Copyright © 2003 by SparkNotes LLC.

All rights reserved

A

SparkCharts is a registered trademark

of SparkNotes LLC.

SPARKCHARTS

A Barnes & Noble Publication
10987654321

Printed in the USA $4.95 | $7.95 CAN

SPARKCHARTS™

JAVA

JAVA BASICS

TYPES
The type system of a programming language describes
the way the language interprets data stored in memory.
Type checking in a Java program is done at compile-
time to ensure type compatibility; information about
data types is also maintained during runtime to facilitate
polymorphism. Java has two varieties of types.

Primitive types: Primitive types are irreducible data types, hard-

coded into the Java language. They include boolean values,

Unicode characters, integers, and floating point numbers. Java

has eight implementation-independent primitive types:

* boolean: true or false
char: 16-bit Unicode character
byte: 8-bit signed two's complement integer
short: 16-bit signed two’s complement integer
int: 32-bit signed two’s complement integer
long: 64-bit signed two's complement integer
float: IEEE 754 single-precision floating-point value

* double: IEEE 754 double-precision floating-point value

Note to C users: In Java, booleans and ints are distinct

variable types; they cannot be used interchangeably or cast to

one another.

* Casting primitive types: Since Java is a strongly typed
language, data sometimes must be cast from one primitive
type (or object) to another. Casts allow the compiler to treat
an expression as having the type specified by the cast. An
explicit cast, one written directly by the programmer, has the
following syntax, with the variable to be cast preceded by the
desired cast type, in parentheses:

e (type) variableName

e type variable = (type) expression;

Java will make widening casts—casts from one type
to another type that is at least as large as the first—
automatically when necessary, often to avoid overflow.

The Java compiler will throw a warning when asked to make a
narrowing cast. Narrowing casts must be made explicitly, as
they can result in a loss of some data. They usually are used
to assign an expression to a variable of a narrower type.
Booleans cannot be cast at all.

Reference types: Reference types are data types that hold mul-
tiple values and do not have one standard size. A reference type
variable holds a reference to the data, rather than the actual
data itself. Arrays and classes are reference types in Java.
Arrays are collections of elements, all of the same type, in
which each element is assigned an index through which it is
accessed. The indices are numbered sequentially.
Classes are the foundation of object-oriented programming.
They contain a collection of data, as well as any operations
that can be performed on that data. Fields store the data,
and methods hold the operations. Classes exist in a hierarchy
based on similar functionality and types, thus allowing
reusable code to be inherited (See Inheritance). Classes are
referred to by programmer-designated names such as Date,
LinkedList, or MyAmazingClass.

DECLARING VARIABLES

Before any variable can be used to refer to data, it must
be declared—the programmer must tell Java what type
of the data the variable will hold (e.g., an int, a double,
or a StringTokenizer object). Java will then allocate an
appropriate amount of memory for the variable.

Variables are declared with the following syntax:
* type varName;
e type varNamel, varName2, varName3 ... ;
Examples:
e boolean trueOrFalse;
e float cost, revenue, profit;
¢ InputStream myInputStream;
A variable can be declared final, meaning that its value can
not be changed later in the program.

INITIALIZING/INSTANTIATING VARIABLES

Unlike in C, variables are set to default values when
they are declared. However, it is poor practice to use a
variable without explicitly setting it to its initial value.

Initializing primitive types: Primitive types are initialized using
the assignment operator =. The syntax is:
* variable = value;
Examples:
¢ number = 3;
e letter = ‘D’; /* use single quotes to denote a
Unicode character */
e bool = true;
Variables also can be initialized as they are declared. However,
only one type of variable can be declared in a statement:
e type varName = value;

This downloadable PDF copyright © 2004 by SparkNotes LLC.

Examples:

boolean b = fadlse;

double d = Math.sqrt(2);
intx=0y=0,2z=-2

char ch = X}, int 1 = 5; // syntax error!!!

Instantiating objects: Objects are instantiated with the new
operator, which calls the object’s appropriate constructor (See
Classes and objects). The constructor’s return value is assigned
to the variable.

Examples:

e cal = new Calendar(Q);

e Hashtable ht = new Hashtable();

e thread = new Thread(target);
Objects can be instantiated at the same time as their variables
are declared:

Examples:

e Calendar cal = new Calendar();

e Integer il = new Integer(5), i2 = new Integer(-1);

e Thread t1 = new Thread(runnablel);
* Objects can also be instantiated without being assigned to a

variable (See Anonymous inner classes).

Strings: In Java, Strings are a class type, not a primitive type.
However, to facilitate the manipulation of Strings, Java allows
a String variable to be instantiated explicitly as an object
or implicitly by the assignment of a string literal, a string of
characters in quotation marks. The following are equivalent;
both are valid Java syntax:
e String str = new String(“Hello world!™);
e String str = “Hello World!”;
Strings also can be operated on either as literals or as objects
with either the String.concat(String str) method or the +
operator. Both the concatenation operator and the concat()
method concatenate their second operand or parameter to the
end of the first. The following are equivalent:
e String str = “Hello” + “ world!”;
e String str = “Hello”.concat(“ world!”);
e String sl = “Hello”;

String s2 = “ world!”;

String str = sl + s2;

CONTROL FLOW

Java starts executing programs at the public static void
main (String[] args) line in the class specified on the
command line, and it continues by executing each command
sequentially. When the Java interpreter arrives at a method,
it transfers control to that method, sequentially executing its
statements. At the method’s end, or when it reaches a return
statement, Java transfers control back to the calling method.
A program'’s flow of control can be modified with conditional

and i i

is.

With all control flow statements except switch, the braces are
optional if there is only one code statement.
Example:

o if Xx<y)

System.out.println(“x is less than
e if (isTrue) {

X++;

System.out.println(“Added one to x.”);}

CONDITIONAL STATEMENTS

if: Java's basic decision-making command is if, which is fol-
lowed by a conditional statement and one or more command
statements. The conditional must evaluate to a boolean. The
command statements are sequentially executed if the condi-
tional evaluates to true and skipped if it evaluates to false.
e if (condition) {

execute code statements here }

»

+Y);

if/else: The if statement can be complemented with an else
statement followed by one or more command statements. The
commands following if are executed if the conditional state-
ment is true, and the commands following else are executed if
the conditional statement is false.
e if (condition) {
execute code statements here }
else {
execute other code statements here }
Example:
e if (humber < 5)
System.out.println(“Less than five.”);
else if (number == 5)
System.out.println(“Equals five.”);
else
System.out.println(“Greater than five.”);

switch: The switch statement is equivalent to a series of else
if statements. The switch statement is best used when only a
single variable needs to be tested for a series of alternatives.

CHARTS"

The variable is matched against each case value. When or if
there is a match, the accompanying code segment is executed.
The optional default statement can be placed at the end of
the switch code; its associated code is executed if none of the
other cases are executed.
* switch (variable) {
case valuel:
execute code statements here
break;
case valueZ:
execute code statements here
break;

default:
execute code statements here
}

Example:
e switch (ch) {

case ‘y’:
System.out.println(“Yes!”);
break;

case ‘n’:
System.out.println(“No!”);
break;

default:
System.out.println(“Invalid input!”);

}

ITERATIVE STATEMENTS

Java's iterative control structures are similar to those of C,
including while, do, and for loops. Loop control flow can be
interrupted by the break and continue commands. The break
command exits a loop; the continue command exits the cur-
rent iteration of the loop and goes on to the next iteration.
However, good programming practice minimizes the use of
break and continue statements.

while: The while loop is the basic loop structure in Java.
It consists of a conditional statement and a code segment.
The code segment is executed and re-executed as long as the
conditional is true.
e while (condition) {
execute code segments here }
Examples:
int x = number; // assign x the value of number
// counts down from the current value of x to @
if (x <= 0)
System.out.println(“Invalid value for x:
else
while (x != @)
System.out.println(--x);
System.out.println(“x equals 0”);
// picks random numbers r, stops when 0.6 < r < 0.7
double r = Math.randomQ;
while (!C r > 0.6 & r < 0.7)) {
System.out.println(r);
r = Math.randomQ); }

«

+X);

do: The do loop is similar to the while loop, except that the
conditional statement of the do loop is evaluated after the loop
executes once. The code segment is re-executed as long as the
conditional is true.
e do {
execute code statements here
} while (condition);
Example:
/* flips a coin, stops when the coin is heads (true) */
boolean heads;
do {
myCoin = myCoin.flipQ;
heads = myCoin.getFaceQ);
} while ('heads);

for: The for statement governs a block of code through an
initialization statement, conditional statement, and increment
statement. The initialization, conditional, and increment state-
ments are all optional, although the statement for ; ; Dis
an infinite loop. Within a for loop, Java first executes the initial-
ization statement and then executes and re-executes the block
of code and increment statement—in that order—as long as the
condition is true. The condition is evaluated each time before
the code block is executed.

e for (initialization; condition; increment) {

execute code statements here }
Examples:

e int x = number; // assign x the value of number
// counts down from the current value of x to @
for (3 x>0 ; x-)

System.out.println(x);
System.out.println(x = @);

SPARKCHARTS™ JAVA Papers page 1 of 4

This downloadable PDF copyright © 2004 by SparkNotes LLC.

“THERE ARE 10 PEOPLE IN THE WORLD: THOSE WHO

UNDERSTAND BINARY AND THOSE WHO DON'T.”

RANDY CASSINGHAM

e // sorts a char array k using bubble sort
for (int i = 0; i < k.lengthQ); i++) {
char temp;
for Cint j = i; j < k.lengthQ - 1; j+ {
if k(3] > k[j + 1D {

temp = k[j1;
k[3T = k[+ 11;
k[j + 1] = temp;

ARRAYS

Although array elements are referenced by sequential inte-
gers, Java does not necessarily store the elements of an array
in consecutive memory locations. There are no pointers in Java
because the details of data storage are encapsulated from the
user. Arrays in Java are Objects, and therefore they are instan-
tiated with the new operator:

e type[] arrayName = new type[size];

Arrays are not dynamic data structures; an array initialized to
a particular size will stay that size throughout its lifetime. Java
will throw an ArrayIndexOutOfBoundsException at runtime

CLASSES AND OBJEC

Object-oriented languages such as Java are designed
to simulate real-life objects (both tangible and abstract)
by combining a group of data and operations on that
data into classes. A class organizes atfributes into
data, or fields, and behavior into blocks of code, or
methods. Fields and methods are called members of a
class. A specific instance of a class can be declared as
avariable in a program (unless the class is static), and
this instantiation of the class is called an object.

CREATING CLASSES

Classes are created using the class keyword followed by the
name of the class. The class keyword is often preceded by a
visibility modifier as well as other modifiers such as static
or abstract (See Modifiers). The entire class description, its
fields and methods, is enclosed in braces.

Examples:

e class myClass { ... }

e private class Node { ... }

CLASS HIERARCHY

All Java classes fit into a hierarchy that relates classes
in terms of the fields and methods that they share.
Every class—except Object—is said to be a subclass of
another class closer to the root of the hierarchy.

At the top of the hierarchy is the Object class, from which
all other classes descend. Since all classes are derived from
Object, an instance of any Java class can call the methods that
Object can call: any object is an Object.

Inheritance: Every class inherits all of the methods and
fields of its superclass, the class immediately above it in
the class hierarchy. This means that any method that can be
called on the superclass can be called on the subclass (see
Polymorphism). The default superclass for any new class is
Object, and Object does not need to be specified as a super-
class. Use the extends keyword after the class name to allow a
new class to inherit methods from a class other than Object.
Examples:
e public class Rectangle extends Polygon { ... }
e public class Square extends Rectangle { ... }
* Every class (except Object) must extend exactly one class,
although there is no limit to the number of interfaces it can
implement (see Interfaces).

Static classes: A static class, denoted with the static key-
word, is a class that cannot be instantiated. Its methods belong
to the class, and are independent of a specific instantiation of
an object. Static classes are called using the class name and
the dot (method invocation) operator.
Example: The static class java.lang.Math performs many
of the mathematical functions of a scientific calculator.

Methods, reusable segments of Java code, come in
two varieties: object and static. A method is called,

or invoked, from any portion of a program, at which
point control passes from that line to the method body.
A method can have values passed in as parameters
from the calling segment. After the method finishes
execution, it can return a value to the calling segment
as well.

if you access an array index greater than length — 1 or less

than zero. The java.util.Vector and java.util.Arraylist

classes each simulate a dynamically growable array.

e All the elements in an array must be the same type or
subclasses of the same type.

Examples:

e int[] digits = new int[10];

e File[] directory = new File[myDir.getSize()];

e Object[] array = new Object[SIZE]; /* This array
will hold instances of any class, but will not
hold primitive types. In order to store a primi-
tive type in this array, use a wrapper class such
as java.lang.Boolean or java.lang.Double. */

REFERENCING ARRAY ELEMENTS

Array elements are referenced with the [] operator. The array
name is followed by the element’s index in square brackets.
e arrayName[index]

The first element of an array has index number zero. Any
attemptto reference an element beyond the array’s length -1
will throw an ArrayIndexOutOfBoundsException.

TS

These functions, such as the sine function and the natural
logarithm function, exist outside of any particular object.
The methods of the Math class are called as follows:

e double cos = Math.cos(angle);

e double rand = Math.random();

Abstract classes: An abstract class serves as a design tem-
plate for subclasses to extend and fully implement or over-
ride some or all of its methods. Abstract classes are useful
for designing a class hierarchy in which a superclass is too
“abstract” to have specific implementations for all its meth-
ods. An abstract class does not require abstract methods, but
a class with an abstract method must be declared abstract
(See Abstract methods).

PROGRAMS WITH MORE THAN ONE CLASS

Most Java programs use a combination of classes in
the Java APl and classes created by the programmer
(which may also be extensions of classes in the API).

The import statement tells the Java interpreter which
external classes a particular class will refer to. Without the
import statement, Java expects methods and objects outside
the current class to be fully qualified.
Examples:
e import myClass /* myClass is in the same direc-
tory as the current class */
e import java.util.StringTokenizer;
Each import statement is associated with only one class. To
import all of the classes in a package, replace the class name
with an asterisk:
Example:
e import java.io.*; /* A class headed by this
statement can refer to any of the classes in
the java.io package. */

Packages: Packages are groups of related classes and inter-
faces that can be defined as a unit to form libraries. Classes
that share a package have special visibility privileges with
respect to one another (See Visibility modifiers). Use the
package statement to associate a class with a package. The
package statement must be the first line of a class file, and
each class can be associated only with a single package:

e package packageName;

Although package names are delineated by dots (e.g.,
java.util.regex), the dots do not signify any sort of subor-
dinating relationship between the elements of the package
name. Therefore, the statement import java.util.* does not
import the objects in the java.util.regex package.

Nested classes: Classes (and interfaces) can be nested within
any level of braces or within a method. Nested, or inner, classes
allow related objects to be connected efficiently in terms of

VARIABLE SCOPE AND ENCAPSULATION

As a general rule, a variable exists only within the pair

of braces or block in which it is declared.

* Variables declared outside of any method in a class can
be used anywhere in their class after they are declared and,
depending on their visibility, can be accessed from outside
the class using the dot operator (See Visibility modifiers).
Variables declared in a method are accessible only from
within the method in which they are declared. An attempt

Examples:

e String s = args[@] /* references the first param-
eter on the command line */

e File myFile = directory[k] /* references the
(k = Dth element of directory */

ARRAY VARIABLES AND METHODS

The java.util.Arrays class contains several useful methods

and variables for working with arrays.

* length: All arrays have an internal variable called length
that stores the maximum number of elements the array can
hold. The last index of array k is k.length - 1.
binarySearch(Object[] array, Object obj)

Searches array for the object obj.

equals(Object[] arrayl, Object[] array2)

Returns true if arrayl equals array2.

fill(Object[] array, Object obj)

Assigns the value obj to each element of array.
sort(Object[] array)

Sorts the elements of array in ascending order.

All of these methods are overloaded to handle arrays of
primitive types and, in some cases, Comparables. See
http://java.sun.com/j2se/1.4.1/docs/api/java/util/Arrays.html

design and access. Nested classes can have static, final, or
abstract modifiers just as any class; they can also be declared
anonymous (see below). If a nested class is enclosed in a block
of code, it is a local inner class, and is treated as a local vari-
able. Otherwise, a nested class is treated as a member of the
outer class and can access other members of the outer class.
Example:
e class Car {

class Transmission {

code for Transmission here
}

more code for Car here

}

Anonymous inner classes: An anonymous inner class is used
to instantiate an object for immediate and onetime use without
assigning it to a variable. An anonymous inner class is intro-
duced with the new operator followed by a class name (the
class’s constructor) and body:
Example:
e Dice rollDice({
return new Dice() {
int number = (int)(Math.randomQ *6) +1;
b

}
* Java also supports anonymous inner interfaces, which must
support all the methods that the outer interface supports.

STATIC FIELDS

Static fields, declared with the keyword static, are members
that belong to the class rather than an instance of the class.
Only one copy exists for all instances of a class. Static methods
can reference only static fields (See Static classes).

OBJECT METHODS

The following is a partial list of the methods of java.lang.Object:

e equals(Object obj): Returns true if obj “equals” the
calling object. The programmer determines the meaning
of “equals” in this context by overriding the method. If this
method is not overridden, it returns true if the hashcode of
objequals the hashcode of the calling object. Unless either
equals() or hashCode () has been overridden, this method
is equivalent to using the == operator with two Objects as
operands: equals() will return true if both operands refer
to the same object.
getClass(): Returns the class of the calling object.
hashCode () : Returns a hashcode for the calling object.
clone(): Returns a copy of the calling object, provided the
calling object implements the Cloneable interface.
toString(): Returns a String representation of the calling
object. If this method is not overridden, it will return the
calling object’s hashcode.

to use a method variable outside its own method will result
in a compile-time error.

¢ Variables declared in a for or while loop are accessible

only from within the block of code from which they are
declared. Good programming practice dictates that the
programmer try to avoid declaring variables in loops. Unless
the variable is declared in the initialization of a for loop,
each time the loop is executed, the variable would be re-
declared and more memory allocated rather than reused.

SPARKCHARTS™ JAVA Papers page 2 of 4

CONTINUED ON OTHER SIDE

This downloadable PDF copyright © 2004 by SparkNotes LLC.

METHODS (CONTINUE

METHOD HEADERS

Methods are introduced with method headers, which con-
sist of the method’s optional modifiers, return type, name,
and a method signature that consists of a set of parameters
enclosed in parentheses. The parentheses denote a method
header or method invocation and are not optional, even if the
method takes no parameters. The method header is followed
by an open brace, not a semicolon, and the compiler will catch
any stray semicolons following method headers.

e Modifiers returnType methodName(Parameters) {

method body here }

Modifiers change the way the Java interpreter will allow a
method to behave. They include visibility modifiers and key-
words such as static, final, and synchronized.

* Visibility modifiers: Java's visibility modifiers—public,
private, protected, and a default—encapsulate fields,
methods, and classes by limiting their access from other
classes.

public: Public fields and methods can be accessed
wherever their class is accessible. Public classes can be
accessed wherever their package is accessible.
private: Private fields and methods can be accessed
only by their containing class.
protected: Protected fields and methods can be
accessed only by classes in the same package as their
containing class, and subclasses of their containing class.
Default: A field or method not declared public, private,
or protected is accessible only to classes in the same
package as its containing class. A class not declared
public will be accessible only within its package.
Static methods function independent of any object’s
instantiation. As a result, they can access only static fields
(which also exist independent of any object’s instantiation)
and other static methods. The exception is that static methods
can access all of the methods available to objects instantiated
by the static method itself. (See also Static classes.)
Final methods cannot be overridden by a subclass. Final
classes cannot be subclassed. Fields and variables declared
final cannot have their values changed.
Synchronized methods are used when a program is
running multiple threads of execution. Only one method
declared synchronized can be running at a time. See
http://java.sun.com/j2se/1.4.1/docs/api for more informa-
tion on threading.

Return type: When a method completes its execution, it must
return no more than one value to its calling method using the
return statement. The return type in the method header must
match the type, whether primitive or class, returned by the
return statement. If a method does not return any value, its
return type is void.

Polymorphism is the end effect of the Java class
hierarchy. A specific object can also be thought of as

a member of a class of more general objects which,

in turn, can be thought of as a member of a class

of even more general objects, all the way up to the
Object class. Not only does this allow for a more logical
object implementation, it also allows the programmer
to design a general class once and then use it as a
blueprint to create more specific classes. There are
two ways in which Java classes exhibit polymorphism:
by extending other classes (See Class hierarchy) and
through interfaces.

EXTENDING OTHER CLASSES

A (sub)class that extends another (super)class already has all
of the attributes, the methods and fields, of the superclass.
The subclass can (and should) also include methods that aren’t
found in the superclass, override methods from the superclass
to fit the specific needs of the subclass, or initialize fields that
cannot be set to specific values in the superclass. The sub-
class should also have a constructor of its own, which may
call the superclass constructor (Java implicitly calls the super-
class constructor if it is not explicitly called by the program to
ensure proper initialization).

Casting objects: When an object is instantiated, its type is

set to whatever type the constructor returns. Like primitive

types, however, objects may sometimes need to be cast.

The syntax for casting objects is the same as that for casting

primitive types:

* (className) variable;
className variable = (className) expression;
When necessary, Java will automatically make widening casts,
where the destination class is further up the class hierarchy
(i.e., closer to the Object class) than the original class.
Narrowing casts, where the destination class is deeper in
the class hierarcy than the original class, must be made
explicitly by the programmer. The compiler will throw a Type
Mismatch exception if the cast is necessary but not made.
It is illegal to try to cast an object to a destination class
deeper in the hierarchy than the class in which the object
was instantiated.

Method name: The method name is a programmer-specified
name that should briefly describe what the method does. The
method name does not have to be unique within a class (See
Method overloading).

The number of parameters passed to a method must match
the number of parameters called for in one of the method's
signatures. The passed parameters must be of same types
and in the same order as in the method signature.

Method signature: The method signature lists a method'’s
formal parameters separated by commas. Each formal
parameter consists of its type followed by a programmer-
specified name. When a method is called, the variables listed
as formal parameters are filled (never instantiated) with the
values passed by the calling method (See Parameter passing).
The combination of method name and method signature must
be unigue to the class (See Method overloading).
Examples:
e public static void main(String[] args) { ... }
e private Iterator getIterator(lList list) { ... }
e public double distance(Point pl, Point p2) { ... }
e public double 3dDistance
(Point pl, Point p2, Point p3) { ... }
¢ protected syncronized void holdThread
(int milliseconds) { ... }

INVOKING METHODS

Methods are invoked with the . (dot) operator, which
separates the object invoking the method (or the class
invoking a static method) from the method name and
signature being invoked.

The dot operator can be used multiple times in a single state-
ment to call multiple methods. The methods are evaluated
from left to right, so the returned value of one method serves
as the object on which the next method is called.

* object.method(parameters);

¢ class.method(parameters);

¢ object.methodl(parameters).method2(parameters) ... ;
The keyword this is used to refer to the object calling a partic-
ular method, and it allows an object to refer to itself. When an
object invokes a method on itself, this is optional. Therefore,
the following statements are equivalent:

* this.myMethodQ;

* myMethodQ);

PARAMETER PASSING

The actual parameters sent to a method by the calling

segment are listed, separated by commas, in the

parentheses after the method name:

* changeColor(Color.RED); /* red is a final field of
the Color class */

¢ double vol = myPrism.getVolume(height, width,
length);

Encapsulation: Although a subclass’s constructor can have
no obvious relation to its superclass’s constructor (classes
that extend java.lang.Object are often like this), the real
power of object-oriented programming comes from re-using
as much of the superclass as possible and then tweaking the
superclass for the specificities of the subclass. The subclass
can call the methods of the superclass without being aware of
its implementation details. This encapsulates the superclass,
providing separate modules and a layer of protection by hiding
code and private data from the user.

The super keyword is used to refer to the superclass.
Therefore, super() refers to the constructor of the super-
class, super.name refers to the field name in the superclass,
and super.myMethod() refers to the method myMethod() in
the superclass.
Example:
e public class Polygon throws Exception {
int sides;

public Polygon(int n) {
sides = n;
if (n < 3) throw TooFewSidesException}

public int angleMeasure() {
return 180 * (sides - 2); }

public class Triangle extends Polygon {
final int SIDES = 3;

public Triangle() {
super(SIDES); }

Method overriding: To reflect the specific behavior of a sub-
class in reference to its superclass, Java supports method over-
riding. “Overriding” means defining a method in the subclass
with the same name and signature as a method in the super-
class. When a method is called on a subclassed object, Java
executes either the method in the subclass or the superclass,
depending on the current class of the object. If the subclass
has no method with the same name and signature as the called
method, Java executes the method in the superclass.

SPARKCHARTS™ JAVA Papers page 3 of 4

Java always passes parameters to methods by value.

* Primitive types: When a primitive type is passed to a

method, the value of the parameter is copied to the method
variable. The actual value in the calling code remains
unaffected by changes in the method copy.
Reference types: When a reference type is passed to a
method, then the value of the object’s reference (not the
actual object) is copied and used in the method. In this
case, all changes to the object to which the value refers
will remain after the method code terminates. Although the
object reference is “passed by value,” parameter passing
with reference types mimics C/C++ “pass by reference,”
eliminating the need for pointers.

Constructors: Constructors are methods that create new
instances of classes. They are invoked with the new operator. A
constructor is like an ordinary method with two exceptions: (1) it
has no return type because it implicitly returns an instance of
its class, and (2) it must have the same name as its class.
¢ public class Count {

int number;

public Count(int startNumber) {
number = startNumber; }

}

Method overloading: Two methods in the same class can
have the same name as long as their method signatures are
different. When the method is called, Java checks the param-
eters of the called method against the method signatures of
all like-named methods. Java executes the method whose
signature matches that of the method invocation. The fol-
lowing example has two methods called “Thing” with differ-
ent method signatures and modifiers. When the constructor
for this class is called, “public Thing()” will execute and that
method will in turn call the other “Thing” method with the
integer parameter.
e public class Thing {

int size;

final int DEFAULT_SIZE = 20;

private Thing(int s) {

size = s;

}
public Thing(Q) {
new Thing(DEFAULT_SIZE);

}

¢ Abstract methods are methods with names and
signatures, but without bodies. Any class that contains
abstract methods must be declared abstract and cannot
be instantiated. Abstract methods must be overridden by
subclasses or supported by implemented interfaces.

INTERFACES

To simulate the multiple inheritance features of languages
such as C++, Java supports interfaces, which are

a contract between the programmer and the Java
interpreter. Interfaces tend to have names (such as
Runnable, Throwable, and Observable) that describe a
function a particular class can perform, without making
any claims about the class's fields and structure.

Implementing interfaces: An interface is a specification that
any class implementing the interface is guaranteed to support.
The keyword implements declares that a class supports a par-
ticular interface, and although a class can extend only one other
class, it can implement an unlimited number of interfaces:
Example:
¢ class Suburban extends Car implements FourWheelDrive,
SixCylinder
Attempting to let a class implement an interface without
writing methods (and method bodies) for all the methods
declared in the interface will cause a compile-time error.

Writing interfaces: Interfaces are written just like classes,
except with the class keyword replaced by interface.

e public interface Runnable { ... }

* public interface MouseMotionListener { ... }

The body of an interface can contain only abstract methods
and/or constant fields (declared as final and static). Any class
implementing the interface must either supply the implemen-
tation for the abstract methods or be labeled abstract itself.
Examples:
¢ public interface Runnable {
public void run() {}

¢ public interface MouseMotionListener {
public void mouseDragged(MouseEvent e) {}
public void mouseMoved(MouseEvent e) {}

Technically, an exception is any class that extends try/catch/finally: Exception handling is done through the | An exception thatis not caught in the method that throws it is
the java.lang.Exception class. More generally, an try and catch statements. Code that might generate an | Propagated to the calling method, where it can be handled by
exception is thrown whenever anything unexpected exception is enclosed in a try block, a pair of braces preceded | @ try/catch statement in that method. If it is not handled in
happens during the execution of a program. It is by the keyword try. Each try block is immediately followed by | the calling method, the exception is propagated through the
the programmer’s responsibility to make sure that a one or more catch blocks, code in between a pair of braces | Method call stack until it reaches the main method. At this
program recovers gracefully from an exception. preceded by the keyword catch and the type and name of the | Point, if the exception is not handled, the program terminates
Exception in parentheses. Whenever code in the try block and control is returned to the shell. It is generally considered
throws an exception of the above type, control is transferred | POOr programming practice to let a program terminate this
to the corresponding catch block. way. All exceptions should be caught before they propagate
o try { out of the main method.

Exceptions and Errors: The java.lang.Throwable class has
two standard subclasses: Exception and Error: Errors usually
represent unexpected behavior that the program cannot pos-
sibly recover from, so errors are usually ignored by the pro- . .
grammer. Exceptions are problems from which the program exception generating code here . Creating exceptions: Since all exceptions are descendants of
can (and should) recover from, and they are generally caught } catch (Exceptionl el) { exception handling code | joyq lang.Exception, itis possible to create program-specif-

P here h ; : .
and handled within a program. .)) ic exceptions by creating a new class that extends Exception
g } catch (Exception2 e2) { exception handling i o gne of its subclasses.

Checked and unchecked exceptions: A RuntimeException code here Example:
(javqlang.Run_tim_eExcep_tion) or a descendant) of ‘ « public class myException extends Exception { ... }
RuntimeException is considered an unchecked exception, : After the catch block executes, control is transferred back to

meaning that, as it occurs at runtime, the compiler cannot | the calling method. The standard constructor for a new exception consists of only
determine whether the exception might be thrown. Java will one line invoking the superclass constructor. One of the super-
allow a program to throw unchecked exceptions without spe- | A dLLy block can follow any catch block(s). Before transfer- | ¢jass constructors takes a user-defined String as a parameter
cifically declaring that it might do so. All other exceptions are | '8 control to the calling method, the code in the finally block | 4o facilitate error messages. An additional field can be added
checked exceptions, meaning that the compiler will check executes regardless of whether exceptions were thrown. in the subclass to store data obtained from the String.

for them. Any method that throws a checked exception must | * £ . . Example:

either catch the exception or declare the exception in its meth- exception generating code here } e public class myException extends Exception {

od header. A class whose methods throw checked exceptions catch (Exception €) { exception handling code here } String data;

must also declare the exceptions that it can throw. finally { public myException (String someData) {
clean-up code here }

super(“Exception involving ” + someData);
Propagating exceptions: Any exception that is not caught data = someData;

When an exception occurs, all execution in the program i the method that throws it must be declared in the method H
(more precisely, in the thread) halts and control is header with the throws keyword: }
transferred to an exception handling mechanism. At
this point, one of two things will happen: the exception
can be caught, or the exception can be allowed to
propagate to another part of the program.

THE JAVA AP
Java 1.4 consists of over 2700 pre-written classes JAVA.UTIL

organized in the Application Programmer Interface Contains utilities such as basic data structures; classes | Contains classes representing events, and inferfaces
[API). The following is a brief list of some of the most representing times, dates and locations; fundamental that model listeners. Events are generated whenever
commonly used Java classes, organized by package. event classes; and miscellaneous utilities. something happens in the program or with the
The complete API can be found at http://java.sun.com/ | « Vector and Arraylist are implementations of | computer’s peripherals; listeners have a programmer-
[2se/1.4.1/docs/api. growable arrays. Unlike Arraylist, Vector methods are : defined response to events. Events themselves have
synchronized, making Vector inefficient but thread-safe. | fields that define such attributes as the location and
ArraylList methods are not synchronized. time of the events and the name of the component that
Consists of the Java classes that form the basis of Hashtable and Hashmap are data structures thatmapkeys | generated the event.
the language; classes representing the elements to values. * MouseEvent is an object generated whenever the mouse
Java needs to function such as Object, Method, Class, Stack represents a stack of objects. moves or whenever the mouse button is pressed. The
System; and wrappers for the primitive types. The Linkedlist and Iterator are used to implement a linked Mouselistener —and MouseMotionlistener interfaces
functionality of most of these methods is generally list data structure. The structure is stored in the LinkedList respond to MouseEvents.
encapsulated by the Java VM. and returned by the Iterator ActionEvent is an object generated by components such
¢ Object is at the root of the class hierarchy. Its methods Date represents a specific time, precise to the nearest as Buttons or CheckBoxes. The ActionlListener interface
serve to manipulate objects as they are stored in memory. millisecond. responds to ActionEvents.
Math and StrictMath contain static methods for performing i ¢ GregorianCalendar represents a standard calendar. KeyEvent is an object generated whenever a keystroke

Example: . The default toString() method of Exception (inherited from
* public void findCar(Car <) throws NoCarException, Object) prints the String from the constructor (which may be

MyException null) concatenated with a String including the method and
line number that threw the exception.

SPARKCHARTS

basic mathematical functions. The two classes are very
similar, but StrictMath is used primarily in cryptographic
applications needing platform-independent results.
Boolean, Character; Double, Float and Integer are
wrapper classes, used to treat primitive types as objects.
They contain methods for conversions between Strings
and primitive types or wrappers.

System maintains the standard input, output, and error
streams; the clock; and the system properties. System also
has a method that copies part of an array.

String and StringBuffer represent character strings. A
String is immutable; a StringBuffer is not.

Thread represents a thread of execution. Java is a multi-
threaded language allowing simultaneous execution of code
segments.

Contains classes that allow Java to receive input and
output from the user and to communicate with the
filesystem.

* File represents a file or a directory pathname.
e InputStream represents a stream of incoming byte

data. It is an abstract class, overridden by such
classes as FileInputStream, FilterInputStream,
ObjectInputStream, and PipedInputStream.
FilterInputStream is used with an instantiation of a
subclass such as BufferedInputStream.

OutputStream represents a stream of outgoing
byte data. It is an abstract class, overridden by such
classes as FileQutputStream, FilterOutputStream,
ObjectOutputStream, and PipedOutputStream.
FilterOutputStream is used with an instantiation of a
subclass such as BufferedOutputStream.

Reader is an object that reads character streams.
It is an abstract class, overridden by such classes
as BufferedReader, FileReader, PipedReader, and
StringReader.

Writer is an object that writes character streams.
It is an abstract class, overridden by such classes
as BufferedWriter, FileWriter, PipedWriter, and
StringWriter.

EventObject is the root class for all events (See
java.awt.event).

Timer allows applications to schedule execution of
commands.

Stringlokenizer breaks a string into tokens, pieces
marked by certain delimiters (generally white space or
punctuation marks, but the specific delimiters can be given
as parameters to the constructor).

Random represents a pseudorandom number generator.
Depending on the method called, it returns either a
“random” byte array, integer, decimal, or Gaussian
distributed value between zero and one and with standard
deviation of one.

Contains the classes of the Abstract Windowing
Toolkit, which is used to create graphics and images.
Many of the classes in java.awt have been updated

in Swing.

e Graphics is the base class for all graphical components.
It contains methods for drawing shapes and Strings
on a Canvas object. The GraphicszD class extends the
Graphics class with several enhancements.

Component represents a graphic object that the user can
interact with, such as a Button, Label, or Scrollbar; all of
which extend Component.

Container is a type of Component that can hold other
components. It contains methods for adding and placing
new components into a container.

Window is a top-level window with no borders or menubar.
Point is a location in the coordinate plane, specified to the
nearest integer.

Polygon represents a polygon, a closed region in the
coordinate plane.

Color has a list of pre-defined fields that represent various
colors, as well as methods for creating a new color from
an existing Color or from three ints between 0 and 255
representing red, blue, and green components.

This downloadable PDF copyright © 2004 by SparkNotes LLC.

occurs. The KeyListener responds to KeyEvents.
WindowEvent is an object generated whenever the status
of a window changes (e.g., when a window is closed or
maximized). The WindowlListener interface responds to
WindowEvents.

JAVA.UTIL.REGEX

Contains the Pattern and Matcher classes and is used

for parsing regular expressions.

* Patternrepresents a regular expression.

* Matcher is an object that can find and replace a Patternin
a given character sequence.

Design: Dan O. Williams
Series Editor: Sarah Friedberg

Writer: Jay Harris
$4.95 | $7.95 CAN

Describes the Java Foundation Class “Swing,” which

is used to make GUIs and is similar to the java.awt

package but more comprehensive. The primary

difference between Swing and AWT is that Swing is
implemented without native code, meaning that it

is more portable than AWT. For more information on

Swing, see http://java.sun.com/docs/books/tutorial/

viswing.

* JComponent is analagous to an AWT Component. It is the
base class for any of Swing's graphical objects, such as
JButton, JFrame, or JLabel.

JPanel and JFrame are containers, which are JComponents
that can hold other JComponents.

ImageIcon turns an Image object into an Icon. Iconis an
interface of the javax.swing package.

BoxLayout and OverlaylLayout are layout managers,
which determine the placement of components in a
Graphical User Interface (GUI). Choose a layout manager
with the component’s setlLayout(LayoutManager)
method.

Report errors at
www.sparknotes.com/errors

Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States
and other countries. SparkNotes is independent of Sun
Microsystems, Inc.

SPARKCHARTS™ JAVA Papers page 4 of 4

