is, obviously, only a slight change in the modeling approach but by focusing on
the processing step instead of the workstation index allows for considerably more
complex production schemes to be analyzed. The two methods yield the same result
when there is a one-for-one correspondence between processing steps and worksta-
tions. However, more complex situations can be handled with this approach than
were previously possible.

Definition 6.2. Consider a factory with n workstations and a job of Type i that has
νi processing steps in its production plan. The workstation mapping function, de-
noted by w̃i(�) for � = 1, · · · ,νi, gives the workstation assigned to the �th step of the
production plan; thus w̃i(·) is an integer-valued function with range 1, · · · ,n.

One of the difficulties on the processing step paradigm is being clear on whether
a subscript or parameter refers to a workstation number or a step number. To help
differentiate between a workstation function and a step function, a “tilde” will be
used to indicate that a function’s parameter or a variable’s subscript refers to a step
number.

To illustrate the processing step paradigm, consider a situation where a factory
with three workstations produces two product types. Consider Table 6.5 that shows
the production plan. Notice that the product flow for this example is deterministic

Table 6.5 Processing data in hours in processing step form for two different products

Product 1 Step # 1 2 3 4
Workstation # 1 2 3 1

E[Ts] 3.0 7.2 1.62 2.5
C2[Ts] 1.5 2.0 0.75 1.5

Product 2 Step # 1 2 3 4
Workstation # 1 3 2 3

E[Ts] 3.2 1.45 7.0 1.0
C2[Ts] 1.0 1.75 1.7 0.45

and workstations are revisited but in different sequences depending on the job type.
The sequence of workstations in which jobs of Type 1 are processed is 1, 2, 3, 1
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whereas the sequence of workstation in which jobs of Type 2 are processed is 1, 3,
2, 3. As an example of the workstation mapping function, notice that w̃1(2) = 2 and
w̃2(2) = 3.

It is also possible to include probabilistic branching with the production plan.
However, because workstations may be visited more than once, the probabilistic
branching must be given by step number and not by workstation number. Because
branching probabilities may depend on step numbers, the standard routing matrix
(Definition 5.2) cannot be used because it is based on workstations. Thus, a step-
wise routing matrix is needed.

Definition 6.3. Consider a factory with m job types, where Job Type i has a pro-
duction plan consisting of νi steps. The step-wise routing matrix, denoted by ˜Pi, for
Job Type i is a square matrix of size νi×νi where p̃i

�, j gives the probability that Job
Type i will be routed to Step j after completing Step �.

Example 6.5. Consider the production plan given in Table 6.6 involving a factory
with three workstations. Assume that Workstations 1 and 2 are reliable but that

Table 6.6 Processing step paradigm for multiple visits to workstations with the data in hours

Step # 1 2 3 4 5
Workstation # 1 3 2 1 3

E[Ts] 3.0 2.5 3.7 4.0 3.6
C2[Ts] 1.0 0.75 1.25 1.75 1.32

Workstation 3 is not. There is 10% chance that jobs being processed through the
third workstation for the first time (i.e., Step 2) must be returned to Workstation 1
(Step 1), and a 5% chance that jobs being processed through the third workstation
for the second (i.e., Step 5) time must be returned to Workstation 2 (Step 3). In this
case, the workstation mapping function is

w̃1(1) = 1, w̃1(2) = 3, w̃1(3) = 2, w̃1(4) = 1, w̃1(5) = 3 ,

and the step-wise routing matrix is given by

˜P1 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0
0.1 0 0.9 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0.05 0 0

⎤

⎥

⎥

⎥

⎥

⎦

. (6.6)

and a diagram illustrating these flows is displayed in Fig. 6.1. ��
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Fig. 6.1 Process flows ac-
cording to production plan of
Example 6.5

1 2 3 4 5
0.9
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0.95
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6.5.1 Service Time Characteristics

In order to obtain average cycle times and inventory levels within the factory, the ef-
fective service time characteristics for each workstation must be determined. These
characteristics need arrival rates (see Eqs. 6.3 and 6.4) to each workstation, and an
indicator function is needed so that the proper workstation can be associated with
each processing step.

Definition 6.4. An indicator function for integers, denoted by I( j, j) for i and j
integers, is defined by

I(i, j) =
{

1 if i = j
0 if i �= j .

Notice that an identity matrix is an indicator function where the domain for i and j
are the same.

The indicator function and step-wise routing matrix are combined with obtain
the total arrival rates into each workstation according to the following property.

Property 6.5. Consider a factory of n workstations with m different job types.
Job Type i has a production plan described by the workstation mapping func-
tion w̃i(�) for � = 1, · · · ,νi. The mean number of Type i jobs passing through

each step is given by the vector ˜λλλ
i

where

˜λλλ
i
=
(

I− (˜Pi)T
)−1

γ̃γγ i ,

where ˜γ i
� is the mean arrival rate from an external source of Type i jobs to

Step �. Then the total mean arrival rate of all jobs to Workstation k is

λk =
m

∑
i=1

νi

∑
�=1

˜λi,� I(w̃i(�),k) ,

where ˜λi,� is the mean arrival rate of Type i jobs to Step �. Note that the

components of the vector ˜λλλ
i

are the values of ˜λi,� for � = 1, · · · ,νi.
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Note that an alternative method of writing the above sum is

λk =
m

∑
i=1

∑
�∈{w̃i(�)=k}

˜λi,� ;

namely, the effect of the indicator function is to sum only those values of ˜λ i
� for

which Workstation k is associated with the �th step.
Each visit to a workstation by a job may have different processing requirements;

therefore, to denote these differences we must extend our notation one more time.
We let the random variable ˜Ts(i, �) denote the processing time for Job Type i during
the �th step of its production plan. The mean service time for Job Type i during
Step � is denoted by E[˜Ts(i, �)] and this occurs at the workstation designated by
w̃i(�). Likewise, the squared coefficient of variation of the service time is given
by ˜C2

s (i, �). With these definitions, the workload and utilization for Workstation k
(compare to Eq. 6.2) are

uk =
WLk

ck
=

(

m

∑
i=1

νi

∑
�=1

˜λi,�E[˜Ts(i, �)] I(w̃i(�),k)

)

/ ck , (6.7)

where ck is the number of identical processors available at Workstation k to handle
the workload, m is the number of job types, and νi is the number of production steps
for Job Type i.

The service time characteristics for Workstation k are also given similarly and
are analogous to Eqs. (6.3) and (6.4):

E[Ts(k)] =
m

∑
i=1

νi

∑
�=1

˜λi,�

λk
E[˜Ts(i, �)] I(w̃i(�),k) =

WLk

λk
, (6.8)

where λk comes from Property 6.5 and

C2
s (k) =

∑m
i=1 ∑νi

�=1(
˜λi,�/λk)E[˜Ts(i, �)]2(1+ ˜C2

s (i, �)) I(w̃i(�),k)
E[Ts(k)]2

− 1 . (6.9)

Example 6.6. Consider a factory with three workstations that is open 24/7 and man-
ufactures one job type. Order for jobs are released randomly throughout the 24-hour
period and it has been determined that the number of jobs ordered each day is Pois-
son with a mean of 4.8 jobs. All jobs begin processing at Workstation 1 and then
follow the route with processing characteristics specified by Table 6.6 with branch-
ing probabilities given in Example 6.5 and defined by the step-wise routing matrix
of Eq. (6.6). Since the number of arrivals per unit time is Poisson, the inter-arrival
times must be exponential; therefore, the arrival stream has a squared coefficient of
variation of 1.0. The 4.8 per day rate of arrival of jobs is equivalent to 0.2 arrivals
per hour; thus ˜γ1 = γ1 = 0.2/hr. (Notice that we are dropping the subscript indicating
the job type since there is only one type.) The application of Property 6.5 yields the
following step-wise arrival rates
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˜λ1 = 0.2222/hr, ˜λ2 = 0.2222/hr, ˜λ3 = 0.2105/hr, ˜λ4 = 0.2105/hr, ˜λ5 = 0.2105/hr,

and the following workstation arrival rates

λ1 = 0.4327/hr, λ2 = 0.2105/hr, λ3 = 0.4327/hr.

The workload calculations for the three workstations are

WL1 = 0.2222×3.0+0.2105×4.0 = 1.5086

WL2 = 0.2105×3.7 = 0.7789

WL3 = 0.2222×2.5+0.2105×3.6 = 1.3140 .

For a steady-state to exist, the number of machines at each workstation must be
strictly greater than the workload; therefore, there must be at least two machines for
Workstations 1 and 3 and one machine at Workstation 2. Assuming the minimum
requirements, the workstation utilization vector is (75.4%, 78.0%, 65.7%).

The service time characteristics for Workstation 1 are calculated as

E[Ts(1)] =
1.5086
0.4327

= 3.486 and

C2[Ts(1)] =
(0.2222/0.4327)(32)(1+1)+(0.2105/0.4327)(42)(1+1.75)

3.4862 − 1

= 1.522 .

Performing similar computations results in the values as displayed in Table 6.7. ��

Table 6.7 The composite processing data for Example 6.6

Workstation k ck uk E[Ts(k)] C2
s (k)

1 2 0.7544 3.486 hr 1.521
2 1 0.7789 3.700 hr 1.250
3 2 0.6567 3.035 hr 1.198

6.5.2 Performance Measures

The final terms that are needed to complete the factory analysis are the squared coef-
ficients of variation for the arrival streams to each workstation. To obtain the system
of equations that define these terms, the factory with multiple routing schemes will
be converted to a similar factory with probabilistic routing by the following route
matrix.
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Property 6.6. Consider a factory of n workstations with m different job types.
Job Type i has a production plan described by the workstation mapping func-
tion w̃i(�) for � = 1, · · · ,νi. The workstation routing matrix, P is defined, for
k = 1, · · · ,n, by

pk, j =

(

m

∑
i=1

νi

∑
�=1

νi

∑
r=1

˜λi,� p̃i
�,r I(w̃i(�),k) I(w̃i(r), j)

)

/ λk ,

where the terms ˜λi,� and λk are determined by Property 6.5.

Our goal here is to determine the characteristics of the arrival streams to the
workstations, therefore, we need the coefficient of variation for the external arrivals.
Let these be denoted by ˜C2

a(i,0, �); in other words, ˜C2
a(i,0, �) is the squared coeffi-

cient of variation for the inter-arrival times of Job Type i from an external source that
enter the production process at Step � of the ith production plan. The characteristics
of the external arrival streams are given, for Workstation k, by

γk =
m

∑
i=1

νi

∑
�=1

˜γ i
� I(w̃i(�),k) , (6.10)

and

C2
a(0, j) =

(

m

∑
i=1

νi

∑
�=1

˜γ i
�
˜C2

a(i,0, �) I(w̃i(�),k)

)

/ γk . (6.11)

The system of equations defined by Property 5.8 or 5.9 can now be used to find the
squared coefficients of variation for the arrival streams to each workstation.

Example 6.7. Example 6.6 can now be completed (Fig. 6.1). The associated average
product routing matrix for the three workstations obtained from Property 6.6 is

P =

⎡

⎣

0 0 1
1 0 0

0.0541 0.4865 0

⎤

⎦ .

The system of equations for computing the coefficients of variation for the average
product arrival streams at each workstation is

C2
a(1) =

0.2
0.4327

(1)+
0.2105
0.4327

[(

1−u2
2

)

C2
a(2)+u2

2C2
s (2)
]

+
0.4327×0.0514

0.4327

×
[

0.0514
(

1−u2
3

)

C2
a(3)+0.0514u2

3

(

C2
s (3)+

√
2 −1√

2

)

+1−0.0514

]

= 0.1913C2
a(2)+0.0015C2

a(3)+0.8811
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C2
a(2) =

0.4327×0.4865
0.2105

×
[

0.4865
(

1−u2
3

)

C2
a(3)+0.4865u2

3

(

C2
s (3)+

√
2 −1√

2

)

+1−0.4865

]

= 0.2767C2
a(3)+0.7526

C2
a(3) =

(

1−u2
1

)

C2
a(1)+u2

1

(

C2
s (1)+

√
2 −1√

2

)

= 0.4309C2
a(1)+0.7789 .

The solution to this linear system of equations

c2
a = (1.093,1.098,1.250) .

This results in the workstation performance measures given in Table 6.8.

Table 6.8 Cycle time and WIP results for Example 6.7

Workstation # CTq CT WIP
1 6.167 hr 9.653 hr 4.177
2 15.310 hr 19.010 hr 4.002
3 2.941 hr 5.976 hr 2.586

The average total system WIP for the factory is the sum of the three workstation
WIP’s resulting in 10.765 jobs. Thus, by Little’s Law the mean cycle time in the
system is 53.8 hours. Notice that the mean cycle time of a job within the factory is
more than the simple sum of the three workstation mean cycle times because of the
reentrant flows. ��

The processing step modeling paradigm is a useful and surprisingly powerful
analysis methodology. This approach can be used for all the problems that have been
studied in this text, whereas the workstation modeling approach cannot be used for
all cases.

6.5.3 Alternate Approaches

The approach taken in this textbook for analyzing problems of multiple product
systems with deterministic routings is to treat departing jobs from a workstation as
if their type and, therefore, their next workstation are unknown. Without the job type
information, jobs appear to branch probabilistically to their next workstation. Thus,
based on Property 5.6, the SCV of the inter-arrivals to Workstation j coming from

2 Section 6.5.3 can be omitted without affecting the continuity of the remainder of the text.
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Fig. 6.2 Illustration of a multiple product deterministic routing process with the products being
represented by distinct symbols

Workstation k, C2
a(k, j) is obtained from the departing workstation’s composite C2

d
by

C2
a(k, j) = pk, jC

2
d +1− pk, j , (6.12)

where pk, j is the job’s branching probability derived from Property 6.6. For prob-
abilistic (Markovian) routings, this SCV adjustment is mathematically exact. But
for deterministic routings, this approach can be significantly inaccurate, especially
when there are only a few deterministic routes with very little re-entrant flows. The
purpose of this section is to present an alternate method for determining the squared
coefficient of variation for the workstation arrival streams, although for most sit-
uations, the models presented above should prove to be sufficiently accurate for
most purposes. The following example demonstrates the potential for inaccurate
estimates.

Example 6.8. To illustrate the potential inaccuracy of (6.12), consider a workstation
that processes three products with each going to a specified and different worksta-
tion upon leaving this workstation as illustrated by Fig. 6.2. For purposes of this
example, the workstation of the figure will be designated as Workstation 4, and the
Products 1, 2, and 3 are sent to Workstations 1, 2, and 3, respectively. The indi-
vidual arrival stream information (into this workstation) and necessary workstation
processing time parameters are listed in the following table.

Table 6.9 Arrival stream and service time characteristics by product type for Fig. 6.2

Product i λi C2
a(i) E[Si] C2

s (i)
1 1 1.50 0.3 1.5
2 1 2.50 0.3 1.5
3 1 0.75 0.3 1.5

The workstation utilization factor is 3(0.3) = 0.9; there is only one machine avail-
able. The C2

d for the composite departure stream, using the typical i.i.d. approxima-
tion of Property 5.2 is

C2
d(4) = (1−u2

4)Ca(4)2 +u2
4C2

s (4) (6.13)

=
(

1−0.92) (1.50+2.50+0.75)
3

+0.92(1.5) = 1.516 .
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The mean arrival rates for the three products are identical, so the probability of an
output unit being of a specific type is 1/3. Hence, using the probabilistic routing
approach, the squared coefficients of variation for each individual product arrival
stream at the next workstations are estimated to be equal, with value

C2
a(4, i) =

1
3
(1.516)+

2
3

= 1.172 for i = 1,2,3 .

Simulating this situation with over 270,000 observations yields the following
estimates:

C2
a(4,1) = 1.466

C2
a(4,2) = 2.056

C2
a(4,3) = 1.057 .

These results deviate quite drastically from the probabilistic routing estimates, with
approximate errors of 25%, 75%, and -10%, for the three products, respectively. ��

This deterministic routing phenomenon was first studied in [2] and recently gen-
eralized in [3]. The approach taken is based on approximating the output process
from a workstation as an i.i.d. process but recognizing that different products may
have, on average, different numbers of other products between departures of the
same product. This recognition lead to the development of a product’s inter-arrival
time SCV at the next workstation by assuming various distributions for the number
of other product units intervening between departures of the same product. Bitran
and Tirupati in [2] use a limit result that the superposition of a large number of
independent renewal processes can be approximated by a Poisson process and, as-
suming that the number of intervening product units is Poisson distributed, develop
the estimator

C2
d(k, i) = pk,iC

2
d(k)+(1− pk,i)2C2

a(k, i)+ pk,i(1− pk,i) , (6.14)

where each job type has its own stream; thus, C2
d(k, i) is the SCV for inter-departures

of Type i that leave Workstation k designated to enter another workstation, and
C2

a(k, i) is the SCV for inter-arrivals to Workstation k of Type i coming from an-
other workstation.

Caldentey in [3] develops a general approach to the estimation problem, but
points out the computational difficulties encountered in the absence of an inter-
vening number of units assumption. He develops an asymptotic approximation (first
proposed in [6]), assuming the individual product’s intensity is small in comparison
to the aggregate stream, which is

C2
d(k, i) = pk,iC

2
d(k)+(1− pk,i)2C2

a(k, i)+ pk,i ∑
j′ �=i

pk, jC
2
a( j′,k) . (6.15)

Applying these two estimators to the example problem yields the results:
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Table 6.10 Comparisons of three methods for estimating splitting with simulation results

Method C2
d(4,1) C2

d(4,2) C2
d(4,3)

Simulation 1.466 2.056 1.057
Markovian Routing 1.172 1.172 1.172
Poisson (Eq. 6.14) 1.394 1.839 1.061

Asymptotic (Eq. 6.15) 1.533 1.866 1.283

For this situation, the Poisson approximation for the number of intervening units
yields the best overall approximation. However, other assumptions such as the as-
sumption in [2] of a small number of intervening units approximations based on an
Erlang assumption might yield better approximations. The Erlang approach unfor-
tunately does not result in an analytical expression and numerical evaluations must
be made.

• Suggestion: Do Problems 6.3–6.4, 6.12 and 6.14.

6.6 Group Technology and Cellular Manufacturing

Batch manufacturing is the most common form of production used in the United
States [5, p. 420] making up approximately 50% of the production activity. One
method that attempts to make batch manufacturing more efficient is group tech-
nology. The basic idea of group technology is to essentially establish sub-factories
within a factory with each sub-factory being dedicated to the production of a subset
of the total number of part types produced by the factory, where the part types have
been grouped by common characteristics. (Of course, this concept can be applied
to the production of subsequences as well as the full production process for a part
type.) Thus, the machines of the factory are grouped into cells of machines needed
to produce the job type family assigned to that sub-factory. Part families are chosen
so that the parts have as similar processing operations as possible. The forming of
these part families is called group technology.

Definition 6.5. Group technology is the analysis of processing operations with the
goal of determining the similarity of the processing functions and, hence, the group-
ing of the associated parts for production purposes.

The normal factory organization is to group similar machines together and pro-
duce all part types by routing each part through this one grouping of machines for a
given processing operation. However, group technology takes advantage of group-
ing machines according to the similarities of the parts being manufactured which is
called cellular manufacturing.

Definition 6.6. The concept of organizing the factory into sub-factories with the
capability to produce a technology group is called cellular manufacturing.
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The advantages sought in grouping the parts into technology groups for separate
processing are:

1. More efficient processing by specializing in a smaller set of parts with as similar
as possible processing operations. Thus, improvements could come from reduced
setup times between part types due to their production similarities and from the
learning-curve effects of part specialization. Reduced setups lead to smaller batch
sizes and processing procedures that more closely resemble a flow shop.

2. Reduced WIP in each machining area since parts only encounter other parts from
the same technology group as well as due to a reduction in the service time
squared coefficient of variation (C2

s ). The major factors leading to a reduction in
WIP, however, are the impacts of reduced setups and smaller batch sizes.

3. Reduced material handling requirements since distances the jobs must travel be-
tween machines within a cell are usually much smaller than the length of the
routes needed within a traditional setting. Some material handling processes can
be approximated by the techniques discussed in this text, but some processes can-
not. For example, if movement of parts is by a forklift, a “forklift” workstation
could be defined and the batching techniques discussed in the following chapter
could be used. However, modeling a conveyor system that is subject is beyond
the scope of this text.

The analysis methods for grouping parts with similar production processes and
for the sequencing machines within the group production cells (sub-factories) to
best accommodate group part-flow sequences are not discussed in this presenta-
tion. Suggested readings for discussions of these methodologies are textbooks by
Groover [5, Chap. 15] and by Askin and Standridge [1, Chap. 6]. In particular, [5]
discusses several additional aspects of cellular manufacturing such as the physical
consideration of cell layouts to facilitate various material handling methodologies.
In keeping with our simplification of the factory analysis methodologies, material
handling and facility layout issues are not addressed here.

The issue of factory performance when the cellular processing organization is
used can be studied with the tools that have already been developed. Conceptually,
the standard (batch) production organization is to have one large production facility
with similar machines/operations located together in workstations. This is the mod-
eling paradigm that we have followed up to this point. The cellular approach can be
modeled by thinking of the manufacturing cells as smaller production facilities each
organized to process only one technology group.

A down side of the cellular manufacturing approach is that the economy of scale
is lost with respect to the total number of machines needed to produce all technology
groups. Another disadvantage of the sub-grouping of machines is that when a ma-
chine goes down there is a greater disruptive effect because there are fewer machines
available with which to continue processing. Note that a cell with only one machine
of a given type will be essentially shutdown while that machine is not operating. An-
other issue is that the separation of the machines into cells must be whole machines
while the workload separation may not coincide properly. This can lead to situations
where a good balance between the workload and the number of machines (utiliza-
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tion factor) in the combined organization separates into imbalances in the cellular
organization. Thus, some groups might have too high a utilization factor and others
too low. To illustrate this point, consider a factory separated into four technology
groups with 1/4 of the workload for a given machining operation placed into each
group. Further assume that each technology group has a total workload requirement
of 1.5 hours (each hour) for this particular machine type. Then the single factory or-
ganization needs enough machines to handle a workload of 6 hours per hour. Since
the number of machines must be strictly less than the workload, the factory could
use 7 machines resulting in an 85.7% average utilization. Using the cellular pro-
cessing organization, however, two machines of this type would be needed in each
manufacturing cell to handle the workload of 1.5 hours per hour. There is no feasi-
ble method for partitioning these machines to properly cover the group loads. This
means that a total of 8 machines are needed in the factory as a whole using a cellu-
lar processing organization. Of course, this extra machining power would reduce the
cell utilization for this machine type to 75% yielding a possible cycle time reduction
at the expense of an extra machine.

Example 6.9. To illustrate the modeling approach used for group technology and
cellular manufacturing, we contrast the part group performance measures for this
approach with that for the standard batch processing approach. We will give the ba-
sic data in this example and then follow this example with two examples giving the
analysis for a traditional factory and then for the cellular factory. It should be noted
that the attendant advantages of a cellular processing organization (such as reduced
setup times, reduced variability in processing times, and reduced material handling
times) are not automatically reflected in a model of this production process. The
reduction in setup times and material handling times must wait until the modeling
approaches of the next chapter have been introduced. For now, it is necessary for the
modeler to estimate these impacts and adjust the model data accordingly.

Consider a manufacturing facility with 4 products and 5 machine types. To de-
termine whether or not a cellular structure is worthwhile, we first look at a table
showing which workstations are needed by the different job types. Table 6.11 con-

Table 6.11 Machine usage by job type for Example 6.9, where a 1 indicates the job requires
processing at the workstation and a 0 indicates the job does not require the workstation

Workstation #
Job Type 1 2 3 4 5

1 1 1 1 0 0
2 1 1 1 0 0
3 0 0 1 1 1
4 0 0 1 1 1

tains the processing requirements by job type and machine type (workstation) with
a 1 representing that the given machine group is used and a zero indicating it is not
used. From this table, it is easy to see that a two-group partitioning of the products is
possible. The resulting cellular organization of the factory will have two cells with
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both cells needing Workstation 3. So these three machines will need to be partitioned
(if possible) into the cells according to the work demand in each group.

Each job type requires 4 processing steps as shown in Table 6.12. This table con-
tains the mean arrival rate for each job type, the sequence in which the workstations
must be visited, and the mean processing time at each step.

Table 6.12 Arrival rates, processing sequence, and mean service times by job type and processing
step for Example 6.9

Workstation Sequence Mean Service Time
by Step # by Step #

Job Type Arrival Rate 1 2 3 4 1 2 3 4
1 0.064/hr 3 1 2 1 8 hr 6 hr 4.5 hr 6 hr
2 0.096/hr 1 2 3 1 5 hr 6 hr 8 hr 4 hr
3 0.080/hr 4 3 5 4 2 hr 4 hr 8 hr 4 hr
4 0.100/hr 3 4 5 3 7 hr 3 hr 2 hr 4 hr

The arrival processes are each assumed to be exponentially distributed (C2
a = 1)

and the processing times are assumed to follow an Erlang-2 distribution (C2
s = 1/2).

The number of machines at each workstation are 2, 1, 3, 1, and 1 for Workstations 1
through 5, respectively. ��
Example 6.10. Traditional Factory Model. In this example, we summarize the
analysis of Sect. 6.5 for the data of Example 6.9. The standard (batch) process-
ing organization model of this system has 5 workstations for processing the 4 part
types.

The workload for each workstation (machine group) is computed by considering
all products that visit the workstation and the number of times they visit. For ex-
ample, Workstation 1 is visited twice by Job Type 1 (6 hours processing on visit 1
and 6 hours processing on visit 2) twice by Job Type 2 (5 hours processing on visit
1 and 4 hours processing on visit 2). The release rate is 0.064 jobs/hour for Type 1
and 0.096 jobs/hour for Type 2. Hence the total amount of work that is released for
Workstation 1 is

workload1 = (6+6)0.064 +(5+4)0.096 = 1.632 .

Thus, at least two machines are needed in Workstation 1. The utilization factor for
Workstation 1, u1, is the workload divided by the number of machines available
(assuming 100% availability)

u1 = 1.632/2 = 0.816 .

A similar analysis for the other four workstations yields the results of Table 6.13.
The expected processing time for Workstation 1 is a function of the three distinct

processing times (Job Type 1 uses the machine twice but has the same processing
time for each visit) and the relative frequencies of these visits. That is, the ma-
chine processing time distribution characteristics are developed using the mixture
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Table 6.13 Workload and utilization factors for Example 6.10

Workstation # Num Machines Workload Utilization
1 2 1.632 0.816
2 1 0.864 0.864
3 3 2.700 0.900
4 1 0.780 0.780
5 1 0.840 0.840

of distributions methodology (as in 1.6.3). That is, each visit to the machine by a
job can possibly have a different processing time distribution. Thus, we need to use
Eqs. (6.3) and (6.4) for the mean and SCV computations, respectively. For Work-
station 1, the total arrival rate of jobs is 0.32 per hour (two inflows of Job Type 1 at
a rate of 0.064 per hour and two inflows of Job Type 2 at a rate of 0.096 per hour).
Thus, the mean processing time is computed as

E[S1] =
(

0.064
0.32

)

6+
(

0.064
0.32

)

6+
(

0.096
0.32

)

5+
(

0.096
0.32

)

4 = 5.100 hr .

Recall that all processing times are assumed to be distributed according to an Erlang-
2 with specified means. Thus, the SCV is computed as

E[S2
1] = 2

(

0.064
0.32

)

62(1+1/2)+
(

0.096
0.32

)

52(1+1/2)

+
(

0.096
0.32

)

42(1+1/2) = 40.05 hr2

C2
s (1) =

E[S2
1]−E[S1]2

E[S1]2
=

40.05−26.01
26.01

= 0.540 .

Continuing with the other four workstations yields the data of Table 6.14.

Table 6.14 Service time characteristics for Example 6.10

Workstation k λk E[Sk] C2
s (k)

1 0.32/hr 5.100 hr 0.540
2 0.16/hr 5.400 hr 0.528
3 0.44/hr 6.136 hr 0.631
4 0.26/hr 3.000 hr 0.603
5 0.18/hr 4.667 hr 1.112

The final step before obtained the system of equations defining the squared co-
efficients of variation is the calculation of the probabilities of a job leaving one
workstation being sent to another workstation; namely, implementing Property 6.6
which yields
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P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0.064+0.096
0.32 0 0 0

0.064
0.16 0 0.096

0.16 0 0

0.064+0.096
0.44 0 0 0.1

0.44
0.08
0.44

0 0 0.08
0.26 0 0.1

0.26

0 0 0.1
0.18

0.08
0.18 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0.5 0 0 0
0.4 0 0.6 0 0

0.3636 0 0 0.2273 0.1818
0 0 0.3077 0 0.3846
0 0 0.5556 0.4444 0

⎤

⎥

⎥

⎥

⎥

⎦

.

The routing matrix, P, can now be used with the previously obtained quantities
in Tables 6.12–6.14 together with the fact that the external arrival streams have an
SCV of 1.0 to derive the squared coefficients of variation of the inter-arrival times
to each workstation. As you recall from the previous chapter, a system of equations
must be developed and solved simultaneously to obtain these terms. In particular,
Property 5.8 yields the following system:

C2
a(1) = 0.0203C2

a(2)+0.0346C2
a(3)+0.8856

C2
a(2) = 0.1671C2

a(1)+0.7246

C2
a(3) = 0.0332C2

a(2)+0.0219C2
a(4)+0.0372C2

a(5)+0.8581

C2
a(4) = 0.0166C2

a(3)+0.0403C2
a(5)+0.9388

C2
a(5) = 0.0154C2

a(3)+0.0837C2
a(4)+0.8354 .

The solution to this system is

c2
a = (0.9361,0.8810,0.9437,0.9921,0.9329) .

The performance measures for Workstation 1 are computed using

CT (1) =
(

C2
a(1)+C2

s (1)
2

)

(

u
√

6−1
1

2(1−u1)

)

E[Ts(1)]+E[Ts(1)]

=
(

0.936+0.540
2

)(

0.8161.449

0.368

)

5.100+5.100 = 12.72 hr .

Notice that we used the approximation of Property 3.6 in the above equation to-
gether with the fact that Workstation 1 had two servers. Using Little’s Law yields
WIP(1) = 0.32(12.714) = 4.068 jobs. A similar analysis for the other workstations
yields the results given in Table 6.15. Adding all of the workstation WIP’s together
gives a total system WIPs of 25.67 jobs. The total external arrival rate and, thus,
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Table 6.15 Cycle times and WIP for Example 6.10

Workstation k λk CT (k) WIP(k)
1 0.32/hr 12.714 hr 4.068
2 0.16/hr 29.557 hr 4.729
3 0.44/hr 19.408 hr 8.539
4 0.26/hr 11.482 hr 2.985
5 0.18/hr 29.718 hr 5.349

throughput is 0.34 jobs per hour; therefore, the average cycle time for a job through
this factory is 25.67/0.34 = 75.50 hours. ��
Example 6.11. Cellular Factory Model. Using a cellular factory organization, the
products are separated into two groups with Job Types 1 and 2 in Group 1 and pro-
duced by Cell 1, and Job Types 3 and 4 in Group 2 produced in Cell 2. Assuming
no improvements in processing times (no setup reductions, etc.), both groups have
Machine 3 requirements with workloads by group of 1.280 and 1.420, respectively,
for Groups 1 and 2. Notice that the sum of these two workloads equals the work-
load of 2.7 that was used in the previous example for Workstation 3. Since both
of these cells require at least two machines of Type 3, an additional machine must
be purchased to implement the disjoint cellular manufacturing approach. Treating
these cells as separate sub-factories, the system performance measures can be com-
puted using the same approach as Example 6.10 except that each cell is treated as a
separate three-workstation factory. These results are given in Table 6.16.

Table 6.16 Cell performance measures for Example 6.11 with no adjustment in service require-
ments

th WIP CT
Cell 1 0.16/hr 10.543 65.896 hr
Cell 2 0.18/hr 10.943 60.792 hr

The group technology/cellular manufacturing organization of this total factory,
using two technology groups, appears to yield lower cycle times for each technol-
ogy group in comparison to the standard combined approach; however, the compar-
ison is not fair since an extra machine had to be purchased to establish the cellular
organization. To appropriately compare the two factory organizational schemes, the
performance measures of the traditional factory layout are recalculated using an ad-
ditional machine for Workstation 3. The recalculation yields a total system WIP of
20.578 for the traditional factory as compared to the total system WIP of 21.486 for
the cellular factory.

One of the keys for cellular manufacturing to be worthwhile is the reduction in
processing times due to the similarities of jobs being processed on a machine. For
this example, the savings should appear for the processing times on those machines
in Workstation 3. For planning purposes, we assume a 25% decrease in the process-
ing time for Machine 3 for both technology groups. After an analysis with the new
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processing times, the resulting performance measures for the cellular factory are
given in Table 6.17. Thus, if the cellular organization permits the 25% reduction in

Table 6.17 Cell performance measures for Example 6.11 with a 25% reduction in mean processing
time for Machine 3

th WIP CT
Cell 1 0.16/hr 9.848 61.548 hr
Cell 2 0.18/hr 9.785 54.359 hr

Machine 3 mean processing time, the mean cycle time for Group 1 jobs experiences
a 1.7% increase and the mean cycle time for Group 2 jobs experiences a 10.2%
decrease with respect to the traditional factor layout using four machines for Work-
station 3. It should be noted that we only considered that the cellular organization
allowed for the improvement of the processing times for Machine Type 3. Since the
other machines, for this example, were not used in other technology groups. Hence,
the rational is that the processing time gains due to specialization should have al-
ready occurred. ��

This example illustrates that a group technology/cellular manufacturing organi-
zation of the factory can yield a cycle time reduction when implemented in a logical
fashion only if there are resulting reductions in the setup and/or processing times.
The partitioning of the factory into several non-overlapping production cells is not
the actual phenomena from which the improvements in the performance measures
are gained. The gains are mainly due to the improvements in production that can
be associated with specialization: setup reductions, learning curve effects (reduced
processing times), processing simplifications, and improved quality due to special-
ization. In addition, the material handling/part transportation aspects of the factory
may also be more specialized and certainly less travel distance will be realized in a
cellular organization.

• Suggestion: Do Problem 6.13.

Problems

6.1. Consider a facility that produces two products in three workstations. Product 1
follows the probabilistic workstation transition matrix given by

From/To 1 2 3
1 0.0 0.3 0.5
2 0.2 0.0 0.8
3 0.4 0.5 0.0

while Product 2 has the transition matrix
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From/To 1 2 3
1 0.0 0.6 0.4
2 0.3 0.0 0.7
3 0.4 0.1 0.0

The workstation processing time distributions are different by product. For Prod-
uct 1, these data are

Workstation # E[Ts] C2
s

1 1.1 hr 1.0
2 1.0 hr 1.5
3 0.6 hr 2.0

For Product 2, these data are

Workstation # E[Ts] C2
s

1 0.25 hr 1.0
2 0.35 hr 1.5
3 0.60 hr 2.0

The mean release rate for Product 1 is 0.2 jobs per hour and for Product 2 is 0.3 jobs
per hour, both releases according to a Poisson process into Workstation 1.
(a) Determine the minimum number of (identical) machines that must be placed in
each workstation so that a steady-state system results.
(b) Using the number of machines determined in Part (a), find the workstation and
system performance measures: cycle time, work-in-process, and throughput.

6.2. Resolve Problem 1 with machine availabilities less than one. Two sets of ma-
chine availabilities and repair time data for the three workstations are given below.
Compare these answers with those of Problem 1.
(a)

Workstation # 1 2 3
Availability 0.9 0.9 0.9

E[R] 1 hr 1 hr 1 hr
C2[R] 1.5 1.75 2.0

(b)

Workstation # 1 2 3
Availability 0.95 0.90 0.87

E[R] 42 min 60 min 72 min
C2[R] 1.5 1.75 2.0

6.3. Consider a factory with the process flow as given in the following table.

Step # 1 2 3 4 5 6
WS # 1 2 3 1 2 4
E[Ts] 10 min 7.5 min 7.5 min 8.6 min 10 min 10.9 min
V [Ts] 79.2 min2 68.4 min2 82.8 min2 72 min2 126 min2 90 min2
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In addition, an inspection is preformed after the third processing step, and 10%
of the jobs must be totally reworked and are returned to the beginning of process.
Compute the system and workstation measures of effectiveness of throughput, WIP
and cycle time. There are two machines in Workstations 1 and 2 and one machine in
Workstations 3 and 4. Consider an arrival rate of jobs of 5 per hour (exponentially
distributed time between arrivals) from an external source.

6.4. Resolve Problem 6.3 with machine availabilities and repair time data given by:

Workstation # 1 2 3 4
Availability 0.9 0.85 0.8 0.99

E[R] 1 hr 1 hr 1 hr 1 hr
C2[R] 1 1 1 1

6.5. The Southwestern Specialties Company has a line of four products that they
produce in their factory located in Houston, Texas. The Houston factory consists of
three workstations (called Workstations 1, 2 and 3). The four products take differ-
ent routes through the three workstations and have different numbers of processing
steps. There are currently three machines in Workstation 1 and 3, and one machine
in Workstation 2.

Orders are released to the factory in a random fashion with the mean rate of total
order releases being 7.68 per day. The random order release implies that the time
between orders is exponentially distributed. The release of orders to the factor is
random with 20% of the orders being for Product 1, 30% for Product 2, 25% for
Product 3, and 25% for Product 4.

The processing step sequence and mean processing times in hours, are given
in the following table where the individual processing times follow an Erlang-2
distribution.

Step # 1 2 3 4 5
Product 1 Workstation # 3 1 2 1 —

Mean Time 8.0 6.0 1.7 6.0 —
Product 2 Workstation # 1 2 3 2 1

Mean Time 5.0 1.6 8.0 1.5 5.0
Product 3 Workstation # 2 1 2 3 1

Mean Time 1.9 4.0 2.2 8.0 4.0
Product 4 Workstation # 3 1 2 — —

Mean Time 8.0 3.0 2.2 — —

What is the average cycle time for all products combined? What is the mean cycle
time for each product?

6.6. This problem is designed to encompasses all of the basic components of build-
ing a multiple product model. To help reduce the time to solve the problem, many
of the numerical values are given so that the entire problem need not be worked
out. There are ten parts to the problem with several tables of numerical values being
given; however, many of the tables will contain incomplete information, so those
places in the table should be filled in.
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Fig. 6.3a Process routing for
Product 1 for Problem 6.6

Fig. 6.3b Process routing for
Product 2 for Problem 6.6

A company is developing a factory to produce two different products. Both prod-
ucts use three distinct machining processes; thus, the factory will require three work-
stations. Company management would like to know several things about the factory
before it is built. To support this analysis engineering has developed estimates for
the necessary product processing information. This information is listed below, and
Figs. 6.3a and 6.3b depict the product processing routings. Answer the questions
and fill in the missing data.

Mean processing times by product and workstation.

Product/WS 1 2 3
1 0.120 hr 0.100 hr 0.060 hr
2 0.100 hr 0.035 hr 0.060 hr

SCV of the processing times by product and workstation.

Product/WS 1 2 3
1 0.7 0.8 0.9
2 0.8 0.9 1.0

Machine availabilities and repair time characteristics.

Workstation # 1 2 3
Availability 0.90 0.95 0.93

E[R] 1.00 hr 1.00 hr 1.00 hr
C2[R] 1.50 1.75 2.00

Answer the following questions and fill in the missing information.
(a) Write the system of equations needed to find the mean flow rates into each work-
station for Product 1. These equations would yield the following mean arrival rates
for the two products into the three workstations:

Product/WS 1 2 3
1 9.5135/hr 6.7568/hr 9.4865/hr
2 3.4326/hr 4.0439/hr 4.3260/hr
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(b) Mean processing times adjusted for breakdowns and repairs (exponential time
between breakdowns):

Product/WS 1 2 3
1 ? 0.1053 hr 0.0645 hr
2 0.1111 hr 0.0368 hr 0.0645 hr

(c) Processing time SCV’s adjusted for breakdowns and repairs (exponential time
between breakdowns):

Product/WS 1 2 3
1 ? 2.1062 4.1550
2 3.05 4.6321 4.2550

(d) Composite product mean and SCV processing time data by workstation:

Workstation 1 2 3
E[S] 0.1274 hr ? 0.0645 hr
C2[S] 2.6919 ? 4.1863

(e) The offered loads and, hence, the minimum number of machines required for
each workstation:

Workstation 1 2 3
Workloads ? ? ?

Min Machines ? ? ?

(f) Average product branching probability by workstation:

From/To 1 2 3
1 0 0.5795 0.4205
2 0.1251 0 ?
3 0.2603 0.0940 0

(g) Write the equation (give explicit numbers whenever possible) for the average
product arrival SCV into Workstation 2, C2

a(2). The external arrival streams are
assumed be Poisson processes. Evaluate C2

a(2) given the other C2
a(k)’s.

Workstation 1 2 3
C2

a(k) 1.2144 ? 1.8346

(h) Complete the workstation performance measures.

Workstation CTq(k) CT (k) WIP(k)
1 0.5379 hr 0.6653 hr 8.6131
2 1.0371 hr 1.1167 hr 12.0608
3 ? ? ?

(i) What are the values of the factory system performance measures of cycle time
(CTs), work-in-process (WIPs) and throughput?
(j) What are the values of the individual product system performance measures of
throughput and cycle time (CT i) for product i = 1,2,3?
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Fig. 6.4a Process routing for
Product 1 for Problem 6.7

Fig. 6.4b Process routing for
Product 2 for Problem 6.7

6.7. This problem is designed to encompasses all of the basic components of build-
ing a multiple product model. To help reduce the time to solve the problem, many
of the numerical values are given so that the entire problem need not be worked
out. There are ten parts to the problem with several tables of numerical values being
given; however, many of the tables will contain incomplete information, so those
places in the table should be filled in.

A company is developing a factory to produce two different products. Both prod-
ucts use three distinct machining processes; thus, the factory will require three work-
stations. Company management would like to know several things about the factory
before it is built. To support this analysis engineering has developed estimates for
the necessary product processing information. This information is listed below, and
Figs. 6.4a and 6.4b depict the product processing routings. Answer the questions
and fill in the missing data.

Mean processing times by product and workstation.

Product/WS 1 2 3
1 0.120 hr 0.100 hr 0.060 hr
2 0.100 hr 0.035 hr 0.060 hr

SCV of the processing times by product and workstation.

Product/WS 1 2 3
1 1.0 0.8 0.7
2 0.8 0.9 1.0

Machine availabilities and repair time characteristics.

Workstation 1 2 3
Availability 0.90 0.95 0.93

E[R] 1.00 hr 1.00 hr 1.00 hr
C2[R] 1.75 2.00 1.50
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Answer the following questions and fill in the missing information.
(a) Write the system of equations needed to find the mean flow rates into each work-
station for Product 1. These equations would yield the following mean arrival rates
for the two products into the three workstations:

Product/WS 1 2 3
1 5.7692/hr 6.6154/hr 5.7846/hr
2 5.6000/hr 4.0000/hr 6.0000/hr

(b) The mean processing times adjusted for breakdowns and repairs (exponential
time between breakdowns):

Product/WS 1 2 3
1 0.1333 hr 0.1053 hr 0.0645 hr
2 ? 0.0368 hr 0.0645 hr

(c) The processing times SCV’s adjusted for breakdowns and repairs (exponential
time between breakdowns):

Product/WS 1 2 3
1 3.0625 2.2250 3.4125
2 3.2750 4.9714 ?

(d) Composite product mean and SCV processing time data by workstation:

Workstation 1 2 3
E[S] ? 0.0795 hr 0.0645 hr
C2[S] ? 3.0086 3.5652

(e) The minimum number of machines required for each workstation:

Workstation 1 2 3
Workload ? ? ?

Min Machines ? ? ?

(f) Average product branching probability by workstation is:

From/To 1 2 3
1 0 0.6522 0.3478
2 ? 0 0.7377
3 0.1736 0.1018 0

(g) Write the equation (give explicit numbers whenever possible) for the average
product arrival SCV into Workstation 1, C2

a(1). The external arrivals are assumed to
be Poisson processes. Evaluate C2

a(1) given the other C2
a(k)’s.

Workstation 1 2 3
C2

a(k) ? 1.3802 1.8465

(h) Complete the workstation performance measures:
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Fig. 6.5a Process routing for
Product 1 for Problem 6.8
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Fig. 6.5b Process routing for
Product 2 for Problem 6.8

Workstation CTq(k) CT (k) WIP(k)
1 0.2533 hr 0.3757 hr 4.2714
2 ? ? ?
3 0.5537 hr 0.6182 hr 7.2857

(i) What are the values of the factory system performance measures of cycle time
(CTs), work-in-process (WIPs) and throughput?
(j) What are the values of the individual product system performance measures of
throughput and cycle time (CT i) for i = 1,2?

6.8. This problem is designed to encompasses all of the basic components of build-
ing a multiple product model. To help reduce the time to solve the problem, many
of the numerical values are given so that the entire problem need not be worked out.
There are nine parts to the problem with several tables of numerical values being
given; however, many of the tables will contain incomplete information, so those
places in the table should be filled in.

A company is developing a factory to produce two different products. The first
products use four distinct machining processes; whereas, the second product uses
only the first three workstations used by Product 1. Company management would
like to know several things about the factory before it is built. To support this analy-
sis engineering has developed estimates for the necessary product processing infor-
mation. This information is listed below, and Figs. 6.5a and 6.5b depict the product
processing routings.

Mean processing times by product and workstation.

Product/WS 1 2 3 4
1 7.2 min 6 min 9 min 7.2 min
2 6 min 2.1 min 3.6 min
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SCV of the processing times by product and workstation.

Product/WS 1 2 3 4
1 0.7 0.8 0.9 1.0
2 0.8 0.9 1.0

Machine availabilities and repair time characteristics.

Workstation 1 2 3 4
Availability 0.90 0.95 0.93 0.95

E[R] 1 hr 1 hr 1 hr 1 hr
C2[R] 1.50 1.75 2.00 5/3

Answer the following questions and fill in the missing information.
(a) Write the system of equations needed to find the mean flow rates into each work-
station for Product 1. These equations would yield the following mean arrival rates
for the two products into the four workstations:

Product/WS 1 2 3 4
1 9.882/hr 6.588/hr 3.294/hr 7.247/hr
2 3.433/hr 4.044/hr 4.326/hr

(b) Composite product mean and SCV processing time data by workstation, this
data is not adjusted for downtime and repairs:

Workstation 1 2 3 4
E[S] ? 4.5 min 5.94 min 7.2 min
C2[S] ? 1.125 1.307 1.000

(c) The average processing times and SCV’s adjusted for breakdowns and repairs
(exponential time between breakdowns):

Workstation 1 2 3 4
E[S] 7.68 min ? 6.36 min 7.56 min
C2[S] 2.689 ? 3.282 2.056

(d) Average product branching probability by workstation is:

From/To 1 2 3 4
1 0 0.701 0.299 0
2 0.124 0 ? 0.434
3 0.143 0.170 0 0.346
4 0.125 0 0 0

(e) The minimum number of machines required for each workstation:

Workstation 1 2 3 4
Workload ? ? ? ?

Min Machines ? ? ? ?
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Fig. 6.6a Process routing for
Product 1 for Problem 6.9
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Fig. 6.6b Process routing for
Product 2 for Problem 6.9

(f) Write the equation (give explicit numbers whenever possible) for the average
product arrival SCV into Workstation 2, C2

a(2). The external arrivals are assumed to
be Poisson processes. Evaluate C2

a(2) given the other C2
a(i)’s.

Workstation 1 2 3 4
C2

a(i) 1.046 ? 1.380 1.615

(g) Complete the workstation performance measures:

Workstation CTq(k) CT (k) WIP(k)
1 0.625 hr 0.753 hr 10.021
2 0.939 hr 1.018 hr 10.828
3 ? ? ?
4 2.509 hr 2.635 hr 19.098

(h) What are the values of the factory system performance measures of cycle time
(CTs), work-in-process (WIPs) and throughput?
(i) What are the values of the individual product system performance measures of
throughput and cycle time (CT i)?

6.9. This problem is designed to encompasses all of the basic components of build-
ing a multiple product model. To help reduce the time to solve the problem, many
of the numerical values are given so that the entire problem need not be worked out.
There are nine parts to the problem with several tables of numerical values being
given; however, many of the tables will contain incomplete information, so those
places in the table should be filled in.

A company is developing a factory to produce two different products. The first
products use four distinct machining processes; whereas, the second product uses
only the first three workstations used by Product 1. Company management would
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like to know several things about the factory before it is built. To support this analy-
sis engineering has developed estimates for the necessary product processing infor-
mation. This information is listed below, and Figs. 6.6a and 6.6b depict the product
processing routings. Answer the questions and fill in the missing data.

Mean processing times by product and workstation.

Product/WS 1 2 3 4
1 7.2 min 6 min 6 min 9 min
2 6 min 2.1 min 3.6 min

SCV of the processing times by product and workstation.

Product/WS 1 2 3 4
1 1.0 0.9 0.8 0.7
2 0.8 0.9 1.0

Machine availabilities and repair time characteristics.

Workstation 1 2 3 4
availability 0.90 0.95 0.93 0.95

E[R] 1 hr 1 hr 1 hr 1 hr
C2[R] 1.75 2.00 1.50 5/3

Answer the following questions and fill in the missing information.
(a) Write the system of equations needed to find the mean flow rates into each work-
station for Product 1. These equations would yield the following mean arrival rates
for the two products into the four workstations:

Product/WS 1 2 3 4
1 7.869/hr 6.295/hr 4.721/hr 4.800/hr
2 3.433/hr 4.044/hr 4.326/hr

Total 11.301/hr 10.339/hr 9.047/hr 4.800/hr

(b) Composite product mean and SCV processing time data by workstation, this
data is not adjusted for downtime and repairs:

Workstation 1 2 3 4
E[S] 6.84 min ? 4.86 min 9 min
C2[S] 0.966 ? 0.963 0.700

(c) The average processing times and SCV’s adjusted for breakdowns and repairs
(exponential time between breakdowns):

Workstation 1 2 3 4
E[S] ? 4.74 min 5.22 min 9.48 min
C2[S] ? 3.155 2.975 1.544

(d) Average product branching probability by workstation is:
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From/To 1 2 3 4
1 0 0.800 0.200 0
2 0.183 0 0.656 0.122
3 ? 0.143 0 0.391
4 0.167 0 0 0

(e) The minimum number of machines required for each workstation:

Workstation 1 2 3 4
Workload ? ? ? ?

Min Machines ? ? ? ?

(f) Write the equation (give explicit numbers whenever possible) for the average
product arrival SCV into Workstation 1, C2

a(1). The external arrivals are assumed to
be Poisson processes. Evaluate C2

a(1) given the other C2
a(k)’s.

Workstation 1 2 3 4
C2

a(i) ? 1.602 1.841 1.497

(g) Complete the workstation performance measures:

Workstation CTq(i) CT (i) WIP(i)
1 17.40 min 24.96 min 4.703
2 48.24 min 52.98 min 9.127
3 ? ? ?
4 45.12 min 54.60 min 4.366

(h) What are the values of the factory system performance measures of cycle time
(CTs), work-in-process (WIPs) and throughput?
(i) What are the values of the individual product system performance measures of
throughput and cycle time (CT i)?

6.10. Using a spreadsheet program such as Excel, solve Problem 6.1.

6.11. Using a spreadsheet program such as Excel, solve Problem 6.2.

6.12. A factory consists of five workstations and produces two products. Develop
the product and factory performance measures of throughput, cycle time and work-
in-process. Job Type 1 arrives according to a Poisson process with a mean rate of
5 per hour and Job Type 2 arrives with a mean rate of 3 per hour and a squared
coefficient of variation of the inter-arrival times of 2. There are two machines at
Workstation 2; all other workstations have only one machine. The process flow,
mean processing times in hours, and squared coefficient of variation of the process-
ing times are as follows:

Workstation Mean Service Time SCV Service Time
by Step # by Step # by Step #

Job Type 1 2 3 1 2 3 1 2 3
1 1 2 3 0.16 0.17 0.18 2.0 1.3 1.00
2 4 2 5 0.30 0.30 0.28 1.0 1.5 0.75
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6.13. For the factory of Problem 6.12, the factory can be segmented into two cellular
lines - one product manufactured in each line. Assuming that the mean processing
times for Machine 2 can be reduced by 15% when the products are not processed
on the same machine. That is, the workstation can specialize its setup operation
by product type. Compute the product and total factory performance measures and
compare these with the composite factory organization computed in Problem 6.12.

6.14. Consider a workstation that processes three products with each going to a
specified and different workstation upon leaving this workstation. Figure 6.2 illus-
trates this situation. The individual arrival stream information and necessary pro-
cessing time parameters are:

Product λi C2
a(i) E[Si] C2

s (i)
1 1/hr 1.50 9 min 1.5
2 2/hr 2.50 9 min 1.5
3 3/hr 0.75 9 min 1.5

Compute the arrival SCV, C2
a , at the next workstation for each product using the

three different estimators: probabilistic routing (Eq. 6.9), Poisson intervening units
assumption (Eq. 6.14), and the asymptotic method (Eq. 6.15).
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Chapter 7
Models of Various Forms of Batching

Grouping individual jobs into sets, called batches, is a strategy frequently used in
industry. One cause of batching is for the purpose of transportation between work-
stations. For instance, workers may require mechanical help for moving heavy items
between two machines. If the mechanical help is a large machine such as a forklift,
then a pallet might be loaded first before a forklift truck is requested. Another form
of batching occurs when items are batched by type for the purpose of sharing a
machine setup step even though the items are actually processed individually. By
batching like items, only one setup need be performed for the whole set. And fi-
nally, a frequently encountered batch service process is that of a multiple service
capacity resource such as an oven. Due to the slow processing rates of some heat-
treatment or plating processes, large capacity machines have been developed that
can process several units of an item simultaneously.

The batching phenomenon is motivated by a perceived beneficial effect of group-
ing. However, the impact on downstream processing stations can be significant. To
illustrate, consider the batch move concept where, say k, items are grouped together
for the convenience of moving them to a subsequent single unit processing station.
Items will arrive at the next workstation k at a time, so the workstation might be idle
for a while and then instantaneously have a queue of waiting units. The variability
of a batch arrival process when the batch is broken back into individuals (frequently
caused by processing items simultaneously) is much greater than the inter-arrival
variability of the individual items and, the workstation queueing behavior will be
exacerbated. This leads to increased cycle times and larger WIP levels at the down-
stream workstation. In addition, the batch process itself causes an increased delay
because units must wait for the completion of other units before they can be grouped
and continue processing.

In this chapter, models are developed for various forms of batching and so that
the benefits and costs of the grouping process under consideration can be quanti-
fied. For the setup sharing situation, there will be a trade-off between the cycle time
increase and the setup time savings due to batching. The chapter is concluded with
a discussion of network models that include a batch (oven-type) processing work-
station. The term “job” can be confusing because in some contexts a job my refer

G.L. Curry, R.M. Feldman, Manufacturing Systems Modeling and Analysis, 2nd ed., 197
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Single Unit Server

Batch Forming

Queued Batches

Single Unit Server

Holding Area

Fig. 7.1 The batch move model structure: batches are formed after single unit processing and are
transported to the next workstation; batches wait in the queue until service on individual items
within the batch commences; finally, items leave as individuals as soon their processing has been
completed

to an individual item and in other contexts it may refer to the entire batch. To avoid
confusion, the term “item” will always be used for an individual job and never to
the entire batch.

7.1 Batch Moves

Consider a situation where individual items are grouped together into fixed batches
of size k at the completion of processing at a workstation that processes single units.
Items wait in the incomplete batch until the proper quantity has accrued and then the
full batch is transported to the next workstation. (A basic assumption used through-
out this text is that transportation time is negligible and, therefore, is not explicitly
considered. If transportation time is significant, it can often be approximated in the
model by considering the transporter as a separate workstation.) An additional as-
sumption is made that the receiving workstation processes items individually, hence,
the batch is merely a convenient transportation tool. The modeling of the batch move
situation is a building block for more complex models. In addition, we will demon-
strate that batch moves add to the cycle time in comparison to a system where items
are moved individually. Figure 7.1 illustrates a batch move system.

To model the batch move, several aspects of the problem will have to be con-
sidered. First, the batch forming time as it contributes to each individual item, or
the average item delay within a partial batch, needs to be computed. (The batch
forming time is added to the cycle time of the workstation receiving the batch even
though the batch forming actually takes place at the workstation sending the batch.)
Then the arrival stream characteristics for the batch receiving workstation need be
developed; that is, the mean arrival rate for batches and the squared coefficient of
variation of the inter-arrival batch times must be computed. And finally, the model-
ing approach for developing the second workstation cycle time is different than our
previous analyses. The cycle time model is separated into the standard components
of the queue time and the service time. The queue time, however, is developed from
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the batch point of view. The individual item’s service time is the average time for
processing individuals. These individuals are assumed to be released immediately
after processing to move on to their next workstation. But since there are k items in
the batch, the items have different delays while awaiting their turn at service. The
first item served from a batch has no additional delay due to waiting for others from
the same batch, while the second item serviced from the batch waits for the first
item, the third item waits for the first two selected items, and so on. The average
delay is then taken over the composite delay for all items in the batch. These cycle
time component analyses are addressed one at a time below.

7.1.1 Batch Forming Time

A batch is formed by grouping k individually arriving items together. Let Td be the
random variable denoting the time between departures from the source workstation
that are to be batched for transportation to the destination workstation. Note that
the arrival rate of individuals λ (I), in the absence of batching, to the destination
workstation is given by

λ(I) =
1

E[Td ]
.

The random variable T (B) is the inter-arrival time of batches. This random variable
is the sum of k individual inter-departure times

T (B) = Td,1 +Td,2 + · · ·+Td,k .

The individual inter-departure times Td,i for i = 1, · · · ,k are independent and iden-
tically distributed (i.i.d.) random variables; thus, the expected value of the batch
inter-arrival time is

E[T (B)] = kE[Td ] .

Hence, the arrival rate of batches to the destination workstation, λ (B), is

λ (B) =
1

E[T (B)]
=

1
kE[Td ]

=
λ (I)

k
. (7.1)

The squared coefficient of variation, C2[T (B)], of the batch inter-arrival times at
the destination workstation is obtained from

C2[T (B)] =
V [T (B)]
E[T (B)]2

,

where the variance is computed from

V [T (B)] = V [Td,1 +Td,2 + · · ·+Td,k] = kV [Td ] ,
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since the inter-departure random variables are assumed independent (see Prop-
erty 1.6 or Eq. 1.27). Thus, the squared coefficient of variation of the batch inter-
arrival times can be computed from the squared coefficient of variation of the indi-
vidual inter-arrival times by

C2[T (B)] =
V [T (B)]
E[T (B)]2

=
kV [Td ]

(kE[Td ])2 =
C2[Td]

k
. (7.2)

The delay that an individual item encounters when being placed into a batch
depends on where it is among the k batched items. The first departing item used to
start the formation of a new batch must wait for k−1 more items to depart before the
batch has been formed and released for transportation to the destination workstation.
Denote this delay by the random variable D1 where

D1 = Td,2 + · · ·+Td,k .

The second item forming the new batch has to wait for k−2 succeeding departures
and its waiting time is the random variable D2 given by

D2 = Td,3 + · · ·+Td,k .

The other items in the batch have delay times similarly developed with the last
item encountering no delay (i.e., Dk = 0). The last item’s arrival signals the batch is
complete and the batch is instantaneously transported to the destination workstation.
The average delay encountered by an item in the batch is then the expected value of
the sum of all these delays divided by the batch size k; that is,

E[D] =
E[D1 +D2 + · · ·+Dk−1 +Dk]

k

=
(k−1)E[Td]+ (k−2)E[Td]+ · · ·+1E[Td]+0E[Td ]

k

=
((k−1)k/2)E[Td]

k

=
(k−1)

2
E[Td] . (7.3)

Thus, the average delay encountered by an individual item when waiting for a batch
of size k to form is (k−1)E[Td ]/2.

One should recognize that the term E[Td ] in the expected batch waiting time per
individual is the time between arrivals for the particular situation that was used to
motivate this analysis. In this situation, batching after job completion at a worksta-
tion is done for the purpose of transporting the items to the next workstation. The
batching operation could occur at the front of a batch service workstation such as
an oven. In this case, the average delay would follow the same form as the result
just derived, but the individual item’s inter-arrival time would then be denoted as
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E[Ta]. This is the expected time between arrivals to the workstation and, therefore,
the inter-arrival time for batch items.

The batching form that has been analyzed is for a single product or for indis-
criminate grouping of multiple products. It is very likely that batching is restricted
to jobs of the same type. In this situation, then multiple batch types can be forming
simultaneously and the wait associated with batch formation of a given item type
would be a function of the inter-arrival time to the workstation of that job type.

7.1.2 Batch Queue Cycle Time

Modeling the cycle time for the recipient workstation for the batch move situation
has two distinct components: the queue time and the service time. The queueing
delay is modeled from the batch units point of view. The items within a batch see
this queueing phenomenon as batches waiting and then moving up in the line based
on batches being served. The arrival rate to this queue is λ (B) with corresponding
squared coefficient of variation C2[T (B)]. It may be clearer to denote the random
variable T (B) as Ta(B) to distinguish and relate this random variable with the indi-
vidual inter-arrival time random variable Ta(I).

The service time that these batches observe while they wait in the queue is for
batches (they move forward one location in the queue whenever a batch has been
completely served). The service time for these batches is the time it takes the server
to process all of the items within the batch being served, which is the random vari-
able Ts(B) given by

Ts(B) = Ts,1(I)+Ts,2(I)+ · · ·+Ts,k(I) ,

where the (B) and (I) notation again stands for batches and individuals, respectively.
Note that since this is a single item service facility (items are processed one at a
time), the processing times Ts,i(I) are independent and identically distributed ran-
dom variables with known mean E[Ts(I)] and known squared coefficient of variation
C2[Ts(I)]. Thus, the (perceived) batch service time characteristics can be computed
from these known individual item data as

E[Ts(B)] = kE[Ts(I)] ,

C2[Ts(B)] =
C2[Ts(I)]

k
.

The G/G/1 cycle time approximation model is used to compute the cycle time
in the queue for the waiting batches. The utilization factor for the workstation must
also be computed for batches. This computation is
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u(B) = λ (B)E[Ts(B)]

=
λ (I)

k
(kE[Ts(I)])

= λ (I)E[Ts(I)] = u(I) .

Thus, the utilization factor for the workstation in the batch service mode as per-
ceived by the waiting move batches is the same as the normal single unit processing
utilization factor for the workstation. The queue time estimate is given by

CTq(B) =
(

C2[Ta(B)]+C2[Ts(B)]
2

)(

u(B)
1−u(B)

)

E[Ts(B)] (7.4)

=
(

(C2[Ta(I)]/k)+(C2[Ts(I)]/k)
2

)(

u(I)
1−u(I)

)

kE[Ts(I)]

=
(

C2[Ta(I)]+C2[Ts(I)]
2

)(

u(I)
1−u(I)

)

E[Ts(I)] = CTq(I) .

So the expected cycle time in the queue for individuals in a move batch is iden-
tical to the cycle time in the queue for the workstation operating in a single item
mode. Therefore, utilizing move batches does not change the expected queueing de-
lay time. (It should be noted here that this is an approximation. The expected cycle
time in the queue for individuals in a move batch is actually smaller than the ex-
pected cycle time in the queue for the workstation operating in a single item mode,
but the Kingman approximations for the two situations are the same.) It does, how-
ever, affect the processing time delay as seen by individuals within a batch as is
developed in the next section.

7.1.3 Batch Move Processing Time Delays

The final element in the cycle time computation for batch moves between successive
workstations is the processing time delay for batched items. The individual item
processing time has not been altered by the batching process. The cycle time in the
workstation has been separated into the queue waiting time for the batch and the
processing time for the batch. Hence, the previous section developed the time that
the batch waits until the server is working on items within the batch. There is another
element to the actual waiting time until a particular item is served that consists of
the delay encountered while the item is waiting its turn for service with respect to
the other items within the batch. This delay is analogous to the batch forming delay
analyzed above. That is, the first item selected from the batch for processing sees no
delay at the processor due to having been part of a move batch. However, the second
and subsequent items must wait their turn for service. Thus, items are delayed for
their own processing time plus the processing times of all items that were part of
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their move batch and were selected for service before the item in question. So the
first item serviced has a zero extra wait, the second item serviced from the batch has
to wait for the service time of the first item, Ts,1, the third item has to wait for the
first two processing times, Ts,1 +Ts,2, and so forth through the batch until all items
have been processed. The typical item sees an average extra delay that consists of
the expected value for the total extra waiting time divided by the number of items,
k, in the batch. Again a series is summed for this delay, D,

D = Ts,1 +(Ts,1 +Ts,2)+(Ts,1 +Ts,2 +Ts,3)+ · · ·+(Ts,1 +Ts,2 + · · ·+Ts,k−1)
= (k−1)Ts,1 +(k−2)Ts,2 + · · ·+(1)Ts,k−1.

Since all these processing times are again i.i.d. random variables, this is the same
series as previously developed for the batch forming time with services replacing
inter-arrivals. The expected value for this delay is

E[D] = {(k−1)+(k−2)+ · · ·+(1)}E[Ts] . (7.5)

The sum of the first k− 1 integers equals k(k− 1)/2, so the average extra delay
associated with an item waiting its turn within the batch for processing is

E[D]
k

=
(k(k−1)/2)E[Ts]

k
=

(k−1)
2

E[Ts]. (7.6)

The average processing time delay for a batched item is this extra delay plus the
item’s expected processing time E[Ts].

The cycle time associated with using a move batch between two workstations
consists of the delays encountered at the second workstation plus the batch forming
time. Putting these results together yields the following property.

Property 7.1. Assume a pure serial system layout with Workstation i sending
jobs directly to Workstation j. The mean arrival rate of individuals to i is
E[Ta(i)] and the SCV of inter-departures of individuals from the processor
of i is C2

d(i). Transporting jobs from i to j is by batch moves of size k and
all jobs are processed one-at-a-time at j. The mean and SCV of (individual)
processing times at j are denoted by E[Ts( j)] and C2

s ( j), respectively. The
mean system cycle time per job at Workstation j is given by

CT ( j) =
(k−1)

2
E[Ta(i)]+

(

C2
d(i)+C2

s ( j)
2

)(

u
1−u

)

E[Ts( j)]

+
(k−1)

2
E[Ts( j)]+E[Ts( j)] ,

where the batch formation time after processing at Workstation i is considered
part of the cycle time at Workstation j.
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Comparing Property 7.1 with the standard Kingman approximation (Eq. 3.19)
for cycle times, we see that the batch move process adds two elements to the cycle
time. Both of these additional delays are due to batching, the batch forming time
and the average delay for service due to waiting for other items within the batch to
be processed first.

There are times in which a batch has already been formed (e.g., after a batch
processor as in Sect. 7.3) so that the basic arrival rate is in terms of batches to a
workstation in which processing is by individual job. In this case there would be
batch formation times so the following property would be used.

Property 7.2. Consider a workstation with a mean and SCV of times between
batch arrivals being denoted by E[Ta(B)] and C2

a(B), respectively, and the
mean and SCV of individual processing times being denoted by E[Ts(I)] and
C2

s (I), respectively. The mean system cycle time per job at the workstation is
thus

CTs =
(

kC2
a(B)+C2

s (I)
2

)(

u
1−u

)

E[Ts(I)]+
(k +1)

2
E[Ts(I)] ,

where the utilization is u = kE[Ts(I)]/E[Ta(B)].

7.1.4 Inter-departure Time SCV with Batch Move Arrivals

The departures from a batch-move single-unit-service workstation have a cyclic be-
havior. The inter-departure time associated with the first item processed in a batch
can consist of two elements, an idle time delay plus a service time delay. All other
inter-departure times for items in the batch are merely separated by service time
delays. If the workstation is busy processing items when the batch arrives, then the
first item processed from the batch will also only experience a service time inter-
departure delay. So in modeling the inter-departure times, there is a dependency
between the inter-departure times for elements from the same batch. Dependencies
between successive inter-departure times are prevalent in most queueing systems.
The general approach for modeling departures from G/G/1 workstations is to ap-
proximate the inter-departure process by a renewal process (see Definition 5.1). (See
[1] for a discussion of approximation approaches for departure processes.)

Using a renewal process (i.i.d.) approximation to the inter-departure process,
Curry and Deuermeyer in [3] developed the inter-departure time squared coefficient
of variation for individuals, C2

d(I), for the batch-move server for a single machine
workstation as

C2
d(I) = kC2

a(B)(1−u2)+(k−1)(1−u)2 +u2C2
s (I) , (7.7)
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where k is the fixed batch size of the arriving batches, C2
a(B) is the SCV of the arriv-

ing batch stream to the workstation, C2
s (I) is the service time SCV for individuals,

and u is the workstation utilization factor. In the context of a serial system, the result
in [3] can be expressed, using Eq. (7.2), as the following property.

Property 7.3. Assume a pure serial system layout with Workstation i send-
ing jobs directly to Workstation j by batch moves of size k. Using the same
notation as in Property 7.1, the squared coefficient of variation of the inter-
departures of individuals from Workstation j is given by

C2
d( j) = C2

d(i)(1−u2
j)+(k−1)(1−u j)2 +u2

jC
2
s ( j) .

In a simulation study of the departures from a fixed batch arrival system with
individual service, a set of 30 simulations was run with batch sizes from 1 to 5 and
with C2

a(B) and C2
s (I) both ranging over 3/4, 1, and 3/2. Each of these simulations

consisted of 100,000 simulated hours. The average absolute error between the theo-
retical estimate and the simulation estimate for C2

d(I) for these 30 studies was 1.39%
with a maximum error of 4%. Although this study was not over the whole range of
values for utilization and inter-arrival and service time SCV’s, it does indicate that
the i.i.d. approximation for the SCV of departures is a viable approach for modeling
purposes.

Example 7.1. Arrivals to a sub-factory with two workstations in series occurs at a
mean rate of 3 per hour and a squared coefficient of variation of the inter-arrivals of
2. Both workstations consist of only one machine. The processor of the first work-
station processes jobs according to a gamma distribution with a shape parameter of
0.5 and a scale parameter of 30 minutes. The processor of the second workstation
processes jobs according to a gamma distribution with a shape parameter of 2/3 and
a scale parameter of 22.5 minutes. All items must be moved between workstations
in batches of size 4. What is the average cycle time in the second workstation and
what are the departing stream’s characteristics (mean and SCV of the inter-departure
times)?

First notice that the mean and SCV of service for the first workstation are 0.25
hour and 2, respectively, and the values for the second workstation are 0.25 hour
and 1.5, respectively. Since the SCV of the inter-arrivals and service process of the
first workstation are the same, the SCV of the inter-departures will also be the same.
Thus, the mean and SCV for the inter-departure of individuals from the server in the
first workstation is 1/3 hr and 2, respectively.

The utilization factor for the second workstation is u2 = 3(0.25) = 0.75. There-
fore, the average cycle time per item is given from Property 7.1 by

CT (2) =
4−1

2
(1/3)+

2+1.5
2

0.75
0.25

(0.25)+
4−1

2
0.25+0.25 = 2.4375 hr .
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The mean departure rate of individuals equals the mean arrival rate of individuals
which is 3 per hour. The squared coefficient of variation of the inter-departure times
is approximated from Property 7.3 by

C2
d(2) = 2(1−0.752)+3(1−0.75)2 +0.752(1.5) = 1.9063 .

��
• Suggestion: Do Problems 7.1 and 7.2.

7.2 Batching for Setup Reduction

The Batch Move Model of Sect. 7.1 was developed to model situations where in-
dividual items are batched together for the purpose of transporting them simultane-
ously to the next workstation. A similar situation exists when a single-unit process-
ing workstation must be setup immediately before a group (or batch) of items of the
same job type are to be processed on the machine. Frequently, this setup operation
uses a significant amount of time and this can make it inefficient or even infeasible
to run single unit batches. For this situation, the batching operation can be thought
of as occurring at the front of this workstation rather than at the end the predeces-
sor workstation. Accordingly, the batch forming time will be accounted for in this
workstation. The reason for forming a batch of say size k is to spread the batch setup
time across k jobs rather than one job. Hence, if the setup time for a certain class
of items is one hour, then if these items are run “one-at-a-time” each one would
add essentially one hour to their processing time. If this type of item is processed
in batches of size 4, then the one hour setup time would be required only once for
the batch, essentially adding 1/4 hour of setup time to each item processed instead
of one hour. Thus, there are many choices for the batch size for each item and a
batch quantity should be chosen that balances the setup time reduction against the
increased batching delay as the batching quantity is increased. If there is only one
item type, then the optimal batch size can be found by searching over the single pa-
rameter k. Of course, if there really is only one item type, the machine would always
be left setup for that type and then there would not be a setup time balancing prob-
lem, unless recalibration, cleaning, or similar operation is periodically required, and
this operation would usually specify the batch size k. Most realistic problems in-
volving setups consist of at least two job types where processing alternates between
types.

There are at least two different procedures possible in forming the batches. One
method would be to form the batch as the individuals arrive to the workstation and
another method would be to form the batch just before processing. The procedure
used would depend on the physical properties of the jobs and the machining re-
quirements. For simplicity, we will assume the first procedure, that is, batches for
processing are formed as the individual jobs arrive to the workstation. We shall also
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begin our model development with only one job type to keep the mathematics sim-
ple. Extensions to more than one job type will be discussed later.

Let the setup batch size be k and assume that items arrive to the workstation one-
at-a-time with known mean rate λ (I) = 1/E[Ta(I)] and known inter-arrival time
SCV C2

a(I). The delay associated with forming each batch is the same as previously
developed and is given by Eq. (7.3).

Each batch has a service time that consists of the setup time random variable R
plus k individual random services Ts,1,Ts,2, · · · ,Ts,k. The expected processing time
and variance for the batch are (assuming that the service times are i.i.d. random
variables)

E[Ts(B)] = E[R]+ kE[Ts(I)] (7.8)

V [Ts(B)] = V [R]+ kV [Ts(I)] .

The squared coefficient of variation for the batch service time is then computed from
the definition

C2[Ts(B)] =
V [Ts(B)]
E[Ts(B)]2

=
C2[R]E[R]2 + kC2[Ts(I)]E[Ts(I)]2

E[Ts(B)]2
. (7.9)

Further reduction of this form is not possible for the general case.
The utilization factor is slightly different from the previous result because of the

necessity to account for the setup time. This is given by

u = λ (I)
E[Ts(B)]

k
= λ (I)

(

E[R]
k

+E[Ts(I)]
)

. (7.10)

The cycle time in the queue, CTq, is the same as that developed for batch moves
(7.4) as long as the utilization factor is computed according to (7.10). The cycle time
in the system, CTs, is the sum of the four components: the batch forming time, the
cycle time in the queue for batches, the expected processing time for an individual,
and the average waiting time of the individual units for their turn in service. Given
the new values for the service time characteristics, the workstation cycle time when
a server setup is needed per batch is given by the following property.

Property 7.4. Consider a single-server workstation that processes jobs one-
at-a-time; however, the jobs are placed in batches of size k when they enter
the workstation, and a setup operation is performed on the server immediately
before any of the individual jobs within each batch are processed. The mean
and squared coefficient of variation of the setup operation are denoted by
E[R] and C2[R], respectively. Jobs arrive to the workstation individually and
are processed individually after the setup operation. The mean cycle time per
job at the workstation is given by
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CT (I) =
(k−1)

2
E[Ta(I)]+

(

(C2
a(I)/k)+C2

s (B)
2

)(

u
1−u

)

E[Ts(B)]

+
(k +1)

2
E[Ts(I)]+E[R] ,

where batch times are given by Eqs. (7.8) and (7.9) and the utilization factor
is given by Eq. (7.10).

Example 7.2. Consider finding the batch size k that results in the minimum cycle
time for a single product with unit processing characteristics E[Ts(I)] = 0.1 hours,
and C2

s (I) = 1.5, and setup time characteristics E[R] = 0.2 hours, and C2[R] = 1.0.
Assume that the arrival rate of individual units is λ (I) = 5.666 per hour (E[Ta(I)] =
0.1765 hours), and C2

a(I) = 3.0.
The workstation utilization is given by

u = λ (B)E[Ts(B)] =
5.666

k
(0.2+0.1k).

Note that the feasibility condition is that k must be large enough so that u < 1. For
k = 1, u = 1.7 > 1, and k = 2 yields u = 1.133 > 1; hence, k must be greater than or
equal to 3.

The main computational difficulty is in computing the SCV of the batch service
time, C2[Ts(B)]. To compute this parameter, the variance relationships

V [R] = C2[R]E[R]2,

V [Ts(I)] = C2[Ts(I)]E[Ts(I)]2,

are used, along with the fact that variances of independent variables add, to obtain

V [Ts(B)] = V [R]+kV [Ts(I)].

Then the batch service time (including setup) has a SCV of

C2[Ts(B)] =
V [R]+ kV [Ts(I)]

(E[R]+ kE[Ts(I)])
2 .

The following table displays the computed information for each batch size over
the range of k ∈ {3, · · · ,9}. The optimal batch size occurs at k = 6 using the min-
imum CTs as the criterion. The minimum average cycle time in this workstation is
1.860 hours per item.

��
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Table 7.1 Data for varying batch sizes for Example 7.2

k u E[Ts(B)] C2[Ts(B)] CTs

3 0.944 0.5 0.340 6.254
4 0.850 0.6 0.278 2.460
5 0.793 0.7 0.235 1.974
6 0.755 0.8 0.203 1.860
7 0.728 0.9 0.179 1.863
8 0.708 1.0 0.160 1.917
9 0.692 1.1 0.145 1.998

7.2.1 Inter-departure Time SCV with Batch Setups

The squared coefficient of variation of the inter-departure times for the workstation
with batch setups can be approximated by an i.i.d. departure model. We again refer
to [3] for the departure model as given in the following property.

Property 7.5. The squared coefficient of variation for the inter-departure
times from a workstation that processes jobs one-at-a-time with a batch set-up
is

C2[Td(I)] = kC2[Ta(B)](1−u2)+ k(1−u)2−1+
2k(1−u)(E[R]+E[Ts(I)])

E[Ta(B)]
+

k(E[R]2(C2[R]+1)+ kE[Ts(I)]2(C2[Ts(I)]+1)+2E[R]E[Ts(I)])
(E[Ta(B)])2 ,

where the notation is the same as in Property 7.4.

To illustrate the accuracy of this approximation, consider the case for k = 4 of
the previous table. A simulation of this case, using 567,715 observations for the in-
dividual inter-departure times yielded a mean value of C2[Td(I)] = 2.225 with the
i.i.d. approximation being 2.2037, equation 7.11, which is less than -1.0% off of the
measured value. The measured value for C2[Ts(B)] was 0.279 versus the computed
value of 0.278.

• Suggestion: Do Problem 7.3.

7.3 Batch Service Model

A batch server is a processor that can process several jobs simultaneously. Ovens
and metal plating operations are examples, and this is the type of operation that is
analyzed in this section. Namely, we consider a batch server model where a fixed
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number of items are loaded and processed at the same time. Processing is not started
until the number of units in the batch, say k, are available. The batch is then loaded
and held in the server for the allotted time. At the completion of service, the batch
is removed from the server and the units either as a group or individually are sent
to their next workstation. Different types of items may be grouped together or the
batching operation may be restricted to item specific groups.

7.3.1 Cycle Time for Batch Service

The arrival rate for batches and the associated squared coefficient of variation of
inter-arrival times of the batches, as they are related to the individual flow charac-
teristics, were developed in Sect. 7.1.1. The modeling approach for a general arrival
and general service situation is to utilize the G/G/1 cycle time approximation, using
batch timing characteristics in place of individual item information. Previously the
adjustment equations for batch arrival data were developed given individual inter-
arrival time information. These relationships are

λ (B) =
λ (I)

k
=

1
k E[Ta(I)]

, (7.11)

C2[Ta(B)] =
C2[Ta(I)]

k
. (7.12)

The service time data, namely E[Ts(B)] and C2[Ts(B)], are characteristics of the
job and processor and so are known data. The workstation cycle time for batch
processing is given by the following property.

Property 7.6. Consider a single-server workstation that processes jobs in
fixed batches of size k. Jobs arrive to the workstation individually. Upon enter-
ing the workstation, the individual jobs are placed in batches before proceed-
ing into the workstation. Service cannot start until a full batch is available.
The mean and SCV of batch processing times are denoted by E[Ts(B)] and
C2

s (B), respectively. The mean system cycle time per job at the workstation is
given by

CTs =
(k−1)

2
E[Ta(I)]+E[Ts(B)]

+
(

C2[Ta(B)]+C2[Ts(B)]
2

)(

u(B)
1−u(B)

)

E[Ts(B)] ,

where the utilization factor, u(B), is computed as u(B) = λ (B)E[Ts(B)].
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Notice that there are some adjustments that might be necessary when applying Prop-
erty 7.6. It is possible that the batches are already formed so that arrivals are by
batches instead of individually. If the batches were formed at the previous worksta-
tion, then the E[Ta(I)] expression in the first term should refer to the departure rate
of individuals from the previous processor and no change is needed in the formula.
If the previous workstation was a batch processor of the same size, the first term
should be deleted. Finally, we should consider the case where batches are formed
when the jobs are ready to be processed. Then if the utilization factor for the job type
is high, the batch formation time would be greatly reduced since formation would
occur naturally while jobs are waiting in the queue. To approximate this situation,
we multiply the first term (the batch formation time) by the factor (1−u(B)2) where
the utilization factor refers only to one specific job type if there were multiple types.

7.3.2 Departure Process for Batch Service

The modeling difficulty for batch service arises when the batch is unloaded and the
individual items are moved into their subsequent workstations. Without a branching
split after the batch processing workstation, all of the batched items would proceed
on to the same next workstation. Then this workstation would see individual items
arriving but with unusual inter-arrival time characteristics. To illustrate this point,
consider that a batch workstation processing batches of 4 items and that the random
inter-departures times for three specific batches are T1, T2, and T3. The next work-
station sees, for these three batches, individual items with the following sequence
of inter-arrival times: T1,0,0,0,T2,0,0,0,T3,0,0,0. This sequence does not possess
the same inter-arrival time characteristics as the batch process itself. In fact the in-
dividual items are not independently arriving units. This situation for the receiving
workstation is actually the batch move model as developed in Sect. 7.1.

The i.i.d. approximation for the squared coefficient of variation (SCV) equation
for the departure of individuals from a batch service workstation is

C2[Td(I)] = kC2[Td(B)]+k−1 , (7.13)

which can be written in terms of the basic workstation characteristics for batches.

Property 7.7. Assume a batch service with the same notation as in Prop-
erty 7.6. The squared coefficient of variation of the inter-departures of in-
dividuals from the workstation is approximated by

C2
d(I) = k[(1−u2)C2

a(B)+u2C2
s (B)]+k−1 .
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Although Property 7.7 gives an SCV for the renewal process (Definition 5.1) ap-
proximating the departure process, observe that the process formed by individual
departures of a batch operation is clearly not a renewal process so that modeling the
next workstation could be problematic. This is the topic of the next section.

Property 7.7 illustrates that after a batch service, the process of separating the
batch into individual items causes the squared coefficient of variation to increase
significantly as a function of the batch size parameter k. One would expect the mul-
tiplication of C2[Td(B)] by the batch size k since this reverses the batching process
adjustment. However, the additional factor k− 1 indicates that the batch process
changes the system’s flow characteristics significantly. Again this SCV approxima-
tion ignores any dependencies in the inter-departure stream and treats each item’s
inter-departure time as independent and identically distributed.

Example 7.3. Consider a batch-processing workstation in which arrivals to the
workstation are from another batch server so that the arrivals occur in batches of
size 5 with a mean rate of 3 batches per hour and an SCV of batch inter-arrival
times of 0.75. The SCV of the batch service time is also 0.75 with a workstation
load factor or utilization of 84%. The average time each job spends in the worksta-
tion is thus given by

CT = 16.8+
0.75+0.75

2
× 0.84

1−0.84
×16.8 = 82.95 min .

Note that 16.8 is the service time given in minutes and is obtained by dividing the
utilization factor by the arrival rate. In addition, the first term in the cycle time
equation of Property 7.6 was not used since the arrivals were already in batches.

Since the SCV of the inter-arrival times and the service times are the same, it
is also the SCV of the inter-departure times for batches. The approximation for the
inter-departure SCV of individuals is given by

C2
d(I) = 5

[

(1−0.842)(0.75)+0.842(0.75)
]

+4 = 7.75.

��
Although the SCV calculation of 7.75 of inter-departures of Example 7.3 may

give an accurate representation of the actual departure stream, there are major prob-
lems when using this value in a cycle time calculation for the downstream worksta-
tion. The next section discusses how to better utilize batch output when modeling
downstream workstations.

• Suggestion: Do Problems 7.4–7.6.
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7.4 Modeling the Workstation Following a Batch Server

Since the unbatching process after a batch-service workstation does not produce
a renewal process (i.e., a stream of inter-departure times that are independent and
identically distributed), it is prudent to model the recipient workstation as having a
batch arrival process. This approach captures the true behavior of the arrival stream
including the inter-dependence between arrivals, whereas the i.i.d. SCV approxima-
tion does not. The analysis of the workstation depends on whether the jobs leaving
the batch processor are sent directly to the next workstation or if a probabilistic
branch follows the batch server.

7.4.1 A Serial System Topology

To illustrate the difficulties inherent in modeling the workstation following a batch
service operation, reconsider Example 7.3 and assume that the workstation of that
example feeds into a workstation that processes jobs one-at-a-time. This down-
stream workstation has a service process described by an exponential distribution
with a mean of 3 minutes. The workstation of Example 7.3 is feeding batches of
size 5 to our workstation at a mean rate of 3 batches per hour with an SCV of batch
inter-arrival times of 0.75 and an SCV of 7.75 of individuals. The workstation uti-
lization factor is u = 5× 3× 0.05 = 0.75. Then using the standard approximation
for individuals, the system cycle time for this workstation is

CT =
7.75+1

2
× 0.75

1−0.75
×0.05+0.05 = 0.706 hr . (7.14)

Simulating this situation yielded a cycle time estimate of 0.496 hours based on
just over 135,000 simulated services. The resultant inter-arrival stream characteris-
tics were measured as E[Ta(I)] = 0.333, with C2[Ta(B)] = 0.753. The workstation
utilization factor was measured to be 0.749. This data was from a simulation run
length of 10,000 hours with a statistics reset after 1,000 hours. So even though the
first two moments of the inter-arrival time distribution were very accurate, the cycle
time approximation was off by 42%. Why? The answer is in the arrival stream’s
characteristics. The first two moments of the inter-arrival time distribution does not
capture the grouping behavior observed in the batch arrival process. For example, it
is quite possible to have an arrival stream sequence of batches of size 2 with exactly
the same mean and SCV; thus, it is clear that the first two moments alone cannot
adequately describe an arrival process of individuals that arise from batches.

To properly take the arrival stream’s characteristics into account, the next work-
station after the batch server workstation should be modeled as a batch arrival sta-
tion, using the modeling approach detailed in Sect. 7.1 dealing with batch moves,
specifically, Property 7.2 should be used. This approach treats the system as a batch
arrival and batch server system for the queue time estimate and then adds the in-
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dividual unit’s service time plus the extra waiting time due to each unit waiting its
turn for processing within the batch.

The cycle time given by Eq. (7.14) can be re-calculated using Property 7.2 as
follows:

CT =
5×0.75+1

2
× 0.75

1−0.75
×0.05+

5+1
2
×0.05 = 0.506 hr .

This result differs by 2% from the simulated value. Thus, the batch modeling ap-
proach is much closer to the observed cycle time since this model has inherent in it
the behavior of items arriving for service from the batch server workstation.

7.4.2 Branching Following a Batch Server

From previous discussion (Sect. 7.4.1), we know that the proper method of modeling
a workstation following a batch service process is to treat the output process as a
batch move. Thus, units coming out of the batch server move to the next workstation
in a fashion identical to the batch move model (Sect. 7.1). The question arises as to
the appropriate modeling method if the departures from the batch server follow a
probabilistic branch that separates individual items and distributes them to different
workstations.

Consider for illustration purposes a batch server (Workstation 1) with a batch
size of 4. Let p be the probability that an individual item from a batch goes next
to Workstation 2 and let q = 1− p be the probability that an individual job goes
to Workstation 3. Consider further a batch that is just exiting the batch server and
the batch is immediately broken into individual items that are randomly branched to
either Workstation 2 or Workstation 3, with random variables N2 and N3 denoting
the number of jobs sent to the two workstations. Thus, N2 ∈ {0,1,2,3,4} and N3 =
4−N2. If Workstation 2 receives 1 job then Workstation 3 receives 3 jobs from
this batch. In other words, the workstations receiving output from a batch service
operation followed by a probabilistic split see random sized batches. Figure 7.2
illustrates this idea with items being represented by small circles stacked on one
another to indicate that they arrived at the same time.

A specific batch (of size 4) split between the two workstations can take any of the
configurations shown in Table 7.2. So in essence, each workstation sees a binomial
distribution of random batch sizes (refer to p. 14), in this example ranging from 1
to 4. Note that a zero batch size means that no arrival occurs for at least one more
batch service.

The modeling approach is again to treat the arrival pattern as batches but now
of random sizes, N ∈ {1,2, · · · ,k}. However, because the workstation accepting the
batches does not “see” batches of size zero, the distribution of batches sizes must be
a conditional binomial distribution given that the random variable is not zero. Thus,
the probability density function for the random batch size N is
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Batch Server

Single Unit Servers

Fig. 7.2 Illustration of a batch service followed by individual (random) branching to subsequent
workstations, where stacked jobs denote batches with a size equal to the number of stacked items

Table 7.2 Distribution of batch sizes to the workstations
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pnqk−n

(1−qk)
for n = 1, · · · ,k , (7.15)

where k is the fixed processing batch size and q = 1− p. The mean and SCV for this
conditional binomial distribution are not too difficult to determine and are given by

E[N] =
kp

1−qk and (7.16)

C2[N] =
q
(

1− kqk−1 +(k−1)qk
)

kp
. (7.17)

As with fixed batch sizes, the cycle time model is separated into the cycle time in
the queue for batches (working their way up to the server) and the average service
delay for individuals within the batch. The service delay consists of the item’s ser-
vice time Ts plus the service time of all items in the batch that are processed before
this specific individual. These times need to be averaged over all possible positions
for items within the batch. These two components are addressed individually.
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7.4.2.1 Cycle Time in the Queue for Random Sized Batches

A queued batch can be viewed as seeing batches ahead of it being served as a whole
even though the service mechanism operates on individual items taken from a batch.
The expected delay time is computed for a batch to move up in the first-come-first-
serve queue until it (any of its items) becomes the batch being served. (This is the
same model form used for the Batch Move Model of Sect. 7.1). The service time
for each batch is a random sum of i.i.d. random variables which was described
in Sect. 1.6.2. Thus, the measures for the batch service time are obtained through
Property 1.9 and are given as

E[Ts(B)] = E[N]E[Ts(I)] and

C2[Ts(B)] = C2[N]+
C2[Ts(I)]

E[N]
, (7.18)

where N is the random variable denoting the batch size (Eq. 7.15).
The arrival rate of individual items at the workstation following a batch service

with branching probability p is a function of the arrival rate of individuals into
the batch service workstation. For notational clarification denote the batch server
workstation as #1 and the recipient workstation as #2. Let λ1(I) be the arrival rate of
individuals into the batch workstation and let λ2(I) be the arrival rate of individuals
into #2 after the branch. Then the relationship between these rates is

λ2(I) = pλ1(I) . (7.19)

However, the batch arrival rate is not quite as straight forward because of the pos-
sibility that a batch is of size zero. Assume that #1 operates on batches of size k,
then the probability that a batch of size zero is “sent” to #2 is qk where q = 1− p.
Therefore, the probability that a batch of size greater than zero departs from #1 is
1−qk so that the batch arrival rate to #2 is given by

λ2(B) =
(

1−qk
) λ1(I)

k
, (7.20)

and the expected batch size is given by Eq. (7.16).
The squared coefficient of variation of the inter-arrival time into #2 is related

to the squared coefficient of variation of the inter-departure time for #1. Since the
departures are in terms of batches, the batch inter-arrival time’s squared coefficient
of variation into #2 is

C2
B[Ta(2)] = (1−qk)C2

B[Td(1)]+qk , (7.21)

where the subscript B is used to indicate that the C2 is for batches. Recall that the
factor qk is the probability that no units from the batch are directed to #2.

Using the standard Kingman approximation, the cycle time in the queue, CTq, for
the batches is given as
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CTq(2) =
(

C2
B[Ta(2)]+C2[Ts(B)]

2

)(

u2

1−u2

)

E[Ts(B)] (7.22)

=
(

C2
B[Ta(2)]+C2[N]+C2[Ts(I)]/E[N]

2

)(

u2

1−u2

)

E[N]E[Ts(I)] ,

where the utilization factor is computed by u2 = λ2(I)E[Ts(I)].

• Suggestion: Do Problem 7.13.

7.4.2.2 Average Service Delay Times for Random Sized Batches

Once a batch has worked its way through the batch queue and finally has command
of the server, the server will be busy for the specific number of service times equal
to the number of items in the batch. The delay time associated with individual items
within the batch varies since processed items leave the workstation immediately
upon completion of their turn in the server. Thus, an average delay is computed by
taking into account the delay associated with each position, with respect to the order
that items are served, within the batch. This average delay has two components,
the service time of the individual and the average delay waiting for other items
positioned ahead of that individual unit in the batch.

We follow the same logic here that was used in Sect. 7.1.3. The random vari-
able D represents the total delay experienced by all jobs within a batch; thus from
Eq. (7.5), it follows that

E[D|N = n] =
n(n−1)

2
E[Ts(I)] ,

where the random variable N is the size of the batch. Since E[E[D|N] ] = E[D] (see
Property 1.8), the service time delay, st, is obtained as follows

st =
E[D]
E[N]

+E[Ts(I)] =
E[N(N−1)]

2E[N]
E[Ts(I)]+E[Ts(I)] (7.23)

=
E[N(N +1)]

2E[N]
E[Ts(I)] =

E[N2]−E[N]2 +E[N]2 +E[N]
2E[N]

E[Ts(I)]

=
(

E[N]+1
2

+
V [N]
2E[N]

)

E[Ts(I)] =
(

1+E[N]+E[N]C2[N]
2

)

E[Ts(I)] .

Notice that for deterministic batches, Eq. (7.23) is identical to Eq. (7.6).
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7.4.2.3 Cycle Time in the Workstation for Random Sized Batches

The cycle time in a workstation that directly follows a batch server and receives
only a proportion of the individual items can be obtained by combining the two
major pieces of the previous two sections yielding the following property.

Property 7.8. Consider a workstation that processes items one-at-a-time with
a mean and SCV of the (individual) processing time given by E[Ts] and C2

s .
Jobs arrive to the workstation in batches of random size denoted by N. The
times between batch arrivals have a mean and SCV of E[Ta(B)] and C2

B[Ta]
yielding a mean batch arrival rate of λ (B) = 1/E[Ta(B)]. The mean system
cycle time per item at the workstation is approximated by

CTs =
(

E[N]C2
B[Ta]+E[N]C2[N]+C2

s

2

)(

u
1−u

)

E[Ts]

+
(

1+E[N]+E[N]C2[N]
2

)

E[Ts]

where the utilization factor is u = E[N]λ (B)E[Ts].

Example 7.4. Consider a workstation that processes 5 units simultaneously (k = 5).
Let the departure rate from this batch workstation be 3 batches per hour with a
squared coefficient of variation of the inter-departure times of 0.75. After the batch
leaves the workstation, it is broken into individual units and each item has a 25%
chance of being sent to the second workstation. The second workstation processes
items one-at-a-time according to an exponential distribution with mean of 12 min-
utes. We would like to analyze the second workstation.

The probability of #2 not receiving any units from a particular batch that finished
processing at #1 is 0.755 = 0.2373. Thus, the arrival rate of of batches (of any size)
to #2 is λa(B) = 3(1− 0.2373) = 2.288 per hour (see Eq. 7.20), or equivalently,
E[Ta(B)] = 0.437 hours. Note that the arriving batch can be of any size from 1 to
5 units depending on the probabilistic results from individual unit branching. The
mean and SCV for the batch size (Eqs. 7.16 and 7.17) are E[N] = 1.639 and C2[N] =
0.220. The mean batch size (1.639) together with the batch arrival rate (2.288/hr)
and the mean service time (0.2 hr) results in a utilization factor of u = 0.75.

The arrival rate of individual units is the average batch size (1.639) times the
batch arrival rate (2.288/hr) yielding 3.75/hr which is also equal to the branch prob-
ability (0.25) times the individual departure rate from the first workstation. The
SCV of the inter-arrival times of batches is determined from the departure process
according to Eq. (7.21):

C2
B[Ta] = (1−0.2373)0.75+0.2373 = 0.809.
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Property 7.8 can now be used to determine the average time spent within the
workstation for an arbitrary job:

CT =
(

1.639×0.809+1.639×0.220+1
2

)(

0.25
1−0.25

)

0.2

+
(

1+1.639+1.639×0.220
2

)

0.2 = 1.106 hr .

The approximations agree quite well with simulated results for this system. Ta-
ble 7.3 contrasts several of these computations with the measured results from a
simulation study. The simulation study consists of the 20 replications of individual
simulations 10,000 hours in length, with a statistical reset at 1,000 hours. Each repli-
cation results in 20,600 to 20,700 processed batches (or more than 400,000 batches).

��

Table 7.3 Comparison of analytical approximation and simulation results for Example 7.4

E[Ta(B)] C2
B[Ta] E[Ts(B)] C2[Ts(B)] CTq CTs

Analytical Mean 0.437 0.809 0.300 0.830 0.806 1.106
Simulated Mean 0.437 0.813 0.301 0.835 0.805 1.106

Simulated Std.Dev. 0.003 0.011 0.002 0.009 0.044 0.045

The conclusion is that this model is the appropriate method for modeling the
downstream server from a batch workstation with individual unit branching to the
next workstation. This approach is considerably better than using an i.i.d. coeffi-
cient of variation formula to compute the individual inter-arrival time parameters
and then applying a model for individual cycle times. The down side of this ap-
proach is that it is harder to incorporate into a network model because of the more
complex connections between workstations and if the workstation has multiple in-
flows the blending of the streams becomes considerably more complicated.

• Suggestion: Do Problems 7.7 and 7.8.

7.4.2.4 Arrival SCV of Individuals after a Random Branch

If it is necessary to compute the squared coefficient of variation of the arrival stream
of individuals coming from a batch service process, then the best one can do is
an i.i.d. approximation for the SCV. This treatment considers all the individuals
as independent arrivals and merely computes the associated SCV of the individual
inter-arrival times.

To effect this computation, we repeat Eq. (7.21) from Sect. 7.4.2.1 that gives the
relationship between departing batches from one workstation to arriving batches to
the next workstation:
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C2
B[Ta(2)] = (1−qk)C2

B[Td(1)]+qk ,

where p is the branching probability with q = 1− p. Equation (7.13) gives the con-
version from a batch to individual jobs, so by taking a weighted average of the
squared coefficients of variation, we have

C2
I [Ta(2)] = E[N]C2

B[Ta(2)]+E[N]−1 ,

where N is the random variable of the resulting batch size after the probabilis-
tic branching with distribution given by Eq. (7.15). Using the mean value from
Eq. (7.16), the SCV of the inter-arrival times of individually arriving jobs is cal-
culated as

C2
I [Ta(2)] =

kp
[

(1−qk)C2
B[Td(1)]+qk +1

]

1−qk −1 , (7.24)

where k is the batch size of the departing batches from the first workstation before
branching occurs.

Note that a better approximation occurs if a single unit processing workstation
that follows a batch server is modeled using the Batch Move Model that resulted in
Property 7.8. Equation 7.24 is given for the situation where it is difficult to model
the next workstation with the batch move approach and/or there are several sources
of inflow into this workstation that must be combined.

Example 7.5. To illustrate obtaining the inter-arrival time SCV for individuals ran-
domly branched to a workstation from a batch service workstation, consider that
the batch workstation has an SCV for inter-departure times of batches given as
C2

B[Td(1)] = 0.8, and let the branching probability be 1/2 for individual units from
batches of size 4. Then q4 = 0.54 = 0.0625 and

C2
I [Ta(2)] =

4(1/2) [0.9375(0.8)+0.0625+1]
0.9375

−1 = 2.8667.

This agrees quite well with the simulated result of 2.87. ��

7.4.2.5 Departures from the Workstation Following Batch Service

The mean and squared coefficient of variation of an arrival process sometimes does
not adequately capture the arrival stream’s characteristics from an accurate model-
ing prospective. This is particularly true for batch arrival streams. The batch process
cycle time is relatively easy to characterize but the output process from the batch ser-
vice workstation cannot be adequately characterized with only the mean and SCV
parameters. The batch arrival phenomenon to a single unit service workstation re-
quires a separate model (the Batch Move Model of Sect. 7.1), and the random batch
size extension given in Property 7.8. Individual units depart these workstations and
merge with other inflow streams to subsequent workstations. So the question of an
adequate model for approximating the outflow or departure stream of individuals
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needs to be addressed. Curry and Deuermeyer [3] show that a simple extension
to Property 7.3 yields a relatively accurate approximation for a workstation down-
stream from a batch processor that has probabilistic branches.

Property 7.9. Consider a workstation with batch arrivals that processes items
one-at-a-time. Using the same notation as in Property 7.8, the squared coef-
ficient of variation of the inter-departures of individuals from the workstation
is approximated by

C2
d(I) = (1−u2)E[N]C2

B[Ta]+ (E[N]−1)(1−u)2 +u2C2
s .

Example 7.6. We return to Example 7.4 and determine the characteristics of the de-
parture process from the second workstation (i.e., the workstation that was accepting
25% of the items departing from the batch processor). The batch size characteristics
were computed to be E[N] = 1.639 and C2[N] = 0.220 and the batch arrival rate was
determined to be λa(B) = 2.288/hr. Therefore the individual arrival rate and thus the
departure rate of items from the workstation is 1.639×2.288 = 3.75/hr which yields

E[Td(I)] = 16 min .

We also have from Example 7.4 that the SCV for the batch arrival process to the
workstation was 0.8093; therefore the SCV of the inter-departure times of individual
items from the workstation is

C2
d(I) = 1.639(1−0.752)0.8093+(1.639−1)(0.25)2 +0.752(1) = 1.183 .

��
In a simulation study of the departures from this random batch arrival system

with individual service, a set of 13 simulations with random batch sizes resulting
from a service batch of size 5, a 25% change of individuals being routed to the
workstation being studied and, C2

a(B) and C2
s (I) both ranged over 3/4, 1, and 3/2.

Each of these simulations consisted of 100,000 simulated hours. The average abso-
lute error between the theoretical estimate and the simulation estimate for C2

d(I) for
these 13 studies was 1.80% with a maximum error of 3.03%. Although this study
also was not over the whole range of values for utilization, and inter-arrival and ser-
vice time SCV’s, it does indicate that the i.i.d. approximation given in Property 7.9
for the SCV of departures is a viable approach for modeling purposes.

• Suggestion: Do Problem 7.11(a).
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7.5 Batch Network Examples

Modeling the flow of jobs within a factory in which batching occurs can compli-
cate the methodology considerably. To help in incorporating batches within your
models, we devote this final section to the analysis of two different factories with
batching. The first example includes all three major batch types and without any
feedback paths. The second example includes a more complex branching structure
that has reentrant flows. The main concept that is demonstrated with these examples
is that the formulas from the various properties cannot be blindly applied — they
often must be adjusted slightly to fit different situations. However, the bottom line
is that systems with batching can be reasonably well analyzed if the various models
discussed in this chapter are used wisely.

7.5.1 Batch Network Example 1

Consider Fig. 7.3 that has three workstations each of which operates using a differ-
ent form of the batch service models studied in this chapter. The first workstation is
a setup-batch processing workstation, the second workstation uses oven-batch pro-
cessing, and the third workstation is a single unit server with batch arrivals (the
batch move model). Inflow into the system is in terms of individual units with a
Poisson arrival rate with a mean of 5 units per hour. These individuals are imme-
diately batched into groups of k = 3 and transported into the first workstation. The
batch forming time in this analysis will be added to the cycle time for Workstation
1. The data for each particular workstation is given as it is needed in the solution
process.

Note in Fig. 7.3 that once batches are formed, they remain batches until they ei-
ther exit the system following processing at Workstation 2 or they make it to Work-
station 3. The jobs are large and require a forklift for transportation between work-
stations, thus all probabilistic branches are made on batches and not individual jobs.
Specifically, 2/3 of the batches leaving Workstation 1 are routed to Workstation 2
and 1/3 go to Workstation 3. From Workstation 2, 1/4 of the batches are finished
(leave the system) and the remaining 3/4 are routed to Workstation 3. At Worksta-
tion 3, the items are then separated once the batch enters service and, subsequently,
they leave as individuals. The goal of this analysis is to obtain the expected cycle
time and throughput rate for the system as a whole.

Workstation 1 Including Batch Forming Time

The arrival rate of individuals to the first workstation is according to a Poisson pro-
cess with a mean rate of 5 per hour. The average batch forming time, BT , to be
associated with each individual item is determined by the equation
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q

1-q

p

1-p

Batch Form

Size = k

Setup Batch

Oven Batch

Single Item

Fig. 7.3 Example manufacturing system where each workstation in the facility uses a different
form of the batch processing models

BTstart =
(3−1)

2
1
5

= 0.2 hr ,

where the 1/5 hour is the mean inter-arrival time. The arrival rate of batches to Work-
station 1 is the individual arrival rate divided by the batch size yielding λ1(B) = 5/3
per hour. Since the external arrival process is Poisson, the squared coefficient of
variation of the arrival stream of individuals is 1. Thus, the SCV for the inter-arrival
time of batches is

C2
B[Ta(1)] =

1
3

.

The first workstation is a setup batch system where a setup is required for every
three jobs. The setup time has a mean of 12 minutes and a variance of 1080 minutes2.
After the setup, jobs are processed one-at-a-time with a mean processing time of 6
minutes and a variance of 240 minutes2. Thus the characteristics for processing the
entire batch is given as

E[Ts,1(B)] = 12+3×6 = 30 min = 0.5 hr

V [Ts,1(B)] = 1080+3×240 = 1800 min2 = 0.5 hr2

C2
s,1(B) =

0.5
0.52 = 2 .

The workstation utilization is u1 = λ1(B)× E[Ts,1(B)] = 0.8333.Before using
Property 7.4 to determine the average cycle time within the first workstation, we
need to add a batch forming time after processing. Because all jobs are moved be-
tween workstations by a batch move, we add the batch forming time to the end
of this cycle time. (Although the formula of Property 7.1 includes the batch form-
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ing time as part of the next workstation, it easier to include with the first worksta-
tion’s cycle time because batches to the third workstation come from two different
sources.) The batch forming time after processing is given by

BTfin =
(3−1)

2
0.1 = 0.1 hr ,

where 0.1 refers to the individual mean processing time. Thus, using Property 7.4,
the cycle time for per job in the first workstation is computed as

CT (1) = BTstart +
1/3+2

2
0.8333

1−0.8333
0.5+

3+1
2

0.1+0.2+BTfin = 3.616 hr .

The departing squared coefficient of variation from Workstation 1 (in terms of
batches) is determined by the standard approximation (Property 5.2)

C2
d,1(B) = (1−0.8332)

(

1
3

)

+0.8332(2) = 1.491 .

The proportion of this output stream of batches that goes to Workstation 2 is 2/3
while 1/3 goes to Workstation 3. Thus, the two branches from Workstation 1 will
have the following characteristics (Property 5.6) as arrival streams to the other two
workstations:

λ1→2(B) =
2
3
× 5

3
= 1.111/hr

C2
a,1→2(B) =

2
3
(1.491)+

1
3

= 1.327 and

λ1→3(B) =
1
3
× 5

3
= 0.556/hr

C2
a,1→3(B) =

1
3
(1.491)+

2
3

= 1.164 .

Workstation 2 Oven Batch Processing

The second workstation is an oven batch service process with a mean time of 48
minutes and a service SCV of 0.75. The only jobs coming into Workstation 2 come
from Workstation 1, so the arrival process characteristics are those calculated previ-
ously from the Workstation 1 departure stream; thus, we have E[Ta,2(B)] = 0.9 hours
and C2

a,2(B) = 1.327. The utilization for the workstation is u2 = 1.111×0.8 = 0.889.
(Do not forget to make units consistent by converting 48 minutes to 0.8 hours.) The
formula of Property 7.6 is used after deleting the first term since the batch forming
occured and was counted in Workstation 1; thus, the cycle time calculation is
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CT (2) = 0.8+
(1.327+0.75)

2
0.889

1−0.889
(0.8) = 7.454 hr .

The inter-departure time SCV for Workstation 2, again in terms of batches, is

C2
d,2(B) = (1−0.8892)×1.327+0.8892×0.75 = 0.871 .

The proportion of this departure stream that is branched (again full batch branching)
is 3/4; thus,

λ2→3(B) =
3
4
×1.111 = 0.833/hr

C2
a,2→3(B) =

3
4
(0.871)+

1
4

= 0.903 .

Workstation 3 Batch-Arrival Individual-Service

The arrival of batches into Workstation 3 comes from both Workstations 1 and 2;
therefore, the total mean arrival rate is given by

λ3(B) = λ1→3(B)+λ2→3(B) = 0.556+0.833 = 1.389/hr .

The SCV of the arrival stream is approximated by a weighted average of the two
streams that merge (Property 5.5) yielding

C2
a,3(B) =

0.556
1.389

×C2
a,1→3(B)+

0.833
1.389

×C2
a,2→3(B)

= 0.4×1.164+0.6×0.903 = 1.007 .

The service process at Workstation 3 is for individual items; hence, the Batch
Move Model of Sect. 7.1 is used to determine cycle time. The mean and standard
deviation of the individual processing times are 12 and 8.458 minutes, respectively.
The utilization factor for the workstation is u3 = 3×1.389×0.2 = 0.833/hr, and the
application of Property 7.2 yields the mean time that a job spends within Worksta-
tion 3 as

CT (3) =
3×1.007+0.5

2
0.833

1−0.833
0.2+

3+1
2

0.2 = 2.156 hr .

Note that the SCV for the service time is the square of the standard deviation divided
by the mean.

System Measures

The throughput rate of individual items for this system has to equal the arrival rate
of 5 jobs per hour. The cycle time for the system including batches that exit from
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Workstation 2 is determined by computing the work-in-process (WIP) at each work-
station, then summing to obtain the system WIP. From the system WIP, using Lit-
tle’s Law (WIP = th×CT ), the cycle time for individuals is determined. Note that
the WIP is to be computed in individual units so that the cycle time for individuals
in the system can be computed. The data needed for this analysis and the results are
contained in Table 7.4.

Table 7.4 WIP calculations for the example of Sect. 7.5.1

Workstation i λi(I) CT (i) WIP(i)
1 5/hr 3.616 hr 18.08
2 3.333/hr 7.454 hr 24.84
3 4.167/hr 2.156 hr 8.98

Table 7.5 Transportation time calculations for the example of Sect. 7.5.1

From/To Move Rate Travel Time WIP
Entrance to WS 1 5/hr 5 min 0.417

WS 1 to WS 2 3.333/hr 8 min 0.444
WS 1 to WS 3 1.668/hr 9 min 0.250
WS 2 to WS 3 2.499/hr 6 min 0.250

Thus, the total system WIP is 51.9 jobs and the average cycle time for individual
jobs through this system regardless of their exit point is 51.9/5 = 10.38 hours. These
calculations ignored all transportation times. If we assume a sufficient number of
forklifts so that there is no waiting when a batch is ready to be moved, it is relatively
easy to include the time necessary for batch moves. Table 7.5 shows the data and
the calculations needed to include the transportation time needed for the forklifts to
move the various jobs between workstations.

From the analysis contained in Table 7.5, we have that there is an average of
1.36 jobs within the transportation system of the factory. Thus, the total WIP in the
factory is 53.26 jobs and the mean cycle time, including move times, is 10.65 hours.

7.5.2 Batch Network Example 2

Consider the network given in Fig. 7.4. The first workstation has two processing
machines, the second workstation has one machine, and the third workstation has
an oven process that serves three units simultaneously. The arrival rate of jobs into
this system is a Poisson process with jobs entering at Workstation 1 at a mean rate
of 10 jobs per hour. The data for the three workstations are given in Table 7.6.

Because there are reentrant flows within this factory, the total arrivals rates must
be determined using a routing matrix. These probabilities given in Fig. 7.4 and result
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WS 3

WS 1

WS 2

1/4

3/4

1/2

1/2

1/3

1/3

1/3

Fig. 7.4 Manufacturing system with batch processing at Workstation 3; batches are formed in front
of Workstation 3 and individual items are shipped out from 3; Workstation 1 has two machines and
Workstation 2 has one machine

Table 7.6 Data for the example of Sect. 7.5.2

External Number of Batches Size
Workstation Arrival Rate Machines for Processing E[Ts] C2[Ts]

1 10/hr 2 1 2.4 min 1
2 0 1 1 1.714 min 1
3 0 1 3 3.75 min 1

in the following:

P =

⎡

⎣

0 0.25 0.75
0.333 0 0.333

0.5 0.5 0

⎤

⎦ .

The mean total arrival rate into each workstation, λi for i = 1,2,3, are determined
from the following system of equations (Property 5.7):

λ1 = 10+λ2/3+λ3/2

λ2 = λ1/4+λ3/2

λ3 = 3λ1/4+λ2/3 .

The solution to this system is λλλ = (40/hr,30/hr,40/hr). Using these inflow rates, the
utilizations for the three workstations are determined from

u1 =
40
2
×0.04 = 0.800

u2 = 30×0.0286 = 0.858

u3 =
40
3
×0.0625 = 0.833 .
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The squared coefficient of variations of the arrival streams into the three worksta-
tions are also determined by solving a system of linear equations. These equations
are considerably more complex to develop than the arrival rate equations since they
are a combination of the departure SCV’s for each workstation, and the branch and
merging mechanisms for network traffic streams as in Property 5.8. Now we will
need to make further modifications to Properties 5.8 and 5.9 due to batching.

Because of reentrant flows, Workstations 1 and 2, those stations could be mod-
eled using the approach taken in Sect. 7.4.2 using the random batch size method-
ology as in Property 7.8; however, this will lead to a relatively complex system of
equations, and in fact, most of the batch sizes will be of size one. Therefore, we
will take the approach of using the i.i.d. departure stream SCV approximation of
Eq. (7.24) for individual departures. Note that (7.24) is in terms of departures from
Workstation 1 going to Workstation 2. Before using this equation in our system
to define the arrival stream SCV’s, we must rewrite (7.24) in terms of the arrivals
to Workstation 1 (namely, we use the standard relationship given in Property 5.2
adjusted for batch arrivals). This yields the following equation for the SCV of the
inter-arrival times to Workstation 2 following a batch operation of size k in Work-
station 1

C2
a,2(I) =

kp
[

(1−qk)
(

(1−u2
1)(C

2
a,1(I)/k)+u2C2

s,1(B)
)

+qk +1
]

1−qk −1 , (7.25)

where the subscript indicates the appropriate workstation.
The modification to the equation of Property 5.8 that is necessary is the inclusion

of (7.25) whenever the subscript of the summation refers to the third workstation.
The resulting system of equations to be solved to obtain C2

a(i) for i = 1,2,3, are the
following:

C2
a(1) =

10
40

(1)+
30/3

40

[

1
3

{

(1−0.8582)C2
a(2)+0.8582(1)

}

+
2
3

]

+
40/2

40

[

1.5
[

(7/8)
(

(1−0.8332)C2
a(3)/3+0.8332(1)

)

+9/8
]

7/8
−1

]

C2
a(2) =

40/4
30

[

1
4

{

(1−0.82)C2
a(1)+0.82 1+

√
2−1√
2

}

+
3
4

]

+
40/2

30

[

1.5
[

(7/8)
(

(1−0.8332)C2
a(3)/3+0.8332(1)

)

+9/8
]

7/8
−1

]

C2
a(3) =

40(3/4)
40

[

3
4

{

(1−0.82)C2
a(1)+0.82 1+

√
2−1√
2

}

+
1
4

]

+
30/3

40

[

1
3

{

(1−0.8582)C2
a(2)+0.8582(1)

}

+
2
3

]

.
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The solution to this system of equations can be solved directly as a system of linear
equations. Or, if a matrix inverse routine is not available, an iterative procedure can
be used where all the C2

a’s are initialized to 1 and the above equations are used to
obtain an updated estimate. This process, using the updated estimates, is repeated
several times until the C2

a values do not change to whatever degree of accuracy
that you deem necessary. This iterative process converges to the unique solution to
this system of linear equations. Using this iterative process, the solution to three
decimals places repeats itself after the fifth iteration. Thus, the sixth iteration yields
the solution

C2
a(1) = 1.589, C2

a(2) = 1.780, C2
a(3) = 1.137 .

The workstation performance measures of cycle time, CT (i), and WIP(i) can
now be estimated. These are

CT (1) =
(1.589+1)

2

(

2.4
60

)

0.8
√

2(3)−1

2(1−0.8)
+

2.4
60

= 0.134 hr

WIP(1) = 0.134(40) = 5.347

CT (2) =
(1.780+1)

2

(

1.714
60

)

0.858
1−0.858

+
1.714

60
= 0.267 hr

WIP(2) = 0.267(30) = 8.006

CT (3) =
(3−1)

2
1

40
+

(1.137/3+1)
2

(

3.75
60

)

0.833
1−0.833

+
3.75
60

= 0.303 hr

WIP(3) = 0.303(40) = 12.118 .

Note that Workstation 3 has the batch forming time included in the cycle time.
The total system performance measures are 10 jobs per hour for throughput (what

comes in must go out in steady-state), a total work-in-process of

WIPs = WIP(1)+WIP(2)+WIP(3) = 25.472 jobs,

and a mean cycle time per job of 25.472/10 = 2.547 hr (using Little’s Law).

• Suggestion: Do Problems 7.10, 7.11(b) and 7.12.

Bibliographical Note

The batch move (Sect. 7.1) and setup batch (Sect. 7.2) cycle time models follow the
development of Hopp and Spearman [5]. The random batch arrival and unit service
model for M/G/1 systems is developed in Cooper [2], and the generalization for
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the G/G/1 case developed herein agrees with his result for Poisson arrivals. The
renewal process approximations for the departure SCV’s from the various batch
service processes are developed in Curry and Deuermeyer [3]. The development
approach is an extension of the G/G/1 departure process analysis of Buzacott and
Shanthikumar [6]. A more general batching rule is contained in [4] where instead
of using a fixed batch size, a minimum size and a maximum size are established
so that processing would begin whenever the minimum size is available but if more
that the maximum number of items are queued at the end of an operation, only the
maximum would be allowed in the processor.

Problems

7.1. Consider a system with a single workstation that processes jobs one at a time.
Jobs arrive to the factory at a rate of one per hour. An analysis of the arrival data
indicates that these inter-arrival times have a squared coefficient of variation (SCV)
of 1.5. The service time mean is 0.75 hours with an SCV of 2. The company policy is
to work on orders k at a time. That is, orders are held until there are k jobs, then this
group of jobs is released into the factory for processing. Since there is no physical
reason for holding the incoming work and forcing it into groups, what is the impact
on cycle time of this ”batching” operation for specified k values?
(a) k = 2.
(b) k = 3.
(c) k = 4.
(d) k = 5.

7.2. Consider a factory that has a single workstation that processes parts individu-
ally. These parts are quite heavy and the company policy is to palletize incoming
parts into groups of k items for ease of transportation. These batches are then re-
leased into the factory for processing. These k items are processed at the machine
and again placed back on the pallet. When the pallet is full, the k items have been
processed, the pallet is transported to shipping.
(a) Neglecting the actual transportation time, what is the equation for cycle time of
individual parts for this factory. This cycle time includes the waiting time for all
batching operations. Compare the batch movement cycle time with that of a system
that does not need to batch these items for movement within the factory. How much
extra time does an average item incur due to batching for movement purposes?
(b) Assume it takes an average of t1 to move a pallet from the unloading dock to the
workstation and an average of t2 to move a pallet from the machine to the next work-
station. Assuming no waiting for a forklift to move the pallet, add the transportation
time to the model.

7.3. Consider a factory that processes a single job type. Orders are processed one at
a time in a serial processing configuration. One of the workstations requires a ma-
chine cleaning operation periodically. This workstation has only one machine. No
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more than 9 jobs can be processed between the cleaning of this machine. To insure
proper cleaning of the machine, management has jobs batched at the machine in
the specified group size, and then the operator cleans the machine before processing
each batch. Jobs arrive at this workstation at a rate of four per hour. An analysis of
the arrival data indicates that these inter-arrival times have a squared coefficient of
variation (SCV) of 1.5. The service time for individual-unit processing has a mean
of 0.15 hours with an SCV of 0.75. The cleaning operation takes a mean time of
one-quarter of an hour with an SCV of 1.5. Management would like to know the
impact on cycle time and the departure SCV for this machine (workstation) for the
various batch sizes that are feasible between 1 and 9.

7.4. Consider a workstation with a batch server of capacity 4. Jobs arrive at the
workstation individually at a rate of 6 jobs/hour and an inter-arrival time C2

a(I) of 3.
Only full batches are processed at the workstation. The batch mean service time is
0.6 hours with C2

s (B) = 0.8. Find:
(a) The cycle time for this workstation including the batch forming time.
(b) The expected number of batches waiting to be processed.
(c) What is the mean and C2

d(B) of the batch inter-departure times?
(d) Considering that the batch is immediately broken into individual jobs on com-
pletion of service, what are the mean and C2

d(I) of the individual inter-departure
times?

7.5. Consider the output from an oven batch server with batch size k and C2
d(B). The

batch is immediately broken into the individual items. Compute the missing items in
the following table (using Property 7.7): the individual item’s departure SCV, C2

d(I),
and the individual item’s arrival SCV, C2

a(I) at the next workstation after random
branching of individuals with probability p.

k C2
d(B) C2

d(I) p C2
a(I)

4 0.8 1/4
4 0.8 1/2
4 0.8 3/4
5 2.0 1/4
5 2.0 1/2
5 2.0 3/4

7.6. An oven-type processing workstation processes two products. The products are
processed separately, not mixed, in the oven. The oven holds 5 units of both prod-
ucts. The products enter the workstation as individual units (not batches) and leave
the workstation as individual units.

Product λi C2
a(i) E[Si] C2

s (i) batch size
1 5 1.5 0.50 Poisson 5
2 4 2.2 0.35 Erlang-3 5

(a) Compute the workstation average cycle time, CTs(avg).
(b) Compute the cycle time for Product 1, CT (1).
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(c) Compute the cycle time for Product 2, CT (2).
(d) Compute the C2

d(B) for outgoing batches.
(e) Compute the C2

d(I) for outgoing individual jobs.

7.7. Consider a workstation that processes 4 jobs simultaneously (k = 4). The de-
parture stream from this workstation has a mean rate of 4 batches/hour with an
SCV of 1.5. After leaving the workstation, individuals are randomly branched to
other workstations for further processing. Two-thirds of the units are branched to
Workstation Q, as its only arrival stream, that has service time characteristics (for
individuals) of E[Ts(I)] = 0.08 and C2[Ts(I)] = 1.3. Determine the expected cycle
time for Workstation Q.

7.8. Consider a workstation that processes 5 units simultaneously (k = 5). The de-
parture stream from this workstation has a mean rate of 4 batches/hour with an
SCV of 1.75. After leaving the workstation, individuals are randomly branched to
other workstations for further processing. Sixty percent of the units are branched to
Workstation G, as its only arrival stream, that has service time characteristics (for
individuals) of E[Ts(I)] = 0.07 and C2[Ts(I)] = 1.7. Determine the expected cycle
time for Workstation G.

7.9. Reconsider the batch service network example illustrated in Fig. 7.3. Re-
analyze this network with the following data rather than the data used in the ex-
ample. The network structure is identical to the example, but all of the numerical
data have been changed, including the branching probabilities. Obtain the system
throughput, cycle time and work-in-process. The problem data by workstation fol-
lows.

Batch forming and external arrival data:

γ1 = 6, C2
a0(1) = 1, k = 4.

Workstation 1 data (setup batching):

E[Tsi(I)] = 1/15,

V [Tsi(I)] = 1/10,

E[R] = 1/4,

V [R] = 4/10.

p = 1/4,

1− p = 3/4 .

Workstation 2 data (oven batching):

E[Ts(B)] = 0.8,

C2[Ts(B)] = 3/4,
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q = 1/3,

1−q = 2/3 .

Workstation 3 (batch move):

E[Ts(I)] = 1/5,

C2[Ts(I)] = 1/2 .

7.10. Consider a factory with a batch server. Let the network structure be the same
as that of Fig. 7.4, except that the branching probabilities are different. The data
for the workstations and the branching probabilities are given below. Develop the
workstation and system performance measures of throughput, cycle time and work-
in-process. The external arrival process is assumed to be Poisson. Note: use (7.25)
in the C2

a(I) term.

Workstation Inflow Machines Batches E[Ts] C2[Ts]
1 10 2 1 1/25 2
2 0 1 1 1/35 2
3 0 1 4 1/10 2

From/To 1 2 3
1 0 1/3 2/3
2 1/3 0 1/3
3 4/10 6/10 0

7.11. Consider a network of four workstations with the data given in the following
tables. Draw the network diagram and develop the workstation and system perfor-
mance measures of throughput, cycle time and work-in-process. The external arrival
process is assumed to be Poisson.
(a) Use Property 7.7 in the C2

a(I) computations.
(b) Use Eq. (7.25) in the C2

a(I) computations.

Workstation Inflow Machines Batch Size E[Ts] C2[Ts]
1 2.5 1 1 0.10 2.00
2 1 2 1 0.26 1.50
3 0 1 1 0.13 0.75
4 0 1 4 0.64 3.00

From/To 1 2 3 4
1 0 2/4 1/4 1/4
2 1/3 0 1/3 1/3
3 4/8 1/8 0 1/8
4 0 0 2/3 0

7.12. A manufacturer produces two products in a three-workstation facility. The
products are similar and both use an identical heat-treatment process. Thus, these
products can be indiscriminately mixed for this oven process, that can process six
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items simultaneously. Both external arrival processes are Poisson distributed. The
factory capacity consists of 5 identical machines in Workstation 1, 4 identical ma-
chines in Workstation 2, and one oven for the heat-treatment process in Worksta-
tion 3 (with a batch capacity of 6 jobs). Using the product branching probabilities
and processing time data listed below, compute the factory cycle time, work-in-
process and throughput. All times are in hours. Note: use Eq. (7.25) in the C2

a(I)
computations.

Product 1
Workstation Inflow Batch Size E[Ts] C2[Ts]

1 2 1 0.20 1.00
2 0 1 0.30 1.50
3 0 6 0.40 1.75

Product 1
From/To 1 2 3

1 0 1/2 1/2
2 1/4 0 3/4
3 1/3 1/3 0

Product 2
Workstation Inflow Batch Size E[Ts] C2[Ts]

1 3 1 0.30 2.00
2 0 1 0.35 1.80
3 0 6 0.40 1.75

Product 2
From/To 1 2 3

1 0 2/3 1/3
2 1/3 0 2/3
3 3/5 0 0

7.13. Re-derive the batch service time process characteristics C2[Ts(B)] (Eq. 7.18)
using Property 1.9 for the sum of random variables.

7.14. Team Project Problem. The Southwestern Specialties Company has a line of
four products that they produce in their factory located in Houston, Texas, working
24 hours per day. The company is soliciting bids from consulting firms for the anal-
ysis of their current and future factory performances. The company currently has
contracts with several national retail companies, such as Wal-Mart, Kmart, and Tar-
get, to produce specific quantities of each of their four products. The initial project
phase is to develop a model of their current factory and develop cycle time estimates
for each product. The second phase of the project will be to predict the impact of a
new marketing strategy based on E-Commerce using the World-Wide-Web. Several
consulting companies have been selected to perform the first phase of the project
(current factory performance modeling) and the best among those will be selected



Problems 235

for the future phase. Only after successfully demonstrating your consulting firms
capabilities, will the company authorize the release to the consulting firm the nature
of the second phase of the modeling and analysis project.

First Phase Information
The Southwestern Specialties Company’s Houston factory consists of three

workstations (called Workstations 1, 2 and 3). Workstation 3 is an oven heat-
treatment facility. The four products take different routes through the three work-
stations and have different numbers of processing steps. There currently are three
machines in Workstation 1 and one machine each in Workstations 2 and 3. The
machine (oven) in Workstation 3 has the capacity to process up to 4 units simulta-
neously, but it is currently operated with a fixed batch size of 3 units. Engineering
has spent considerable design and analysis time over the years to develop a process-
ing procedure that allows all four of the products to be processed in the oven with
the same time and temperature settings. Therefore, the factory operations personnel
can form an oven batch from any combination of the four product types.

Orders are released to the factory according to a Poisson process at a mean rate
of 7.68 orders per day. The current distribution of order releases by product type is
(20%, 30%, 25%, 25%) for Products, 1, 2, 3 and 4, respectively.

Engineering has developed standard times for each of the processing steps for
each product and these “mean” times are listed below. Their analysis has revealed
the surprising fact that the distribution of processing times for each and every pro-
cess is very accurately approximated by an Erlang Type-2 distribution. The work-
stations’ sequence for each product is:

Products 1 2 3 4 5
1 3 1 2 1
2 1 2 3 2 1
3 2 1 2 3 1
4 3 1 2

The mean processing time by product and processing step, in hours, are:

Products 1 2 3 4 5
1 8 6 1.7 6
2 5 1.6 8 1.5 5
3 1.9 4 2.2 8 4
4 8 3 2.2

The average cycle time for all products is approximately 80 hours. The consult-
ing firms will be selected to continue into the second modeling and analysis phase
based on their answer to the question: What is the mean cycle time by product? Of
course, all relevant data concerning your firms answer to this question must be pro-
vided.

Second Phase Information
Your consulting firm has been selected to analyze the new company strategy for

the Southwestern Specialties Company. The company has decided to no longer use
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Fig. 7.5a Process flow diagram for Product 1 of Problem 7.15
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Fig. 7.5b Process flow diagram for Product 2 of Problem 7.15

fixed contracts. They have decided that they would do better by selling the four
products over the internet. The research staff has determined that the sales rates are
functions of the product cycle times and they estimate these functions as:

Product 1: r(1) = 0.1088−0.0006×CT (1),
Product 2: r(2) = 0.1632−0.0007×CT (2),
Product 3: r(3) = 0.1360−0.0006×CT (3),
Product 4: r(4) = 0.1360−0.0009×CT (4).

The company will allow two new machines to be purchased of any type (exclud-
ing ovens). The company wants answers to the following questions:
(a) What should be the company capacity structure?
(b) What is the projected company sales rates and cycle times for the four products?
(c) Are the sales consistent and stable? If not what can be done to make them stable?
(d) Is the company in a good or bad situation?

7.15. Team Project Problem. Quality Products Inc., a company that manufactures
high-quality heat-pumps for the housing industry, has a local manufacturing facil-
ity. This plant only produces heat-pumps and until recently there was only one ba-
sic production process for these items. With the new environmental concerns and
government regulations, they have designed and recently brought into production a
second product line of heat-pumps. The production processes for the old and new
product lines are similar, using the same equipment, but they have slightly different
processing sequences and processing times. The product processing sequences are
illustrated in Figs. 7.5a and 7.5b. Product 1 is the old heat-pump process and Prod-
uct 2 is the production sequence for the new line of heat-pumps. This first quarter
of 2002 the daily releases of products to be manufactured is 8 units on the product
1 and 2 units of Product 2. The average cycle time for the facility is in the neighbor-
hood of 6.2 days.
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Quality Products Inc. would like to have a consulting team perform a systems
analysis for each quarter of the year. They expect that the total of units manufactured
to remain at a demand level of 10 per day but the product mix will change each
quarter. Their quarterly demand forecasts for daily demands by product type are:

First Quarter Second Quarter Third Quarter Fourth Quarter
Product 1 8 6 4 2
Product 2 2 4 6 8

The company is concerned about their machining capacities as demands change
over time. They would also like to know what the impacts will be on their cycle
times and they want to estimate the cycle times for the individual products as well
as the facility average. If new machines are needed, they want to get these ordered
and installed so that they will not suffer a short-fall in production output versus
demand.

The top-planning engineer for Quality Products Inc. has developed the data for
the old and new product processing steps. The mean processing times (in days) are:

Means Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8
Product 1 0.008 0.120 0.070 0.070 0.075 0.100 0.070 0.180
Product 2 0.002 0.100 0.090 0.070 0.080 0.080 0.070 0.100

SCV’s Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8
Product 1 1.5 1.2 1.3 1.0 1.6 0.9 1.3 0.5
Product 2 1.0 1.0 1.0 1.3 1.0 1.0 1.3 1.0

There are currently three machines in Workstation 2 and two machines at Work-
station 5. The other workstations seem to be operating okay with a single processing
machine. Workstation 3 is a heat-treatment process and the current capacity of the
machine is two jobs at a time.

The product demand data is currently 8 units of Product 1 per day with a SCV
of 1.5. Product 2 has a mean demand rate of 2 units per day with an SCV of 0.75.
As demand shifts from being predominantly Product 1 to mostly Product 2, the
company does not anticipate a change in the SCV’s for the individual products.

All of the machines in the factory have a 95% availability factor. The mean repair
times are, respectively, 0.2, 0.3, 0.4, 0.35, 0.5, days. All repair times are exponen-
tially distributed.

7.16. Team Project Problem. The MicroTex Corporation makes special purpose
microprocessors that are used in a variety of machines. The company produces two
products as variants from the same processing procedure. The products are distin-
guished after one layer or single sequence through the processing steps. After the
first layer has been completed, the wafers go through a test operation; wafers are
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characterized as worthless (waste), bad and in need of rework, good wafers but low
cycle speeds, and excellent with high cycle speeds. Product 1 is made from the low
cycle speed processors that are immediately packaged and shipped. The high-speed
units are processed further by a second sequence through the basic operational steps
(using the same machines as previously) and then a final test is performed. Units
again are characterized as waste, rework and completed units (no low speed units
can come out of the second test). The completed units are then packaged and shipped
as the company’s high-grade product.

Microprocessor chips are produced by a process that starts with pure silicon
wafers that are fragile, flat, thin circular objects that look similar to glass. Patterns
are placed on the wafers by covering them with a photo-resist material and then ex-
posing the images onto the resist by shining light through a template or mast of the
desired image. The images are hardened by baking the wafer in an oven. A pattern
of holes is then etched into the mask layer by removing the exposed material. This
allows the dopants to be diffused into selected areas of the wafer. Specific ion atoms
(dopants) are implanted on the exposed surface (boron, phosphorous, and arsenic)
by diffusion processes. These processes are repeated hundreds of times to produce
a state of the art microprocessor. Then a wafer probe is used to functionally test the
individual processors on the wafer and characterize their performance potential. The
completed wafers are diced into single chips with a diamond saw and then attached
via glue to a package. The package provides the contact leads to the chip. Wire
bonding, generally with gold leads, is used to connect the package leads to the wire
connections within the chip. Then the package containing the chip is encapsulated
with a plastic coating for mechanical and environmental protection.

The MicroTex wafer fab is a state-of-the-art pilot facility with the latest cluster
tool technology. These fabrication processes are performed in three basic steps. The
first set of processing steps is performed in Workstation 1 with a pair of identical sin-
gle wafer processing equipment (machines). At the second workstation, the remain-
ing set of operations is performed in a batch mode using a single large capacity (up
to eight lots simultaneously) processor (similar to an oven operation). A third work-
station contains a single testing machine used to determine the wafer performance
characteristics. Workstation 4 consists of the packaging operations also performed
using a single piece of equipment. All of the completed products received the same
general processing using the same equipment, although the processing times vary
for the second production pass. The wafer units that have graded out as high quality
and speed are processed further.

To prepare for the second layer, the second time through the processing steps, a
separate distinct set of processing must be performed. This preparation processing
step is distinct from previous processing and, therefore, these operations are per-
formed on a separate machine in Workstation 5. When completed, these units are
sent back through the first three workstations for another sequence of processes. The
second sequence of processing has distinct times from those of the first sequence,
except for the batch operations of Workstation 2. This is fortunate, allowing batch-
ing at Workstation 2 to be indiscriminate of the type of wafers being processed.
That is, batches can consist of either or both types of wafers. If the high quality
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product wafers grade out acceptably they are also then packaged at Workstation 4
and shipped.

Phase I
MicroTex management would like your consulting team to develop a model of

their facility and help them answer questions concerning potential areas of improve-
ment. The first phase of the project is to utilize their best guess data, compiled by
their lead engineers, and develop a preliminary model of their company. If they
find this result acceptable, they will allow your team access to the actual company
proprietary data from which accurate and meaningful data can be developed. This
refined model will then be used to develop strategies for future company improve-
ment and new product development. These types of facility are extremely expensive
to build, frequently costing from one to two billion dollars for a full scale facility.
Thus, continuous operation of the facilities is maintained at all times; 24 hours a
day, seven days a week.

The work release rate for the pilot facility is one job (lot of 24 wafers) per hour.
All times are given in lot units. The mean times for the first three processing steps
are estimated to be 1.15, 2 and 0.25 hours, respectively. The test operation on aver-
age finds that 10% of the processed wafers are scrapped and 15% can be reworked
and are thus reprocessed at Workstation 2. Of the acceptable units, only 1/3 grade
out as high quality and speed and go through further processing. The packaging
operation for the low or first level product takes 45 minutes while the high quality
product takes 54 minutes. For the high quality product, the unique first additional
step takes 2 hours and 15 minutes. The company policy is that when (on the first
trip through only) a lot is scrapped, it is replaced with a new lot start. The second
trip through workstation one takes 75 minutes and in Workstation 3 the second trip
requires an additional 3 minutes over the first processing time. The batch size used
in Workstation 2 is a fixed quantity of four jobs (four lots of wafers). This is a car-
ryover from a previous production line where the machine capacity was limited to
four lots. For the pilot factory, the number of machines in Workstation 1 is two, the
number of ovens in Workstation 2 is one, and the number of machines in Worksta-
tion 3 is one. For this pilot system analysis, we can assume that the order release
process (external arrival process) and all service processes have squared coefficients
of variation with values of 1.

MicroTex wants a short written report of your consulting team’s preliminary
model to determine if your consulting team will be continued into the actual fac-
tory analysis phase.
Phase II

The MicroTex Corporation accepts your design team as the company’s consulting
team for the wafer fabrication pilot facility study. During your preliminary analysis
period, the company has had a team of industrial engineering coop students collect-
ing time study data for all the machines used in the facility. The coop group finished
the analysis on four of the five machine types and furnished the following table:
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Processing Step E[S] C2
s

1 1.15 hr 3
2 (oven) 2 hr 2
3 (test) 0.25 hr 1

4 (package) 0.75 hr 4
5 (special) 2.25 hr 3.05

6 (1) 1.25 hr 3
7 (oven) 2 hr 2
8 (test) 0.30 hr 1

9 (packaging) 0.90 hr 4

The current pilot facility has a cycle time around 65-70 hours. Management has
a quality improvement program in place and they predict that scrap losses can be
reduced to 5%, rework can be reduced to 10%. In addition, engineering believes
that the processing times variations can be reduced across the board by 50%. Can
the management goal of a cycle time of less than 35 hours be reached?

Engineering is always working to improve the high speed wafer yield percentage.
These units are worth considerably more and have an unlimited market. Engineering
feels that this yield percentage can be drastically improved, but maintaining the
cycle time goal of 35 hours will be impossible. Management has, therefore, agreed
to allow one more machine (of any type) to be placed in the pilot facility if necessary.
What is the maximum high speed wafer yield percentage that can be accommodated
within the 35 hour cycle time guideline?

The real goal of the pilot facility is to determine what facility configuration is
necessary for a full scale facility with a release rate of 10 lots per hour. We can
assume that all of the learning with respect to yields, variation reductions, etc., carry
over to the new facility. Assuming that the best yield results for the pilot facility can
be maintained in the new plant, what is the machine configuration and estimated
cycle time for this facility?
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Chapter 8
WIP Limiting Control Strategies

Many companies find themselves with too much work-in-process. The disadvan-
tages of high levels of WIP are numerous, and many of the disadvantages cannot
be directly measured economically. Two major disadvantages of high WIP levels
that are difficult to economically evaluate are not being able to respond to demand
changes quickly and the potential to build a considerable quantity of poor qual-
ity stock before realizing that there is a quality problem. To help control inventory
within production and manufacturing facilities, WIP limiting production procedures
are frequently used.

The just-in-time production approach attempts to control product releases based
on factory conditions. The production release approach studied to this point is based
on a schedule or “push” approach. The “pull” production strategy, generally associ-
ated with the Toyota production controls, was originally based on a card or kanban
system. (The term kanban, borrowed from the Japanese language, originally referred
to the use of cards to control the movement of parts; however, today many things
other than cards might be used including simply an empty cart or even golf balls.)
The general concept is to release work only when something has left the system
(area or range of oversight control). This approach is thus some form of a WIP lim-
iting process. One of the simplest approaches is to limit the total WIP and not be
concerned with allocation restrictions within the facility itself. This approach, pop-
ularized under the term CONWIP from CONstant WIP (see Hopp and Spearman
[8]), puts a new job into the system whenever a job leaves the system after the sys-
tem has reached its CONWIP level. Once the system is loaded to the desired limit,
this approach maintains a constant WIP in the system. More detailed controls can
be accomplished by restricting the WIP available in regions of the factory and even
down to the workstation level. When the CONWIP approach is implemented for
each workstation, it becomes conceptually equivalent to the kanban approach.

Two different approaches for facility control are studied in this textbook: CON-
WIP and kanban control policies. This chapter considers a total WIP limit ap-
proach via the mathematical methodology of closed queueing networks. In Chap. 9,
WIP limits at individual workstations or kanban control are studied. These two ap-
proaches lead to different analytical models for predicting the system performance
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DOI 10.1007/978-3-642-16618-1 8, c© Springer-Verlag Berlin Heidelberg 2011



242 8 WIP Limiting Control Strategies
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measures. The CONWIP method is the simpler mathematically as well as the sim-
pler to implement and can be studied by the well developed approximation area
called mean-value analysis for closed queueing networks. Mean value analysis is a
computationally simple approach that was developed for exponential service time
models. An approximation for general service distributions called extended mean
value analysis is also discussed.

This chapter is concluded with a case study of the impacts of CONWIP control
along with several job sequencing algorithms for selecting the next job from the
queue for processing. This study is presented to familiarize the reader with the po-
tential impact that scheduling rules, other than just push or pull strategies, can have
on factory performance.

8.1 Closed Queueing Networks for Single Products

In Chap. 5, queueing networks were used to represent a factory. These were open
queueing networks because jobs arrived from a source external to the network and
jobs departed from the network. We will now change this approach and use closed
queueing networks to model the factory.

Definition 8.1. A closed queueing network is a network of queues in which no ar-
rivals are possible from outside the network and no jobs within the network can
leave.

The network displayed in Fig. 8.1 is an example of a closed queueing network.
A closed queueing network is a representation of a constant WIP controlled system
where the total WIP is set at a specified limit, say wmax. When a job completes
service, it is counted and a new job is entered into the system immediately. This
is mathematically equivalent to branching the completed job back to the starting
workstation. For this representation of a constant WIP system, there are no external
flows into the system and really no exiting flows from the system. Job completions
are counted by recognizing that the rate of “good” jobs leaving the last workstation
is equivalent to a job completion. The term “good” implies that a proportion of
the jobs leaving the last workstation could be defectives that are not counted as
completed jobs and these may be branched back for rework or, if scrapped, then a
totally new job is started in the defective job’s place.

Example 8.1. Consider a three-workstation factory where all jobs leaving Worksta-
tion 1 are sent to Workstation 2. From Workstation 2, 10% must be reworked and are
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returned to Workstation 1 and 90% are sent to Workstation 3. From Workstation 3,
10% are defective and are again sent back to Workstation 1 and 90% are good and
shipped to the customer. A control will be placed on this factory so that there will
always be exactly 25 jobs in the system. To implement this policy, a job will be
started whenever a finished job is shipped to a customer. In such a situation, jobs
are actually flowing into the system and out of the system, but mathematically, it is
equivalent to the closed system shown in Fig. 8.1. The throughput rate of this system
is the flow rate of jobs along the upper path (the path indicating a 9/10 probability
branch) leaving Workstation 3 and returning to Workstation 1. ��

The mathematical analysis of a closed queueing network starts with solving for
the flows between workstations. It is assumed throughout the chapter that there are
n workstations. A slight problem exists for closed-queueing networks in that there
is no longer a unique set of flow rates that describe the system. This is not surprising
if one considers that the flow rates are dependent on the number of jobs allowed in
the system, wmax. To illustrate this point, again consider Fig. 8.1. The arrival rates
to each workstation must satisfy the following

λ1 = 0.1λ2 +λ3

λ2 = λ1

λ3 = 0.9λ2

It is now easy to verify that the solution

(λ1,λ2,λ3) = (1,1,0.9)

satisfies the flow requirements of Fig. 8.1. But it is also true that

(λ1,λ2,λ3) = (2,2,1.8)

also satisfies the flow requirements. In fact, any multiple of the vector (1,1,0.9)
would satisfy the above equation for the three rates, so obviously a unique set of
flow rates cannot be found. But what can be found are the relative flow rates, call
these the vector (r1,r2,r3), that give the rates with respect to each other. For the
above example, these rates are (1, 1, 0.9), based on the flow for either of the first two
workstations. These relative rates are (1/0.9, 1/0.9, 1) if they are computed relative
to the flow of the third workstation.

Before developing a method to obtain the relative flow rates, consider the diffi-
culty in attempting to perform the standard flow rate analysis (see Sect. 5.4.1). In
general, a solution to the following system of equations is required

λλλ = PTλλλ +γγγ ,

where λλλ is the vector of unknown internal flow rates, γγγ is the vector of known rates
of arrivals from an external source, and P is the routing matrix giving the branch-
ing probabilities. Since there are no external inflows for closed queueing networks
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(namely, γγγ = 0), the system can be rewritten as

(I−PT )λλλ = 0 ,

where I is an identity matrix (see Property 5.7).
Now if the inverse of (I− PT ) exists, the flow can only be zero (λλλ = 0). By

the illustration above, the flow rates are not zero, so one can conclude that (I −
PT )−1 does not exist. In fact this is always true for a closed queueing network,
i.e., the matrix (I−PT ) is nonsingular. Therefore, a dependent system of equations
results when the external flows are zero. For this situation, any one of the equations
can be dropped from the system. (Technically, this is an eigenvector problem for
a positive matrix whose row sums all add to one. The maximum eigenvalue is one
and the solution is, therefore, unique up to a multiplicative constant. As long as no
workstation or group of workstations is isolated from the other workstations, there
will be exactly one redundant equation.) That is, any one of the relative flow rate
factors ri can be set to some positive constant and then the other flow rate factors
can be obtained relative to this value. For example using Fig. 8.1, let r1 = 1 and
then solution is (r1,r2,r3) = (1,1,0.9); let r3 = 1 and the relative flow rates are
(r1,r2,r3) = (1/0.9,1/0.9,1).

With this dependency, the question arises as to the proper methodology for ob-
taining these relative flow rates. The above approach is used, where one of the ri

is set to a constant. Without loss of generality, r1 will always be set to 1 and, thus,
it is no longer necessary to include the unknown r1 in the system of equations. To
illustrate, notice that routing matrix for Fig. 8.1 is

P =

⎡

⎣

0 1 0
0.1 0 0.9
1 0 0

⎤

⎦ .

Now, after eliminating the first equation and setting the first variable equal to 1, the
system of equations becomes

r1 = 1
(

r2

r3

)

=
[

1 0 0
0 0.9 0

]

⎛

⎝

1
r2

r3

⎞

⎠

which can be written as

r1 = 1
(

r2

r3

)

=
(

1
0

)

+
[

0 0
0.9 0

] (

r2

r3

)

This system becomes
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r1 = 1
(

r2

r3

)

=
([

1 0
0 1

]

−
[

0 0
0.9 0

])−1(1
0

)

,

yielding (r1,r2,r3) = (1,1,0.9).
This same logic can be extended to a general closed network resulting in the

following general property.

Property 8.1. Let P denote the routing matrix associated with a closed queue-
ing network containing n workstations, and let Q denote the submatrix
formed from P by deleting the first row and first column; that is, qi, j =
pi+1, j+1 for i, j = 1, · · · ,n− 1. Then the vector of relative arrival rates to
each workstation, r, is given by r1 = 1 and

⎛

⎜

⎝

r2
...

rn

⎞

⎟

⎠
=
(

I−QT )−1

⎛

⎜

⎝

p1,2
...

p1,n

⎞

⎟

⎠
.

Notice that I is an identity matrix of dimension n−1×n−1 and the column vector
on the right-hand side of the equation is the first row of the routing matrix minus the
first element.

• Suggestion: Do Problems 8.1 and 8.2.

8.1.1 Analysis with Exponential Processing Times

In this section, a system of equations for determining the mean cycle time and the
expected WIP in each workstation is developed under the assumption that all pro-
cessing times are exponentially distributed. The approach used when all worksta-
tions have only one server and there is only one product within the factory serves as
the building block for the more complicated cases; therefore we discuss the simplest
case first and then extend those models to the other cases.

8.1.1.1 Single-Server Systems

The methodology used to determine mean cycle times within a closed network is
called a mean value analysis. In the initial models of queueing systems, the approach
was to obtain the probability distribution for the number of jobs within the system,
and then from the number of jobs, the various measures were obtained. We now
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bypass the probabilities and determine the mean values directly. The results for the
exponential cases are exact.

In order to use the same notation as in the previous chapters, the letter w will be
used to denote the number of jobs within a system. Thus, we continue to use n for
the total number of workstations and k as the workstation index. In later sections,
i will denote the type and m will be the total number of types within the factory;
however, for this section, m = 1 so we will not need to specify the job type. The
idea behind the mean value analysis is that the mean values for a network with w
jobs can be easily derived from a network with w−1 jobs; therefore, we will need
to reference the various mean values by the number of jobs within the network. For
example, CTk(w) will denote the mean cycle time at node k under the assumption
that the closed network (factory) contains w jobs.

The first key relationship that is needed is the actual arrival rate into each work-
station. From Property 8.1, we know the relative arrival rates. In other words, if
λk(w) is the actual arrival rate to Workstation k when there are w jobs within the
network, then

λk(w) = x(w)rk , (8.1)

where x(w) is some (unknown) value dependent on the number of jobs in the system.
By Little’s Law this leads to

WIPk(w) = x(w)rk CTk(w) .

Because the total WIP must equal w, we sum over all workstations and solve for the
unknown “arrival rate” constant

x(w) =
w

∑k rk CTk(w)

which when combined with Eq. (8.1) leads to the following property.

Property 8.2. Consider a closed network with n workstations containing
w jobs with the relative arrival rates to the workstations given by the n-
dimensioned vector r determined from Property 8.1. The arrival rate to Work-
station k is

λk(w) =
wrk

∑n
j=1 r j CTj(w)

.

The time spent within a workstation by a job equals the service time for that job
plus the time all jobs in front of that job must spend on the server. The key concept
that makes the mean value analysis possible was shown by Reiser and Lavenberg
[11]; that is, the average number of jobs in front of an arriving job for a factory
containing w jobs equals that workstation’s WIP for a factory containing w−1 jobs.
Thus, the following relationship holds for Workstation k:
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CTk(w) = E[Ts(k)]+E[Ts(k)]WIPk(w−1) . (8.2)

Notice that some care needs to be taken in interpreting the parameters correctly.
Because the mean service time at a workstation does not depend on the number of
jobs within the network, the parameter k within the expression E[Ts(k)] refers to the
workstation number. However, the parameter for the cycle time and WIP refer to the
total number of jobs within the network. The first term in Eq. (8.2) is the time for
processing the arriving job itself and the second term represents the processing time
for all jobs within the workstation, including the job in service, at the arrival time.

Using Little’s Law and Property 8.2, the WIPk(w− 1) term in the above equa-
tion can be replaced by CTk(w− 1) leading to the following Mean Value Analysis
Algorithm.

Property 8.3. Consider a closed network with n workstations containing
wmax jobs. Each workstation has a single exponential server and the rela-
tive arrival rates to the workstations are given by the n-dimensioned vector r
determined from Property 8.1. The following algorithm can be used to obtain
the workstation mean cycle times.

1. Set CTk(1) = E[Ts(k)] for k = 1, · · · ,n and set w = 2.
2. Determine CTk(w) for k = 1, · · · ,n by

CTk(w) = E[Ts(k)]+E[Ts(k)]
(w−1)rk CTk(w−1)
∑n

j=1 r j CTj(w−1)
.

3. If w = wmax, determine arrival rates from Property 8.2 and stop; otherwise,
increment w by 1 and return to Step 2.

Example 8.2. Consider the network given in Fig. 8.1. Let the mean processing times
at the three workstations be 12 minutes, 30 minutes, and 30 minutes, respectively.
In addition, 9/10 of the jobs leaving Workstation 3 are considered good and will be
shipped to customers while 1/10 of the jobs are scrapped. Management has decided
that the CONWIP level will be set to 5 jobs. The first step of the mean value analysis
is to determine the relative arrival rates. As you recall, just before the statement of
Property 8.1, we showed that

r1 = 1/hr, r2 = 1/hr, r3 = 0.9/hr .

The steps of the algorithm yield Table 8.1 for the cycle time values at the various
WIP levels, where all values are in hours. Once the cycle time values are obtained,
the other standard workstation characteristics can be derived from Property 8.2 and
Little’s Law yielding Table 8.2.

Notice that each utilization factors is less than 1; this will always be the case
because the service rate serves as the upper limit to the throughput for each work-
station, and the utilization factor equals the arrival rate (throughput rate) times the
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Table 8.1 Mean cycle time results (in hours) for Example 8.2

Iteration CT1(w) CT2(w) CT3(w) ∑r j CTj(w)
w = 1 0.200 0.500 0.500 1.150
w = 2 0.235 0.717 0.696 1.578
w = 3 0.260 0.955 0.897 2.021
w = 4 0.277 1.208 1.099 2.475
w = 5 0.290 1.477 1.299 2.936

Table 8.2 Workstation characteristics for Example 8.2 at a CONWIP level of 5

Measure Workstation 1 Workstation 2 Workstation 3
CTk(5) 0.290 hr 1.477 hr 1.299 hr
λk(5) 1.703/hr 1.703/hr 1.533/hr
WIPk(5) 0.493 2.515 1.992
uk(5) 0.341 0.852 0.767

service time. More generally, the utilization factor is the arrival rate times the mean
service time divided by the number of machines at the workstation; that is,

uk(w) = λk(w)E[Ts(k)]/ck ,

where ck is the number of machines at Workstation k. Since 90% of the output from
Workstation 3 is considered good, the throughput rate of this factory is 90% of the
throughput rate of Workstation 3; thus, the mean number of jobs shipped from this
factory is

ths = 0.9×1.533 = 1.38/hr .

Since the WIP level is always 5 for this example, the system mean cycle time is
given by

CTs =
wmax

ths
=

5
1.38

= 3.62 hr .

��
• Suggestion: Do Problems 8.3, 8.4, 8.5 (a,b,c), 8.6 (a,b), and 8.7 (a,b).

8.1.1.2 Multi-Server Systems

The algorithm for the multi-server case will require evaluation of the marginal prob-
abilities associated with each workstation and is called a Marginal Distribution
Analysis. (The probabilities are marginal in that they refer to the number of jobs
within a specific workstation and not the joint probability of the number of jobs in
different workstations at the same time.) As long as the processing times at each
workstation are exponential, the analysis will yield the correct mean values. It is
very similar to the Mean Value Analysis in that the cycle time calculations for a net-
work with a CONWIP level set to w individual jobs depends on the values calculated
for a network with a CONWIP level of w− 1 jobs; however, the major difference
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is that the marginal probabilities must be calculated first. These probabilities when
there are w jobs within the network will be denoted by pk( j;w) for j = 0, · · · ,w
where the subscript k refers to the workstation number. Then the cycle time for w
jobs in the network will be expressed in terms of the marginal probabilities for a
network with w−1 jobs.

If Workstation k has ck servers and each server has a mean service time of
E[Ts(k)], then the rate of service for the workstation with j jobs within it is equal to
min{ j,ck}/E[Ts(k)]. The key to obtaining an expression for the marginal probabili-
ties is to observe that the rate of arrival into Workstation k containing j jobs with a
total network population fixed at w jobs equals λk(w) pk( j− 1;w− 1) and the rate
of leaving that node is min{ j,ck} pk( j;w)/E[Ts(k)] (see [2, p. 373]). Equating these
two probabilities using a similar approach to the rate balancing method of Sect. 3.2
yields an iterative expression for the probabilities and cycle times. The resulting
Marginal Distribution Analysis Algorithm of the following property is similar to
the algorithm contained in Buzacott and Shanthikumar [2, pp. 373–374].

Property 8.4. Consider a closed network with n workstations containing
wmax jobs. Workstation k has ck servers with exponential processing time hav-
ing a mean of E[Ts(k)]. The relative arrival rates to the workstations are given
by the n-dimensioned vector r determined from Property 8.1. The following
algorithm can be used to obtain the workstation mean cycle times.

1. Set pk(0;0) = 1 for k = 1, · · · ,n, and set w = 1.
2. Determine CTk(w) for k = 1, · · · ,n by

CTk(w) = E[Ts(k)]
w−1

∑
j=0

j +1
min{ j +1,ck} pk( j;w−1) .

3. Define the workstation arrival rates, for k = 1, · · · ,n, by

λk(w) =
wrk

∑n
i=1 riCTi(w)

.

If w = wmax, stop; otherwise, proceed to the next step.
4. Determine pk( j;w) for k = 1, · · · ,n and j = 1, · · · ,w by

pk( j;w) =
λk(w)E[Ts(k)]

min{ j,ck} pk( j−1;w−1) .

5. Set pk(0;w) = 1−∑w
j=1 pk( j;w) for k = 1, · · · ,n.

6. Increment w by 1 and return to Step 2.

Since the mean cycle time of a workstation does not require the marginal prob-
abilities of other workstations, the two algorithms can be used together. In other
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words, if some workstations have only one server, the easier algorithm of Prop-
erty 8.3 can be used for those workstations while the algorithm of Property 8.4 is
used for those workstations with multi-servers.

Example 8.3. We shall increase the capacity of the factory used in Example 8.2
(from Fig. 8.1) by adding two machines to Workstation 2 and adding one machine
to Workstation 3; thus, we have c1 = 1, c2 = 3, and c3 = 2. All other characteris-
tics will stay the same. Although Workstation 1 has only one server, we shall used
the Marginal Distribution Analysis Algorithm to demonstrate is equivalence to the
Mean Value Analysis Algorithm. Both algorithms give the same value for w = 1
since the mean cycle time must equal the mean service time if only one job is in the
network; thus,

CT1(1) = 0.2 hr, CT2(1) = 0.5 hr, CT3(1) = 0.5 hr .

Recall that r = (1,1,0.9) so that ∑n
k=1 rk CTk(1) = 1.15 and thus the arrival rates to

the stations are

λ1(1) = 0.8696/hr, λ2(1) = 0.8696/hr, λ3(1) = 0.7826/hr .

The main extra work necessitated by the multiple servers is the calculation of the
marginal probabilities. From Step 4 of the algorithm, we have

p1(1;1) = 0.1739/hr, p2(1;1) = 0.4348/hr, p3(1;1) = 0.3913/hr ,

and from Step 5, we have

p1(0;1) = 0.8261/hr, p2(0;1) = 0.5652/hr, p3(0;1) = 0.6087/hr .

The next iteration begins with w = 2. The calculations for cycle time yield

CT1(2) = 0.2348 hr, CT2(2) = 0.5 hr, CT3(2) = 0.5 hr .

Notice that with two jobs being maintained in the system, the cycle time in the sec-
ond and third workstations is the same as when the CONWIP level was set to one.
Because there are at most two jobs in system, there cannot be a queue at Worksta-
tions 2 and 3 due to the number of servers at these workstations. Using the same
logic, we would expect the mean cycle time at the second station to remain a 0.5 hr
with a CONWIP level of 3 since there are three separate processors at the second
workstation.

The sum after the second iteration is ∑n
k=1 rk CTk(2) = 1.1848 so that the arrival

rates to the stations are

λ1(2) = 1.6881/hr, λ2(2) = 1.6881/hr, λ3(2) = 1.5193/hr .

Each time the number of jobs within the factory increases, the number of calcula-
tions for the marginal probabilities also increase. The probability calculations are
shown in Table 8.3.
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Table 8.3 Marginal probabilities for w = 2 in Example 8.3

Workstation 1 Workstation 2 Workstation 3
pk(1;2) 0.2789 0.4771 0.4624
pk(2;2) 0.0587 0.1835 0.1486
pk(0;2) 0.6624 0.3394 0.3890

The next iteration begins with w = 3. The calculations for cycle time yield

CT1(3) = 0.2793 hr, CT2(3) = 0.5 hr, CT3(3) = 0.5372 hr .

The sum is ∑n
k=1 rk CTk(3) = 1.2627 so that the arrival rates to the stations are

λ1(3) = 2.3758/hr, λ2(3) = 2.3758/hr, λ3(3) = 2.1382/hr .

Notice that the numerical value for CT1(3) is the same whether the algorithm of
Property 8.4 or 8.3 is used, as long as the values for CT2(3) and CT3(3) come from
Property 8.4. However, it does serve to check for numerical carelessness, so we will
continue calculating the probabilities associated with Workstation 1. The probability
calculations are shown in Table 8.4.

Table 8.4 Marginal probabilities for w = 3 in Example 8.3

Workstation 1 Workstation 2 Workstation 3
pk(1;3) 0.3147 0.4032 0.4159
pk(2;3) 0.1325 0.2834 0.2472
pk(3;3) 0.0279 0.0727 0.0794
pk(0;3) 0.5248 0.2407 0.2575

The next iteration begins with w = 4. The calculations for cycle time yield

CT1(4) = 0.3327 hr, CT2(4) = 0.5121 hr, CT3(4) = 0.6015 hr .

The sum is ∑n
k=1 rk CTk(4) = 1.3862 so that the arrival rates to the stations are

λ1(4) = 2.8856/hr, λ2(4) = 2.8856/hr, λ3(4) = 2.5971/hr .

The final probability calculations are shown in Table 8.5.

Table 8.5 Marginal probabilities for w = 4 in Example 8.3

Workstation 1 Workstation 2 Workstation 3
pk(1;4) 0.3029 0.3474 0.3344
pk(2;4) 0.1816 0.2909 0.2700
pk(3;4) 0.0765 0.1363 0.1605
pk(4;4) 0.0161 0.0349 0.0516
pk(0;4) 0.4229 0.1905 0.1835
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Since our factory has a CONWIP level set at wmax = 5, the final iteration involves
only the first three steps of the algorithm. Then after the final cycle times and arrival
rates are calculated, Little’s Law can be used to obtain the workstation average WIP
levels. These final results are contained in Table 8.6.

Table 8.6 Workstation characteristics for Example 8.3

Workstation 1 Workstation 2 Workstation 3
CTk(5) 0.392 hr 0.534 hr 0.686 hr
λk(5) 3.238/hr 3.238/hr 2.914/hr

WIPk(5) 1.269 1.730 2.000
uk(5) 0.648 0.540 0.729

The rate at which jobs can be shipped out of this system is

ths = 0.9×2.914 = 2.62/hr ;

thus, the extra machines produced an increase of almost 90% in output. Notice also
for both Example 8.2 and 8.3, the workstation WIP values sum to the CONWIP
level, which is another convenient check on the numerical accuracy of data entries.
At the CONWIP level of 5, the mean cycle time through for the manufacturing
process is

CTs =
5

2.62
= 1.91 hr .

��
• Suggestion: Do Problems 8.6 (c), 8.7 (c), 8.8, and 8.9.

8.1.2 Analysis with General Processing Times

The Mean Value Analysis Algorithm (Property 8.3) is based on the fact that when
a job arrives to a workstation within a closed network containing w total jobs, the
average number of jobs ahead of the arriving job will equal the average WIP of
that workstation for a closed network containing w− 1 jobs. This fact is based on
the exponential assumption, so that for networks containing workstations that have
non-exponential processing times, an iterative method like the Mean Value Analysis
Algorithm is no longer exact. Another aspect of the move from exponential service
times to general distributions for service is that we need to consider the remaining
processing time for the job in service at the point in time when an arrival occurs. Pre-
viously the remaining service time was not considered because of lack of memory
of the exponential distribution (see the discussion around Eq. 1.16).

As an approximation, we shall continue to assume that an arriving job sees the
number of jobs ahead of it based on a network with one less job. Another impor-
tant assumption that is possible with exponential processing times is its memoryless
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property. In other words, consider a processor with first and second moments given
by E[Ts] and E[T 2

s ]. Assume that a job is undergoing processing and we pick an ar-
bitrary point in time and would like to determine the mean remaining time until pro-
cessing is finished for that part. For an exponential processor, the mean remaining
time is E[Ts] based on the memoryless property. For a non-exponential processor,
the mean remaining time is given by E[T 2

s ]/(2E[T ]2) (see [6]). Thus, we develop
a modified Mean Value Analysis Algorithm by using the appropriate form for the
remaining time for the job in process as seen at an arbitrary point in time.

As you recall, Eq. (8.2) was the basis for the Mean Value Analysis Algorithm
and it is composed of three parts: (i) the remaining processing time for the job being
serviced (if any), (ii) a full service time for each job in the queue when the job
under consideration arrives, and (iii) a full service time for the arriving job. Since
the utilization factor is the probability that the processor is busy, Eq. (8.2) can be
written as

CTk(w) = E[Ts(k)]+E[Ts(k)] (WIPk(w−1)−uk(w−1)) (8.3)

+uk(w−1)E[Ts(k)2]/(2E[Ts(k)]) ,

where uk(w−1) is the utilization factor for Workstation k when there are a total of
w−1 jobs in the network, and from Property 8.2 we have

uk(w) =
wrk E[Ts(k)]

∑n
j=1 r j CTj(w)

. (8.4)

The first step in combining Eqs. (8.3) and (8.4) is to use Little’s Law to replace
WIP(w−1) with CT (w−1) in Eq. (8.3). The utilization factor is then eliminated in
Eq. (8.3) by using Eq. (8.4). Finally, we use the fact

E[Ts(k)2] = E[Ts(k)]2 (C2
s (k)+1) (8.5)

since our data usually include the SCV instead of the second moment. After simpli-
fying, the following property is obtained that modifies the mean value analysis to an
approximation procedure for non-exponential service times.

Property 8.5. Consider a closed network with n workstations containing
wmax jobs. Each workstation has a single processor with processor character-
istics given by E[Ts(k)] and C2

s (k) and the relative arrival rates to the worksta-
tions are given by the n-dimensioned vector r determined from Property 8.1.
The following algorithm can be used to obtain the workstation mean cycle
times.

1. Set CTk(1) = E[Ts(k)] for k = 1, · · · ,n and set w = 2.
2. Determine CTk(w) for k = 1, · · · ,n by
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CTk(w) = E[Ts(k)]+
(w−1)rk

∑n
j=1 r j CTj(w−1)

×
[

E[Ts(k)]CTk(w−1)+
E[Ts(k)]2 (C2

s (k)−1)
2

]

.

3. If w = wmax, determine arrival rates from Property 8.2 and stop; otherwise,
increment w by 1 and return to Step 2.

Example 8.4. We shall illustrate this modified Mean Value Analysis Algorithm us-
ing an example problem taken from [2, Example 8.5, p. 382] where the results are
acceptable but certainly not exact.

The problem has four workstations with branching probabilities from each work-
station being 1/3 for each of the other workstations. Since all states are equivalent in
terms of branching probabilities, the relative arrival rates to each state are the same;
thus, r = (1,1,1,1). Throughput is counted based on entries into Workstation 1. The
processing time data (namely, the mean and SCV) are given in Table 8.7.

Table 8.7 Service time characteristics for Example 8.4

Workstation k E[Tk] C2[Tk] E[T 2
k ]

1 1.25 hr 0.25 1.953 hr2

2 1.35 hr 1.00 3.645 hr2

3 1.45 hr 1.00 4.205 hr2

4 1.25 hr 0.50 2.344 hr2

The number of jobs allowed in the closed queueing network is 15. Thus, the al-
gorithm will take 15 iterations to reach that number. The first 4 and the last iteration
values are displayed in Table 8.8, where all values are in hours.

Table 8.8 Mean cycle time results for Example 8.4

Iteration CT1(w) CT2(w) CT3(w) CT4(w) ∑r j CTj(w)
w = 1 1.250 1.350 1.450 1.250 5.3
w = 2 1.434 1.694 1.847 1.471 6.446
w = 3 1.624 2.060 2.281 1.699 7.664
w = 4 1.815 2.438 2.745 1.929 8.927

...
...

...
...

...
...

w = 15 3.609 6.738 9.231 4.081 23.659

Since the relative arrival rates are the same (i.e., rk = 1, for k = 1, · · · ,4), the
arrival to each state is the same and thus from Property 8.2 the system throughput is
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th(15) = λ1(15) =
15× r1

∑4
j=1 r j CTj

=
15

23.659
= 0.634/hr .

The throughput estimation for this system agrees to three decimal places with the
simulation results of [2]. The cycle time results, however, are not as impressive.
If we assume that the simulation results contained in [2] for this example are the
exact values, then the percent errors in the mean cycle time estimates for the four
workstations are -13.0%, 4.9%, 5.1%, and -4.6%. Thus, for non-exponential service
times, the algorithm of Property 8.5 yields acceptable but far from perfect results.
However, if we naively used the exponential assumption by following Property 8.3,
the errors for the four workstations would be 30.3%, 15.4%, 18.7%, and 26%; thus,
if the service time SCV is not 1, it is best to take advantage of the modified version
of the Mean Value Analysis. ��
• Suggestion: Do Problems 8.10 and 8.11.

8.2 Closed Queueing Networks with Multiple Products

It is not too difficult to extend the (single-server) Mean Value Analysis Algorithm
to account for multiple products; however, the implementation of the algorithm be-
comes intractable with more than just a couple of products and modest CONWIP
levels.

As in Chap. 6, notation will become more cumbersome since there are more
quantities that must be reflected in the notation. For the most part, we will be able
to use similar notation as was used in Chap. 6; namely, the index i will be used for
the job type (product) and it will often be written as a superscript. The total number
of job types will be m.

Each job type will have its own routing matrix and thus its own relative arrival
rates which will be denoted by the vector ri = (ri,1, · · · ,ri,n). The value of ri is
determined by Property 8.1, where the matrix P and submatrix Q of the property
are replaced by the routing matrix Pi and submatrix Qi that describe the switching
probabilities associated with Job Type i.

With multiple job types, a separate CONWIP level must be specified for each
type. In other words, when a Type i job is finished, another Type i will be started.
Since we assume that there are m different job types, the CONWIP level is a vector
called w = (w1, · · · ,wm). The vector ei is used to specify the unit vector with a one
in the i-position and zeros elsewhere. The unit vector is used to indicate a decrease
(or increase) of one unit of a specified job type. For example, the vector w− e1

represents a CONWIP level specified by w except with one less of Type 1; thus,
w− e1 = (w1−1,w2, · · · ,wm).

In the next section, the Mean Value Analysis Algorithm will be extended and a
small example will be used to demonstrate its implementation. Then in Sect. 8.2.2 an
approximation will be derived that gives a much easier implementation with reason-
able results as long as the total CONWIP level is not too small. Finally, in Sect. 8.2.3
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the approximation will be extended to non-exponential processing times, although
in such cases the approximation is not as accurate as for the single-product algo-
rithm.

8.2.1 Mean Value Analysis for Multiple Products

There are two key concepts used in the Mean Value Analysis Algorithm. The first
is that an arriving job must wait for all jobs within the workstation to be processed
plus its own processing. The second is that the number of jobs seen by an arriving
job in a system containing w jobs is the mean WIP for a system with w−1 jobs. In
other words, the arriving job cannot be behind itself and, thus, sees only w−1 other
jobs. These concepts are still true except that now we need to consider all other job
types. Thus, the main relationship is

CT i
k (w) = E[Ts(i,k)]+

m

∑
�=1

E[Ts(�,k)]WIP�
k (w− ei) . (8.6)

The arrival rate of Job Type i into the Workstation k is also the same as in Prop-
erty 8.2 except that it must be determined separately for each type.

Property 8.6. Consider a closed network with n workstations and m job types.
The vector w designates the total number of jobs in the network of the various
types, and the relative arrival rates to the workstations for Job Type i are
given by the n-dimensioned vector ri determined from Property 8.1 adjusted
by using the routing matrix Pi. The arrival rate to Workstation k for Job Type i
is

λi,k(w) =
wi ri,k

∑n
j=1 ri, j CT i

j (w)
,

where wi is the ith component of the vector w (i.e., the total number of Type i
jobs in the network) and ri,k is the kth component of ri.

With an expression for the arrival rate, we can use Little’s Law to replace the WIP
term in Eq. (8.6); however, care must be taken because the term w−ei stays the same
as the index of summation varies in the expression WIP�

k (w− ei) for Eq. (8.6). The
reason for this is that the number of Type i jobs that a Type i job “sees” is wi− 1;
whereas the number of Type � jobs that a Type i job sees is w� (we do not subtract
a 1) for � �= i. Thus, when applying Little’s Law to Eq. (8.6), the term for � = i will
need to be listed separately as shown in the following iterative equation for the mean
cycle time of Job Type i in Workstation k
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CT i
k (w) = E[Ts(i,k)]+E[Ts(i,k)]

(wi−1)ri,k CT i
k (w− ei)

∑n
j=1 ri, j CT i

j (w− ei)

+
m

∑
�=1
� �=i

E[Ts(�,k)]
w� r�,k CT �

k (w− ei)

∑n
j=1 r�, j CT �

j (w− ei)
, (8.7)

where w� is the total number of Type � jobs within the closed network, and the
expression that is written as a ratio is evaluated to zero if the numerator is zero, even
though the denominator will also be zero. Conceptually, Eq. (8.7) is very similar
to the iterative expression in Property 8.3; however, implementation is significantly
worse because of the necessity to determine the cycle time for all combinations of
the vector w whose individual components are less that their maximum value. In
developing the next algorithm, we shall let wmax denote the vector (w1

max, · · · ,wm
max)

so that it is possible for each component to have its own maximum value. We also
let 0 denote an m-dimensioned vector of all zeros. Finally, we let |w|= ∑m

i=1 |wi|.

Property 8.7. Consider a closed network with n workstations, m job types,
and wmax designating the total number of jobs in the network of the various
types. Each workstation has a single exponential server and the relative ar-
rival rates to the workstations for Job Type i are given by the n-dimensioned
vector ri. The following algorithm can be used to obtain the mean cycle times
for Type i jobs at Workstation k.

1. Set CT i
k (0) = 0 and CT i

k (ei) = E[Ts(i,k)] for k = 1, · · · ,n and i = 1, · · · ,m.
Set W = 2.

2. For each w such that |w|= W and each wi ≤ wmax, determine CT i
k (w) for

i = 1, · · · ,m and k = 1, · · · ,n from Eq. (8.7).
3. If W = |wmax| = ∑m

i=1 wmax, determine all arrival rates from Property 8.6
with w = wmax and stop; otherwise, increment W by 1 and return to Step 2.

Once the arrival rates have been determined, the WIP in each station for each job
type can be determined and as a check for numerical accuracy, the sum of the WIP
should equal |wmax|. Step 2 contains several “sub-steps” since there will be several
vectors w that satisfy the stated condition, and the order in which the cycle times
are evaluated is important. Whenever a value of CT i

k (w) is to be calculated, it is
important that the value of CT i

k (w−ei) has already been determined. To insure this,
the algorithm should proceed through the possible values of w in either lexicograph-
ical order or reverse lexicographical order. (Lexicographical order is the order in a
dictionary; thus (2,5,3,0) comes before (3,0,2,7) in lexicographical order.)

Example 8.5. Consider a manufacturing facility that has three workstations, with
a single machine in each workstation. There are two products that are produced
simultaneously in the factory. The workstation flow diagram for each product are
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Fig. 8.2a Workstation flow
diagram for Product 1 of
Example 8.5
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Fig. 8.2b Workstation flow
diagram for Product 2 of
Example 8.5
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given in Figs. 8.2a and 8.2b. There are 5 Type 1 jobs allowed in the system and 8
Type 2 jobs. The processing times are all assumed to be exponentially distributed
with mean values given in Table 8.9.

Table 8.9 Mean processing times for Example 8.5

Workstation
Product E[Ts(i,1)] E[Ts(i,2)] E[Ts(i,3)]

i = 1 0.25 hr 0.50 hr 1.0 hr
i = 2 1.20 hr 0.75 hr 0.3 hr

The two flow diagrams of the figures yield two routing matrices, P1 and P2,
which in turn yield two vectors giving the relative arrival rates to each workstation
for the two job types. These vectors are obtained by using the matrices P1 and P2 in
place of P in Property 8.1:

r1 = (1.0,0.810,0.571) and

r2 = (1.0,0.538,0.669) . (8.8)

The first several iterations obtained when the algorithm of Property 8.7 is ap-
plied to this problem gives the results displayed in Table 8.10. Notice that for each
iteration of Step 2, the values of w are ordered lexicographically.
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Table 8.10 Mean cycle time values in hours for Example 8.5

For Product 1 For Product 2
WS 1 WS 2 WS 3 WS 1 WS 2 WS 3

w CT 1
1 (w) CT 1

2 (w) CT 1
3 (w) ∑r1

kCT 1
k CT 2

1 (w) CT 2
2 (w) CT 2

3 (w) ∑r2
kCT 2

k
(0,1) 0 0 0 0 1.2 0.75 0.3 1.8042
(1,0) 0.25 0.5 1 1.226 0 0 0 0
(0,2) 0 0 0 0 1.998 0.918 0.333 2.715
(1,1) 1.048 0.668 1.033 2.179 1.251 0.915 0.766 2.256
(2,0) 0.301 0.665 1.466 1.677 0 0 0 0
(0,3) 0 0 0 0 2.966 1.023 0.349 3.75
(1,2) 2.016 0.773 1.049 3.241 1.986 1.038 0.639 2.972
(2,1) 1.036 0.788 1.339 2.438 1.29 1.071 1.298 2.735
(3,0) 0.34 0.821 1.998 2.146 0 0 0 0

...
...

...
...

...
...

...
...

...
(5,8) 9.601 1.062 1.379 11.249 9.378 1.407 0.848 10.701

With the cycle time calculations complete, the arrival rates (and thus throughput
rates) at each workstation by job type can be calculated using Property 8.6. Then,
with the arrival rates the WIP calculations are possible through Little’s Law. These
results are contained in Table 8.11.

Table 8.11 Arrival rate and WIP for Example 8.5 at its CONWIP levels

For Product 1 For Product 2
WS 1 WS 2 WS 3 WS 1 WS 2 WS 3

λi,k 0.444/hr 0.36/hr 0.254/hr 0.748/hr 0.402/hr 0.5/hr
WIPi

k 4.268 0.382 0.35 7.01 0.566 0.424

Returning to Figs. 8.2a and 8.2b, we see that 75% of the Type 1 jobs that leave
Workstation 3 are considered finished product and 80% of the Type 2 jobs that leave
Workstation 3 are considered finished; thus the product throughput rates for this
factory are

th1
s = 0.75×0.254 = 0.1905/hr

th2
s = 0.80×0.5 = 0.4/hr .

By summing the individual workstation WIP levels by product, we obtain the pre-
established CONWIP levels of 5 and 8 which then yield cycle times by product
of

CT 1
s =

5
0.1905

= 26.25 hr

CT 2
s =

8
0.4

= 20.0 hr .
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The total factory throughput is the sum of the throughputs for the two products
yielding

ths = 0.1905+0.4 = 0.5905/hr ,

and the cycle time for an arbitrary job is

CTs =
13

0.5905
= 22.02 hr .

��
• Suggestion: Do Problems 8.12 and 8.16 (a,b).

8.2.2 Mean Value Analysis Approximation for Multiple Products

It is obvious that the algorithm of Property 8.7 will result in too many calculations
when there are several different job types and high level of CONWIP control. How-
ever, this is not a problem is such cases because of the availability of a reasonable
approximation. If the total number of jobs within the closed network is large, then
removing one item from the factory will not change the cycle time significantly.
This fact would indicate that the cycle time expression found on the left and right
hand side of Eq. (8.7) are approximately the same and we can drop the cycle time
dependence on the vector w. This leads to the following recursive system of equa-
tions for k = 1, · · · ,n and i = 1, · · · ,m the defines (approximately) the mean cycle
time at Workstation k for Job Type i:

CT i
k = E[Ts(i,k)]+E[Ts(i,k)]

(wi
max−1)ri,k CT i

k

∑n
j=1 ri, j CT i

k

+
m

∑
�=1
� �=i

E[Ts(�,k)]
w�

max r�,k CT �
k

∑n
j=1 r�, j CT �

j

, (8.9)

where wi
max is the total number of Type i jobs within the network.

Because it is a recursive equation that is also a contraction mapping, it is rel-
atively easy to write an iterative procedure that will yield estimates for the cycle
times.

Property 8.8. Consider a closed network with n workstations, m job types,
and wmax designating the total number of jobs in the network of the various
types. Each workstation has a single exponential server and the relative ar-
rival rates to the workstations for Job Type i are given by the n-dimensioned
vector ri. The following algorithm can be used to approximate the mean cycle
times for Type i jobs at Workstation k.
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1. Set CT i
k,old = E[Ts(i,k)] for k = 1, · · · ,n and i = 1, · · · ,m.

2. For each k = 1, · · · ,n and i = 1, · · · ,m, obtain values for CT i
k,new by using

Eq. (8.9) with the CT i
k,old values used for the right-hand side cycle time

values and the CT i
k,new values are from the left-hand side.

3. Let the error term be defined as maxi,k{|CT i
k,new−CT i

k,old |}, and if the er-

ror term is less than 10−5 (or other chosen limit), stop; otherwise, let the
CT i

k,old values become the CT i
k,new values and repeat Step 2.

Example 8.6. Consider again the manufacturing facility of Example 8.5 and illus-
trated with Figs. 8.2a and 8.2b. Using the values from Table 8.9 and Eq. (8.8) we
get the following iteration, where all values are in hours.

Table 8.12 Mean cycle time values in hours for Example 8.6

For Product 1 For Product 2
WS 1 WS 2 WS 3 WS 1 WS 2 WS 3

Iteration # CT 1
1 CT 1

2 CT 1
3 ∑r1

kCT 1
k CT 2

1 CT 2
2 CT 2

3 ∑r2
kCT 2

k
1 0.25 0.5 1 1.226 1.2 0.75 0.3 1.8042
2 6.839 2.5026 3.1299 10.6533 7.0419 2.75 2.8623 10.4362
3 7.3696 1.7311 2.1114 9.9774 7.6704 1.97 1.5241 9.7498
4 8.5411 1.4333 1.7343 10.6924 8.7317 1.672 1.1238 10.3831
...

...
...

...
...

...
...

...
...

15 9.6747 1.0166 1.3911 11.2925 9.7679 1.2567 0.7477 10.9443

Table 8.13 Arrival rate and WIP for Example 8.5 at its CONWIP levels of 5 and 8

For Product 1 For Product 2
WS 1 WS 2 WS 3 WS 1 WS 2 WS 3

λ i
k 0.4428/hr 0.3586/hr 0.2528/hr 0.731/hr 0.3933/hr 0.489/hr

WIPi
k 4.2837 0.3646 0.3517 7.1401 0.4942 0.3656

Since 75% of the Type 1 jobs that leave Workstation 3 are considered finished
product and 80% of the Type 2 jobs that leave Workstation 3 are considered finished,
the product throughput rates for this factory are

th1
s = 0.75×0.2528 = 0.1896/hr

th2
s = 0.80×0.489 = 0.3912/hr .

By summing the individual workstation WIP levels by product, we obtain the pre-
established CONWIP levels of 5 and 8 which then yield cycle times by product
of
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CT 1
s =

5
0.1896

= 26.37 hr

CT 2
s =

8
0.3912

= 20.45 hr

The total factory throughput is the sum of the throughputs for the two products
yielding

ths = 0.1896+0.3912 = 0.5808/hr ,

and the cycle time for an arbitrary job is

CTs =
13

0.5808
= 22.38 hr .

Thus, the approximation from the algorithm of Property 8.8 yielded system esti-
mates within 1.6% of the actual values. ��
• Suggestion: Do Problems 8.13, 8.14, 8.15, and 8.16 (a,c,d,e).

8.2.3 General Service Time Approximation for Multiple Products

The extension of the multiple product mean value analysis to non-exponential
servers is conceptually the same as for the single product system. Thus, our ap-
proach in this section is to combine the methodology of Sect. 8.1.2 with the exact
mean value analysis methodology of Sect. 8.2.1. We then form the approximation
using the same logic as in Sect. 8.2.2; that is, we assume enough jobs within the
network so that removing one job will not make a significant difference in the cycle
time values.

We first extend Eq. (8.3) to include the multi-product case in an analogous equa-
tion to that of (8.6); namely, the mean cycle time at Workstation k for a Type i job
is

CT i
k (w) = E[Ts(i,k)]+

m

∑
�=1

{

E[Ts(�,k)] (WIP�
k (w− ei)−u�,k(w− ei))

+ u�,k(w− ei)
E[T 2

s (�,k)]
2E[Ts(�,k)]

}

. (8.10)

The utilization factor for Job Type i at the single-server Workstation k is the
arrival rate times the mean service time, or

ui
k(w) = λi,k(w)E[Ts(i,k)] =

wi ri,k E[Ts(i,k)]
∑n

j=1 ri, j CT i
j

, (8.11)

where wi is the amount of Type i jobs in the network. The manipulation of Eq. (8.10)
is now very similar to the process used to derive the equation of Property 8.5. We
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use Eq. (8.11) to eliminate the utilization factor, use Little’s Law to eliminate the
WIP terms, and finally use Eq. (8.5) to replace the second moment by the SCV term;
thus, we have

CT i
k (w) = E[Ts(i,k)]+

(wi−1)ri,k

∑n
j=1 ri, j CT i

j (w− ei)

×
[

E[Ts(i,k)]CT i
k (w− ei)+

E[Ts(i,k)]2 (C2
s (i,k)−1)

2

]

+
m

∑
�=1
��=i

w� r�,k

∑n
j=1 r�, j CT �

j (w− ei)

×
[

E[Ts(�,k)]CT �
k (w− ei)+

E[Ts(�,k)]2 (C2
s (�,k)−1)

2

]

,

where C2
s (i,k) is the squared coefficient of variation of the service times for Job

Type i at Workstation k. If we assume sufficient jobs within the network so that the
cycle time is approximately the same when one job is removed, we have the follow-
ing equation that can be used in our approximation algorithm for non-exponential,
multi-product closed networks.

CT i
k = E[Ts(i,k)] (8.12)

+
(wi

max−1)ri,k

∑n
j=1 ri, j CT i

j
×
[

E[Ts(i,k)]CT i
k +

E[Ts(i,k)]2 (C2
s (i,k)−1)

2

]

+
m

∑
�=1
� �=i

w�
max r�,k

∑n
j=1 r�, j CT �

j

×
[

E[Ts(�,k)]CT �
k +

E[Ts(�,k)]2 (C2
s (�,k)−1)

2

]

.

The resulting algorithm does not yield as accurate results as one would like. It does,
however, produce usable results and can serve as a starting point for further approx-
imation developments.

Property 8.9. Consider a closed network with n workstations, m job types,
and wmax designating the total number of jobs in the network of the various
types. Each workstation has a single processor with processor time and SCV
for Job Type i begin given by E[Ts(i,k)] and C2

s (i,k), respectively, and with
the relative arrival rates to the workstations for Job Type i are given by the
n-dimensioned vector ri. The following algorithm can be used to approximate
the mean cycle times for Type i jobs at Workstation k.

1. Set CT i
k,old = E[Ts(i,k)] for k = 1, · · · ,n and i = 1, · · · ,m.
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2. For each k = 1, · · · ,n and i = 1, · · · ,m, obtain values for CT i
k,new by using

Eq. (8.12) with the CT i
k,old values used for the right-hand side cycle time

values and the CT i
k,new values are from the left-hand side.

3. Let the error term be defined as maxi,k{|CT i
k,new−CT i

k,old |}, and if the er-

ror term is less than 10−5 (or other chosen limit), stop; otherwise, let the
CT i

k,old values become the CT i
k,new values and repeat Step 2.

The resulting model is not as accurate as one would like. It does, however, yield
usable results and can serve as a starting point for further approximation develop-
ments.

Example 8.7. Consider a two-product three-workstation problem with a limit of 7
and 6 jobs in the system for the two products. The workstations flow probabilities
for the two products and the relative arrival rates are given in Table 8.14. Notice that

Table 8.14 Flow probabilities and relative arrival rates for Example 8.7

Product From/To 1 2 3 Arrival Rates
1 1 0 0.3 0.7 1/hr

2 0.1 0 0.9 0.3/hr
3 1 0 0 0.97/hr

2 1 0 1 0 1/hr
2 0.1 0 0.9 1/hr
3 1 0 0 0.9/hr

the rates in Table 8.14 (namely, r1 and r2) are computed using the job type specific
switching probabilities contained in the table and then applying Property 8.1. The
workstations processing time data (means and SCV’s) are displayed in Table 8.15.

Table 8.15 Processing time data for Example 8.7

Workstation
Product Measure k = 1 k = 2 k = 3

i = 1 E[Ts(1,k)] 0.60 hr 1.00 hr 0.50 hr
C2

s (1,k) 0.50 1.00 1.50
i = 2 E[Ts(2,k)] 0.20 hr 0.60 hr 0.50 hr

C2
s (2,k) 1.50 1.00 0.75

The first few iterations of the algorithm from Property 8.9 are displayed in Ta-
ble 8.16.

After the final iteration, the arrival rates can be determined by Property 8.6 and
then used with the cycle times to determine WIP levels. The arrival rates are also
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Table 8.16 Iterative results for cycle times (in hours) for Example 8.7

For Product 1 For Product 2
WS 1 WS 2 WS 3 WS 1 WS 2 WS 3

Iteration # CT 1
1 CT 1

2 CT 1
3 ∑r1

kCT 1
k CT 2

1 CT 2
2 CT 2

3 ∑r2
kCT 2

k
1 0.6 1 0.5 1.385 0.2 0.6 0.5 1.25
2 2.0097 4.0276 2.7582 5.8934 1.7646 3.5562 2.8195 7.8585
3 2.0131 3.8593 2.8709 5.9556 1.7562 3.3928 2.9503 7.8043
...

...
...

...
...

...
...

...
...

40 1.8748 3.3697 3.3409 6.1264 1.6002 2.9048 3.4162 7.5796

combined with the mean service times to obtain workstation utilizations. These
workstation performance measures by job type are given in Table 8.17.

Table 8.17 Workstation performance measures by job type for Example 8.7

For Product 1 For Product 2
Measure WS 1 WS 2 WS 3 WS 1 WS 2 WS 3
Arrival Rates 1.1426/hr 0.3428/hr 1.1083/hr 0.7916/hr 0.7916/hr 0.7124/hr
WIP 2.1422 1.1551 3.7028 1.2667 2.2995 2.4338
Utilization Factor 0.6856 0.3428 0.5542 0.1583 0.475 0.3562

The composite workstation measures for arrival rates, WIP, and utilization are
obtained by summing across product types. The workstation cycle time is obtained
using the combined WIP and arrival rates together with Little’s Law. These mea-
sures are found in Table 8.18. We assume for this example that whenever a job

Table 8.18 Workstation characteristics for Example 8.7

Measure WS 1 WS 2 WS 3
WIPk 3.4089 3.4546 6.1366
λk 1.9342/hr 1.1344/hr 1.8207/hr
uk 0.8439 0.8178 0.9104
CTk 1.7624 hr 3.0453 hr 3.3705 hr

leaves Workstation 3 it is finished and a new job starts in Workstation 1; therefore,
the throughput for Workstation 3 is the factory throughput; thus the system estimates
are

ths = 1.8207/hr and CTs =
13

1.8207
= 7.1401 hr .

A simulation model was written to give a feeling for the accuracy of this approx-
imation. The simulation was run so that the half-width of all confidence intervals
was less that 0.01 and the results are shown in Table 8.19. The simulated estimate
for the mean system cycle time was 7.06 hr. The arrival rates and factory throughput
are good. The cycle time measures are not as good, but they are still acceptable for
many applications although there is clear room for improvement. ��



266 8 WIP Limiting Control Strategies

Table 8.19 Simulation results for Example 8.7

Measure WS 1 WS 2 WS 3
WIPk 4.03 3.36 5.60
λk 1.96/hr 1.14/hr 1.84/hr
uk 0.86 0.82 0.92
CTk 2.06 hr 2.96 hr 3.04 hr

The algorithm based on Eq. (8.12) is not unique. Notice in Eq. (8.10), the re-
maining time for the job undergoing processing depends on the job type; however,
it is also reasonable to replace those terms with the remaining time using the work-
station service time averaged over all job types. Specifically, the workstation mean
service time is given as

E[Ts(k)] =
∑m

�=1 λ�,k(w)E[T �
s (k)]

∑m
�=1 λ�,k(w)

, (8.13)

where w specifies the fixed WIP level for each type job. (The value of E[Ts(k)]
clearly depends on WIP levels since these effect arrival rates; however, we shall ig-
nore this in our notation as we try to keep notation as clean as possible.) The utiliza-
tion factor for the workstation could then be approximated by uk = ∑� λ�,kE[Ts(k)].
With this modified definition of utilization, Eq. (8.10) can be modified to be

CT i
k = E[Ts(i,k)]+

m

∑
�=1

λ�,k E[T�,k]
(

CT �
k −E[Ts(k)]

)

+

(

m

∑
�=1

λ�,k

)

E[Ts(k)]× E[T 2
s (k)]

2E[Ts(k)]
. (8.14)

Equation (8.14) can now be used with Property 8.9 for the single-server, multiple
product case; however, the equation also is easily modified to be used as an approx-
imation for the multi-server case. An extension for multiple servers per workstation
suggested in Askin and Standridge [1] for the exponential approximation and by
Buzacott and Shanthikumar [2] for the general model is to adjust the service times
by dividing by the number of servers. Then the utilization factor uk for a workstation
is no longer the probability that the arriving job must wait and a better approxima-
tion is (uk/ck)ck , where ck is the number of identical servers at workstation k. This
results in the following recursive relationship:

CT i
k = E[Ts(i,k)]+

m

∑
�=1

λ�,k
E[T�,k]

ck

(

CT �
k −E[Ts(k)]

)

+

(

E[Ts(k)]
ck

m

∑
�=1

λ�,k

)ck

× E[T 2
s (k)]

2ck E[Ts(k)]
. (8.15)
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Thus, for the multi-server case, Property 8.9 could be used with Eq. (8.15) to
yield approximate cycle times. The iterations are slightly more involved because
the values for λi,k and E[Ts(k)] must be calculated after each iteration in order to
obtain the next estimates for CT i

k , but the extra calculations are not difficult.
Although the multi-server approximation based on Eq. (8.15) can give reason-

able results, an iterative method proposed by Marie [9, 10] has been shown to often
give superior results. Marie’s method uses an aggregation technique that is beyond
the scope of this text; however, the method is worth investigating for those interested
in modeling multi-server networks with non-exponential processing times.

• Suggestion: Do Problem 8.17.

8.3 Production and Sequencing Strategies: A Case Study

In manufacturing systems analysis, the concept of just-in-time manufacturing has
received significant interest in recent years. Based on Toyota of Japan’s kanban
control concept, the “pull” manufacturing strategy has evolved. This strategy is fun-
damentally different from the traditional MPR-type “push” release strategy. Pull
versus push production release strategies can have a profound impact on the cycle
time for products. This case study will investigate the differences of pull and push
release strategies and the impact of scheduling rules on cycle time.

A push-release strategy is one where products are released to the manufacturing
system based on a schedule. This schedule is usually derived from orders or order
forecasts and the schedule developed based on typical or “standard” production cy-
cle times (one such mechanism is the MRP strategy). A pull-release strategy, on the
other hand, is one where orders are authorized for release into the shop based on
the completion of processing within the shop. For example, one pull-based control
policy is to have a fixed number of parts being manufactured within the shop at any
one time, i.e., a CONWIP control system just analyzed. Hence, when a part is com-
pleted and ready for shipping, the next part is released to the shop. In this way, the
WIP is controlled and the manufacturing flow times are reduced.

The combination of the job-release strategy (into the system) and the job-
sequencing strategy (at a machine center) can have a significant impact on product
cycle times. In this case study, these concepts are illustrated and it is shown how
to model these schemes for the most complex manufacturing environment - the job
shop. A job shop is a manufacturing system where production steps that require
the same machinery are processed within the same production area called a ma-
chine center. Furthermore, different part types have different routings through the
shop and can require multiple processing steps on the same machine. Thus, if the
first, third and fifth processing steps require the same machine (processing times,
of course, can vary by processing step), then the part is routed back to the same
machine center for processing. Due to the re-entrant flow or feedback nature of the
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processing routings, this type of manufacturing system is more complex to design
and control than the straight-through manufacturing design (called a flow-shop).

In this study, the simulation language used (MOR/DS) was developed by the au-
thors [3]; however, the mechanics of simulation model itself are not discussed. Our
concern is with the results of the study and their implications. The purpose of this
section is two-fold. First, we have always assumed a FIFO (first-in first-out) queue-
ing discipline, and this is not always the best possible. Therefore, this case study
should serve to emphasize that different priority schemes can have a significant ef-
fect on cycle times and that a FIFO system is not always preferred. Although this
text presents many mathematical models for manufacturing and production systems,
there are still many problems, especially those dealing with sequencing issues, for
which good mathematical approximations must be developed. Thus the second pur-
pose of this section is to illustrate the importance of sequencing and encourage the
development of analysis techniques in this area.

The job-release strategies and the processing sequencing strategies at the work-
stations in combination have been the subject of several research studies in recent
years. In this case study, a job shop model is used in conjunction with the strategies
reported in the papers by Wein [13, 14], Harrison and Wein [7], Spearman et al.
[12], and Duenyas [5] to illustrate in impact that various control strategies can have
on cycle times. We do not have the space in this textbook to discuss the modeling of
sequencing in coordination with other control strategies, but it is important for the
reader to have some understanding of the profound impact that sequencing can have
on factory performance.

8.3.1 Problem Statement

The problem used for illustration purposes is from Wein [14]. This model consists
of three single workstations and three part types to be produced. The part routings
through the machine centers and their mean processing times are listed in Table 8.20.
Figure 8.3 illustrates the product flow through the facility. All processing times are

Table 8.20 Three-product, three-workstation job shop data from Wein [14]

Product Type Processing Route Mean Times
1 3→ 1→ 2 6 min : 4 min : 1 min
2 1→ 2→ 3→ 1→ 2 8 min : 6 min : 1 min : 2 min : 7 min
3 2→ 3→ 1→ 3 4 min : 9 min : 4 min : 2 min

assumed to be exponentially distributed and the load on each machine center av-
erages 89.4% utilization. The three products are to be produced in equal quantities
with a required total output rate of 8.94 per hour.

Of interest are the effects of a variety of release and sequencing rules on the
average cycle time for all products. For a workstation with a single machine and a
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Fig. 8.3 Routing diagram for
the problem of Sect. 8.3
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fixed job set, sequencing the jobs according to the shortest expected processing time
(SEPT ) rule always yields the shortest cycle time; however, it is not necessarily
optimal for a general job-shop. In this case study, various policies are compared
among themselves and with a standard push or deterministic release schedule. The
push variation of the job shop model is given first. The data from Table 8.20 and
the release rates are incorporated into the model. For model specification, there is a
release rule and a sequencing rule for selecting the next job to be processed at the
machines. The standard first-in first-out sequencing rule is called the FIFO rule.
For job releases into the shop, note that the simulation uses time between releases
and so a deterministic rate of 8.94 per hour results in the time between releases of
6.71 minutes. If the three job types are released separately, then the release time is
20.13 minutes for each job type since they are to be released in equal numbers. This
specific model configuration is denoted as Deter− FIFO (deterministic release,
first-in first-out sequencing). Other job sequencing rules order jobs at the machines
in some specified sequence; here the smallest number has the highest priority. The
sequencing rules that will be considered are: SEPT - smallest expected processing
time at the current machine, SRPT - smallest remaining expected processing time at
all remaining machines, and WBAL - a workload balance sequencing rule proposed
by Harrison and Wein [7], which is essentially SRPT by workstation (includes all
remaining visitations to the current workstation).

8.3.2 Push Strategy Model

The general push processing release model is setup to run different sequencing rules
for the deterministic release policy. The three different polices considered are the
SEPT , SRPT , and WBAL rules. The workload-balance sequencing rule (WBAL) as-
signs priorities to the jobs at each workstation in the processing sequence according
to:

Workstation 1: type 2 - step 4, type 3 - step 3, type 1 - step 2, and type 2- step 1;
Workstation 2: type 1 - step 3, type 3 - step 1, type 2 - step 5, and type 2 - step 2 ;
Workstation 3: type 2 - step 3, type 3 - step 4, type 1 - step 1, and type 3 - step 2.
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The workload balance priority sequencing rule (WBAL) gives the highest prior-
ity at Workstation i to the job with the smallest remaining expected processing time
to be performed by Workstation i throughout the remainder of the job’s processing
sequence. This priority scheme is a variant of the SRPT rule with remaining pro-
cessing time being restricted to the workstation in question. To illustrate this priority
scheme, the data from Table 8.20 is used and the sequencing priority for Worksta-
tion 1 developed. There are four uses of Workstation 1, these are: product 1-step 2,
product 2-steps 1 and 4, and product 3-step 3. The remaining processing times in
Workstation 1 for these four visits are 4, 10, 2, and 4, respectively. Thus, in step
4 first priority is given to jobs of product type 2. The tie between product 1-step 2
and product 3-step 3 is broken arbitrary in favor of product 3-step 3. Lastly, product
2-step 1 is processed. The sequences for the other two workstations are computed
similarly.

The push-release system is operated by fixing the time between product releases
and staying with that schedule regardless of the number of jobs in the system. For
this problem, each job type has a desired throughput rate of 3 jobs per hour. Thus, to
obtain this throughput rate on a long-term basis, the release rates need be the same
as the desired output rates. Each type of job can either be released at this fixed rate,
or a job released to the system at three times that rate and then assigned a type once
active.

The results for the four sequencing algorithms are displayed in Table 8.21. The
WBAL algorithm yields a mean flow time that is 52% shorter than the worst algo-
rithm, SRPT , and 18% better than the next best algorithm, SEPT . In general, the
standard deviations of the flow times follow the same order as the means, except
that the FIFO rule yields the lowest, 5.5% lower than the WBAL method.

Table 8.21 Push release policy results for the four job sequencing algorithms with the mean and
standard deviations of the job flow times and throughput rates as given; the results are the average
of 10 replications of length 22,000 with a statistical reset at 2,000

Sequencing Mean Std.Dev. Total
Rule Cycle Time Cycle Time Throughput

WBAL 104.3 min 87.7 min 8.88/hr
SEPT 127.1 min 130.7 min 8.88/hr
FIFO 175.3 min 82.9 min 8.88/hr
SRPT 219.3 min 240.6 min 8.82/hr

For push-release control, the work-balance algorithm performs the best of the
four algorithms tested. The best push result, however, can be improved on by limit-
ing the total number of jobs allowed in the system (a CONWIP control strategy).



8.3 Production and Sequencing Strategies 271

8.3.3 CONWIP Strategy Model

In this analysis, we use a slightly different form for CONWIP control. Instead of
establishing a limit for each separate product type, only a limit on the total work-in-
process will be used. Thus, the total number of jobs allowed to be actively process-
ing at any time is called the CONWIP number. Once the allowed number of jobs is
in the shop, new releases require the completion of a job within the system.

The CONWIP policy results for the four sequencing algorithms are displayed in
Table 8.22. The WBAL algorithm yields a mean flow time under the CONWIP policy
that is 41% shorter than the worst algorithm, SRPT , and 30% better than the FIFO
algorithm, and 13.5% better than SEPT . Again the FIFO rule yields the lowest
standard deviation with the WBAL method second. A job selection policy that should
be avoided in the CONWIP environment is to enter the next job into the system with
the same job type as the one that just completed. This approach, although seemingly
consistent with the desired output proportions, can lead to preferential production
of the faster processing job types particularly in conjunction with SEPT sequencing
algorithm.

Table 8.22 CONWIP control policy results with a cyclic release policy and four job sequencing
algorithms with mean and standard deviations of the job flow times and throughput rates as given;
the results are the average of 10 replications of length 22,000 with a statistical reset at 2,000

Sequencing CONWIP Mean Std.Dev. Total
Rule Limit Cycle Time Cycle Time Throughput

WBAL 12 80.4 min 54.3 min 8.94/hr
SEPT 14 93.0 min 67.9 min 9.00/hr
FIFO 17 114.8 min 37.4 min 8.88/hr
SRPT 20 136.4 min 110.1 min 8.76/hr

To illustrate this potential problem, consider the best CONWIP quantity of 14 un-
der the SEPT rule and sequential job selection. These policies yield a mean through-
put rate 9 per hour with a perfect balance between the three job types of 3/hr each.
Using the same total CONWIP limit and a selection method of the entering job type
to be the same as the one that just completed, the total throughput quantity is 9.66/hr,
but the distribution of the throughput by job type is now much higher for job type
one (4.62/hr, 2.4/hr, 2.64/hr). This result is due to the type one jobs having a shorter
number of processing steps and also having relatively fast processing times. This
gives job type ones a slight advantage in processing rate that tends to build over
time. Of course, with the faster turn around rate for job type ones, the total through-
put rate is above the objective value of 9/hr. Reducing the CONWIP limit from 14
to 8 jobs results in a reasonable total throughput rate of 9.06/hr, but the job type
completion rate distribution is not balanced with the first type job having more than
twice the throughput as the other two types. The mean flow time is considerably
lower but the rate of completed jobs is nowhere near the required distribution. This
throughput rate imbalance is due to the use of a single total CONWIP number. The
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imbalance could be alleviated by using the CONWIP control separately for each job
type, but of course it is more complicated to implement and to analyze.

For all machine-sequencing algorithms used with the CONWIP control policy,
it is necessary to obtain the CONWIP limit that yields the desired throughput rate.
Since this is a single value for the policies being considered herein, this parame-
ter can be searched rather easily. One method that is easy to implement is to start
at a rather low CONWIP limit and incrementally increase this value until the de-
sired throughput rate has been obtained. To expedite this process, a large increment
can be used first, then when the desired rate has been exceeded, the increment can
be reduced and the process continued. This reduction is repeated until the correct
CONWIP limit has been found. Several of WBAL results are tabulated in Table 8.22.
These results are used to illustrate the search process. Starting with a CONWIP limit
of 5, simulation obtained a total throughput rate of 7.32/hr. Recall that the desired
throughput rate is 8.94/hr. Then incrementing the limit first by 5 units, the next
throughput rate of 8.7/hr is obtained. This result is low and thus, the limit is incre-
mented by 5 units and the system is again evaluated via simulation. The CONWIP
capacity limit of 15 jobs yields a total throughput rate of 9.18/hr. This result exceeds
the desired rate and, therefore, the process returns to the last lower limit (10 units)
and begins incrementing by 1 unit each simulation evaluation. It is known that the
value lies between 10 and 15 and, therefore, no more than four more evaluations will
be necessary. The throughput rate for control limit values of 11, 12, and 13 units are
evaluated. The limit of 11 jobs is slightly low and 13 jobs is slightly high. The best
(3-digit) approximation is at a control limit of 12 units (Table 8.23).

Table 8.23 Search study to find the CONWIP limit with WBAL sequencing rule that yields to
desired 8.94/hr total throughput rate; the results are the average of 10 replications of length 22,000
with a statistical reset at 2,000

CONWIP CONWIP Total Mean Std.Dev.
by 5’s by 1’s Throughput Cycle Time Cycle Time

5 0.122/min 40.95 min 22.32 min
10 0.145/min 68.95 min 43.98 min

11 0.148/min 73.94 min 48.12 min
12 0.149/min 79.99 min 53.02 min
13 0.150/min 86.57 min 60.43 min
14 0.153/min 91.33 min 64.30 min

15 0.153/min 97.79 min 70.05 min
20 0.157/min 126.7 min 97.28 min

Appendix

The Mean Value Analysis Algorithm (Property 8.3) and its modification for non-
exponential times (Property 8.5) as well as the multiple product approximations
(Property 8.8 and 8.9) are easily evaluated using Excel. However, the Marginal Dis-



Problems 273

tribution Analysis Algorithm (Property 8.4) is more complicated and is best handled
in Excel with VBA as is the algorithm of Property 8.7. In this appendix, we give the
Excel formula needed for the Mean Value Analysis Algorithm and leave the exten-
sions to the reader. The material in the Appendix of Chap. 3 can be used to find the
relative arrival rates (Property 8.1) of a network. Given the vector r, the following
can be used to obtain the cycle times for the network of Example 8.2.

The initial data of the problem is established by the following.

A B C D E
1 E[Ts-1] E[Ts-2] E[Ts-3]
2 0.2 0.5 0.5
3 r-1 r-2 r-3
4 1 1 0.9

We skip a row and then setup for the algorithm.

A B C D E
6 w CT-1 CT-2 CT-3 Sum
7 1 =B2 =C2 =D2

In Cell A8, type =A7+1 and then copy Cell A8 down through Cell A20. In Cell E7,
type

=SUMPRODUCT(B7:D7,$B$4:$D$4)

and copy Cell E7 down through Cell E20. Finally, the main iterative step is typed
into Cell B8 as

=B$2+B$2*$A7*B$4*B7/$E7

and then Cell B8 is copied to the right through Cell D8 and then B8 is copied down
through Cell D20. It is important when typing the various formulas that care is taken
to type the dollar signs ($) exactly as shown since at times the row indicator must
be an absolute address and sometimes the column indicator must be an absolute
address. The resulting spreadsheet should give the Mean Value Algorithm through
a CONWIP level of 14.

Problems

8.1. Find the relative flow rates for the network displayed in Fig. 8.4.

8.2. Find the relative flow rates for the network displayed in Fig. 8.6.

8.3. Re-consider the Example 8.2 and find the workstation and system performance
measures for a CONWIP level of
(a) 7 jobs, and
(b) 10 jobs.
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Fig. 8.4 Network flows for
Problem 8.1
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Fig. 8.5 Network flows for
Problem 8.5
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8.4. For the network of Problem 8.1, consider a CONWIP level of 5 jobs and as-
sume that each workstation has only one processor. The means of the exponentially
distributed service times at the three workstations are 15 minutes, 30 minutes, and
1 hour, respectively. Using the Mean Value Analysis Algorithm, find the expected
cycle time in each workstation, the expected work-in-process in each workstation,
the flow rate for each workstation, the total system throughput, and the system cycle
time.

8.5. Consider the following closed queueing network made up of single server work-
stations with routing structure displayed in Fig. 8.5. Consider that each workstation
has one machine with exponentially distributed processing times. Use the Mean
Value Analysis Algorithm with wmax = 10 to find the expected cycle time in each
workstation, the expected work-in-process in each workstation, the mean through-
put rate for each workstation, the total system throughput, and the system cycle time.

(a) Use the following data (based on an example in [4]):

E[Ts] = (1/2,1/2,1,1,1)
Pr{good} = 1/2,

Pr{bad} = 1/2.

(b) Use the following data:

E[Ts] = (1/3,1,3/2,1/2,2)
Pr{good} = 1/2,

Pr{bad} = 1/2.

(c) Use the following data:
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Fig. 8.6 Network flows for
Problems 8.2 and 8.6
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E[Ts] = (1/3,1,3/2,1/2,2)
Pr{good} = 3/4,

Pr{bad} = 1/4.

8.6. Consider the single product network model depicted in Fig. 8.6.
(a) Compute the relative flow rates (r1 = 1,r2,r3).
(b) Let the mean processing times be given by (4 hr, 2 hr, 3 hr) for the three work-
stations and assume that there is only one processor at each workstation. The total
number of jobs kept in the system at all times is 10. Assuming that the cycle time
estimates for the three workstations converge to 32.769 hr, 3.335 hr, and 6.421 hr,
respectively, fill in the following information:

WIP1 =?, WIP2 =?, WIP3 = 1.267

λ1 =?, λ2 = 0.222, λ3 = 0.197

WIPs =?, ths =?, CTs =?

(c) Let Workstation 1 have two machines and re-compute the mean cycle time es-
timates for the three workstations as well as the mean throughput for the factory.

8.7. Consider the single product network model depicted in Fig. 8.7.
(a) Compute the relative flow rates (r1 = 1,r2,r3).
(b) Let the mean processing times be given by (2.5 hr, 3 hr, 5 hr) for the three
workstations and assume that there is only one processor at each workstation. The
total number of jobs kept in the system at all times is 8. Assuming that the cycle time
estimates converge to (8.357 hr, 5.001 hr, 24.951 hr) for the three workstations, fill
in the following information:

WIP1 =?, WIP2 =?, WIP3 = 4.563

λ1 =?, λ2 = 0.152, λ3 = 0.183

WIPs =?, ths =?, CTs =?

(c) Let Workstations 2 and 3 have two machines and re-compute the mean cycle
time estimates for the three workstations as well as the mean throughput for the
factory.
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Fig. 8.7 Network flows for
Problem 8.7
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8.8. Resolve Problem 8.4, with an additional processor at Workstation 2.

8.9. Resolve Problem 8.5 (a) with 1, 2, 1, 1, 2 servers in the respective workstations.

8.10. Resolve Problem 8.3 except assume that the SCV for all service times is 0.25
with a CONWIP limit of 5 jobs.

8.11. Solve Problem 8.4 except assume that the processing times at the workstations
have the following characteristics:

E[Ts] = (0.25,0.50,1.0) hr

C2
s = (0.75,1.25,2.0) .

8.12. Consider a two product production facility with three, single-server worksta-
tions. The WIP limits for the products are 2 and 3 jobs. Assume that the processing
times by product are exponentially distributed with mean times of

Product E[Ts(i,1)] E[Ts(i,2)] E[Ts(i,3)]
i = 1 1.00 hr 2.00 hr 3.00 hr
i = 2 1.75 hr 2.50 hr 1.50 hr

The workstation transition probability matrices for the two products are:

P1 =

⎡

⎣

1/5 3/5 1/5
1/5 1/5 3/5
2/5 2/5 1/5

⎤

⎦ and p2 =

⎡

⎣

2/6 3/6 1/6
3/6 1/6 2/6
2/6 3/6 1/6

⎤

⎦ .

(a) Determine the cycle times and WIP’s by product and workstation using the al-
gorithm of Property 8.7.
(b) Compute the product and system performance measures given that the flow out
of Workstation 3 back to Workstation 1 is considered good production for both prod-
ucts.

8.13. Consider Example 8.5 with two products containing routes according to
Figs. 8.2a and 8.2b. Add a third product with its CONWIP level set at 7 jobs in
this facility. The mean processing times (in hours) for the third product in the three
workstations are E[Ts(3,k)] = (0.6,0.4,0.5). The workstation transition probability
matrix for this product is
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Fig. 8.8a Network flows for
Product 1 of Problem 8.15
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Fig. 8.8b Network flows for
Product 2 of Problem 8.15
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P3 =

⎡

⎣

0 2/3 1/3
4/5 0 1/5
3/4 1/4 0

⎤

⎦ .

Using the approximation algorithm of Property 8.8, determine the cycle times and
WIP levels for each workstation by job type. Assume that the flow from Worksta-
tion 3 to Workstation 1 is good production and determine factory mean throughput
and cycle time.

8.14. Reconsider the facility described in Problem 8.12 except let the WIP limits
for the products be 8 and 10 jobs, respectively. (a) Determine the cycle times and
WIP’s by product and workstation using the algorithm of Property 8.8.
(b) Compute the product and system performance measures given that the flow out
of Workstation 3 back to Workstation 1 is considered good production for both
products.

8.15. A two-product factory is operated by releasing units only when a job is com-
pleted. The company policy is to maintain exactly 8 units of Product 1 and 5 units
of Product 2 in the system at all times. So if a job of type i completes, another job
of that type is immediately released into the factory. The two products have quite
different processing sequences and times with routing structures as displayed in
Figs. 8.8a and 8.8b . All processing times are exponentially distributed. The mean
processing times by workstation and product are
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Fig. 8.9a Network flows for
Product 1 of Problem 8.16
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Product E[Ts(i,1)] E[Ts(i,2)] E[Ts(i,3)]
i = 1 2.0 hr 3.0 hr 1.0 hr
i = 2 1.5 hr 2.0 hr 3.50 hr

Using the provided data, obtain the following answers using the algorithm of Prop-
erty 8.8.
(a) Find the relative arrival rates to the workstations.
(b) Write the equations for the workstation cycle times.
(c) Assume that the workstation cycle times are

WS 1 WS 2 WS 3
CT 1

k 8.543 hr 16.855 hr 8.086 hr
CT 2

k 8.275 hr 16.439 hr 9.681 hr

and complete the following tables.

WS 1 WS 2 WS 3
Product 1 WIP1

k 2.566 3.730 1.704
λ 1

k ? 0.221/hr 0.211/hr
Product 2 WIP2

k ? 2.036 1.598
λ 2

k 0.165/hr 0.124/hr 0.165/hr

(d) Give the workstation utilization factors.
(e) Give the system cycle times and throughputs for the two products.

8.16. A two-product factory is operated by releasing units only when a job is com-
pleted. The company policy is to maintain exactly 6 units of each product type in the
system at all times. So if a job of type i completes, another job of that type is imme-
diately released into the factory. The two products have quite different processing
sequences and times with routing structures as displayed in Figs. 8.9a and 8.9b .
All processing times are exponentially distributed. The mean processing times by
workstation and product are

Product E[Ts(i,1)] E[Ts(i,2)] E[Ts(i,3)]
i = 1 15 min 30 min 45 min
i = 2 60 min 42 min 24 min
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Fig. 8.9b Network flows for
Product 2 of Problem 8.16

1

2

3

1/2

1/2

1/3

2/3

3/4
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output

Using the provided data, obtain the following answers.
(a) Verify the following relative arrival rates.

Product ri,1 ri,2 ri,3

i = 1 1 0.737 0.702
i = 2 1 0.5 1.1111

(b) Using the algorithm of Property 8.7, determine the workstation cycle times if the
CONWIP levels were set to wmax = (1,1).
(c) Using the algorithm of Property 8.8, determine the workstation cycle times and
workstation WIP levels by product for the CONWIP levels of wmax = (6,6).
(d) Determine the workstation utilization factors.
(e) Determine the system performance measures.

8.17. Resolve Example 8.6 except assume that the service time distribution has a
Gamma distribution with shape parameter α = 2 (i.e., an Erlang-2 distribution) and
with mean values as specified by Table 8.9.
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Chapter 9
Serial Limited Buffer Models

Limited buffer capacity models can be used for the mathematical representations of
a form of kanban control. There are two aspects of limited buffer systems studied
in this chapter. First an approach for developing an analytical approximation model
for serial flow systems is developed. Then the issue of how these buffer values can
be set to yield an optimal system configuration is addressed.

The systems considered here consist of a set of workstations that have limits on
the number of work-in-process units allowed to wait at each of the single-server
processing stations. For serial systems, these workstations are connected in a serial
configuration so that jobs flow from the first to the second workstation only, and
then from the second to the third workstation, etc., until they exit the facility. Thus,
all jobs have the same routing sequence. The workstations have a set number of
jobs that are allowed into the workstation simultaneously and these limits need not
be identical. Let wk represent the work-in-process capacity limitation for Worksta-
tion k. This is the total number of jobs allowed in the workstation including the job
being processed. Only single-server machines in each workstation are considered;
the complexities of multiple servers in a limited-buffer capacity model is beyond the
scope of this analysis. (Thus, Workstation k will process jobs on Machine k so the
terms Workstation k and Machine k will be used interchangeably.)

There are several methods of operating a WIP-limiting control strategy. The ma-
jor policy is that a job may not proceed to the next workstation until a space becomes
available in that workstation. However, there are several ways the workstation can
operate. The concept of process blocking after job completion is generally used in
analytical models. That is, when a job is finished, it may not be removed from the
machine until space is available in the next workstation for this job. This effectively
blocks the machine from processing other jobs in its queue and is called blocking
after service. Another variation is blocking before service, that is the machine can-
not process the job until it has the authorization to move to the next workstation. A
control procedure frequently used in practice processes queued jobs in the worksta-
tion until they all have been processed and the machine is forced to be idle due to
the lack of unfinished inventory. In this chapter, only the blocking after processing
strategy is implemented for modeling purposes. This strategy allows for the imme-
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Fig. 9.1 Network structure
for the kanban analysis 0 1 2 3B B B1 2 3

diate response of the system to congestion and does not delay the response until
several more jobs have been processed.

This chapter deals with a finite WIP control approach where the limits are placed
on the number of jobs allowed in each workstation rather than in the factory as
a whole as was done with the CONWIP approach of Chap. 8. The general ap-
proach is to develop approximate probability distributions for the number of jobs
in each workstation (somewhat) independently and then connect these to estimate
factory performance. To facilitate the individual workstation models, general pro-
cessing time distributions are approximated by easy to model exponential phases
while maintaining the first two moments of the general service distributions. By as-
suming that all distributions to be modeled have SCV’s greater than or equal to 1/2,
Coxian (GE2) process sub-models can be used and tractable steady-state queueing
models result. An approximation methodology is developed for serially connected
systems with finite buffers at each workstation. The methods of this chapter utilize a
decomposition approach that make the resulting models computationally tractable.

9.1 The Decomposition Approach Used for Kanban Systems

The system being modeled is a series of workstations, or machines, connected by
buffer spaces of varying capacities. Job releases into the facility are controlled by
an initial machine with an unlimited backlog that continuously processes jobs and
sends them into the first workstation as long as there is space for that job. When the
job cannot proceed into the first workstation, the capacity there being full, then this
“job release” machine is blocked using the same “blocked after processing rule” as
all “real” workstation machines. The pre-release jobs are not considered as actual
jobs and do not count as facility WIP. This initial process can be thought of as the
preparation time necessary for a job release. Figure 9.1 illustrates the serial network
structure being studied, where Machine 0 is a machine representing job releases
to the system and there is a buffer of finite capacity between each machine. It is
possible that job releases are simply due to an individual processing the order so
“machine” may be a misnomer, but it is used simply for ease of reference.

The system can be modeled by developing the steady-state equations defining
the proportion of the time that the system is in every possible state. This direct full
scale modeling approach gets into computational difficulty very quickly because the
number of states that have to be considered grows exponentially with the number
of serial workstations. For example, if there can be 5 jobs in each workstation and
there are 4 workstations in series, then each workstation would have states 0, · · · ,5,
and the total number of states necessary to model the network is 64 =1296; whereas
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Fig. 9.2 Two-node decom-
position of the serial system
of Fig. 9.1 where each inte-
rior machine in the serial list
serves as the arrival-machine
in one subsystem and the
service-machine in the next
subsystem
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there would be 60,466,176 states with 10 workstations. To overcome this explosive
growth in the modeling representation, a decomposition approach is generally taken.
In the decomposition approach, an attempt is made to isolate each workstation and
obtain its steady-state probability distribution based on inflow and service distribu-
tion parameters. These parameters reflect the interaction between the workstations,
and very good approximations to the system performance measures can often be
obtained.

Most decomposition approaches isolate a single workstation at a time, but cer-
tainly the approach could utilize modeling pairs of workstations at a time or any
computationally tractable number. The standard approach is one workstation at a
time, that is the approach taken here. The popular approach, but certainly not the
only modeling view, is to create subsystems composed of a workstation buffer and
two servers. An upstream server is used to depict the time between job arrivals
to the workstation and a down-stream server represents the workstation process-
ing machine. Then as the analysis proceeds, each machine will play the role in one
subsystem of the processing server and in the next downstream subsystem as the
arrival-generating machine. There will actually be two distinct service distributions
for each machine because of the distinction between these two roles. This is called a
two-node decomposition approach. This two-node decomposition approach is used
in many research papers and the books by Perros [13] and Altiok [1]. The modeling
decomposition representation is illustrated in Fig. 9.2.

For discussion purposes, subsystems are numbered from left to right, such as
Subsystem 1, 2, etc. up to the last subsystem represented by n. Each Subsystem k
has an upstream server, denoted as Machine (k− 1) and a downstream server de-
noted as Machine k, with a buffer space for waiting jobs in between. The buffer and
downstream machine correspond to Workstation k of the facility being modeled. The
buffer-downstream machine combination has limit of wk jobs. Note that a job being
processed by the upstream (left-side) server is not counted against this limit because
in reality it is still in the previous workstation. Note that the first workstation’s up-
stream server (Machine 0) may not actually exist. The system’s job generating or
external inter-arrival mechanism is incorporated into the model and for notational
convenience is labeled as Machine 0.

Now consider Subsystem k, where Machine k is processing jobs entered into the
buffer by Machine k− 1. In actuality, Machine k can be blocked after service be-
cause the buffer for Machine k+1 is full and it can also be starved (forced idle for the
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lack of jobs) because of upstream workstation behavior. The blocking of Machine k
cannot be mimicked in the decomposition based on knowledge of the subsystem’s
state-probability distribution because of the disconnection between workstations in
the decomposition methodology. Thus, to account for this potential delay, an ap-
propriate delay as part of the job processing time is incorporated. Therefore, in the
decomposition structure, the processing time at a server will be longer than the nom-
inal processing time. This time will incorporate the probability of blocking due to
the next subsystem being full and an appropriate delay time for completing process-
ing at this server to relieve the blockage. Note that the downstream server in turn
could be blocked by its downstream subsystem being full and also be forced to wait
for a process completion there, and so forth all the way downstream until the last
server has been reached. The last server in the serial system can never be blocked. It
is assumed that completed jobs are immediately transported to shipping, or storage,
etc., and hence leave the system immediately.

The blocking of an upstream server in a subsystem can be properly accounted
for from the known probability distribution for the subsystem states. Hence, the up-
stream server’s processing time does not have to account for downstream blocking.
It will, however, be left periodically without a job to process (this situation is re-
ferred to as the machine being starved). The additional delay until a job becomes
available for the upstream server to process must be incorporated into the upstream
machine’s processing time. This delay occurs with a known probability based on the
upstream subsystem’s steady-state probability distribution and the associated delay
time is the remaining processing time for the current job on that machine. However,
in turn, this workstation could also be starved and forced to wait on its upstream
server, and so forth all the way back to the job generating Machine 0. This first
machine can never be starved.

This discussion hopefully has instilled a feeling for the differences in the two
service times for a given machine when it is playing the role of either the upstream
or the downstream server in the decomposition procedure. One of the main tasks in
the implementation of this decomposition procedure is the estimation of these two
distinct service distributions for each machine. These processes are discussed in the
next section.

9.2 Modeling the Two-Node Subsystem

The first aspect of modeling each subsystem is to describe each server within the
two-machine subsystem. Initially, the machines will be modeled as exponential pro-
cesses, then modeled by a mixture of generalized Erlangs with two or three phases
(described in the next subsection), and finally approximated by a two-phase gen-
eralized Erlang. Once the machines are described, a state space will be developed
using the general approach of Sect. 3.6.
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Fig. 9.3 A generalized Erlang
with two phases (GE2), where
the first phase always occurs
and has a mean rate λ1 and
the second phase occurs with
probability α and has a mean
rate λ2

(1−α)

λ2
α

λ1

9.2.1 Modeling the Service Distribution

In the initial step for modeling the limited buffer subsystems, the model for a finite
capacity exponential queueing process is needed. Such a system was previously
analyzed as an example in Chap. 3 (see Eqs. 3.5 and 3.7) so we will not repeat the
specific steps; however, the general solution is given in the following property so
that it can be easily referenced when needed.

Property 9.1. Consider a single-server queueing system with arrivals ac-
cording to a Poisson process having mean rate λ and an exponential service
time with mean 1/μ . The system can have at most wmax jobs in the system,
counting all jobs in the queue plus the one in service. The probability distri-
bution describing the number of jobs in the system in steady-state is

pi =
(λ/μ)i

∑wmax
j=0 (λ/μ) j for i = 0, · · · ,wmax .

Each processing time is assumed to be exponentially distributed; however, be-
cause of the possibilities of blockage or starvation, the actual delay time cannot
be modeled using the exponential distribution. For purposes of modeling the delay
times within each server, we review some of the material of Sect. 3.6.3 where the
generalized Erlang (GE) distribution was introduced. Figure 9.3 presents a graphi-
cal representation of the GE2 distribution, where 1/λ1 is the mean time spent in the
first phase, α is the probability that the second phase will be visited, 1−α is the
probability that only the first phase will be used, and 1/λ2 is the mean time spent
in the second phase if it is visited. The GE2 distribution is used because it is very
versatile, being able to fit a distribution to any positive mean and any SCV greater
than or equal to 1/2. For a given mean, E[X ], and SCV, C2[X ], the following can be
used to find the parameters of a GE2 distribution [2, p. 54–56]:

If C2[X ] > 1,

λ1 =
2

E[X ]
, λ2 =

1
E[X ]C2[X ]

, α =
1

2C2[X ]
; (9.1)
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Fig. 9.4 A mixture of gen-
eralized Erlang distributions
(MGEk) with k-phases
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and if 1
2 ≤C2[X ]≤ 1,

λ1 =
1

E[X ]C2[X ]
, λ2 =

2
E[X ]

, α = 2(1−C2[X ]) . (9.2)

To represent a specific GE2 distribution, we list its parameters as a three-tuple giving
the rate of the first phase, then the probability associated with moving to the second
phase and finally the rate of the second phase. Thus, the distribution of Fig. 9.3 is
said to be a (λ1,α ,λ2) GE2 distribution.

A generalization of the GE distribution is a mixture of generalized Erlangs
(MGE). Consider the diagram in Fig. 9.4. The diagram shows a GE distribution
with k phases; however, we add to the fact that it is a mixture so that the process
does not necessarily start at the first phase; thus, in addition to the parameters shown
in the diagram, there is a vector of probabilities, denoted by ααα , that represents the
starting phase; thus, αi denotes the probability that the process will start in Phase i
and then the process will proceed through the phases always going to the right or
exiting the system.

One method of describing an MGE process is to construct a so-called generator
matrix for the process which is a matrix giving the transition rates of moving from
state to state once the process starts. For example, the generator for the process of
Fig. 9.4 is

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−μ1 p1μ1 0 0
0 −μ2 p2μ2 0
0 0 −μ3 0

. . .
...

0 0 0 · · · −μk

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (9.3)

For a generator matrix, the diagonal elements are always negative, since they rep-
resent leaving the state and the off-diagonal elements are always non-negative. The
off-diagonal elements of a row must sum to a value less than or equal to the absolute
value of the diagonal element and the difference between the absolute value of the
diagonal element and the row sum of the off-diagonal elements is the rate at which
the process terminates from that particular state.

The MGE distribution is an example of a more general type of distribution know
as phase type distributions. These were popularized by Neuts and a relatively com-
plete description of their use within a queueing context can be found in [11]. The
moments of phase type distributions, and thus MGE distributions, are easily deter-
mined according to the following property.
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Fig. 9.5 The MGE3 service
time process for Example 9.1 2 3 4
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Property 9.2. The moments for a random variable, T , having a phase-type
distribution with generator G and initial probability vector ααα are given by

E[T ] =−ααα G−1 1

E[T 2] = 2ααα G−2 1

E[T 3] =−6ααα G−3 1 ,

where ααα is a row vector, 1 is a column vector of all ones, and G−n = (G−1)n.

Example 9.1. Assume that the processing time for a workstation is described by an
MGE3 process where the mean sojourn times for the three phases are 1/2 hr, 1/3 hr,
and 1/4 hr, respectively. Furthermore, there is a 90% chance that if the service starts
in the first phase it will be finished after the first phase, and an 85% chance that
if the process makes it to the second phase, that it will be finished after that phase
(Fig. 9.5). In addition, there is a 90% probability that the process will start in the
first phase and there is a 10% that it will start in the second phase. For this process,
the generator matrix is

G =

⎡

⎣

−2 0.2 0
0 −3 0.45
0 0 −4

⎤

⎦ .

and ααα = (0.9,0.1,0). To obtain the moments for the process, the inverse of the
generator is needed, and this is

G−1 =

⎡

⎣

−0.5 −0.03333 −0.00375
0 −0.03333 −0.00375
0 0 −0.25

⎤

⎦ .

Property 9.2 yields a mean of E[T ] = 0.5205 hr and a second moment of E[T 2] =
0.5339 hr2; thus, the SCV is C2[T ] = 0.971.

To approximate the MGE3 distribution with a GE2 distribution, Eq. (9.2) is used
to fit the moments. This yields a (1.9792, 0.0586, 3.8425) GE2 distribution. In other
words, the approximation always starts in the first phase having a mean rate of
1.9792/hr, then with probability 5.86% it will enter a second phase having a rate
of 3.8425/hr and with probability 94.14% it will finish after the first phase. ��
• Suggestion: Do Problems 9.1–9.3.
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9.2.2 Structure of the State-Space

Each subsystem of the serial decomposition consists of an arrival generating ma-
chine (called the arrival-machine), a workstation processing machine (called the
service-machine), and a finite buffer of capacity wmax− 1 jobs in between the two
machines. A job in the service-machine counts as part of the work-in-process so
the subsystem has a capacity of wmax jobs. The job being processed by the arrival-
machine does not count against the subsystem capacity limit because the job be-
ing served there is physically located in the previous workstation. The intent of
this section is the development of a queueing model of the steady-state occupancy
probabilities for the subsystem. Each service mechanism will be modeled as a GE2

distribution.
Since a job is assumed to be always available at the arrival-machine, the machine

itself will either be processing a job in its first phase (remember, the machine is
considered to be a GE2 system), processing a job in its second phase, or be finished
processing the job but the job is blocked because there is no room in the buffer.
For modeling purposes, it is necessary to keep track of the arrival-machine status
(i.e., either identify phase of processing or show the machine blocked), the service-
machine status (either identify phase of processing or show the machine idle), and
the number of jobs in the subsystem. Thus, a 3-tuple of information is needed to
represent the subsystem status. The continuous existence of a unit in the arrival-
machine does not match up with reality for the associated machine. The modeling
approach, however, is to account for the idle time for this real machine in the pro-
cessing time for the arrival-machine. Thus, this machine should be thought of as
the delay time between appearances of a job (inter-arrival time) to the workstation
under consideration. When the actual predecessor machine is idle, this time is part
of the inter-arrival time for the arrival-machine.

The 3-tuple state indicator is a vector with the first element representing the sta-
tus of the first node (arrival-machine), the second element defines the status of the
service-machine, and the third element is the total number of jobs in the subsystem.
As always, if at least one job is available for processing, the service-machine will
be processing (not idle). Thus, the 3-tuple subsystem status vector is of the form

(a,s,w)

where the states for a are Phase 1, Phase 2 or completed processing but blocked
denoted by a ∈ {1,2,b}. The states for s are similarly Phase 1, Phase 2, or idle
denoted by s∈ {0,1,2}, and the states for the third element of the three-tuple (work-
in-process) are w ∈ {0,1, · · · ,wmax}. Different subsystems are denoted by indexing
the 3-tuple elements by the subsystem index k as in (ak,sk,wmax,k).

For each state where the machines are fully operational, there are 4 states asso-
ciated with each fixed work-in-process level. That is, since each machine can be in
one of two states, there are four combinations resulting: (1,1,w), (1,2,w), (2,1,w),
(2,2,w), for 0 < w < wmax. For the situation where the arrival-machine is blocked,
the buffer must be full and the service-machine must be busy; therefore, the possi-
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Fig. 9.6 Rate diagram for a two-node submodel with MGE2 distributions: arrival node parameters
(α, p,β ) and service node parameters (μ ,q,γ)

ble states are (b,1,wmax) and (b,2,wmax). Finally, if the subsystem is empty, then
the arrival-machine cannot be blocked and will be in one of its two phases while
the service-machine will be idle resulting again in two possible states: (1,0,0) and
(2,0,0). Thus, there are a total of 4(wmax + 1) possible states for any subsystem
capacity limitation of wmax ≥ 1. For example, a subsystem with a capacity limit of 2
units will have a state space of 12 possible states. These twelve states, by inventory
level, are:

(1,0,0),(2,0,0),
(1,1,1),(1,2,1),(2,1,1),(2,2,1),
(1,1,2),(1,2,2),(2,1,2),(2,2,2),

(b,1,2),(b,2,2).

The movement of the subsystem from state to state is limited to adjacent inven-
tory levels because of the single unit machine processing assumptions (that is, no
batch arrivals or services are allowed). Figure 9.6 displays this 12 state example and
associated flow rates. In Fig. 9.6, the arrival node’s GE2 distribution has parameters
(α, p,β ) and the service-machine’s GE2 distribution parameters are (μ ,q,γ). As the
number of units allowed in the subsystem increases, the diagram has more columns
but the structure remains as illustrated.
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9.2.3 Generator Matrix Relating System Probabilities

The steady-state probabilities for the subsystem states, vi, are determined by solving
the system of equations relating the flows between states. Here the index i represents
a 3-tuple (a,s,w); a is the status of the arrival-machine, s is the status of the service-
machine, and w is the number of jobs present. The steady-state equations relating
these states are developed by equating the in-flow into any state with the out-flow
from that state. (This procedure for obtaining the equations is called the isolation
method in Sect. 3.6.2). Taking the states one at a time, a system of balance equations
is derived. For the example illustrated in Fig. 9.6 there are twelve such equations (in
12 unknowns):

α v(1,0,0) = (1−q)μ v(1,1,1) + γ v(1,2,1)

β v(2,0,0) = (1−q)μ v(2,1,1) + pα v(1,0,0) + γ v(2,2,1)

(α + μ)v(1,1,1) = (1− p)α v(1,0,0) +β v(2,0,0) + γ v(1,2,2)

+ (1−q)μ v(1,1,2)

(β + μ)v(2,1,1) = γ v(2,2,2) + (1−q)μ v(2,1,2) + pα v(1,1,1)

(α + γ)v(1,2,1) = qμ v(1,1,1)

(β + γ)v(2,2,1) = pα v(1,2,1) +qμ v(2,1,1)

(α + μ)v(1,1,2) = (1− p)α v(1,1,1) +β v(2,1,1) + γ v(b,2,2)

+ (1−q)μ v(b,1,2)

(β + μ)v(2,1,2) = pα v(1,1,2)

(α + γ)v(1,2,2) = qμ v(1,1,2) + (1− p)α v(1,2,1) +β v(2,2,1)

(β + γ)v(2,2,2) = pα v(1,2,2) +qμ v(2,1,2)

γ v(b,2,2) = β v(2,2,2) + (1− p)α v(1,2,2) +qμ v(b,1,2)

μ v(b,1,2) = β v(2,1,2) + (1− p)α v(1,1,2)

To form the generator matrix for this system, the left hand coefficients will be
the negative of the diagonal elements and the coefficients on the right-hand side will
be the off-diagonal elements. The resulting generator is shown in Fig. 9.7, where
blanks represent zeros. Since the vi values for i = 1, · · · ,12 must form a probability
mass function, the norming equation (i.e., ∑i vi = 1) must be used also. Thus, the
steady-state probabilities can be found by the following property.

Property 9.3. Consider a process described by a generator matrix Q such
that the sum of the off-diagonal elements of each row equals the absolute
value of the diagonal element of that row. If the row vector v satisfies
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(1,0,0) (2,0,0) (1,1,1) (1,2,1) (2,1,1) (2,2,1) (1,1,2) (1,2,2) (2,1,2) (2,2,2) (b,1,2) (b,2,2) 
− α p α (1−p) α          

 −β β          
(1−q)μ  −(α+μ) qμ pα  (1−p)α      

γ   −(α+γ)  pα  (1−p)α     
 (1−q)μ   −(β+μ) qμ β      
 γ    −(β+γ)  β     
  (1−q)μ    −(α+μ) qμ pα  (1−p) α  
  γ     −(α+γ)  pα  (1−p) α 
    (1−q)μ    −(β+μ) qμ β  
    γ     −(β+γ)  β 
      (1−q)μ    −μ qμ 
      γ     −γ 

 

Fig. 9.7 Q-generator matrix associated with the rate diagram of Fig. 9.6

vQ = 0

∑
i

vi = 1 ,

then vi denotes the steady-state probability of the process being in state i.

Notice that if the sum of the off-diagonal elements were less than the absolute value
of the diagonal element, then the process would terminate after some period of time
and no steady-state would exist. There is also one redundant equation within the
system defined by vQ = 0 so that to obtain the steady-state probabilities, one of the
columns (it does not matter which one) from the generator must be deleted.

• Suggestion: Do Problems 9.4 and 9.5.

9.2.4 Connecting the Subsystems

Recall that in the decomposition procedure, the upstream and downstream process-
ing times must be adjusted to account for machine starvation and machine block-
age, respectively. The two-node submodel can account for blocking by blocking the
arrival-machine in the submodel. The arrival-machine in the submodel cannot, how-
ever, be starved due to the structure of the submodel. But this machine in the real
system can be starved. A similar situation exists for blocking of the downstream or
subsystem service-machine. Hence for the decomposition method to give reason-
able results, these elements of the problem are accounted for in the delay time as-
sociated with their respective services. The decomposition approach is to de-couple
the subsystems as much as possible, and this is accomplished by approximating the
subsystem interactions as probabilistically independent events. So the probability of
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being blocked by the downstream system is taken as the steady-state probability of
that subsystem being full.

Since the behavior of each subsystem is a function of the behavior of its neigh-
boring subsystems, these subsystems all need to be solved simultaneously. This of
course, somewhat negates the concept of decomposing the problem into subsystems;
however, an iterative solution can be structured where the previous iteration subsys-
tem values are used to estimate the interactions of the current subsystem with its
neighbors and the estimates improve with each iteration. This computational ap-
proach is the crux of the decomposition solution method. A variety of iteration
schemes have been utilized in various decomposition approaches for problems of
this nature and are summarized in the paper by Dallery and Frein [4].

The general approach for obtaining a solution to the decomposed subsystems
is to initially set the service-time distribution to the nominal service-time distribu-
tion and the arrival generating process-time distribution to the predecessor nominal
service-time distribution for each subsystem. Then starting with the first subsystem,
the subsystems are solved sequentially in increasing order. This allows for succeed-
ing subsystems to estimate the probability of starvation from previously analyzed
subsystem’s results. Note that on this forward pass, the downstream blockage prob-
abilities are not improved and only the arrival generating service distributions are
improved. Then a backward pass through the subsystems is performed, starting at
the end subsystem and working backward to the first subsystem. This process al-
lows for improved processing times for the machines because the previous subsys-
tem blocking probabilities and associated processing times have been updated. After
both the forward and backward passes have been completed (called an iteration) the
two subsystem process-time distributions have been updated. This iterative process
is repeated until convergence of the distributions occur. For the single parameter
exponential service-time distribution the iterative solution scheme is a contraction
and, hence, converges [4].

The blocking and starvation probabilities are not based on steady-state values but
on the probabilities at the instance of a service completion and the instance of an
arrival, respectively. The blocking probability of a completed job in a subsystem is
equal to the probability that an arrival for the downstream subsystem finds that sub-
system full at the instance of the arrival occurrence. Thus, that subsystem cannot be
in the blocked state at that time (or the arrival would not have occurred because the
blocked state means that the arrival process is temporally shut-off). This blocking
probability is computed as the ratio of the subsystem full states probabilities mul-
tiplied by the arrival completion rates for the full states divided by the sum of all
allowable state probabilities (this excludes the two blocked states) times their re-
spective arrival completion rates. A similar computation is required to compute the
starvation probability for the arrival-machine at the subsystem under consideration.
This probability is based on the upstream-subsystem machine at completion of a
service finding that subsystem empty. Thus, the next service time, the inter-arrival
time for this subsystem, will include a delay associated with that subsystem waiting
for an arrival before processing can commence. The probability that the upstream
subsystem is empty at the instance of the departure of a job just completing ser-
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Fig. 9.8 Diagram representation of the example problem of Sect. 9.3 where circles represent ma-
chines with mean times listed and boxes represent WIP buffer areas with capacities listed

vice is computed based on the service completion rates for the various upstream
subsystem states excluding the empty states (no service event can occur while that
subsystem is empty and, therefore, not serving a job). The starvation probability for
the subsystem in question is then the ratio of the sum of the probabilities that this
subsystem has only one job in it times the job completion rates for those states and
the sum of all nonzero states times their respective service-completion rates.

A detailed example is used to illustrate this iteration solution scheme. This sim-
ple three workstation serial system with exponential service time distributions con-
verges to an acceptable accuracy level in 5 iterations. The errors as compared with a
single long simulation run are in the neighborhood of 1% for the three performance
measures of cycle time, throughput and work-in-process.

9.3 Example of a Kanban Serial System

A kanban system has been implemented within a facility that has a simple serial
structure for its three workstations. The kanban limits are 4, 3, and 4, respectively,
at the three workstations. All three workstations are single machine systems with
exponential processing times have means of 80 min, 75 min, and 72 min, respec-
tively. When there is room to begin a new job in the first workstation (i.e., when a
new job is pulled into the factory), it takes an average of 60 minutes to gather the
raw material and do the data entry necessary to begin the job within the factory.
Notice that in Fig. 9.8 illustrating this factory, the capacity of the buffers is one less
than the kanban limits due to a job possibly being in process.

Since the factory is using a kanban control system, each machine is blocked
from starting service on a new job until the job just completed obtains space in the
next workstation. The first or job arrival generating machine is always busy except
when it has a completed job that is blocked from entering the first workstation. This
situation blocks the machine from starting on a new job. Completed jobs at the last
workstation leave the system with no blockage or delays.

Throughout the discussion of the algorithm, it will be important to keep in mind
the distinction between the arrival-machine and the service-machine. The first sub-
system contains the machine pair (0, 1) with Machine 0 being the arrival-machine
and Machine 1 being the service-machine. The second subsystem contains the ma-
chine pair (1,2) with Machine 1 being the arrival-machine and Machine 2 being the
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service-machine. Finally, the third subsystem contains the machine pair (2,3) with
Machine 2 being the arrival-machine and Machine 3 being the service-machine.

For notational purposes, t0, t1,t2, and t3 will denote the average time for the four
machines. For our computations, we will use hours for time units; therefore, t0 = 1
hr, t1 = 4/3 hr, t2 =5/4 hr, and t3 = 6/5 hr. In addition, when formula are given in
general, the total number of workstations will be denoted by n.

9.3.1 The First Forward Pass

The decomposition procedure makes a first pass through the subsystems starting
with Subsystem 1 called the forward pass. The purpose of the forward pass is to
update the arrival-machine processing time distribution. The basis for the update is
an analysis of the departure characteristics of the previous subsystem. The difficulty
with the arrival-machine is that it might become starved and so the inter-arrival time
is longer than normal; thus, to update the inter-arrival times for Subsystem k, we
need to determine the probability that a departure from Subsystem (k− 1) leaves
that subsystem empty. Except for the first subsystem, the processing time for the
arrival-machine is approximated by a GE2 distribution and it will become important
to know the phase of the arrival-machine when the departure occurs. For the first
subsystem, the arrival-machine is always modeled with the exponential distribution
and we denote the probability that a departure from Subsystem 1 leaves it empty by
p0

d,1. For Subsystem k (k > 1), we denote the probability that a departure from that
subsystem leaves it empty and that the arrival-machine is in Phase i at the time of

departure by p(i,0)
d,k .

Since Subsystem 1 has an arrival-machine that can never be starved, the analysis
of the first subsystem does not update the arrival-machine, but it does determine the
probability that a departure leaves the system empty.

9.3.1.1 First Forward Pass for Subsystem 1

Subsystem 1 has exponential inter-arrival times with mean of 1 hr and an exponen-
tially distributed service time with mean time 4/3 hr and a system capacity of 4
units. The state space can be represented as {0,1,2,3,4,b} due to the fact that the
processing times of the machines are exponential and thus the state space does not
need an indicator for the second phase of service. (An exponential process has only
one phase). Using Property 9.1, the probabilities are easily computed and are shown
in Table 9.1.

Table 9.1 Probabilities for Subsystem 1 — first forward pass

Jobs 0 1 2 3 4 b
Prob. 0.0722 0.0962 0.1283 0.1711 0.2281 0.3041
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The probability that a departure leaves the subsystem empty is the probability
that this job was the only job in the subsystem at the departure time. Note that no
departure can occur if the subsystem is empty. Thus, this probability is computed as
the conditional probability (Definition 1.3) that there is one job in the system given
that system in not empty; that is,

p0
d,1 =

0.0962
1−0.0722

= 0.1037 .

The throughput rate for this subsystem is based on the steady-state probabilities
and is computed from the mean arrival rate times the probability that the system is
not blocked. Thus, the throughput rate for subsystem one is

th(1) = 1× (1−0.3041) = 0.6959/hr .

Summary: The first forward pass of Subsystem 1 will always use probabilities
derived from Property 9.1. Assume these probabilities are denoted by vi for i =
0, · · · ,wmax +1, where wmax +1 represents the blocked state. (For ease of notation,
we shall let vwmax be written as vmax and let vwmax+1 be written as vb.) Then the
probability that a departure will leave the system empty is

p0
d,1 =

v1

1− v0
, (9.4)

and the mean throughput rate is given by

th(1) =
1− vb

t0
, (9.5)

where t0 is the mean time needed to release jobs into the factory (or the time to
prepare jobs for processing) once there is room available.

9.3.1.2 First Forward Pass for Subsystem 2

The second subsystem has Machine 1 as the arrival-machine and Machine 2 as the
service-machine. The buffer for this subsystem has a limit of 2 therefore its capac-
ity is 3 units. For the first pass, the service distribution is exponential with mean
time 5/4 hr. The inter-arrival time distribution used for the arrival-machine is the
machine’s nominal service time (exponentially distributed with mean time 4/3 hr
or, equivalently, a mean rate of 0.75/hr) interspersed with periodic delays due to
machine starvation. That is, periodically this arrival-machine (that is really the ma-
chine for Subsystem 1) does not have a job to process and must wait for its own
arrival which is exponentially distributed with a mean time of 1 hr. Thus, when an
arrival occurs to Subsystem 2, this job departs from Subsystem 1 and if it leaves
that subsystem empty, the time until the next departure includes both the idle time
of Machine 1 plus the service time of Machine 1. Therefore, the probability that
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Subsystem 1 is empty at a departure time (namely, p0
d,1 = 0.1037) is used to activate

this delay, and the phase-type inter-arrival time distribution for Subsystem 2 is an
MGE2 distribution with a generator matrix G

G =
[ −1.0 1.0

0.0 −0.75

]

and ααα = (0.1037,0.8963). This process has a mean time of E[Ta(2)] = 1.4370 hr
and an SCV of C2

a(2) = 0.9561.
The decomposition procedure is to always replace the arrival-machine processing

time distribution with a GE2 approximation. Thus, fitting the moments for the MGE2

service process with the GE2 distribution, we obtain parameters associated with the
arrival-machine for the second subsystem of

(α2, p2,β2) = (0.7278,0.0878,1.3917)

using Eq. (9.2). Since the processing time distribution for the service-machine is
exponential, the state space is not quite a large as the state space of Sect. 9.2.2.
(Notice that the reason the service-machine has an exponential distribution is that
we have not yet estimated the probability of blocking at the downstream subsystem
since this is the first pass.) The state space for Subsystem 2 (first pass) is

{(10),(20),(11),(21),(12),(22),(13),(23),(b3)} .

We follow the same logic as the development of the generator matrix in Sect. 9.2.3
and develop the generator matrix for Subsystem 2 (first pass). The general form of
the generator is given as follows where blanks in the matrix represent zeros:

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−α pα (1− p)α
−β β

μ −(α + μ) pα (1− p)α
μ −(β + μ) β

μ −(α + μ) pα (1− p)α
μ −(β + μ) β

μ −(α + μ) pα (1− p)α
μ −(β + μ) β

μ −μ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where (α, p,β ) are the parameters (α2, p2,β2) and μ = 1/t2.
Property 9.3 can now be used to determine the steady-state probabilities for Sub-

system 2. These are shown in Table 9.2.
We will need not only the probability that a departure from the subsystem leaves

it empty, but also the joint probability for the state of the arrival process when the
departure occurs. The probability that a departure from Subsystem 2 leaves the sub-
system empty while its arrival-machine is in the first phase is



9.3 Example of a Kanban Serial System 297

Table 9.2 Probabilities for Subsystem 2 — first forward pass

Phase of Number of Jobs in System
Arrival-Machine 0 1 2 3

1 0.2410 0.2192 0.1904 0.1659
2 0.0163 0.0091 0.0073 0.0048
b 0.1461

p(1,0)
d,2 =

0.2192
1− (0.2410+0.0163)

= 0.2951 ,

and the probability that a departure from Subsystem 2 leaves the system empty while
its arrival-machine is in the second phase is

p(2,0)
d,2 =

0.0091
1− (0.2410+0.0163)

= 0.0122 .

Note that again the probability is conditioned on the subsystem not being empty
since no departure can occur while it is empty.

The throughput of Subsystem 2 is the arrival rate (reciprocal of 1.4370 hr) times
the probability that the subsystem is not blocked, which is

th(2) = 0.6959× (1−0.1461) = 0.5942/hr .

Summary: The first forward pass of Subsystem 2 involves using an MGE2 dis-
tribution for the arrival-machine with generator

G =
[ −1/t0 1/t0

0.0 −1/t1

]

and ααα = (p0
d,1, 1− p0

d,1). Using some matrix algebra, it is possible to find the mean
and variance of this in closed form; therefore, the iteration does not need to express
the matrix explicitly. Thus, the mean and variance of the the inter-arrival times to
the second subsystem (first pass) are given by

E[Ta(2)] = t1 + p0
d,1 t0 and (9.6)

Var[Ta(2)] = t2
1 + p0

d,1 t2
0

(

2− p0
d,1

)

.

With the mean and SCV for the arrival process determined, Eq. (9.1) or (9.2)
is used to obtain the parameters for the approximating GE2 which are denoted by
(α2, p2,β2) and these parameters in turn are used to obtain the generator matrix for
the steady state probabilities of Subsystem 2. The form of the generator matrix is
given on page 296. It should not be difficult to form the generator matrix for any
value of wmax once it is observed that the generator is made up of 2×2 submatrices.
The first two rows and columns have a slightly different form, but a pattern can
be observed. In addition, the final (single) row and column are also different. The
steady-state probabilities are obtained from Property 9.3. Let these probabilities be
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denoted by vi where i is an ordered pair representing a state in the state space of the
form given on page 296.

The probability that a departure from Subsystem 2 (after the first pass) leaves the
system empty while its arrival-machine is in the first phase is

p(1,0)
d,2 =

v(1,1)

1− (v(1,0) + v(2,0))
, (9.7)

and the probability that a departure from Subsystem 2 leaves the system empty while
its arrival-machine is in the second phase is

p(2,0)
d,2 =

v(2,1)

1− (v(1,0) + v(2,0))
. (9.8)

Finally, the mean throughput rate

th(2) =
1− vb

E[Ta(2)]
, (9.9)

where E[Ta(2)] is from Eq. (9.6).

9.3.1.3 First Forward Pass for Subsystem Three

The third subsystem has Machine 2 as the arrival-machine and Machine 3 as the
service-machine. The service-machine has an exponential processing time with
mean time 6/5 hr or, equivalently, with mean rate 0.8333/hr. If an arrival occurs to
Subsystem 3 leaving the previous subsystem not empty, the next inter-arrival time
will have a mean of 1.25 hr (service time for Machine 2 with rate 1/t2 = 0.8); other-
wise, there will be an additional delay in the inter-arrival time based on the phase of
the arrival-machine. Recall that the parameters for the GE2 distribution used for the
inter-arrivals to Subsystem 2 were (α2, p2,β2) = (0.7278,0.0878,1.3917); there-
fore the inter-arrival distribution for Subsystem 3 has an MGE3 distribution with
generator

G =

⎡

⎣

−α2 p2 α2 (1− p2)α2

0 −β2 β2

0 0 −1/t2

⎤

⎦=

⎡

⎣

−0.7278 0.0639 0.6639
0 −1.3917 1.3917
0 0 −0.8

⎤

⎦

and with initial probabilities ααα = (0.2951,0.0122,0.6927). Notice that the first two

initial probabilities are given p(1,0)
d,2 and p(2,0)

d,2 .
From Property 9.2, we have that the MGE3 process has a mean of mean time of

E[Ta(3)] = 1.6829 hr and a SCV of C2
a(3) = 0.9110. As always, we simplify the

arrival process by approximating it with a GE2 process and from Eq. (9.2), we have
the parameters as

(α3, p3,β3) = (0.6523,0.1781,1.1884) .
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Because Subsystem 3 is the final subsystem within the factory, there is no need
to calculate the probability that a departure will leave the system empty since the
service-machine to the final subsystem does not act as an arrival-machine. There-
fore, the forward pass for the first iteration is finished since all arrival-machines have
been updated.

Summary: For a systems with more that two workstations, the determination
update of the arrival-machine follow the same procedure, namely first an MGE3

distribution is determined and than a GE2 approximating distribution is calculated.
In order to give a general form, assume for this summary that we are analyzing
Subsystem k. The MGE3 process used for the inter-arrival times is described using
a generator matrix given by

G =

⎡

⎣

−αk−1 pk−1 αk−1 (1− pk−1)αk−1

0 −βk−1 βk−1

0 0 −1/tk−1

⎤

⎦

where the vector of initial probabilities is given by

ααα =
(

p(1,0)
d,k−1, p(2,0)

d,k−1, 1− p(1,0)
d,k−1− p(2,0)

d,k−1

)

.

Notice that the parameters of the generator depend on the GE2 parameters deter-
mined for the previous subsystem as well as the mean service rate of the service-
machine of the previous subsystem. The initial probabilities depend on the probabil-
ities that a departing job from the previous subsystem leaves the arrival-machine in
either Phase 1 or 2. Again, using some matrix algebra, it is possible to find the mean
and variance of this in closed form; therefore, the iteration does not need to express
the matrix explicitly. Thus, the mean and variance of the the inter-arrival times to
the second subsystem (first pass) are given by

E[Ta(k)] = tk−1 +
p(1,0)

d,k−1

αk−1
+

π
βk−1

(9.10)

Var[Ta(k)] = t2
k−1 +

p(1,0)
d,k−1 (2− p(1,0)

d,k−1 )

α2
k−1

+
π (2−π)

β 2
k−1

+
2p(1,0)

d,k−1 (pk−1−π)

αk−1 βk−1
,

where π = p(1,0)
d,k−1× pk−1 + p(2,0)

d,k−1. With the mean and SCV for the arrival process
determined, Eq. (9.1) or (9.2) is used to obtain the parameters for the approximating
GE2 which are denoted by (αk, pk,βk).
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9.3.2 The Backward Pass

Each iteration of the algorithm involves a forward pass and then a backward pass.
The forward pass updates the arrival-machine distribution parameters and the back-
ward pass updates the service-machine distribution parameters. The difficulty with
analyzing the service-machine is that after it is finished processing, the next sub-
system may have no space for it so that the service-machine becomes blocked. This
effectively increases the job delay time of the job controlling the machine. The way
this is handled in the decomposition procedure, where the connection between ad-
jacent workstations is not available, is to increase the job processing times. Thus,
in the backwards pass, the probability that an arriving job finds a full subsystem is
needed because the time that it takes to unblock service-machine is dependent on
the phase of the downstream machine. In addition, the probability that the arriving
job finds the service-machine in a specific phase is also needed. Therefore, in the

following discussion, we will let p(i,F)
a,k denote the probability that an arrival to Sub-

system k (k < n) finds the subsystem full and its service-machine in Phase i. As we
begin the backwards pass, we start with the final subsystem (i.e., Subsystem n) and
its service-machine is always exponential so it has no phases; hence, pF

a,n will be
used to denote that an arrival to the final subsystem finds the subsystem full.

9.3.2.1 Backward Pass for Subsystem 3

The service-machine for the final subsystem needs no updating since it is never
blocked; however, the probability that an arrival to the final subsystem finds the
subsystem full must be calculated so that the service-machine for the penultimate
subsystem can be updated. To obtain this probability, the steady-state probabilities
for the subsystem must be determined. The data that are needed for determining
the generator matrix for the steady-state probabilities are the arrival-machine pa-
rameters (namely, α3, p3, and β3 from p. 298) and the mean processing rate for the
service-machine (namely, 1/t3). The state space for Subsystem 3 is very similar to
Subsystem 2 (see p. 296) except there are two additional states since the kanban
limit for Subsystem 3 is 4 jobs whereas the capacity for Subsystem 2 was 3 jobs.
The generator matrix is also very similar (see p. 296) except it will have two more
rows and columns. Once the generator matrix is constructed, the probabilities can
be obtained from Property 9.3 to yield the results in Table 9.3.

Table 9.3 Probabilities for Subsystem 3 — first backward pass

Phase of Number of Jobs in System
Arrival-Machine 0 1 2 3 4

1 0.2869 0.2246 0.1578 0.1110 0.0787
2 0.0407 0.0180 0.0125 0.0082 0.0045
b 0.0571
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The probability that an arrival finds the system full (i.e., the probability that an
arrival gets blocked) is a conditional probability based on the state of the arrival-
machine when the arrival occurs. (Notice that because the service-machine process
is not exponential, the time-averaged probability of finding the system full is not the
same as the probability of finding the system full at a departure time.) The probabil-
ity that an arrival will occur to Subsystem 3 while its arrival-machine is in Phase 1
is 1− p3 = 0.8219 (recall that p3 is a parameter of the arrival-machine GE2 distribu-
tion as determined by the forward pass) and it will occur while the arrival-machine
is in Phase 2 with probability p3 = 0.1781. The conditional probability that the ar-
riving job will find a full system given that the arrival-machine is in Phase 1 at the
arrival time is

Pr{full|Arrival Phase 1} =
0.0787

0.2869+0.2246+0.1578+0.1110+0.0787
= 0.0916 ,

and the conditional probability that the arriving job will find a full system given that
the arrival-machine is in Phase 2 is

Pr{full|Arrival Phase 2) =
0.0045

0.0407+0.0180+0.0125+0.0082+0.0045
= 0.0534 ;

therefore, the probability of blocking occuring upon an arrival from the second sub-
system is

pF
a,3 = 0.8219×0.0916+0.1781×0.0534 = 0.0849 .

The throughput of Subsystem 3 is the arrival rate (the reciprocal of 1.6829 hr)
times the probability that Subsystem 3 is not blocked, which is

th(3) = 0.5942× (1−0.0571) = 0.5603/hr .

Summary: The backward pass starts with the final subsystem and begins with
determining its steady-state probabilities. The state space will always be of the form
given on p. 296 and the generator will be similar to that on p. 296. Once the generator
matrix is constructed, Property 9.3 is used to yield the probabilities denoted as vi for
i an ordered pair representing a state. The blocking probability is given by

pF
a,n = (1− pn)

v(1,max)

∑max
i=0 v(1,i)

+ pn
v(2,max)

∑max
i=0 v(2,i)

, (9.11)

where pn is the parameter from the approximating GE2 distribution for the arrival-
machine of the final subsystem. Finally, the mean throughput rate is

th(n) =
1− vb

E[Ta(n)]
, (9.12)

where E[Ta(n)] is from Eq. (9.10).
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9.3.2.2 Backward Pass Subsystem 2

The probability that service-machine for Subsystem 2 is blocked by Subsystem 3
being full at a departure time is pF

a,3 = 0.0851. Thus, the service distribution is
made up of an exponential service time with mean time 5/4 and an 8.51% chance
of an addition exponential wait with mean time 6/5. This phase-type service time
distribution is represented as an MGE2 process with generator matrix G

G =
[−0.8333 0.8333

0 −0.8000

]

with the starting state distribution ααα = (0.0849,0.9151). (Notice that the entries of
the generator are rates and thus are the reciprocals of the mean times.) This process
has a mean time of E[Ts(2)] = 1.3521 hr and an SCV of C2

s (2) = 0.9830 (Prop-
erty 9.2), and the following parameter set

(μ2,q2,γ2) = (0.7525,0.0338,1.4795)

obtained from Property 9.3 will be used for the GE2 distribution that approximates
the service-machine of Subsystem 2. Recall that the forward pass from p. 296 es-
tablished that the arrival-machine for the subsystem could be approximated by a
GE2 distribution with parameters (0.7278,0.0878,1.3917). Since both the arrival-
machine and the service-machine are modeled with the GE2 process, the state space
will be composed of three-tuples and the generator matrix for the two-node subsys-
tem will be similar to Fig. 9.7, except that there will be 16 rows and columns. To
structure the generator matrix, the pattern for the matrix should be obvious from
Fig. 9.7 if you look for the 4× 4 submatrices. The first and the last two rows and
columns have a slightly different form, but the other rows and columns will have a
repeating submatrices along the tri-diagonal block submatrices. Once the generator
matrix is formed, the resulting steady-state probabilities for the subsystem are found
from Property 9.3 as shown in Table 9.4.

Table 9.4 Probabilities for Subsystem 2 — first backward pass

Phase of Phase of Number of Jobs in System
Arrival-Machine Service-Machine 0 1 2 3 3-blocked

1 0 or 1 0.2079 0.2034 0.1909 0.1800 —
1 2 — 0.0023 0.0030 0.0031 —

2 or b 0 or 1 0.0142 0.0087 0.0076 0.0054 0.1687
2 or b 2 — 0.0001 0.0001 0.0001 0.0044

The probability that an arrival to Subsystem 2 will find it full is based on the
conditional probability that the arrival occurs while the arrival-machine is in either
Phase 1 or 2 but not blocked. However, we also need the joint probability that the
arrival will find the subsystem full and will find the service-machine in a specific
phase. Before writing these probabilities, note that the probability that the arrival-
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machine to Subsystem 2 is in Phase 1 (and not blocked) equals 0.7906 and the proba-
bility that the arrival-machine is in Phase 2 (and not blocked) is 0.0362. In addition,
the probability that an arrival enters the subsystem from Phase 1 of the arrival-
machine is 91.22% (namely, 1− p2), and enters from Phase 2 is 8.78% (namely,
p2); thus, the probability that an arrival to Subsystem 2 will find the subsystem full
with the service-machine in Phase 1 is given by

p(1,F)
a,2 = 0.9122× 0.1800

0.7906
+0.0878× 0.0054

0.0362
= 0.2208 ,

and the probability that an arrival to Subsystem 2 will find the subsystem full with
the service-machine in Phase 2 is given by

p(2,F)
a,2 = 0.9122× 0.0031

0.7906
+0.0878× 0.0001

0.0362
= 0.0038 .

Finally, the throughput rate is the arrival rate times the probability that the system
is not blocked, or

th(2) = 0.6959× (1−0.1687−0.0044) = 0.5754/hr .

Summary: The backwards pass for penultimate subsystem (namely, Subsys-
tem (n− 1)) always uses the MGE2 distribution for the service-machine process;
thus, the mean and variance of service times can be given as

E[Ts(n−1)] = tn−1 + pF
a,n tn and (9.13)

Var[Ts(n−1)] = t2
n−1 + pF

a,nt2
max

(

2− pF
a,n

)

,

where tn denotes the mean service time of the final workstation and tn−1 denotes the
mean service time of the penultimate workstation.

With the mean and SCV for the service-machine process determined, Eq. (9.1)
or (9.2) is used to obtain the parameters for the approximating GE2 which are de-
noted by (μn−1,qn−1,γn−1). This distribution is combined with the GE2 distribution
determined in the forward pass that is used for the arrival process. The parameters
for the arrival process were denoted by (αn−1, pn−1,βn−1). Thus, we have the data
needed to establish the steady-state probabilities of Subsystem (n−1). The form of
the generator matrix is similar to Fig. 9.7 with the steady-state probabilities coming
from Property 9.3. These probabilities are denoted by vi where i is a three-tuple. The
probability that an entry will find the system blocked while the service-machine is
in the first phase is

p(1,F)
a,n−1 = (1− pn−1)

v(1,1,max)

v(1,0,0) +∑max
i=1 [v(1,1,i) + v(1,2,i)]

(9.14)

+ pn−1
v(2,1,max)

v(2,0,0) +∑max
i=1 [v(2,1,i) + v(2,2,i)]

,
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where pn−1 is the parameter from the GE2 distribution for the arrival-machine of the
penultimate subsystem. Similarly, the probability that an entry will find the system
blocked while the service-machine is in the second phase is

p(2,F)
a,n−1 = (1− pn−1)

v(1,2,max)

v(1,0,0) +∑max
i=1 [v(1,1,i) + v(1,2,i)]

(9.15)

+ pn−1
v(2,2,max)

v(2,0,0) +∑max
i=1 [v(2,1,i) + v(2,2,i)]

.

(Notice that the phase index in the superscript of the blocking probabilities (Eqs. 9.14
and 9.15) refers to the phase of the service-machine; whereas, the index in the su-
perscript of the starving probabilities (Eqs. 9.7 and 9.8) refers to the phase of the
arrival-machine.)

From this point on, any subsystem except for the first and last subsystems will
have the full state space involving three tuples. Thus, the mean throughput rate, for
k = 2, · · · ,n−1 is given by

th(k) =
1− v(b,1,max)− v(b,2,max)

E[Ta(k)]
. (9.16)

9.3.2.3 Backward Pass for Subsystem 1

Note that there are three possibilities when a job has finished on the service-
machine: (1) the service-machine is not blocked (this has a probability of 77.54%),
in which case the service time will be exponential, (2) the service-machine is
blocked and the service-machine of Subsystem 2 is in Phase 1 (this has a proba-
bility 22.08%), in which case the service time for the next job will experience a
delay of according to a GE2 distribution, and (3) the service-machine is blocked and
the service-machine of Subsystem 2 is in Phase 2 (this has a probability 0.38%), in
which case the service time for the next job will experience a delay of an additional
exponential time associated with the second phase of the GE2 distribution. Thus, the
processing time distribution for the service-machine for Subsystem 1 is an MGE3

process with generator matrix G

G =

⎡

⎣

−μ2 q2 μ2 (1−q2)μ2

0 −γ2 γ2

0 0 −1/t1

⎤

⎦=

⎡

⎣

−0.7524 0.0256 0.7268
0 −1.4792 1.4792
0 0 −0.75

⎤

⎦

and with initial probabilities ααα = (0.2207,0.0038,0.7755). Notice that the first two

initial probabilities are p(1,F)
a,2 and p(2,F)

a,2 . This MGE3 process has a mean time of
1.6344 hr and an SCV = 0.9325 (Property 9.2). Thus, the following parameter set

(μ1,q1,γ1) = (0.6562,0.1350,1.2238)



9.3 Example of a Kanban Serial System 305

will be used for the GE2 distribution that approximates the service-machine of Sub-
system 1. Recall that for the first subsystem, the arrival-machine is never starved so
that its processing time distribution is exponential with mean 1 hr. We do not need to
determine the blocking probabilities, but an estimate for the throughput is needed;
therefore, we will calculate the steady-state probabilities.

The state space for this system will be slightly different from those we have had
so far an is given as

{(00),(11),(21),(12),(22),(13),(23),(14),(24),(1b),(2b)} .

The difference between this state space and the state space on Page 296 (other than
the larger buffer capacity) is that the first element of the ordered pair refers to the
phase of the service-machine instead of the arrival-machine; thus, there is only one
empty state and two blocked states instead of two empty states and one blocked
state.

To construct the generator matrix for the subsystem, it is best to look for a pattern
among 2×2 submatrices, except that the first row and column will be different. The
first few elements of the matrix are as follows and we leave it to the reader to finish
its construction:

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1/t0 1/t0 0 0 0 · · ·
(1−q1)μ −(μ1 +1/t0) q1μ 1/t0 0

γ1 0 −(γ1 +1/t0) 0 1/t0

0 (1−q1)μ 0 −(μ1 +1/t0) q1μ
0 γ1 0 0 −(γ1 +1/t0) · · ·
...

...
. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

From Property 9.3, the steady-state probabilities for the subsystem can be found
as given in Table 9.5.

Table 9.5 Probabilities for Subsystem 1 — first backwards pass

Phase of Number of Jobs in System
Service-Machine 0 1 2 3 4 b

0 0.0329
1 0.0534 0.0882 0.1464 0.2432 0.3706
2 0.0021 0.0045 0.0078 0.0132 0.0376

These probabilities yield a mean throughput of

th(1) = 1× (1−0.3706−0.0376) = 0.5918/hr .

The throughput estimates for the three subsystems after this first iteration are have
been calculated to be 0.5918/hr, 0.5754/hr, and 0.5603/hr. (These are all from the
backward pass since they are the more recent estimates than the forward pass.) The



306 9 Serial Limited Buffer Models

algorithm is finished when all three throughputs are the same and do not change
with the iteration.

Summary: The update to the service-machine for Subsystem k involves forming
the MGE3 distribution from the parameters determined during the backward pass of
Subsystem k +1. The generator will have the form

G =

⎡

⎣

−μk+1 qk+1 μk+1 (1−qk+1)μk+1

0 −γk+1 γk+1

0 0 −1/tk

⎤

⎦ ,

and with the initial probability vector given by

ααα =
(

p(1,F)
a,k+1, p(2,F)

a,k+1,1− p(1,F)
a,k+1− p(2,F)

a,k+1

)

.

Again, it is possible to obtain closed form expressions of the application of Prop-
erty 9.2 to this generator. Thus, the mean and variance for the service-machine pro-
cessing time for Subsystem k are

E[Ts(k)] = tk +
p(1,F)

a,k+1

μk+1
+

π
γk+1

(9.17)

Var[Ta(k)] = t2
k +

p(1,F)
a,k+1 (2− p(1,F)

a,k+1 )

μ2
k+1

+
π (2−π)

γ2
k+1

+
2p(1,F)

a,k+1 (qk+1−π)

μk+1 γk+1
,

where π = p(1,F)
a,k+1× qk+1 + p(2,F)

a,k+1. With the mean and SCV for the arrival process
determined, Eq. (9.1) or (9.2) is used to obtain the parameters for the approximat-
ing GE2 which are denoted by (μk,qk,γk). Using this distribution together with the
exponential-arrival process with mean time t0, the steady-state probabilities can be
obtained using a generator similar to the generator on Page 305.

The mean throughput rate is given by

th(1) =
1− v(1,b)− v(2,b)

t0
. (9.18)

This completes one iteration of the algorithm. The iterations should be continued
until the throughput estimates do not change from one iteration to the next.
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9.3.3 The Remaining Iterations

Some of the procedures used in the first forward passes were different simply be-
cause the subsystems had not been analyzed before. In the following subsections we
indicate the adjustments that will have to be made for the remaining iterations.

9.3.3.1 The Remaining Forward Passes for Subsystem 1

The steady-state probabilities for Subsystem 1 were obtained on the previous back-
ward pass and the arrival-machine needs no updating since it can never be starved.
Because the service-machine is no longer exponential, the probability of a depart-
ing job leaving the system empty must be conditioned on the phase of the service-
machine from which the job departs; otherwise the probability would be the time-
averaged probability instead of a departure point probability. This is similar to the
logic used for Eq. (9.11) except the conditioning is on the service-machine instead
of the arrival-machine. Thus, the probability that a departure will leave the subsys-
tem empty is given as

p0
d,1 = (1−q1)

v(1,1)

v(b,1) +∑max
i=1 v(1,i)

(9.19)

+q1
v(2,1)

v(b,2) +∑max
i=1 v(2,i)

,

where q1 is the parameter from the GE2 distribution for the service-machine of
the Subsystem 1 and v(b,i) is the steady-state probability that the arrival is blocked
and the service-machine is in Phase i. These quantities were determined during the
backward pass for the first subsystem.

9.3.3.2 The Remaining Forward Passes for Subsystem 2

The determination of the mean and variance for the inter-arrival times is the same
as the first forward pass; namely, use Eq. (9.6) and then determine new values for
(α2, p2,β2) based on the mean and SCV of the inter-arrival times. The generator
matrix is formed according to Fig. 9.8 (i.e., the state space is made up of three-
tuples) using the service-machine parameters saved from the previous backward
pass, and then Property 9.3 is used to obtain the steady-state probabilities.

Because the service-machine is no longer exponential, the probability of a depart-
ing job leaving the system empty must be conditioned on the phase of the service-
machine from which the job departs as was done for the first subsystem. Here a joint
probability is needed for the phase of the arrival-machine. Thus, the probability that
a departure will leave Subsystem k empty while the arrival-machine in Phase 1 is
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p(1,0)
d,k = (1−qk)

v(1,1,1)

v(b,1,max) +∑max
i=1 [v(1,1,i) + v(2,1,i)]

(9.20)

+qk
v(1,2,1)

v(b,2,max) +∑max
i=1 [v(1,2,i) + v(2,2,i)]

,

where qk is the parameter from the GE2 distribution for the service-machine of
Subsystem k with k = 2, · · · ,n−1. The probability that a departure will leave Sub-
system k empty with the arrival-machine in Phase 2 is

p(2,0)
d,k = (1−qk)

v(2,1,1)

v(b,1,max) +∑max
i=1 [v(1,1,i) + v(2,1,i)]

(9.21)

+qk
v(2,2,1)

v(b,2,max) +∑max
i=1 [v(1,2,i) + v(2,2,i)]

.

9.3.3.3 The Remaining Forward and Backward Passes

The forward pass for the final subsystem and all the backward passes remain the
same as during the first iteration. Recall that one iteration includes both the forward
and backward passes. Once the throughputs converge, the decomposition algorithm
is finished.

9.3.4 Convergence and Factory Performance Measures

The changing values of throughput by iteration are shown in Table 9.6 and it is
seen that five iterations are sufficient for convergence. The throughput values in the

Table 9.6 Throughput results from the first five iterations

Subsystem 1 Subsystem 2 Subsystem 3
Iteration 1 0.5916/hr 0.5754/hr 0.5602/hr
Iteration 2 0.5831/hr 0.5820/hr 0.5798/hr
Iteration 3 0.5824/hr 0.5823/hr 0.5821/hr
Iteration 4 0.5823/hr 0.5823/hr 0.5823/hr
Iteration 5 0.5823/hr 0.5823/hr 0.5823/hr

table are from the backwards pass. The values calculated from the forward pass are
ignored.

The performance measures for each workstation and the system as a whole are
computed from the throughput rate and the steady-state probabilities for each sub-
system as representative of the associated workstation. Notice that the throughputs
are the same for each subsystem (0.5823/hr for our example) if convergence has
taken place, but of course, the steady-state probabilities are different. To illustrate,
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consider Table 9.7 that shows the steady-state probabilities for Subsystem 1 as deter-
mined by the final backwards pass. The last row of the table gives the probabilities

Table 9.7 Probabilities for Subsystem 1 — fifth backwards pass

Phase of Number of Jobs in System
Service-Machine 0 1 2 3 4 b

0 0.0303
1 0.0501 0.0846 0.1434 0.2434 0.3745
2 0.0023 0.0048 0.0086 0.0148 0.0432

Sum 0.0303 0.0524 0.0894 0.1520 0.6759 —

for the number of jobs in the subsystem. Notice that the probability of 4 jobs in the
subsystem is the sum for the last two columns since the system contains 4 jobs when
it is blocked. Thus the average number of jobs in the system is

WIP(1) = 1×0.0524+2×0.0894+3×0.1520+4×0.6759 = 3.391 ,

and the cycle time (from Little’s Law) is

CT (1) =
WIP(1)

th(1)
=

3.391
0.5823

= 5.823 hr .

The system WIPs is the sum of individual the WIP’s for each workstation (sub-
system) and equals 7.215 jobs, and the cycle-time estimate is 7.215/0.5823 =
12.391 hr. The system and individual workstation results from the analytical pro-
cedure are compared with those from a simulation model. The simulation run was
long enough so that the half-width of the confidence limits for each estimate was
approximately 1% of the estimate or smaller. The simulation and analytical com-
parisons are given in Table 9.8. Both the mean throughput and cycle time errors are
less that 1% and the error in the WIP estimates is less than 2%; thus, the results of
the algorithm yield very acceptable results.

Table 9.8 Comparison of the analytical and simulation results

Analytical Simulation
th WIP CT th WIP CT

System 0.5823/hr 6.798 11.674 hr 0.588/hr 6.892 11.717 hr
Workstation 1 0.5823/hr 3.391 5.823 hr 0.588/hr 3.447 5.861 hr
Workstation 2 0.5823/hr 1.784 3.063 hr 0.588/hr 1.807 3.072 hr
Workstation 3 0.5823/hr 1.623 2.787 hr 0.588/hr 1.638 2.785 hr

The results of our analysis indicate that the WIP in each workstation is signifi-
cantly below the kanban limits set for system control. One reason for this is that the
job preparation time to initiate each job to the factory is on the same order as the
process times. This is established so that the computations would result in numbers
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that could easily be checked. It is often the case that the rate at which Machine 0
operates would be significantly greater than the workstation processing rates.

9.3.5 Generalizations

Serial flow networks only were considered in this presentation. General feed-
forward flow networks, that is acyclic flow only with no feedback branching, were
studied by Lee and Pollock [10], and general networks that also allow backward
branching were studied by Jun and Perros [9]. This latter problem class encounters
the phenomenon called dead-locking and these systems are difficult even to simu-
late (see Deuermeyer et al. [5] and Venkatesh et al. [16]).

• Suggestion: Do Problems 9.6–9.8.

9.4 Setting Kanban Limits

A significant problem associated with the implementation of a WIP limiting con-
trol strategy for factory operations is the setting of the kanban or WIP limits. This
problem has been studied in the literature for special cases [2, 7, 8, 14] and Chap. 7
of the book by Papadopoulos, Heavey and Browne [12] discusses the results and
characterizations of the structural properties found in the literature to that date. A
recent analysis by Spinellis, Papadopoulos and Smith [15] uses simulated annealing
as the optimization tool to find the buffer settings for long production lines. Heuris-
tic methods (such as simulated annealing, tabu search and genetic algorithms (see
[3]) are particularly suited to the optimization of this type of problem due to the
combinatorial and stochastic nature of the problem. These methods are called meta-
heuristics. According to Glover and Laguna [6]: “A meta-heuristic refers to a master
strategy that guides and modifies other heuristics to produce solutions beyond that
normally generated in a quest for local optimality.”

The problem is to find the individual buffer capacities (workstation WIP limits)
that maximize the throughput for a given total allocation of buffer units for a se-
rial system of workstations. The maximum throughput for a system without a total
buffer-units limit is obtained by infinite queues allowed at each machine in the se-
rial configuration. To make the problem realistic, the objective has been taken to
find the optimal allocation of a fixed number of buffer units. By allocation is meant
the number of buffer units to assign to each of the machines (workstations). So by
fixing the total number of units available, the allocation of these units to the various
machines so as to maximize the system throughput is a well-defined problem. Then
the question of how many total units to allow can be answered based on a secondary
criterion such as an upper limit on the mean cycle time or reaching a minimum
throughput level.
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In this section, a scheme is developed for obtaining very good, if not optimal,
buffer level configurations. Researchers such as Altiok and Stidham [2] conjecture
that the response function (throughput) is smooth and convex in nature. The exam-
ple problem discussed below demonstrates that this function is not actually convex
for all cases. Thus, the solution methodology must deal with local maxima that
are not the global maximum. The general search strategy is to use a neighborhood
search procedure for finding local maxima in conjunction with a restart procedure
designed to explore the solution space beyond these local maxima. The underly-
ing throughput evaluation methodology is the decomposition approach (mean-value
response generator) discussed in this chapter. The approach developed herein can
be viewed as a particular application of tabu search, but apparently the complex
meta-heuristic structure commonly used for non-convex combinatorial problems
is not needed. For example, the approach in [15] of using simulated annealing is
much more complex than appears necessary for the buffer allocation problem. Their
heuristic methodology, however, allows for the simultaneous optimization of buffer
allocations and machine processing rates. This combined optimization is a much
more difficult problem that requires this more powerful approach.

9.4.1 Allocating a Fixed Number of Buffer Units

For a given number of buffer space units, the problem is to find the best allocation of
these units across the workstations so as to maximize the system throughput. Since
this total must remain constant, it seems reasonable to use an exchange algorithm
where a single unit is taken from one workstation and assigned to another. Then the
throughput for this new configuration is evaluated. The basic step of the algorithm
is to evaluate all single units exchanges (both positive and negative) for each pair
of workstations (this is called a cycle). A cycle results in n(n−1) evaluations for a
n workstation problem. The best configuration for all these exchanges is stored as
the current best (incumbent solution) and the process repeated. If the best exchange
value is not better than the incumbent solution, then the process has reached a local
maximum. In this way a local search is performed with the best configuration being
used as the base point for further explorations (cycles). For concave functions this
local search procedure converges to the global maximum.

Once a local maximum has been obtained, the pair-wise exchange of a single unit
of buffer space between two workstations cannot find a better point and each addi-
tional cycle will terminate again with this same solution. To allow the exploration
to continue, a restart procedure is initiated once a local maximum has been identi-
fied. The restart procedure implemented herein is to start the unit-exchange process
from the local maximum with this configuration’s throughput value set to zero (an
incumbent value of zero). This allows the unit-exchange process to find the second
best point in the neighborhood as the solution obtained during the cycle since the
starting point (configuration) cannot be generated by this exchange procedure. The
neighborhood search (cycle procedure) continues from this solution. This one-unit
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offset from the local maximum allows the neighborhood search procedure to ex-
plore a slightly different region than it could reach from the local maximum point.
If the local concave nature of this local maximum is not too broad, the next cycle
has a chance of finding a better solution and continuing the search at a higher level
than was obtained via the local maximum. If the solution obtained by the restart
procedure is the same local maximum, then the search process is terminated with
that point as its maximal configuration. The algorithm in pseudo-code is given be-
low. In this pseudo-code, BP is the base policy and BP′ is the one-unit offset per-
mutation policy obtained by routine Permutation(±1,BP), maxthru is the current
best throughput value, and maxpolicy is the associated policy. The routine “evalu-
ate BP′” solves the decomposition and obtains the system performance throughput
value thru(BP′). The algorithm is started with a buffer allocation BP whose sum
determines the total number of units to be allocated.

Algorithm
start: BP←{b1,b2, · · · ,bn}

maxthru← 0
maxpolicy← BP
f ound← 0
holdthru← 0

cycle: BP← maxpolicy
Repeat

BP′ ← Permutation(±1,BP)
evaluate BP′
If thru(BP′) > maxthru Then

maxthru← thru(BP′)
maxpolicy← BP′

EndIf
Until BP′ = /0
If maxthru > holdthru Then

holdthru← maxthru
GoTo cycle

EndIf
local: f ound← f ound +1

If f ound = 1 Then
maxthru← 0
GoTo cycle

EndIf
Stop: Print maxthru, maxpolicy

Since there is no closed-form relationship that describes the throughput rate as a
function of the buffer configuration, it cannot be determined analytically whether or
not this throughput function is concave. Most of the optimization approaches used
in the literature for the buffer allocation problem will only isolate local maxima. The
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simulated annealing approach of Spinellis, Papadopoulos and Smith [15] being an
exception. Experience with problems of 3, 5, and 7 workstations in series leads us to
believe that this relationship is “almost” concave. Only one problem was found that
exhibited a local solution which was not the global solution. This particular problem
is used in the illustration below. This local maximum was only about 0.04% larger
than the best neighbor point and, thus, this throughput function is very close to being
a concave function. It is interesting to note that to solve this particular problem
by exhaustive search of the whole solution space is beyond reason since there are
736,281 configurations that would have to be evaluated.

The overall search procedure presented above is a simple implementation of a
tabu search method (see [6]). To summarize, a local optimal point is considered
“tabu” for one (or more) exchange-evaluation cycle(s) and the next best point in
the neighborhood is found. From this point, the one-unit exchange process might
find a better point than this local maximum and, thus, continue to improve without
hanging up on the local maximum. Another approach for moving away from a local
maximum would be to perform an exhaustive search around the local maximum with
some specified radius. This can be accomplished for all exchanges that are within a
specified number of units away from the base point. Then, the process would restart
from the new best point and hopefully be free to find a better maximum.

The number of possible configurations c for a problem with n workstations (ma-
chines) and b total buffer units to be allocated among these workstations is a com-
binatorial problem and is computed as

c =
(

b+(n−1)
n−1

)

.

For example, a seven workstation series system with a total of 25 buffer units to be
allocated across these workstations results in 736,281 possible configurations. Us-
ing exhaustive search to solve problems of this size is computationally prohibitive.
In addition, the state space to model this system can be as large as 40,000 states
(allocations of the form {3,4,4,4,4,3,3} → 5443 states). So it is also unreason-
able to model this system without using a decomposition approach such as the one
discussed in this chapter.

Example 9.2. Consider a seven workstation series system with a total of 25 buffer
units to be allocated. The processing times used for this problem are increasing
from the first to the last workstation. The mean processing time vector for the seven
workstations is {0.9,1.0,1.1,1.2,1.3,1.4,1.5} and the order generating machine
has a rate of 1 job per hour. The starting buffer units allocation configuration is
{4,4,5,3,3,3,3}. From this starting point, all the one-unit pair-wise exchanges (42
of them) are evaluated. To illustrate the 12 exchanges with the first workstation are

{3,5,5,3,3,3,3},{3,4,6,3,3,3,3},{3,4,5,4,3,3,3},
{3,4,5,3,4,3,3},{3,4,5,3,3,4,3},{3,4,5,3,3,3,4},
{5,3,5,3,3,3,3},{5,4,4,3,3,3,3},{5,4,5,2,3,3,3},
{5,4,5,3,2,3,3},{5,4,5,3,3,2,3},{5,4,5,3,3,3,2} .
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The 10 exchanges with the second workstation (12 minus two duplicates exchanges
with workstation one) are

{4,3,6,3,3,3,3},{4,3,5,4,3,3,3},{4,3,5,3,4,3,3},
{4,3,5,3,3,4,3},{4,3,5,3,3,3,4},

{4,5,4,3,3,3,3},{4,5,5,2,3,3,3},{4,5,5,3,2,3,3},
{4,5,5,3,3,2,3},{4,5,5,3,3,3,2} .

This process is continued until all exchanges have been made and evaluated. There
are a total of 42 pair-wise exchanges and throughput-rate evaluations in this cycle.
The highest throughput rate was 0.51529/hr for configuration {3,4,5,3,3,3,4}. Us-
ing this configuration now as the base point, the process (cycle) is repeated. The
cycle results are shown in Table 9.9. Note that the cycle process is continued until

Table 9.9 Cycle results from first pass for Example 9.2

Cycle Throughput CT Configuration
0 {4,4,5,3,3,3,3}
1 0.51529 38.313 {3,4,5,3,3,3,4}
2 0.52834 36.255 {2,4,5,3,3,4,4}
3 0.53703 34.712 {2,3,5,3,3,5,4}
4 0.54499 32.104 {2,2,5,3,3,5,5}
5 0.55235 31.395 {2,2,4,3,4,5,5}
6 0.55546 30.058 {2,2,3,3,4,6,5}
7 0.55546 30.058 {2,2,3,3,4,6,5}

the same solution is repeated (for Cycles 6 and 7). The local maximum through-
put of 0.55546/hr is obtained on the sixth cycle and the seventh cycle is needed to
determine that this point is a local maximum.

The resulting configuration {2,2,3,3,4,6,5} is a local maximum with a through-
put rate of 0.55546/hr. The restart process initiates from this configuration with the
incumbent throughput rate set to zero. The cycle results for the second pass of the
search process are shown in Table 9.10.

Table 9.10 Cycle results from second pass for Example 9.2

Cycle Throughput CT Configuration
0 {2,2,3,3,4,6,5}
1 0.55536 27.935 {1,2,3,3,5,6,5}
2 0.55575 29.162 {1,2,3,4,5,5,5}
3 0.55585 27.790 {1,2,3,4,4,5,6}
4 0.55585 27.790 {1,2,3,4,4,5,6}

Repeating the restart process a third time results in no improvement. Thus, the
search procedure is terminated with a (hopefully global) maximum throughput of
0.55585/hr. The optimal 25 buffer space allocation for this seven-workstation prob-
lem is the configuration {1,2,3,4,4,5,6}. The whole search process started from
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the initial configuration {4,4,5,3,3,3,3}. If the optimization procedure is started
from {3,3,4,5,4,3,3} instead of {4,4,5,3,3,3,3}, the process does not hang up at
a local maximum and proceeds directly to the 0.55585/hr throughput solution. ��

9.4.2 Cycle Time Restriction

Sometimes the allocation of buffer units must be accomplished under the restriction
that the mean cycle time for the factory is less that some pre-specified quantity.
This is a one-dimensional search problem and sophisticated techniques can be used,
however, it is easy to merely search over the allocation total using a decrement
size. This approach is based on the assumption that the cycle-time relationship is a
monotonic function of the total units to be allocated. Under this assumption, once
the proper value has been covered (a result above and a result below the desired cycle
time) then the increment can be decreased and the process repeated. The complete
solution process illustrated above must be used to obtain the maximum throughput
value for each specified total units available for allocation to the seven workstations.

Example 9.3. Suppose for the seven-workstation example problem that the goal is to
maximize the throughput while maintaining a cycle time that is less than 25 hours.
Then from the above example analysis, it is obvious that less than the 25 buffer
units should be used, since the 25 units allocation results in a cycle time of 27.790
hr. Since the example problem result is near the desired cycle time (27.79 verses 25)
a small step-size increment can be used. Again for illustration purposes, a total-units
step-size decrement of two will be used. The results for the complete optimization
analyses for each total allocation until the goal cycle time of 25 time units has been
met are as shown in Table 9.11.

Table 9.11 Results with cycle time restricted to less than 25 hr

Total Throughput CT Configuration
25 0.55585 27.790 {1,2,3,4,4,5,6}
23 0.54473 26.659 {1,2,3,3,4,5,5}
21 0.53015 25.122 {1,2,2,3,4,5,4}
19 0.51522 23.995 {1,2,2,3,3,4,4}

It should be obvious even without performing the analysis for the total allocation
quantity of 19, that a total of 20 units should satisfy the goal. The cycle time result
at 21 total units is very near the 25 time units desired, hence, a drop of one more unit
should reduce the cycle time below the goal of 25 time units. And this is the observed
result; at 20 units to allocate the results are according to Table 9.12. Thus, the cycle
time function does appear to be a monotone decreasing function of the total units
allocated (for the maximal configuration). Therefore, the proposed one-dimensional
search procedure should result in the maximal throughput configuration subject to
the cycle time being less than or equal to some specified level. ��
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Table 9.12 Results for an allocation of 20 units
Total Throughput CT Configuration

20 0.52339 24.819 {1,2,2,3,4,4,4}

There are situations where cycle time is not a monotone function of the total units
allocated and special care needs to be taken when solving these problems. This
non-monotone phenomenon occurs when there are equal service times for all the
machines and for the three workstations in series systems illustrated in the section.

9.4.3 Serial Factory Results

Several serial factory configurations are studied. First a seven-workstation system
with equal processing times is addressed. This is followed by studying the opti-
mal buffer allocation configurations for all permutations of three processing rates
assignments to machines. These results indicate the optimal buffer allocations are
reasonably stable regardless of the position in the series of the bottleneck machines
for a three workstation structure.

Example 9.4. Consider first a seven-workstation serial system with all service times
equal (1 time unit each). The results for this system for 23-36 buffer units available
for allocation are displayed in Table 9.13. There are two interesting aspects for this
system. First, there are ties in the maximal throughput configurations for three of
the allocation totals (23, 25 and 32 units), but the cycle times are quite different for
the allocations. Additionally, the cycle times for these tied throughput values are
not consistent with similar total allocations in that they are not monotone increas-
ing with respect to the total units allocated. The second interesting aspect of these
results is the deviation from a concave form for the number of units optimally al-
located across the serial workstations. This concave structure has been reported in
the literature [2, 15]. For this example there frequently are dips of one unit in the
middle workstation’s allocation quantity below those allocated to adjacent worksta-
tions. These dips get filled in when the number of available units is increased by one
(28, 30 and 35 units).

��
Example 9.5. The optimal individual buffer units allocations for three workstations
in series for all permutations of three mean service times (exponentially distributed)
are given in Table 9.14. The mean processing times are (4/3, 5/4, 6/5). The optimal
allocations are reasonably stable for all permutations of these times. A permutation
of these times means that Workstation 1 will be assigned one of the three values,
Workstation 2 is assigned one of the remaining two values, and Workstation 3 is
assigned the last unassigned value. A permutation is denoted like (1, 2, 3), where 1
means the first processing time mean (4/3), 2 represents the second mean value (5/4)
and 3 represents the third mean value (6/5). This short-hand notation is necessary
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Table 9.13 Optimal throughput configurations for a serial system with equal processing times for
several total buffer units allocations

Total Throughput Cycle Time Allocation
23 0.65858 20.70 {3,3,3,4,4,3,3}
23 0.65858 21.74 {3,3,4,4,3,3,3}
24 0.66905 21.68 {3,3,4,4,4,3,3}
25 0.67661 21.19 {3,3,4,4,4,4,3}
25 0.67661 23.24 {3,4,4,4,4,3,3}
26 0.68645 22.67 {3,4,4,4,4,4,3}
27 0.69370 23.18 {3,4,4,5,4,4,3}
28 0.70039 23.70 {3,4,5,4,5,4,3}
29 0.70694 24.23 {3,4,5,5,5,4,3}
30 0.71260 24.75 {3,5,5,4,5,5,3}
31 0.71961 25.23 {3,5,5,5,5,5,3}
32 0.72495 24.81 {4,4,5,5,5,5,4}
32 0.72495 26.71 {4,5,5,5,5,4,4}
33 0.73190 26.23 {4,5,5,5,5,5,4}
34 0.73758 26.73 {4,5,5,6,5,5,4}
35 0.74273 27.23 {4,5,6,5,6,5,4}
36 0.74795 27.73 {4,5,6,6,6,5,4}

to present this table as one unit. There are six permutations of these mean times, so
six different serial systems are analyzed for each total buffer units allocation from
3 to 12 units. For some totals, there are two distinct optimal allocations. That is, the
optimal policy is not the same for all six systems, but never more than two different
policies for a given number of total units to be allocated. So frequently there will be
two entries (rows) in the table for a given total quantity. Only the optimal systems
have throughput values displayed in the table.

These results are very consistent for all total allocations and the optimal alloca-
tion structure is concave across the workstations. The cycle time verses total units
allocated is particularly unusual for these three-workstation systems in that it is not
necessarily monotone increasing with increasing total units allocated. To illustrate
using the service time permutation (2,1,3) system, the cycle times at the optimal
throughput configurations are longer for lower total units for the totals 4&5, 7&8,
10&11, 13&14, and 16&17 (see Table 9.15). The throughputs and average WIP
levels are monotone increasing functions of the total units allocated while the cycle
time function is not.

��

Problems

9.1. Consider a process that takes an exponentially distributed time with a mean
of 1.5 hours to run on a machine. However, before each run the machine must be
checked for debris and 25% of the time it is found that the machine must be cleaned
before the job can be processed. The cleaning time is also exponentially distributed
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Table 9.14 Optimal buffer units allocations for three workstations in series with six service time
permutations

Allocation (1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)
3:{1,1,1} 0.412 0.413 0.411 0.415 0.412 0.414
4:{1,2,1} 0.452 0.453 0.451 0.453 0.451 0.452
5:{1,2,2} 0.480 0.482 0.481 0.486 0.484 0.487
6:{2,2,2} 0.506 0.508 0.505 0.511
6:{1,3,2} 0.507 0.510
7:{2,3,2} 0.532 0.533 0.530 0.534 0.530 0.532
8:{2,3,3} 0.549 0.552 0.550 0.556 0.552 0.556
9:{2,4,3} 0.566 0.568 0.566 0.672 0.568 0.571

10:{3,4,3} 0.581 0.583 0.579
10:{2,4,4} 0.586 0.581 0.586
11:{3,5,3} 0.593
11:{3,4,4} 0.596 0.593 0.600 0.594 0.599
12:{3,5,4} 0.606 0.609 0.605 0.612 0.606
12:{3,4,5} 0.610

Table 9.15 Optimal configuration throughput, WIP and cycle time results for a serial three work-
station system with processing times (5/4,4/3,6/5)

Total Allocation Throughput WIP Cycle Time
3 {1,1,1} 0.41159 2.684 6.521
4 {1,2,1} 0.45089 3.328 7.382
5 {1,2,2} 0.48102 3.446 7.163
6 {2,2,2} 0.50538 4.489 8.882
7 {2,3,2} 0.52982 5.143 9.707
8 {2,3,3} 0.54950 5.248 9.550
9 {2,4,3} 0.56639 5.856 10.338
10 {3,4,3} 0.57867 6.949 12.008
11 {3,4,4} 0.59246 7.053 11.905
12 {3,5,4} 0.60493 7.695 12.721
13 {3,6,4} 0.61400 8.340 13.584
14 {3,6,5} 0.62356 8.404 13.478
15 {4,6,5} 0.63149 9.530 15.092
16 {4,7,5} 0.63870 10.204 15.976
17 {4,7,6} 0.64626 10.281 15.908
18 {4,8,6} 0.65221 10.936 16.768

but with a mean time of 30 seconds. Counting the cleaning and processing time as
the operation time, what is the mean and SCV of this operation time?

9.2. Consider a sequence of three machines each with exponentially distributed pro-
cessing times. The mean processing rates for these three machines are 1, 2, and 3,
jobs per hour, respectively. Consider the time between completed jobs at Machine 3
(the third machine in the series). The system operates as follows. With probability
5/8, machine three has a next job ready for processing immediately after complet-
ing a job. Sometimes there isn’t a next job waiting to be processed at Machine 3
but there is a job processing on Machine 2 which when completed will be sent im-
mediately to Machine 3. This situation occurs 1/4 of the time. When there is not a
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job being processed on Machine 2 when Machine 3 needs a next job for processing,
there is always a job processing on Machine 1. Thus, Machine 3 must wait for the
completion of the job on Machine 1 and then its processing time on Machine 2 be-
fore it is available for processing on Machine 3. What is the mean and SCV of the
time between job departures from Machine 3?

9.3. Obtain the parameters (μ ,a,γ) of the GE2 distribution fit to the following data:
(a) E[T ] = 2.5, and C2[T ] = 0.75.
(b) E[T ] = 3.5, and C2[T ] = 2.0.
(c) E[T ] = 3, and C2[T ] = 1.

9.4. Obtain the steady-state probabilities for a GE2/GE2/1/2 system where an ar-
rival to a full system blocks the arrival process, and with inter-arrival time distri-
bution parameters (α , p,β ) = (1,1/4,2) and service time distribution parameters
(μ ,q,γ) = (1,1/2,3). (Notice that the maximum number of jobs allowed in the sys-
tem is 2.) Also assume that a blocked arrival stops the arrival process. Note that this
system has 12 probability states.
(a) What are the probabilities that there will be 0, 1, and 2 jobs in the system?
(b) What is the probability that the arrivals to this system are blocked?
(c) Counting a blocked arrival as an extra job in this system, what are the probabili-
ties that there will be 0, 1, 2, and 3 jobs in the system?

9.5. Obtain the steady-state probabilities for a GE2/GE2/1/1 system where an ar-
rival to a full system blocks the arrival process, and with inter-arrival time distri-
bution parameters (α , p,β ) = (1.5,1/3,3) and service time distribution parameters
(μ ,q,γ) = (2,1/6,4). (Notice that the maximum number of jobs allowed in the sys-
tem is 2.) Also assume that a blocked arrival stops the arrival process. Note that this
system has 8 probability states.
(a) What are the probabilities that there will be 0, and 1 jobs in the system?
(b) What is the probability that the arrivals to this system are blocked?
(c) Counting a blocked arrival as an extra job in this system, what are the probabili-
ties that there will be 0, 1, and 2 jobs in the system?

9.6. Consider a two workstation serial flow system with total units limits of 2 at each
workstation. Assume that all times are exponentially distributed. Let the mean time
to prepare jobs for entry into the factory is one hour, and the let mean service rates
be 4/3 and 5/4 jobs/hour for Workstations 1 and 2, respectively. Develop the work-
station throughput estimates after the first full cycle of the decomposition procedure
(forward and backward passes).

9.7. Develop the workstation throughput estimates after the second and third full
cycles of the decomposition procedure (forward and backward passes) of Problem
9.6.

9.8. Consider a three workstation serial flow system with total units limits of (3, 2,
3) at the workstations. Assume that all times are exponentially distributed. Let the
mean time to prepare jobs for entry into the first workstation be 60 minutes, and
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let the mean service rates be 1.2, 1.3, and 1.1 jobs per hour for the three worksta-
tions, respectively. Develop the workstation throughput estimates for the first five
full cycles of the decomposition procedure (forward and backward passes).
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Appendix A
Simulation Overview

Simulation is an important technique used by an analyst to validate or verify sug-
gested improvements for manufacturing processes and to verify that suggested con-
ditions or configurations satisfy design specifications. In this appendix we give a
brief overview of some of the basic concepts used to develop simulations, espe-
cially simulations involving time. Simulations not involving time are often referred
to as Monte Carlo simulations; however, the majority of this appendix is devoted to
a discussion of clock management while simulating processes involving time.

To simulate complex systems, specialized simulations languages are available;
however, our purpose here is not to enable the reader to build complex, realistic
simulations for which specialized languages are needed. Our intent is to give the
reader an idea of what is involved in simulations and to provide the capabilities of
building simple examples. Several of the chapter appendices have already presented
some simple simulation models. This appendix is to be used by the interested reader
if there is further interest in slightly more complex simulations than have already
been discussed. The interested reader can find a good summary of simulation in [1,
Chaps. 2 and 9] and a comprehensive discussion in [2].

We also remind the reader that simulations are statistical experiments, and thus
the results do not yield deterministic values. Whenever results are reported from a
simulation study, it is important to also provide some idea of the variability of the
estimates. One approach is to always report confidence intervals (see p. 99) together
with the statistical estimates obtained from the simulation.

A.1 Random Variates

Random numbers refer to streams of real values between 0 and 1 that give the
appearance of being stochastically independent and uniformly distributed between
zero and one. Almost all computer languages and most calculators have some func-
tion that will generate random numbers. On a calculator, usually a key marked
“RND” will generate a different random number every time it is pushed. In Ex-
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cel, the function RAND() will generate a different random number every time it is
used.

A random variate is a generalization of a random number to an arbitrary distribu-
tion other than uniform between 0 and 1. The principal mechanism for generating
random variates is the recognition that if U is a uniform random variable between 0
and 1 and F is a CDF, then

X = F−1(U) (A.1)

is a random variable that is distributed according to F , where F−1 is the inverse of
F if it exists and it is defined by F−1(y) = min{t|F(t) ≥ y} for 0 ≤ y ≤ 1 if the
inverse does not exist. In other words, to generate a random variate according to the
distribution function F , a random number is first generated and then the inverse of
the CDF is evaluated at the value specified by the random number.

For continuous random variates, Excel has several inverse distributions as built-
in functions. Table A.1 (taken from [1]) lists the associated Excel function that is
used for generating random variates from the listed distributions. Some of the listed
Excel functions have parameters that must be supplied with numerical values. These
parameters are listed using the notation from the corresponding equation as shown
in the table.

Table A.1 Excel functions for some continuous random variates
Distribution Equation # Excel Function

Uniform (1.14) a + (b-a)*RAND()
Exponential (1.15) −(1/λ )*LN( RAND() )

Gamma (1.19) GAMMAINV( RAND(), α, β )
Weibull (1.20) β*(-LN( RAND() ))ˆ(1/α)

Standard Normal NORMSINV( RAND() )
Normal (1.21) NORMINV( RAND(), μ, σ )

Log Normal (1.23) LOGINV( RAND(), μN, σN )

When using any of these functions within a cell, do not forget to type the equal sign
before the function. As a reminder, the standard normal distribution is a normal dis-
tribution with mean zero and variance one. It might also be noted that in the authors’
experience, the random variate for the gamma distribution with shape parameter less
than one (α < 1) does not appear to be very accurate with respect to goodness of fit
tests.

For discrete random variables, again it is important that the cumulative distribu-
tion is used and not the mass function. For example, let N have a mass function
given by Pr{N = 2} = 0.5, Pr{N = 3} = 0.3, and Pr{N = 4} = 0.2. To generate a
random variate according to this mass function, a nested if statement could be used
as the following Excel portion shows:

A B
1 random number random variate
2 =RAND() =IF(A2<0.5,2, IF(A2<0.8,3,4) )
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A.2 Event-Driven Simulations

The most common method for keeping track of time within a simulation model of
a process involving time is a next-event time-advance mechanism. Conceptually, a
list of known “future” events is maintained and whenever a time advance is neces-
sary, this future events list is searched for the future event with the minimum time
of occurrence and then the internal simulation clock time is advanced to the time
of this “future” event. In order to build this future event’s list, entities are created
representing items that move through the system being simulated. For example, in a
simulation study of the Panama Canal, entities may represent ships. If an airport is
being simulated to better understand congestion at security points, passengers would
be entities. If a drive-in window facility at a bank is being simulated, entities may
represent arriving vehicles.

Within an event-driven simulation, there is always one active entity. If there is
more than one entity within the simulation (and there are usually many entities),
all other entities are called passive entities. Passive entities are always maintained
on either the future event’s list or on a queue list. There may be several queue lists
within a simulation but there is always one and only one future event’s list. The
future event’s list contains a list of those entities whose next future event is known.
Most simulations are initialized by one or more arrival streams of entities. The gen-
eral steps for an event-driven simulation are as follows:

1. Set the clock time to zero.
2. Initialize all variables and the system state.
3. Determine the arrival time for the initial entity of each arrival stream and place

that entity on the future event’s list. Keep the future event’s list sorted so that the
top entity has the minimum time associated with its future event.

4. Remove the top entity from the future event’s list and increase the simulated
clock time to the time of its future event. This entity now becomes the active
entity.

5. If the event of the active entity is an arrival, generate the next arriving entity and
place it on the future event’s list remembering to keep the list sorted by the timing
of its future events. If the event is the “stop” event, the simulation would stop.

6. Update the system state according to events generated by the active entity until
an event causes the entity to become passive. The events that cause an entity to
become passive are to place the entity back onto the future event’s list, place the
entity on one of the queue lists, or to dispose of the entity. Maintain the various
statistics for the desired system descriptions.

7. Return to the Step 4. If the future event list is empty, the simulation is finished.
8. When the simulation is finished, do the final statistical calculations and output

the desired systems statistics.

Example A.1. By-hand example. Consider an M/M/1 queueing system with a mean
arrival rate of four per hour, a mean service rate of five per hour, and with the first
arrival to the system occuring at time 0. As shown in the Appendix of Chap. 3, the
M/M/1 system can be simulated without the use of a future event’s list; however, the
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simulation in that appendix cannot be generalized to a multi-server system; whereas,
if we use a future event’s list, it can be generalized to a multi-server system.

Our system is a relatively easy system to represent since it is necessary to only
keep track of the number of customers (entities) in the system. For example, if four
customers are present, then the service facility is occupied and the queue contains
three customers. The simulation will represented by a table, where each row of the
table represents the state of the system at the specified clock time. There is one
arrival stream so to initialize the system we generate the first arrival which has a
value of 0 according to the system description.

We also observe that there are two relevant events in the queueing system;
namely, an arrival (to be denoted by A) to the system and a departure (to be de-
noted by D) from the server. When an entity is placed on the future event’s list, it
will be represented by an ordered pair giving its event type and the time at which
it will be removed from the list. Thus, the simulation is initialized by setting the
clock time to 0, setting the number of customers in the system to 0, and placing one
entity in the future event’s list which is represented as {(A,0.0)} where entries to
the future event’s list are ordered with the first component being the event that will
be executed when the entity is removed from the future event’s list and the time of
that the entity is to be removed.

The first step of the simulation is to remove the entity from the future event’s list
and “advance” the clock time to 0.0. Since this entity represents an arrival to the sys-
tem, the next arriving entity is immediately generated. Since the inter-arrival times
are exponentially distributed, the arrival time is obtained by generating a random
number, taking the natural log of that number, and multiplying it by 15 minutes (see
the second row of Table A.1), and adding the generated inter-arrival time to the cur-
rent clock time. This future arrival is then placed on the future event’s list. For this
example, our random number was 0.628 which generated a value of 6.978 repre-
senting the next arrival to the queueing system. Returning to time zero (our current
clock time), we add one to the system and then generate a service time since the
arriving entity will enter the server. We generate 0.416 as the random number which
yields a service time of 10.525 which completes the simulation at time zero. The
table describing these steps is shown in Table A.2. After finishing the description

Table A.2 Results at clock time = 0.0 yielding a future event’s list {(A,6.978),(D,10.525)}
Clock Event Random Next # in Random Next
Time Type Number Arrival System Number Departure
0.000 A 0.628 6.978 1 0.416 10.525

of the system with clock time 0, the next entity to become active is pulled from the
future event’s list and the clock time is advanced according to the next event’s future
time. Since the next event is an arrival again, another entity is created and the time
of its arrival is immediately generated and placed on the future event’s list. Notice
that the future event’s list is arranged so that the event’s are listed in increasing order
of their future event’s time. Because the entity that arrives at time 6.978 finds the
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server busy, it must be placed on the queue list and no service time is generated.
This results in Table A.3. The next time advanced yields a clock time of 10.525 and

Table A.3 Results at clock time = 6.978 yielding a future event’s list {(D,10.525),(A,16.083)}
Clock Event Random Next # in Random Next
Time Type Number Arrival System Number Departure
0.000 A 0.628 6.978 1 0.416 10.525
6.978 A 0.545 16.083 2 — —

because this event is a departure from the server, the entity that was placed in the
queue is moved to the server and another service time (equal to 4.178 in our exam-
ple) is generated to create a future event at time 6.978 + 4.178 = 10.525 (with some
round-off error). Notice that the time of departure equals the service time plus the
clock time, see Table A.4. Continuing in the same manner for the next three events

Table A.4 Results at clock time = 10.525 yielding a future event’s list {(D,14.703),(A,16.083)}
Clock Event Random Next # in Random Next
Time Type Number Arrival System Number Departure
0.000 A 0.628 6.978 1 0.416 10.525
6.978 A 0.545 16.083 2 — —

10.525 D — — 1 0.706 14.703

will yield the Table A.5 which you should use to verify your understanding of the
process. To continue this example, the next advance of the clock time will move the

Table A.5 Results at clock time = 39.001 yielding a future event’s list {(A,48.637),(D,62.442)}
Clock Event Random Next # in Random Next
Time Type Number Arrival System Number Departure
0.000 A 0.628 6.978 1 0.416 10.525
6.978 A 0.545 16.083 2 — —

10.525 D — — 1 0.706 14.703
14.703 D — — 0 — —
16.083 A 0.217 39.001 1 0.021 62.442
39.001 A 0.526 48.637 2 — —

clock to 48.637 with another arrival.
Since this is a “by-hand” example that is meant to illustrate the concepts, we

shall stop at this point. However, it is important to remember that a simulation is
a statistical experiment so that if the goal was to actually simulate this system, it
would be necessary to continue the example for a long time and then repeat it for
multiple replications. ��

Before moving to Excel, the method for determining the average number of en-
tities in the system (WIP) must be given. If a plot of the number of entities in the
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system versus time is created, the average number of entities in the system is ob-
tained by determining the area under that curve divided by the total time. These
calculations are shown in Table A.6, where a column has been added to represent
the area under the WIP curve that is added each time the clock jumps ahead. The

Table A.6 Results at clock time = 39.001 yielding a future event’s list {(A,48.637),(D,62.442)}
Clock Event Random Next # in Random Next
Time Type Number Arrival System Number Departure Area
0.000 A 0.628 6.978 1 0.416 10.525 0
6.978 A 0.545 16.083 2 — — 6.978

10.525 D — — 1 0.706 14.703 7.093
14.703 D — — 0 — — 4.178
16.083 A 0.217 39.001 1 0.021 62.442 0
39.001 A 0.526 48.637 2 — — 22.918

quantity in the area column is the time difference from the first column multiplied by
WIP that was in the system during that time interval, e.g., to obtain the final column
of the third row, we have 7.093 = (10.525−6.978)×2 and for the final row we have
22.918 = (39.001−16.083)×1. Thus, for this small example, the estimate for the
number of entities in the system is given as 41.167/39.001 = 1.056, where 41.167 is
the sum of the areas contained in the final column. This is, of course, one data point.
To develop a confidence interval, the simulation would have to be repeated several
times to obtain a random sample representing the WIP in the system and then the
techniques described on p. 99 could be used for the confidence interval.

Example A.2. Excel example. We now consider an Excel example involving two
servers, namely, an M/M/2 queueing system with unequal servers. Using a future
event’s list with Excel is a little awkward; specifically, some nested if statements will
be required that may need patience in reading them. Future event’s list simulations
are best written with a programming language, but it is possible to demonstrate
the concept using Excel. There will be three types of events for this simulation: an
arrival, a departure from the first server, and a departure from the second server.

Arriving customers are according to a Poisson process with mean rate four per
hour (15 minute inter-arrive times). The first service facility can process an average
of 3 per hour (average service time of 20 minutes) and the second service facility
can process an average of 2 per hour (average service time of 30 minutes), and
arriving customers can go to either (but not both) of the service facilities. To setup
the spreadsheet, first select the first row and then click the “Wrap Text” icon on the
“Home” tab of the ribbon. Type the following in the first two rows.

A B C D
Time of Number

Clock Event Next in
1 Time Type Arrival System
2 0 A = – 15*LN(RAND()) 1
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E F G H I
Area

Service Time of Service Time of Under
1 Time-1 Depart-1 Time-2 Depart-2 Curve
2 = – 20*LN(RAND()) = A2+E2 0 -- 0

In order to build the future rows, we use the following formulas in row 3.

Column A =MIN(C2,F2,H2)
Column B =IF(A3=C2,"A",IF(A3=F2,"D1","D2"))
Column C =IF(B3="A",A3-15*LN(RAND()),C2)
Column D =IF(B3="A",D2+1,D2-1)
Column E =IF(OR(AND(B3="A",F2="--"),AND(B3="D1",D3>1)),

-20*LN(RAND()),"--")
Column F =IF(E3<>"--",A3+E3,IF(B3="D1","--", F2))
Column G =IF(D2=0,"--",IF(OR(AND(B3="A",H2="--"),

AND(B3="D2",D3>1)),-30*LN(RAND()),"--"))
Column H =IF(G3<>"--",A3+G3,IF(B3="D2","--",H2))
Column I =(A3-A2)*D2

(Note that the formulas in cells E3 and G3 are long formulas and should be typed
on one line; the line feed in the above description is due to the width of the printed
page and should not be included in your formula.) The future event’s list is always
contained in columns C, F, and H. The final step of the simulation is to copy the for-
mulas in Cell A3:I3 down for several thousand rows and the simulation is complete.
Type “Avg.WIP” in Cell K1 and type

=SUM(I:I)/MAX(A:A)

in Cell K2 to obtain an estimate for the time-averaged value of WIP for the simula-
tion. ��
Example A.3. Coxian example. The next queueing example is to incorporate a Cox-
ian distribution (see Fig. 3.4) into the previous example. Specifically, we simulate
a M/G/2 system with the processing time for the first server having a mean of 30
minutes and an SCV of 1.0 and the processing time of the second server having a
mean of 30 minutes and an SCV of 0.8. Using the formulas given by Eq. (3.15), the
second server can be described by a two-phase system with the first phase being ex-
ponential having a mean of 24 minutes, the second phase being exponential having
a mean of 15 minutes, and a probability of 0.4 of going from the first to the second
phase and a probability of 0.6 of finishing after the first phase.

The set-up for Excel is very similar to the previous example except that three
extra columns will be inserted in the table immediately before Column G. In other
words, Columns A through F are exactly the same as Example A.2, and Columns G
through L would be as

G H I J K L
Continue Area

Phase-1 to Next Phase-2 Service Time of Under
1 Time Phase? Time Time-2 Depart-2 Curve
2 0 -- 0
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with row 3 having the following formulas that would need to be copied down.

Column G =-24*LN(RAND())
Column H =IF(RAND()<0.4,1,0)
Column I =-15*LN(RAND())
Column J =IF(D2=0,"--",IF(OR(AND(B3="A",K2="--"),

AND(B3="D2",D3>1)),G3+H3*I3,"--"))
Column K =IF(J3<>"--",A3+J3,IF(B3="D2","--",K2))
Column L =(A3-A2)*D2

Columns G through I simulate the components of the Coxian distribution, and
Column J using the formula G3+H3*I3 to insert the Coxian distribution for the
service time whenever it is needed. ��
Example A.4. Our final example is to verify the formulas used to adjust the mean and
SCV of services times when equipment is used that is not 100% reliable. Namely,
Eqs. (4.3) and (4.4) are used to obtain the effective mean and SCV of the service time
for a processor whose availability is less than 100%. Our goal is to simulate failures
and repairs on equipment and the resulting service times under the assumption that
a failure halts services and then after a repair is complete service resumes where
it was interrupted. We will keep the example general so that the simulated service
times can be easily obtained for different parameter sets.

The initial model will be to determine the effective service time for a processor
whose time to failure is exponentially distributed with a mean time between failures
4 hours. The time to repair has a gamma distribution with a mean of 1 hour and an
SCV of 2. If there is no interruption of service, then the service time has a gamma
distribution with a mean of 2 hours and an SCV of 0.4. To set the stage, the basic
data is given in Cells A2:B7 and Eqs. (4.3) and (4.4) are in Cells A10:B11.

A B
1 Given Data
2 Avg Fail 4
3 Avg Repair 1
4 Avg Service 2
5 SCV Fail 1
6 SCV Repair 2
7 SCV Service 0.4
8 Calculated Data
9 Availability = B2/(B2+B3)
10 Effective Mean = B4/B9
11 Effective SCV = B7+(1+B6)*B9*(1-B9)*B3/B4

Notice that the SCV for the time until failure (Cell B5) must be one for the
formulas of (4.3) and (4.4) to be accurate; however, we leave it general so you
can try other approximations and see the results of non-exponential failures. The
simulation is generated in Columns C–G, the statistic collection occurs in Columns
H–I and O–Q; finally, Columns K–M contain be basic random times for failures,
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repairs, and nominal service times. Columns J and N are left blank to provide some
separation of the numbers.

C D E F G H I
Event Clock Time to Repair Service Start Actual

1 Type Time Failure Time Time Service Service
2 serve 0 = K2 0 = M2 0

To make the formulas that follow easier to understand (and shorter), the random
variates for the failure, repair, and service times are determined in separate columns;
namely, in Columns K, L, and M.

K
Time to

1 Failure
2 = GAMMAINV(RAND(),1/$B$5,$B$5*$B$2)

L
Repair

1 Time
2 = GAMMAINV(RAND(),1/$B$6,$B$6*$B$3)

M
Service

1 Time
2 = GAMMAINV(RAND(),1/$B$7,$B$7*$B$4)

As usual, the main work of the simulation is contained in the third row. These
formulas are given next with their explanation following.

Column C =IF(C2="fail", "repair", IF(E2<G2,"fail","serve"))
Column D =IF(C3="fail",E2,IF(C3="serve",G2,F2))
Column E =IF(C3="fail",0,IF(C3="serve",E2,D3+K3))
Column F =IF(C3="fail",D3+L3,0)
Column G =IF(C3="fail",L3+G2,IF(C3="serve",D3+M3,G2))
Column H =IF(C3="serve",D3, H2)
Column I =IF(C3="serve",H3-H2," ")

There are three types of events: a failure has just occured, a repair has just been
completed, or a service has just been completed. To understand the If statement
in Cell C3, consider the following logic. If a failure has just occured, then the next
event must be a repair; otherwise, both service and another failure are “in process”
so the next event depends on which one occurs first. Column D contains the clock
time and the clock time depends on the event that caused the clock to advance as
shown in Column C. The time to the next failure (Column E) is updated only when
the event causing the clock to advance is the completion of a failure since that is the
only time that a new failure time begins. The only time that the time to repair (Col-
umn F) is relevant is when the event causing the clock advance is a failure. Finally,
the only time that the service time (Column G) needs to be updated is when a ser-
vice is completed. Columns H and I are only for statistical collection purposes. The
goal is to determine the effective service times which equals the difference between
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successive service completion times, and this is what is contained in Column I. To
complete the simulation, Cells C3:M3 should be copied down for 25000 (or more)
rows.

The final statistical estimates from the simulation are contained in Columns O–
Q. Notice that Cells O3:Q3 contain the estimators for effective service times and
thus the value in O3 should be compared to the value in B10 while the value in Q3
should be compared to the value in B11.

O P Q
1 Mean St.Dev. SCV
2 Effective Service Time

3 =AVERAGE(I:I) =STDEV(I:I) =(P3/O3)ˆ2
4 Time to Failure

5 =AVERAGE(K:K) =STDEV(K:K) =(P5/O5)ˆ2
6 Repair Time

7 =AVERAGE(L:L) =STDEV(L:L) =(P7/O7)ˆ2
8 Nominal Service Time

9 =AVERAGE(M:M) =STDEV(M:M) =(P9/O9)ˆ2

The values in O5:Q5, O7:Q7, and O9:Q9 are only given as a check on the initial
distributions. If the simulation is proper, then these value can be compared to the
appropriate values in Column B to verify the initial data.

��
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Glossary

availability The long-run average fraction of time that the processor is available
for processing jobs, denoted by a (p. 113).

cellular manufacturing The concept of organizing the factory into sub-factories
with the capability to produce a technology group (p. 177).

closed queueing network A network of queues in which no arrivals are possible
from outside the network and no jobs within the network can leave (p. 242).

coefficient of variation (CV) The standard deviation divided by the mean; usually
restricted to positive random variables (p. 13).

conditional probability The probability of event A given B is Pr(A∩B)/Pr(B) if
Pr(B) �= 0 (p. 2). Also used for random variables when information of one random
variable is known and the distribution of the other random variable is desired (p. 27).

CONWIP A production control strategy in which a constant level of work-in-
process is maintained within the facility and thus a form of pull-release control
is used for jobs entering the system but not at each workstation (p. 241).

correlation coefficient The covariance of two random variables divided by the
product of the two standard deviations (p. 30).

covariance The expected value of the product of the difference of one random
variable and its mean multiplied by the difference of the second random variable
and its mean (p. 29).

cumulative distribution function (CDF) A function associated with a random
variable giving the probability that the random variable is less than or equal to the
specified value (p. 5).

cycle time The time that a job spends within a system. The average cycle time is
denoted by CT (p. 46).
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effective arrival rate The rate at which jobs enter the system, often denoted by λe.
Notice that λ often represents the rate that jobs come to the system and λe represents
the rate that jobs are allowed into the system (p. 73).

effective processing time The time duration from when a job first has control of
a processor or machine until the time at which the job releases the processor or
machine so that it is available to begin work on another job; thus, it might include
actual processing time plus a setup time or repair time in case of processor failure
(p. 113).

event A subset from the sample space, or a set of outcomes (p. 1).

expected value The expected value of a discrete random variable is the sum over
all possible values of the random variable times the probability that the value will
occur; with continuous random variables, the integral replaces the sum (p. 10).

group technology The analysis of processing operations with the goal of deter-
mining the similarity of the processing functions and, hence, the grouping of the
associated parts for production purposes (p. 177).

independence Random variables are independent if knowledge of the value of one
random variable does not provide any information in predicting the value of the
other random variables (p. 7).

indicator function The indicator function for integers is a matrix with the value
of 1 on the diagonal and 0 off the diagonal. If the matrix is square, it is an identity
matrix (p. 170).

job type Jobs with different routes or different processing characteristics are said
to be of different job types (p. 48).

joint distribution function The distribution function associated with two or more
random variables (p. 24).

kanban A production control strategy in which a maximum limit on work-in-
process at each workstation is maintained and thus a form of pull-release control
is used at each workstation (p. 281).

marginal distribution function The distribution function associated with one ran-
dom variable, usually derived from a joint distribution function (p. 25).

mean The mean of a random variable is its expected value (p. 11).

memoryless property The lack of memory property is usually associated with a
random variable that denotes the time at which an event occurs and the property
implies that the probability of when the event will occur is the same as the condi-
tional probability of when the event occurs given that the event has not yet occurred
(p. 17).

mixture of random variables The probabilistic selection of one random variable
among a group of independent random variables (p. 35).
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outcome An element of the sample space (p. 1).

offered workload See workload.

Poisson process A renewal process formed by the sum of exponential random vari-
ables (pp. 16 and 134).

probability density function (pdf) A function associated with a continuous ran-
dom variable such that a probability that the random variable is between to values
equals the integral of the function between those values (p. 6).

probability mass function (pmf) A function associated with a discrete random
variable giving the probability that the random variable equals the independent vari-
able (p. 6).

probability space A three-tuple (Ω ,F ,Pr) where Ω is a sample space, F is a
collection of events from the sample space, and Pr is a probability measure that
assigns a number to each event contained in F (p. 1).

pull A general control strategy applied to a system that has a limit applied to its
work-in-process. After the maximum number of jobs are within the system, further
jobs are allowed into the system only when they are “pulled” into the system by
other jobs departing from the system (pp. 241 and 267).

push The standard operating assumption for open queueing networks in which jobs
enter the system whenever they arrive to the system or according to a schedule
independent of the system status (pp. 241 and 267).

random variable A function that assigns a real number to each outcome in the
sample space (p. 4).

renewal process A process formed by the sum of nonnegative random variables
that are independent and identically distributed (p. 134).

routes The sequence of processing steps for a job (p. 48).

routing matrix A matrix of probabilities, P = (pi j), where pi, j is the probability
that an arbitrary job leaving Workstation i will be routed directly to Workstation j
(p. 139).

sample space A set consisting of all possible outcomes (p. 1).

squared coefficient of variation (SCV) The variance divided by the square of the
mean value (usually restricted to positive random variables) (p. 13).

standard deviation The square root of the variance (p. 11).

step-wise routing matrix A routing matrix indicating the probability of moving
from processing step to processing step instead of from workstation to workstation
(p. 169).

switching rule The probabilities that indicate the probabilistic branching for jobs
as they depart from one workstation and get routed to another (p. 139).
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throughput rate The number of completed jobs leaving the system per unit of
time. The throughput rate averaged over many jobs is denoted by th (p. 47).

variance The variance of a random variable is the expected value of the squared
difference between the random variable and its mean. Equivalently, it is the second
moment minus the square of the mean (p. 11).

work-in-process The number of jobs within a system that are either undergoing
processing or waiting in a queue for processing. The average work-in-process is
denoted by WIP (p. 46).

workload The total amount of work that is required of a workstation per unit of
time and is determined by the sum of the total arrival rate (per time unit) for each
product type multiplied by its associated mean processing time (in time units con-
sistent with the arrival rate) (p. 159).

workstation A collection of one or more identical machines or resources (p. 47).

workstation mapping function Gives the workstation assigned to each step of the
production plan (p. 168).
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exponential, 249
non-exponential, 267

mean value analysis
Excel, 272
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arrival process
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merging streams, 134
multiple product, 160
random branching, 219
SCV for merging streams, 141
total arrival rate, 140

asymptotic approximation, 134
availability, 113, 328
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batch models

batch move, 198
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setup reduction, 206
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definition, 5
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de Moivre, A., 21
decomposition, 128, 282
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batch moves, 204
batch service, 211, 220
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deterministic routings, 175
splitting streams, 135, 214
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gamma, 19
generalized Erlang (GE), 89, 285
geometric, 15
log-normal, 22
mixture of generalized Erlangs (MGE), 286
normal, 21
Poisson, 15
Weibull, 20
Weibull parameters, 36

effective arrival rate, 73
effective processing time, 113
entity, 323
Erlang, 18
Erlang models, 85, 87
event-driven, 323
Excel

equation generation, 150
gamma function, 36
goal seek, 37
inverse distributions, 322
matrix inverse, 97
mean value analysis, 272
simulation, 62, 98, 150
t-statistic, 100
Weibull parameters, 36

expected value
definition, 10
property, 11

exponential, 17
exponential random variate, 322

factory models
deterministic, 54
deterministic routing, 174
multiple product networks, 159
processing step paradigm, 167
serial workstations, 125
single product networks, 138
single workstation, 69
various forms of batching, 197

factory performance
general networks, 138

failures, 114, 328
finite queues, 285
flow shop, 48
future event, 323

gamma distribution, 19
gamma function, 19, 36
gamma random variate, 322
Gauss, K., 21
general distribution models, 93, 95
general service models, 91, 253

generalized Erlang (GE), 89, 285
generator, 286, 290
geometric, 15
glossary, 331
Gosset, W.S., 16
group technology, 177

i.i.d., 33
independence, 7, 28

job shop, 48
job type, 48
joint

cumulative distribution function, 24
probability density function, 25
probability mass function, 24

just-in-time, 241

kanban, 241, 267, 281
Kendall notation, 76

log-normal, 22, 322

marginal
probability density function, 25
probability mass function, 25

marginal distribution analysis
exponential, 249
non-exponential, 267

Markovian routing, 136
matrix inverse, 97
mean, 11
mean value analysis, 242

Excel, 272
exponential, 245, 247
multi-product, 257, 260, 263, 267
multi-servers, 249, 267
non-exponential, 253

memoryless property, 17, 85
merging streams, 133
mixture of generalized Erlangs (MGE), 286
mixtures of random variables, 35
multiple product networks, 159
multiple servers, 249, 267
multiple streams, 139
multivariate distributions, 24

network, 125, 222
network approximations, 138
non-identical servers, 81
nonserial network models, 133, 139
normal, 21
normal random variate, 322

offered workload, 159
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open systems
multiple streams, 139
single product, 145

operator-machine interactions, 116

performance measures
cycle time, 46
throughput rate, 47
work-in-process, 46

phase-type models, 89
Poisson, 15
Pollaczek and Khintchine formula, 91
probability, 1

conditional, 2
measure, 1
properties, 1
space, 1

probability density function
conditional, 27
definition, 6
joint pdf, 25
marginal pdf, 25

probability mass function
conditional, 26
definition, 6
joint, 24
marginal, 25

processing step, 48
processing step paradigm, 167
processing time variability, 111
pull, 241, 267
push, 241, 267

queueing models
Erlang-2/M/1/3, 87
G/G/1 approximation, 93
G/G/c approximation, 95
GE-2/Erlang-2/1/3, 89
limited buffer, 285
M/Erlang-2/1/3, 86
M/G/1, 91
M/M/1, 77, 78

cycle time, 80
M/M/1/n, 69
non-identical servers, 81
Pollaczek and Khintchine formula, 91

queueing network models
closed, 241
open, 125, 133

queueing notation, 76

random numbers, 321
random sized batches, 216–218
random variables

convolution, 8
correlation coefficient, 29
definition, 4
fixed sum, 32
independent, 7, 28
mixture, 35
nonnegative, 9
random sum, 34

random variate, 322
exponential, 322
gamma, 322
log-normal, 322
normal, 322
Weibull, 322

re-entrant flow, 48
relative arrival rates, 245
reliability, 114, 328
renewal process, 134
repairs, 113, 114, 328
routing, 48
routing matrix, 139

sample space, 1
scale parameter, 19, 20
serial network model, 128, 213, 293
setups, 206
shape parameter, 19, 20
simulation, 62, 98, 150
single server, 90
skewness, 23
solutions to linear systems, 97
splitting streams, 135
squared coefficient of variation, 13

departure SCV, 127
service SCV, 163

standard deviation, 10
standard normal, 322
steady-state, 69, 73
sums of random variables

fixed, 32
random, 34

switching probabilities, 164
switching rule, 139

throughput rate, 47
two-node systems, 284

uniform, continuous, 16
uniform, discrete, 13
utilization, 84

multiple products, 162
single product, 92

variance
coefficient of variation, 13
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definition, 11
property, 12

Venn diagrams, 2

Weibull distribution, 20, 36
Weibull random variate, 322
Weibull, W., 20
WIP

formula, 52

limits
constant, 241
kanban, 281

production control
pull, 241
push, 241

work-in-process, 46
workload, 159, 162
workstations, 46, 47
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