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CALCULUS

Calculus is the study of “nice”—smoothly changing—functions.
- Differential calculus studies how quickly a function is
changing at a particular point. For more on differential calculus,
see the Calculus I SparkChart

Integral calculus studies areas enclosed by curves and is used
to compute a continuous (as opposed to discrete)
summation. Integration is used in geometry to find the length
of an arc, the area of a surface, and the volume of a solid; in
physics, to compute the total work done by a varying force or
the location of the center of mass of an irregular object; in
statistics, to work with varying probabilities.

Differential equations (diff-eqs) express a relationship
between a function and its derivatives. Diff-eqs come up
when modeling natural phenomena.

* Infinite series are special types of functions.

unique value of the range.

Familiar called monotonic.

BASIC PROBLEM OF INTEGRAL CALCULUS

Given a function y = f(z) on the interval [a, b], what is the area enclosed by this curve, the z-
axis, and the two vertical lines = a and z = b?

NOTE: We always speak of “signed” area: a curve above the z-axis is said to enclose positive area, while
a curve below the z-axis is said fo enclose negative area. The concept of “negative area” may seem
ridiculous, but signed area is more versatile and simpler to keep track of

APPROXIMATIONS TO THE AREA :

* Left-hand rectangle approximation: We can approximate = f(x)
this area by a series of n rectangles. Divide the interval into
n equal subintervals of width Az = l’%l“ and obtain n + 1
points on the z-axis at zp=a, 1 =a+ Az, ...,
z, = a + nlAz = b. These are the bottom corners of n rect-
angles, which we’ll always number 0 to n — 1. The height of
each rectangle is the value of f(z) at the left z-axis corner.
The k*" rectangle has height f(z)) and area Az f(z}). The
total area of the n rectangles, then, is _

Az flwe).

Ly = Az(f(zo) + f(z1) + -+ + f(zn-1)) =
k=0

* Larger n will give more accurate approximation to the area.

Ex: We approximate the area under the curve y = 2 on the interval [0, 1] with 4 rectangles of
width Az = § and heights 0, (%)2, (%)2 (%)2, for a total area of
Li=3(07+ () + )+ (D)) = 4 = 02187,

 Right-hand rectangle approximation: Instead of taking the
height of each rectangle to be the value of f(z) at the left 2-
axis corner, we can take the the value of f(z) at the right
corner. The height of the k*" rectangle is now f(z44) for a

total area of
Ry = Az (f(z1) + f(x2) + Afo )
¢ Right-hand and left-hand approximations are related by
Ry = Ly + Az(f(b) — f(a)). 0 a b
Ex: For f(z) = z° on the interval [0, 1],
=D+ @)+ @)+ 1)) = —o4e875. I
Ry=3 (4) +(2)+(4) +(1) 32
* Midpoint Rule: The height of each rectangle can be taken to

be f(z) evaluated at the midpoint of each rectangle; the
height of the k'" rectangle is now

f(a+Az(k+%)):f(%)

for a total area of 0 a b

M= Az (f (242) + - f (Zgt2e)) = Am"ff (atpeu).
k=0

®

y=f@

functions can often be represented as infinite Taylor
polynomials. Infinite series are used to differentiate and
integrate difficult functions, as well as to approximate values
of functions and their derivatives.

REVIEW OF TERMS

* A function is a rule that assigns to each value of the domain a

* Function f(x) is continuous on some interval if whenever z;
is close to x, f(z1) is close to f(x2).

* Function f(z) is increasing on some interval if whenever
T <32, f(21) < f(z2) (s0 f'
decreasing if f(x,) > f(z2) (so f'(x) is negative). A
function that either never increases or never decreases is

AREA UNDER A CURVE AND THE DEFINITE INTEGRAL

Function f(z) is differentiable on some open interval if its
derivative exists everywhere on that interval. A differentiable
function must be continuous, and it cannot have vertical
tangents on the interval.

Function f(z) is concave up on some interval if its second
derivative f”(x) is positive there; its graph “cups up.” It is
concave down if f”(z) is negative; its graph “cups down.”
The line 2 = a is a vertical asymptote for f(z) if f(z) “blows
up” to (positive or negative) infinity as = gets closer and closer
to a (from the left side, the right side, or both). Formally,
lim, .- f(z) = o0 orlim, .+ f(x) = £oo (or both).
The line y = b is a horizontal asymptote for f(z) if the value
of f(x) gets close to b as |z| becomes very large (when z is
positive, negative, or both). Formally, lim, ., , f(z) = b or
lim, .o f(z) = b (or both).

(z) is positive). It is

¢ Simpson’s Rule: This time, we suppose n to be even and approximate the area with 2 5 parabola
pieces with the k' parabola defined by points on the curve at Tok—2, Tok—1,and Toy. The total
area is given by

Sn = %(f(wo) +4f(@1) + 2f(22) + 41 (23) + -+ + 2f (Tn-2) + 4f (Tn—1) + f(zn))-

COMPARING APPROXIMATIONS TO THE AREA

« If f(x) is increasing on the interval [a, b], then L,, <Area< R,, for each n. If f(x) is decreasing
on the whole interval, the inequalities are reversed.
. If f() is concave up on the whole interval, then L,, is a better approximation to the area than
- If f(z) is concave down on the whole interval, then R,, is a better approximation than L,,.
. The Midpoint Rule approximates area more accurately than the Trapezoidal Rule. Both are
better than the left- or right-hand rectangle approximations. Simpson’s Rule is best of all.

The left- and right-hand rectangle approximations and the Midpoint Rule all use a prescnbed point
in the subinterval as the height of the rectangle. In general, we can pick any sample point zy in the
k™ subinterval. The area approximation, then, is Az b []J f(zg). This general area
approximation is called a Riemann sum, and its limit as n increases will give the area of the region.

THE FINITE INTEGRAL

n—-1

If the limit lim Az Z f (x}) exists, then the function f(z) is called integrable on the interval

[a, b]. The limit represents the area under the curve and is denoted f (z) dz.

* In this notation, [ is the integral sign, f(z) is the integrand, and a and b are the lower and

upper limits of integration, respectively.

The marker dx keeps track of the variable of integration and evokes a very small Az;

intuitively, the “integral from a to b of f(z) dz” is a sum of heights (function values) times tiny

widths dz (i.e., a sum of many minute areas).

Being “integrable” says nothing about how easy the symbolic integral is to write down. Often,

the integral is difficult to express.

¢ All functions made up of a finite number of pieces of continuous functions are integrable. In
practice, every function encountered in a Calculus class will be integrable except at points
where it “blows up” towards +-00 (equivalently, has a vertical asymptote).

Properties of the definite integral: Let f(z) and g() be functions integrable on the interval [a, b],
and p be a point inside the interval.

1. Sums and differences: / z) £ g(x)) {lr*/] dri/ g(z) dx.

b b
2.Scalar multiples: / ef(z)de =¢ / f(z)dz. Here, ¢ is any real number.
a Ja

3.Reversing the limits: /bf(z) dr = — /bﬂf(z) dz

¢ Trapezoidal Rule: We can approximate the area under the
curve using trapezoids with the same two vertical sides and z-
axis side as the rectangles. The area of a trapezoid is
(average length of two parallel sides) x (distance between them).
The area of the k™" trapezoid, then, is 4 (f(zx) + f(z+41)),
for a total area of

i y=flx)

T = 55 (1(a0) + 2 (@) + 2 (22) + -+ 2f (@n1) + F(@n)

0 a

Antidifferentiation is the reverse of differentiation: an antiderivative of f(z) is any function F'(z)
whose derivative is equal to the original function: F’(z) = f(z) in a pre-established region.
Functions that differ by constants have the same derivative; therefore, we look for a family of
antiderivatives /'(z) + C', where C'is any real constant.

ANTIDERIVATIVES AND THE INDEFINITE INTEGRAL

4.Conc

/apf(z)der/bf(z) e /ubf(z) i

5.Betweenness: If () < g(x) on the interval [a, b], then/f z)dx < /bg(z) dx.

In particular: v
e If f(x) > 0 on [a,b], then f: f(z)
e If M is the maximum value of f(x)

m(b—a <j f(z)dz < M(b— a).

dz > 0.

on [a,b] and m is the minimum value, then

The family of the antiderivatives of f(z) is denoted by the indefinite integral:
/f(z) dx = F(z) + C ifand only if F'(z) = f(z).

The indefinite integral represents a family of functions differing by constants
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‘S0 IF A MAN'S WIT BE WANDERING, LET HIM STUDY
THE MATHEMATICS.”

FRANCIS BACON

THE FUNDAMENTAL THEOREM OF CALCULUS

The Fundamental Theorem of Culculus (FTC) brings together differential and mtegral calculus.

MAIN POINT. D|fferennqt40n and integratfion are inverse processes. Finding anndenvohves is a lot like
calculating areas under curves

STATEMENT OF THE THEOREM

* Part 1: Let f(x) be a function continuous on the interval [a,b]. Then the area function
F(z) = {”'j(l) dt is continuous on [a, b] and differentiable on [a, b] and F’

* Part 2: If f(x) is a function continuous on the interval [a, b] and F(z) is an antiderivative of
f(z), then ]1’/(1) dz = F(b) — F(a). The total change in the antiderivative function over an
interval is the same as the area under the curve.

WHY IS THE FTC TRUE?

There are two ways of thinking about it:
1. The change in the area function (function whose value at a is the area under f(z) up to a) is
chronicled by f(z) itself: the area function changes quickly if j( ) is large, slowly if f(z) is small;
it is increasing whenever f(z) is positive and decreasing if f(z) is negative. So f(z) behaves like
the derivative of the function for the area under f(z).
2.The function for the area under f’(z) behaves like f(z) itself.

o If f(x) is increasing (or decreasing), then f’(z) is positive (or negative) and the area under

/() is increasing (or decreasing).

e If f(x) is changing quickly, then |f’
quickly as well.
If the growth rate of f(x) is positive but slowing down to 0 (i.e., f(x) is concave down
approaching a local maximum), then f’(z) is crossing the z-axis from the positive half-
plane to the negative half-plane; at the same time, the area under f’(z), which has been
growing while f’(z) > 0, is stopping its growth and will start to decrease: like f(x), the
area under f’(z) is nearing a local maximum.

(z)| is large—and the area under f'(x) is changing

The FTC justifies using the integral sign for both antiderivatives and areas under curves. And it

gives us a simple way to calculate the area under many curves.

Ex: The area under the curve y = 22 over the interval [0, 1] is given by ‘]"]I z%d.

is an antiderivative of #? (check that F'(z) = x?), _];]I z?dz = F(1) - F(0) =

e s < l{ < Ry, and L, is a slightly better approximation to the area, as expected since f(x) = z2
is increasing and concave up on the interval.

COMMON INTEGRALS

SmLeI (x) =

/k dr=kz+C /[)dJ =0

P .l.ﬂll j

/.r"([.rf +Cifn# -1 /— z =In|z| 4+ C
] n+1 J z
/("(I.r:("+(' /u (Il—i y
/siu.rt[f =—cosz+C /(()SJ dr =sinz + C

/ tanzdr = In|secz| + C / cotzdx =In|sinz|+ C

/ sec? zdx = tanz + C

3
/ ] dz = tan™?

/se(-;r tanz dr = secx + C

z+C lz4C

H
i
i

TECHNIQUES OF INTEGRATION

Unlike differentiation, integration is “hard”—there are easy-to-write functions that don’t have easy
antiderivatives. The art of integration requires a bag of tricks. These are some of them. NOTE: All
techniques work with both definite and indefinite integrals; pay special attention to the limits of
integration. TIP: All functions that you will work with are integrable except at points where they
blow up; all “smoothly” changing functions are differentiable.

SUBSTITUTION RULE

If u = g(x) is continuously differentiable on some interval and f(z) is integrable on the range of

g(z), then

/f(.a(:r))g (

 This is the analog of the Chain Rule for integrals (see the Calculus | SparkChart). It is useful for
composne functlons and products.

/ 2/s5 1 8 da.

1+?<

x) de = /f(u) du.

2 is a lot like % .Letu = z°

} + 8. Then du = 322 dz, so 22 dz = %

Substituting, we transform the ongmdl integral into / Vu du, or

1 2
/;n’ e = 3112 +C=

¢ When evaluating definite integrals using substitution, you have a choice about how to deal with
the limits of integration. Let’s say that you're integrating with respect to z.
1. Less thinking: Choose a useful u, substitute for z, integrate in terms of u, substitute = back,
evaluate the integral with original limits.

2 ’ 72
Ex:/ z2\/23 + 8 dx = g (=® +8)§]
J1

1

g(r +8) +C.

4 16% — 293 —

9 9

2. less work: Choose a useful u = g(z) substitute, integrate in terms of u, then evaluate the
integral using, for limits, values of u = g(z) evaluated at the original limits of integration—all
without substituting z back in. Formally, if u = g(z), then

b 9(b)
/ f(9(x))d (z) do = / u du.
" 9(a)
g e u=g(2) | 2 11 74
In the example above,/ 22\/73 + 8 dz = / a f du = ot ?:| = %
2=1 u=g(1)

INTEGRATION BY PARTS

Some function products (or quotients) cannot be integrated by substitution alone. Integration by
parts works when one piece of the product has a simpler derivative and the other piece is easy to
integrate.

* This is the integral analog of the Product Rule d(d% = f'g+ fg'.

(@)g(z) - / f(@)g() da, or

vdu.
/ f(z)g(z) dz.

¢ A polynomial multiplied by a trigonometric, exponential, or luganthmlc function is frequently
best integrated by parts. Let the polynomial be w.

¢ Indefinite integrals: / f(z)g'(z) dz =
/ udv =uv — /

b
 Definite integrals: Slap on ]lmltb/ f(@)g (z) dz = f(z)g(x

Ex: .

/ (2z + 1)e
Let‘ u =2z + 1 (so du = 2dx), and dv ~*dx (sov = —e

(2Jv+1)(7r«)~/

which simplifies to —(2z + 1)e ™ — 2e % + C,

*). The integral becomes
—2e %dz,

or (—2z — 3)e " + C.

TRIGONOMET 1C SUBSTIT

Square roots of quadratics, such as v/a? , cannot be integrated with the substitution
u = a? — z” because the factor of du is missing. Enter trig substitutions, applying the substitution
rule backwards Tng subs’t]tut\ons are often necessary when calculatmg areas bounded by conic sectlom

Ex:/{%\/T

dz. We canset z = 2sinf with —3 <60 < 7. 9
x
Then dx = 2cosf db,
and V4 — 22 = \/4 — 4sin” 0 = V4 cos? 0 = 2cosf =
(since cos @ > 0 on the interval). The integral becomes - ? .
o e sinf =2  cosf = Y4z
cos ’ 3 2

/ P 62(:050 dé = /(-ot‘ 0do = / ((:sc2 0— 1) df = —cotf —0+C.
If we want to convert back from 6 to x, we note that cot § = ¢ ::g =¥ 4’_"’2 ; thus

V4 —z? 4— 2 i

Td:rzfg — sin (5) +C.

TABLE OF TRIGONOMETRIC SUBSTITUTIONS

Expression  Trig substitution Expression becomes Range of Pythagorean identity used * Pay careful attention to the limits of integration. The intervals for 6
g 2 correspond to the ranges of the inverse trigonometric functions.
/a® — z2 i fad — g~ _r st — sin? 0 = cos®
z z=asin a? — 2% = acosf 2503 1 —sin"0 = cos™ @  Expressions of the form \/+a2?+ bz +c¢ can be integrated by
dx = acosfdf (-asz<a) . A
completing the square and converting to the form
i : 2 . S WA , g -

V z = asecf va®—a? =atand 0<60< % (whenz >0) sec’f—1=tan’0 VE(x + h)? + a2, where h = +5 and a = \/|c — Y |. Then choose

dx = asecftan df 7 <0< 3 (whenz < 0) the appropriate trig substitution depending on the + signs.
Va2+a? zr=atané Va? + z2 = asec -5<0<3 1+ tan® 6 = sec? 0

dz = asec®0df




TECHNIQUES OF INTEGRATION (CONTINUED)

PARTIAL FRACTIONS

Integrating rational functions—ratios of polynomials—can be tricky. However, after factoring the
denominator into linears and quadratics (which can always be done, though the coefficients may
not be rational numbers), a rational function can be expressed as a sum of simpler “partial”
fractions. These come in four “easy”-to-integrate types:
" Adz
So
J ax+b

- d
2= In |u| + C.
J u

A
—In|az + b| + C.
a

" du un " Adzx A
— = Cif R ——— = ——_(az 4+ b)" 4+ C.
u* n+1l i ng 0./ (ax+b)"  a(n+1) -8 i
d
ST [ In |u| + C. So
J u
" Az+ B A [ 2ax+b / B - %
— g T e e LS
J az? +bzx+c 2a | ax?+bx+c J ax?+bz+c
D

dz, where D = B — %

[

2 ) -
—In|az? + bz + ¢| + /
a §

4, / Bl +C. So /
o a r
roots (b*> — 4ac < 0) can be evaluated by completing the square in the denominator, which

becomes
a(x + h)? + k? where h =

azr? +bx +c
du 1

c - = —tan
u?+a? a

D dx
ar? +bxr + ¢

where the denominator has no real

b, oy
2, and k =

The step-by-step process for integrating f(z) = f]’((::

1. If necessary, use long division to get to the point where the degree of the numerator is less
than the degree of the denominator. The function has the form f(z) = s(z) + (',Ear: .

2.Factor the denominator, reducing it to linear factors in the form (az + b)" and irreducible
quadratic factors in the form (cz? + dz + €)™ where d? — 4ce < 0.

r(z)

follows:

3.Decompose i) into a sum of partial fractions:
* If g(x) has no repeated factors, express
ri) A Ae Ciz + Dy Crz + Dy,
q(z)  aiz+b S ar+b i +diz+e k2 + dpw +ep

Solve for all the As, C's, and Ds by multiplying the equation by ¢(z) and equating coefficients.

TIP: If ¢() factors as a product of two linears (x — a)(x — b), then we can solve for A and B in

r(z) " r(a b
o '5‘?“” 5 = 794 + 725 Quickly by taking } = “—'—77:7 and B ,')( ! -
* If g() has repeated factors, then for each factor in the form (az + b)™ expect fractions
Ay A, A,
— S+t .
ax+b  (azx +0b)? (az +b)»

e . Ciz+ D CmZ + Dy,
Each (cz + dx + €)™ factor will give fractions —- 2 : i

—

POLYNOMIALS IN TRIGONOMETRIC FUNCTIONS

For powers of trigonometric functions, regular u-substitution may not work. Use the following
substitutions instead.
* Pythagorean identities:
sin® @ + cos? 0 = 1 1+ tan®@ = sec? 6
* Square sine/cosine substitutions (from the half-angle formulas):

. 1 P
sin 0 = 5(1 — cos 20) cos?§ = %(1 + cos 26)

.

0Odd powers qf sine or cosine:
To compute/ sin" @ df when n is odd, keep one sine factor and replace the rest with cosines
using sin® @ = 1 — cos? 0 to obtain
/ (1 - cos? «‘))”T sinf df .
Integrate using the substitution 'l.t = gosl.
For odd powers of cosine, “co” all the functions above (“co” cosine = sine).
* Even powers of sine or cosine: Use the square formulas
sin? § = %(1 — cos26) or cos?§ = %(1 + cos 26)

to reduce the power by half. Expand the expression (using the Binomial Theorem) and use
appropriate tricks for odd or even powers on each factor individually.

Mixed powers of sine and cosine: When computing [ sin” 6 cos™ 6 df), use combinations of
substitutions outlined above. The end goal is always to reduce to a sum of terms with only one power
of either sin 6 or cos @ (or both) each, which can be integrated using a u-substitution.

Products of sines and cosines of different angles: Use the following identities to get rid of

products: 1
sin Acos B = 3 (sin(A — B) +sin(A + B))

sin Asin B = % (cos(A — B) — cos(A + B))
1

cos Acos B = - (cos(A — B) + cos(A + B))

MNEMONIC: Products of like terms use cosines; unlike terms use sines

* Powers of secant or tangent:
* Even powers of sec: Convert all but two secants to tangents using Pythagorean identity
1 + tan? 6 = sec? §; use substitution u = tan .
* Odd powers of tan # : Convert all but one tangent to secants, pull out a factor of sec f from
the polynomial in secants and use the substitution u = sec .

cx®tdz+e | (caltdrtem
4.Infegrate 5(z) and each partial fraction individually, using the four types of integrals above.

4z —1722-28 A B +D
C-2@+2)@2+4) z-2 z+2 3244
Cross-multiplying, simplifying, and equating coefficients gives the four equations
—2(A-B)+ D=1 6(A-B)+D=-17, 3(A+B)+C=4, (A+B)-C=0.
Solving this system of four linear equations (in this case, it is easier to view this as two systems of two
equations, and solve for A + B and C, and for A — B and D independently), we get A = —1,
B =2,and Cz + D = z + 1. Now we can integrate.

IMPROPER INTEGRALS

Improper integrals come in two types:
iy 00 _g?
1. Definite integrals over an infinite interval. Ex: j:o e g

2. Definite integrals over an interval in which the function blows up to infinity (has a vertical !

asymptote). Ex: fol L dg.

Not all improper integrals converge—represent a finite area. To evaluate an improper integral, we :

interpret it as a limit. If a finite limit exists, the integral converges; otherwise the integral diverges.

INTEGRALS OVER AN INFINITE INTERVAL :

Improper integrals of this type should be rewritten as one of three
limit forms: Y

00 t
1. Interval infinite to the right:/ f(@)dz = tlim / f(z) dz.
S a

b b
2. Interval infinite to the left: / f(z) dz . lim / f(z) dz.
J-oo =Rl

3. Integrals over the whole real line:
/ flx)de = / f(z) dz +/ f(z) dz for any a. Improper integral / f(z)dz
J-co Joco a Ja

The original integral converges only if both integrals over half-intervals converge.

1
r—1

00
dx
. / —J,r converges (and equals )if and only if r > 1.
1 2

* The integral/ f(z) dz will converge only if lim f(x)=0 (y=0 is a horizontal

asymptote). If the function does not tend to zero, the area underneath it will certainly not be
finite, and the integral will diverge. Analogous statements are true for other infinite-interval
improper integrals.

HOWEVER: lim f(z) = 0 alone does not imply convergence of an improper integral
P do t dx t
The classic example is/ £ = lim / =% = lim (ln \.r\] ) = lim Int=o00.
3 £ J1 oz t—oo )i T t—o0 1 t—o0
The integral diverges. g

Ex:/ tan®0 df = [ (1+ sec? 9)2 tan 6 df

se

1 ’ z
= / oy + 2secf + sec® 9) tan @ sec6 df = / L +2u + u® du.
p u

* Other powers: Combine tricks and use/ tanf df = In |sec| + C and
/ sec df = In|sec + tan 6| + C.

TEGRALS OVER AN TE DISCONTINUITY
b

The integral

f(x) dz is improper if at any point ¢ in y

the closed ir{tgrval [a, b], the function blows up.

® If c=a is the left endpoint, then the integral is
improper if lim' Fm) = too.

b
The integral is interpreted as lim‘ / f(z) dx.
t—at Jy

If ¢ =b is the right endpoint then the integral is

improper if lim f(z) = 400 f(x) has a vertical asymptote at = = c,
z—b~

SO

! () dx is an improper integral
and is reinterpreted as lim / f(z) dx. I f(=z) prop g
t—b— Jq

If ¢ € (a,b), then the original integral is understood to be the sum of the two improper
integrals

/ f(z) dz + /f f(z) da.

The original integral converges only if both endpoint-improper integrals converge
independently.

) if and only if r < 1.

Udz .
. — converges (and is equal to
Jo T

r1 0 r1
da dx ix
NOTE: / i diverges (and does not evaluate to 0) because both / & and / £ diverge, even
J-1 Z J-1 % Jo T
though the two areas seem to be “equal” and opposite in sign
dx

their values are equal in magnitude and opposite in sign

o1 0 1
lx dx
On the other hand,/ = 0 because both holf—mtegrcls/ % ond/ {% converge—and
J-1 J-1 VT Jo VZ




GEOMETRY OF CURVES

Suppose that f(z) > g(x) on the interval [a, b] and both functions are continuous. Then the
area bounded by the two curves y = f(z), y = g(z) and the two vertical lines z = a and z = b

is b
[ U@ - o) da.

In general, if the (continuous) curves cross each other on the
interval, then the positive area defined by the curves

betweena and bis b
[ 1@ - @) dz.

It is most easily evalutated by considering
subintervals whose endpoints are all points ¢ such Ja

that f(c) = g(c).

If the area is bounded by horizontal lines, it may be easier to rewrite the curves in the form
x = f~'(y) and integrate the difference between them with respect to Y.

VOLUMES: SOLIDS OF REVOLUTION

Suppose that a solid is oriented along the z-axis so that the area of a cross-section (the slice of
solid intersecting with a plane perpendicular to the z-axis) is given by the function A(z). The
volume of a slice of thickness Az is A(z)Az, and the
volume of the solid bounded by the planes = = a and
z=bis 2

V= / " M

a

y

Area A(x) = 7 f(x)°

Volume = nf(x)’Ax ¥ = f(x)

* Disk method: The volume of the solid swept out by
the curve y = f(z) as it revolves around the z-axis
between 2 = a and = = b is given by

/ m(radius)? dz orm /b (f(.l‘))z dx.

Ja

Disk method

¢ Washer method: If f(z) > g(z) between a and b,
then the volume of the solid swept out between the
two curves y = f(x) and y = g(z) as they revolve
around the z-axis between z = a and x = b is

/‘rr(outer radius)? — 7(inner radius)® or

77/ (f(l))z o (g(!‘))z da.

a

Washer method

A parametric curve defines both the z- and the y-
coordinates in terms of a third variable, often ¢ (as in
“time”). Parametric curves don’t necessarily represent
functions and don’t have to pass the vertical line test.
Sometimes the domain of ¢ is restricted to an interval L
a<t<h

t=m 4t t=0
0 aoft=2r

Ex: x =cost and y =sint for 0 < ¢ < 27 are para-
metric equations that describe the unit circle.

¢ To convert a curve described parametrically to Carte-
sian coordinates, try to relate z and y directly,
eliminating ¢. If possible, solve for ¢ in one of the

function for y in terms of z.
B

cos? f + sin® @ = 1 for all angles 6, you can relate z and y with the familiar 2 + y=1

example, y = /1 — 22. Doing so is equivalent to restricting ¢ to the interval [0, 7].
GEOMETRY OF THE CURVE

The following formulas are obtained using the chain rule.

dy & y'(t) dx dy
* Slope of tangent: —= — 4t — If — =0 and— # 0, then the tangent is vertical.
dz & /() dt dt

POLAR COORDINATES

Polar coordinates describe a point P = (r, #) on a plane in terms of its distance r from the pole

(usually, the origin O) and the (counterclockwise) angle # that the line OP makes with a

reference line (usually, the positive z-axis).

* To identify a point, it is standard to limit >0 and 0<6 < 2m, although
(=7,0) = (r,0 £ ) and (r,0) = (r,0 + 2nm) for integer n.

CONVERTING BETWEEN CARTESIAN AND POLAR COORDINATES
* From Cartesian to polar: r = /2% + % 0 = tan™' ¥
* From polar to Cartesian: = = r cos; y = rsinf

Functions in polar coordinates usually define r in terms of . They need not (and almost never

will) pass the vertical line test.

Circles: The graph of r = a is a circle of radius |a| centered at the origin. The graphs of r = a sin @
and r = a cos @ are circles of radius |2 ‘ centered at (0, §) and (§, 0), respectively.

Roses: The graphs of 7 = sinn and = cosnf are roses centered at the origin with n petals if
nis odd, 2n petals if n is even.

Limacons and cardiods: The graphs of a + bsin @ and a + bcos @ are limagons. If \('{ > 1, the
limacon has an inner loop; if | g ' = 1, the limacon is “heart-shaped” and is called a cardiod.

b
Shaded area is/ (f(z) — g(z)) da.

~\\(cos t, sint)

equations, and plug that expression into the other equation. Again, this may not give a

In the example above, solving and plugging in will give something like
y = sin (u()s".t), which is not very useful. However, if you use the fact that

equation for the unit circle. To define a function, you have to choose a piece of the curve; for

¢ Shell method: A solid is obtained by revolving the
region under the curve y = f(z) between x = a and
x = b (the area of this region is ]: f(z)dx) around
the y-axis. Instead of cross-sectional slabs
perpendicular to the axis of revolution we consider
the volume of a small cylindrical shell of radius - and
thickness Az. The surface area of a cylinder is

(circumference) x (height) or 27z f(z); thus, the Surface
1 f the solid i Area
volume of the solid is shell method Sl

b
|4 :/ 2rz f(z) dx.

a

The shell method is often used when it is hard to compute the inside or outside radius of the
cross-sectional slabs perpendicular to the axis of revolution.

If f(x) has a continuous derivative on the interval (a, b), then the length of the curve from
z=atoz=bis
b —
L= / 1+ (f’(:n))zdw.
Ja

b [ &
d
In Leibniz notation this becomes L = / 1+ (:Tg) .

* Why? If we break up the interval into n subintervals each of
width Az = b:—'“ with z}, a sample point in the k'" interval,
then the length of the curve on the k" interval is approximately

the length of the vector (AJI‘ Az f' (z}) ), or Azy/1+ (f’(.L;))Z Take the limit of the

Riemann sum to get the formula.

SURFACE AREA: SOLIDS OF REVOLUTION

The surface area of a surface swept out by revolving the function y = f(z) about the z-axis
between z = a and z = b is

S:/hznf(a;) 1+ (f'(z))? dz.

* The formula is obtained by
approximating the surface area by
cylindrical bands of radius f(z) and
width equal to the tiny arc length on
the tiny interval.

length =~ lef‘w )% Ax

perimeter
= 2xwf(x)

d
5 dy d (dy & (ﬁ)
* Concavity: el ) ey

dat
* Area defined by curve: The area between the z-axis and the curve traced out from ¢ = a to
e b
e / y()' (8)dt.

a

A=

NOTE: The area is counted as negative for the regions where the curve is moving “backwards"—i.e.,
:’Tj < 0—and positive when the curve is moving “forwards.”
* HAPPY CONSEQUENCE: The area enclosed by a loop wholly above the z-axis, traversed exactly
once from ¢ = a to t = b, can be computed directly. b
A= / y(t)z' (t)dt
Ja
The integral is positive for loops traced out clockwise, negative for those fraced counterclockwise
Alternatively, break up [a, b] into subintervals depending on the sign of '/{T; integrate separately.

* Arc length: The length of a parametric curve traced out fromt = atot = b is
b 2 2
dx
L= — ] dt.
V(@) (@) -

This formula also works works for loops.
* Surface area of revolved solid: If the same curve always stays above the z-axis (y(t) > 0),
then the surface area swept out when it is revolved around the z-axis is

b 1 2 d.’ 2
s:/ 2my(t) (%) +<7:) dt.

For more on polar coordinates, see the Pre-calculus SparkChart.

GEOMETRY E CURVE

* Slope of tangent: Convert the curve r = f(f) into parametric equations in Cartesian
coordinates: x = rcosf = f(0)cos@; y = f(6)sin 6. The slope of the tangent to the curve
at (z(0), y(0)) is dy .0

dy
dr sinf’

dy
dt

sopgdr o
_ sinfgg +7

dz ~ ___pdr
@ cosbg

* Area: The area enclosed by rays at # = « and # = 3 bounded by the curve r = f(#) is
3

P,
A:/ ~r? df.
«@ 2

Why? The area of a circle of radius  is 7r? (angle sweep of 27). The area of a sector of a circle
of radius r and angle measure  is thus %rzf?. We approximate the area by a Riemann sum of
sliver-sectors with radius 7 and angle measure A#f.

 Arc length: The length of an arc r = f() from = ato = 3 is

)
8 dr\?
= g/ — 6.
L /,, r2 4 (dﬂ) ¢

The formula is derived by converting the curve to Cartesian parametric equations with  as
the parameter.




INTEGRATION: APPLICATIONS T

Newton’s Second Law, F' = ma, states that the force F' on an object is proportional to the
object’s mass m and its acceleration a = dﬂ 4

Work is the product of a force and the distance through which it acts. If the force is constant,
then W = Fz. If the force F'(x) is variable and depends on theb distance x, then the work done

by F(z) in moving an object from z = atoz = b is W— / S

¢ The classic situation of a force dependent on distance is the subject of Hooke’s Law: the force
required to stretch or compress a spring x units away from its natural position is given by
F(x) = ka; here, k is a constant that depends on the tightness of the spring.

The center of mass (CM) of any system is the point on which (if connected) it could balance on
a fulcrum.

¢ Moment: The farther away something is from the fulerum, the “heavier” its mass counts. Each
mass of weight m a distance z from some point

contributes ma worth of moment (or torque) with %1 x el %

respect to that point. If the point is the CM, then all = g

the moments of the system have to balance. SROs Y e

The system behaves as though all of its mass were fulerum

concentrated at the CM Torques: m (Z — x) counterclockwise
* 2 masses, 1 axis: If a massless rod with objects of ma(wz —T) clockwise

Masses balance, so 7 = 2u&itmacs

masses to the fulerum must satisfy

masses m; and m, at each end balances on a fulerum
at its CM, then the distances d; and d, from the
myd; = mads.
e If such a rod has length d, then distance d; from the m, mass to the fulcrum satisfies
mydy = my(d — dy). Solving, d; = ™24 We can view this as positioning the rod along

myt+ms
the z-axis with the m; mass at the origin. The CM, then, is at the point %_}L‘-, where

INTEGRATION: APPLICATIONS T

For a discrete set of values, their average multiplied by
their number gives their sum. The analog of an average for
a continuous function f(z) on the interval [a,b] is the
average value f, which has the property that the rectangle
of height f and width b — a has the same area as is
enclosed under the curve y = f(z). Thus

/ﬂb f(z) dz.

The Mean Value Theorem for Integrals states that a
continuous function attains its average value. Like the
MVT for derivatives (see the Calculus | SparkChart), this
is a completely intuitive statement.

—-a

f

= f(e) is the average value of
f(x) on the interval [a, b]
The two shaded regions have
equal area

GENERAL PROBABILITY DENSITY

A probability density function describes how likely it is that the outcome of some “trial” is .. The
probability that the outcome is any specific point a is negligible; instead, we talk about the
chances that the outcome falls in some range and think of areas under the probability density
curve as representing actual probabilities. The probability that the outcome is between a and b is

/ ’ (o) da.
DIFFERENTIAL EQUATIONS

i An (ordinary) differential equation (diff-eq) involves the derivative(s) of a (single-variable) function.

* The order of a diff-eq is the highest degree of a derivative involved in the equation.
y* =y” +y + x is a second-order diff-eq.

* Asolufion to a diff-eq is any curve y = f(z) which satisfies the diff-eq. A general solution is the
complete family of curves that satisfy the diff-eq. Ex: The general solution to the diff-eq
Yy =4sin2zisy = —2cos2zx + C.

* An initial condition, often the value of y(0), isolates a particular solution from the family of
general solutions. Ex: If ' = 4 sin 2z and y(0) = 3, then y = —2cos2z + 5

EXPONENTIAL GROWTH AND DECAY: dy/dt = k

"’T’f = ky is a common type of diff-eq. The general

solution is y = Ae*

¢ Solution: Separating and rewriting, we get
1) "# [ k dt. Integrating yields In|y| = kt + C or
+y = e**C. Since € is a positive multiplicative =

i factor, we replace +e€ by the constant A and rewrite

y = Ae*t

e If k > 0, the solution represents exponential growth;
if k < 0, exponential decay.

¢ Ais the initial value of the function at ¢ = 0.

- 4

y = 8e*

Several solutions to the differential

equation & "“ = 2y
Word problems that often reduce to diff-eqgs of this type:

* Unlimited population growth: £ is called the relative growth rate; 1% growth (per year) means
k = 0.01 (if ¢ is measured in years).

Radioactive decay: The function measures the mass remaining at time ¢. The constant k is
negative; it is often conveyed in terms of the (constant) half-life of the element—the amount
of time it takes for half of the remaining mass of the element to decay. If / is the half-life, then
k=-1n2

Compounded interest: The final value P of an investment compounded n times a year with
initial value Py and yearly interest r after ¢ years is P(t) = P, 1+ %)"’ . If the interest is
compounded continuously (n — c0), then value is lim,, o P(t) = Pyet. The (continuously
compounded) investment is changing at a rate proportional to its value.

D PHYSICS

1 and z; are the distances of the masses from the origin. Here, z; = 0 and x5 = d, the
length of the rod.
* Discrete masses, 1 axis: In general, a system of n objects of masses my,mo,...,my,

positioned at points xy,zs,...,z, along the z-axis (respectively) has CM at the point
myx; + maxa + -+ + MuTy
my+mg+---+my
This is the moment of the system about the x-axis.

The moment of the system about the y-axis can be computed independently.

T=

Discrete masses, 2 axes: The CM of a system of objects of masses my, ..., m, at points

(z1,91)s - -, (2n,yn) on a coordinate system is at the point
. 7) mMiTy + -+ MpTp MaY1 + -+ +MpYn
xr = .
1Y my+---my, my + - iy

Continuous mass, uniform density: The CM of a flat plate-like object of uniform density p is
computed by taking the limit of a Riemann sum. If its area is A, the total mass is given by
m = pA. Suppose that the shape of the object is given by the curve y = f(z) from z = a to
z =b. As usual, we approximate the object by thin rectangular strips of width Az,
height f(z), area f(z)Axz, mass pf(z)Az, and CM at the point (z, § f(z)).
* x-coordinate of the CM: For each strip, the moment is given by
(mass) x (z-coordinate of strip CM) = pz f(x)Ax
The z-coordinate of the CM (equivalently, the moment about the y-axis) is therefore

% /hl'f(.r) dx

* y-coordinate of the CM: The moment of each strip is

p

m J,

b
zf(z) dz

(mass) x (y-coordinate of strip CM) = (pf(z)A.

; x) (3/(x)).
1 g :
The y-coordinate of the CM is therefore = / (f(x)) ? dz.
a

The density p doesn’t appear in the final result; all that matters is that the density is uniform.

D PROBABILITY & STATISTICS

oo
* The probability that the outcome is something is 1; therefore, / flz)de=1.
J-oo

¢ The mean of a probability density function is the long-run average outcome; 1t can be seen as |
zf(z) dz

* The median is the point m such that the probability that z < m is equal to the probability that
z > m. (Again, the probability that « = m is negligible.) Solve for m in the equation

fmfr)dlf‘orj:" z)dx = 3.

THE NORMAL DISTRIBUTION

The normal distribution, or “bell curve,” is a probability y
density that often arises from repeated random events.

The probability density N (z) = L
* The mean is . m/7r
 The variable o is the standard deviation, a measure of
how clustered the outcomes are around the mean. The
probability that the outcome is within o of the mean is
about 68% : /’”*”
H

the z-coordinate of the CM of the region on a graph and is given by p =

_@-w?
207

0| H-0 u p+o

N(z) dz ~ 0.68. Normal distribution with mean x and
standard deviation o. The blue region

is 68% of the total shaded area

u—o

The probability that the outcome is within 200f the mean
is about 95%.

SEPARABLE DIFFERENTIAL EQUATIONS

A diff-eq is called separable if it is a first-order equation that can be expressed in the form

% = f(x)g(y), where f and g depend only on one variable. The exponential growth diff-eq

y' = ky is separable.

* To solve a separable diff-eq, we abuse Leibniz notation to rewrite it as

integrate each side separately. Only one constant C' is necessary.

Ex: Mixing problems: A tank filled with a solution of one concentration is draining at one rate

while a solution of different concentration is being pumped in at another rate. The rate of

change of the concentration y at time ¢ is given by %’1 = (rate in) —

proportional to the current concentration.

Ex: Logistic (limited) population growth: More accurately

represents population growth taking into account limited

natural resources. A population P(¢) with natural growth

rate k£ and maxiumum carrying capacity Py, will satisfy

4 — kp ( - }17

¢ To solve: Rewriteas kdt = %di’ and integrate
using partial fractions to obtain the general solution
Pit)= —"mr where A = —P 9 ’)" 1
condition.

® If P(0) = 0 or P(0) = Pyax, then the original diff-eq gives G-

® If P(0) # 0, then limy_, P(t) = Ppax, which makes sense

LINEAR EQUATIONS

A linear differential equation is an inseparable equation of the form 3’ + f(z)y = g(x), with

dy

](u) = f(z) dz and

(rate out). The rate out is

P
Several solutions to

M 21)( r |«}\)'

the logistic differential equation %7

is the initial

‘”’ = 0; the population is stable.

f(z), g(x) continuous functions.

* To solve, multiply both sides by the u(z) = e
Y| J@4dx ¢ () = u(z) f(x). Moreover, 'i('“’) =uy +u'y =uwy +ufy.
dlxn/)

[ f(@)dz,

“integrating factor” ; note that

du _
(l17

This gives

= ug; now solve for the funchon uy.
1 2
¢ The general solution is y = ey (/u(m)y(.l') dr + (7) . (Note that the exponent in u(z)
w(z) \.

can be any of the family of functions [ f(z)dz; the constant will drop out.)




SEQUENCES AND SERIES

Why is this a Calculus topic? Complicated functions can often be approximated with
;. polynomials—or with infinite polynomials called “power series.” Polynomials, even infinite ones,
are easy to differentiate and integrate. So we can find an approximate integral or derivative of a
complicated function by representing it as a power series.

A sequence is an ordered list of real numbers, called terms. An infinite sequence has infinitely

many terms.

* Shorthand: {a}72 , represents the sequence a;, az, as, . . ..

* A sequence is defined explicitly if each of its terms can be found independently of the other
terms. Ex: a,, = n? is the sequence 1,4, 9, 16, .. .. A sequence is defined recursively if the n'"
term is found using the preceding term(s). Ex: a; = 1; a, = a,—1 + (2n — 1) is again the
sequence 1,4,9, .. ..

Limit of a sequence:

e The limit of an infinite sequence, denoted hm an, if it exists, is the value that the sequence
approaches. If the limit exists and is ﬁmte, "then the sequence is called convergent. If not, the
sequence is divergent.

Formally, the limit exists and is equal to a if for all € > 0 there exists an N so that whenever
n > N, we have |a, —a| < .

For a divergent sequence whose terms tend toward infinity, we can say that hm an = o if for
all integers A there exists an N so that if n > N, then a,, > A.

A sequence {a,, } is called increasing if a; < ajy; for all k and decreasing if a;, > aj4 for all
k. A sequence is called monotonic if it is either increasing or decreasing.

A sequence is said to be bounded above if every term is smaller than some fixed constant and
bounded below if every term is greater than some fixed constant. A sequence bounded both
above and below is called simply bounded.

A TH

. quence All bounded, monotonic sequences are convergent. A bounded
increasing sequence cannot increase too much; the terms must cluster around some limit.

SERIES: DEFINITIONS AND BASIC TYPES

A series is a summed sequence: a; + as + a3 + - - -. An infinite series has infinitely many terms.
o

An infinite series is often denotedz ak orjustz ay .
k=1
* A partial sum of a series is a cut-off series sum s, = a; +as + - + a,, = Z;cl=1 a.
* The sum of a series exists if the sequence of partial sums converges to a limit sum. If the limit
of partial sums exists, the series is called convergent, otherwise it is divergent.

A geometric series has the form a + ar + ar? + ar® + - = 307 Jar®
* Itis convergent if and only if |r| < 1, in which case its sum is 1.
n
 a(l—gnHl
* We can compute the partial sums,, = Z ar* = (1—)—
k=0

, where a # 0.

ifr#£1.

* A p-series has the form )7 It converges if and only if p > 1.

n= ln"

The special divergent series 3 7 is called the harmonic series.

nln

GENERAL TESTS FOR CONVERGENCE

* Divergence test: If lim, .. a, # 0 (or if the limit does not exist), then the series
ay +az + az + - - - diverges.

Comparison fests: Suppose 3 a,, and 3 b,, are
series with positive terms.

Convergence: If 3 b,, converges, and a,, < b,,
for all n, then 3 a,, converges.

Divergence: If ) b, diverges and a,, > b,, for
all n, then Y a,, diverges.

Limit comparison test: If lim,, . ., 3 exists and

o —
is positive, then either both series converge or 12345671789 x
both diverge.

Integral test: The sum of the infinite series (gray

region) is strictly smaller than the area under

.

Integral test: If {a,} is a monotonically de-
creasing positive sequence and f(z) is a

f(z) (blue and gray region).
continuous function with the property that / ’ f(x)dx converges, then so does the series
a, = f(n), then the series 30 a,

converges if and only if the improper integral jlm f(x) dx converges.

ABSOLUTE CONVERGENCE AND ALTERNATING SERIES

A series ) a,, converges absolutely if the series of absolute values 3 |a,, | converges. If the series
of absolute values does not converge, but the original series does, then it converges conditionally.
* Absolute convergence fest: If a series conveges absolutely, then it is convergent.

* Ratio test: Suppose hm Lll
If L < 1, then the series converges absolutely. If L > 1 (or if the limit is infinite) then the series
diverges. If L = 1 then the test is inconclusive.

* Root test: Suppose lim \/m =
If L < 1, then the 572;1205 converges absolutely. If L > 1 (or if the limit is infinite) then the series
dlverges If L = 1 then the test is inconclusive.

= L exists and is finite.

L exists and is finite.

TIP: If the ratio test is inconclusive on a pcrilcular series, then so is the root test. Try something else

* Alternating series fest: An alternating series has terms with alternating =+ signs.
oo

If a,, are all positive, then the alternating series Z(fl)"a" will always converge if both

n=1
1 ap41 < ay, for all n, and

B, .. a8, =10
These conditions are sufficient but not necessary. For an alternating series that satisfies these
conditions, the error from truncation is always smaller than the next term.

“

GENERAL POWER SERIES

A power series is a formal function in the form of an infinite polynomial:
)

Z an(z —a)" =ag+ai1(z —a) +ag(xr —a)® +---
n=0
Here, z is the variable and the a,, are coefficients; this series is “centered at a.”

Many complex functions can be represented as power series; we need to know when these series
converge. A power series about a can converge in one of three ways:
1. Only at z = a;
2. For all real x;
3.In an interval of radius R around a (ie., a — R < z < a+ R). R is called the radius of
convergence. NOTE: The endpoints a — R and a + R have to be tested for each function

When functions are represented as power series, they can be i
term in the usual way: if f(z) = >°°° | a,,(z — a)", then
e fllz) =32, na"(z —a)"!, and
¢ [ fla)de =31, (@ — a)"t! +C.
The radii of convergence of f'(z) and [ f(z)dz are the same as that of f(z) (but check
endpoints individually). 1

grated or diffe d term by

Ex: The classic example is the power series for tan~! z :

* Start with the power series > - 2" = # with radius of convergence 1. :

* Substituting z — —22, we get the power series for mr=1-22+a2"— 2%+ also with
radius of convergence 1.

* Integrating, we get tan~ 'z = C' +x — %~ Y ‘l +-

* Finally, since tan—' 0 = 0, we know that C = () Checl\ convergence at z = %1 to find that the
power series converges when |z| < 1.

LOR AND MACLAURIN SERIES
) can be represented by a power series around a, then the coefficients a,, are given by

1)

an =
l

Here, (™ is the n'" derivativeandn! = 1-2-3--.n with 0! % 1
* The Taylor series for f(z) centered at a has the form

Z I (a —a

' (z A
e N
It converges at a or in some interval around a.

* The Maclaurin series for f(z) is the Taylor series centered at 0, so f(z

If f(x

f(
72 n'
* Arithmetic with Taylor series: Functions written in Taylor series form can be added, subtracted,

multiplied (painstakingly collecting like terms), and even divided if the constant term of the
denominator is non-zero.

* Poly ial approximati to f(x): The Taylor series for f(zx) about a can be used to
approximate f(x) by a polynomial of any degree for z-values near a. Ignore the higher-order
terms. The linear polynomial is the tangent line to the curve at = = a.

1
) -1

* Applications to limits:
,) (1
-

o
z—tan"lz ”;‘(z‘%+
z3 = rhi% z3
¢ Error bound: Rule of thumb: The error of a truncated Taylor series is less than something a lot
like the next term after the cut-off.

* Formally, if the Maclaurin series for f(z) converges at h, and |f("+V(z)| < M for all
—h < z < h, then the error m evaluatmg f(h) by the Maclaurin series truncated after the nt"
degree term is less than &

alt,

Ex: lim
z—0

(n+1)"
IMPORTANT MACLAURIN SERIES
Function Series Domain of convergence
1 o Ao o
o ";JZ =l+z+z"+a°+--- lz] <1
1 50
 — (n+1)z" =1+2x+32% ... R
(1-1z)2 ”z=0 el
o ™" J.Z
In(1 - z) —27—1:7 o A o B el |
n=1
x - 'T" 71 - 1'2 o .
e Zn'_ +J'+i+3'+ all real z
n=0
) P2+l 3 5 7
. w & e e B =
sinz z;)(— ) Gnr 1) =z-—ata -t all real x
n=
hod i I2n .,[2 .'174 .I,'ﬁ
oS T Z(fl) (—2?)!:17§+I~a+u. all real =
n=0
20 2n+1 3 .5 2T
tan~ !z 2(71)"1’ S A lz] <1

2n+1 3 5 4

n=0

BINOMIAL SERIES

The binomial series is the Maclaurin series for functions in the form (1 + )"
positve integers 7, but works for all real numbers.
o0

(l+z)r=Z(;)w":l+7'z-+r(T—z_l—);2+.u_

n=0

". It is finite for

* Notation: (/) = “r choose n” = 7‘("‘1)(”3“

¢ Defined for all real ~ and non-negative integer 7.

e If 7 is an integer and 7 < n, then (7)) = 0.

« If r is a non-negative integer, then ( ) is the number of ways that a group of n objects can be
chosen from a set of r objects.

* If 7 is negative, then (") = (71)”(T+27 1).

(r—n+1)

The infinite binomial series converge for || < 1. Convergence at +1 depends on r: if r > 0, then
the series converges at +1; if —1 < r < 0, only at 2 = 1; otherwise at neither endpoint.
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